2018-01-23
aluminum plate; and the time history of the aluminum back surface displacement located directly under the sphere. Figures 2-4 present the computed results... displacements as a function of time. It is clear that the computed results using no bond produce more damage in the ceramic plate and much more... displacement of the aluminum back plate. Figures 5-7 present the computed results for boron carbide (using the TR model), for impact velocities of V
Residual interface tensile strength of ceramic bonded to dentin after cyclic loading and aging.
Hernandez, Alfredo I; Roongruangphol, Thasanai; Katsube, Noriko; Seghi, Robert R
2008-03-01
To guard against the potential risk of cusp fracture, esthetic onlay restorations have been advocated for teeth with large restorations. The influence of the adhesive resin cement is believed to play a role in strengthening these restorations. The durability of this tooth/adhesive/ceramic interface is critical to ensure clinical longevity. The purpose of this study was to assess the effects of cyclic loading and environmental aging on the residual interface strength of a ceramic bonded to dentin structure. Eighteen simple trilayer specimens were fabricated, consisting of a 1.5-mm-thick ceramic plate (ProCAD) bonded to a flattened human molar tooth with exposed coronal dentin. The ceramic plates were bonded using resin cement (Nexus 2) and manufacturer-recommended bonding techniques. The specimens were divided into 3 equal groups and were stored in water at 37 degrees C for 10 weeks as a control group (CT), 9 months as an aging group (AG), or placed in water at 37 degrees C while being subjected to 10 million vertical loading cycles between 20 N to 200 N, as a fatigue group (FG). After the specimens were subjected to the experimental conditions, they were sectioned perpendicular to the flat ceramic surface into 1 x 1-mm sticks. The mean residual interface microtensile bond (MTB) strength was determined for each specimen using only those sticks which contained ceramic bonded to dentin. The MTB strength data were analyzed using Weibull analysis methods to determine differences between groups. All subsequent failed specimen surfaces were evaluated under a stereomicroscope at x10 magnification to determine the apparent failure modes. Some specimens were selected from each failure mode category for surface evaluation under a scanning electron microscope (SEM). The characteristic Weibull means for the 3 groups were CT, 19.2, FG, 14.7, and AG, 11.7. The bond strength of group CT was significantly greater than both AG (P=.007) and FG (P=.014). Light microscopic categorization of the failure modes suggests that adhesive failure at the ceramic/cement interface was the most common (65%) for all 3 groups. SEM evaluation of failed surfaces of select specimens from each group could not distinguish any interface appearance differences. For indirect adhesive-retained ceramic restorations, both cyclic masticatory loading and hydrolytic degradation may contribute to a weakening of the interface bond. The ceramic/resin interface may be more susceptible to these changes over the time frame of this investigation than the dentin/resin interface.
Catalyst cartridge for carbon dioxide reduction unit
NASA Technical Reports Server (NTRS)
Holmes, R. F. (Inventor)
1973-01-01
A catalyst cartridge, for use in a carbon dioxide reducing apparatus in a life support system for space vehicles, is described. The catalyst cartridge includes an inner perforated metal wall, an outer perforated wall space outwardly from the inner wall, a base plate closing one end of the cartridge, and a cover plate closing the other end of the cartridge. The cover plate has a central aperture through which a supply line with a heater feeds a gaseous reaction mixture comprising hydrogen and carbon dioxide at a temperature from about 1000 to about 1400 F. The outer surfaces of the internal wall and the inner surfaces of the outer wall are lined with a ceramic fiber batting material of sufficient thickness to prevent carbon formed in the reaction from passing through it. The portion of the surfaces of the base and cover plates defined within the inner and outer walls are also lined with ceramic batting. The heated reaction mixture passes outwardly through the inner perforated wall and ceramic batting and over the catalyst. The solid carbon product formes is retained within the enclosure containing the catalyst. The solid carbon product formed is retained within the enclosure containing the catalyst. The water vapor and unreacted carbon dioxide and any intermediate products pass through the perforations of the outer wall.
Kumahashi, Nobuyuki; Uchio, Yuji; Kitamura, Nobuto; Satake, Shigeru; Iwamoto, Mikio; Yasuda, Kazunori
2014-11-01
The purpose of this study was to clarify the biomechanical characteristics of cement-material interfaces for the zirconia ceramic and cobalt-chromium (Co-Cr) alloy femoral components used for total knee arthroplasty. In the first sub-study, we compared the strength of adhesion of the cement to flat plates, by tensile testing under dry and moistened conditions. In the second sub-study, we compared the maximum load of the cement-component complex by tensile testing. In the third sub-study, we compared the fatigue characteristics of the cement-component complex by use of a dynamic tensile testing machine. Under dry conditions, the maximum strength of adhesion to the zirconia ceramic plate was the same as that to the Co-Cr alloy plate. Under moistened conditions, however, the strength of adhesion to the zirconia ceramic plate was significantly lower (p = 0.0017) whereas the strength of adhesion to the Co-Cr alloy plate was not reduced. Maximum load for the cement-component complexes for zirconia ceramic and Co-Cr alloy was no different under both dry and moistened conditions. Fatigue testing showed that cement-zirconia adhesion was stronger than cement-Co-Cr alloy adhesion (p = 0.0161). The strength of adhesion of cement to zirconia ceramic is substantially weaker under wet conditions than under dry conditions. The mechanical properties of cement-zirconia ceramic component complexes and cement-Co-Cr alloy component complexes are equivalent.
Six component robotic force-torque sensor
NASA Technical Reports Server (NTRS)
Grahn, Allen R.; Hutchings, Brad L.; Johnston, David R.; Parsons, David C.; Wyatt, Roland F.
1987-01-01
The results of a two-phase contract studying the feasibility of a miniaturized six component force-torque sensor and development of a working laboratory system were described. The principle of operation is based upon using ultrasonic pulse-echo ranging to determine the position of ultrasonic reflectors attached to a metal or ceramic cover plate. Because of the small size of the sensor, this technology may have application in robotics, to sense forces and torques at the finger tip of a robotic end effector. Descriptions are included of laboratory experiments evaluating materials and techniques for sensor fabrication and of the development of support electronics for data acquisition, computer interface, and operator display.
FIB/SEM and SEM/EDS microstructural analysis of metal-ceramic and zirconia-ceramic interfaces.
Massimi, F; Merlati, G; Sebastiani, M; Battaini, P; Menghini, P; Bemporad, E
2012-01-10
Recently introduced FIB/SEM analysis in microscopy seems to provide a high-resolution characterization of the samples by 3D (FIB) cross-sectioning and (SEM) high resolution imaging. The aim of this study was to apply the FIB/SEM and SEM/EDS analysis to the interfaces of a metal-ceramic vs. two zirconia-ceramic systems. Plate samples of three different prosthetic systems were prepared in the dental lab following the manufacturers' instructions, where metal-ceramic was the result of a ceramic veneering (porcelain-fused-to-metal) and the two zirconia-ceramic systems were produced by the dedicated CAD-CAM procedures of the zirconia cores (both with final sintering) and then veneered by layered or heat pressed ceramics. In a FIB/SEM equipment (also called DualBeam), a thin layer of platinum (1 μm) was deposited on samples surface crossing the interfaces, in order to protect them during milling. Then, increasingly deeper trenches were milled by a focused ion beam, first using a relatively higher and later using a lower ion current (from 9 nA to 0.28 nA, 30KV). Finally, FEG-SEM (5KV) micrographs (1000-50,000X) were acquired. In a SEM the analysis of the morphology and internal microstructure was performed by 13KV secondary and backscattered electrons signals (in all the samples). The compositional maps were then performed by EDS probe only in the metal-ceramic system (20kV). Despite the presence of many voids in all the ceramic layers, it was possible to identify: (1) the grain structures of the metallic and zirconia substrates, (2) the thin oxide layer at the metal-ceramic interface and its interactions with the first ceramic layer (wash technique), (3) the roughness of the two different zirconia cores and their interactions with the ceramic interface, where the presence of zirconia grains in the ceramic layer was reported in two system possibly due to sandblasting before ceramic firing.
Zhang, Hong; Jing, Ye; Nie, Rongrong; Meng, Xiangfeng
2015-10-01
To evaluate the bond strength and durability of a self-adhesive resin cement with a zirconia ceramic pretreated by a zirconia primer. Zirconia ceramic (Vita Inceram YZ) plates with a thickness of 2.5 mm were fired, polished, and then cleaned. Half of the polished ceramic plates were sandblasted with 50 μm alumina particles at 0.3 MPa for 20 s. The surface compound weight ratios were measured via X-ray fluorescence microscopy. The polished and sandblasted ceramic plates were directly bonded with self-adhesive resin cement (Biscem) or were pretreated by a zirconia primer (Z Primer Plus) before bonding with Biscem. The specimens of each test group were divided into two subgroups (n=10) and subjected to the shear test after 0 and 10,000 thermal cycles. The data were analyzed via three-way ANOVA. After air abrasion, 8.27% weight ratio of alumina attached to the zirconia surface. Compared with air abrasion, primer treatment more significantly improved the primary resin bond strength of the zirconia ceramic. The primary resin bond strength of the zirconia ceramic with no primer treatment was not affected by thermocycling (P>0.05). However, the primary resin bond strength of the zirconia ceramic with primer treatment was significantly decreased by thermocycling (P<0.05). Primer treatment can improve the primary resin bond strengths of zirconia ceramics. However, the bond interface of the primer is not stable and rapidly degraded during thermocycling.
Hoffman, Melvin G.; Janneck, Frank W.
1982-01-01
A combustor for a gas turbine engine includes a metal engine block including a wall portion defining a housing for a combustor having ceramic liner components. A ceramic outlet duct is supported by a compliant seal on the metal block and a reaction chamber liner is stacked thereon and partly closed at one end by a ceramic bypass swirl plate which is spring loaded by a plurality of circumferentially spaced, spring loaded guide rods and wherein each of the guide rods has one end thereof directed exteriorly of a metal cover plate on the engine block to react against externally located biasing springs cooled by ambient air and wherein the rod spring support arrangement maintains the stacked ceramic components together so that a normal force is maintained on the seal between the outlet duct and the engine block under all operating conditions. The support arrangement also is operative to accommodate a substantial difference in thermal expansion between the ceramic liner components of the combustor and the metal material of the engine block.
Noda, Yukari; Nakajima, Masatoshi; Takahashi, Masahiro; Mamanee, Teerapong; Hosaka, Keiichi; Takagaki, Tomohiro; Ikeda, Masaomi; Foxton, Richard M; Tagami, Junji
2017-11-29
This study evaluated the effects of ceramic surface treatment agents on shear bond strengths to ceramic materials with and without thermocycling. Ceramic plates were prepared from feldspathic ceramic; AAA, lithium disilicate ceramic material; IPS e.max Press, zirconia ceramic; Lava. Ceramic surfaces were pretreated with one of five surface treatment agents (Clearfil PhotoBond mixed with Porcelainbond activator (PB), Clearfil SE One mixed with Porcelainbond activator (SO), Ceramic Primer (CP), Universal Primer (UP), Scotchbond Universal (SU)), and then a resin cement (Clapearl DC) was filled. After 0, 5,000, and 10,000 thermocycles, micro-shear bond strengths between ceramic-cement interfaces were determined. SU exhibited significantly lower initial bond strength to AAA and e.max than PB, SO, CP, and UP. For Lava, PB, SO, CP and SU exhibited higher initial bond strengths than UP. Thermocycles reduced bond strengths to all the ceramic materials with any surface treatment.
Tuning the sapphire EFG process to the growth of Al2O3/YAG/ZrO2:Y eutectic
NASA Astrophysics Data System (ADS)
Carroz, L.; Duffar, T.
2018-05-01
In this work, a model is proposed, in order to analytically study the working point of the Edge defined Film-fed Growth (EFG) pulling of crystal plates. The model takes into account the heat equilibrium at the interface and the pressure equilibrium across the meniscus. It is validated on an industrial device dedicated to the pulling of sapphire ribbons. Then, the model is applied to pulling ceramic alloy plates, of the ternary eutectic Al2O3/YAG/ZrO2:Y. This allowed understanding the experimental difficulties of pulling this new material and suggested improvements of the control software. From these results, pulling net shaped ceramic alloy plates was successful in the same industrial equipment as used for sapphire.
Wang, Xia; Zhang, Luyan; Chen, Gang
2011-11-01
As a self-regulating heating device, positive temperature coefficient ceramic heater was employed for hot embossing and thermal bonding of poly(methyl methacrylate) microfluidic chip because it supplied constant-temperature heating without electrical control circuits. To emboss a channel plate, a piece of poly(methyl methacrylate) plate was sandwiched between a template and a microscopic glass slide on a positive temperature coefficient ceramic heater. All the assembled components were pressed between two elastic press heads of a spring-driven press while a voltage was applied to the heater for 10 min. Subsequently, the embossed poly(methyl methacrylate) plate bearing negative relief of channel networks was bonded with a piece of poly(methyl methacrylate) cover sheet to obtain a complete microchip using a positive temperature coefficient ceramic heater and a spring-driven press. High quality microfluidic chips fabricated by using the novel embossing/bonding device were successfully applied in the electrophoretic separation of three cations. Positive temperature coefficient ceramic heater indicates great promise for the low-cost production of poly(methyl methacrylate) microchips and should find wide applications in the fabrication of other thermoplastic polymer microfluidic devices.
Joining of dissimilar materials
Tucker, Michael C; Lau, Grace Y; Jacobson, Craig P
2012-10-16
A method of joining dissimilar materials having different ductility, involves two principal steps: Decoration of the more ductile material's surface with particles of a less ductile material to produce a composite; and, sinter-bonding the composite produced to a joining member of a less ductile material. The joining method is suitable for joining dissimilar materials that are chemically inert towards each other (e.g., metal and ceramic), while resulting in a strong bond with a sharp interface between the two materials. The joining materials may differ greatly in form or particle size. The method is applicable to various types of materials including ceramic, metal, glass, glass-ceramic, polymer, cermet, semiconductor, etc., and the materials can be in various geometrical forms, such as powders, fibers, or bulk bodies (foil, wire, plate, etc.). Composites and devices with a decorated/sintered interface are also provided.
Post-irradiation hardening of dual-cured and light-cured resin cements through machinable ceramics.
Yoshida, Keiichi; Atsuta, Mitsuru
2006-10-01
To evaluate the surface hardness (Knoop Hardness Number) of the thin layer in three light-cured and dual-cured resin cements irradiated through or not through 2.0 mm thick machinable ceramics. A piece of adhesive polyethylene tape with a circular hole was positioned on the surface of the ceramic plate to control the cement layer (approximately 50 microm). The cement paste was placed on the ceramic surface within the circle. The ceramic plate with resin cement paste was placed on a clear micro cover glass over a zirconia ceramic block to obtain a flat surface, and the material was polymerized using a visible-light-curing unit. The surface hardness was recorded at a series of time intervals up to 5 days, starting from the end of a light-irradiation period. The hardness steadily increased with post-irradiation time and tended towards a maximum, usually reached after 1 or 2 days. In all cases, the increase in hardness was relatively rapid over the first 30 minutes and continued at a lower rate thereafter. The dual-cured resin cement for each material showed a significantly higher hardness value than the light-cured resin cement irradiated either through or not through ceramics at all post-irradiation times. The resin cements cured through ceramic for each material were significantly less hard compared with those cured not through ceramics at all post-irradiation times.
Constrained ceramic-filled polymer armor
Sandstrom, Donald J.; Calkins, Noel C.; Gac, Frank D.
1990-01-01
An armor system in which a plurality of constraint cells are mounted on a surface of a substrate, which is metal armor plate or a similar tough material, such that the cells almost completely cover the surface of the substrate. Each constraint cell has a projectile-receiving wall parallel to the substrate surface and has sides which are perpendicular to and surround the perimeter of the receiving wall. The cells are mounted such that, in one embodiment, the substrate surface serves as a sixth side or closure for each cell. Each cell has inside of it a plate, termed the front plate, which is parallel to and in contact with substantially all of the inside surface of the receiving wall. The balance of each cell is completely filled with a projectile-abrading material, which is a ceramic material in particulate form dispersed in a polymeric matrix.
Calkins, Noel C.
1991-01-01
An armor system which utilizes glass. A plurality of constraint cells are mounted on a surface of a substrate, which is metal armor plate or a similar tough material, such that the cells almost completely cover the surface of the substrate. Each constraint cell has a projectile-receiving wall parallel to the substrate surface and has sides which are perpendicular to and surround the perimeter of the receiving wall. The cells are mounted such that, in one embodiment, the substrate surface serves as a sixth side or closure for each cell. Each cell has inside of it a plate, termed the front plate, which is parallel to and in contact with substantially all of the inside surface of the receiving wall. The balance of each cell is completely filled with a projectile-abrading material consisting of glass and a ceramic material and, in certain embodiments, a polymeric material. The glass may be in monolithic form or particles of ceramic may be dispersed in a glass matrix. The ceramic material may be in monolithic form or may be in the form of particles dispersed in glass or dispersed in said polymer.
Constrained ceramic-filled polymer armor
Sandstrom, D.J.; Calkins, N.C.; Gac, F.D.
1990-11-13
An armor system is disclosed in which a plurality of constraint cells are mounted on a surface of a substrate, which is metal armor plate or a similar tough material, such that the cells almost completely cover the surface of the substrate. Each constraint cell has a projectile-receiving wall parallel to the substrate surface and has sides which are perpendicular to and surround the perimeter of the receiving wall. The cells are mounted such that, in one embodiment, the substrate surface serves as a sixth side or closure for each cell. Each cell has inside of it a plate, termed the front plate, which is parallel to and in contact with substantially all of the inside surface of the receiving wall. The balance of each cell is completely filled with a projectile-abrading material, which is a ceramic material in particulate form dispersed in a polymeric matrix. 5 figs.
Lavallé, F; Pascal-Mousselard, H; Rouvillain, J L; Ribeyre, D; Delattre, O; Catonné, Y
2004-10-01
The aim of this radiological study was to evaluate the use of a biphasic ceramic wedge combined with plate fixation with locked adjustable screws for open wedge tibial osteotomy. Twenty-six consecutive patients (27 knees) underwent surgery between December 1999 and March 2002 to establish a normal lower-limb axis. The series included 6 women and 20 men, mean age 50 years (16 right knees and 11 left knees). Partial weight-bearing with crutches was allowed on day 1. A standard radiological assessment was performed on day 1, 90, and 360 (plain AP and lateral stance films of the knee). A pangonogram was performed before surgery and at day 360. Presence of a lateral metaphyseal space, development of peripheral cortical bridges, and osteointegration of the bone substitute-bone interface were evaluated used to assess bone healing. The medial tibial angle between the line tangent to the tibial plateau and the anatomic axis of the tibia (beta) was evaluated to assess preservation of postoperative correction. The HKA angle was determined. Three patients were lost to follow-up and 23 patients (24 knees) were retained for analysis. At last follow-up, presence of peripheral cortical bridges and complete filling of the lateral metaphyseal space demonstrated bone healing in all patients. Good quality osteointegration was achieved since 21 knees did not present an interface between the bone substitute and native bone (homogeneous transition zone). The beta angle was unchanged for 23 knees. A normal axis was observed in patients (16 knees) postoperatively. Use of a biphasic ceramic wedge in combination with plate fixation with locked adjustable screws is a reliable option for open wedge tibial osteotomy. The bone substitute fills the gap well. Tolerance and integration are optimal. Bone healing is achieved. Plate fixation with protected weight bearing appears to be a solid assembly, maintaining these corrections.
NASA Technical Reports Server (NTRS)
Timothy, J. G.
1976-01-01
The full sensitivity, dynamic range, and photometric stability of microchannel array plates(MCP) are incorporated into a photon-counting detection system for space operations. Components of the system include feedback-free MCP's for high gain and saturated output pulse-height distribution with a stable response; multi-anode readout arrays mounted in proximity focus with the output face of the MCP; and multi-layer ceramic headers to provide electrical interface between the anode array in a sealed detector tube and the associated electronics.
Microelectronic device package with an integral window
Peterson, Kenneth A.; Watson, Robert D.
2002-01-01
An apparatus for packaging of microelectronic devices, including an integral window. The microelectronic device can be a semiconductor chip, a CCD chip, a CMOS chip, a VCSEL chip, a laser diode, a MEMS device, or a IMEMS device. The package can include a cofired ceramic frame or body. The package can have an internal stepped structure made of one or more plates, with apertures, which are patterned with metallized conductive circuit traces. The microelectronic device can be flip-chip bonded on the plate to these traces, and oriented so that the light-sensitive side is optically accessible through the window. A cover lid can be attached to the opposite side of the package. The result is a compact, low-profile package, having an integral window that can be hermetically-sealed. The package body can be formed by low-temperature cofired ceramic (LTCC) or high-temperature cofired ceramic (HTCC) multilayer processes with the window being simultaneously joined (e.g. cofired) to the package body during LTCC or HTCC processing. Multiple chips can be located within a single package. The cover lid can include a window. The apparatus is particularly suited for packaging of MEMS devices, since the number of handling steps is greatly reduced, thereby reducing the potential for contamination.
Industrial potential, uses, and performance of sputtered and ion plated films
NASA Technical Reports Server (NTRS)
Spalvins, T.
1979-01-01
The sputtering and ion plating technology is reviewed in terms of their potential, uses and performance. It offers the greatest flexibility in coating preparation, since coatings can be tailored in any preferred chemical combination, and graded type interfaces (ceramic to metal seals) can be formed. Sputtered and ion plated film characteristics such as the degree of adherence, coherence and morphological growth which contribute to film performance and reliability are described and illustrated as used in practice. It is concluded that the potential future of sputtered and ion plated films for industrial applications will depend primarily upon greater comprehension of materials selection, possible elimination of restrictions for coating/substrate combinations and the awareness of utilizing the proper deposition parameters.
Microbial response to environmental gradients in a ceramic-based diffusion system.
Wolfaardt, G M; Hendry, M J; Birkham, T; Bressel, A; Gardner, M N; Sousa, A J; Korber, D R; Pilaski, M
2008-05-01
A solid, porous matrix was used to establish steady-state concentration profiles upon which microbial responses to concentration gradients of nutrients or antimicrobial agents could be quantified. This technique relies on the development of spatially defined concentration gradients across a ceramic plate resulting from the diffusion of solutes through the porous ceramic matrix. A two-dimensional, finite-element numerical transport model was used to predict the establishment of concentration profiles, after which concentration profiles of conservative tracers were quantified fluorometrically and chemically at the solid-liquid interface to verify the simulated profiles. Microbial growth responses to nutrient, hypochloride, and antimicrobial concentration gradients were then quantified using epifluorescent or scanning confocal laser microscopy. The observed microbial response verified the establishment and maintenance of stable concentration gradients along the solid-liquid interface. These results indicate the ceramic diffusion system has potential for the isolation of heterogeneous microbial communities as well as for testing the efficacy of antimicrobial agents. In addition, the durability of the solid matrix allowed long-term investigations, making this approach preferable to conventional gel-stabilized systems that are impeded by erosion as well as expansion or shrinkage of the gel. Copyright 2008 Wiley Periodicals, Inc.
Effect of toughened epoxy resin on partial discharge at solid-solid interface
NASA Astrophysics Data System (ADS)
Li, Manping; Wu, Kai; Zhang, Zhao; Cheng, Yonghong
2017-02-01
A series of solid-solid interfaces, consisting of ceramic-epoxy resin interface samples with a tip-plate electrode, were investigated by performing partial discharge tests and real-time electrical tree observations. A toughening agent was added to the epoxy resin at different ratios for comparison. The impact strength, differential scanning calorimetry (DSC) and dielectric properties of the cured compositions and ceramic were tested. The electric field strength at the tip was calculated based on Maxwell’s theory. The test results show that the addition of a toughener can improve the impact strength of epoxy resin but it decreases the partial discharge inception voltage (PDIV) of the interface sample. At the same time, toughening leads to complex branches of the electrical tree. The simulation result suggests that this reduction of the PDIV cannot be explained by a change of permittivity due to the addition of a toughening agent. The microstructural change caused by toughening was considered to be the key factor for lower PDIV and complex electrical tree branches. Supported by China Academy of Engineering Physics (Project 2014B05005).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niihara, Koichi; Ishizaki, Kozo; Isotani, Mitsuo
This volume contains selected papers presented at a workshop by the Japan Fine Ceramics Center, `Materials Processing and Design Through Better Control of Grain Boundaries: Emphasizing Fine Ceramics II,` which was held March 17-19, 1994, in Koda-cho, Aichi, Japan. The focus of the workshop was the application of grain boundary phenomena to materials processing and design. The topics covered included electronic materials, evaluation methods, structural materials, and interfaces. Also included is an illuminating overview of the current status of work on grain boundary assisted materials processing and design, particularly for fine ceramics. The volume`s chapter titles are: Electron Microscopy, Evaluation,more » Grain Boundary Control and Design, Functional Ceramics, Composite Materials, Synthesis and Sintering, and Mechanical Properties.« less
Fraas, A.P.; Tudor, J.J.
1963-08-01
An improved moderator structure for nuclear reactors consists of moderator blocks arranged in horizontal layers to form a multiplicity of vertically stacked columns of blocks. The blocks in each vertical column are keyed together, and a ceramic grid is disposed between each horizontal layer of blocks. Pressure plates cover- the lateral surface of the moderator structure in abutting relationship with the peripheral terminal lengths of the ceramic grids. Tubular springs are disposed between the pressure plates and a rigid external support. The tubular springs have their axes vertically disposed to facilitate passage of coolant gas through the springs and are spaced apart a selected distance such that at sonae preselected point of spring deflection, the sides of the springs will contact adjacent springs thereby causing a large increase in resistance to further spring deflection. (AEC)
NASA Astrophysics Data System (ADS)
Keller, Marlou; Appetecchi, Giovanni Battista; Kim, Guk-Tae; Sharova, Varvara; Schneider, Meike; Schuhmacher, Jörg; Roters, Andreas; Passerini, Stefano
2017-06-01
The preparation of hybrid ceramic-polymer electrolytes, consisting of 70 wt% of Li+ cation conducting Li7La3Zr2O12 (LLZO) and 30 wt% of P(EO)15LiTFSI polymer electrolyte, through a solvent-free procedure is reported. The LLZO-P(EO)15LiTFSI hybrid electrolytes exhibit remarkable improvement in terms of flexibility and processability with respect to pure LLZO ceramic electrolytes. The physicochemical and electrochemical investigation shows the effect of LLZO annealing, resulting in ion conduction gain. However, slow charge transfer at the ceramic-polymer interface is also observed especially at higher temperatures. Nevertheless, improved compatibility with lithium metal anodes and good Li stripping/plating behavior are exhibited by the LLZO-P(EO)15LiTFSI hybrid electrolytes with respect to P(EO)15LiTFSI.
NASA Astrophysics Data System (ADS)
Geantă, V.; Cherecheș, T.; Lixandru, P.; Voiculescu, I.; Ștefănoiu, R.; Dragnea, D.; Zecheru, T.; Matache, L.
2017-06-01
Due to excellent mechanical properties, high entropy alloys from the system AlxCrFeCoNi can be used successfully to create composite structures containing both metallic and ceramic plates, which resists at dynamic load during high speeds impact (like projectiles, explosion). The paper presents four different composite structures made from a combination of metallic materials and ceramics plates: duralumin-ceramics, duralumin-ceramics-HEA, HEA-ceramics-HEA, HEA-ceramics-duralumin. Numerical simulation of impact behavior of the composite structures was performed by virtual methods, taking into account the mechanical properties of both materials. The best results were obtained using composite structures HEA-ceramics-HEA, HEA-ceramics-duralumin.
Lithium/water battery with lithium ion conducting glass-ceramics electrolyte
NASA Astrophysics Data System (ADS)
Katoh, Takashi; Inda, Yasushi; Nakajima, Kousuke; Ye, Rongbin; Baba, Mamoru
Lithium/water batteries have attracted considerable attention as high power supply devices because they use high energy density lithium metal as an anode and water as a cathode. In this study, we investigate the use of lithium/water batteries that use a glass-ceramics plate as an electrolyte. A lithium ion conducting glass-ceramics plate has no through-holes and does not exhibit moisture permeation. Such a plate has stable ionic conductivity in water. Lithium/water batteries that used a glass-ceramics plate as an electrolyte had a long and stable discharge for 50 days at room temperature when the lithium metal was prevented from coming into contact with water. Lithium/seawater batteries using a glass-ceramics plate as an electrolyte also operated well in the 10-70 °C temperature range.
[Biomaterials in bone repair].
Puska, Mervi; Aho, Allan J; Vallittu, Pekka K
2013-01-01
In orthopedics, traumatology, and craniofacial surgery, biomaterials should meet the clinical demands of bone that include shape, size and anatomical location of the defect, as well as the physiological load-bearing stresses. Biomaterials are metals, ceramics, plastics or materials of biological origin. In the treatment of large defects, metallic endoprostheses or bone grafts are employed, whereas ceramics in the case of small defects. Plastics are employed on the artificial joint surfaces, in the treatment of vertebral compression fractures, and as biodegradable screws and plates. Porosity, bioactivity, and identical biomechanics to bone are fundamental for achieving a durable, well-bonded, interface between biomaterial and bone. In the case of severe bone treatments, biomaterials should also imply an option to add biologically active substances.
Bone bonding in bioactive glass ceramics combined with a new synthesized agent TAK-778.
Kato, H; Neo, M; Tamura, J; Nakamura, T
2001-11-01
We studied the stimulatory effects of TAK-778, a new synthetic 3-benzothiepin derivative that promotes osteoblast differentiation, in the bonding of bone to bioactive glass ceramic implants in rabbit tibiae. Smooth-surfaced, rectangular plates (15 x 10 x 2 mm) made of apatite-wollastonite-containing glass ceramic were implanted bilaterally into the proximal metaphyses of rabbit tibiae. Sustained-release microcapsules containing TAK-778 were packed into the medullary cavity in one limb and untreated microcapsules were packed into the contralateral limb to serve as a paired control. At 4, 8, and 16 weeks after implantation, bonding at the bone/implant interfaces was evaluated using a detaching test and histological examination of undecalcified specimens. The tensile failure load increased during weeks 4 to 16 in both groups; the tensile failure load in the TAK-778-treated group was significantly greater than that in the control group at each interval after implantation. Histologically, the TAK-778-treated specimens showed greater active new bone formation mainly in the medullary cavity and more extensive bonding between the implant and bone than the untreated specimens. The results of this study suggest that adding the bone formation-promoting TAK-778 to bioactive glass ceramic implants may significantly accelerate bone apposition to the implants and improve the bonding process at the interface. This would help to establish earlier and stronger bonding of orthopedic ceramic implants to the surrounding bone tissue. Copyright 2001 John Wiley & Sons, Inc.
Synthesis and microstructural TEM investigation of CaCu 3Ru 4O 12 ceramic and thin film
NASA Astrophysics Data System (ADS)
Brizé, Virginie; Autret-Lambert, Cécile; Wolfman, Jérôme; Gervais, Monique; Gervais, François
2011-10-01
CaCu 3Ru 4O 12 (CCRO) is a conductive oxide having the same structure as CaCu 3Ti 4O 12 (CCTO) and close lattice parameters. The later compound is strongly considered for high density parallel plates capacitors application due to its so-called colossal dielectric constant. The need for an electrode inducing CCTO epitaxial growth with a clean and sharp interface is therefore necessary, and CCRO is a good potential candidate. In this paper, the synthesis of monophasic CCRO ceramic is reported, as well as pulsed laser deposition of CCRO thin film onto (001) NdCaAlO 4 substrate. Structural and physical properties of bulk CCRO were studied by transmission electron microscopy and electron spin resonance. CCRO films and ceramic exhibited a metallic behavior down to low temperature. CCRO films were (001) oriented and promoted a CCTO film growth with the same orientation.
The crack problem for a half plane stiffened by elastic cover plates
NASA Technical Reports Server (NTRS)
Delale, F.; Erdogan, F.
1981-01-01
An elastic half plane containing a crack and stiffened by a cover plate is discussed. The asymptotic nature of the stress state in the half plane around an end point of the stiffener to determine the likely orientation of a possible fracture initiation and growth was studied. The problem is formulated for an arbitrary oriented radial crack in a system of singular integral equations. For an internal crack and for an edge crack, the problem is solved and the stress intensity factors at the crack tips and the interface stress are calculated. A cracked half plane with two symmetrically located cover plates is also considered. It is concluded that the case of two stiffeners appears to be more severe than that of a single stiffener.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Nan; Liu, Xiang-Yang
In this study, recent experimental and modeling studies in nanolayered metal/ceramic composites are reviewed, with focus on the mechanical behaviors of metal/nitrides interfaces. The experimental and modeling studies of the slip systems in bulk TiN are reviewed first. Then, the experimental studies of interfaces, including co-deformation mechanism by micropillar compression tests, in situ TEM straining tests for the dynamic process of the co-deformation, thickness-dependent fracture behavior, and interrelationship among the interfacial bonding, microstructure, and mechanical response, are reviewed for the specific material systems of Al/TiN and Cu/TiN multilayers at nanoscale. The modeling studies reviewed cover first-principles density functional theory-based modeling,more » atomistic molecular dynamics simulations, and mesoscale modeling of nanolayered composites using discrete dislocation dynamics. The phase transformation between zinc-blende and wurtzite AlN phases in Al/AlN multilayers at nanoscale is also reviewed. Finally, a summary and perspective of possible research directions and challenges are given.« less
Li, Nan; Liu, Xiang-Yang
2017-11-03
In this study, recent experimental and modeling studies in nanolayered metal/ceramic composites are reviewed, with focus on the mechanical behaviors of metal/nitrides interfaces. The experimental and modeling studies of the slip systems in bulk TiN are reviewed first. Then, the experimental studies of interfaces, including co-deformation mechanism by micropillar compression tests, in situ TEM straining tests for the dynamic process of the co-deformation, thickness-dependent fracture behavior, and interrelationship among the interfacial bonding, microstructure, and mechanical response, are reviewed for the specific material systems of Al/TiN and Cu/TiN multilayers at nanoscale. The modeling studies reviewed cover first-principles density functional theory-based modeling,more » atomistic molecular dynamics simulations, and mesoscale modeling of nanolayered composites using discrete dislocation dynamics. The phase transformation between zinc-blende and wurtzite AlN phases in Al/AlN multilayers at nanoscale is also reviewed. Finally, a summary and perspective of possible research directions and challenges are given.« less
Structural and Chemical Analysis of the Zirconia-Veneering Ceramic Interface.
Inokoshi, M; Yoshihara, K; Nagaoka, N; Nakanishi, M; De Munck, J; Minakuchi, S; Vanmeensel, K; Zhang, F; Yoshida, Y; Vleugels, J; Naert, I; Van Meerbeek, B
2016-01-01
The interfacial interaction of veneering ceramic with zirconia is still not fully understood. This study aimed to characterize morphologically and chemically the zirconia-veneering ceramic interface. Three zirconia-veneering conditions were investigated: 1) zirconia-veneering ceramic fired on sandblasted zirconia, 2) zirconia-veneering ceramic on as-sintered zirconia, and 3) alumina-veneering ceramic (lower coefficient of thermal expansion [CTE]) on as-sintered zirconia. Polished cross-sectioned ceramic-veneered zirconia specimens were examined using field emission gun scanning electron microscopy (Feg-SEM). In addition, argon-ion thinned zirconia-veneering ceramic interface cross sections were examined using scanning transmission electron microscopy (STEM)-energy dispersive X-ray spectrometry (EDS) at high resolution. Finally, the zirconia-veneering ceramic interface was quantitatively analyzed for tetragonal-to-monoclinic phase transformation and residual stress using micro-Raman spectroscopy (µRaman). Feg-SEM revealed tight interfaces for all 3 veneering conditions. High-resolution transmission electron microscopy (HRTEM) disclosed an approximately 1.0-µm transformed zone at sandblasted zirconia, in which distinct zirconia grains were no longer observable. Straight grain boundaries and angular grain corners were detected up to the interface of zirconia- and alumina-veneering ceramic with as-sintered zirconia. EDS mapping disclosed within the zirconia-veneering ceramic a few nanometers thick calcium/aluminum-rich layer, touching the as-sintered zirconia base, with an equally thick silicon-rich/aluminum-poor layer on top. µRaman revealed t-ZrO2-to-m-ZrO2 phase transformation and residual compressive stress at the sandblasted zirconia surface. The difference in CTE between zirconia- and the alumina-veneering ceramic resulted in residual tensile stress within the zirconia immediately adjacent to its interface with the veneering ceramic. The rather minor chemical elemental shifts recorded in the veneering ceramic did not suffice to draw definitive conclusions regarding potential chemical interaction of the veneering ceramic with zirconia. Sandblasting damaged the zirconia surface and induced phase transformation that also resulted in residual compressive stress. Difference in CTE of zirconia versus that of the veneering ceramic resulted in an unfavorable residual tensile stress at the zirconia-veneering ceramic interface. © International & American Associations for Dental Research 2015.
Stability analysis of multipoint tool equipped with metal cutting ceramics
NASA Astrophysics Data System (ADS)
Maksarov, V. V.; Khalimonenko, A. D.; Matrenichev, K. G.
2017-10-01
The article highlights the issues of determining the stability of the cutting process by a multipoint cutting tool equipped with cutting ceramics. There were some recommendations offered on the choice of parameters of replaceable cutting ceramic plates for milling based of the conducted researches. Ceramic plates for milling are proposed to be selected on the basis of value of their electrical volume resistivity.
Actively dewatering fluid-rich zones along the Costa Rica plate boundary fault
NASA Astrophysics Data System (ADS)
Bangs, N. L.; McIntosh, K. D.; Silver, E. A.; Kluesner, J. W.; Ranero, C. R.; von Huene, R.
2012-12-01
New 3D seismic reflection data reveal distinct evidence for active dewatering above a 12 km wide segment of the plate boundary fault within the Costa Rica subduction zone NW of the Osa Peninsula. In the spring of 2011 we acquired a 11 x 55 km 3D seismic reflection data set on the R/V Langseth using four 6,000 m streamers and two 3,300 in3 airgun arrays to examine the structure of the Costa Rica margin from the trench into the seismogenic zone. We can trace the plate-boundary interface from the trench across our entire survey to where the plate-boundary thrust lies > 10 km beneath the margin shelf. Approximately 20 km landward of the trench beneath the mid slope and at the updip edge of the seismogenic zone, a 12 km wide zone of the plate-boundary interface has a distinctly higher-amplitude seismic reflection than deeper or shallower segments of the fault. Directly above and potentially directly connected with this zone are high-amplitude, reversed-polarity fault-plane reflections that extend through the margin wedge and into overlying slope sediment cover. Within the slope cover, high-amplitude reversed-polarity reflections are common within the network of closely-spaced nearly vertical normal faults and several broadly spaced, more gently dipping thrust faults. These faults appear to be directing fluids vertically toward the seafloor, where numerous seafloor fluid flow indicators, such as pockmarks, mounds and ridges, and slope failure features, are distinct in multibeam and backscatter images. There are distinctly fewer seafloor and subsurface fluid flow indicators both updip and downdip of this zone. We believe these fluids come from a 12 km wide fluid-rich segment of the plate-boundary interface that is likely overpressured and has relatively low shear stress.
[Follow-up examinations after removal of titanium plates coated with anodic titanium oxide ceramic].
Velich, Norbert; Németh, Zsolt; Barabás, József; Szabó, György
2002-04-01
Transformation of the titanium metal surface with titanium oxides produced in various ways belongs among the most up-to-date procedures. The authors as pioneers in this field (e.g. Nobel Biocare TiUnite surface), have been utilizing for more than 15 years dental root implants and fixing elements (for mandibular osteosynthesis) coated with titanium oxide ceramics, produced by anodic oxidation and thermal treatment. The aim of this work was to assess the extent to which a titanium oxide ceramic coating influences the fate of plates applied for osteosynthesis within the human body. During a 5-year period (1995-1999), 108 of 1396 titanium oxide ceramic plates had to be removed for various reasons: loosening of the plate [47], osteomyelitis [25], a palpable swelling and tenderness [21] at the request of the patient for psychological reasons (13) or breaking of the plate [2]. When these 108 plates were removed, it was not possible to detect metallosis in even a single case; nor was there any tissue damage that could be attributed to the surface of the plates, whereas the literature data indicate that such damage is relatively frequent in the environment of traditional titanium fixing elements. The present investigation confirms the favourable properties of the titanium oxide ceramic surface.
Theoretical analysis of a ceramic plate thickness-shear mode piezoelectric transformer.
Xu, Limei; Zhang, Ying; Fan, Hui; Hu, Junhui; Yang, Jiashi
2009-03-01
We perform a theoretical analysis on a ceramic plate piezoelectric transformer operating with thickness-shear modes. Mindlin's first-order theory of piezoelectric plates is employed, and a forced vibration solution is obtained. Transforming ratio, resonant frequencies, and vibration mode shapes are calculated, and the effects of plate thickness and electrode dimension are examined.
Influence of ceramic surface texture on the wear of gold alloy and heat-pressed ceramics.
Saiki, Osamu; Koizumi, Hiroyasu; Nogawa, Hiroshi; Hiraba, Haruto; Akazawa, Nobutaka; Matsumura, Hideo
2014-01-01
The purpose of this study was to evaluate the influence of ceramic surface texture on the wear of rounded rod specimens. Plate specimens were fabricated from zirconia (ZrO2), feldspathic porcelain, and lithium disilicate glass ceramics (LDG ceramics). Plate surfaces were either ground or polished. Rounded rod specimens with a 2.0-mm-diameter were fabricated from type 4 gold alloy and heat-pressed ceramics (HP ceramics). Wear testing was performed by means of a wear testing apparatus under 5,000 reciprocal strokes of the rod specimen with 5.9 N vertical loading. The results were statistically analyzed with a non-parametric procedure. The gold alloy showed the maximal height loss (90.0 µm) when the rod specimen was abraded with ground porcelain, whereas the HP ceramics exhibited maximal height loss (49.8 µm) when the rod specimen was abraded with ground zirconia. There was a strong correlation between height loss of the rod and surface roughness of the underlying plates, for both the gold alloy and HP ceramics.
2012-08-01
Radiography Scans Each of the two specimens consists of three 14- × 14-in transparent ceramic plates with adhesive between them to bond them...vertically close to the centerline. The depth of the impact cavity in specimen 741-2 is beyond the relatively thin front ceramic plate . Figure 2...The points defining the corners of the ceramic plates in both specimens were also determined. Figure 5. Centerline XCT scan of specimen 740-1
2014-02-01
the ISF—night vision devices and ceramic plates for bullet proof vests . With regard to these two articles, we found the following: • INL consulted...However, INL did not consult the directorate about ceramic plates , which INL provided for bullet proof vests that it transferred to the ISF in...did not consult with the directorate about the ceramic plates , INL officials said that INL would contact the directorate in the future about any
A Dynamic Analysis of Piezoelectric Strained Elements.
1992-12-01
Type Quartz Crystal Plates ", IEEE SU- 29 (3), pp. 1 2 1 - 1 2 7 (1982). [107] L.K.Chau,High -frequency Long-wave Vibrations of Piezoelectric Ceramic ... Plate Excited with Voltage", Acta Acustica, 8 (5), pp. 300-310 (1983). [265] M.Ting-rong, "Forced Vibrations of Metal-Piezo- ceramic Thin Composite... ceramic and Metal Composite Thin Circular Plate with Different Diameter for Each Layer", Acta Acustica, 9 (5), pp. 298-310 (1984); Chinese J. Acoust., 2(3
Experimental investigation on IXV TPS interface effects in Plasmatron
NASA Astrophysics Data System (ADS)
Ceglia, Giuseppe; Trifoni, Eduardo; Gouriet, Jean-Baptiste; Chazot, Olivier; Mareschi, Vincenzo; Rufolo, Giuseppe; Tumino, Giorgio
2016-06-01
An experimental investigation related to the thermal protection system (TPS) interfaces of the intermediate experimental vehicle has been carried out in the Plasmatron facility at the von Karman Institute for fluid dynamics. The objective of this test campaign is to qualify the thermal behaviours of two different TPS interfaces under flight representative conditions in terms of heat flux and integral heat load ( 180 kW/m2 for 700 s). Three test samples are tested in off-stagnation configuration installed on an available flat plate holder under the same test conditions. The first junction is composed of an upstream ceramic matrix composite (CMC) plate and an ablative P50 cork composite block separated by a gap of 2 mm. The second one is made of an upstream P50 block and a downstream ablative SV2A silicon elastomer block with silicon-based filler in between. A sample composed of P50 material is tested in order to obtain reference results without TPS interface effect. The overheating at the CMC-P50 interface due to the jump of the catalytic properties of the materials, and the recession/swelling behaviour of the P50-SV2A interface are under investigation. All the test samples withstand relatively well the imposed heat flux for the test duration. As expected, both the ablative materials undergo a thermal degradation. The P50 exhibits the formation of a porous char layer and its recession; on the other hand, the SV2A swells and forms a fragile char layer.
Multilayered microelectronic device package with an integral window
Peterson, Kenneth A.; Watson, Robert D.
2003-01-01
An apparatus for packaging of microelectronic devices is disclosed, wherein the package includes an integral window. The microelectronic device can be a semiconductor chip, a CCD chip, a CMOS chip, a VCSEL chip, a laser diode, a MEMS device, or a IMEMS device. The package can comprise, for example, a cofired ceramic frame or body. The package has an internal stepped structure made of a plurality of plates, with apertures, which are patterned with metallized conductive circuit traces. The microelectronic device can be flip-chip bonded on the plate to these traces, and oriented so that the light-sensitive side is optically accessible through the window. A cover lid can be attached to the opposite side of the package. The result is a compact, low-profile package, having an integral window that can be hermetically-sealed. The package body can be formed by low-temperature cofired ceramic (LTCC) or high-temperature cofired ceramic (HTCC) multilayer processes with the window being simultaneously joined (e.g. cofired) to the package body during LTCC or HTCC processing. Multiple chips can be located within a single package, according to some embodiments. The cover lid can include a window. The apparatus is particularly suited for packaging of MEMS devices, since the number of handling steps is greatly reduced, thereby reducing the potential for contamination. The integral window can further include a lens for optically transforming light passing through the window. The package can include an array of binary optic lenslets made integral with the window. The package can include an electrically-switched optical modulator, such as a lithium niobate window attached to the package, for providing a very fast electrically-operated shutter.
Acoustic emission as a screening tool for ceramic matrix composites
NASA Astrophysics Data System (ADS)
Ojard, Greg; Goberman, Dan; Holowczak, John
2017-02-01
Ceramic matrix composites are composite materials with ceramic fibers in a high temperature matrix of ceramic or glass-ceramic. This emerging class of materials is viewed as enabling for efficiency improvements in many energy conversion systems. The key controlling property of ceramic matrix composites is a relatively weak interface between the matrix and the fiber that aids crack deflection and fiber pullout resulting in greatly increased toughness over monolithic ceramics. United Technologies Research Center has been investigating glass-ceramic composite systems as a tool to understand processing effects on material performance related to the performance of the weak interface. Changes in the interface have been shown to affect the mechanical performance observed in flexural testing and subsequent microstructural investigations have confirmed the performance (or lack thereof) of the interface coating. Recently, the addition of acoustic emission testing during flexural testing has aided the understanding of the characteristics of the interface and its performance. The acoustic emission onset stress changes with strength and toughness and this could be a quality tool in screening the material before further development and use. The results of testing and analysis will be shown and additional material from other ceramic matrix composite systems may be included to show trends.
Removal of titanium plates coated with anodic titanium oxide ceramic: retrospective study.
Velich, Norbert; Németh, Zsolt; Suba, Csongor; Szabó, György
2002-09-01
Transformation of the surface of metallic titanium with titanium oxides prepared in various ways is a modern procedure. For more than 15 years, the authors have been utilizing fixing elements coated with titanium oxide ceramics, prepared by anodic oxidation and thermal treatment, for purposes of jawbone osteosynthesis. The aim of the authors' work was to assess the extent to which the titanium oxide ceramic coating influences the fate of the plates used for osteosynthesis within the human organism, in regard to the possible need for their removal. During a 5-year period, 108 of 1,396 plates coated with anodic titanium oxide had to be removed for various reasons: plate exposure (47), osteomyelitis (25), palpable swelling and tenderness (21), patient request for psychological reasons (13), or fracture of the plate (2). In none of these 108 cases was metallosis observed, which otherwise is reported relatively frequently in the vicinity of traditional titanium fixing elements, nor was any tissue damage connected with the surface of the plates. The results indicate the favorable properties of the titanium oxide ceramic surface.
Tagmatarchis, Alexander; Tripodakis, Aris-Petros; Filippatos, Gerasimos; Zinelis, Spiros; Eliades, George
2014-01-01
The aim of the study was to characterize the elemental distribution at the interface between all-ceramic core and veneering porcelain materials. Three groups of all-ceramic cores were selected: A) Glass-ceramics (Cergo, IPS Empress, IPS Empress 2, e-max Press, Finesse); B) Glass-infiltrated ceramics (Celay Alumina, Celay Zirconia) and C) Densely sintered ceramics (Cercon, Procera Alumina, ZirCAD, Noritake Zirconia). The cores were combined with compatible veneering porcelains and three flat square test specimens were produced for each system. The core-veneer interfaces were examined by scanning electron microscopy and energy dispersive x-ray microanalysis. The glass-ceramic systems showed interfacial zones reach in Si and O, with the presence of K, Ca, Al in core and Ca, Ce, Na, Mg or Al in veneer material, depending on the system tested. IPS Empress and IPS Empress 2 demonstrated distinct transitional phases at the core-veneer interface. In the glassinfiltrated systems, intermixing of core (Ce, La) with veneer (Na, Si) elements occurred, whereas an abrupt drop of the core-veneer elemental concentration was documented at the interfaces of all densely sintered ceramics. The results of the study provided no evidence of elemental interdiffusion at the core-veneer interfaces in densely sintered ceramics, which implies lack of primary chemical bonding. For the glass-containing systems (glassceramics and glass-infiltrated ceramics) interdiffusion of the glass-phase seems to play a critical role in establishing a primary bonding condition between ceramic core and veneering porcelain.
ERIC Educational Resources Information Center
Hardy, Jane; And Others
1982-01-01
Describes eight art activities using ceramics. Elementary students created ceramic tiles to depict ancient Egyptian and medieval European art, made ceramic cookie stamps, traced bisque plates on sketch paper, constructed clay room-tableaus, and designed clay relief masks. Secondary students pit-fired ceramic pots and designed ceramic Victorian…
Ono, I; Tateshita, T; Sasaki, T; Matsumoto, M; Kodama, N
2001-05-01
We devised a technique to fix the temporalis muscle to the transplanted hydroxyapatite implant by using a titanium plate, which is fixed to the hydroxyapatite ceramic implant by screws and achieves good clinical results. The size, shape, and curvature of the hydroxyapatite ceramic implants were determined according to full-scale models fabricated using the laser lithographic modeling method from computed tomography data. A titanium plate was then fixed with screws on the implant before implantation, and then the temporalis muscle was refixed to the holes at both ends of the plate. The application of this technique reduced the hospitalization time and achieved good results esthetically.
Apparatus for precision micromachining with lasers
Chang, J.J.; Dragon, E.P.; Warner, B.E.
1998-04-28
A new material processing apparatus using a short-pulsed, high-repetition-rate visible laser for precision micromachining utilizes a near diffraction limited laser, a high-speed precision two-axis tilt-mirror for steering the laser beam, an optical system for either focusing or imaging the laser beam on the part, and a part holder that may consist of a cover plate and a back plate. The system is generally useful for precision drilling, cutting, milling and polishing of metals and ceramics, and has broad application in manufacturing precision components. Precision machining has been demonstrated through percussion drilling and trepanning using this system. With a 30 W copper vapor laser running at multi-kHz pulse repetition frequency, straight parallel holes with size varying from 500 microns to less than 25 microns and with aspect ratios up to 1:40 have been consistently drilled with good surface finish on a variety of metals. Micromilling and microdrilling on ceramics using a 250 W copper vapor laser have also been demonstrated with good results. Materialographic sections of machined parts show little (submicron scale) recast layer and heat affected zone. 1 fig.
Apparatus for precision micromachining with lasers
Chang, Jim J.; Dragon, Ernest P.; Warner, Bruce E.
1998-01-01
A new material processing apparatus using a short-pulsed, high-repetition-rate visible laser for precision micromachining utilizes a near diffraction limited laser, a high-speed precision two-axis tilt-mirror for steering the laser beam, an optical system for either focusing or imaging the laser beam on the part, and a part holder that may consist of a cover plate and a back plate. The system is generally useful for precision drilling, cutting, milling and polishing of metals and ceramics, and has broad application in manufacturing precision components. Precision machining has been demonstrated through percussion drilling and trepanning using this system. With a 30 W copper vapor laser running at multi-kHz pulse repetition frequency, straight parallel holes with size varying from 500 microns to less than 25 microns and with aspect ratios up to 1:40 have been consistently drilled with good surface finish on a variety of metals. Micromilling and microdrilling on ceramics using a 250 W copper vapor laser have also been demonstrated with good results. Materialogroaphic sections of machined parts show little (submicron scale) recast layer and heat affected zone.
Characteristics of solder joints under fatigue loads using piezomechanical actuation
NASA Astrophysics Data System (ADS)
Shim, Dong-Jin; Spearing, S. Mark
2003-07-01
Crack initiation and growth characteristics of solder joints under fatigue loads are investigated using piezomechanical actuation. Cracks in solder joints, which can cause failure in microelectronics components, are induced via piezoelectricity in piezo-ceramic bonded joints. Lead-zirconate-titanate ceramic plates and eutectic Sn-Pb solder bonded in a double-lap shear configuration are used in the investigation. Electric field across each piezo-ceramic plate is applied such that shear stresses/strains are induced in the solder joints. The experiments show that cracks initiate in the solder joints around defects such as voids and grow in length until they coalesce with other cracks from adjacent voids. These observations are compared with the similar thermal cycling tests from the literature to show feasibility and validity of the current method in investigating the fatigue characteristics of solder joints. In some specimens, cracks in the piezo-ceramic plates are observed, and failure in the specimens generally occurred due to piezo-ceramic plate fracture. The issues encountered in implementing this methodology such as low actuation and high processing temperatures are further discussed.
2009-10-01
protective vest and ceramic plate inserts. GAO observed Preliminary Design Model testing of new plate designs, which resulted in the Army’s...Table 1: Organizations Contacted for Information about Body Armor Testing 46 Figures Figure 1: ESAPI Plates as Worn inside Outer Tactical Vest 11...Central Command has required that DOD personnel in its area of operations be issued the Interceptor Body Armor system, comprising ceramic plates that
Ceramic tamper-revealing seals
Kupperman, David S.; Raptis, Apostolos C.; Sheen, Shuh-Haw
1992-01-01
A flexible metal or ceramic cable with composite ceramic ends, or a u-shaped ceramic connecting element attached to a binding element plate or block cast from alumina or zirconium, and connected to the connecting element by shrink fitting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Steve Xunhu
2015-09-01
Among glass-ceramic compositions modified with a variety of oxidants (AgO, FeO, NiO, PbO, SnO, CuO, CoO, MoO 3 and WO 3) only CuO and CoO doped glass-ceramics showed existence of bonding oxides through reduction-oxidation (redox) at the GC-SS interface. The CuO-modified glass-ceramics demonstrate the formation of a continuous layer of strong bonding Cr 2O 3 at the interface in low partial oxygen (PO 2) atmosphere. However, in a local reducing atmosphere, the CuO is preferentially reduced at the surface of glass-ceramic rather than the GC-SS interface for redox. The CoO-modified glass-ceramics demonstrate improved GC-SS bonding. But the low mobility ofmore » Co ++ ions in the GC limited the amount of CoO that can diffuse to and participate in redox at the interface.« less
Method for non-destructive evaluation of ceramic coatings
Peterson, Kristen A.; Rosen, Elias P.; Jordan, Eric H.; Shahbazmohamadi, Sina; Vakhtin, Andrei B.
2016-11-08
A method for evaluating the condition of a ceramic coating deposited on a substrate comprising illuminating the ceramic coating with light, measuring the intensity of light returned from the ceramic coating as function of depth in the coating and transverse position on the coating, and analyzing the measured light intensities to obtain one or more of intensity of the light returned from the exposed coating surface relative to the intensity of light returned from the coating/substrate interface, intensity of the light returned from the coating/substrate interface relative to the intensity of light returned from the bulk of the ceramic coating, determination of roughness at the exposed surface of the ceramic coating, and determination of roughness of the interface between the ceramic coating and underlying bond coat or substrate.
Bipolar plating of metal contacts onto oxide interconnection for solid oxide electrochemical cell
Isenberg, A.O.
1987-03-10
Disclosed is a method of forming an adherent metal deposit on a conducting layer of a tube sealed at one end. The tube is immersed with the sealed end down into an aqueous solution containing ions of the metal to be deposited. An ionically conducting aqueous fluid is placed inside the tube and a direct current is passed from a cathode inside the tube to an anode outside the tube. Also disclosed is a multi-layered solid oxide fuel cell tube which consists of an inner porous ceramic support tube, a porous air electrode covering the support tube, a non-porous electrolyte covering a portion of the air electrode, a non-porous conducting interconnection covering the remaining portion of the electrode, and a metal deposit on the interconnection. 1 fig.
Bipolar plating of metal contacts onto oxide interconnection for solid oxide electrochemical cell
Isenberg, Arnold O.
1987-01-01
Disclosed is a method of forming an adherent metal deposit on a conducting layer of a tube sealed at one end. The tube is immersed with the sealed end down into an aqueous solution containing ions of the metal to be deposited. An ionically conducting aqueous fluid is placed inside the tube and a direct current is passed from a cathode inside the tube to an anode outside the tube. Also disclosed is a multi-layered solid oxide fuel cell tube which consists of an inner porous ceramic support tube, a porous air electrode covering the support tube, a non-porous electrolyte covering a portion of the air electrode, a non-porous conducting interconnection covering the remaining portion of the electrode, and a metal deposit on the interconnection.
CASE HISTORY REPORT ON MILWAUKEE CERAMIC PLATE AERATION FACILITIES
Ceramic plate diffusers were among the earliest forms of fine pore diffusers used in activated sludge treatment. They have successfully used for over 60 years in the Jones Island West Plant of the Milwaukee Metropolitan Sewerage District (MMSD) and since 1935 and 1974, respective...
Materials corrosion in molten lithium fluoride-sodium fluoride-potassium fluoride eutectic salt
NASA Astrophysics Data System (ADS)
Olson, Luke Christopher
Static corrosion studies were undertaken to determine the compatibility of several candidate high temperature materials for a heat transfer loop in a molten alkali fluoride eutectic salt, LiF-NaF-KF: 46.5-11.5-42 mol % (commonly referred to as FLiNaK), as well as a molten chloride near eutectic salt, KCl-MgCl2: 68-32 mol %. Several high temperature alloys: Hastelloy-N, Hastelloy-X, Haynes-230, Inconel-617, and Incoloy-800H, Nb-1Zr, a nearly pure Ni alloy Ni-201, and a C/SiSiC ceramic were exposed to molten FLiNaK at 850°C for 500 h in sealed graphite crucibles under an argon cover gas. Corrosion occurred predominantly from dealloying of Cr from the Cr bearing alloys, an effect that was particularly pronounced at the grain boundaries. Corrosion was noted to occur from selective attack of the Si phase in the C/SiSiC ceramic. Alloy weight-loss/area due to molten fluoride salt exposure correlated with the initial Cr-content of the alloys, and was consistent with the Cr-content measured in the salts after corrosion tests. The alloys' weight-loss/area was also found to correlate to the concentration of carbon present in the nominally 20% Cr containing alloys, due to the formation of chromium carbide phases at the grain boundaries. The corrosion mechanisms for the chloride based salt were found to be similar to those observed in FLiNaK, but the chemical attack was found to be less aggressive. Sulfamate Ni electroplating and Mo plasma spraying of Fe-Ni-Cr alloy coupons was investigated to mitigate Cr dissolution. A chemical vapor deposited pyrolytic carbon and SiC coating was also investigated to protect the C/SiSiC composites. Results indicate that Ni-plating has the potential to provide protection against alloy corrosion in molten fluoride salts. Furthermore, the presence of a chromium-oxide interlayer at the interface of the Ni-plating and alloy substrate can further improve the efficacy of the Ni-plating. The pyrolytic carbon and SiC coating on the C/SiSiC composites was effective in eliminating the attack of the Si phase in the composites. Delamination of the Mo coating in FLiNaK prevented further investigation of this promising approach.
Processing of high-precision ceramic balls with a spiral V-groove plate
NASA Astrophysics Data System (ADS)
Feng, Ming; Wu, Yongbo; Yuan, Julong; Ping, Zhao
2017-03-01
As the demand for high-performance bearings gradually increases, ceramic balls with excellent properties, such as high accuracy, high reliability, and high chemical durability used, are extensively used for highperformance bearings. In this study, a spiral V-groove plate method is employed in processing high-precision ceramic balls. After the kinematic analysis of the ball-spin angle and enveloped lapping trajectories, an experimental rig is constructed and experiments are conducted to confirm the feasibility of this method. Kinematic analysis results indicate that the method not only allows for the control of the ball-spin angle but also uniformly distributes the enveloped lapping trajectories over the entire ball surface. Experimental results demonstrate that the novel spiral Vgroove plate method performs better than the conventional concentric V-groove plate method in terms of roundness, surface roughness, diameter difference, and diameter decrease rate. Ceramic balls with a G3-level accuracy are achieved, and their typical roundness, minimum surface roughness, and diameter difference are 0.05, 0.0045, and 0.105 μm, respectively. These findings confirm that the proposed method can be applied to high-accuracy and high-consistency ceramic ball processing.
Rectification of Lamb wave propagation in thin plates with piezo-dielectric periodic structures
NASA Astrophysics Data System (ADS)
Iwasaki, Yuhei; Tsuruta, Kenji; Ishikawa, Atsushi
2016-07-01
Based on a heterostructured plate consisting of piezoelectric-ceramic/epoxy-resin composites with different periodicities, we design a novel acoustic diode for the symmetrical/asymmetrical (S/A) mode of Lamb wave at audible ranges. The acoustic diode is constructed with two parts, i.e., the mode conversion part and the mode selection part, and the mode conversion mechanism at the interface is applied to the mode hybridization from S to S+A and for the mode conversion from A to S. The phonon band structures for each part are calculated and optimized so that the mode selection is realized for a specific mode at the junction. Finite-element simulations prove that the proposed acoustic diode achieves efficient rectification at audio frequency ranges for both S and A mode incidences of the Lamb wave.
Ceramic tamper-revealing seals
Kupperman, D.S.; Raptis, A.C.; Sheen, S.H.
1992-12-08
A flexible metal or ceramic cable is described with composite ceramic ends, or a U-shaped ceramic connecting element attached to a binding element plate or block cast from alumina or zirconium, and connected to the connecting element by shrink fitting. 7 figs.
NASA Technical Reports Server (NTRS)
Buck, Gregory M.; Powers, Michael A.; Nevins, Stephen C.; Griffith, Mark S.; Wainwright, Gary A.
2006-01-01
Methods, materials and equipment are documented for fabricating flat plate test models at NASA Langley Research Center for Shuttle return-to-flight aeroheating experiments simulating open and closed cavity interactions in Langley s hypersonic 20-Inch Mach 6 air wind tunnel. Approximately 96 silica ceramic flat plate cavity phosphor thermography test models have been fabricated using these methods. On one model, an additional slot is machined through the back of the plate and into the cavity and vented into an evacuated plenum chamber to simulate a further opening in the cavity. After sintering ceramic to 2150 F, and mounting support hardware, a ceramic-based two-color thermographic phosphor coating is applied for global temperature and heat transfer measurements, with fiducial markings for image registration.
Method of making multilayered titanium ceramic composites
Fisher, G.T. II; Hansen, J.S.; Oden, L.L.; Turner, P.C.; Ochs, T.L.
1998-08-25
A method making a titanium ceramic composite involves forming a hot pressed powder body having a microstructure comprising at least one titanium metal or alloy layer and at least one ceramic particulate reinforced titanium metal or alloy layer and hot forging the hot pressed body followed by hot rolling to substantially reduce a thickness dimension and substantially increase a lateral dimension thereof to form a composite plate or sheet that retains in the microstructure at least one titanium based layer and at least one ceramic reinforced titanium based layer in the thickness direction of the composite plate or sheet. 3 figs.
Method of making multilayered titanium ceramic composites
Fisher, George T., II; Hansen; Jeffrey S.; Oden; Laurance L.; Turner; Paul C.; Ochs; Thomas L.
1998-08-25
A method making a titanium ceramic composite involves forming a hot pressed powder body having a microstructure comprising at least one titanium metal or alloy layer and at least one ceramic particulate reinforced titanium metal or alloy layer and hot forging the hot pressed body follwed by hot rolling to substantially reduce a thickness dimension and substantially increase a lateral dimension thereof to form a composite plate or sheet that retains in the microstructure at least one titanium based layer and at least one ceramic reinforced titanium based layer in the thickness direction of the composite plate or sheet.
Method of making multilayered titanium ceramic composites
Fisher, II, George T.; Hansen, Jeffrey S.; Oden, Laurance L.; Turner, Paul C.; Ochs, Thomas L.
1998-01-01
A method making a titanium ceramic composite involves forming a hot pressed powder body having a microstructure comprising at least one titanium metal or alloy layer and at least one ceramic particulate reinforced titanium metal or alloy layer and hot forging the hot pressed body follwed by hot rolling to substantially reduce a thickness dimension and substantially increase a lateral dimension thereof to form a composite plate or sheet that retains in the microstructure at least one titanium based layer and at least one ceramic reinforced titanium based layer in the thickness direction of the composite plate or sheet.
Radiation-hard ceramic Resistive Plate Chambers for forward TOF and T0 systems
NASA Astrophysics Data System (ADS)
Akindinov, A.; Dreyer, J.; Fan, X.; Kämpfer, B.; Kiselev, S.; Kotte, R.; Garcia, A. Laso; Malkevich, D.; Naumann, L.; Nedosekin, A.; Plotnikov, V.; Stach, D.; Sultanov, R.; Voloshin, K.
2017-02-01
Resistive Plate Chambers with ceramic electrodes are the main candidates for a use in precise multi-channel timing systems operating in high-radiation conditions. We report the latest R&D results on these detectors aimed to meet the requirements of the forward T0 counter at the CBM experiment. RPC design, gas mixture, limits on the bulk resistivity of ceramic electrodes, efficiency, time resolution, counting rate capabilities and ageing test results are presented.
Güler, Umut; de Queiroz, José Renato Cavalcanti; de Oliveira, Luiz Fernando Cappa; Canay, Senay; Ozcan, Mutlu
2015-09-01
This study evaluated the effect of binder choice in mixing ceramic powder on the chemical and morphological features between the margin ceramic-framework interfaces. Titanium and zirconia frameworks (15 x 5 x 0.5 mm3) were veneered with margin ceramics prepared with two different binders, namely a) water/conventional or b) wax-based. For each zirconia framework material, four different margin ceramics were used: a- Creation Zi (Creation Willi Geller International); b- GC Initial Zr (GC America); Triceram (Dentaurum); and d- IPS emax (voclar Vivadent). For the titanium framework, three different margin ceramics were used: a- Creation Ti (Creation Willi Geller International); b- Triceram (Dentaurum); and c- VITA Titaniumkeramik (Vita Zahnfabrik). The chemical composition of the framework-margin ceramic interface was analyzed using Energy Dispersive X-ray Spectroscopy (EDS) and porosity level was quantified within the margin ceramic using an image program (ImageJ) from four random areas (100 x 100 pixels) on each SEM image. EDS analysis showed the presence of Carbon at the margin ceramic-framework interface in the groups where wax-based binder technique was used with the concentration being the highest for the IPS emax ZirCAD group. While IPS system (IPS ZirCAD and IPS Emax) presented higher porosity concentration using wax binder, in the other groups wax-based binder reduced the porosity of margin ceramic, except for Titanium - Triceram combination.
Miyake, H; Ohta, T; Tanaka, H
2000-02-01
The use of hydroxyapatite-based ceramics for cranioplasties has recently increased in Japan, because of the good cosmetic outcomes, biocompatibility, strength, osteoconductive properties, and lack of risk of disease transmission associated with these materials. However, miniplate fixation has not been possible for ceramic implants. We describe a new technique for miniplate fixation of ceramic implants. Combination ceramic implants composed of hydroxyapatite and tricalcium phosphate (Ceratite; NGK Spark Plug Co., Aichi, Japan) were used for cranioplasties. A slot and a pair of holes were cut in each Ceratite implant, for use as a fixation unit. We have also developed a new L-shaped titanium plate (HOMS Engineering Inc., Nagano, Japan) that fits into the fixation unit. We first insert an L-shaped titanium plate through the slot from the back surface of the Ceratite implant. We then bend the plate outward at the front surface of the Ceratite implant and fix it to the cranium of the patient with titanium screws. The Ceratite implant is usually firmly fixed to the cranium of the patient with three L-shaped titanium plates. Using L-shaped titanium plates and Ceratite implants, we successfully performed cranioplasties for seven patients with cranial defects resulting from external decompression craniotomies. The Ceratite implant exactly fit the bone window for each patient. Surgical maneuvers were simple and easy for all patients, permitting shorter operating times. All Ceratite implants were firmly fixed, and no postoperative infections have occurred. Our new technique for cranioplasty is simple and allows rigid fixation of Ceratite implants.
Testing of SLA-561V in NASA-Ames' Turbulent Flow Duct with Augmented Radiative Heating
NASA Technical Reports Server (NTRS)
Sepka, Steven A.; Kornienko, Robert S.; Radbourne, Chris A.
2010-01-01
As part of Mars Science Laboratory s (MSL) heatshield development program, SLA-561 was tested in NASA Ames Turbulent Flow Duct (TFD) Facility. For these tests, the TFD facility was modified to include a ceramic plate located in the wall opposite to the test model. Normally the TFD wall opposite to the test model is water-cooled steel. Installing a noncooled ceramic plate allows the ceramic to absorb convective heating and radiate the energy back to the test model as the plate heats up. This work was an effort to increase the severity of TFD test conditions. Presented here are the results from these tests.
Superconductive radiofrequency window assembly
Phillips, Harry Lawrence; Elliott, Thomas S.
1998-01-01
The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.
Superconductive radiofrequency window assembly
Phillips, H.L.; Elliott, T.S.
1998-05-19
The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The SRF window assembly has a superconducting metal-ceramic design. The SRF window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the SRF window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.
Superconducting radiofrequency window assembly
Phillips, Harry L.; Elliott, Thomas S.
1997-01-01
The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.
Superconducting radiofrequency window assembly
Phillips, H.L.; Elliott, T.S.
1997-03-11
The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly has a superconducting metal-ceramic design. The srf window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.
Ceramic matrix composite article and process of fabricating a ceramic matrix composite article
Cairo, Ronald Robert; DiMascio, Paul Stephen; Parolini, Jason Robert
2016-01-12
A ceramic matrix composite article and a process of fabricating a ceramic matrix composite are disclosed. The ceramic matrix composite article includes a matrix distribution pattern formed by a manifold and ceramic matrix composite plies laid up on the matrix distribution pattern, includes the manifold, or a combination thereof. The manifold includes one or more matrix distribution channels operably connected to a delivery interface, the delivery interface configured for providing matrix material to one or more of the ceramic matrix composite plies. The process includes providing the manifold, forming the matrix distribution pattern by transporting the matrix material through the manifold, and contacting the ceramic matrix composite plies with the matrix material.
Lu, Xiao-li; Gao, Mei-qin; Cheng, Yu-ye; Zhang, Fei-min
2015-04-01
In order to choose the best veneering porcelain for diatomite-based dental ceramic substrate, the bonding strength between diatomite-based dental ceramics and veneering porcelains was measured, and the microstructure and elements distribution of interface were analyzed. The coefficient of thermal expansion (CTE) of diatomite-based dental ceramics was detected by dilatometry. Three veneering porcelain materials were selected with the best CTE matching including alumina veneering porcelain (group A), titanium porcelain veneering porcelain (group B), and E-max veneering porcelain (group C). Shear bonding strength was detected. SEM and EDS were used to observe the interface microstructure and element distribution. Statistical analysis was performed using SPSS 17.0 software package. The CTE of diatomite-based dental ceramics at 25-500 degrees centigrade was 8.85×10-6K-1. The diatomite-based substrate ceramics combined best with group C. Shear bonding strength between group A and C and group B and C both showed significant differences(P<0.05). SEM and EDS showed that the interface of group C sintered tightly and elements permeated on both sides of the interface. The diatomite-based substrate ceramics combines better with E-max porcelain veneer.
Adhesion mechanisms at the interface between Y-TZP and veneering ceramic with and without modifier.
Monaco, Carlo; Tucci, Antonella; Esposito, Leonardo; Scotti, Roberto
2014-11-01
This study investigated the mechanism of action at the interface between a commercially available Y-TZP and its veneering ceramic after final firing. Particular attention was paid, from a microstructural point of view, to evaluating the effects of different surface treatments carried out on the zirconia. In total, 32 specimens of presintered zirconia Y-TZP (LavaFrame, 3M ESPE, Germany) were cut with a low-speed diamond blade. The specimens were divided in two major groups, for testing after fracture or after mirror finishing, and were sintered following the manufacturer's instructions. Each major group was then randomly divided into four subgroups, according to using or not using the dedicated framework modifier, with or without a preliminary silica coating (CoJet, 3M ESPE). A suitable veneering ceramic was used for each group (Lava Ceram Overlay Porcelain, 3M ESPE). A detailed microstructural study of the interfaces of the zirconia-veneering ceramic was performed using a scanning electron microscope equipped with an energy-dispersive X-ray spectrometer to evaluate chemical variation at the interfaces. When the framework modifier was not applied on the Y-TZP surface, microdetachments, porosities, and openings in the ceramic layer were observed at the interlayers. A degree of diffusion of different elements through the interfaces from both the zirconia and veneering layers was detected. Application of the framework modifier can increase the wettability of the zirconia surfaces, allowing a continuous contact with the veneering layer. The micro-analysis performed showed the presence of a reaction area at the interface between the different materials. the increase of the wettability of the zirconia surface could improve the adhesion at interface with the veneering ceramic and reduce the clinical failure as chipping or delamination. Copyright © 2014 Elsevier Ltd. All rights reserved.
Elsayed, Adham; Younes, Feras; Lehmann, Frank; Kern, Matthias
2017-01-01
To test the bond strength and durability after artificial aging of so-called universal primers and universal multimode adhesives to lithium disilicate or zirconia ceramics. A total of 240 ceramic plates, divided into two groups, were produced and conditioned: 120 acid-etched lithium disilicate plates (IPS e.max CAD) and 120 air-abraded zirconia plates (Zenostar T). Each group was divided into five subgroups (n = 24), and a universal restorative primer or multimode universal adhesive was used for each subgroup to bond plexiglas tubes filled with a composite resin to the ceramic plate. The specimens were stored in water at 37°C for 3 days without thermal cycling, or for 30 or 150 days with 7500 or 37,500 thermal cycles between 5°C and 55°C, respectively. All specimens then underwent tensile bond strength testing. Initially, all bonding systems exhibited high TBS, but some showed a significant reduction after 30 and 150 days of storage. After 3, 30, and 150 days, Monobond Plus, which contains silane and phosphate monomer, showed significantly higher bond strengths than the other universal primer and adhesive systems. The bond strength to lithium disilicate and zirconia ceramic is significantly affected by the bonding system used. Using a separate primer containg silane and phosphate monomer provides more durable bonding than do silanes incorporated in universal multimode adhesives. Only one of five so-called universal primers and adhesives provided durable bonding to lithium disilicate and zirconia ceramic.
Coming out prevention by stopper for the shrink fitted sandwiched shaft from the ceramic sleeve
NASA Astrophysics Data System (ADS)
Zhang, Guowei; Noda, Nao-Aki; Sano, Yoshikazu; Sakai, Hiromasa; Oda, Kazuhiro
2017-05-01
Ceramic roller can be used in the heating furnace conveniently because of its high temperature resistance. The roller consists of sleeve and steel shaft connected only under a small shrink fitting ratio because of the brittleness. However, the coming out of the shaft may often happen from the ceramic sleeve under repeated bending load. Therefore, how to prevent the coming out failure becomes an important issue. Based on the previous study, a two-dimensional shrink fitted structure is considered by replacing the shaft with the inner plate and by replacing the sleeve with the outer plate. Then, this research focuses on preventing the inner plate coming out from the outer plate by introducing a newly designed stopper on the outer plate. The simulation results shows that the coming out phenomenon can be prevented effectively due to the contact between the inter plate and the stopper installed on the outer plate. In order to evaluate the contact force between the inner plate and the stopper, the coming out mechanism is clarified. To prevent the coming out by stopper safely, the effects of the magnitude of repeated load and the friction coefficient upon the contact compressive force are investigated under large number of loading cycles by using 2D simulation.
NASA Astrophysics Data System (ADS)
Szabo, Gyorgy; Kovacs, Lajos; Barabas, Jozsef; Nemeth, Zsolt; Maironna, Carlo
2001-11-01
The purpose of this paper is to discuss the background to advanced surface modification technologies and to present a new technique, involving the formation of a titanium oxide ceramic coating, with relatively long-term results of its clinical utilization. Three general techniques are used to modify surfaces: the addition or removal of material and the change of material already present. Surface properties can also be changed without the addition or removal of material, through the laser or electron beam thermal treatment. The new technique outlined in this paper relates to the production of a corrosion-resistant 2000-2500 A thick, ceramic oxide layer with a coherent crystalline structure on the surface of titanium implants. The layer is grown electrochemically from the bulk of the metal and is modified by heat treatment. Such oxide ceramic-coated implants have a number of advantageous properties relative to implants covered with various other coatings: a higher external hardness, a greater force of adherence between the titanium and the oxide ceramic coating, a virtually perfect insulation between the organism and the metal (no possibility of metal allergy), etc. The coated implants were subjected to various physical, chemical, electronmicroscopic, etc. tests for a qualitative characterization. Finally, these implants (plates, screws for maxillofacial osteosynthesis and dental root implants) were applied in surgical practice for a period of 10 years. Tests and the experience acquired demonstrated the good properties of the titanium oxide ceramic-coated implants.
Aktas, Guliz; Sahin, Erdal; Vallittu, Pekka; Özcan, Mutlu; Lassila, Lippo
2013-01-01
This study evaluated the adhesion of zirconia core ceramics with their corresponding veneering ceramics, having different thermal expansion coefficients (TECs), when zirconia ceramics were coloured at green stage. Zirconia blocks (N=240; 6 mm×7 mm×7 mm) were manufactured from two materials namely, ICE Zirconia (Group 1) and Prettau Zirconia (Group 2). In their green stage, they were randomly divided into two groups. Half of the specimens were coloured with colouring liquid (shade A2). Three different veneering ceramics with different TEC (ICE Ceramic, GC Initial Zr and IPS e.max Ceram) were fired on both coloured and non-coloured zirconia cores. Specimens of high noble alloys (Esteticor Plus) veneered with ceramic (VM 13) (n=16) acted as the control group. Core–veneer interface of the specimens were subjected to shear force in the Universal Testing Machine (0.5 mm⋅min−1). Neither the zirconia core material (P=0.318) nor colouring (P=0.188) significantly affected the results (three-way analysis of variance, Tukey's test). But the results were significantly affected by the veneering ceramic (P=0.000). Control group exhibited significantly higher mean bond strength values (45.7±8) MPa than all other tested groups ((27.1±4.1)−(39.7±4.7) and (27.4±5.6)−(35.9±4.7) MPa with and without colouring, respectively) (P<0.001). While in zirconia–veneer test groups, predominantly mixed type of failures were observed with the veneering ceramic covering <1/3 of the substrate surface, in the metal–ceramic group, veneering ceramic was left adhered >1/3 of the metal surface. Colouring zirconia did not impair adhesion of veneering ceramic, but veneering ceramic had a significant influence on the core–veneer adhesion. Metal–ceramic adhesion was more reliable than all zirconia–veneer ceramics tested. PMID:24158142
Aktas, Guliz; Sahin, Erdal; Vallittu, Pekka; Ozcan, Mutlu; Lassila, Lippo
2013-12-01
This study evaluated the adhesion of zirconia core ceramics with their corresponding veneering ceramics, having different thermal expansion coefficients (TECs), when zirconia ceramics were coloured at green stage. Zirconia blocks (N=240; 6 mm×7 mm×7 mm) were manufactured from two materials namely, ICE Zirconia (Group 1) and Prettau Zirconia (Group 2). In their green stage, they were randomly divided into two groups. Half of the specimens were coloured with colouring liquid (shade A2). Three different veneering ceramics with different TEC (ICE Ceramic, GC Initial Zr and IPS e.max Ceram) were fired on both coloured and non-coloured zirconia cores. Specimens of high noble alloys (Esteticor Plus) veneered with ceramic (VM 13) (n=16) acted as the control group. Core-veneer interface of the specimens were subjected to shear force in the Universal Testing Machine (0.5 mm⋅min(-1)). Neither the zirconia core material (P=0.318) nor colouring (P=0.188) significantly affected the results (three-way analysis of variance, Tukey's test). But the results were significantly affected by the veneering ceramic (P=0.000). Control group exhibited significantly higher mean bond strength values (45.7±8) MPa than all other tested groups ((27.1±4.1)-(39.7±4.7) and (27.4±5.6)-(35.9±4.7) MPa with and without colouring, respectively) (P<0.001). While in zirconia-veneer test groups, predominantly mixed type of failures were observed with the veneering ceramic covering <1/3 of the substrate surface, in the metal-ceramic group, veneering ceramic was left adhered >1/3 of the metal surface. Colouring zirconia did not impair adhesion of veneering ceramic, but veneering ceramic had a significant influence on the core-veneer adhesion. Metal-ceramic adhesion was more reliable than all zirconia-veneer ceramics tested.
Miragaya, Luciana; Maia, Luciane Cople; Sabrosa, Carlos Eduardo; de Goes, Mário Fernando; da Silva, Eduardo Moreira
2011-10-01
To evaluate the influence of four surface treatments on the bond strength of a self-adhesive resin cement to an yttria-stabilized zirconia (Y-TZP) ceramic material (Lava Frame zirconia). Forty plates (8 x 6 x 1 mm) of a Y-TZP ceramic restorative material were randomly assigned to four groups (n = 10) according to the surface treatments: control, no treatment; airborne-particle abrasion with 50-μm Al2O3; coating with an MDP-based primer; conditioning with Rocatec System. The ceramic plates treated with each of the four methods were further divided into 2 subgroups according to the resin cement tested: RelyXTM ARC (ARC, conventional) and RelyXTM Unicem (Ucem, self-adhesive). The resin cements were put into PVC tubes (diameter 0.75 mm, 0.5 mm height) placed on the ceramic plate surfaces. After water storage at 37°C for 24 h, the specimens were submitted to a microshear bond strength (μSBS) test at a crosshead speed of 1.0 mm/min. The surface treatments significantly influenced the μSBS (p < 0.05). For the four surface treatments, UCem presented significantly higher μSBS than ARC (p < 0.05). For both resin cements, the best result was produced by the MDP-based primer: ARC 15.9 ± 5.0 MPa and UCem 36.2 ± 2.1 MPa. The highest μSBS values were presented by UCem on ceramic plates treated with the MDP-based primer (36.2 ± 2.1 MPa) and Rocatec system (37.4 ± 2.3 MPa). Irrespective of the surface treatment, the self-adhesive resin cement performed better in terms of bond strength to yttria-stabilized zirconia ceramic than did conventional resin cement.
Screen-Cage Ion Plating Of Silver On Polycrystalline Alumina
NASA Technical Reports Server (NTRS)
Spalvins, Talivaldis; Sliney, Harold E.; Deadmore, Daniel L.
1995-01-01
Screen-cage ion plating (SCIP) cost-effective technique offering high throwing power for deposition of adherent metal films on ceramic substrates. Applies silver films to complexly shaped substrates of polycrystalline alumina. Silver adheres tenaciously and reduces friction. SCIP holds promise for applying lubricating soft metallic films to high-temperature ceramic components of advanced combustion engines. Other potential uses include coating substrates with metal for protection against corrosion, depositing electrical conductors on dielectric substrates, making optically reflective or electrically or thermally conductive surface layers, and applying decorative metal coats to ceramic trophies or sculptures.
Modeling of Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Ferguson, B. L.; Petrus, G. J.; Krauss, T. M.
1992-01-01
The project examined the effectiveness of studying the creep behavior of thermal barrier coating system through the use of a general purpose, large strain finite element program, NIKE2D. Constitutive models implemented in this code were applied to simulate thermal-elastic and creep behavior. Four separate ceramic-bond coat interface geometries were examined in combination with a variety of constitutive models and material properties. The reason for focusing attention on the ceramic-bond coat interface is that prior studies have shown that cracking occurs in the ceramic near interface features which act as stress concentration points. The model conditions examined include: (1) two bond coat coefficient of thermal expansion curves; (2) the creep coefficient and creep exponent of the bond coat for steady state creep; (3) the interface geometry; and (4) the material model employed to represent the bond coat, ceramic, and superalloy base.
Fracture and Failure in Micro- and Nano-Scale
NASA Astrophysics Data System (ADS)
Charitidis, Costas A.
Indentation and scratch in micro- and nano-scale are the most commonly used techniques for quantifying thin film and systems properties. Among them are different failure modes such as deformation, friction, fracture toughness, fatigue. Failure modes can be activated either by a cycle of indentation or by scratching of the samples to provide an estimation of the fracture toughness and interfacial fracture energies. In the present study, we report on the failure and fracture modes in two cases of engineering materials; that is transparent SiOx thin films onto poly(ethylene terephthalate) (PET) membranes and glass-ceramic materials. The SiOx/PET system meets the demands regarding scratch-resistance, wettability, biocompatibility, gas transmission, or friction, while maintaining the bulk characteristics of PET (such as easy processing, good mechanical properties, reasonably low permeability to oxygen and carbon dioxide gases (barrier properties), and good chemical coupling with antibacterial coatings). Glass-ceramic materials, since their first accidental production in the mid fifties by S.D. Stookey, have been used in a vast area of applications, from household cooktops and stoves, to missile nose cones and mirror mounts of orbital telescopes and from decorative wall coverings to medical applications. The fracture modes, namely transgranular and intergranular modes in glass-ceramic materials have paid less attention in literature comparing with ceramic materials. In the former case the crack paves its way irrespectively of the direction of the grain boundaries, i.e., the interfaces between the different phases. In the latter case the crack preferentially follows them, i.e., debonds the interfaces.
Watanabe, H; Kazama, Re; Asai, T; Kanaya, F; Ishizaki, H; Fukushima, M; Okiji, T
2015-01-01
This study aimed to evaluate the ability of high-intensity light-emitting diode (LED) and other curing units to cure dual-cured resin cement through ceramic material. A halogen curing unit (Jetlite 3000, Morita), a second-generation LED curing unit (Demi, Kerr), and two high-intensity LED curing units (PenCure 2000, Morita; Valo, Ultradent) were tested. Feldspathic ceramic plates (VITABLOCS Mark II, A3; Vita Zahnfabrik) with thicknesses of 1.0, 2.0, and 3.0 mm were prepared. Dual-cured resin cement samples (Clearfil Esthetic Cement, Kuraray Noritake Dental) were irradiated directly or through one of the ceramic plates for different periods (5, 10, 15, or 20 seconds for the high-intensity LED units and 20, 40, 60, or 80 seconds for the others). The Knoop hardness test was used to determine the level of photopolymerization that had been induced in the resin cement. Data were analyzed by one-way analysis of variance and Dunnett's post-hoc test to identify test-control (maximum irradiation without a ceramic plate) differences for each curing unit (p<0.05). For all curing units, the curing conditions had a statistically significant effect on the Knoop hardness numbers (KHNs) of the irradiated cement samples (p<0.001). In general, the KHN decreased with increasing plate thickness and increased as the irradiation period was extended. Jetlite 3000 achieved control-level KHN values only when the plate thickness was 1.0 mm. At a plate thickness ≥2.0 mm, the LED units (except for PenCure 2000 at 3.0 mm) were able to achieve control-level KHN values when the irradiation time was extended. At a plate thickness of 3.0 mm, irradiation for 20 seconds with the Valo or for 80 seconds with the Demi were the only methods that produced KHN values equivalent to those produced by direct irradiation. Regardless of the type of curing unit used, indirect irradiation of dual-cured resin cement through a ceramic plate resulted in decreased KHN values compared with direct irradiation. When the irradiation period was extended, only the LED units were able to achieve similar KHN values to those observed under direct irradiation in the presence of plates ≥2.0-mm thick. High-intensity LED units require a shorter irradiation period than halogen and second-generation LED curing units to obtain KHN values similar to those observed during direct irradiation.
NASA Astrophysics Data System (ADS)
Kang, Yubin; Choi, Jaeyoung; Park, Jinju; Kim, Woo-Byoung; Lee, Kun-Jae
2017-09-01
This study attempts to improve the physical and chemical adhesion between metals and ceramics by using electrolytic oxidation and a titanium organic/inorganic complex ion solution on the SS-304 plate. Surface analysis confirmed the existence of the Tisbnd Osbnd Mx bonds formed by the bonding between the metal ions and the Ti oxide at the surface of the pre-processed SS plate, and improved chemical adhesion during ceramic coating was expected by confirming the presence of the carboxylic group. The adhesion was evaluated by using the ceramic coating solution in order to assess the improved adhesion of the SS plate under conditions. The results showed that both the adhesion and durability were largely improved in the sample processed with all the pre-processing steps, thus confirming that the physical and chemical adhesion between metals and ceramics can be improved by enhancing the physical roughness via electrolytic oxidation and pre-processing using a Ti complex ion solution.
SU-F-T-426: Measurement of Dose Enhancement Due to Backscatter From Modern Dental Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurwitz, M; Margalit, D; Williams, C
Purpose: High-density materials used in dental restoration can cause significant localized dose enhancement due to electron backscatter in head-and-neck radiotherapy, increasing the risk of mucositis. The materials used in prosthetic dentistry have evolved in the last decades from metal alloys to ceramics. We aim to determine the dose enhancement caused by backscatter from currently-used dental materials. Methods: Measurements were performed for three different dental materials: lithium disilicate (Li{sub 2}Si{sub 2}O{sub 5}), zirconium dioxide (ZrO{sub 2}), and gold alloy. Small thin squares (2×2×0.15 cm{sup 3}) of the material were fabricated, and placed into a phantom composed of tissue-equivalent material. The phantommore » was irradiated with a single 6 MV photon field. A thin-window parallel-plate ion chamber was used to measure the dose at varying distances from the proximal interface between the material and the plastic. Results: The dose enhancement at the interface between the high-density and tissue-equivalent materials, relative to a homogeneous phantom, was 54% for the gold alloy, 31% for ZrO{sub 2}, and 9% for Li{sub 2}Si{sub 2}O{sub 5}. This enhancement decreased rapidly with distance from the interface, falling to 11%, 5%, and 0.5%, respectively, 2 mm from the interface. Comparisons with the modeling of this effect in treatment planning systems are performed. Conclusion: While dose enhancement due to dental restoration is smaller with ceramic materials than with metal alloys, it can still be significant. A spacer of about 2–3 mm would be effective in reducing this enhancement, even for metal alloys.« less
Surface preparation for high purity alumina ceramics enabling direct brazing in hydrogen atmospheres
Cadden, Charles H.; Yang, Nancy Yuan Chi; Hosking, Floyd M.
2001-01-01
The present invention relates to a method for preparing the surface of a high purity alumina ceramic or sapphire specimen that enables direct brazing in a hydrogen atmosphere using an active braze alloy. The present invention also relates to a method for directly brazing a high purity alumina ceramic or sapphire specimen to a ceramic or metal member using this method of surface preparation, and to articles produced by this brazing method. The presence of silicon, in the form of a SiO.sub.2 -containing surface layer, can more than double the tensile bond strength in alumina ceramic joints brazed in a hydrogen atmosphere using an active Au-16Ni-0.75 Mo-1.75V filler metal. A thin silicon coating applied by PVD processing can, after air firing, produce a semi-continuous coverage of the alumina surface with a SiO.sub.2 film. Room temperature tensile strength was found to be proportional to the fraction of air fired surface covered by silicon-containing films. Similarly, the ratio of substrate fracture versus interface separation was also related to the amount of surface silicon present prior to brazing. This process can replace the need to perform a "moly-manganese" metallization step.
Joining Dental Ceramic Layers With Glass
Saied, MA; Lloyd, IK; Haller, WK; Lawn, BR
2011-01-01
Objective Test the hypothesis that glass-bonding of free-form veneer and core ceramic layers can produce robust interfaces, chemically durable and aesthetic in appearance and, above all, resistant to delamination. Methods Layers of independently produced porcelains (NobelRondo™ Press porcelain, Nobel BioCare AB and Sagkura Interaction porcelain, Elephant Dental) and matching alumina or zirconia core ceramics (Procera alumina, Nobel BioCare AB, BioZyram yttria stabilized tetragonal zirconia polycrystal, Cyrtina Dental) were joined with designed glasses, tailored to match thermal expansion coefficients of the components and free of toxic elements. Scanning electron microprobe analysis was used to characterize the chemistry of the joined interfaces, specifically to confirm interdiffusion of ions. Vickers indentations were used to drive controlled corner cracks into the glass interlayers to evaluate the toughness of the interfaces. Results The glass-bonded interfaces were found to have robust integrity relative to interfaces fused without glass, or those fused with a resin-based adhesive. Significance The structural integrity of the interfaces between porcelain veneers and alumina or zirconia cores is a critical factor in the longevity of all-ceramic dental crowns and fixed dental prostheses. PMID:21802131
Figueiredo-Pina, C G; Yan, Y; Neville, A; Fisher, J
2008-04-01
Hip simulator studies have been carried out extensively to understand and test artificial hip implants in vitro as an efficient alternative to obtaining long-term results in vivo. Recent studies have shown that a ceramic-on-metal material combination lowers the wear by up to 100 times in comparison with a typical metal-on-metal design. The reason for this reduction remains unclear and for this reason this study has undertaken simple tribometer tests to understand the fundamental material loss mechanisms in two material combinations: metal-on-metal and ceramic-on-ceramic. A simple-configuration reciprocating pin-on-plate wear study was performed under open-circuit potential (OCP) and with applied cathodic protection (CP) in a serum solution using two tribological couples: firstly, cobalt-chromium (Co-Cr) pins against Co-Cr plates; secondly, Co-Cr pins against alumina (Al2O3) plates. The pin and plate surfaces prior to and after testing were examined by profilometry and scanning electron microscopy. The results showed a marked reduction in wear when CP was applied, indicating that total material degradation under the OCP condition was attributed to corrosion processes. The substitution of the Co-Cr pin with an Al2O3 plate also resulted in a dramatic reduction in wear, probably due to the reduction in the corrosion-wear interactions between the tribological pair.
NASA Astrophysics Data System (ADS)
Il'ichev, A. T.; Savin, A. S.
2017-12-01
We consider a planar evolution problem for perturbations of the ice cover by a dipole starting its uniform rectilinear horizontal motion in a column of an initially stationary fluid. Using asymptotic Fourier analysis, we show that at supercritical velocities, waves of two types form on the water-ice interface. We describe the process of establishing these waves during the dipole motion. We assume that the fluid is ideal and incompressible and its motion is potential. The ice cover is modeled by the Kirchhoff-Love plate.
40 CFR 63.11436 - What parts of my plant does this subpart cover?
Code of Federal Regulations, 2010 CFR
2010-07-01
... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Clay Ceramics... subpart cover? (a) This subpart applies to any existing or new affected source located at a clay ceramics... glazed ceramic ware located at a clay ceramics manufacturing facility. (c) An affected source is existing...
Tostes, Bhenya Ottoni; Guimarães, Renato Bastos; Noronha-Filho, Jaime Dutra; Botelho, Glauco Dos Santos; Guimarães, José Guilherme Antunes; Silva, Eduardo Moreira da
2017-01-01
This study evaluated the effect of air-abrasion on t®m phase transformation, roughness, topography and the elemental composition of three Y-TZP (Yttria-stabilized tetragonal zirconia polycrystal) dental ceramics: two conventional (Lava Frame and IPS ZirCad) and one with high-translucency (Lava Plus). Plates obtained from sintered blocks of each ceramic were divided into four groups: AS (as-sintered); 30 (air-abrasion with 30 mm Si-coated Al2O3 particles); 50 (air-abrasion with 50 mm Al2O3 particles) and 150 (air-abrasion with 150 mm Al2O3 particles). After the treatments, the plates were submitted to X-ray diffractometry; 3-D profilometry and SEM/EDS. The AS surfaces were composed of Zr and t phases. All treatments produced t®m phase transformation in the ceramics. The diameter of air-abrasion particles influenced the roughness (150>50>30>AS) and the topography. SEM analysis showed that the three treatments produced groove-shaped microretentions on the ceramic surfaces, which increased with the diameter of air-abrasion particles. EDS showed a decrease in Zr content along with the emergence of O and Al elements after air-abrasion. Presence of Si was also detected on the plates air-abraded with 30 mm Si-coated Al2O3 particles. It was concluded that irrespective of the type and diameter of the particles, air-abrasion produced t®m phase transformation, increased the roughness and changed the elemental composition of the three Y-TZP dental ceramics. Lava Plus also behaved similarly to the conventional Y-TZP ceramics, indicating that this high translucency ceramic could be more suitable to build monolithic ceramic restorations in the aesthetic restorative dentistry field.
Zhang, Xiaokun; Xie, Jin; Shi, Feifei; Lin, Dingchang; Liu, Yayuan; Liu, Wei; Pei, Allen; Gong, Yongji; Wang, Hongxia; Liu, Kai; Xiang, Yong; Cui, Yi
2018-06-13
Among all solid electrolytes, composite solid polymer electrolytes, comprised of polymer matrix and ceramic fillers, garner great interest due to the enhancement of ionic conductivity and mechanical properties derived from ceramic-polymer interactions. Here, we report a composite electrolyte with densely packed, vertically aligned, and continuous nanoscale ceramic-polymer interfaces, using surface-modified anodized aluminum oxide as the ceramic scaffold and poly(ethylene oxide) as the polymer matrix. The fast Li + transport along the ceramic-polymer interfaces was proven experimentally for the first time, and an interfacial ionic conductivity higher than 10 -3 S/cm at 0 °C was predicted. The presented composite solid electrolyte achieved an ionic conductivity as high as 5.82 × 10 -4 S/cm at the electrode level. The vertically aligned interfacial structure in the composite electrolytes enables the viable application of the composite solid electrolyte with superior ionic conductivity and high hardness, allowing Li-Li cells to be cycled at a small polarization without Li dendrite penetration.
A comparison of cation sampling in forest soils by tension and tension-free lysimeters
James H. Miller
1981-01-01
Field tests conducted in two soils with ceramic cup, ceramic plate, and tension-free lysimeters showed no concentration differences in collected cations (Ca, Mg, K, Na) between cups and plates, except for the hydrogen ion. Mean pH was 0.6 lower in cup collected samples for a sandy loam profile. Tension-free lysimeters of the design tested had persistent contamination...
Xie, Youtao; Li, Hongqin; Ding, Chuanxian; Zheng, Xuebin; Li, Kai
2015-01-01
Calcium silicate (CS) ceramic is a good coating candidate for biomedical implants to improve biocompatibility and accelerate early osseointegration. However, the poor fracture toughness and wear resistance of this ceramic material restricts the long-term performance of implants. In this study, graphene plates (GPs) were used as reinforcement to improve the mechanical properties of CS coating. Composite coating containing 1.5 weight % GPs was prepared by vacuum plasma spraying technology. The good survival of the GPs in the composite coating was demonstrated by Raman analysis, although the defects of the GPs were increased after plasma spraying. Effects of the GPs' adoption on the microstructure of the coating were studied by scanning electron microscopy and transmission electron microscopy. Results showed that the GPs were homogenously distributed in the CS grains interface or enwrapped on the particles, and exhibited good wetting behavior with the CS matrix. The wear properties of the composite coating were obviously enhanced by the reinforcement of GPs. The reinforcement mechanism was attributed to the enhanced micro-hardness and interfacial bonding of the particles in the coating. In vivo experiments demonstrated that the composite coating possessed similarly good biocompatibility compared to pure CS coating. The bone-implant contact ratio reached 84.3%±7.4% for GPs/CS coating and 79.6%±9.4% for CS coating after 3 months' implantation.
Kitsugi, T; Yamamuro, T; Nakamura, T; Yoshii, S; Kokubo, T; Takagi, M; Shibuya, T
1992-01-01
Glass-ceramics containing crystalline oxy-fluoroapatite (Ca10(PO4)6(O,F2)) and wollastonite (CaSiO3) (designated AWGC) are reported to have a fairly high mechanical strength as well as the capability of forming a chemical bond with bone tissue. The chemical composition is MgO 4.6, CaO 44.9, SiO2 34.2, P2O5 16.3, and CaF2 0.5 in weight ratio. In this study the influence of substituting B2O3 for CaF2 on the bonding behaviour of glass-ceramics containing apatite and wollastonite to bone tissue was investigated. Two kinds of glass-ceramics containing apatite and wollastonite were prepared. CaF2 0.5 was replaced with B2O3 at 0.5 and 2.0 in weight ratio (designated AWGC-0.5B and AWGC-2.0B). Rectangular ceramic plates (15 x 10 x 2 mm, abraded with No. 2000 alumina powder) were implanted into a rabbit tibia. The failure load, when an implant detached from the bone, or the bone itself broke, was measured. The failure load of AWGC-0.5B was 8.00 +/- 1.82 kg at 10 weeks after implantation and 8.16 +/- 1.36 kg at 25 weeks after implantation. The failure load of AWGC-2B was 8.08 +/- 1.70 kg at 10 weeks after implantation and 9.92 +/- 2.46 kg at 25 weeks after implantation. None of the loads for the two kinds of glass-ceramics decreased as time passed. Giemsa surface staining and contact microradiography revealed direct bonding between glass-ceramics and bone. SEM-EPMA showed a calcium-phosphorus rich layer (reaction zone) at the interface of ceramics and bone tissue. The thickness of the reaction zone was 10 to -15 microns and did not increase as time passed.(ABSTRACT TRUNCATED AT 250 WORDS)
RAINBOWS and CERAMBOWS: The Technologies of Pre-Stressed Piezo Actuators
NASA Technical Reports Server (NTRS)
Haertling, Gene H.
1996-01-01
Amplified mechanical displacement effects, similar to those observed in the recently reported Rainbow actuators, have also been found to exist in prestressed ceramic/metal composite structures coined as CERAMBOW's - an acronym for CERamic And Metal Biased Oxide Wafer. Mimicking the Rainbows in many ways, the intentionally created internal compressive and tensile stresses within the Cerambows are used to amplify their displacement properties via the combined effects of piezoelectric d31 strain and domain reorientation. They are fabricated from ferroelectric, piezoelectric or electrostrictive materials and metal substrates of significantly different thermal expansions which are largely responsible for the creation of the stress. Typical ceramics used in Cerambows are PZT, PLZT, PBZT, PSZT and PMN and some typical metal substrates are Al, Ag, Ni, brass, steel and Be/Cu foil. Shapes can vary from round disks to square plates and rectangular bars. Formed at an elevated temperature of approximately 250 C, the stresses on cooling to room temperature are generally sufficient to produce displacements as large as 0.125mm (5 mils) when activated unipolar and 0.25mm (10 mils) when operated bipolar at 450 volts in a dome mode. Comparing equal structures of a Cerambow with a Rainbow, the Cerambow was found to achieve approximately 70% of the displacement that would normally be obtained with a Rainbow. Although this difference in displacement is sufficient to prefer a Rainbow for many applications, there are some advantages for the Cerambow. Among these are (1) the processing temperatures are lower, (2) high lead-containing ceramics are not required and (3) in some instances the metal substrate is more convenient to interface with other elements of a device. However, the disadvantages include (1) lower displacement in the dome mode of operation, (2) the higher displacement saddle mode has not yet been demonstrated with a Cerambow and (3) the ceramic/metal bond interface is a possible failure area when operated for extended periods of time. The applications for Cerambows are considered to be similar to Rainbows, i.e., actuators, pumps, deflectors, vibrators, speakers, hydrophones, hydroprojectors, switches, etc.
2015-02-19
boride composites *Volodymyr Borysovych Filipov SCIENCE AND TECHNOLOGY CENTER IN UKRAINE METALISTIV 7A, KYIV, UKRAINE *FRANTSEVICH...microstructure and interface boundary formation in directionally solidified ceramic boride composites 5a. CONTRACT NUMBER STCU P-512 5b. GRANT NUMBER...BOUNDARY FORMATION IN DIRECTIONALLY SOLIDIFIED CERAMIC BORIDE COMPOSITES Project manager: Filipov Volodymyr Borysovych Phone: (+380.44) 424-13-67
Friction behavior of network-structured CNT coating on pure titanium plate
NASA Astrophysics Data System (ADS)
Umeda, Junko; Fugetsu, Bunshi; Nishida, Erika; Miyaji, Hirofumi; Kondoh, Katsuyoshi
2015-12-01
Friction behavior of the network-structured CNTs coated pure Ti plate was evaluated by ball-on-disk wear test using SUS304 ball specimen under dry condition. The friction coefficient was significantly low and stable compared to the as-received Ti plate with no coating film. CNTs coating film had two important roles; self-lubrication and bearing effects to reduce the friction coefficient and carbon solid-solution hardening to improve the abrasive wear property of Ti plate. The annealing treatment at higher temperature (1123 K) was more effective to reduce the friction coefficient than that at lower temperature (973 K) because the Ti plate surface was uniformly covered with CNTs film even after sliding wear test. This is due to TiC interlayer formation via a reaction between Ti plate and carbon elements originated from CNTs during annealing. As a result, a strong interface bonding between CNTs film and Ti plate surface was obtained by higher temperature annealing treatment, and obstructed the detachment of CNTs film during wear test.
Helal, Mohammed Abu; Wang, Zhigang
2017-10-25
To compare equivalent and contact stresses in a mandibular molar restored by all-ceramic crowns through two methods: ceramic endocrowns and ceramic crowns supported by fiber-reinforced composite (FRC) posts and core, by using 3D finite element analysis during normal masticatory load. Three 3D models of a mandibular first molar were made and labeled as such: intact molar with no restoration (A); ceramic endocrown-restored molar (B); ceramic crown supported by FRC posts and core restored molar (C). By using 3D FE analysis with contact components, normal masticatory load was simulated. The mvM stresses in all models were calculated. Maximal mvM stresses in the ceramic of restorations, dentin, and luting cement were contrasted among models and to values of materials' strength. Contact shear and tensile stresses in the restoration/tooth interface around restorations were also calculated. The highest mvM stress levels in the enamel and dentin for the tooth restored by ceramic endocrown were lower in the crown ceramic than in tooth restored with FRC posts and all-ceramic crowns; however, in the resin adhesive cement interface it was lower for ceramic crown supported by FRC posts than the in ceramic endocrown restoration. The maximum contact shear and tensile stress values along the restoration/tooth interface of ceramic endocrowns were lower than those with ceramic crowns supported by FRC posts. Ceramic endocrown restorations presented a lower mvM stress level in dentin than the conventional ceramic crowns supported by FRC posts and core. Ceramic endocrown restorations in molars are less susceptible to damage than those with conventional ceramic crowns retained by FRC posts. Ceramic endocrowns properly cemented in molars must not be fractured or loosen during normal masticatory load. Therefore, ceramic endocrowns are advised as practicable, minimally invasive, and esthetic restorations for root canal treated mandibular molars. © 2017 by the American College of Prosthodontists.
Saiki, Osamu; Koizumi, Hiroyasu; Akazawa, Nobutaka; Kodaira, Akihisa; Okamura, Kentaro; Matsumura, Hideo
2016-01-01
This study compared the wear characteristics of a heat-pressed lithium disilicate ceramic material opposed to feldspathic porcelain, a lithium disilicate glass ceramic, and zirconia materials. Ceramic plate specimens were prepared from feldspathic porcelain (EX-3 nA1B), lithium disilicate glass ceramics (e.max CAD MO1/C14), and zirconia (Katana KT 10) and then ground or polished. Rounded rod specimens were fabricated from heat-pressed lithium disilicate glass ceramic (e.max press LT A3) and then glazed or polished. A sliding wear testing apparatus was used for wear testing. Wear of glazed rods was greater than that of polished rods when they were abraded with ground zirconia, ground porcelain, polished porcelain, or polished lithium disilicate ceramics. For both glazed and polished rods, wear was greater when the rods were abraded with ground plates. The findings indicate that application of a polished surface rather than a glazed surface is recommended for single restorations made of heat-pressed lithium disilicate material. In addition, care must be taken when polishing opposing materials, especially those used in occlusal contact areas. (J Oral Sci 58, 117-123, 2016).
Yang, Jiashi; Liu, Jinjin; Li, Jiangyu
2007-04-01
A rectangular ceramic plate with appropriate electrical load and operating mode is analyzed for piezoelectric transformer application. An exact solution from the three-dimensional equations of linear piezoelectricity is obtained. The solution simulates the real operating situation of a transformer as a vibrating piezoelectric body connected to a circuit. Transforming ratio, input admittance, and efficiency of the transformer are obtained.
Fractography of ceramic and metal failures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1984-01-01
STP 827 is organized into the two broad areas of ceramics and metals. The ceramics section covers fracture analysis techniques, surface analysis techniques, and applied fractography. The metals section covers failure analysis techniques, and latest approaches to fractography, and applied fractography.
A novel method for characterizing the impact response of functionally graded plates
NASA Astrophysics Data System (ADS)
Larson, Reid A.
Functionally graded material (FGM) plates are advanced composites with properties that vary continuously through the thickness of the plate. Metal-ceramic FGM plates have been proposed for use in thermal protection systems where a metal-rich interior surface of the plate gradually transitions to a ceramic-rich exterior surface of the plate. The ability of FGMs to resist impact loads must be demonstrated before using them in high-temperature environments in service. This dissertation presents a novel technique by which the impact response of FGM plates is characterized for low-velocity, low- to medium-energy impact loads. An experiment was designed where strain histories in FGM plates were collected during impact events. These strain histories were used to validate a finite element simulation of the test. A parameter estimation technique was developed to estimate local material properties in the anisotropic, non-homogenous FGM plates to optimize the finite element simulations. The optimized simulations captured the physics of the impact events. The method allows research & design engineers to make informed decisions necessary to implement FGM plates in aerospace platforms.
Propagation of thickness-twist waves in a piezoelectric ceramic plate with unattached electrodes.
Qian, Zheng-Hua; Kishimoto, Kikuo; Yang, Jiashi
2009-06-01
We analyze the propagation of thickness-twist waves in an unbounded piezoelectric ceramic plate with air gaps between the plate surfaces and two electrodes. These waves are also called anti-plane or shear-horizontal waves with one displacement component only. An exact solution is obtained from the equations of the linear theory of piezoelectricity. Dispersion relations of the waves are obtained and plotted. Results show that the wave frequency or speed is sensitive to the air gap thickness. This effect can be used to manipulate the behavior of the waves and has implications in acoustic wave devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Steve Xunhu
Lithium silicate-based glass-ceramics with high coefficients of thermal expansion, designed to form matched hermetic seals in 304L stainless steel housing, show little evidence of interfacial chemical bonding, despite extensive inter-diffusion at the glass-ceramic-stainless steel (GC-SS) interface. A series of glass-ceramic compositions modified with a variety of oxidants, AgO, FeO, NiO, PbO, SnO, CuO, CoO, MoO 3 and WO 3, are examined for the feasibility of forming bonding oxides through reduction-oxidation (redox) at the GC-SS interface. The oxidants were selected according to their Gibbs free energy to allow for oxidation of Cr/Mn/Si from stainless steel, and yet to prevent a reductionmore » of P2O5 in the glass-ceramic where the P 2O 5 is to form Li 3PO 4 nuclei for growth of high expansion crystalline SiO 2 phases. Other than the CuO and CoO modified glass-ceramics, bonding from interfacial redox reactions were not achieved in the modified glass-ceramics, either because of poor wetting on the stainless steel or a reduction of the oxidants at the surface of glass-ceramic specimens rather than the GC-SS interface.« less
Study on coming out of the shaft from ceramic sleeve in terms of the residual displacement
NASA Astrophysics Data System (ADS)
Zhang, G. W.; Noda, N.-A.; Sano, Y.; Sakai, H.
2018-06-01
Ceramic roller can be used in the heating furnace conveniently because of its high temperature resistance. However, the coming out of the shaft may often happen from the ceramic sleeve under repeated load. In this paper, a two-dimensional shrink fitted structure is considered by replacing the shaft with the inner plate and by replacing the sleeve with the outer plate. Based on the model with stopper, the FEM simulation is performed under alternate loading with certain intervals newly added. The analysis results show that the coming out failure can be explained from the residual displacement accumulation during these intervals.
Testing of felt-ceramic materials for combustor applications
NASA Technical Reports Server (NTRS)
Venkat, R. S.; Roffe, G.
1983-01-01
The feasibility of using composite felt ceramic materials as combustor liners was experimentally studied. The material consists of a porous felt pad sandwiched between a layer of ceramic and one of solid metal. Flat, rectangular test panels, which encompassed several design variations of the basic composite material, were tested, two at a time, in a premixed gas turbine combustor as sections of the combustor wall. Tests were conducted at combustor inlet conditions of 0.5 MPa and 533 K with a reference velocity of 25 m/s. The panels were subjected to a hot gas temperature of 2170 K with 1% of the total airflow used to film cool the ceramic surface of the test panel. In general, thin ceramic layers yield low ceramic stress levels with high felt ceramic interface temperatures. On the other hand, thick ceramic layers result in low felt ceramic interface temperatures but high ceramic stress levels. Extensive thermal cycling appears to cause material degradation, but for a limited number of cycles, the survivability of felt ceramic materials, even under extremely severe combustor operating conditions, was conclusively demonstrated.
NASA Astrophysics Data System (ADS)
FR, Wahid Muhamad; Yoon, Dang-Hyok; Raju, Kati; Kim, Seyoung; Song, Kwang-sup; Yu, Ji Haeng
2018-01-01
To fabricate a multi-layered structure for maximizing oxygen production, oxygen transport membrane (OTM) ceramics need to be joined or sealed hermetically metal supports for interfacing with the peripheral components of the system. Therefore, in this study, Ag-10 wt% CuO was evaluated as an effective filler material for the reactive air brazing of dense Ce0.9Gd0.1O2-δ-La0.7Sr0.3MnO3±δ (GDC-LSM) OTM ceramics. Thermal decomposition in air and wetting behavior of the braze filler was performed. Reactive air brazing was performed at 1050 °C for 30 min in air to join GDC-LSM with four different commercially available high temperature-resistant metal alloys, such as Crofer 22 APU, Inconel 600, Fecralloy, and AISI 310S. The microstructure and elemental distribution of the ceramic-ceramic and ceramic-metal interfaces were examined from polished cross-sections. The mechanical shear strength at room temperature for the as-brazed and isothermally aged (800 °C for 24 h) joints of all the samples was compared. The results showed that the strength of the ceramic-ceramic joints was decreased marginally by aging; however, in the case of metal-ceramic joints, different decreases in strengths were observed according to the metal alloy used, which was explained based on the formation of different oxide layers at the interfaces.
NASA Astrophysics Data System (ADS)
Kwan, Matthew P.
This work demonstrates that inserting nanomolecular layers (NMLs) can profoundly change and/or lead to novel electronic and mechanical properties of metal-ceramic interfaces. The first set of results demonstrate that organophosphonate NMLs up to 1.8 nm thick can alter metal work functions by +/- 0.6 eV. This work function change is a strong function of the NML terminal groups (methyl, mercaptan, carboxylic acid, or phosphonic acid), morphology (up right, lying down, or mixed orientation), and the nature of the bonding (covalent, polar, or Van der Waals) between NML and the adjacent layers. Additionally, while NML-ceramic bond type and strength can influence and counteract the effect of NML morphology, the metal-NML bond appears to be independent of the morphology of the NML underlayer. The second set of results demonstrate that inserting an organosilane NML at a metal-ceramic interface can lead to multifold fracture toughening under both static (stress corrosion) and cyclic loads (fatigue) tested in four-point bend. Nanolayer-induced interface strengthening during static loading activates metal plasticity above the metal yield strength, leading to two-fold fracture toughening. Metal plasticity-induced toughening increases as temperature is increased up to 85 °C due to decreasing yield stress. In the fatigue fracture tests I report for the first time a loading-frequency-dependent tripling in fracture toughening in the 75-300 Hz range upon inserting a mercapto-silane NML at the weakest interface of a ceramic-polymer-metal-ceramic stack. This unusual behavior arises from the NML strengthened interface enabling load transfer to- and plasticity in the polymer layer, while the fatigue toughening magnitude and frequency range are determined by polymer rheology.
Photocatalysis effect of nanometer TiO2 and TiO2-coated ceramic plate on Hepatitis B virus.
Zan, Ling; Fa, Wenjun; Peng, Tianyou; Gong, Zhen-Kui
2007-02-01
The photocatalysis effect of nanometer TiO2 particles and TiO2-coated ceramic plate on Hepatitis B virus surface antigen (HBsAg) was investigated. The ELISA (enzyme-linked immunosorbent assay) standard method was used to assess the efficiency of TiO2 material to destroy the HBsAg. The research has shown that the suspension of TiO2 (0.5g/L) can destroy most of the HBsAg under the irradiation of mercury lamp, with the light intensity of 0.6mW/cm(2) at 365nm wavelength, or under the sunlight irradiation for a few hours. TiO2-coated ceramic plates can also destroy the HBsAg under the irradiation of mercury lamp, with the light intensity of 0.05mW/cm(2) at 365nm wavelength or under the room daylight for a few hours.
NASA Technical Reports Server (NTRS)
Frechette, V. D. (Editor); Lacourse, W. C.; Burdick, V. L.
1974-01-01
The characterization of surfaces and interfaces is considered along with the infrared spectra of several N-containing compounds absorbed on montmorillonites, applications of surface characterization techniques to glasses, the observation of electronic spectra in glass and ceramic surfaces, a method for determining the preferred orientation of crystallites normal to a surface, and the friction and wear behavior of glasses and ceramics. Attention is given to the wear behavior of cast surface composites, an experimental investigation of the dynamic and thermal characteristics of the ceramic stock removal process, a dynamic elastic model of ceramic stock removal, and the structure and properties of solid surfaces. Individual items are announced in this issue.
NASA Astrophysics Data System (ADS)
Yao, Shu-Wei; Yang, Guan-Jun; Li, Cheng-Xin; Li, Chang-Jiu
2018-01-01
Interlamellar bonding within plasma-sprayed coatings is one of the most important factors dominating the properties and performance of coatings. The interface bonding between lamellae significantly influences the erosion behavior of plasma-sprayed ceramic coatings. In this study, TiO2 and Al2O3 coatings with different microstructures were deposited at different deposition temperatures based on the critical bonding temperature concept. The erosion behavior of ceramic coatings was investigated. It was revealed that the coatings prepared at room temperature exhibit a typical lamellar structure with numerous unbonded interfaces, whereas the coatings deposited at the temperature above the critical bonding temperature present a dense structure with well-bonded interfaces. The erosion rate decreases sharply with the improvement of interlamellar bonding when the deposition temperature increases to the critical bonding temperature. In addition, the erosion mechanisms of ceramic coatings were examined. The unbonded interfaces in the conventional coatings act as pre-cracks accelerating the erosion of coatings. Thus, controlling interlamellar bonding formation based on the critical bonding temperature is an effective approach to improve the erosion resistance of plasma-sprayed ceramic coatings.
Evaluation of biocompatibility of various ceramic powders with human fibroblasts in vitro.
Li, J; Liu, Y; Hermansson, L; Söremark, R
1993-01-01
Cell reaction to powders of ceramics was studied in vitro. Cultured human fibroblasts were exposed to different types of ceramic powders: zirconia (ZP), alumina (A), tricalcium phosphate (TCP) and hydroxyapatite (HA), at various concentrations. The cell viability at the different exposure times was measured by the colony formation (expressed as colony forming efficiency, CFE), neutral red uptake (NR) and colorimetric tetrazolium (MTT) reduction. Alumina and hydroxyapatite showed no cytotoxic effects at studied doses (1-500 mug/ml) while zirconia and tricalcium phosphate inhibited cell viability, with 50% of CFE reduction at the concentration of about 50 mug/ml. In order to study the cytotoxic mechanism of zirconia powder, two further experiments were included, viz. the cellular response to the sintered zirconia ceramic powders (CZP) which were obtained by crushing the sintered ceramic material; and the measurement of the degradation of zirconia ceramic plate in the different solutions, i.e., either in saline or in 0.02 M lactic acid (pH 2.72). Similar cell reactions were obtained for the CZP and ZP by using MTT and NR assays. Slow releases of ions from zirconia ceramic plate, yttrium in both solutions and zirconium and yttrium in lactic acid, were detected.
ADM guidance-Ceramics: all-ceramic multilayer interfaces in dentistry.
Lohbauer, Ulrich; Scherrer, Susanne S; Della Bona, Alvaro; Tholey, Michael; van Noort, Richard; Vichi, Alessandro; Kelly, J Robert; Cesar, Paulo F
2017-06-01
This guidance document describes the specific issues involved in dental multilayer ceramic systems. The material interactions with regard to specific thermal and mechanical properties are reviewed and the characteristics of dental tooth-shaped processing parameters (sintering, geometry, thickness ratio, etc.) are discussed. Several techniques for the measurement of bond quality and residual stresses are presented with a detailed discussion of advantages and disadvantages. In essence no single technique is able to describe adequately the all-ceramic interface. Invasive or semi-invasive methods have been shown to distort the information regarding the residual stress state while non-invasive methods are limited due to resolution, field of focus or working depth. This guidance document has endeavored to provide a scientific basis for future research aimed at characterizing the ceramic interface of dental restorations. Along with the methodological discussion it is seeking to provide an introduction and guidance to relatively inexperienced researchers. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Acousto-Ultrasonic analysis of failure in ceramic matrix composite tensile specimens
NASA Technical Reports Server (NTRS)
Kautz, Harold E.; Chulya, Abhisak
1993-01-01
Three types of acousto-ultrasonic (AU) measurements, stress-wave factor (SWF), lowest antisymmetric plate mode group velocity (VS), and lowest symmetric plate mode group velocity (VL), were performed on specimens before and after tensile failure. Three different Nicalon fiber architectures with ceramic matrices were tested. These composites were categorized as 1D (unidirectional fiber orientation) SiC/CAS glass ceramic, and 2D and 3D woven SiC/SiC ceramic matrix materials. SWF was found to be degraded after tensile failure in all three material categories. VS was found to be degraded only in the 1D SiC/CAS. VL was difficult to determine on the irregular specimen surfaces but appeared unchanged on all failed specimens. 3D woven specimens with heat-treatment at high temperature exhibited degradation only in SWF.
Ceramic hemi-unicondylar arthroplasty in an adolescent patient with idiopathic tibial chondrolysis.
Dombroski, Derek; Garino, Jonathan; Lee, Gwo-Chin
2009-06-01
Despite recent advances in cartilage regeneration and restoration procedures, isolated, large, full-thickness cartilage lesions in young patients continue to pose significant challenges to patients and orthopedic surgeons. Treatment options for this difficult problem have traditionally included arthrodesis, osteotomy, osteochondral allograft, and prosthetic reconstruction. We present a case of an adolescent patient with isolated idiopathic lateral tibial chondrolysis treated with a custom ceramic hemi-unicondylar hemiarthroplasty. Preoperatively, a 3-dimensional computed tomography scan of the patient's knee was obtained to begin manufacturing a conforming custom ceramic insert that would articulate between the tibial base plate and the patient's native lateral femoral cartilage. Through a lateral parapatellar approach, the tibial preparation was carried out using the Zimmer M/G unicompartmental knee system (Warsaw, Indiana), and the tibial base plate was cemented into position in the standard fashion. A custom, conforming, prefabricated ceramic insert (CeramTec, Memphis, Tennessee) was then inserted onto the tibial base plate. At 5-year follow-up, this salvage procedure was successful in relieving pain and restoring function in this young patient. There were no signs of implant loosening or lysis. Magnetic resonance imaging of the knee at last follow-up revealed that the cartilage thickness of the patient's lateral femoral condyle remained unchanged. Unicondylar hemiarthroplasty performed in patients with large unipolar lesions in the knee can provide durable and reliable pain relief. Ceramic is a viable material that can be considered for articulation with native cartilage.
Fusion of Night Vision and Thermal Images
2006-12-01
with the walls of the MCP channels. Thus, a thin metal oxide coating commonly known as an ion barrier film is added to the input side of the MCP to...with film ion barrier to filmless gated tubes. An important improvement for Gen 4 products is a greater target identification range and higher target...Metal Seals with S-25 Cathode Mircro-channel plate Ceramic/Metal Seals with GaAS Cathode Mircro-channel plate with ion barrier film Ceramic
[Influence of SiO2 films on color reproduction of Ni-Cr alloy porcelain crowns].
Wu, Dong; Feng, Yunzhi
2011-08-01
To study whether SiO2 films will influence the color of Ni-Cr metal ceramic restorations. For the film plating experimental group, Sol-gel method was employed to apply SiO2 films to the surface of the Ni-Cr copings, while no coating was applied for the non-film-plating control group. Veneering porcelains were then applied subsequently, and a total of 12 B2-colored maxillary incisor metal ceramic crowns were fabricated with 6 crowns in each group. A ShadeEye Ncc computer-aided colorimeter was employed to measure the shade of the samples, as well as 6 B2(Vitapan classical vita color tabs) shade standards. The color was expressed as C1E-1976-Lab coordinates. There was a statistically significant color difference between all metal ceramic crowns and the B2 shade standards (delta E>1.5). The L*, a*, b* values of all crowns were higher than those of the B2 shade standards, and the crowns were typically yellower or redder. While neither significant color difference nor difference in shade values was observed between the film plating experimental group and non-film-plating control group (delta E<1.5). SiO2 films applied to the Ni-Cr copings by means of Sol-gel technique do not impact the final color of the metal ceramic restorations.
Kabel, Joey; Hosemann, Peter; Zayachuk, Yevhen; ...
2018-01-24
We present that ceramic fiber–matrix composites (CFMCs) are exciting materials for engineering applications in extreme environments. By integrating ceramic fibers within a ceramic matrix, CFMCs allow an intrinsically brittle material to exhibit sufficient structural toughness for use in gas turbines and nuclear reactors. Chemical stability under high temperature and irradiation coupled with high specific strength make these materials unique and increasingly popular in extreme settings. This paper first offers a review of the importance and growing body of research on fiber–matrix interfaces as they relate to composite toughening mechanisms. Second, micropillar compression is explored experimentally as a high-fidelity method formore » extracting interface properties compared with traditional fiber push-out testing. Three significant interface properties that govern composite toughening were extracted. For a 50-nm-pyrolytic carbon interface, the following were observed: a fracture energy release rate of ~2.5 J/m 2, an internal friction coefficient of 0.25 ± 0.04, and a debond shear strength of 266 ± 24 MPa. Lastly, this research supports micromechanical evaluations as a unique bridge between theoretical physics models for microcrack propagation and empirically driven finite element models for bulk CFMCs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kabel, Joey; Hosemann, Peter; Zayachuk, Yevhen
We present that ceramic fiber–matrix composites (CFMCs) are exciting materials for engineering applications in extreme environments. By integrating ceramic fibers within a ceramic matrix, CFMCs allow an intrinsically brittle material to exhibit sufficient structural toughness for use in gas turbines and nuclear reactors. Chemical stability under high temperature and irradiation coupled with high specific strength make these materials unique and increasingly popular in extreme settings. This paper first offers a review of the importance and growing body of research on fiber–matrix interfaces as they relate to composite toughening mechanisms. Second, micropillar compression is explored experimentally as a high-fidelity method formore » extracting interface properties compared with traditional fiber push-out testing. Three significant interface properties that govern composite toughening were extracted. For a 50-nm-pyrolytic carbon interface, the following were observed: a fracture energy release rate of ~2.5 J/m 2, an internal friction coefficient of 0.25 ± 0.04, and a debond shear strength of 266 ± 24 MPa. Lastly, this research supports micromechanical evaluations as a unique bridge between theoretical physics models for microcrack propagation and empirically driven finite element models for bulk CFMCs.« less
Using laser radiation for the formation of capillary structure in flat ceramic heat pipes
NASA Astrophysics Data System (ADS)
Nikolaenko, Yu. E.; Rotner, S. M.
2012-12-01
The possibility of using laser radiation with a wavelength of 1.064 μm for the formation of a capillary structure in the evaporation zone of flat ceramic heat pipes has been experimentally confirmed. Using a technological regime with established parameters, a capillary structure was formed in AlN and Al2O3 ceramic plates with a thickness of 1-2 mm and lateral dimensions of 48 × 60 and 100 × 100 mm, which ensured absorption of heat-transfer fluids (distilled water, ethyl alcohol, acetone) to a height of 100 mm against gravity forces. The thermal resistance of flat ceramic heat pipes with this capillary structure reaches 0.07°C/W, which is quite acceptable for their use as heat sinks in systems of thermal regime control for electronic components and as heat exchange plates for large-size thermoelectric conversion units.
Method of making a hydrogen transport membrane, and article
Schwartz, Joseph M.; Corpus, Joseph M.; Lim, Hankwon
2015-07-21
The present invention relates to a method of manufacturing a hydrogen transport membrane and the composite article itself. More specifically, the invention relates to producing a membrane substrate, wherein the ceramic substrate is coated with a metal oxide slurry, thereby eliminating the need for an activation step prior to plating the ceramic membrane through an electroless plating process. The invention also relates to modifying the pore size and porosity of the substrate by oxidation or reduction of the particles deposited by the metal oxide slurry.
Using Al Foam to Reduce the Transfer of Impact Stress between Ceramic Plates
2004-11-01
2004 Using Al foam to reduce the transfer of impact stress between ceramic plates. Final Technical Report No.2 by Ing. Milos Bortel November 2004...United States Army EUROPEAN RESEARCH OFFICE OF THE U.S.ARMY London, England CONTRACT NUMBER N62558-03-M-0815 ZTS-MATEC, a.s. Areal ZTS No.924 018 41...Dubnica nad Vahom Slovakia Approved for public release, distribution unlimited. Report Documentation Page Form ApprovedOMB No. 0704-0188 Public
Compliant sleeve for ceramic turbine blades
Cai, Hongda; Narasimhan, Dave; Strangman, Thomas E.; Easley, Michael L.; Schenk, Bjoern
2000-01-01
A compliant sleeve for attaching a ceramic member to a metal member is comprised of a superalloy substrate having a metal contacting side and a ceramic contacting side. The ceramic contacting side is plated with a layer of nickel followed by a layer of platinum. The substrate is then oxidized to form nickel oxide scale on the ceramic contacting side and a cobalt oxide scale on the metal contacting side. A lubricious coating of boron nitride is then applied over the metal contacting side, and a shear-stress limiting gold coating is applied over the ceramic contacting side.
Machined electrostatic sector for mass spectrometer
NASA Technical Reports Server (NTRS)
Sinha, Mahadeva P. (Inventor)
2001-01-01
An electrostatic sector device for a mass spectrometer is formed from a single piece of machinable ceramic. The machined ceramic is coated with a nickel coating, and a notch is etched in the nickel coating to form two separated portions. The sector can be covered by a cover formed from a separate piece of machined ceramic.
Becker, Talia; Ashkenazi, Malka
2011-10-01
The effect of a rubber-covered ceramic weapon was assessed on the incidence of dental trauma during basic training, since soldiers are more at risk of impact from a personal weapon. Dental files of soldiers (n = 4,542), who completed 8 months of training during 2008, were analyzed for incidence and type of dental trauma from a personal weapon. A rubber-covered ceramic weapon (n = 2,972) or a conventional one (n = 1,570, control) was used. Dental trauma was 0.4% per 8 months (0.6% per year) from the ceramic weapon and 1.5% per 8 months (2.3% per year) from the conventional one (p<0.001). The most prevalent type of injury was a simple/noncomplicated crown fracture (82% in study group, 75% in control group). The ceramic weapon significantly reduced dental trauma by diminishing the impact while in direct contact with the teeth or by absorbing and/or distributing the impact force. In conclusion, when possible a rubber-covered ceramic weapon should be preferred for basic combat training.
Rubinstein, Alexander I; Sabirianov, Renat F; Namavar, Fereydoon
2016-10-14
The rapid development of nanoscience and nanotechnology has raised many fundamental questions that significantly impede progress in these fields. In particular, understanding the physicochemical processes at the interface in aqueous solvents requires the development and application of efficient and accurate methods. In the present work we evaluate the electrostatic contribution to the energy of model protein-ceramic complex formation in an aqueous solvent. We apply a non-local (NL) electrostatic approach that accounts for the effects of the short-range structure of the solvent on the electrostatic interactions of the interfacial systems. In this approach the aqueous solvent is considered as a non-ionic liquid, with the rigid and strongly correlated dipoles of the water molecules. We have found that an ordered interfacial aqueous solvent layer at the protein- and ceramic-solvent interfaces reduces the charging energy of both the ceramic and the protein in the solvent, and significantly increases the electrostatic contribution to their association into a complex. This contribution in the presented NL approach was found to be significantly shifted with respect to the classical model at any dielectric constant value of the ceramics. This implies a significant increase of the adsorption energy in the protein-ceramic complex formation for any ceramic material. We show that for several biocompatible ceramics (for example HfO2, ZrO2, and Ta2O5) the above effect predicts electrostatically induced protein-ceramic complex formation. However, in the framework of the classical continuum electrostatic model (the aqueous solvent as a uniform dielectric medium with a high dielectric constant ∼80) the above ceramics cannot be considered as suitable for electrostatically induced complex formation. Our results also show that the protein-ceramic electrostatic interactions can be strong enough to compensate for the unfavorable desolvation effect in the process of protein-ceramic complex formation.
NASA Astrophysics Data System (ADS)
Rubinstein, Alexander I.; Sabirianov, Renat F.; Namavar, Fereydoon
2016-10-01
The rapid development of nanoscience and nanotechnology has raised many fundamental questions that significantly impede progress in these fields. In particular, understanding the physicochemical processes at the interface in aqueous solvents requires the development and application of efficient and accurate methods. In the present work we evaluate the electrostatic contribution to the energy of model protein-ceramic complex formation in an aqueous solvent. We apply a non-local (NL) electrostatic approach that accounts for the effects of the short-range structure of the solvent on the electrostatic interactions of the interfacial systems. In this approach the aqueous solvent is considered as a non-ionic liquid, with the rigid and strongly correlated dipoles of the water molecules. We have found that an ordered interfacial aqueous solvent layer at the protein- and ceramic-solvent interfaces reduces the charging energy of both the ceramic and the protein in the solvent, and significantly increases the electrostatic contribution to their association into a complex. This contribution in the presented NL approach was found to be significantly shifted with respect to the classical model at any dielectric constant value of the ceramics. This implies a significant increase of the adsorption energy in the protein-ceramic complex formation for any ceramic material. We show that for several biocompatible ceramics (for example HfO2, ZrO2, and Ta2O5) the above effect predicts electrostatically induced protein-ceramic complex formation. However, in the framework of the classical continuum electrostatic model (the aqueous solvent as a uniform dielectric medium with a high dielectric constant ˜80) the above ceramics cannot be considered as suitable for electrostatically induced complex formation. Our results also show that the protein-ceramic electrostatic interactions can be strong enough to compensate for the unfavorable desolvation effect in the process of protein-ceramic complex formation.
Wang, Jian; Evans, Julian R G
2005-01-01
This paper describes the design, construction, and operation of the London University Search Instrument (LUSI) which was recently commissioned to create and test combinatorial libraries of ceramic compositions. The instrument uses commercially available powders, milled as necessary to create thick-film libraries by ink-jet printing. Multicomponent mixtures are prepared by well plate reformatting of ceramic inks. The library tiles are robotically loaded into a flatbed furnace and, when fired, transferred to a 2-axis high-resolution measurement table fitted with a hot plate where measurements of, for example, optical or electrical properties can be made. Data are transferred to a dedicated high-performance computer. The possibilities for remote interrogation and search steering are discussed.
Effect of electrical polarization of hydroxyapatite ceramics on new bone formation.
Itoh, S; Nakamura, S; Kobayashi, T; Shinomiya, K; Yamashita, K; Itoh, S
2006-03-01
Large surface charges can be induced on hydroxyapatite (HAp) ceramics by proton transport polarization, but this does not affect beta-tricalcium phosphate (TCP) because of its low polarizability. We wished to examine differences in osteogenic cell activity and new bone growth between positively or negatively surface-charged HAp and HAp/TCP plates using a calvarial bone defect model. In the first group of rats, test pieces were placed with their positively charged surfaces face down on the dura mater. In the second group, test pieces were placed with their negatively charged surfaces face down on the dura mater. A third group received noncharged test pieces. Histological examination, including enzymatic staining for osteoblasts and osteoclasts, was carried out. While no bone formation was observed at the pericranium, direct bone formation on the cranial bone debris and new bone growth expanded from the margins of the sites of injury to bridge across both the positively and negatively charged surfaces of HAp and HAp/TCP plates occurred. Electrical polarization of implanted plates, including positive charge, led to enhanced osteoblast activity, though decreased osteoclast activity was seen on the positively charged plate surface. Thus, polarization of HAp ceramics may modulate new bone formation and resorption.
Forquin, Pascal; Zinszner, Jean-Luc
2017-01-28
Owing to their significant hardness and compressive strengths, ceramic materials are widely employed for use with protective systems subjected to high-velocity impact loadings. Therefore, their mechanical behaviour along with damage mechanisms need to be significantly investigated as a function of loading rates. However, the classical plate-impact testing procedures produce shock loadings in the brittle sample material which cause unrealistic levels of loading rates. Additionally, high-pulsed power techniques and/or functionally graded materials used as flyer plates to smooth the loading pulse remain costly, and are generally difficult to implement. In this study, a shockless plate-impact technique based on the use of either a wavy-machined flyer plate or buffer plate that can be produced by chip-forming is proposed. A series of numerical simulations using an explicit transient dynamic finite-element code have been performed to design and validate the experimental testing configuration. The calculations, conducted in two-dimensional (2D) plane-strain or in 2D axisymmetric modes, prove that the 'wavy' contact surface will produce a pulse-shaping effect, whereas the buffer plate will produce a homogenizing effect of the stress field along the transverse direction of the sample. In addition, 'wavy-shape' geometries of different sizes provide an easy way to change the level of loading rate and rise time in an experimentally tested ceramic specimen. Finally, when a shockless compression loading method is applied to the sample, a Lagrangian analysis of data is made possible by considering an assemblage of ceramic plates of different thicknesses in the target, so the axial stress-strain response of the brittle sample material can be provided.This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'. © 2016 The Author(s).
NASA Astrophysics Data System (ADS)
Forquin, Pascal; Zinszner, Jean-Luc
2017-01-01
Owing to their significant hardness and compressive strengths, ceramic materials are widely employed for use with protective systems subjected to high-velocity impact loadings. Therefore, their mechanical behaviour along with damage mechanisms need to be significantly investigated as a function of loading rates. However, the classical plate-impact testing procedures produce shock loadings in the brittle sample material which cause unrealistic levels of loading rates. Additionally, high-pulsed power techniques and/or functionally graded materials used as flyer plates to smooth the loading pulse remain costly, and are generally difficult to implement. In this study, a shockless plate-impact technique based on the use of either a wavy-machined flyer plate or buffer plate that can be produced by chip-forming is proposed. A series of numerical simulations using an explicit transient dynamic finite-element code have been performed to design and validate the experimental testing configuration. The calculations, conducted in two-dimensional (2D) plane-strain or in 2D axisymmetric modes, prove that the `wavy' contact surface will produce a pulse-shaping effect, whereas the buffer plate will produce a homogenizing effect of the stress field along the transverse direction of the sample. In addition, `wavy-shape' geometries of different sizes provide an easy way to change the level of loading rate and rise time in an experimentally tested ceramic specimen. Finally, when a shockless compression loading method is applied to the sample, a Lagrangian analysis of data is made possible by considering an assemblage of ceramic plates of different thicknesses in the target, so the axial stress-strain response of the brittle sample material can be provided. This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.
Effect of Jig Design and Assessment of Stress Distribution in Testing Metal-Ceramic Adhesion.
Özcan, Mutlu; Kojima, Alberto Noriyuki; Nishioka, Renato Sussumu; Mesquita, Alfredo Mikail Melo; Bottino, Marco Antonio; Filho, Gilberto Duarte
2016-12-01
In testing adhesion using shear bond test, a combination of shear and tensile forces occur at the interface, resulting in complex stresses. The jig designs used for this kind of test show variations in published studies, complicating direct comparison between studies. This study evaluated the effect of different jig designs on metal-ceramic bond strength and assessed the stress distribution at the interface using finite element analysis (FEA). Metal-ceramic (Metal: Ni-Cr, Wiron 99, Bego; Ceramic: Vita Omega 900, Vita) specimens (N = 36) (diameter: 4 mm, veneer thickness: 4 mm; base diameter: 5 mm, thickness: 1 mm) were fabricated and randomly divided into three groups (n = 12 per group) to be tested using one of the following jig designs: (a) chisel (CH) (ISO 11405), (b) steel strip (SS), (c) piston (PI). Metal-ceramic interfaces were loaded under shear until debonding in a universal testing machine (0.5 mm/min). Failure types were evaluated using scanning electron microscopy (SEM). FEA was used to study the stress distribution using different jigs. Metal-ceramic bond strength data (MPa) were analyzed using ANOVA and Tukey's tests (α = 0.05). The jig type significantly affected the bond results (p = 0.0001). PI type of jig presented the highest results (MPa) (p < 0.05) (58.2 ± 14.8), followed by CH (38.7 ± 7.6) and SS jig type (23.3 ± 4.2) (p < 0.05). Failure types were exclusively a combination of cohesive failure in the opaque ceramic and adhesive interface failure. FEA analysis indicated that the SS jig presented slightly more stress formation than with the CH jig. The PI jig presented small stress concentration with more homogeneous force distribution compared to the CH jig where the stress concentrated in the area where the force was applied. Metal-ceramic bond strength was affected by the jig design. Accordingly, the results of in vitro studies on metal-ceramic adhesion should be evaluated with caution. When adhesion of ceramic materials to metals is evaluated in in vitro studies, it should be noted that the loading jig type affects the results. Clinical observations should report on the location and type of ceramic fractures in metal-ceramic reconstructions so that the most relevant test method can be identified. © 2015 by the American College of Prosthodontists.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brize, Virginie; STMicroelectronics, 16 rue P and M Curie, 37001 Tours; Autret-Lambert, Cecile, E-mail: cecile.autret-lambert@univ-tours.fr
2011-10-15
CaCu{sub 3}Ru{sub 4}O{sub 12} (CCRO) is a conductive oxide having the same structure as CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) and close lattice parameters. The later compound is strongly considered for high density parallel plates capacitors application due to its so-called colossal dielectric constant. The need for an electrode inducing CCTO epitaxial growth with a clean and sharp interface is therefore necessary, and CCRO is a good potential candidate. In this paper, the synthesis of monophasic CCRO ceramic is reported, as well as pulsed laser deposition of CCRO thin film onto (001) NdCaAlO{sub 4} substrate. Structural and physical properties of bulkmore » CCRO were studied by transmission electron microscopy and electron spin resonance. CCRO films and ceramic exhibited a metallic behavior down to low temperature. CCRO films were (001) oriented and promoted a CCTO film growth with the same orientation. - Graphical Abstract: Structure of CaCu{sub 3}Ru{sub 4}O{sub 12} showing the RuO{sub 6} octahedra and the square planar environment for Cu{sup 2+}. Highlights: > In this study, we investigate the structural properties and microstructure of ceramics CaCu{sub 3}Ru{sub 4}O{sub 12}. > We study the conduction properties of polycrystalline material. > Then we synthesize the conductive thin film which is deposited on a high K material with the same structure (CaCu{sub 3}Ti{sub 4}O{sub 12}).« less
Ivanov, Borislav L; Wellons, Matthew S; Lukehart, Charles M
2009-08-26
A one-step process for preparing microcrystalline coatings of known superhard, very hard, or ultraincompressible ceramic compositions on either inorganic or organic supports is reported. Midinfrared pulsed-laser irradiation of preceramic chemical precursors layered between IR-transmissive hard/soft supports under temporal and spatial confinement at a laser wavelength resonant with a precursor vibrational band gives one-step deposition of crystalline ceramic coatings without incurring noticeable collateral thermal damage to the support material. Reaction plume formation at the precursor/laser beam interface initiates confined-plume, chemical deposition (CPCD) of crystalline ceramic product. Continuous ceramic coatings are produced by rastering the laser beam over a sample specimen. CPCD processing of the Re-B single-source precursor, (B(3)H(8))Re(CO)(4), the dual-source mixtures, Ru(3)(CO)(12)/B(10)H(14) or W(CO)(6)/B(10)H(14), and the boron/carbon single-source precursor, o-B(10)C(2)H(12), confined between Si wafer or NaCl plates gives microcrystalline deposits of ReB(2), RuB(2), WB(4), or B(4)C, respectively. CPCD processing of Kevlar fabric wetted by (B(3)H(8))Re(CO)(4) produces an oriented, microcrystalline coating of ReB(2) on the Kevlar fabric without incurring noticeable thermal damage of the polymer support. Similarly, microcrystalline coatings of ReB(2) can be formed on IR-transmissive IR2, Teflon, or Ultralene polymer films.
Lin, Chun-Li; Kuo, Wen-Chuan; Chang, Yen-Hsiang; Yu, Jin-Jie; Lin, Yun-Chu
2014-08-01
This study investigates monitored micro-crack growth and damage in the ceramic/enamel adhesive interface using the acoustic emission (AE) technique with optical coherence tomography (OCT) under fatigue shear testing. Shear bond strength (SBS) was measured first with eight prepared ceramic/enamel adhesive specimens under static loads. The fatigue shear testing was performed with three specimens at each cyclic load according to a modified ISO14801 method, applying at 80%, 75%, 70%, and 65% of the SBS to monitor interface debonding. The number of cycles at each load was recorded until ceramic/enamel adhesive interface debonding occurred. The AE technique was used to detect micro-crack signals in static and fatigue shear bond tests. The results showed that the average SBS value in the static tests was 18.07 ± 1.72 MPa (mean ± standard deviation), expressed in Newton's at 56.77 ± 5.40N. The average number of fatigue cycles in which ceramic/enamel interface damage was detected in 80%, 75%, 70% and 65% of the SBS were 41, 410, 8141 and 76,541, respectively. The acoustic behavior varied according to the applied load level. Events were emitted during 65% and 70% fatigue tests. A good correlation was observed between the crack location in OCT images and the number of AE signal hits. The AE technique combined with OCT images as a pre-clinical assessment tool to determine the integrity of cemented load bearing restored ceramic material. Sustainable cyclic load stresses in ceramic/enamel bonded specimens were substantially lower than the measured SBS. Predicted S-N curve showed that the maximum endured load was 10.98 MPa (about 34.48 N) passing 10(6) fatigue cyclic. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Composite phase ceramic phosphor of Al₂O₃-Ce:YAG for high efficiency light emitting.
Tang, Yanru; Zhou, Shengming; Chen, Chong; Yi, Xuezhuan; Feng, Yue; Lin, Hui; Zhang, Shuai
2015-07-13
We present our achievement which is a ceramic plate phosphorable to produce white light when directly combined with commercially available blue light emitting diodes. The ceramic phase structure is that the Al₂O₃ particle is uniformly distributed in the Ce:YAG matrix. The Al₂O₃-Ce:YAG ceramic phosphor has a better luminous efficacy than the transparent Ce:YAG ceramic phosphor under the same test condition. The Al₂O₃ particle plays an important role in promoting the luminous efficacy. The Al₂O₃ particle changes the propagation of the light in ceramic, and it reduces the total internal reflection. That is why the composite phase ceramic phosphor improves extraction efficiency of light.
Buckling of graded coatings: A continuum model
NASA Astrophysics Data System (ADS)
Chiu, Tz-Cheng
2000-12-01
Requirements for the protection of hot section components in many high temperature applications such as earth-to-orbit winged planes and advanced turbine systems have led to the application of thermal barrier coatings (TBCs) that utilize ceramic coatings on metal substrates. An alternative concept to homogeneous ceramic coatings is the functionally graded materials (FGM) in which the composition of the coating is intentionally graded to improve the bonding strength and to reduce the magnitude of the residual and thermal stresses. A widely observed failure mode in such layered systems is known to be interface cracking that leads to spallation fracture. In most cases, the final stage of the failure process for a thin coating appears to be due to buckling instability under thermally or mechanically induced compressive stress. The objective of this study is to develop a solution to the buckling instability problem by using continuum elasticity rather than a structural mechanics approach. The emphasis in the solution will be on the investigation of the effect of material inhomogeneity in graded coatings on the instability load, the postbuckling behavior, and fracture mechanics parameters such as the stress intensity factors and strain energy release rate. In this analysis, a nonlinear continuum theory is employed to examine the interface crack problem. The analytical solution of the instability problem permits the study of the effect of material inhomogeneity upon the inception of buckling and establishes benchmark results for the numerical solutions of related problems. To study the postbuckling behavior and to calculate the stress intensity factors and strain energy release rate a geometrically nonlinear finite element procedure with enriched crack-tip element is developed. Both plane strain and axisymmetric interface crack problems in TBCs with either homogeneous or graded coating are then considered by using the finite element procedure. It is assumed that the applied load is a uniform temperature drop. Comparison of the results with that obtained from the plate approximation shows that because of the higher constraints the plate theory predicts greater instability strains and lower strain energy release rates. It is also observed that compared with a homogeneous coating the graded coating gives lower strain energy release rate because of the lower thermal residual stress and higher bending stiffness. (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
Hashima, A.; Matsu'Ura, M.
2006-12-01
We obtained the expressions for internal deformation fields due to a moment tensor in an elastic-viscoelastic layered holf-space. This unified formulation of internal deformation fields for shear faulting and crack opening enabled us to deal with the problem of tectonic deformation at a composite type of plate boundary zones. The tectonic deformation can be ascribed to mechanical interaction at plate boundaries, which make a closed circuit with the mode of relative plate motion changing from divergence to convergence through transcurrent motion. One of the rational ways to represent mechanical interaction at plate boundaries is specifying the increase rates of normal or tangential displacement discontinuity across plate interfaces. On the basis of such a basic idea we developed a 3-D simulation model for the nonlinear, coupled system of plate subduction and back-arc spreading in Mariana. Through numerical simulations we revealed the evolution process of back-arc spreading. At the first stage, steady plate subduction (shear faulting at a plate interface) gradually forms tensile stress fields in the back-arc region of the overriding plate. When the accumulated tensile stress reaches a critical level, back-arc spreading (crack opening) starts at a structurally weak portion of the overriding plate. The horizontal motion of the frontal part of the overriding plate due to back-arc spreading pushes out the plate boundary toward the oceanic plate. In steady-state plate subduction the shear stress acting on a plate interface must balance with the maximum frictional resistance (shear strength) of the plate interface. Therefore, the increase of shear stress at the plate interface leads to the increase of slip rate at the plate interface. The local increase of slip rate at the plate interface produces the additional tensile stress in the back-arc region. The increased tensile stress must be canceled out by the additional crack opening. Such a feedback mechanism between plate subduction and back-arc spreading is crucial to understand the development of back-ark spreading.
Energy-harvesting laser phosphor display and its design considerations
NASA Astrophysics Data System (ADS)
Fujieda, Ichiro; Itaya, Shunsuke; Ohta, Masamichi; Hirai, Yuuki; Kohmoto, Takamasa
2017-04-01
One can convert a luminescent solar concentrator to a display by projecting intensity-modulated light on it. We fabricated a 95 mm×95 mm×10 mm screen by sandwiching a thin coumarin 6 layer with two acrylic plates. We removed the light source in a commercial projector and fed a blue laser beam into its optics. It displayed monochrome images on the screen clearly. A photodiode covered a 10 mm×10 mm region on the edge surface of the screen. As we pulsed the laser, the photodiode output varied synchronously. Its output indicates that a fully covered version would harvest up to 71% of the incoming laser power. However, a ghost image was noticeable when we displayed a high-contrast still image. We address two aspects in design considerations. First, tiling small modules will reduce the thickness of a large-area projection system and alleviate its self-absorption loss. For seamless tiling, we can attach output couplers to the surface of the transparent plate and extract photoluminescence (PL) photons in each module. Second, the origin of the ghost image is the PL photons reflected at the plate-air interface inside the screen. Thinning the transparent plate facing the projector will eliminate such an optical cross talk.
Sensors, Volume 1, Fundamentals and General Aspects
NASA Astrophysics Data System (ADS)
Grandke, Thomas; Ko, Wen H.
1996-12-01
'Sensors' is the first self-contained series to deal with the whole area of sensors. It describes general aspects, technical and physical fundamentals, construction, function, applications and developments of the various types of sensors. This volume deals with the fundamentals and common principles of sensors and covers the wide areas of principles, technologies, signal processing, and applications. Contents include: Sensor Fundamentals, e.g. Sensor Parameters, Modeling, Design and Packaging; Basic Sensor Technologies, e.g. Thin and Thick Films, Integrated Magnetic Sensors, Optical Fibres and Intergrated Optics, Ceramics and Oxides; Sensor Interfaces, e.g. Signal Processing, Multisensor Signal Processing, Smart Sensors, Interface Systems; Sensor Applications, e.g. Automotive: On-board Sensors, Traffic Surveillance and Control, Home Appliances, Environmental Monitoring, etc. This volume is an indispensable reference work and text book for both specialits and newcomers, researchers and developers.
Arc Jet Testing of the TIRS Cover Thermal Protection System for Mars Exploration Rover
NASA Technical Reports Server (NTRS)
Szalai, Christine E.; Chen, Y.-K.; Loomis, Mark; Hui, Frank; Scrivens, Larry
2002-01-01
This paper summarizes the arc jet test results of the Mars Exploration Rover (MER) Silicone Impregnated Reusable Ceramic Ablator (SIRCA) Transverse Impulse Rocket System (TIRS) Cover test series in the Panel Test Facility (PTF) at NASA Ames Research Center (ARC). NASA ARC performed aerothermal environment analyses, TPS sizing and thermal response analyses, and arc jet testing to evaluate the MER SIRCA TIRS Cover design and interface to the aeroshell structure. The primary objective of this arc jet test series was to evaluate specific design details of the SIRCA TIRS Cover interface to the MER aeroshell under simulated atmospheric entry heating conditions. Four test articles were tested in an arc jet environment with various sea] configurations. The test condition was designed to match the predicted peak flight heat load at the gap region between the SIRCA and the backshell TPS material, SLA-561S, and resulted in an over-test (with respect to heat flux and heat load) for the apex region of the SIRCA TIRS Cover. The resulting pressure differential was as much as twenty times that predicted for the flight case, depending on the location, and there was no post-test visual evidence of over-heating or damage to the seal, bracket, or backshell structure. The exposed titanium bolts were in good condition at post-test and showed only a small amount of oxidation at the leading edge locations. Repeatable thermocouple data were obtained and SIRCA thermal response analyses were compared to applicable thermocouple data. For the apex region of the SIRCA TIRS Cover, a one-dimensional thermal response prediction proved overly conservative, as there were strong multi-dimensional conduction effects evident from the thermocouple data. The one-dimensional thermal response prediction compared well with the thermocouple data for the leading edge "lip" region at the bolt location. In general, the test results yield confidence in the baseline seal design to prevent hot gas ingestion at the bracket and composite aeroshell structure interface.
New Insights on the Structure of the Cascadia Subduction Zone from Amphibious Seismic Data
NASA Astrophysics Data System (ADS)
Janiszewski, Helen Anne
A new onshore-offshore seismic dataset from the Cascadia subduction zone was used to characterize mantle lithosphere structure from the ridge to the volcanic arc, and plate interface structure offshore within the seismogenic zone. The Cascadia Initiative (CI) covered the Juan de Fuca plate offshore the northwest coast of the United States with an ocean bottom seismometer (OBS) array for four years; this was complemented by a simultaneous onshore seismic array. Teleseismic data recorded by this array allows the unprecedented imaging of an entire tectonic plate from its creation at the ridge through subduction initiation and back beyond the volcanic arc along the entire strike of the Cascadia subduction zone. Higher frequency active source seismic data also provides constraints on the crustal structure along the plate interface offshore. Two seismic datasets were used to image the plate interface structure along a line extending 100 km offshore central Washington. These are wide-angle reflections from ship-to-shore seismic data from the Ridge-To-Trench seismic cruise and receiver functions calculated from a densely spaced CI OBS focus array in a similar region. Active source seismic observations are consistent with reflections from the plate interface offshore indicating the presence of a P-wave velocity discontinuity. Until recently, there has been limited success in using the receiver function technique on OBS data. I avoid these traditional challenges by using OBS constructed with shielding deployed in shallow water on the continental shelf. These data have quieter horizontals and avoid water- and sediment-multiple contamination at the examined frequencies. The receiver functions are consistently modeled with a velocity structure that has a low velocity zone (LVZ) with elevated P to S-wave velocity ratios at the plate interface. A similar LVZ structure has been observed onshore and interpreted as a combination of elevated pore-fluid pressures or metasediments. This new offshore result indicates that the structure may persist updip indicating the plate interface may be weak. To focus more broadly on the entire subduction system, I calculate phase velocities from teleseismic Rayleigh waves from 20-100 s period across the entire onshore-offshore array. The shear-wave velocity model calculated from these data can provide constrains on the thermal structure of the lithosphere both prior to and during subduction of the Juan de Fuca plate. Using OBS data in this period band requires removal of tilt and compliance noise, two types of water-induced noise that affect long period data. To facilitate these corrections on large seismic arrays such as the CI, an automated quality control routine was developed for selecting noise windows for the calculation of the required transfer functions. These corrections typically involve either averaging out transient signals, which requires the assumption of stationarity of the noise over the long periods of time, or laborious hand selection of noise segments. This new method calculates transfer functions based on daily time series that exclude transient signals, but allows for the investigation of long-term variation over the course of an instrument's deployment. I interpret these new shoreline-crossing phase velocity maps in terms of the tectonics associated with the Cascadia subduction system. Major findings include that oceanic plate cooling models do not explain the velocities observed beneath the Juan de Fuca plate, that slow velocities in the forearc appear to be more prevalent in areas modeled to have experienced high slip in past Cascadia megathrust earthquakes, and along strike variations in phase velocity reflect variations in arc structure and backarc tectonics.
Industrialization of the ion plating process
NASA Technical Reports Server (NTRS)
Spalvins, T.
1976-01-01
A new process referred to as ion plating by induction heating (IPIH) is described, which combines the advantages of both ion plating and induction heating. The IPIH apparatus consists of the specimen (cathode) to be coated and the evaporation heating source, which is a ceramic crucible containing the metal to be heated. The specimen is an internal part of the high-voltage ceramic-metal vacuum feedthrough and is connected to the negative terminal of the high-voltage power supply, the positive terminal of the power supply being grounded. The plating conditions are the same as those most commonly used in industrial ion plating. A number of metals - such as nickel, iron, platinum - which were practically impossible to deposit by resistance heating evaporation can now be effectively evaporated and deposited to any desired thickness. Excellent adherence is observed for many metals deposited on various metal surfaces in thicknesses from 0.15 to 50 microns, regardless of the materials selected for coating and substrate.
Kawai, Hiroyuki; Shibata, Yo; Miyazaki, Takashi
2004-05-01
Despite the fact that several reports have demonstrated osteoclast activity on various bioactive ceramics, osteoclast functions on surface-modified titanium have not come under focus. This study aimed to examine whether the increasing surface energy of glow discharge plasma (GDP) involved in protein adhesion containing the RGD (Arg-Gly-Asp) sequence affects osteoclast responses on titanium plates. We examined osteoclast differentiation and survival rates on titanium plates with and without GDP. The amounts of osteoclasts on titanium plates were not increased by GDP after 1 week. However, osteoclast differentiation was greatly activated by GDP pretreatment, as tartrate-resistant acid phosphatase synthesis significantly increased on the titanium plates with GDP. Additionally, since the presence of osteoclasts was detected only on the titanium plates with GDP, even after 4h cultivation in a coculture test, the osteoclasts survival rate was increased by GDP pretreatment. As osteoclast responses were affected even on surface modified metallic materials, we concluded that novel approaches are needed not only for osteoclastic resorption on ceramic materials but also for osteoclast responses on surface-modified metallic materials.
Scholes, S C; Unsworth, A
2007-04-01
In an attempt to prolong the lives of rubbing implantable devices, several 'new' materials have been examined to determine their suitability as joint couplings. Tests were performed on a multidirectional pin-on-plate machine to determine the wear of both pitch and PAN (polyacrylonitrile)-based carbon fibre reinforced-polyetheretherketone (CFR-PEEK-OPTIMA) pins articulating against both BioLox Delta and BioLox Forte plates (ceramic materials). Both reciprocation and rotational motion were applied to the samples. The tests were conducted using 24.5 per cent bovine serum as the lubricant (protein concentration 15 g/l). Although all four material combinations gave similar low wear with no statistically significant difference (p > 0.25), the lowest average total wear of these pin-on-plate tests was provided by CFR-PEEK-OPTIMA pitch pins versus BioLox Forte plates. This was much lower than the wear produced by conventional joint materials (metal-on-polyethylene) and metal-on-metal combinations when tested on the pin-on-plate machine. This therefore indicates optimism that these PEEK-OPTIMA-based material combinations may perform well in joint applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakeman, M. S.; Lawrence Berkeley National Laboratory, Berkeley, California 94720; Tilborg, J. van
We present the design and calibration of a microchannel plate based extreme ultraviolet spectrometer. Calibration was performed at the Advance Light Source (ALS) at the Lawrence Berkeley National Laboratory (LBNL). This spectrometer will be used to record the single shot spectrum of radiation emitted by the tapered hybrid undulator (THUNDER) undulator installed at the LOASIS GeV-class laser-plasma-accelerator. The spectrometer uses an aberration-corrected concave grating with 1200 lines/mm covering 11-62 nm and a microchannel plate detector with a CsI coated photocathode for increased quantum efficiency in the extreme ultraviolet. A touch screen interface controls the grating angle, aperture size, and placementmore » of the detector in vacuum, allowing for high-resolution measurements over the entire spectral range.« less
A square-plate ultrasonic linear motor operating in two orthogonal first bending modes.
Chen, Zhijiang; Li, Xiaotian; Chen, Jianguo; Dong, Shuxiang
2013-01-01
A novel square-plate piezoelectric ultrasonic linear motor operated in two orthogonal first bending vibration modes (B₁) is proposed. The piezoelectric vibrator of the linear motor is simply made of a single PZT ceramic plate (sizes: 15 x 15 x 2 mm) and poled in its thickness direction. The top surface electrode of the square ceramic plate was divided into four active areas along its two diagonal lines for exciting two orthogonal B₁ modes. The achieved driving force and speed from the linear motor are 1.8 N and 230 mm/s, respectively, under one pair orthogonal voltage drive of 150 V(p-p) at the resonance frequency of 92 kHz. The proposed linear motor has advantages over conventional ultrasonic linear motors, such as relatively larger driving force, very simple working mode and structure, and low fabrication cost.
Method of beam welding metallic parts together and apparatus for doing same
Lewandowski, Edward F.; Cassidy, Dale A.; Sommer, Robert G.
1987-01-01
The disclosed method provides for temporarily clamping a metallic piece to one side of a metallic plate while leaving the opposite side of the plate exposed, and providing a heat conductive heat sink body configured to engage the adjacent portions of such one side of the plate and the piece at all regions proximate to but not at the interface between these components. Such exposed side of such plate is then subjected to an electron welding beam, in exact registry with but opposite to the piece. The electron welding beam is supplied with adequate energy for penetrating through the plate, across the interface, and into the piece, whereby the electron welding beam produces molten material from both the plate and the piece in the region of the interface. The molten material flows into any interstices that may exist in the interface, and upon cooling solidifies to provide a welded joint between the plate and piece, where the interface was, virtually without any interstices. The heat sink material prevents the molten material from extruding beyond what was the interface, to provide a clean welded joint. The heat sink body also mechanically holds the plate and piece together prior to the actual welding.
Method of beam welding metallic parts together and apparatus for doing same
Lewandowski, E.F.; Cassidy, D.A.; Sommer, R.G.
1985-11-29
This method provides for temporarily clamping a metallic piece to one side of a metallic plate while leaving the opposite side of the plate exposed, and providing a heat conductive heat sink body configured to engage the adjacent portions of such one side of the plate and the piece at all regions proximate to but not at the interface between these components. The exposed side of such plate is then subjected to an electron welding beam, in exact registry with but opposite to the piece. The electron welding beam is supplied with adequate energy for penetrating through the plate, across the interface, and into the piece, whereby the electron welding beam produces molten material from both the plate and the piece in the region of the interface. The molten material flows into any interstices that may exist in the interface, and upon cooling solidifies to provide a welded joint between the plate and piece, where the interface was, virtually without any interstices. The heat sink material prevents the molten material from extrucing beyond what was the interface, to provide a clean welded joint. The heat sink body also mechanically holds the plate and piece together prior to the actual welding.
Thermal barrier coating life prediction model development
NASA Technical Reports Server (NTRS)
Sheffler, K. D.; Demasi, J. T.
1985-01-01
A methodology was established to predict thermal barrier coating life in an environment simulative of that experienced by gas turbine airfoils. Specifically, work is being conducted to determine failure modes of thermal barrier coatings in the aircraft engine environment. Analytical studies coupled with appropriate physical and mechanical property determinations are being employed to derive coating life prediction model(s) on the important failure mode(s). An initial review of experimental and flight service components indicates that the predominant mode of TBC failure involves thermomechanical spallation of the ceramic coating layer. This ceramic spallation involves the formation of a dominant crack in the ceramic coating parallel to and closely adjacent to the metal-ceramic interface. Initial results from a laboratory test program designed to study the influence of various driving forces such as temperature, thermal cycle frequency, environment, and coating thickness, on ceramic coating spalling life suggest that bond coat oxidation damage at the metal-ceramic interface contributes significantly to thermomechanical cracking in the ceramic layer. Low cycle rate furnace testing in air and in argon clearly shows a dramatic increase of spalling life in the non-oxidizing environments.
Interface waves in multilayered plates.
Li, Bing; Li, Ming-Hang; Lu, Tong
2018-04-01
In this paper, the characteristic equation of interface waves in multilayered plates is derived. With a reasonable assumption undertaken for the potential functions of longitudinal and shear waves in the nth layer medium, the characteristic equation of interface waves in the N-layered plate is derived and presented in a determinant form. The particle displacement and stress components are further presented in explicit forms. The dispersion curves and wave structures of interface waves in both a three-layered Al-Steel-Ti and a four-layered Steel-Al-Steel-Ti plate are displayed subsequently. It is observed in dispersion curves that obvious dispersion occurs on the low frequency band, whereas the phase velocities converge to the corresponding true Stoneley wave mode velocities at high frequency, and the number of interface wave modes equals the number of interfaces in multilayered plates (if all individual interfaces satisfy the existence condition of Stoneley waves). The wave structures reveal that the displacement components of interface waves are relatively high at interfaces, and the amplitude distribution varies from frequency to frequency. In the end, a similarly structured three-layered Al-Steel-Ti plate is tested. In this experiment, theoretical group velocity and experimental group velocity are compared. According to the discussion and comparison, the predicted group velocities are in good agreement with the experimental results. Thus, the theory of interface wave in multilayered plates is proved. As a result, the proposed theoretical approach represents a leap forward in the understanding of how to promote the characteristic study and practical applications of interface waves in multilayered structures.
Theoretical analysis on pulsed microwave heating of pork meat supported on ceramic plate.
Basak, Tanmay; Rao, Badri S
2010-11-01
Theoretical analysis has been carried out to study the role of ceramic plates (alumina and SiC) and pulsed microwave heating of pork meat (Pork Luncheon Roll (PLR) and White Pudding (WP)) samples. Spatial hot spots occur either at the center of the sample or at the outer face or at the face attached with alumina plate and application of pulsing minimizes formation of hot spots within meat samples. Pulsing of microwave is characterized by set point for temperature difference (ΔTS) and on-off constraints for temperature (T'). It is found that alumina plate with higher ΔTS and lower T' may be recommended for thick meat samples (both WP and PLR) whereas for thin meat samples, lower ΔTS with alumina plate/without plate may be preferred. It is also observed that SiC plate may be selectively used with ΔTS=20K for both the pork meats. The distributed microwave incidence is found to be effective due to lesser degree of thermal runaway in absence of pulsing for both meat samples. Copyright © 2010 The American Meat Science Association. Published by Elsevier Ltd. All rights reserved.
Theoretical and Experimental Study of Thermoacoustic Engines
1991-12-31
possible. In particulbr, we have considered use of extruded ceramic monolithic catalyst supports (for example, the ceramic used in some automobile...approximation. Heat exchangers retaken r be of negligible thickness and thus not to affect near-standing wave phasing. The TAB (or snack ) of length d is assumed...Heat exchangers were parallel plates of copper and the TAE is a monolithic catalyst support extruded ceramic. 13 15 The two-microphone-technique
Functional geopolymer composites for structural ceramic applications.
DOT National Transportation Integrated Search
2006-06-01
The results of an experimental investigation on the behavior of milled and short-fiber : reinforced composite plates are presented in this paper. The target operating temperature for : the plates was 1300C. The principal variables were the type and...
Henriques, B; Gonçalves, S; Soares, D; Silva, F S
2012-09-01
The aim of this study was to evaluate the effect of thermo-mechanical cycling on the metal-ceramic bond strength of conventional porcelain fused to metal restorations (PFM) and new functionally graded metal-ceramic dental restorations (FGMR). Two types of specimens were produced: PFM and FGMR specimens. PFM specimens were produced by conventional PFM technique. FGMR specimens were hot pressed and prepared with a metal/ceramic composite interlayer (50 M, vol%) at the metal-ceramic interface. They were manufactured and standardized in cylindrical format and then submitted to thermal (3000, 6000 and 12,000 cycles; between 5 °C and 60 °C; dwell time: 30s) and mechanical (25,000, 50,000 and 100,000 cycles under a load of 50 N; 1.6 Hz) cycling. The shear bond strength tests were performed in a universal testing machine (crosshead speed: 0.5mm/min), using a special device to concentrate the tension at the metal-ceramic interface and the load was applied until fracture. The metal-ceramic interfaces were examined with SEM/EDS prior to and after shear tests. The Young's modulus and hardness were measured across the interfaces of both types of specimens using nanoindentation tests. Data was analyzed with Shapiro-Wilk test to test the assumption of normality. The 2-way ANOVA was used to compare shear bond strength results (p<0.05). FGMR specimens showed significantly (p<0.001) higher shear bond strength results than PFM specimens, irrespective of fatigue conditions. Fatigue conditions significantly (p<0.05) affected the shear bond strength results. The analysis of surface fracture revealed adhesive fracture type for PFM specimens and mixed fracture type for FGMR specimens. Nanoindentation tests showed differences in mechanical properties measured across the metal-ceramic interface for the two types of specimens, namely Young's Modulus and hardness. This study showed significantly better performance of the new functionally graded restorations relative to conventional PFM restorations, under fatigue testing conditions and for the materials tested. Copyright © 2012 Elsevier Ltd. All rights reserved.
Interfaces - Weak Links, Yet Great Opportunities
NASA Technical Reports Server (NTRS)
Hendricks, Robert C.; Dimofte, Florin; Chupp, Raymond E.; Steinetz, Bruce M.
2011-01-01
Inadequate turbomachine interface design can rapidly degrade system performance, yet provide great opportunity for improvements. Engineered coatings of seals and bearing interfaces are major issues in the operational life of power systems. Coatings, films, and combined use of both metals and ceramics play a major role in maintaining component life. Interface coatings, like lubricants, are sacrificial for the benefit of the component. Bearing and sealing surfaces are routinely protected by tribologically paired coatings such as silicon diamond like coatings (SiDLC) in combination with an oil lubricated wave bearing that prolongs bearing operational life. Likewise, of several methods used or researched for detecting interface failures, dopants within coatings show failures in functionally graded ceramic coatings. The Bozzolo-Ferrante-Smith (BFS) materials models and quantum mechanical tools, employed in interface design, are discussed.
MacLennan, Donald A.; Turner, Brian P.; Gitsevich, Aleksandr; Bass, Gary K.; Dolan, James T.; Kipling, Kent; Kirkpatrick, Douglas A.; Leng, Yongzhang; Levin, Izrail; Roy, Robert J.; Shanks, Bruce; Smith, Malcolm; Trimble, William C.; Tsai, Peter
2001-01-01
A jacketed lamp bulb envelope includes a ceramic cup having an open end and a partially closed end, the partially closed end defining an aperture, a lamp bulb positioned inside the ceramic cup abutting the aperture, and a reflective ceramic material at least partially covering a portion of the bulb not abutting the aperture. The reflective ceramic material may substantially fill an interior volume of the ceramic cup not occupied by the bulb. The ceramic cup may include a structural feature for aiding in alignment of the jacketed lamp bulb envelope in a lamp. The ceramic cup may include an external flange about a periphery thereof. One example of a jacketed lamp bulb envelope includes a ceramic cup having an open end and a closed end, a ceramic washer covering the open end of the ceramic cup, the washer defining an aperture therethrough, a lamp bulb positioned inside the ceramic cup abutting the aperture, and a reflective ceramic material filling an interior volume of the ceramic cup not occupied by the bulb. A method of packing a jacketed lamp bulb envelope of the type comprising a ceramic cup with a lamp bulb disposed therein includes the steps of filling the ceramic cup with a flowable slurry of reflective material, and applying centrifugal force to the cup to pack the reflective material therein.
Grinding damage assessment for CAD-CAM restorative materials.
Curran, Philippe; Cattani-Lorente, Maria; Anselm Wiskott, H W; Durual, Stéphane; Scherrer, Susanne S
2017-03-01
To assess surface/subsurface damage after grinding with diamond discs on five CAD-CAM restorative materials and to estimate potential losses in strength based on crack size measurements of the generated damage. The materials tested were: Lithium disilicate (LIT) glass-ceramic (e.max CAD), leucite glass-ceramic (LEU) (Empress CAD), feldspar ceramic (VM2) (Vita Mark II), feldspar ceramic-resin infiltrated (EN) (Enamic) and a composite reinforced with nano ceramics (LU) (Lava Ultimate). Specimens were cut from CAD-CAM blocs and pair-wise mirror polished for the bonded interface technique. Top surfaces were ground with diamond discs of respectively 75, 54 and 18μm. Chip damage was measured on the bonded interface using SEM. Fracture mechanics relationships were used to estimate fracture stresses based on average and maximum chip depths assuming these to represent strength limiting flaws subjected to tension and to calculate potential losses in strength compared to manufacturer's data. Grinding with a 75μm diamond disc induced on a bonded interface critical chips averaging 100μm with a potential strength loss estimated between 33% and 54% for all three glass-ceramics (LIT, LEU, VM2). The softer materials EN and LU were little damage susceptible with chips averaging respectively 26μm and 17μm with no loss in strength. Grinding with 18μm diamond discs was still quite detrimental for LIT with average chip sizes of 43μm and a potential strength loss of 42%. It is essential to understand that when grinding glass-ceramics or feldspar ceramics with diamond discs surface and subsurface damage are induced which have the potential of lowering the strength of the ceramic. Careful polishing steps should be carried out after grinding especially when dealing with glass-ceramics. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Deformation of island-arc lithosphere due to steady plate subduction
NASA Astrophysics Data System (ADS)
Fukahata, Yukitoshi; Matsu'ura, Mitsuhiro
2016-02-01
Steady plate subduction elastically brings about permanent lithospheric deformation in island arcs, though this effect has been neglected in most studies based on elastic dislocation theory. We investigate the characteristics of the permanent lithospheric deformation using a kinematic model, in which steady slip motion is given along a plate interface in the elastic lithosphere overlying the viscoelastic asthenosphere under gravity. As a rule of thumb, long-term lithospheric deformation can be understood as a bending of an elastic plate floating on non-viscous fluid, because the asthenosphere behaves like water on the long term. The steady slip below the lithosphere-asthenosphere boundary does not contribute to long-term lithospheric deformation. Hence, the key parameters that control the lithospheric deformation are only the thickness of the lithosphere and the geometry of the plate interface. Slip on a plate interface generally causes substantial vertical displacement, and gravity always tries to retrieve the original gravitational equilibrium. For a curved plate interface gravity causes convex upward bending of the island-arc lithosphere, while for a planar plate interface gravity causes convex downward bending. Larger curvature and thicker lithosphere generally results in larger deformation. When the curvature changes along the plate interface, internal deformation is also involved intrinsically, which modifies the deformation field due to gravity. Because the plate interface generally has some curvature, at least near the trench, convex upward bending of the island-arc lithosphere, which involves uplift of island-arc and subsidence around the trench, is always realized. On the other hand, the deformation field of the island-arc lithosphere sensitively depends on lithospheric thickness and plate interface geometry. These characteristics obtained by the numerical simulation are consistent with observed topography and free-air gravity anomalies in subduction zones: a pair of topography and gravity anomalies, high in the arc and low around the trench, is observed without exceptions all over the world, while there are large variety in the amplitude and horizontal scale of the topography and gravity anomalies.
Bibliography of ceramic extrusion and plasticity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janney, M.A.; Vance, M.C.; Jordan, A.C.
A comprehensive bibliography of ceramic extrusion and plasticity has been compiled. Over 670 abstracts are included covering the period 1932 to 1984. Citations cover a wide range of interests from basic science investigations to engineering ''tips'' and include references to brick and tile, whitewares, technical ceramics, theoretical models, engineering analyses, forming, drying, and raw materials. In addition to the citations, there are numerous indices to make the bibliography easy to use.
Thick-film nickel-metal-hydride battery based on porous ceramic substrates
NASA Astrophysics Data System (ADS)
Do, Jing-Shan; Yu, Sen-Hao; Cheng, Suh-Fen
Nickel-metal-hydride (Ni-MH) batteries are prepared with thick-film and thin-film technologies based on porous ceramic substrates. The porosity and the mean pore diameter of BP ceramic substrates prepared from the argils increases from 19.81% and 0.0432 μm to 29.81% and 0.224 μm, respectively, upon increasing the ethyl cellulose content in the BP argil from 0 to 0.79%. The pore diameter of Al 2O 3 substrates prepared from Al 2O 3 powder is mainly distributed in the range 0.01-0.5 μm. The distribution of the pore diameters of BP ceramic substrates lies in two ranges, namely: 0.04-2 μm and 10-300 μm. Using BP ceramic plates and Al 2O 3 plates as substrates to fabricate thick-film Ni-MH batteries, the optimal electroactive material utilization in the batteries is 77.0 and 71.1%, respectively. On increasing the screen-printing number for preparing the cathode (Ni(OH) 2) from 1 to 3, the discharge capacity of the thick-film battery increases from 0.2917 to 0.7875 mAh, and the utilization in the battery decreases from 71.0 to 53.0%.
Mode I Failure of Armor Ceramics: Experiments and Modeling
NASA Astrophysics Data System (ADS)
Meredith, Christopher; Leavy, Brian
2017-06-01
The pre-notched edge on impact (EOI) experiment is a technique for benchmarking the damage and fracture of ceramics subjected to projectile impact. A cylindrical projectile impacts the edge of a thin rectangular plate with a pre-notch on the opposite edge. Tension is generated at the notch tip resulting in the initiation and propagation of a mode I crack back toward the impact edge. The crack can be quantitatively measured using an optical method called Digital Gradient Sensing, which measures the crack-tip deformation by simultaneously quantifying two orthogonal surface slopes via measuring small deflections of light rays from a specularly reflective surface around the crack. The deflections in ceramics are small so the high speed camera needs to have a very high pixel count. This work reports on the results from pre-crack EOI experiments of SiC and B4 C plates. The experimental data are quantitatively compared to impact simulations using an advanced continuum damage model. The Kayenta ceramic model in Alegra will be used to compare fracture propagation speeds, bifurcations and inhomogeneous initiation of failure will be compared. This will provide insight into the driving mechanisms required for the macroscale failure modeling of ceramics.
Corrugated cover plate for flat plate collector
Hollands, K. G. Terry; Sibbitt, Bruce
1978-01-01
A flat plate radiant energy collector is providing having a transparent cover. The cover has a V-corrugated shape which reduces the amount of energy reflected by the cover away from the flat plate absorber of the collector.
Honeychurch, Kevin C; Al-Berezanchi, Saman; Hart, John P
2011-05-15
Microband screen-printed carbon electrodes (μBSPCEs) without further modification have been investigated as disposable sensors for the measurement of lead in acetate leachates from ceramic glazed plates. Cyclic voltammetry was employed to elucidate the electrochemical behaviour of Pb(2+) at these electrodes in a variety of supporting electrolytes. The anodic peaks obtained on the reverse scans, showed that Pb had been deposited as a thin layer on the surface of the μBSPCE. The anodic peak of greatest magnitude was obtained in 0.1M pH 4.1 acetate buffer containing 13 mM Cl(-). The effect of chromium, copper, phosphate, sulphate and tin was examined and under the conditions employed, no significant change in current was found. The μBSPCEs were evaluated by carrying out lead determinations for acetate leachates from glazed ceramic plates. A highly decorated ornamental plate was found to leach 400 μg Pb(2+) (%CV=1.91%). A second plate, designed for dinnerware was found not to leach any detectable levels of Pb(2+). However, once fortified with 2.10 μg of Pb (equivalent to 100 ng/ml in the leachate), a mean recovery of 82.08% (%CV=4.07%) was obtained. The performance characteristics indicate that reliable data has been obtained for this application which could identify potentially toxic sources of lead. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Qu, Y. D.; Zhang, W. J.; Kong, X. Q.; Zhao, X.
2016-03-01
The heat-transfer behavior of the interface of Flyer plate (or Base Plate) has great influence on the microcosmic structures, stress distributions, and interface distortion of the welded interface of composite plates by explosive welding. In this paper, the temperature distributions in the combing zone are studied for the case of Cu/Fe composite plate jointed by explosive welding near the lower limit of explosive welding. The results show that Flyer plate (Cu plate) and Base Plate (Fe plate) firstly almost have the same melting rate in the explosive welding process. Then, the melting rate of Cu plate becomes higher than that of Fe plate. Finally, the melt thicknesses of Cu plate and Fe plate trend to be different constants, respectively. Meanwhile, the melting layer of Cu plate is thicker than that of Fe plate. The research could supply some theoretical foundations for calculating the temperature distribution and optimizing the explosive welding parameters of Cu/Fe composite plate to some extent.
3D-characterization of the veneer-zirconia interface using FIB nano-tomography.
Mainjot, Amélie K; Douillard, Thierry; Gremillard, Laurent; Sadoun, Michaël J; Chevalier, Jérôme
2013-02-01
The phenomena occurring during zirconia frameworks veneering process are not yet fully understood. In particular the study of zirconia behavior at the interface with the veneer remains a challenge. However this interface has been reported to act on residual stress in the veneering ceramic, which plays a significant role in clinical failures such as chipping. The objective of this study was thus to investigate the veneer-zirconia interface using a recent 3D-analysis tool and to confront these observations to residual stress measurements in the veneering ceramic. Two cross-sectioned bilayered disc samples (veneer on zirconia), exhibiting different residual stress profiles in the veneering ceramic, were investigated using 2D and 3D imaging (respectively Scanning Electron Microscopy (SEM) and Focused Ion Beam nanotomography (FIB-nt), associated with chemical analysis by Energy Dispersive X-ray Spectroscopy (EDS). The observations did not reveal any structural change in the bulk of zirconia layer of both samples. However the presence of structural alterations and sub-surface microcracks were highlighted in the first micrometer of zirconia surface, exclusively for the sample exhibiting interior tensile stress in the veneering ceramic. No interdiffusion phenomena were observed. FIB nanotomography was proven to be a powerful technique to study the veneer-zirconia interface. The determination of the origin and the nature of zirconia alterations need to be further studied. The results of the present study support the hypothesis that zirconia surface property changes could be involved in the development of tensile stress in the veneering ceramic, increasing the risk of chipping. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Testing Of Choiced Ceramics Cutting Tools At Irregular Interrupted Cut
NASA Astrophysics Data System (ADS)
Kyncl, Ladislav; Malotová, Šárka; Nováček, Pavel; Nicielnik, Henryk; Šoková, Dagmar; Hemžský, Pavel; Pitela, David; Holubjak, Jozef
2015-12-01
This article discusses the test of removable ceramic cutting inserts during machining irregular interrupted cut. Tests were performed on a lathe, with the preparation which simulated us the interrupted cut. By changing the number of plates mounted in a preparation it simulate us a regular or irregular interrupted cut. When with four plates it was regular interrupted cut, the remaining three variants were already irregular cut. It was examined whether it will have the irregular interrupted cutting effect on the insert and possibly how it will change life of inserts during irregular interrupted cut (variable delay between shocks).
Li, Li; Qin, Lei; Wang, Li-Kun; Wan, Yuan-Yuan; Sun, Bai-Sheng
2008-05-01
The 1-3-2 composite is made of 1-3 composite and ceramic base. Its effective properties are calculated based on the linear piezoelectric theory and uniform field theory. The influence of piezoelectric phase volume fraction and composite aspect (thickness/width) on resonance characteristic of square 1-3-2 piezoelectric composite plate has been researched. In addition, some 1-3-2 composite samples were fabricated by dice-fill technology. The resonance frequency of samples was investigated. The results show that the experiment agrees well with the calculation. The pure thickness resonance mode of 1-3-2 composite will be gained when the volume fraction of ceramic bottom is less than 30%; that of ceramic rods is in the range of 30 approximately 80% and the ratio of thickness to width is less than 0.35.
Method of forming a ceramic matrix composite and a ceramic matrix component
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Diego, Peter; Zhang, James
A method of forming a ceramic matrix composite component includes providing a formed ceramic member having a cavity, filling at least a portion of the cavity with a ceramic foam. The ceramic foam is deposited on a barrier layer covering at least one internal passage of the cavity. The method includes processing the formed ceramic member and ceramic foam to obtain a ceramic matrix composite component. Also provided is a method of forming a ceramic matrix composite blade and a ceramic matrix composite component.
NASA Astrophysics Data System (ADS)
Han, Xiao; Gao, Xiguang; Song, Yingdong
2017-10-01
An approach to identify parameters of interface friction model for Ceramic Matrix composites based on stress-strain response was developed. The stress distribution of fibers in the interface slip region and intact region of the damaged composite was determined by adopting the interface friction model. The relation between maximum strain, secant moduli of hysteresis loop and interface shear stress, interface de-bonding stress was established respectively with the method of symbolic-graphic combination. By comparing the experimental strain, secant moduli of hysteresis loop with computation values, the interface shear stress and interface de-bonding stress corresponding to first cycle were identified. Substituting the identification of parameters into interface friction model, the stress-strain curves were predicted and the predicted results fit experiments well. Besides, the influence of number of data points on identifying the value of interface parameters was discussed. And the approach was compared with the method based on the area of hysteresis loop.
Leonard, Russell L.; Gray, Sharon K.; Alvarez, Carlos J.; ...
2015-05-21
In this paper, a fluorochlorozirconate (FCZ) glass-ceramic containing orthorhombic barium chloride crystals doped with divalent europium was evaluated for use as a storage phosphor in gamma-ray imaging. X-ray diffraction and phosphorimetry of the glass-ceramic sample showed the presence of a significant amount of orthorhombic barium chloride crystals in the glass matrix. Transmission electron microscopy and scanning electron microscopy were used to identify crystal size, structure, and morphology. The size of the orthorhombic barium chloride crystals in the FCZ glass matrix was very large, ~0.5–0.7 μm, which can limit image resolution. The FCZ glass-ceramic sample was exposed to 1 MeV gammamore » rays to determine its photostimulated emission characteristics at high energies, which were found to be suitable for imaging applications. Test images were made at 2 MeV energies using gap and step wedge phantoms. Gaps as small as 101.6 μm in a 440 stainless steel phantom were imaged using the sample imaging plate. Analysis of an image created using a depleted uranium step wedge phantom showed that emission is proportional to incident energy at the sample and the estimated absorbed dose. Finally, the results showed that the sample imaging plate has potential for gamma-ray-computed radiography and dosimetry applications.« less
Wheelspace windage cover plate for turbine
Lathrop, Norman Douglas
2002-01-01
Windage cover plates are secured between the wheels and spacer of a turbine rotor to prevent hot flow path gas ingestion into the wheelspace cavities. Each cover plate includes a linear, axially extending body curved circumferentially with a radially outwardly directed wall at one axial end. The wall defines a axially opening recess for receiving a dovetail lug. The cover plate includes an axially extending tongue received in a circumferential groove of the spacer. The cover plate is secured with the tongue in the groove and dovetail lug in the recess. Lap joints between circumferentially adjacent cover plates are provided.
An improved method for field extraction and laboratory analysis of large, intact soil cores
Tindall, J.A.; Hemmen, K.; Dowd, J.F.
1992-01-01
Various methods have been proposed for the extraction of large, undisturbed soil cores and for subsequent analysis of fluid movement within the cores. The major problems associated with these methods are expense, cumbersome field extraction, and inadequate simulation of unsaturated flow conditions. A field and laboratory procedure is presented that is economical, convenient, and simulates unsaturated and saturated flow without interface flow problems and can be used on a variety of soil types. In the field, a stainless steel core barrel is hydraulically pressed into the soil (30-cm diam. and 38 cm high), the barrel and core are extracted from the soil, and after the barrel is removed from the core, the core is then wrapped securely with flexible sheet metal and a stainless mesh screen is attached to the bottom of the core for support. In the laboratory the soil core is set atop a porous ceramic plate over which a soil-diatomaceous earth slurry has been poured to assure good contact between plate and core. A cardboard cylinder (mold) is fastened around the core and the empty space filled with paraffin wax. Soil cores were tested under saturated and unsaturated conditions using a hanging water column for potentials ???0. Breakthrough curves indicated that no interface flow occurred along the edge of the core. This procedure proved to be reliable for field extraction of large, intact soil cores and for laboratory analysis of solute transport.
1990-12-26
to mechanical properties , atomic structure , electronic bonding, and long term stability of interfaces at high temperature. The objective of this...discussion. The subjects were measurement of the local mechanical properties of-interfaces, constrained deformation, reactions at metal ceramic...as a function of oxygen activity and the effect of these reactions on mechanical properties understood, (iv) local deformation on the scale of
Morphological characterization of dental prostheses interfaces using optical coherence tomography
NASA Astrophysics Data System (ADS)
Sinescu, Cosmin; Negrutiu, Meda L.; Ionita, Ciprian; Marsavina, Liviu; Negru, Radu; Caplescu, Cristiana; Bradu, Adrian; Topala, Florin; Rominu, Roxana O.; Petrescu, Emanuela; Leretter, Marius; Rominu, Mihai; Podoleanu, Adrian G.
2010-03-01
Fixed partial prostheses as integral ceramic, polymers, metal-ceramic or metal-polymers bridges are mainly used in the frontal part of the dental arch (especially the integral bridges). They have to satisfy high stress as well as esthetic requirements. The masticatory stress may induce fractures of the bridges. These may be triggered by initial materials defects or by alterations of the technological process. The fractures of these bridges lead to functional, esthetic and phonetic disturbances which finally render the prosthetic treatment inefficient. Dental interfaces represent one of the most significant aspects in the strength of the dental prostheses under the masticatory load. The purpose of this study is to evaluate the capability of optical coherence tomography (OCT) to characterize the dental prostheses interfaces. The materials used were several fixed partial prostheses integral ceramic, polymers, metal-ceramic and metal-polymers bridges. It is important to produce both C-scans and B-scans of the defects in order to differentiate morphological aspects of the bridge infrastructures. The material defects observed with OCT were investigated with micro-CT in order to prove their existence and positions. In conclusion, it is important to have a non invasive method to investigate dental prostheses interfaces before the insertion of prostheses in the oral cavity.
Petrini, Morena; Ferrante, Maurizio; Su, Bo
2013-04-01
Conventional dental composites with randomly dispersed inorganic particles within a polymer matrix fail to recapitulate the aligned and anisotropic structure of the dentin and enamel. The aim of the study was to produce a biomimetic composite consisting of a ceramic preform with graded and continuously aligned open pores, infiltrated with epoxy resin. The freeze casting technique was used to obtain the hierarchically structured architecture of the ceramic preforms. Optical and scanning electron microscopy (SEM) and differential thermal analysis and thermogravimetry (TG-DTA) were used to characterize the samples. Three point bending test and compression test were also performed. All analysis confirmed that the biomimetic composite was characterized by a multi-level hierarchical structure along the freezing direction. In the bottom layers close to the cooling plate (up to 2mm thick), a randomly packed ceramic with closed pores were formed, which resulted in incomplete infiltration with resin and resultant poor mechanical propertiesof the composite. Above 2mm, all ceramic samples showed an aligned structure with an increasing lamellae spacing (wavelength) and a decreasing wall thickness. Mechanical tests showed that the properties of the composites made from ceramic preforms above 2mm from cooling plate are similar to those of the dentin. The fabrication processing reported in this work offers a viable route for the fabrication of biomimetic composites, which could be potentially used in a range of dental restorations to compete with the current dental composites and ceramics. Copyright © 2012 Academy of Dental Materials. All rights reserved.
Risk of pulp damage due to temperature increase during thermodebonding of ceramic brackets.
Jost-Brinkmann, P G; Radlanski, R J; Artun, J; Loidl, H
1997-12-01
The purpose of this study was to perform in vitro measurements of the temperature increase at the enamel-dentine interface during electrothermal removal of ceramic brackets, and to analyse, in vivo, whether signs of pulp damage can be observed 4 weeks after the procedure. In vitro study: a total of 29 caries-free human teeth were cut into buccal and lingual halves. The buccal halves were bonded with ceramic brackets, and miniature thermocouples were placed from the pulpal side into holes drilled to the enamel-dentine interface under the centre of the bracket slot. From the onset of thermodebonding, the temperature increase relative to room temperature was recorded for a period of 43 seconds. The maximum temperature increase at the enamel-dentine interface was 6.9 degrees C. In vivo study: a total of 12 human premolars scheduled for extraction for orthodontic reasons were bonded with ceramic brackets. Electrothermal debonding was performed the following day. After 4 weeks, the teeth were extracted and prepared for histological examination. Following demineralization, sections were prepared for light microscopic examination. No signs of pulpal inflammation were observed.
NASA Astrophysics Data System (ADS)
Sinescu, Cosmin; Negrutiu, Meda Lavinia; Ionita, Ciprian; Topala, Florin; Petrescu, Emanuela; Rominu, Roxana; Pop, Daniela Maria; Marsavina, Liviu; Negru, Radu; Bradu, Adrian; Rominu, Mihai; Podoleanu, Adrian Gh.
2010-12-01
Imagistic investigation of the metal-ceramic crowns and fixed partial prostheses represent a very important issue in nowadays dentistry. At this time, in dental office, it is difficult or even impossible to evaluate a metal ceramic crown or bridge before setting it in the oral cavity. The possibilities of ceramic fractures are due to small fracture lines or material defects inside the esthetic layers. Material and methods: In this study 25 metal ceramic crowns and fixed partial prostheses were investigated by radiographic method (Rx), micro computer tomography (MicroCT) and optical coherence tomography (OCT) working in Time Domain, at 1300 nm. The OCT system contains two interferometers and one scanner. For each incident analysis a stuck made of 100 slices was obtain. These slices were used in order to obtain a 3D model of the ceramic interface. Results: RX and MicroCT are very powerful instruments that provide a good characterization of the dental construct. It is important to observe the reflections due to the metal infrastructure that could affect the evaluation of the metal ceramic crowns and bridges. The OCT investigations could complete the imagistic evaluation of the dental construct by offering important information when it is need it.
Requirements of frictional debonding at fiber/matrix interfaces for tough ceramic composites
NASA Astrophysics Data System (ADS)
Hsueh, Chun-Hway
1992-11-01
Optimum toughening of fiber-reinforced ceramic composites requires debonding at fiber/matrix interfaces and subsequent frictional sliding between the fibers and the matrix as the main crack extends through the composite. Criteria of both interfacial debonding vs fiber fracture, and frictional debonding vs frictionless debonding, are illustrated. To achieve interfacial debonding, the ratio of the fiber strength to the interfacial shear strength must exceed a critical value; to achieve a frictional interface after interfacial debonding, the ratio of the interfacial residual clamping stress to the interfacial shear strength must also exceed a critical value. While interfacial debonding is not sensitive to Poisson's effect, the frictional interface is sensitive to Poisson's effect.
Aluminum alloy/alumina-based ceramic interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lebeau, T.; Strom-Olsen, J.O.; Gruzleski, J.E.
1995-07-01
Wetting experiments were performed on eutectic ZrO{sub 2}/Al{sub 2}O{sub 3} (ZA), ZrO{sub 2}/Al{sub 2}O{sub 3}/TiO{sub 2} (ZAT), and ZrO{sub 2}/Al{sub 2}O{sub 3}/SiO{sub 2} (ZAS) ceramic substrates with different Al alloys. Four major variables were tested to study the wetting behavior of the different ceramic-metal systems. Variable include holding time, melt temperature, ally, and ceramic compositions. An experimental setup was designed to measure in situ contact angles using the sessile drop method. For any ceramic substrate, a temperature over 950 C was necessary to observe an equilibrium wetting angle of less than 90{degree} with pure Al; by alloying the aluminum, wettingmore » could be observed at lower temperatures ({theta} = 76--86{degree} at 900 C for Al-10 wt. % Si, {theta} {approximately}72{degree} at 850 C for Al-2.4 wt. % Mg) forming clean interfaces. Finally, ZAS specimens reacted with molten Al alloys over 900 C to produce Zr-Al based intermetallics at the metal-ceramic interface.« less
A Cultural Resources Reconnaissance of the Asan Flood Control Study Area, Asan, Guam,
1980-01-01
dentified metal fragments, four fragments of modern ceramic mate- rial (two from plates and two from ceramic tiles), three small fragments of cement, and...applying Spoehr’s ceramic typology as Guam’s Red and Plainware varieties are more difficult to differentiate. Reinman suggested utilizing an analysis of the...temper for seriating cera- mic ware from Guam and established a distinction between Calcar- eous Sand Temper (CST) and Volcanic Sand Temper ( VST ). The
Study on the neotype zirconia's implant coated nanometer hydroxyapatite ceramics
NASA Astrophysics Data System (ADS)
Zhu, J. W.; Yang, D. W.
2007-07-01
In recent years, biologic ceramics is a popular material of implants and bioactive surface modification of dental implant became a research emphasis, which aims to improve bioactivity of implants materials and acquire firmer implants-bone interface. The zirconia ceramic has excellent mechanical properties and nanometer HA ceramics is a bioceramic well known for its bioactivity, therefore, nanometer HA ceramics coating on zirconia, allows combining the excellent mechanical properties of zirconia substrates with its bioactivity. This paper shows a new method for implant shape design and bioactive modification of dental implants surface. Zirconia's implant substrate was prepared by sintered method, central and lateral tunnels were drilled in the zirconia hollow porous cylindrical implants by laser processing. The HA powders and needle-like HA crystals were made by a wet precipitation and calcining method. Its surface was coated with nanometer HA ceramics which was used brush HA slurry and vacuum sintering. Mechanical testing results revealed that the attachment strength of nanometer HA ceramics coated zirconia samples is high. SEM and interface observation after inserted experiment indicated that calcium and phosphor content increased and symmetrically around coated implant-bone tissue interface. A significantly higher affinity index was demonstrated in vivo by histomorphometric evaluation in coated versus uncoated implants. SEM analysis demonstrated better bone adhesion to the material in coated implant at any situation. In addition, the hollow porous cylindrical implant coated with nanometer HA ceramics increase the interaction of bone and implant, the new bone induced into the surface of hollow porous cylindrical implant and through the most tunnels filled into central hole. The branch-like structure makes the implant and bone a body, which increased the contact area and decreased elastic ratio. Therefore, the macroscopical and microcosmic nested structure of implant coated nanometer HA ceramics had increased biocompatibility and improved the osteointegration. It endows the implants with new vital activity.
Safety lock-out device for electrical appliances
Cliff, Jr., Paul L.
1996-01-01
A safety lock-out device prevents the insertion of an electrical power cord into an electrical power cord receptacle of an electrical appliance. The devise comprises a mounting plate fastened to the appliance and a cover plate hingedly attached to the appliance. The cover plate is movable between a first position and a second position such that, in the first position, the cover plate covers and prevents insertion of a power cord into the appliance receptacle. In said second position, the appliance receptacle is uncovered to permit insertion of a power cord into the receptacle. Extending a lock shank through aligned openings formed in flange members extending from the mounting plate and the cover plate locks the cover plate in the first position.
Safety lock-out device for electrical appliances
Cliff, P.L. Jr.
1996-07-09
A safety lock-out device prevents the insertion of an electrical power cord into an electrical power cord receptacle of an electrical appliance. The device comprises a mounting plate fastened to the appliance and a hinged cover plate attached to the appliance. The cover plate is movable between a first position and a second position such that, in the first position, the cover plate covers and prevents insertion of a power cord into the appliance receptacle. In said second position, the appliance receptacle is uncovered to permit insertion of a power cord into the receptacle. Extending a lock shank through aligned openings formed in flange members extending from the mounting plate, the cover plate locks the cover plate in the first position. 15 figs.
[Influence of adhesion on the color of glass infiltrated alumina ceramic restorations].
Jiang, Li; Yang, Liu; Xu, Qiang; Guan, Hong-Yu; Wan, Qian-Bing
2006-10-01
To investigate the effects of luting agent on the final color of glass infiltrated alumina ceramic restorations. 12 plate-shaped specimens with 12.5 mm in diameter and 0.5 mm thickness were fabricated from GI-II (color IG2). Vitadur alpha veneering porcelain (color A2) with 1.0 mm thickness was fired to GI- II glass/alumina composite. 12 plate-shaped background specimens simulating the metal alloy post-and-core 12.5 mm in diameter and 2 mm thickness were also made from Ni-Cr alloy. All-ceramic specimens were luted to the metal alloy by Zinc Phosphate cement, glass ionomer cement and composite resin. The color shifts of the specimens were measured by colorimeter. Luting agents had effect on the final color of restorations. The influence of composite resin was least, followed by glass ionomer cement and Zinc Phosphate cement. The color difference between with and without Zinc Phosphate cement could be identified by the eye. To reduce the effect of luting agents, composite resin is recommended to all-ceramic restorations' adhesion.
The thermal management of high power light emitting diodes
NASA Astrophysics Data System (ADS)
Hsu, Ming-Seng; Huang, Jen-Wei; Shyu, Feng-Lin
2012-10-01
Thermal management had an important influence not only in the life time but also in the efficiency of high power light emitting diodes (HPLEDs). 30 watts in a single package have become standard to the industrial fabricating of HPLEDs. In this study, we fabricated both of the AlN porous films, by vacuum sputtering, soldered onto the HPLEDs lamp to enhance both of the heat transfer and heat dissipation. In our model, the ceramic enables transfer the heat from electric device to the aluminum plate quickly and the porous increase the quality of the thermal dissipation between the PCB and aluminum plate, as compared to the industrial processing. The ceramic films were characterized by several subsequent analyses, especially the measurement of real work temperature. The X-Ray diffraction (XRD) diagram analysis reveals those ceramic phases were successfully grown onto the individual substrates. The morphology of ceramic films was investigated by the atomic force microscopy (AFM). The results show those porous films have high thermal conduction to the purpose. At the same time, they had transferred heat and limited work temperature, about 70°, of HPLEDs successfully.
The influence of clay fineness upon sludge recycling in a ceramic matrix
NASA Astrophysics Data System (ADS)
Szőke, A. M.; Muntean, M.; Sándor, M.; Brotea, L.
2016-04-01
The feasibility of sludge recycling in the ceramic manufacture was evaluated through laboratory testing. Such residues have similar chemical and mineralogical composition with the raw mixture of the green ceramic body used in construction. Several ceramic masses with clay and various proportion of sludge have been synthesized and then characterized by their physical-mechanical properties. The fineness of the clay, the main component of the green ceramic body, has been considered for every raw mixture. The proportion of the sludge waste addition depends on the clay fineness and the sintering capacity also, increases with the clay fineness. The ceramic properties, particularly, the open porosity, and mechanical properties, in presence of small sludge proportion (7, 20%) shows small modification. The introduction of such waste into building ceramic matrix (bricks, tiles, and plates) has a very good perspective.
2008-09-30
that composed the proteinaceous polymers found at the interface between calcite crystals deposited by oyster cells and the various n1etal substrates...proteinaceous polymers found at the interface between calcite crystals deposited by oyster cells and the various metal substrates. A recently...required for the mechanism of biomineralization and site-specific deposition of ceramic crystals on aluminum alloy substrates. These calcite crystals
NASA Astrophysics Data System (ADS)
Li, Xudong; Cai, Shu; Zhang, Wenjuang; Xu, Guohua; Zhou, Wei
2009-08-01
The bioactive glass-ceramics in the CaO-P 2O 5-Na 2O-SrO-ZnO system were synthesized by the sol-gel technique, and then chemically treated at different pH values to study the solubility and surface modification. Samples sintered at 650 °C for 4 h consisted of the crystalline phase β-Ca 2P 2O 7 and the glass matrix. After soaking in the solution at pH 1.0, the residual glass matrix on the surface appeared entirely dissolved and no new phase could be detected. Whereas at pH 3.0, web-like layer exhibiting peaks corresponding to CaP 2O 6 was formed and covered the entire surface of the sample. When conducted at pH 10.0, only part of the glass matrix was dissolved and a new phase Ca 4P 6O 19 was precipitated, forming the petaline layer. The chemical treatment can easily change the surface morphologies and phase composition of this bioactive glass-ceramics. The higher level of surface roughness resulting from the new-formed layer would improve the interface bonding and benefit for cell adhesion.
Apparatus for tensile testing plate-type ceramic specimens
Liu, Kenneth C.
1993-01-01
Apparatus for tensile testing plate-type ceramic specimens having dogbone- or T-shaped end sections without introducing bending stresses in the specimens during the application of a dynamic tensile loading on the specimens is described. A pair of elongated pull rods disposed in a side-by-side relationship are used to grip the shoulders on each T-shaped end section. The pull rods are pivotally attached to a piston-displaceable, disk-shaped member so as to be longitudinally movable with respect to one another effecting the self-alignment thereof with the shoulders on the T-shaped end sections of the specimen to compensate for shoulders being located in different longitudinal positions.
The strength of polyaxial locking interfaces of distal radius plates.
Hoffmeier, Konrad L; Hofmann, Gunther O; Mückley, Thomas
2009-10-01
Currently available polyaxial locking plates represent the consequent enhancement of fixed-angle, first-generation locking plates. In contrast to fixed-angle locking plates which are sufficiently investigated, the strength of the new polyaxial locking options has not yet been evaluated biomechanically. This study investigates the mechanical strength of single polyaxial interfaces of different volar radius plates. Single screw-plate interfaces of the implants Palmar 2.7 (Königsee Implantate und Instrumente zur Osteosynthese GmbH, Allendorf, Germany), VariAx (Stryker Leibinger GmbH & Co. KG, Freiburg, Germany) und Viper (Integra LifeSciences Corporation, Plainsboro, NJ, USA) were tested by cantilever bending. The strength of 0 degrees, 10 degrees and 20 degrees screw locking angle was obtained during static and dynamic loading. The Palmar 2.7 interfaces showed greater ultimate strength and fatigue strength than the interfaces of the other implants. The strength of the VariAx interfaces was about 60% of Palmar 2.7 in both, static and dynamic loading. No dynamic testing was applied to the Viper plate because of its low ultimate strength. By static loading, an increase in screw locking angle caused a reduction of strength for the Palmar 2.7 and Viper locking interfaces. No influence was observed for the VariAx locking interfaces. During dynamic loading; angulation had no influence on the locking strength of Palmar 2.7. However, reduction of locking strength with increasing screw angulation was observed for VariAx. The strength of the polyaxial locking interfaces differs remarkably between the examined implants. Depending on the implant an increase of the screw locking angle causes a reduction of ultimate or fatigue strength, but not in all cases a significant impact was observed.
NASA Astrophysics Data System (ADS)
Patki, Neil S.; Way, J. Douglas; Ricote, Sandrine
2017-10-01
The stability of copper at high temperatures in reducing and hydrocarbon-containing atmospheres makes it a good candidate for fabricating fuel electrodes on proton-conducting ceramics, such as BaZr0.9-xCexY0.1O3-δ (BZCY). In this work, the electrochemical performance of Cu-based electrodes fabricated by electroless plating (ELP) on BaZr0.8Ce0.1Y0.1O3-δ is studied with impedance spectroscopy. Three activation catalysts (Pd, Ru, and Cu) are investigated and ELP is compared to a commercial Cu paste (ESL 2312-G) for electrode fabrication. The area specific resistances (ASR) for Pd, Ru, and Cu activations at 700 °C in moist 5% H2 in Ar are 2.1, 3.2, and 13.4 Ω cm2, respectively. That is a 1-2 orders of magnitude improvement over the commercial Cu paste (192 Ω cm2). Furthermore, the ASR has contributions from electrode processes and charge transfer at the electrode/electrolyte interface. Additionally, the morphology of the as-fabricated electrode is unaffected by the activation catalyst. However, heat treatment at 750 °C in H2 for 24 h leads to sintering and large reorganization of the electrode fabricated with Cu activation (micron sized pores seen in the tested sample), while Pd and Ru activations are immune to such reorganization. Thus, Pd and Ru are identified as candidates for future work with improvements to charge transfer required for the former, and better electrode processes required for the latter.
Oe, Kenichi; Iida, Hirokazu; Tsuda, Kohei; Nakamura, Tomohisa; Okamoto, Naofumi; Ueda, Yusuke
2017-03-01
The purpose of this study was to identify the long-term durability of the Kerboull-type reinforcement device (KT plate) in acetabular reconstruction for massive bone defects, assessing the remodeling of structural bone grafts. This study retrospectively evaluated 106 hips that underwent acetabular reconstruction using a KT plate between November 2000 and December 2010. Thirty-eight primary total hip arthoplasties (THAs) and 68 revised THAs were performed, and the mean duration of clinical follow-up was 8 years (5-14 years). Regarding reconstructing the acetabular bone defects, autografts were used in 37 hips, allografts in 68 hips, and A-W glass ceramics in 2 hips. One hip exhibited radiological migration and no revision for aseptic loosening. The mean Merle d'Aubigné Clinical Score improved from 7.5 points (4-12 points) preoperatively to 10.9 points (9-18 points) at the last follow-up. The Kaplan-Meier survival rate for radiological migration of primary and revised THAs at 10 years was 100% and 97% (95% confidence interval: 96%-100%), respectively. Bone remodeling was evaluated using the radiological demarcation at the bone-to-bone interface, and an improvement of 100% in primary THAs and 94% in revised THAs was observed. For massive bone defects, acetabular reconstruction using the KT plate with a structural bone grafting can yield successful results. Copyright © 2016 Elsevier Inc. All rights reserved.
Lin, Chun-Li; Kuo, Wen-Chuan; Yu, Jin-Jie; Huang, Shao-Fu
2013-04-01
CAD/CAM ceramic restorative material is routinely bonded to tooth substrates using adhesive cement. This study investigates micro-crack growth and damage in the ceramic/dentin adhesive interface under fatigue shear testing monitored using the acoustic emission (AE) technique with optical coherence tomography (OCT). Ceramic/dentin adhesive samples were prepared to measure the shear bond strength (SBS) under static load. Fatigue shear testing was performed using a modified ISO14801 method. Loads in the fatigue tests were applied at 80%, 70%, and 60% of the SBS to monitor interface debonding. The AE technique was used to detect micro-crack signals in static and fatigue shear bond tests. The results showed that the average SBS value in the static tests was 10.61±2.23MPa (mean±standard deviation). The average number of fatigue cycles in which ceramic/dentin interface damage was detected in 80%, 70% and 60% of the SBS were 152, 1962 and 9646, respectively. The acoustic behavior varied according to the applied load level. Events were emitted during 60% and 70% fatigue tests. A good correlation was observed between crack location in OCT images and the number of AE signal hits. The AE technique and OCT images employed in this study could potentially be used as a pre-clinical assessment tool to determine the integrity of cemented load bearing restored ceramic material. Sustainable cyclic load stresses in ceramic/dentin-bonded specimens were substantially lower than the measured SBS. Predicted S-N curve showed that the maximum endured load was 4.18MPa passing 10(6) fatigue cyclic. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
High-Temperature, Bellows Hybrid Seal
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M. (Inventor); Sirocky, Paul J. (Inventor)
1994-01-01
A high-temperature hybrid seal is constructed of multiple elements to meet the many demands placed on the seal. The primary elements are: a central high-temperature bellows, a braided ceramic sheath covering the bellows, an outer abrasion resistant sheath covering the ceramic sheath, and a structurally-sound seal-end termination.
Protective coating for ceramic materials
NASA Technical Reports Server (NTRS)
Kourtides, Demetrius A. (Inventor); Churchward, Rex A. (Inventor); Lowe, David M. (Inventor)
1994-01-01
A protective coating for ceramic materials such as those made of silicon carbide, aluminum oxide, zirconium oxide, aluminoborosilicate and silicon dioxide, and a thermal control structure comprising a ceramic material having coated thereon the protective coating. The protective coating contains, in admixture, silicon dioxide powder, colloidal silicon dioxide, water, and one or more emittance agents selected from silicon tetraboride, silicon hexaboride, silicon carbide, molybdenum disilicide, tungsten disilicide and zirconium diboride. In another aspect, the protective coating is coated on a flexible ceramic fabric which is the outer cover of a composite insulation. In yet another aspect, a metallic foil is bonded to the outer surface of a ceramic fabric outer cover of a composite insulation via the protective coating. A primary application of this invention is as a protective coating for ceramic materials used in a heat shield for space vehicles subjected to very high aero-convective heating environments.
Trindade, Flávia Zardo; Valandro, Luiz Felipe; de Jager, Niek; Bottino, Marco Antônio; Kleverlaan, Cornelis Johannes
2016-10-03
To determine the elastic properties of five ceramic systems with different compositions (lithium disilicate vs. feldspathic ceramics) and processing methods and compare the stress distribution in premolars in the interface with inlays made with these systems loaded with the maximum normal bite force (665 N) using 3D finite element analysis (FEA). The elastic properties of five ceramic restoration materials (IPS e.max Press, IPS e.max CAD, Vita PM9, Vita Mark II, Vita VM7) were obtained using the ultrasonic pulse-echo method. Three-dimensional FEA simplified models of maxillary premolars restored with these ceramic materials were created. The models were loaded with a load at the two nodes on the occlusal surface in the middle of the tooth, 2 mm from the outside of the tooth, simulating a loading ball with a radius of 6 mm. The means values of density (g/cm³), Young's modulus (GPa), and Poison's ratio was 2.6 ± 0.3, 82.3 ± 18.3, and 0.22 ± 0.01 for IPS e.max Press; 2.3 ± 0.1, 83.5 ± 15.0, and 0.21 ± 0.01 for IPS e.max CAD; 2.5 ± 0.1, 44.4 ± 11.5, and 0.26 ± 0.08 for PM9; 2.4 ± 0.1, 70.6 ± 4.9, and 0.22 ± 0.01 for Vitamark II; 2.4 ± 0.1, 63.3 ± 3.9, and 0.23 ± 0.01 for VM7, respectively. The 3D FEA showed the tensile stress at the interface between the tooth and the inlay was dependent on the elastic properties of the materials, since the Vita PM9 and IPS e.max CAD ceramics presented the lowest and the highest stress concentration in the interface, respectively. The elastic properties of ceramic materials were influenced by composition and processing methods, and these differences influenced the stress concentration at the bonding interface between tooth and restoration. The lower the elastic modulus of inlays, the lower is the stress concentration at the bonding interfaces. © 2016 by the American College of Prosthodontists.
Rausch, S; Hoffmeier, K; Gueorguiev, B G; Klos, K; Gras, F; Hofmann, G O; Mückley, T
2011-12-01
Polyaxial angle-stable plating is thought to be particularly beneficial in the management of complex intra-articular fractures of the distal radius. The present study was performed to investigate the strength of polyaxial locking interfaces of distal radius plates. We tested the polyaxial interfaces of 3 different distal radius plates (2.4 mm Variable Angle LCP Two-Column Volar Distal Radius Plate, Synthes, Palmar Classic, Königsee Implantate and VariAx Plate Stryker). The strength of 0° and 10° screw locking angle was obtained during static loading. The strength of Palmar Classic with a 0° locking angle is significantly the best of all tested systems. With a 10° locking angle there is no significant difference between Palmar Classic, Two column Plate and VariAx Plate. The strength of polyaxial interfaces differs between the tested systems. A reduction of ultimate strength is due to increases of screw locking angle. The design of polyaxial locking interfaces should be investigated in human bone models. © Georg Thieme Verlag KG Stuttgart · New York.
NASA Technical Reports Server (NTRS)
Siegel, R.; Spuckler, C. M.
1992-01-01
The index of refraction can considerably influence the temperature distribution and radiative heat flow in semitransparent materials such as some ceramics. For external radiant heating, the refractive index influences the amount of energy transmitted into the interior of the material. Emission within a material depends on the square of its refractive index, and hence this emission can be many times that for a biackbody radiating into a vacuum. Since radiation exiting through an interface into a vacuum cannot exceed that of a blackbody, there is extensive reflection at the internal surface of an interface, mostly by total internal reflection. This redistributes energy within the layer and tends to make its temperature distribution more uniform. The purpose of the present analysis is to show that, for radiative equilibrium in a gray layer with diffuse interfaces, the temperature distribution and radiative heat flux for any index of refraction can be obtained very simply from the results for an index of refraction of unity. For the situation studied here, the layer is subjected to external radiative heating incident on each of its surfaces. The material emits, absorbs, and isotropically scatters radiation. For simplicity the index of refraction is unity in the medium surrounding the layer. The surfaces of the layer are assumed diffuse. This is probably a reasonable approximation for a ceramic layer that has not been polished. When transmitted radiation or radiation emitted from the interior reaches the inner surface of an interface, the radiation is diffused and some of it thereby placed into angular directions for which there is total internal reflection. This provides a trapping effect for retaining energy within the layer and tends to equalize its temperature distribution. An analysis of temperature distributions in absorbing-emitting layers, including index of refraction effects, was developed by Gardon (1958) to predict cooling and heat treating of glass plates. The interfaces were optically smooth; the resulting specular reflections were computed from the Fresnel reflection laws. This provides a somewhat different behavior than for diffuse interfaces. A similar application was for heating that occurs in a window of a re-entry vehicle (Fowle et al., 1969). A number of recent papers (Rokhsaz and Dougherty, 1989; Ping and Lallemand, 1989; Crosbie and Shieh, 1990) further examined the effects of Fresnel boundary reflections and nonunity refractive index. Other examples of analyses of both steady and transient heat transfer to single or multiple plane layers (Amlin and Korpela, 1979; Tarshis et al., 1969) have used diffuse assumptions at the interfaces as in the present study
Ceramic strengthening by tuning the elastic moduli of resin-based luting agents.
Spazzin, Aloísio O; Bacchi, Ataís; Alessandretti, Rodrigo; Santos, Mateus B; Basso, Gabriela R; Griggs, Jason; Moraes, Rafael R
2017-03-01
Resin-based luting agents (RBLAs) with tuned elastic moduli (E) were prepared and their influence on the strengthening, reliability, and mode of failure of luted feldspar ceramic was investigated. RBLAs with low E (2.6GPa), intermediate E (6.6GPa), and high E (13.3GPa) were prepared and used to coat acid-etched ceramic disks. Positive (untreated ceramic) and negative (acid-etched ceramic) control groups were tested. The response variables (n=30) were biaxial flexural strength (σ bf , MPa), characteristic strength (σ 0 , MPa), and Weibull modulus at the ceramic surface (z=0) and luting agent surface (z=-t 2 ). A 3D finite element analysis simulated the biaxial flexural test. Fractographic analysis and morphology of the bonded interfaces were analyzed using scanning electron microscopy. The RBLAs improved σ bf and σ 0 at z=0, particularly those with intermediate and high E, whereas the mechanical reliability was only affected in the negative control. At z=-t 2 , differences between all RBLAs were observed but the structural reliability was independent of the RBLA tested. Increasing E of the RBLA was associated with increased stress concentration at the RBLA and reduced stresses reaching the ceramic. Failures originated on the ceramic surface at the ceramic-cement interface. In the high E group, failure sometimes originated from the RBLA free surface. All RBLAs completely filled the ceramic irregularities. Increased E of the RBLA reduced the variability of strength, the stress reaching the ceramic structure, and sometimes altered the origin of failure. The use of high E RBLAs seems beneficial for luting feldspar ceramics. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Notis, Michael R.; Oh, Min-Seok
1990-01-01
Superconducting ceramic materials, no matter what their form, size or shape, must eventually make contact with non-superconducting materials in order to accomplish current transfer to other parts of a real operating system, or for testing and measurement of properties. Thus, whether the configuration is a clad wire, a bulk superconducting disc, tape, or a thick or thin superconducting film on a substrate, the physical and mechanical behavior of interface (interconnections, joints, etc.) between superconductors and normal conductor materials of all kinds is of extreme importance to the technological development of these systems. Fabrication heat treatments associated with the particular joining process allow possible reactions between the superconducting ceramic and the contact to occur, and consequently influence properties at the interface region. The nature of these reactions is therefore of great broad interest, as these may be a primary determinant for the real capability of these materials. Research related both to fabrication of composite sheathed wire products, and the joining contacts for physical property measurements, as well as, a review of other related literature in the field are described. Comparison are made between 1-2-3, Bi-, and Tl-based ceramic superconductors joined to a variety of metals including Cu, Ni, Fe, Cr, Ag, Ag-Pd, Au, In, and Ga. The morphology of reaction products and the nature of interface degradation as a function of time will be highlighted.
Impact design methods for ceramic components in gas turbine engines
NASA Technical Reports Server (NTRS)
Song, J.; Cuccio, J.; Kington, H.
1991-01-01
Methods currently under development to design ceramic turbine components with improved impact resistance are presented. Two different modes of impact damage are identified and characterized, i.e., structural damage and local damage. The entire computation is incorporated into the EPIC computer code. Model capability is demonstrated by simulating instrumented plate impact and particle impact tests.
NASA Technical Reports Server (NTRS)
Voellmer, George M.
1992-01-01
Mechanism enables robot to change tools on end of arm. Actuated by motion of robot: requires no additional electrical or pneumatic energy to make or break connection between tool and wrist at end of arm. Includes three basic subassemblies: wrist interface plate attached to robot arm at wrist, tool interface plate attached to tool, and holster. Separate tool interface plate and holster provided for each tool robot uses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stiegler, J.O.
1986-06-01
The report is divided into the following: structural characterization, high-temperature alloy research, structural ceramics, radiation effects, structure and properties of surfaces and interfaces, and collaborative research centers. (DLC)
Investigation of failure mechanism of thermal barrier coatings (TBCs) deposited by EB-PVD technique
NASA Astrophysics Data System (ADS)
Shahid, M. R.; Abbas, Musharaf
2013-06-01
Failure mechanism of thermal barrier coatings (TBCs) prepared by electron beam physical vapor deposition (EB-PVD) technique owing to formation of micro cracks was investigated. The TBCs were deposited on the Ni-based super alloy IN-100 and the micro cracks were observed within the top ceramic coat of thermally cycled TBCs at 1050°C. It was observed that these cracks propagate in the ceramic coat in the direction normal to interface while no cracks were observed in the bond coat. SEM/EDS studies revealed that some non-uniform oxides were formed on the interface between ceramic top and metallic bond coat just below the cracks. Study proposed that the cracks were initiated due to stress owing to big difference in Pilling-Bed worth ratio of non-uniform oxides as well as thermal stress, which caused the formation of cracks in top ceramic coat leading to failure of TBCs
Fractographic Analysis of a Dental Zirconia Framework: a Case Study on Design Issues
Lohbauer, Ulrich; Amberger, Gudrun; Quinn, George D.; Scherrer, Susanne S.
2011-01-01
Fractographic analysis of clinically failed dental ceramics can provide insights as to the failure origin and related mechanisms. One anterior 6-unit all-ceramic zirconia fixed partial denture (FPD) (Cercon®) has been clinically recovered and examined using qualitative fractography. The purpose was to identify the fracture origin and to state the reasons for failure. The recovered parts of the zirconia FPD were microscopically examined to identify classic fractographic patterns such as arrest lines, hackle, twist hackle and wake hackle. The direction of crack propagation was mapped and interpreted back to the origin of failure at the interface of the occlusalpalatal tip of the core and the veneering ceramic. An inappropriate core drop design favoring localized stress concentration combined with a pore cluster in the veneering ceramic at the core tip interface were the reasons for this premature through-the-core thickness failure. PMID:20826369
Preceramic Polymers for Use as Fiber Coatings
NASA Technical Reports Server (NTRS)
Heimann, P. J.; Hurwitz, F. I.; Wheeler, D.; Eldridge, J.; Baranwal, R.; Dickerson, R.
1996-01-01
Polymeric precursors to Si-C-O, SI-B-N and Si-C were evaluated for use as ceramic interfaces in ceramic matrix composites. Use of the preceramic polymers allows for easy dip coating of fibers from dilute solutions of a polymer, which are then pyrolyzed to obtain the ceramic. SCS-0 fibers (Textron Specialty Materials, Lowell, MA) were coated with polymers from three systems: polysilsesquioxanes, polyborosilazanes and polycarbosilanes. The polysilsesquioxane systems were shown to produce either silicon oxycarbide or silicon oxynitride, depending on the pyrolysis conditions, and demonstrated some promise in an RBSN (reaction-bonded silicon nitride) matrix model system. Polyborosilazanes were shown, in studies of bulk polymers, to give rise to oxidation resistant Si-B-N ceramics which remain amorphous to temperatures of 1600 C, and should therefore provide a low modulus interface. Polycarbosilanes produce amorphous carbon-rich Si-C materials which have demonstrated oxidation resistance.
Damage evolution and mechanical response of cross-ply ceramic composite laminates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weitsman, Y.; Yu, N.; Zhu, H.
1995-12-31
A mechanistic model for the damage evolution and mechanical response of cross-ply ceramic composite laminates under monotonically increasing uniaxial tension is presented. The model accounts for a variety of damage mechanisms evolving in cross-ply ceramic composite laminates, such as fiber-bridged matrix cracks in 0{degrees}-plies, transversely oriented matrix cracks in 90{degrees}-plies, and slips at 0{degrees}/90{degrees} ply interfaces as well as at the fiber/matrix interfaces. Energy criteria are developed to determine the creation and progression of matrix cracks and slip zones. The model predicts that the crack density in 0{degrees}-plies becomes higher than that within the 90{degrees}-plies as the applied load ismore » incrementally increased, which agrees with the experimental observation. It is also shown that the model provides a reasonable prediction for the nonlinear stress-strain behavior of crossply SiC/CAS ceramic composites.« less
Ceramic porous material and method of making same
Liu, Jun; Kim, Anthony Y.; Virden, Jud W.
1997-01-01
The invention is a mesoporous ceramic membrane having substantially uniform pore size. Additionally, the invention includes aqueous and non-aqueous processing routes to making the mesoporous ceramic membranes. According to one aspect of the present invention, inserting a substrate into a reaction chamber at pressure results in reaction products collecting on the substrate and forming a membrane thereon. According to another aspect of the present invention, a second aqueous solution that is sufficiently immiscible in the aqueous solution provides an interface between the two solutions whereon the mesoporous membrane is formed. According to a further aspect of the present invention, a porous substrate is placed at the interface between the two solutions permitting formation of a membrane on the surface or within the pores of the porous substrate. According to yet another aspect of the present invention, mesoporous ceramic materials are formed using a non-aqueous solvent and water-sensitive precursors.
Ceramic porous material and method of making same
Liu, J.; Kim, A.Y.; Virden, J.W.
1997-07-08
The invention is a mesoporous ceramic membrane having substantially uniform pore size. Additionally, the invention includes aqueous and non-aqueous processing routes to making the mesoporous ceramic membranes. According to one aspect of the present invention, inserting a substrate into a reaction chamber at pressure results in reaction products collecting on the substrate and forming a membrane thereon. According to another aspect of the present invention, a second aqueous solution that is sufficiently immiscible in the aqueous solution provides an interface between the two solutions whereon the mesoporous membrane is formed. According to a further aspect of the present invention, a porous substrate is placed at the interface between the two solutions permitting formation of a membrane on the surface or within the pores of the porous substrate. According to yet another aspect of the present invention, mesoporous ceramic materials are formed using a non-aqueous solvent and water-sensitive precursors. 21 figs.
Panah, Faride Gerami; Rezai, Sosan Mir Mohammad; Ahmadian, Leila
2008-07-01
An increasing demand for esthetic restorations has resulted in the development of new ceramic systems, but fracture of veneering ceramics still remains the primary cause of failure. Porcelain repair frequently involves replacement with composite resin, but the bond strength between composite resin and all-ceramic coping materials has not been studied extensively. The purpose of this study was to evaluate the influence of different ceramic surface treatments on the micro-shear bond strength of composite resin to IPS Empress 2 coping material. Sixteen 7 x 7 x 1 mm(3) lithia disilicate-based core ceramic plates were fabricated using the lost wax technique. The plates were divided into eight groups, and eight different surface treatments were performed: (1) no treatment (NT); (2) airborne-particle abrasion with 50-mum alumina particles (Al); (3) acid etching with 9.6% hydrofluoric acid for 1 min (HF); (4) silane coating (S); (5) AlHF; (6) AlS; (7) HFS; and (8) AlHFS. Then, ten composite resin cylinders (0.8-mm diameter x 0.5-mm height) were light-polymerized onto the ceramic plates in each group. Each specimen was subjected to a shear load at a crosshead speed of 0.5 mm/min until fracture occurred. The fracture sites were examined with scanning electron microscopy (SEM) to determine the location of failure during debonding and to examine the surface treatment effects. One-way analysis of variance (ANOVA) and multiple comparison (Dunnet T3) tests were used for statistical analysis of data. The mean micro-shear bond strength values (SD) in MPa were--NT: 4.10 (3.06), Al: 7.56 (4.11), HF: 14.04 (2.60), S: 14.58 (2.14), AlHF: 15.56 (3.36), AlS: 23.02 (4.17), HFS: 24.7 (4.43), AlHFS: 26.0 (3.71). ANOVA indicated the influence of surface treatment was significant (p < 0.0001). SEM analysis did not reveal entirely cohesive failure in any composite or ceramic. The micro-shear bond strength of a composite resin to IPS Empress 2 was significantly different depending on the surface treatment method. Among the investigated methods, silane coating after airborne-particle abrasion and etching was the most effective surface treatment in terms of bond strength increase.
Yoon, Hyung-In; Yeo, In-Sung; Yi, Yang-Jin; Kim, Sung-Hun; Lee, Jai-Bong; Han, Jung-Suk
2015-01-01
The purposes of this study were to evaluate the effects of intermediate ceramics on the adhesion between the zirconia core and veneer ceramics. The polished surfaces of fully sintered Y-TZP blocks received three different treatments: (1) connector (C), (2) liner (L) or (3) wash layer (W). All the treated zirconia blocks were veneered with either (a) fluorapatite glass-ceramic (E) or (b) feldspathic porcelain (V) and divided into four groups (CE, CV, LE and WV). For the control group, the testing surfaces of metal blocks were veneered with feldspathic porcelain (VM). A half of the samples in each group (n = 21) were exposed to thermocycling, while the other half of the specimens were stored at room temperature under dry conditions. All specimens were subjected to the shear test and the failed surfaces were microscopically examined. The elemental distribution at the zirconia core/veneer interface was analyzed. The specimens in Groups CE and CV exhibited significantly greater mean bond strength values than those in Groups LE and WV, respectively (p < 0.05). However, the mean bond strengths significantly decreased in the connector groups (CE and CV) after thermal cycling (p < 0.05). The elemental analysis suggested diffusion of ceramic substances into the zirconia surface. A glass-ceramic based connector is significantly more favorable to core/veneer adhesion than the other intermediate ceramics evaluated in the study. However, thermal cycling affected the bond strength at the core/veneer interface differently according to the intermediate ceramics.
2001-11-01
electronic properties, i.e. oxygen coordination and cation valence at grain boundaries of the fluorite structured Gdo]2Ceo.gO 2_x ceramic membrane material...required to obtain a detailed understanding of the atomic scale phenomena in ceramics, as the polycrystalline nature of Gdo.2Ceo.802- ceramic membrane material
The Particle Distribution in Liquid Metal with Ceramic Particles Mould Filling Process
NASA Astrophysics Data System (ADS)
Dong, Qi; Xing, Shu-ming
2017-09-01
Adding ceramic particles in the plate hammer is an effective method to increase the wear resistance of the hammer. The liquid phase method is based on the “with the flow of mixed liquid forging composite preparation of ZTA ceramic particle reinforced high chromium cast iron hammer. Preparation method for this system is using CFD simulation analysis the particles distribution of flow mixing and filling process. Taking the 30% volume fraction of ZTA ceramic composite of high chromium cast iron hammer as example, by changing the speed of liquid metal viscosity to control and make reasonable predictions of particles distribution before solidification.
Experimental study on TiN coated racetrack-type ceramic pipe
NASA Astrophysics Data System (ADS)
Wang, Jie; Xu, Yan-Hui; Zhang, Bo; Wei, Wei; Fan, Le; Pei, Xiang-Tao; Hong, Yuan-Zhi; Wang, Yong
2015-11-01
TiN film was coated on the internal surface of a racetrack-type ceramic pipe by three different methods: radio-frequency sputtering, DC sputtering and DC magnetron sputtering. The deposition rates of TiN film under different coating methods were compared. The highest deposition rate was 156 nm/h, which was obtained by magnetron sputtering coating. Based on AFM, SEM and XPS test results, the properties of TiN film, such as film roughness and surface morphology, were analyzed. Furthermore, the deposition rates were studied with two different cathode types, Ti wires and Ti plate. According to the SEM test results, the deposition rate of TiN/Ti film was about 800 nm/h with Ti plate cathode by DC magnetron sputtering. Using Ti plate cathode rather than Ti wire cathode can greatly improve the film deposition rate. Supported by National Nature Science Foundation of China (11075157)
Kasparek, Maximilian F; Töpker, Michael; Lazar, Mathias; Weber, Michael; Kasparek, Michael; Mang, Thomas; Apfaltrer, Paul; Kubista, Bernd; Windhager, Reinhard; Ringl, Helmut
2018-06-07
To evaluate the influence of different scan parameters for single-energy CT and dual-energy CT, as well as the impact of different material used in a TKA prosthesis on image quality and the extent of metal artifacts. Eight pairs of TKA prostheses from different vendors were examined in a phantom set-up. Each pair consisted of a conventional CoCr prosthesis and the corresponding anti-allergic prosthesis (full titanium, ceramic, or ceramic-coated) from the same vendor. Nine different (seven dual-energy CT and two single-energy CT) scan protocols with different characteristics were used to determine the most suitable CT protocol for TKA imaging. Quantitative image analysis included assessment of blooming artifacts (metal implants appear thicker on CT than they are, given as virtual growth in mm in this paper) and streak artifacts (thick dark lines around metal). Qualitative image analysis was used to investigate the bone-prosthesis interface. The full titanium prosthesis and full ceramic knee showed significantly fewer blooming artifacts compared to the standard CoCr prosthesis (mean virtual growth 0.6-2.2 mm compared to 2.9-4.6 mm, p < 0.001). Dual-energy CT protocols showed less blooming (range 3.3-3.8 mm) compared to single-energy protocols (4.6-5.5 mm). The full titanium and full ceramic prostheses showed significantly fewer streak artifacts (mean standard deviation 77-86 Hounsfield unit (HU)) compared to the standard CoCr prosthesis (277-334 HU, p < 0.001). All dual-energy CT protocols had fewer metal streak artifacts (215-296 HU compared to single-energy CT protocols (392-497 HU)). Full titanium and ceramic prostheses were ranked superior with regard to the image quality at the bone/prosthesis interface compared to a standard CoCr prosthesis, and all dual-energy CT protocols were ranked better than single-energy protocols. Dual-energy CT and ceramic or titanium prostheses reduce CT artifacts and provide superior image quality of total knee arthroplasty at the bone/prosthesis interface. These findings support the use of dual-energy CT as a solid imaging base for clinical decision-making and the use of full-titanium or ceramic prostheses to allow for better CT visualization of the bone-prosthesis interface.
Anomalous Accretionary Margin Topography Formed By Repeated Earthquakes
NASA Astrophysics Data System (ADS)
Furlong, Kevin P.
2014-05-01
It has long been recognized that accretionary margins of major subduction zones undergo substantial deformation. However even with the large amounts of shortening accommodated within the margin, for most subduction zones, there is an extended submarine portion to the accretionary, highly-deformed upper-plate between the trench and the coast. This is a vexing situation since this submarine section typically overlies the actual locked or coupled patch of the plate interface. The result of this is added difficulty in directly observing processes related to the plate interface coupling - such processes as micro-seismicity and the actual patterns of plate coupling. There are a few locations globally in which there are sub-aerially exposed terranes that lie closer to the trench and overlie the inferred coupled or seismogenic portion of the plate interface. Such regions have taken on significance in subduction zone studies as they provide locations to observe the plate interface coupling effects in the near-field. In particular the Pacific coast of Costa Rica provides such a location, and there has been substantial geologic, geophysical, and geodetic research exploiting the positions of these near-trench peninsulas (Nicoya, Osa, and Burica). These sites provide near-field access to plate-interface processes, but whether they represent typical subduction zone behavior remains an open question as the deformational processes or inherited structures that have produced this anomalous topography are not well constrained. Simply put, if the existence of these sub-aerial, near-trench terranes is a result of anomalous behavior on the plate interface (as has been suggested), then their utility in providing high-fidelity near-field insight into the plate interface properties and processes is substantially reduced. Here we propose a new mechanism that could be responsible for the formation of both the Nicoya and Osa Peninsulas in the past, and is currently producing a third peninsula - the Burica Peninsula at the intersection of the Panama fracture zone and the margin. Specifically we propose that the anomalous topography along the Pacific coast of Costa Rica has been produced by repeated, great subduction earthquakes that have ruptured across the boundary separating the Cocos and Nazca plates - the subducted continuation of the Panama fracture zone. The pattern of upper-plate shortening generated by such a process (documented in the 2007 Mw 8.1 Solomon Islands earthquake, which produced co-seismic localized uplift above the subducted transform plate boundary) convolved with the migration history of the Panama triple junction (PTJ) is proposed as the mechanism to produce substantial along-margin, long-lived accretionary margin topography. Specifically we argue that repeated great subduction earthquakes that rupture across fundamental plate boundary structures can produce substantial, long-lived upper plate deformation above the inter-seismically coupled plate interface.
High-temperature ceramic heat exchanger element for a solar thermal receiver
NASA Technical Reports Server (NTRS)
Strumpf, H. J.; Kotchick, D. M.; Coombs, M. G.
1982-01-01
A study has been completed on the development of a high-temperature ceramic heat exchanger element to be integrated into a solar reciver producing heated air. A number of conceptual designs were developed for heat exchanger elements of differing configuration. These were evaluated with respect to thermal performance, pressure drop, structural integrity, and fabricability. The final design selection identified a finned ceramic shell as the most favorable concept. The ceramic shell is surrounded by a larger metallic shell. The flanges of the two shells are sealed to provide a leak-tight pressure vessel. The ceramic shell is fabricated by an innovative combination of slip casting the receiver walls and precision casting the heat transfer finned plates. The fins are bonded to the shell during firing. Fabrication of a one-half scale demonstrator ceramic receiver has been completed.
Schuettler, Martin; Kohler, Fabian; Ordonez, Juan S; Stieglitz, Thomas
2012-01-01
Future brain-computer-interfaces (BCIs) for severely impaired patients are implanted to electrically contact the brain tissue. Avoiding percutaneous cables requires amplifier and telemetry electronics to be implanted too. We developed a hermetic package that protects the electronic circuitry of a BCI from body moisture while permitting infrared communication through the package wall made from alumina ceramic. The ceramic package is casted in medical grade silicone adhesive, for which we identified MED2-4013 as a promising candidate.
NDE of cylindrically symmetric components with piezofilm transducers
NASA Astrophysics Data System (ADS)
Hsu, David K.; Zhang, Zhong
PVDF polymer film transducers are presently shown to exhibit the flexibility and comformability required for inspection of components with curved surfaces. Although these transducers are less efficient than rigid ceramic ones, and are less accurately matched to the acoustic impedance of metals as well as ceramic transducers, their advantages are presently shown to outweigh their disadvantages in some applications involving tube and rod shaped components. Interface measurements of a Zr/Zircalloy-2 tube allowed the detailed evaluation of weakly reflecting interfaces.
Local-global analysis of crack growth in continuously reinfoced ceramic matrix composites
NASA Technical Reports Server (NTRS)
Ballarini, Roberto; Ahmed, Shamim
1989-01-01
This paper describes the development of a mathematical model for predicting the strength and micromechanical failure characteristics of continuously reinforced ceramic matrix composites. The local-global analysis models the vicinity of a propagating crack tip as a local heterogeneous region (LHR) consisting of spring-like representation of the matrix, fibers and interfaces. Parametric studies are conducted to investigate the effects of LHR size, component properties, and interface conditions on the strength and sequence of the failure processes in the unidirectional composite system.
Zizzari, Vincenzo; Borelli, Bruna; De Colli, Marianna; Tumedei, Margherita; Di Iorio, Donato; Zara, Susi; Sorrentino, Roberto; Cataldi, Amelia; Gherlone, Enrico Felice; Zarone, Fernando; Tetè, Stefano
2013-01-01
Summary Aim To evaluate the growth of Human Gingival Fibroblasts (HGFs) cultured onto sample discs of CAD/CAM zirconia and veneering ceramic for zirconia by means of Scanning Electron Microscope (SEM) analysis at different experimental times. Methods A total of 26 experimental discs, divided into 2 groups, were used: Group A) CAD/CAM zirconia (3Y-TZP) discs (n=13); Group B) veneering ceramic for zirconia discs (n=13). HGFs were obtained from human gingival biopsies, isolated and placed in culture plates. Subsequently, cells were seeded on experimental discs at 7,5×103/cm2 concentration and cultured for a total of 7 days. Discs were processed for SEM observation at 3h, 24h, 72h and 7 days. Results In Group A, after 3h, HGFs were adherent to the surface and showed a flattened profile. The disc surface covered by HGFs resulted to be wider in Group A than in Group B samples. At SEM observation, after 24h and 72h, differences in cell attachment were slightly noticeable between the groups, with an evident flattening of HGFs on both surfaces. All differences between Group A and group B became less significant after 7 days of culture in vitro. Conclusions SEM analysis of HGFs showed differences in terms of cell adhesion and proliferation, especially in the early hours of culture. Results showed a better adhesion and cell growth in Group A than in Group B, especially up to 72h in vitro. Differences decreased after 7 days, probably because of the rougher surface of CAD/CAM zirconia, promoting better cell adhesion, compared to the smoother surface of veneering ceramic. PMID:24611089
NASA Astrophysics Data System (ADS)
Wagner, Alexander; Hannemann, Klaus; Kuhn, Markus
2014-06-01
Preceding studies in the high enthalpy shock tunnel Göttingen of the German Aerospace Center (DLR) revealed that carbon fibre reinforced carbon ceramic (C/C) surfaces can be utilized to damp hypersonic boundary layer instabilities leading to a delay of boundary layer transition onset. To assess the ultrasonic absorption properties of the material, a test rig was set up to measure the reflection coefficient at ambient pressures ranging from 0.1 × 105 to 1 × 105 Pa. For the first time, broadband ultrasonic sound transducers with resonance frequencies of up to 370 kHz were applied to directly cover the frequency range of interest with respect to the second-mode instabilities observed in previous experiments. The reflection of ultrasonic waves from three flat plate test samples with a porous layer thickness between 5 and 30 mm was investigated and compared to an ideally reflecting surface. C/C was found to absorb up to 19 % of the acoustic power transmitted towards the material. The absorption characteristics were investigated theoretically by means of the quasi-homogeneous absorber theory. The experimental results were found to be in good agreement with the theory.
Wettability and surface free energy of polarised ceramic biomaterials.
Nakamura, Miho; Hori, Naoko; Namba, Saki; Toyama, Takeshi; Nishimiya, Nobuyuki; Yamashita, Kimihiro
2015-01-13
The surface modification of ceramic biomaterials used for medical devices is expected to improve osteoconductivity through control of the interfaces between the materials and living tissues. Polarisation treatment induced surface charges on hydroxyapatite, β-tricalcium phosphate, carbonate-substituted hydroxyapatite and yttria-stabilized zirconia regardless of the differences in the carrier ions participating in the polarisation. Characterization of the surfaces revealed that the wettability of the polarised ceramic biomaterials was improved through the increase in the surface free energies compared with conventional ceramic surfaces.
Roy, Shibayan; Basu, Bikramjit
2010-01-01
In view of the potential engineering applications requiring machinability and wear resistance, the present work focuses to evaluate hardness property and to understand the damage behavior of some selected glass-ceramics having different crystal morphologies with SiO(2)-MgO-Al(2)O(3)-K(2)O-B(2)O(3)-F composition, using static micro-indentation tests as well as dynamic scratch tests, respectively. Vickers hardness of up to 5.5 GPa has been measured in glass-ceramics containing plate like mica crystals. Scratch tests at a high load of 50 Nin artificial saliva were carried out in order to simulate the crack-microstructure interaction during real-time abrasion wear and machining operation. The experimental observations indicate that the novel "spherulitic-dendritic shaped "crystals, similar to the plate like crystals, have the potential to hinder the scratching induced crack propagation. In particular, such potential of the 'spherulitic-dendritic' crystals become more effective due to the larger interfacial area with the glass matrix as well as the dendritic structure of each mica plate, which helps in crack deflection and crack blunting, to a larger extent.While modest damage tolerant behavior is observed in case of 'spherulitic-dendritic' crystal containing material, severe brittle fracture of plate like crystals were noted, when both were scratched at 50 N load.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.
A self-healing glass seal has the potential of restoring its mechanical properties upon being reheated to SOFC stack operating temperature, even when it has experienced some cooling induced damage/cracking at room temperature. Such a self-healing feature is desirable for achieving high seal reliability during thermal cycling. On the other hand, self-healing glass is also characterized by its low mechanical stiffness and high creep rate at the typical operating temperature of SOFCs. Therefore, geometry stability and structural integrity of the glass seal system becomes critical to its successful application in SOFCs. In this paper, the geometry stability of the self-healing glassmore » and the influence of various interfacial conditions of ceramic stoppers with the PEN, IC, and glass seal on the structural integrity of the glass seal during the operating and cooling down processes are studied using finite element analyses. For this purpose, the test cell used in the leakage tests for compliant glass seals conducted at PNNL is taken as the initial modeling geometry. The effect of the ceramic stopper on the geometry stability of the self-healing glass sealants is studied first. Two interfacial conditions of the ceramic stopper and glass seals, i.e., bonded (strong) or un-bonded (weak), are considered. Then the influences of interfacial strengths at various interfaces, i.e., stopper/glass, stopper/PEN, as well as stopper/IC plate, on the geometry stability and reliability of glass during the operating and cooling processes are examined.« less
Homogeneous dielectric barrier discharges in atmospheric air and its influencing factor
NASA Astrophysics Data System (ADS)
Ran, Junxia; Li, Caixia; Ma, Dong; Luo, Haiyun; Li, Xiaowei
2018-03-01
The stable homogeneous dielectric barrier discharge (DBD) is obtained in atmospheric 2-3 mm air gap. It is generated using center frequency 1 kHz high voltage power supply between two plane parallel electrodes with specific alumina ceramic plates as the dielectric barriers. The discharge characteristics are studied by a measurement of its electrical discharge parameters and observation of its light emission phenomena. The results show that a large single current pulse of about 200 μs duration appearing in each voltage pulse, and its light emission is radially homogeneous and covers the entire surface of the two electrodes. The homogeneous discharge generated is a Townsend discharge during discharge. The influences of applied barrier, its thickness, and surface roughness on the transition of discharge modes are studied. The results show that it is difficult to produce a homogeneous discharge using smooth plates or alumina plate surface roughness Ra < 100 nm even at a 1 mm air gap. If the alumina plate is too thin, the discharge also transits to filamentary discharge. If it is too thick, the discharge is too weak to observe. With the increase of air gap distance and applied voltage, the discharge can also transit from a homogeneous mode to a filamentary mode. In order to generate stable and homogeneous DBD at a larger air gap, proper dielectric material, dielectric thickness, and dielectric surface roughness should be used, and proper applied voltage amplitude and frequency should also be used.
NASA Astrophysics Data System (ADS)
Ferro, Paolo; Battaglia, Eleonora; Capuzzi, Stefano; Berto, Filippo
2017-12-01
Precious metal alloys can be supplied in traditional plate form or innovative drop form with high degree of purity. The aim of the present work is to evaluate the influence of precious metal alloy form on metallurgical and mechanical properties of the final dental products with particular reference to metal-ceramic bond strength and casting defects. A widely used alloy for denture was selected; its nominal composition was close to 55 wt% Pd - 34 wt% Ag - 6 wt% In - 3 wt% Sn. Specimens were produced starting from the alloy in both plate and drop forms. A specific test method was developed to obtain results that could be representative of the real conditions of use. In order to achieve further information about the adhesion behaviour and resistance, the fracture surfaces of the samples were observed using `Scanning Electron Microscopy (SEM)'. Moreover, material defects caused by the moulding process were studied. The form of the alloy before casting does not significantly influence the shear bond strength between the metal and the ceramic material (p-value=0,976); however, according to SEM images, products from drop form alloy show less solidification defects compared to products obtained with plate form alloy. This was attributed to the absence of polluting additives used in the production of drop form alloy. This study shows that the use of precious metal denture alloys supplied in drop form does not affect the metal-ceramic bond strength compared to alloys supplied in the traditional plate form. However, compared to the plate form, the drop form is found free of solidification defects, less expensive to produce and characterized by minor environmental impacts.
Ceramic Technology Project semiannual progress report, October 1992--March 1993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, D.R.
1993-09-01
This project was developed to meet the ceramic technology requirements of the OTS`s automotive technology programs. Although progress has been made in developing reliable structural ceramics, further work is needed to reduce cost. The work described in this report is organized according to the following work breakdown structure project elements: Materials and processing (monolithics [Si nitride, carbide], ceramic composites, thermal and wear coatings, joining, cost effective ceramic machining), materials design methodology (contact interfaces, new concepts), data base and life prediction (structural qualification, time-dependent behavior, environmental effects, fracture mechanics, nondestructive evaluation development), and technology transfer.
Emerging Applications of Ceramic and Metal Matrix Composites
NASA Astrophysics Data System (ADS)
Krishnamoorthy, Divya; Ramolina, Dheeyana; Sandou, Sherleena
2012-07-01
Almost 500 papers were presented during the 43 sessions of the 27th Annual Cocoa Beach Conference & Exposition on Advanced Ceramics & Composites, which was organized by the Engineering Ceramics Division of the American Ceramic Society and sponsored by several federal agencies: NASA Glenn Research Center, the Army Research Office, the Department of Energy, and the Air Force Office of Scientific Research. Many of these papers focused on composites, both ceramic and metal matrix, and discussed mechanical behavior, design, fibers/interfaces, processing, and applications. Potential applications under development include components for armor, nuclear energy, and automobiles. A few of these applications have reached commercialization.
2012-08-01
sintering of SiC. James Lill (2010) evaluated the Reactive Empirical Bond Order potentials of Brenner (Brenner 1990); the Adaptive Intermolecular Reactive...Protection mechanisms of the iron-plated armor of a deep-sea hydrothermal vent gastropod . PNAS 107(3):987-997. Yu, J., S. B. Sinnott, and S. R. Phillpot
The calibration of specular gloss meters and gloss plates
NASA Astrophysics Data System (ADS)
Li, Tiecheng; Lai, Lei; Yin, Dejin; Ji, Muyao; Lin, Fangsheng; Shi, Leibing; Xia, Ming; Fu, Yi
2017-10-01
Specular gloss is the perception by an observer of the mirror-like appearance of a surface. Specular gloss is usually measured by a glossmeter, which can be calibrated by a group of gloss plates according to JJG 696-2015. The characteristics of a gloss meter include stability, zero error, and error of indication. The characteristics of a gloss plate include roughness and spectral transmissivity of a high gloss plate, spectral reflectivity of a ceramic gloss plate. The experiment results indicate that calibration of both gloss meters and gloss plates should be carefully performed according to the latest verification regulation in order to reduce the measurement error.
NASA Astrophysics Data System (ADS)
Longbiao, Li
2017-06-01
In this paper, the synergistic effects of temperatrue and oxidation on matrix cracking in fiber-reinforced ceramic-matrix composites (CMCs) has been investigated using energy balance approach. The shear-lag model cooperated with damage models, i.e., the interface oxidation model, interface debonding model, fiber strength degradation model and fiber failure model, has been adopted to analyze microstress field in the composite. The relationships between matrix cracking stress, interface debonding and slipping, fiber fracture, oxidation temperatures and time have been established. The effects of fiber volume fraction, interface properties, fiber strength and oxidation temperatures on the evolution of matrix cracking stress versus oxidation time have been analyzed. The matrix cracking stresses of C/SiC composite with strong and weak interface bonding after unstressed oxidation at an elevated temperature of 700 °C in air condition have been predicted for different oxidation time.
Mounting Thin Samples For Electrical Measurements
NASA Technical Reports Server (NTRS)
Matus, L. G.; Summers, R. L.
1988-01-01
New method for mounting thin sample for electrical measurements involves use of vacuum chuck to hold a ceramic mounting plate, which holds sample. Contacts on mounting plate establish electrical connection to sample. Used to make electrical measurements over temperature range from 77 to 1,000 K and does not introduce distortions into magnetic field during Hall measurements.
Key Durability Issues with Mullite-Based Environmental Barrier Coatings for Si-Based Ceramics
NASA Technical Reports Server (NTRS)
Lee, Kang N.
1999-01-01
Plasma-sprayed mullite (3Al2O3 central dot 2SiO2) and mullite/yttria-stabilized-zirconia (YSZ) dual layer coatings have been developed to protect silicon-based ceramics from environmental attack. Mullite-based coating systems show excellent durability in air. However, in combustion environments, corrosive species such as molten salt or water vapor penetrate through cracks in the coating and attack the Si-based ceramics along the interface, Thus modification of the coating system for enhanced crack-resistance is necessary for long-term durability in combustion environments. Other key durability issues include interfacial contamination and coating/substrate bonding. Interfacial contamination leads to enhanced oxidation and interfacial pore formation, while weak coating/substrate bonding leads to rapid attack of the interface by corrosive species, both of which can cause premature failure of the coating. Interfacial contamination can be minimized by limiting impurities in coating and substrate materials. The interface may be modified to improve the coating/substrate bond.
Key Durability Issues with Mullite-Based Environmental Barrier Coatings for Si-Based Ceramics
NASA Technical Reports Server (NTRS)
Lee, Kang N.
2000-01-01
Plasma-sprayed mullite (3Al2O3.2SiO2) and mullite/yttria-stabilized-zirconia (YSZ) dual layer coatings have been developed to protect silicon -based ceramics from environmental attack. Mullite-based coating systems show excellent durability in air. However, in combustion environments, corrosive species such as molten salt or water vapor penetrate through cracks in the coating and attack the Si-based ceramics along the interface. Thus the modification of the coating system for enhanced crack-resistance is necessary for long-term durability in combustion environments. Other key durability issues include interfacial contamination and coating/substrate bonding. Interfacial contamination leads to enhanced oxidation and interfacial pore formation, while a weak coating/substrate bonding leads to rapid attack of the interface by corrosive species, both of which can cause a premature failure of the coating. Interfacial contamination can be minimized by limiting impurities in coating and substrate materials. The interface may be modified to improve the coating/substrate bond.
Segmented lasing tube for high temperature laser assembly
Sawicki, Richard H.; Alger, Terry W.; Finucane, Raymond G.; Hall, Jerome P.
1996-01-01
A high temperature laser assembly capable of withstanding operating temperatures in excess of 1500.degree. C. is described comprising a segmented cylindrical ceramic lasing tube having a plurality of cylindrical ceramic lasing tube segments of the same inner and outer diameters non-rigidly joined together in axial alignment; insulation of uniform thickness surround the walls of the ceramic lasing tube; a ceramic casing, preferably of quartz, surrounding the insulation; and a fluid cooled metal jacket surrounds the ceramic casing. In a preferred embodiment, the inner surface of each of the ceramic lasing tube segments are provided with a pair of oppositely spaced grooves in the wall thereof parallel to the center axis of the segmented cylindrical ceramic lasing tube, and both of the grooves and the center axis of the segmented cylindrical ceramic lasing tube lie in a common plane, with the grooves in each ceramic lasing tube segment in circumferential alignment with the grooves in the adjoining ceramic lasing tube segments; and one or more ceramic plates, all lying in a common plane to one another and with the central axis of the segmented ceramic lasing tube, are received in the grooves to provide additional wall area in the segmented ceramic lasing tube for collision and return to ground state of metastable metal atoms within the segmented ceramic lasing tube.
Feasibility of Actively Cooled Silicon Nitride Airfoil for Turbine Applications Demonstrated
NASA Technical Reports Server (NTRS)
Bhatt, Ramakrishna T.
2001-01-01
Nickel-base superalloys currently limit gas turbine engine performance. Active cooling has extended the temperature range of service of nickel-base superalloys in current gas turbine engines, but the margin for further improvement appears modest. Therefore, significant advancements in materials technology are needed to raise turbine inlet temperatures above 2400 F to increase engine specific thrust and operating efficiency. Because of their low density and high-temperature strength and thermal conductivity, in situ toughened silicon nitride ceramics have received a great deal of attention for cooled structures. However, the high processing costs and low impact resistance of silicon nitride ceramics have proven to be major obstacles for widespread applications. Advanced rapid prototyping technology in combination with conventional gel casting and sintering can reduce high processing costs and may offer an affordable manufacturing approach. Researchers at the NASA Glenn Research Center, in cooperation with a local university and an aerospace company, are developing actively cooled and functionally graded ceramic structures. The objective of this program is to develop cost-effective manufacturing technology and experimental and analytical capabilities for environmentally stable, aerodynamically efficient, foreign-object-damage-resistant, in situ toughened silicon nitride turbine nozzle vanes, and to test these vanes under simulated engine conditions. Starting with computer aided design (CAD) files of an airfoil and a flat plate with internal cooling passages, the permanent and removable mold components for gel casting ceramic slips were made by stereolithography and Sanders machines, respectively. The gel-cast part was dried and sintered to final shape. Several in situ toughened silicon nitride generic airfoils with internal cooling passages have been fabricated. The uncoated and thermal barrier coated airfoils and flat plates were burner rig tested for 30 min without and with air cooling. Without cooling, the surface temperature of the flat plate reached approximately 2350 F. Starting with computer aided design (CAD) files of an airfoil and a flat plate with internal cooling passages, the permanent and removable mold components for gel casting ceramic slips were made by stereolithography and Sanders machines, respectively. The gel-cast part was dried and sintered to final shape. Several in situ toughened silicon nitride generic airfoils with internal cooling passages have been fabricated. The uncoated and thermal barrier coated airfoils and flat plates were burner rig tested for 30 min without and with air cooling. Without cooling, the surface temperature of the flat plate reached approximately 2350 F. With cooling, the surface temperature decreased to approximately 1910 F--a drop of approximately 440 F. This preliminary study demonstrates that a near-net-shape silicon nitride airfoil can be fabricated and that silicon nitride can sustain severe thermal shock and the thermal gradients induced by cooling and, thus, is a viable candidate for cooled components.
NASA Astrophysics Data System (ADS)
Zhang, T. T.; Wang, W. X.; Zhou, J.; Cao, X. Q.; Yan, Z. F.; Wei, Y.; Zhang, W.
2018-04-01
A tri-metal titanium/aluminum/magnesium (Ti/Al/Mg) cladding plate, with an aluminum alloy interlayer plate, was fabricated for the first time by explosive welding. Nanoindentation tests and associated microstructure analysis were conducted to investigate the interface bonding mechanisms of the Ti/Al/Mg cladding plate. A periodic wavy bonding interface (with an amplitude of approximately 30 μm and a wavelength of approximately 160 μm) without a molten zone was formed between the Ti and Al plates. The bonding interface between the Al and the Mg demonstrated a similar wavy shape, but the wave at this location was much larger with an amplitude of approximately 390 μm and a wavelength of approximately 1580 μm, and some localized melted zones also existed at this location. The formation of the wavy interface was found to result from a severe deformation at the interface, which was caused by the strong impact or collision. The nanoindentation tests showed that the material hardness decreased with increasing distance from the bonding interface. Material hardness at a location was found to be correlated with the degree of plastic deformation at that site. A larger plastic deformation was correlated with an increase in hardness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-01-09
This report summarizes the task conducted to examine various activities on interface development for ceramic-matrix composites (CMCs) intended for high-temperature applications. While several articles have been published on the subject of CMC interfaces, the purpose of this report is to describe the various ongoing efforts on interface concepts, material selection, and issues related to processing methods employed for developing interface coatings. The most exciting and new development in the field is the discovery of monazite as a potential interface material for mullite- and alumina-based composites. Monazite offers two critical properties to the CMC system; a weakly bonded layer due tomore » its non-wetting behavior and chemical compatibility with both alumina and mullite up to very high temperatures (> 1,600 C). A description of the Department of Energy-related activities and some thoughts on processing issues, interface testing, and effects of processing on fiber strength are given.« less
Tribological characteristics of gold films deposited on metals by ion plating and vapor deposition
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Spalvins, T.; Buckley, D. H.
1984-01-01
The graded interface between an ion-plated film and a substrate is discussed as well as the friction and wear properties of ion-plated gold. X-ray photoelectron spectroscopy (XPS) depth profiling and microhardness depth profiling were used to investigate the interface. The friction and wear properties of ion-plated and vapor-deposited gold films were studied both in an ultra high vacuum system to maximize adhesion and in oil to minimize adhesion. The results indicate that the solubility of gold on the substrate material controls the depth of the graded interface. Thermal diffusion and chemical diffusion mechanisms are thought to be involved in the formation of the gold-nickel interface. In iron-gold graded interfaces the gold was primarily dispersed in the iron and thus formed a physically bonded interface. The hardness of the gold film was influenced by its depth and was also related to the composition gradient between the gold and the substrate. The graded nickel-gold interface exhibited the highest hardness because of an alloy hardening effect. The effects of film thickness on adhesion and friction were established.
Tribological characteristics of gold films deposited on metals by ion plating and vapor deposition
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Spalvins, T.; Buckley, D. H.
1986-01-01
The graded interface between an ion-plated film and a substrate is discussed as well as the friction and wear properties of ion-plated gold. X-ray photoelectron spectroscopy (XPS) depth profiling and microhardness depth profiling were used to investigate the interface. The friction and wear properties of ion-plated and vapor-deposited gold films were studied both in an ultra high vacuum system to maximize adhesion and in oil to minimize adhesion. The results indicate that the solubility of gold on the substrate material controls the depth of the graded interface. Thermal diffusion and chemical diffusion mechanisms are thought to be involved in the formation of the gold-nickel interface. In iron-gold graded interfaces the gold was primarily dispersed in the iron and thus formed a physically bonded interface. The hardness of the gold film was influenced by its depth and was also related to the composition gradient between the gold and the substrate. The graded nickel-gold interface exhibited the highest hardness because of an alloy hardening effect. The effects of film thickness on adhesion and friction were established.
Subduction starts by stripping slabs
NASA Astrophysics Data System (ADS)
Soret, Mathieu; Agard, Philippe; Dubacq, Benoît; Prigent, Cécile; Plunder, Alexis; Yamato, Philippe; Guillot, Stéphane
2017-04-01
Metamorphic soles correspond to tectonic slices welded beneath most large-scale ophiolites. These slivers of oceanic crust metamorphosed up to granulite facies conditions are interpreted as having formed during the first My of intra-oceanic subduction from heat transfer from the incipient mantle wedge towards the top of the subducting plate. Our study reappraises the formation of metamorphic sole through detailed field and petrological work on three classical key sections across the Semail ophiolite (Oman and United Arab Emirates). Geothermobarometry and thermodynamic modelling show that metamorphic soles do not record a continuous temperature gradient, as expected from simple heating by the upper plate or by shear heating and proposed by previous studies. The upper, high-temperature metamorphic sole is subdivided in at least two units, testifying to the stepwise formation, detachment and accretion of successive slices from the downgoing slab to the mylonitic base of the ophiolite. Estimated peak pressure-temperature conditions through the metamorphic sole are, from top to bottom, 850˚C - 1GPa, 725°C - 0.8 GPa and 530°C - 0.5 GPa. These estimates appear constant within each unit but separated by a gap of 100 to 200˚C and 0.2 GPa. Despite being separated by hundreds of kilometres below the Semail ophiolite and having contrasting locations with respect to the ophiolite ridge axis, metamorphic soles show no evidence for significant petrological variations along strike. These constraints allow to refine the tectonic-petrological model for the genesis of metamorphic soles, formed through the stepwise stacking of several homogeneous slivers of oceanic crust and its sedimentary cover. Metamorphic soles do not so much result from downward heat transfer (ironing effect) but rather from progressive metamorphism during strain localization and cooling of the plate interface. The successive thrusts are the result of rheological contrasts between the sole (initially at the subducting slab) and the peridotite above as the plate interface progressively cools down. These findings have implications for the thickness, the scale and the coupling state at the plate interface during the early history of subduction/obduction systems.
Effect of adhesive applied to the tooth-wood interface on metal-plate connections loaded in tension
Leslie H. Groom
1991-01-01
The structural behavior of metal-plate connections (MPCs) is affected not only by the isolated properties of the adjoining wood members and metal plate but also by the interfacial region between individual teeth and the surrounding wood. This study looked at maintaining a good interface by applying an epoxy adhesive to metal-plate teeth immediately preceding joint...
Channel plate for DNA sequencing
Douthart, R.J.; Crowell, S.L.
1998-01-13
This invention is a channel plate that facilitates data compaction in DNA sequencing. The channel plate has a length, a width and a thickness, and further has a plurality of channels that are parallel. Each channel has a depth partially through the thickness of the channel plate. Additionally an interface edge permits electrical communication across an interface through a buffer to a deposition membrane surface. 15 figs.
NASA Astrophysics Data System (ADS)
Zhang, Wei; Liu, Pengcheng; Wang, Yifeng; Zhu, Kongjun; Tai, Guoan; Liu, Jinsong; Wang, Jing; Yan, Kang; Zhang, Jianhui
2018-05-01
Nanostructuring is an effective approach to improve thermoelectric (TE) performance, which is caused by the interface and quantum effects on electron and phonon transport. For a typical layered structure such as sodium cobalt (NCO), a highly textured ceramic with nanostructure is beneficial for the carrier transport properties due to the strong anisotropy. In this paper, we established a textured NCO ceramic with highly oriented single crystals in nanoscale. The Na0.6CoO2 platelet crystals were prepared by a one-step hydrothermal method. The growth mechanism was revealed to involve dissolution-recrystallization and exchange reactions. NCO TE ceramics fabricated by a press-aided spark plasma sintering method showed a high degree of texturing, with the platelet crystals basically lying along the in-plane direction perpendicular to the press direction. TE properties of the textured NCO ceramics showed a strong anisotropic behavior. The in-plane electrical conductivity was considerably larger than the out-of-plane data because of fewer grain boundaries and interfaces that existed in the in-plane direction. Moreover, the in-plane Seebeck coefficient was higher because of the anisotropic electronic nature of NCO. Although the in-plane thermal conductivity was high, a prior ZT value was enabled for these NCO ceramics along this direction because of the dominant electrical transport. This finding provides a new approach to prepare highly oriented ceramics.
Magnetic Glass Ceramics by Sintering of Borosilicate Glass and Inorganic Waste.
Ponsot, Inès M M M; Pontikes, Yiannis; Baldi, Giovanni; Chinnam, Rama K; Detsch, Rainer; Boccaccini, Aldo R; Bernardo, Enrico
2014-07-31
Ceramics and glass ceramics based on industrial waste have been widely recognized as competitive products for building applications; however, there is a great potential for such materials with novel functionalities. In this paper, we discuss the development of magnetic sintered glass ceramics based on two iron-rich slags, coming from non-ferrous metallurgy and recycled borosilicate glass. The substantial viscous flow of the glass led to dense products for rapid treatments at relatively low temperatures (900-1000 °C), whereas glass/slag interactions resulted in the formation of magnetite crystals, providing ferrimagnetism. Such behavior could be exploited for applying the obtained glass ceramics as induction heating plates, according to preliminary tests (showing the rapid heating of selected samples, even above 200 °C). The chemical durability and safety of the obtained glass ceramics were assessed by both leaching tests and cytotoxicity tests.
Magnetic Glass Ceramics by Sintering of Borosilicate Glass and Inorganic Waste
Ponsot, Inès M. M. M.; Pontikes, Yiannis; Baldi, Giovanni; Chinnam, Rama K.; Detsch, Rainer; Boccaccini, Aldo R.; Bernardo, Enrico
2014-01-01
Ceramics and glass ceramics based on industrial waste have been widely recognized as competitive products for building applications; however, there is a great potential for such materials with novel functionalities. In this paper, we discuss the development of magnetic sintered glass ceramics based on two iron-rich slags, coming from non-ferrous metallurgy and recycled borosilicate glass. The substantial viscous flow of the glass led to dense products for rapid treatments at relatively low temperatures (900–1000 °C), whereas glass/slag interactions resulted in the formation of magnetite crystals, providing ferrimagnetism. Such behavior could be exploited for applying the obtained glass ceramics as induction heating plates, according to preliminary tests (showing the rapid heating of selected samples, even above 200 °C). The chemical durability and safety of the obtained glass ceramics were assessed by both leaching tests and cytotoxicity tests. PMID:28788146
Torque sensor having a spoked sensor element support structure
NASA Technical Reports Server (NTRS)
Lurie, Boris J. (Inventor); Schier, J. Alan (Inventor)
1990-01-01
Piezoelectric sensor devices are attached across pairs of circularly arranged spokes arrayed on the periphery of an annular ring. The sensor devices each include a preloaded steel ball mounting arrangement for mounting a piezoelectric sensor element. A first circular interface plate on one side of the sensor structure attaches to alternate one of the spokes, and a circular interface plate on the opposite side of the same diameter as the first interface plate attaches to the remaining spokes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsueh, Chun-Hway; Thompson, G. A.; Jadaan, Osama M.
Objectives. The purpose of this study was to analyze the stress distribution through the thickness of bilayered dental ceramics subjected to both thermal stresses and ring-on-ring tests and to systematically examine how the individual layer thickness influences this stress distribution and the failure origin. Methods. Ring-on-ring tests were performed on In-Ceram Alumina/Vitadur Alpha porcelain bilayered disks with porcelain in the tensile side, and In-Ceram Alumina to porcelain layer thickness ratios of 1:2, 1:1, and 2:1 were used to characterize the failure origins as either surface or interface. Based on the thermomechanical properties and thickness of each layer, the cooling temperaturemore » from glass transition temperature, and the ring-on-ring loading configuration, the stress distribution through the thickness of the bilayer was calculated using closed-form solutions. Finite element analyses were also performed to verify the analytical results. Results. The calculated stress distributions showed that the location of maximum tension during testing shifted from the porcelain surface to the In-Ceram Alumina/porcelain interface when the relative layer thickness ratio changed from 1:2 to 1:1 and to 2:1. This trend is in agreement with the experimental observations of the failure origins. Significance. For bilayered dental ceramics subjected to ring-on-ring tests, the location of maximum tension can shift from the surface to the interface depending upon the layer thickness ratio. The closed-form solutions for bilayers subjected to both thermal stresses and ring-on-ring tests are explicitly formulated which allow the biaxial strength of the bilayer to be evaluated.« less
Development of a MEMS acoustic emission sensor system
NASA Astrophysics Data System (ADS)
Greve, David W.; Oppenheim, Irving J.; Wu, Wei; Wright, Amelia P.
2007-04-01
An improved multi-channel MEMS chip for acoustic emission sensing has been designed and fabricated in 2006 to create a device that is smaller in size, superior in sensitivity, and more practical to manufacture than earlier designs. The device, fabricated in the MUMPS process, contains four resonant-type capacitive transducers in the frequency range between 100 kHz and 500 kHz on a chip with an area smaller than 2.5 sq. mm. The completed device, with its circuit board, electronics, housing, and connectors, possesses a square footprint measuring 25 mm x 25 mm. The small footprint is an important attribute for an acoustic emission sensor, because multiple sensors must typically be arrayed around a crack location. Superior sensitivity was achieved by a combination of four factors: the reduction of squeeze film damping, a resonant frequency approximating a rigid body mode rather than a bending mode, a ceramic package providing direct acoustic coupling to the structural medium, and high-gain amplifiers implemented on a small circuit board. Manufacture of the system is more practical because of higher yield (lower unit costs) in the MUMPS fabrication task and because of a printed circuit board matching the pin array of the MEMS chip ceramic package for easy assembly and compactness. The transducers on the MEMS chip incorporate two major mechanical improvements, one involving squeeze film damping and one involving the separation of resonance modes. For equal proportions of hole area to plate area, a triangular layout of etch holes reduces squeeze film damping as compared to the conventional square layout. The effect is modeled analytically, and is verified experimentally by characterization experiments on the new transducers. Structurally, the transducers are plates with spring supports; a rigid plate would be the most sensitive transducer, and bending decreases the sensitivity. In this chip, the structure was designed for an order-of-magnitude separation between the first and the second mode frequency, strongly approximating the desirable rigid plate limit. The effect is modeled analytically and is verified experimentally by measurement of the resonance frequencies in the new transducers. Another improvement arises from the use of a pin grid array ceramic package, in which the MEMS chip is acoustically coupled to the structure with only two interfaces, through a ceramic medium that is negligible in thickness when compared to wavelengths of interest. Like other acoustic emission sensors, those on the 2006 MEMS chip are sensitive only to displacements normal to the surface on which the device is mounted. To overcome that long-standing limitation, a new MEMS sensor sensitive to in-plane motion has been designed, featuring a different spring-mass mechanism and creating the signal by the change in capacitance between stationary and moving fingers. Predicted damping is much lower for the case of the in-plane sensor, and squeeze-film damping is used selectively to isolate the desired in-plane mechanical response from any unwanted out-of-plane response. The new spring-mass mechanism satisfies the design rules for the PolyMUMPS fabrication (foundry) process. A 3-D MEMS sensor system is presently being fabricated, collocating two in-plane sensors and one out-of-plane sensor at the mm scale, which is very short compared to the acoustic wavelength of interest for stress waves created by acoustic emission events.
Fundamental tribological properties of ceramics
NASA Technical Reports Server (NTRS)
Buckley, D. H.; Miyoshi, K.
1985-01-01
When a ceramic is brought into contact with itself, another ceramic, or a metal, strong bond forces can develop between the materials. Adhesion between a ceramic and itself or another solid are discussed from a theoretical consideration of the nature of the surfaces and experimentally by relating bond forces to the interface resulting from solid state contact. Elastic, plastic, and fracture behavior of ceramics in solid-state contact are discussed as they relate to friction and wear. The contact load necessary to initiate fracture in ceramics is shown to be appreciably reduced with tangential motion. Both friction and wear of ceramics are anisotropic and relate to crystal structure as with metals. Both free energy of oxide formation and the d valence bond character of metals are related to the friction and wear characteristics for metals in contact with ceramics. Lubrication is found to increase the critical load necessary to initiate fracture of ceramics with sliding or rubbing contact.
Advanced Lithium Anodes for Li/Air and Li/Water Batteries
2005-10-05
µm thick protective glass- ceramic membrane . The value of Li discharged capacity in this experiment is significantly larger than the Li thickness...polarization solid-state cell used for determination of electronic current across glass- ceramic membrane Final Report Page 27 of 45 10/05/2005...Li anode/aqueous electrolyte interface without destruction of the 50 µm thick protective glass- ceramic membrane . The thickness of the Li foil used in
NASA Astrophysics Data System (ADS)
Casalegno, Valentina; Kondo, Sosuke; Hinoki, Tatsuya; Salvo, Milena; Czyrska-Filemonowicz, Aleksandra; Moskalewicz, Tomasz; Katoh, Yutai; Ferraris, Monica
2018-04-01
The aim of this work was to investigate and discuss the microstructure and interface reaction of a calcia-alumina based glass-ceramic (CA) with SiC. CA has been used for several years as a glass-ceramic for pressure-less joining of SiC based components. In the present work, the crystalline phases in the CA glass-ceramic and at the CA/SiC interface were investigated and the absence of any detectable amorphous phase was assessed. In order to provide a better understanding of the effect of irradiation on the joining material and on the joints, Si ion irradiation was performed both on bulk CA and CA joined SiC. CA glass-ceramic and CA joined SiC were both irradiated with 5.1 MeV Si2+ ions to 3.3 × 1020 ions/m2 at temperatures of 400 and 800 °C at DuET facility, Kyoto University. This corresponds to a damage level of 5 dpa for SiC averaged over the damage range. This paper presents the results of a microstructural analysis of the irradiated samples as well as an evaluation of the dimensional stability of the CA glass-ceramic and its irradiation temperature and/or damage dependence.
Melo Freire, C A; Borges, G A; Caldas, Dbm; Santos, R S; Ignácio, S A; Mazur, R F
To evaluate the cement line thickness and the interface quality in milled or injected lithium disilicate ceramic restorations and their influence on marginal adaptation using different cement types and different adhesive cementation techniques. Sixty-four bovine teeth were prepared for full crown restoration (7.0±0.5 mm in height, 8.0 mm in cervical diameter, and 4.2 mm in incisal diameter) and were divided into two groups: CAD/CAM automation technology, IPS e.max CAD (CAD), and isostatic injection by heat technology, IPS e.max Press (PRESS). RelyX ARC (ARC) and RelyX U200 resin cements were used as luting agents in two activation methods: initial self-activation and light pre-activation for one second (tack-cure). Next, the specimens were stored in distilled water at 23°C ± 2°C for 72 hours. The cement line thickness was measured in micrometers, and the interface quality received scores according to the characteristics and sealing aspects. The evaluations were performed with an optical microscope, and scanning electron microscope images were presented to demonstrate the various features found in the cement line. For the cement line thickness, data were analyzed with three-way analysis of variance (ANOVA) and the Games-Howell test (α=0.05). For the variable interface quality, the data were analyzed with the Mann-Whitney U-test, the Kruskal-Wallis test, and multiple comparisons nonparametric Dunn test (α=0.05). The ANOVA presented statistical differences among the ceramic restoration manufacturing methods as well as a significant interaction between the manufacturing methods and types of cement (p<0.05). The U200 presented lower cement line thickness values when compared to the ARC with both cementation techniques (p<0.05). With regard to the interface quality, the Mann-Whitney U-test and the Kruskal-Wallis test demonstrated statistical differences between the ceramic restoration manufacturing methods and cementation techniques. The PRESS ceramics obtained lower scores than did the CAD ceramics when using ARC cement (p<0.05). Milled restorations cemented with self-adhesive resin cement resulted in a thinner cement line that is statistically different from that of CAD or pressed ceramics cemented with resin cement with adhesive application. No difference between one-second tack-cure and self-activation was noted.
A novel tribological study on DLC-coated micro-dimpled orthopedics implant interface.
Choudhury, Dipankar; Urban, Filip; Vrbka, Martin; Hartl, Martin; Krupka, Ivan
2015-05-01
This study investigates a tribological performance of diamond like carbon (DLC) coated micro dimpled prosthesis heads against ceramic cups in a novel pendulum hip joint simulator. The simulator enables determining friction coefficient and viscous effects of a concave shaped specimen interface (conformal contact). Two types of DLC such as hydrogenated amorphous carbon (a-C:H) and tetrahedral amorphous carbon (Ta-C) and one set of micro dimple (diameter of 300µm, depth of 70µm, and pitch of 900µm) were fabricated on metallic prosthesis heads. The experiment results reveal a significant friction coefficient reduction to the 'dimpled a-C:H/ceramic' prosthesis compared to a 'Metal (CoCr)/ceramic' prosthesis because of their improved material and surface properties and viscous effect. The post-experiment surface analysis displays that the dimpled a-C:H yielded a minor change in the surface roughness, and generated a larger sizes of wear debris (40-200nm sized, equivalent diameter), a size which could be certainly stored in the dimple, thus likely to reducing their possible third body abrasive wear rate. Thus, dimpled a:C-H can be used as a 'metal on ceramic hip joint interface', whereas the simulator can be utilized as an advanced bio-tribometer. Copyright © 2015 Elsevier Ltd. All rights reserved.
Failure analysis of glass-ceramic insulators of shock tested vacuum (neutron) tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spears, R.K.
1980-08-25
Eight investigative techniques were used to examine the glass-ceramic insulators in vacuum (neutron) tubes. The insulators were extracted from units that had been subjected to low temperature mechanical shock tests. Two of the three units showed reduced neutron output after these tests and an insulator on one of these two was cracked completely through which probably occurred during shock testing. The objective of this study was to determine if any major differences existed between the insulators of these tubes. After eight analyses, it was concluded that no appreciable differences existed. It appeared that cracking of the one glass-ceramic sample wasmore » initiated at inner-sleeve interface voids. For this sample, the interface void density was much higher than is presently acceptable. All insulators were made with glass-ceramic having a Na/sub 2/O content of 4.6 wt%. An increased Na/sub 2/O content will cause an increase in the coefficient of expansion and will reduce the residual stress level since the molybdenum has a higher coefficient of thermal expansion than the insulator. Thus, it is believed that a decrease in interface voids and an increase in Na/sub 2/O should aid in reduced cracking of the insulator during these tests.« less
Microleakage Evaluation at Implant-Abutment Interface Using Radiotracer Technique
Siadat, Hakimeh; Arshad, Mahnaz; Mahgoli, Hossein-Ali; Fallahi, Babak
2016-01-01
Objectives: Microbial leakage through the implant-abutment (I-A) interface results in bacterial colonization in two-piece implants. The aim of this study was to compare microleakage rates in three types of Replace abutments namely Snappy, GoldAdapt, and customized ceramic using radiotracing. Materials and Methods: Three groups, one for each abutment type, of five implants and one positive and one negative control were considered (a total of 17 regular body implants). A torque of 35 N/cm was applied to the abutments. The samples were immersed in thallium 201 radioisotope solution for 24 hours to let the radiotracers leak through the I-A interface. Then, gamma photons received from the radiotracers were counted using a gamma counter device. In the next phase, cyclic fatigue loading process was applied followed by the same steps of immersion in the radioactive solution and photon counting. Results: Rate of microleakage significantly increased (P≤0.05) in all three types of abutments (i.e. Snappy, GoldAdapt, and ceramic) after cyclic loading. No statistically significant differences were observed between abutment types after cyclic loading. Conclusions: Microleakage significantly increases after cyclic loading in all three Replace abutments (GoldAdapt, Snappy, ceramic). Lowest microleakage before and after cyclic loading was observed in GoldAdapt followed by Snappy and ceramic. PMID:28392814
Idrobo, Juan C; Walkosz, Weronika; Klie, Robert F; Oğüt, Serdar
2012-12-01
In silicon nitride structural ceramics, the overall mechanical and thermal properties are controlled by the atomic and electronic structures at the interface between the ceramic grains and the amorphous intergranular films (IGFs) formed by various sintering additives. In the last ten years the atomic arrangements of heavy elements (rare-earths) at the Si(3)N(4)/IGF interfaces have been resolved. However, the atomic position of light elements, without which it is not possible to obtain a complete description of the interfaces, has been lacking. This review article details the authors' efforts to identify the atomic arrangement of light elements such as nitrogen and oxygen at the Si(3)N(4)/SiO(2) interface and in bulk Si(3)N(4) using aberration-corrected scanning transmission electron microscopy. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Seyler, C.; Kirkpatrick, J. D.; Šilerová, D.
2017-12-01
Localization of strain at plate boundaries requires rheological weakening of the lithosphere. The rheology of the subduction plate interface is dictated by the dominant grain-scale deformation mechanisms. However, little is known about the deformation mechanisms within phases commonly found in subduction zones, such as phyllosilicates and amphiboles. We investigate the Leech River Shear Zone on Vancouver Island, British Columbia to explore deformation processes downdip of the seismogenic zone and evaluate the bulk rheology of the plate interface. This shear zone juxtaposes a metamorphosed accretionary prism against a metabasaltic oceanic plateau, representing a paleo-plate interface from the ancient Cascadia subduction zone. Preliminary geothermometry results record a prograde deformation temperature of 573.6±11.2 ˚C in the overriding accretionary wedge, and the hornblende-chlorite-epidote-plagioclase mineral assemblage suggests upper greenschist to lower amphibolite facies metamorphism of the downgoing oceanic crust. Detailed mapping of the plate interface documents a 200 m wide mylonitic shear zone developed across the lithologic contact. Asymmetric shear fabrics, isoclinal folding, boudinage, and a steeply plunging, penetrative stretching lineation are consistent with sinistral-oblique subduction. Numerous discordant quartz veins are variably sheared into sigmoidal shapes as well as isoclinally folded and boudinaged, indicating cyclical synkinematic fracture and vein formation. At the grain-scale, interconnected, anastomosing layers of muscovite, chlorite, and graphite in the accretionary prism rocks likely deformed through kinking and dislocation glide. Framework minerals such as quartz and feldspar deformed by dislocation creep. In the metabasalt, hornblende and chlorite form a continuous S—C fabric in which asymmetric hornblende porphyroclasts deformed by rigid grain rotation and dissolution-precipitation creep. The strength of the subduction plate interface beneath the seismogenic zone was therefore controlled by multiple syn-kinematic mechanisms, with overall strength dominated by the rheology of phyllosilicates and amphibole, generating very low viscosities at the plate interface and enhancing strain localization.
da Silva, Eduardo M; Miragaya, Luciana; Sabrosa, Carlos Eduardo; Maia, Lucianne C
2014-09-01
The behavior of the luting cement and the cementation protocol are essential in the clinical success of ceramic restorations. The purpose of this study was to evaluate the bond stability of 2 resin cements and a yttria-stabilized tetragonal polycrystalline zirconia (Y-TZP) ceramic submitted to 2 surface treatments. Sixty plates of a Y-TZP ceramic were assigned to 3 groups according to the surface treatments: control, as sintered surface; methacryloxydecyl dihydrogen phosphate (MDP), coated with an MDP-based primer, and tribochemical silica-coating (TSC), coated with tribochemical silica. The plates of each group were further divided into 2 subgroups according to the resin cement as follows: RelyX adhesive resin cement (conventional) and RelyX Unicem (self-adhesive). Cylinders of resin cements (∅=0.75 mm × 0.5 mm in height) were built up on the ceramic surfaces, and the plates stored in distilled water at 37°C for either 24 hours or 6 months before being submitted to a microshear bond strength test. The data were submitted to 3-way ANOVA and the Tukey honestly significant difference test (α=.05). Three-way ANOVA showed statistical significance for the 3 independent factors: resin cement, surface treatment, and period of water immersion (P<.001). Unicem presented the highest microshear bond strength after 24 hours (MDP, 37.4 ±2.3 and TSC, 36.2 ±2.1 MPa). Except for RelyX adhesive resin cement applied on ceramic surfaces treated with TSC, the microshear bond strength of all the other groups decreased after 6 months of aging in water. The microshear bond strength decreased most in the control groups (-81.5% for ARC and -93.1% for Unicem). In the group treated with TSC, the microshear bond strength for Unicem decreased by 54.8% and in that treated with MDP-based primer by -42.5%. In the group treated with MDP-based primer, the microshear bond strength for RelyX ARC decreased by -52.8%. Irrespective of surface treatments, self-adhesive resin cement was not able to maintain the bond to Y-TZP ceramic after 6 months of aging in water. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Pressurized bellows flat contact heat exchanger interface
NASA Technical Reports Server (NTRS)
Voss, Fred E. (Inventor); Howell, Harold R. (Inventor); Winkler, Roger V. (Inventor)
1990-01-01
Disclosed is an interdigitated plate-type heat exchanger interface. The interface includes a modular interconnect to thermally connect a pair or pairs of plate-type heat exchangers to a second single or multiple plate-type heat exchanger. The modular interconnect comprises a series of parallel, plate-type heat exchangers arranged in pairs to form a slot therebetween. The plate-type heat exchangers of the second heat exchanger insert into the slots of the modular interconnect. Bellows are provided between the pairs of fins of the modular interconnect so that when the bellows are pressurized, they drive the plate-type heat exchangers of the modular interconnect toward one another, thus closing upon the second heat exchanger plates. Each end of the bellows has a part thereof a thin, membrane diaphragm which readily conforms to the contours of the heat exchanger plates of the modular interconnect when the bellows is pressurized. This ensures an even distribution of pressure on the heat exchangers of the modular interconnect thus creating substantially planar contact between the two heat exchangers. The effect of the interface of the present invention is to provide a dry connection between two heat exchangers whereby the rate of heat transfer can be varied by varying the pressure within the bellows.
Composite Laser Ceramics by Advanced Bonding Technology
Kamimura, Tomosumi; Honda, Sawao
2018-01-01
Composites obtained by bonding materials with the same crystal structure and different chemical compositions can create new functions that do not exist in conventional concepts. We have succeeded in bonding polycrystalline YAG and Nd:YAG ceramics without any interstices at the bonding interface, and the bonding state of this composite was at the atomic level, similar to the grain boundary structure in ceramics. The mechanical strength of the bonded composite reached 278 MPa, which was not less than the strength of each host material (269 and 255 MPa). Thermal conductivity of the composite was 12.3 W/mK (theoretical value) which is intermediate between the thermal conductivities of YAG and Nd:YAG (14.1 and 10.2 W/mK, respectively). Light scattering cannot be detected at the bonding interface of the ceramic composite by laser tomography. Since the scattering coefficients of the monolithic material and the composite material formed by bonding up to 15 layers of the same materials were both 0.10%/cm, there was no occurrence of light scattering due to the bonding. In addition, it was not detected that the optical distortion and non-uniformity of the refractive index variation were caused by the bonding. An excitation light source (LD = 808 nm) was collimated to 200 μm and irradiated into a commercial 1% Nd:YAG single crystal, but fracture damage occurred at a low damage threshold of 80 kW/cm2. On the other hand, the same test was conducted on the bonded interface of 1% Nd:YAG-YAG composite ceramics fabricated in this study, but it was not damaged until the excitation density reached 127 kW/cm2. 0.6% Nd:YAG-YAG composite ceramics showed high damage resistance (up to 223 kW/cm2). It was concluded that composites formed by bonding polycrystalline ceramics are ideal in terms of thermo-mechanical and optical properties. PMID:29425152
Crystallization behaviors and seal application of basalt based glass-ceramics
NASA Astrophysics Data System (ADS)
Ateş, A.; Önen, U.; Ercenk, E.; Yılmaz, Ş.
2017-02-01
Basalt based glass-ceramics were prepared by conventional melt-quenching technique and subsequently converted to glass-ceramics by a controlled nucleation and crystallization process. Glass materials were obtained by melt at 1500°C and quenched in cold water. The powder materials were made by milling and spin coating. The powders were applied on the 430 stainless steel interconnector material, and heat treatment was carried out. The interface characteristics between the glass-ceramic layer and interconnector were investigated by using X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM). The results showed that the basalt base glass-ceramic sealant material exhibited promising properties to use for SOFC.
Developing 300°C Ceramic Circuit Boards
DOE Office of Scientific and Technical Information (OSTI.GOV)
Normann, Randy A
2015-02-15
This paper covers the development of a geothermal ceramic circuit board technology using 3D traces in a machinable ceramic. Test results showing the circuit board to be operational to at least 550°C. Discussion on producing this type of board is outlined along with areas needing improvement.
Parallel Fin ORU Thermal Interface for space applications. [Orbital Replaceable Unit
NASA Technical Reports Server (NTRS)
Stobb, C. A.; Limardo, Jose G.
1992-01-01
The Parallel Fin Thermal Interface has been developed as an Orbital Replaceable Unit (ORU) interface. The interface transfers heat from an ORU baseplate to a Heat Acquisition Plate (HAP) through pairs of fins sandwiched between insert plates that press against the fins with uniform pressure. The insert plates are spread apart for ORU baseplate separation and replacement. Two prototype interfaces with different fin dimensions were built (Model 140 and 380). Interfacing surface samples were found to have roughnesses of 56 to 89 nm. Conductance values of 267 to 420 W/sq m C were obtained for the 140 model in vacuum with interface pressures of 131 to 262 kPa (19 to 38 psi). Vacuum conductances ranging from 176 to 267 W/sq m F were obtained for the 380 model at interface pressures of 97 to 152 kPa (14 and 22 psi). Correlations from several sources were found to agree with test data within 20 percent using thermal math models of the interfaces.
Abu Alhaija, Elham S J; Abu AlReesh, Issam A; AlWahadni, Ahed M S
2010-06-01
The aims of this study were to evaluate the shear bond strength (SBS) of metal and ceramic brackets bonded to two different all-ceramic crowns, IPS Empress 2 and In-Ceram Alumina, to compare the SBS between hydrofluoric acid (HFA), phosphoric acid etched, and sandblasted, non-etched all-ceramic surfaces. Ninety-six all-ceramic crowns were fabricated resembling a maxillary left first premolar. The crowns were divided into eight groups: (1) metal brackets bonded to sandblasted 9.6 per cent HFA-etched IPS Empress 2 crowns; (2) metal brackets bonded to sandblasted 9.6 per cent HFA-etched In-Ceram crowns; (3) ceramic brackets bonded to sandblasted 9.6 per cent HFA-etched IPS Empress 2 crowns; (4) ceramic brackets bonded to sandblasted 9.6 per cent HFA-etched In-Ceram crowns; (5) metal brackets bonded to sandblasted 37 per cent phosphoric acid-etched IPS Empress 2 crowns; (6) metal brackets bonded to sandblasted 37 per cent phosphoric acid-etched In-Ceram crowns; (7) metal brackets bonded to sandblasted, non-etched IPS Empress 2 crowns; and (8) metal brackets bonded to sandblasted, non-etched In-Ceram crowns. Metal and ceramic orthodontic brackets were bonded using a conventional light polymerizing adhesive resin. An Instron universal testing machine was used to determine the SBS at a crosshead speed of 0.1 mm/minute. Comparison between groups was performed using a univariate general linear model and chi-squared tests. The highest mean SBS was found in group 3 (120.15 +/- 45.05 N) and the lowest in group 8 (57.86 +/- 26.20 N). Of all the variables studied, surface treatment was the only factor that significantly affected SBS (P < 0.001). Acid etch application to sandblasted surfaces significantly increased the SBS in groups 1, 2, 5, and 6. The SBS of metal brackets debonded from groups 1, 3, and 5 were not significantly different from those of groups 2, 4, and 6. All debonded metal brackets revealed a similar pattern of bond failure at the adhesive-restorative interface. However, ceramic brackets had a significantly different adhesive failure pattern with dominant failure at the adhesive-bracket interface. Ceramic fractures after bracket removal were found more often in groups 1-4. No significant difference in ceramic fracture was observed between the IPS Empress 2 and In-Ceram groups.
Improved C/SiC Ceramic Composites Made Using PIP
NASA Technical Reports Server (NTRS)
Easler, Timothy
2007-01-01
Improved carbon-fiber-reinforced SiC ceramic-matrix composite (C/SiC CMC) materials, suitable for fabrication of thick-section structural components, are producible by use of a combination of raw materials and processing conditions different from such combinations used in the prior art. In comparison with prior C/SiC CMC materials, these materials have more nearly uniform density, less porosity, and greater strength. The majority of raw-material/processing-condition combinations used in the prior art involve the use of chemical vapor infiltration (CVI) for densifying the matrix. In contrast, in synthesizing a material of the present type, one uses a combination of infiltration with, and pyrolysis of, a preceramic polymer [polymer infiltration followed by pyrolysis (PIP)]. PIP processing is performed in repeated, tailored cycles of infiltration followed by pyrolysis. Densification by PIP processing takes less time and costs less than does densification by CVI. When one of these improved materials was tested by exposure to a high-temperature, inert-gas environment that caused prior C/SiC CMCs to lose strength, this material did not lose strength. (Information on the temperature and exposure time was not available at the time of writing this article.) A material of the present improved type consists, more specifically, of (1) carbon fibers coated with an engineered fiber/matrix interface material and (2) a ceramic matrix, containing SiC, derived from a pre-ceramic polymer with ceramic powder additions. The enhancements of properties of these materials relative to those of prior C/SiC CMC materials are attributable largely to engineering of the fiber/ matrix interfacial material and the densification process. The synthesis of a material of this type includes processing at an elevated temperature to a low level of open porosity. The approach followed in this processing allows one to fabricate not only simple plates but also more complexly shaped parts. The carbon fiber reinforcement in a material of this type can be in any of several alternative forms, including tow, fabric, or complex preforms containing fibers oriented in multiple directions.
Origin of photovoltaic effect in superconducting YBa2Cu3O6.96 ceramics
Yang, F.; Han, M. Y.; Chang, F. G.
2015-01-01
We report remarkable photovoltaic effect in YBa2Cu3O6.96 (YBCO) ceramic between 50 and 300 K induced by blue-laser illumination, which is directly related to the superconductivity of YBCO and the YBCO-metallic electrode interface. There is a polarity reversal for the open circuit voltage Voc and short circuit current Isc when YBCO undergoes a transition from superconducting to resistive state. We show that there exists an electrical potential across the superconductor-normal metal interface, which provides the separation force for the photo-induced electron-hole pairs. This interface potential directs from YBCO to the metal electrode when YBCO is superconducting and switches to the opposite direction when YBCO becomes nonsuperconducting. The origin of the potential may be readily associated with the proximity effect at metal-superconductor interface when YBCO is superconducting and its value is estimated to be ~10–8 mV at 50 K with a laser intensity of 502 mW/cm2. Combination of a p-type material YBCO at normal state with an n-type material Ag-paste forms a quasi-pn junction which is responsible for the photovoltaic behavior of YBCO ceramics at high temperatures. Our findings may pave the way to new applications of photon-electronic devices and shed further light on the proximity effect at the superconductor-metal interface. PMID:26099727
Freckle Defect Formation near the Casting Interfaces of Directionally Solidified Superalloys
Hong, Jianping; Ma, Dexin; Wang, Jun; Wang, Fu; Sun, Baode; Dong, Anping; Li, Fei; Bührig-Polaczek, Andreas
2016-01-01
Freckle defects usually appear on the surface of castings and industrial ingots during the directional solidification process and most of them are located near the interface between the shell mold and superalloys. Ceramic cores create more interfaces in the directionally solidified (DS) and single crystal (SX) hollow turbine blades. In order to investigate the location of freckle occurrence in superalloys, superalloy CM247 LC was directionally solidified in an industrial-sized Bridgman furnace. Instead of ceramic cores, Alumina tubes were used inside of the casting specimens. It was found that freckles occur not only on the casting external surfaces, but also appear near the internal interfaces between the ceramic core and superalloys. Meanwhile, the size, initial position, and area of freckle were investigated in various diameters of the specimens. The initial position of the freckle chain reduces when the diameter of the rods increase. Freckle area follows a linear relationship in various diameters and the average freckle fraction is 1.1% of cross sectional area of casting specimens. The flow of liquid metal near the interfaces was stronger than that in the interdendritic region in the mushy zone, and explained why freckle tends to occur on the outer or inner surfaces of castings. This new phenomenon suggests that freckles are more likely to occur on the outer or inner surfaces of the hollow turbine blades. PMID:28774050
Freckle Defect Formation near the Casting Interfaces of Directionally Solidified Superalloys.
Hong, Jianping; Ma, Dexin; Wang, Jun; Wang, Fu; Sun, Baode; Dong, Anping; Li, Fei; Bührig-Polaczek, Andreas
2016-11-16
Freckle defects usually appear on the surface of castings and industrial ingots during the directional solidification process and most of them are located near the interface between the shell mold and superalloys. Ceramic cores create more interfaces in the directionally solidified (DS) and single crystal (SX) hollow turbine blades. In order to investigate the location of freckle occurrence in superalloys, superalloy CM247 LC was directionally solidified in an industrial-sized Bridgman furnace. Instead of ceramic cores, Alumina tubes were used inside of the casting specimens. It was found that freckles occur not only on the casting external surfaces, but also appear near the internal interfaces between the ceramic core and superalloys. Meanwhile, the size, initial position, and area of freckle were investigated in various diameters of the specimens. The initial position of the freckle chain reduces when the diameter of the rods increase. Freckle area follows a linear relationship in various diameters and the average freckle fraction is 1.1% of cross sectional area of casting specimens. The flow of liquid metal near the interfaces was stronger than that in the interdendritic region in the mushy zone, and explained why freckle tends to occur on the outer or inner surfaces of castings. This new phenomenon suggests that freckles are more likely to occur on the outer or inner surfaces of the hollow turbine blades.
Sahmani, S; Fattahi, A M
2017-08-01
New ceramic materials containing nanoscaled crystalline phases create a main object of scientific interest due to their attractive advantages such as biocompatibility. Zirconia as a transparent glass ceramic is one of the most useful binary oxides in a wide range of applications. In the present study, a new size-dependent plate model is constructed to predict the nonlinear axial instability characteristics of zirconia nanosheets under axial compressive load. To accomplish this end, the nonlocal continuum elasticity of Eringen is incorporated to a refined exponential shear deformation plate theory. A perturbation-based solving process is put to use to derive explicit expressions for nonlocal equilibrium paths of axial-loaded nanosheets. After that, some molecular dynamics (MD) simulations are performed for axial instability response of square zirconia nanosheets with different side lengths, the results of which are matched with those of the developed nonlocal plate model to capture the proper value of nonlocal parameter. It is demonstrated that the calibrated nonlocal plate model with nonlocal parameter equal to 0.37nm has a very good capability to predict the axial instability characteristics of zirconia nanosheets, the accuracy of which is comparable with that of MD simulation. Copyright © 2017 Elsevier Inc. All rights reserved.
Breeze, John; Lewis, E A; Fryer, R; Hepper, A E; Mahoney, Peter F; Clasper, Jon C
2016-08-01
Body armour is a type of equipment worn by military personnel that aims to prevent or reduce the damage caused by ballistic projectiles to structures within the thorax and abdomen. Such injuries remain the leading cause of potentially survivable deaths on the modern battlefield. Recent developments in computer modelling in conjunction with a programme to procure the next generation of UK military body armour has provided the impetus to re-evaluate the optimal anatomical coverage provided by military body armour against high energy projectiles. A systematic review of the literature was undertaken to identify those anatomical structures within the thorax and abdomen that if damaged were highly likely to result in death or significant long-term morbidity. These structures were superimposed upon two designs of ceramic plate used within representative body armour systems using a computerised representation of human anatomy. Those structures requiring essential medical coverage by a plate were demonstrated to be the heart, great vessels, liver and spleen. For the 50th centile male anthropometric model used in this study, the front and rear plates from the Enhanced Combat Body Armour system only provide limited coverage, but do fulfil their original requirement. The plates from the current Mark 4a OSPREY system cover all of the structures identified in this study as requiring coverage except for the abdominal sections of the aorta and inferior vena cava. Further work on sizing of plates is recommended due to its potential to optimise essential medical coverage. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Kamitakahara, Masanobu; Uno, Yuika; Ioku, Koji
2014-01-01
In designing the biomaterials, it is important to control their surface morphologies, because they affect the interactions between the materials and cells. We previously reported that porous calcium-deficient hydroxyapatite (HA) ceramics composed of rod-like particles had advantages over sintered porous HA ceramics; however, the effects of the surface morphology of calcium-deficient HA ceramics on cell behavior have remained unclear. Using a hydrothermal process, we successfully prepared porous calcium-deficient HA ceramics with different surface morphologies, composed of plate-like particles of 200-300, 500-800 nm, or 2-3 μm in width and rod-like particles of 1 or 3-5 μm in width, respectively. The effects of these surface morphologies on the behavior of osteoblast-like cells were examined. Although the numbers of cells adhered to the ceramic specimens did not differ significantly among the specimens, the proliferation rates of cells on the ceramics decreased with decreasing particle size. Our results reveal that controlling the surface morphology that is governed by particle shape and size is important for designing porous calcium-deficient HA ceramics.
Electromechanical transducer for acoustic telemetry system
Drumheller, D.S.
1993-06-22
An improved electromechanical transducer is provided for use in an acoustic telemetry system. The transducer of this invention comprises a stack of ferroelectric ceramic disks interleaved with a plurality of spaced electrodes which are used to electrically pole the ceramic disks. The ceramic stack is housed in a metal tubular drill collar segment. The electrodes are preferably alternatively connected to ground potential and driving potential. This alternating connection of electrodes to ground and driving potential subjects each disk to an equal electric field; and the direction of the field alternates to match the alternating direction of polarization of the ceramic disks. Preferably, a thin metal foil is sandwiched between electrodes to facilitate the electrical connection. Alternatively, a thicker metal spacer plate is selectively used in place of the metal foil in order to promote thermal cooling of the ceramic stack.
Electromechanical transducer for acoustic telemetry system
Drumheller, Douglas S.
1993-01-01
An improved electromechanical transducer is provided for use in an acoustic telemetry system. The transducer of this invention comprises a stack of ferroelectric ceramic disks interleaved with a plurality of spaced electrodes which are used to electrically pole the ceramic disks. The ceramic stack is housed in a metal tubular drill collar segment. The electrodes are preferably alternatively connected to ground potential and driving potential. This alternating connection of electrodes to ground and driving potential subjects each disk to an equal electric field; and the direction of the field alternates to match the alternating direction of polarization of the ceramic disks. Preferably, a thin metal foil is sandwiched between electrodes to facilitate the electrical connection. Alternatively, a thicker metal spacer plate is selectively used in place of the metal foil in order to promote thermal cooling of the ceramic stack.
Experimental verification of using nanostructured ceramic implants and osteograft
NASA Astrophysics Data System (ADS)
Rerikh, V. V.; Lastevskiy, A. D.; Sadovoy, M. A.; Zaidman, A. M.; Bataev, A. V.; Predein, Yu. A.; Avetisyan, A. R.; Romanenko, V. V.; Mamonova, E. V.; Nikulina, A. A.; Semantsova, E. S.; Smirnov, A. I.
2017-09-01
Ventral interbody fusion was carried out in 8 mini pigs in order to determine the effectiveness of anterior stabilization of the vertebral unit with implants made of nanostructured alumina ceramics using cellular technologies to form a bone block. A ceramic cage with a through cylindrical orifice in the center was implanted into the interbody gap; either cellular osteograft (group 1) or cellular autograft (group 2) was placed in it. The adjacent vertebrae were fixed anteriorly with a ceramic plate containing 4 screws. Bone block formation was studied radiographically, morphologically, and by MSCT. The signs of osteointegration of ceramic implants were observed in both groups after 90 days. MSCT and morphological analysis revealed the formation of the osteoceramic block and completed osteogenesis in the bone-graft contact region in group 1 compared to the control group (p < 0.05).
Microgravity science and applications program tasks, 1991 revision
NASA Technical Reports Server (NTRS)
1992-01-01
Presented here is a compilation of the active research tasks for FY 1991 sponsored by the Microgravity Science and Applications Division of the NASA Office of Space Science and Applications. The purpose is to provide an overview of the program scope for managers and scientists in industry, university, and government communities. Included is an introductory description of the program, the strategy and overall goal, identification of the organizational structures and the people involved, and a description of each. The tasks are grouped into several categories: electronic materials; solidification of metals, alloys, and composites; fluids, interfaces, and transport; biotechnology; combustion science; glasses and ceramics; experimental technology, instrumentation, and facilities; and Physical and Chemistry Experiments (PACE). The tasks cover both the ground based and flight programs.
Locking, mass flux and topographic response at convergent plate boundaries - the Chilean case
NASA Astrophysics Data System (ADS)
Oncken, Onno
2016-04-01
On the long term, convergent plate boundaries have been shown to be controlled by either accretion/underplating or by subduction erosion. Vertical surface motion is coupled to convergence rate - typically with an uplift rate of the coastal area ranging from 0 to +50% of convergence rate in accretive systems, and -20 to +30% in erosive systems. Vertical kinematics, however, are not necessarily linked to horizontal strain mode, i.e. upper plate shortening or extension, in a simple way. This range of kinematic behaviors - as well as their acceleration where forearcs collide with oceanic ridges/plateau - is well expressed along the Chilean plate margin. Towards the short end of the time scale, deformation appears to exhibit a close correlation with the frictional properties and geodetic locking at the plate interface. Corroborating analogue experiments of strain accumulation during multiple earthquake cycles, forearc deformation and uplift focus above the downdip and updip end of seismic coupling and slip and are each related to a particular stage of the seismic cycle, but with opposite trends for both domains. Similarly, barriers separating locked domains along strike appear to accumulate most upper plate faulting interseismically. Hence, locking patters are reflected in topography. From the long-term memory contained in the forearc topography the relief of the Chilean forearc seems to reflect long term stability of the observed heterogeneity of locking at the plate interface. This has fundamental implications for spatial and temporal distribution of seismic hazard. Finally, the nature of locking at the plate interface controlling the above kinematic behavior appears to be strongly controlled by the degree of fluid overpressuring at the plate interface suggesting that the hydraulic system at the interface takes a key role for the forearc response.
Multicharged iron ions produced by using induction heating vapor source.
Kato, Yushi; Kubo, Takashi; Muramatsu, Masayuki; Tanaka, Kiyokatsu; Kitagawa, Atsushi; Yoshida, Yoshikazu; Asaji, Toyohisa; Sato, Fuminobu; Iida, Toshiyuki
2008-02-01
Multiply charged Fe ions are produced from solid pure material in an electron cyclotron resonance (ECR) ion source. We develop an evaporator by using induction heating with an induction coil which is made of bare molybdenum wire partially covered by ceramic beads in vacuum and surrounding and heating directly the pure Fe rod. Heated material has no contact with insulators, so that outgas is minimized. The evaporator is installed around the mirror end plate outside of the ECR plasma with its hole grazing the ECR zone. Helium or argon gas is usually chosen for supporting gas. The multicharged Fe ions up to Fe(13+) are extracted from the opposite side of mirror and against the evaporator, and then multicharged Fe ion beam is formed. We compare production of multicharged iron ions by using this new source with our previous methods.
Fracture mechanics analyses of ceramic/veneer interface under mixed-mode loading.
Wang, Gaoqi; Zhang, Song; Bian, Cuirong; Kong, Hui
2014-11-01
Few studies have focused on the interface fracture performance of zirconia/veneer bilayered structure, which plays an important role in dental all-ceramic restorations. The purpose of this study was to evaluate the fracture mechanics performance of zirconia/veneer interface in a wide range of mode-mixities (at phase angles ranging from 0° to 90°), and to examine the effect of mechanical properties of the materials and the interface on the fracture initiation and crack path of an interfacial crack. A modified sandwich test configuration with an oblique interfacial crack was proposed and calibrated to choose the appropriate geometry dimensions by means of finite element analysis. The specimens with different interface inclination angles were tested to failure under three-point bending configuration. Interface fracture parameters were obtained with finite element analyses. Based on the interfacial fracture mechanics, three fracture criteria for crack kinking were used to predict crack initiation and propagation. In addition, the effects of residual stresses due to coefficient of thermal expansion mismatch between zirconia and veneer on the crack behavior were evaluated. The crack initiation and propagation were well predicted by the three fracture criteria. For specimens at phase angle of 0, the cracks propagated in the interface; whereas for all the other specimens the cracks kinked into the veneer. Compressive residual stresses in the veneer can improve the toughness of the interface structure. The results suggest that, in zirconia/veneer bilayered structure the veneer is weaker than the interface, which can be used to explain the clinical phenomenon that veneer chipping rate is larger than interface delamination rate. Consequently, a veneer material with larger fracture toughness is needed to decrease the failure rate of all-ceramic restorations. And the coefficient of thermal expansion mismatch of the substrates can be larger to produce larger compressive stresses in the veneer. Copyright © 2014 Elsevier Ltd. All rights reserved.
Appraisal of formulas for stresses in bilayered dental ceramics subjected to biaxial moment loading.
Hsueh, C H; Thompson, G A
2007-07-01
The purpose of this study was to compare three existing sets of formulas predicting stresses in a thin circular plate subjected to biaxial moment loading, such that limitations for each set of formulas could be understood. These formulas include American Society for Testing and Materials (ASTM) formulas for monolayered plates, Roark's formulas for bilayered plates, and Hsueh et al.'s formulas for multilayered plates. The three sets of formulas were summarized and appraised. Biaxial moment loading is generally achieved using biaxial flexure tests, and the plate is placed on a support ring and loaded in the central region. While both ASTM and Hsueh et al.'s formulas predict stresses through the thickness of the plate, Roark's formulas predict stresses only on the top and the bottom surfaces of the plate. Also, a simply supported plate at its edge is considered in Roark's formulas. We modified Roark's formulas to include the overhang region of the plate to more closely simulate the actual loading configuration. Then, the accuracy of formulas was examined by comparing with finite element results of monolayered and bilayered plates subjected to ring-on-ring loading. Monolayer is a special case of bilayer, and both monolayer and bilayer are special cases of multilayer. For monolayered plates, ASTM and Hsueh et al.'s formulas are identical, and both are in excellent agreement with finite element results. For bilayered plates, Hsueh et al.'s formulas are in excellent agreement with finite element results. For both monolayered and bilayered plates, Roark's formulas deviate from finite element results while the modified Roark's formulas are accurate. Roark's formulas for evaluating the biaxial strength of bilayered dental ceramics will result in errors in predicted stresses which depend on the size of the overhang region of the plate in the actual loading configuration. Also, Roark's formulas are limited to predicting stresses on the top and the bottom surfaces of the plate. On the other hand, Hsueh et al.'s formulas are for multilayered plates and predict stresses through the plate thickness.
Appraisal of formulas for stresses in bilayered dental ceramics subjected to biaxial moment loading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsueh, Chun-Hway; Thompson, G. A.
Summary - Objectives: The purpose of this study was to compare three existing sets of formulas predicting stresses in a thin circular plate subjected to biaxial moment loading, such that limitations for each set of formulas could be understood. These formulas include American Society for Testing and Materials (ASTM) formulas for monolayered plates, Roark's formulas for bilayered plates, and Hsueh et al.'s formulas for multilayered plates. Methods: The three sets of formulas were summarized and appraised. Biaxial moment loading is generally achieved using biaxial flexure tests, and the plate is placed on a support ring and loaded in the centralmore » region. While both ASTM and Hsueh et al.'s formulas predict stresses through the thickness of the plate, Roark's formulas predict stresses only on the top and the bottom surfaces of the plate. Also, a simply supported plate at its edge is considered in Roark's formulas. We modified Roark's formulas to include the overhang region of the plate to more closely simulate the actual loading configuration. Then, the accuracy of formulas was examined by comparing with finite element results of monolayered and bilayered plates subjected to ring-on-ring loading. Results: Monolayer is a special case of bilayer, and both monolayer and bilayer are special cases of multilayer. For monolayered plates, ASTM and Hsueh et al.'s formulas are identical, and both are in excellent agreement with finite element results. For bilayered plates, Hsueh et al.'s formulas are in excellent agreement with finite element results. For both monolayered and bilayered plates, Roark's formulas deviate from finite element results while the modified Roark's formulas are accurate. Conclusions: Roark's formulas for evaluating the biaxial strength of bilayered dental ceramics will result in errors in predicted stresses which depend on the size of the overhang region of the plate in the actual loading configuration. Also, Roark's formulas are limited to predicting stresses on the top and the bottom surfaces of the plate. On the other hand, Hsueh et al.'s formulas are for multilayered plates and predict stresses through the plate thickness.« less
Computational Study of a Functionally Graded Ceramic-Metallic Armor
2006-12-15
UNCLAS –Dist. A - Approved for public release Computational Study of a Functionally Graded Ceramic-Metallic Armor Douglas W. Templeton1, Tara J...efficiency of a postulated FGM ceramic-metallic armor system composed of aluminum nitride (AlN) and aluminum. The study had two primary...2006 2. REPORT TYPE N/ A 3. DATES COVERED - 4. TITLE AND SUBTITLE Computational Study of a Functionally Graded Ceramic-Metallic Armor 5a
Fluorinated precursors of superconducting ceramics, and methods of making the same
Wiesmann, Harold; Solovyov, Vyacheslav
2014-02-18
This invention provides a method of making a fluorinated precursor of a superconducting ceramic. The method comprises providing a solution comprising a rare earth salt, an alkaline earth metal salt and a copper salt; spraying the solution onto a substrate to provide a film-covered substrate; and heating the film-covered substrate in an atmosphere containing fluorinated gas to provide the fluorinated precursor.
Fluorinated precursors of superconducting ceramics, and methods of making the same
Wiesmann, Harold [Stony Brook, NY; Solovyov, Vyacheslav [Rocky Point, NY
2008-04-22
This invention provides a method of making a fluorinated precursor of a superconducting ceramic. The method comprises providing a solution comprising a rare earth salt, an alkaline earth metal salt and a copper salt; spraying the solution onto a substrate to provide a film-covered substrate; and heating the film-covered substrate in an atmosphere containing fluorinated gas to provide the fluorinated precursor.
Fluorinated precursors of superconducting ceramics, and methods of making the same
Wiesmann, Harold [Stony Brook, NY; Solovyov, Vyacheslav [Rocky Point, NY
2012-07-10
This invention provides a method of making a fluorinated precursor of a superconducting ceramic. The method comprises providing a solution comprising a rare earth salt, an alkaline earth metal salt and a copper salt; spraying the solution onto a substrate to provide a film-covered substrate; and heating the film-covered substrate in an atmosphere containing fluorinated gas to provide the fluorinated precursor.
NASA Astrophysics Data System (ADS)
Chahal, Premjeet
In this work, new approaches to achieving integral resistors and capacitors on large area substrates at low temperatures in a high density wiring (HDW) environment using non-vacuum deposition techniques are introduced. This includes the use of polymer-ceramic nanocomposites for integral capacitors and electroless plating for integral resistors. From the literature review it is believed that resistors in the range of 5--50 ohm/square and capacitors in the range of 1--20 nF/cm2 can satisfy most of the mixed-signal application needs. The proposed materials can satisfy this need as demonstrated in this work. Several test vehicles were fabricated and measured to characterize the material properties, and demonstrate conventional and novel circuits for mixed-signal applications. To begin with, several polymer-ceramic combinations were analyzed under varying conditions to gain a fundamental understanding of the material system. Experimental advances have been made to achieve high dielectric constant values for both epoxy-ceramic and polyimide-ceramic systems. These material systems in general can satisfy specific capacitances in the range of 1--22 nF/cm2. These materials were found to be stable into the GHz range and have low loss-tangent. For electroless resistors, several plating baths were studied and a combination of Ni-P/Ni-W-P was found to produce the best results. Uniform plating was achieved through better nucleation of PdCl2 catalyst through the use of organosilane surface treatment. The Ni-P/Ni-W-P films produced sheet resistance in the range of 5--50 ohm/square and TCR below 50 ppm/°C. The material is stable into the GHz range. Upon optimizing the electrical properties and processing of capacitors and resistors, several test vehicles were fabricated to demonstrate some conventional and novel passive structures for RF and mixed-signal applications (e.g., filters, delay lines, etc.). Some of the structures were modeled using MDS and PSPICE and a good correlation between measured and modeled results were obtained. Capacitors on large area PWB substrates using meniscus coating are also demonstrated with a typical capacitance of 10 nF/cm2. The yield of the capacitor structures is found to be affected by the surface roughness of the bottom copper electrode. Resistors have been demonstrated on 6″ x 6″ substrates using a simple set-up.
Lazari, Priscilla Cardoso; Sotto-Maior, Bruno Salles; Rocha, Eduardo Passos; de Villa Camargos, Germana; Del Bel Cury, Altair Antoninha
2014-10-01
The chipping of ceramic veneers is a common problem for zirconia-based restorations and is due to the weak interface between both structures. The purpose of this study was to evaluate the mechanical behavior of ceramic veneers on zirconia and metal frameworks under 2 different bond-integrity conditions. The groups were created to simulate framework-veneer bond integrity with the crowns partially debonded (frictional coefficient, 0.3) or completely bonded as follows: crown with a silver-palladium framework cemented onto a natural tooth, ceramic crown with a zirconia framework cemented onto a natural tooth, crown with a silver-palladium framework cemented onto a Morse taper implant, and ceramic crown with a zirconia framework cemented onto a Morse taper implant. The test loads were 49 N applied to the palatal surface at 45 degrees to the long axis of the crown and 25.5 N applied perpendicular to the incisal edge of the crown. The maximum principal stress, shear stress, and deformation values were calculated for the ceramic veneer; and the von Mises stress was determined for the framework. Veneers with partial debonding to the framework (frictional coefficient, 0.3) had greater stress concentrations in all structures compared with the completely bonded veneers. The metal ceramic crowns experienced lower stress values than ceramic crowns in models that simulate a perfect bond between the ceramic and the framework. Frameworks cemented to a tooth exhibited greater stress values than frameworks cemented to implants, regardless of the material used. Incomplete bonding between the ceramic veneer and the prosthetic framework affects the mechanical performance of the ceramic veneer, which makes it susceptible to failure, independent of the framework material or complete crown support. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Characterization of the Microstructures of Various Materials.
1984-04-01
has been reviewed and is approved for publication. CHARLES R. UNDERWOOD Manager, Characterization Facility Structural Metals Branch Metals & Ceramics ...Division FOR THE COMMANDER GAIL E. EICHELMAN Chief, Structural Metals Branch Metals & Ceramics Division "If your address has changed, if you wish to...Electroplating Set-up, (b) P&W RSR185 Ni-Ni Plate , (c) Powder Distribution in 3-mill Disk. 12 2 Schematic Representation of Voltage-Current Characteristics for
Dynamic Response and Failure Mechanisms of Layered Ceramic-Elastomer-Polymer/Metal Composites
2010-08-20
characterization of each material constituent of interest, i.e., polyurea and DH-36 steel, over broad ranges of deformation rates, strains, and temperature of...metal-metal, metal- polyurea -metal and polyurea -ceramic composites. New steel plate designs with different thicknesses were employed to avoid tearing...of the sample at its supporting ring. New experiments support the hypothesis that the steel- polyurea sandwich samples show a noticeably better
Chen, Yifan; Liu, Hongchun; Meng, Yukun; Chao, Yonglie; Liu, Changhong
2015-06-01
This study aims to evaluate the optical data of the different sites of the cobalt-chrome (Co-Cr) alloy abutments covered by four different all-ceramic crowns and the color difference between the crowns and target tab using a digital dental spectrophotometer. Ten Co-Cr alloy abutments were made and tried in four different groups of all-ceramic crowns, namely, Procera aluminia, Procera zirconia, Lava zirconia (Lava-Zir), and IPS E.max glass-ceramic lithium disilicate-reinforced monolithic. The color data of the cervical, body, and incisal sites of the samples were recorded and analyzed by dental spectrophotometer. The CIE L*, a*, b* values were again measured after veneering. The color difference between the abutments covered by all-ceramic crowns and A2 dentine shade tab was evaluated. The L* and b* values of the abutments can be increased by all of the four groups of all-ceramic copings, but a* values were decreased in most groups. A statistical difference was observed among four groups. After being veneered, the L* values of all the copings declined slightly, and the values of a*, b* increased significantly. When compared with A2 dentine shade tab, the ΔE of the crowns was below 4. Four ceramic copings were demonstrated to promote the lightness and hue of the alloy abutments effecttively. Though the colorimetric baseline of these copings was uneven, veneer porcelain can efficiently decrease the color difference between the samples and thee target.
2013-09-01
for ballistic protection in the form of hard (e.g., ceramic plates ) and soft armor materials. The ultimate goal of these protective vests is to...Strain Decision Aid im Vapor permeability im/clo permeability index IOTV Interceptor Outer Tactical Vest m•s meters per second PC Plate Carrier RH...Army Body Armor Protection Levels (BAPL) 0 to 5 Level Configuration Added Weight lbs/kg BAPL 0 No body armor 0 BAPL 1 Vest or plate carrier with
Strength evaluation test of pressureless-sintered silicon nitride at room temperature
NASA Technical Reports Server (NTRS)
Matsusue, K.; Takahara, K.; Hashimoto, R.
1984-01-01
In order to study strength characteristics at room temperature and the strength evaluating method of ceramic materials, the following tests were conducted on pressureless sintered silicon nitride specimens: bending tests, the three tensile tests of rectangular plates, holed plates, and notched plates, and spin tests of centrally holed disks. The relationship between the mean strength of specimens and the effective volume of specimens are examined using Weibull's theory. The effect of surface grinding on the strength of specimens is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Steve; Elisberg, Brenton; Calderone, James
Thermal mechanical stresses of glass-ceramic to stainless steel (GCtSS) seals are analyzed using finite element modeling over a temperature cycle from a set temperature (T set) 500°C to -55°C, and then back to 600°C. There are two glass-ceramics that have an identical coefficient of thermal expansion (CTE) at ~16 ppm/°C but have very different linearity of thermal strains, designated as near-linear NL16 and step-like SL16, and were formed from the same parent glass using different crystallization processes. Stress modeling reveals much higher plastic strain in the stainless steel using SL16 glass-ceramic when the GCtSS seal cools from T set. Uponmore » heating tensile stresses start to develop at the GC-SS interface before the temperature reaches T set. On the other hand, the much lower plastic deformation in stainless steel accumulated during cooling using NL16 glass-ceramic allows for radially compressive stress at the GC-SS interface to remain present when the seal is heated back to T set. Finally, the qualitative stress comparison suggests that with a better match of thermal strain rate to that of stainless steel, the NL16 glass-ceramic not only improves the hermeticity of the GCtSS seals, but would also improve the reliability of the seals exposed to high-temperature and/or high-pressure abnormal environments.« less
Dai, Steve; Elisberg, Brenton; Calderone, James; ...
2017-04-21
Thermal mechanical stresses of glass-ceramic to stainless steel (GCtSS) seals are analyzed using finite element modeling over a temperature cycle from a set temperature (T set) 500°C to -55°C, and then back to 600°C. There are two glass-ceramics that have an identical coefficient of thermal expansion (CTE) at ~16 ppm/°C but have very different linearity of thermal strains, designated as near-linear NL16 and step-like SL16, and were formed from the same parent glass using different crystallization processes. Stress modeling reveals much higher plastic strain in the stainless steel using SL16 glass-ceramic when the GCtSS seal cools from T set. Uponmore » heating tensile stresses start to develop at the GC-SS interface before the temperature reaches T set. On the other hand, the much lower plastic deformation in stainless steel accumulated during cooling using NL16 glass-ceramic allows for radially compressive stress at the GC-SS interface to remain present when the seal is heated back to T set. Finally, the qualitative stress comparison suggests that with a better match of thermal strain rate to that of stainless steel, the NL16 glass-ceramic not only improves the hermeticity of the GCtSS seals, but would also improve the reliability of the seals exposed to high-temperature and/or high-pressure abnormal environments.« less
An Extended Hardness Limit in Bulk Nanoceramics
2014-01-01
spinel as an archetypal hard ceramic, the hardness of this transparent ceramic armor is shown to rigorously follow the Hall–Petch relationship down...as a result of complex phenomena related to an unconven- tionally high ratio of atoms on interfaces, or grain bound- aries, to atoms in the grain
NASA Astrophysics Data System (ADS)
Longbiao, Li
2018-02-01
In this paper, the strength degradation of non-oxide and oxide/oxide fiber-reinforced ceramic-matrix composites (CMCs) subjected to cyclic loading at elevated temperatures in oxidative environments has been investigated. Considering damage mechanisms of matrix cracking, interface debonding, interface wear, interface oxidation and fibers fracture, the composite residual strength model has been established by combining the micro stress field of the damaged composites, the damage models, and the fracture criterion. The relationships between the composite residual strength, fatigue peak stress, interface debonding, fibers failure and cycle number have been established. The effects of peak stress level, initial and steady-state interface shear stress, fiber Weibull modulus and fiber strength, and testing temperature on the degradation of composite strength and fibers failure have been investigated. The evolution of residual strength versus cycle number curves of non-oxide and oxide/oxide CMCs under cyclic loading at elevated temperatures in oxidative environments have been predicted.
NASA Astrophysics Data System (ADS)
Longbiao, Li
2015-12-01
The matrix multicracking evolution of cross-ply ceramic-matrix composites (CMCs) has been investigated using energy balance approach. The multicracking of cross-ply CMCs was classified into five modes, i.e., (1) mode 1: transverse multicracking; (2) mode 2: transverse multicracking and matrix multicracking with perfect fiber/matrix interface bonding; (3) mode 3: transverse multicracking and matrix multicracking with fiber/matrix interface debonding; (4) mode 4: matrix multicracking with perfect fiber/matrix interface bonding; and (5) mode 5: matrix multicracking with fiber/matrix interface debonding. The stress distributions of four cracking modes, i.e., mode 1, mode 2, mode 3 and mode 5, are analysed using shear-lag model. The matrix multicracking evolution of mode 1, mode 2, mode 3 and mode 5, has been determined using energy balance approach. The effects of ply thickness and fiber volume fraction on matrix multicracking evolution of cross-ply CMCs have been investigated.
Li, Longbiao
2015-01-01
The tension-tension fatigue behavior of unidirectional C/SiC ceramic-matrix composite at room temperature and 800 °C under air has been investigated. The fatigue hysteresis modulus and fatigue hysteresis loss energy corresponding to different number of applied cycles have been analyzed. The fatigue hysteresis loops models for different interface slip cases have been derived based on the fatigue damage mechanism of fiber slipping relative to matrix in the interface debonded region upon unloading and subsequent reloading. The fiber/matrix interface shear stress has been estimated for different numbers of applied cycles. By combining the interface shear stress degradation model and fibers strength degradation model with fibers failure model, the tension-tension fatigue life S-N curves of unidirectional C/SiC composite at room temperature and 800 °C under air have been predicted.
2015-06-18
x 4 inch square plates. All six plates of each COIC CMC were cut from the same mother panel of the respective material system. Definitive 30...Bibliography [1] W. L. Harper, Isaac Newton’s Scientific Method: Turning Data Into Evidence about Gravity and Cosmology , New York: Oxford University
NASA Astrophysics Data System (ADS)
Ebrahimi, Farzad; Dabbagh, Ali
2018-03-01
In this paper, a three-variable plate model is utilized to explore the wave propagation problem of smart sandwich nanoplates made of a magnetostrictive core and ceramic face sheets while subjected to thermo-magnetic loading. Herein, the magnetostriction effect is considered and controlled via a feedback control system. The nanoplate is supposed to be embedded on a visco-Pasternak elastic substrate. The kinematic relations are derived based on the Kirchhoff plate theory; also, combining these obtained equations with Hamilton's principle, the local equations of motion are achieved. According to a nonlocal strain gradient theory (NSGT), the small-scale influences are covered precisely by introducing two scale coefficients. Afterwards, the nonlocal governing equations are derived coupling the local equations with those of the NSGT. Applying an analytical solution, the wave frequency and phase velocity of the propagated waves can be gathered solving an eigenvalue problem. On the other hand, accuracy and efficiency of the presented model are verified by setting a comparison between the obtained results with those of previous published researches. Effects of different variants are plotted in some figures and the highlights are discussed in detail.
Tensile behavior of glass/ceramic composite materials at elevated temperatures
NASA Technical Reports Server (NTRS)
Mandell, J. F.; Grande, D. H.; Jacobs, J.
1987-01-01
This paper describes the tensile behavior of high-temperature composite materials containing continuous Nicalon ceramic fiber reinforcement and glass and glass/ceramic matrices. The longitudinal properties of these materials can approach theoretical expectations for brittle matrix composites, failing at a strength and ultimate strain level consistent with those of the fibers. The brittle, high-modulus matrices result in a nonlinear stress-strain curve due to the onset of stable matrix cracking at 10 to 30 percent of the fiber strain to failure, and at strains below this range in off-axis plies. Current fibers and matrices can provide attractive properties well above 1000 C, but composites experience embrittlement in oxidizing atmospheres at 800 to 1000 C due to oxidation of a carbon interface reaction layer.The oxidation effect greatly increases the interface bond strength, causing composite embrittlement.
Cheng, Sy-Chyi; Huang, Min-Zong; Wu, Li-Chieh; Chou, Chih-Chiang; Cheng, Chu-Nian; Jhang, Siou-Sian; Shiea, Jentaie
2012-07-17
Interfacing thin layer chromatography (TLC) with ambient mass spectrometry (AMS) has been an important area of analytical chemistry because of its capability to rapidly separate and characterize the chemical compounds. In this study, we have developed a high-throughput TLC-AMS system using building blocks to deal, deliver, and collect the TLC plate through an electrospray-assisted laser desorption ionization (ELDI) source. This is the first demonstration of the use of building blocks to construct and test the TLC-MS interfacing system. With the advantages of being readily available, cheap, reusable, and extremely easy to modify without consuming any material or reagent, the use of building blocks to develop the TLC-AMS interface is undoubtedly a green methodology. The TLC plate delivery system consists of a storage box, plate dealing component, conveyer, light sensor, and plate collecting box. During a TLC-AMS analysis, the TLC plate was sent to the conveyer from a stack of TLC plates placed in the storage box. As the TLC plate passed through the ELDI source, the chemical compounds separated on the plate would be desorbed by laser desorption and subsequently postionized by electrospray ionization. The samples, including a mixture of synthetic dyes and extracts of pharmaceutical drugs, were analyzed to demonstrate the capability of this TLC-ELDI/MS system for high-throughput analysis.
2009-12-20
condensations, ordered macroporous arrays of titania , zirconia, and alumina . Other work employing the silica templates has yielded macroporous carbons...Final 3. DATES COVERED (From - To) 05/01/05-09/30/09 4. TITLE AND SUBTITLE Chemical Routes to Ceramics with Tunable Properties and...ORGANIZATION REPORT NUMBER 9-2009 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) Air Force Office of Scientific Research Ceramic and
Deland, Trevor S; Niespodziewanski, Emily; Fenton, Todd W; Haut, Roger C
2016-01-01
The role of impact interface characteristics on the biomechanics and patterns of cranial fracture has not been investigated in detail, and especially for the pediatric head. In this study, infant porcine skulls aged 2-19 days were dropped with an energy to cause fracturing onto four surfaces varying in stiffness from a rigid plate to one covered with plush carpeting. Results showed that heads dropped onto the rigid surface produced more extensive cranial fracturing than onto carpeted surfaces. Contact forces generated at fracture initiation and the overall maximum contact forces were generally lower for the rigid than carpeted impacts. While the degree of cranial fracturing from impacts onto the heavy carpeted surface was comparable to that of lower-energy rigid surface impacts, there were fewer diastatic fractures. This suggests that characteristics of the cranial fracture patterns may be used to differentiate energy level from impact interface in pediatric forensic cases. © 2015 American Academy of Forensic Sciences.
NASA Astrophysics Data System (ADS)
Bangs, N. L.; McIntosh, K. D.; Silver, E. A.; Kluesner, J.; Ranero, C. R.
2013-12-01
Three-dimensional seismic reflection data from the Costa Rica margin NW of the Osa peninsula have enabled us to map the subduction megathrust from the trench to ~12 km subseafloor beneath the shelf. The subduction thrust has a large, abrupt downdip transition in seismic reflection amplitude from very high to low amplitude 6 km subseafloor beneath the upper slope. This transition broadly corresponds with an increase in concentration of microseismic earthquakes potentially due to a significant increase in plate coupling (Bangs et al., 2012, AGU Fall Meeting, T13A-2587), thus linking seismic reflection amplitude to fluid content and mechanical coupling along the fault. A detailed look at the overriding plate reflectivity shows numerous high-amplitude, continuous seismic reflections through the upper plate, many of which are clearly reversed-polarity from the seafloor reflection and are thus likely active fluid conduits through the overriding margin wedge, the slope cover sediment, and the seafloor. Broadly, the structural grain of the margin wedge trends E-W and dips landward across the lower slope and onto the shelf, presumably due to stress imparted by subducting ridges. However, directly above the abrupt high-to-low plate-boundary reflection amplitude transition, structures within the overlying margin wedge reverse dip, steepen, and change strike to an ESE direction. Within this zone we interpret a set of parallel reflections with small offsets and reverse-polarity as high-angle reverse faults that act as fluid conduits leading directly into shallow fluid migration systems described by Bangs et al., 2012 (AGU Fall Meeting, T13A-2587) and Kluesner et al. [this meeting]. The coincidence between the plate-boundary reflection amplitude patterns and the change in structure implies that the fluid migration pathways that drain the plate interface are locally disrupted by overriding plate structure in two possible ways: 1) by focusing up dip fluid migration along the plate interface into a thinner but richer fluid zone along the subduction thrust, or 2) by creating a more direct, nearly vertical route along high-angle reverse faults through the overlying margin wedge to the seafloor (possibly shortened by a factor of two) and draining deeper portions of the plate-boundary more efficiently.
Pressure actuated film riding seals for turbo machinery
Bidkar, Rahul Anil; Thatte, Azam Mihir; Gibson, Nathan Evan McCurdy; Giametta, Andrew Paul
2015-08-25
A seal assembly for a rotary machine is provided. The seal assembly includes multiple sealing device segments disposed circumferentially intermediate to a stationary housing and a rotor. Each of the sealing device segments includes a stator interface element, a shoe plate having an extended portion having one or more labyrinth teeth facing the rotor and a load bearing portion, wherein the shoe plate is configured to generate an aerodynamic force between the shoe plate and the rotor. The sealing device segment further includes a secondary seal configured to be in contact with the stator interface element at a radially outer end and configured to be in contact with an elevated nose section of the extended portion of the shoe plate on a radially inner end; and multiple flexible elements attached to the shoe plate and to the stator interface element.
NASA Technical Reports Server (NTRS)
Babcock, Jason R.; Ramachandran, Gautham; Williams, Brian E.; Effinger, Michael R.
2004-01-01
Ultraviolet-enhanced chemical vapor deposition (UVCVD) has been developed to lower the required substrate temperature thereby allowing for the application of metal oxide-based coatings to carbon and ceramic fibers without causing significant fiber damage. An effort to expand this capability to other ceramic phases chosen to maximize oxidation protection in the likely event of matrix cracking and minimize possible reaction between the coating and fiber during long-term high temperature use will be presented along with studies aimed at the demonstration of these and other benefits for the next-generation interface coating systems being developed herein.
NASA Astrophysics Data System (ADS)
Keeble, D. J.; Krishnan, A.; Umlor, M. T.; Lynn, K. G.; Warren, W. L.; Dimos, D.; Tuttle, B. A.
Preliminary positron annihilation studies of ceramic and thin film Pb(Zr,Ti)O3 (PZT) materials have been completed. This paper examines effects of processing conditions on vacancy related defects. Positron lifetime measurements on bulk PLZT plates showed an increase in positron trapping to a defect state with increasing grain size consistent with trapping to lead vacancy related defects formed through lead oxide loss during processing. Variable energy positron beam measurements were completed on bulk PLZT plates, sol-gel PZT thin films, and laser ablated PLZT thin films. Films processed in a reduced oxygen atmosphere were found to give a higher S-parameter, due to an increase in concentration of neutral or negatively charged vacancy type defects, compared with material processed in an oxidizing ambient.
Xie, Youtao; Li, Hongqin; Ding, Chuanxian; Zheng, Xuebin; Li, Kai
2015-01-01
Calcium silicate (CS) ceramic is a good coating candidate for biomedical implants to improve biocompatibility and accelerate early osseointegration. However, the poor fracture toughness and wear resistance of this ceramic material restricts the long-term performance of implants. In this study, graphene plates (GPs) were used as reinforcement to improve the mechanical properties of CS coating. Composite coating containing 1.5 weight % GPs was prepared by vacuum plasma spraying technology. The good survival of the GPs in the composite coating was demonstrated by Raman analysis, although the defects of the GPs were increased after plasma spraying. Effects of the GPs’ adoption on the microstructure of the coating were studied by scanning electron microscopy and transmission electron microscopy. Results showed that the GPs were homogenously distributed in the CS grains interface or enwrapped on the particles, and exhibited good wetting behavior with the CS matrix. The wear properties of the composite coating were obviously enhanced by the reinforcement of GPs. The reinforcement mechanism was attributed to the enhanced micro-hardness and interfacial bonding of the particles in the coating. In vivo experiments demonstrated that the composite coating possessed similarly good biocompatibility compared to pure CS coating. The bone-implant contact ratio reached 84.3%±7.4% for GPs/CS coating and 79.6%±9.4% for CS coating after 3 months’ implantation. PMID:26089662
Supersonic laser spray of aluminium alloy on a ceramic substrate
NASA Astrophysics Data System (ADS)
Riveiro, A.; Lusquiños, F.; Comesaña, R.; Quintero, F.; Pou, J.
2007-12-01
Applying a ceramic coating onto a metallic substrate to improve its wear resistance or corrosion resistance has attracted the interest of many researchers during decades. However, only few works explore the possibility to apply a metallic layer onto a ceramic material. This work presents a novel technique to coat ceramic materials with metals: the supersonic laser spraying. In this technique a laser beam is focused on the surface of the precursor metal in such a way that the metal is transformed to the liquid state in the beam-metal interaction zone. A supersonic jet expels the molten material and propels it to the surface of the ceramic substrate. In this study, we present the preliminary results obtained using the supersonic laser spray to coat a commercial cordierite ceramic plate with an Al-Cu alloy using a 3.5 kW CO 2 laser and a supersonic jet of Argon. Coatings were characterized by scanning electron microscopy (SEM) and interferometric profilometry.
Agarwal, Amrita; Pujari, Murali; Uppaluri, Ramgopal; Verma, Anil
2014-07-01
This article addresses furthering the role of sonication for the optimal fabrication of nickel ceramic composite membranes using electroless plating. Deliberating upon process modifications for surfactant induced electroless plating (SIEP) and combined surfactant and sonication induced electroless plating (SSOEP), this article highlights a novel method of contacting of the reducing agent and surfactant to the conventional electroless nickel plating baths. Rigorous experimental investigations indicated that the combination of ultrasound (in degas mode), surfactant and reducing agent pattern had a profound influence in altering the combinatorial plating characteristics. For comparison purpose, purely surfactant induced nickel ELP baths have also been investigated. These novel insights consolidate newer research horizons for the role of ultrasound to achieve dense metal ceramic composite membranes in a shorter span of total plating time. Surface and physical characterizations were carried out using BET, FTIR, XRD, FESEM and nitrogen permeation experiments. It has been analyzed that the SSOEP baths provided maximum ratio of percent pore densification per unit metal film thickness (PPDδ) and hold the key for further fine tuning of the associated degrees of freedom. On the other hand SIEP baths provided lower (PPDδ) ratio but higher PPD. For SSOEP baths with dropwise reducing agent and bulk surfactant, the PPD and metal film thickness values were 73.4% and 8.4 μm which varied to 66.9% and 13.3 μm for dropwise reducing agent and drop surfactant case. Copyright © 2014 Elsevier B.V. All rights reserved.
Effect of Backing Plate Thermal Property on Friction Stir Welding of 25-mm-Thick AA6061
NASA Astrophysics Data System (ADS)
Upadhyay, Piyush; Reynolds, Anthony
2014-04-01
By using backing plates made out of materials with widely varying thermal diffusivity this work seeks to elucidate the effects of the root side thermal boundary condition on weld process variables and resulting joint properties. Welds were made in 25.4-mm-thick AA6061 using ceramic, titanium, steel, and aluminum as backing plate (BP) material. Welds were also made using a "composite backing plate" consisting of longitudinal narrow strip of low diffusivity material at the center and two side plates of high diffusivity aluminum. Stir zone temperature during the welding was measured using two thermocouples spot welded at the core of the probe: one at the midplane height and another near the tip of the probe corresponding to the root of the weld. Steady state midplane probe temperatures for all the BPs used were found to be very similar. Near root peak temperature, however, varied significantly among weld made with different BPs all other things being equal. Whereas the near root and midplane temperature were the same in the case of ceramic backing plate, the root peak temperature was 318 K (45 °C) less than the midplane temperature in the case of aluminum BP. The trends of nugget hardness and grain size in through thickness direction were in agreement with the measured probe temperatures. Hardness and tensile test results show that the use of composite BP results in stronger joint compared to monolithic steel BP.
Locking of the Chile subduction zone controlled by fluid pressure before the 2010 earthquake
NASA Astrophysics Data System (ADS)
Moreno, Marcos; Haberland, Christian; Oncken, Onno; Rietbrock, Andreas; Angiboust, Samuel; Heidbach, Oliver
2014-04-01
Constraints on the potential size and recurrence time of strong subduction-zone earthquakes come from the degree of locking between the down-going and overriding plates, in the period between large earthquakes. In many cases, this interseismic locking degree correlates with slip during large earthquakes or is attributed to variations in fluid content at the plate interface. Here we use geodetic and seismological data to explore the links between pore-fluid pressure and locking patterns at the subduction interface ruptured during the magnitude 8.8 Chile earthquake in 2010. High-resolution three-dimensional seismic tomography reveals variations in the ratio of seismic P- to S-wave velocities (Vp/Vs) along the length of the subduction-zone interface. High Vp/Vs domains, interpreted as zones of elevated pore-fluid pressure, correlate spatially with parts of the plate interface that are poorly locked and slip aseismically. In contrast, low Vp/Vs domains, interpreted as zones of lower pore-fluid pressure, correlate with locked parts of the plate interface, where unstable slip and earthquakes occur. Variations in pore-fluid pressure are caused by the subduction and dehydration of a hydrothermally altered oceanic fracture zone. We conclude that variations in pore-fluid pressure at the plate interface control the degree of interseismic locking and therefore the slip distribution of large earthquake ruptures.
NASA Astrophysics Data System (ADS)
Longbiao, Li
2015-12-01
An analytical methodology has been developed to investigate the effect of fiber Poisson contraction on matrix multicracking evolution of fiber-reinforced ceramic-matrix composites (CMCs). The modified shear-lag model incorporated with the Coulomb friction law is adopted to solve the stress distribution in the interface slip region and intact region of the damaged composite. The critical matrix strain energy criterion which presupposes the existence of an ultimate or critical strain energy limit beyond which the matrix fails has been adopted to describe matrix multicracking of CMCs. As more energy is placed into the composite, matrix fractures and the interface debonding occurs to dissipate the extra energy. The interface debonded length under the process of matrix multicracking is obtained by treating the interface debonding as a particular crack propagation problem along the fiber/matrix interface. The effects of the interfacial frictional coefficient, fiber Poisson ratio, fiber volume fraction, interface debonded energy and cycle number on the interface debonding and matrix multicracking evolution have been analyzed. The theoretical results are compared with experimental data of unidirectional SiC/CAS, SiC/CAS-II and SiC/Borosilicate composites.
Non-volcanic tremor driven by large transient shear stresses
Rubinstein, J.L.; Vidale, J.E.; Gomberg, J.; Bodin, P.; Creager, K.C.; Malone, S.D.
2007-01-01
Non-impulsive seismic radiation or 'tremor' has long been observed at volcanoes and more recently around subduction zones. Although the number of observations of non-volcanic tremor is steadily increasing, the causative mechanism remains unclear. Some have attributed non-volcanic tremor to the movement of fluids, while its coincidence with geodetically observed slow-slip events at regular intervals has led others to consider slip on the plate interface as its cause. Low-frequency earthquakes in Japan, which are believed to make up at least part of non-volcanic tremor, have focal mechanisms and locations that are consistent with tremor being generated by shear slip on the subduction interface. In Cascadia, however, tremor locations appear to be more distributed in depth than in Japan, making them harder to reconcile with a plate interface shear-slip model. Here we identify bursts of tremor that radiated from the Cascadia subduction zone near Vancouver Island, Canada, during the strongest shaking from the moment magnitude Mw = 7.8, 2002 Denali, Alaska, earthquake. Tremor occurs when the Love wave displacements are to the southwest (the direction of plate convergence of the overriding plate), implying that the Love waves trigger the tremor. We show that these displacements correspond to shear stresses of approximately 40 kPa on the plate interface, which suggests that the effective stress on the plate interface is very low. These observations indicate that tremor and possibly slow slip can be instantaneously induced by shear stress increases on the subduction interface - effectively a frictional failure response to the driving stress. ??2007 Nature Publishing Group.
Non-volcanic tremor driven by large transient shear stresses.
Rubinstein, Justin L; Vidale, John E; Gomberg, Joan; Bodin, Paul; Creager, Kenneth C; Malone, Stephen D
2007-08-02
Non-impulsive seismic radiation or 'tremor' has long been observed at volcanoes and more recently around subduction zones. Although the number of observations of non-volcanic tremor is steadily increasing, the causative mechanism remains unclear. Some have attributed non-volcanic tremor to the movement of fluids, while its coincidence with geodetically observed slow-slip events at regular intervals has led others to consider slip on the plate interface as its cause. Low-frequency earthquakes in Japan, which are believed to make up at least part of non-volcanic tremor, have focal mechanisms and locations that are consistent with tremor being generated by shear slip on the subduction interface. In Cascadia, however, tremor locations appear to be more distributed in depth than in Japan, making them harder to reconcile with a plate interface shear-slip model. Here we identify bursts of tremor that radiated from the Cascadia subduction zone near Vancouver Island, Canada, during the strongest shaking from the moment magnitude M(w) = 7.8, 2002 Denali, Alaska, earthquake. Tremor occurs when the Love wave displacements are to the southwest (the direction of plate convergence of the overriding plate), implying that the Love waves trigger the tremor. We show that these displacements correspond to shear stresses of approximately 40 kPa on the plate interface, which suggests that the effective stress on the plate interface is very low. These observations indicate that tremor and possibly slow slip can be instantaneously induced by shear stress increases on the subduction interface-effectively a frictional failure response to the driving stress.
Asai, Tetsuya; Kazama, Ryunosuke; Fukushima, Masayoshi; Okiji, Takashi
2010-11-01
Controversy prevails over the effect of overglazing on the fracture strength of ceramic materials. Therefore, the effects of different surface finishes on the compressive fracture strength of machinable ceramic materials were investigated in this study. Plates prepared from four commercial brands of ceramic materials were either surface-polished or overglazed (n=10 per ceramic material for each surface finish), and bonded to flat surfaces of human dentin using a resin cement. Loads at failure were determined and statistically analyzed using two-way ANOVA and Bonferroni test. Although no statistical differences in load value were detected between polished and overglazed groups (p>0.05), the fracture load of Vita Mark II was significantly lower than those of ProCAD and IPS Empress CAD, whereas that of IPS e.max CAD was significantly higher than the latter two ceramic materials (p<0.05). It was concluded that overglazed and polished surfaces produced similar compressive fracture strengths irrespective of the machinable ceramic material tested, and that fracture strength was material-dependent.
Valentini, Fernanda; Moraes, Rafael R; Pereira-Cenci, Tatiana; Boscato, Noéli
2014-05-01
This study investigated the effect of the filler particle size (micron or submicron) of experimental resin cements on the microtensile bond strength to a glass-ceramic pretreated with hydrofluoric acid (HFA) etching or alumina airborne-particle abrasion (AA). Cements were obtained from a Bis-GMA/TEGDMA mixture filled with 60 mass% micron-sized (1 ± 0.2 µm) or submicron-sized (180 ± 30 µm) Ba-Si-Al glass particles. Ceramic blocks (PM9; VITA) were treated with 10% HFA for 60 s or AA for 15 s. Silane and adhesive were applied. Ceramic blocks were bonded to resin composite blocks (Z250; 3M ESPE) using one of the cements. Bonded specimens were sectioned into beams (n = 20/group) and subjected to microtensile bond strength tests. Data were analyzed using ANOVA and Student-Newman-Keuls' tests (5%). Failure modes were classified under magnification. Morphologies of the treated ceramic surfaces and bonded interfaces were evaluated by scanning electron microscopy. The HFA-submicron group had lower bond strengths than the other groups. All AA-submicron specimens debonded prematurely. Mixed failures were predominant for HFA groups, whereas interfacial failures predominated for AA groups. SEM revealed a honeycomb-like aspect in the HFA-treated ceramic, whereas the AA-treated groups showed an irregular retentive pattern. Continuity of cement infiltration along the bonded interface was more uniform for HFA-treated compared to AA-treated specimens. Cracks toward the bulk of the ceramic were observed in AA-treated specimens. Particle size significantly influenced the ceramic bond strength, whereas surface treatment had a minor effect. Copyright © 2014 Wiley Periodicals, Inc.
Three-dimensional, thermo-mechanical and dynamical analogue experiments of subduction: first results
NASA Astrophysics Data System (ADS)
Boutelier, D.; Oncken, O.
2008-12-01
We present a new analogue modeling technique developed to investigate the mechanics of the subduction process and the build-up of subduction orogenies. The model consists of a tank filled with water representing the asthenosphere and two lithospheric plates made of temperature-sensitive hydrocarbon compositional systems. These materials possess elasto-plastic properties allowing the scaling of thermal and mechanical processes. A conductive thermal gradient is imposed in the lithosphere prior to deformation. The temperature of the asthenosphere and model surface are imposed and controlled with an electric heater, two infrared ceramic heat emitters, two thermocouples and a thermo-regulator. This system allows an unobstructed view of the model surface, which is monitored using a stereoscopic particle image technique. This monitoring technique provides a precise quantification of the horizontal deformation and variations of elevation in the three-dimensional model. Convergence is imposed with a piston moving at a constant rate or pushing at a constant stress. The velocity is scaled using the dimensionless ratio of thermal conduction over advection. The experiments are first produced at a constant rate and the stress in the horizontal direction of the convergence is recorded. Then the experiment is reproduced with a constant stress boundary condition where the stress value is set to the averaged value obtained in the previous experiment. Therefore, an initial velocity allowing proper scaling of heat exchanges is obtained, but deformation in the model and spatial variations of parameters such as density or friction coefficient can produce variations of plate convergence velocity. This in turn impacts the strength of the model lithosphere because it changes the model thermal structure. In the first presented experiments the model lithosphere is one layer and the plate boundary is linear. The effects of variations of the subducting plate thickness, density and the lubrication of the interface between the plates are investigated.
Edge strength of CAD/CAM materials.
Pfeilschifter, Maria; Preis, Verena; Behr, Michael; Rosentritt, Martin
2018-05-16
To investigate the edge force of CAD/CAM materials as a function of (a) material, (b) thickness, and (c) distance from the margin. Materials intended for processing with CAD/CAM were investigated: eight resin composites, one resin-infiltrated ceramic, and a clinically proven lithiumdisilicate ceramic (reference). To measure edge force (that is, load to failure/crack), plates (d = 1 mm) were fixed and loaded with a Vickers diamond indenter (1 mm/min, Zwick 1446) at a distance of 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0 mm from the edge. Edge force was defined as a loading force at a distance of 0.5 mm. The type of failure was determined. To investigate the influence of the thickness, all data were determined on 1-mm and 2-mm plates. To test the influence of bonding and an underlying dentin, individual 1-mm plates were bonded to a 1-mm-thick dentin-like (concerning modulus of elasticity) resin composite. For the 1-mm plates, edge force varied between 64.4 ± 24.2 N (Shofu Block HC) and 183.2 ± 63.3 N (ceramic reference), with significant (p ≤ 0.001) differences between the materials. For the 2-mm plates, values between 129.2 ± 32.5 N (Lava Ultimate) and 230.3 ± 67.5 N (Cerasmart) were found. Statistical comparison revealed no significant differences (p > 0.109) between the materials. Brilliant Crios (p = 0.023), Enamic (p = 0.000), Shofu Blocks HC (p = 0.009), and Grandio Bloc (p = 0.002) showed significantly different edge force between the 1-mm- and 2-mm-thick plates. The failure pattern was either cracking, (severe) chipping, or fracture. Material, material thickness, and distance from the edge impact the edge force of CAD/CAM materials. CAD/CAM materials should be carefully selected on the basis of their individual edge force and performance during milling. Copyright © 2018 Elsevier Ltd. All rights reserved.
1994-04-01
Interfacial Mechanical Properties in Fiber Reinforced Ceramic Composites," 1. Am. Ceram. Soc., 70 (1987) 542-48. [25] P.D. Jero, R.J. Kerans and T.A...Mater., 40 [611251-57 (1992). [16] D.B. Marshall and W. Oliver, "Measurement of Interfacial Mechanical Properties in Fiber-Reinforced Ceramic...Charlottesville. VA 22903, U.S.A. (Received 14 July 1993;fl/al version acepted IS AustrW 1993) Abstract-The interfacial structure / property relationships of a
Behavior of ceramic particles at the solid-liquid metal interface in metal matrix composites
NASA Technical Reports Server (NTRS)
Stefanescu, D. M.; Dhindaw, B. K.; Kacar, S. A.; Moitra, A.
1988-01-01
Directional solidification results were obtained in order to investigate particle behavior at the solid-liquid interface in Al-2 pct Mg (cellular interface) and Al-6.1 pct Ni (eutectic interface) alloys. It is found that particles can be entrapped in the solid if adequate solidification rates and temperature gradients are used. Model results showed critical velocity values slightly higher than those obtained experimentally.
Effect of Interface Structure on the Microstructural Evolution of Ceramics
2007-11-06
because almost all the material properties are de - pendent upon their internal microstructures. Therefore, the microstructural evolution during the...growing interface de - pends upon the density of kinks on that interface. It fol- lows that the atomically smooth interface, which is char- acterized by...grain, and its de - tailed coarsening process has been treated elsewhere.139 During liquid-phase sintering, the formation of grain boundaries between
Salinity driven oceanographic upwelling
Johnson, D.H.
1984-08-30
The salinity driven oceanographic upwelling is maintained in a mariculture device that includes a long main duct in the general shape of a cylinder having perforated cover plates at each end. The mariculture device is suspended vertically in the ocean such that one end of the main duct is in surface water and the other end in relatively deep water that is cold, nutrient rich and relatively fresh in comparison to the surface water which is relatively warm, relatively nutrient deficient and relatively saline. A plurality of elongated flow segregating tubes are disposed in the main duct and extend from the upper cover plate beyond the lower cover plate into a lower manifold plate. The lower manifold plate is spaced from the lower cover plate to define a deep water fluid flow path to the interior space of the main duct. Spacer tubes extend from the upper cover plate and communicate with the interior space of the main duct. The spacer tubes are received in an upper manifold plate spaced from the upper cover plate to define a surface water fluid flow path into the flow segregating tubes. A surface water-deep water counterflow is thus established with deep water flowing upwardly through the main duct interior for discharge beyond the upper manifold plate while surface water flows downwardly through the flow segregating tubes for discharge below the lower manifold plate. During such counterflow heat is transferred from the downflowing warm water to the upflowing cold water. The flow is maintained by the difference in density between the deep water and the surface water due to their differences in salinity. The upwelling of nutrient rich deep water is used for marifarming by fertilizing the nutrient deficient surface water. 1 fig.
Salinity driven oceanographic upwelling
Johnson, David H.
1986-01-01
The salinity driven oceanographic upwelling is maintained in a mariculture device that includes a long main duct in the general shape of a cylinder having perforated cover plates at each end. The mariculture device is suspended vertically in the ocean such that one end of the main duct is in surface water and the other end in relatively deep water that is cold, nutrient rich and relatively fresh in comparison to the surface water which is relatively warm, relatively nutrient deficient and relatively saline. A plurality of elongated flow segregating tubes are disposed in the main duct and extend from the upper cover plate beyond the lower cover plate into a lower manifold plate. The lower manifold plate is spaced from the lower cover plate to define a deep water fluid flow path to the interior space of the main duct. Spacer tubes extend from the upper cover plate and communicate with the interior space of the main duct. The spacer tubes are received in an upper manifold plate spaced from the upper cover plate to define a surface water fluid flow path into the flow segregating tubes. A surface water-deep water counterflow is thus established with deep water flowing upwardly through the main duct interior for discharge beyond the upper manifold plate while surface water flows downwardly through the flow segregating tubes for discharge below the lower manifold plate. During such counterflow heat is transferred from the downflowing warm water to the upflowing cold water. The flow is maintained by the difference in density between the deep water and the surface water due to their differences in salinity. The upwelling of nutrient rich deep water is used for marifarming by fertilizing the nutrient deficient surface water.
NASA Astrophysics Data System (ADS)
Yang, Suyuan; Bao, Jiawei
2018-03-01
A 5083 Al/1060 Al/AZ31 composite plate was fabricated by explosive welding. The microstructure and properties of the composite plate were investigated after explosive welding. The results showed that all bonding interfaces were wavy interfaces. With an increasing distance from the detonation point, the wavelength and the amplitude also increased. The EDS results indicated that a 5-μm diffusion layer was observed at the 1060 Al/AZ31 layer, including the Mg2Al3 phase. Adiabatic shear bands and twin structures were observed in AZ31. The shear bond strength of the 5083 Al/1060 Al interface was 60 MPa, and the shear bond strength of the 1060 Al/AZ31 interface was 84 MPa.
Corrosion Resistance of a Cast-Iron Material Coated With a Ceramic Layer Using Thermal Spray Method
NASA Astrophysics Data System (ADS)
Florea, C. D.; Bejinariu, C.; Munteanu, C.; Istrate, B.; Toma, S. L.; Alexandru, A.; Cimpoesu, R.
2018-06-01
Cast-iron 250 used for breake systems present many corrosion signs after a mean usage time based on the environment conditions they work. In order to improve them corrosion resistance we propose to cover the active part of the material using a ceramic material. The deposition process is an industrial deposition system based on thermal spraying that can cover high surfaces in low time. In this articol we analyze the influence of a ceramic layer (40-50 µm) on the corrosion resistance of FC250 cast iron. The results were analyzed using scanning electron microscopy (SEM), X-ray energy dispersive (EDS) and linear and cyclic potentiometry.
Plate-tectonic boundary formation by grain-damage and pinning
NASA Astrophysics Data System (ADS)
Bercovici, David
2015-04-01
Shear weakening in the lithosphere is an essential ingredient for understanding how and why plate tectonics is generated from mantle convection on terrestrial planets. I present continued work on a theoretical model for lithospheric shear-localization and plate generation through damage, grain evolution and Zener pinning in two-phase (polycrystalline) lithospheric rocks. Grain size evolves through the competition between coarsening, which drives grain-growth, with damage, which drives grain reduction. The interface between phases controls Zener pinning, which impedes grain growth. Damage to the interface enhances the Zener pinning effect, which then reduces grain-size, forcing the rheology into the grain-size-dependent diffusion creep regime. This process thus allows damage and rheological weakening to co-exist, providing a necessary shear-localizing feedback. Moreover, because pinning inhibits grain-growth it promotes shear-zone longevity and plate-boundary inheritance. This theory has been applied recently to the emergence of plate tectonics in the Archean by transient subduction and accumulation of plate boundaries over 1Gyr, as well as to rapid slab detachment and abrupt tectonic changes. New work explores the saturation of interface damage at low interface curvature (e.g., because it is associated with larger grains that take up more of the damage, and/or because interface area is reduced). This effect allows three possible equilibrium grain-sizes for a given stress; a small-grain-size high-shear state in diffusion creep, a large grain-size low shear state in dislocation creep, and an intermediate state (often near the deformation map phase-boundary). The low and high grain-size states are stable, while the intermediate one is unstable. This implies that a material deformed at a given stress can acquire two stable deformation regimes, a low- and high- shear state; these are indicative of plate-like flows, i.e, the coexistence of both slowly deforming plates and rapidly deforming plate boundaries.
1985-09-01
Calibration 44 3.1.3 The SPIDER Calibration 45 3.1.*» Thermistor Temperature Detector Calibration. . 45 3.2 Amplifier Calibration 45 3.2.1...of a material with high conductivity and preferably high permeability. For the bunker construction, welded one-inch soft-steel plates were chosen for...Kovar flanges (metal- to-ceramic seal). The external plates are hel1arc- welded to the flanges. The external plate facing away from the incoming
Convenient mounting method for electrical measurements of thin samples
NASA Technical Reports Server (NTRS)
Matus, L. G.; Summers, R. L.
1986-01-01
A method for mounting thin samples for electrical measurements is described. The technique is based on a vacuum chuck concept in which the vacuum chuck simultaneously holds the sample and established electrical contact. The mounting plate is composed of a glass-ceramic insulating material and the surfaces of the plate and vacuum chuck are polished. The operation of the vacuum chuck is examined. The contacts on the sample and mounting plate, which are sputter-deposited through metal masks, are analyzed. The mounting method was utilized for van der Pauw measurements.
An exact analysis of a rectangular plate piezoelectric generator.
Yang, Jiashi; Chen, Ziguang; Hu, Yuantai
2007-01-01
We study thickness-twist vibration of a finite, piezoelectric plate of polarized ceramics or 6-mm crystals driven by surface mechanical loads. An exact solution from the three-dimensional equations of piezoelectricity is obtained. The plate is properly electroded and connected to a circuit such that an electric output is generated. The structure analyzed represents a piezoelectric generator for converting mechanical energy to electrical energy. Analytical expressions for the output voltage, current, power, efficiency, and power density are given. The basic behaviors of the generator are shown by numerical results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-05-01
An assessment of needs was completed, and a five-year project plan was developed with input from private industry. Objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. Focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. The work described in this report is organized according to the following WBS project elements: management and coordination; materials and processing (monolithics, ceramic composites, thermal and wear coatings, joining); materials design methodology (contact interfaces, newmore » concepts); data base and life prediction (time-dependent behavior, environmental effects, fracture mechanics, NDE development); and technology transfer. This report includes contributions from all currently active project participants.« less
Could Fluid Seeps Originate from the Seismogenic Zone? Evidence from Southern Costa Rica
NASA Astrophysics Data System (ADS)
Silver, E. A.; Kluesner, J. W.; Nale, S. M.; Bangs, N. L.; McIntosh, K. D.; Ranero, C. R.; Tryon, M. D.; Spinelli, G. A.; Rathburn, T.; von Huene, R.
2013-12-01
The prevailing conceptual model of convergent margin hydrogeology is one in which fluid sourced from porosity loss and dehydration reactions seaward of the updip limit of the seismogenic zone reach the seafloor via relatively low angle splay faults that act as high permeability conduits through an otherwise nearly impermeable upper plate [e.g., Lauer and Saffer, GRL, 39:L13604, 2012; Saffer and Tobin, Ann. Rev. Earth Planet. Sci., 39:157-186, 2011]. Interpretation of newly acquired 3D seismic reflection data and high resolvability multibeam and backscatter data, showing evidence for abundant potential fluid seeps sourced beneath the sediment cover and farther landward than previously thought possible, may require reevaluation of this concept. Kluesner et al. [2013, G3, doi:10.1002/ggge.20058], identified 160 potential fluid seeps in an 11 km wide swath off southern Costa Rica, based on pockmarks and high backscatter mounds, each showing subsurface indicators of fluid migration in the seismic data. Approximately half of these potential seeps are on the outer continental shelf; these are landward of the updip limit of the seismogenic zone, as estimated by both the transition from high to low reflectivity of the plate boundary and the intersection of the 150°C isotherm with the plate boundary [Ranero et al., 2008, G3, doi:10.1029/2007GC001679; Bangs et al., 2012, AGU Fall Meeting, T13A-2587; Bangs et al., this meeting]. We have mapped high probability fluid pathways beneath these potential seeps, based on seismic meta-attribute volumes calculated using user-trained neural network algorithms [Kluesner et al., this meeting]. The mapped fluid pathways are high-angle through the sedimentary section, and they root into basement highs and basement faults. Fluids could originate along the plate interface, where potential sources and pathways are known (Mid-slope sites: Hensen et al., 2004, Geology, 32:201-204), or above or below the interface, although sources from these regions have not been reported. They could travel near vertical paths through the crustal rocks, or along a landward-dipping path, because the seismic data show landward dips but not seaward dips. If the fluids do come from the plate interface, they originate in the seismogenic zone. This inference can be tested by geochemical study of the outer shelf fluid seeps, where such sampling has not yet occurred.
A rigid and thermally stable all ceramic optical support bench assembly for the LSST Camera
NASA Astrophysics Data System (ADS)
Kroedel, Matthias; Langton, J. Brian; Wahl, Bill
2017-09-01
This paper will present the ceramic design, fabrication and metrology results and assembly plan of the LSST camera optical bench structure which is using the unique manufacturing features of the HB-Cesic technology. The optical bench assembly consists of a rigid "Grid" fabrication supporting individual raft plates mounting sensor assemblies by way of a rigid kinematic support system to meet extreme stringent requirements for focal plane planarity and stability.
Footprint Reduction for the Acoustic Electric Feedthrough Technique
2010-03-01
input current measured using a 1 Ω sense resistor . Modulation depth of the peak- to-peak input current was 2Δ ~ 20...behaviour of an AEF arrangement formed using piezo -ceramic disks with diameter 38 mm and thickness 2 mm, across an aluminium plate with thickness 1.6 to 5...the 38 mm diameter piezo -ceramic disks. In an attempt to resolve this matter, the DSTO has examined an AEF system formed using disks with 10 mm
Gas turbine vane platform element
Campbell, Christian X [Oviedo, FL; Schiavo, Anthony L [Oviedo, FL; Morrison, Jay A [Oviedo, FL
2012-08-28
A gas turbine CMC shroud plate (48A) with a vane-receiving opening (79) that matches a cross-section profile of a turbine vane airfoil (22). The shroud plate (48A) has first and second curved circumferential sides (73A, 74A) that generally follow the curves of respective first and second curved sides (81, 82) of the vane-receiving opening. Walls (75A, 76A, 77A, 78A, 80, 88) extend perpendicularly from the shroud plate forming a cross-bracing structure for the shroud plate. A vane (22) may be attached to the shroud plate by pins (83) or by hoop-tension rings (106) that clamp tabs (103) of the shroud plate against bosses (105) of the vane. A circular array (20) of shroud plates (48A) may be assembled to form a vane shroud ring in which adjacent shroud plates are separated by compressible ceramic seals (93).
Zhang, Zhenzhen; Guo, Jiawen; Sun, Yali; Tian, Beimin; Zheng, Xiaojuan; Zhou, Ming; He, Lin; Zhang, Shaofeng
2018-05-01
The purpose of this study is to improve wear resistance and mechanical properties of lithium disilicate glass-ceramics by refining their crystal sizes. After lithium disilicate glass-ceramics (LD) were melted to form precursory glass blocks, bar (N = 40, n = 10) and plate (N = 32, n = 8) specimens were prepared. According to the differential scanning calorimetry (DSC) of precursory glass, specimens G1-G4 were designed to form lithium disilicate glass-ceramics with different crystal sizes using a two-step thermal treatment. In the meantime, heat-pressed lithium disilicate glass-ceramics (GC-P) and original ingots (GC-O) were used as control groups. Glass-ceramics were characterized using X-ray diffraction (XRD) and were tested using flexural strength test, nanoindentation test and toughness measurements. The plate specimens were dynamically loaded in a chewing simulator with 350 N up to 2.4 × 10 6 loading cycles. The wear analysis of glass-ceramics was performed using a 3D profilometer after every 300,000 wear cycles. Wear morphologies and microstructures were analyzed by scanning electron microscopy (SEM). One-way analysis of variance (ANOVA) was used to analyze the data. Multiple pairwise comparisons of means were performed by Tukey's post-hoc test. Materials with different crystal sizes (p < 0.05) exhibited different properties. Specifically, G3 with medium-sized crystals presented the highest flexural strength, hardness, elastic modulus and fracture toughness. G1 and G2 with small-sized crystals showed lower flexural strength, whereas G4, GC-P, and GC-O with large-sized crystals exhibited lower hardness and elastic modulus. The wear behaviors of all six groups showed running-in wear stage and steady wear stage. G3 showed the best wear resistance while GC-P and GC-O exhibited the highest wear volume loss. After crystal refining, lithium disilicate glass-ceramic with medium-sized crystals showed the highest wear resistance and mechanical properties. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ganesh, VK; Ramakrishna, K; Ghista, Dhanjoo N
2005-01-01
Background In the internal fixation of fractured bone by means of bone-plates fastened to the bone on its tensile surface, an on-going concern has been the excessive stress-shielding of the bone by the excessively-stiff stainless-steel plate. The compressive stress-shielding at the fracture-interface immediately after fracture-fixation delays callus formation and bone healing. Likewise, the tensile stress-shielding of the layer of the bone underneath the plate can cause osteoporosis and decrease in tensile strength of this layer. Method In order to address this problem, we propose to use stiffness-graded plates. Accordingly, we have computed (by finite-element analysis) the stress distribution in the fractured bone fixed by composite plates, whose stiffness is graded both longitudinally and transversely. Results It can be seen that the stiffness-graded composite-plates cause less stress-shielding (as an example: at 50% of the healing stage, stress at the fracture interface is compressive in nature i.e. 0.002 GPa for stainless steel plate whereas stiffness graded plates provides tensile stress of 0.002 GPa. This means that stiffness graded plate is allowing the 50% healed bone to participate in loadings). Stiffness-graded plates are more flexible, and hence permit more bending of the fractured bone. This results in higher compressive stresses induced at the fractured faces accelerate bone-healing. On the other hand, away from the fracture interface the reduced stiffness and elastic modulus of the plate causes the neutral axis of the composite structure to be lowered into the bone resulting in the higher tensile stress in the bone-layer underneath the plate, wherein is conducive to the bone preserving its tensile strength. Conclusion Stiffness graded plates (with in-built variable stiffness) are deemed to offer less stress-shielding to the bone, providing higher compressive stress at the fractured interface (to induce accelerated healing) as well as higher tensile stress in the intact portion of the bone (to prevent bone remodeling and osteoporosis). PMID:16045807
Geopolymers for Structural Ceramic Applications
2006-08-31
Applications of geopolymers have included ceramic matrix composites ,ŕ, 3 waste encapsulation 9-11and alternative cements.7,12,14 As adhesives... compositions of the geopolymer adhesive interfaces were studied with scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Durable...after thermal shock testing. In response, chopped-fiber reinforced geopolymer composites were processed as possible candidate mold materials for casting
Structural health monitoring using a hybrid network of self-powered accelerometer and strain sensors
NASA Astrophysics Data System (ADS)
Alavi, Amir H.; Hasni, Hassene; Jiao, Pengcheng; Lajnef, Nizar
2017-04-01
This paper presents a structural damage identification approach based on the analysis of the data from a hybrid network of self-powered accelerometer and strain sensors. Numerical and experimental studies are conducted on a plate with bolted connections to verify the method. Piezoelectric ceramic Lead Zirconate Titanate (PZT)-5A ceramic discs and PZT-5H bimorph accelerometers are placed on the surface of the plate to measure the voltage changes due to damage progression. Damage is defined by loosening or removing one bolt at a time from the plate. The results show that the PZT accelerometers provide a fairly more consistent behavior than the PZT strain sensors. While some of the PZT strain sensors are not sensitive to the changes of the boundary condition, the bimorph accelerometers capture the mode changes from undamaged to missing bolt conditions. The results corresponding to the strain sensors are better indicator to the location of damage compared to the accelerometers. The characteristics of the overall structure can be monitored with even one accelerometer. On the other hand, several PZT strain sensors might be needed to localize the damage.
Li, Longbiao
2016-01-01
In this paper, the fatigue life of fiber-reinforced ceramic-matrix composites (CMCs) with different fiber preforms, i.e., unidirectional, cross-ply, 2D (two dimensional), 2.5D and 3D CMCs at room and elevated temperatures in air and oxidative environments, has been predicted using the micromechanics approach. An effective coefficient of the fiber volume fraction along the loading direction (ECFL) was introduced to describe the fiber architecture of preforms. The statistical matrix multicracking model and fracture mechanics interface debonding criterion were used to determine the matrix crack spacing and interface debonded length. Under cyclic fatigue loading, the fiber broken fraction was determined by combining the interface wear model and fiber statistical failure model at room temperature, and interface/fiber oxidation model, interface wear model and fiber statistical failure model at elevated temperatures, based on the assumption that the fiber strength is subjected to two-parameter Weibull distribution and the load carried by broken and intact fibers satisfies the Global Load Sharing (GLS) criterion. When the broken fiber fraction approaches the critical value, the composites fatigue fracture. PMID:28773332
High-power, multioutput piezoelectric transformers operating at the thickness-shear vibration mode.
Du, Jinlong; Hu, Junhui; Tseng, King Jet
2004-05-01
In this study, a piezoelectric transformer operating at the thickness shear vibration mode and with dual or triple outputs is proposed. It consists of a lead zirconate titanate (PZT) ceramic plate with a high mechanical quality factor Qm and a size of 120 x 20 x 4 mm3. The PZT ceramic plate is poled along the width direction. The electrodes of input and output parts are on the top and bottom surfaces of the ceramic plate and separated by narrow gaps. A new construction of support and lead wire connection is used for the transformer. At a temperature rise less than 20 degrees C and efficiency of 90%, the piezoelectric transformer with dual outputs has a maximum total output power of 169.8 W, with a power of 129.5 W in one output and 40.3 W in another. The one with triple outputs has a maximum total output power of 163.1 W, with a power of 36.9 W in the first output, 13.0 W in the second output and 113.2 W in the third output. The maximum efficiency of the piezoelectric transformer with dual outputs and triple outputs is 98% and 95.7%, respectively. The voltage gains of the transformers are less than one, and different outputs have different gains. Also, there is a driving frequency range in which the load resistance of one output has little effect on the voltage gain of another output.
NASA Astrophysics Data System (ADS)
Choudhary, Kamal; Congo, Faical Yannick P.; Liang, Tao; Becker, Chandler; Hennig, Richard G.; Tavazza, Francesca
2017-01-01
Classical empirical potentials/force-fields (FF) provide atomistic insights into material phenomena through molecular dynamics and Monte Carlo simulations. Despite their wide applicability, a systematic evaluation of materials properties using such potentials and, especially, an easy-to-use user-interface for their comparison is still lacking. To address this deficiency, we computed energetics and elastic properties of variety of materials such as metals and ceramics using a wide range of empirical potentials and compared them to density functional theory (DFT) as well as to experimental data, where available. The database currently consists of 3248 entries including energetics and elastic property calculations, and it is still increasing. We also include computational tools for convex-hull plots for DFT and FF calculations. The data covers 1471 materials and 116 force-fields. In addition, both the complete database and the software coding used in the process have been released for public use online (presently at http://www.ctcms.nist.gov/˜knc6/periodic.html) in a user-friendly way designed to enable further material design and discovery.
Choudhary, Kamal; Congo, Faical Yannick P.; Liang, Tao; Becker, Chandler; Hennig, Richard G.; Tavazza, Francesca
2017-01-01
Classical empirical potentials/force-fields (FF) provide atomistic insights into material phenomena through molecular dynamics and Monte Carlo simulations. Despite their wide applicability, a systematic evaluation of materials properties using such potentials and, especially, an easy-to-use user-interface for their comparison is still lacking. To address this deficiency, we computed energetics and elastic properties of variety of materials such as metals and ceramics using a wide range of empirical potentials and compared them to density functional theory (DFT) as well as to experimental data, where available. The database currently consists of 3248 entries including energetics and elastic property calculations, and it is still increasing. We also include computational tools for convex-hull plots for DFT and FF calculations. The data covers 1471 materials and 116 force-fields. In addition, both the complete database and the software coding used in the process have been released for public use online (presently at http://www.ctcms.nist.gov/∼knc6/periodic.html) in a user-friendly way designed to enable further material design and discovery. PMID:28140407
NASA Astrophysics Data System (ADS)
Romînu, Roxana Otilia; Sinescu, Cosmin; Romînu, Mihai; Negrutiu, Meda; Laissue, Philippe; Mihali, Sorin; Cuc, Lavinia; Hughes, Michael; Bradu, Adrian; Podoleanu, Adrian
2008-09-01
Bonding has become a routine procedure in several dental specialties - from prosthodontics to conservative dentistry and even orthodontics. In many of these fields it is important to be able to investigate the bonded interfaces to assess their quality. All currently employed investigative methods are invasive, meaning that samples are destroyed in the testing procedure and cannot be used again. We have investigated the interface between human enamel and bonded ceramic brackets non-invasively, introducing a combination of new investigative methods - optical coherence tomography (OCT) and confocal microscopy (CM). Brackets were conventionally bonded on conditioned buccal surfaces of teeth The bonding was assessed using these methods. Three dimensional reconstructions of the detected material defects were developed using manual and semi-automatic segmentation. The results clearly prove that OCT and CM are useful in orthodontic bonding investigations.
ACES. Accelerated Corrosion Expert Simulator
2010-02-01
Composites Coating Systems Organic Inorganic Ceramic Materials 22 Inputs and Dimensions Xi Thickness Hardness Strength Ductility Abrasion Resistance...GPU 25 T-Handle Latch 10-Year ACT Material/ Coating Configuration Die Cast Zinc T-Handle Carbon Steel Pin CS Shank CS T-Washer Carbon Steel Dish E- coat ...CARC Zinc Plating Cadmium Plated BoltE- coat /CARC CS Panel CS Panel O-Ring E- coat /CARC Original (10-year ACT) Design Green Flag Color Qualitative
Development of ceramic-coated weld backing bars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eggleston, B.R.
1994-10-20
In shipbuilding and many other industries, copper weld backing bars are used to draw the heat out of the weld. The problem that some users of these bars encounter is that these bars, on occasion, actually melt in spots and become welded to the weld plates. After this happens a number of times, the backing bar becomes so degraded that it must be either discarded or machined, both of which are very costly and time-consuming actions. To avoid this fusion between the backing bar and the weld plate, the weld processes that are used cannot be ones of high beatmore » input. This requirement is very limiting when thick plates are being welded. The plates must be beveled, and more weld passes must be run. These problems are also costly and time consuming. The aim of this project is to find a way to produce backing bars with nearly the same `chilling` effect but with both a greater resistance to molten metal and resistance to arcing to the backing bar itself. A possible solution currently being tested is to coat the copper bars with a thin layer of a ceramic coating. The procedure used was to coat the copper bars with either alumina or spinel by a plasma spraying method.« less
NASA Astrophysics Data System (ADS)
Trott, Wayne M.; Knudson, Marcus D.; Chhabildas, Lalit C.; Asay, James R.
2000-04-01
Relatively straightforward changes in the design of a conventional optically recording velocity interferometer system (ORVIS) can be used to produce a line-imaging instrument that allows adjustment of spatial resolution over a wide range. As a result, line-imaging ORVIS can be tailored to various specific applications involving dynamic deformation of heterogeneous materials as required by their characteristic length scales (ranging from a few μm for ferroelectric ceramics to a few mm for concrete). A line-imaging system has been successfully interfaced to a compressed gas gun driver and fielded on numerous tests in combination with simultaneous dual delay-leg, "push-pull" VISAR measurements. These tests include shock loading of glass-reinforced polyester composites, foam reverberation experiments (measurements at the free surface of a thin aluminum plate impacted by foam), and measurements of dispersive velocity in a shock-loaded explosive simulant (sugar). Results are presented that illustrate the capability for recording detailed spatially resolved material response.
Interaction of multiferroic properties and interfaces in hexagonal LuMnO3 ceramics
NASA Astrophysics Data System (ADS)
Baghizadeh, A.; Vieira, J. M.; Stroppa, D. G.; Mirzadeh Vaghefi, P.; Graça, M. P.; Amaral, J. S.; Willinger, M.-G.; Amaral, V. S.
2017-02-01
A study on the underlying interaction mechanisms between lattice constants, magnetic and dielectric properties with inhomogeneities or internal interfaces in hexagonal, off-stoichiometric LuMnO3 oxide is presented. By increasing Mn content the a-axis constant and volume of the unit cell, the antiferromagnetic (AFM) Néel temperature, T N, and frustration factor of the frustrated Mn3+ trimmers in basal plane show decreasing trends. It was found that increasing the annealing time improves the properties of the lattices and progressively eliminates secondary phases for compositions within the solid solution stability limits. A magnetic contribution below T N is observed for all samples. Two regimes of magnetization below and above 45 K were observed in the AFM state. The magnetic contribution below T N is assigned to either the secondary phase or internal interfaces like ferroelectric (FE) domain walls. Magneto-dielectric coupling at T N is preserved in off-stoichiometric ceramics. The presence of a low temperature anomaly of the dielectric constant is correlated to the composition of the solid solution in off-stoichiometric ceramics. Large FE domains are observed in piezoresponse force microscopy (PFM) images of doped and un-doped ceramics, whereas atomic structure analysis indicates the parallel formation of nano-sized FE domains. A combination of measured properties and microscopy images of micron- and nano-sized domains ascertain the role of lattice distortion and stability of solid solution on multiferroic properties.
Boundary layer control device for duct silencers
NASA Technical Reports Server (NTRS)
Schmitz, Fredric H. (Inventor); Soderman, Paul T. (Inventor)
1993-01-01
A boundary layer control device includes a porous cover plate, an acoustic absorber disposed under the porous cover plate, and a porous flow resistive membrane interposed between the porous cover plate and the acoustic absorber. The porous flow resistive membrane has a flow resistance low enough to permit sound to enter the acoustic absorber and high enough to damp unsteady flow oscillations.
NASA Astrophysics Data System (ADS)
Hameury, J.; Koenen, A.; Hay, B.; Wu, J.; Hammerschmidt, U.; Rafeld, E. K.; Pennewitz, E.; Turzó-András, E.; Strnad, R.; Blahut, A.
2018-01-01
The selection of a material for making the hot and cold plates of high-temperature guarded hot plates (HTGHPs) working up to 800°C is still an issue. The material must be machinable, have a high mechanical stability to keep the high level of flatness of the plates and have a high thermal conductivity and a high resistance to oxidation when used in air. Nickel 201 alloy has been used in several instruments, but has shown, sometimes, problems of mechanical stability. The total hemispherical emissivity of the plates must be higher than 0.8 as recommended by the standards. Three ceramic materials, a silicon infiltrated silicon carbide (SiSiC), a machinable aluminum nitride and a sintered aluminum nitride (AlN) with high thermal conductivity claimed at ambient temperature, were selected for tests in thermal conductivity and opacity to thermal radiation. Three paints withstanding high temperatures were tested in total hemispherical emissivity and durability at high temperature. Above 600°C, Nickel 201 alloy has a higher thermal conductivity than the three ceramics. Below 600°C, the SiSiC and the sintered AlN have a thermal conductivity significantly higher than Nickel 201, but the sintered AlN shows a wide transparency spectral band at short wavelengths (below 6.5 μ m). Above 300°C, the three paints have a total hemispherical emissivity above 0.8. One of the paints has polluted the specimens of an insulation material tested in thermal conductivity up to 650°C. The other two can be recommended to coat the hot and cold plates of HTGHPs used up to 800°C.
NASA Astrophysics Data System (ADS)
Heitzer, Joerg
1992-05-01
Two methods for the numerical solution of the integral equation describing the kinked interface crack, one proposed by Erdogan et al. (1973) and the other by Theokaris and Iokimidis (1979), are examined. The method of Erdogan et al. is then used to solve the equation in order to determine the kinking angle of the interface crack. Results are presented for two material combinations, aluminum/epoxy and glass/ceramic, under uniaxial tension in the direction normal to the interface.
Li, Longbiao
2016-01-01
In this paper, the cyclic fatigue hysteresis loops of 2D woven SiC/SiC ceramic matrix composites (CMCs) at elevated temperatures in steam have been investigated. The interface slip between fibers and the matrix existing in matrix cracking modes 3 and 5, in which matrix cracking and interface debonding occurred in longitudinal yarns, is considered as the major reason for hysteresis loops of 2D woven CMCs. The hysteresis loops of 2D SiC/SiC composites corresponding to different peak stresses, test conditions, and loading frequencies have been predicted using the present analysis. The damage parameter, i.e., the proportion of matrix cracking mode 3 in the entire matrix cracking modes of the composite, and the hysteresis dissipated energy increase with increasing fatigue peak stress. With increasing cycle number, the interface shear stress in the longitudinal yarns decreases, leading to transition of interface slip types of matrix cracking modes 3 and 5. PMID:28773544
NASA Astrophysics Data System (ADS)
Li, L. B.
2018-05-01
The deformation of 2D and 2.5 C/SiC woven ceramic-matrix composites (CMCs) in monotonic and cyclic loadings has been investigated. Statistical matrix multicracking and fiber failure models and the fracture mechanics interface debonding approach are used to determine the spacing of matrix cracks, the debonded length of interface, and the fraction of broken fibers. The effects of fiber volume fraction and fiber Weibull modulus on the damage evolution in the composites and on their tensile stress-strain curves are analyzed. When matrix multicracking and fiber/matrix interface debonding occur, the fiber slippage relative to the matrix in the debonded interface region of the 0° warp yarns is the main reason for the emergance of stress-strain hysteresis loops for 2D and 2.5D woven CMCs. A model of these loops is developed, and histeresis loops for the composites in cyclic loadings/unloadings are predicted.
Preheating Water In The Covers Of Solar Water Heaters
NASA Technical Reports Server (NTRS)
Bhandari, Pradeep
1995-01-01
Solar water heaters that include glass covers over absorber plates redesigned to increase efficiencies according to proposal. Redesign includes modification of single-layer glass cover into double-layer glass cover and addition of plumbing so cool water to be heated made to flow between layers of cover before entering absorber plate.
NASA Technical Reports Server (NTRS)
Clemons, J. M.; Penn, B. G.; Ledbetter, Frank E., III; Daniels, J. G.
1987-01-01
Improvement upon recommended procedures saves time and expense. Autoclave molding in vacuum bag cleaner if adhesive-backed covering placed around caul plate as well as on mold plate. Covering easy to remove after curing and leaves caul plate free of resin deposits.
Nanocrystallization in Fluorochlorozirconate Glass-Ceramics.
Alvarez, Carlos J; Liu, Yuzi; Leonard, Russell L; Johnson, Jacqueline A; Petford-Long, Amanda K
2013-11-01
Heat treating fluorochlorozirconate (FCZ) glasses nucleates nanocrystals in the glass matrix, resulting in a nanocomposite glass-ceramic that has optical properties suitable for use as a medical imaging plate. Understanding the way in which the nanocrystal nucleation proceeds is critical to controlling the optical behavior. The nucleation and growth of nanocrystals in FCZ glass-ceramics was investigated with in situ transmission electron microscopy heating experiments. The experiments showed the nucleation and growth of previously unreported BaF 2 nanocrystals in addition to the expected BaCl 2 nanocrystals. Chemical analysis of the BaF 2 nanocrystals shows an association with the optically active dopant previously thought only to interact with BaCl 2 nanocrystals. The association of the dopant with BaF 2 crystals suggests that it plays a role in the photoluminescent (PL) properties of FCZ glass-ceramics.
Wear in ceramic on ceramic type lumbar total disc replacement: effect of radial clearance.
Shankar, S; Kesavan, D
2015-01-01
The wear of the bearing surfaces of total disc replacement (TDR) is a key problem leads to reduction in the lifetime of the prosthesis and it mainly occurs due to the range of clearances of the articulating surface between the superior plate and core. The objective of this paper is to estimate the wear using finite element concepts considering the different radial clearances between the articulating surfaces of ceramic on ceramic type Lumbar Total Disc Replacement (LTDR). The finite element (FE) model was subjected to wear testing protocols according to loading profile of International Standards Organization (ISO) 18192 standards through 10 million cycles. The radial clearance value of 0.05 mm showed less volumetric wear when compared with other radial clearance values. Hence, low radial clearance values are suitable for LTDR to minimize the wear.
Multishell inertial confinement fusion target
Holland, James R.; Del Vecchio, Robert M.
1984-01-01
A method of fabricating multishell fuel targets for inertial confinement fusion usage. Sacrificial hemispherical molds encapsulate a concentric fuel pellet which is positioned by fiber nets stretched tautly across each hemispherical mold section. The fiber ends of the net protrude outwardly beyond the mold surfaces. The joint between the sacrificial hemispheres is smoothed. A ceramic or glass cover is then deposited about the finished mold surfaces to produce an inner spherical surface having continuously smooth surface configuration. The sacrificial mold is removed by gaseous reaction accomplished through the porous ceramic cover prior to enclosing of the outer sphere by addition of an outer coating. The multishell target comprises the inner fuel pellet concentrically arranged within a surrounding coated cover or shell by fiber nets imbedded within the cover material.
Multishell inertial confinement fusion target
Holland, James R.; Del Vecchio, Robert M.
1987-01-01
A method of fabricating multishell fuel targets for inertial confinement fusion usage. Sacrificial hemispherical molds encapsulate a concentric fuel pellet which is positioned by fiber nets stretched tautly across each hemispherical mold section. The fiber ends of the net protrude outwardly beyond the mold surfaces. The joint between the sacrificial hemispheres is smoothed. A ceramic or glass cover is then deposited about the finished mold surfaces to produce an inner spherical surface having continuously smooth surface configuration. The sacrificial mold is removed by gaseous reactions accomplished through the porous ceramic cover prior to enclosing of the outer sphere by addition of an outer coating. The multishell target comprises the inner fuel pellet concentrically arranged within a surrounding coated cover or shell by fiber nets imbedded within the cover material.
Oxidation and Corrosion of Ceramics and Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Jacobson, Nathan S.; Opila, Elizabeth J.; Lee, Kang N.
2000-01-01
Ceramics and ceramic matrix composites are candidates for numerous applications in high temperature environments with aggressive gases and possible corrosive deposits. There is a growing realization that high temperature oxidation and corrosion issues must be considered. There are many facets to these studies, which have been extensively covered in some recent reviews. The focus of this paper is on current research, over the past two years. In the authors' view, the most important oxidation and corrosion studies have focused on four major areas during this time frame. These are; (I) Oxidation of precursor-based ceramics; (II) Studies of the interphase material in ceramic matrix composites; (III) Water vapor interactions with ceramics, particularly in combustion environments; and (IV) Development of refractory oxide coatings for silicon-based ceramics. In this paper, we shall explore the most current work in each of these areas.
Strain isolated ceramic coatings
NASA Technical Reports Server (NTRS)
Tolokan, R. P.; Brady, J. B.; Jarrabet, G. P.
1985-01-01
Plasma sprayed ceramic coatings are used in gas turbine engines to improve component temperature capability and cooling air efficiency. A compliant metal fiber strain isolator between a plasma sprayed ceramic coating and a metal substrate improves ceramic durability while allowing thicker coatings for better insulation. Development of strain isolated coatings has concentrated on design and fabrication of coatings and coating evaluation via thermal shock testing. In thermal shock testing, five types of failure are possible: buckling failure im compression on heat up, bimetal type failure, isothermal expansion mismatch failure, mudflat cracking during cool down, and long term fatigue. A primary failure mode for thermally cycled coatings is designated bimetal type failure. Bimetal failure is tensile failure in the ceramic near the ceramic-metal interface. One of the significant benefits of the strain isolator is an insulating layer protecting the metal substrate from heat deformation and thereby preventing bimetal type failure.
A study on (K, Na) NbO3 based multilayer piezoelectric ceramics micro speaker
NASA Astrophysics Data System (ADS)
Gao, Renlong; Chu, Xiangcheng; Huan, Yu; Sun, Yiming; Liu, Jiayi; Wang, Xiaohui; Li, Longtu
2014-10-01
A flat panel micro speaker was fabricated from (K, Na) NbO3 (KNN)-based multilayer piezoelectric ceramics by a tape casting and cofiring process using Ag-Pd alloys as an inner electrode. The interface between ceramic and electrode was investigated by scanning electron microscope (SEM) and transmission electron microscope (TEM). The acoustic response was characterized by a standard audio test system. We found that the micro speaker with dimensions of 23 × 27 × 0.6 mm3, using three layers of 30 μm thickness KNN-based ceramic, has a high average sound pressure level (SPL) of 87 dB, between 100 Hz-20 kHz under five voltage. This result was even better than that of lead zirconate titanate (PZT)-based ceramics under the same conditions. The experimental results show that the KNN-based multilayer ceramics could be used as lead free piezoelectric micro speakers.
Thermal stress analysis of ceramic structures with NASTRAN isoparametric solid elements
NASA Technical Reports Server (NTRS)
Lamberson, S. E.; Paul, D. B.
1978-01-01
The performance of the NASTRAN level 16.0, twenty node, isoparametric bricks (CIHEX2) at thermal loading was studied. A free ceramic plate was modelled using twenty node bricks of varying thicknesses. The thermal loading for this problem was uniform over the surface with an extremely large gradient through the thickness. No mechanical loading was considered. Temperature-dependent mechanical properties were considered in this analysis. The NASTRAN results were compared to one dimensional stress distributions calculated by direct numerical integration.
Strength evaluation of butt joint by stress intensity factor of small edge crack near interface edge
NASA Astrophysics Data System (ADS)
Sato, T.; Oda, K.; Tsutsumi, N.
2018-06-01
Failure of the bonded dissimilar materials generally initiates near the interface, or just from the interface edge due to the stress singularity at the interface edge. In this study, the stress intensity factor of an edge crack close to the interface between the dissimilar materials is analyzed. The small edge crack is strongly dominated by the singular stress field near the interface edge. The analysis of stress intensity factor of small edge crack near the interface in bi-material and butt joint plates is carried out by changing the length and the location of the crack and the region dominated by the interface edge is examined. It is found that the dimensionless stress intensity factor of small crack, normalized by the singular stress at the crack tip point in the bonded plate without the crack, is equal to 1.12, independent of the material combination and adhesive layer thickness, when the relative crack length with respect to the crack location is less than 0.01. The adhesive strength of the bonded plate with various adhesive layer thicknesses can be expressed as the constant critical stress intensity factor of the small edge crack.
Abreu, Celina Wanderley; Santosb, Jarbas F; Passos, Sheila Pestana; Michida, Silvia Masae; Takahashi, Fernando Eidi; Bottino, Marco Antonio
2011-06-01
This study evaluated the effect of cutting initiation location and cutting speed on the bond strength between resin cement and feldspathic ceramic. Thirty-six blocks (6.4 x 6.4 x 4.8 mm) of ceramic (Vita VM7) were produced. The ceramic surfaces were etched with 10% hydrofluoric acid gel for 60 s and then silanized. Each ceramic block was placed in a silicon mold with the treated surface exposed. A resin cement (Variolink II) was injected into the mold over the treated surface and polymerized. The resin cement-ceramic blocks were divided into two groups according to experimental conditions: a) cutting initiation location - resin cement, ceramic and interface; and b) cutting speed - 10,000, 15,000, and 20,000 rpm. The specimens were sectioned to achieve non-trimmed bar specimens. The microtensile test was performed in a universal testing machine (1 mm/min). The failure modes were examined using an optical light microscope and SEM. Bond strength results were analyzed using one-way ANOVA and Tukey's test (α = 0.05). Significant influences of cutting speed and initiation location on bond strength (p < 0.05) were observed. The highest mean was achieved for specimens cut at 15,000 rpm at the interface (15.12 ± 5.36 MPa). The lowest means were obtained for specimens cut at the highest cutting speed in resin cement (8.50 ± 3.27 MPa), and cut at the lowest cutting speed in ceramic (8.60 ± 2.65 MPa). All groups showed mainly mixed failure (75% to 100%). The cutting speed and initiation location are important factors that should be considered during specimen preparation for microtensile bond strength testing, as both may influence the bond strength results.
Catalytic bipolar interconnection plate for use in a fuel cell
Lessing, Paul A.
1996-01-01
A bipolar interconnection plate for use between adjacent fuel cell units in a stacked fuel cell assembly. Each plate is manufactured from an intermetallic composition, examples of which include NiAl or Ni.sub.3 Al which can catalyze steam reforming of hydrocarbons. Distributed within the intermetallic structure of the plate is a ceramic filler composition. The plate includes a first side with gas flow channels therein and a second side with fuel flow channels therein. A protective coating is applied to the first side, with exemplary coatings including strontium-doped or calcium-doped lanthanum chromite. To produce the plate, Ni and Al powders are combined with the filler composition, compressed at a pressure of about 10,000-30,000 psi, and heated to about 600.degree.-1000.degree. C. The coating is then applied to the first side of the completed plate using liquid injection plasma deposition or other deposition techniques.
Catalytic bipolar interconnection plate for use in a fuel cell
Lessing, P.A.
1996-03-05
A bipolar interconnection plate is described for use between adjacent fuel cell units in a stacked fuel cell assembly. Each plate is manufactured from an intermetallic composition, examples of which include NiAl or Ni{sub 3}Al which can catalyze steam reforming of hydrocarbons. Distributed within the intermetallic structure of the plate is a ceramic filler composition. The plate includes a first side with gas flow channels therein and a second side with fuel flow channels therein. A protective coating is applied to the first side, with exemplary coatings including strontium-doped or calcium-doped lanthanum chromite. To produce the plate, Ni and Al powders are combined with the filler composition, compressed at a pressure of about 10,000--30,000 psi, and heated to about 600--1000 C. The coating is then applied to the first side of the completed plate using liquid injection plasma deposition or other deposition techniques. 6 figs.
Aspects of bonding between resin luting cements and glass ceramic materials.
Tian, Tian; Tsoi, James Kit-Hon; Matinlinna, Jukka P; Burrow, Michael F
2014-07-01
The bonding interface of glass ceramics and resin luting cements plays an important role in the long-term durability of ceramic restorations. The purpose of this systematic review is to discuss the various factors involved with the bond between glass ceramics and resin luting cements. An electronic Pubmed, Medline and Embase search was conducted to obtain laboratory studies on resin-ceramic bonding published in English and Chinese between 1972 and 2012. Eighty-three articles were included in this review. Various factors that have a possible impact on the bond between glass ceramics and resin cements were discussed, including ceramic type, ceramic crystal structure, resin luting cements, light curing, surface treatments, and laboratory test methodology. Resin-ceramic bonding has been improved substantially in the past few years. Hydrofluoric acid (HF) etching followed by silanizaiton has become the most widely accepted surface treatment for glass ceramics. However, further studies need to be undertaken to improve surface preparations without HF because of its toxicity. Laboratory test methods are also required to better simulate the actual oral environment for more clinically compatible testing. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Support pedestals for interconnecting a cover and nozzle band wall in a gas turbine nozzle segment
Yu, Yufeng Phillip; Itzel, Gary Michael; Webbon, Waylon Willard; Bagepalli, Radhakrishna; Burdgick, Steven Sebastian; Kellock, Iain Robertson
2002-01-01
A gas turbine nozzle segment has outer and inner band portions. Each band portion includes a nozzle wall, a cover and an impingement plate between the cover and nozzle wall defining two cavities on opposite sides of the impingement plate. Cooling steam is supplied to one cavity for flow through the apertures of the impingement plate to cool the nozzle wall. Structural pedestals interconnect the cover and nozzle wall and pass through holes in the impingement plate to reduce localized stress otherwise resulting from a difference in pressure within the chamber of the nozzle segment and the hot gas path and the fixed turbine casing surrounding the nozzle stage. The pedestals may be cast or welded to the cover and nozzle wall.
Method for sealing an oxygen transport membrane assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez, Javier E.; Grant, Arthur F.
An improved method of sealing a ceramic part to a solid part made of ceramic, metal, cermet or a ceramic coated metal is provided. The improved method includes placing a bond agent comprising an Al 2O 3 and SiO 2 based glass-ceramic material and organic binder material on adjoining surfaces of the ceramic part and the solid part. The assembly is heated to a first target temperature that removes or dissolves the organic binder material from the bond agent and the assembly is subjected to a second induction heating step at a temperature ramp rate of between about 100.degree. C.more » and 200.degree. C. per minute to temperatures where the glass-ceramic material flows and wets the interface between adjoining surfaces. The assembly is rapidly cooled at a cooling rate of about 140.degree. C. per minute or more to induce nucleation and re-crystallization of the glass-ceramic material to form a dense, durable and gas-tight seal.« less
Surfaces and Interfaces of Ceramic Materials. Programme
1988-09-01
MOCELLIN , Ecole Polytechnque Fdlale, Lausanne, Switzerland 9.30-1030 ROUND TABLE . Sintering processes,(Discussion leader A MOCELLIN , Ecole...TABLE& Sinteringprocesses (second part) (Discussion leader A MOCELLIN , Ecole Polytechnique Fgdrale, Lausanne, Switzerland) P27 / Amrfialevidnesih A4... MOCELLIN Laboratoire de c6ramique Ecole Polytechnique F6d6rale de Lausanne ABSTRACT In polycrystalline ceramics, grain growth which is driven by the
Laser Shockwave Technique For Characterization Of Nuclear Fuel Plate Interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
James A. Smith; Barry H. Rabin; Mathieu Perton
2012-07-01
The US National Nuclear Security Agency is tasked with minimizing the worldwide use of high-enriched uranium. One aspect of that effort is the conversion of research reactors to monolithic fuel plates of low-enriched uranium. The manufacturing process includes hot isostatic press bonding of an aluminum cladding to the fuel foil. The Laser Shockwave Technique (LST) is here evaluated for characterizing the interface strength of fuel plates using depleted Uranium/Mo foils. LST is a non-contact method that uses lasers for the generation and detection of large amplitude acoustic waves and is therefore well adapted to the quality assurance of this process.more » Preliminary results show a clear signature of well-bonded and debonded interfaces and the method is able to classify/rank the bond strength of fuel plates prepared under different HIP conditions.« less
Laser shockwave technique for characterization of nuclear fuel plate interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perton, M.; Levesque, D.; Monchalin, J.-P.
2013-01-25
The US National Nuclear Security Agency is tasked with minimizing the worldwide use of high-enriched uranium. One aspect of that effort is the conversion of research reactors to monolithic fuel plates of low-enriched uranium. The manufacturing process includes hot isostatic press bonding of an aluminum cladding to the fuel foil. The Laser Shockwave Technique (LST) is here evaluated for characterizing the interface strength of fuel plates using depleted Uranium/Mo foils. LST is a non-contact method that uses lasers for the generation and detection of large amplitude acoustic waves and is therefore well adapted to the quality assurance of this process.more » Preliminary results show a clear signature of well-bonded and debonded interfaces and the method is able to classify/rank the bond strength of fuel plates prepared under different HIP conditions.« less
Infiltration processing of metal matrix composites using coated ceramic particulates
NASA Astrophysics Data System (ADS)
Leon-Patino, Carlos Alberto
2001-07-01
A new process was developed to fabricate particulate metal matrix composites (MMCs). The process involves three steps: (1) modifying the particulate surface by metal coating, (2) forming a particulate porous compact; and (3) introducing metal into the channel network by vacuum infiltration. MMCs with different reinforcements, volume fractions, and sizes can be produced by this technique. Powders of alumina and silicon carbide were successfully coated with nickel and copper in preparation for infiltration with molten aluminum. Electroless Ni and Cu deposition was used since it enhances the wettability of the reinforcements for composite fabrication. While Cu deposits were polycrystalline, traces of phosphorous co-deposited from the electroless bath gave an amorphous Ni-P coating. The effect of metal coating on wetting behavior was evaluated at 800°C on plain and metal-coated ceramic plates using a sessile drop technique. The metallic films eliminated the non-wetting behavior of the uncoated ceramics, leading to equilibrium contact angles in the order of 12° and below 58° for Ni and Cu coated ceramics, respectively. The spreading data indicated that local diffusion at the triple junction was the governing mechanism of the wetting process. Precipitation of intermetallic phases in the drop/ceramic interface delayed the formation of Al4C3. Infiltration with molten Al showed that the coated-particulates are suitable as reinforcing materials for fabricating MMCs, giving porosity-free components with a homogeneously distributed reinforcing phase. The coating promoted easy metal flow through the preform, compared to the non-infiltration behavior of the uncoated counterparts. Liquid state diffusion kinetics due to temperature dependent viscosity forces controlled the infiltration process. Microstructural analysis indicated the formation of intermetallic phases such as CuAl 2, in the case of Cu coating, and Ni2Al3 and NiAl 3 when Ni-coated powders were infiltrated. The overall Ni and Cu content increased from bottom to top of the samples due to dissolution of the metal film by the stream of liquid Al during infiltration. The strengths of the Al/Ni-SiC composites, measured by four-point bending, were 205 and 225 MPa for samples reinforced with 78 mum and 49 mum Ni-SiC, respectively. The mode of fracture was mainly controlled by SiC particle fracture.
Storage containers for radioactive material
Groh, Edward F.; Cassidy, Dale A.; Dates, Leon R.
1981-01-01
A radioactive material storage system for use in the laboratory having a flat base plate with a groove in one surface thereof and a hollow pedestal extending perpendicularly away from the other surface thereof, a sealing gasket in the groove, a cover having a filter therein and an outwardly extending flange which fits over the plate, the groove and the gasket, and a clamp for maintaining the cover and the plate sealed together, whereby the plate and the cover and the clamp cooperate to provide a storage area for radioactive material readily accessible for use or
A Step-by-Step Conservative Approach for CAD-CAM Laminate Veneers
Henríquez Gutiérrez, Ismael; Guzmán Marusic, Álvaro; Báez Rosales, Abelardo; Tisi Lanchares, José Pablo
2017-01-01
The use of CAD/CAM technology has allowed the fabrication of ceramic restorations efficiently and with predictable results. Lithium disilicate is a type of glass ceramic material that can be used for the elaboration of laminate veneers, being monolithic restorations which require characterization through a covering ceramic in order to achieve acceptable esthetic results. The next case report shows a predictable clinical protocol for the rehabilitation of the anterior teeth through the preparation of CAD/CAM veneers (e.max CAD, Ivoclar Vivadent, Liechtenstein) which have been characterized by a nanofluorapatite ceramic (e.max Ceram, Ivoclar Vivadent, Liechtenstein) through the layering technique. PMID:28884029
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali; Alkasab, Kalil A.
1991-01-01
The influence of the thermal contact resistance on the heat transfer between the electrode plates, and the cooling system plate in a phosphoric-acid fuel-cell stack was experimentally investigated. The investigation was conducted using a set-up that simulates the operating conditions prevailing in a phosphoric acid fuel-cell stack. The fuel-cell cooling system utilized three types of coolants, water, engine oil, and air, to remove excess heat generated in the cell electrode and to maintain a reasonably uniform temperature distribution in the electrode plate. The thermal contact resistance was measured as a function of pressure at the interface between the electrode plate and the cooling system plate. The interface pressure range was from 0 kPa to 3448 kPa, while the Reynolds number for the cooling limits varied from 15 to 79 for oil, 1165 to 6165 for water, and 700 to 6864 for air. Results showed that increasing the interface pressure resulted in a higher heat transfer coefficient.
Toroglu, M Serdar; Yaylali, Sirin
2008-08-01
The aim of this study was to determine the bond strength of rebonded mechanically retentive ceramic brackets after treatment with 2 abrasive techniques. In addition to a group of new brackets, 3 groups were treated according to the following conditions of debonded ceramic bracket bases: sandblasting, sandblasting + silane, and silica coating + silane (15 in each group). Treated ceramic brackets were rebonded on premolars. The samples were stored in distilled deionized water for 24 hours at 37 degrees C in an incubator and then thermocycled for 1000 times between 5 degrees C and 55 degrees C. Shear force was applied to the enamel-adhesive interface until debonding. The highest bond strength values were in the silica coating + silane and the new bracket groups (12.7 and 12.0 MPa, respectively), followed by the sandblasting + silane group (10.5 MPa). The sandblasting group had a significantly lower bond strength value (4.5 MPa). No enamel fracture was noted in any sample tested. In the new bracket and the sandblasting + silane groups, 20% of the samples had adhesive remnant index scores of 2, and 80% had scores of 3. In the sandblasting group, all specimens debonded at the bracket-adhesive interface. The silica coating + silane group showed mixed failures. Sandblasting + silane and silica coating + silane applications on debonded ceramic bracket base can produce bond strengths comparable with new brackets.
Turbomachine Interface Sealing
NASA Technical Reports Server (NTRS)
Hendricks, Robert C.; Chupp, Raymond E.; Lattime, Scott B.; Steinetz, Bruce M.
2005-01-01
Sealing interfaces and coatings, like lubricants, are sacrificial, giving up their integrity for the benefit of the component. Clearance control is a major issue in power systems turbomachine design and operational life. Sealing becomes the most cost-effective way to enhance system performance. Coatings, films, and combined use of both metals and ceramics play a major role in maintaining interface clearances in turbomachine sealing and component life. This paper focuses on conventional and innovative materials and design practices for sealing interfaces.
Rugged Preheaters For Vacuum Plasma Spraying
NASA Technical Reports Server (NTRS)
Woodford, William H.; Mckechnie, Timothy N.; Sander, Lewis D.; Power, Christopher A.; Sander, Heather L.; Nguyen, Dalton D.
1994-01-01
Electric preheater units built to ensure large workpieces to be coated with metals by vacuum plasma spraying heated uniformly to requisite high temperatures by time plasma torch arrives. Units similar to electrical-resistance ribbon heaters in toasters and in some small portable electric "space" heaters. Nichrome resistance-heating ribbons wrapped around ceramic insulating spools on rings and on plates. Round workpiece placed in middle of ring preheater. Plate preheaters stacked as needed near workpiece.
2012-12-14
PZT ceramic plate [40]. Since then Lamb wave devices utilizing the lowest-order antisymmetric (A0) mode propagation in ZnO thin plate were widely...Million Pt Platinum PVDF Polyvinylidene Flouride PZT Lead Zirconium Titanate Q Quality Factor R Resistor RIE Reactive Ion Etching Rm Motional...GaAs), silicon carbide (SiC), langasite (LGS), lead zirconium titanate ( PZT ), and polyvinylidene flouride (PVDF). Each piezoelectric material has
The new applications of sputtering and ion plating
NASA Technical Reports Server (NTRS)
Spalvins, T.
1977-01-01
The potential industrial applications of sputtering and ion plating are strictly governed by the unique features these methods possess. The outstanding features of each method, the resultant coating characteristics and the various sputtering modes and configurations are discussed. New, more complex coatings and deposits can be developed such as graded composition structures (metal-ceramic seals), laminated and dispersion strengthened composites which improve the mechanical properties and high temperature stability. Specific industrial areas where future effort of sputtering and ion plating will concentrate to develop intricate alloy or compound coatings and solve difficult problem areas are discussed.
Process for making silicon carbide reinforced silicon carbide composite
NASA Technical Reports Server (NTRS)
Lau, Sai-Kwing (Inventor); Calandra, Salavatore J. (Inventor); Ohnsorg, Roger W. (Inventor)
1998-01-01
A process comprising the steps of: a) providing a fiber preform comprising a non-oxide ceramic fiber with at least one coating, the coating comprising a coating element selected from the group consisting of carbon, nitrogen, aluminum and titanium, and the fiber having a degradation temperature of between 1400.degree. C. and 1450.degree. C., b) impregnating the preform with a slurry comprising silicon carbide particles and between 0.1 wt % and 3 wt % added carbon c) providing a cover mix comprising: i) an alloy comprising a metallic infiltrant and the coating element, and ii) a resin, d) placing the cover mix on at least a portion of the surface of the porous silicon carbide body, e) heating the cover mix to a temperature between 1410.degree. C. and 1450.degree. C. to melt the alloy, and f) infiltrating the fiber preform with the melted alloy for a time period of between 15 minutes and 240 minutes, to produce a ceramic fiber reinforced ceramic composite.
Silicon carbide reinforced silicon carbide composite
NASA Technical Reports Server (NTRS)
Lau, Sai-Kwing (Inventor); Calandra, Salvatore J. (Inventor); Ohnsorg, Roger W. (Inventor)
2001-01-01
This invention relates to a process comprising the steps of: a) providing a fiber preform comprising a non-oxide ceramic fiber with at least one coating, the coating comprising a coating element selected from the group consisting of carbon, nitrogen, aluminum and titanium, and the fiber having a degradation temperature of between 1400.degree. C. and 1450.degree. C., b) impregnating the preform with a slurry comprising silicon carbide particles and between 0.1 wt % and 3 wt % added carbon c) providing a cover mix comprising: i) an alloy comprising a metallic infiltrant and the coating element, and ii) a resin, d) placing the cover mix on at least a portion of the surface of the porous silicon carbide body, e) heating the cover mix to a temperature between 1410.degree. C. and 1450.degree. C. to melt the alloy, and f) infiltrating the fiber preform with the melted alloy for a time period of between 15 minutes and 240 minutes, to produce a ceramic fiber reinforced ceramic composite.
Next Generation Ceramic Substrate Fabricated at Room Temperature.
Kim, Yuna; Ahn, Cheol-Woo; Choi, Jong-Jin; Ryu, Jungho; Kim, Jong-Woo; Yoon, Woon-Ha; Park, Dong-Soo; Yoon, Seog-Young; Ma, Byungjin; Hahn, Byung-Dong
2017-07-26
A ceramic substrate must not only have an excellent thermal performance but also be thin, since the electronic devices have to become thin and small in the electronics industry of the next generation. In this manuscript, a thin ceramic substrate (thickness: 30-70 µm) is reported for the next generation ceramic substrate. It is fabricated by a new process [granule spray in vacuum (GSV)] which is a room temperature process. For the thin ceramic substrates, AlN GSV films are deposited on Al substrates and their electric/thermal properties are compared to those of the commercial ceramic substrates. The thermal resistance is significantly reduced by using AlN GSV films instead of AlN bulk-ceramics in thermal management systems. It is due to the removal of a thermal interface material which has low thermal conductivity. In particular, the dielectric strengths of AlN GSV films are much higher than those of AlN bulk-ceramics which are commercialized, approximately 5 times. Therefore, it can be expected that this GSV film is a next generation substrate in thermal management systems for the high power application.
Dynamic Constitutive/Failure Models
1988-12-01
compressive failure--microfracture versus microplasticity . Actual traces observed in plate impact tests on ceramic targets are hardly ever as simple as the...observa- tions for microfracture and microplasticity . Unfortunately, each team of investigators has used slightly different experimental techniques and
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. In the Vehicle Assembly Building at NASAs Kennedy Space Center, workers mate the External Tank, at left, to the underside of Space Shuttle Discovery, at right. Each of two aft external tank umbilical plates mate with a corresponding plate on the orbiter. The plates help maintain alignment among the umbilicals. The attach fitting is aft of the nose gear wheel well. Workers next will perform an electrical and mechanical verification of the mated interfaces to verify all critical vehicle connections. A Shuttle interface test is performed using the launch processing system to verify Space Shuttle vehicle interfaces and Space Shuttle vehicle-to-ground interfaces. In approximately one week, Space Shuttle Discovery will be ready for rollout to Launch Pad 39B for Return to Flight mission STS-114. The launch window for STS-114 is May 15 to June 3.
NASA Astrophysics Data System (ADS)
Li, L. B.
2017-01-01
The effect of matrix multicracking on the stress-strain hysteresis loops of cross-ply C/SiC ceramic-matrix composites (CMCs) under cyclic loading/unloading was investigated. When matrix multicracking and fiber/matrix interface debonding occur in the 0° plies, fiber slipping relative to the matrix in the debonded region of interface is the mainly reason for occurrence of the loops. The interfacial slip lengths, i.e., the debonded lengths of interface are determined, with consideration of matrix multicracking in the 90° and 0° plies, by using the fracture mechanics approach. The effects of peak stress, fiber volume content, fiber/matrix interfacial shear stress, and number of cycles on the hysteresis loops are analyzed. The stress-strain hysteresis loops of cross-ply C/SiC composites corresponding to different peak stresses and numbers of cycles are predicted.
NASA Astrophysics Data System (ADS)
Longbiao, Li
2017-10-01
In this paper, the synergistic effects of loading frequency and testing temperature on the fatigue damage evolution and life prediction of cross-ply SiC/MAS ceramic-matrix composite have been investigated. The damage parameters of the fatigue hysteresis modulus, fatigue hysteresis dissipated energy and the interface shear stress were used to monitor the damage evolution inside of SiC/MAS composite. The evolution of fatigue hysteresis dissipated energy, the interface shear stress and broken fibers fraction versus cycle number, and the fatigue life S-N curves of SiC/MAS composite under the loading frequency of 1 and 10 Hz at 566 °C and 1093 °C in air condition have been predicted. The synergistic effects of the loading frequency and testing temperature on the degradation rate of fatigue hysteresis dissipated energy and the interface shear stress have been analyzed.
Elsaka, Shaymaa E
2016-01-01
This study evaluated the effect of four different surface treatments methods on the shear bond strength (SBS) of ceramic and metal brackets to Vita Enamic (VE) CAD/CAM hybrid ceramic. A total of 240 plates (10 mm × 10 mm × 3 mm) were cut from VE ceramic blocks and divided into two groups. In each group, four subgroups were prepared by hydrofluoric acid (HF); phosphoric acid (H3PO4); diamond ceramic grinding bur; and silica coating using CoJet system (CJ). Maxillary central incisor metal (Victory Series) and ceramic (Clarity) brackets were bonded with light-cure composite and then stored in artificial saliva for 1 week and thermocycled. The SBS test was performed, and the failure types were classified with adhesive remnant index scores. Surface morphology of the ceramic was characterized after treatment using a scanning electron microscope. Data were analyzed using two-way ANOVA, Tukey HSD test, and Weibull analysis. SBS was significantly affected by the type of bracket and by type of treatment (P < 0.001). Specimens treated with CJ presented with significantly higher SBS compared to other groups (P < 0.05). Improvements in SBS values (MPa) were found in the following order: CJ > HF > Bur > H3PO4. Ceramic bracket showed higher SBS compared to metal bracket. Adhesive failures between the ceramic and composite resin were the predominant mode of failure in all groups. Surface treatment of VE CAD/CAM hybrid ceramic with silica coating enhanced the adhesion with ceramic and metal brackets.
The Design of Mechanically Compatible Fasteners for Human Mandible Reconstruction
NASA Technical Reports Server (NTRS)
Roberts, Jack C.; Ecker, John A.; Biermann, Paul J.
1993-01-01
Mechanically compatible fasteners for use with thin or weakened bone sections in the human mandible are being developed to help reduce large strain discontinuities across the bone/implant interface. Materials being considered for these fasteners are a polyetherertherketone (PEEK) resin with continuous quartz or carbon fiber for the screw. The screws were designed to have a shear strength equivalent to that of compact/trabecular bone and to be used with a conventional nut, nut plate, or an expandable shank/blind nut made of a ceramic filled polymer. Physical and finite element models of the mandible were developed in order to help select the best material fastener design. The models replicate the softer inner core of trabecular bone and the hard outer shell of compact bone. The inner core of the physical model consisted of an expanding foam and the hard outer shell consisted of ceramic particles in an epoxy matrix. This model has some of the cutting and drilling attributes of bone and may be appropriate as an educational tool for surgeons and medical students. The finite element model was exercised to establish boundary conditions consistent with the stress profiles associated with mandible bite forces and muscle loads. Work is continuing to compare stress/strain profiles of a reconstructed mandible with the results from the finite element model. When optimized, these design and fastening techniques may be applicable, not only to other skeletal structures, but to any composite structure.
Bioactive ceramic coating of cancellous screws improves the osseointegration in the cancellous bone.
Lee, Jae Hyup; Nam, Hwa; Ryu, Hyun-Seung; Seo, Jun-Hyuk; Chang, Bong-Soon; Lee, Choon-Ki
2011-05-01
A number of methods for coating implants with bioactive ceramics have been reported to improve osseointegration in bone, but the effects of bioactive ceramic coatings on the osseointegration of cancellous screws are not known. Accordingly, biomechanical and histomorphometric analyses of the bone-screw interface of uncoated cancellous screws and cancellous screws coated with four different bioactive ceramics were performed. After coating titanium alloy cancellous screws with calcium pyrophosphate (CPP), CaO-SiO(2)-B(2)O(3) glass-ceramics (CSG), apatite-wollastonite 1:3 glass-ceramics (W3G), and CaO-SiO(2)-P(2)O(5)-B(2)O(3) glass-ceramics (BGS-7) using an enameling method, the coated and the uncoated screws were inserted into the proximal tibia and distal femur metaphysis of seven male mongrel dogs. The torque values of the screws were measured at the time of insertion and at removal after 8 weeks. The bone-screw contact ratio was analyzed by histomorphometry. There was no significant difference in the insertion torque between the uncoated and coated screws. The torque values of the CPP and BGS-7 groups measured at removal after 8 weeks were significantly higher than those of the uncoated group. Moreover, the values of the CPP and BGS-7 groups were significantly higher than the insertion torques. The fraction of bone-screw interface measured from the undecalcified histological slide showed that the CPP, W3G, and BGS-7 groups had significantly higher torque values in the cortical bone area than the uncoated group, and the CPP and BGS-7 groups had significantly higher torque values in the cancellous bone area than the uncoated group. In conclusion, a cancellous screw coated with CPP and BGS-7 ceramic bonds directly to cancellous bone to improve the bone-implant osseointegration. This may broaden the indications for cancellous screws by clarifying their contribution to improving osseointegration, even in the cancellous bone area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsuoka, T., E-mail: ta-matsuoka@mg.ngkntk.co.jp; Kozuka, H.; Kitamura, K.
A (K,Na)NbO₃-based lead-free piezoelectric ceramic was successfully densified. It exhibited an enhanced electromechanical coupling factor of kₚ=0.52, a piezoelectric constant d₃₃=252 pC/N, and a frequency constant Nₚ=3170 Hz m because of the incorporation of an elaborate secondary phase composed primarily of KTiNbO₅. The ceramic's nominal composition was 0.92K₀.₄₂Na₀.₄₄Ca₀.₀₄Li₀.₀₂Nb₀.₈₅O₃–0.047K₀.₈₅Ti₀.₈₅Nb₁.₁₅O₅–0.023BaZrO₃ –0.0017Co₃O₄–0.002Fe₂O₃–0.005ZnO, abbreviated herein as KNN–NTK composite. The KNN–NTK ceramic exhibited a dense microstructure with few microvoids which significantly degraded its piezoelectric properties. Elemental maps recorded using transmission electron microscopy with energy-dispersive X-ray spectroscopy (TEM–EDS) revealed regions of high concentrations of Co and Zn inside the NTK phase. In addition, X-ray diffraction patternsmore » confirmed that a small portion of the NTK phase was converted into K₂(Ti,Nb,Co,Zn)₆O₁₃ or CoZnTiO₄ by a possible reaction between Co and Zn solutes and the NTK phase during a programmed sintering schedule. TEM studies also clarified a distortion around the KNN/NTK interfaces. Such an NTK phase filled voids between KNN particles, resulting in an improved chemical stability of the KNN ceramic. The manufacturing process was subsequently scaled to 100 kg per batch for granulated ceramic powder using a spray-drying technique. The properties of the KNN–NTK composite ceramic produced using the scaled-up method were confirmed to be identical to those of the ceramic prepared by conventional solid-state reaction sintering. Consequently, slight changes in the NTK phase composition and the distortion around the KNN/NTK interfaces affected the KNN–NTK composite ceramic's piezoelectric characteristics.« less
NASA Astrophysics Data System (ADS)
Agard, Philippe; Angiboust, Samuel; Guillot, Stéphane; Burov, Evgueni
2015-04-01
Over the last decade, many studies based on field, petrological and geophysical evidence have emphasized the link between mineral reactions, fluid release and seismogenesis, either along the whole plate interface (eg., Hacker et al., 2003) or at specific depths (e.g., ~30 km: Audet et al., 2009; ~70-80 km: Angiboust et al., 2012). Although they argue for a crucial influence of fluids on subduction processes, large uncertainties remain when assessing their impact on the rheology of the plate interface across space and time. Kilometer-scale accreted terranes/units in both ancient and present-day subduction zones potentially allow to track changes in mechanical coupling along the plate interface. Despite some potential biases (exhumation is limited and episodic, lasting no more than a few My if any, from prefered depths -- mainly 30-40 and 70-80 km, and there are so far only few examples precisely located with respect to the plate interface) their record of changes in fluid regime and strain localisation is extremely valuable. One striking example of the role of fluids on plate interface rheology during nascent subduction is provided by metamorphic soles (i.e., ~500 m thick tectonic slices welded to the base of ophiolites). We show that their accretion to the ophiolite indeed only happens across a transient, optimal time-T-P window (after < 1-2 My, at 1±0.2 GPa, 750-850°C) associated with fluid release and infiltration, leading to similar effective rheology on both sides (i.e., downgoing crust and mantle wedge). This maximizes interplate mechanical coupling, as deformation gets distributed over a large band encompassing the plate interface (i.e., a few km), and promotes detachment of the sole from the sinking slab. We also show how tectonic slicing during mature subduction likely relates to short-term fluid release and repeated seismicity, based on the Monviso exposures (W. Alps, a relatively continuous, 15 km long fragment of oceanic lithosphere exhumed from ~80 km depths), which preserve evidence of intraslab fluid flow and eclogitic, intermediate-depth seismicity of Mw ~4. We finally address how, in the long-term and at subduction scale, the overall fluid content and fluid regime may control the slicing, size and metastability of exhumed units. We propose that mechanical coupling varies through time, from weak to strong, as a function of the contrast of effective viscosity on either side of the interface: a young and wet subduction interface will promote the formation of knockers and sole accretion, whereas a fluid-present yet drier and colder one will lead to mainly metasedimentary underplated material and large-scale slivers of (metastable) oceanic lithosphere. This interpretation is supported by bi-phase numerical models (allowing for fluid migration driven by concentrations in the rocks, non-lithostatic pressure gradients and deformation, mantle wedge hydration and mechanical weakening of the plate interface) showing that the detachment of large-scale oceanic tectonic slices is in particular promoted by fluid migration along the subduction interface. [Hacker et al., Journal of Geophysical Research 2003; Audet et al., Nature, 2009; Angiboust et al., Geology 2012
Alvin, Mary Anne [Pittsburg, PA
2010-06-22
This disclosure addresses the issue of providing a metallic-ceramic overlay coating that potentially serves as an interface or bond coat layer to provide enhanced oxidation resistance to the underlying superalloy substrate via the formation of a diffusion barrier regime within the supporting base material. Furthermore, the metallic-ceramic coating is expected to limit the growth of a continuous thermally grown oxide (TGO) layer that has been primarily considered to be the principal cause for failure of existing TBC systems. Compositional compatibility of the metallic-ceramic with traditional yttria-stabilized zirconia (YSZ) top coats is provided to further limit debond or spallation of the coating during operational use. A metallic-ceramic architecture is disclosed wherein enhanced oxidation resistance is imparted to the surface of nickel-based superalloy or single crystal metal substrate, with simultaneous integration of the yttria stabilized zirconia (YSZ) within the metallic-ceramic overlayer.
NASA Astrophysics Data System (ADS)
Eberhart-Phillips, Donna; Bannister, Stephen; Reyners, Martin
2017-11-01
We use local earthquake velocity spectra to solve for the 3-D distribution of P- and S-wave attenuation in the shallow Hikurangi subduction zone in the North Island of New Zealand to gain insight into how fluids control both the distribution of slip rate deficit and slow-slip events at the shallow plate interface. Qs/Qp gives us information on the 3-D distribution of fluid saturation, which we can compare with the previously determined 3-D distribution of Vp/Vs, which gives information on pore fluid pressure. The Hikurangi margin is unusual, in that a large igneous province (the Hikurangi Plateau) is being subducted. This plateau has had two episodes of subduction-first at 105-100 Ma during north-south convergence with Gondwana, and currently during east-west convergence between the Pacific and Australian plates. We find that in the southern part of the subduction zone, where there is a large deficit in slip rate at the plate interface, the plate interface region is only moderately fluid-rich because the underlying plateau had already had an episode of dehydration during Gondwana subduction. But fluid pressure is relatively high, due to an impermeable terrane in the upper plate trapping fluids below the plate interface. The central part of the margin, where the slip rate deficit is very low, is the most fluid-rich part of the shallow subduction zone. We attribute this to an excess of fluid from the subducted plateau. Our results suggest this part of the plateau has unusually high fracture permeability, on account of it having had two episodes of bending-first at the Gondwana trench and now at the Hikurangi Trough. Qs/Qp is consistent with fluids migrating across the plate interface in this region, leaving it drained and producing high fluid pressure in the overlying plate. The northern part of the margin is a region of heterogeneous deficit in slip rate. Here the Hikurangi Plateau is subducting for the first time, so there is less fluid available from its dehydration than in the central region. Fluid pressure in the overlying plate is high, but Qs/Qp indicates that it is not uniformly fluid-rich. This heterogeneity is consistent with the rough topography of the plateau, including seamounts which entrain fluid-rich sediments. Deep slow-slip events in the southern part of the margin occur where the Moho of the overlying plate meets the plate interface, as typically seen in other deep slow-slip events worldwide. But in the central and northern parts of the margin, the locations of shallow slow-slip events appear to be controlled by a shallow brittle-viscous transition within the fluid-rich upper plate. There is also evidence that a major fault zone in the overlying plate might bleed off some of the high fluid pressure promoting slow-slip events.
Material Science Smart Coatings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubinstein, A. I.; Sabirianov, R. F.; Namavar, Fereydoon
2014-07-01
The contribution of electrostatic interactions to the free energy of binding between model protein and a ceramic implant surface in the aqueous solvent, considered in the framework of the nonlocal electrostatic model, is calculated as a function of the implant low-frequency dielectric constant. We show that the existence of a dynamically ordered (low-dielectric) interfacial solvent layer at the protein-solvent and ceramic-solvent interface markedly increases charging energy of the protein and ceramic implant, and consequently makes the electrostatic contribution to the protein-ceramic binding energy more favorable (attractive). Our analysis shows that the corresponding electrostatic energy between protein and oxide ceramics dependsmore » nonmonotonically on the dielectric constant of ceramic, ε C. Obtained results indicate that protein can attract electrostatically to the surface if ceramic material has a moderate ε C below or about 35 (in particularly ZrO 2 or Ta 2O 5). This is in contrast to classical (local) consideration of the solvent, which demonstrates an unfavorable electrostatic interaction of protein with typical metal oxide ceramic materials (ε C>10). Thus, a solid implant coated by combining oxide ceramic with a reduced dielectric constant can be beneficial to strengthen the electrostatic binding of the protein-implant complex.« less
Pd menbrane having improved H.sub.2-permeance, and method of making
Vanderspurt, Thomas Henry [Glastonbury, CT; She, Ying [Worcester, MA; Dardas, Zissis [Worcester, MA; Walker, Craig [South Glastonbury, CT; MacLeod, James D [Vernon, CT
2011-12-06
An H.sub.2-permeable membrane system (117) comprises an electroless-deposited plating (115) of Pd or Pd alloy on a porous support (110, 110'). The Pd plating comprises face-centered cubic crystals cumulatively having a morphology of hexagonal platelets. The permeability to H.sub.2 of the membrane plating (115) on the porous support is significantly enhanced, being at least greater than about 1.3.times.10.sup.-8 molm.sup.-1s.sup.-Pa.sup.-0.5 at 350.degree. C., and even greater than about 3.4.times.10.sup.-8 molm.sup.-1s.sup.-1Pa.sup.-0.5. The porous support (110, 110') may be stainless steel (1100 and include a thin ceramic interlayer (110') on which the Pd is plated. The method of providing the electroless-deposited plating includes preheating a Pd electroless plating solution to near a plating temperature substantially greater than room temperature, e.g. 60.degree. C., prior to plating.
Influence of different post core materials on the color of Empress 2 full ceramic crowns.
Ge, Jing; Wang, Xin-zhi; Feng, Hai-lan
2006-10-20
For esthetic consideration, dentin color post core materials were normally used for all-ceramic crown restorations. However, in some cases, clinicians have to consider combining a full ceramic crown with a metal post core. Therefore, this experiment was conducted to test the esthetical possibility of applying cast metal post core in a full ceramic crown restoration. The color of full ceramic crowns on gold and Nickel-Chrome post cores was compared with the color of the same crowns on tooth colored post cores. Different try-in pastes were used to imitate the influence of a composite cementation on the color of different restorative combinations. The majority of patients could not detect any color difference less than DeltaE 1.8 between the two ceramic samples. So, DeltaE 1.8 was taken as the objective evaluative criterion for the evaluation of color matching and patients' satisfaction. When the Empress 2 crown was combined with the gold alloy post core, the color of the resulting material was similar to that of a glass fiber reinforced resin post core (DeltaE = 0.3). The gold alloy post core and the try-in paste did not show a perceptible color change in the full ceramic crowns, which indicated that the color of the crowns might not be susceptible to change between lab and clinic as well as during the process of composite cementation. Without an opaque covering the Ni-Cr post core would cause an unacceptable color effect on the crown (DeltaE = 2.0), but with opaque covering, the color effect became more clinically satisfactory (DeltaE = 1.8). It may be possible to apply a gold alloy post core in the Empress 2 full ceramic crown restoration when necessary. If a non-extractible Ni-Cr post core exists in the root canal, it might be possible to restore the tooth with an Empress 2 crown after covering the labial surface of the core with one layer of opaque resin cement.
Metal/ceramic interface structures and segregation behavior in aluminum-based composites
Zhang, Xinming; Hu, Tao; Rufner, Jorgen F.; ...
2015-06-14
Trimodal Al alloy (AA) matrix composites consisting of ultrafine-grained (UFG) and coarse- grained (CG) Al phases and micron-sized B 4C ceramic reinforcement particles exhibit combinations of strength and ductility that render them useful for potential applications in the aerospace, defense and automotive industries. Tailoring of microstructures with specific mechanical properties requires a detailed understanding of interfacial structures to enable strong interface bonding between ceramic reinforcement and metal matrix, and thereby allow for effective load transfer. Trimodal AA metal matrix composites typically show three characteristics that are noteworthy: nanocrystalline grains in the vicinity of the B4C reinforcement particles; Mg segregation atmore » AA/B 4C interfaces; and the presence of amorphous interfacial layers separating nanocrystalline grains from B 4C particles. Interestingly, however, fundamental information related to the mechanisms responsible for these characteristics as well as information on local compositions and phases are absent in the current literature. Here in this study, we use high-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy, electron energy-loss spectroscopy, and precession assisted electron diffraction to gain fundamental insight into the mechanisms that affect the characteristics of AA/B 4C interfaces. Specifically, we determined interfacial structures, local composition and spatial distribution of the interfacial constituents. Near atomic resolution characterization revealed amorphous multilayers and a nanocrystalline region between Al phase and B 4C reinforcement particles. The amorphous multilayers consist of nonstoichiometric Al xO y, while the nanocrystalline region is comprised of MgO nanograins. The experimental results are discussed in terms of the possible underlying mechanisms at AA/B 4C interfaces.« less
Analysis of prestressed concrete slab-and-beam structures
NASA Astrophysics Data System (ADS)
Sapountzakis, E. J.; Katsikadelis, J. T.
In this paper a solution to the problem of prestressed concrete slab-and-beam structures including creep and shrinkage effect is presented. The adopted model takes into account the resulting inplane forces and deformations of the plate as well as the axial forces and deformations of the beam, due to combined response of the system. The analysis consists in isolating the beams from the plate by sections parallel to the lower outer surface of the plate. The forces at the interface, which produce lateral deflection and inplane deformation to the plate and lateral deflection and axial deformation to the beam, are established using continuity conditions at the interface. The influence of creep and shrinkage effect relative with the time of the casting and the time of the loading of the plate and the beams is taken into account. The estimation of the prestressing axial force of the beams is accomplished iteratively. Both instant (e.g. friction, slip of anchorage) and time dependent losses are encountered. The solution of the arising plate and beam problems, which are nonlinearly coupled, is achieved using the analog equation method (AEM). The adopted model, compared with those ignoring the inplane forces and deformations, describes better the actual response of the plate-beams system and permits the evaluation of the shear forces at the interfaces, the knowledge of which is very important in the design of prefabricated ribbed plates.
One Dimension Analytical Model of Normal Ballistic Impact on Ceramic/Metal Gradient Armor
NASA Astrophysics Data System (ADS)
Liu, Lisheng; Zhang, Qingjie; Zhai, Pengcheng; Cao, Dongfeng
2008-02-01
An analytical model of normal ballistic impact on the ceramic/metal gradient armor, which is based on modified Alekseevskii-Tate equations, has been developed. The process of gradient armour impacted by the long rod can be divided into four stages in this model. First stage is projectile's mass erosion or flowing phase, mushrooming phase and rigid phase; second one is the formation of comminuted ceramic conoid; third one is the penetration of gradient layer and last one is the penetration of metal back-up plate. The equations of third stage have been advanced by assuming the behavior of gradient layer as rigid-plastic and considering the effect of strain rate on the dynamic yield strength.
One Dimension Analytical Model of Normal Ballistic Impact on Ceramic/Metal Gradient Armor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Lisheng; Zhang Qingjie; Zhai Pengcheng
2008-02-15
An analytical model of normal ballistic impact on the ceramic/metal gradient armor, which is based on modified Alekseevskii-Tate equations, has been developed. The process of gradient armour impacted by the long rod can be divided into four stages in this model. First stage is projectile's mass erosion or flowing phase, mushrooming phase and rigid phase; second one is the formation of comminuted ceramic conoid; third one is the penetration of gradient layer and last one is the penetration of metal back-up plate. The equations of third stage have been advanced by assuming the behavior of gradient layer as rigid-plastic andmore » considering the effect of strain rate on the dynamic yield strength.« less
NASA Astrophysics Data System (ADS)
Gilio, M.; Scambelluri, M.; Agostini, S.; Godard, M.; Pettke, D. T.; Angiboust, S.
2016-12-01
Isotopic (Pb, Sr and B) and trace element (B, Be, As, Sb, U, Th) signatures of serpentinites are useful geochemical tools to assess element exchange and fluid-rock interactions in subduction zone settings. They help to unravel geological history and tectonic evolution of subduction serpentinites and associated meta-oceanic crust. Sedimentary-derived fluid influx within HP plate interface environments strongly enriches serpentinites in As, Sb, B, U and Th and resets their B, Sr and Pb isotopic compositions. This HP metasomatic signature is preserved during exhumation and/or released at higher PT through de-serpentinization, fueling partial melting in the sub-arc mantle and recycling such fingerprint into arc magmas. This study focuses on the subduction recrystallization, geochemical diversity and fluid-rock interaction recorded by high- to ultra-high pressure (HP, UHP) Alpine serpentinites from the subducted oceanic plate (Cignana Unit, Zermatt-Saas Complex, Monviso and Lanzo Ultramafic Massifs). The As and Sb compositions of the HP-UHP Alpine ophiolitic rocks reveal the interaction between serpentinite and crust-derived fluids during their emplacement along the plate interface. This enables to define a hypothetical architecture of the Alpine subduction interface, considering large ultramafic slices. In this scenario, the Lanzo peridotite and serpentinite retain an As-Sb composition comparable to DM and PM: i.e. they experienced little exchange with sediment-derived fluids. Lanzo thus belonged to sections of the subducting plate, afar from the plate interface. Serpentinites from the Lago di Cignana Unit and Monviso and Voltri are richer in As and Sb, showing moderate to strong interaction with sediment- and crust-derived fluids during subduction (i.e. they behaved as open systems). These serpentinite slices accreted at the plate interface and exchanged with slab-derived fluids at different depths during Alpine subduction: Voltri accreted at shallower conditions (50-60 km) than Monviso Unit (around 80 km depth) and Lago di Cignana (about 100 km depth), and exchanged with sedimentary and crustal systems during the entire burial history. Their relatively lower density might act as buoyancy force, triggering the exhumation of much denser lithologies (eclogite and peridotite).
Uniaxial Tensile Test for Soil.
1987-04-01
2.0 by 5.0 cm. This test was also performed on a horizontal specimen; however loading was applied through small metal plates that were embedded in the 6...i. enlarged ends. The specimen was supported by a bed of mercury and had two small ceramic markers mounted in the gage length that were monitored...with a cathetometer to determine displacements. It was found that most tests failed near the location of the embedded metal loading plates making their
Valentine, Paul; Edwards, Doreen D.; Walker, Jr., William John; Slack, Lyle H.; Brown, Wayne Douglas; Osborne, Cathy; Norton, Michael; Begley, Richard
2010-05-18
A light-emitting ceramic based panel, hereafter termed "electroceramescent" panel, is herein claimed. The electroceramescent panel is formed on a substrate providing mechanical support as well as serving as the base electrode for the device. One or more semiconductive ceramic layers directly overlay the substrate, and electrical conductivity and ionic diffusion are controlled. Light emitting regions overlay the semiconductive ceramic layers, and said regions consist sequentially of a layer of a ceramic insulation layer and an electroluminescent layer, comprised of doped phosphors or the equivalent. One or more conductive top electrode layers having optically transmissive areas overlay the light emitting regions, and a multi-layered top barrier cover comprising one or more optically transmissive non-combustible insulation layers overlay said top electrode regions.
Seo, Ha Na; Lee, Woo Jin; Hwang, Tae Sik; Park, Doo Hyun
2009-09-01
A noncompartmented microbial fuel cell (NCMFC) composed of a Mn(IV)-carbon plate and a Fe(III)-carbon plate was used for electricity generation from organic wastewater without consumption of external energy. The Fe(III)-carbon plate, coated with a porous ceramic membrane and a semipermeable cellulose acetate film, was used as a cathode, which substituted for the catholyte and cathode. The Mn(IV)-carbon plate was used as an anode without a membrane or film coating. A solar cell connected to the NCMFC activated electricity generation and bacterial consumption of organic matter contained in the wastewater. More than 99 degrees of the organic matter was biochemically oxidized during wastewater flow through the four NCMFC units. A predominant bacterium isolated from the anode surface in both the conventional and the solar cell-linked NCMFC was found to be more than 99 degrees similar to a Mn(II)-oxidizing bacterium and Burkeholderia sp., based on 16S rDNA sequence analysis. The isolate reacted electrochemically with the Mn(IV)-modified anode and produced electricity in the NCMFC. After 90 days of incubation, a bacterial species that was enriched on the Mn(IV)-modified anode surface in all of the NCMFC units was found to be very similar to the initially isolated predominant species by comparing 16S rDNA sequences.
NASA Astrophysics Data System (ADS)
Feng, Yefeng; Zhang, Jianxiong; Hu, Jianbing; Peng, Cheng; He, Renqi
2018-01-01
Induced polarization at interface has been confirmed to have significant impact on the dielectric properties of 2-2 series composites bearing Si-based semi-conductor sheet and polymer layer. By compositing, the significantly elevated high permittivity in Si-based semi-conductor sheet should be responsible for the obtained high permittivity in composites. In that case, interface interaction could include two aspects namely a strong electrostatic force from high polarity polymeric layer and a newborn high polarity induced in Si-based ceramic sheet. In this work, this class of interface induced polarization was successfully extended into another 2-2 series composite system made up of ultra-high polarity ceramic sheet and high polarity polymer layer. By compositing, the greatly improved high permittivity in high polarity polymer layer was confirmed to strongly contribute to the high permittivity achieved in composites. In this case, interface interaction should consist of a rather large electrostatic force from ultra-high polarity ceramic sheet with ionic crystal structure and an enhanced high polarity induced in polymer layer based on a large polarizability of high polarity covalent dipoles in polymer. The dielectric and conductive properties of four designed 2-2 series composites and their components have been detailedly investigated. Increasing of polymer inborn polarity would lead to a significant elevating of polymer overall polarity in composite. Decline of inherent polarities in two components would result in a mild improving of polymer total polarity in composite. Introducing of non-polarity polymeric layer would give rise to a hardly unaltered polymer overall polarity in composite. The best 2-2 composite could possess a permittivity of ˜463 at 100 Hz 25.7 times of the original permittivity of polymer in it. This work might offer a facile route for achieving the promising composite dielectrics by constructing the 2-2 series samples from two high polarity components.
Comparative studies for two different orientations of pebble bed in an HCCB blanket
NASA Astrophysics Data System (ADS)
Paritosh, CHAUDHURI; Chandan, DANANI; E, RAJENDRAKUMAR
2017-12-01
The Indian Test Blanket Module (TBM) program in ITER is one of the major steps in its fusion reactor program towards DEMO and the future fusion power reactor vision. Research and development (R&D) is focused on two types of breeding blanket concepts: lead-lithium ceramic breeder (LLCB) and helium-cooled ceramic breeder (HCCB) blanket systems for the DEMO reactor. As part of the ITER-TBM program, the LLCB concept will be tested in one-half of ITER port no. 2, whose materials and technologies will be tested during ITER operation. The HCCB concept is a variant of the solid breeder blanket, which is presently part of our domestic R&D program for DEMO relevant technology development. In the HCCB concept Li2TiO3 and beryllium are used as the tritium breeder and neutron multiplier, respectively, in the form of a packed bed having edge-on configuration with reduced activation ferritic martensitic steel as the structural material. In this paper two design schemes, mainly two different orientations of pebble beds, are discussed. In the current concept (case-1), the ceramic breeder beds are kept horizontal in the toroidal-radial direction. Due to gravity, the pebbles may settle down at the bottom and create a finite gap between the pebbles and the top cooling plate, which will affect the heat transfer between them. In the alternate design concept (case-2), the pebble bed is vertically (poloidal-radial) orientated where the side plates act as cooling plates instead of top and bottom plates. These two design variants are analyzed analytically and 2D thermal-hydraulic simulation studies are carried out with ANSYS, using the heat loads obtained from neutronic calculations. Based on the analysis the performance is compared and details of the thermal and radiative heat transfer studies are also discussed in this paper.
Krifka, Stephanie; Anthofer, Thomas; Fritzsch, Marcus; Hiller, Karl-Anton; Schmalz, Gottfried; Federlin, Marianne
2009-01-01
No information is currently available about what the critical cavity wall thickness is and its influence upon 1) the marginal integrity of ceramic inlays (CI) and partial ceramic crowns (PCC) and 2) the crack formation of dental tissues. This in vitro study of CI and PCC tested the effects of different remaining cusp wall thicknesses on marginal integrity and enamel crack formation. CI (n = 25) and PCC (n = 26) preparations were performed in extracted human molars. Functional cusps of CI and PCC were adjusted to a 2.5 mm thickness; for PCC, the functional cusps were reduced to a thickness of 2.0 mm. Non-functional cusps were adjusted to wall thicknesses of 1) 1.0 mm and 2) 2.0 mm. Ceramic restorations (Vita Mark II, Cerec3 System) were fabricated and adhesively luted to the cavities with Excite/Variolink II. The specimens were exposed to thermocycling and central mechanical loading (TCML: 5000 x 5 degrees C-55 degrees C; 30 seconds/cycle; 500000 x 72.5N, 1.6Hz). Marginal integrity was assessed by evaluating a) dye penetration (fuchsin) on multiple sections after TCML and by using b) quantitative margin analysis in the scanning electron microscope (SEM) before and after TCML. Ceramic- and tooth-luting agent interfaces (LA) were evaluated separately. Enamel cracks were documented under a reflective light microscope. The data were statistically analyzed with the Mann Whitney U-test (alpha = 0.05) and the Error Rates Method (ERM). Crack formation was analyzed with the Chi-Square-test (alpha = 0.05) and ERM. In general, the remaining cusp wall thickness, interface, cavity design and TCML had no statistically significant influence on marginal integrity for both CI and PCC (ERM). Single pairwise comparisons showed that the CI and PCC of Group 2 had a tendency towards less microleakage along the dentin/LA interface than Group 1. Cavity design and location had no statistically significant influence on crack formation, but the specimens with 1.0 mm of remaining wall thickness had statistically significantly more crack formation after TCML than the group with 2.0 mm of remaining cusp wall thickness for CI. The remaining cusp wall thickness of non-functional cusps of adhesively bonded restorations (especially for CI) should have a thickness of at least 2.0 mm to avoid cracks and marginal deficiency at the dentin/LA interface.
Photosensitivity enhancement of PLZT ceramics by positive ion implantation
Land, Cecil E.; Peercy, Paul S.
1983-01-01
The photosensitivity of lead lanthanum zirconate titanate (PLZT) ceramic material used in high resolution, high contrast, and non-volatile photoferroelectric image storage and display devices is enhanced significantly by positive ion implantation of the PLZT near its surface. Implanted ions include H.sup.+, He.sup.+, Ne.sup.+, Ar.sup.+, as well as chemically reactive ions from Fe, Cr, and Al. The positive ion implantation advantageously serves to shift the absorption characteristics of the PLZT material from near-UV light to visible light. As a result, photosensitivity enhancement is such that the positive ion implanted PLZT plate is sensitive even to sunlight and conventional room lighting, such as fluorescent and incandescent light sources. The method disclosed includes exposing the PLZT plate to the positive ions at sufficient density, from 1.times.10.sup.12 to 1.times.10.sup.17, and with sufficient energy, from 100 to 500 KeV, to provide photosensitivity enhancement. The PLZT material may have a lanthanum content ranging from 5 to 10%, a lead zirconate content of 62 to 70 mole %, and a lead titanate content of 38 to 30%. The ions are implanted at a depth of 0.1 to 2 microns below the surface of the PLZT plate.
NASA Technical Reports Server (NTRS)
Kautz, Harold E.
1993-01-01
Lowest symmetric and lowest antisymmetric plate wave modes were excited and identified in broad-band acousto-ultrasonic (AU) signals collected from various high temperature composite materials. Group velocities have been determined for these nearly nondispersive modes. An algorithm has been developed and applied to determine phase velocities and hence dispersion curves for the frequency ranges of the broad-band pulses. It is demonstrated that these data are sensitive to changes in the various stiffness moduli of the materials, in agreement by analogy, with the theoretical and experimental results of Tang and Henneke on fiber reinforced polymers. Diffuse field decay rates have been determined in the same specimen geometries and AU configuration as for the plate wave measurements. These decay rates are of value in assessing degradation such as matrix cracking in ceramic matrix composites. In addition, we verify that diffuse field decay rates respond to fiber/matrix interfacial shear strength and density in ceramic matrix composites. This work shows that velocity/stiffness and decay rate measurements can be obtained in the same set of AU experiments for characterizing materials and in specimens with geometries useful for mechanical measurements.
Zhang, Chunyang; Zhang, Yudong; Esling, Claude; Zhao, Xiang; Zuo, Liang
2017-09-01
The mechanical and magnetic properties of Ni-Mn-Sb intermetallic compounds are closely related to the martensitic transformation and martensite variant organization. However, studies of these issues are very limited. Thus, a thorough crystallographic investigation of the martensitic transformation orientation relationship (OR), the transformation deformation and their impact on the variant organization of an Ni 50 Mn 38 Sb 12 alloy using scanning electron microscopy/electron backscatter diffraction (SEM/EBSD) was conducted in this work. It is shown that the martensite variants are hierarchically organized into plates, each possessing four distinct twin-related variants, and the plates into plate colonies, each containing four distinct plates delimited by compatible and incompatible plate interfaces. Such a characteristic organization is produced by the martensitic transformation. It is revealed that the transformation obeys the Pitsch relation ({0[Formula: see text]} A // {2[Formula: see text]} M and 〈0[Formula: see text]1〉 A // 〈[Formula: see text]2〉 M ; the subscripts A and M refer to austenite and martensite, respectively). The type I twinning plane K 1 of the intra-plate variants and the compatible plate interface plane correspond to the respective orientation relationship planes {0[Formula: see text]} A and {0[Formula: see text]} A of austenite. The three {0[Formula: see text]} A planes possessed by each pair of compatible plates, one corresponding to the compatible plate interface and the other two to the variants in the two plates, are interrelated by 60° and belong to a single 〈11[Formula: see text]〉 A axis zone. The {0[Formula: see text]} A planes representing the two pairs of compatible plates in each plate colony belong to two 〈11[Formula: see text]〉 A axis zones having one {0[Formula: see text]} A plane in common. This common plane defines the compatible plate interfaces of the two pairs of plates. The transformation strains to form the variants in the compatible plates are compatible and demonstrate an edge-to-edge character. Thus, such plates should nucleate and grow simultaneously. On the other hand, the strains to form the variants in the incompatible plates are incompatible, so they nucleate and grow separately until they meet during the transformation. The results of the present work provide comprehensive information on the martensitic transformation of Ni-Mn-Sb intermetallic compounds and its impact on martensite variant organization.
Wang, C C; Hsu, C S
1996-06-01
The use of base metal alloys for porcelain fused to a metal crown and bridges has increased recently because of lower price, high hardness, high tensile strength and high elastic modulus. The addition of beryllium to base metal alloys increased fluidity and improved casting fitness. Beryllium also controlled surface oxidation and bonding strength. The bonding agent and gold bonding agent also affected the bonding strength between porcelain and metal alloys. Four commercially available ceramic base alloys were studied (two alloys contained beryllium element, another two did not). The purpose of this investigation was to study the microstructure between porcelain matrix, bonding agent and alloy matrix interfaces. A scanning electron micro-probe analyzer and energy dispersive X-ray spectroscopy (EDXS) were used to study the distribution of elements (Ni, Cr, Mo, Cu, O, Si, Sn, Al) in four base alloys. The following results were obtained: 1. The thickness of the oxidized layer of Rexillium III alloy and Unitbond alloy (contained beryllium) was thinner than Unibond alloy and Wiron 88 alloy (no beryllium). 2. The thickness of the oxidized layer of alloys in air (10 minutes and 30 minutes) was thinner in Unitbond (2.45 microns and 3.80 microns) and thicker in Wiron 88 (4.39 microns and 5.96 microns). 3. The thickness of the oxidized layer occurring for a duration of ten minutes (in vaccum) showed that the Rexillium III alloy was the thinnest (1.93 microns), and Wiron 88 alloy was the thickest (2.30 microns). But in thirty minutes (vacuum), Unitbond alloy was the thinnest (3.37 microns), and Wiron 88 alloy was the thickest (5.51 microns). 4. The intensity of Cr elements was increased obviously near the interface between Unitbond alloy, Wiron 88 alloy (no beryllium) and oxidized layer, but the intensity of Ni and Mo elements was slightly increased. The intensity of Cr element was not increased markedly between Rexillium III alloy, Unitbond alloy (beryllium) and oxidized layer. 5. A white-grayish oxidized layer appeared at the metal-ceramic interfaces but the thickness of oxidized layer was not obviously different. 6. The use of bonding agent at metal-ceramic interface leads to the deposition of many Sn elements at about 40 microns range within the porcelain surface. 7. Second interaction phases at the porcelain layer appeared when gold bonding agent was used, and a 50-100 microns microleakage occurred at the metal-ceramic interface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Jia, E-mail: 2013113205@xmut.edu.cn; Huang, Yu; Zhang, Houan
2014-09-15
Two different ZrB{sub 2}-based ultra-high temperature ceramics were produced by hot pressing: ZrB{sub 2} + 20 vol.% SiC particle + 15 vol.% ZrO{sub 2} fiber and ZrB{sub 2} + 20 vol.% SiC whisker + 15 vol.% ZrO{sub 2} fiber. The microstructures were analyzed by using transmission electron microscopy and high-resolution transmission electron microscopy. It was shown that a clean interface without any impurities was identified in ZrB{sub 2}-based hybrid ceramics with SiC whiskers and ZrO{sub 2} fibers, which would significantly improve the toughening mechanism. The results of high-resolution transmission electron microscopy showed that stacking faults in SiC whiskers resulted frommore » an insertion of a (111) layer, which would be one of the main reasons for material anisotropy. However, the interface between the SiC particle and ZrO{sub 2} fiber was found to be ambiguous in ZrB{sub 2}-based hybrid ceramics with SiC particles and ZrO{sub 2} fibers due to the slight reaction. The orientation relationship between t-ZrO{sub 2} and m-ZrO{sub 2} phases obeyed the classical correspondence: (100){sub m}//(100){sub t} and [001]{sub m}//〈001〉{sub t}, which further verified the feasibility of phase transformation toughening mechanism. - Highlights: • ZrB{sub 2}-based ceramics toughened by short ZrO{sub 2} fiber are characterized by TEM and HRTEM. • The orientation relationship of t- and m-ZrO{sub 2} are (100){sub m}//(100){sub t}, [001]{sub m}//〈001〉{sub t} • The clean interface without any impurities leads to improve the toughening mechanism.« less
Kuriyama, Soichi; Terui, Yuichi; Higuchi, Daisuke; Goto, Daisuke; Hotta, Yasuhiro; Manabe, Atsufumi; Miyazaki, Takashi
2011-01-01
A novel method was developed to fabricate all-ceramic restorations which comprised CAD/CAM-fabricated machinable ceramic bonded to CAD/CAM-fabricated zirconia framework using resin cement. The feasibility of this fabrication method was assessed in this study by investigating the bonding strength of a machinable ceramic to zirconia. A machinable ceramic was bonded to a zirconia plate using three kinds of resin cements: ResiCem (RE), Panavia (PA), and Multilink (ML). Conventional porcelain-fused-to-zirconia specimens were also prepared to serve as control. Shear bond strength test (SBT) and Schwickerath crack initiation test (SCT) were carried out. SBT revealed that PA (40.42 MPa) yielded a significantly higher bonding strength than RE (28.01 MPa) and ML (18.89 MPa). SCT revealed that the bonding strengths of test groups using resin cement were significantly higher than those of Control. Notably, the bonding strengths of RE and ML were above 25 MPa even after 10,000 times of thermal cycling -adequately meeting the ISO 9693 standard for metal-ceramic restorations. These results affirmed the feasibility of the novel fabrication method, in that a CAD/CAM-fabricated machinable ceramic is bonded to a CAD/CAM-fabricated zirconia framework using a resin cement.
Plasma/Wall interaction of an insulated material by laser-induced fluorescence diagnostic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Claire, N.; Doveil, F.
2015-07-01
We present Argon Ion Velocity Distribution Function (IVDF) in the vicinity of an insulated BNSiO{sub 2} ceramic and a glass plate in a non magnetized plasma by laser-induced fluorescence diagnostic. Results show the rather surprising self-consistent formation of a positive or inverse sheath in the two cases. The positive plasma potential repels ions from the insulated wall and is not explained by any sheath theory. Electron secondary emission of the ceramic can be a good candidate to explain these results. (authors)
Enhanced electrical properties of textured NBBT ceramics derived from the screen printing technique.
Wu, Mengjia; Wang, Youliang; Wang, Dong; Li, Yongxiang
2011-10-01
(001)(pc)-oriented (Na(0.5)Bi(0.5))(0.94)Ba(0.06)TiO(3) (NBBT) lead-free piezoelectric ceramics were fabricated by the screen printing technique using Na(0.5)Bi(0.5)TiO(3) (NBT) templates. The plate-like NBT template particles were synthesized from bismuth layer-structured ferroelectric Bi(4)Ti(3)O(12) (BiT) precursors by the topochemical method. The screen printed NBBT ceramics with 20 wt% NBT templates contained a large fraction of grains aligned with their c-axis normal to the sample surface, giving a Lotgering factor of 0.486. The dielectric and ferroelectric properties of textured NBBT ceramics were anisotropic. Compared with the non-textured NBBT ceramics, the dielectric, ferroelectric, and piezoelectric properties of the textured NBBT ceramics were improved, giving a dielectric constant ϵ(T)(33)/ϵ(0) of 910, a remnant polarization P(r) of 29.2 μC/cm(2), a coercive field E(c) of 23.5 kV/cm, a piezoelectric coefficient d(33) of 180 pC/N, and a thickness-mode electromechanical coupling coefficient k(t) of 0.485.
Ceramic susceptor for induction bonding of metals, ceramics, and plastics
NASA Technical Reports Server (NTRS)
Fox, Robert L.; Buckley, John D.
1991-01-01
A thin (.005) flexible ceramic susceptor (carbon) was discovered. It was developed to join ceramics, plastics, metals, and combinations of these materials using a unique induction heating process. Bonding times for laboratory specimens comparing state of the art technology to induction bonding were cut by a factor of 10 to 100 times. This novel type of carbon susceptor allows for applying heat directly and only to the bondline without heating the entire structure, supports, and fixtures of a bonding assembly. The ceramic (carbon film) susceptor produces molten adhesive or matrix material at the bond interface. This molten material flows through the perforated susceptor producing a fusion between the two parts to be joined, which in many instances has proven to be stronger than the parent material. Bonding can be accomplished in 2 minutes on areas submitted to the inductive heating. Because a carbon susceptor is used in bonding carbon fiber reinforced plastics and ceramics, there is no radar signature or return making it an ideal process for joining advanced aerospace composite structures.
Surface-enhanced Raman spectroscopy using silver-coated porous glass-ceramic substrates.
Pan, Z; Zavalin, A; Ueda, A; Guo, M; Groza, M; Burger, A; Mu, R; Morgan, S H
2005-06-01
Surface-enhanced Raman scattering (SERS) has been studied using a silver-coated porous glass-ceramic material as a new type of substrate. The porous glass-ceramic is in the CaO-TiO2-P2O5 system prepared by controlled crystallization and subsequent chemical leaching of the dense glass-ceramic, leaving a solid skeleton with pores ranging in size from 50 nm to submicrometer. Silver was coated on the surface of the porous glass-ceramic by radio frequency (RF) sputtering or e-beam evaporation in vacuum. SERS spectra of excellent quality were obtained from several dyes and carboxylic acid molecules, including rhodamine 6G, crystal violet, isonicotinic acid, and benzoic acid, using this new substrate. This new substrate showed a good compatibility with these molecules. The porous glass ceramic with a nanometer-structured surface accommodated both test molecules and silver film. The absorbed molecules were therefore better interfaced with silver for surface-enhanced Raman scattering.
Details: Elevation of Plate Typical Bay, SectionThrough Plate Typical Bay, ...
Details: Elevation of Plate Typical Bay, Section-Through Plate Typical Bay, Section-Through Plate Center Bay, Elevation of Plate Center Bay - Contoocook Covered Bridge, Spanning Contoocook River, Hopkinton, Merrimack County, NH
Developing Images on Clay . . . A New Approach.
ERIC Educational Resources Information Center
Gamble, Harriet
1999-01-01
Presents a ceramics activity for beginning art students inspired by a workshop given by artist David Stabley, who combines unique sculptural forms with colorful, nontraditional decorating approaches. Students make plates or tiles that tell a story about their world. Includes instructions. (CMK)
Transient Heating and Thermomechanical Stress Modeling of Ceramic HEPA Filters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogle, Brandon; Kelly, James; Haslam, Jeffrey
The purpose of this report is to showcase an initial finite-element analysis model of a ceramic High-Efficiency Particulate (HEPA) Air filter design. Next generation HEPA filter assemblies are being developed at LLNL to withstand high-temperature fire scenarios by use of ceramics and advanced materials. The filters are meant for use in radiological and nuclear facilities, and are required to survive 500°C fires over an hour duration. During such conditions, however, collecting data under varying parameters can be challenging; therefore, a Finite Element Analysis model of the filter was conducted using COMSOL ® Multiphysics to analyze the effects of fire. Finitemore » Element Analysis (FEA) modelling offers several opportunities: researchers can quickly and easily consider impacts of potential design changes, material selection, and flow characterization on filter performance. Specifically, this model provides stress references for the sealant at high temperatures. Modeling of full filter assemblies was deemed inefficient given the computational requirements, so a section of three tubes from the assembly was modeled. The model looked at the transient heating and thermomechanical stress development during a 500°C air flow at 6 CFM. Significant stresses were found at the ceramic-metal interfaces of the filter, and conservative temperature profiles at locations of interest were plotted. The model can be used for the development of sealants that minimize stresses at the ceramic-metal interface. Further work on the model would include the full filter assembly and consider heat losses to make more accurate predictions.« less
NASA Astrophysics Data System (ADS)
Yan, Yongke; Cho, Kyung-Hoon; Priya, Shashank
2012-03-01
In this letter, we report the electromechanical properties of textured 0.4Pb(Mg1/3Nb2/3)O3-0.25PbZrO3-0.35PbTiO3 (PMN-PZT) composition which has relatively high rhombohedral to tetragonal (R-T) transition temperature (TR-T of 160 °C) and Curie temperature (TC of 234 °C) and explore the effect of Mn-doping on this composition. It was found that MnO2-doped textured PMN-PZT ceramics with 5 vol. % BaTiO3 template (T-5BT) exhibited inferior temperature stability. The coupling factor (k31) of T-5BT ceramic started to degrade from 75 °C while the random counterpart showed a very stable tendency up to 180 °C. This degradation was associated with the "interface region" formed in the vicinity of BT template. MnO2 doped PMN-PZT ceramics textured with 3 vol. % BT and subsequently poled at 140 °C (T-3BT140) exhibited very stable and high k31 (>0.53) in a wide temperature range from room temperature to 130 °C through reduction in the interface region volume. Further, the T-3BT140 ceramic exhibited excellent hard and soft combinatory piezoelectric properties of d33 = 720 pC/N, k31 = 0.53, Qm = 403, tan δ = 0.3% which are very promising for high power and magnetoelectric applications.
Yao, Chenmin; Zhou, Liqun; Yang, Hongye; Wang, Yake; Sun, Hualing; Guo, Jingmei; Huang, Cui
2017-04-01
The aim of this study was to investigate the effect of silane pretreatment on the universal adhesive bonding between lithium disilicate glass ceramic and composite resin. IPS e.max ceramic blocks etched with hydrofluoric acid were randomly assigned to one of eight groups treated with one of four universal adhesives (two silane-free adhesives and two silane-containing adhesives), each with or without silane pretreatment. Bonded specimens were stored in water for 24 h. The shear bond strength (SBS) of the ceramic-resin interface was measured to evaluate bond strength, and the debonded interface after the SBS test was analysed using field-emission scanning electron microscopy to determine failure mode. Light microscopy was performed to analyse microleakage and marginal sealing ability. Silane pretreatment significantly and positively influenced SBS and marginal sealing ability. For all the universal adhesive groups, SBS increased and the percentage of microleakage decreased after the pretreatment. Without the pretreatment, SBS and the percentage of microleakage were not significantly different between the silane-containing universal adhesive groups and the silane-free groups. Cohesive failure was the main fracture pattern. The results suggest that additional silane pretreatment can effectively improve the bonding strength and marginal sealing of adhesives to lithium disilicate glass ceramics. The bonding performance of silane-containing universal adhesives without pretreatment is similar to that of silane-free adhesives. © 2017 Eur J Oral Sci.
Apparatus for the compact cooling of modules
Iyengar, Madhusudan K.; Parida, Pritish R.
2015-07-07
An apparatus for the compact cooling of modules. The apparatus includes a clip, a first cover plate coupled to a first side of the clip, a second cover plate coupled to a second side of the clip opposite to the first side of the clip, a first frame thermally coupled to the first cover plate, and a second frame thermally coupled to the second cover plate. Each of the first frame and the second frame may include a plurality of channels for passing coolant through the first frame and the second frame, respectively. Additionally, the apparatus may further include a filler for directing coolant through the plurality of channels, and for blocking coolant from flowing along the first side of the clip and the second side of the clip.
Influence of interface point defect on the dielectric properties of Y doped CaCu3Ti4O12 ceramics
NASA Astrophysics Data System (ADS)
Deng, Jianming; Sun, Xiaojun; Liu, Saisai; Liu, Laijun; Yan, Tianxiang; Fang, Liang; Elouadi, Brahim
2016-04-01
CaCu3Ti4-xYxO12 (0≤x≤0.12) ceramics were fabricated with conventional solid-state reaction method. Phase structure and microstructure of prepared ceramics were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The impedance and modulus tests both suggested the existence of two different relaxation behavior, which were attributed to bulk and grain boundary response. In addition, the conductivity and dielectric permittivity showed a step-like behavior under 405K. Meanwhile, frequency independence of dc conduction became dominant when above 405K. In CCTO ceramic, rare earth element Y3+ ions as an acceptor were used to substitute Ti sites, decreasing the concentration of oxygen vacancy around grain-electrode and grain boundary. The reason to the reduction of dielectric behavior in low frequencies range was associated with the Y doping in CCTO ceramic.
Streaks of Aftershocks Following the 2004 Sumatra-Andaman Earthquake
NASA Astrophysics Data System (ADS)
Waldhauser, F.; Schaff, D. P.; Engdahl, E. R.; Diehl, T.
2009-12-01
Five years after the devastating 26 December, 2004 M 9.3 Sumatra-Andaman earthquake, regional and global seismic networks have recorded tens of thousands of aftershocks. We use bulletin data from the International Seismological Centre (ISC) and the National Earthquake Information Center (NEIC), and waveforms from IRIS, to relocate more than 20,000 hypocenters between 1964 and 2008 using teleseimic cross-correlation and double-difference methods. Relative location uncertainties of a few km or less allow for detailed analysis of the seismogenic faults activated as a result of the massive stress changes associated with the mega-thrust event. We focus our interest on an area of intense aftershock activity off-shore Banda Aceh in northern Sumatra, where the relocated epicenters reveal a pattern of northeast oriented streaks. The two most prominent streaks are ~70 km long with widths of only a few km. Some sections of the streaks are formed by what appear to be small, NNE striking sub-streaks. Hypocenter depths indicate that the events locate both on the plate interface and in the overriding Sunda plate, within a ~20 km wide band overlying the plate interface. Events on the plate interface indicate that the slab dip changes from ~20° to ~30° at around 50 km depth. Locations of the larger events in the overriding plate indicate an extension of the steeper dipping mega thrust fault to the surface, imaging what appears to be a major splay fault that reaches the surface somewhere near the western edge of the Aceh basin. Additional secondary splay faults, which branch off the plate interface at shallower depths, may explain the diffuse distribution of smaller events in the overriding plate, although their relative locations are less well constrained. Focal mechanisms support the relocation results. They show a narrowing range of fault dips with increasing distance from the trench. Specifically, they show reverse faulting on ~30° dipping faults above the shallow (20°) dipping plate interface. The observation of active splay faults associated with the mega thrust event is consistent with co- and post-seismic motion data, and may have significant implications on the generation and size of the tsunami that caused 300,000 deaths.
1988-04-15
physical properties of a polycarbosilane preceramic polymer as a function of temperature to derive synthesis methodology for SiC matrix composites , (2...investigate the role of interface modification in creating tough carbon fiber reinforced SiC matrix composites . RESEARCH PROGRESS Preceramic Polymer ...Classfication) A STUDY OF THE CRITICAL FACTORS CONTROLLING THE SYNTHESIS OF CERAMIC MATRIX COMPOSITES FROM PRECERAMIC POLYMERS 12. PERSONAL AUTHOR(S
Transformation Weakening of Ceramic Composite Interfaces.
1996-12-06
20 90 80 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 "Plastic" Shear Strain, yp (rn/rn)(b) "Plastic" stain due to transformation in MgSiQ3 with 2 molo Mn2...for Ceramic Matrix Composites," C. M. Huang, F. Xiong, Y. Xu, A. Zangvil and W. M. Kriven, J. Materials Science and Engineering, A191 (1995) 249-256
Thermal Fatigue and Fracture Behavior of Ceramic Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Zhu, Dong-Ming; Choi, Sung R.; Miller, Robert A.
2001-01-01
Thermal fatigue and fracture behavior of plasma-sprayed ceramic thermal barrier coatings has been investigated under high heat flux and thermal cyclic conditions. The coating crack propagation is studied under laser heat flux cyclic thermal loading, and is correlated with dynamic fatigue and strength test results. The coating stress response and inelasticity, fatigue and creep interactions, and interface damage mechanisms during dynamic thermal fatigue processes are emphasized.
Critical Issues for Producing UHTC-Brazed Joints: Wetting and Reactivity
NASA Astrophysics Data System (ADS)
Passerone, A.; Muolo, M. L.; Valenza, F.
2016-08-01
A brief survey is presented of the most important interaction phenomena occurring at the solid-liquid interfaces in metal-ceramic systems at high temperatures, with special attention to the most recent developments concerning wetting and joining transition metals diborides. These phenomena are described and discussed from both the experimental and theoretical points of view in relation to joining ceramic and metal-ceramic systems by means of processes in the presence of a liquid phase (brazing, TLPB etc.). It is shown that wetting and the formation of interfacial dissolution regions are the results of the competition between different phenomena: dissolution of the ceramic in the liquid phase, reaction and formation of new phases at the solid-liquid interface, and drop spreading along the substrate surface. We emphasize the role of phase diagrams to support both the design of the experiments and the choice of active alloying elements, and to interpret the evolution of the system in relation to temperature and composition. In this respect, the sessile-drop technique has been shown to be helpful in assessing critical points of newly calculated phase diagrams. These studies are essential for the design of joining processes, for the creation of composite materials, and are of a particular relevance when applied to UHTC materials.
Storage containers for radioactive material
Groh, E.F.; Cassidy, D.A.; Dates, L.R.
1980-07-31
A radioactive material storage system is claimed for use in the laboratory having a flat base plate with a groove in one surface thereof and a hollow pedestal extending perpendicularly away from the other surface thereof, a sealing gasket in the groove, a cover having a filter therein and an outwardly extending flange which fits over the plate, the groove and the gasket, and a clamp for maintaining the cover and the plate sealed together. The plate and the cover and the clamp cooperate to provide a storage area for radioactive material readily accessible for use or inventory. Wall mounts are provided to prevent accidental formation of critical masses during storage.
Hartmann, Xavier H M; van der Linde, Peter; Homburg, Erik F G A; van Breemen, Lambert C A; de Jong, Arthur M; Luttge, Regina
2015-11-18
Arrays of microneedles (MNAs) are integrated in an out-of-plane fashion with a base plate and can serve as patches for the release of drugs and vaccines. We used soft-lithography and micromolding to manufacture ceramic nanoporous (np)MNAs. Failure modes of ceramic npMNAs are as yet poorly understood and the question remained: is our npMNA platform technology ready for microneedle (MN) assembly into patches? We investigated npMNAs by microindentation, yielding average crack fracture forces above the required insertion force for a single MN to penetrate human skin. We further developed a thumb pressure-actuated applicator-assisted npMNA insertion method, which enables anchoring of MNs in the skin by an adhesive in one handling step. Using a set of simple artificial skin models, we found a puncture efficiency of this insertion method a factor three times higher than by applying thumb pressure on the npMNA base plate directly. In addition, this new method facilitated zero MN-breakage due to a well-defined force distribution exerted onto the MNs and the closely surrounding area prior to bringing the adhesive into contact with the skin. Owing to the fact that such parameter space exists, we can conclude that npMNAs by soft lithography are a platform technology for MN assembly into a patch.
Structural analysis of hatch cover plates on FMEF high bay mezzanine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dixson, G.E.
1997-05-29
In order to move the Idaho National Engineering Laboratory (INEL) Light Duty Utility Arm (LDUA) trailer into position for testing on the Fuels and Materials Examination Facility (FMEF) 42 ft level mezzanine one of the trailer`s wheels will have to sit on a circular hatch cover fabricated from one-inch thick steel plate. The attached calculations verify that the hatch cover plate is strong enough to support the weight of the INEL LDUA trailer`s wheel.
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1993-01-01
This report is the fifth in a series of Annual Technical Summary Reports for the Advanced Turbine Technology Applications Project (ATTAP), sponsored by the U.S. Department of Energy (DOE). The report was prepared by Garrett Auxiliary Power Division (GAPD), a unit of Allied-Signal Aerospace Company, a unit of Allied Signal, Inc. The report includes information provided by Garrett Ceramic Components, and the Norton Advanced Ceramics Company, (formerly Norton/TRW Ceramics), subcontractors to GAPD on the ATTAP. This report covers plans and progress on ceramics development for commercial automotive applications over the period 1 Jan. through 31 Dec. 1992. Project effort conducted under this contract is part of the DOE Gas Turbine Highway Vehicle System program. This program is directed to provide the U.S. automotive industry the high-risk, long-range technology necessary to produce gas turbine engines for automobiles with reduced fuel consumption, reduced environmental impact, and a decreased reliance on scarce materials and resources. The program is oriented toward developing the high-risk technology of ceramic structural component design and fabrication, such that industry can carry this technology forward to production in the 1990's. The ATTAP test bed engine, carried over from the previous AGT101 project, is being used for verification testing of the durability of next generation ceramic components, and their suitability for service at Reference Powertrain Design conditions. This document reports the technical effort conducted by GAPD and the ATTAP subcontractors during the fifth year of the project. Topics covered include ceramic processing definition and refinement, design improvements to the ATTAP test bed engine and test rigs, and the methodology development of ceramic impact and fracture mechanisms. Appendices include reports by ATTAP subcontractors in the development of silicon nitride materials and processes.
A high temperature ceramic heat exchanger element for a solar thermal receiver
NASA Technical Reports Server (NTRS)
Strumpf, H. J.; Kotchick, D. M.; Coombs, M. G.
1982-01-01
The development of a high-temperature ceramic heat exchanger element to be integrated into a solar receiver producing heated air was studied. A number of conceptual designs were developed for heat exchanger elements of differing configuration. These were evaluated with respect to thermal performance, pressure drop, structural integrity, and fabricability. The final design selection identified a finned ceramic shell as the most favorable concept. The shell is surrounded by a larger metallic shell. The flanges of the two shells are sealed to provide a leak-tight pressure vessel. The ceramic shell is to be fabricated by a innovative combination of slip casting the receiver walls and precision casting the heat transfer finned plates. The fins are bonded to the shell during firing. The unit is sized to produce 2150 F air at 2.7 atm pressure, with a pressure drop of about 2 percent of the inlet pressure. This size is compatible with a solar collector providing a receiver input of 85 kw(th). Fabrication of a one-half scale demonstrator ceramic receiver was completed.
NASA Astrophysics Data System (ADS)
Tsuji, Takeshi; Minato, Shohei; Kamei, Rie; Tsuru, Tetsuro; Kimura, Gaku
2017-11-01
We used recent seismic data and advanced techniques to investigate 3D fault geometry over the transition from the partially coupled to the fully coupled plate interface inboard of the Nankai Trough off the Kii Peninsula, Japan. We found that a gently dipping plate boundary décollement with a thick underthrust layer extends beneath the entire Kumano forearc basin. The 1 April 2016 Off-Mie earthquake (Mw6.0) and its aftershocks occurred, where the plate boundary décollement steps down close to the oceanic crust surface. This location also lies beneath the trenchward edge of an older accretionary prism (∼14 Ma) developed along the coast of the Kii peninsula. The strike of the 2016 rupture plane was similar to that of a formerly active splay fault system in the accretionary prism. Thus, the fault planes of the 2016 earthquake and its aftershocks were influenced by the geometry of the plate interface as well as splay faulting. The 2016 earthquake occurred within the rupture area of large interplate earthquakes such as the 1944 Tonankai earthquake (Mw8.1), although the 2016 rupture area was much smaller than that of the 1944 event. Whereas the hypocenter of the 2016 earthquake was around the underplating sequence beneath the younger accretionary prism (∼6 Ma), the 1944 great earthquake hypocenter was close to oceanic crust surface beneath the older accretionary prism. The variation of fault geometry and lithology may influence the degree of coupling along the plate interface, and such coupling variation could hinder slip propagation toward the deeper plate interface in the 2016 event.
Impingement Flow Heat Transfer Measurements of Turbine Blades Using a Jet Array
1994-08-01
jet spacing of Sd and a plate thickness to jet diameter of 1.2. ExP were acoplished for a range of impingemet plate to target surface spacings z ( 1...Performance Improvements 1.2.1 Materials Monolithic ceramics have a good high temperature strength in the 1900 K range and a resistance to oxidation in the...with z in this range . Thes correlations do not apply to the inlet geometry and jet confinement of the current experiments. Their experimental geometry
Integral gas seal for fuel cell gas distribution assemblies and method of fabrication
Dettling, Charles J.; Terry, Peter L.
1985-03-19
A porous gas distribution plate assembly for a fuel cell, such as a bipolar assembly, includes an inner impervious region wherein the bipolar assembly has good surface porosity but no through-plane porosity and wherein electrical conductivity through the impervious region is maintained. A hot-pressing process for forming the bipolar assembly includes placing a layer of thermoplastic sealant material between a pair of porous, electrically conductive plates, applying pressure to the assembly at elevated temperature, and allowing the assembly to cool before removing the pressure whereby the layer of sealant material is melted and diffused into the porous plates to form an impervious bond along a common interface between the plates holding the porous plates together. The distribution of sealant within the pores along the surface of the plates provides an effective barrier at their common interface against through-plane transmission of gas.
Method of fabricating an integral gas seal for fuel cell gas distribution assemblies
Dettling, Charles J.; Terry, Peter L.
1988-03-22
A porous gas distribution plate assembly for a fuel cell, such as a bipolar assembly, includes an inner impervious region wherein the bipolar assembly has good surface porosity but no through-plane porosity and wherein electrical conductivity through the impervious region is maintained. A hot-pressing process for forming the bipolar assembly includes placing a layer of thermoplastic sealant material between a pair of porous, electrically conductive plates, applying pressure to the assembly at elevated temperature, and allowing the assembly to cool before removing the pressure whereby the layer of sealant material is melted and diffused into the porous plates to form an impervious bond along a common interface between the plates holding the porous plates together. The distribution of sealant within the pores along the surface of the plates provides an effective barrier at their common interface against through-plane transmission of gas.
High-Repeatability, Robot Friendly, ORU Interface
NASA Technical Reports Server (NTRS)
Voellmer, George M. (Inventor)
1992-01-01
A robot-friendly coupling device for an Orbital Replacement Unit (ORU). The invention will provide a coupling that is detached and attached remotely by a robot. The design of the coupling must allow for slight misalignments, over torque protection, and precision placement. This is accomplished by using of a triangular interface having three components. A base plate assembly is located on an attachment surface, such as a satellite. The base plate assembly has a cup member, a slotted member, and a post member. The ORU that the robot attaches to the base plate assembly has an ORU plate assembly with two cone members and a post member which mate to the base plate assembly. As the two plates approach one another, one cone member of the ORU plate assembly only has to be placed accurately enough to fall into the cup member of the base plate assembly. The cup forces alignment until a second cone falls into a slotted member which provides final alignment. A single bolt is used to attach the two plates. Two deflecting plates are attached to the backs of the plates. When pressure is applied to the center of the deflecting plates, the force is distributed preventing the ORU & base plates from deflecting. This accounts for precision in the placement of the article.
Rough Electrode Creates Excess Capacitance in Thin-Film Capacitors
2017-01-01
The parallel-plate capacitor equation is widely used in contemporary material research for nanoscale applications and nanoelectronics. To apply this equation, flat and smooth electrodes are assumed for a capacitor. This essential assumption is often violated for thin-film capacitors because the formation of nanoscale roughness at the electrode interface is very probable for thin films grown via common deposition methods. In this work, we experimentally and theoretically show that the electrical capacitance of thin-film capacitors with realistic interface roughness is significantly larger than the value predicted by the parallel-plate capacitor equation. The degree of the deviation depends on the strength of the roughness, which is described by three roughness parameters for a self-affine fractal surface. By applying an extended parallel-plate capacitor equation that includes the roughness parameters of the electrode, we are able to calculate the excess capacitance of the electrode with weak roughness. Moreover, we introduce the roughness parameter limits for which the simple parallel-plate capacitor equation is sufficiently accurate for capacitors with one rough electrode. Our results imply that the interface roughness beyond the proposed limits cannot be dismissed unless the independence of the capacitance from the interface roughness is experimentally demonstrated. The practical protocols suggested in our work for the reliable use of the parallel-plate capacitor equation can be applied as general guidelines in various fields of interest. PMID:28745040
NASA Astrophysics Data System (ADS)
Zhou, N.; Wang, J. X.; Tang, S. Z.; Tao, Q. C.; Wang, M. X.
2018-01-01
A stereomicroscope, microscopic metallograph, scanning electron microscope, and the ANSYS/LS-DYNA 3D finite-element code were employed to investigate the failure and energy absorption mechanism of two-layer steel/aluminum and three-layer steel/aluminum/steel and aluminum/steel/aluminum explosively welded composite plates impacted by spherical fragments. The effects of layer number, target order, and the combination state of interfaces on the failure and energy absorption mechanism are analyzed based on experimental and numerical results. Results showed that the effect of the combination state of interfaces on the failure mode was pronounced the most compared with other factors. The failure mechanism of the front and middle plates were shearing and plugging, and that of rear plate was ductile deformation when the tied interface failed by tension (or by shearing and plugging when the interface combination remained connected). A narrow adiabatic shear band was formed in the locally yielding plate damaged by shearing and plugging during the penetration process. The amount of energy needed to completely perforate the three-layer composite target was greater than that for a two-layer composite target with the same areal density and total thickness. The protective performance of the steel/aluminum/steel target was better than that of the aluminum/steel/aluminum target with the same areal density.
Rough Electrode Creates Excess Capacitance in Thin-Film Capacitors.
Torabi, Solmaz; Cherry, Megan; Duijnstee, Elisabeth A; Le Corre, Vincent M; Qiu, Li; Hummelen, Jan C; Palasantzas, George; Koster, L Jan Anton
2017-08-16
The parallel-plate capacitor equation is widely used in contemporary material research for nanoscale applications and nanoelectronics. To apply this equation, flat and smooth electrodes are assumed for a capacitor. This essential assumption is often violated for thin-film capacitors because the formation of nanoscale roughness at the electrode interface is very probable for thin films grown via common deposition methods. In this work, we experimentally and theoretically show that the electrical capacitance of thin-film capacitors with realistic interface roughness is significantly larger than the value predicted by the parallel-plate capacitor equation. The degree of the deviation depends on the strength of the roughness, which is described by three roughness parameters for a self-affine fractal surface. By applying an extended parallel-plate capacitor equation that includes the roughness parameters of the electrode, we are able to calculate the excess capacitance of the electrode with weak roughness. Moreover, we introduce the roughness parameter limits for which the simple parallel-plate capacitor equation is sufficiently accurate for capacitors with one rough electrode. Our results imply that the interface roughness beyond the proposed limits cannot be dismissed unless the independence of the capacitance from the interface roughness is experimentally demonstrated. The practical protocols suggested in our work for the reliable use of the parallel-plate capacitor equation can be applied as general guidelines in various fields of interest.
Langlois, Gary N.
1983-09-13
Measurement of the relative and actual value of acoustic characteristic impedances of an unknown substance, location of the interfaces of vertically-layered materials, and the determination of the concentration of a first material mixed in a second material. A highly damped ultrasonic pulse is transmitted into one side of a reference plate, such as a tank wall, where the other side of the reference plate is in physical contact with the medium to be measured. The amplitude of a return signal, which is the reflection of the transmitted pulse from the interface between the other side of the reference plate and the medium, is measured. The amplitude value indicates the acoustic characteristic impedance of the substance relative to that of the reference plate or relative to that of other tested materials. Discontinuities in amplitude with repeated measurements for various heights indicate the location of interfaces in vertically-layered materials. Standardization techniques permit the relative acoustic characteristic impedance of a substance to be converted to an actual value. Calibration techniques for mixtures permit the amplitude to be converted to the concentration of a first material mixed in a second material.
Langlois, G.N.
1983-09-13
Measurement of the relative and actual value of acoustic characteristic impedances of an unknown substance, location of the interfaces of vertically-layered materials, and the determination of the concentration of a first material mixed in a second material are disclosed. A highly damped ultrasonic pulse is transmitted into one side of a reference plate, such as a tank wall, where the other side of the reference plate is in physical contact with the medium to be measured. The amplitude of a return signal, which is the reflection of the transmitted pulse from the interface between the other side of the reference plate and the medium, is measured. The amplitude value indicates the acoustic characteristic impedance of the substance relative to that of the reference plate or relative to that of other tested materials. Discontinuities in amplitude with repeated measurements for various heights indicate the location of interfaces in vertically-layered materials. Standardization techniques permit the relative acoustic characteristic impedance of a substance to be converted to an actual value. Calibration techniques for mixtures permit the amplitude to be converted to the concentration of a first material mixed in a second material. 6 figs.
Update on slip and wear in multi-layer azimuth track systems
NASA Astrophysics Data System (ADS)
Juneja, Gunjeet; Kan, Frank W.; Antebi, Joseph
2006-06-01
Many antennas, such as the 100-m Green Bank Telescope, use a wheel-on-track systems in which the track segments consist of wear plates mounted on base plates. The wear plates are typically 2 to 3 inches thick and are case hardened or through hardened. The base plates are usually 3 to 4 times thicker than the wear plates and are not hardened. The wear plates are typically connected to the base plates using bolts. The base plates are supported on grout and anchored to the underlying concrete foundation. For some antennas, slip has been observed between the wear plate and base plate, and between the base plate and the grout, with the migration in the wheel rolling direction. In addition, there has been wear at the wear plate/base plate interface. This paper is an update on the evaluation of GBT track retrofit. The paper describes the use of three-dimensional non-linear finite element analyses to understand and evaluate the behavior of (1) the existing GBT wheel-on-track system with mitered joints, and (2) the various proposed modifications. The modifications include welding of the base plate joints, staggering of the wear plate joints from the base plate joints, changing thickness of the wear plate, and increasing bolt diameter and length. Parameters included in the evaluation were contact pressure, relative slip, wear at the wear plate/base plate interface, and bolt shears and moments.
Drobac, Milan; Stojanac, Igor; Ramić, Bojana; Premović, Milica; Petrović, Ljubomir
2015-01-01
The ultimate goal in restorative dentistry has always been to achieve strong and permanent bond between the dental tissues and filling materials. It is not easy to achieve this task because the bonding process is different for enamel and dentin-dentin is more humid and more organic than enamel. It is moisture and organic nature of dentin that make this hard tissue very complex to achieve adhesive bond. One of the first and most widely used tools for examining the adhesive bond between hard dental tissues and composite restorative materials is scanning electron microscopy. The aim of this study was scanning electron microscopy analyzes the interfacial micro morphology of total-etch and self-etch adhesives. Micro morphological characteristics of interface between total-etch adhesive (Prime & Bond NT) in combination with the corresponding composite (Ceram X Mono) were compared with those of self-etching adhesive (AdheSE One) in, combination with the corresponding composite (Tetric EvoCeram). The specimens were observed under 1000 x magnification of scanning electron microscopy (JEOL, JSM-6460 Low Vacuum). Measurement of the thickness of the hybrid layer of the examined com posite systems was performed with the software of the device used (NIH Image Analyser). Micromorphological analysis of interface showed that the hybrid layer in sound dentin was well formed, its average thickness being 2.68 microm, with a large number of resin tags and a large amount of lateral branches for specimens with a composite system Prime & Bond NT-Ceram X Mono. However, the specimens' with composite systems Adhese One-Tetric EvoCeram did not show the presence of hybrid layer and the resin tags were poorly represented. The results of this study suggest that total-etch adhesives bond better with sound dentin than self-etch adhesive.
Thermal Response of Cooled Silicon Nitride Plate Due to Thermal Conductivity Effects Analyzed
NASA Technical Reports Server (NTRS)
Baaklini, George Y.; Abdul-Aziz, Ali; Bhatt, Ramakrishna
2003-01-01
Lightweight, strong, tough high-temperature materials are required to complement efficiency improvements for next-generation gas turbine engines that can operate with minimum cooling. Because of their low density, high-temperature strength, and high thermal conductivity, ceramics are being investigated as materials to replace the nickelbase superalloys that are currently used for engine hot-section components. Ceramic structures can withstand higher operating temperatures and a harsh combustion environment. In addition, their low densities relative to metals help reduce component mass (ref. 1). To complement the effectiveness of the ceramics and their applicability for turbine engine applications, a parametric study using the finite element method is being carried out. The NASA Glenn Research Center remains very active in conducting and supporting a variety of research activities related to ceramic matrix composites through both experimental and analytical efforts (ref. 1). The objectives of this work are to develop manufacturing technology, develop a thermal and environmental barrier coating (TBC/EBC), develop an analytical modeling capability to predict thermomechanical stresses, and perform a minimal burner rig test on silicon nitride (Si3N4) and SiC/SiC turbine nozzle vanes under simulated engine conditions. Moreover, we intend to generate a detailed database of the material s property characteristics and their effects on structural response. We expect to offer a wide range of data since the modeling will account for other variables, such as cooling channel geometry and spacing. Comprehensive analyses have begun on a plate specimen with Si3N4 cooling holes.
Sancakli, Hande Sar; Sancakli, Erkan; Eren, Meltem Mert; Ozel, Sevda; Yucel, Taner; Yildiz, Esra
2014-01-01
PURPOSE The purpose of this study was to evaluate and compare the effects of different surface pretreatment techniques on the surface roughness and shear bond strength of a new self-adhering flowable composite resin for use with lithium disilicate-reinforced CAD/CAM ceramic material. MATERIALS AND METHODS A total of one hundred thirty lithium disilicate CAD/CAM ceramic plates with dimensions of 6 mm × 4 mm and 3 mm thick were prepared. Specimens were then assigned into five groups (n=26) as follows: untreated control, coating with 30 µm silica oxide particles (Cojet™ Sand), 9.6% hydrofluoric acid etching, Er:YAG laser irradiation, and grinding with a high-speed fine diamond bur. A self-adhering flowable composite resin (Vertise Flow) was applied onto the pre-treated ceramic plates using the Ultradent shear bond Teflon mold system. Surface roughness was measured by atomic force microscopy. Shear bond strength test were performed using a universal testing machine at a crosshead speed of 1 mm/min. Surface roughness data were analyzed by one-way ANOVA and the Tukey HSD tests. Shear bond strength test values were analyzed by Kruskal-Wallis and Mann-Whitney U tests at α=.05. RESULTS Hydrofluoric acid etching and grinding with high-speed fine diamond bur produced significantly higher surface roughness than the other pretreatment groups (P<.05). Hydrofluoric acid etching and silica coating yielded the highest shear bond strength values (P<.001). CONCLUSION Self-adhering flowable composite resin used as repair composite resin exhibited very low bond strength irrespective of the surface pretreatments used. PMID:25551002
Finite-element simulation of ceramic drying processes
NASA Astrophysics Data System (ADS)
Keum, Y. T.; Jeong, J. H.; Auh, K. H.
2000-07-01
A finite-element simulation for the drying process of ceramics is performed. The heat and moisture movements in green ceramics caused by the temperature gradient, moisture gradient, conduction, convection and evaporation are considered. The finite-element formulation for solving the temperature and moisture distributions, which not only change the volume but also induce the hygro-thermal stress, is carried out. Employing the internally discontinuous interface elements, the numerical divergence problem arising from sudden changes in heat capacity in the phase zone is solved. In order to verify the reliability of the formulation, the drying process of a coal and the wetting process of a graphite epoxy are simulated and the results are compared with the analytical solution and another investigator's result. Finally, the drying process of a ceramic electric insulator is simulated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rabin, B.H.
This paper reports on a ceramic joining technique that has been developed that utilizes an exothermic combustion reaction to simultaneously synthesize the joint interlayer material and to bond together the ceramic workpieces. The method has been used to join SiC ceramics using Ti-C-Ni powder mixtures that ignite below 1200{degrees} C to form a TiC-Ni joining material. Thin layers of the powder reactants were prepared by tape casting, and joining was accomplished by heating in a hot-press to ignite the combustion reaction. during this process, localized exothermic heating of the joint region resulted in chemical interaction at the interface between themore » TiC-Ni and the SiC ceramic that contributed to bonding. Room-temperature four-point bending strengths of joints produced by this method have exceeded 100 MPa.« less
Dejak, Beata; Młotkowski, Andrzej
2013-12-01
The objective was to compare equivalent stresses in molars restored with endocrowns as well as posts and cores during masticatory simulation using finite element analysis. Four three-dimensional models of first mandibular molars were created: A - intact tooth; B - tooth restored by ceramic endocrown; C - tooth with FRC posts, composite core and ceramic crown; D - tooth with cast post and ceramic crown. The study was performed using finite element analysis, with contact elements. The computer simulations of mastication were conducted. The equivalent stresses of modified von Mises failure criterion (mvM) in models were calculated, Tsai-Wu index for FRC post was determinate. Maximal values of the stresses in the ceramic, cement and dentin were compared between models and to strength of the materials. Contact stresses in the cement-tissue adhesive interface around restorations were considered as well. During masticatory simulation, the lowest mvM stresses in dentin arisen in molar restored with endocrown (Model B). Maximal mvM stress values in structures of restored molar were 23% lower than in the intact tooth. The mvM stresses in the endocrown did not exceed the tensile strength of ceramic. In the molar with an FRC posts (Model C), equivalent stress values in dentin increased by 42% versus Model B. In ceramic crown of Model C the stresses were 31% higher and in the resin luting cement were 61% higher than in the tooth with endocrown. Tensile contact stresses in the adhesive cement-dentin interface around FRC posts achieved 4 times higher values than under endocrown and shear stresses increased twice. The contact stress values around the appliances were several time smaller than cement-dentin bond strength. Teeth restored by endocrowns are potentially more resistant to failure than those with FRC posts. Under physiological loads, ceramic endocrowns ideally cemented in molars should not be demaged or debonded. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Wang, Raorao; Lu, Chenglin; Arola, Dwayne; Zhang, Dongsheng
2013-08-01
The aim of this study was to compare failure modes and fracture strength of ceramic structures using a combination of experimental and numerical methods. Twelve specimens with flat layer structures were fabricated from two types of ceramic systems (IPS e.max ceram/e.max press-CP and Vita VM9/Lava zirconia-VZ) and subjected to monotonic load to fracture with a tungsten carbide sphere. Digital image correlation (DIC) and fractography technology were used to analyze fracture behaviors of specimens. Numerical simulation was also applied to analyze the stress distribution in these two types of dental ceramics. Quasi-plastic damage occurred beneath the indenter in porcelain in all cases. In general, the fracture strength of VZ specimens was greater than that of CP specimens. The crack initiation loads of VZ and CP were determined as 958 ± 50 N and 724 ± 36 N, respectively. Cracks were induced by plastic damage and were subsequently driven by tensile stress at the elastic/plastic boundary and extended downward toward to the veneer/core interface from the observation of DIC at the specimen surface. Cracks penetrated into e.max press core, which led to a serious bulk fracture in CP crowns, while in VZ specimens, cracks were deflected and extended along the porcelain/zirconia core interface without penetration into the zirconia core. The rupture loads for VZ and CP ceramics were determined as 1150 ± 170 N and 857 ± 66 N, respectively. Quasi-plastic deformation (damage) is responsible for crack initiation within porcelain in both types of crowns. Due to the intrinsic mechanical properties, the fracture behaviors of these two types of ceramics are different. The zirconia core with high strength and high elastic modulus has better resistance to fracture than the e.max core. © 2013 by the American College of Prosthodontists.
NASA Astrophysics Data System (ADS)
Kulikov, G. M.; Plotnikova, S. V.
2017-03-01
The possibility of using the method of sampling surfaces (SaS) for solving the free vibration problem of threedimensional elasticity for metal-ceramic shells is studied. According to this method, in the shell body, an arbitrary number of SaS parallel to its middle surface are selected in order to take displacements of these surfaces as unknowns. The SaS pass through the nodes of a Chebyshev polynomial, which improves the convergence of the SaS method significantly. As a result, the SaS method can be used to obtain analytical solutions of the vibration problem for metal-ceramic plates and cylindrical shells that asymptotically approach the exact solutions of elasticity as the number of SaS tends to infinity.
The surface and through crack problems in layered orthotropic plates
NASA Technical Reports Server (NTRS)
Erdogan, Fazil; Wu, Binghua
1991-01-01
An analytical method is developed for a relatively accurate calculation of Stress Intensity Factors in a laminated orthotropic plate containing a through or part-through crack. The laminated plate is assumed to be under bending or membrane loading and the mode 1 problem is considered. First three transverse shear deformation plate theories (Mindlin's displacement based first-order theory, Reissner's stress-based first-order theory, and a simple-higher order theory due to Reddy) are reviewed and examined for homogeneous, laminated and heterogeneous orthotropic plates. Based on a general linear laminated plate theory, a method by which the stress intensity factors can be obtained in orthotropic laminated and heterogeneous plates with a through crack is developed. Examples are given for both symmetrically and unsymmetrically laminated plates and the effects of various material properties on the stress intensity factors are studied. In order to implement the line-spring model which is used later to study the surface crack problem, the corresponding plane elasticity problem of a two-bonded orthotropic plated containing a crack perpendicular to the interface is also considered. Three different crack profiles: an internal crack, an edge crack, and a crack terminating at the interface are considered. The effect of the different material combinations, geometries, and material orthotropy on the stress intensity factors and on the power of stress singularity for a crack terminating at the interface is fully examined. The Line Spring model of Rice and Levy is used for the part-through crack problem. The surface crack is assumed to lie in one of the two-layered laminated orthotropic plates due to the limitation of the available plane strain results. All problems considered are of the mixed boundary value type and are reduced to Cauchy type of singular integral equations which are then solved numerically.
[Antimicrobial effect of a new bio-ceramic material iRoot FM on Porphyromonas endodontalis].
Bi, Jing; Liu, Yao; Chen, Xu
2017-10-01
To compare the antimicrobial effect of a new bio-ceramic material iRoot FM with traditional intracanal medicaments including calcium hydroxide [Ca(OH) 2 ] and triple antibiotic paste (TAP), on Porphyromonas endodontalis (P. endodontalis), and to evaluate the antimicrobial activity of iRoot FM, providing reference for clinical use of intracanal medicaments. P. endodontalis ATCC 35406 were used in this study. The study was divided into 3 experimental groups including iRoot FM, Ca(OH) 2 and TAP group. Sterile water was used as blank control. Frozen P. endodontalis were seeded and grown overnight in the liquid medium, then P. endodontalis were seeded on BHI-blood agar plates. After the plates were dried, the materials were filled on the plates which were made by a punching machine. Zones of inhibition (mm) were measured after 72 h of anaerobic incubation at 37degrees centigrade. The experimental data were analyzed statistically using SPSS 17.0 software package. The zones of inhibition in the 3 experimental groups: iRoot FM, Ca(OH) 2 and TAP group were (20.74±4.35)mm, (24.89±3.84)mm and (34.51±1.20)mm, respectively. The zones of inhibition of the iRoot FM group and Ca(OH) 2 group were significantly smaller compared with the TAP group (P<0.05), while there was no significant difference between the iRoot FM group and Ca(OH)2 groups (P>0.05). There were no zone of inhibition in the control group. As a new bio-ceramic material, iRoot FM shows a good antimicrobial activity against P. endodontalis and may be a promising intracanal material.
Compact Ceramic Microchannel Heat Exchangers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewinsohn, Charles
The objective of the proposed work was to demonstrate the feasibility of a step change in power plant efficiency at a commercially viable cost, by obtaining performance data for prototype, compact, ceramic microchannel heat exchangers. By performing the tasks described in the initial proposal, all of the milestones were met. The work performed will advance the technology from Technology Readiness Level 3 (TRL 3) to Technology Readiness Level 4 (TRL 4) and validate the potential of using these heat exchangers for enabling high efficiency solid oxide fuel cell (SOFC) or high-temperature turbine-based power plants. The attached report will describe howmore » this objective was met. In collaboration with The Colorado School of Mines (CSM), specifications were developed for a high temperature heat exchanger for three commercial microturbines. Microturbines were selected because they are a more mature commercial technology than SOFC, they are a low-volume and high-value target for market entry of high-temperature heat exchangers, and they are essentially scaled-down versions of turbines used in utility-scale power plants. Using these specifications, microchannel dimensions were selected to meet the performance requirements. Ceramic plates were fabricated with microchannels of these dimensions. The plates were tested at room temperature and elevated temperature. Plates were joined together to make modular, heat exchanger stacks that were tested at a variety of temperatures and flow rates. Although gas flow rates equivalent to those in microturbines could not be achieved in the laboratory environment, the results showed expected efficiencies, robust operation under significant temperature gradients at high temperature, and the ability to cycle the stacks. Details of the methods and results are presented in this final report.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. M. Perez
2011-05-01
The RERTR-9 experiment was designed to test the effect of modified fuel/clad interfaces in monolithic fuel plates and to demonstrate that the addition of Si to the matrix material in dispersion plates continued to be effective at high loading (~8.5 g U/cc). Several monolithic fuel plates were fabricated by Hot Isostatic Pressing (HIP) and Friction Bonding (FB) with thin layers of Si inserted and by HIP with a Zr diffusion barrier between the fuel and cladding. Si was applied to the interface by thermal spray of Al Si mixtures and by the insertion of thin Si-rich Al alloy foil betweenmore » the fuel/clad interface. The dispersion fuel plates were fabricated by semi-standard rolling techniques (the reduction by rolling was lowered to limit fabrication defects). Matrix materials consisted of Al-Si alloys and mixtures with various levels of Si. The following report summarizes the life of the RERTR-9A/B experiment through end of irradiation, including as-run neutronic analysis, thermal analysis and hydraulic testing results.« less
Arai, Ryuta; Takahashi, Tsutomu; Kodaira, Shuichi; Kaiho, Yuka; Nakanishi, Ayako; Fujie, Gou; Nakamura, Yasuyuki; Yamamoto, Yojiro; Ishihara, Yasushi; Miura, Seiichi; Kaneda, Yoshiyuki
2016-01-01
It has been recognized that even weakly coupled subduction zones may cause large interplate earthquakes leading to destructive tsunamis. The Ryukyu Trench is one of the best fields to study this phenomenon, since various slow earthquakes and tsunamis have occurred; yet the fault structure and seismic activity there are poorly constrained. Here we present seismological evidence from marine observation for megathrust faults and low-frequency earthquakes (LFEs). On the basis of passive observation we find LFEs occur at 15–18 km depths along the plate interface and their distribution seems to bridge the gap between the shallow tsunamigenic zone and the deep slow slip region. This suggests that the southern Ryukyu Trench is dominated by slow earthquakes at any depths and lacks a typical locked zone. The plate interface is overlaid by a low-velocity wedge and is accompanied by polarity reversals of seismic reflections, indicating fluids exist at various depths along the plate interface. PMID:27447546
Innovative grinding wheel design for cost-effective machining of advanced ceramics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Licht, R.H.; Kuo, P.; Liu, S.
2000-05-01
This Final Report covers the Phase II Innovative Grinding Wheel (IGW) program in which Norton Company successfully developed a novel grinding wheel for cost-effective cylindrical grinding of advanced ceramics. In 1995, Norton Company successfully completed the 16-month Phase I technical effort to define requirements, design, develop, and evaluate a next-generation grinding wheel for cost-effective cylindrical grinding of advanced ceramics using small prototype wheels. The Phase II program was initiated to scale-up the new superabrasive wheel specification to larger diameters, 305-mm to 406-mm, required for most production grinding of cylindrical ceramic parts, and to perform in-house and independent validation grinding tests.
Experimental and numerical study on the strength of all-ceramic crowns
NASA Astrophysics Data System (ADS)
Lu, Chenglin; Zhang, Xiuyin; Zhang, Dongsheng
2008-11-01
Two types of sectioned tooth-like ceramic crowns (IPS Empress 2) were prepared along lingual-facial direction and the fracture process of crowns under contact load was directly monitored with the use of imaging system. The displacement filed resulted from digital image correlation indicate that the fracture mode of real crown is more complicated while the flat crown has the same rupture mode as described by other investigators. Meanwhile numerical simulation was also carried out to support the experiments. Stress distributions in individual layer and interface were presented. Results indicate that the presented experimental and numerical methods are efficient in studying the fracture mechanism of all-ceramic crowns.
NASA Astrophysics Data System (ADS)
Li, Longbiao
2017-12-01
The damage development and cyclic fatigue lifetime of cross-ply SiC/CAS ceramic-matrix composites have been investigated at different testing temperatures in air atmosphere. The relationships between the fatigue hysteresis-based damage parameters, i.e., fatigue hysteresis dissipated energy, fatigue hysteresis modulus and fatigue peak strain and the damage mechanisms of matrix multicracking, fiber/matrix interface debonding, interface sliding and fibers failure, have been established. With the increase in the cycle number, the evolution of the fatigue hysteresis modulus, fatigue peak strain and fatigue hysteresis dissipated energy depends upon the fatigue peak stress levels, interface and fibers oxidation and testing temperature. The fatigue life S-N curves of cross-ply SiC/CAS composite at room and elevated temperatures have been predicted, and the fatigue limit stresses at room temperature, 750 and 850 °C, are 50, 36 and 30% of the tensile strength, respectively.
Characterization of Elastic Properties of Interfaces in Composite Materials
1990-09-01
ceramic Imatrix composites. These types of composite materials offer the advantages of being lighter, stiffer, stronger, and more resistant to creep and...actual composite materials. śi 3 II. Introduction The advantages offered by metal and ceramic matrix composites for strw, ural aerispace applications...minimum when ( VST /Vs) 2 = 0.8453... This corresponds to a situation analogous to a Rayleigh wave. As the ratio of the displacements increases, the ratio of
Design and fabrication of biomimetic multiphased scaffolds for ligament-to-bone fixation.
He, Jiankang; Zhang, Wenyou; Liu, Yaxiong; Li, Xiang; Li, Dichen; Jin, Zhongmin
2015-05-01
Conventional ligament grafts with single material composition cannot effectively integrate with the host bones due to mismatched properties and eventually affect their long-term function in vivo. Here we presented a multi-material strategy to design and fabricate composite scaffolds including ligament, interface and bone multiphased regions. The interface region consists of triphasic layers with varying material composition and porous structure to mimic native ligament-to-bone interface while the bone region contains polycaprolactone (PCL) anchor and microchanneled ceramic scaffolds to potentially provide combined mechanical and biological implant-bone fixation. Finite element analysis (FEA) demonstrated that the multiphased scaffolds with interference value smaller than 0.5 mm could avoid the fracture of ceramic scaffold during the implantation process, which was validated by in-vitro implanting the multiphased scaffolds into porcine joint bones. Pull-out experiment showed that the initial fixation between the multiphased scaffolds with 0.47 mm interference and the host bones could withstand the maximum force of 360.31±97.51 N, which can be improved by reinforcing the ceramic scaffolds with biopolymers. It is envisioned that the multiphased scaffold could potentially induce the regeneration of a new bone as well as interfacial tissue with the gradual degradation of the scaffold and subsequently realize long-term biological fixation of the implant with the host bone. Copyright © 2015 Elsevier B.V. All rights reserved.
Microscopy and microanalysis 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bailey, G.W.; Corbett, J.M.; Dimlich, R.V.W.
1996-12-31
The Proceedings of this Annual Meeting contain paper of members from the three societies. These proceedings emphasizes the common research interests and attempts to eliminate some unwanted overlap. Topics covered are: microscopic analysis of animals with altered gene expression and in-situ gene and antibody localizations, high-resolution elemental mapping of nucleoprofein interactions, plant biology and pathology, quantitative HREM analysis of perfect and defected materials, computational methods for TEM image analysis, high-resolution FESM in materials research, frontiers in polymer microscopy and microanalysis, oxidation and corrosion, micro XRD and XRF, molecular microspectroscopy and spectral imaging, advances in confocal and multidimensional light microscopy, analyticalmore » electron microscopy in biology, correlative microscopy in biological sciences, grain-boundary microengineering, surfaces and interfaces, telepresence microscopy in education and research, MSA educational outreach, quantitative electron probe microanalysis, frontiers of analytical electron microscopy, critical issues in ceramic microstructures, dynamic organization of the cell, pathology, microbiology, high-resolution biological and cryo SEM, and scanning-probe microscopy.« less
Piezoelectric ceramic implants: in vivo results.
Park, J B; Kelly, B J; Kenner, G H; von Recum, A F; Grether, M F; Coffeen, W W
1981-01-01
The suitability of barium titanate (BaTiO3) ceramic for direct substitution of hard tissues was evaluated using both electrically stimulated (piezoelectric) and inactive (nonpolarized) test implants. Textured cylindrical specimens, half of them made piezoelectric by polarization in a high electric field, were implanted into the cortex of the midshaft region of the femora of dogs for various periods of time. Interfacial healing and bio-compatibility of the implant material were studied using mechanical, microradiographical, and histological techniques. Our results indicate that barium titanate ceramic shows a very high degree of biocompatibility as evidenced by the absence of inflammatory or foreign body reactions at the implant-tissue interface. Furthermore, the material and its surface porosity allowed a high degree of bone ingrowth as evidenced by microradiography and a high degree of interfacial tensile strength. No difference was found between the piezoelectric and the electrically neutral implant-tissue interfaces. Possible reasons for this are discussed. The excellent mechanical properties of barium titanate, its superior biocompatibility, and the ability of bone to form a strong mechanical interfacial bond with it, makes this material a new candidate for further tests for hard tissue replacement.
Preparation and Physical Properties of Segmented Thermoelectric YBa2Cu3O7-x -Ca3Co4O9 Ceramics
NASA Astrophysics Data System (ADS)
Wannasut, P.; Keawprak, N.; Jaiban, P.; Watcharapasorn, A.
2018-01-01
Segmented thermoelectric ceramics are now well known for their high conversion efficiency and are currently being investigated in both basic and applied energy researches. In this work, the successful preparation of the segmented thermoelectric YBa2Cu3O7-x -Ca3Co4O9 (YBCO-CCO) ceramic by hot pressing method and the study on its physical properties were presented. Under the optimum hot pressing condition of 800 °C temperature, 1-hour holding time and 1-ton weight, the segmented YBCO-CCO sample showed two strongly connected layers with the relative density of about 96%. The X-ray diffraction (XRD) patterns indicated that each segment showed pure phase corresponding to each respective composition. Scanning electron microscopy (SEM) results confirmed the sharp interface and good adhesion between YBCO and CCO layers. Although the chemical analysis indicated the limited inter-layer diffusion near the interface, some elemental diffusion at the boundary was expected to be the source of this strong bonding.
NASA Astrophysics Data System (ADS)
Longbiao, Li
2017-08-01
In this paper, the synergistic effects of temperature, oxidation and multicracking modes on damage evolution and life prediction in 2D woven ceramic-matrix composites (CMCs) have been investigated. The damage parameter of fatigue hysteresis dissipated energy and the interface shear stress were used to monitor the damage evolution inside of CMCs. Under cyclic fatigue loading, the fibers broken fraction was determined by combining the interface/fiber oxidation model, interface wear model and fibers statistical failure model at elevated temperature, based on the assumption that the fiber strength is subjected to two-parameter Weibull distribution and the load carried by broken and intact fibers satisfy the Global Load Sharing (GLS) criterion. When the broken fibers fraction approaches to the critical value, the composite fatigue fractures. The evolution of fatigue hysteresis dissipated energy, the interface shear stress and broken fibers fraction versus cycle number, and the fatigue life S-N curves of SiC/SiC at 1000, 1200 and 1300 °C in air and steam condition have been predicted. The synergistic effects of temperature, oxidation, fatigue peak stress, and multicracking modes on the evolution of interface shear stress and fatigue hysteresis dissipated energy versus cycle numbers curves have been analyzed.
NASA Technical Reports Server (NTRS)
Spalvins, Talivaldis; Sliney, Harold E.
1994-01-01
A modified dc-diode ion plating system, by utilizing a metallic screen cage as a cathode, is introduced for coating nonconductors such as ceramics. Screen cage ion plating (SCIP) is used to apply Ag and Au lubricating films on aluminum oxide surfaces. This process has excellent ability to coat around corners to produce three-dimensional coverage of the substrate. A dramatic increase in adhesion is achieved when plating is performed in a reactive 50 percent O2 - 50 percent Ar glow discharge compared to the adhesion when plating is performed in 100 percent Ar. The presence of oxygen ion assistance contributes to the excellent adhesion as measured in a pull-type adhesion tester. The Ag and Au film adhesion is significantly increased (less than 70MPa) and generally exceeds the cohesion of the substrate such that portions of the alumina are pulled out.
PyGPlates - a GPlates Python library for data analysis through space and deep geological time
NASA Astrophysics Data System (ADS)
Williams, Simon; Cannon, John; Qin, Xiaodong; Müller, Dietmar
2017-04-01
A fundamental consideration for studying the Earth through deep time is that the configurations of the continents, tectonic plates, and plate boundaries are continuously changing. Within a diverse range of fields including geodynamics, paleoclimate, and paleobiology, the importance of considering geodata in their reconstructed context across previous cycles of supercontinent aggregation, dispersal and ocean basin evolution is widely recognised. Open-source software tools such as GPlates provide paleo-geographic information systems for geoscientists to combine a wide variety of geodata and examine them within tectonic reconstructions through time. The availability of such powerful tools also brings new challenges - we want to learn something about the key associations between reconstructed plate motions and the geological record, but the high-dimensional parameter space is difficult for a human being to visually comprehend and quantify these associations. To achieve true spatio-temporal data-mining, new tools are needed. Here, we present a further development of the GPlates ecosystem - a Python-based tool for geotectonic analysis. In contrast to existing GPlates tools that are built around a graphical user interface (GUI) and interactive visualisation, pyGPlates offers a programming interface for the automation of quantitative plate tectonic analysis or arbitrary complexity. The vast array of open-source Python-based tools for data-mining, statistics and machine learning can now be linked to pyGPlates, allowing spatial data to be seamlessly analysed in space and geological "deep time", and with the ability to spread large computations across multiple processors. The presentation will illustrate a range of example applications, both simple and advanced. Basic examples include data querying, filtering, and reconstruction, and file-format conversions. For the innovative study of plate kinematics, pyGPlates has been used to explore the relationships between absolute plate motions, subduction zone kinematics, and mid-ocean ridge migration and orientation through deep time; to investigate the systematics of continental rift velocity evolution during Pangea breakup; and to make connections between kinematics of the Andean subduction zone and ore deposit formation. To support the numerical modelling community, pyGPlates facilitates the connection between tectonic surface boundary conditions contained within plate tectonic reconstructions (plate boundary configurations and plate velocities) and simulations such as thermo-mechanical models of lithospheric deformation and mantle convection. To support the development of web-based applications that can serve the wider geoscience community, we will demonstrate how pyGPlates can be combined with other open-source tools to serve alternative reconstructions together with a diverse array of reconstructed data sets in a self-consistent framework over the internet. PyGPlates is available to the public via the GPlates web site and contains comprehensive documentation covering installation on Windows/Mac/Linux platforms, sample code, tutorials and a detailed reference of pyGPlates functions and classes.
NASA Technical Reports Server (NTRS)
Tewari, S. N.; Raj, S. V.; Locci, I. E.
2003-01-01
Directionally solidified (DS) intermetallic and ceramic-based eutectic alloys with an in-situ composite microstructure containing finely distributed, long aspect ratio, fiber, or plate reinforcements are being seriously examined for several advanced aero-propulsion applications. In designing these alloys, additional solutes need to be added to the base eutectic composition in order to improve heir high-temperature strength, and provide for adequate toughness and resistance to environmental degradation. Solute addition, however, promotes instability at the planar liquid-solid interface resulting in the formation of two-phase eutectic "colonies." Because morphology of eutectic colonies is very similar to the single-phase cells and dendrites, the stability analysis of Mullins and Sekerka has been extended to describe their formation. Onset of their formation shows a good agreement with this approach; however, unlike the single-phase cells and dendrites, there is limited examination of their growth speed dependence of spacing, morphology, and spatial distribution. The purpose of this study is to compare the growth speed dependence of the morphology, spacing, and spatial distribution of eutectic cells and dendrites with that for the single-phase cells and dendrites.
Shock Wave Propagation in Functionally Graded Mineralized Tissue
NASA Astrophysics Data System (ADS)
Nelms, Matthew; Hodo, Wayne; Livi, Ken; Browning, Alyssa; Crawford, Bryan; Rajendran, A. M.
2017-06-01
In this investigation, the effects of shock wave propagation in bone-like biomineralized tissue was investigated. The Alligator gar (Atractosteus spatula) exoskeleton is comprised of many disparate scales that provide a biological analog for potential design of flexible protective material systems. The gar scale is identified as a two-phase, (1) hydroxyapatite mineral and (2) collagen protein, biological composite with two distinct layers where a stiff, ceramic-like ganoine overlays a soft, highly ductile ganoid bone. Previous experimentations has shown significant softening under compressive loading and an asymmetrical stress-strain response for analogous mineralized tissues. The structural features, porosity, and elastic modulus were determined from high-resolution scanning electron microscopy, 3D micro-tomography, and dynamic nanoindentation experiments to develop an idealized computational model for FE simulations. The numerical analysis employed Gurson's yield criterion to determine the influence of porosity and pressure on material strength. Functional gradation of elastic moduli and certain structural features, such as the sawtooth interface, are explicitly modeled to study the plate impact shock profile for a full 3-D analysis using ABAQUS finite element software.
Influences of powder granularity on crystallizing characteristics in mica-contained glass ceramic
NASA Astrophysics Data System (ADS)
Xu, L. N.; Kong, D. Y.; Tian, Q. B.; Lv, Z. J.
2017-09-01
A machinable mica-contained glass ceramic in the SiO2-Al2O3-MgO-F glassy system was prepared by ball milling and hot pressed sintering. Three kinds of powder sizes of base glass were chosen and the effects of the glass powder sizes on the crystallization were explored by x-ray diffraction and scanning electron microscopy techniques. The results indicate that mica crystal as a major phase and KFeSi2O6 and mullite as minor phases are crystallized. Applying pressure at 670°C has little influences on the types of crystal precipitated and the preferential growth of crystal. The powder sizes, however, have obvious effects on the morphology of precipitated mica crystals. In the glass sample with a powder size of d50=16.4 µm, the plate-shaped mica phase is precipitated. As the powder size decrease to 9.9 µm and 3.3 µm, however, the particle-shaped mica is formed instead of the plate-shaped crystals.
NASA Astrophysics Data System (ADS)
Xu, Caixia; Zhang, Jingwen; Xu, Long; Ma, Xinyan; Zhao, Hua
2017-06-01
To pinpoint the driving forces behind the random lasing in Nd3+ doped lanthanum lead zirconate titanate (Nd:PLZT) ceramic plates, a combinatorial cavity with two gain media (Nd:YVO4 and Nd:PLZT) was used to study the switching feature between conventional lasing and random lasing oscillations. The complex laser output dynamics observed hinted that the photo-induced charge accumulation on the plate surface and the grain boundaries of Nd:PLZT is responsible for the lasing action switching, which was confirmed by a series of experiments, including strong electro-induced scattering, remarkable photoinduced currents, and light transmission reduction, along with measured single-pass-gain over the theoretical limit. It was found that the charge accumulation results in optical energy storage and nonuniform refractive index and hence strong scattering, which give rise to the random walks and weak localization of photons and long lasting lasing action and mode switching.
Song, Young Hyun; Ji, Eun Kyung; Jeong, Byung Woo; Jung, Mong Kwon; Kim, Eun Young; Yoon, Dae Ho
2016-01-01
We report on Y3Al5O12: Ce3+ ceramic phosphor plate (CPP) using nano phosphor for high power laser diode (LD) application for white light in automotive lighting. The prepared CPP shows improved luminous properties as a function of Ce3+ concentration. The luminous properties of the Y3Al5O12: Ce3+ CPP nano phosphor are improved when compared to the Y3Al5O12: Ce3+ CPP with bulk phosphor, and hence, the luminous emittance, luminous flux, and conversion efficiency are improved. The Y3Al5O12: Ce3+ CPP with an optimal Ce3+ content of 0.5 mol % shows 2733 lm/mm2 value under high power blue radiant flux density of 19.1 W/mm2. The results indicate that Y3Al5O12: Ce3+ CPP using nano phosphor can serve as a potential material for solid-state laser lighting in automotive applications. PMID:27502730
Song, Young Hyun; Ji, Eun Kyung; Jeong, Byung Woo; Jung, Mong Kwon; Kim, Eun Young; Yoon, Dae Ho
2016-08-09
We report on Y3Al5O12: Ce(3+) ceramic phosphor plate (CPP) using nano phosphor for high power laser diode (LD) application for white light in automotive lighting. The prepared CPP shows improved luminous properties as a function of Ce(3+) concentration. The luminous properties of the Y3Al5O12: Ce(3+) CPP nano phosphor are improved when compared to the Y3Al5O12: Ce(3+) CPP with bulk phosphor, and hence, the luminous emittance, luminous flux, and conversion efficiency are improved. The Y3Al5O12: Ce(3+) CPP with an optimal Ce(3+) content of 0.5 mol % shows 2733 lm/mm(2) value under high power blue radiant flux density of 19.1 W/mm(2). The results indicate that Y3Al5O12: Ce(3+) CPP using nano phosphor can serve as a potential material for solid-state laser lighting in automotive applications.
Kam, Chee Zhou; Kueh, Ahmad Beng Hong
2013-01-01
A laminated composite plate element with an interface description is developed using the finite element approach to investigate the bending performance of two-layer cross-ply laminated composite plates in presence of a diagonally perturbed localized interfacial degeneration between laminae. The stiffness of the laminate is expressed through the assembly of the stiffnesses of lamina sub-elements and interface element, the latter of which is formulated adopting the well-defined virtually zero-thickness concept. To account for the extent of both shear and axial weak bonding, a degeneration ratio is introduced in the interface formulation. The model has the advantage of simulating a localized weak bonding at arbitrary locations, with various degeneration areas and intensities, under the influence of numerous boundary conditions since the interfacial description is expressed discretely. Numerical results show that the bending behavior of laminate is significantly affected by the aforementioned parameters, the greatest effect of which is experienced by those with a localized total interface degeneration, representing the case of local delamination.
NASA Technical Reports Server (NTRS)
Teverovsky, Alexander A.
2012-01-01
This document has been developed in the course of NASA Electronic Parts and Packaging (NEPP) program and is not an official endorsement of the insertion of commercial capacitors in space programs or an established set of requirements for their testing. The purpose of this document is to suggest possible ways for selection, screening, and qualification of commercial capacitors for NASA projects and open discussions in the parts engineering community related to the use of COTS ceramic capacitors. This guideline is applicable to commercial surface mount chip, simple parallel plate design, multi-layer ceramic capacitors (MLCCs) rated to voltages of 100V and less. Parts with different design, e.g. low inductance ceramic capacitors (LICA), land grid array (LGA) etc., might need additional testing and tailoring of the requirements described in this document. Although the focus of this document is on commercial MLCCs, many procedures discussed below would be beneficial for military-grade capacitors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howansky, A; Peng, B; Lubinsky, A
Purpose: Pulse height spectra (PHS) have been used to determine the Swank factor of a scintillator by measuring fluctuations in its light output per x-ray interaction. The Swank factor and x-ray quantum efficiency of a scintillator define the upper limit to its imaging performance, i.e. DQE(0). The Swank factor below the K-edge is dominated by optical properties, i.e. variations in light escape efficiency from different depths of interaction, denoted e(z). These variations can be optimized to improve tradeoffs in x-ray absorption, light yield, and spatial resolution. This work develops a quantitative model for interpreting measured PHS, and estimating e(z) onmore » an absolute scale. The method is used to investigate segmented ceramic GOS scintillators used in multi-slice CT detectors. Methods: PHS of a ceramic GOS plate (1 mm thickness) and segmented GOS array (1.4 mm thick) were measured at 46 keV. Signal and noise propagation through x-ray conversion gain, light escape, detection by a photomultiplier tube and dynode amplification were modeled using a cascade of stochastic gain stages. PHS were calculated with these expressions and compared to measurements. Light escape parameters were varied until modeled PHS agreed with measurements. The resulting estimates of e(z) were used to calculate PHS without measurement noise to determine the inherent Swank factor. Results: The variation in e(z) was 67.2–89.7% in the plate and 40.2–70.8% in the segmented sample, corresponding to conversion gains of 28.6–38.1 keV{sup −1} and 17.1–30.1 keV{sup −1}, respectively. The inherent Swank factors of the plate and segmented sample were 0.99 and 0.95, respectively. Conclusion: The high light escape efficiency in the ceramic GOS samples yields high Swank factors and DQE(0) in CT applications. The PHS model allows the intrinsic optical properties of scintillators to be deduced from PHS measurements, thus it provides new insights for evaluating the imaging performance of segmented ceramic GOS scintillators.« less
Characterizing hydrophobicity at the nanoscale: a molecular dynamics simulation study.
Bandyopadhyay, Dibyendu; Choudhury, Niharendu
2012-06-14
We use molecular dynamics (MD) simulations of water near nanoscopic surfaces to characterize hydrophobic solute-water interfaces. By using nanoscopic paraffin like plates as model solutes, MD simulations in isothermal-isobaric ensemble have been employed to identify characteristic features of such an interface. Enhanced water correlation, density fluctuations, and position dependent compressibility apart from surface specific hydrogen bond distribution and molecular orientations have been identified as characteristic features of such interfaces. Tetrahedral order parameter that quantifies the degree of tetrahedrality in the water structure and an orientational order parameter, which quantifies the orientational preferences of the second solvation shell water around a central water molecule, have also been calculated as a function of distance from the plate surface. In the vicinity of the surface these two order parameters too show considerable sensitivity to the surface hydrophobicity. The potential of mean force (PMF) between water and the surface as a function of the distance from the surface has also been analyzed in terms of direct interaction and induced contribution, which shows unusual effect of plate hydrophobicity on the solvent induced PMF. In order to investigate hydrophobic nature of these plates, we have also investigated interplate dewetting when two such plates are immersed in water.
Push-out tests on a new silicon carbide/reaction-bonded silicon carbide ceramic matrix composite
NASA Technical Reports Server (NTRS)
Curtin, William A.; Eldridge, Jeffrey I.; Srinivasan, Gajawalli V.
1993-01-01
Fiber push-out tests have been performed on a ceramic matrix composite consisting of carborundum-sintered SiC fibers, with a BN coating, embedded in a reaction-bonded SiC matrix. Analysis of the push-out data, utilizing the most complete theory presently available, shows that one of the fiber/coating/matrix interfaces has a low fracture energy (one-tenth that of the fiber) and a moderate sliding resistance of about 8 MPa. The debonded sliding interface shows some continuous but minor abrasion, which appears to increase the sliding resistance, but overall the system exhibits very clean smooth sliding. The tensile response of a full-scale composite is then modeled using data obtained here and known fiber strengths to demonstrate the good composite behavior predicted for this material.
Thermal and mechanical behavior of metal matrix and ceramic matrix composites
NASA Technical Reports Server (NTRS)
Kennedy, John M. (Editor); Moeller, Helen H. (Editor); Johnson, W. S. (Editor)
1990-01-01
The present conference discusses local stresses in metal-matrix composites (MMCs) subjected to thermal and mechanical loads, the computational simulation of high-temperature MMCs' cyclic behavior, an analysis of a ceramic-matrix composite (CMC) flexure specimen, and a plasticity analysis of fibrous composite laminates under thermomechanical loads. Also discussed are a comparison of methods for determining the fiber-matrix interface frictional stresses of CMCs, the monotonic and cyclic behavior of an SiC/calcium aluminosilicate CMC, the mechanical and thermal properties of an SiC particle-reinforced Al alloy MMC, the temperature-dependent tensile and shear response of a graphite-reinforced 6061 Al-alloy MMC, the fiber/matrix interface bonding strength of MMCs, and fatigue crack growth in an Al2O3 short fiber-reinforced Al-2Mg matrix MMC.
NASA Astrophysics Data System (ADS)
Chen, Feng; Schafranek, Robert; Wachau, André; Zhukov, Sergey; Glaum, Julia; Granzow, Torsten; von Seggern, Heinz; Klein, Andreas
2010-11-01
The influence of Pt, tin-doped In2O3, and RuO2 electrodes on the electrical fatigue of bulk ceramic Pb(Zr,Ti)O3 (PZT) has been studied. Schottky barrier heights at the ferroelectric/electrode interfaces vary by more than one electronvolt for different electrode materials and do not depend on crystallographic orientation of the interface. Despite different barrier heights, hysteresis loops of polarization, strain, permittivity, and piezoelectric constant and the switching kinetics are identical for all electrodes. A 20% reduction in polarization after 106 bipolar cycles is observed for all the samples. In contrast to PZT thin films, the loss of remanent polarization with bipolar switching cycles does not significantly depend on the electrode material.
Synthesis of n-type Bi4-xLaxTi3O12 (x=0 to 0.45) by alternative mechanochemical method
NASA Astrophysics Data System (ADS)
Sharanappa, Nagbasavanna
2017-05-01
Lanthanum doped bismuth titanate ceramic samples have been successfully synthesized by mechanochemical method showed good properties and have investigated the structure, microstructure, dielectric, Curie-Weiss behavior, thermoelectric properties, which resulted from substitution of La-ions in bismuth titanate. Plate-like shape with enhanced density is observed in the SEM micrographs. Ceramic samples exhibiting relaxor ferroelectric behavior by satisfying Curie-Weiss law. Thermoelectric studies reveal n-type semiconducting behavior of these samples. Synthesized compounds explored these desirable properties for innovative semiconductor based device applications.
Mechanical and fracture behavior of veneer-framework composites for all-ceramic dental bridges.
Studart, André R; Filser, Frank; Kocher, Peter; Lüthy, Heinz; Gauckler, Ludwig J
2007-01-01
High-strength ceramics are required in dental posterior restorations in order to withstand the excessive tensile stresses that occur during mastication. The aim of this study was to investigate the fracture behavior and the fast-fracture mechanical strength of three veneer-framework composites (Empress 2/IPS Eris, TZP/Cercon S and Inceram-Zirconia/Vita VM7) for all-ceramic dental bridges. The load bearing capacity of the veneer-framework composites were evaluated using a bending mechanical apparatus. The stress distribution through the rectangular-shaped layered samples was assessed using simple beam calculations and used to estimate the fracture strength of the veneer layer. Optical microscopy of fractured specimens was employed to determine the origin of cracks and the fracture mode. Under fast fracture conditions, cracks were observed to initiate on, or close to, the veneer outer surface and propagate towards the inner framework material. Crack deflection occurred at the veneer-framework interface of composites containing a tough framework material (TZP/Cercon S and Inceram-Zirconia/Vita VM7), as opposed to the straight propagation observed in the case of weaker frameworks (Empress 2/IPS Eris). The mechanical strength of dental composites containing a weak framework (K(IC)<3 MPam(1/2)) is ultimately determined by the low fracture strength of the veneer layer, since no crack arresting occurs at the veneer-framework interface. Therefore, high-toughness ceramics (K(IC)>5 MPam(1/2)) should be used as framework materials of posterior all-ceramic bridges, so that cracks propagating from the veneer layer do not lead to a premature failure of the prosthesis.
NASA Astrophysics Data System (ADS)
Thangavel, Soundararaj
Discontinuities in Structures are inevitable. One such discontinuity in a plate and cylindrical shell is presence of a hole / holes. In Plates they are used for mounting bolts where as in Cylinder / Pressure Vessel, they provide provision for mounting Nozzles / Instruments. Location of these holes plays a primary role in minimizing the stress acting with out any external reinforcement. In this Thesis work, Location Parameters are optimized for the presence of one or more holes in a plate and cylindrical shell interfacing ANSYS and MATLAB with boundary constraints based on the geometry. Contour plots are generated for understanding stress distribution and analytical solutions are also discussed for some of the classical problems.
Light emitting ceramic device and method for fabricating the same
Valentine, Paul; Edwards, Doreen D.; Walker Jr., William John; Slack, Lyle H.; Brown, Wayne Douglas; Osborne, Cathy; Norton, Michael; Begley, Richard
2004-11-30
A light-emitting ceramic based panel, hereafter termed "electroceramescent" panel, and alternative methods of fabrication for the same are claimed. The electroceramescent panel is formed on a substrate providing mechanical support as well as serving as the base electrode for the device. One or more semiconductive ceramic layers directly overlay the substrate, and electrical conductivity and ionic diffusion are controlled. Light emitting regions overlay the semiconductive ceramic layers, and said regions consist sequentially of a layer of a ceramic insulation layer and an electroluminescent layer, comprised of doped phosphors or the equivalent. One or more conductive top electrode layers having optically transmissive areas overlay the light emitting regions, and a multi-layered top barrier cover comprising one or more optically transmissive non-combustible insulation layers overlay said top electrode regions.
NASA Tech Briefs, September 2011
NASA Technical Reports Server (NTRS)
2011-01-01
Topics covered include: Fused Reality for Enhanced Flight Test Capabilities; Thermography to Inspect Insulation of Large Cryogenic Tanks; Crush Test Abuse Stand; Test Generator for MATLAB Simulations; Dynamic Monitoring of Cleanroom Fallout Using an Air Particle Counter; Enhancement to Non-Contacting Stress Measurement of Blade Vibration Frequency; Positively Verifying Mating of Previously Unverifiable Flight Connectors; Radiation-Tolerant Intelligent Memory Stack - RTIMS; Ultra-Low-Dropout Linear Regulator; Excitation of a Parallel Plate Waveguide by an Array of Rectangular Waveguides; FPGA for Power Control of MSL Avionics; UAVSAR Active Electronically Scanned Array; Lockout/Tagout (LOTO) Simulator; Silicon Carbide Mounts for Fabry-Perot Interferometers; Measuring the In-Process Figure, Final Prescription, and System Alignment of Large; Optics and Segmented Mirrors Using Lidar Metrology; Fiber-Reinforced Reactive Nano-Epoxy Composites; Polymerization Initiated at the Sidewalls of Carbon Nanotubes; Metal-Matrix/Hollow-Ceramic-Sphere Composites; Piezoelectrically Enhanced Photocathodes; Iridium-Doped Ruthenium Oxide Catalyst for Oxygen Evolution; Improved Mo-Re VPS Alloys for High-Temperature Uses; Data Service Provider Cost Estimation Tool; Hybrid Power Management-Based Vehicle Architecture; Force Limit System; Levitated Duct Fan (LDF) Aircraft Auxiliary Generator; Compact, Two-Sided Structural Cold Plate Configuration; AN Fitting Reconditioning Tool; Active Response Gravity Offload System; Method and Apparatus for Forming Nanodroplets; Rapid Detection of the Varicella Zoster Virus in Saliva; Improved Devices for Collecting Sweat for Chemical Analysis; Phase-Controlled Magnetic Mirror for Wavefront Correction; and Frame-Transfer Gating Raman Spectroscopy for Time-Resolved Multiscalar Combustion Diagnostics.
Suárez, Silvia; Coronado, Juan M; Portela, Raquel; Martín, Juan Carlos; Yates, Malcolm; Avila, Pedro; Sánchez, Benigno
2008-08-15
Hybrid structured photocatalysts based on sepiolite, an adsorbent, and TiO2 were prepared by extrusion of ceramic dough and conformed as plates. The influence of the photocatalyst configuration was studied either by including TiO2 in the extrusion process (incorporated materials) or by coating the sepiolite plates with a TiO2 film (coated materials). The influence of the OH- surface concentration in the photocatalytic performance was studied by treating the ceramic plates at different temperatures. The samples were characterized by N2 adsorption-desorption, MIP, SEM, XRD, and UV-vis-NIR spectroscopy and tested in the photocatalytic degradation of trichloroethylene (TCE) as a target VOC molecule. Most of the catalysts presented high photoactivity, but considerable differences were observed when the CO2 selectivity was analyzed. The results demonstrate that there is a significant effect of the catalyst configuration on the selectivity of the process. An intimate contact between the sepiolite fibers and TiO2 particles for incorporated materials with a corncob-like structure favored the migration of nondesirable reaction products such as COCl2 and dichloroacetyl chloride (DCAC) to the adsorbent, reacting with OH- groups of the adsorbent and favoring the TCE mimeralization.