Method of making a continuous ceramic fiber composite hot gas filter
Hill, Charles A.; Wagner, Richard A.; Komoroski, Ronald G.; Gunter, Greg A.; Barringer, Eric A.; Goettler, Richard W.
1999-01-01
A ceramic fiber composite structure particularly suitable for use as a hot gas cleanup ceramic fiber composite filter and method of making same from ceramic composite material has a structure which provides for increased strength and toughness in high temperature environments. The ceramic fiber composite structure or filter is made by a process in which a continuous ceramic fiber is intimately surrounded by discontinuous chopped ceramic fibers during manufacture to produce a ceramic fiber composite preform which is then bonded using various ceramic binders. The ceramic fiber composite preform is then fired to create a bond phase at the fiber contact points. Parameters such as fiber tension, spacing, and the relative proportions of the continuous ceramic fiber and chopped ceramic fibers can be varied as the continuous ceramic fiber and chopped ceramic fiber are simultaneously formed on the porous vacuum mandrel to obtain a desired distribution of the continuous ceramic fiber and the chopped ceramic fiber in the ceramic fiber composite structure or filter.
Method of forming a ceramic matrix composite and a ceramic matrix component
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Diego, Peter; Zhang, James
A method of forming a ceramic matrix composite component includes providing a formed ceramic member having a cavity, filling at least a portion of the cavity with a ceramic foam. The ceramic foam is deposited on a barrier layer covering at least one internal passage of the cavity. The method includes processing the formed ceramic member and ceramic foam to obtain a ceramic matrix composite component. Also provided is a method of forming a ceramic matrix composite blade and a ceramic matrix composite component.
The friction and wear of ceramic/ceramic and ceramic/metal combinations in sliding contact
NASA Technical Reports Server (NTRS)
Sliney, Harold E.; Dellacorte, Christopher
1993-01-01
The tribological characteristics of ceramics sliding on ceramics are compared to those of ceramics sliding on a nickel based turbine alloy. The friction and wear of oxide ceramics and silicon-based ceramics in air at temperatures from room ambient to 900 C (in a few cases to 1200 C) were measured for a hemispherically-tipped pin on a flat sliding contact geometry. In general, especially at high temperature, friction and wear were lower for ceramic/metal combinations than for ceramic/ceramic combinations. The better tribological performance for ceramic/metal combinations is attributed primarily to the lubricious nature of the oxidized surface of the metal.
NASA Technical Reports Server (NTRS)
Levine, Stanley R. (Editor)
1992-01-01
The present volume discusses ceramics and ceramic-matrix composites in prospective aerospace systems, monolithic ceramics, transformation-toughened and whisker-reinforced ceramic composites, glass-ceramic matrix composites, reaction-bonded Si3N4 and SiC composites, and chemical vapor-infiltrated composites. Also discussed are the sol-gel-processing of ceramic composites, the fabrication and properties of fiber-reinforced ceramic composites with directed metal oxidation, the fracture behavior of ceramic-matrix composites (CMCs), the fatigue of fiber-reinforced CMCs, creep and rupture of CMCs, structural design methodologies for ceramic-based materials systems, the joining of ceramics and CMCs, and carbon-carbon composites.
National Institute of Standards and Technology Data Gateway
SRD 30 NIST Structural Ceramics Database (Web, free access) The NIST Structural Ceramics Database (WebSCD) provides evaluated materials property data for a wide range of advanced ceramics known variously as structural ceramics, engineering ceramics, and fine ceramics.
Fracture strength of three all-ceramic systems: Top-Ceram compared with IPS-Empress and In-Ceram.
Quran, Firas Al; Haj-Ali, Reem
2012-03-01
The purpose of this study was to investigate the fracture loads and mode of failure of all-ceramic crowns fabricated using Top-Ceram and compare it with all-ceramic crowns fabricated from well-established systems: IPS-Empress II, In-Ceram. Thirty all-ceramic crowns were fabricated; 10 IPS-Empress II, 10 In-Ceram alumina and 10 Top-Ceram. Instron testing machine was used to measure the loads required to introduce fracture of each crown. Mean fracture load for In-Ceram alumina [941.8 (± 221.66) N] was significantly (p > 0.05) higher than those of Top-Ceram and IPS-Empress II. There was no statistically significant difference between Top-Ceram and IPS-Empress II mean fracture loads; 696.20 (+222.20) and 534 (+110.84) N respectively. Core fracture pattern was highest seen in Top- Ceram specimens.
Mesquita, A M M; Ozcan, M; Souza, R O A; Kojima, A N; Nishioka, R S; Kimpara, E T; Bottino, M A
2010-01-01
This study compared the bond strength durability of a feldspathic veneering ceramic to glass-infiltrated reinforced ceramics in dry and aged conditions. Disc shaped (thickness: 4 mm, diameter: 4 mm) of glass-infiltrated alumina (In-Ceram Alumina) and glass-infiltrated alumina reinforced by zirconia (In-Ceram Zirconia) core ceramic specimens (N=48, N=12 per groups) were constructed according to the manufacturers' recommendations. Veneering ceramic (VITA VM7) was fired onto the core ceramics using a mold. The core-veneering ceramic assemblies were randomly divided into two conditions and tested either immediately after specimen preparation (Dry) or following 30000 thermocycling (5-55 ºC±1; dwell time: 30 seconds). Shear bond strength test was performed in a universal testing machine (cross-head speed: 1 mm/min). Failure modes were analyzed using optical microscope (x20). The bond strength data (MPa) were analyzed using ANOVA (α=0.05). Thermocycling did not decrease the bond strength results for both In-Ceram Alumina (30.6±8.2 MPa; P=0.2053) and In-Ceram zirconia (32.6±9 MPa; P=0.3987) core ceramic-feldspathic veneering ceramic combinations when compared to non-aged conditions (28.1±6.4 MPa, 29.7±7.3 MPa, respectively). There were also no significant differences between adhesion of the veneering ceramic to either In-Ceram Alumina or In-Ceram Zirconia ceramics (P=0.3289). Failure types were predominantly a mixture of adhesive failure between the veneering and the core ceramic together with cohesive fracture of the veneering ceramic. Long-term thermocycling aging conditions did not impair the adhesion of the veneering ceramic to the glass-infiltrated alumina core ceramics tested.
Insulated laser tube structure and method of making same
Dittbenner, Gerald R.
1999-01-01
An insulated high temperature ceramic laser tube having substantially uniform insulation along the length of the tube is disclosed having particulate ceramic insulation positioned between the outer wall of the ceramic laser tube and the inner surface of tubular ceramic fiber insulation which surrounds the ceramic laser tube. The particulate ceramic insulation is preferably a ceramic capable of sintering to the outer surface of the ceramic laser tube and to the inner surface of the tubular ceramic fiber insulation. The addition of the particulate ceramic insulation to fill all the voids between the ceramic laser tube and the fibrous ceramic insulation permits the laser tube to be operated at a substantially uniform temperature throughout the length of the laser tube.
A new classification system for all-ceramic and ceramic-like restorative materials.
Gracis, Stefano; Thompson, Van P; Ferencz, Jonathan L; Silva, Nelson R F A; Bonfante, Estevam A
2015-01-01
Classification systems for all-ceramic materials are useful for communication and educational purposes and warrant continuous revisions and updates to incorporate new materials. This article proposes a classification system for ceramic and ceramic-like restorative materials in an attempt to systematize and include a new class of materials. This new classification system categorizes ceramic restorative materials into three families: (1) glass-matrix ceramics, (2) polycrystalline ceramics, and (3) resin-matrix ceramics. Subfamilies are described in each group along with their composition, allowing for newly developed materials to be placed into the already existing main families. The criteria used to differentiate ceramic materials are based on the phase or phases present in their chemical composition. Thus, an all-ceramic material is classified according to whether a glass-matrix phase is present (glass-matrix ceramics) or absent (polycrystalline ceramics) or whether the material contains an organic matrix highly filled with ceramic particles (resin-matrix ceramics). Also presented are the manufacturers' clinical indications for the different materials and an overview of the different fabrication methods and whether they are used as framework materials or monolithic solutions. Current developments in ceramic materials not yet available to the dental market are discussed.
High temperature ceramics for automobile gas turbines. Part 2: Development of ceramic components
NASA Technical Reports Server (NTRS)
Walzer, P.; Koehler, M.; Rottenkolber, P.
1978-01-01
The development of ceramic components for automobile gas turbine engines is described with attention given to the steady and unsteady thermal conditions the ceramics will experience, and their anti-corrosion and strain-resistant properties. The ceramics considered for use in the automobile turbines include hot-pressed Si3N4, reaction-sintered, isostatically pressed Si3N4, hot-pressed SiC, reaction-bonded SiC, and glass ceramics. Attention is given to the stress analysis of ceramic structures and the state of the art of ceramic structural technology is reviewed, emphasizing the use of ceramics for combustion chambers and ceramic shrouded turbomachinery (a fully ceramic impeller).
System for damping vibrations in a turbine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, III, Herbert Chidsey; Johnson, Curtis Alan; Taxacher, Glenn Curtis
2015-11-24
A system for damping vibrations in a turbine includes a first rotating blade having a first ceramic airfoil, a first ceramic platform connected to the first ceramic airfoil, and a first root connected to the first ceramic platform. A second rotating blade adjacent to the first rotating blade includes a second ceramic airfoil, a second ceramic platform connected to the second ceramic airfoil, and a second root connected to the second ceramic platform. A non-metallic platform damper has a first position in simultaneous contact with the first and second ceramic platforms.
NASA Technical Reports Server (NTRS)
Singh, M.; Levine, S. R. (Technical Monitor)
2001-01-01
Ceramic joining has been recognized as an enabling technology for successful utilization of advanced ceramics and composite materials. A number of joint design and testing issues have been discussed for ceramic joints in silicon carbide-based ceramics and fiber-reinforced composites. These joints have been fabricated using an affordable, robust ceramic joining technology (ARCJoinT). The microstructure and good high temperature mechanical capability (compressive and flexural strengths) of ceramic joints in silicon carbide-based ceramics and composite materials are reported.
Shi, Tao; Zhang, Ning; Kong, Fan-wen; Zhan, De-song
2010-10-01
To study the color reappearance effect of metal-ceram restoration and foundry-ceram restoration using Crystaleye spectrophotometer. 58 metal-ceram restorations and 58 foundry-ceram restorations according to the result of the Crystaleye spectrophotometer were made respectively. The deltaE between restorations and natural teeth as referenced were analyzed. And satisfaction of dentists and patients were evaluated. The deltaE between metal-ceram restorations and natural teeth was 7.13 +/- 0.74. The deltaE between foundry-ceram restorations and teeth was 1.47 +/- 0.84. There were statistical differences between the deltaE (P < 0.01). The satisnatural faction of dentists and patients to the foundry-ceram restorations were higher than to the metal-ceram restorations (P < 0.05). Crystaleye spectrophotometer can provide accurate reference for foundry-ceram restoration, but for metal-ceram restoration it is not accurate.
Low-density resin impregnated ceramic article and method for making the same
NASA Technical Reports Server (NTRS)
Tran, Huy K. (Inventor); Henline, William D. (Inventor); Hsu, Ming-ta S. (Inventor); Rasky, Daniel J. (Inventor); Riccitiello, Salvatore R. (Inventor)
1997-01-01
A low-density resin impregnated ceramic article advantageously employed as a structural ceramic ablator comprising a matrix of ceramic fibers. The fibers of the ceramic matrix are coated with an organic resin film. The organic resin can be a thermoplastic resin or a cured thermosetting resin. In one embodiment, the resin is uniformly distributed within the ceramic article. In a second embodiment, the resin is distributed so as to provide a density gradient along at least one direction of the ceramic article. The resin impregnated ceramic article is prepared by providing a matrix of ceramic fibers; immersing the matrix of ceramic fibers in a solution of a solvent and an organic resin infiltrant; and removing the solvent to form a resin film on the ceramic fibers.
[Ceramic-on-ceramic bearings in total hip arthroplasty (THA)].
Sentürk, U; Perka, C
2015-04-01
The main reason for total hip arthroplasty (THA) revision is the wear-related aseptic loosening. Younger and active patients after total joint replacement create high demands, in particular, on the bearings. The progress, especially for alumina ceramic-on-ceramic bearings and mixed ceramics have solved many problems of the past and lead to good in vitro results. Modern ceramics (alumina or mixed ceramics containing alumina) are extremely hard, scratch-resistant, biocompatible, offer a low coefficient of friction, superior lubrication and have the lowest wear rates in comparison to all other bearings in THA. The disadvantage of ceramic is the risk of material failure, i.e., of ceramic fracture. The new generation of mixed ceramics (delta ceramic), has reduced the risk of head fractures to 0.03-0.05 %, but the risk for liner fractures remains unchanged at about 0.02 %. Assuming a non-impinging component implantation, ceramic-on-ceramic bearings have substantial advantages over all other bearings in THA. Due to the superior hardness, ceramic bearings produce less third body wear and are virtually impervious to damage from instruments during the implantation process. A specific complication for ceramic-on-ceramic bearings is "squeaking". The high rate of reported squeaking (0.45 to 10.7 %) highlights the importance of precise implant positioning and the stem and patient selection. With precise implant positioning this problem is rare with many implant designs and without clinical relevance. The improved tribology and the presumable resulting implant longevity make ceramic-on-ceramic the bearing of choice for young and active patients. Georg Thieme Verlag KG Stuttgart · New York.
Transmission of Er:YAG laser through different dental ceramics.
Sari, Tugrul; Tuncel, Ilkin; Usumez, Aslihan; Gutknecht, Norbert
2014-01-01
The aim of this study was to determine the erbium-doped yttrium aluminum garnet (Er:YAG) laser transmission ratio through different dental ceramics with different thicknesses. Laser debonding procedure of adhesively luted all-ceramic restorations is based on the transmission of laser energy through the ceramic and the ablation of resin cement, because of the transmitted laser energy. Five different dental ceramics were evaluated in this study: sintered zirconium-oxide core ceramic, monolithic zirconium-oxide ceramic, feldspathic ceramic, leucite-reinforced glass ceramic, and lithium disilicate-reinforced glass ceramic. Two ceramic discs with different thicknesses (0.5 and 1 mm) were fabricated for each group. Ceramic discs were placed between the sensor membrane of the laser power meter and the tip of the contact handpiece of an Er:YAG laser device with the aid of a custom- made acrylic holder. The transmission ratio of Er:YAG laser energy (500 mJ, 2 Hz, 1 W, 1000 μs) through different ceramic discs was measured with the power meter. Ten measurements were made for each group and the results were analyzed with two way analysis of variance (ANOVA) and Tukey honestly significant difference (HSD) tests. The highest transmission ratio was determined for lithium disilicate-reinforced ceramic with 0.5 mm thickness (88%) and the lowest was determined for feldspathic ceramic with 1 mm thickness (44%). The differences among the different ceramics and between the different thicknesses were significant (p<0.05). Ceramic type and thickness should be taken into consideration to adjust the laser irradiation parameters during laser debonding of adhesively luted all-ceramic restorations.
Method of making a modified ceramic-ceramic composite
Weaver, Billy L.; McLaughlin, Jerry C.; Stinton, David P.
1995-01-01
The present invention provides a method of making a shaped ceramic-ceramic composite articles, such as gas-fired radiant heat burner tubes, heat exchangers, flame dispersers, and other furnace elements, having a formed-on ceramic-ceramic composite thereon.
MacLennan, Donald A.; Turner, Brian P.; Gitsevich, Aleksandr; Bass, Gary K.; Dolan, James T.; Kipling, Kent; Kirkpatrick, Douglas A.; Leng, Yongzhang; Levin, Izrail; Roy, Robert J.; Shanks, Bruce; Smith, Malcolm; Trimble, William C.; Tsai, Peter
2001-01-01
A jacketed lamp bulb envelope includes a ceramic cup having an open end and a partially closed end, the partially closed end defining an aperture, a lamp bulb positioned inside the ceramic cup abutting the aperture, and a reflective ceramic material at least partially covering a portion of the bulb not abutting the aperture. The reflective ceramic material may substantially fill an interior volume of the ceramic cup not occupied by the bulb. The ceramic cup may include a structural feature for aiding in alignment of the jacketed lamp bulb envelope in a lamp. The ceramic cup may include an external flange about a periphery thereof. One example of a jacketed lamp bulb envelope includes a ceramic cup having an open end and a closed end, a ceramic washer covering the open end of the ceramic cup, the washer defining an aperture therethrough, a lamp bulb positioned inside the ceramic cup abutting the aperture, and a reflective ceramic material filling an interior volume of the ceramic cup not occupied by the bulb. A method of packing a jacketed lamp bulb envelope of the type comprising a ceramic cup with a lamp bulb disposed therein includes the steps of filling the ceramic cup with a flowable slurry of reflective material, and applying centrifugal force to the cup to pack the reflective material therein.
Method of producing a carbon coated ceramic membrane and associated product
Liu, Paul K. T.; Gallaher, George R.; Wu, Jeffrey C. S.
1993-01-01
A method of producing a carbon coated ceramic membrane including passing a selected hydrocarbon vapor through a ceramic membrane and controlling ceramic membrane exposure temperature and ceramic membrane exposure time. The method produces a carbon coated ceramic membrane of reduced pore size and modified surface properties having increased chemical, thermal and hydrothermal stability over an uncoated ceramic membrane.
Low Density Resin Impregnated Ceramic Article Having an Average Density of 0.15 to 0.40 G/CC
NASA Technical Reports Server (NTRS)
Tran, Huy K. (Inventor); Henline, William D. (Inventor); Hsu, Ming-ta S. (Inventor); Rasky, Daniel J. (Inventor); Riccitiello, Salvatore R. (Inventor)
1996-01-01
A low-density resin impregnated ceramic article advantageously employed as a structural ceramic ablator comprising a fired preform of ceramic fibers. The fibers of the ceramic preform are coated with an organic resin film. The organic resin can be a thermoplastic resin or a cured thermosetting resin. In one embodiment, the resin is uniformly distributed within the ceramic article. In a second embodiment, the resin is distributed so as to provide a density gradient along at least one direction of the ceramic article. The resin impregnated ceramic article is prepared by providing a fired preform of ceramic fibers; immersing the preform of ceramic fibers in a solution of a solvent and an organic resin infiltrant; and removing the solvent to form a resin film on the ceramic fibers.
Failure of a novel ceramic-on-ceramic hip resurfacing prosthesis.
Matharu, Gulraj S; Daniel, Joseph; Ziaee, Hena; McMinn, Derek J W
2015-03-01
We report the early failure of five ceramic-on-ceramic hip resurfacings (CoCHRs). The ceramic used for the acetabular liner was a novel ceramic-composite (two thirds polyurethane and one third alumina ceramic). All cases were revised for increasing metal ion levels (blood cobalt 3.93-208.0 μg/l and chromium 1.57-17.5 μg/l) due to ceramic liner fracture and/or accelerated wear of the ceramic femoral head coating. Patients underwent bearing exchange and revision using primary hip arthroplasty implants at a mean of 3.0 years following CoCHR. Intraoperatively all patients had metallosis. At 1 to 2 years of follow-up blood metal ions normalized with no complications. We do not recommend this particular type of ceramic-on-ceramic bearing for hip resurfacing. Copyright © 2014 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Hardy, Jane; And Others
1982-01-01
Describes eight art activities using ceramics. Elementary students created ceramic tiles to depict ancient Egyptian and medieval European art, made ceramic cookie stamps, traced bisque plates on sketch paper, constructed clay room-tableaus, and designed clay relief masks. Secondary students pit-fired ceramic pots and designed ceramic Victorian…
Ritzberger, Christian; Apel, Elke; Höland, Wolfram; Peschke, Arnd; Rheinberger, Volker M.
2010-01-01
The main properties (mechanical, thermal and chemical) and clinical application for dental restoration are demonstrated for three types of glass-ceramics and sintered polycrystalline ceramic produced by Ivoclar Vivadent AG. Two types of glass-ceramics are derived from the leucite-type and the lithium disilicate-type. The third type of dental materials represents a ZrO2 ceramic. CAD/CAM technology is a procedure to manufacture dental ceramic restoration. Leucite-type glass-ceramics demonstrate high translucency, preferable optical/mechanical properties and an application as dental inlays, onlays and crowns. Based on an improvement of the mechanical parameters, specially the strength and toughness, the lithium disilicate glass-ceramics are used as crowns; applying a procedure to machine an intermediate product and producing the final glass-ceramic by an additional heat treatment. Small dental bridges of lithium disilicate glass-ceramic were fabricated using a molding technology. ZrO2 ceramics show high toughness and strength and were veneered with fluoroapatite glass-ceramic. Machining is possible with a porous intermediate product.
Bakeman, E M; Rego, N; Chaiyabutr, Y; Kois, J C
2015-01-01
This study evaluated the influence of ceramic thickness and ceramic materials on fracture resistance of posterior partial coverage ceramic restorations. Forty extracted molars were allocated into four groups (n=10) to test for two variables: 1) the thickness of ceramic (1 mm or 2 mm) and 2) the ceramic materials (a lithium disilicate glass-ceramic [IPS e.max] or leucite-reinforced glass ceramic [IPS Empress]). All ceramic restorations were luted with resin cement (Variolink II) on the prepared teeth. These luted specimens were loaded to failure in a universal testing machine, in the compression mode, with a crosshead speed of 1.0 mm/min. The data were analyzed using two-way analysis of variance and the Tukey Honestly Significantly Different multiple comparison test (α =0.05). The fracture resistance revealed a significant effect for materials (p<0.001); however, the thickness of ceramic was not significant (p=0.074), and the interaction between the thickness of ceramic and the materials was not significant (p=0.406). Mean (standard deviation) fracture resistance values were as follows: a 2-mm thickness of a lithium disilicate bonded to tooth structure (2505 [401] N) revealed a significantly higher fracture resistance than did a 1-mm thickness of leucite-reinforced (1569 [452] N) and a 2-mm thickness of leucite-reinforced ceramic bonded to tooth structure (1716 [436] N) (p<0.05). There was no significant difference in fracture resistance values between a lithium disilicate ceramic at 1-mm thickness (2105 [567] N) and at 2-mm thickness. Using a lithium disilicate glass ceramic for partial coverage restoration significantly improved fracture resistance compared to using a leucite-reinforced glass ceramic. The thickness of ceramic had no significant effect on fracture resistance when the ceramics were bonded to the underlying tooth structure.
Fracture mode during cyclic loading of implant-supported single-tooth restorations.
Hosseini, Mandana; Kleven, Erik; Gotfredsen, Klaus
2012-08-01
Fracture of veneering ceramics in zirconia-based restorations has frequently been reported. Investigation of the fracture mode of implant-supported ceramic restorations by using clinically relevant laboratory protocols is needed. This study compared the mode of fracture and number of cyclic loads until veneering fracture when ceramic and metal ceramic restorations with different veneering ceramics were supported by implants. Thirty-two implant-supported single-tooth restorations were fabricated. The test group was composed of 16 ceramic restorations of zirconia abutment-retained crowns with zirconia copings veneered with glass-ceramics (n=8) and feldspathic ceramics (n=8). The control group was composed of 16 metal ceramic restorations of titanium abutment-retained crowns with gold alloy copings veneered with glass (n=8) and feldspathic ceramics (n=8). The palatal surfaces of the crowns were exposed to cyclic loading of 800 N with a frequency of 2 Hz, which continued to 4.2 million cycles or until fracture of the copings, abutments, or implants. The number of cycles and the fracture modes were recorded. The fracture modes were analyzed by descriptive analysis and the Mann-Whitney test (α=.05). The differences in loading cycles until veneering fracture were estimated with the Cox proportional hazards analysis. Veneering fracture was the most frequently observed fracture mode. The severity of fractures was significantly more in ceramic restorations than in metal ceramic restorations. Significantly more loading cycles until veneering fracture were estimated with metal ceramic restorations veneered with glass-ceramics than with other restorations. The metal ceramic restorations demonstrated fewer and less severe fractures and resisted more cyclic loads than the ceramic restorations, particularly when the metal ceramic crowns were veneered with glass-ceramics. Copyright © 2012 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
Nonlinear fracture of concrete and ceramics
NASA Technical Reports Server (NTRS)
Kobayashi, Albert S.; Du, Jia-Ji; Hawkins, Niel M.; Bradt, Richard C.
1989-01-01
The nonlinear fracture process zones in an impacted unnotched concrete bend specimen, a prenotched ceramic bend specimen, and an unnotched ceramic/ceramic composite bend specimen were estimated through hybrid experimental numerical analysis. Aggregate bridging in concrete, particulate bridging in ceramics, and fiber bridging in ceramic/ceramic composite are modeled by Barenblatt-type cohesive zones which are incorporated into the finite-element models of the bend specimens. Both generation and propagation analyses are used to estimate the distribution of crack closure stresses in the nonlinear fracture process zones. The finite-element models are then used to simulate fracture tests consisting of rapid crack propagation in an impacted concrete bend specimen, and stable crack growth and strain softening in a ceramic and ceramic/ceramic composite bend specimens.
[Manufacture and clinical application of 215 IPS-Empress casting ceramic restorations].
Zhao, Na; Zhou, Jian
2008-08-01
To explore the manufacture and clinical application of IPS-Empress casting ceramic restorations. The problems in manufacture and clinical operation of 215 casting ceramic restorations were analyzed. In 215 casting ceramic restorations, 12 (5.58%) casting ceramic restorations were affected by clinical design or application, 15 (6.98%) casting ceramic restorations were affected by some manufacture problems, and 14 (6.51%) casting ceramic restorations were affected by clinical try-in. Through 2-3 years' follow-up, the achievement ratio of 215 IPS-Empress casting ceramic restorations was 94.88%, and 11 casting ceramic restorations were affected by some problems. Beauty and simultaneous enamel wear are the characteristics of casting ceramic restorations. But because of its brittle, the indications should be strictly selected.
Method of producing a carbon coated ceramic membrane and associated product
Liu, P.K.T.; Gallaher, G.R.; Wu, J.C.S.
1993-11-16
A method is described for producing a carbon coated ceramic membrane including passing a selected hydrocarbon vapor through a ceramic membrane and controlling ceramic membrane exposure temperature and ceramic membrane exposure time. The method produces a carbon coated ceramic membrane of reduced pore size and modified surface properties having increased chemical, thermal and hydrothermal stability over an uncoated ceramic membrane. 12 figures.
Lazar, Dolores R R; Bottino, Marco C; Ozcan, Mutlu; Valandro, Luiz Felipe; Amaral, Regina; Ussui, Valter; Bressiani, Ana H A
2008-12-01
(1) To synthesize 3mol% yttria-stabilized zirconia (3Y-TZP) powders via coprecipitation route, (2) to obtain zirconia ceramic specimens, analyze surface characteristics, and mechanical properties, and (3) to compare the processed material with three reinforced dental ceramics. A coprecipitation route was used to synthesize a 3mol% yttria-stabilized zirconia ceramic processed by uniaxial compaction and pressureless sintering. Commercially available alumina or alumina/zirconia ceramics, namely Procera AllCeram (PA), In-Ceram Zirconia Block (CAZ) and In-Ceram Zirconia (IZ) were chosen for comparison. All specimens (6mmx5mmx5mm) were polished and ultrasonically cleaned. Qualitative phase analysis was performed by XRD and apparent densities were measured on the basis of Archimedes principle. Ceramics were also characterized using SEM, TEM and EDS. The hardness measurements were made employing Vickers hardness test. Fracture toughness (K(IC)) was calculated. Data were analyzed using one-way analysis of variance (ANOVA) and Tukey's test (alpha=0.05). ANOVA revealed that the Vickers hardness (p<0.0001) and fracture toughness (p<0.0001) were affected by the ceramic materials composition. It was confirmed that the PA ceramic was constituted of a rhombohedral alumina matrix, so-called alpha-alumina. Both CAZ and IZ ceramics presented tetragonal zirconia and alpha-alumina mixture of phases. The SEM/EDS analysis confirmed the presence of aluminum in PA ceramic. In the IZ and CAZ ceramics aluminum, zirconium and cerium in grains involved by a second phase containing aluminum, silicon and lanthanum were identified. PA showed significantly higher mean Vickers hardness values (H(V)) (18.4+/-0.5GPa) compared to vitreous CAZ (10.3+/-0.2GPa) and IZ (10.6+/-0.4GPa) ceramics. Experimental Y-TZP showed significantly lower results than that of the other monophased ceramic (PA) (p<0.05) but it showed significantly higher fracture toughness (6.0+/-0.2MPam(1/2)) values when compared to the other tested ceramics (p<0.05). The coprecipitation method used to synthesize zirconia powders and the adopted ceramic processing conditions led to ceramics with mechanical properties comparable to commercially available reinforced ceramic materials.
NASA Astrophysics Data System (ADS)
Loehman, Ronald E.
Methods for joining ceramics are outlined with attention given to their fundamental properties, and some examples of ceramic bonding in engineering ceramic systems are presented. Ceramic-ceramic bonds using no filler material include diffusion and electric-field bonding and ceramic welding, and bonds with filler materials can be provided by Mo-Mn brazing, microwave joining, and reactive nonmetallic liquid bonding. Ceramic-metal joints can be effected with filler material by means of the same ceramic-ceramic processes and without filler material by means of use of molten glass or diffusion bonding. Key properties of the bonding processes include: bonds with discontinuous material properties, energies that are positive relative to the bulk material, and unique chemical and mechanical properties. The processes and properties are outlined for ceramic-metal joints and for joining silicon nitride, and the factors that control wetting, adhesion, and reaction on the atomic scale are critical for establishing successful joints.
Noda, Yukari; Nakajima, Masatoshi; Takahashi, Masahiro; Mamanee, Teerapong; Hosaka, Keiichi; Takagaki, Tomohiro; Ikeda, Masaomi; Foxton, Richard M; Tagami, Junji
2017-11-29
This study evaluated the effects of ceramic surface treatment agents on shear bond strengths to ceramic materials with and without thermocycling. Ceramic plates were prepared from feldspathic ceramic; AAA, lithium disilicate ceramic material; IPS e.max Press, zirconia ceramic; Lava. Ceramic surfaces were pretreated with one of five surface treatment agents (Clearfil PhotoBond mixed with Porcelainbond activator (PB), Clearfil SE One mixed with Porcelainbond activator (SO), Ceramic Primer (CP), Universal Primer (UP), Scotchbond Universal (SU)), and then a resin cement (Clapearl DC) was filled. After 0, 5,000, and 10,000 thermocycles, micro-shear bond strengths between ceramic-cement interfaces were determined. SU exhibited significantly lower initial bond strength to AAA and e.max than PB, SO, CP, and UP. For Lava, PB, SO, CP and SU exhibited higher initial bond strengths than UP. Thermocycles reduced bond strengths to all the ceramic materials with any surface treatment.
Helal, Mohammed Abu; Wang, Zhigang
2017-10-25
To compare equivalent and contact stresses in a mandibular molar restored by all-ceramic crowns through two methods: ceramic endocrowns and ceramic crowns supported by fiber-reinforced composite (FRC) posts and core, by using 3D finite element analysis during normal masticatory load. Three 3D models of a mandibular first molar were made and labeled as such: intact molar with no restoration (A); ceramic endocrown-restored molar (B); ceramic crown supported by FRC posts and core restored molar (C). By using 3D FE analysis with contact components, normal masticatory load was simulated. The mvM stresses in all models were calculated. Maximal mvM stresses in the ceramic of restorations, dentin, and luting cement were contrasted among models and to values of materials' strength. Contact shear and tensile stresses in the restoration/tooth interface around restorations were also calculated. The highest mvM stress levels in the enamel and dentin for the tooth restored by ceramic endocrown were lower in the crown ceramic than in tooth restored with FRC posts and all-ceramic crowns; however, in the resin adhesive cement interface it was lower for ceramic crown supported by FRC posts than the in ceramic endocrown restoration. The maximum contact shear and tensile stress values along the restoration/tooth interface of ceramic endocrowns were lower than those with ceramic crowns supported by FRC posts. Ceramic endocrown restorations presented a lower mvM stress level in dentin than the conventional ceramic crowns supported by FRC posts and core. Ceramic endocrown restorations in molars are less susceptible to damage than those with conventional ceramic crowns retained by FRC posts. Ceramic endocrowns properly cemented in molars must not be fractured or loosen during normal masticatory load. Therefore, ceramic endocrowns are advised as practicable, minimally invasive, and esthetic restorations for root canal treated mandibular molars. © 2017 by the American College of Prosthodontists.
1983-01-01
Rhanius purshiana), ninebark (Physocarpus malvaceus), ocean spray (Holodiscus discolor) , elderberry ( Sambucus canadensis) , huckleberry (Vaccinium...sherd 2.1.6.1 Ceramic White rim sherd 2.1.7.1 Ceramic White rim sherd 2.1.8.1 Ceramic Rim sherd w/ flower design 2.1.9.1 Ceramic Rim sherd w/ flower design...2.1.10.1 Ceramic Rim sherd w/ flower design 2.1.11.1 Ceramic Rim sherd w/ flower design 2.1.12.1 Ceramic Rim sherd wd 2.1.13.1 Ceramic Body sherd
Segmented lasing tube for high temperature laser assembly
Sawicki, Richard H.; Alger, Terry W.; Finucane, Raymond G.; Hall, Jerome P.
1996-01-01
A high temperature laser assembly capable of withstanding operating temperatures in excess of 1500.degree. C. is described comprising a segmented cylindrical ceramic lasing tube having a plurality of cylindrical ceramic lasing tube segments of the same inner and outer diameters non-rigidly joined together in axial alignment; insulation of uniform thickness surround the walls of the ceramic lasing tube; a ceramic casing, preferably of quartz, surrounding the insulation; and a fluid cooled metal jacket surrounds the ceramic casing. In a preferred embodiment, the inner surface of each of the ceramic lasing tube segments are provided with a pair of oppositely spaced grooves in the wall thereof parallel to the center axis of the segmented cylindrical ceramic lasing tube, and both of the grooves and the center axis of the segmented cylindrical ceramic lasing tube lie in a common plane, with the grooves in each ceramic lasing tube segment in circumferential alignment with the grooves in the adjoining ceramic lasing tube segments; and one or more ceramic plates, all lying in a common plane to one another and with the central axis of the segmented ceramic lasing tube, are received in the grooves to provide additional wall area in the segmented ceramic lasing tube for collision and return to ground state of metastable metal atoms within the segmented ceramic lasing tube.
Steiner, René; Beier, Ulrike S; Heiss-Kisielewsky, Irene; Engelmeier, Robert; Dumfahrt, Herbert; Dhima, Matilda
2015-06-01
During the insertion appointment, the practitioner is often faced with the need to adjust ceramic surfaces to fit a restoration to the adjacent or opposing dentition and soft tissues. The purpose of this study was to assess the ceramic surface smoothness achieved with various commercially available ceramic polishing kits on different commonly used ceramic systems. The reliability of the cost of a polishing kit as an indicator of improved surface smoothness was assessed. A total of 350 ceramic surfaces representing 5 commonly available ceramic systems (IPS Empress Esthetic, IPS e.max Press, Cergo Kiss, Vita PM 9, Imagine PressX) were treated with 5 types of ceramic polishing systems (Cerapreshine, 94006C, Ceramiste, Optrafine, Zenostar) by following the manufacturers' guidelines. The surface roughness was measured with a profilometer (Taylor Hobson; Precision Taylor Hobson Ltd). The effects of ceramic systems and polishing kits of interest on surface roughness were analyzed by 2-way ANOVA, paired t test, and Bonferroni corrected significance level. The ceramic systems and polishing kits statistically affected surface roughness (P<.001).The polishing kit Zenostar on IPS e.max Press created the smoothest ceramic surface. No correlation could be established between the high cost of the polishing kit and low surface roughness. None of the commonly used ceramic polishing kits could create a surface smoother than that of glazed ceramic (P<.001). The inclusion of a diamond polishing paste step is recommended to improve surface smoothness (P<.001). The cost of ceramic polishing kits is not recommended as a reliable indicator of better performance of ceramic polishing kits (P>.30). Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Adake, Chandrashekhar V.; Bhargava, Parag; Gandhi, Prasanna
2018-02-01
Ceramic microstereolithography (CMSL) has emerged as solid free form (SFF) fabrication technology in which complex ceramic parts are fabricated from ceramic suspensions which are formulated by dispersing ceramic particles in UV curable resins. Ceramic parts are fabricated by exposing ceramic suspension to computer controlled UV light which polymerizes resin to polymer and this polymer forms rigid network around ceramic particles. A 3-dimensional part is created by piling cured layers one over the other. These ceramic parts are used to build microelectromechanical (MEMS) devices after thermal treatment. In many cases green ceramic parts can be directly utilized to build MEMS devices. Hence characterization of these parts is essential in terms of their mechanical behaviour prior to their use in MEMS devices. Mechanical behaviour of these green ceramic parts depends on cross link density which in turn depends on chemical structure of monomer, concentrations of photoinitiator and UV energy dose. Mechanical behaviour can be determined with the aid of nanoindentation. And extent of crosslinking can be verified with the aid of DSC. FTIR characterization is used to analyse (-C=C-) double bond conversion. This paper explains characterization tools to predict the mechanical behaviour of green ceramic bodies fabricated in CMSL
NASA Astrophysics Data System (ADS)
Geantă, V.; Cherecheș, T.; Lixandru, P.; Voiculescu, I.; Ștefănoiu, R.; Dragnea, D.; Zecheru, T.; Matache, L.
2017-06-01
Due to excellent mechanical properties, high entropy alloys from the system AlxCrFeCoNi can be used successfully to create composite structures containing both metallic and ceramic plates, which resists at dynamic load during high speeds impact (like projectiles, explosion). The paper presents four different composite structures made from a combination of metallic materials and ceramics plates: duralumin-ceramics, duralumin-ceramics-HEA, HEA-ceramics-HEA, HEA-ceramics-duralumin. Numerical simulation of impact behavior of the composite structures was performed by virtual methods, taking into account the mechanical properties of both materials. The best results were obtained using composite structures HEA-ceramics-HEA, HEA-ceramics-duralumin.
Environmental durability of ceramics and ceramic composites
NASA Technical Reports Server (NTRS)
Fox, Dennis S.
1992-01-01
An account is given of the current understanding of the environmental durability of both monolithic ceramics and ceramic-matrix composites, with a view to the prospective development of methods for the characterization, prediction, and improvement of ceramics' environmental durability. Attention is given to the environmental degradation behaviors of SiC, Si3N4, Al2O3, and glass-ceramic matrix compositions. The focus of corrosion prevention in Si-based ceramics such as SiC and Si3N4 is on the high and low sulfur fuel combustion-product effects encountered in heat engine applications of these ceramics; sintering additives and raw material impurities are noted to play a decisive role in ceramics' high temperature environmental response.
Tribological properties of structural ceramics
NASA Technical Reports Server (NTRS)
Buckley, D. H.; Miyoshi, K.
1985-01-01
The tribological and lubricated behavior of both oxide and nonoxide ceramics are reviewed in this chapter. Ceramics are examined in contact with themselves, other harder materials and metals. Elastic, plastic and fracture behavior of ceramics in solid state contact is discussed. The contact load necessary to initiate fracture in ceramics is shown to be appreciably reduced with tangential motion. Both friction and wear of ceramics are anisotropic and relate to crystal structure as has been observed with metals. Grit size effects in two and three body abrasive wear are observed for ceramics. Both free energy of oxide formation and the d valence bond character of metals are related to the friction and wear characteristics for metals in contact with ceramics. Surface contaminants affect friction and adhesive wear. For example, carbon on silicon carbide and chlorine on aluminum oxide reduce friction while oxygen on metal surfaces in contact with ceramics increases friction. Lubrication increases the critical load necessary to initiate fracture of ceramics both in indentation and with sliding or rubbing. Ceramics compositions both as coatings and in composites are described for the high temperature lubrication of both alloys and ceramics.
Ceramic media amended with metal oxide for the capture of viruses in drinking water.
Brown, J; Sobsey, M D
2009-04-01
Ceramic materials that can adsorb and/or inactivate viruses in water may find widespread application in low-tech drinking-water treatment technologies in developing countries, where porous ceramic filters and ceramic granular media filters are increasingly promoted for that purpose. We examined the adsorption and subsequent inactivation of bacteriophages MS2 and (phiX-174 on five ceramic media in batch adsorption studies to determine media suitability for use in a ceramic water filter application. The media examined were a kaolinitic ceramic medium and four kaolinitic ceramic media amended with iron or aluminium oxides that had been incorporated into the kaolinitic clays before firing. Batch adsorption tests indicate increased sorption and inactivation of surrogate viruses by media amended with Fe and Al oxide, with FeOOH-amended ceramic inactivating all bacteriophages up to 8 log10. Unmodified ceramic was a poor adsorbent of bacteriophages at less than 1 log10 adsorption-inactivation and high recovery of sorbed phages. These studies suggest that contact with ceramic media, modified with electropositive Fe or Al oxides, can reduce bacteriophages in waters to a greater extent than unmodified ceramic.
Effect of Ceramic Particle Velocity on Cold Spray Deposition of Metal-Ceramic Coatings
NASA Astrophysics Data System (ADS)
Sova, A.; Kosarev, V. F.; Papyrin, A.; Smurov, I.
2011-01-01
In this paper, metal-ceramic coatings are cold sprayed taking into account the spray parameters of both metal and ceramic particles. The effect of the ceramic particle velocity on the process of metal-ceramic coating formation and the coating properties is analyzed. Copper and aluminum powders are used as metal components. Two fractions of aluminum oxide and silicon carbide are sprayed in the tests. The ceramic particle velocity is varied by the particle injection into different zones of the gas flow: the subsonic and supersonic parts of the nozzle and the free jet after the nozzle exit. The experiments demonstrated the importance of the ceramic particle velocity for the stability of the process: Ceramic particles accelerated to a high enough velocity penetrate into the coating, while low-velocity ceramic particles rebound from its surface.
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1992-01-01
ATTAP activities during the past year included test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, ceramic component rig testing, and test-bed engine fabrication and testing. Significant technical challenges remain, but all areas exhibited progress. Test-bed engine design and development included engine mechanical design, combustion system design, alternate aerodynamic designs of gasifier scrolls, and engine system integration aimed at upgrading the AGT-5 from a 1038 C (1900 F) metal engine to a durable 1372 C (2500 F) structural ceramic component test-bed engine. ATTAP-defined ceramic and associated ceramic/metal component design activities completed include the ceramic gasifier turbine static structure, the ceramic gasifier turbine rotor, ceramic combustors, the ceramic regenerator disk, the ceramic power turbine rotors, and the ceramic/metal power turbine static structure. The material and component characterization efforts included the testing and evaluation of seven candidate materials and three development components. Ceramic component process development and fabrication proceeded for the gasifier turbine rotor, gasifier turbine scroll, gasifier turbine vanes and vane platform, extruded regenerator disks, and thermal insulation. Component rig activities included the development of both rigs and the necessary test procedures, and conduct of rig testing of the ceramic components and assemblies. Test-bed engine fabrication, testing, and development supported improvements in ceramic component technology that permit the achievement of both program performance and durability goals. Total test time in 1991 amounted to 847 hours, of which 128 hours were engine testing, and 719 were hot rig testing.
Method of sintering ceramic materials
Holcombe, Cressie E.; Dykes, Norman L.
1992-01-01
A method for sintering ceramic materials is described. A ceramic article is coated with layers of protective coatings such as boron nitride, graphite foil, and niobium. The coated ceramic article is embedded in a container containing refractory metal oxide granules and placed within a microwave oven. The ceramic article is heated by microwave energy to a temperature sufficient to sinter the ceramic article to form a densified ceramic article having a density equal to or greater than 90% of theoretical density.
Measuring Fracture Times Of Ceramics
NASA Technical Reports Server (NTRS)
Shlichta, Paul J.; Bister, Leo; Bickler, Donald G.
1989-01-01
Electrical measurements complement or replace fast cinematography. Electronic system measures microsecond time intervals between impacts of projectiles on ceramic tiles and fracture tiles. Used in research on ceramics and ceramic-based composite materials such as armor. Hardness and low density of ceramics enable them to disintegrate projectiles more efficiently than metals. Projectile approaches ceramic tile specimen. Penetrating foil squares of triggering device activate display and recording instruments. As ceramic and resistive film break oscilloscope plots increase in electrical resistance of film.
Alumina-based ceramic composite
Alexander, Kathleen B.; Tiegs, Terry N.; Becher, Paul F.; Waters, Shirley B.
1996-01-01
An improved ceramic composite comprising oxide ceramic particulates, nonoxide ceramic particulates selected from the group consisting of carbides, borides, nitrides of silicon and transition metals and mixtures thereof, and a ductile binder selected from the group consisting of metallic, intermetallic alloys and mixtures thereof is described. The ceramic composite is made by blending powders of the ceramic particulates and the ductile to form a mixture and consolidating the mixture of under conditions of temperature and pressure sufficient to produce a densified ceramic composite.
Ceramic oxide powders and the formation thereof
Katz, Joseph L.; Hung, Cheng-Hung
1993-01-01
Ceramic oxide powders and a method for their preparation. Ceramic oxide powders are obtained using a flame process whereby two or more precursors of ceramic oxides are introduced into a counterflow diffusion flame burner wherein said precursors are converted into ceramic oxide powders. The morphology, particle size, and crystalline form of the ceramic oxide powders are determined by process conditions.
Sanghera, Jasbinder; Kim, Woohong; Villalobos, Guillermo; Shaw, Brandon; Baker, Colin; Frantz, Jesse; Sadowski, Bryan; Aggarwal, Ishwar
2012-01-01
Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG) ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers, ultrashort pulse lasers, novel materials such as sesquioxides, fluoride ceramic lasers, selenide ceramic lasers in the 2 to 3 μm region, composite ceramic lasers for better thermal management, and single crystal lasers derived from polycrystalline ceramics. This paper highlights some of these notable achievements. PMID:28817044
Three-year clinical evaluation of two ceramic crown systems: a preliminary study.
Etman, Maged K; Woolford, M J
2010-02-01
The clinical performance and failure mechanisms of recently introduced ceramic crown systems used to restore posterior teeth have not been adequately examined. The purpose of this prospective clinical study was to evaluate and compare the clinical performance of 2 new ceramic crown systems with that of metal ceramic crowns using modified United States Public Health Services (USPHS) criteria. Ninety posterior teeth requiring crown restorations in 48 patients were randomized into 3 equal groups (n=30) for which different crown systems were used: an experimental hot-pressed glass ceramic based on a modified lithium disilicate ceramic (IPS e.max Press), an alumina-coping-based ceramic (Procera AllCeram), and a metal ceramic (Simidur S 2 veneered with IPS Classic Porcelain). The crowns were assessed over 3 years using the modified USPHS criteria. Crowns that developed visible cracks were sectioned and removed, and the surfaces were analyzed using a scanning electron microscope (SEM). The data were analyzed using the Kruskal-Wallis nonparametric statistical test, followed by the Mann-Whitney test with Bonferroni correction (alpha=.05). USPHS evaluation showed that the IPS e.max Press and metal ceramic crowns experienced fewer clinical changes than Procera AllCeram. Visible roughness, wear, and deformity were noticed in occlusal contact areas of Procera AllCeram crowns. SEM images showed well defined wear facets in both ceramic crown systems. Kruskal-Wallis tests showed a significant difference (P<.05) in Alpha scores among the 3 crown systems. Mann-Whitney tests showed significant differences among groups. IPS e.max Press crowns demonstrated clinical behavior comparable to Procera AllCeram and metal ceramic crowns, but the wear resistance of this crown type was superior to the Procera AllCeram crowns, according to modified USPHS criteria.
Ceramic dental biomaterials and CAD/CAM technology: state of the art.
Li, Raymond Wai Kim; Chow, Tak Wah; Matinlinna, Jukka Pekka
2014-10-01
Ceramics are widely used as indirect restorative materials in dentistry because of their high biocompatibility and pleasing aesthetics. The objective is to review the state of the arts of CAD/CAM all-ceramic biomaterials. CAD/CAM all-ceramic biomaterials are highlighted and a subsequent literature search was conducted for the relevant subjects using PubMed followed by manual search. Developments in CAD/CAM technology have catalyzed researches in all-ceramic biomaterials and their applications. Feldspathic glass ceramic and glass infiltrated ceramic can be fabricated by traditional laboratory methods or CAD/CAM. The advent of polycrystalline ceramics is a direct result of CAD/CAM technology without which the fabrication would not have been possible. The clinical uses of these ceramics have met with variable clinical success. Multiple options are now available to the clinicians for the fabrication of aesthetic all ceramic restorations. Copyright © 2014 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
Werve, Michael E [Modesto, CA
2006-05-16
A system for inspecting a ceramic component. The ceramic component is positioned on a first rotary table. The first rotary table rotates the ceramic component. Light is directed toward the first rotary table and the rotating ceramic component. A detector is located on a second rotary table. The second rotary table is operably connected to the first rotary table and the rotating ceramic component. The second rotary table is used to move the detector at an angle to the first rotary table and the rotating ceramic component.
Method of sintering ceramic materials
Holcombe, C.E.; Dykes, N.L.
1992-11-17
A method for sintering ceramic materials is described. A ceramic article is coated with layers of protective coatings such as boron nitride, graphite foil, and niobium. The coated ceramic article is embedded in a container containing refractory metal oxide granules and placed within a microwave oven. The ceramic article is heated by microwave energy to a temperature sufficient to sinter the ceramic article to form a densified ceramic article having a density equal to or greater than 90% of theoretical density. 2 figs.
Alumina-based ceramic composite
Alexander, K.B.; Tiegs, T.N.; Becher, P.F.; Waters, S.B.
1996-07-23
An improved ceramic composite comprising oxide ceramic particulates, nonoxide ceramic particulates selected from the group consisting of carbides, borides, nitrides of silicon and transition metals and mixtures thereof, and a ductile binder selected from the group consisting of metallic, intermetallic alloys and mixtures thereof is described. The ceramic composite is made by blending powders of the ceramic particulates and the ductile to form a mixture and consolidating the mixture of under conditions of temperature and pressure sufficient to produce a densified ceramic composite. 5 figs.
Ferroelectric ceramics in a pyroelectric accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shchagin, A. V., E-mail: shchagin@kipt.kharkov.ua; Belgorod State University, Belgorod 308015; Miroshnik, V. S.
2015-12-07
The applicability of polarized ferroelectric ceramics as a pyroelectric in a pyroelectric accelerator is shown by experiments. The spectra of X-ray radiation of energy up to tens of keV, generated by accelerated electrons, have been measured on heating and cooling of the ceramics in vacuum. It is suggested that curved layers of polarized ferroelectric ceramics be used as elements of ceramic pyroelectric accelerators. Besides, nanotubes and nanowires manufactured from ferroelectric ceramics are proposed for the use in nanometer-scale ceramic pyroelectric nanoaccelerators for future applications in nanotechnologies.
The history of ceramic filters.
Fujishima, S
2000-01-01
The history of ceramic filters is surveyed. Included is the history of piezoelectric ceramics. Ceramic filters were developed using technology similar to that of quartz crystal and electro-mechanical filters. However, the key to this development involved the theoretical analysis of vibration modes and material improvements of piezoelectric ceramics. The primary application of ceramic filters has been for consumer-market use. Accordingly, a major emphasis has involved mass production technology, leading to low-priced devices. A typical ceramic filter includes monolithic resonators and capacitors packaged in unique configurations.
AL-Makramani, Bandar M A; Razak, Abdul A A; Abu-Hassan, Mohamed I
2009-08-01
This study investigated the occlusal fracture resistance of Turkom-Cerafused alumina compared to Procera AllCeram and In-Ceram all-ceramic restorations. Sixmaster dies were duplicated from the prepared maxillary first premolar tooth using nonprecious metal alloy (Wiron 99). Ten copings of 0.6 mm thickness were fabricated from each type of ceramic, for a total of thirty copings. Two master dies were used for each group, and each of them was used to lute five copings. All groups were cemented with resin luting cement Panavia F according to manufacturer's instructions and received a static load of 5 kg during cementation. After 24 hours of distilled water storage at 37 degrees C, the copings were vertically compressed using a universal testing machine at a crosshead speed of 1 mm/min. The results of the present study showed the following mean loads at fracture: Turkom-Cera (2184 +/- 164 N), In-Ceram (2042 +/- 200 N), and Procera AllCeram (1954 +/- 211 N). ANOVA and Scheffe's post hoc test showed that the mean load at fracture of Turkom-Cera was significantly different from Procera AllCeram (p < 0.05). Scheffe's post hoc test showed no significant difference between the mean load at fracture of Turkom-Cera and In-Ceram or between the mean load at fracture of In-Ceram and Procera AllCeram. Because Turkom-Cera demonstrated equal to or higher loads at fracture than currently accepted all-ceramic materials, it would seem to be acceptable for fabrication of anterior and posterior ceramic crowns.
REACTION $pi$$sup -$ + p $Yields$ $pi$$sup -$ + $pi$$sup +$ + n FROM 360 TO 800 Mev
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirz, J.; Schwartz, J.; Tripp, R.D.
1963-10-31
The reaction ceramic materia /sup -/ + p ons in pyrolyti ceramic materia /sup -/ + ceramic materia /sup +/ + n is sLLawrence Radiation Laboratory's 72-in. hydrogen bubble chamber. Events are located by scanning the pictures for ceramic materia /sup +/ tracks. Cross sections, Dalitz plots, and ceramic materia /sup +/ ceramic materia /sup -/ d please delete abstract 26339
Ceramic oxide powders and the formation thereof
Katz, J.L.; Chenghung Hung.
1993-12-07
Ceramic oxide powders and a method for their preparation. Ceramic oxide powders are obtained using a flame process whereby two or more precursors of ceramic oxides are introduced into a counterflow diffusion flame burner wherein said precursors are converted into ceramic oxide powders. The morphology, particle size, and crystalline form of the ceramic oxide powders are determined by process conditions. 14 figures.
Method for preparing thin-walled ceramic articles of configuration
Holcombe, C.E.; Powell, G.L.
1975-11-01
A method for preparing a hollow thin-walled ceramic product is described. Ceramic powder is plasma-sprayed onto a concave surface of a substrate having a coefficient of thermal expansion less than that of the ceramic. The coated substrate is heated to sinter the ceramic and then cooled to effect a separation of the ceramic product from the substrate. (auth)
NASA Astrophysics Data System (ADS)
Goodman, William A.
2017-09-01
This paper provides a review of advances in 3D printing and additive manufacturing of ceramic and ceramic matrix composites for optical applications. Dr. Goodman has been pioneering additive manufacturing of ceramic matrix composites since 2008. He is the inventor of HoneySiC material, a zero-CTE additively manufactured carbon fiber reinforced silicon carbide ceramic matrix composite, briefly mentioned here. More recently Dr. Goodman has turned his attention to the direct printing of ceramics for optical applications via various techniques including slurry and laser sintering of silicon carbide and other ceramic materials.
Correlation of compressive stress with spalling of plasma sprayed ceramic materials
NASA Technical Reports Server (NTRS)
Mullen, R. L.; Mcdonald, G.; Hendricks, R. C.; Hofle, M. M.
1983-01-01
Ceramics on metal substrates for potential use as high temperature seals or other applications are exposed to forces originating from differences in thermal expansion between the ceramic and the metal substrate. This report develops a relationship between the difference in expansion of the ceramic and the substrate, defines conditions under which shear between the ceramic and the substrate occurs, and those under which bending forces are produced in the ceramic. The off-axis effect of compression forces resulting from high temperature plastic flow of the ceramic producing buckling of the ceramic is developed. Shear is associated with the edge or boundary stresses on the component while bending is associated with the distortion of an interior region. Both modes are significant in predicting life of the ceramic.
Performance of Ceramics in Severe Environments
NASA Technical Reports Server (NTRS)
Jacobson, Nathan S.; Fox, Dennis S.; Smialek, James L.; Deliacorte, Christopher; Lee, Kang N.
2005-01-01
Ceramics are generally stable to higher temperatures than most metals and alloys. Thus the development of high temperature structural ceramics has been an area of active research for many years. While the dream of a ceramic heat engine still faces many challenges, niche markets are developing for these materials at high temperatures. In these applications, ceramics are exposed not only to high temperatures but also aggressive gases and deposits. In this chapter we review the response of ceramic materials to these environments. We discuss corrosion mechanisms, the relative importance of a particular corrodent, and, where available, corrosion rates. Most of the available corrosion information is on silicon carbide (SIC) and silicon nitride (Si3N4) monolithic ceramics. These materials form a stable film of silica (SO2) in an oxidizing environment. We begin with a discussion of oxidation of these materials and proceed to the effects of other corrodents such as water vapor and salt deposits. We also discuss oxidation and corrosion of other ceramics: precurser derived ceramics, ceramic matrix composites (CMCs), ceramics which form oxide scales other than silica, and oxide ceramics. Many of the corrosion issues discussed can be mitigated with refractory oxide coatings and we discuss the current status of this active area of research. Ultimately, the concern of corrosion is loss of load bearing capability. We discuss the effects of corrosive environments on the strength of ceramics, both monolithic and composite. We conclude with a discussion of high temperature wear of ceramics, another important form of degradation at high temperatures.
Testing of felt-ceramic materials for combustor applications
NASA Technical Reports Server (NTRS)
Venkat, R. S.; Roffe, G.
1983-01-01
The feasibility of using composite felt ceramic materials as combustor liners was experimentally studied. The material consists of a porous felt pad sandwiched between a layer of ceramic and one of solid metal. Flat, rectangular test panels, which encompassed several design variations of the basic composite material, were tested, two at a time, in a premixed gas turbine combustor as sections of the combustor wall. Tests were conducted at combustor inlet conditions of 0.5 MPa and 533 K with a reference velocity of 25 m/s. The panels were subjected to a hot gas temperature of 2170 K with 1% of the total airflow used to film cool the ceramic surface of the test panel. In general, thin ceramic layers yield low ceramic stress levels with high felt ceramic interface temperatures. On the other hand, thick ceramic layers result in low felt ceramic interface temperatures but high ceramic stress levels. Extensive thermal cycling appears to cause material degradation, but for a limited number of cycles, the survivability of felt ceramic materials, even under extremely severe combustor operating conditions, was conclusively demonstrated.
PREFACE: 3rd International Congress on Ceramics (ICC3)
NASA Astrophysics Data System (ADS)
Niihara, Koichi; Ohji, Tatsuki; Sakka, Yoshio
2011-10-01
Early in 2005, the American Ceramic Society, the European Ceramic Society and the Ceramic Society of Japan announced a collaborative effort to provide leadership for the global ceramics community that would facilitate the use of ceramic and glass materials. That effort resulted in an agreement to organize a new biennial series of the International Congress on Ceramics, convened by the International Ceramic Federation (ICF). In order to share ideas and visions of the future for ceramic and glass materials, the 1st International Congress on Ceramics (ICC1) was held in Canada, 2006, under the organization of the American Ceramic Society, and the 2nd Congress (ICC2) was held in Italy, 2008, hosted by the European Ceramic Society. Organized by the Ceramic Society of Japan, the 3rd Congress (ICC3) was held in Osaka, Japan, 14-18 November 2010. Incorporating the 23rd Fall Meeting of the Ceramic Society of Japan and the 20th Iketani Conference, ICC3 was also co-organized by the Iketani Science and Technology Foundation, and was endorsed and supported by ICF, Asia-Oceania Ceramic Federation (AOCF) as well as many other organizations. Following the style of the previous two successful Congresses, the program was designed to advance ceramic and glass technologies to the next generation through discussion of the most recent advances and future perspectives, and to engage the worldwide ceramics community in a collective effort to expand the use of these materials in both conventional as well as new and exciting applications. ICC3 consisted of 22 voluntarily organized symposia in the most topical and essential themes of ceramic and glass materials, including Characterization, design and processing technologies Electro, magnetic and optical ceramics and devices Energy and environment related ceramics and systems Bio-ceramics and bio-technologies Ceramics for advanced industry and safety society Innovation in traditional ceramics It also contained the Plenary Session and the Special Symposium 'Emerging Technologies and Future Aspects for Ceramics', which discussed the issues and challenges of various ceramic technologies for sustainable development of tomorrow's human society. More than 1850 research papers including invited talks, oral presentations, and posters were presented from 56 countries (according to the Program), with nearly 2000 registered participants. This ICC3 proceedings contains papers that were submitted to ICC3 and approved for publication on line in IOP Conference Series: Materials Science and Engineering (MSE). The organization of ICC3 and the publication of this proceedings were made possible thanks to the tireless dedication of many people and the valuable support of numerous bodies. Special thanks should go to the financial supporters for their generous patronage. We also would like to express our sincere thanks to the symposia organizers, session chairs, presenters, exhibitors and congress attendees for their efforts and enthusiastic participation in this vibrant and cutting-edge congress. July 2011 Koichi Niihara, ICC3 President Tatsuki Ohji, ICC3 Secretariat Yoshio Sakka, ICC3 Secretariat The PDF file contains a complete list of sponsors, committee members, board members and symposia organizers.
NASA Technical Reports Server (NTRS)
Zhu, Dongming
2018-01-01
Ceramic materials play increasingly important roles in aerospace applications because ceramics have unique properties, including high temperature capability, high stiffness and strengths, excellent oxidation and corrosion resistance. Ceramic materials also generally have lower densities as compared to metallic materials, making them excellent candidates for light-weight hot-section components of aircraft turbine engines, rocket exhaust nozzles, and thermal protection systems for space vehicles when they are being used for high-temperature and ultra-high temperature ceramics applications. Ceramic matrix composites (CMCs), including non-oxide and oxide CMCs, are also recently being incorporated in gas turbine engines for high pressure and high temperature section components and exhaust nozzles. However, the complexity and variability of aerospace ceramic processing methods, compositions and microstructures, the relatively low fracture toughness of the ceramic materials, still remain the challenging factors for ceramic component design, validation, life prediction, and thus broader applications. This ceramic material section paper presents an overview of aerospace ceramic materials and their characteristics. A particular emphasis has been placed on high technology level (TRL) enabling ceramic systems, that is, turbine engine thermal and environmental barrier coating systems and non-oxide type SiC/SiC CMCs. The current status and future trend of thermal and environmental barrier coatings and SiC/SiC CMC development and applications are described.
[Comparison of machinability of two types of dental machinable ceramic].
Fu, Qiang; Zhao, Yunfeng; Li, Yong; Fan, Xinping; Li, Yan; Lin, Xuefeng
2002-11-01
In terms of the problems of now available dental machinable ceramics, a new type of calcium-mica glass-ceramic, PMC-I ceramic, was developed, and its machinability was compared with that of Vita MKII quantitatively. Moreover, the relationship between the strength and the machinability of PMC-I ceramic was studied. Samples of PMC-I ceramic were divided into four groups according to their nucleation procedures. 600-seconds drilling tests were conducted with high-speed steel tools (Phi = 2.3 mm) to measure the drilling depths of Vita MKII ceramic and PMC-I ceramic, while constant drilling speed of 600 rpm and constant axial load of 39.2 N were used. And the 3-point bending strength of the four groups of PMC-I ceramic were recorded. Drilling depth of Vita MKII was 0.71 mm, while the depths of the four groups of PMC-I ceramic were 0.88 mm, 1.40 mm, 0.40 mm and 0.90 mm, respectively. Group B of PMC-I ceramic showed the largest depth of 1.40 mm and was statistically different from other groups and Vita MKII. And the strength of the four groups of PMC-I ceramic were 137.7, 210.2, 118.0 and 106.0 MPa, respectively. The machinability of the new developed dental machinable ceramic of PMC-I could meet the need of the clinic.
Kern, M; Thompson, V P
1994-05-01
Silica coating can improve bonding of resin to glass-infiltrated aluminum oxide ceramic (In-Ceram), and sandblasting is a pretreatment to thermal silica coating (Silicoater MD system) or a tribochemical coating process (Rocatec system). This study evaluated the effects of sandblasting and coating techniques on volume loss, surface morphology, and surface composition of In-Ceram ceramic. Volume loss through sandblasting was 36 times less for In-Ceram ceramic compared with a feldspathic glass ceramic (IPS-Empress), and sandblasting of In-Ceram ceramic did not change its surface composition. After tribochemical coating with the Rocatec system, a layer of small silica particles remained that elevated the silica content to 19.7 weight percentage (energy-dispersive spectroscopy). Ultrasonic cleaning removed loose silica particles from the surface and decreased the silica content to 15.8 weight percentage, which suggested firm attachment of most of the silica layer to the surface. After treatment with the Silicoater MD system, the silica content increased only slightly from that of the sandblasted specimen. The silica layer created by these systems differs greatly in both morphology and thickness, which could result in different bond strengths. Sandblasting of all ceramic clinical restorations with feldspathic glass materials should be avoided, but for In-Ceram ceramic the volume loss was within an acceptable range and similar to that of noble metals.
Ceramic electrolyte coating and methods
Seabaugh, Matthew M [Columbus, OH; Swartz, Scott L [Columbus, OH; Dawson, William J [Dublin, OH; McCormick, Buddy E [Dublin, OH
2007-08-28
Aqueous coating slurries useful in depositing a dense coating of a ceramic electrolyte material (e.g., yttrium-stabilized zirconia) onto a porous substrate of a ceramic electrode material (e.g., lanthanum strontium manganite or nickel/zirconia) and processes for preparing an aqueous suspension of a ceramic electrolyte material and an aqueous spray coating slurry including a ceramic electrolyte material. The invention also includes processes for depositing an aqueous spray coating slurry including a ceramic electrolyte material onto pre-sintered, partially sintered, and unsintered ceramic substrates and products made by this process.
Counterflow diffusion flame synthesis of ceramic oxide powders
Katz, J.L.; Miquel, P.F.
1997-07-22
Ceramic oxide powders and methods for their preparation are revealed. Ceramic oxide powders are obtained using a flame process whereby one or more precursors of ceramic oxides are introduced into a counterflow diffusion flame burner wherein the precursors are converted into ceramic oxide powders. The nature of the ceramic oxide powder produced is determined by process conditions. The morphology, particle size, and crystalline form of the ceramic oxide powders may be varied by the temperature of the flame, the precursor concentration ratio, the gas stream and the gas velocity. 24 figs.
Counterflow diffusion flame synthesis of ceramic oxide powders
Katz, Joseph L.; Miquel, Philippe F.
1997-01-01
Ceramic oxide powders and methods for their preparation are revealed. Ceramic oxide powders are obtained using a flame process whereby one or more precursors of ceramic oxides are introduced into a counterflow diffusion flame burner wherein the precursors are converted into ceramic oxide powders. The nature of the ceramic oxide powder produced is determined by process conditions. The morphology, particle size, and crystalline form of the ceramic oxide powders may be varied by the temperature of the flame, the precursor concentration ratio, the gas stream and the gas velocity.
Clinical application of bio ceramics
NASA Astrophysics Data System (ADS)
Anu, Sharma; Gayatri, Sharma
2016-05-01
Ceramics are the inorganic crystalline material. These are used in various field such as biomedical, electrical, electronics, aerospace, automotive and optical etc. Bio ceramics are the one of the most active areas of research. Bio ceramics are the ceramics which are biocompatible. The unique properties of bio ceramics make them an attractive option for medical applications and offer some potential advantages over other materials. During the past three decades, a number of major advances have been made in the field of bio ceramics. This review focuses on the use of these materials in variety of clinical scenarios.
Clinical application of bio ceramics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anu, Sharma, E-mail: issaranu@gmail.com; Gayatri, Sharma, E-mail: sharmagayatri@gmail.com
Ceramics are the inorganic crystalline material. These are used in various field such as biomedical, electrical, electronics, aerospace, automotive and optical etc. Bio ceramics are the one of the most active areas of research. Bio ceramics are the ceramics which are biocompatible. The unique properties of bio ceramics make them an attractive option for medical applications and offer some potential advantages over other materials. During the past three decades, a number of major advances have been made in the field of bio ceramics. This review focuses on the use of these materials in variety of clinical scenarios.
Pang, Zhen; Chughtai, Asima; Sailer, Irena; Zhang, Yu
2015-10-01
A recent 3-year randomized controlled trial (RCT) of tooth supported three- to five-unit zirconia-ceramic and metal-ceramic posterior fixed dental prostheses (FDPs) revealed that veneer chipping and fracture in zirconia-ceramic systems occurred more frequently than those in metal-ceramic systems [1]. This study seeks to elucidate the underlying mechanisms responsible for the fracture phenomena observed in this RCT using a descriptive fractographic analysis. Vinyl-polysiloxane impressions of 12 zirconia-ceramic and 6 metal-ceramic FDPs with veneer fractures were taken from the patients at the end of a mean observation of 40.3±2.8 months. Epoxy replicas were produced from these impressions [1]. All replicas were gold coated, and inspected under the optical microscope and scanning electron microscope (SEM) for descriptive fractography. Among the 12 zirconia-ceramic FDPs, 2 had small chippings, 9 had large chippings, and 1 exhibited delamination. Out of 6 metal-ceramic FDPs, 5 had small chippings and 1 had large chipping. Descriptive fractographic analysis based on SEM observations revealed that fracture initiated from the wear facet at the occlusal surface in all cases, irrespective of the type of restoration. Zirconia-ceramic and metal-ceramic FDPs all fractured from microcracks that emanated from occlusal wear facets. The relatively low fracture toughness and high residual tensile stress in porcelain veneer of zirconia restorations may contribute to the higher chipping rate and larger chip size in zirconia-ceramic FDPs relative to their metal-ceramic counterparts. The low veneer/core interfacial fracture energy of porcelain-veneered zirconia may result in the occurrence of delamination in zirconia-ceramic FDPs. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Pang, Zhen; Chughtai, Asima; Sailer, Irena; Zhang, Yu
2015-01-01
Objectives A recent 3-year randomized controlled trial (RCT) of tooth supported three- to five-unit zirconia–ceramic and metal–ceramic posterior fixed dental prostheses (FDPs) revealed that veneer chipping and fracture in zirconia–ceramic systems occurred more frequently than those in metal–ceramic systems [1]. This study seeks to elucidate the underlying mechanisms responsible for the fracture phenomena observed in this RCT using a descriptive fractographic analysis. Methods Vinyl-polysiloxane impressions of 12 zirconia–ceramic and 6 metal–ceramic FDPs with veneer fractures were taken from the patients at the end of a mean observation of 40.3 ± 2.8 months. Epoxy replicas were produced from these impressions [1]. All replicas were gold coated, and inspected under the optical microscope and scanning electron microscope (SEM) for descriptive fractography. Results Among the 12 zirconia–ceramic FDPs, 2 had small chippings, 9 had large chippings, and 1 exhibited delamination. Out of 6 metal–ceramic FDPs, 5 had small chippings and 1 had large chipping. Descriptive fractographic analysis based on SEM observations revealed that fracture initiated from the wear facet at the occlusal surface in all cases, irrespective of the type of restoration. Significance Zirconia–ceramic and metal–ceramic FDPs all fractured from microcracks that emanated from occlusal wear facets. The relatively low fracture toughness and high residual tensile stress in porcelain veneer of zirconia restorations may contribute to the higher chipping rate and larger chip size in zirconia–ceramic FDPs relative to their metal–ceramic counterparts. The low veneer/core interfacial fracture energy of porcelain-veneered zirconia may result in the occurrence of delamination in zirconia–ceramic FDPs. PMID:26233469
NASA Technical Reports Server (NTRS)
Quentmeyer, R. J.; Mcdonald, G.; Hendricks, R. C.
1985-01-01
Components fabricated of, or coated with, ceramics have lower parasitic cooling requirements. Techniques are discussed for fabricating thin-shell ceramic components and ceramic coatings for applications in rocket or jet engine environments. Thin ceramic shells with complex geometric forms involving convolutions and reentrant surfaces were fabricated by mandrel removal. Mandrel removal was combined with electroplating or plasma spraying and isostatic pressing to form a metal support for the ceramic. Rocket engine thrust chambers coated with 0.08 mm (3 mil) of ZrO2-8Y2O3 had no failures and a tenfold increase in engine life. Some measured mechanical properties of the plasma-sprayed ceramic are presented.
Ceramic matrix composite article and process of fabricating a ceramic matrix composite article
Cairo, Ronald Robert; DiMascio, Paul Stephen; Parolini, Jason Robert
2016-01-12
A ceramic matrix composite article and a process of fabricating a ceramic matrix composite are disclosed. The ceramic matrix composite article includes a matrix distribution pattern formed by a manifold and ceramic matrix composite plies laid up on the matrix distribution pattern, includes the manifold, or a combination thereof. The manifold includes one or more matrix distribution channels operably connected to a delivery interface, the delivery interface configured for providing matrix material to one or more of the ceramic matrix composite plies. The process includes providing the manifold, forming the matrix distribution pattern by transporting the matrix material through the manifold, and contacting the ceramic matrix composite plies with the matrix material.
Correlation of compressive and shear stress with spalling of plasma-sprayed ceramic materials
NASA Technical Reports Server (NTRS)
Mullen, R. L.; Mcdonald, G.; Hendricks, R. C.; Hofle, M. M.
1983-01-01
Ceramics on metal substrates for potential use as high temperature seals or other applications are exposed to forces originating from differences in thermal expansion between the ceramic and the metal substrate. This report develops a relationship between the difference in expansion of the ceramic and the substrate, defines conditions under which shear between the ceramic and the substrate occurs, and those under which bending forces are produced in the ceramic. The off-axis effect of compression forces resulting from high temperature plastic flow of the ceramic producing buckling of the ceramic is developed. Shear is associated with the edge or boundary stresses on the component while bending is associated with the distortion of an interior region. Both modes are significant in predicting life of the ceramic. Previously announced in STAR as N83-27016
Research on Durability of Recycled Ceramic Powder Concrete
NASA Astrophysics Data System (ADS)
Chen, M. C.; Fang, W.; Xu, K. C.; Xie, L.
2017-06-01
Ceramic was ground into powder with 325 mesh and used to prepare for concrete. Basic mechanical properties, carbonation and chloride ion penetration of the concrete tests were conducted. In addition, 6-hour electric fluxes of recycled ceramic powder concrete were measured under loading. The results showed that the age strength of ceramics powder concrete is higher than that of the ordinary concrete and the fly ash concrete. The ceramic powder used as admixture would reduce the strength of concrete under no consideration of its impact factor; under consideration of the impact factor for ceramic powder as admixture, the carbonation resistance of ceramic powder concrete was significantly improved, and the 28 day carbonation depth of the ceramic powder concrete was only 31.5% of ordinary concrete. The anti-chloride-permeability of recycled ceramic powder concrete was excellent.
Effect of etching and airborne particle abrasion on the microstructure of different dental ceramics.
Borges, Gilberto Antonio; Sophr, Ana Maria; de Goes, Mario Fernando; Sobrinho, Lourenço Correr; Chan, Daniel C N
2003-05-01
The ceramic composition and microstructure surface of all-ceramic restorations are important components of an effective bonding substrate. Both hydrofluoric acid etching and airborne aluminum oxide particle abrasion produce irregular surfaces necessary for micromechanical bonding. Although surface treatments of feldspathic and leucite porcelains have been studied previously, the high alumina-containing and lithium disilicate ceramics have not been fully investigated. The purpose of this study was to assess the surface topography of 6 different ceramics after treatment with either hydrofluoric acid etching or airborne aluminum oxide particle abrasion. Five copings each of IPS Empress, IPS Empress 2 (0.8 mm thick), Cergogold (0.7 mm thick), In-Ceram Alumina, In-Ceram Zirconia, and Procera (0.8 mm thick) were fabricated following the manufacturer's instructions. Each coping was longitudinally sectioned into 4 equal parts by a diamond disk. The resulting sections were then randomly divided into 3 groups depending on subsequent surface treatments: Group 1, specimens without additional surface treatments, as received from the laboratory (control); Group 2, specimens treated by use of airborne particle abrasion with 50-microm aluminum oxide; and Group 3, specimens treated with 10% hydrofluoric acid etching (20 seconds for IPS Empress 2; 60 seconds for IPS Empress and Cergogold; and 2 minutes for In-Ceram Alumina, In-Ceram Zirconia, and Procera). Airborne particle abrasion changed the morphologic surface of IPS Empress, IPS Empress 2, and Cergogold ceramics. The surface topography of these ceramics exhibited shallow irregularities not evident in the control group. For Procera, the 50-microm aluminum oxide airborne particle abrasion produced a flattened surface. Airborne particle abrasion of In-Ceram Alumina and In-Ceram Zirconia did not change the morphologic characteristics and the same shallows pits found in the control group remained. For IPS Empress 2, 10% hydrofluoric acid etching produced elongated crystals scattered with shallow irregularities. For IPS Empress and Cergogold, the morphologic characteristic was honeycomb-like on the ceramic surface. The surface treatment of In-Ceram Alumina, In-Ceram Zirconia, and Procera did not change their superficial structure. Hydrofluoric acid etching and airborne particle abrasion with 50-microm aluminum oxide increased the irregularities on the surface of IPS Empress, IPS Empress 2, and Cergogold ceramics. Similar treatment of In-Ceram Alumina, In-Ceram Zirconia, and Procera did not change their morphologic microstructure.
Strength and fatigue properties of three-step sintered dense nanocrystal hydroxyapatite bioceramics
NASA Astrophysics Data System (ADS)
Guo, Wen-Guang; Qiu, Zhi-Ye; Cui, Han; Wang, Chang-Ming; Zhang, Xiao-Jun; Lee, In-Seop; Dong, Yu-Qi; Cui, Fu-Zhai
2013-06-01
Dense hydroxyapatite (HA) ceramic is a promising material for hard tissue repair due to its unique physical properties and biologic properties. However, the brittleness and low compressive strength of traditional HA ceramics limited their applications, because previous sintering methods produced HA ceramics with crystal sizes greater than nanometer range. In this study, nano-sized HA powder was employed to fabricate dense nanocrystal HA ceramic by high pressure molding, and followed by a three-step sintering process. The phase composition, microstructure, crystal dimension and crystal shape of the sintered ceramic were examined by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Mechanical properties of the HA ceramic were tested, and cytocompatibility was evaluated. The phase of the sintered ceramic was pure HA, and the crystal size was about 200 nm. The compressive strength and elastic modulus of the HA ceramic were comparable to human cortical bone, especially the good fatigue strength overcame brittleness of traditional sintered HA ceramics. Cell attachment experiment also demonstrated that the ceramics had a good cytocompatibility.
Kitayama, Shuzo; Nikaido, Toru; Maruoka, Rena; Zhu, Lei; Ikeda, Masaomi; Watanabe, Akihiko; Foxton, Richard M; Miura, Hiroyuki; Tagami, Junji
2009-07-01
This study was conducted to enhance the tensile bond strengths of resin cements to zirconia ceramics. Fifty-six zirconia ceramic specimens (Cercon Base) and twenty-eight silica-based ceramic specimens (GN-1, GN-1 Ceramic Block) were air-abraded using alumina. Thereafter, the zirconia ceramic specimens were divided into two subgroups of 28 each according to the surface pretreatment; no pretreatment (Zr); and the internal coating technique (INT). For INT, the surface of zirconia was coated by fusing silica-based ceramics (Cercon Ceram Kiss). Ceramic surfaces were conditioned with/without a silane coupling agent followed by bonding with one of two resin cements; Panavia F 2.0 (PF) and Superbond C&B (SB). After 24 hours storage in water, the tensile bond strengths were tested (n=7). For both PF and SB, silanization significantly improved the bond strength to GN-1 and INT (p<0.05). The INT coating followed by silanizaton demonstrated enhancement of bonding to zirconia ceramics.
NASA Astrophysics Data System (ADS)
Chakrabarty, Rohan; Song, Jun
2017-10-01
During the cold spraying of particle-reinforced metal matrix composite coatings (ceramic and metal particles mixture) on metal substrates, ceramic particles may either get embedded in the substrate/deposited coating or may rebound from the substrate surface. In this study, the dependence of the ceramic rebounding phenomenon on the spray angle and its effect on substrate erosion have been analyzed using finite-element analysis. From the numerical simulations, it was found that the ceramic particle density and substrate material strength played the major roles in determining the embedding and ceramic retention behavior. Substrate material erosion also influenced the ceramic retention, and the material loss increased as the impact angles decreased from normal. In general, the results concluded that decreasing the impact angle promoted the retention possibility of ceramics in the substrate. This study provides new theoretical insights into the effect of spray angles on the ceramic retention and suggests a new route toward optimizing the spraying process to increase the ceramic retention in composite coatings cold spray.
NASA Technical Reports Server (NTRS)
Singh, Mrityunjay
2010-01-01
Advanced ceramic integration technologies dramatically impact the energy landscape due to wide scale application of ceramics in all aspects of alternative energy production, storage, distribution, conservation, and efficiency. Examples include fuel cells, thermoelectrics, photovoltaics, gas turbine propulsion systems, distribution and transmission systems based on superconductors, nuclear power generation and waste disposal. Ceramic integration technologies play a key role in fabrication and manufacturing of large and complex shaped parts with multifunctional properties. However, the development of robust and reliable integrated systems with optimum performance requires the understanding of many thermochemical and thermomechanical factors, particularly for high temperature applications. In this presentation, various needs, challenges, and opportunities in design, fabrication, and testing of integrated similar (ceramic ceramic) and dissimilar (ceramic metal) material www.nasa.gov 45 ceramic-ceramic-systems have been discussed. Experimental results for bonding and integration of SiC based Micro-Electro-Mechanical-Systems (MEMS) LDI fuel injector and advanced ceramics and composites for gas turbine applications are presented.
Dimensional Analysis and Extended Hydrodynamic Theory Applied to Long-Rod Penetration of Ceramics
2016-07-01
thick ceramic targets by tungsten long rod projectiles. The ceramics are AD-995 alumina, aluminum nitride, silicon carbide, and boron carbide. Test...of confined thick ceramic targets by tungsten long rod projectiles. The ceramics are AD-995 alumina, aluminum nitride, silicon carbide, and boron ...since the mid 20th century. Popular candidate ceramics for such systems include alumina, aluminum nitride, boron carbide, silicon carbide, and titanium
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1990-01-01
Advanced Turbine Technology Application Project (ATTAP) activities during the past year were highlighted by test-bed engine design and development activities; ceramic component design; materials and component characterization; ceramic component process development and fabrication; component rig testing; and test-bed engine fabrication and testing. Although substantial technical challenges remain, all areas exhibited progress. Test-bed engine design and development activity included engine mechanical design, power turbine flow-path design and mechanical layout, and engine system integration aimed at upgrading the AGT-5 from a 1038 C metal engine to a durable 1371 C structural ceramic component test-bed engine. ATTAP-defined ceramic and associated ceramic/metal component design activities include: the ceramic combustor body, the ceramic gasifier turbine static structure, the ceramic gasifier turbine rotor, the ceramic/metal power turbine static structure, and the ceramic power turbine rotors. The materials and component characterization efforts included the testing and evaluation of several candidate ceramic materials and components being developed for use in the ATTAP. Ceramic component process development and fabrication activities are being conducted for the gasifier turbine rotor, gasifier turbine vanes, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Component rig testing activities include the development of the necessary test procedures and conduction of rig testing of the ceramic components and assemblies. Four-hundred hours of hot gasifier rig test time were accumulated with turbine inlet temperatures exceeding 1204 C at 100 percent design gasifier speed. A total of 348.6 test hours were achieved on a single ceramic rotor without failure and a second ceramic rotor was retired in engine-ready condition at 364.9 test hours. Test-bed engine fabrication, testing, and development supported improvements in ceramic component technology that will permit the achievement of program performance and durability goals. The designated durability engine accumulated 359.3 hour of test time, 226.9 of which were on the General Motors gas turbine durability schedule.
Aktas, Guliz; Sahin, Erdal; Vallittu, Pekka; Özcan, Mutlu; Lassila, Lippo
2013-01-01
This study evaluated the adhesion of zirconia core ceramics with their corresponding veneering ceramics, having different thermal expansion coefficients (TECs), when zirconia ceramics were coloured at green stage. Zirconia blocks (N=240; 6 mm×7 mm×7 mm) were manufactured from two materials namely, ICE Zirconia (Group 1) and Prettau Zirconia (Group 2). In their green stage, they were randomly divided into two groups. Half of the specimens were coloured with colouring liquid (shade A2). Three different veneering ceramics with different TEC (ICE Ceramic, GC Initial Zr and IPS e.max Ceram) were fired on both coloured and non-coloured zirconia cores. Specimens of high noble alloys (Esteticor Plus) veneered with ceramic (VM 13) (n=16) acted as the control group. Core–veneer interface of the specimens were subjected to shear force in the Universal Testing Machine (0.5 mm⋅min−1). Neither the zirconia core material (P=0.318) nor colouring (P=0.188) significantly affected the results (three-way analysis of variance, Tukey's test). But the results were significantly affected by the veneering ceramic (P=0.000). Control group exhibited significantly higher mean bond strength values (45.7±8) MPa than all other tested groups ((27.1±4.1)−(39.7±4.7) and (27.4±5.6)−(35.9±4.7) MPa with and without colouring, respectively) (P<0.001). While in zirconia–veneer test groups, predominantly mixed type of failures were observed with the veneering ceramic covering <1/3 of the substrate surface, in the metal–ceramic group, veneering ceramic was left adhered >1/3 of the metal surface. Colouring zirconia did not impair adhesion of veneering ceramic, but veneering ceramic had a significant influence on the core–veneer adhesion. Metal–ceramic adhesion was more reliable than all zirconia–veneer ceramics tested. PMID:24158142
Aktas, Guliz; Sahin, Erdal; Vallittu, Pekka; Ozcan, Mutlu; Lassila, Lippo
2013-12-01
This study evaluated the adhesion of zirconia core ceramics with their corresponding veneering ceramics, having different thermal expansion coefficients (TECs), when zirconia ceramics were coloured at green stage. Zirconia blocks (N=240; 6 mm×7 mm×7 mm) were manufactured from two materials namely, ICE Zirconia (Group 1) and Prettau Zirconia (Group 2). In their green stage, they were randomly divided into two groups. Half of the specimens were coloured with colouring liquid (shade A2). Three different veneering ceramics with different TEC (ICE Ceramic, GC Initial Zr and IPS e.max Ceram) were fired on both coloured and non-coloured zirconia cores. Specimens of high noble alloys (Esteticor Plus) veneered with ceramic (VM 13) (n=16) acted as the control group. Core-veneer interface of the specimens were subjected to shear force in the Universal Testing Machine (0.5 mm⋅min(-1)). Neither the zirconia core material (P=0.318) nor colouring (P=0.188) significantly affected the results (three-way analysis of variance, Tukey's test). But the results were significantly affected by the veneering ceramic (P=0.000). Control group exhibited significantly higher mean bond strength values (45.7±8) MPa than all other tested groups ((27.1±4.1)-(39.7±4.7) and (27.4±5.6)-(35.9±4.7) MPa with and without colouring, respectively) (P<0.001). While in zirconia-veneer test groups, predominantly mixed type of failures were observed with the veneering ceramic covering <1/3 of the substrate surface, in the metal-ceramic group, veneering ceramic was left adhered >1/3 of the metal surface. Colouring zirconia did not impair adhesion of veneering ceramic, but veneering ceramic had a significant influence on the core-veneer adhesion. Metal-ceramic adhesion was more reliable than all zirconia-veneer ceramics tested.
Ceramics Curriculum: What Has It Been? What Could it Be?
ERIC Educational Resources Information Center
Sessions, Billie
1999-01-01
Reviews the traditional approach to ceramics education that focuses on studio-based, formalist curriculum and Modernist concerns. Argues for a comprehensive, or contextual, ceramics education in high school classrooms that would include contextual information about ceramic objects. Discusses example ceramic objects by various artists. (CMK)
Pjetursson, Bjarni Elvar; Sailer, Irena; Makarov, Nikolay Alexandrovich; Zwahlen, Marcel; Thoma, Daniel Stefan
2015-06-01
To assess the 5-year survival of metal-ceramic and all-ceramic tooth-supported fixed dental prostheses (FDPs) and to describe the incidence of biological, technical and esthetic complications. Medline (PubMed), Embase and Cochrane Central Register of Controlled Trials (CENTRAL) searches (2006-2013) were performed for clinical studies focusing on tooth-supported FDPs with a mean follow-up of at least 3 years. This was complemented by an additional hand search and the inclusion of 10 studies from a previous systematic review [1]. Survival and complication rates were analyzed using robust Poisson's regression models to obtain summary estimates of 5-year proportions. Forty studies reporting on 1796 metal-ceramic and 1110 all-ceramic FDPs fulfilled the inclusion criteria. Meta-analysis of the included studies indicated an estimated 5-year survival rate of metal-ceramic FDPs of 94.4% (95% CI: 91.2-96.5%). The estimated survival rate of reinforced glass ceramic FDPs was 89.1% (95% CI: 80.4-94.0%), the survival rate of glass-infiltrated alumina FDPs was 86.2% (95% CI: 69.3-94.2%) and the survival rate of densely sintered zirconia FDPs was 90.4% (95% CI: 84.8-94.0%) in 5 years of function. Even though the survival rate of all-ceramic FDPs was lower than for metal-ceramic FDPs, the differences did not reach statistical significance except for the glass-infiltrated alumina FDPs (p=0.05). A significantly higher incidence of caries in abutment teeth was observed for densely sintered zirconia FDPs compared to metal-ceramic FDPs. Significantly more framework fractures were reported for reinforced glass ceramic FDPs (8.0%) and glass-infiltrated alumina FDPs (12.9%) compared to metal-ceramic FDPs (0.6%) and densely sintered zirconia FDPs (1.9%) in 5 years in function. However, the incidence of ceramic fractures and loss of retention was significantly (p=0.018 and 0.028 respectively) higher for densely sintered zirconia FDPs compared to all other types of FDPs. Survival rates of all types of all-ceramic FDPs were lower than those reported for metal-ceramic FDPs. The incidence of framework fractures was significantly higher for reinforced glass ceramic FDPs and infiltrated glass ceramic FDPs, and the incidence for ceramic fractures and loss of retention was significantly higher for densely sintered zirconia FDPs compared to metal-ceramic FDPs. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
A 37-mm Ceramic Gun Nozzle Stress Analysis
2006-05-01
Figures iv List of Tables iv 1 . Introduction 1 2. Ceramic Nozzle Structure and Materials 1 3. Sequentially-Coupled and Fully-Coupled Thermal Stress...FEM Analysis 1 4. Ceramic Nozzle Thermal Stress Response 4 5. Ceramic Nozzle Dynamic FEM 7 6. Ceramic Nozzle Dynamic Responses and Discussions 8 7...candidate ceramics and the test fixture model components are listed in table 1 . 3. Sequentially-Coupled and Fully-Coupled Thermal Stress FEM Analysis
Promotion of osteogenesis by a piezoelectric biological ceramic.
Feng, J; Yuan, H; Zhang, X
1997-12-01
Hydroxyapatite (HA) ceramic and piezoelectric biological ceramic, hydroxyapatite and barium titanate (HABT), were implanted in the jawbones of dogs. Histological observation showed that, compared with HA ceramics, HABT promoted the growth and repair of the bone significantly, the tissue growth around the HABT ceramic was direction-dependent, the collagen arranged orderly and the bone grew orderly. The order growth of the bone increased the efficiency of osteogenesis on the surface of the implanted HABT ceramics.
Polymer coating for immobilizing soluble ions in a phosphate ceramic product
Singh, Dileep; Wagh, Arun S.; Patel, Kartikey D.
2000-01-01
A polymer coating is applied to the surface of a phosphate ceramic composite to effectively immobilize soluble salt anions encapsulated within the phosphate ceramic composite. The polymer coating is made from ceramic materials, including at least one inorganic metal compound, that wet and adhere to the surface structure of the phosphate ceramic composite, thereby isolating the soluble salt anions from the environment and ensuring long-term integrity of the phosphate ceramic composite.
Ceramic Technology Project semiannual progress report, April 1992--September 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, D.R.
1993-07-01
This project was developed to meet the ceramic technology requirements of the DOE Office of Transportation Systems` automotive technology programs. Significant progress in fabricating ceramic components for DOE, NASA, and DOE advanced heat engine programs show that operation of ceramic parts in high-temperature engines is feasible; however, addition research is needed in materials and processing, design, and data base and life prediction before industry will have a sufficient technology base for producing reliable cost-effective ceramic engine components commercially. A 5-yr project plan was developed, with focus on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments,more » and ceramic coatings for thermal barrier and wear applications in these engines.« less
Manufacture of high-density ceramic sinters
NASA Technical Reports Server (NTRS)
Hibata, Y.
1986-01-01
High density ceramic sinters are manufactured by coating premolded or presintered porous ceramics with a sealing material of high SiO2 porous glass or nitride glass and then sintering by hot isostatic pressing. The ceramics have excellent abrasion and corrosion resistances. Thus LC-10 (Si3N2 powder) and Y2O3-Al2O3 type sintering were mixed and molded to give a premolded porous ceramic (porosity 37%, relative bulk density 63%). The ceramic was dipped in a slurry containing high SiO2 porous glass and an alcohol solution of cellulose acetate and dried. The coated ceramic was treated in a nitrogen atmosphere and then sintered by hot isostatic pressing to give a dense ceramic sinter.
Fundamental tribological properties of ceramics
NASA Technical Reports Server (NTRS)
Buckley, D. H.; Miyoshi, K.
1985-01-01
When a ceramic is brought into contact with itself, another ceramic, or a metal, strong bond forces can develop between the materials. Adhesion between a ceramic and itself or another solid are discussed from a theoretical consideration of the nature of the surfaces and experimentally by relating bond forces to the interface resulting from solid state contact. Elastic, plastic, and fracture behavior of ceramics in solid-state contact are discussed as they relate to friction and wear. The contact load necessary to initiate fracture in ceramics is shown to be appreciably reduced with tangential motion. Both friction and wear of ceramics are anisotropic and relate to crystal structure as with metals. Both free energy of oxide formation and the d valence bond character of metals are related to the friction and wear characteristics for metals in contact with ceramics. Lubrication is found to increase the critical load necessary to initiate fracture of ceramics with sliding or rubbing contact.
Ceramic substrate including thin film multilayer surface conductor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolf, Joseph Ambrose; Peterson, Kenneth A.
2017-05-09
A ceramic substrate comprises a plurality of ceramic sheets, a plurality of inner conductive layers, a plurality of vias, and an upper conductive layer. The ceramic sheets are stacked one on top of another and include a top ceramic sheet. The inner conductive layers include electrically conductive material that forms electrically conductive features on an upper surface of each ceramic sheet excluding the top ceramic sheet. The vias are formed in each of the ceramic sheets with each via being filled with electrically conductive material. The upper conductive layer includes electrically conductive material that forms electrically conductive features on anmore » upper surface of the top ceramic sheet. The upper conductive layer is constructed from a stack of four sublayers. A first sublayer is formed from titanium. A second sublayer is formed from copper. A third sublayer is formed from platinum. A fourth sublayer is formed from gold.« less
NASA Technical Reports Server (NTRS)
Singh, Mrityunjay
2006-01-01
Advanced ceramics and fiber reinforced composites are under active consideration for use in a wide variety of high temperature applications within the aeronautics, space transportation, energy, and nuclear industries. The engineering designs of ceramic and composite components require fabrication and manufacturing of large and complex shaped parts of various thicknesses. In many instances, it is more economical to build up complex shapes by joining simple geometrical shapes. In addition, these components have to be joined or assembled with metallic sub-components. Thus, joining and attachment have been recognized as enabling technologies for successful utilization of ceramic components in various demanding applications. In this presentation, various challenges and opportunities in design, fabrication, and testing of high temperature joints in advanced ceramics and ceramic matrix composites will be presented. Silicon carbide based advanced ceramics and fiber reinforced composites in different shapes and sizes, have been joined using an affordable, robust ceramic joining technology. In addition, some examples of metal-ceramic brazing will also be presented. Microstructure and high temperature mechanical properties of joints in silicon carbide ceramics and composites will be reported. Various joint design philosophies and design issues in joining of ceramics and composites will be discussed.
Thermal and mechanical analysis of major components for the advanced adiabatic diesel engine
NASA Technical Reports Server (NTRS)
1983-01-01
The proposed design for the light duty diesel is an in-line four cylinder spark assisted diesel engine mounted transversely in the front of the vehicle. The engine has a one piece cylinder head, with one intake valve and one exhaust valve per cylinder. A flat topped piston is used with a cylindrical combustion chamber recessed into the cylinder head directly under the exhaust valve. A single ceramic insert is cast into the cylinder head to insulate both the combustion chamber and the exhaust port. A similar ceramic insert is cast into the head to insulate the intake port. A ceramic faceplate is pressed into the combustion face of the head to insulate the face of the head from hot combustion gas. The valve seats are machined directly into the ceramic faceplate for the intake valve and into the ceramic exhaust pot insert for the exhaust valve. Additional ceramic applications in the head are the use of ceramic valve guides and ceramic insulated valves. The ceramic valve guides are press fit into the head and are used for increased wear resistance. The ceramic insulated valves are conventional valves with the valve faces plasma spray coated with ceramic for insulation.
High-Power Characteristics of Thickness Shear Mode for Textured SrBi2Nb2O9 Ceramics
NASA Astrophysics Data System (ADS)
Ogawa, Hirozumi; Kawada, Shinichiro; Kimura, Masahiko; Higuchi, Yukio; Takagi, Hiroshi
2009-09-01
The high-power piezoelectric characteristics of the thickness shear mode for <00l> oriented ceramics of bismuth layer structured ferroelectrics (BLSF), SrBi2Nb2O9 (SBN), were studied by the constant current driving method. These textured ceramics were fabricated by the templated grain growth (TGG) method, and the Lotgering factor was 95%. The vibration of the thickness shear mode in the textured SBN ceramics was stable at the vibration velocity of 2.0 m/s. The resonant frequency was almost constant with increasing vibration velocity in the textured SBN ceramics, however, it decreased with increasing vibration velocity in the randomly oriented SBN ceramics. In the case of Pb(Mn,Nb)O3-Pb(Zr,Ti)O3 ceramics, the vibration velocity of the thickness shear mode was saturated at more than 0.3 m/s, and the resonant frequency decreased at lower vibration velocity than in the case of SBN ceramics. The dissipation power density of the textured SBN ceramics was the lowest among those of the randomly oriented SBN and Pb(Mn,Nb)O3-PZT ceramics. The thickness shear mode of textured SBN ceramics is a good candidate for high-power piezoelectric applications.
NASA Technical Reports Server (NTRS)
Singh, M.
2013-01-01
Ceramic integration technologies enable hierarchical design and manufacturing of intricate ceramic and composite parts starting with geometrically simpler units that are subsequently joined to themselves and/or to metals to create components with progressively higher levels of complexity and functionality. However, for the development of robust and reliable integrated systems with optimum performance for high temperature applications, detailed understanding of various thermochemical and thermomechanical factors is critical. Different technical approaches are required for the integration of ceramic to ceramic and ceramic to metal systems. Active metal brazing, in particular, is a simple and cost-effective method to integrate ceramic to metallic components. Active braze alloys usually contain a reactive filler metal (e.g., Ti, Cr, V, Hf etc) that promotes wettability and spreading by inducing chemical reactions with the ceramics and composites. In this presentation, various examples of brazing of silicon nitride to themselves and to metallic systems are presented. Other examples of joining of ceramic composites (C/SiC and SiC/SiC) using ceramic interlayers and the resulting microstructures are also presented. Thermomechanical characterization of joints is presented for both types of systems. In addition, various challenges and opportunities in design, fabrication, and testing of integrated similar (ceramic-ceramic) and dissimilar (ceramic-metal) material systems will be discussed. Potential opportunities and need for the development of innovative design philosophies, approaches, and integrated system testing under simulated application conditions will also be presented.
Clinically used adhesive ceramic bonding methods: a survey in 2007, 2011, and in 2015.
Klosa, K; Meyer, G; Kern, M
2016-09-01
The objective of the study is to evaluate practices of dentists regarding adhesive cementation of all-ceramic restorations over a period of 8 years. The authors developed a questionnaire regarding adhesive cementation procedures for all-ceramic restorations. Restorations were distinguished between made out of silicate ceramic or oxide ceramic. The questionnaire was handed out to all dentists participating in a local annual dental meeting in Northern Germany. The returned questionnaires were analyzed to identify incorrect cementation procedures based upon current evidence-based technique from the scientific dental literature. The survey was conducted three times in 2007, 2011, and 2015 and their results were compared. For silicate ceramic restorations, 38-69 % of the participants used evidence-based bonding procedures; most of the incorrect bonding methods did not use a silane containing primer. In case of oxide ceramic restorations, most participants did not use air-abrasion prior to bonding. Only a relatively low rate (7-14 %) of dentists used evidence-based dental techniques for bonding oxide ceramics. In adhesive cementation of all-ceramic restorations, the practices of surveyed dentists in Northern Germany revealed high rates of incorrect bonding. During the observation period, the values of evidence-based bonding procedures for oxide ceramics improved while the values for silicate ceramics declined. Based on these results, some survey participants need additional education for adhesive techniques. Neglecting scientifically accepted methods for adhesive cementation of all-ceramic restorations may result in reduced longevity of all-ceramic restorations.
Comparative characterization of a novel cad-cam polymer-infiltrated-ceramic-network
Pascual, Agustín; Camps, Isabel; Grau-Benitez, María
2015-01-01
Background The field of dental ceramics for CAD-CAM is enriched with a new innovative material composition having a porous three-dimensional structure of feldspathic ceramic infiltrated with acrylic resins.The aim of this study is to determine the mechanical properties of Polymer-Infiltrated-Ceramic-Network (PICN) and compare its performance with other ceramics and a nano-ceramic resin available for CAD-CAM systems. Material and Methods In this study a total of five different materials for CAD-CAM were investigated. A polymer-infiltrated ceramic (Vita Enamic), a nano-ceramic resin (Lava Ultimate), a feldspathic ceramic (Mark II), a lithium disilicate ceramic (IPS-e max CAD) and finally a Leucite based ceramic (Empress - CAD). From CAD-CAM blocks, 120 bars (30 for each material cited above) were cut to measure the flexural strength with a three-point-bending test. Strain at failure, fracture stress and Weibull modulus was calculated. Vickers hardness of each material was also measured. Results IPS-EMAX presents mechanical properties significantly better from the other materials studied. Its strain at failure, flexural strength and hardness exhibited significantly higher values in comparison with the others. VITA ENAMIC and LAVA ULTIMATE stand out as the next most resistant materials. Conclusions The flexural strength, elastic modulus similar to a tooth as well as having less hardness than ceramics make PICN materials an option to consider as a restorative material. Key words:Ceramic infiltrated with resin, CAD-CAM, Weibull modulus, flexural strength, micro hardness. PMID:26535096
Structural and Chemical Analysis of the Zirconia-Veneering Ceramic Interface.
Inokoshi, M; Yoshihara, K; Nagaoka, N; Nakanishi, M; De Munck, J; Minakuchi, S; Vanmeensel, K; Zhang, F; Yoshida, Y; Vleugels, J; Naert, I; Van Meerbeek, B
2016-01-01
The interfacial interaction of veneering ceramic with zirconia is still not fully understood. This study aimed to characterize morphologically and chemically the zirconia-veneering ceramic interface. Three zirconia-veneering conditions were investigated: 1) zirconia-veneering ceramic fired on sandblasted zirconia, 2) zirconia-veneering ceramic on as-sintered zirconia, and 3) alumina-veneering ceramic (lower coefficient of thermal expansion [CTE]) on as-sintered zirconia. Polished cross-sectioned ceramic-veneered zirconia specimens were examined using field emission gun scanning electron microscopy (Feg-SEM). In addition, argon-ion thinned zirconia-veneering ceramic interface cross sections were examined using scanning transmission electron microscopy (STEM)-energy dispersive X-ray spectrometry (EDS) at high resolution. Finally, the zirconia-veneering ceramic interface was quantitatively analyzed for tetragonal-to-monoclinic phase transformation and residual stress using micro-Raman spectroscopy (µRaman). Feg-SEM revealed tight interfaces for all 3 veneering conditions. High-resolution transmission electron microscopy (HRTEM) disclosed an approximately 1.0-µm transformed zone at sandblasted zirconia, in which distinct zirconia grains were no longer observable. Straight grain boundaries and angular grain corners were detected up to the interface of zirconia- and alumina-veneering ceramic with as-sintered zirconia. EDS mapping disclosed within the zirconia-veneering ceramic a few nanometers thick calcium/aluminum-rich layer, touching the as-sintered zirconia base, with an equally thick silicon-rich/aluminum-poor layer on top. µRaman revealed t-ZrO2-to-m-ZrO2 phase transformation and residual compressive stress at the sandblasted zirconia surface. The difference in CTE between zirconia- and the alumina-veneering ceramic resulted in residual tensile stress within the zirconia immediately adjacent to its interface with the veneering ceramic. The rather minor chemical elemental shifts recorded in the veneering ceramic did not suffice to draw definitive conclusions regarding potential chemical interaction of the veneering ceramic with zirconia. Sandblasting damaged the zirconia surface and induced phase transformation that also resulted in residual compressive stress. Difference in CTE of zirconia versus that of the veneering ceramic resulted in an unfavorable residual tensile stress at the zirconia-veneering ceramic interface. © International & American Associations for Dental Research 2015.
Pires, Laís A; Novais, Pollyanna M R; Araújo, Vinícius D; Pegoraro, Luiz F
2017-01-01
Reproducing the characteristics of natural teeth in ceramic crowns remains a complex and difficult process. The purpose of this in vitro study was to evaluate the effect of the substrate, cement, type, and thickness of the ceramic on the resulting color of a lithium disilicate ceramic. Forty ceramic disks were prepared from IPS e.max Press LT (low translucency) and HO (high opacity) in 2 different thicknesses (1.5 and 2 mm). The LT groups were composed of monolithic ceramic disks, and the HO groups were composed of disks fabricated with a 0.5-mm thickness combined with a 1- or 1.5-mm veneering ceramic thickness. Disks made of composite resin (R) and alloy (A) were used as substrate structures. The resin cement used was Variolink II. Color was measured with a spectrophotometer and expressed in CIELAB coordinates. Color differences (ΔE) were calculated. The data were analyzed with ANOVA and the Tukey HSD test (α=.05). When the ΔE of ceramic disks with both substrates, with and without cement, were compared, the lowest value (3) was obtained for ceramic HO with a 2-mm thickness/alloy substrate/without cement; the highest value (10) was obtained for ceramic LT with a1.5-mm thickness/alloy substrate/with cement. This difference was statistically significant. When the effect of cement on the ΔE of ceramics in both substrates was compared, the lowest value (1.1) occurred with ceramic HO with a 1.5-mm thickness/resin substrate, and the highest was observed for ceramic LT with a 1.5-mm thickness/alloy substrate (6.4). This difference was statistically significant. The substrate color, type and thickness of ceramic, and presence of the cement significantly influenced the resulting optical color. The ΔE values of cemented HO ceramics were lower than that of the LT ceramic. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Abu Alhaija, Elham S J; Abu AlReesh, Issam A; AlWahadni, Ahed M S
2010-06-01
The aims of this study were to evaluate the shear bond strength (SBS) of metal and ceramic brackets bonded to two different all-ceramic crowns, IPS Empress 2 and In-Ceram Alumina, to compare the SBS between hydrofluoric acid (HFA), phosphoric acid etched, and sandblasted, non-etched all-ceramic surfaces. Ninety-six all-ceramic crowns were fabricated resembling a maxillary left first premolar. The crowns were divided into eight groups: (1) metal brackets bonded to sandblasted 9.6 per cent HFA-etched IPS Empress 2 crowns; (2) metal brackets bonded to sandblasted 9.6 per cent HFA-etched In-Ceram crowns; (3) ceramic brackets bonded to sandblasted 9.6 per cent HFA-etched IPS Empress 2 crowns; (4) ceramic brackets bonded to sandblasted 9.6 per cent HFA-etched In-Ceram crowns; (5) metal brackets bonded to sandblasted 37 per cent phosphoric acid-etched IPS Empress 2 crowns; (6) metal brackets bonded to sandblasted 37 per cent phosphoric acid-etched In-Ceram crowns; (7) metal brackets bonded to sandblasted, non-etched IPS Empress 2 crowns; and (8) metal brackets bonded to sandblasted, non-etched In-Ceram crowns. Metal and ceramic orthodontic brackets were bonded using a conventional light polymerizing adhesive resin. An Instron universal testing machine was used to determine the SBS at a crosshead speed of 0.1 mm/minute. Comparison between groups was performed using a univariate general linear model and chi-squared tests. The highest mean SBS was found in group 3 (120.15 +/- 45.05 N) and the lowest in group 8 (57.86 +/- 26.20 N). Of all the variables studied, surface treatment was the only factor that significantly affected SBS (P < 0.001). Acid etch application to sandblasted surfaces significantly increased the SBS in groups 1, 2, 5, and 6. The SBS of metal brackets debonded from groups 1, 3, and 5 were not significantly different from those of groups 2, 4, and 6. All debonded metal brackets revealed a similar pattern of bond failure at the adhesive-restorative interface. However, ceramic brackets had a significantly different adhesive failure pattern with dominant failure at the adhesive-bracket interface. Ceramic fractures after bracket removal were found more often in groups 1-4. No significant difference in ceramic fracture was observed between the IPS Empress 2 and In-Ceram groups.
NASA Technical Reports Server (NTRS)
Jones, R. D.; Carpenter, Harry W.; Tellier, Jim; Rollins, Clark; Stormo, Jerry
1987-01-01
Abilities of ceramics to serve as turbine blades, stator vanes, and other elements in hot-gas flow of rocket engines discussed in report. Ceramics prime candidates, because of resistance to heat, low density, and tolerance of hostile environments. Ceramics considered in report are silicon nitride, silicon carbide, and new generation of such ceramic composites as transformation-toughened zirconia and alumina and particulate- or whisker-reinforced matrices. Report predicts properly designed ceramic components viable in advanced high-temperature rocket engines and recommends future work.
Ceramic Honeycomb Structures and Method Thereof
NASA Technical Reports Server (NTRS)
Cagliostro, Domenick E.; Riccitiello, Salvatore R.
1989-01-01
The present invention relates to a method for producing ceramic articles and the articles, the process comprising the chemical vapor deposition (CVD) and/or chemical vapor infiltration (CVI) of a honeycomb structure. Specifically the present invention relates to a method for the production of a ceramic honeycomb structure, including: (a) obtaining a loosely woven fabric/binder wherein the fabric consists essentially of metallic, ceramic or organic fiber and the binder consists essentially of an organic or inorganic material wherein the fabric/binder has and retains a honeycomb shape, with the proviso that when the fabric is metallic or ceramic the binder is organic only; (b) substantially evenly depositing at least one layer of a ceramic on the fabric/binder of step (a); and (c) recovering the ceramic coated fiber honeycomb structure. In another aspect, the present invention relates to a method for the manufacture of a lightweight ceramic-ceramic composite honeycomb structure, which process comprises: (d) pyrolyzing a loosely woven fabric a honeycomb shaped and having a high char yield and geometric integrity after pyrolysis at between about 700 degrees and 1,100 degrees Centigrade; (e) substantially evenly depositing at least one layer of ceramic material on the pyrolyzed fabric of step (a); and (f) recovering the coated ceramic honeycomb structure. The ceramic articles produced have enhanced physical properties and are useful in aircraft and aerospace uses.
Hunt, T.K.; Novak, R.F.
1991-05-07
An improved active metal braze filler material is provided in which the coefficient of thermal expansion of the braze filler is more closely matched with that of the ceramic and metal, or two ceramics, to provide ceramic to metal, or ceramic to ceramic, sealed joints and articles which can withstand both high temperatures and repeated thermal cycling without failing. The braze filler material comprises a mixture of a material, preferably in the form of a powder, selected from the group consisting of molybdenum, tungsten, silicon carbide and mixtures thereof, and an active metal filler material selected from the group consisting of alloys or mixtures of nickel and titanium, alloys or mixtures of nickel and zirconium, alloys or mixtures of nickel, titanium, and copper, alloys or mixtures of nickel, titanium, and zirconium, alloys or mixtures of niobium and nickel, alloys or mixtures of niobium and zirconium, alloys or mixtures of niobium and titanium, alloys or mixtures of niobium, titanium, and nickel, alloys or mixtures of niobium, zirconium, and nickel, and alloys or mixtures of niobium, titanium, zirconium, and nickel. The powder component is selected such that its coefficient of thermal expansion will effect the overall coefficient of thermal expansion of the braze material so that it more closely matches the coefficients of thermal expansion of the ceramic and metal parts to be joined. 3 figures.
Hunt, Thomas K.; Novak, Robert F.
1991-01-01
An improved active metal braze filler material is provided in which the coefficient of thermal expansion of the braze filler is more closely matched with that of the ceramic and metal, or two ceramics, to provide ceramic to metal, or ceramic to ceramic, sealed joints and articles which can withstand both high temperatures and repeated thermal cycling without failing. The braze filler material comprises a mixture of a material, preferably in the form of a powder, selected from the group consisting of molybdenum, tungsten, silicon carbide and mixtures thereof, and an active metal filler material selected from the group consisting of alloys or mixtures of nickel and titanium, alloys or mixtures of nickel and zirconium, alloys or mixtures of nickel, titanium, and copper, alloys or mixtures of nickel, titanium, and zirconium, alloys or mixtures of niobium and nickel, alloys or mixtures of niobium and zirconium, alloys or mixtures of niobium and titanium, alloys or mixtures of niobium, titanium, and nickel, alloys or mixtures of niobium, zirconium, and nickel, and alloys or mixtures of niobium, titanium, zirconium, and nickel. The powder component is selected such that its coefficient of thermal expansion will effect the overall coefficient of thermal expansion of the braze material so that it more closely matches the coefficients of thermal expansion of the ceramic and metal parts to be joined.
Ceramic-ceramic shell tile thermal protection system and method thereof
NASA Technical Reports Server (NTRS)
Riccitiello, Salvatore R. (Inventor); Smith, Marnell (Inventor); Goldstein, Howard E. (Inventor); Zimmerman, Norman B. (Inventor)
1986-01-01
A ceramic reusable, externally applied composite thermal protection system (TPS) is proposed. The system functions by utilizing a ceramic/ceramic upper shell structure which effectively separates its primary functions as a thermal insulator and as a load carrier to transmit loads to the cold structure. The composite tile system also prevents impact damage to the atmospheric entry vehicle thermal protection system. The composite tile comprises a structurally strong upper ceramic/ceramic shell manufactured from ceramic fibers and ceramic matrix meeting the thermal and structural requirements of a tile used on a re-entry aerospace vehicle. In addition, a lightweight high temperature ceramic lower temperature base tile is used. The upper shell and lower tile are attached by means effective to withstand the extreme temperatures (3000 to 3200F) and stress conditions. The composite tile may include one or more layers of variable density rigid or flexible thermal insulation. The assembly of the overall tile is facilitated by two or more locking mechanisms on opposing sides of the overall tile assembly. The assembly may occur subsequent to the installation of the lower shell tile on the spacecraft structural skin.
Randomized, Controlled Clinical Trial of Bilayer Ceramic and Metal-Ceramic Crown Performance
Esquivel-Upshaw, Josephine; Rose, William; Oliveira, Erica; Yang, Mark; Clark, Arthur E.; Anusavice, Kenneth
2013-01-01
Purpose Analyzing the clinical performance of restorative materials is important, as there is an expectation that these materials and procedures will restore teeth and do no harm. The objective of this research study was to characterize the clinical performance of metal-ceramic crowns, core ceramic crowns, and core ceramic/veneer ceramic crowns based on 11 clinical criteria. Materials and Methods An IRB-approved, randomized, controlled clinical trial was conducted as a single-blind pilot study. The following three types of full crowns were fabricated: (1) metal-ceramic crown (MC) made from a Pd-Au-Ag-Sn-In alloy (Argedent 62) and a glass-ceramic veneer (IPS d.SIGN veneer); (2) non-veneered (glazed) lithium disilicate glass-ceramic crown (LDC) (IPS e.max Press core and e.max Ceram Glaze); and (3) veneered lithia disilicate glass-ceramic crown (LDC/V) with glass-ceramic veneer (IPS Empress 2 core and IPS Eris). Single-unit crowns were randomly assigned. Patients were recalled for each of 3 years and were evaluated by two calibrated clinicians. Thirty-six crowns were placed in 31 patients. A total of 12 crowns of each of the three crown types were studied. Eleven criteria were evaluated: tissue health, marginal integrity, secondary caries, proximal contact, anatomic contour, occlusion, surface texture, cracks/chips (fractures), color match, tooth sensitivity, and wear (of crowns and opposing enamel). Numerical rankings ranged from 1 to 4, with 4 being excellent, and 1 indicating a need for immediate replacement. Statistical analysis of the numerical rankings was performed using a Fisher’s exact test. Results There was no statistically significant difference between performance of the core ceramic crowns and the two veneered crowns at year 1 and year 2 (p > 0.05). All crowns were rated either as excellent or good for each of the clinical criteria; however, between years 2 and 3, gradual roughening of the occlusal surface occurred in some of the ceramic-ceramic crowns, possibly caused by dissolution and wear of the glaze. Statistically significant differences in surface texture (p = 0.0013) and crown wear (p = 0.0078) were found at year 3 between the metal-ceramic crowns and the lithium-disilicate-based crowns. Conclusion Based on the 11 criteria, the clinical performance of ceramic-ceramic crowns was comparable to that of the metal-ceramic crowns after 2 years; however, gradual roughening occurred between years 2 and 3, which resulted in differences in surface texture and wear. PMID:22978697
Sailer, Irena; Makarov, Nikolay Alexandrovich; Thoma, Daniel Stefan; Zwahlen, Marcel; Pjetursson, Bjarni Elvar
2015-06-01
To assess the 5-year survival of metal-ceramic and all-ceramic tooth-supported single crowns (SCs) and to describe the incidence of biological, technical and esthetic complications. Medline (PubMed), Embase, Cochrane Central Register of Controlled Trials (CENTRAL) searches (2006-2013) were performed for clinical studies focusing on tooth-supported fixed dental prostheses (FDPs) with a mean follow-up of at least 3 years. This was complimented by an additional hand search and the inclusion of 34 studies from a previous systematic review [1,2]. Survival and complication rates were analyzed using robust Poisson's regression models to obtain summary estimates of 5-year proportions. Sixty-seven studies reporting on 4663 metal-ceramic and 9434 all-ceramic SCs fulfilled the inclusion criteria. Seventeen studies reported on metal-ceramic crowns, and 54 studies reported on all-ceramic crowns. Meta-analysis of the included studies indicated an estimated survival rate of metal-ceramic SCs of 94.7% (95% CI: 94.1-96.9%) after 5 years. This was similar to the estimated 5-year survival rate of leucit or lithium-disilicate reinforced glass ceramic SCs (96.6%; 95% CI: 94.9-96.7%), of glass infiltrated alumina SCs (94.6%; 95% CI: 92.7-96%) and densely sintered alumina and zirconia SCs (96%; 95% CI: 93.8-97.5%; 92.1%; 95% CI: 82.8-95.6%). In contrast, the 5-year survival rates of feldspathic/silica-based ceramic crowns were lower (p<0.001). When the outcomes in anterior and posterior regions were compared feldspathic/silica-based ceramic and zirconia crowns exhibited significantly lower survival rates in the posterior region (p<0.0001), the other crown types performed similarly. Densely sintered zirconia SCs were more frequently lost due to veneering ceramic fractures than metal-ceramic SCs (p<0.001), and had significantly more loss of retention (p<0.001). In total higher 5 year rates of framework fracture were reported for the all-ceramic SCs than for metal-ceramic SCs. Survival rates of most types of all-ceramic SCs were similar to those reported for metal-ceramic SCs, both in anterior and posterior regions. Weaker feldspathic/silica-based ceramics should be limited to applications in the anterior region. Zirconia-based SCs should not be considered as primary option due to their high incidence of technical problems. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Lasecki, J.V.; Novak, R.F.; McBride, J.R.
1991-08-27
A metal to ceramic sealed joint which can withstand wide variations in temperature and maintain a good seal is provided for use in a device adapted to withstand thermal cycling from about 20 to about 1000 degrees C. The sealed joint includes a metal member, a ceramic member having an end portion, and an active metal braze forming a joint to seal the metal member to the ceramic member. The joint is positioned remote from the end portion of the ceramic member to avoid stresses at the ends or edges of the ceramic member. The sealed joint is particularly suited for use to form sealed metal to ceramic joints in a thermoelectric generator such as a sodium heat engine where a solid ceramic electrolyte is joined to metal parts in the system. 11 figures.
Lightweight Ceramic Composition of Carbon Silicon Oxygen and Boron
NASA Technical Reports Server (NTRS)
Leiser, Daniel B. (Inventor); Hsu, Ming-Ta (Inventor); Chen, Timothy S. (Inventor)
1997-01-01
Lightweight, monolithic ceramics resistant to oxidation in air at high temperatures are made by impregnating a porous carbon preform with a sol which contains a mixture of tetraethoxysilane, dimethyldiethoxysilane and trimethyl borate. The sol is gelled and dried on the carbon preform to form a ceramic precursor. The precursor is pyrolyzed in an inert atmosphere to form the ceramic which is made of carbon, silicon, oxygen and boron. The carbon of the preform reacts with the dried gel during the pyrolysis to form a component of the resulting ceramic. The ceramic is of the same size, shape and form as the carbon precursor. Thus, using a porous, fibrous carbon precursor, such as a carbon felt, results in a porous, fibrous ceramic. Ceramics of the invention are useful as lightweight tiles for a reentry spacecraft.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, D.R.; McClung, R.W.; Janney, M.A.
1987-08-01
A needs assessment was performed for nondestructive testing and materials characterization to achieve improved reliability in ceramic materials for heat engine applications. Raw materials, green state bodies, and sintered ceramics were considered. The overall approach taken to improve reliability of structural ceramics requires key inspections throughout the fabrication flowsheet, including raw materials, greed state, and dense parts. The applications of nondestructive inspection and characterization techniques to ceramic powders and other raw materials, green ceramics, and sintered ceramics are discussed. The current state of inspection technology is reviewed for all identified attributes and stages of a generalized flowsheet for advanced structuralmore » ceramics, and research and development requirements are identified and listed in priority order. 164 refs., 3 figs.« less
Singh, Dileep; Wagh, Arun S.; Jeong, Seung-Young
2000-01-01
Known phosphate ceramic formulations are improved and the ability to produce iron-based phosphate ceramic systems is enabled by the addition of an oxidizing or reducing step during the acid-base reactions that form the phosphate ceramic products. The additives allow control of the rate of the acid-base reactions and concomitant heat generation. In an alternate embodiment, waste containing metal anions are stabilized in phosphate ceramic products by the addition of a reducing agent to the phosphate ceramic mixture. The reduced metal ions are more stable and/or reactive with the phosphate ions, resulting in the formation of insoluble metal species within the phosphate ceramic matrix, such that the resulting chemically bonded phosphate ceramic product has greater leach resistance.
Lasecki, John V.; Novak, Robert F.; McBride, James R.
1991-01-01
A metal to ceramic sealed joint which can withstand wide variations in temperature and maintain a good seal is provided for use in a device adapted to withstand thermal cycling from about 20 to about 1000 degrees C. The sealed joint includes a metal member, a ceramic member having an end portion, and an active metal braze forming a joint to seal the metal member to the ceramic member. The joint is positioned remote from the end portion of the ceramic member to avoid stresses at the ends or edges of the ceramic member. The sealed joint is particularly suited for use to form sealed metal to ceramic joints in a thermoelectric generator such as a sodium heat engine where a solid ceramic electrolyte is joined to metal parts in the system.
FIB/SEM and SEM/EDS microstructural analysis of metal-ceramic and zirconia-ceramic interfaces.
Massimi, F; Merlati, G; Sebastiani, M; Battaini, P; Menghini, P; Bemporad, E
2012-01-10
Recently introduced FIB/SEM analysis in microscopy seems to provide a high-resolution characterization of the samples by 3D (FIB) cross-sectioning and (SEM) high resolution imaging. The aim of this study was to apply the FIB/SEM and SEM/EDS analysis to the interfaces of a metal-ceramic vs. two zirconia-ceramic systems. Plate samples of three different prosthetic systems were prepared in the dental lab following the manufacturers' instructions, where metal-ceramic was the result of a ceramic veneering (porcelain-fused-to-metal) and the two zirconia-ceramic systems were produced by the dedicated CAD-CAM procedures of the zirconia cores (both with final sintering) and then veneered by layered or heat pressed ceramics. In a FIB/SEM equipment (also called DualBeam), a thin layer of platinum (1 μm) was deposited on samples surface crossing the interfaces, in order to protect them during milling. Then, increasingly deeper trenches were milled by a focused ion beam, first using a relatively higher and later using a lower ion current (from 9 nA to 0.28 nA, 30KV). Finally, FEG-SEM (5KV) micrographs (1000-50,000X) were acquired. In a SEM the analysis of the morphology and internal microstructure was performed by 13KV secondary and backscattered electrons signals (in all the samples). The compositional maps were then performed by EDS probe only in the metal-ceramic system (20kV). Despite the presence of many voids in all the ceramic layers, it was possible to identify: (1) the grain structures of the metallic and zirconia substrates, (2) the thin oxide layer at the metal-ceramic interface and its interactions with the first ceramic layer (wash technique), (3) the roughness of the two different zirconia cores and their interactions with the ceramic interface, where the presence of zirconia grains in the ceramic layer was reported in two system possibly due to sandblasting before ceramic firing.
Frayssinet, P; Rouquet, N; Fages, J; Durand, M; Vidalain, P O; Bonel, G
1997-06-05
HA-ceramics used in human surgery as osteoconductive surfaces show a great variety of characteristics. Certain characteristics such as grain size, porosity, and surface area, are controlled by the sintering temperature of the slurry. We grew L-929 fibroblast cells on HA-ceramic disks that had been sintered at different temperatures ranging from 850 degrees-1350 degrees C. The cell line growth rate was lower on ceramic disks than on the culture-grade polystyrene used as a negative control. Cell growth correlated with the ceramic sintering temperature although no significant difference in the cell adhesion to the different ceramics was shown. Growth rate on ceramics sintered at low temperatures (850 degrees and 950 degrees C) was negative whereas it was positive on disks sintered at higher temperatures. When the cells were separated from the disks by a polycarbonate membrane, the growth rate was negative on those membranes in contact with low-temperature sintered disks and positive on the high-temperature sintered disks. The calcium and phosphorus concentration in the culture medium in contact with ceramics sintered below 1050 degrees C decreased during the culture period. Ceramics sintered between 1100 degrees and 1250 degrees C brought about an increase in Ca and P concentrations while ceramics sintered at higher temperatures did not induce any changes. SEM examination of the 850 degrees and 1200 degrees C sintered ceramics showed that the 850 degrees C sintered ceramics consisted of small grains with pores between them and the 1200 degrees C sintered ceramics were made of larger grains without any visible pores, thereby decreasing the surface of material in contact with the culture medium. This difference in surface area was confirmed by the fact that the amount of albumin absorbed onto the ceramic was dependent on the sintering temperature. In conclusion, the modification of the culture medium brought about by high-surfaced ceramics could influence the growth of cells with which such ceramics come in contact.
Translucency of dental ceramics with different thicknesses.
Wang, Fu; Takahashi, Hidekazu; Iwasaki, Naohiko
2013-07-01
The increased use of esthetic restorations requires an improved understanding of the translucent characteristics of ceramic materials. Ceramic translucency has been considered to be dependent on composition and thickness, but less information is available about the translucent characteristics of these materials, especially at different thicknesses. The purpose of this study was to investigate the relationship between translucency and the thickness of different dental ceramics. Six disk-shaped specimens of 8 glass ceramics (IPS e.max Press HO, MO, LT, HT, IPS e.max CAD LT, MO, AvanteZ Dentin, and Trans) and 5 specimens of 5 zirconia ceramics (Cercon Base, Zenotec Zr Bridge, Lava Standard, Lava Standard FS3, and Lava Plus High Translucency) were prepared following the manufacturers' instructions and ground to a predetermined thickness with a grinding machine. A spectrophotometer was used to measure the translucency parameters (TP) of the glass ceramics, which ranged from 2.0 to 0.6 mm, and of the zirconia ceramics, which ranged from 1.0 to 0.4 mm. The relationship between the thickness and TP of each material was evaluated using a regression analysis (α=.05). The TP values of the glass ceramics ranged from 2.2 to 25.3 and the zirconia ceramics from 5.5 to 15.1. There was an increase in the TP with a decrease in thickness, but the amount of change was material dependent. An exponential relationship with statistical significance (P<.05) between the TP and thickness was found for both glass ceramics and zirconia ceramics. The translucency of dental ceramics was significantly influenced by both material and thickness. The translucency of all materials increased exponentially as the thickness decreased. All of the zirconia ceramics evaluated in the present study showed some degree of translucency, which was less sensitive to thickness compared to that of the glass ceramics. Copyright © 2013 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
Fabrication of ceramic substrate-reinforced and free forms
NASA Technical Reports Server (NTRS)
Quentmeyer, R. J.; Mcdonald, G.; Hendricks, R. C.
1985-01-01
Components fabricated of, or coated with, ceramics have lower parasitic cooling requirements. Techniques are discussed for fabricating thin-shell ceramic components and ceramic coatings for applications in rocket or jet engine environments. Thin ceramic shells with complex geometric forms involving convolutions and reentrant surfaces were fabricated by mandrel removal. Mandrel removal was combined with electroplating or plasma spraying and isostatic pressing to form a metal support for the ceramic. Rocket engine thrust chambers coated with 0.08 mm (3 mil) of ZrO2-8Y2O3 had no failures and a tenfold increase in engine life. Some measured mechanical properties of the plasma-sprayed ceramic are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
EWSUK,KEVIN G.
1999-11-24
Ceramics represent a unique class of materials that are distinguished from common metals and plastics by their: (1) high hardness, stiffness, and good wear properties (i.e., abrasion resistance); (2) ability to withstand high temperatures (i.e., refractoriness); (3) chemical durability; and (4) electrical properties that allow them to be electrical insulators, semiconductors, or ionic conductors. Ceramics can be broken down into two general categories, traditional and advanced ceramics. Traditional ceramics include common household products such as clay pots, tiles, pipe, and bricks, porcelain china, sinks, and electrical insulators, and thermally insulating refractory bricks for ovens and fireplaces. Advanced ceramics, also referredmore » to as ''high-tech'' ceramics, include products such as spark plug bodies, piston rings, catalyst supports, and water pump seals for automobiles, thermally insulating tiles for the space shuttle, sodium vapor lamp tubes in streetlights, and the capacitors, resistors, transducers, and varistors in the solid-state electronics we use daily. The major differences between traditional and advanced ceramics are in the processing tolerances and cost. Traditional ceramics are manufactured with inexpensive raw materials, are relatively tolerant of minor process deviations, and are relatively inexpensive. Advanced ceramics are typically made with more refined raw materials and processing to optimize a given property or combination of properties (e.g., mechanical, electrical, dielectric, optical, thermal, physical, and/or magnetic) for a given application. Advanced ceramics generally have improved performance and reliability over traditional ceramics, but are typically more expensive. Additionally, advanced ceramics are typically more sensitive to the chemical and physical defects present in the starting raw materials, or those that are introduced during manufacturing.« less
Repair bond strength of resin composite to bilayer dental ceramics
2018-01-01
PURPOSE The purpose of this study was to investigate the effect of various surface treatments (ST) on the shear bond strength of resin composite to three bilayer dental ceramics made by CAD/CAM and two veneering ceramics. MATERIALS AND METHODS Three different bilayer dental ceramics and two different veneering ceramics were used (Group A: IPS e.max CAD+IPS e.max Ceram; Group B: IPS e.max ZirCAD+IPS e.max Ceram, Group C: Vita Suprinity+Vita VM11; Group D: IPS e.max Ceram; Group E: Vita VM11). All groups were divided into eight subgroups according to the ST. Then, all test specimens were repaired with a nano hybrid resin composite. Half of the test specimens were subjected to thermocycling procedure and the other half was stored in distilled water at 37℃. Shear bond strength tests for all test specimens were carried out with a universal testing machine. RESULTS There were statistically significant differences among the tested surface treatments within the all tested fracture types (P<.005). HF etching showed higher bond strength values in Groups A, C, D, and E than the other tested ST. However, bonding durability of all the surface-treated groups were similar after thermocycling (P>.00125). CONCLUSION This study revealed that HF etching for glass ceramics and sandblasting for zirconia ceramics were adequate for repair of all ceramic restorations. The effect of ceramic type exposed on the fracture area was not significant on the repair bond strength of resin composites to different ceramic types. PMID:29713430
Continuous method of producing silicon carbide fibers
NASA Technical Reports Server (NTRS)
Barnard, Thomas Duncan (Inventor); Nguyen, Kimmai Thi (Inventor); Rabe, James Alan (Inventor)
1999-01-01
This invention pertains to a method for production of polycrystalline ceramic fibers from silicon oxycarbide (SiCO) ceramic fibers wherein the method comprises heating an amorphous ceramic fiber containing silicon and carbon in an inert environment comprising a boron oxide and carbon monoxide at a temperature sufficient to convert the amorphous ceramic fiber to a polycrystalline ceramic fiber. By having carbon monoxide present during the heating of the ceramic fiber, it is possible to achieve higher production rates on a continuous process.
Ceramic nanostructures and methods of fabrication
Ripley, Edward B [Knoxville, TN; Seals, Roland D [Oak Ridge, TN; Morrell, Jonathan S [Knoxville, TN
2009-11-24
Structures and methods for the fabrication of ceramic nanostructures. Structures include metal particles, preferably comprising copper, disposed on a ceramic substrate. The structures are heated, preferably in the presence of microwaves, to a temperature that softens the metal particles and preferably forms a pool of molten ceramic under the softened metal particle. A nano-generator is created wherein ceramic material diffuses through the molten particle and forms ceramic nanostructures on a polar site of the metal particle. The nanostructures may comprise silica, alumina, titania, or compounds or mixtures thereof.
The Integration Method of Ceramic Arts in the Product Design
NASA Astrophysics Data System (ADS)
Shuxin, Wang
2018-03-01
As one of the four ancient civilization countries, the firing technology of ceramic invented by China has made a great contribution to the progress and development of human society. In modern life, even the development of technology still needs the ceramics, there are large number of artists who take the ceramics as carrier active in the field of contemporary art. The ceramics can be seen everywhere in our daily life, this paper mainly discusses the integration means of ceramic art in the product design.
Tribological Properties of Structural Ceramics
NASA Technical Reports Server (NTRS)
Buckley, Donald H.; Miyoshi, Kazuhisa
1987-01-01
Paper discusses tribological properties of structural ceramics. Function of tribological research is to bring about reduction in adhesion, friction, and wear of mechanical components; to prevent failures; and to provide long, reliable component life, through judicious selection of materials, operating parameters, and lubricants. Paper reviews adhesion, friction, wear, and lubrication of ceramics; anisotropic friction and wear behavior; and effects of surface films and interactions between ceramics and metals. Analogies with metals are made. Both oxide and nonoxide ceramics, including ceramics used as high temperature lubricants, are dicussed.
Micro-domain controlled anisotropic laser ceramics assisted by rare-earth trivalent
NASA Astrophysics Data System (ADS)
Sato, Yoichi; Akiyama, Jun; Taira, Takunori
2012-01-01
Principles that enable to synthesize anisotropic laser ceramics have been established. Anisotropic laser ceramics contain micro domains made of anisotropic crystals, and we have invented the novel alignment technology of micro domain structure in laser ceramics assisted by rare-earth trivalent. Our novel process is essentially superior to the traditional electromagnetic processing from the viewpoint of mass production. We discussed the significance of anisotropic laser ceramics, and we also show the result of evaluations to our orientation controlled RE:FAP ceramics.
NASA Technical Reports Server (NTRS)
Hooker, Matthew W. (Inventor); Taylor, Theodore D. (Inventor); Wise, Stephanie A. (Inventor); Buckley, John D. (Inventor); Vasquez, Peter (Inventor); Buck, Gregory M. (Inventor); Hicks, Lana P. (Inventor)
1993-01-01
A process for slip casting ceramic articles that does not employ parting agents and affords the casting of complete, detailed, precision articles that do not possess parting lines is presented. This process is especially useful for high temperature superconductors and water-sensitive ceramics. A wax pattern for a shell mold is provided, and an aqueous mixture of a calcium sulfate-bonded investment material is applied as a coating to the wax pattern. The coated wax pattern is then dried, followed by curing to vaporize the wax pattern and leave a shell mold of the calcium sulfate-bonded investment material. The shell mold is cooled to room temperature, and a ceramic slip, created by dispersing a ceramic powder in an organic liquid, is poured therein. After a ceramic shell of desired thickness or a solid article has set up in the shell mold, excess ceramic slip is poured out. The shell mold is misted with water and peeled away from the ceramic article, after which the ceramic is fired to provide a complete, detailed, precision, high temperature superconductive ceramic article without parting lines. The casting technique may take place in the presence of a magnetic field to orient the ceramic powders during the casting process.
Addition of a pontic to all-ceramic Turkom-Cera fixed partial denture restorations.
Uludag, Bulent; Tokar, Emre; Polat, Serdar
2013-04-01
High-strength all-ceramic materials are commonly used in dentistry. When complications occur in an all-ceramic restoration, the restoration is usually replaced. This article describes the time-saving ability and cost-effectiveness of this novel technique for the addition of a pontic in two complicated clinical cases. Turkom-Cera(™) [Turkom-Ceramic (M) Sdn. Bhd.] with aluminum oxide (99.98%) is an all-ceramic system that offers the option of addition of a new pontic to the sintered framework. The new pontic was cut off from an alumina blank [Turkom-Ceramic (M) Sdn. Bhd.], moistened, and attached to the framework using alumina gel [Turkom-Ceramic (M) Sdn. Bhd.]. The framework was veneered with veneering porcelain (Vita VM 7; VITA Zahnfabrik). The two cases presented here involving the addition of a pontic to sintered framework were followed up for at least 1 year. No complication was detected or reported by the patients. Alumina- and zirconia-based ceramics are particularly suitable for for all-ceramic restorations in high-stress bearing areas. However, replacement of a failed all-ceramic restoration is not the most practical solution, considering both cost and tooth-related factors. This attractive feature of the Turkom-Cera allows the repair of a fractured ceramic coping or the addition of a new pontic to restorations.
Addition of a pontic to all-ceramic Turkom-Cera fixed partial denture restorations
Uludag, Bulent; Tokar, Emre; Polat, Serdar
2013-01-01
High-strength all-ceramic materials are commonly used in dentistry. When complications occur in an all-ceramic restoration, the restoration is usually replaced. This article describes the time-saving ability and cost-effectiveness of this novel technique for the addition of a pontic in two complicated clinical cases. Turkom-Cera™ [Turkom-Ceramic (M) Sdn. Bhd.] with aluminum oxide (99.98%) is an all-ceramic system that offers the option of addition of a new pontic to the sintered framework. The new pontic was cut off from an alumina blank [Turkom-Ceramic (M) Sdn. Bhd.], moistened, and attached to the framework using alumina gel [Turkom-Ceramic (M) Sdn. Bhd.]. The framework was veneered with veneering porcelain (Vita VM 7; VITA Zahnfabrik). The two cases presented here involving the addition of a pontic to sintered framework were followed up for at least 1 year. No complication was detected or reported by the patients. Alumina- and zirconia-based ceramics are particularly suitable for for all-ceramic restorations in high-stress bearing areas. However, replacement of a failed all-ceramic restoration is not the most practical solution, considering both cost and tooth-related factors. This attractive feature of the Turkom-Cera allows the repair of a fractured ceramic coping or the addition of a new pontic to restorations. PMID:24883033
Interfacial adhesion of dental ceramic-resin systems
NASA Astrophysics Data System (ADS)
Della Bona, Alvaro
The clinical success of resin bonding procedures for indirect ceramic restorations and ceramic repairs depends on the quality and durability of the bond between the ceramic and the resin. The quality of this bond will depend upon the bonding mechanisms that are controlled in part by the surface treatment that promotes micromechanical and/or chemical bonding to the substrate. The objective of this study is to correlate interfacial toughness (K A) with fracture surface morphological parameters of the dental ceramic-resin systems as a function of ceramic surface treatment. The analytical procedures focused on characterizing the microstructure and fracture properties of EmpressRTM ceramics (a leucite-based core ceramic, two lithia disilicate-based core ceramics, and a glass veneer) and determining the ceramic-resin adhesion zone bond strength characteristics. Microstructure and composition are controlling factors in the development of micromechanical retention produced by etching. Silane treated ceramics negated the effect of surface roughening produced by etching, inducing lower surface energy of the ceramic and, reduced bonding effectiveness. There was a positive correlation between WA, tensile bond strength (a), and KA, i.e., higher mean WA value, and higher mean sigma and KA values. This study suggests that (1) the sigma and KA values for ceramic bonded to resin are affected by the ceramic microstructure and the ceramic surface treatments; (2) the definition of the adhesion zone is essential to classify the modes of failure, which should be an integral component of all failure analyses; (3) the microtensile test may be preferable to conventional shear or flexural tests as an indicator of composite-ceramic bond quality; and (4) careful microscopic analysis of fracture surfaces and an x-ray dot map can produce a more consistent and complete description of the fracture process and interpretation of the modes of failure. The mode of failure and fractographic analyses provide important a more comprehensive assessment of mechanisms that control the survival times of dental adhesive systems. Thus, the quality of the bond should not be assessed based on bond strength data alone.
Analyses of fine paste ceramics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabloff, J A
1980-01-01
Four chapters are included: history of Brookhaven fine paste ceramics project, chemical and mathematical procedures employed in Mayan fine paste ceramics project, and compositional and archaeological perspectives on the Mayan fine paste ceramics. (DLC)
Manufacture of a ceramic paper for art applications
NASA Astrophysics Data System (ADS)
Dölle, K.; Honig, A.; Piatkowski, J.; Kuempel, C.
2018-01-01
Ceramic paper products are mostly used as high temperature ceramic insulation products. They offer an effective solution for most demanding heat management and insulation applications. The objective for this research project was to create a ceramic paper like product that combines the advantages of paper fibers, ceramic filler, and a clay product into one product, which can be produced on a continuous base with a paper machine. The produced ceramic paper product had a ceramic filler level between 59.68% and 78.8% with a basis weight between 322.9 g/m² and 693.7 g/m², and a final moisture content of 58.6% to 44.7% respectively. The wooden fiber served as a support medium for the ceramic filler material during production on the paper machine and during the conversion process into art pieces. During firing in a kiln, the fiber material combusted and the ceramic filler material mixture acts as common pottery clay, holding the desired shape of the art pieces produced.
Goudouri, Ourania-Menti; Kontonasaki, Eleana; Papadopoulou, Lambrini; Manda, Marianthi; Kavouras, Panagiotis; Triantafyllidis, Konstantinos S; Stefanidou, Maria; Koidis, Petros; Paraskevopoulos, Konstantinos M
2017-02-01
The aim of this study was the evaluation of the textural characteristics of an experimental sol-gel derived feldspathic dental ceramic, which has already been proven bioactive and the investigation of its flexural strength through Weibull Statistical Analysis. The null hypothesis was that the flexural strength of the experimental and the commercial dental ceramic would be of the same order, resulting in a dental ceramic with apatite forming ability and adequate mechanical integrity. Although the flexural strength of the experimental ceramics was not statistically significant different compared to the commercial one, the amount of blind pores due to processing was greater. The textural characteristics of the experimental ceramic were in accordance with the standard low porosity levels reported for dental ceramics used for fixed prosthetic restorations. Feldspathic dental ceramics with typical textural characteristics and advanced mechanical properties as well as enhanced apatite forming ability can be synthesized through the sol-gel method. Copyright © 2016 Elsevier Ltd. All rights reserved.
In vitro bioactivity of akermanite ceramics.
Wu, Chengtie; Chang, Jiang; Ni, Siyu; Wang, Junying
2006-01-01
In this study, the bone-like apatite-formation ability of akermanite ceramics (Ca2MgSi2O7) in simulated body fluid (SBF) and the effects of ionic products from akermanite dissolution on osteoblasts and mouse fibroblasts (cell line L929) were investigated. In addition, osteoblast morphology and proliferation on the ceramics were evaluated. The results showed that akermanite ceramics possessed bone-like apatite-formation ability comparable with bioactive wollastonite ceramics (CaSiO3) after 20 days of soaking in SBF and the mechanism of bone-like apatite formation on akermanite ceramics is similar to that of wollastonite ceramics. The Ca, Si, and Mg ions from akermanite dissolution at certain ranges of concentration significantly stimulated osteoblast and L929 cell proliferation. Furthermore, osteoblasts spread well on the surface of akermanite ceramics, and proliferated with increasing the culture time. The results showed that akermanite ceramics possess bone-like apatite-formation ability and can release soluble ionic products to stimulate cell proliferation, which indicated good bioactivity. (c) 2005 Wiley Periodicals, Inc
[Biological activity evaluation of porous HA ceramics using NH4 HCO3/PVA as pore-creating agents].
Wang, Songquan; Zhang, Dekun
2010-12-01
Porous HA ceramics were prepared by using NH4 HCO3/PVA as pore-formed material along with biological glass as intensifier, and these ceramics were immersed in Locke's Physiological Saline and Simulate Body Fluid (SBF). The changes of phase composition, grain size and crystallinity of porous HA ceramics before and after immersion were investigated by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). The biological activity was evaluated. The porous HA ceramics showed various degrees of decomposition after immersion in the two solution systems, but there was no evident change in respect to crystallinity. Besides, the impact of different degrees of solution systems on the change of grain size and planar preferred orientation was observed. The TCP phase of the ceramics immersed in Locke's Physiological Saline decomposed and there was no crystal growth on the surface of ceramics; however, the grain size of ceramics immersed in SBF became refined in certain degree and the surface of ceramics took on the new crystal growth.
A Novel Electro-Thermal Laminated Ceramic with Carbon-Based Layer
Ji, Yi; Huang, Bin; Rao, Pinggen
2017-01-01
A novel electro-thermal laminated ceramic composed of ceramic tile, carbon-based layer, dielectric layer, and foaming ceramic layer was designed and prepared by tape casting. The surface temperature achieved at an applied voltage of 10 V by the laminated ceramics was 40.3 °C when the thickness of carbon-based suspension was 1.0 mm and the adhesive strength between ceramic tile and carbon-based layer was 1.02 ± 0.06 MPa. In addition, the thermal aging results at 100 °C up to 192 h confirmed the high thermal stability and reliability of the electro-thermal laminated ceramics. The development of this laminated ceramic with excellent electro-thermal properties and safety provides a new individual heating device which is highly expected to be widely applied in the field of indoor heat supply. PMID:28773006
Current progress in bioactive ceramic scaffolds for bone repair and regeneration.
Gao, Chengde; Deng, Youwen; Feng, Pei; Mao, Zhongzheng; Li, Pengjian; Yang, Bo; Deng, Junjie; Cao, Yiyuan; Shuai, Cijun; Peng, Shuping
2014-03-18
Bioactive ceramics have received great attention in the past decades owing to their success in stimulating cell proliferation, differentiation and bone tissue regeneration. They can react and form chemical bonds with cells and tissues in human body. This paper provides a comprehensive review of the application of bioactive ceramics for bone repair and regeneration. The review systematically summarizes the types and characters of bioactive ceramics, the fabrication methods for nanostructure and hierarchically porous structure, typical toughness methods for ceramic scaffold and corresponding mechanisms such as fiber toughness, whisker toughness and particle toughness. Moreover, greater insights into the mechanisms of interaction between ceramics and cells are provided, as well as the development of ceramic-based composite materials. The development and challenges of bioactive ceramics are also discussed from the perspective of bone repair and regeneration.
A Novel Electro-Thermal Laminated Ceramic with Carbon-Based Layer.
Ji, Yi; Huang, Bin; Rao, Pinggen
2017-06-12
A novel electro-thermal laminated ceramic composed of ceramic tile, carbon-based layer, dielectric layer, and foaming ceramic layer was designed and prepared by tape casting. The surface temperature achieved at an applied voltage of 10 V by the laminated ceramics was 40.3 °C when the thickness of carbon-based suspension was 1.0 mm and the adhesive strength between ceramic tile and carbon-based layer was 1.02 ± 0.06 MPa. In addition, the thermal aging results at 100 °C up to 192 h confirmed the high thermal stability and reliability of the electro-thermal laminated ceramics. The development of this laminated ceramic with excellent electro-thermal properties and safety provides a new individual heating device which is highly expected to be widely applied in the field of indoor heat supply.
Current Progress in Bioactive Ceramic Scaffolds for Bone Repair and Regeneration
Gao, Chengde; Deng, Youwen; Feng, Pei; Mao, Zhongzheng; Li, Pengjian; Yang, Bo; Deng, Junjie; Cao, Yiyuan; Shuai, Cijun; Peng, Shuping
2014-01-01
Bioactive ceramics have received great attention in the past decades owing to their success in stimulating cell proliferation, differentiation and bone tissue regeneration. They can react and form chemical bonds with cells and tissues in human body. This paper provides a comprehensive review of the application of bioactive ceramics for bone repair and regeneration. The review systematically summarizes the types and characters of bioactive ceramics, the fabrication methods for nanostructure and hierarchically porous structure, typical toughness methods for ceramic scaffold and corresponding mechanisms such as fiber toughness, whisker toughness and particle toughness. Moreover, greater insights into the mechanisms of interaction between ceramics and cells are provided, as well as the development of ceramic-based composite materials. The development and challenges of bioactive ceramics are also discussed from the perspective of bone repair and regeneration. PMID:24646912
Oxidation and Corrosion of Ceramics and Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Jacobson, Nathan S.; Opila, Elizabeth J.; Lee, Kang N.
2000-01-01
Ceramics and ceramic matrix composites are candidates for numerous applications in high temperature environments with aggressive gases and possible corrosive deposits. There is a growing realization that high temperature oxidation and corrosion issues must be considered. There are many facets to these studies, which have been extensively covered in some recent reviews. The focus of this paper is on current research, over the past two years. In the authors' view, the most important oxidation and corrosion studies have focused on four major areas during this time frame. These are; (I) Oxidation of precursor-based ceramics; (II) Studies of the interphase material in ceramic matrix composites; (III) Water vapor interactions with ceramics, particularly in combustion environments; and (IV) Development of refractory oxide coatings for silicon-based ceramics. In this paper, we shall explore the most current work in each of these areas.
Tribology of ceramics: Report of the Committee on Tribology of Ceramics
NASA Technical Reports Server (NTRS)
1988-01-01
The current state of knowledge of ceramic surface structures, composition, and reactivity is reviewed. The tribological requirements of advanced mechanical systems now being deployed (in particular, heat engines) exceed the capabilities of traditional metallic-based materials because of the high temperatures encountered. Advanced ceramic materials for such applications are receiving intense scrutiny, but there is a lack of understanding of the properties and behavior of ceramic surfaces and the influence of processing on the properties of ceramics is described. The adequacy of models, ranging form atomic to macro, to describe and to predict ceramic friction and wear are discussed, as well as what is known about lubrication at elevated temperatures. From this analysis, recommendations are made for coordination, research, and development that will lead to better performance of ceramic materials in tribological systems.
Tagmatarchis, Alexander; Tripodakis, Aris-Petros; Filippatos, Gerasimos; Zinelis, Spiros; Eliades, George
2014-01-01
The aim of the study was to characterize the elemental distribution at the interface between all-ceramic core and veneering porcelain materials. Three groups of all-ceramic cores were selected: A) Glass-ceramics (Cergo, IPS Empress, IPS Empress 2, e-max Press, Finesse); B) Glass-infiltrated ceramics (Celay Alumina, Celay Zirconia) and C) Densely sintered ceramics (Cercon, Procera Alumina, ZirCAD, Noritake Zirconia). The cores were combined with compatible veneering porcelains and three flat square test specimens were produced for each system. The core-veneer interfaces were examined by scanning electron microscopy and energy dispersive x-ray microanalysis. The glass-ceramic systems showed interfacial zones reach in Si and O, with the presence of K, Ca, Al in core and Ca, Ce, Na, Mg or Al in veneer material, depending on the system tested. IPS Empress and IPS Empress 2 demonstrated distinct transitional phases at the core-veneer interface. In the glassinfiltrated systems, intermixing of core (Ce, La) with veneer (Na, Si) elements occurred, whereas an abrupt drop of the core-veneer elemental concentration was documented at the interfaces of all densely sintered ceramics. The results of the study provided no evidence of elemental interdiffusion at the core-veneer interfaces in densely sintered ceramics, which implies lack of primary chemical bonding. For the glass-containing systems (glassceramics and glass-infiltrated ceramics) interdiffusion of the glass-phase seems to play a critical role in establishing a primary bonding condition between ceramic core and veneering porcelain.
Fracture loads of all-ceramic crowns under wet and dry fatigue conditions.
Borges, Gilberto A; Caldas, Danilo; Taskonak, Burak; Yan, Jiahau; Sobrinho, Lourenco Correr; de Oliveira, Wildomar José
2009-12-01
The aim of this study was to test the hypothesis that fracture loads of fatigued dental ceramic crowns are affected by testing environment and luting cement. One hundred and eighty crowns were prepared from bovine teeth using a lathe. Ceramic crowns were prepared from three types of ceramic systems: an alumina-infiltrated ceramic, a lithia-disilicate-based glass ceramic, and a leucite-reinforced ceramic. For each ceramic system, 30 crowns were cemented with a composite resin cement, and the remaining 30 with a resin-modified glass ionomer cement. For each ceramic system and cement, ten specimens were loaded to fracture without fatiguing. A second group (n = 10) was subjected to cyclic fatigue and fracture tested in a dry environment, and a third group (n = 10) was fatigued and fractured in distilled water. The results were statistically analyzed using one-way ANOVA and Tukey HSD test. The fracture loads of ceramic crowns decreased significantly after cyclic fatigue loading (p
Composite phase ceramic phosphor of Al₂O₃-Ce:YAG for high efficiency light emitting.
Tang, Yanru; Zhou, Shengming; Chen, Chong; Yi, Xuezhuan; Feng, Yue; Lin, Hui; Zhang, Shuai
2015-07-13
We present our achievement which is a ceramic plate phosphorable to produce white light when directly combined with commercially available blue light emitting diodes. The ceramic phase structure is that the Al₂O₃ particle is uniformly distributed in the Ce:YAG matrix. The Al₂O₃-Ce:YAG ceramic phosphor has a better luminous efficacy than the transparent Ce:YAG ceramic phosphor under the same test condition. The Al₂O₃ particle plays an important role in promoting the luminous efficacy. The Al₂O₃ particle changes the propagation of the light in ceramic, and it reduces the total internal reflection. That is why the composite phase ceramic phosphor improves extraction efficiency of light.
Ceramic components for the AGT 100 engine
NASA Technical Reports Server (NTRS)
Helms, H. E.; Heitman, P. W.
1983-01-01
Historically, automotive gas turbines have not been able to meet requirements of the marketplace with respect to cost, performance, and reliability. However, the development of appropriate ceramic materials has overcome problems related to a need for expensive superalloy components and to limitations regarding the operating temperature. An automotive gas turbine utilizing ceramic components has been developed by a U.S. automobile manufacturer. A 100-horsepower, two-shaft, regenerative engine geometry was selected because it is compatible with manual, automatic, and continuously variable transmissions. Attention is given to the ceramic components, the ceramic gasifier turbine rotor development, the ceramic gasifier scroll, ceramic component testing, and the use of advanced nondestructive techniques for the evaluation of the engine components.
Ceramic processing: Experimental design and optimization
NASA Technical Reports Server (NTRS)
Weiser, Martin W.; Lauben, David N.; Madrid, Philip
1992-01-01
The objectives of this paper are to: (1) gain insight into the processing of ceramics and how green processing can affect the properties of ceramics; (2) investigate the technique of slip casting; (3) learn how heat treatment and temperature contribute to density, strength, and effects of under and over firing to ceramic properties; (4) experience some of the problems inherent in testing brittle materials and learn about the statistical nature of the strength of ceramics; (5) investigate orthogonal arrays as tools to examine the effect of many experimental parameters using a minimum number of experiments; (6) recognize appropriate uses for clay based ceramics; and (7) measure several different properties important to ceramic use and optimize them for a given application.
Enhanced thermal shock resistance of ceramics through biomimetically inspired nanofins.
Song, Fan; Meng, Songhe; Xu, Xianghong; Shao, Yingfeng
2010-03-26
We propose here a new method to make ceramics insensitive to thermal shock up to their melting temperature. In this method the surface of ceramics was biomimetically roughened into nanofinned surface that creates a thin air layer enveloping the surface of the ceramics during quenching. This air layer increases the heat transfer resistance of the surface of the ceramics by about 10,000 times so that the strong thermal gradient and stresses produced by the steep temperature difference in thermal shock did not occur both on the actual surface and in the interior of the ceramics. This method effectively extends the applications of existing ceramics in the extreme thermal environments.
Reliability and life prediction of ceramic composite structures at elevated temperatures
NASA Technical Reports Server (NTRS)
Duffy, Stephen F.; Gyekenyesi, John P.
1994-01-01
Methods are highlighted that ascertain the structural reliability of components fabricated of composites with ceramic matrices reinforced with ceramic fibers or whiskers and subject to quasi-static load conditions at elevated temperatures. Each method focuses on a particular composite microstructure: whisker-toughened ceramics, laminated ceramic matrix composites, and fabric reinforced ceramic matrix composites. In addition, since elevated service temperatures usually involve time-dependent effects, a section dealing with reliability degradation as a function of load history has been included. A recurring theme throughout this chapter is that even though component failure is controlled by a sequence of many microfailure events, failure of ceramic composites will be modeled using macrovariables.
Ceramic electrolyte coating methods
Seabaugh, Matthew M.; Swartz, Scott L.; Dawson, William J.; McCormick, Buddy E.
2004-10-12
Processes for preparing aqueous suspensions of a nanoscale ceramic electrolyte material such as yttrium-stabilized zirconia. The invention also includes a process for preparing an aqueous coating slurry of a nanoscale ceramic electrolyte material. The invention further includes a process for depositing an aqueous spray coating slurry including a ceramic electrolyte material on pre-sintered, partially sintered, and unsintered ceramic substrates and products made by this process.
Advanced Ceramics from Preceramic Polymers Modified at the Nano-Scale: A Review.
Bernardo, Enrico; Fiocco, Laura; Parcianello, Giulio; Storti, Enrico; Colombo, Paolo
2014-03-06
Preceramic polymers, i.e. , polymers that are converted into ceramics upon heat treatment, have been successfully used for almost 40 years to give advanced ceramics, especially belonging to the ternary SiCO and SiCN systems or to the quaternary SiBCN system. One of their main advantages is the possibility of combining the shaping and synthesis of ceramics: components can be shaped at the precursor stage by conventional plastic-forming techniques, such as spinning, blowing, injection molding, warm pressing and resin transfer molding, and then converted into ceramics by treatments typically above 800 °C. The extension of the approach to a wider range of ceramic compositions and applications, both structural and thermo-structural (refractory components, thermal barrier coatings) or functional (bioactive ceramics, luminescent materials), mainly relies on modifications of the polymers at the nano-scale, i.e. , on the introduction of nano-sized fillers and/or chemical additives, leading to nano-structured ceramic components upon thermal conversion. Fillers and additives may react with the main ceramic residue of the polymer, leading to ceramics of significant engineering interest (such as silicates and SiAlONs), or cause the formation of secondary phases, significantly affecting the functionalities of the polymer-derived matrix.
Aspects of bonding between resin luting cements and glass ceramic materials.
Tian, Tian; Tsoi, James Kit-Hon; Matinlinna, Jukka P; Burrow, Michael F
2014-07-01
The bonding interface of glass ceramics and resin luting cements plays an important role in the long-term durability of ceramic restorations. The purpose of this systematic review is to discuss the various factors involved with the bond between glass ceramics and resin luting cements. An electronic Pubmed, Medline and Embase search was conducted to obtain laboratory studies on resin-ceramic bonding published in English and Chinese between 1972 and 2012. Eighty-three articles were included in this review. Various factors that have a possible impact on the bond between glass ceramics and resin cements were discussed, including ceramic type, ceramic crystal structure, resin luting cements, light curing, surface treatments, and laboratory test methodology. Resin-ceramic bonding has been improved substantially in the past few years. Hydrofluoric acid (HF) etching followed by silanizaiton has become the most widely accepted surface treatment for glass ceramics. However, further studies need to be undertaken to improve surface preparations without HF because of its toxicity. Laboratory test methods are also required to better simulate the actual oral environment for more clinically compatible testing. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Affordable, Robust Ceramic Joining Technology (ARCJoinT) for High Temperature Applications
NASA Technical Reports Server (NTRS)
Singh, M.
1998-01-01
Ceramic joining is recognized as one of the enabling technologies for the successful utilization of silicon carbide-based monolithic ceramic and fiber reinforced composite components in a number of demanding and high temperature applications in aerospace and ground-based systems. An affordable, robust ceramic joining technology (ARCJoinT) for joining of silicon carbide-based ceramics and fiber reinforced composites has been developed. This technique is capable of producing joints with tailorable thickness and composition. A wide variety of silicon carbide-based ceramics and composites, in different shapes and sizes, have been joined using this technique. The room and high temperature mechanical properties and fractography of ceramic joints have been reported. In monolithic silicon carbide ceramics, these joints maintain their mechanical strength up to 1350 C in air. There is no change in the mechanical strength of joints in silicon carbide matrix composites up to 1200 C in air. In composites, simple butt joints yield only about 20% of the ultimate strength of the parent materials. This technology is suitable for the joining of large and complex shaped ceramic and composite components, and with certain modifications, can be applied to repair of ceramic components damaged in service.
Monteiro, Jaiane Bandoli; Riquieri, Hilton; Prochnow, Catina; Guilardi, Luís Felipe; Pereira, Gabriel Kalil Rocha; Borges, Alexandre Luiz Souto; de Melo, Renata Marques; Valandro, Luiz Felipe
2018-06-01
To evaluate the effect of ceramic thickness on the fatigue failure load of two zirconia-reinforced lithium silicate (ZLS) glass-ceramics, adhesively cemented to a dentin analogue material. Disc-shaped specimens were allocated into 8 groups (n=25) considering two study factors: ZLS ceramic type (Vita Suprinity - VS; and Celtra Duo - CD), and ceramic thickness (1.0; 1.5; 2.0; and 2.5mm). A trilayer assembly (ϕ=10mm; thickness=3.5mm) was designed to mimic a bonded monolithic restoration. The ceramic discs were etched, silanized and luted (Variolink N) into a dentin analogue material. Fatigue failure load was determined using the Staircase method (100,000 cycles at 20Hz; initial fatigue load ∼60% of the mean monotonic load-to-failure; step size ∼5% of the initial fatigue load). A stainless-steel piston (ϕ=40mm) applied the load into the center of the specimens submerged in water. Fractographic analysis and Finite Element Analysis (FEA) were also performed. The ceramic thickness influenced the fatigue failure load for both ZLS materials: Suprinity (716N up to 1119N); Celtra (404N up to 1126N). FEA showed that decreasing ceramic thickness led to higher stress concentration on the cementing interface. Different ZLS glass-ceramic thicknesses influenced the fatigue failure load of the bonded system (i.e. the thicker the glass ceramic is, the higher the fatigue failure load will be). Different microstructures of the ZLS glass-ceramics might affect the fatigue behavior. FEA showed that the thicker the glass ceramic is, the lower the stress concentration at the tensile surface will be. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.
This chapter first describes tests to investigate the temporal evolution of the volume fraction of ceramic phases, the evolution of micro-damage, and the self-healing behavior of the glass ceramic sealant used in SOFCs, then a phenomenological model based on mechanical analogs is developed to describe the temperature dependent Young’s modulus of glass ceramic seal materials. It was found that after the initial sintering process, further crystallization of the glass ceramic sealant does not stop, but slows down and reduces the residual glass content while boosting the ceramic crystalline content. Under the long-term operating environment, distinct fibrous and needle-like crystals inmore » the amorphous phase disappeared, and smeared/diffused phase boundaries between the glass phase and ceramic phase were observed. Meanwhile, the micro-damage was induced by the cooling-down process from the operating temperature to the room temperature, which can potentially degrade the mechanical properties of the glass/ceramic sealant. The glass/ceramic sealant self-healed upon reheating to the SOFC operating temperature, which can restore the mechanical performance of the glass/ceramic sealant. The phenomenological model developed here includes the effects of continuing aging and devitrification on the ceramic phase volume fraction and the resulted mechanical properties of glass ceramic seal material are considered. The effects of micro-voids and self-healing are also considered using a continuum damage mechanics (CDM) model. The formulation is for glass/ceramic seal in general, and it can be further developed to account for effects of various processing parameters. This model was applied to G18, and the temperature-dependent experimental measurements were used to calibrate the modeling parameters and to validate the model prediction.« less
Kawada, Shinichiro; Hayashi, Hiroyuki; Ishii, Hideki; Kimura, Masahiko; Ando, Akira; Omiya, Suetake; Kubodera, Noriyuki
2015-11-03
Although lead-free piezoelectric ceramics have been extensively studied, many problems must still be overcome before they are suitable for practical use. One of the main problems is fabricating a multilayer structure, and one solution attracting growing interest is the use of lead-free multilayer piezoelectric ceramics. The paper reviews work that has been done by the authors on lead-free alkali niobate-based multilayer piezoelectric ceramics co-fired with nickel inner electrodes. Nickel inner electrodes have many advantages, such as high electromigration resistance, high interfacial strength with ceramics, and greater cost effectiveness than silver palladium inner electrodes. However, widely used lead zirconate titanate-based ceramics cannot be co-fired with nickel inner electrodes, and silver palladium inner electrodes are usually used for lead zirconate titanate-based piezoelectric ceramics. A possible alternative is lead-free ceramics co-fired with nickel inner electrodes. We have thus been developing lead-free alkali niobate-based multilayer ceramics co-fired with nickel inner electrodes. The normalized electric-field-induced thickness strain ( S max / E max ) of a representative alkali niobate-based multilayer ceramic structure with nickel inner electrodes was 360 pm/V, where S max denotes the maximum strain and E max denotes the maximum electric field. This value is about half that for the lead zirconate titanate-based ceramics that are widely used. However, a comparable value can be obtained by stacking more ceramic layers with smaller thicknesses. In the paper, the compositional design and process used to co-fire lead-free ceramics with nickel inner electrodes are introduced, and their piezoelectric properties and reliabilities are shown. Recent advances are introduced, and future development is discussed.
Kawada, Shinichiro; Hayashi, Hiroyuki; Ishii, Hideki; Kimura, Masahiko; Ando, Akira; Omiya, Suetake; Kubodera, Noriyuki
2015-01-01
Although lead-free piezoelectric ceramics have been extensively studied, many problems must still be overcome before they are suitable for practical use. One of the main problems is fabricating a multilayer structure, and one solution attracting growing interest is the use of lead-free multilayer piezoelectric ceramics. The paper reviews work that has been done by the authors on lead-free alkali niobate-based multilayer piezoelectric ceramics co-fired with nickel inner electrodes. Nickel inner electrodes have many advantages, such as high electromigration resistance, high interfacial strength with ceramics, and greater cost effectiveness than silver palladium inner electrodes. However, widely used lead zirconate titanate-based ceramics cannot be co-fired with nickel inner electrodes, and silver palladium inner electrodes are usually used for lead zirconate titanate-based piezoelectric ceramics. A possible alternative is lead-free ceramics co-fired with nickel inner electrodes. We have thus been developing lead-free alkali niobate-based multilayer ceramics co-fired with nickel inner electrodes. The normalized electric-field-induced thickness strain (Smax/Emax) of a representative alkali niobate-based multilayer ceramic structure with nickel inner electrodes was 360 pm/V, where Smax denotes the maximum strain and Emax denotes the maximum electric field. This value is about half that for the lead zirconate titanate-based ceramics that are widely used. However, a comparable value can be obtained by stacking more ceramic layers with smaller thicknesses. In the paper, the compositional design and process used to co-fire lead-free ceramics with nickel inner electrodes are introduced, and their piezoelectric properties and reliabilities are shown. Recent advances are introduced, and future development is discussed. PMID:28793646
Integration Science and Technology of Advanced Ceramics for Energy and Environmental Applications
NASA Technical Reports Server (NTRS)
Singh, M.
2012-01-01
The discovery of new and innovative materials has been known to culminate in major turning points in human history. The transformative impact and functional manifestation of new materials have been demonstrated in every historical era by their integration into new products, systems, assemblies, and devices. In modern times, the integration of new materials into usable products has a special relevance for the technological development and economic competitiveness of industrial societies. Advanced ceramic technologies dramatically impact the energy and environmental landscape due to potential wide scale applications in all aspects of energy production, storage, distribution, conservation, and efficiency. Examples include gas turbine propulsion systems, fuel cells, thermoelectrics, photovoltaics, distribution and transmission systems based on superconductors, nuclear power generation, and waste disposal. Robust ceramic integration technologies enable hierarchical design and manufacturing of intricate ceramic components starting with geometrically simpler units that are subsequently joined to themselves and/or to metals to create components with progressively higher levels of complexity and functionality. However, for the development of robust and reliable integrated systems with optimum performance under different operating conditions, the detailed understanding of various thermochemical and thermomechanical factors is critical. Different approaches are required for the integration of ceramic-metal and ceramic-ceramic systems across length scales (macro to nano). In this presentation, a few examples of integration of ceramic to metals and ceramic to ceramic systems will be presented. Various challenges and opportunities in design, fabrication, and testing of integrated similar (ceramic-ceramic) and dissimilar (ceramic-metal) material systems will be discussed. Potential opportunities and need for the development of innovative design philosophies, approaches, and integrated system testing under simulated application conditions will also be presented.
Ceramic tamper-revealing seals
Kupperman, David S.; Raptis, Apostolos C.; Sheen, Shuh-Haw
1992-01-01
A flexible metal or ceramic cable with composite ceramic ends, or a u-shaped ceramic connecting element attached to a binding element plate or block cast from alumina or zirconium, and connected to the connecting element by shrink fitting.
Research on up- and down-conversion emissions of Er3+/Yb3+ co-doped phosphate glass ceramic
NASA Astrophysics Data System (ADS)
Ming, Chengguo; Song, Feng; An, Liqun; Ren, Xiaobin; Yuan, Yize; Cao, Yang; Wang, Gangzhi
2012-12-01
By high-temperature melting method and thermal treatment technology, Er3+/Yb3+ co-doped phosphate glass and glass ceramic samples were prepared. The luminescence spectra of the glass and glass ceramic samples were studied under 975 nm excitation. In visible and near-infrared bands, the emission intensity of the glass ceramic is stronger than that of the glass. The glass ceramic can comprehensively improve the luminous characters of the precursor glass. The phosphate glass ceramic will be valuable luminescence materials.
Highly porous and mechanically strong ceramic oxide aerogels
NASA Technical Reports Server (NTRS)
Johnston, James C. (Inventor); Leventis, Nicholas (Inventor); Ilhan, Ulvi F. (Inventor); Meador, Mary Ann B. (Inventor); Fabrizio, Eve F. (Inventor)
2012-01-01
Structurally stable and mechanically strong ceramic oxide aerogels are provided. The aerogels are cross-linked via organic polymer chains that are attached to and extend from surface-bound functional groups provided or present over the internal surfaces of a mesoporous ceramic oxide particle network via appropriate chemical reactions. The functional groups can be hydroxyl groups, which are native to ceramic oxides, or they can be non-hydroxyl functional groups that can be decorated over the internal surfaces of the ceramic oxide network. Methods of preparing such mechanically strong ceramic oxide aerogels also are provided.
Highly porous and mechanically strong ceramic oxide aerogels
NASA Technical Reports Server (NTRS)
Fabrizio, Eve F. (Inventor); Leventis, Nicholas (Inventor); Ilhan, Ulvi F. (Inventor); Meador, Mary Ann B. (Inventor); Johnston, James C. (Inventor)
2010-01-01
Structurally stable and mechanically strong ceramic oxide aerogels are provided. The aerogels are cross-linked via organic polymer chains that are attached to and extend from surface-bound functional groups provided or present over the internal surfaces of a mesoporous ceramic oxide particle network via appropriate chemical reactions. The functional groups can be hydroxyl groups, which are native to ceramic oxides, or they can be non-hydroxyl functional groups that can be decorated over the internal surfaces of the ceramic oxide network. Methods of preparing such mechanically strong ceramic oxide aerogels also are provided.
Secondary polymer layered impregnated tile
NASA Technical Reports Server (NTRS)
Tran, Huy K. (Inventor); Rasky, Daniel J. (Inventor); Szalai, Christine E. (Inventor); Carroll, Joseph A. (Inventor); Hsu, Ming-ta S. (Inventor)
2005-01-01
A low density organic polymer impregnated preformed fibrous ceramic article includes a plurality of layers. A front layer includes ceramic fibers or carbon fibers or combinations of ceramic fibers and carbon fibers, and is impregnated with an effective amount of at least one organic polymer. A middle layer includes polymer impregnated ceramic fibers. A back layer includes ceramic fibers or carbon fibers or combinations of ceramic fibers and carbon fibers, and is impregnated with an effective amount of at least one low temperature pyrolyzing organic polymer capable of decomposing without depositing residues.
Influence of resin cement shade on the color and translucency of ceramic veneers
HERNANDES, Daiana Kelly Lopes; ARRAIS, Cesar Augusto Galvão; de LIMA, Erick; CESAR, Paulo Francisco; RODRIGUES, José Augusto
2016-01-01
ABSTRACT Objective This in vitro study evaluated the effect of two different shades of resin cement (RC- A1 and A3) layer on color change, translucency parameter (TP), and chroma of low (LT) and high (HT) translucent reinforced lithium disilicate ceramic laminates. Material and Methods One dual-cured RC (Variolink II, A1- and A3-shade, Ivoclar Vivadent) was applied to 1-mm thick ceramic discs to create thin RC films (100 µm thick) under the ceramics. The RC was exposed to light from a LED curing unit. Color change (ΔE) of ceramic discs was measured according to CIEL*a*b* system with a standard illuminant D65 in reflectance mode in a spectrophotometer, operating in the light range of 360-740 nm, equipped with an integrating sphere. The color difference between black (B) and white (W) background readings was used for TP analysis, while chroma was calculated by the formula C* ab=(a*2+b*2)½. ΔE of 3.3 was set as the threshold of clinically unacceptable. The results were evaluated by two-way ANOVA followed by Tukey's post hoc test. Results HT ceramics showed higher ΔE and higher TP than LT ceramics. A3-shade RC promoted higher ΔE than A1-shade cement, regardless of the ceramic translucency. No significant difference in TP was noted between ceramic discs with A1- and those with A3-shade cement. Ceramic with underlying RC showed lower TP than discs without RC. HT ceramics showed lower chroma than LT ceramics, regardless of the resin cement shade. The presence of A3-shade RC resulted in higher chroma than the presence of A1-shade RC. Conclusions Darker underlying RC layer promoted more pronounced changes in ceramic translucency, chroma, and shade of high translucent ceramic veneers. These differences may not be clinically differentiable. PMID:27556211
Johnson, A; Shareef, M Y; van Noort, R; Walsh, J M
2000-07-01
To assess the effect of different heat treatment conditions when using two different furnace types on the biaxial flexural strength (BFS) of a fluorcanasite castable glass-ceramic. Two furnace types, one a programmable furnace (PF), the other a dental laboratory burnout furnace (DLF), were used with various ceramming times to determine their effect on the BFS of a fluorcanasite castable glass-ceramic. The glass-ceramic material was cast to produce discs of 12 mm diameter and 2 mm thickness using the lost wax casting process (n = 80). After casting, both furnace types were used to ceram the discs. Half the discs were not de-vested from the casting ring before ceramming but cerammed in situ (DLF) and half were de-vested before ceramming (PF). All the discs were given a nucleation heat treatment at 520 degrees C for 1 h and then cerammed at 860 degrees C using four heat soak times (0.5, 1, 2 and 3 h). The DLF furnace had a rate of climb of 13 degrees C/min and the PF furnace had a rate of climb of 5 degrees C/min to 520 degrees C and 3 degrees C/min to 860 degrees C. After ceramming the discs were de-vested and the BFS determined using a Lloyd 2000R tester. The maximum BFS values seen for both furnace types were almost identical (280 MPa), but were achieved at different heat soak times (1 h DLF, and 2 h PF). The only significant differences in BFS values for the two furnaces were between the 0.5 and 2 h heat soak times (p < or = 0.05). Individual differences were seen between results obtained from each furnace type/heat soak times evaluated (p < or = 0.05). Already available dental laboratory burnout furnaces can be used to ceram fluorcanasite glass-ceramic castings to the same BFS values as more expensive and slower specialist programmable furnaces.
Integrally cored ceramic investment casting mold fabricated by ceramic stereolithography
NASA Astrophysics Data System (ADS)
Bae, Chang-Jun
Superalloy airfoils are produced by investment casting (IC), which uses ceramic cores and wax patterns with ceramic shell molds. Hollow cored superalloy airfoils in a gas turbine engine are an example of complex IC parts. The complex internal hollow cavities of the airfoil are designed to conduct cooling air through one or more passageways. These complex internal passageways have been fabricated by a lost wax process requiring several processing steps; core preparation, injection molding for wax pattern, and dipping process for ceramic shell molds. Several steps generate problems such as high cost and decreased accuracy of the ceramic mold. For example, costly tooling and production delay are required to produce mold dies for complex cores and wax patterns used in injection molding, resulting in a big obstacle for prototypes and smaller production runs. Rather than using separate cores, patterns, and shell molds, it would be advantageous to directly produce a mold that has the casting cavity and the ceramic core by one process. Ceramic stereolithography (CerSLA) can be used to directly fabricate the integrally cored ceramic casting mold (ICCM). CerSLA builds ceramic green objects from CAD files from many thin liquid layers of powder in monomer, which are solidified by polymerization with a UV laser, thereby "writing" the design for each slice. This dissertation addresses the integrally cored casting ceramic mold (ICCM), the ceramic core with a ceramic mold shell in a single patternless construction, fabricated by ceramic stereolithography (CerSLA). CerSLA is considered as an alternative method to replace lost wax processes, for small production runs or designs too complex for conventional cores and patterns. The main topic is the development of methods to successfully fabricate an ICCM by CerSLA from refractory silica, as well as related issues. The related issues are the segregation of coarse fused silica powders in a layer, the degree of segregation parameter to prevent segregation, and sintering and cristobalite transformation in fused silica compacts.
Influence of resin cement shade on the color and translucency of ceramic veneers.
Hernandes, Daiana Kelly Lopes; Arrais, Cesar Augusto Galvão; Lima, Erick de; Cesar, Paulo Francisco; Rodrigues, José Augusto
2016-01-01
This in vitro study evaluated the effect of two different shades of resin cement (RC- A1 and A3) layer on color change, translucency parameter (TP), and chroma of low (LT) and high (HT) translucent reinforced lithium disilicate ceramic laminates. One dual-cured RC (Variolink II, A1- and A3-shade, Ivoclar Vivadent) was applied to 1-mm thick ceramic discs to create thin RC films (100 µm thick) under the ceramics. The RC was exposed to light from a LED curing unit. Color change (ΔE) of ceramic discs was measured according to CIEL*a*b* system with a standard illuminant D65 in reflectance mode in a spectrophotometer, operating in the light range of 360-740 nm, equipped with an integrating sphere. The color difference between black (B) and white (W) background readings was used for TP analysis, while chroma was calculated by the formula C*ab=(a*2+b*2)½. ΔE of 3.3 was set as the threshold of clinically unacceptable. The results were evaluated by two-way ANOVA followed by Tukey's post hoc test. HT ceramics showed higher ΔE and higher TP than LT ceramics. A3-shade RC promoted higher ΔE than A1-shade cement, regardless of the ceramic translucency. No significant difference in TP was noted between ceramic discs with A1- and those with A3-shade cement. Ceramic with underlying RC showed lower TP than discs without RC. HT ceramics showed lower chroma than LT ceramics, regardless of the resin cement shade. The presence of A3-shade RC resulted in higher chroma than the presence of A1-shade RC. Darker underlying RC layer promoted more pronounced changes in ceramic translucency, chroma, and shade of high translucent ceramic veneers. These differences may not be clinically differentiable.
[Preparation of porous ceramics based on waste ceramics and its Ni2+ adsorption characteristics].
Zhang, Yong-Li; Wang, Cheng-Zhi; Shi, Ce; Shang, Ling-Ling; Ma, Rui; Dong, Wan-Li
2013-07-01
The preparation conditions of porous ceramics were determined by SEM, XRD and FT-IR characterizations as well as the nickel removal ability of porous ceramics to be: the mass fraction w of sesbania powder doped was 4%, and the calcination temperature was 800 degrees C. SEM and pore structure characterization illustrated that calcination caused changes in the structure and morphology of waste ceramics. With the increase of calcination temperature, the specific surface area and pore volume decreased, while the aperture increased. EDS analyses showed that the main elements of both the original waste porcelain powder and the porous ceramics were Si, Al and O. The SEM, XRD and FT-IR characterization of porous ceramics illustrated that the structure of porous ceramics was stable before and after adsorption. The series of experiments of Ni2+ adsorption using these porous ceramics showed that when the dosage of porous ceramics was 10 g x L(-1), the adsorption time was 60 min, the pH value was 6.32, and the concentration of nickel-containing wastewater was below 100 mg x L(-1), the Ni2+ removal of wastewater reached 89.7%. Besides, the porous ceramics showed higher removal efficiency on nickel in the wastewater. The Ni(2+)-containing wastewater was processed by the porous ceramics prepared, and the adsorption dynamics and adsorption isotherms of Ni2+ in wastewater by porous ceramics were investigated. The research results showed that the Ni2+ adsorption process of porous ceramics was in accordance with the quasi second-order kinetic model (R2 = 0.999 9), with Q(e) of 9.09 mg x g(-1). The adsorption process can be described by the Freundlich equation and Langmuir equation, and when the temperature increased from 20 degrees C to 40 degrees C, the maximum adsorption capacity Q(m) increased from 14.49 mg x g(-1) to 15.38 mg x g(-1).
Effect of Acidic Agents on Surface Roughness of Dental Ceramics
Kukiattrakoon, Boonlert; Hengtrakool, Chanothai; Kedjarune-Leggat, Ureporn
2011-01-01
Background: An increase in surface roughness of ceramics may decrease strength and affect the clinical success of ceramic restorations. However, little is known about the effect of acidic agents on ceramic restorations. The aim of this study was to evaluate the surface roughness of dental ceramics after being immersed in acidic agents. Methods: Eighty-three ceramic disk specimens (12.0 mm in diameter and 2.0 mm in thickness) were made from four types of ceramics (VMK 95, Vitadur Alpha, IPS Empress Esthetic, and IPS e.max Ceram). Baseline data of surface roughness were recorded by profilometer. The specimens were then immersed in acidic agents (citrate buffer solution, pineapple juice and green mango juice) and deionized water (control) at 37°C for 168 hours. One group was immersed in 4% acetic acid at 80°C for 168 hours. After immersion, surface roughness was evaluated by a profilometer at intervals of 24, 96, and 168 hours. Surface characteristics of specimens were studied using scanning electron microscopy (SEM). Data were analyzed using two-way repeated ANOVA and Tukey's multiple comparisons (α = 0.05). Results: For all studied ceramics, all surface roughness parameters were significantly increased after 168 hours immersion in all acidic agents (P < 0.05). After 168 hours in 4% acetic acid, there were significant differences for all roughness parameters from other acidic agents of all evaluated ceramics. Among all studied ceramics, Vitadur Alpha showed significantly the greatest values of all surface roughness parameters after immersion in 4% acetic acid (P < 0.001). SEM photomicrographs also presented surface destruction of ceramics in varying degrees. Conclusion: Acidic agents used in this study negatively affected the surface of ceramic materials. This should be considered when restoring the eroded tooth with ceramic restorations in patients who have a high risk of erosive conditions. PMID:22132009
NASA Astrophysics Data System (ADS)
Sinescu, Cosmin; Topala, Florin I.; Negrutiu, Meda Lavinia; Duma, Virgil-Florin; Podoleanu, Adrian G.
2014-01-01
The quality of dental prostheses is essential in providing good quality medical services. The metal ceramic technology applied in dentistry implies ceramic sintering inside the dental oven. Every ceramic material requires a special sintering chart which is recommended by the producer. For a regular dental technician it is very difficult to evaluate if the temperature inside the oven remains the same as it is programmed on the sintering chart. Also, maintaining the calibration in time is an issue for the practitioners. Metal ceramic crowns develop a very accurate pattern for the ceramic layers depending on the temperature variation inside the oven where they are processed. Different patterns were identified in the present study for the samples processed with a variation in temperature of +30 °C to +50 °C, respectively - 30 0°C to -50 °C. The OCT imagistic evaluations performed for the normal samples present a uniform spread of the ceramic granulation inside the ceramic materials. For the samples sintered at a higher temperature an alternation between white and darker areas between the enamel and opaque layers appear. For the samples sintered at a lower temperature a decrease in the ceramic granulation from the enamel towards the opaque layer is concluded. The TD-OCT methods can therefore be used efficiently for the detection of the temperature variation due to the ceramic sintering inside the ceramic oven.
Buyuk, S Kutalmış; Kucukekenci, Ahmet Serkan
2018-03-01
To investigate the shear bond strength (SBS) of orthodontic metal brackets applied to different types of ceramic surfaces treated with different etching procedures and bonding agents. Monolithic CAD/CAM ceramic specimens (N = 120; n = 40 each group) of feldspathic ceramic Vita Mark II, resin nanoceramic Lava Ultimate, and hybrid ceramic Vita Enamic were fabricated (14 × 12 × 3 mm). Ceramic specimens were separated into four subgroups (n = 10) according to type of surface treatment and bonding onto the ceramic surface. Within each group, four subgroups were prepared by phosphoric acid, hydrofluoric acid, Transbond XT primer, and Clearfill Ceramic primer. Mandibular central incisor metal brackets were bonded with light-cure composite. The SBS data were analyzed using three-way analysis of variance (ANOVA) and Tukey HSD tests. The highest SBS was found in the Vita Enamic group, which is a hybrid ceramic, etched with hydrofluoric acid and applied Transbond XT Adhesive primer (7.28 ± 2.49 MPa). The lowest SBS was found in the Lava Ultimate group, which is a resin nano-ceramic etched with hydrofluoric acid and applied Clearfill ceramic primer (2.20 ± 1.21 MPa). CAD/CAM material types and bonding procedures affected bond strength ( P < .05), but the etching procedure did not ( P > .05). The use of Transbond XT as a primer bonding agent resulted in higher SBS.
A review on waste heat recovery from exhaust in the ceramics industry
NASA Astrophysics Data System (ADS)
Delpech, Bertrand; Axcell, Brian; Jouhara, Hussam
2017-11-01
Following the energy crisis in 1980, many saving technologies have been investigated with attempts to implement them into various industries, one of them is the field of ceramic production. In order to comply with energy saving trends and environmental issues, the European ceramic industry sector has developed energy efficient systems which reduced significantly production time and costs and reduced total energy consumption. The last achievement is of great importance as the energy consumption of the ceramic process accounts for a significant percentage of the total production costs. More precisely, the firing stage consumes the highest amount of energy during the whole ceramic production process. The use of roller kilns, fired by natural gas, involves a loss of 50% of the input energy via the flue gas and the cooling gas exhausts. This review paper briefly describes the production process of the different ceramic products, with a focus on the ceramic sector in Europe. Due to the limited on waste heat recovery in the ceramic industry, other high temperature waste heat recovery applications are considered in the paper, such as in concrete and steel production, which could have a potential use in the ceramic industry. The state of the art technologies used in the ceramics industry are reviewed with a special interest in waste heat recovery from the ceramic process exhaust stacks and energy saving technologies.
In vivo biofilm formation on different dental ceramics.
Bremer, Felicia; Grade, Sebastian; Kohorst, Philipp; Stiesch, Meike
2011-01-01
To investigate the formation of oral biofilm on various dental ceramics in vivo. Five different ceramic materials were included: a veneering glass- ceramic, a lithium disilicate glass-ceramic, a yttrium-stabilized zirconia (Y-TZP), a hot isostatically pressed (HIP) Y-TZP ceramic, and an HIP Y-TZP ceramic with 25% alumina. Test specimens were attached to individually designed acrylic appliances; five volunteers wore these appliances for 24 hours in the maxillary arch. After intraoral exposure, the samples were removed from the appliances and the adhering biofilms vitally stained. Then, the two-dimensional surface coating and thickness of the adhering biofilm were determined by confocal laser scanning microscopy. Statistical analysis was performed using one-way ANOVA with the level of significance set at .05. Significant differences (P < .001) in the bacterial surface coating and in the thickness of the biofilm were found between the various ceramic materials. The lowest surface coating (19.0%) and biofilm thickness (1.9 Μm) were determined on the HIP Y-TZP ceramic; the highest mean values were identified with the lithium disilicate glass-ceramic (46.8%, 12.6 Μm). Biofilm formation on various types of dental ceramics differed significantly; in particular, zirconia exhibited low plaque accumulation. In addition to its high strength, low plaque accumulation makes zirconia a promising material for various indications (including implant abutments and telescopic crowns) that previously were met only with metal-based materials.
Chen, Jianguo; Liu, Guoxi; Cheng, Jinrong; Dong, Shuxiang
2016-08-01
The actuation performance, strain hysteresis, and heat generation of the shear-bending mode actuators based on soft and hard BiScO3-PbTiO3 (BS-PT) ceramics were investigated under different thermal (from room temperature to 300 °C) and electrical loadings (from 2 to 10 kV/cm and from 1 to 1000 Hz). The actuator based on both soft and hard BS-PT ceramics worked stably at the temperature as high as 300 °C. The maximum working temperature of this shear-bending actuators is 150 °C higher than those of the traditional piezoelectric actuators based on commercial Pb(Zr, Ti)O3 materials. Furthermore, although the piezoelectric properties of soft-type ceramics based on BS-PT ceramics were superior to those of hard ceramics, the maximum displacement of the actuator based on hard ceramics was larger than that fabricated by soft ceramics at high temperature. The maximum displacement of the actuator based on hard ceramics was [Formula: see text] under an applied electric field of 10 kV/cm at 300 °C. The strain hysteresis and heat generation of the actuator based on hard ceramics was smaller than those of the actuator based on soft ceramics in the wide temperature range. These results indicated that the shear-bending actuator based on hard piezoelectric ceramics was more suitable for high-temperature piezoelectric applications.
Seal between metal and ceramic conduits
Underwood, Richard Paul; Tentarelli, Stephen Clyde
2015-02-03
A seal between a ceramic conduit and a metal conduit of an ion transport membrane device consisting of a sealing surface of ceramic conduit, a sealing surface of ceramic conduit, a single gasket body, and a single compliant interlayer.
Ceramic high pressure gas path seal
NASA Technical Reports Server (NTRS)
Liotta, G. C.
1987-01-01
Stage 1 ceramic shrouds (high pressure turbine gas path seal) were developed for the GE T700 turbine helicopter engine under the Army/NASA Contract NAS3-23174. This contract successfully proved the viability and benefits of a Stage 1 ceramic shroud for production application. Stage 1 ceramic shrouds were proven by extensive component and engine testing. This Stage 1 ceramic shroud, plasma sprayed ceramic (ZrOs-BY2O3) and bond coating (NiCrAlY) onto a cast metal backing, offers significant engine performance improvement. Due to the ceramic coating, the amount of cooling air required is reduced 20% resulting in a 0.5% increase in horsepower and a 0.3% decrease in specific fuel consumption. This is accomplished with a component which is lower in cost than the current production shroud. Stage 1 ceramic shrouds will be introduced into field service in late 1987.
Recent Advances on Carbon Nanotubes and Graphene Reinforced Ceramics Nanocomposites
Ahmad, Iftikhar; Yazdani, Bahareh; Zhu, Yanqiu
2015-01-01
Ceramics suffer the curse of extreme brittleness and demand new design philosophies and novel concepts of manufacturing to overcome such intrinsic drawbacks, in order to take advantage of most of their excellent properties. This has been one of the foremost challenges for ceramic material experts. Tailoring the ceramics structures at nanometre level has been a leading research frontier; whilst upgrading via reinforcing ceramic matrices with nanomaterials including the latest carbon nanotubes (CNTs) and graphene has now become an eminent practice for advanced applications. Most recently, several new strategies have indeed improved the properties of the ceramics/CNT nanocomposites, such as by tuning with dopants, new dispersions routes and modified sintering methods. The utilisation of graphene in ceramic nanocomposites, either as a solo reinforcement or as a hybrid with CNTs, is the newest development. This article will summarise the recent advances, key difficulties and potential applications of the ceramics nanocomposites reinforced with CNTs and graphene. PMID:28347001
[Research on the aging of all-ceramics restoration materials].
Zhang, Dongjiao; Chen, Xinmin
2011-10-01
All-ceramic crowns and bridges have been widely used for dental restorations owing to their excellent functionality, aesthetics and biocompatibility. However, the premature clinical failure of all-ceramic crowns and bridges may easily occur when they are subjected to the complex environment of oral cavity. In the oral environment, all-ceramic materials are prone to aging. Aging can lead all-ceramic materials to change color, to lower bending strength, and to reduce anti-fracture toughness. There are many factors affecting the aging of the all-ceramic materials, for example, the grain size, the type of stabilizer, the residual stress and the water environment. In order to analyze the aging behavior, to optimize the design of all-ceramic crowns and bridges, and to evaluate the reliability and durability, we review in this paper recent research progress of aging behavior for all-ceramics restoration materials.
Light-weight ceramic insulation
NASA Technical Reports Server (NTRS)
Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)
2002-01-01
Ultra-high temperature, light-weight, ceramic insulation such as ceramic tile is obtained by pyrolyzing a siloxane gel derived from the reaction of at least one organo dialkoxy silane and at least one tetralkoxy silane in an acid or base liquid medium. The reaction mixture of the tetra- and dialkoxy silanes may contain also an effective amount of a mono- or trialkoxy silane to obtain the siloxane gel. The siloxane gel is dried at ambient pressures to form a siloxane ceramic precursor without significant shrinkage. The siloxane ceramic precursor is subsequently pyrolyzed, in an inert atmosphere, to form the black ceramic insulation comprising atoms of silicon, carbon and oxygen. The ceramic insulation, can be characterized as a porous, uniform ceramic tile resistant to oxidation at temperatures ranging as high as 1700.degree. C. and is particularly useful as lightweight tiles for spacecraft and other high-temperature insulation applications.
Emittance and absorptance of NASA ceramic thermal barrier coating system. [for turbine cooling
NASA Technical Reports Server (NTRS)
Liebert, C. H.
1978-01-01
Spectral emittance measurements were made on a two-layer ceramic thermal barrier coating system consisting of a metal substrate, a NiCrAly bond coating and a yttria-stabilized zirconia ceramic coating. Spectral emittance data were obtained for the coating system at temperatures of 300 to 1590 K, ceramic thickness of zero to 0.076 centimeter, and wavelengths of 0.4 to 14.6 micrometers. The data were transformed into total hemispherical emittance values and correlated with respect to ceramic coating thickness and temperature using multiple regression curve fitting techniques. The results show that the ceramic thermal barrier coating system is highly reflective and significantly reduces radiation heat loads on cooled gas turbine engine components. Calculation of the radiant heat transfer within the nonisothermal, translucent ceramic coating material shows that the gas-side ceramic coating surface temperature can be used in heat transfer analysis of radiation heat loads on the coating system.
Ceramic thermal barrier coating for rapid thermal cycling applications
Scharman, Alan J.; Yonushonis, Thomas M.
1994-01-01
A thermal barrier coating for metal articles subjected to rapid thermal cycling includes a metallic bond coat deposited on the metal article, at least one MCrAlY/ceramic layer deposited on the bond coat, and a ceramic top layer deposited on the MCrAlY/ceramic layer. The M in the MCrAlY material is Fe, Ni, Co, or a mixture of Ni and Co. The ceramic in the MCrAlY/ceramic layer is mullite or Al.sub.2 O.sub.3. The ceramic top layer includes a ceramic with a coefficient of thermal expansion less than about 5.4.times.10.sup.-6 .degree.C.sup.-1 and a thermal conductivity between about 1 J sec.sup.-1 m.sup.-1 .degree.C.sup.-1 and about 1.7 J sec.sup.-1 m.sup.-1 .degree.C.sup.-1.
Ceramics-bonded Nd-Fe-B-type magnet with high electrical resistivity
NASA Astrophysics Data System (ADS)
Kang, M. S.; Kwon, H. W.; Kim, D. H.; Lee, J. G.; Yu, J. H.
2018-05-01
Ceramics-bonded magnet with remarkably high electrical resistivity was fabricated by hot-pressing the mixture of Nd13.6Fe73.6Co6.6Ga0.6B5.6 alloy melt-spun flakes and dielectric Bi2O3-SiO2-B2O3 ceramics powder with low melting point. Coercivity of the ceramics-bonded magnet decreased with increasing the addition of ceramics binder, and this was attributed to the increased demagnetizing factor. Thin oxidized layer on the flake surface formed by reaction between the flake and oxide binder also contributed to reducing coercivity in the ceramics-bonded magnet. Highly resistive ceramics-bonded magnet containing 30 vol% ceramics binder still had good magnetic performance and high mechanical strength at 175 oC: iHc = 5 kOe, Mr = 4.8 kG, (BH)max = 4.3 MGOe, and over 900 MPa.
[All-ceramic peripheral restorations: crowns and bridges].
Legros, Caroline; Vanheusden, Alain
2006-01-01
Over the last years, current technologies in dental ceramics are strongly improved, constantly producing new materials for the restoration of the single or plural teeth. Feldspathic porcelains fused to a cast metal substructure, the so-called "metal-ceramic crown," has been long time the gold standard; this is primarily due to their predictable long-term strength characteristics. All-ceramic systems are a focus of interest, because they offer aesthetic results that may be difficult to achieve with metal-ceramic systems. Nowadays, the new ceramics associate aesthetic and good mechanical qualities, biocompatibility, accurate marginal fit and low invasive preparations. Thanks to the diversification of all-ceram processes, materials properties and clinical situations are now the prime criteria which determine the practitioner's choice. In this article, we try to summarize different clinical concepts for peripheric all-ceram restoration, such as crowns and bridges used in a daily dental practice.
Ceramic automotive Stirling engine program
NASA Technical Reports Server (NTRS)
1986-01-01
The Ceramic Automotive Stirling Engine Program evaluated the application of advanced ceramic materials to an automotive Stirling engine. The objective of the program was to evaluate the technical feasibility of utilizing advanced ceramics to increase peak engine operating temperature, and to evaluate the performance benefits of such an increase. Manufacturing cost estimates were also developed for various ceramic engine components and compared with conventional metallic engine component costs.
Hybrid Metal/Electrolyte Monolithic Low Temperature SOFCs
2004-10-15
Glasses , and Composites VII Ceramic Transactions, 154,131-140, (2003). 9. R. Oh, K. M. Hurysz, and J. K. Cochran, “Effects of Die Geometry and...Paste Rheology on Extrusion Pressure”, Innovative Processes/Synthesis: Ceramics, Glasses , and Composites VII, Ceramic Transactions, 154,153-163, (2003...Processes/Synthesis: Ceramics, Glasses , and Composites VII, Ceramic Transactions, 154, pp.165-175, (2003). 11. Jason H. Nadler, Thomas H. Sanders, Jr
Process for strengthening silicon based ceramics
Kim, Hyoun-Ee; Moorhead, A. J.
1993-01-01
A process for strengthening silicon based ceramic monolithic materials and omposite materials that contain silicon based ceramic reinforcing phases that requires that the ceramic be exposed to a wet hydrogen atmosphere at about 1400.degree. C. The process results in a dense, tightly adherent silicon containing oxide layer that heals, blunts , or otherwise negates the detrimental effect of strength limiting flaws on the surface of the ceramic body.
Process for strengthening silicon based ceramics
Kim, Hyoun-Ee; Moorhead, A. J.
1993-04-06
A process for strengthening silicon based ceramic monolithic materials and omposite materials that contain silicon based ceramic reinforcing phases that requires that the ceramic be exposed to a wet hydrogen atmosphere at about 1400.degree. C. The process results in a dense, tightly adherent silicon containing oxide layer that heals, blunts , or otherwise negates the detrimental effect of strength limiting flaws on the surface of the ceramic body.
Simulating Army-Relevant Spur Gear Contacts with a Ball-on-Disc Tribometer
2015-09-01
on Steel Ceramic on Ceramic 23 amount of run in is a parameter that must be considered when simulating gear or bearing contacts, and can even be...minimum track diameters.......................19 Fig. 13 Hertzian contact stress for steel and ceramic contacts ............................21 Fig...14 Contact radius for steel and ceramic contacts .........................................21 Fig. 15 Contact area for steel and ceramic contacts
High temperature composites. Status and future directions
NASA Technical Reports Server (NTRS)
Signorelli, R. A.
1982-01-01
A summary of research investigations of manufacturing methods, fabrication methods, and testing of high temperature composites for use in gas turbine engines is presented. Ceramic/ceramic, ceramic/metal, and metal/metal composites are considered. Directional solidification of superalloys and eutectic alloys, fiber reinforced metal and ceramic composites, ceramic fibers and whiskers, refractory coatings, metal fiber/metal composites, matrix metal selection, and the preparation of test specimens are discussed.
Thermal Energy Transfer Through All Ceramic Restorations
2016-06-01
particles, but newer generations have reduced the size and narrowed the range of particles in the matrix . This evolution in ceramics improved the...crystalline second phase. These ceramics have a lithium silicate glass matrix with approximately 70% lithium-disilicate crystal fill. The micron size and... composition category described by Giordano and McLaren are the Interpenetrating Phase Ceramics . These ceramics were developed as an alternative to the
Cost Analysis of Ceramic Heads in Primary Total Hip Arthroplasty.
Carnes, Keith J; Odum, Susan M; Troyer, Jennifer L; Fehring, Thomas K
2016-11-02
The advent of adverse local tissue reactions seen in metal-on-metal bearings, and the recent recognition of trunnionosis, have led many surgeons to recommend ceramic-on-polyethylene articulations for primary total hip arthroplasty. However, to our knowledge, there has been little research that has considered whether the increased cost of ceramic provides enough benefit over cobalt-chromium to justify its use. The primary purpose of this study was to compare the cost-effectiveness of ceramic-on-polyethylene implants and metal-on-polyethylene implants in patients undergoing total hip arthroplasty. Markov decision modeling was used to determine the ceramic-on-polyethylene implant revision rate necessary to be cost-effective compared with the revision rate of metal-on-polyethylene implants across a range of patient ages and implant costs. A different set of Markov models was used to estimate the national cost burden of choosing ceramic-on-polyethylene implants over metal-on-polyethylene implants for primary total hip arthroplasties. The Premier Research Database was used to identify 20,398 patients who in 2012 were ≥45 years of age and underwent a total hip arthroplasty with either a ceramic-on-polyethylene implant or a metal-on-polyethylene implant. The cost-effectiveness of ceramic heads is highly dependent on the cost differential between ceramic and metal femoral heads and the age of the patient. At a cost differential of $325, ceramic-on-polyethylene bearings are cost-effective for patients <85 years of age. At a cost differential of $600, it is cost-effective to utilize ceramic-on-polyethylene bearings in patients <65 years of age, and, at a differential of $1,003, ceramic-on-polyethylene bearings are not cost-effective at any age. The ability to recoup the initial increased expenditure of ceramic heads through a diminished lifetime revision cost is dependent on the price premium for ceramic and the age of the patient. A wholesale switch to ceramic bearings regardless of age or cost differential may result in an economic burden to the health system. Economic and decision analysis, Level III. See Instructions for Authors for a complete description of levels of evidence. Copyright © 2016 by The Journal of Bone and Joint Surgery, Incorporated.
Carbon nanotube, graphene and boron nitride nanotube reinforced bioactive ceramics for bone repair.
Gao, Chengde; Feng, Pei; Peng, Shuping; Shuai, Cijun
2017-10-01
The high brittleness and low strength of bioactive ceramics have severely restricted their application in bone repair despite the fact that they have been regarded as one of the most promising biomaterials. In the last few years, low-dimensional nanomaterials (LDNs), including carbon nanotubes, graphene and boron nitride nanotubes, have gained increasing attention owing to their favorable biocompatibility, large surface specific area and super mechanical properties. These qualities make LDNs potential nanofillers in reinforcing bioactive ceramics. In this review, the types, characteristics and applications of the commonly used LDNs in ceramic composites are summarized. In addition, the fabrication methods for LDNs/ceramic composites, such as hot pressing, spark plasma sintering and selective laser sintering, are systematically reviewed and compared. Emphases are placed on how to obtain the uniform dispersion of LDNs in a ceramic matrix and maintain the structural stability of LDNs during the high-temperature fabrication process of ceramics. The reinforcing mechanisms of LDNs in ceramic composites are then discussed in-depth. The in vitro and in vivo studies of LDNs/ceramic in bone repair are also summarized and discussed. Finally, new developments and potential applications of LDNs/ceramic composites are further discussed with reference to experimental and theoretical studies. Despite bioactive ceramics having been regarded as promising biomaterials, their high brittleness and low strength severely restrict their application in bone scaffolds. In recent years, low-dimensional nanomaterials (LDNs), including carbon nanotubes, graphene and boron nitride nanotubes, have shown great potential in reinforcing bioactive ceramics owing to their unique structures and properties. However, so far it has been difficult to maintain the structural stability of LDNs during fabrication of LDNs/ceramic composites, due to the lengthy, high-temperature process involved. This review presents a comprehensive overview of the developments and applications of LDNs in bioactive ceramics. The newly-developed fabrication methods for LDNs/ceramic composites, the reinforcing mechanisms and the in vitro and in vivo performance of LDNs are also summarized and discussed in detail. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Engulfment of ceramic particles by fibroblasts does not alter cell behavior.
Faye, Pierre-Antoine; Roualdes, Olivier; Rossignol, Fabrice; Hartmann, Daniel Jean; Desmoulière, Alexis
2017-02-17
Despite many studies, the impact of ceramic particles on cell behavior remains unclear. The aim of the present study was to investigate the effects of nano-sized ceramic particles on fibroblastic cells. Fibroblasts (dermal fibroblasts freshly isolated from skin samples and WI26 fibroblastic cells) were cultured in a monolayer in the presence of alumina or cerium-zirconia particles (≈50 nm diameter) at two concentrations (100 or 500 μg ml -1 ). Fluorescent alumina particles were also used. The following properties were analyzed: cell morphology, cytoplasmic ceramic incorporation (using confocal and transmission electron microscopy) and migration (using a silicon insert). Sedimentation field-flow fractionation (SdFFF) was also used to evaluate the rate of incorporation of ceramic particles into the cells. Finally, after treatment with various concentrations of ceramic particles, fibroblasts were also included in a collagen type I lattice constituting a dermal equivalent (DE), and the collagen lattice retraction and cell proliferation were evaluated. In monolayer conditions, the presence of both alumina and cerium-zirconia ceramic particles did not cause any deleterious effects on cultured cells (dermal fibroblast and WI26 cells) and cell fate was not affected in any way by the presence of ceramic particles in the cytoplasm. Confocal (using fluorescent alumina particles) and electron microscopy (using both alumina and cerium-zirconia particles) showed that ceramic particles were internalized in the WI26 cells. Using fluorescent membrane labeling and fluorescent alumina particles, a membrane was observed around the particle-containing vesicles present in the cytoplasm. Electron microscopy on WI26 cells showed the presence of a classical bilayer membrane around the ceramic particles. Interestingly, SdFFF confirmed that some dermal fibroblasts contained many alumina ceramic particles while others contained very few; in WI26 cells, the uptake of alumina ceramic was more homogeneous. In DE, collagen lattice retraction and cell proliferation were unchanged when WI26 fibroblastic cells contained alumina or cerium-zirconia ceramic particles. Our data suggest that ceramic particles are internalized in the cells by endocytosis. The presence of ceramic particles in the cytoplasm has no affect on cell behavior, confirming the excellent biocompatibility of this material and anticipating a minimal harmful effect of potential wear debris.
Morita, Yusuke; Nakata, Kenichi; Kim, Yoon-Ho; Sekino, Tohru; Niihara, Koichi; Ikeuchi, Ken
2004-01-01
While only alumina is applied to all-ceramic joint prostheses at present, a stronger ceramic is required to prevent fracture and chipping due to impingement and stress concentration. Zirconia could be a potential substitute for alumina because it has high strength and fracture toughness. However, the wear of zirconia/zirconia combination is too high for clinical use. Although some investigations on composite ceramics revealed that mixing of different ceramics was able to improve the mechanical properties of ceramics, there are few reports about wear properties of composite ceramics for joint prosthesis. Since acetabular cup and femoral head of artificial hip joint are finished precisely, they indicate high geometric conformity. Therefore, wear test under flat contact was carried out with an end-face wear testing apparatus for four kinds of ceramics: alumina monolith, zirconia monolith, alumina-based composite ceramic, and zirconia based composite ceramic. Mean contact pressure was 10 MPa and sliding velocity was 40 mm/s. The wear test continued for 72 hours and total sliding distance was 10 km. After the test, the wear factor was calculated. Worn surfaces were observed with a scanning electron micrograph (SEM). The results of this wear test show that the wear factors of the both composite ceramics are similarly low and their mechanical properties are much better than those of the alumina monolith and the zirconia monolith. According to these results, it is predicted that joint prostheses of the composite ceramics are safer against break down and have longer lifetime compared with alumina/alumina joint prostheses.
Elsaka, Shaymaa E
2016-01-01
This study evaluated the effect of four different surface treatments methods on the shear bond strength (SBS) of ceramic and metal brackets to Vita Enamic (VE) CAD/CAM hybrid ceramic. A total of 240 plates (10 mm × 10 mm × 3 mm) were cut from VE ceramic blocks and divided into two groups. In each group, four subgroups were prepared by hydrofluoric acid (HF); phosphoric acid (H3PO4); diamond ceramic grinding bur; and silica coating using CoJet system (CJ). Maxillary central incisor metal (Victory Series) and ceramic (Clarity) brackets were bonded with light-cure composite and then stored in artificial saliva for 1 week and thermocycled. The SBS test was performed, and the failure types were classified with adhesive remnant index scores. Surface morphology of the ceramic was characterized after treatment using a scanning electron microscope. Data were analyzed using two-way ANOVA, Tukey HSD test, and Weibull analysis. SBS was significantly affected by the type of bracket and by type of treatment (P < 0.001). Specimens treated with CJ presented with significantly higher SBS compared to other groups (P < 0.05). Improvements in SBS values (MPa) were found in the following order: CJ > HF > Bur > H3PO4. Ceramic bracket showed higher SBS compared to metal bracket. Adhesive failures between the ceramic and composite resin were the predominant mode of failure in all groups. Surface treatment of VE CAD/CAM hybrid ceramic with silica coating enhanced the adhesion with ceramic and metal brackets.
Studies of machinable ceramics for dental applications. 1. Color analysis.
Taira, M; Wakasa, K; Yamaki, M; Tanaka, N; Shintani, H
1989-12-01
Machinable ceramics that can be cut and even lathed have recently been developed in industry. As a first step in evaluating the feasibility of such ceramics in dentistry, eight machinable ceramics were examined for color using the Vita shade guide and a chroma-meter reflectance instrument. We discovered that the studied machinable ceramics varied significantly from the Vita shade guide by the color difference vector, delta E. These machinable ceramics appeared very white and strongly opaque due to their high brightness (L*) values. For intra-oral applications, we expect that L* values of machinable ceramics will be reduced by modification of their microstructures, including their matrix and dispersed phases, while their excellent machinability due to the cleavage of dispersed crystals should be retained.
Luminescence properties of Eu3+-doped SiO2-LiYF4 glass-ceramic microrods
NASA Astrophysics Data System (ADS)
Secu, C. E.; Secu, M.
2015-09-01
Photoluminescence properties of the glass-ceramics microrods containing Eu3+-doped LiYF4 nanocrystals have been studied and characterized. Judd-Ofelt parameters and quantum efficiency has been computed from luminescence spectra and discussed by comparison to the glass ceramic bulk and pellet. The radiative decay rate Arad is higher in the glass ceramic rods (221 s-1) than in the glass ceramic bulk (130 s-1) but the quantum efficiency computed is very low (21%) compared to the glass-ceramic bulk (97%). There are effective non-radiative decay channels that might be related to an influence of the dimensional constraints imposed by the membrane pores during xerogel formation and subsequent glass ceramization.
Ceramic tamper-revealing seals
Kupperman, D.S.; Raptis, A.C.; Sheen, S.H.
1992-12-08
A flexible metal or ceramic cable is described with composite ceramic ends, or a U-shaped ceramic connecting element attached to a binding element plate or block cast from alumina or zirconium, and connected to the connecting element by shrink fitting. 7 figs.
Failure modes and materials design for biomechanical layer structures
NASA Astrophysics Data System (ADS)
Deng, Yan
Ceramic materials are finding increasing usage in the area of biomechanical replacements---dental crowns, hip and bone implants, etc.---where strength, wear resistance, biocompatibility, chemical durability and even aesthetics are critical issues. Aesthetic ceramic crowns have been widely used in dentistry to replace damaged or missing teeth. However, the failure rates of ceramic crowns, especially all-ceramic crowns, can be 1%˜6% per year, which is not satisfactory to patients. The materials limitations and underlying fracture mechanisms of these prostheses are not well understood. In this thesis, fundamental fracture and damage mechanisms in model dental bilayer and trilayer structures are studied. Principle failure modes are identified from in situ experimentation and confirmed by fracture mechanics analysis. In bilayer structures of ceramic/polycarbonate (representative of ceramic crown/dentin structure), three major damage sources are identified: (i) top-surface cone cracks or (ii) quasiplasticity, dominating in thick ceramic bilayers; (iii) bottom-surface radial cracks, dominating in thin ceramic bilayers. Critical load P for each damage mode are measured in six dental ceramics: Y-TZP zirconia, glass-infiltrated zirconia and alumina (InCeram), glass-ceramic (Empress II), Porcelain (Mark II and Empress) bonded to polymer substrates, as a function of ceramic thickness d in the range of 100 mum to 10 mm. P is found independent of d for mode (i) and (ii), but has a d 2 relations for mode (iii)---bottom surface radial cracking. In trilayer structures of glass/core-ceramic/polycarbonate (representing veneer porcelain/core/dentin structures), three inner fracture origins are identified: radial cracks from the bottom surface in the (i) first and (ii) second layers; and (iii) quasiplasticity in core-ceramic layer. The role of relative veneer/core thickness, d1/d 2 and materials properties is investigated for three core materials with different modulus (114--270GPa) and strength (400--1400MPa): Y-TZP zirconia, InCeram alumina and Empress II glass-ceramic. Explicit relations for the critical loads P to produce these different damage modes in bilayer and trilayer structures are developed in terms of basic material properties (modulus E, strength, hardness H and toughness T) and geometrical variables (thickness d and contact sphere radius r). These experimentally validated relations are used to design of optimal material combinations for improved fracture resistance and to predict mechanical performance of current dental materials.
Influence of ceramic surface texture on the wear of gold alloy and heat-pressed ceramics.
Saiki, Osamu; Koizumi, Hiroyasu; Nogawa, Hiroshi; Hiraba, Haruto; Akazawa, Nobutaka; Matsumura, Hideo
2014-01-01
The purpose of this study was to evaluate the influence of ceramic surface texture on the wear of rounded rod specimens. Plate specimens were fabricated from zirconia (ZrO2), feldspathic porcelain, and lithium disilicate glass ceramics (LDG ceramics). Plate surfaces were either ground or polished. Rounded rod specimens with a 2.0-mm-diameter were fabricated from type 4 gold alloy and heat-pressed ceramics (HP ceramics). Wear testing was performed by means of a wear testing apparatus under 5,000 reciprocal strokes of the rod specimen with 5.9 N vertical loading. The results were statistically analyzed with a non-parametric procedure. The gold alloy showed the maximal height loss (90.0 µm) when the rod specimen was abraded with ground porcelain, whereas the HP ceramics exhibited maximal height loss (49.8 µm) when the rod specimen was abraded with ground zirconia. There was a strong correlation between height loss of the rod and surface roughness of the underlying plates, for both the gold alloy and HP ceramics.
Magnetorheological materials, method for making, and applications thereof
Shen, Rui; Yang, Hong; Shafrir, Shai N.; Miao, Chunlin; Wang, Mimi; Mici, Joni; Lambropoulos, John C.; Jacobs, Stephen D.
2014-08-19
A magnetorheological material comprises a magnetic particle and a ceramic material, wherein the magnetorheological material is in a dried form and further wherein a portion of the ceramic material is in the form of a nanocrystalline coating over the entire exterior surface of the magnetic particle and another portion of the ceramic material is in the form of a free nanocrystal. A magnetorheological material comprises a magnetic particle having a ceramic material coating over an external surface thereof as a result of a coating process, and a free nanocrystal of the ceramic material in the form of a residual by-product of the coating process. A sol-gel process for making a magnetorheological product comprises providing a sol of a desired ceramic coating material; combining a desired quantity of carbonyl iron (CI) particles with the sol to coat the CI particles with the ceramic coating material; creating a resulting quantity of nanocrystalline ceramic material-coated CI particles and a quantity of free nanocrystals of the ceramic material; and, drying the resulting quantity of coated CI particles and free nanocrystals to a moisture content equal to or less than 2 wt %.
NASA Technical Reports Server (NTRS)
Singh, Mrityunjay
2007-01-01
Ceramic integration technology has been recognized as an enabling technology for the implementation of advanced ceramic systems in a number of high-temperature applications in aerospace, power generation, nuclear, chemical, and electronic industries. Various ceramic integration technologies (joining, brazing, attachments, repair, etc.) play a role in fabrication and manufacturing of large and complex shaped parts of various functionalities. However, the development of robust and reliable integrated systems with optimum performance requires the understanding of many thermochemical and thermomechanical factors, particularly for high temperature applications. In this presentation, various challenges and opportunities in design, fabrication, and testing of integrated similar (ceramic-ceramic) and dissimilar (ceramic-metal) material systems will be discussed. Experimental results for bonding and integration of SiC based LDI fuel injector, high conductivity C/C composite based heat rejection system, solid oxide fuel cells system, ultra high temperature ceramics for leading edges, and ceramic composites for thermostructural applications will be presented. Potential opportunities and need for the development of innovative design philosophies, approaches, and integrated system testing under simulated application conditions will also be discussed.
Shad, Mehri Keshvari; Barkhordari, Abolfaz; Mehrparvar, Amir Houshang; Dehghani, Ali; Ranjbar, Akram; Moghadam, Rashid Heidari
2016-09-27
Exposure to compounds used in ceramic industries appears to be associated with induction of oxidative toxic stress. This cross sectional study was undertaken to assess the oxidative toxic stress parameters associated with occupational exposure to ceramic dust. Forty ceramic-exposed workers from a ceramic manufacturing industry and 40 unexposed referent subjects were studied. A questionnaire containing information regarding demographic variables, occupational history, history of any chronic disease, antioxidant consumption, and use of therapeutic drugs was administrated to them. Oxidative toxic stress biomarkers including lipid peroxidation (LPO), total antioxidant power (TAP), levels of total Thiol groups (TTG) and catalase (CAT) activity were measured. Significant increments in blood LPO levels, CAT activity and concomitant lower TAP were observed in ceramic exposed workers in comparison to referent group. No statistically significant difference was noted between the means of TTG levels between the groups. Findings of the study indicate that occupational exposure to ceramic dust induces oxidative toxic stress. Supplementation of workers with antioxidants may have beneficial effects on oxidative damages in ceramic industries.
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1993-01-01
The Advanced Turbine Technologies Application Project (ATTAP) is in the fifth year of a multiyear development program to bring the automotive gas turbine engine to a state at which industry can make commercialization decisions. Activities during the past year included reference powertrain design updates, test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, ceramic component rig testing, and test-bed engine fabrication and testing. Engine design and development included mechanical design, combustion system development, alternate aerodynamic flow testing, and controls development. Design activities included development of the ceramic gasifier turbine static structure, the ceramic gasifier rotor, and the ceramic power turbine rotor. Material characterization efforts included the testing and evaluation of five candidate high temperature ceramic materials. Ceramic component process development and fabrication, with the objective of approaching automotive volumes and costs, continued for the gasifier turbine rotor, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Engine and rig fabrication, testing, and development supported improvements in ceramic component technology. Total test time in 1992 amounted to 599 hours, of which 147 hours were engine testing and 452 were hot rig testing.
Shi, Jun; Green, Kevin E.
2014-07-22
An example gas turbine engine shroud includes a first annular ceramic wall having an inner side for resisting high temperature turbine engine gasses and an outer side with a plurality of radial slots. A second annular metallic wall is positioned radially outwardly of and enclosing the first annular ceramic wall and has a plurality of tabs in communication with the slot of the first annular ceramic wall. The tabs of the second annular metallic wall and slots of the first annular ceramic wall are in communication such that the first annular ceramic wall and second annular metallic wall are affixed.
MHD oxidant intermediate temperature ceramic heater study
NASA Technical Reports Server (NTRS)
Carlson, A. W.; Chait, I. L.; Saari, D. P.; Marksberry, C. L.
1981-01-01
The use of three types of directly fired ceramic heaters for preheating oxygen enriched air to an intermediate temperature of 1144K was investigated. The three types of ceramic heaters are: (1) a fixed bed, periodic flow ceramic brick regenerative heater; (2) a ceramic pebble regenerative heater. The heater design, performance and operating characteristics under conditions in which the particulate matter is not solidified are evaluated. A comparison and overall evaluation of the three types of ceramic heaters and temperature range determination at which the particulate matter in the MHD exhaust gas is estimated to be a dry powder are presented.
Compliant sleeve for ceramic turbine blades
Cai, Hongda; Narasimhan, Dave; Strangman, Thomas E.; Easley, Michael L.; Schenk, Bjoern
2000-01-01
A compliant sleeve for attaching a ceramic member to a metal member is comprised of a superalloy substrate having a metal contacting side and a ceramic contacting side. The ceramic contacting side is plated with a layer of nickel followed by a layer of platinum. The substrate is then oxidized to form nickel oxide scale on the ceramic contacting side and a cobalt oxide scale on the metal contacting side. A lubricious coating of boron nitride is then applied over the metal contacting side, and a shear-stress limiting gold coating is applied over the ceramic contacting side.
Advanced Ceramics from Preceramic Polymers Modified at the Nano-Scale: A Review
Bernardo, Enrico; Fiocco, Laura; Parcianello, Giulio; Storti, Enrico; Colombo, Paolo
2014-01-01
Preceramic polymers, i.e., polymers that are converted into ceramics upon heat treatment, have been successfully used for almost 40 years to give advanced ceramics, especially belonging to the ternary SiCO and SiCN systems or to the quaternary SiBCN system. One of their main advantages is the possibility of combining the shaping and synthesis of ceramics: components can be shaped at the precursor stage by conventional plastic-forming techniques, such as spinning, blowing, injection molding, warm pressing and resin transfer molding, and then converted into ceramics by treatments typically above 800 °C. The extension of the approach to a wider range of ceramic compositions and applications, both structural and thermo-structural (refractory components, thermal barrier coatings) or functional (bioactive ceramics, luminescent materials), mainly relies on modifications of the polymers at the nano-scale, i.e., on the introduction of nano-sized fillers and/or chemical additives, leading to nano-structured ceramic components upon thermal conversion. Fillers and additives may react with the main ceramic residue of the polymer, leading to ceramics of significant engineering interest (such as silicates and SiAlONs), or cause the formation of secondary phases, significantly affecting the functionalities of the polymer-derived matrix. PMID:28788548
Residual stress measurement in veneering ceramic by hole-drilling.
Mainjot, Amélie K; Schajer, Gary S; Vanheusden, Alain J; Sadoun, Michaël J
2011-05-01
Mismatch in thermal expansion properties between veneering ceramic and metallic or high-strength ceramic cores can induce residual stresses and initiate cracks when combined with functional stresses. Knowledge of the stress distribution within the veneering ceramic is a key factor for understanding and predicting chipping failures, which are well-known problems with Yttria-tetragonal-zirconia-polycrystal based fixed partial dentures. The objectives of this study are to develop a method for measuring the stress profile in veneering ceramics and to compare ceramic-fused-to-metal compounds to veneered Yttria-tetragonal-zirconia-polycrystal ceramic. The hole-drilling method, often used for engineering measurements, was adapted for use with veneering ceramic. Because of the high sensitivity needed in comparison with industrial applications, a high sensitivity electrical measurement chain was developed. All samples exhibited the same type of stress vs. depth profile, starting with compressive at the ceramic surface, decreasing with depth and becoming tensile at 0.5-1.0mm from the surface, and then becoming slightly compressive again. The zirconia samples exhibited a stress depth profile of larger magnitude. The hole drilling method was shown be a practical tool for measuring residual stresses in veneering ceramics. Copyright © 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Thinning of PLZT ceramic wafers for sensor integration
NASA Astrophysics Data System (ADS)
Jin, Na; Liu, Weiguo
2010-08-01
Characteristics of transparent PLZT ceramics can be tailored by controlling the component of them, and therefore showed excellent dielectric, piezoelectric, pyroelectric and ferroelectric properties. To integrate the ceramics with microelectronic circuit to realize integrated applications, the ceramic wafers have to be thinned down to micrometer scale in thickness. A7/65/35 PLZT ceramic wafer was selected in this study for the thinning process. Size of the wafer was 10×10mm with an initial thickness of 300μm. A novel membrane transfer process (MTP) was developed for the thinning and integration of the ceramic wafers. In the MTP process, the ceramic wafer was bonded to silicon wafer using a polymer bonding method. Mechanical grinding method was applied to reduce the thickness of the ceramic. To minimize the surface damage in the ceramic wafer caused by the mechanical grinding, magnetorheological finishing (MRF) method was utilized to polish the wafer. White light interference (WLI) apparatus was used to monitor the surface qualities of the grinded and ploished ceramic wafers. For the PLZT membrane obtained from the MTP process, the final thickness of the thinned and polished wafer was 10μm, the surface roughness was below 1nm in rms, and the flatness was better than λ/5.
High Temperature Tolerant Ceramic Composites Having Porous Interphases
Kriven, Waltraud M.; Lee, Sang-Jin
2005-05-03
In general, this invention relates to a ceramic composite exhibiting enhanced toughness and decreased brittleness, and to a process of preparing the ceramic composite. The ceramic composite comprises a first matrix that includes a first ceramic material, preferably selected from the group including alumina (Al2O3), mullite (3Al2O3.2SiO2), yttrium aluminate garnet (YAG), yttria stabilized zirconia (YSZ), celsian (BaAl2Si2O8) and nickel aluminate (NiAl2O4). The ceramic composite also includes a porous interphase region that includes a substantially non-sinterable material. The non-sinterable material can be selected to include, for example, alumina platelets. The platelets lie in random 3-D orientation and provide a debonding mechanism, which is independent of temperature in chemically compatible matrices. The non-sinterable material induces constrained sintering of a ceramic powder resulting in permanent porosity in the interphase region. For high temperature properties, addition of a sinterable ceramic powder to the non-sinterable material provides sufficiently weak debonding interphases. The ceramic composite can be provided in a variety of forms including a laminate, a fibrous monolith, and a fiber-reinforced ceramic matrix. In the laminated systems, intimate mixing of strong versus tough microstructures were tailored by alternating various matrix-to-interphase thickness ratios to provide the bimodal laminate.
Advanced Turbine Technology Applications Project (ATTAP) 1993 annual report
NASA Technical Reports Server (NTRS)
1994-01-01
This report summarizes work performed by AlliedSignal Engines, a unit of AlliedSignal Aerospace Company, during calendar year 1993, toward development and demonstration of structural ceramic technology for automotive gas turbine engines. This work was performed for the U.S. Department of Energy (DOE) under National Aeronautics and Space Administration (NASA) Contract DEN3-335, Advanced Turbine Technology Applications Project (ATFAP). During 1993, the test bed used to demonstrate ceramic technology was changed from the AlliedSignal Engines/Garrett Model AGT101 regenerated gas turbine engine to the Model 331-200(CT) engine. The 331-200(CT) ceramic demonstrator is a fully-developed test platform based on the existing production AlliedSignal 331-200(ER) gas turbine auxiliary power unit (APU), and is well suited to evaluating ceramic turbine blades and nozzles. In addition, commonality of the 331-200(CT) engine with existing gas turbine APU's in commercial service provides the potential for field testing of ceramic components. The 1993 ATTAP activities emphasized design modifications of the 331-200 engine test bed to accommodate ceramic first-stage turbine nozzles and blades, fabrication of the ceramic components, ceramic component proof and rig tests, operational tests of the test bed equipped with the ceramic components, and refinement of critical ceramic design technologies.
NASA Astrophysics Data System (ADS)
Manna, M. F.; Grandstaff, D. E.; Ulmer, G. C.
2002-05-01
Zirconium-Oxide ceramics stabilized with ~8-wt% Yttrium-Oxide can be employed to sense pH in high temperature (>90oC) aqueous environments with an accuracy of 0.05 pH log units (Lvov et al., in press), and to sense the fugacity of oxygen (fO2) in low temperature (>230oC) gaseous environments with an accuracy of 0.2 (fO2) log units. The major components, in two commercially available yttria-stabilized ceramics are yttria ( ~8-wt%) and zirconia ( ~91-wt%) with minor amounts of Ti, Fe and U. The textural differences in the two ceramics produces significantly different emf vs. 10,000/T responses. Response error can be introduced by: the ionic contribution of the softening glass, the catalytic action of the Pt sensor components, and the presence of Ti and Fe in the ceramic, which has been shown to alter the oxygen diffusivity of the ceramic. (Merino et al., 1996) The first type of ceramic contains a 3-dimensionally-continuous Ca-Al-Si feldspathic glass that acts as a sintering aid during manufacturing. The glass, which has a higher ionic conductivity than the zirconia ceramic, reduces the bulk resistivity and induces an error over the temperature ranges representing the softening point of the glass. The glass also reduces durability of the ceramic. When the glass hydrates it produces zeolites, which grow primarily in the triple-grain-junctions of the ceramic. Thus mechanically weakening the ceramic generating electronic, ionic and mechanical stability problems. The second type of ceramic contains no grain boundary glass, but does contain discrete silicate phases (such as diopside, wollastonite, periclase, silica, etc.) in the triple-grain-junctions. Because there is no inter-granular glass, the type two ceramic does have a greater bulk resistivity compared with the type one ceramic. In a gas-sensing configuration, resistivity has been shown to affect the minimum temperature of sensor operation. A sensor with a higher bulk resistivity must reach a higher minimum temperature before the sensor will sense oxygen. Literature suggests that the same is true for the sensor in its aqueous pH configuration. In addition to the mechanical degradation, there are also chemical leaching issues with both ceramics. While zirconium is relatively unleachable in its pure form, the addition of yttria, while creating the necessary lattice defects, increases the vulnerability of the solid solution grains to acidic solutions. This, creates ceramic durability problems during long-term down-hole operation. The ceramics do function well as a sensor and can produce highly accurate results (with calibration) and if the durability issues are taken into account, the ceramic sensor could be a highly desirable for many high temperature geologic and industrial applications.
Cost-effective method for determining the grindability of ceramics. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, C.; Chand, R.H.
1997-02-01
The objective of this program was to develop a cost-effective method to determine the grindability of ceramics leading to cost-effective methods for machining such ceramics. In this first phase of activity, Chand Kare Technical Ceramics directed its efforts towards development of a definition for ceramic grindability, design of grindability-test experiments, and development of a ceramics-grindability test system (CGTS). The grindability study also included the establishment of the correlation between the grindability and conventional grinding practices. The above goals were achieved. A definition based on material removal rate under controlled force grinding was developed. Three prototypes CGTSs were developed and tested;more » suitable design was identified. Based on this, a fully automatic CGTS was developed and is ready for delivery to Oak Ridge National Laboratory. Comprehensive grindability tests for various commercially available engineering ceramics were conducted. Experimental results indicated that ceramics have significantly different grindabilities even though their mechanical properties were not significantly different. This implies that grindability of ceramics can be greatly improved. Further study is needed to establish correlations between microstructure and grindability. Therefore, grindability should be evaluated during the development of new ceramics or improvement of existing ones. In this report, the development of the ceramic-grindability definition, the development of CGTS, extensive grindability results, and the preliminary correlation between grindability and mechanical properties (such as flexural strength, hardness, elastic modulus, and fracture toughness) were summarized.« less
Sedrakyan, Art; Graves, Stephen; Bordini, Barbara; Pons, Miquel; Havelin, Leif; Mehle, Susan; Paxton, Elizabeth; Barber, Thomas; Cafri, Guy
2014-12-17
The rapid decline in use of conventional total hip replacement with a large femoral head size and a metal-on-metal bearing surface might lead to increased popularity of ceramic-on-ceramic bearings as another hard-on-hard alternative that allows implantation of a larger head. We sought to address comparative effectiveness of ceramic-on-ceramic and metal-on-HXLPE (highly cross-linked polyethylene) implants by utilizing the distributed health data network of the ICOR (International Consortium of Orthopaedic Registries), an unprecedented collaboration of national and regional registries and the U.S. FDA (Food and Drug Administration). A distributed health data network was developed by the ICOR and used in this study. The data from each registry are standardized and provided at a level of aggregation most suitable for the detailed analysis of interest. The data are combined across registries for comprehensive assessments. The ICOR coordinating center and study steering committee defined the inclusion criteria for this study as total hip arthroplasty performed without cement from 2001 to 2010 in patients forty-five to sixty-four years of age with osteoarthritis. Six national and regional registries (Kaiser Permanente and HealthEast in the U.S., Emilia-Romagna region in Italy, Catalan region in Spain, Norway, and Australia) participated in this study. Multivariate meta-analysis was performed with use of linear mixed models, with survival probability as the unit of analysis. We present the results of the fixed-effects model and include the results of the random-effects model in an appendix. SAS version 9.2 was used for all analyses. We first compared femoral head sizes of >28 mm and ≤28 mm within ceramic-on-ceramic implants and then compared ceramic-on-ceramic with metal-on-HXLPE. A total of 34,985 patients were included; 52% were female. We found a lower risk of revision associated with use of ceramic-on-ceramic implants when a larger head size was used (HR [hazard ratio] = 0.73, 95% CI [confidence interval] = 0.60 to 0.88, p = 0.001). Use of smaller-head-size ceramic-on-ceramic bearings was associated with a higher risk of failure compared with metal-on-HXLPE bearings (HR = 1.36, 95% CI = 1.09 to 1.68, p = 0.006). Use of large-head-size ceramic-on-ceramic bearings was associated with a small protective effect relative to metal-on-HXLPE bearings (not subdivided by head size) in years zero to two, but this difference dissipated over the longer term. Our multinational study based on a harmonized, distributed network showed that use of ceramic-on-ceramic implants with a smaller head size in total hip arthroplasty without cement was associated with a higher risk of revision compared with metal-on-HXLPE and >28-mm ceramic-on-ceramic implants. These findings warrant careful reflection by regulatory and clinical communities and wide dissemination to patients for informed decision-making regarding such surgery. Copyright © 2014 by The Journal of Bone and Joint Surgery, Incorporated.
Turbine component, turbine blade, and turbine component fabrication process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delvaux, John McConnell; Cairo, Ronald Ralph; Parolini, Jason Robert
A turbine component, a turbine blade, and a turbine component fabrication process are disclosed. The turbine component includes ceramic matrix composite plies and a feature configured for preventing interlaminar tension of the ceramic matrix composite plies. The feature is selected from the group consisting of ceramic matrix composite tows or precast insert tows extending through at least a portion of the ceramic matrix composite plies, a woven fabric having fiber tows or a precast insert preventing contact between a first set of the ceramic matrix composite plies and a second set of the ceramic matrix composite plies, and combinations thereof.more » The process includes laying up ceramic matrix composite plies in a preselected arrangement and securing a feature configured for interlaminar tension.« less
Method for improving the performance of oxidizable ceramic materials in oxidizing environments
NASA Technical Reports Server (NTRS)
Nagaraj, Bangalore A. (Inventor)
2002-01-01
Improved adhesion of thermal barrier coatings to nonmetallic substrates using a dense layer of ceramic on an underlying nonmetallic substrate that includes at least one oxidizable component. The improved adhesion occurs because the application of the dense ceramic layer forms a diffusion barrier for oxygen. This diffusion barrier prevents the oxidizable component of the substrate from decomposing. The present invention applies ceramic by a process that deposits a relatively thick and dense ceramic layer on the underlying substrate. The formation of the dense layer of ceramic avoids the problem of void formation associated with ceramic formation by most prior art thermal decomposition processes. The formation of voids has been associated with premature spalling of thermal barrier layers and other protective layers applied to substrates.
Grit blasting and the marginal accuracy of two ceramic veneer systems--a pilot study.
Lim, C; Ironside, J G
1997-04-01
Margins of ceramic restorations can be damaged during removal of investment materials with grit blasting and result in relatively large marginal discrepancies and excessive marginal discrepancies with greater exposure of cement to the oral environment. Subsequent dissolution of cement can encourage plaque retention, dental caries, and periodontal problems. This study compared marginal adaptation of ceramic veneers created by the refractory die technique (R), Dicor glass ceramic technique (D), and effects of grit blasting on their margins. Two groups of ceramic veneers were constructed for each system, one without grit blasting (R g and D g) and one with grit blasting (R+g and D+g). Statistical analyses revealed that grit blasting had a greater effect in reducing marginal accuracy for Dicor ceramic veneers compared with refractory die ceramic veneers.
Method for non-destructive evaluation of ceramic coatings
Peterson, Kristen A.; Rosen, Elias P.; Jordan, Eric H.; Shahbazmohamadi, Sina; Vakhtin, Andrei B.
2016-11-08
A method for evaluating the condition of a ceramic coating deposited on a substrate comprising illuminating the ceramic coating with light, measuring the intensity of light returned from the ceramic coating as function of depth in the coating and transverse position on the coating, and analyzing the measured light intensities to obtain one or more of intensity of the light returned from the exposed coating surface relative to the intensity of light returned from the coating/substrate interface, intensity of the light returned from the coating/substrate interface relative to the intensity of light returned from the bulk of the ceramic coating, determination of roughness at the exposed surface of the ceramic coating, and determination of roughness of the interface between the ceramic coating and underlying bond coat or substrate.
Della-Bona, Alvaro
2005-06-01
The clinical success of resin bonding procedures for indirect ceramic restorations and ceramic repairs depends on the quality and durability of the bond between the ceramic and the resin. The quality of this bond will depend upon the bonding mechanisms that are controlled in part by the surface treatment that promote micromechanical and/or chemical bonding to the substrate. The objective of this review is to correlate interfacial toughness (K A) with fracture surface morphological parameters of the dental ceramic-resin systems as a function of ceramic surface treatment. This analysis is designed to identify mechanisms that promote adhesion of these ceramic-resin systems and an appropriate bond test method to yield relevant adhesion performance data.
Deposition efficiency optimization in cold spraying of metal-ceramic powder mixtures
NASA Astrophysics Data System (ADS)
Klinkov, S. V.; Kosarev, V. F.
2017-10-01
In the present paper, results of optimization of the cold spray deposition process of a metal-ceramic powder mixture involving impacts of ceramic particles onto coating surface are reported. In the optimization study, a two-probability model was used to take into account the surface activation induced by the ceramic component of the mixture. The dependence of mixture deposition efficiency on the concentration and size of ceramic particles was analysed to identify the ranges of both parameters in which the effect due to ceramic particles on the mixture deposition efficiency was positive. The dependences of the optimum size and concentration of ceramic particles, and also the maximum gain in deposition efficiency, on the probability of adhesion of metal particles to non-activated coating surface were obtained.
Mikeli, Aikaterini; Boening, Klaus W; Lißke, Benjamin
2015-01-01
Ceramic defects in porcelain-fused-to-metal (PFM) restorations may depend on framework alloy type. This study assessed ceramic defects on cobalt-chromium- (Co-Cr-) and gold-platinum- (Au-Pt-) based PFM restorations. In this study, 147 Co-Cr-based and 168 Au-Pt-based PFM restorations inserted between 1998 and 2010 (139 patients) were examined for ceramic defects. Detected defects were assigned to three groups according to clinical defect relevance. Ceramic defect rates (Co-Cr-based: 12.9%; Au-Pt-based: 7.2%) revealed no significant difference but a strong statistical trend (U test, P = .082). Most defects were of little clinical relevance. Co-Cr PFM restorations may be at higher risk for ceramic defects compared to Au-Pt-based restorations.
Characterization of glass-infiltrated alumina-based ceramics
Bona, Alvaro Della; Mecholsky, John J; Barrett, Allyson A; Griggs, Jason A
2010-01-01
Objective characterize the microstructure, composition, and important properties of glass-infiltrated alumina-based ceramics similar to the In-Ceram system. Methods Materials used were: IA- In-Ceram Alumina (Vita); IAE- IA electrophoretically deposited (Vita); AEM- IA using a vacuum driven method (Vita); VC- Vitro-Ceram (Angelus); TC- Turkom-Cera (Turkom-Ceramic); CC- Ceramcap (Foto-Ceram); and AG- Alglass (EDG). Ceramic specimens were fabricated following manufacturers’ instructions and ISO6872 standard and polished successively through 1μm alumina abrasive. Semi-quantitative and qualitative analyses were performed using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and stereology (Vv). The elastic modulus (E) and Poisson’s ratio (ν) were determined using time-of-flight data measured in an ultrasonic pulser/receiver and the density (ρ) was determined using a helium pycnometer. Vicker’s indentation was used to calculate hardness (H). Bar specimens (25×4×1.2mm3) were loaded in three-point bending to fracture using a universal testing machine with cross-head speed of 1mm/min. Flexural strength (σ3P) was calculated and statistically analyzed using ANOVA, Tukey (α=0.05) and Weibull (m= modulus, σ0= characteristic strength). Results SEM and EDS analyses revealed similar microstructure for all ceramics, except for a lead-based matrix in CC and a zirconia phase in VC. TC, AG and CC showed significantly lower mean σ3P values than the other ceramics (p 0.05). AEM showed the greatest m (16). Conclusion Despite few differences in microstructure and composition, the IA, IAE, AEM and VC ceramics have similar properties. Significance The glass-infiltrated alumina-based ceramics from different manufacturers presented distinct characteristics. It is necessary to characterize new commercially available materials to understand their properties. PMID:18692231
Evaluation of a novel multiple phase veneering ceramic.
Sinthuprasirt, Pannapa; van Noort, Richard; Moorehead, Robert; Pollington, Sarah
2015-04-01
To produce a new veneering ceramic based on the production of a multiple phase glass-ceramic with improved performance in terms of strength and toughness. A composition of 60% leucite, 20% diopside and 20% feldspathic glass was prepared, blended and a heat treatment schedule of 930°C for 5 min was derived from differential thermal analysis (DTA) of the glasses. X-ray diffraction (XRD) and SEM analysis determined the crystalline phases and microstructure. Chemical solubility, biaxial flexural strength (BFS), fracture toughness, hardness, total transmittance and coefficient of thermal expansion (CTE) were all measured in comparison to a commercial veneering ceramic (VITA VM9). Thermal shock resistance of the leucite-diopside and VITA VM9 veneered onto a commercial high strength zirconia (Vita In-Ceram YZ) was also assessed. Statistical analysis was undertaken using Independent Samples t-test. Weibull analysis was employed to examine the reliability of the strength data. The mean chemical solubility was 6 μg/cm(2) for both ceramics (P=1.00). The mean BFS was 109 ± 8 MPa for leucite-diopside ceramic and 79 ± 11 MPa for VITA VM9 ceramic (P=0.01). Similarly, the leucite-diopside ceramic demonstrated a significantly higher fracture toughness and hardness. The average total transmittance was 46.3% for leucite-diopside ceramic and 39.8% for VITA VM9 (P=0.01). The leucite-diopside outperformed the VITA VM9 in terms of thermal shock resistance. Significance This novel veneering ceramic exhibits significant improvements in terms of mechanical properties, yet retains a high translucency and is the most appropriate choice as a veneering ceramic for a zirconia base core material. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Bagheri, Hossein; Hooshmand, Tabassom; Aghajani, Farzaneh
2015-09-01
This study aimed to evaluate the effect of different ceramic surface treatments after machining grinding on the biaxial flexural strength (BFS) of machinable dental ceramics with different crystalline phases. Disk-shape specimens (10mm in diameter and 1.3mm in thickness) of machinable ceramic cores (two silica-based and one zirconia-based ceramics) were prepared. Each type of the ceramic surfaces was then randomly treated (n=15) with different treatments as follows: 1) machined finish as control, 2) machined finish and sandblasting with alumina, and 3) machined finish and hydrofluoric acid etching for the leucite and lithium disilicate-based ceramics, and for the zirconia; 1) machined finish and post-sintered as control, 2) machined finish, post-sintered, and sandblasting, and 3) machined finish, post-sintered, and Nd;YAG laser irradiation. The BFS were measured in a universal testing machine. Data based were analyzed by ANOVA and Tukey's multiple comparisons post-hoc test (α=0.05). The mean BFS of machined finish only surfaces for leucite ceramic was significantly higher than that of sandblasted (P=0.001) and acid etched surfaces (P=0.005). A significantly lower BFS was found after sandblasting for lithium disilicate compared with that of other groups (P<0.05). Sandblasting significantly increased the BFS for the zirconia (P<0.05), but the BFS was significantly decreased after laser irradiation (P<0.05). The BFS of the machinable ceramics was affected by the type of ceramic material and surface treatment method. Sandblasting with alumina was detrimental to the strength of only silica-based ceramics. Nd:YAG laser irradiation may lead to substantial strength degradation of zirconia.
Yang, Li-qing; Li, Xi; Fu, Qin; Wang, Cheng
2013-07-01
To retrospectively study early therapeutic effects of the ceramics to ceramics prosthesis design in treating hip disease. From October 2007 to September 2010, 42 patients (44 hips) with hip disease underwent replacement of total hip. Hip prosthesis designs included the Pinnacle ceramics to ceramics and the Duraloc metal to polyethylene,produced by DePuy Company, all were non-bone cement type of artificial hip joint. Twenty patients (22 hips) were performed with ceramics to ceramics total hip prosthesis (CoC group, there were 12 males and 8 females, aged from 21 to 49 years) and 22 patients (22 hips) were performed with metal to polyethylene total hip prosthesis (MoP group, there were 13 males and 9 females, aged from 42 to 55 years). All the surgical approachs were posterolateral, and the routine anticoagulation and the corresponding functional exercise were performed after operation. The follow-up time was 6 months at least including clinical and radiographic observation. Measured the motion of joint and evaluated the function of hip joint according to Harris classification. All clinical effects were satisfactory and no dislocation ,loosening,infection, deep venous thrombosis and other complications occurred. There was no statistical significance in Harris scoring and the motion of joint between two groups before and after operation (P>0.05). The clinical effect of ceramics to ceramics prosthesis design in improving clinical symptoms and the motion of joint is coordinate with metal to polyethylene total hip prosthesis, however, its advantages and long-term efficacy need further observing. The ceramics to ceramics prosthesis design may be a good choice for the young patients with hip disease because of its good wear resistance.
Ceramic strengthening by tuning the elastic moduli of resin-based luting agents.
Spazzin, Aloísio O; Bacchi, Ataís; Alessandretti, Rodrigo; Santos, Mateus B; Basso, Gabriela R; Griggs, Jason; Moraes, Rafael R
2017-03-01
Resin-based luting agents (RBLAs) with tuned elastic moduli (E) were prepared and their influence on the strengthening, reliability, and mode of failure of luted feldspar ceramic was investigated. RBLAs with low E (2.6GPa), intermediate E (6.6GPa), and high E (13.3GPa) were prepared and used to coat acid-etched ceramic disks. Positive (untreated ceramic) and negative (acid-etched ceramic) control groups were tested. The response variables (n=30) were biaxial flexural strength (σ bf , MPa), characteristic strength (σ 0 , MPa), and Weibull modulus at the ceramic surface (z=0) and luting agent surface (z=-t 2 ). A 3D finite element analysis simulated the biaxial flexural test. Fractographic analysis and morphology of the bonded interfaces were analyzed using scanning electron microscopy. The RBLAs improved σ bf and σ 0 at z=0, particularly those with intermediate and high E, whereas the mechanical reliability was only affected in the negative control. At z=-t 2 , differences between all RBLAs were observed but the structural reliability was independent of the RBLA tested. Increasing E of the RBLA was associated with increased stress concentration at the RBLA and reduced stresses reaching the ceramic. Failures originated on the ceramic surface at the ceramic-cement interface. In the high E group, failure sometimes originated from the RBLA free surface. All RBLAs completely filled the ceramic irregularities. Increased E of the RBLA reduced the variability of strength, the stress reaching the ceramic structure, and sometimes altered the origin of failure. The use of high E RBLAs seems beneficial for luting feldspar ceramics. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Bagheri, Hossein; Aghajani, Farzaneh
2015-01-01
Objectives: This study aimed to evaluate the effect of different ceramic surface treatments after machining grinding on the biaxial flexural strength (BFS) of machinable dental ceramics with different crystalline phases. Materials and Methods: Disk-shape specimens (10mm in diameter and 1.3mm in thickness) of machinable ceramic cores (two silica-based and one zirconia-based ceramics) were prepared. Each type of the ceramic surfaces was then randomly treated (n=15) with different treatments as follows: 1) machined finish as control, 2) machined finish and sandblasting with alumina, and 3) machined finish and hydrofluoric acid etching for the leucite and lithium disilicate-based ceramics, and for the zirconia; 1) machined finish and post-sintered as control, 2) machined finish, post-sintered, and sandblasting, and 3) machined finish, post-sintered, and Nd;YAG laser irradiation. The BFS were measured in a universal testing machine. Data based were analyzed by ANOVA and Tukey’s multiple comparisons post-hoc test (α=0.05). Results: The mean BFS of machined finish only surfaces for leucite ceramic was significantly higher than that of sandblasted (P=0.001) and acid etched surfaces (P=0.005). A significantly lower BFS was found after sandblasting for lithium disilicate compared with that of other groups (P<0.05). Sandblasting significantly increased the BFS for the zirconia (P<0.05), but the BFS was significantly decreased after laser irradiation (P<0.05). Conclusions: The BFS of the machinable ceramics was affected by the type of ceramic material and surface treatment method. Sandblasting with alumina was detrimental to the strength of only silica-based ceramics. Nd:YAG laser irradiation may lead to substantial strength degradation of zirconia. PMID:27148372
Organopolysiloxane Waterproofing Treatment for Porous Ceramics
NASA Technical Reports Server (NTRS)
Leiser, Daniel B. (Inventor); Cagliostro, Domenick E. (Inventor); Hsu, Ming-ta S. (Inventor); Chen, Timothy S. (Inventor)
1998-01-01
Rigid and flexible porous ceramics, including thermal insulation of a type used on space vehicles, are waterproofed by a treatment which comprises applying an aqueous solution of an organopolysiloxane water-proofing agent having reactive silanol groups to the surface of the ceramic and then heating the treated ceramic to form a waterproofed ceramic. The organopolysiloxane is formed by the hydrolysis and partial condensation of di- and trialkoxyfunctional alkylalkoxysilanes having 1-10 carbon atom hydrocarbyl groups.
Ceramic Stereolithography: Additive Manufacturing for Ceramics by Photopolymerization
NASA Astrophysics Data System (ADS)
Halloran, John W.
2016-07-01
Ceramic stereolithography and related additive manufacturing methods involving photopolymerization of ceramic powder suspensions are reviewed in terms of the capabilities of current devices. The practical fundamentals of the cure depth, cure width, and cure profile are related to the optical properties of the monomer, ceramic, and photo-active components. Postpolymerization steps, including harvesting and cleaning the objects, binder burnout, and sintering, are discussed and compared with conventional methods. The prospects for practical manufacturing are discussed.
Ceramic matrix and resin matrix composites: A comparison
NASA Technical Reports Server (NTRS)
Hurwitz, Frances I.
1987-01-01
The underlying theory of continuous fiber reinforcement of ceramic matrix and resin matrix composites, their fabrication, microstructure, physical and mechanical properties are contrasted. The growing use of organometallic polymers as precursors to ceramic matrices is discussed as a means of providing low temperature processing capability without the fiber degradation encountered with more conventional ceramic processing techniques. Examples of ceramic matrix composites derived from particulate-filled, high char yield polymers and silsesquioxane precursors are provided.
Ceramic matrix and resin matrix composites - A comparison
NASA Technical Reports Server (NTRS)
Hurwitz, Frances I.
1987-01-01
The underlying theory of continuous fiber reinforcement of ceramic matrix and resin matrix composites, their fabrication, microstructure, physical and mechanical properties are contrasted. The growing use of organometallic polymers as precursors to ceramic matrices is discussed as a means of providing low temperature processing capability without the fiber degradation encountered with more conventional ceramic processing techniques. Examples of ceramic matrix composites derived from particulate-filled, high char yield polymers and silsesquioxane precursors are provided.
Boron/Carbon/Silicon/Nitrogen Ceramics And Precursors
NASA Technical Reports Server (NTRS)
Riccitiello, Salvatore; Hsu, Ming TA; Chen, Timothy S.
1996-01-01
Ceramics containing various amounts of boron, carbon, silicon, and nitrogen made from variety of polymeric precursors. Synthesized in high yield from readily available and relatively inexpensive starting materials. Stable at room temperature; when polymerized, converted to ceramics in high yield. Ceramics resist oxidation and other forms of degradation at high temperatures; used in bulk to form objects or to infiltrate other ceramics to obtain composites having greater resistance to oxidation and high temperatures.
Rubinstein, Alexander I; Sabirianov, Renat F; Namavar, Fereydoon
2016-10-14
The rapid development of nanoscience and nanotechnology has raised many fundamental questions that significantly impede progress in these fields. In particular, understanding the physicochemical processes at the interface in aqueous solvents requires the development and application of efficient and accurate methods. In the present work we evaluate the electrostatic contribution to the energy of model protein-ceramic complex formation in an aqueous solvent. We apply a non-local (NL) electrostatic approach that accounts for the effects of the short-range structure of the solvent on the electrostatic interactions of the interfacial systems. In this approach the aqueous solvent is considered as a non-ionic liquid, with the rigid and strongly correlated dipoles of the water molecules. We have found that an ordered interfacial aqueous solvent layer at the protein- and ceramic-solvent interfaces reduces the charging energy of both the ceramic and the protein in the solvent, and significantly increases the electrostatic contribution to their association into a complex. This contribution in the presented NL approach was found to be significantly shifted with respect to the classical model at any dielectric constant value of the ceramics. This implies a significant increase of the adsorption energy in the protein-ceramic complex formation for any ceramic material. We show that for several biocompatible ceramics (for example HfO2, ZrO2, and Ta2O5) the above effect predicts electrostatically induced protein-ceramic complex formation. However, in the framework of the classical continuum electrostatic model (the aqueous solvent as a uniform dielectric medium with a high dielectric constant ∼80) the above ceramics cannot be considered as suitable for electrostatically induced complex formation. Our results also show that the protein-ceramic electrostatic interactions can be strong enough to compensate for the unfavorable desolvation effect in the process of protein-ceramic complex formation.
NASA Astrophysics Data System (ADS)
Rubinstein, Alexander I.; Sabirianov, Renat F.; Namavar, Fereydoon
2016-10-01
The rapid development of nanoscience and nanotechnology has raised many fundamental questions that significantly impede progress in these fields. In particular, understanding the physicochemical processes at the interface in aqueous solvents requires the development and application of efficient and accurate methods. In the present work we evaluate the electrostatic contribution to the energy of model protein-ceramic complex formation in an aqueous solvent. We apply a non-local (NL) electrostatic approach that accounts for the effects of the short-range structure of the solvent on the electrostatic interactions of the interfacial systems. In this approach the aqueous solvent is considered as a non-ionic liquid, with the rigid and strongly correlated dipoles of the water molecules. We have found that an ordered interfacial aqueous solvent layer at the protein- and ceramic-solvent interfaces reduces the charging energy of both the ceramic and the protein in the solvent, and significantly increases the electrostatic contribution to their association into a complex. This contribution in the presented NL approach was found to be significantly shifted with respect to the classical model at any dielectric constant value of the ceramics. This implies a significant increase of the adsorption energy in the protein-ceramic complex formation for any ceramic material. We show that for several biocompatible ceramics (for example HfO2, ZrO2, and Ta2O5) the above effect predicts electrostatically induced protein-ceramic complex formation. However, in the framework of the classical continuum electrostatic model (the aqueous solvent as a uniform dielectric medium with a high dielectric constant ˜80) the above ceramics cannot be considered as suitable for electrostatically induced complex formation. Our results also show that the protein-ceramic electrostatic interactions can be strong enough to compensate for the unfavorable desolvation effect in the process of protein-ceramic complex formation.
Effect of ceramic thickness and shade on mechanical properties of a resin luting agent.
Passos, Sheila Pestana; Kimpara, Estevão Tomomitsu; Bottino, Marco Antonio; Rizkalla, Amin S; Santos, Gildo Coelho
2014-08-01
This study aimed to investigate the influence of ceramic thickness and shade on the Knoop hardness and dynamic elastic modulus of a dual-cured resin cement. Six ceramic shades (Bleaching, A1, A2, A3, A3.5, B3) and two ceramic thicknesses (1 mm, 3 mm) were evaluated. Disk specimens (diameter: 7 mm; thickness: 2 mm) of the resin cement were light cured under a ceramic block. Light-cured specimens without the ceramic block at distances of 1 and 3 mm were also produced. The Knoop hardness number (KHN), density, and dynamic Young's moduli were determined. Statistical analysis was conducted using ANOVA and a Tukey B rank order test (p = 0.05). The bleaching 1-mm-thick group exhibited significantly higher dynamic Young's modulus. Lower dynamic Young's moduli were observed for the 3-mm-thick ceramic groups compared to bleaching 3-mm-thick group, and no difference was found among the other 3-mm groups. For the KHN, when A3.5 3-mm-thick was used, the KHN was significantly lower than bleaching and A1 1-mm-thick ceramic; however, no difference was exhibited between the thicknesses of the same shade. The dual-cured resin cement studied irradiated through the 1-mm-thick ceramic with the lightest shade (bleaching ceramic) exhibited a better elastic modulus, and there was no effect in KHN of the resin cement when light cured under different ceramic shades and thicknesses (1 and 3 mm), except when the A3.5 3-mm-thick ceramic was used. Variolink II irradiated through ceramic with the lowest chroma exhibited the highest elastic modulus; therefore, the light activation method might not be the same for all clinical situations. © 2014 by the American College of Prosthodontists.
Influence of implant abutment material on the color of different ceramic crown systems.
Dede, Doğu Ömür; Armağanci, Arzu; Ceylan, Gözlem; Celik, Ersan; Cankaya, Soner; Yilmaz, Burak
2016-11-01
Ceramics are widely used for anterior restorations; however, clinical color reproduction still constitutes a challenge particularly when the ceramic crowns are used on titanium implant abutments. The purpose of this in vitro study was to investigate the effect of implant abutment material on the color of different ceramic material systems. Forty disks (11×1.5 mm, shade A2) were fabricated from medium-opacity (mo) and high-translucency (ht) lithium disilicate (IPS e.max) blocks, an aluminous ceramic (VITA In-Ceram Alumina), and a zirconia (Zirkonzahn) ceramic system. Disks were fabricated to represent 3 different implant abutments (zirconia, gold-palladium, and titanium) and dentin (composite resin, A2 shade) as background (11×2 mm). Disk-shaped composite resin specimens in A2 shade were fabricated to represent the cement layer. The color measurements of ceramic specimens were made on composite resin abutment materials using a spectrophotometer. CIELab color coordinates were recorded, and the color coordinates measured on composite resin background served as the control group. Color differences (ΔE 00 ) between the control and test groups were calculated. The data were analyzed with 2-way analysis of variance (ANOVA) and compared with the Tukey HSD test (α=.05). The ceramics system, abutment material, and their interaction were significant for ΔE 00 values (P<.001). Clinically unacceptable results (ΔE 00 >2.25) were observed for lithium disilicate ceramics on titanium abutments (2.46-2.50). The ΔE 00 values of lithium disilicate ceramics for gold-palladium and titanium abutments were significantly higher than for other groups (P<.05). The color results (ΔE 00 >2.25) of an implant-supported lithium disilicate ceramic restoration may be clinically unacceptable if it is fabricated over a titanium abutment. Zirconia may be a more suitable abutment material for implant-supported ceramic restorations. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Ceramic technology for automotive turbines
NASA Technical Reports Server (NTRS)
Mclean, A. F.
1982-01-01
The paper presents an update on ceramic technology for automotive turbines. Progress in research and development of improved ceramics is reviewed, including approaches for assessing time-dependent strength characteristics. Processes for making shapes are discussed, and the design and testing of selected ceramic turbine components are reviewed.
Preparation of a dense, polycrystalline ceramic structure
Cooley, Jason; Chen, Ching-Fong; Alexander, David
2010-12-07
Ceramic nanopowder was sealed inside a metal container under a vacuum. The sealed evacuated container was forced through a severe deformation channel at an elevated temperature below the melting point of the ceramic nanopowder. The result was a dense nanocrystalline ceramic structure inside the metal container.
Electrospun Ceramic Nanofiber Mats Today: Synthesis, Properties, and Applications
Esfahani, Hamid; Ramakrishna, Seeram
2017-01-01
Ceramic nanofibers (NFs) have recently been developed for advanced applications due to their unique properties. In this article, we review developments in electrospun ceramic NFs with regard to their fabrication process, properties, and applications. We find that surface activity of electrospun ceramic NFs is improved by post pyrolysis, hydrothermal, and carbothermal processes. Also, when combined with another surface modification methods, electrospun ceramic NFs result in the advancement of properties and widening of the application domains. With the decrease in diameter and length of a fiber, many properties of fibrous materials are modified; characteristics of such ceramic NFs are different from their wide and long (bulk) counterparts. In this article, electrospun ceramic NFs are reviewed with an emphasis on their applications as catalysts, membranes, sensors, biomaterials, fuel cells, batteries, supercapacitors, energy harvesting systems, electric and magnetic parts, conductive wires, and wearable electronic textiles. Furthermore, properties of ceramic nanofibers, which enable the above applications, and techniques to characterize them are briefly outlined. PMID:29077074
Electrospun Ceramic Nanofiber Mats Today: Synthesis, Properties, and Applications.
Esfahani, Hamid; Jose, Rajan; Ramakrishna, Seeram
2017-10-27
Ceramic nanofibers (NFs) have recently been developed for advanced applications due to their unique properties. In this article, we review developments in electrospun ceramic NFs with regard to their fabrication process, properties, and applications. We find that surface activity of electrospun ceramic NFs is improved by post pyrolysis, hydrothermal, and carbothermal processes. Also, when combined with another surface modification methods, electrospun ceramic NFs result in the advancement of properties and widening of the application domains. With the decrease in diameter and length of a fiber, many properties of fibrous materials are modified; characteristics of such ceramic NFs are different from their wide and long (bulk) counterparts. In this article, electrospun ceramic NFs are reviewed with an emphasis on their applications as catalysts, membranes, sensors, biomaterials, fuel cells, batteries, supercapacitors, energy harvesting systems, electric and magnetic parts, conductive wires, and wearable electronic textiles. Furthermore, properties of ceramic nanofibers, which enable the above applications, and techniques to characterize them are briefly outlined.
First Epigravettian Ceramic Figurines from Europe (Vela Spila, Croatia)
Farbstein, Rebecca; Radić, Dinko; Brajković, Dejana; Miracle, Preston T.
2012-01-01
Recent finds of 36 ceramic artifacts from the archaeological site of Vela Spila, Croatia, offer the first evidence of ceramic figurative art in late Upper Palaeolithic Europe, c. 17,500–15,000 years before present (BP). The size and diversity of this artistic ceramic assemblage indicate the emergence of a social tradition, rather than more ephemeral experimentation with a new material. Vela Spila ceramics offer compelling technological and stylistic comparisons with the only other evidence of a developed Palaeolithic ceramic tradition found at the sites of Pavlov I and Dolní Věstonice I, in the Czech Republic, c. 31,000–27,000 cal BP. Because of the 10,000-year gap between the two assemblages, the Vela Spila ceramics are interpreted as evidence of an independent invention of this technology. Consequently, these artifacts provide evidence of a new social context in which ceramics developed and were used to make art in the Upper Palaeolithic. PMID:22848495
NASA Technical Reports Server (NTRS)
Kiser, James D.; Levine, Stanley R.; Dicarlo, James A.
1987-01-01
Structural ceramics were under nearly continuous development for various heat engine applications since the early 1970s. These efforts were sustained by the properties that ceramics offer in the areas of high-temperature strength, environmental resistance, and low density and the large benefits in system efficiency and performance that can result. The promise of ceramics was not realized because their brittle nature results in high sensitivity to microscopic flaws and catastrophic fracture behavior. This translated into low reliability for ceramic components and thus limited their application in engines. For structural ceramics to successfully make inroads into the terrestrial heat engine market requires further advances in low cost, net shape fabrication of high reliability components, and improvements in properties such as toughness, and strength. These advances will lead to very limited use of ceramics in noncritical applications in aerospace engines. For critical aerospace applications, an additional requirement is that the components display markedly improved toughness and noncatastrophic or graceful fracture. Thus the major emphasis is on fiber-reinforced ceramics.
Tribology of alternative bearings.
Fisher, John; Jin, Zhongmin; Tipper, Joanne; Stone, Martin; Ingham, Eileen
2006-12-01
The tribological performance and biological activity of the wear debris produced has been compared for highly cross-linked polyethylene, ceramic-on-ceramic, metal-on-metal, and modified metal bearings in a series of in vitro studies from a single laboratory. The functional lifetime demand of young and active patients is 10-fold greater than the estimated functional lifetime of traditional polyethylene. There is considerable interest in using larger diameter heads in these high demand patients. Highly cross-linked polyethylene show a four-fold reduction in functional biological activity. Ceramic-on-ceramic bearings have the lowest wear rates and least reactive wear debris. The functional biological activity is 20-fold lower than with highly cross-linked polyethylene. Hence, ceramic-on-ceramic bearings address the tribological lifetime demand of highly active patients. Metal-on-metal bearings have substantially lower wear rates than highly cross-linked polyethylene and wear decreases with head diameter. Bedding in wear is also lower with reduced radial clearance. Differential hardness ceramic-on-metal bearings and the application of ceramic-like coatings reduce metal wear and ion levels.
Polarization fatigue in ferroelectric Pb(Zr0.52Ti0.48)O3-SrBi2Nb2O9 ceramics
NASA Astrophysics Data System (ADS)
Namsar, Orapim; Pojprapai, Soodkhet; Watcharapasorn, Anucha; Jiansirisomboon, Sukanda
2015-09-01
Ferroelectric fatigue induced by cyclic electric loading of the (1- x)PZT- xSBN ceramics (0.1 ≤ x ≤ 0.3) have been investigated in comparison with pure PZT and SBN ceramics. The results showed that pure PZT ceramic possessed severe polarization fatigue after long bipolar switching pulses. This was mainly attributed to the appearance of microstructural damage at the near-electrode regions. Whereas, pure SBN ceramic exhibited no fatigue at least up to 1 × 106 switching cycles. The fatigue-free behavior of SBN ceramics was due primarily to weak domain wall pinning. PZT-SBN ceramics showed less polarization fatigue up to 1 × 106 switching cycles than pure PZT. This could be attributed to their low oxygen vacancy concentration. Therefore, this new ceramic PZT-SBN system seems to be an alternative material for replacing PZT in ferroelectric memory applications. [Figure not available: see fulltext.
NDE of ceramics and ceramic composites
NASA Technical Reports Server (NTRS)
Vary, Alex; Klima, Stanley J.
1991-01-01
Although nondestructive evaluation (NDE) techniques for ceramics are fairly well developed, they are difficult to apply in many cases for high probability detection of the minute flaws that can cause failure in monolithic ceramics. Conventional NDE techniques are available for monolithic and fiber reinforced ceramic matrix composites, but more exact quantitative techniques needed are still being investigated and developed. Needs range from flaw detection to below 100 micron levels in monolithic ceramics to global imaging of fiber architecture and matrix densification anomalies in ceramic composites. NDE techniques that will ultimately be applicable to production and quality control of ceramic structures are still emerging from the lab. Needs are different depending on the processing stage, fabrication method, and nature of the finished product. NDE techniques are being developed in concert with materials processing research where they can provide feedback information to processing development and quality improvement. NDE techniques also serve as research tools for materials characterization and for understanding failure processes, e.g., during thermomechanical testing.
Lili, Yang; Debiao, Du; Ruoyu, Ning; Deying, Chen; Junling, Wu
2017-08-01
Objective In this study, we aimed to evaluate the clinical effect of single-retainer all-ceramic resin-bonded fixed partial denture (RBFPD) on the single anterior tooth loss patients. Methods A total of 20 single-retainer all-ceramic RBFPD were fabricated and evaluated in a two-year follow-up observation. The restorations were examined on the basis of the American Public Health Association (APHA) criteria. Results A total of 20 single-retainer all-ceramic RBFPD achieved class A evaluation after a six-month follow-up observation. One single-retainer all-ceramic RBFPD was classified as class B for secondary caries after a one-year follow-up observation. After a two-year follow-up observation, one single-retainer all-ceramic RBFPD was classified as class B because of secondary caries, and one single-retainer all-ceramic RBFPD was classified as class B because of fracture. Conclusion Single-retainer all-ceramic RBFPD is a promising and optional method in replacing single anterior tooth.
Modeling the Mechanical Behavior of Ceramic Matrix Composite Materials
NASA Technical Reports Server (NTRS)
Jordan, William
1998-01-01
Ceramic matrix composites are ceramic materials, such as SiC, that have been reinforced by high strength fibers, such as carbon. Designers are interested in using ceramic matrix composites because they have the capability of withstanding significant loads while at relatively high temperatures (in excess of 1,000 C). Ceramic matrix composites retain the ceramic materials ability to withstand high temperatures, but also possess a much greater ductility and toughness. Their high strength and medium toughness is what makes them of so much interest to the aerospace community. This work concentrated on two different tasks. The first task was to do an extensive literature search into the mechanical behavior of ceramic matrix composite materials. This report contains the results of this task. The second task was to use this understanding to help interpret the ceramic matrix composite mechanical test results that had already been obtained by NASA. Since the specific details of these test results are subject to the International Traffic in Arms Regulations (ITAR), they are reported in a separate document (Jordan, 1997).
Light-weight black ceramic insulation
NASA Technical Reports Server (NTRS)
Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)
2003-01-01
Ultra-high temperature, light-weight, black ceramic insulation having a density ranging from about 0.12 g/cc. to 0.6 g/cc. such as ceramic tile is obtained by pyrolyzing siloxane gels derived from the reaction of at least one organo dialkoxy silane and at least one tetralkoxy silane in an acid or base liquid medium. The reaction mixture of the tetra- and dialkoxy silanes also may contain an effective amount of a mono- or trialkoxy silane to obtain the siloxane gels. The siloxane gels are dried at ambient temperatures and pressures to form siloxane ceramic precursors without significant shrinkage. The siloxane ceramic precursors are subsequently pyrolyzed, in an inert atmosphere, to form the black ceramic insulation comprising atoms of silicon, carbon and oxygen. The ceramic insulation can be characterized as a porous, uniform ceramic tile resistant to oxidation at temperatures ranging as high as 1700.degree. C., and particularly useful as lightweight tiles for spacecraft and other high-temperature insulation applications.
Stereolithographic processing of ceramics: Photon diffusion in colloidal dispersion
NASA Astrophysics Data System (ADS)
Garg, Rajeev
The technique of ceramic stereolithography (CSL) has been developed for fabricating near net shape ceramic objects. In stereolithography, the three-dimensional computer design file of the object is sliced into thin layers. Each layer is physically fabricated by photocuring the surface of a liquid photo-polymerizable resin bath by raster scanning an ultra-violet laser across the surface of the resin. In CSL, the liquid resin is a high concentration colloidal dispersion in a solution of ultraviolet curable polymers. The ceramic green body fabricated by ceramic stereolithography technique is subjected to the post processing steps of drying, binder burnout and sintering to form a dense ceramic object. An aqueous alumina dispersion in photocuring polymers with particle volume fraction greater than 0.5 was formulated for CSL process. Low molecular weight solution polymers were found to be best suited for formulating ceramic resins due to their inherently low viscosity and favorable interactions with the ceramic dispersant. A hydroxyapatite ceramic resin was also developed for the use in the CSL technique. A model is developed to describe the photocuring process in concentrated ceramic dispersion. The curing profile in ceramic dispersion is governed by multiple scattering from the ceramic particles and absorption by the photocuring polymers. Diffusion theory of light transport is used to model the multiple scattering and absorption phenomena. It is found that diffusive transport adequately describes the phenomena of laser pulse propagation in highly concentrated colloidal dispersions. A model was developed to describe the absorption in highly concentrated ceramic dispersion. Various complex-shaped monolithic alumina and hydroxyapatite objects were fabricated by CSL and shown to possess uniform microstructure. The mechanical properties and sintering behavior of the parts fabricated by CSL are shown to be comparable to those fabricated by other ceramic processing technique. An application of CSL has been established for fabricating orthopedic implants. Orthopedic implants and biomedical devices of defined micro and macro architecture with controlled pore sizes and porosity were fabricated by CSL. The bone implants were also fabricated form in vivo scan of the bone. The structures were implanted in rats to understand the biocompatibility of CSL fabricated parts.
The strength of sintered and adhesively bonded zirconia/veneer-ceramic bilayers.
Costa, Anna Karina F; Borges, Alexandre Luiz S; Fleming, Garry James P; Addison, Owen
2014-10-01
Recently all-ceramic restorative systems have been introduced that use CAD/CAM technology to fabricate both the Y-TZP core and veneer-ceramic layers. The aim was to identify whether the CAD/CAM approach resulted in more favourable stressing patterns in the veneer-ceramic when compared with a conventionally sintered Y-TZP core/veneer-ceramic. Nominally identical Vita VM9 veneer-ceramic disc-shaped specimens (0.7mm thickness, 12mm diameter) were fabricated. 20 specimens received a surface coating of resin-cement (Panavia 21); 20 specimens were bonded with the resin-cement to fully sintered Y-TZP (YZ Vita Inceram Vita) discs (0.27mm thickness, 12mm diameter). A final series of 20 Y-TZP core/veneer-ceramic specimens were manufactured using a conventional sintering route. Biaxial flexure strength was determined in a ball-on-ring configuration and stress at the fracture origin calculated using multilayer closed-form analytical solutions. Fractography was undertaken using scanning electron microscopy. The experimental test was simulated using Finite Element Analysis. Group mean BFS were compared using a one-way ANOVA and post hoc Tukey tests at a 95% significance level. Resin cement application resulted in significant strengthening of the veneer-ceramic and further significant strengthening of the veneer-ceramic (p<0.01) occurred following bonding to the Y-TZP core. The BFS calculated at the failure origin for conventionally sintered specimens was significantly reduced when compared with the adhesively bonded Y-TZP/veneer-ceramic. Under the test conditions employed adhesive cementation between CAD/CAM produced Y-TZP/veneer-ceramic layers appears to offer the potential to induce more favourable stress states within the veneer-ceramic when compared with conventional sintered manufacturing routes. The current investigation suggests that the stressing patterns that arise in all-ceramic restorations fabricated using CAD/CAM for both the core and veneer-ceramic layers differ from those that occur in conventionally sintered bilayer restorations. Further work is required to ascertain whether such differences will translate into improved clinical outcomes. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ellerby, Donald Thomas
1999-12-01
Compared to monolithic ceramics, metal-reinforced ceramic composites offer the potential for improved toughness and reliability in ceramic materials. As such, there is significant scientific and commercial interest in the microstructure and properties of metal-ceramic composites. Considerable work has been conducted on modeling the toughening behavior of metal reinforcements in ceramics; however, there has been limited application and testing of these concepts on real systems. Composites formed by newly developed reactive processes now offer the flexibility to systematically control metal-ceramic composite microstructure, and to test some of the property models that have been proposed for these materials. In this work, the effects of metal-ceramic composite microstructure on resistance curve (R-curve) behavior, strength, and reliability were systematically investigated. Al/Al2O3 composites were formed by reactive metal penetration (RMP) of aluminum metal into aluminosilicate ceramic preforms. Processing techniques were developed to control the metal content, metal composition, and metal ligament size in the resultant composite microstructure. Quantitative stereology and microscopy were used to characterize the composite microstructures, and then the influence of microstructure on strength, toughness, R-curve behavior, and reliability, was investigated. To identify the strength limiting flaws in the composite microstructure, fractography was used to determine the failure origins. Additionally, the crack bridging tractions produced by the metal ligaments in metal-ceramic composites formed by the RMP process were modeled. Due to relatively large flaws and low bridging stresses in RMP composites, no dependence of reliability on R-curve behavior was observed. The inherent flaws formed during reactive processing appear to limit the strength and reliability of composites formed by the RMP process. This investigation has established a clear relationship between processing, microstructure, and properties in metal-ceramic composites formed by the RMP process. RMP composite properties are determined by the metal-ceramic composite microstructure (e.g., metal content and ligament size), which can be systematically varied by processing. Furthermore, relative to the ceramic preforms used to make the composites, metal-ceramic composites formed by RMP generally have improved properties and combinations of properties that make them more desirable for advanced engineering applications.
NASA Technical Reports Server (NTRS)
Perkins, G. S.; Pawlik, E. V.; Phillips, W. M. (Inventor)
1981-01-01
A nozzle for use with abrasive and/or corrosive materials is formed of sintered ceramic compositions having high temperature oxidation resistance, high hardness and high abrasion and corrosion resistance. The ceramic may be a binary solid solution of a ceramic oxide and silicon nitride, and preferably a ternary solid solution of a ceramic oxide, silicon nitride and aluminum nitride. The ceramic oxide is selected from a group consisting of Al2O3, Y2O3 and Cr2O3, or mixtures of those compounds. Titanium carbide particles are dispersed in the ceramic mixture before sintering. The nozzles are encased for protection from external forces while in use by a metal or plastic casing.
Thin film ceramic thermocouples
NASA Technical Reports Server (NTRS)
Gregory, Otto (Inventor); Fralick, Gustave (Inventor); Wrbanek, John (Inventor); You, Tao (Inventor)
2011-01-01
A thin film ceramic thermocouple (10) having two ceramic thermocouple (12, 14) that are in contact with each other in at least on point to form a junction, and wherein each element was prepared in a different oxygen/nitrogen/argon plasma. Since each element is prepared under different plasma conditions, they have different electrical conductivity and different charge carrier concentration. The thin film thermocouple (10) can be transparent. A versatile ceramic sensor system having an RTD heat flux sensor can be combined with a thermocouple and a strain sensor to yield a multifunctional ceramic sensor array. The transparent ceramic temperature sensor that could ultimately be used for calibration of optical sensors.
Mixture for producing fracture-resistant, fiber-reinforced ceramic material by microwave heating
Meek, T.T.; Blake, R.D.
1985-04-03
A fracture-resistant, fiber-reinforced ceramic substrate is produced by a method which involves preparing a ceramic precursor mixture comprising glass material, a coupling agent, and resilient fibers, and then exposing the mixture to microwave energy. The microwave field orients the fibers in the resulting ceramic material in a desired pattern wherein heat later generated in or on the substrate can be dissipated in a desired geometric pattern parallel to the fiber pattern. Additionally, the shunt capacitance of the fracture-resistant, fiber-reinforced ceramic substrate is lower which provides for a quicker transit time for electronic pulses in any conducting pathway etched into the ceramic substrate.
Method of making contamination-free ceramic bodies
NASA Technical Reports Server (NTRS)
Philipp, Warren H. (Inventor)
1991-01-01
Ceramic structures having high strength at temperatures above 1000 C after sintering are made by mixing ceramic powders with binder deflocculants such as guanidine salts of polymeric acids, guanidine salts of aliphatic organic carboxylic acids or guanidine alkylsulfates with the foregoing guanidine salts. The novelty of the invention appears to lie in the substitution of guanidine salts for the alkalai metal salt components or organic fatty acids of the prior art binder-deflocculant, ceramic processing aids whereby no undesirable metal contaminants are present in the final ceramic structure. Guanidine alkylsulfates also replace the Na or K alkylsulfates commonly used with binder-deflocculants in making high temperature ceramic structures.
Exploratory evaluation of ceramics for automobile thermal reactors
NASA Technical Reports Server (NTRS)
Stone, P. L.; Blankenship, C. P.
1972-01-01
An exploratory evaluation of ceramics for automobile thermal reactors was conducted. Potential ceramic materials were evaluated in several reactor designs using both engine dynamometer and vehicle road tests. Silicon carbide contained in a corrugated metal support structure exhibited the best performance lasting over 800 hours in engine dynamometer tests and over 15,000 miles (24,200 km) of vehicle road tests. Reactors containing glass-ceramic components did not perform as well as silicon carbide. But the glass-ceramics still offer good potential for reactor use. The results of this study are considered to be a reasonable demonstration of the potential use of ceramics in thermal reactors.
PLZT Ceramic Driving Rotary Micro-mirror Based on Photoelectric-electrostatic Mechanism
NASA Astrophysics Data System (ADS)
Tang, Yujuan; Yang, Zhong; Chen, Yusong; Wang, Xinjie
2017-12-01
Based on the anomalous photovoltaic effect of PLZT, a rotary micro-mirror driven by hybrid photoelectric-electrostatic actuation of PLZT ceramic is proposed. Firstly, the mathematical modelling of coupled multi-physics fields of PLZT ceramic is established during illumination and light off phases. Then, the relationship between the rotation angle and the photovoltage of PLZT ceramics is established. In addition, the feasibility of rotary micro-mirror with hybrid photoelectric-electrostatic driving is verified via closed-loop control for photo-induced voltage of PLZT ceramic. The experimental results show that the photo-induced voltage of PLZT ceramics has good dynamic control precision using on-off closed-loop control method.
Mixture for producing fracture-resistant, fiber-reinforced ceramic material by microwave heating
Meek, Thomas T.; Blake, Rodger D.
1987-01-01
A fracture-resistant, fiber-reinforced ceramic substrate is produced by a method which involves preparing a ceramic precursor mixture comprising glass material, a coupling agent, and resilient fibers, and then exposing the mixture to microwave energy. The microwave field orients the fibers in the resulting ceramic material in a desired pattern wherein heat later generated in or on the substrate can be dissipated in a desired geometric pattern parallel to the fiber pattern. Additionally, the shunt capacitance of the fracture-resistant, fiber-reinforced ceramic substrate is lower which provides for a quicker transit time for electronic pulses in any conducting pathway etched into the ceramic substrate.
Ceramic and non-ceramic hydroxyapatite as a bone graft material: a brief review.
Dutta, S R; Passi, D; Singh, P; Bhuibhar, A
2015-03-01
Treatment of dental, craniofacial and orthopedic defects with bone graft substitutes has shown promising result achieving almost complete bone regeneration depending on product resorption similar to human bone's physicochemical and crystallographic characteristics. Among these, non-ceramic and ceramic hydroxyapatite being the main inorganic salt of bone is the most studied calcium phosphate material in clinical practices ever since 1970s and non-ceramic since 1985. Its "chemical similarity" with the mineralized phase of biologic bone makes it unique. Hydroxyapatite as an excellent carrier of osteoinductive growth factors and osteogenic cell populations is also useful as drug delivery vehicle regardless of its density. Porous ceramic and non-ceramic hydroxyapatite is osteoconductive, biocompatible and very inert. The need for bone graft material keeps on increasing with increased age of the population and the increased conditions of trauma. Recent advances in genetic engineering and doping techniques have made it possible to use non-ceramic hydroxyapatite in larger non-ceramic crystals and cluster forms as a successful bone graft substitute to treat various types of bone defects. In this paper we have mentioned some recently studied properties of hydroxyapatite and its various uses through a brief review of the literatures available to date.
Material Science Smart Coatings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubinstein, A. I.; Sabirianov, R. F.; Namavar, Fereydoon
2014-07-01
The contribution of electrostatic interactions to the free energy of binding between model protein and a ceramic implant surface in the aqueous solvent, considered in the framework of the nonlocal electrostatic model, is calculated as a function of the implant low-frequency dielectric constant. We show that the existence of a dynamically ordered (low-dielectric) interfacial solvent layer at the protein-solvent and ceramic-solvent interface markedly increases charging energy of the protein and ceramic implant, and consequently makes the electrostatic contribution to the protein-ceramic binding energy more favorable (attractive). Our analysis shows that the corresponding electrostatic energy between protein and oxide ceramics dependsmore » nonmonotonically on the dielectric constant of ceramic, ε C. Obtained results indicate that protein can attract electrostatically to the surface if ceramic material has a moderate ε C below or about 35 (in particularly ZrO 2 or Ta 2O 5). This is in contrast to classical (local) consideration of the solvent, which demonstrates an unfavorable electrostatic interaction of protein with typical metal oxide ceramic materials (ε C>10). Thus, a solid implant coated by combining oxide ceramic with a reduced dielectric constant can be beneficial to strengthen the electrostatic binding of the protein-implant complex.« less
In vitro evaluation of the mutagenic and carcinogenic power of high purity zirconia ceramic.
Covacci, V; Bruzzese, N; Maccauro, G; Andreassi, C; Ricci, G A; Piconi, C; Marmo, E; Burger, W; Cittadini, A
1999-02-01
Tetragonal zirconia polycrystal (TZP) is a new interesting ceramic for the manufacture of medical devices. Its wide use in orthopedic and odontoiatric implants was limited till now by the high chemical and radiochemical impurities of the raw materials. Purification processes now available allow to obtain high purity ceramic grade powders suitable for TZP ceramics manufacture, even if their possible mutagenic and transforming effects are still unclear. The aim of this work is to study in vitro the mutagenic and oncogenic effects of a new zirconia ceramic stabilized by yttria (Y-TZP). This ceramic was sintered from high purity powders obtained by a process developed under a project carried out within the Brite EuRam programme. For comparison, ceramics made from unpurified zirconia powder were also tested. Fibroblasts irradiated by a linear accelerator were used as positive control. The results obtained show that Y-TZP ceramic does not elicit either mutagenic or transforming effect on C3H/10T(1/2) (10T(1/2)) cells and demonstrate that ceramic from high purity powders can be considered suitable for biomedical applications from the point of view of the effects of its radioactive impurity content.
Acoustic emission as a screening tool for ceramic matrix composites
NASA Astrophysics Data System (ADS)
Ojard, Greg; Goberman, Dan; Holowczak, John
2017-02-01
Ceramic matrix composites are composite materials with ceramic fibers in a high temperature matrix of ceramic or glass-ceramic. This emerging class of materials is viewed as enabling for efficiency improvements in many energy conversion systems. The key controlling property of ceramic matrix composites is a relatively weak interface between the matrix and the fiber that aids crack deflection and fiber pullout resulting in greatly increased toughness over monolithic ceramics. United Technologies Research Center has been investigating glass-ceramic composite systems as a tool to understand processing effects on material performance related to the performance of the weak interface. Changes in the interface have been shown to affect the mechanical performance observed in flexural testing and subsequent microstructural investigations have confirmed the performance (or lack thereof) of the interface coating. Recently, the addition of acoustic emission testing during flexural testing has aided the understanding of the characteristics of the interface and its performance. The acoustic emission onset stress changes with strength and toughness and this could be a quality tool in screening the material before further development and use. The results of testing and analysis will be shown and additional material from other ceramic matrix composite systems may be included to show trends.
Sol-gel applications for ceramic membrane preparation
NASA Astrophysics Data System (ADS)
Erdem, I.
2017-02-01
Ceramic membranes possessing superior properties compared to polymeric membranes are more durable under severe working conditions and therefore their service life is longer. The ceramic membranes are composed of some layers. The support is the layer composed of coarser ceramic structure and responsible for mechanical durability under filtration pressure and it is prepared by consolidation of ceramic powders. The top layer is composed of a finer ceramic micro-structure mainly responsible for the separation of components present in the fluid to be filtered and sol-gel method is a versatile tool to prepare such a tailor-made ceramic filtration structure with finer pores. Depending on the type of filtration (e.g. micro-filtration, ultra-filtration, nano-filtration) aiming separation of components with different sizes, sols with different particulate sizes should be prepared and consolidated with varying precursors and preparation conditions. The coating of sol on the support layer and heat treatment application to have a stable ceramic micro-structure are also important steps determining the final properties of the top layer. Sol-gel method with various controllable parameters (e.g. precursor type, sol formation kinetics, heat treatment conditions) is a practical tool for the preparation of top layers of ceramic composite membranes with desired physicochemical properties.
Determination of elastic modulus of ceramics using ultrasonic testing
NASA Astrophysics Data System (ADS)
Sasmita, Firmansyah; Wibisono, Gatot; Judawisastra, Hermawan; Priambodo, Toni Agung
2018-04-01
Elastic modulus is important material property on structural ceramics application. However, bending test as a common method for determining this property require particular specimen preparation. Furthermore, elastic modulus of ceramics could vary because it depends on porosity content. For structural ceramics industry, such as ceramic tiles, this property is very important. This drives the development of new method to improve effectivity or verification method as well. In this research, ultrasonic testing was conducted to determine elastic modulus of soda lime glass and ceramic tiles. The experiment parameter was frequency of probe (1, 2, 4 MHz). Characterization of density and porosity were also done for analysis. Results from ultrasonic testing were compared with elastic modulus resulted from bending test. Elastic modulus of soda-lime glass based on ultrasonic testing showed excellent result with error 2.69% for 2 MHz probe relative to bending test result. Testing on red and white ceramic tiles were still contained error up to 41% and 158%, respectively. The results for red ceramic tile showed trend that 1 MHz probe gave better accuracy in determining elastic modulus. However, testing on white ceramic tile showed different trend. It was due to the presence of porosity and near field effect.
Ceramic applications in turbine engines
NASA Technical Reports Server (NTRS)
Byrd, J. A.; Janovicz, M. A.; Thrasher, S. R.
1981-01-01
Development testing activities on the 1900 F-configuration ceramic parts were completed, 2070 F-configuration ceramic component rig and engine testing was initiated, and the conceptual design for the 2265 F-configuration engine was identified. Fabrication of the 2070 F-configuration ceramic parts continued, along with burner rig development testing of the 2070 F-configuration metal combustor in preparation for 1132 C (2070 F) qualification test conditions. Shakedown testing of the hot engine simulator (HES) rig was also completed in preparation for testing of a spin rig-qualified ceramic-bladed rotor assembly at 1132 C (2070 F) test conditions. Concurrently, ceramics from new sources and alternate materials continued to be evaluated, and fabrication of 2070 F-configuration ceramic component from these new sources continued. Cold spin testing of the critical 2070 F-configuration blade continued in the spin test rig to qualify a set of ceramic blades at 117% engine speed for the gasifier turbine rotor. Rig testing of the ceramic-bladed gasifier turbine rotor assembly at 108% engine speed was also performed, which resulted in the failure of one blade. The new three-piece hot seal with the nickel oxide/calcium fluoride wearface composition was qualified in the regenerator rig and introduced to engine operation wiwth marginal success.
Dense high temperature ceramic oxide superconductors
Landingham, Richard L.
1993-01-01
Dense superconducting ceramic oxide articles of manufacture and methods for producing these articles are described. Generally these articles are produced by first processing these superconducting oxides by ceramic processing techniques to optimize materials properties, followed by reestablishing the superconducting state in a desired portion of the ceramic oxide composite.
Dense high temperature ceramic oxide superconductors
Landingham, R.L.
1993-10-12
Dense superconducting ceramic oxide articles of manufacture and methods for producing these articles are described. Generally these articles are produced by first processing these superconducting oxides by ceramic processing techniques to optimize materials properties, followed by reestablishing the superconducting state in a desired portion of the ceramic oxide composite.
Ablation Resistant Zirconium and Hafnium Ceramics
NASA Technical Reports Server (NTRS)
Bull, Jeffrey (Inventor); White, Michael J. (Inventor); Kaufman, Larry (Inventor)
1998-01-01
High temperature ablation resistant ceramic composites have been made. These ceramics are composites of zirconium diboride and zirconium carbide with silicon carbide, hafnium diboride and hafnium carbide with silicon carbide and ceramic composites which contain mixed diborides and/or carbides of zirconium and hafnium. along with silicon carbide.
Mechanical fatigue degradation of ceramics versus resin composites for dental restorations.
Belli, Renan; Geinzer, Eva; Muschweck, Anna; Petschelt, Anselm; Lohbauer, Ulrich
2014-04-01
For posterior partial restorations an overlap of indication exists where either ceramic or resin-based composite materials can be successfully applied. The aim of this study was to compare the fatigue resistance of modern dental ceramic materials versus dental resin composites in order to address such conflicts. Bar specimens of five ceramic materials and resin composites were produced according to ISO 4049 and stored for 14 days in distilled water at 37°C. The following ceramic materials were selected for testing: a high-strength zirconium dioxide (e.max ZirCAD, Ivoclar), a machinable lithium disilicate (e.max CAD, Ivoclar), a pressable lithium disilicate ceramic (e-max Press, Ivoclar), a fluorapatite-based glass-ceramic (e.max Ceram, Ivoclar), and a machinable color-graded feldspathic porcelain (Trilux Forte, Vita). The composite materials selected were: an indirect machinable composite (Lava Ultimate, 3M ESPE) and four direct composites with varying filler nature (Clearfil Majesty Posterior, Kuraray; GrandioSO, Voco; Tetric EvoCeram, Ivoclar-Vivadent; and CeramX Duo, Dentsply). Fifteen specimens were tested in water for initial strength (σin) in 4-point bending. Using the same test set-up, the residual flexural fatigue strength (σff) was determined using the staircase approach after 10(4) cycles at 0.5 Hz (n=25). Weibull parameters σ0 and m were calculated for the σin specimens, whereas the σff and strength loss in percentage were obtained from the fatigue experiment. The zirconium oxide ceramic showed the highest σin and σff (768 and 440 MPa, respectively). Although both lithium disilicate ceramics were similar in the static test, the pressable version showed a significantly higher fatigue resistance after cyclic loading. Both the fluorapatite-based and the feldspathic porcelain showed equivalent initial and cyclic fatigue properties. From the composites, the highest filled direct material Clearfil Majesty Posterior showed superior fatigue performance. From all materials, e.max Press and Clearfil Majesty Posterior showed the lowest strength loss (29.6% and 32%, respectively), whereas the other materials lost between 41% and 62% of their flexural strength after cyclic loading. Dental ceramics and resin composite materials show equivalent fatigue strength degradation at loads around 0.5σin values. Apart from the zirconium oxide and the lithium disilicate ceramics, resin composites generally showed better σff after 10,000 cycles than the fluorapatite glass-ceramic and the feldspathic porcelain. Resin composite restorations may be used as an equivalent alternative to glass-rich-ceramic inlays regarding mechanical performance. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Zhang, Xiangling; Guo, Lu; Huang, Hualing; Jiang, Yinghe; Li, Meng; Leng, Yujie
2016-06-01
Constructed rapid infiltration systems (CRIS) are a reasonable option for treating wastewater, owing to their simplicity, low cost and low energy consumption. Layered double hydroxides (LDHs), novel materials with high surface area and anion exchange capacity, faced the problem of the application in CRIS due to the powdered form. To overcome this shortcoming, Zn-LDHs (FeZn-LDHs, CoZn-LDHs, AlZn-LDHs) were prepared by co-precipitation method and in-situ coated on the surface of the natural bio-ceramic to synthesize the core-shell bio-ceramic/Zn-LDHs composites. Characterization by Scanning Electron Microscope (SEM) and X-ray Fluorescence Spectrometer (XRFS) indicated that the Zn-LDHs were successful loaded on the natural bio-ceramic. Column tests experiments indicated that the bio-ceramic/Zn-LDHs efficiently enhanced the removal performance of phosphorus. The efficiently removal rates of bio-ceramic/FeZn-LDHs were 71.58% for total phosphorous (TP), 74.91% for total dissolved phosphorous (TDP), 82.31% for soluble reactive phosphorous (SRP) and 67.58% for particulate phosphorus (PP). Compared with the natural bio-ceramic, the average removal rates were enhanced by 32.20% (TP), 41.33% (TDP), 49.06% (SRP) and 10.50% (PP), respectively. Adsorption data of phosphate were better described by the Freundlich model for the bio-ceramic/Zn-LDHs and natural bio-ceramic, except for the bio-ceramic/CoZn-LDHs. The maximum adsorption capacity of bio-ceramic/AlZn-LDHs (769.23 mg/kg) was 1.77 times of the natural bio-ceramic (434.78 mg/kg). The effective desorption of phosphate could achieve by using a mixed solution of 5 M NaCl + 0.1 M NaOH, it outperformed the natural bio-ceramic of 18.95% for FeZn-LDHs, 7.59% for CoZn-LDHs and 12.66% for AlZn-LDHs. The kinetic data of the bio-ceramic/Zn-LDHs were better described by the pseudo-second-order equation. Compared the removal amount of phosphate by the natural bio-ceramic, the physical effects were improved little, but the chemical effects were enhanced for 112.49% for FeZn-LDHs, 111.89% for CoZn-LDHs and 122.67% for AlZn-LDHs. Therefore, the way of coating Zn-LDHs on the bio-ceramic efficiently improved the chemical effects in phosphate removal, supporting that it can use as potential substrates for the removal of phosphorus in CRIS. Copyright © 2016 Elsevier Ltd. All rights reserved.
Emerging Ceramic-based Materials for Dentistry
Denry, I.; Kelly, J.R.
2014-01-01
Our goal is to give an overview of a selection of emerging ceramics and issues for dental or biomedical applications, with emphasis on specific challenges associated with full-contour zirconia ceramics, and a brief synopsis on new machinable glass-ceramics and ceramic-based interpenetrating phase composites. Selected fabrication techniques relevant to dental or biomedical applications such as microwave sintering, spark plasma sintering, and additive manufacturing are also reviewed. Where appropriate, the authors have added their opinions and guidance. PMID:25274751
Grindability and mechanical property of ceramics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Changsheng; Chand, R.H.
1996-12-31
For cost-effective ceramic machining, material-specific machining methodology is needed. This requires characterizing ceramics from machining view point. In this paper, a preliminary study of the correlation between grindability and mechanical properties is reported. Results indicate that there exists complex correlations between grindability and mechanical properties such as hardness, fracture toughness and elasticity. Some ceramics of similar mechanical properties have different grindabilities, which implies that it is possible to develop ceramics of both superior mechanical properties and good grindability.
Joining of materials using laser heating
Cockeram, Brian V.; Hicks, Trevor G.; Schmid, Glenn C.
2003-07-01
A method for diffusion bonding ceramic layers such as boron carbide, zirconium carbide, or silicon carbide uses a defocused laser beam to heat and to join ceramics with the use of a thin metal foil insert. The metal foil preferably is rhenium, molybdenum or titanium. The rapid, intense heating of the ceramic/metal/ceramic sandwiches using the defocused laser beam results in diffusive conversion of the refractory metal foil into the ceramic and in turn creates a strong bond therein.
Scintillation and optical properties of TiO2-ZnO-Al2O3-B2O3 glasses and glass-ceramics
NASA Astrophysics Data System (ADS)
Usui, Yuki; Okada, Go; Kawaguchi, Noriaki; Masai, Hirokazu; Yanagida, Takayuki
2018-04-01
13TiO2-xZnO-17Al2O3-(70 - x)B2O3 (x = 17, 26, and 35) glasses were prepared by a melt-quenching method, and the obtained glass samples were heated at temperatures 30 °C above the glass transition temperature of corresponding glass in order to obtain glass-ceramics. The obtained glass-ceramic samples were confirmed to have anatase (x = 17) and rutile (x = 26 and 35) phases from X-ray diffraction analysis. Then, the scintillation and optical properties were evaluated and discussed the difference between the glass-ceramic and glass samples. In the scintillation spectra under X-ray irradiation, a broad emission peak was observed around 450 nm in all the samples, and the new peak around 500 nm appeared in the anatase-precipitated glass-ceramic. The intensities of the glass-ceramic samples were enhanced in comparison with the corresponding glasses because the glass-ceramics includes TiO2 crystallites with defect centers which act as effective emission centers. The scintillation decay curves of the glass and glass-ceramic samples were approximated by one and a sum of two exponential decay functions, respectively. The faster component of glass and glass-ceramic samples would be caused by the host emission, and the slower component of glass-ceramic sample would be ascribed to the emission of Ti3+.
Loading capacity of zirconia implant supported hybrid ceramic crowns.
Rohr, Nadja; Coldea, Andrea; Zitzmann, Nicola U; Fischer, Jens
2015-12-01
Recently a polymer infiltrated hybrid ceramic was developed, which is characterized by a low elastic modulus and therefore may be considered as potential material for implant supported single crowns. The purpose of the study was to evaluate the loading capacity of hybrid ceramic single crowns on one-piece zirconia implants with respect to the cement type. Fracture load tests were performed on standardized molar crowns milled from hybrid ceramic or feldspar ceramic, cemented to zirconia implants with either machined or etched intaglio surface using four different resin composite cements. Flexure strength, elastic modulus, indirect tensile strength and compressive strength of the cements were measured. Statistical analysis was performed using two-way ANOVA (p=0.05). The hybrid ceramic exhibited statistically significant higher fracture load values than the feldspar ceramic. Fracture load values and compressive strength values of the respective cements were correlated. Highest fracture load values were achieved with an adhesive cement (1253±148N). Etching of the intaglio surface did not improve the fracture load. Loading capacity of hybrid ceramic single crowns on one-piece zirconia implants is superior to that of feldspar ceramic. To achieve maximal loading capacity for permanent cementation of full-ceramic restorations on zirconia implants, self-adhesive or adhesive cements with a high compressive strength should be used. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Ogawa, Hirozumi; Kawada, Shinichiro; Kimura, Masahiko; Shiratsuyu, Kousuke; Sakabe, Yukio
2007-12-01
Abstract-The high-power piezoelectric characteristics in h001i oriented ceramics of bismuth layer structured ferroelectrics (BLSF), SrBi(2)Nb(2)O(9) (SBN), (Bi,La)(4)Ti(3)O(12) (BLT), and CaBi(4)Ti(4)O(15) (CBT), were studied by a constant voltage driving method. These textured ceramics were fabricated by a templated grain growth (TGG) method, and their Lotgering factors were 95%, 97%, and 99%, respectively. The vibration velocities of the longitudinal mode (33-mode) increased proportionally to an applied electric field up to 2.5 m/s in these textured BLSF ceramics, although, the vibration velocity of the 33-mode was saturated at more than 1.0 m/s in the Pb(Mn,Nb)O(3)-PZT ceramics. The resonant frequencies were constant up to the vibration velocity of 2.5 m/s in the SBN and CBT textured ceramics; however, the resonant frequency decreased with increasing over the vibration velocity of 1.5 m/s in the BLT textured ceramics. The dissipation power density of the BLT was almost the same as that of the Pb(Mn,Nb)O(3)-PZT ceramics. However, the dissipation power densities of the SBN and CBT were lower than those of the BLT and Pb(Mn,Nb)O(3)-PZT ceramics. The textured SBN and CBT ceramics are good candidates for high-power piezoelectric applications.
Güler, Umut; de Queiroz, José Renato Cavalcanti; de Oliveira, Luiz Fernando Cappa; Canay, Senay; Ozcan, Mutlu
2015-09-01
This study evaluated the effect of binder choice in mixing ceramic powder on the chemical and morphological features between the margin ceramic-framework interfaces. Titanium and zirconia frameworks (15 x 5 x 0.5 mm3) were veneered with margin ceramics prepared with two different binders, namely a) water/conventional or b) wax-based. For each zirconia framework material, four different margin ceramics were used: a- Creation Zi (Creation Willi Geller International); b- GC Initial Zr (GC America); Triceram (Dentaurum); and d- IPS emax (voclar Vivadent). For the titanium framework, three different margin ceramics were used: a- Creation Ti (Creation Willi Geller International); b- Triceram (Dentaurum); and c- VITA Titaniumkeramik (Vita Zahnfabrik). The chemical composition of the framework-margin ceramic interface was analyzed using Energy Dispersive X-ray Spectroscopy (EDS) and porosity level was quantified within the margin ceramic using an image program (ImageJ) from four random areas (100 x 100 pixels) on each SEM image. EDS analysis showed the presence of Carbon at the margin ceramic-framework interface in the groups where wax-based binder technique was used with the concentration being the highest for the IPS emax ZirCAD group. While IPS system (IPS ZirCAD and IPS Emax) presented higher porosity concentration using wax binder, in the other groups wax-based binder reduced the porosity of margin ceramic, except for Titanium - Triceram combination.
Sagsoz, O; Yildiz, M; Hojjat Ghahramanzadeh, A S L; Alsaran, A
2018-03-01
The purpose of this study was to examine the fracture strength and surface microhardness of computer-aided design/computer-aided manufacturing (CAD/CAM) materials in vitro. Mesial-occlusal-distal inlays were made from five different CAD/CAM materials (feldspathic ceramic, CEREC blocs; leucite-reinforced ceramic, IPS Empress CAD; resin nano ceramic, 3M ESPE Lava Ultimate; hybrid ceramic, VITA Enamic; and lithium disilicate ceramic, IPS e.max CAD) using CEREC 4 CAD/CAM system. Samples were adhesively cemented to metal analogs with a resin cement (3M ESPE, U200). The fracture tests were carried out with a universal testing machine. Furthermore, five samples were prepared from each CAD/CAM material for micro-Vickers hardness test. Data were analyzed with statistics software SPSS 20 (IBM Corp., New York, USA). Fracture strength of lithium disilicate inlays (3949 N) was found to be higher than other ceramic inlays (P < 0.05). There was no difference between other inlays statistically (P > 0.05). The highest micro-Vickers hardness was measured in lithium disilicate samples, and the lowest was in resin nano ceramic samples. Fracture strength results demonstrate that inlays can withstand the forces in the mouth. Statistical results showed that fracture strength and micro-Vickers hardness of feldspathic ceramic, leucite-reinforced ceramic, and lithium disilicate ceramic materials had a positive correlation.
Ehdaie, Beeta; Rento, Chloe T.; Son, Veronica; Turner, Sydney S.; Samie, Amidou; Dillingham, Rebecca A.
2017-01-01
The World Health Organization (WHO) recognizes point-of-use water treatment (PoUWT) technologies as effective means to improve water quality. This paper investigates long-term performance and social acceptance of a novel PoUWT technology, a silver-infused ceramic tablet, in Limpopo Province, South Africa. When placed in a water storage container, the silver-embedded ceramic tablet releases silver ions into water, thereby disinfecting microbial pathogens and leaving the water safe for human consumption. As a result of its simplicity and efficiency, the silver-embedded ceramic tablet can serve as a stand-alone PoUWT method and as a secondary PoUWT to improve exisitng PoUWT methods, such as ceramic water filters. In this paper, three PoUWT interventions were conducted to evaluate the silver-embedded ceramic tablet: (1) the silver-embedded ceramic tablet as a stand-alone PoUWT method, (2) ceramic water filters stand-alone, and (3) a filter-tablet combination. The filter-tablet combination evaluates the silver-embedded ceramic tablet as a secondary PoUWT method when placed in the lower reservoir of the ceramic water filter system to provide residual disinfection post-filtration. Samples were collected from 79 households over one year and analyzed for turbidity, total silver levels and coliform bacteria. Results show that the silver-embedded ceramic tablet effectively reduced total coliform bacteria (TC) and E. coli when used as a stand-alone PoUWT method and when used in combination with ceramic water filters. The silver-embedded ceramic tablet’s performance as a stand-alone PoUWT method was comparable to current inexpensive, single-use PoUWT methods, demonstrating 100% and 75% median reduction in E. coli and TC, respectively, after two months of use. Overall, the the filter-tablet combination performed the best of the three interventions, providing a 100% average percent reduction in E. coli over one year. User surveys were also conducted and indicated that the silver-embedded ceramic tablet was simple to use and culturally appropriate. Also, silver levels in all treated water samples remained below 20 μg/L, significantly lower than the drinking water standard of 100 μg/L, making it safe for consumption. Long-term data demonstrates that the silver-embedded ceramic tablet has beneficial effects even after one year of use. This study demonstrates that the silver-embedded ceramic tablet can effectively improve water quality when used alone, or with ceramic water filters, to reduce rates of recontamination. Therefore, the tablet has the potential to provide a low-cost means to purify water in resource-limited settings. PMID:28095435
Hailan, Qian; Lingyan, Ren; Rongrong, Nie; Xiangfeng, Meng
2017-12-01
This study aimed at determining the influence of hydrofluoric acid (HF) in varied concentrations on the surface morphology of lithium disilicate glass ceramics and bond durability between resin composites and post-treated lithium disilicate glass ceramics. After being sintered, ground, and washed, 72 as-prepared specimens of lithium disilicate glass ceramics with dimensions of 11 mm×13 mm×2 mm were randomly divided into three groups. Each group was treated with acid solution [32% phosphoric acid (PA) or 4% or 9.5% HF] for 20 s. Then, four acidified specimens from each group were randomly selected. One of the specimens was used to observe the surface morphology using scanning electron microscopy, and the others were used to observe the surface roughness using a surface roughness meter (including Ra, Rz, and Rmax). After treatment with different acid solutions in each group, 20 samples were further treated with silane coupling agent/resin adhesive/resin cement (Monobond S/Multilink Primer A&B/Multilink N), followed by bonding to a composite resin column (Filtek™ Z350) with a diameter of 3 mm. A total of 20 specimens in each group were randomly divided into two subgroups, which were used for measuring the microshear bond strength, with one of them subjected to cool-thermal cycle for 20 000 times. The surface roughness (Ra, Rz, and Rmax) of lithium disilicate glass ceramics treated with 4% or 9.5% HF was significantly higher than that of the ceramic treated with PA (P<0.05). The lithium disilicate glass ceramics treated with 9.5% HF also demonstrated better surface roughness (Rz and Rmax) than that of the ceramics treated with 4% HF. Cool-thermal cycle treatment reduced the bond strength of lithium disilicate glass ceramics in all groups (P<0.05). After cool-thermal cycle, the lithium disilicate glass ceramics treated with HF had higher bond strength than that of the ceramics treated with PA. The lithium disilicate glass ceramics treated with 4% HF had higher bond strength than that of the ceramics treated with 9.5% HF (P<0.05). During cool-thermal cycle, the lithium disilicate glass ceramics treated with 4% HF demonstrated higher reduction in bond strength than that of the samples treated with 9.5% HF (P<0.05). The concentration of HF significantly affected the surface morphology of lithium disilicate glass ceramics and the bond durability between resin composites and post-treated lithium disilicate glass ceramics. The bond strength between resin composites and post-treated lithium disilicate glass ceramic was more efficiently maintained by treatment with 9.5% HF.
Ehdaie, Beeta; Rento, Chloe T; Son, Veronica; Turner, Sydney S; Samie, Amidou; Dillingham, Rebecca A; Smith, James A
2017-01-01
The World Health Organization (WHO) recognizes point-of-use water treatment (PoUWT) technologies as effective means to improve water quality. This paper investigates long-term performance and social acceptance of a novel PoUWT technology, a silver-infused ceramic tablet, in Limpopo Province, South Africa. When placed in a water storage container, the silver-embedded ceramic tablet releases silver ions into water, thereby disinfecting microbial pathogens and leaving the water safe for human consumption. As a result of its simplicity and efficiency, the silver-embedded ceramic tablet can serve as a stand-alone PoUWT method and as a secondary PoUWT to improve exisitng PoUWT methods, such as ceramic water filters. In this paper, three PoUWT interventions were conducted to evaluate the silver-embedded ceramic tablet: (1) the silver-embedded ceramic tablet as a stand-alone PoUWT method, (2) ceramic water filters stand-alone, and (3) a filter-tablet combination. The filter-tablet combination evaluates the silver-embedded ceramic tablet as a secondary PoUWT method when placed in the lower reservoir of the ceramic water filter system to provide residual disinfection post-filtration. Samples were collected from 79 households over one year and analyzed for turbidity, total silver levels and coliform bacteria. Results show that the silver-embedded ceramic tablet effectively reduced total coliform bacteria (TC) and E. coli when used as a stand-alone PoUWT method and when used in combination with ceramic water filters. The silver-embedded ceramic tablet's performance as a stand-alone PoUWT method was comparable to current inexpensive, single-use PoUWT methods, demonstrating 100% and 75% median reduction in E. coli and TC, respectively, after two months of use. Overall, the the filter-tablet combination performed the best of the three interventions, providing a 100% average percent reduction in E. coli over one year. User surveys were also conducted and indicated that the silver-embedded ceramic tablet was simple to use and culturally appropriate. Also, silver levels in all treated water samples remained below 20 μg/L, significantly lower than the drinking water standard of 100 μg/L, making it safe for consumption. Long-term data demonstrates that the silver-embedded ceramic tablet has beneficial effects even after one year of use. This study demonstrates that the silver-embedded ceramic tablet can effectively improve water quality when used alone, or with ceramic water filters, to reduce rates of recontamination. Therefore, the tablet has the potential to provide a low-cost means to purify water in resource-limited settings.
Magnetic-field sensing coil embedded in ceramic for measuring ambient magnetic field
Takahashi, Hironori
2004-02-10
A magnetic pick-up coil for measuring magnetic field with high specific sensitivity, optionally with an electrostatic shield (24), having coupling elements (22) with high winding packing ratio, oriented in multiple directions, and embedded in ceramic material for structural support and electrical insulation. Elements of the coil are constructed from green ceramic sheets (200) and metallic ink deposited on surfaces and in via holes of the ceramic sheets. The ceramic sheets and the metallic ink are co-fired to create a monolithic hard ceramic body (20) with metallized traces embedded in, and placed on exterior surfaces of, the hard ceramic body. The compact and rugged coil can be used in a variety of environments, including hostile conditions involving ultra-high vacuum, high temperatures, nuclear and optical radiation, chemical reactions, and physically demanding surroundings, occurring either individually or in combinations.
NASA Astrophysics Data System (ADS)
Ye, S. K.; Fuh, J. Y. H.; Lu, L.
2012-06-01
<001> textured (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 (BCTZ) lead-free piezoelectric ceramics were prepared by templated-grain growth method using BaTiO3 as template. The degree of orientation and the microstructure of the ceramics with different amount of template were investigated. The electrical properties of the textured-ceramics in the optimized condition were dramatically enhanced compared with randomly-oriented BCTZ ceramics. The textured BCTZ ceramics showed high piezoelectric constants d33 = 470 pC/N and d31 = -170 pC/N, and high electromechanical coupling factors kp = 44% and k31 = 22%. In addition, the Curie point of the textured ceramics revealed an increase with the template content.
The influence of clay fineness upon sludge recycling in a ceramic matrix
NASA Astrophysics Data System (ADS)
Szőke, A. M.; Muntean, M.; Sándor, M.; Brotea, L.
2016-04-01
The feasibility of sludge recycling in the ceramic manufacture was evaluated through laboratory testing. Such residues have similar chemical and mineralogical composition with the raw mixture of the green ceramic body used in construction. Several ceramic masses with clay and various proportion of sludge have been synthesized and then characterized by their physical-mechanical properties. The fineness of the clay, the main component of the green ceramic body, has been considered for every raw mixture. The proportion of the sludge waste addition depends on the clay fineness and the sintering capacity also, increases with the clay fineness. The ceramic properties, particularly, the open porosity, and mechanical properties, in presence of small sludge proportion (7, 20%) shows small modification. The introduction of such waste into building ceramic matrix (bricks, tiles, and plates) has a very good perspective.
Design, Fabrication and Characterization of High Temperature Joints in Ceramic Composites
NASA Technical Reports Server (NTRS)
Singh, M.
1999-01-01
Ceramic joining has been recognized as one of the enabling technologies for the successful utilization of ceramic components in a number of demanding, high temperature applications. Various joint design philosophies and design issues have been discussed along with an affordable, robust ceramic joining technology (ARCJoinT). A wide variety of silicon carbide-based composite materials, in different shapes and sizes, have been joined using this technology. This technique is capable of producing joints with tailorable thickness and composition. The room and high temperature mechanical properties and fractography of ceramic joints have been reported. These joints maintain their mechanical strength up to 1200 C in air. This technology is suitable for the joining of large and complex shaped ceramic composite components and with certain modifications, can be applied to repair of ceramic components damaged in service.
Design, Fabrication, and Characterization of High Temperature Joints in Ceramic Composites
NASA Technical Reports Server (NTRS)
Singh, M.
1999-01-01
Ceramic joining has been recognized as one of the enabling technologies for the successful utilization of ceramic components in a number of demanding, high temperature applications. Various joint design philosophies and design issues have been discussed along with an affordable, robust ceramic joining technology (ARCJoinT). A wide variety of silicon carbide-based composite materials, in different shapes and sizes, have been joined using this technology. This technique is capable of producing joints with tailorable thickness and composition. The room and high temperature mechanical properties and fractography of ceramic joints have been reported. These joints maintain their mechanical strength up to 1200C in air. This technology is suitable for the joining of large and complex shaped ceramic composite components and with certain modifications, can be applied to repair of ceramic components damaged in service.
Positron annihilation in transparent ceramics
NASA Astrophysics Data System (ADS)
Husband, P.; Bartošová, I.; Slugeň, V.; Selim, F. A.
2016-01-01
Transparent ceramics are emerging as excellent candidates for many photonic applications including laser, scintillation and illumination. However achieving perfect transparency is essential in these applications and requires high technology processing and complete understanding for the ceramic microstructure and its effect on the optical properties. Positron annihilation spectroscopy (PAS) is the perfect tool to study porosity and defects. It has been applied to investigate many ceramic structures; and transparent ceramics field may be greatly advanced by applying PAS. In this work positron lifetime (PLT) measurements were carried out in parallel with optical studies on yttrium aluminum garnet transparent ceramics in order to gain an understanding for their structure at the atomic level and its effect on the transparency and light scattering. The study confirmed that PAS can provide useful information on their microstructure and guide the technology of manufacturing and advancing transparent ceramics.
Reduced wear of enamel with novel fine and nano-scale leucite glass-ceramics.
Theocharopoulos, Antonios; Chen, Xiaohui; Hill, Robert; Cattell, Michael J
2013-06-01
Leucite glass-ceramics used to produce all-ceramic restorations can suffer from brittle fracture and wear the opposing teeth. High strength and fine crystal sized leucite glass-ceramics have recently been reported. The objective of this study is to investigate whether fine and nano-scale leucite glass-ceramics with minimal matrix microcracking are associated with a reduction in in vitro tooth wear. Human molar cusps (n=12) were wear tested using a Bionix-858 testing machine (300,000 simulated masticatory cycles) against experimental fine crystal sized (FS), nano-scale crystal sized (NS) leucite glass-ceramics and a commercial leucite glass-ceramic (Ceramco-3, Dentsply, USA). Wear was imaged using Secondary Electron Imaging (SEI) and quantified using white-light profilometry. Both experimental groups were found to produce significantly (p<0.05) less volume and mean-height tooth loss compared to Ceramco-3. The NS group had significantly (p<0.05) less tooth mean-height loss and less combined (tooth and ceramic) loss than the FS group. Increased waviness and damage was observed on the wear surfaces of the Ceramco-3 glass-ceramic disc/tooth group in comparison to the experimental groups. This was also indicated by higher surface roughness values for the Ceramco-3 glass-ceramic disc/tooth group. Fine and nano-sized leucite glass-ceramics produced a reduction in in vitro tooth wear. The high strength low wear materials of this study may help address the many problems associated with tooth enamel wear and restoration failure. Copyright © 2013 Elsevier Ltd. All rights reserved.
Ni, Siyu; Chang, Jiang; Chou, Lee; Zhai, Wanyin
2007-01-01
Calcium silicate ceramics have been proposed as new bone repair biomaterials, since they have proved to be bioactive, degradable, and biocompatible. Beta-tricalcium phosphate ceramic is a well-known degradable material for bone repair. This study compared the effects of CaSiO3 (alpha-, and beta-CaSiO3) and beta-Ca3(PO4)2 (beta-TCP) ceramics on the early stages of rat osteoblast-like cell attachment, proliferation, and differentiation. Osteoblast-like cells were cultured directly on CaSiO3 (alpha-, and beta-CaSiO3) and beta-TCP ceramics. Attachment of a greater number of cells was observed on CaSiO3 (alpha-, and beta-CaSiO3) ceramics compared with beta-TCP ceramics after incubation for 6 h. SEM observations showed an intimate contact between cells and the substrates, significant cells adhesion, and that the cells spread and grew on the surfaces of all the materials. In addition, the proliferation rate and alkaline phosphatase (ALP) activity of the cells on the CaSiO3 (alpha-, and beta-CaSiO3) ceramics were improved when compared with the beta-TCP ceramics. In the presence of CaSiO3, elevated levels of calcium and silicon in the culture medium were observed throughout the 7-day culture period. In conclusion, the results of the present study revealed that CaSiO3 ceramics showed greater ability to support cell attachment, proliferation, and differentiation than beta-TCP ceramic. 2006 Wiley Periodicals, Inc.
Hu, Jianzhong; Yang, Zhiming; Zhou, Yongchun; Liu, Yong; Li, Kaiyang; Lu, Hongbin
2015-11-01
The osteoconduction of porous biphasic calcium phosphate (BCP) ceramics has been widely reported. In a previous study, we demonstrated that applying a nano-hydroxyapatite (nHA) coating enhances the osteoinductive potential of BCP ceramics, making these scaffolds more suitable for bone tissue engineering applications. The aim of the present study was to determine the effects of reconstructing radius defects in rabbits using nHA-coated BCP ceramics seeded with mesenchymal stem cells (MSCs) and to compare the bone regeneration induced by different scaffolds. Radius defects were created in 20 New Zealand rabbits, which were divided into four groups by treatment: porous BCP ceramics (Group A), nHA-coated porous BCP ceramics (Group B), porous BCP ceramics seeded with rabbit MSCs (Group C), and nHA-coated porous BCP ceramics seeded with rabbit MSCs (Group D). After in vitro incubation, the cell/scaffold complexes were implanted into the defects. Twelve weeks after implantation, the specimens were examined macroscopically and histologically. Both the nHA coating and seeding with MSCs enhanced the formation of new bone tissue in the BCP ceramics, though the osteoinductive potential of the scaffolds with MSCs was greater than that of the nHA-coated scaffolds. Notably, the combination of nHA coating and MSCs significantly improved the bone regeneration capability of the BCP ceramics. Thus, MSCs seeded into porous BCP ceramics coated with nHA may be an effective bone substitute to reconstruct bone defects in the clinic.
NASA Technical Reports Server (NTRS)
1986-01-01
This publication is a compilation of abstracts and slides of papers presented at the NASA Lewis Structural Ceramics Workshop. Collectively, these papers depict the scope of NASA Lewis' structural ceramics program. The technical areas include monolithic SiC and Si3N4 development, ceramic matrix composites, tribology, design methodology, nondestructive evaluation (NDE), fracture mechanics, and corrosion.
40 CFR 63.11436 - What parts of my plant does this subpart cover?
Code of Federal Regulations, 2010 CFR
2010-07-01
... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Clay Ceramics... subpart cover? (a) This subpart applies to any existing or new affected source located at a clay ceramics... glazed ceramic ware located at a clay ceramics manufacturing facility. (c) An affected source is existing...
Ceramic to metal attachment system. [Ceramic electrode to metal conductor in MHD generator
Marchant, D.D.
1983-06-10
A composition and method are described for attaching a ceramic electrode to a metal conductor. A layer of randomly interlocked metal fibers saturated with polyimide resin is sandwiched between the ceramic electrode and the metal conductor. The polyimide resin is then polymerized providing bonding.
Method for producing ceramic-glass-ceramic seals by microwave heating
Blake, Rodger D.; Meek, Thomas T.
1986-01-01
Method for producing a ceramic-glass-ceramic seal by the use of microwave energy, and a sealing mixture which comprises a glass sealing material, a coupling agent, and an oxidizer. The seal produced exhibits greater strength due to its different microstructure. Sodium nitrate is the most preferred oxidizer.
High resolution ceramic gun for projection CRT
NASA Astrophysics Data System (ADS)
Muchi, T.; Tagami, S.; Saito, T.
1995-08-01
A ceramic resistor with high-resistivity and a low thermal coefficient has been developed. The use of this ceramic material as a cylindrical electrode realizes an electrostatic lens with low spherical aberration. A ceramic electron gun based on a new concept has been developed for high resolution projection CRTs.
Ceramic coatings on smooth surfaces
NASA Technical Reports Server (NTRS)
Miller, R. A. (Inventor); Brindley, W. J. (Inventor); Rouge, C. J. (Inventor)
1991-01-01
A metallic coating is plasma sprayed onto a smooth surface of a metal alloy substitute or on a bond coating. An initial thin ceramic layer is low pressure sprayed onto the smooth surface of the substrate or bond coating. Another ceramic layer is atmospheric plasma sprayed onto the initial ceramic layer.
Process for strengthening aluminum based ceramics and material
Moorhead, Arthur J.; Kim, Hyoun-Ee
2000-01-01
A process for strengthening aluminum based ceramics is provided. A gaseous atmosphere consisting essentially of silicon monoxide gas is formed by exposing a source of silicon to an atmosphere consisting essentially of hydrogen and a sufficient amount of water vapor. The aluminum based ceramic is exposed to the gaseous silicon monoxide atmosphere for a period of time and at a temperature sufficient to produce a continuous, stable silicon-containing film on the surface of the aluminum based ceramic that increases the strength of the ceramic.
Development of a low-permeability glass--ceramic to seal to molybdenum. [For long-life vacuum tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eagan, R. J.
1975-03-01
This report describes the development of low-permeability glass-ceramics which can be sealed directly to molybdenum for the purpose of producing long-life vacuum tubes. Low permeability to helium and thermal expansion match to molybdenum are the bases upon which particular glass-ceramic compositions were selected and developed. The fabrication of tube envelopes using glass-ceramics is simplified when compared to conventional ceramic/metal tubes and these melting and sealing techniques are presented.
Hydridosiloxanes as precursors to ceramic products
Blum, Yigal D.; Johnson, Sylvia M.; Gusman, Michael I.
1997-01-01
A method is provided for preparing ceramic precursors from hydridosiloxane starting materials and then pyrolyzing these precursors to give rise to silicious ceramic materials. Si--H bonds present in the hydridosiloxane starting materials are catalytically activated, and the activated hydrogen atoms may then be replaced with nonhydrogen substituents. These preceramic materials are pyrolyzed in a selected atmosphere to give the desired ceramic product. Ceramic products which may be prepared by this technique include silica, silicon oxynitride, silicon carbide, metal silicates, and mullite.
Hydridosiloxanes as precursors to ceramic products
Blum, Y.D.; Johnson, S.M.; Gusman, M.I.
1997-06-03
A method is provided for preparing ceramic precursors from hydridosiloxane starting materials and then pyrolyzing these precursors to give rise to silicious ceramic materials. Si-H bonds present in the hydridosiloxane starting materials are catalytically activated, and the activated hydrogen atoms may then be replaced with nonhydrogen substituents. These preceramic materials are pyrolyzed in a selected atmosphere to give the desired ceramic product. Ceramic products which may be prepared by this technique include silica, silicon oxynitride, silicon carbide, metal silicates, and mullite.
Environment Conscious Ceramics (Ecoceramics): An Eco-Friendly Route to Advanced Ceramic Materials
NASA Technical Reports Server (NTRS)
Singh, M.
2001-01-01
Environment conscious ceramics (Ecoceramics) are a new class of materials, which can be produced with renewable natural resources (wood) or wood wastes (wood sawdust). This technology provides an eco-friendly route to advanced ceramic materials. Ecoceramics have tailorable properties and behave like ceramic materials manufactured by conventional approaches. Silicon carbide-based ecoceramics have been fabricated by reactive infiltration of carbonaceous preforms by molten silicon or silicon-refractory metal alloys. The fabrication approach, microstructure, and mechanical properties of SiC-based ecoceramics are presented.
Synthesis, processing and properties of TaC-TaB2-C Ceramics
2010-01-01
powder used. • A very important conclusion from the present study is that the grain size of nominally pure TaC ceramics is a strong function of carbon...ceramics at temperatures as low as 1500 ◦C. The grain size of nominally pure TaC ceramics was a strong function of carbon stoichiometry. Enhanced grain...evaluate the properties of ceramics in the TaC–TaB2–C system. Published by Elsevier Ltd. Keywords: A . Sintering; B. Microstructure; D. Carbides; D. Carbon
NASA Technical Reports Server (NTRS)
Calle, Luz Marina; Hintze, Paul E.; Parlier, Christopher R.; Curran, Jerome P.; Kolody, Mark; Perusich, Stephen; Whitten, Mary C.; Trejo, David; Zidek, Jason; Sampson, Jeffrey W.;
2009-01-01
Ceramics can be defmed as a material consisting of hard brittle properties produced from inorganic and nonmetallic minerals made by firing at high temperatures. These materials are compounds between metallic and nonmetallic elements and are either totally ionic, or predominately ionic but having some covalent character. This definition allows for a large range of materials, not all applicable to refractory applications. As this report is focused on potential ceramic materials for high temperature, aggressive exposure applications, the ceramics reviewed as part of this report will focus on refractory ceramics specifically designed and used for these applications. Ceramic materials consist of a wide variety of products. Callister (2000) 1 characterized ceramic materials into six classifications: glasses, clay products, refractories, cements, abrasives, and advanced ceramics. Figure 1 shows this classification system. This review will focus mainly on refractory ceramics and cements as in general, the other classifications are neither applicable nor economical for use in large structures such as the flame trench. Although much work has been done in advanced ceramics over the past decade or so, these materials are likely cost prohibitive and would have to be fabricated off-site, transported to the NASA facilities, and installed, which make these even less feasible. Although the authors reviewed the literature on advanced ceramic refractories 2 center dot 3 center dot 4 center dot 5 center dot 6 center dot 7 center dot 8 center dot 9 center dot 10 center dot 11 center dot 12 after the review it was concluded that these materials should not be ' the focus of this report. A review is in progress on materials and systems for prefabricated refractory ceramic panels, but this review is focusing more on typical refractory materials for prefabricated systems, which could make the system more economically feasible. Refractory ceramics are used for a wide variety of applications. Figure 2 shows many ofthese applications, their life expectancy or requirement, and the exposure temperature for the refractory ceramic. Note that the exposure temperatures for refractory ceramics are very similar to the exposure conditions for specialty ceramics (rocket nozzles, space vehicle re-entry fields, etc.) and yet the life expectancy or requirement is relatively low. Currently NASA is repairing the refractory lining in the flame trench after every launch - although this is not a direct indication of low life expectancy, it does indicate that the current system may not be sufficiently durable to maximize economy. Better performing refractory ceramics are needed to improve the performance, economy, and safety during and after launches at the flame trenches at Kennedy Space Center (KSC). To achieve this goal a current study is underway to assess different refractory systems for possible use in the flame trenches at KSC. This report will target the potential applicability of refractory ceramics for use in the flame trenches. An overview of the different refractory ceramics will be provided (see Figure I). This will be followed with a brief description of the structure of refractory products, the properties and characteristics of different systems, the methodology for selecting refractories, and then a general design methodology. Based on these sections, future challenges and opportunities will be identified with the objective of improving the durability, performance, economy, and safety of the launch complex. Refractory ceramics are used for a wide variety of applications. Figure 2 shows many ofthese applications, their life expectancy or requirement, and the exposure temperature for the refractory ceramic. Note that the exposure temperatures for refractory ceramics are very similar to the exposure conditions for specialty ceramics (rocket nozzles, space vehicle re-entry fields, etc.) and yet the life expectancy or requirement is relatively low. Currently NASA is repairing the refractory lining in the flame trench after every launch - although this is not a direct indication of low life expectancy, it does indicate that the current system may not be sufficiently durable to maximize economy. Better performing refractory ceramics are needed to improve the performance, economy, and safety during and after launches at the flame trenches at Kennedy Space Center (KSC). To achieve this goal a current study is underway to assess different refractory systems for possible use in the flame trenches at KSC. This report will target the potential applicability of refractory ceramics for use in the flame trenches. An overview of the different refractory ceramics will be provided (see Figure I). This will be followed with a brief description of the structure of refractory products, the properties and characteristics of different systems, the methodology for selecting refractories, and then a general design methodology. Based on these sections, future challenges and opportunities will be identified with the objective of improving the durability, performance, economy, and safety of the launch complex.
Petty, Jack D.
1993-01-01
A mounting for a ceramic scroll on a metal engine block of a gas turbine engine includes a first ceramic ring and a pair of cross key connections between the first ceramic ring, the ceramic scroll, and the engine block. The cross key connections support the scroll on the engine block independent of relative radial thermal growth and for bodily movement toward an annular mounting shoulder on the engine. The scroll has an uninterrupted annular shoulder facing the mounting shoulder on the engine block. A second ceramic ring is captured between mounting shoulder and the uninterrupted shoulder on the scroll when the latter is bodily shifted toward the mouting shoulder to define a gas seal between the scroll and the engine block.
Fabrication and performance of porous lithium sodium potassium niobate ceramic
NASA Astrophysics Data System (ADS)
Chen, Caifeng; Zhu, Yuan; Ji, Jun; Cai, Feixiang; Zhang, Youming; Zhang, Ningyi; Wang, Andong
2018-02-01
Porous lithium sodium potassium niobate (LNK) ceramic has excellent piezoelectric properties, chemical stability and great chemical compatibility. It has a good application potential in the field of biological bone substitute. In the paper, porous LNK ceramic was fabricated with egg albumen foaming agent by foaming method. Effects of preparation process of the porous LNK ceramic on density, phase structure, hole size and piezoelectric properties were researched and characterized. The results show that the influence factors of LNK solid content and foaming agent addition are closely relevant to properties of the porous LNK ceramic. When solid content is 65% and foaming agent addition is 30%, the porous LNK ceramic has uniform holes and the best piezoelectric properties.
Pressurized heat treatment of glass ceramic
Kramer, D.P.
1984-04-19
A method of producing a glass-ceramic having a specified thermal expansion value is disclosed. The method includes the step of pressurizing the parent glass material to a predetermined pressure during heat treatment so that the glass-ceramic produced has a specified thermal expansion value. Preferably, the glass-ceramic material is isostatically pressed. A method for forming a strong glass-ceramic to metal seal is also disclosed in which the glass-ceramic is fabricated to have a thermal expansion value equal to that of the metal. The determination of the thermal expansion value of a parent glass material placed in a high-temperature environment is also used to determine the pressure in the environment.
NASA Astrophysics Data System (ADS)
Kasashima, Yuji; Tsutsumi, Kota; Mitomi, Shinzo; Uesugi, Fumihiko
2017-06-01
In mass-production plasma etching equipment, the corrosion of ceramic chamber parts reduces the production yield of LSI and overall equipment effectiveness (OEE) owing to contamination, short useful life, and particle generation. Novel ceramics that can improve the production yield and OEE are highly required. We develop magnesium oxide (MgO)-based ceramics and evaluate them under mass-production plasma etching conditions. The results of this study indicate that the developed MgO-based ceramics with high mechanical properties and low electric resistivity have a higher resistance to corrosion in plasma etching using CF4 gas than Si and conventional ceramic materials such as aluminum oxide and yttrium oxide.
Mixture for producing fracture-resistant, fiber-reinforced ceramic material by microwave heating
Meek, T.T.; Blake, R.D.
1987-09-22
A fracture-resistant, fiber-reinforced ceramic substrate is produced by a method which involves preparing a ceramic precursor mixture comprising glass material, a coupling agent, and resilient fibers, and then exposing the mixture to microwave energy. The microwave field orients the fibers in the resulting ceramic material in a desired pattern wherein heat later generated in or on the substrate can be dissipated in a desired geometric pattern parallel to the fiber pattern. Additionally, the shunt capacitance of the fracture-resistant, fiber-reinforced ceramic substrate is lower which provides for a quicker transit time for electronic pulses in any conducting pathway etched into the ceramic substrate. 2 figs.
Health hazards of ceramic artists.
Dorevitch, S; Babin, A
2001-01-01
Ceramic artists can be exposed to many hazards including metals (such as lead), fibrogenic dusts (such as silica), heat, repetitive motion, radiation, and toxic emissions from kilns. The health risks of these exposures have not been well characterized among artists, although limited information is available from commercial potteries. Adverse health effects may be prevented by using less hazardous materials (such as lead-free glazes), improved ventilation, and proper work practices. Special precautions must be in place if children have access to the ceramics studio. The use of glazed ceramic dishes can be a risk for lead toxicity. Food should not be stored in glazed ceramics, and pregnant women should avoid daily use of ceramic mugs for drinking hot beverages.
Della Bona, Alvaro
2005-03-01
The appeal of ceramics as structural dental materials is based on their light weight, high hardness values, chemical inertness, and anticipated unique tribological characteristics. A major goal of current ceramic research and development is to produce tough, strong ceramics that can provide reliable performance in dental applications. Quantifying microstructural parameters is important to develop structure/property relationships. Quantitative microstructural analysis provides an association among the constitution, physical properties, and structural characteristics of materials. Structural reliability of dental ceramics is a major factor in the clinical success of ceramic restorations. Complex stress distributions are present in most practical conditions and strength data alone cannot be directly extrapolated to predict structural performance.
Method and apparatus for ceramic analysis
Jankowiak, Ryszard J.; Schilling, Chris; Small, Gerald J.; Tomasik, Piotr
2003-04-01
The present invention relates to a method and apparatus for ceramic analysis, in particular, a method for analyzing density, density gradients and/or microcracks, including an apparatus with optical instrumentation for analysis of density, density gradients and/or microcracks in ceramics. The method provides analyzing density of a ceramic comprising exciting a component on a surface/subsurface of the ceramic by exposing the material to excitation energy. The method may further include the step of obtaining a measurement of an emitted energy from the component. The method may additionally include comparing the measurement of the emitted energy from the component with a predetermined reference measurement so as to obtain a density for said ceramic.
Pressurized heat treatment of glass-ceramic to control thermal expansion
Kramer, Daniel P.
1985-01-01
A method of producing a glass-ceramic having a specified thermal expansion value is disclosed. The method includes the step of pressurizing the parent glass material to a predetermined pressure during heat treatment so that the glass-ceramic produced has a specified thermal expansion value. Preferably, the glass-ceramic material is isostatically pressed. A method for forming a strong glass-ceramic to metal seal is also disclosed in which the glass-ceramic is fabricated to have a thermal expansion value equal to that of the metal. The determination of the thermal expansion value of a parent glass material placed in a high-temperature environment is also used to determine the pressure in the environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1985-09-01
A five-year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applicationsmore » in these engines.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1987-03-01
An assessment of needs was completed, and a five-year project plan was developed with extensive input from private industry. Objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barriermore » and wear applications in these engines.« less
High temperature electrically conducting ceramic heating element and control system
NASA Technical Reports Server (NTRS)
Halbach, C. R.; Page, R. J.
1975-01-01
Improvements were made in both electrode technology and ceramic conductor quality to increase significantly the lifetime and thermal cycling capability of electrically conducting ceramic heater elements. These elements were operated in vacuum, inert and reducing environments as well as oxidizing atmospheres adding to the versatility of the conducting ceramic as an ohmic heater. Using stabilized zirconia conducting ceramic heater elements, a furnace was fabricated and demonstrated to have excellent thermal response and cycling capability. The furnace was used to melt platinum-20% rhodium alloy (melting point 1904 C) with an isothermal ceramic heating element having a nominal working cavity size of 2.5 cm diameter by 10.0 cm long. The furnace was operated to 1940 C with the isothermal ceramic heating element. The same furnace structure was fitted with a pair of main heater elements to provide axial gradient temperature control over a working cavity length of 17.8 cm.
Joining and Integration of Silicon Carbide for Turbine Engine Applications
NASA Technical Reports Server (NTRS)
Halbig, Michael C.; Singh, Mrityunjay; Coddington, Bryan; Asthana, Rajiv
2010-01-01
The critical need for ceramic joining and integration technologies is becoming better appreciated as the maturity level increases for turbine engine components fabricated from ceramic and ceramic matrix composite materials. Ceramic components offer higher operating temperatures and reduced cooling requirements. This translates into higher efficiencies and lower emissions. For fabricating complex shapes, diffusion bonding of silicon carbide (SiC) to SiC is being developed. For the integration of ceramic parts to the surrounding metallic engine system, brazing of SiC to metals is being developed. Overcoming the chemical, thermal, and mechanical incompatibilities between dissimilar materials is very challenging. This presentation will discuss the types of ceramic components being developed by researchers and industry and the benefits of using ceramic components. Also, the development of strong, crack-free, stable bonds will be discussed. The challenges and progress in developing joining and integration approaches for a specific application, i.e. a SiC injector, will be presented.
Process for making ceramic hot gas filter
Connolly, Elizabeth Sokolinski; Forsythe, George Daniel; Domanski, Daniel Matthew; Chambers, Jeffrey Allen; Rajendran, Govindasamy Paramasivam
2001-01-01
A ceramic hot-gas candle filter having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during backpulse cleaning and is resistant to chemical degradation at high temperatures.
Connolly, Elizabeth Sokolinski; Forsythe, George Daniel; Domanski, Daniel Matthew; Chambers, Jeffrey Allen; Rajendran, Govindasamy Paramasivam
1999-01-01
A ceramic hot-gas candle filter having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during backpulse cleaning and is resistant to chemical degradation at high temperatures.
Method for adhesion of metal films to ceramics
Lowndes, Douglas H.; Pedraza, Anthony J.; DeSilva, Melvin J.; Kumar, Rajagopalan A.
1997-01-01
Methods for making strongly bonded metal-ceramic materials. The methods include irradiating a portion of the surface of the ceramic material with a pulsed ultraviolet laser having an energy density sufficient to effect activation of the irradiated surface of the ceramic material so that adhesion of metals subsequently deposited onto the irradiated surface is substantially increased. Advantages of the invention include (i) the need for only a small number of laser pulses at relatively low focused energy density, (ii) a smoother substrate surface, (iii) activation of the laser-treated surface which provides a chemical bond between the surface and a metal deposited thereon, (iv) only low temperature annealing is required to produce the strong metal-ceramic bond; (v) the ability to obtain strong adhesion between ceramic materials and oxidation resistant metals; (vi) ability to store the laser treated ceramic materials for later deposition of metals thereon.
Zhang, Q M; Zhao, J
1999-01-01
In lead zirconate titanate piezoceramics, external stresses can cause substantial changes in the piezoelectric coefficients, dielectric constant, and elastic compliance due to nonlinear effects and stress depoling effects. In both soft and hard PZT piezoceramics, the aging can produce a memory effect that will facilitate the recovery of the poled state in the ceramics from momentary electric or stress depoling. In hard PZT ceramics, the local defect fields built up during the aging process can stabilize the ceramic against external stress depoling that results in a marked increase in the piezoelectric coefficient and electromechanical coupling factor in the ceramic under the stress. Although soft PZT ceramics can be easily stress depoled (losing piezoelectricity), a DC bias electric field, parallel to the original poling direction, can be employed to maintain the ceramic poling state so that the ceramic can be used at high stresses without depoling.
NASA Astrophysics Data System (ADS)
Sinescu, Cosmin; Negrutiu, Meda; Hughes, Michael; Bradu, Adrian; Todea, Carmen; Rominu, Mihai; Laissue, Philippe L.; Podoleanu, Adrian Gh.
2008-04-01
Metal ceramic and integral ceramic fixed partial prostheses are mainly used in the frontal part of the dental arch because for esthetics reasons. The masticatory stress may induce fractures of the bridges. There are several factors that are associated with the stress state created in ceramic restorations, including: thickness of ceramic layers, mechanical properties of the materials, elastic modulus of the supporting substrate material, direction, magnitude and frequency of applied load, size and location of occlusal contact areas, residual stresses induced by processing or pores, restoration-cement interfacial defects and environmental defects. The fractures of these bridges lead to functional, esthetic and phonetic disturbances which finally render the prosthetic treatment inefficient. The purpose of this study is to evaluate the capability of optical coherence tomography (OCT) in detection and analysis of possible material defects in metal-ceramic and integral ceramic fixed partial dentures.
Low temperature joining of ceramic composites
Barton, Thomas J.; Anderson, Iver E.; Ijadi-Maghsoodi, Sina; Nosrati, Mohammad; Unal, Ozer
1999-07-13
A method of joining similar or dissimilar ceramic and ceramic composite materials, such as SiC continuous fiber ceramic composites, at relatively low joining temperatures uses a solventless, three component bonding agent effective to promote mechanical bond toughness and elevated temperature strength to operating temperatures of approximately 1200 degrees C. The bonding agent comprises a preceramic precursor, an aluminum bearing powder, such as aluminum alloy powder, and mixtures of aluminum metal or alloy powders with another powder, and and boron powder in selected proportions. The bonding agent is disposed as an interlayer between similar or dissimilar ceramic or ceramic composite materials to be joined and is heated in ambient air or inert atmosphere to a temperature not exceeding about 1200 degrees C. to form a strong and tough bond joint between the materials. The bond joint produced is characterized by a composite joint microstructure having relatively soft, compliant aluminum bearing particulate regions dispersed in a ceramic matrix.
Low temperature joining of ceramic composites
Barton, T.J.; Anderson, I.E.; Ijadi-Maghsoodi, S.; Nosrati, M.; Unal, O.
1999-07-13
A method of joining similar or dissimilar ceramic and ceramic composite materials, such as SiC continuous fiber ceramic composites, at relatively low joining temperatures uses a solventless, three component bonding agent effective to promote mechanical bond toughness and elevated temperature strength to operating temperatures of approximately 1200 C. The bonding agent comprises a preceramic precursor, an aluminum bearing powder, such as aluminum alloy powder, and mixtures of aluminum metal or alloy powders with another powder, and boron powder in selected proportions. The bonding agent is disposed as an interlayer between similar or dissimilar ceramic or ceramic composite materials to be joined and is heated in ambient air or inert atmosphere to a temperature not exceeding about 1200 C to form a strong and tough bond joint between the materials. The bond joint produced is characterized by a composite joint microstructure having relatively soft, compliant aluminum bearing particulate regions dispersed in a ceramic matrix. 3 figs.
Low temperature joining of ceramic composites
Barton, T.J.; Anderson, I.E.; Ijadi-Maghsoodi, S.; Nosrati, M.; Unal, O.
1999-01-12
A method of joining similar or dissimilar ceramic and ceramic composite materials, such as SiC continuous fiber ceramic composites, at relatively low joining temperatures uses a solventless, three component bonding agent effective to promote mechanical bond toughness and elevated temperature strength to operating temperatures of approximately 1200 degrees C. The bonding agent comprises a preceramic precursor, an aluminum bearing powder, such as aluminum alloy powder, and mixtures of aluminum metal or alloy powders with another powder, and boron powder in selected proportions. The bonding agent is disposed as an interlayer between similar or dissimilar ceramic or ceramic composite materials to be joined and is heated in ambient air or inert atmosphere to a temperature not exceeding about 1200 degrees C. to form a strong and tough bond joint between the materials. The bond joint produced is characterized by a composite joint microstructure having relatively soft, compliant aluminum bearing particulate regions dispersed in a ceramic matrix. 3 figs.
Preparation and characterization of a novel willemite bioceramic.
Zhang, Meili; Zhai, Wanyin; Chang, Jiang
2010-04-01
Willemite (Zn(2)SiO(4)) ceramics were prepared by sintering the willemite green compacts. The effects of sintering temperature on the linear shrinkage, porosity and mechanical strength of the ceramics were examined. With the sintering temperature increased, the linear shrinkage of the ceramics increased and the porosity decreased. When sintered at 1,300 degrees C, willemite ceramics showed mechanical properties of the same order of magnitude as values for human cortical bone, as measured by bending strength (91.2 +/- 4.2 MPa) and Young's modulus (37.5 +/- 1.5 GPa). In addition, the adhesion and proliferation of rabbit bone marrow stromal cells (BMSCs) on willemite ceramics was investigated. The results showed that the ceramics supported cell adhesion and stimulated the proliferation. All these findings suggest that willemite ceramics possess suitable mechanical properties and favorable biocompatibility and might be a promising biomaterial for bone implant applications.
Mechanical properties of a new mica-based machinable glass ceramic for CAD/CAM restorations.
Thompson, J Y; Bayne, S C; Heymann, H O
1996-12-01
Machinable ceramics (Vita Mark II and Dicor MGC) exhibit good short-term clinical performance, but long-term in vivo fracture resistance is still being monitored. The relatively low fracture toughness of currently available machinable ceramics restricts their use to conservative inlays and onlays. A new machinable glass ceramic (MGC-F) has been developed (Corning Inc.) with enhanced fluorescence and machinability. The purpose of this study was to characterize and compare key mechanical properties of MGC-F to Dicor MGC-Light, Dicor MGC-Dark, and Vita Mark II glass ceramics. The mean fracture toughness and indented biaxial flexure strength of MGC-F were each significantly greater (p < or = 0.01) than that of Dicor MGC-Light, Dicor MGC-Dark, and Vita Mark II ceramic materials. The results of this study indicate the potential for better in vivo fracture resistance of MGC-F compared with existing machinable ceramic materials for CAD/CAM restorations.
High-throughput method to predict extrusion pressure of ceramic pastes.
Cao, Kevin; Liu, Yang; Tucker, Christopher; Baumann, Michael; Grit, Grote; Lakso, Steven
2014-04-14
A new method was developed to measure the rheology of extrudable ceramic pastes using a Hamilton MicroLab Star liquid handler. The Hamilton instrument, normally used for high throughput liquid processing, was expanded to function as a low pressure capillary rheometer. Diluted ceramic pastes were forced through the modified pipettes, which produced pressure drop data that was converted to standard rheology data. A known ceramic paste containing cellulose ether was made and diluted to various concentrations in water. The most dilute paste samples were tested in the Hamilton instrument and the more typical, highly concentrated, ceramic paste were tested with a hydraulic ram extruder fitted with a capillary die and pressure measurement system. The rheology data from this study indicates that the dilute high throughput method using the Hamilton instrument correlates to, and can predict, the rheology of concentrated ceramic pastes normally used in ceramic extrusion production processes.
Connolly, E.S.; Forsythe, G.D.; Domanski, D.M.; Chambers, J.A.; Rajendran, G.P.
1999-05-11
A ceramic hot-gas candle filter is described having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during back pulse cleaning and is resistant to chemical degradation at high temperatures.
Lee, Soong Joon; Kwak, Hong Suk; Yoo, Jeong Joon; Kim, Hee Joong
2016-01-01
We evaluated the short-term to midterm results of reoperation with bearing change to metal-on-polyethylene (MoP) after ceramic bearing fracture in ceramic-on-ceramic total hip arthroplasty. Nine third-generation ceramic bearing fractures (6 heads and 3 liners) were treated with bearing change to MoP. Mean age at reoperation was 52.7 years. Mean follow-up was 4.3 years. During follow-up, 2 of 3 liner-fractured hips and 1 of 6 head-fractured hips showed radiologic signs of metallosis and elevated serum chromium levels. Re-reoperation with bearing rechange to a ceramic head was performed for the hips with metallosis. One liner-fractured hip had periprosthetic joint infection. Dislocation occurred in 3 hips. From our experience, bearing change to MoP is not a recommended treatment option for ceramic bearing fracture in total hip arthroplasty. Copyright © 2016 Elsevier Inc. All rights reserved.
Color Differences Between Pink Veneering Ceramics and the Human Gingiva.
Valente, Nicola Alberto; Sailer, Irena; Fehmer, Vincent; Thoma, Daniel Stefan
2018-06-12
The aim of this study was to examine 10 different shades of pink ceramic to determine which one best matches the mean color of human gingiva. Bar-shaped zirconia samples were fabricated and veneered with 1 of 10 pink zirconia veneering ceramics. The color of the gingiva at the central maxillary incisors of 20 healthy volunteers was compared to the pink veneering ceramics using a spectrophotometer (Spectroshade, MHT). The obtained color parameters L*, a*, and b* (CIELAB) of the gingiva and the ceramics were used to calculate the color difference (ΔE). Mean ΔE values were descriptively analyzed and compared to the threshold value for visibility of color differences of gingiva (ΔE = 3.1). The lowest pink ceramic ΔE value obtained (closest to the mean ΔE of all the volunteers' gingiva) was 6.2. All the tested ceramics exhibited a color difference above the threshold value for visibility.
Metal-to-ceramic attachment device
Pavelka, Edwin A.; Grindstaff, Quirinus G.; Scheppele, Stuart E.
1985-01-01
A metal-to-ceramic fastening device is disclosed for securing a metal member to a ceramic member with respective confronting surfaces thereon clamped together, comprising a threaded bolt adapted to extend through a bolt hole in the metal member and into an aligned opening in the ceramic member, a rod nut threadedly receiving the bolt and adapted to span the opening in the ceramic member, and a pressure limiting member received on the bolt between the nut and the confronting surface of the metal member for limiting the movement of the nut toward the metal member when the bolt is tightened, so as to limit the pressure applied by the nut to the ceramic member to avoid damage thereto. The fastening device also prevents damage to the ceramic member due to thermal stresses. The pressure limiting member may have a shallow dish-shaped depression facing the rod nut to assist in accommodating thermal stresses.
Method for adhesion of metal films to ceramics
Lowndes, D.H.; Pedraza, A.J.; DeSilva, M.J.; Kumar, R.A.
1997-12-30
Methods for making strongly bonded metal-ceramic materials are disclosed. The methods include irradiating a portion of the surface of the ceramic material with a pulsed ultraviolet laser having an energy density sufficient to effect activation of the irradiated surface of the ceramic material so that adhesion of metals subsequently deposited onto the irradiated surface is substantially increased. Advantages of the invention include (i) the need for only a small number of laser pulses at relatively low focused energy density, (ii) a smoother substrate surface, (iii) activation of the laser-treated surface which provides a chemical bond between the surface and a metal deposited thereon, (iv) only low temperature annealing is required to produce the strong metal-ceramic bond; (v) the ability to obtain strong adhesion between ceramic materials and oxidation resistant metals; (vi) ability to store the laser treated ceramic materials for later deposition of metals thereon. 7 figs.
Oxidation Behavior of a Refractory NbCrMo0.5Ta0.5TiZr Alloy (Preprint)
2012-03-01
Miracle Metals Branch Metals , Ceramics & Nondestructive Evaluation Division O.N. Senkov and S.V. Senkova UES Inc. MARCH 2012...Manager PAUL RET, Branch Chief Metals Branch Metals Branch Metals , Ceramics & Nondestructive Evaluation Division Metals , Ceramics...Nondestructive Evaluation Division //SIGNED// ______________________________________ CHARLES H. WARD, Division Chief Metals , Ceramics
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hip joint metal/polymer or ceramic/polymer... Devices § 888.3410 Hip joint metal/polymer or ceramic/polymer semiconstrained resurfacing cemented prosthesis. (a) Identification. A hip joint metal/polymer or ceramic/polymer semi-constrained resurfacing...
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Hip joint metal/polymer or ceramic/polymer... Devices § 888.3410 Hip joint metal/polymer or ceramic/polymer semiconstrained resurfacing cemented prosthesis. (a) Identification. A hip joint metal/polymer or ceramic/polymer semi-constrained resurfacing...
Advanced Ceramic Armor Materials
1990-05-11
materials, toughened alumina, fiber -reinforced glass matrix composites, and multilayer-gradient materials for ballistic testing. Fabrication and...material systems: Multilayer advanced armor materials consisting of a hard ceramic faceplate bonded to a graphite fiber -reinforced glass matrix...toughened alumina, and fiber - applied studies of advanced reinforced ceramic matrix glass and glass -ceramic composites for ballistic testing. technologies
Ceramics Art Education and Contemporary Challenges in Nigeria
ERIC Educational Resources Information Center
Kashim, Isah Bolaji; Adelabu, Oluwafemi Samuel
2013-01-01
Formal ceramics art education is becoming a fundamental requirement for professional practice in ceramics in Nigeria. Considering the ample resources available for ceramic practices in the country with a teeming population of over 140 million people, there is a promising future for the art, in spite of the effects of globalization and…
Instructional Resources. The Significance of Form: Ceramics.
ERIC Educational Resources Information Center
Zawatsky, Carole; And Others
1989-01-01
Presents four lesson plans designed to teach K-12 students about ceramics and the artists using the medium. Each lesson is centered around one ceramic piece: (1) "Wall Clock," by the Chantilly Porcelain Factory; (2) "Poppy Vase," by Adelaide Robineau; (3) "Laughing Eyes," by Pablo Picasso; and (4) "Ceramic Drum Jar," by Tsayutitsa. (GEA)
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Hip joint metal/polymer or ceramic/polymer... Devices § 888.3410 Hip joint metal/polymer or ceramic/polymer semiconstrained resurfacing cemented prosthesis. (a) Identification. A hip joint metal/polymer or ceramic/polymer semi-constrained resurfacing...
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Hip joint metal/polymer or ceramic/polymer... Devices § 888.3410 Hip joint metal/polymer or ceramic/polymer semiconstrained resurfacing cemented prosthesis. (a) Identification. A hip joint metal/polymer or ceramic/polymer semi-constrained resurfacing...
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Hip joint metal/polymer or ceramic/polymer... Devices § 888.3410 Hip joint metal/polymer or ceramic/polymer semiconstrained resurfacing cemented prosthesis. (a) Identification. A hip joint metal/polymer or ceramic/polymer semi-constrained resurfacing...
Ceramic fiber-reinforced monoclinic celsian phase glass-ceramic matrix composite material
NASA Technical Reports Server (NTRS)
Bansal, Narottam P. (Inventor); Dicarlo, James A. (Inventor)
1994-01-01
A hyridopolysilazane-derived ceramic fiber reinforced monoclinic celsian phase barium aluminum silicate glass-ceramic matrix composite material is prepared by ball-milling an aqueous slurry of BAS glass powder and fine monoclinic celsian seeds. The fibers improve the mechanical strength and fracture toughness and with the matrix provide superior dielectric properties.
Soaring Voices: Recent Ceramics by Women from Japan
ERIC Educational Resources Information Center
Johnson, Mark M.
2011-01-01
Japanese ceramics enjoy a long and distinguished history, and the Japanese aesthetic of elegant simplicity, along with their approach to materials, has influenced ceramic artists around the world for centuries. Women in Japan have been involved in the production of ceramics for thousands of years, but with few exceptions, their names have remained…
Current Scenario of Ceramic Engineering Education in India
ERIC Educational Resources Information Center
Srivastava, Aaditya Ranjan; Bajpai, Shrish; Khare, Sushant
2018-01-01
Historical overview of ceramic development has been provided in the paper. It has been stated that the trail of ceramics has been rooted in Indus valley civilization. Advancement of materials leads to afflux of development in the fields of science and technology. Present paper deals with the realm of Ceramic Engineering, mainly focuses on…
[The classification of ceramics according to its chemical nature and its method of production].
Moureau, Thomas; Bouhy, Alice; Raepsaet, Nicolas; Vanheusden, Alain
2006-01-01
Nowadays, we find on the market a huge amount of design and manufactured system that allows the realisation of all-ceramics restorations, using different ceramics. The purpose of this article is suggesting a classification of mostly used ceramics and a few laboratory process used in our university.
Kamitakahara, Masanobu; Uno, Yuika; Ioku, Koji
2014-01-01
In designing the biomaterials, it is important to control their surface morphologies, because they affect the interactions between the materials and cells. We previously reported that porous calcium-deficient hydroxyapatite (HA) ceramics composed of rod-like particles had advantages over sintered porous HA ceramics; however, the effects of the surface morphology of calcium-deficient HA ceramics on cell behavior have remained unclear. Using a hydrothermal process, we successfully prepared porous calcium-deficient HA ceramics with different surface morphologies, composed of plate-like particles of 200-300, 500-800 nm, or 2-3 μm in width and rod-like particles of 1 or 3-5 μm in width, respectively. The effects of these surface morphologies on the behavior of osteoblast-like cells were examined. Although the numbers of cells adhered to the ceramic specimens did not differ significantly among the specimens, the proliferation rates of cells on the ceramics decreased with decreasing particle size. Our results reveal that controlling the surface morphology that is governed by particle shape and size is important for designing porous calcium-deficient HA ceramics.
Structure and bioactivity studies of new polysiloxane-derived materials for orthopedic applications
NASA Astrophysics Data System (ADS)
Paluszkiewicz, Czesława; Gumuła, Teresa; Podporska, Joanna; Błażewicz, Marta
2006-07-01
The aim of this work was to examine the structure of new calcium silicate bioactive ceramic implant material for bone surgery applications. The bioceramic material was obtained by thermal treatment of active fillers-containing organosilicon polymer precursor. Different ceramic active fillers, namely Ca(OH) 2, CaCO 3, Na 2HPO 4 and SiO 2 powders were used. The phase composition of ceramic samples obtained by thermal transformation of active fillers containing polysiloxane was investigated. Morphology and structure of ceramic phases were characterized by means of scanning electron microscopy (SEM) with EDS point analysis, FTIR spectroscopy and XRD analysis. It was found that thermal treatment of active fillers-containing organosilicon precursor lead to the formation of wollastonite-containing ceramic material. This ceramic material showed bioactivity in 'in vitro' conditions studied by immersing the samples in simulated body fluid (SBF). The surface of wollastonite-containing ceramic before and after immersion in SBF was analysed. It can be concluded that this kind of ceramic material may be useful as bone substitute. FTIR spectroscopy is an adequate device for the determination of such derived materials structure.
Characterization of ion beam modified ceramic wear surfaces using Auger electron spectroscopy
NASA Technical Reports Server (NTRS)
Wei, W.; Lankford, J.
1987-01-01
An investigation of the surface chemistry and morphology of the wear surfaces of ceramic material surfaces modified by ion beam mixing has been conducted using Auger electron spectroscopy and secondary electron microscopy. Studies have been conducted on ceramic/ceramic friction and wear couples made up of TiC and NiMo-bonded TiC cermet pins run against Si3N4 and partially stabilized zirconia disc surfaces modified by the ion beam mixing of titanium and nickel, as well as ummodified ceramic/ceramic couples in order to determine the types of surface changes leading to the improved friction and wear behavior of the surface modified ceramics in simulated diesel environments. The results of the surface analyses indicate that the formation of a lubricating oxide layer of titanium and nickel, is responsible for the improvement in ceramic friction and wear behavior. The beneficial effect of this oxide layer depends on several factors, including the adherence of the surface modified layer or subsequently formed oxide layer to the disc substrate, the substrate materials, the conditions of ion beam mixing, and the environmental conditions.
Next Generation Ceramic Substrate Fabricated at Room Temperature.
Kim, Yuna; Ahn, Cheol-Woo; Choi, Jong-Jin; Ryu, Jungho; Kim, Jong-Woo; Yoon, Woon-Ha; Park, Dong-Soo; Yoon, Seog-Young; Ma, Byungjin; Hahn, Byung-Dong
2017-07-26
A ceramic substrate must not only have an excellent thermal performance but also be thin, since the electronic devices have to become thin and small in the electronics industry of the next generation. In this manuscript, a thin ceramic substrate (thickness: 30-70 µm) is reported for the next generation ceramic substrate. It is fabricated by a new process [granule spray in vacuum (GSV)] which is a room temperature process. For the thin ceramic substrates, AlN GSV films are deposited on Al substrates and their electric/thermal properties are compared to those of the commercial ceramic substrates. The thermal resistance is significantly reduced by using AlN GSV films instead of AlN bulk-ceramics in thermal management systems. It is due to the removal of a thermal interface material which has low thermal conductivity. In particular, the dielectric strengths of AlN GSV films are much higher than those of AlN bulk-ceramics which are commercialized, approximately 5 times. Therefore, it can be expected that this GSV film is a next generation substrate in thermal management systems for the high power application.
Method for fabrication of ceramic dielectric films on copper foils
Ma, Beihai; Narayanan, Manoj; Dorris, Stephen E.; Balachandran, Uthamalingam
2015-03-10
The present invention provides a method for fabricating a ceramic film on a copper foil. The method comprises applying a layer of a sol-gel composition onto a copper foil. The sol-gel composition comprises a precursor of a ceramic material suspended in 2-methoxyethanol. The layer of sol-gel is then dried at a temperature up to about 250.degree. C. The dried layer is then pyrolyzed at a temperature in the range of about 300 to about 450.degree. C. to form a ceramic film from the ceramic precursor. The ceramic film is then crystallized at a temperature in the range of about 600 to about 750.degree. C. The drying, pyrolyzing and crystallizing are performed under a flowing stream of an inert gas. In some embodiments an additional layer of the sol-gel composition is applied onto the ceramic film and the drying, pyrolyzing and crystallizing steps are repeated for the additional layer to build up a thicker ceramic layer on the copper foil. The process can be repeated one or more times if desired.
Ward, M.E.; Harkins, B.D.
1993-11-30
Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present joint when used with recuperators increases the use of ceramic components which do not react to highly corrosive gases. Thus, the present joint used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present joint is comprised of a first ceramic member, a second ceramic member, a mechanical locking device having a groove defined in one of the first ceramic member and the second ceramic member. The joint and the mechanical locking device is further comprised of a refractory material disposed in the groove and contacting the first ceramic member and the second ceramic member. The present joint mechanically provides a high strength load bearing joint having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures. 4 figures.
Degradation, bioactivity, and cytocompatibility of diopside, akermanite, and bredigite ceramics.
Wu, Chengtie; Chang, Jiang
2007-10-01
The aim of this study was to investigate the effect of three bioceramics in the CaO-SiO(2)-MgO systems with different composition on the in vitro degradation, bioactivity, and cytocompatibility. The degradation was evaluated through the activation energy of Si ion release from ceramics and the weight loss of the ceramics in Tris-HCl buffers. The in vitro bioactivity of the ceramics was investigated by analysis of apatite-formation ability in the simulated body fluid (SBF). The cytocompatibility was evaluated through osteoblast morphology and proliferation. The results showed that the activation energy of Si ion release increased and the degradation decreased from bredigite to diopside ceramics with the increase of Mg content, and the apatite-formation ability in SBF decreased. The Ca, Si, and Mg containing ionic products from three ceramics could stimulate cell proliferation at lower concentration, and inhibit cell proliferation with the increase of ion concentrations. Furthermore, osteoblasts could adhere, spread, and proliferate on three ceramic disks, and cell proliferation on diopside was more obvious than that on other two ceramic disks.
Differential natural organic matter fouling of ceramic versus polymeric ultrafiltration membranes.
Lee, Seung-Jin; Kim, Jae-Hong
2014-01-01
Ceramic ultrafiltration membranes has drawn increasing attention in drinking water treatment sectors as an alternative to traditional polymeric counterparts, yet only limited information has been made available about the characteristics of ceramic membrane fouling by natural organic matter. The effects of solution chemistry including ionic strength, divalent ion concentration and pH on the flux behavior were comparatively evaluated for ceramic and polymeric ultrafiltration of synthetic water containing model natural organic matter. Filtration characteristics were further probed via resistance-in-series model analysis, fouling visualization using quantum dots, batch adsorption test, contact angle measurement, solute-membrane surface adhesion force measurement, and quantitative comparison of fouling characteristics between ceramic and polymeric membranes. The results collectively suggested that the effects of solution chemistry on fouling behavior of ceramic membranes were generally similar to polymeric counterparts in terms of trends, while the extent varied significantly depending on water quality parameters. Lower fouling tendency and enhanced cleaning efficiency were observed with the ceramic membrane, further promoting the potential for ceramic membrane application to surface water treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.
Ward, Michael E.; Harkins, Bruce D.
1993-01-01
Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present joint when used with recuperators increases the use of ceramic components which do not react to highly corrosive gases. Thus, the present joint used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present joint is comprised of a first ceramic member, a second ceramic member, a mechanical locking device having a groove defined in one of the first ceramic member and the second ceramic member. The joint and the mechanical locking device is further comprised of a refractory material disposed in the groove and contacting the first ceramic member and the second ceramic member. The present joint mechanically provides a high strength load bearing joint having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures.
High pressure ceramic heat exchanger
Harkins, Bruce D.; Ward, Michael E.
1998-01-01
Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present header assembly when used with recuperators reduces the brittle effect of a portion of the ceramic components. Thus, the present header assembly used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present header assembly is comprised of a first ceramic member, a second ceramic member, a strengthening reinforcing member being in spaced relationship to the first ceramic member and the second ceramic member. The header assembly is further comprised of a refractory material disposed in contacting relationship with the first ceramic member, the second ceramic member and the strengthening reinforcing member. The present header assembly provides a high strength load bearing header assembly having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures.
High pressure ceramic heat exchanger
Harkins, Bruce D.; Ward, Michael E.
1999-01-01
Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present header assembly when used with recuperators reduces the brittle effect of a portion of the ceramic components. Thus, the present header assembly used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present header assembly is comprised of a first ceramic member, a second ceramic member, a reinforcing member being in spaced relationship to the first ceramic member and the second ceramic member. The header assembly is further comprised of a refractory material disposed in contacting relationship with the first ceramic member, the second ceramic member and the reinforcing member and having a strengthening member wrapped around the refractory material. The present header assembly provides a high strength load bearing header assembly having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures.
High pressure ceramic heat exchanger
Harkins, B.D.; Ward, M.E.
1998-09-22
Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present header assembly when used with recuperators reduces the brittle effect of a portion of the ceramic components. Thus, the present header assembly used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present header assembly is comprised of a first ceramic member, a second ceramic member, a strengthening reinforcing member being in spaced relationship to the first ceramic member and the second ceramic member. The header assembly is further comprised of a refractory material disposed in contacting relationship with the first ceramic member, the second ceramic member and the strengthening reinforcing member. The present header assembly provides a high strength load bearing header assembly having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures. 5 figs.
Laser-Aided Ceramic Bracket Debonding: A Comprehensive Review
Ghazanfari, Rezvaneh; Nokhbatolfoghahaei, Hanieh; Alikhasi, Marzieh
2016-01-01
Different techniques have been introduced for the removal of ceramic brackets. Since the early 1990s, lasers have been used experimentally for debonding ceramic brackets. The goal of this study is to give a comprehensive literature review on laser-aided ceramic bracket debonding. PubMed and Google Scholar databases were used to identify dental articles with the following combination of key words: Ceramic brackets, Debonding, and Laser. Sixteen English articles from 2004 to 2015 were selected. The selected studies were categorized according to the variables investigated including the intrapulpal temperature, shear bond strength, debonding time, enamel damage and bracket failure. Most articles reported decreased shear bond strength and debonding time following laser irradiation without any critical and irritating increase in pulpal temperature. There were no reports of bracket failure or enamel damage. Laser irradiation is an efficient way to reduce shear bond strength of ceramic bracket and debonding time. This technique is a safe way for removing ceramic bracket with minimal impact on intrapulpal temperature and enamel surface and it reduces ceramic bracket failure. PMID:27330690
Controlled removal of ceramic surfaces with combination of ions implantation and ultrasonic energy
Boatner, Lynn A.; Rankin, Janet; Thevenard, Paul; Romana, Laurence J.
1995-01-01
A method for tailoring or patterning the surface of ceramic articles is provided by implanting ions to predetermined depth into the ceramic material at a selected surface location with the ions being implanted at a fluence and energy adequate to damage the lattice structure of the ceramic material for bi-axially straining near-surface regions of the ceramic material to the predetermined depth. The resulting metastable near-surface regions of the ceramic material are then contacted with energy pulses from collapsing, ultrasonically-generated cavitation bubbles in a liquid medium for removing to a selected depth the ion-damaged near-surface regions containing the bi-axially strained lattice structure from the ceramic body. Additional patterning of the selected surface location on the ceramic body is provided by implanting a high fluence of high-energy, relatively-light ions at selected surface sites for relaxing the bi-axial strain in the near-surface regions defined by these sites and thereby preventing the removal of such ion-implanted sites by the energy pulses from the collapsing ultrasonic cavitation bubbles.
Dispersed metal-toughened ceramics and ceramic brazing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moorhead, A.J.; Tiegs, T.N.; Lauf, R.J.
1983-01-01
An alumina (Al/sub 2/O/sub 3/) based material that contains approximately 1 vol % finely dispersed platinum or chromium was developed for use in high temperature thermal-shock resistant electrical insulators. The work at ORNL is divided into two areas: (1) development of DMT ceramics; and (2) development of brazing filler metals suitable for making ceramic-to-ceramic and ceramic-to-metal brazements. The DMT ceramics and brazements are intended for service at elevated temperatures and at high stress levels in the dirty environments of advanced heat engines. The development and characterization of DMT ceramics includes processing (powder preparation, densification and heat treatment) and detailed measurementmore » of mechanical and physical properties (strength, fracture toughness, and thermal conductivity). The brazing work includes: (1) the formulation and melting of small quantities of experimental brazing filler metals; (2) evaluation of the wetting and bonding behavior of these filler metals on Al/sub 2/O/sub 3/, partially stabilized zirconia and ..cap alpha..-SiC in a sessile drop apparatus; and (3) determine the short-term strength and fracture toughness of brazements.« less
Modified PZT ceramics as a material that can be used in micromechatronics
NASA Astrophysics Data System (ADS)
Zachariasz, Radosław; Bochenek, Dariusz
2015-11-01
Results on investigations of the PZT type ceramics with the following chemical composition: Pb0.94Sr0.06(Zr0.50 Ti0.50)0.99 Cr0.01O3 (PSZTC) which belongs to a group of multicomponent ceramic materials obtained on basis of the PZT type solid solution, are presented in this work. Ceramics PSZTC was obtained by a free sintering method under the following conditions: Tsint = 1250 °C and tsint = 2 h. Ceramic compacts of specimens for the sintering process were made from the ceramic mass consisting of a mixture of the synthesized PSZTC powder and 3% polyvinyl alcohol while wet. The PSZTC ceramic specimens were subjected to poling by two methods: low temperature and high temperature. On the basis of the examinations made it has been found that the ceramics obtained belongs to ferroelectric-hard materials and that is why it may be used to build resonators, filters and ultrasonic transducers. Contribution to the Topical Issue "Materials for Dielectric Applications" edited by Maciej Jaroszewski and Sabu Thomas.
NASA Technical Reports Server (NTRS)
Singh, M.
2004-01-01
Silicon carbide based advanced ceramics and fiber reinforced composites are under active consideration for use in wide variety of high temperature applications within the aeronautics, space transportation, energy, and nuclear industries. The engineering designs of ceramic and composite component require fabrication and manufacturing of large and complex shaped parts of various thicknesses. In many instances, it is more economical to build up complex shapes by joining simple geometrical shapes. In addition these components have to be joined or assembled with metallic sub-components. Thus, joining and attachment have been recognized as enabling technologies for successful utilization of ceramic components in various demanding applications. In this presentation, various challenges and opportunities in design, fabrication, and testing o high temperature joints in ceramic matrix composites will be presented. Silicon carbide based advanced ceramics (CVD and hot pressed), and C/SiC and SiC/SiC composites, in different shapes and sizes, have been joined using an affordable, robust ceramic joining technology (ARCJoinT). Microstructure and high temperature mechanical properties of joints in silicon carbide ceramics and CVI and melt infiltrated SiC matrix composites will,be reported. Various joint design philosophies and design issues in joining of ceramics and composites well be discussed.
CAD/CAM glass ceramics for single-tooth implant crowns: a finite element analysis.
Akça, Kvanç; Cavusoglu, Yeliz; Sagirkaya, Elcin; Aybar, Buket; Cehreli, Murat Cavit
2013-12-01
To evaluate the load distribution of CAD/CAM mono-ceramic crowns supported with single-tooth implants in functional area. A 3-dimensional numerical model of a soft tissue-level implant was constructed with cement-retained abutment to support glass ceramic machinable crown. Implant-abutment complex and the retained crown were embedded in a Ø 1.5 × 1.5 cm geometric matrix for evaluation of mechanical behavior of mono-ceramic CAD/CAM aluminosilicate and leucite glass crown materials. Laterally positioned axial load of 300 N was applied on the crowns. Resulting principal stresses in the mono-ceramic crowns were evaluated in relation to different glass ceramic materials. The highest compressive stresses were observed at the cervical region of the buccal aspect of the crowns and were 89.98 and 89.99 MPa, for aluminosilicate and leucite glass ceramics, respectively. The highest tensile stresses were observed at the collar of the lingual part of the crowns and were 24.54 and 25.39 MPa, respectively. Stresses induced upon 300 N static loading of CAD/CAM aluminosalicate and leucite glass ceramics are below the compressive strength of the materials. Impact loads may actuate the progress to end failure of mono-ceramic crowns supported by metallic implant abutments.
[Relative fracture toughness of differents dental ceramics].
Pagani, Clovis; Miranda, Carolina Baptista; Bottino, Marco Cícero
2003-03-01
Although ceramics present high compressive strength, they are brittle materials due to their low tensile strength so they have lower capacity to absorb shocks. This study evaluated the fracture toughness of different ceramic systems, which refers to the ability of a friable material to absorb defformation energy. Three ceramic systems were investigated. Ten cylindrical samples (5,0mm x 3,0mm), were obtained from each ceramic material as follows: G1- 10 samples of Vitadur Alpha (Vita-Zahnfabrik); G2- 10 samples of IPS Empress2 (Ivoclar-Vivadent); G3- 10 samples of In-Ceram Alumina (Vita-Zahnfabrik). Fracture toughness values were collected upon indentation tests that were performed under a heavy load. A microhardness tester (Digital Microhardness Tester FM) utilized a 500gf load cell during 10seconds to perform four impressions on each sample. Statistically significant results were observed (ANOVA and Kruskal-Wallis tests). In-Ceram Alumina presented the highest median toughness values (2,96N/m3/2), followed by Vitadur Alpha (2,08N/m3/2) and IPS Empress2 (1,05N/m3/2). It may be concluded that different ceramic systems present distinct fracture toughness values, thus In-Ceram is capable of absorbing superior stress when compared to Vitadur Alpha and IPS Empress2.
Improved performance of diatomite-based dental nanocomposite ceramics using layer-by-layer assembly
Lu, Xiaoli; Xia, Yang; Liu, Mei; Qian, Yunzhu; Zhou, Xuefeng; Gu, Ning; Zhang, Feimin
2012-01-01
To fabricate high-strength diatomite-based ceramics for dental applications, the layer-by-layer technique was used to coat diatomite particles with cationic [poly(allylamine hydrochloride)] and anionic [poly(sodium 4-styrenesulfonate)] polymers to improve the dispersion and adsorption of positively charged nano-ZrO2 (zirconia) as a reinforcing agent. The modified diatomite particles had reduced particle size, narrower size distribution, and were well dispersed, with good adsorption of nano-ZrO2. To determine the optimum addition levels for nano-ZrO2, ceramics containing 0, 20, 25, 30, and 35 wt% nano-ZrO2 were sintered and characterized by the three-point bending test and microhardness test. In addition to scanning electron microscopy, propagation phase-contrast synchrotron X-ray microtomography was used to examine the internal structure of the ceramics. The addition of 30 wt% nano-ZrO2 resulted in the highest flexural strength and fracture toughness with reduced porosity. Shear bond strength between the core and veneer of our diatomite ceramics and the most widely used dental ceramics were compared; the shear bond strength value for the diatomite-based ceramics was found to be significantly higher than for other groups (P < 0.05). Our results show that diatomite-based nanocomposite ceramics are good potential candidates for ceramic-based dental materials. PMID:22619551
Manufacturing of PZT-nickel functionally graded piezoelectric ceramics
NASA Astrophysics Data System (ADS)
Rubio, Wilfredo M.; Silva, Emílio C. N.; Buiochi, Flávio
2012-05-01
A recent approach for designing and manufacturing piezoelectric ceramics consists of using the functionally graded materials (FGM) concept. In this work, nickel (Ni) is used to generate a new PZT-Ni graded ceramic and its dynamic behavior is experimentally explored. The PZT-Ni graded ceramic is manufactured by using the technique of Spark Plasma Sintering (SPS). The ceramic is graded from the top to the bottom surface (along 6 mm of thickness). Specifically, five layers of green powders are sintered: 100 wt% PZT-5A, 90 wt% PZT-5A and 10 wt% Ni, 80 wt% PZT-5A and 20 wt% Ni, 70 wt% PZT-5A and 30 wt% Ni, 60 wt% PZT-5A and 40 wt% Ni. Thus, Ni is used as a second phase, which is added to a PZT-5A matrix, changing its concentration. No manufacturing defects or cracks or exfoliated layers are observed. However, graphite diffusion is observed from the graphite die into the graded ceramic, which does not affect its performance; hence, the ceramic contains enough piezoelectric properties, which allows its polarization and dynamic characterization by determining the impedance curve of the PZT-Ni graded ceramic. The PZT-Ni graded ceramic vibrates at 1.04 MHz, 1.55 MHz and 2.07 MHz.
Irradiation conditions for fiber laser bonding of HAp-glass ceramics with bovine cortical bone.
Tadano, Shigeru; Yamada, Satoshi; Kanaoka, Masaru
2014-01-01
Orthopedic implants are widely used to repair bones and to replace articulating joint surfaces. It is important to develop an instantaneous technique for the direct bonding of bone and implant materials. The aim of this study was to develop a technique for the laser bonding of bone with an implant material like ceramics. Ceramic specimens (10 mm diameter and 1 mm thickness) were sintered with hydroxyapatite and MgO-Al2O3-SiO2 glass powders mixed in 40:60 wt% proportions. A small hole was bored at the center of a ceramic specimen. The ceramic specimen was positioned onto a bovine bone specimen and a 5 mm diameter area of the ceramic specimen was irradiated using a fiber laser beam (1070-1080 nm wavelength). As a result, the bone and the ceramic specimens bonded strongly under the irradiation conditions of a 400 W laser power and a 1.0 s exposure time. The maximum shear strength was 5.3 ± 2.3 N. A bonding substance that penetrated deeply into the bone specimen was generated around the hole in the ceramic specimen. On using the fiber laser, the ceramic specimen instantaneously bonded to the bone specimen. Further, the irradiation conditions required for the bonding were investigated.
Dental ceramics: a review of new materials and processing methods.
Silva, Lucas Hian da; Lima, Erick de; Miranda, Ranulfo Benedito de Paula; Favero, Stéphanie Soares; Lohbauer, Ulrich; Cesar, Paulo Francisco
2017-08-28
The evolution of computerized systems for the production of dental restorations associated to the development of novel microstructures for ceramic materials has caused an important change in the clinical workflow for dentists and technicians, as well as in the treatment options offered to patients. New microstructures have also been developed by the industry in order to offer ceramic and composite materials with optimized properties, i.e., good mechanical properties, appropriate wear behavior and acceptable aesthetic characteristics. The objective of this literature review is to discuss the main advantages and disadvantages of the new ceramic systems and processing methods. The manuscript is divided in five parts: I) monolithic zirconia restorations; II) multilayered dental prostheses; III) new glass-ceramics; IV) polymer infiltrated ceramics; and V) novel processing technologies. Dental ceramics and processing technologies have evolved significantly in the past ten years, with most of the evolution being related to new microstructures and CAD-CAM methods. In addition, a trend towards the use of monolithic restorations has changed the way clinicians produce all-ceramic dental prostheses, since the more aesthetic multilayered restorations unfortunately are more prone to chipping or delamination. Composite materials processed via CAD-CAM have become an interesting option, as they have intermediate properties between ceramics and polymers and are more easily milled and polished.
Characterization and in vitro bioactivity of zinc-containing bioactive glass and glass-ceramics.
Du, Rui Lin; Chang, Jiang; Ni, Si Yu; Zhai, Wan Yin; Wang, Jun Ying
2006-04-01
Zinc-containing glass is prepared by the substitution of CaO in 58S bioactive glass with 0.5 and 4 wt% ZnO, and glass-ceramics are obtained by heat-treating the glass at 1,200 C. The bending strength and in vitro bioactivity of the glass and glass-ceramics are evaluated. The results indicate that Zn promotes the crystallization of SiO(2) and wollastonite in glass-ceramics, and proper crystallization can enhance the bending strength of the glass-ceramic. The in vitro results show that ZnO in glass retards the hydroxyapatite (HA) nucleation at the initial stage of simulated body fluid (SBF) soaking, but does not affect the growth of HA after long periods of soaking, and the ionic products of 58S4Z glass can stimulate the proliferation of osteoblast at certain concentrations. Osteoblasts attach well on both glass samples and glass-ceramic samples, but the high Si ion concentration released from glass samples restrains the proliferation of osteoblasts after 3 days of culture. In contrast, osteoblasts show good proliferation on glass-ceramic samples, and ZnO in glass-ceramics promotes the proliferation rate. The results in this study suggest that the glass and glass-ceramics with different ZnO content might be used as bioactive bone implant materials in different applications.
[Preparation and chromaticity properties of colored dental 3Y-TZP ceramics].
Yi, Yuan-fu; Wang, Chen; Tian, Jie-mo; Liu, Hong-chen; Wen, Ning
2008-10-01
To obtain and investigate the chromaticity properties of colored dental 3Y-TZP ceramics with different colorant combinations. Colorant combinations were mixed with TZ-3Y-S powder, then the mixtures were compacted at 200 MPa using cold isostatic pressure, densely sintered at 1500 degrees C for 2 h forming 5 graded colored dental zirconia ceramics. Specimen were sectioned into 10 mm x 10 mm x 0.5 mm and 10 mm x l0 mmx 1 mm slices from the sintered blocks. Color measurement was performed under black background using spectrophotometer. The chromaticity properties were compared with that of the VITA In-Ceram YZ shade guide. Five colored dental zirconia ceramics were obtained. The lightness decreased gradually, and the chroma value increased gradually. The color differences of the two thickness specimens were little. The parameters of the color space were L*: 67.76-77.78; a*: -2.19-3.80; b*: 12.13-25.01, which was similar with that of the VITA In-Ceram YZ shade guide, while the lowest value of lightness was relatively higher than that of the VITA In-Ceram YZ shade guide. Colored 3Y-TZP dental ceramics are suitable for clinical use. There is a need to develop more darkness shaded zirconia dental ceramics.
Improved performance of diatomite-based dental nanocomposite ceramics using layer-by-layer assembly.
Lu, Xiaoli; Xia, Yang; Liu, Mei; Qian, Yunzhu; Zhou, Xuefeng; Gu, Ning; Zhang, Feimin
2012-01-01
To fabricate high-strength diatomite-based ceramics for dental applications, the layer-by-layer technique was used to coat diatomite particles with cationic [poly(allylamine hydrochloride)] and anionic [poly(sodium 4-styrenesulfonate)] polymers to improve the dispersion and adsorption of positively charged nano-ZrO(2) (zirconia) as a reinforcing agent. The modified diatomite particles had reduced particle size, narrower size distribution, and were well dispersed, with good adsorption of nano-ZrO(2). To determine the optimum addition levels for nano-ZrO(2), ceramics containing 0, 20, 25, 30, and 35 wt% nano-ZrO(2) were sintered and characterized by the three-point bending test and microhardness test. In addition to scanning electron microscopy, propagation phase-contrast synchrotron X-ray microtomography was used to examine the internal structure of the ceramics. The addition of 30 wt% nano-ZrO(2) resulted in the highest flexural strength and fracture toughness with reduced porosity. Shear bond strength between the core and veneer of our diatomite ceramics and the most widely used dental ceramics were compared; the shear bond strength value for the diatomite-based ceramics was found to be significantly higher than for other groups (P < 0.05). Our results show that diatomite-based nanocomposite ceramics are good potential candidates for ceramic-based dental materials.
NASA Astrophysics Data System (ADS)
Kahlib, N. A. Z.; Daud, F. D. M.; Mel, M.; Hairin, A. L. N.; Azhar, A. Z. A.; Hassan, N. A.
2018-01-01
Fabrication of silica ceramics via the sol-gel method has offered more advantages over other methods in the fabrication of ceramic membrane, such as simple operation, high purity homogeneous, well defined-structure and complex shapes of end products. This work presents the fabrication of silica ceramic membrane via sol-gel dip-coating methods by varying nitric acid amount. The nitric acid plays an important role as catalyst in fabrication reaction which involved hydrolysis and condensation process. The tubular ceramic support, used as the substrate, was dipped into the sol of Tetrethylorthosilicate (TEOS), distilled water and ethanol with the addition of nitric acid. The fabricated silica membrane was then characterized by (Field Emission Scanning Electron Microscope) FESEM and (Fourier transform infrared spectroscopy) FTIR to determine structural and chemical properties at different amount of acids. From the XRD analysis, the fabricated silica ceramic membrane showed the existence of silicate hydrate in the final product. FESEM images indicated that the silica ceramic membrane has been deposited on the tubular ceramic support as a substrate and penetrate into the pore walls. The intensity peak of FTIR decreased with increasing of amount of acids. Hence, the 8 ml of acid has demonstrated the appropriate amount of catalyst in fabricating good physical and chemical characteristic of silica ceramic membrane.
NASA Astrophysics Data System (ADS)
Zhang, Lingli; Hanagata, Nobutaka; Maeda, Megumi; Minowa, Takashi; Ikoma, Toshiyuki; Fan, Hongsong; Zhang, Xingdong
2009-04-01
Because calcium phosphate (Ca-P) ceramics have been used as bone substitutes, it is necessary to investigate what effects the ceramics have on osteoblast maturation. We prepared three types of Ca-P ceramics with different Ca-P ratios, i.e. hydroxyapatite (HA), beta-tricalcium phosphate (β-TCP), and biphasic calcium phosphate (BCP) ceramics with dense-smooth and porous structures. Comprehensive gene expression microarray analysis of mouse osteoblast-like cells cultured on these ceramics revealed that porous Ca-P ceramics considerably affected the gene expression profiles, having a higher potential for osteoblast maturation. In the in vivo study that followed, porous Ca-P ceramics were implanted into rat skeletal muscle. Sixteen weeks after the implantation, more alkaline-phosphatase-positive cells were observed in the pores of hydroxyapatite and BCP, and the expression of the osteocalcin gene (an osteoblast-specific marker) in tissue grown in pores was also higher in hydroxyapatite and BCP than in β-TCP. In the pores of any Ca-P ceramics, 16 weeks after the implantation, we detected the expressions of marker genes of the early differentiation stage of chondrocytes and the complete differentiation stage of adipocytes, which originate from mesenchymal stem cells, as well as osteoblasts. These marker gene expressions were not observed in the muscle tissue surrounding the implanted Ca-P ceramics. These observations indicate that porous hydroxyapatite and BCP had a greater potential for promoting the differentiation of mesenchymal stem cells into osteoblasts than β-TCP.
Li, H C; Wang, D G; Meng, X G; Chen, C Z
2014-06-01
A series of ZrO(2) doped MgO-CaO-SiO(2)-P(2)O(5)-CaF(2) bioactive glass-ceramics were obtained by sintering method. The crystallization behavior, phase composition, morphology and structure of glass-ceramics were characterized. The bending strength, elastic modulus, fracture toughness, micro-hardness and thermal expansion coefficient (TEC) of glass-ceramics were investigated. The in vitro bioactivity and cytotoxicity tests were used to evaluate the bioactivity and biocompatibility of glass-ceramics. The sedimentation mechanism and growth process of apatites on sample surface were discussed. The results showed that the mainly crystalline phases of glass-ceramics were Ca(5)(PO4)3F (fluorapatite) and β-CaSiO(3). (β-wollastonite). m-ZrO(2) (monoclinic zirconia) declined the crystallization temperatures of glasses. t-ZrO(2) (tetragonal zirconia) increased the crystallization temperature of Ca(5)(PO4)(3)F and declined the crystallization temperature of β-CaSiO(3). t-ZrO(2) greatly increased the fracture toughness, bending strength and micro-hardness of glass-ceramics. The nanometer apatites were induced on the surface of glass-ceramic after soaking 28 days in SBF (simulated body fluid), indicating the glass-ceramic has good bioactivity. The in vitro cytotoxicity test demonstrated the glass-ceramic has no toxicity to cell. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Junlang, E-mail: lijunlangx@163.com; Xu, Jian, E-mail: xu.jian.57z@st.kyoto-u.ac.jp; Graduate School of Human and Environmental Studies, Division of Materials Function, Kyoto University, Kyoto 606-8501
2014-07-01
Highlights: • We fabricate Ce doped lutetium aluminum garnet ceramics by solid-state method. • The raw materials include Lu{sub 2}O{sub 3} nanopowders synthesized by co-precipitation method. • The density of the transparent ceramics reach 99.7% of the theoretical value. • The optical transmittance of the bulk ceramic at 550 nm was 57.48%. • Some scattering centers decrease the optical characteristic of the ceramic. - Abstract: Polycrystalline Ce{sup 3+} doped lutetium aluminum garnet (Ce:LuAG) transparent ceramics fabricated by one step solid-state reaction method using synthetic nano-sized Lu{sub 2}O{sub 3}, commercial α-Al{sub 2}O{sub 3} and CeO{sub 2} powders were investigated in thismore » paper. The green compacts shaped by the mixed powders were successfully densified into Ce:LuAG transparent ceramics after vacuum sintering at 1750 °C for 10 h. The in-line optical transmittance of the Ce:LuAG ceramic made by home-made Lu{sub 2}O{sub 3} powders could reach 57.48% at 550 nm, which was higher than that of the ceramic made by commercial Lu{sub 2}O{sub 3} powders (22.96%). The microstructure observation showed that light scattering centers caused by micro-pores, aluminum segregation and refraction index inhomogeneities induced the decrease of optical transparency of the Ce:LuAG ceramics, which should be removed and optimized in the future work.« less
The precursors effects on biomimetic hydroxyapatite ceramic powders.
Yoruç, Afife Binnaz Hazar; Aydınoğlu, Aysu
2017-06-01
In this study, effects of the starting material on chemical, physical, and biological properties of biomimetic hydroxyapatite ceramic powders (BHA) were investigated. Characterization and chemical analysis of BHA powders were performed by using XRD, FT-IR, and ICP-AES. Microstructural features such as size and morphology of the resulting BHA powders were characterized by using BET, nano particle sizer, pycnometer, and SEM. Additionally, biological properties of the BHA ceramic powders were also investigated by using water-soluble tetrazolium salts test (WST-1). According to the chemical analysis of BHA ceramic powders, chemical structures of ceramics which are prepared under different conditions and by using different starting materials show differences. Ceramic powders which are produced at 80°C are mainly composed of hydroxyapatite, dental hydroxyapatite (contain Na and Mg elements in addition to Ca), and calcium phosphate sulfide. However, these structures are altered at high temperatures such as 900°C depending on the features of starting materials and form various calcium phosphate ceramics and/or their mixtures such as Na-Mg-hydroxyapatite, hydroxyapatite, Mg-Whitlockit, and chloroapatite. In vitro cytotoxicity studies showed that amorphous ceramics produced at 80°C and ceramics containing chloroapatite structure as main or secondary phases were found to be extremely cytotoxic. Furthermore, cell culture studies showed that highly crystalline pure hydroxyapatite structures were extremely cytotoxic due to their high crystallinity values. Consequently, the current study indicates that the selection of starting materials which can be used in the production of calcium phosphate ceramics is very important. It is possible to produce calcium phosphate ceramics which have sufficient biocompatibility at physiological pH values and by using appropriate starting materials. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sinescu, Cosmin; Negrutiu, Meda Lavinia; Ionita, Ciprian; Marsavina, Liviu; Negru, Radu; Topala, Florin; Petrescu, Emanuela; Rominu, Roxana; Fabriky, Mihai; Bradu, Adrian; Rominu, Mihai; Podoleanu, Adrian Gh.
2011-10-01
Imagistic investigation of the metal-ceramic crowns and fixed partial prostheses represent a very important issue in nowadays dentistry. At this time, in dental office, it is difficult or even impossible to evaluate a metal ceramic crown or bridge before setting it in the oral cavity. The possibilities of ceramic fractures are due to small fracture lines or material defects inside the esthetic layers. Material and methods: In this study 25 metal ceramic crowns and fixed partial prostheses were investigated by radiographic method (Rx), micro computer tomography (MicroCT) and optical coherence tomography (OCT) working in Time Domain, at 1300 nm. The OCT system contains two interferometers and one scanner. For each incident analysis a stuck made of 100 slices was obtain. These slices were used in order to obtain a 3D model of the ceramic interface. After detecting the presence and the positions of the ceramic defects the numerical simulation method was used to estimate the biomechanical effect of the masticatory forces on fractures propagations in ceramic materials. Results: For all the dental ceramic defects numerical simulation analysis was performed. The simulation of crack propagation shows that the crack could initiate from the upper, lower or both parts of the defect and propagates through the ceramic material where tensile stress field is present. RX and MicroCT are very powerful instruments that provide a good characterization of the dental construct. It is important to observe the reflections due to the metal infrastructure that could affect the evaluation of the metal ceramic crowns and bridges. The OCT investigations could complete the imagistic evaluation of the dental construct by offering important information when it is need it.
High level leaching of heavy metals from colorful ceramic foodwares: a potential risk to human.
Aderemi, Taiwo Adedoyin; Adenuga, Adeniyi Abiodun; Oyekunle, John Adekunle Oyedele; Ogunfowokan, Aderemi Okunola
2017-07-01
Ceramic foodwares are among the products used by people on daily basis without being cautious of exposures to heavy metals through possible leaching from the glaze ceramics. This study investigated the levels of heavy metals found in some commonly used ceramic foodwares in Nigeria with the aim of determining levels of human exposures through the use of the ceramics. To achieve this, acid digestion was carried out for the total metal concentrations and leaching tests were done using 4% acetic acid as a leaching agent. Metal concentrations were quantified using flame atomic absorption spectrometry (FAAS) and particle-induced X-ray emission spectrometry (PIXES) analysis. All the ceramic foodwares studied were found to contain varied amounts of heavy metals in their glazes, with concentrations in the range of 26.45-2071.46, 5.20-547.00, 1.24-2681.02, 2590.00-8848.40, 6.42-654.66, 112.69-649.95, 63.38-2518.51, and 3786.51-8249.44 μg g -1 for Pb, Cd, Zn, As, Cu, Cr, Mn, and Fe, respectively. Concentrations of the metals leached from the ceramics were in the range of 0.11-0.97, 0.01-0.28, 0.00-4.19, 1.93-15.00, 0.01-0.41, 0.09-0.60, 0.01-2.14, and 0.01-11.53 mgL -1 for Pb, Cd, Zn, As, Cu, Cr, Mn, and Fe, respectively. Comparing the ratio of the metals leached from the ceramic wares with those of the metal oxides in the ceramics, it was noticeable that not all the metals detected in the ceramic samples were domiciled in the glaze but in the clay materials used for the ceramics.
[In vitro study on shear bond strength of veneering ceramics to zirconia].
Hu, Xiaoping; Zhu, Hongshui; Zeng, Liwei
2012-12-01
To investigate the shear bond strength between veneering ceramic and zirconia core in different all-ceramic systems. Twenty disk-shaped specimens with 8 mm in diameter and 3 mm in height for each zirconia system (Lava, Cercon, IPS e.max ZirCAD, Procera) were fabricated respectively and divided into four groups: Lava group, Cercon group, IPS e.max ZirCAD group, Procera group. For each group, 10 specimens were sintered with 1 mm corresponding veneering ceramic, while the other were sintered with 2 mm corresponding veneering ceramic respectively. The shear bond strength and fracture mode of specimens were observed and determined. The values of shear bond strength for Lava, Cercon, IPS e.max ZirCAD and Procera were (13.82 +/- 3.71), (13.24 +/- 2.09), (6.37 +/- 4.15), (5.19 +/- 5.31) MPa in the group of 1 mm thicked veneering ceramics, respectively, while the values in the group of 2mm thicked veneering ceramics were (38.77 +/- 1.69), (21.67 +/- 3.34), (12.70 +/- 4.24), (9.94 +/- 6.67) MPa. The values of Lava and Cercon groups were significantly higher than that of IPS e.max ZirCAD and Procera groups (P < 0.05). And the values of 2 mm thicked veneering ceramic group were significantly higher than that in 1 mm thicked groups (P < 0.05). Adhesive fracture between core and veneering ceramics were observed in the fracture modes of most specimens. The shear bond strength of veneering ceramic to the zirconia framework are different from the zirconia system we chose, and the thickness of veneering ceramic has a great impact on its shear bond strength.
Biaxial flexural strength of Turkom-Cera core compared to two other all-ceramic systems.
Al-Makramani, Bandar Mohammed Abdullah; Razak, Abdul Aziz Abdul; Abu-Hassan, Mohamed Ibrahim
2010-12-01
Advances in all-ceramic systems have established predictable means of providing metal-free aesthetic and biocompatible materials. These materials must have sufficient strength to be a practical treatment alternative for the fabrication of crowns and fixed partial dentures. The aim of this study was to compare the biaxial flexural strength of three core ceramic materials. Three groups of 10 disc-shaped specimens (16 mm diameter x 1.2 mm thickness - in accordance with ISO-6872, 1995) were made from the following ceramic materials: Turkom-Cera Fused Alumina [(Turkom-Ceramic (M) Sdn Bhd, Puchong, Selangor, Malaysia)], In-Ceram (Vita Zahnfabrik, Bad Säckingen, Baden-Württemberg, Germany) and Vitadur-N (Vita Zahnfabrik, Bad Säckingen, Baden-Württemberg, Germany), which were sintered according to the manufacturer's recommendations. The specimens were subjected to biaxial flexural strength test in an universal testing machine at a crosshead speed of 0.5 mm/min. The definitive fracture load was recorded for each specimen and the biaxial flexural strength was calculated from an equation in accordance with ISO-6872. The mean biaxial flexural strength values were: Turkom-Cera: 506.8 ± 87.01 MPa, In-Ceram: 347.4 ± 28.83 MPa and Vitadur-N: 128.7 ± 12.72 MPa. The results were analyzed by the Levene's test and Dunnett's T3 post-hoc test (SPSS software V11.5.0 for Windows, SPSS, Chicago, IL, USA ) at a preset significance level of 5% because of unequal group variances (P<0.001). There was statistically significant difference between the three core ceramics (P<0.05). Turkom-Cera showed the highest biaxial flexural strength, followed by In-Ceram and Vitadur-N. Turkom-Cera core had significantly higher flexural strength than In-Ceram and Vitadur-N ceramic core materials.
Kitayama, Shuzo; Nikaido, Toru; Ikeda, Masaomi; Alireza, Sadr; Miura, Hiroyuki; Tagami, Junji
2010-01-01
Resin bonding to zirconia ceramic cannot be established by standard methods that are utilized for conventional silica-based dental ceramics. This study was aimed to examine the tensile bond strength of resin cement to zirconia ceramic using a new laboratory technique. Sixty-four zirconia ceramic specimens were air-abraded using Al2O3 particles and divided into two groups; the control group with no pretreatment (Control), and the group pretreated using the internal coating technique (INT), in which the surface of the zirconia specimens were thinly coated by fusing silica-based ceramic and air-abraded in the same manner. The specimens in each group were further divided into two subgroups according to the silane coupling agents applied; a mixture of dentin primer/silane coupling agent (Clearfil SE Bond Primer/Porcelain Bond Activator) or a newly developed single-component silane coupling agent (Clearfil Ceramic Primer). After bonding with dual-cured resin cement (Panavia F 2.0), they were stored in water for 24 h and half of them were additionally subjected to thermal cycling. The tensile bond strengths were tested using a universal testing machine. ANOVAs revealed significant influence of ceramic surface pretreatment (p<0.001), silane coupling agent (p<0.001) and thermal cycling (p<0.001); the INT coating technique significantly increased the bond strengths of resin cement to zirconia ceramic, whereas thermal cycling significantly decreased the bond strengths. The use of a single-component silane coupling agent demonstrated significantly higher bond strengths than that of a mixture of dentin primer/silane coupling agent. The internal coating of zirconia dental restorations with silica-based ceramic followed by silanization may be indicated in order to achieve better bonding for the clinical success.
Lal, S; Hall, R M; Tipper, J L
2016-09-15
Ceramics have been used to deliver significant improvements in the wear properties of orthopaedic bearing materials, which has made it challenging to isolate wear debris from simulator lubricants. Ceramics such as silicon nitride, as well as ceramic-like surface coatings on metal substrates have been explored as potential alternatives to conventional implant materials. Current isolation methods were designed for isolating conventional metal, UHMWPE and ceramic wear debris. In this paper, we describe a methodology for isolation and recovery of ceramic or ceramic-like coating particles and metal wear particles from serum lubricants under ultra-low and low wear performance. Enzymatic digestion was used to digest the serum proteins and sodium polytungstate was used as a novel density gradient medium to isolate particles from proteins and other contaminants by ultracentrifugation. This method demonstrated over 80% recovery of particles and did not alter the size or morphology of ceramic and metal particles during the isolation process. Improvements in resistance to wear and mechanical damage of the articulating surfaces have a large influence on longevity and reliability of joint replacement devices. Modern ceramics have demonstrated ultra-low wear rates for hard-on-hard total hip replacements. Generation of very low concentrations of wear debris in simulator lubricants has made it challenging to isolate the particles for characterisation and further analysis. We have introduced a novel method to isolate ceramic and metal particles from serum-based lubricants using enzymatic digestion and novel sodium polytungstate gradients. This is the first study to demonstrate the recovery of ceramic and metal particles from serum lubricants at lowest detectable in vitro wear rates reported in literature. Copyright © 2016. Published by Elsevier Ltd.
Some developments on ceramic-to-metal and glass-ceramics-to-metal seals and related studies
NASA Astrophysics Data System (ADS)
Kothiyal, G. P.; Goswami, M.; Shrikhande, V. K.
2008-05-01
Seals and coatings based on ceramics and glass-ceramics find numerous applications in different disciplines of science and technology including space, accelerators, nuclear energy, chemical industry. Ceramic-to-metal (CM) seals based on conventional design (using brazing alloys) and glass-ceramics have been prepared. While Ag-Cu brazing alloy has been used in conventional CM seal, we have employed lithium zinc silicate (LZS) and lithium aluminum silicate (LAS) glass-ceramics for glass-ceramics-to-metal (GCM) seals. LZS glass-ceramics based on two different compositions; (a) LZSL composition (wt.%)- Li2O: 12.65, ZnO: 1.85, SiO2: 74.4, Al2O3: 3.8, K2O: 2.95, P2O5: 3.15, and B2O3: 1.2 (low ZnO) and (b) LZSH composition (wt.%)- Li2O: 8.9, ZnO: 24.03, SiO2: 53.7, Na2O: 5.42, P2O5: 2.95, and B2O3: 5.0 (high ZnO) were prepared with desired sealing characteristics for matched type seals. In addition, (wt.%) 12.6Li2O-71.7SiO2-5.1Al2O3-4.9K2O-3.2B2O3-2.5P2O5 (LAS-GC) was investigated for compressive type of seal. LZS glass-ceramics-to-Cu as well as SS-321 seals were found to withstand a vacuum of 10-6 Torr with leak rate 10-9 Torr. 1/s and LAS GC-to-SS304 seal showed high pressure endurance of 12000psi. In order to understand the mechanism of sealing, glass-ceramics-to-metal interface study has also been carried out.
Zhong, Sheng; McPeek, Mary Sara
2016-01-01
We consider the problem of genetic association testing of a binary trait in a sample that contains related individuals, where we adjust for relevant covariates and allow for missing data. We propose CERAMIC, an estimating equation approach that can be viewed as a hybrid of logistic regression and linear mixed-effects model (LMM) approaches. CERAMIC extends the recently proposed CARAT method to allow samples with related individuals and to incorporate partially missing data. In simulations, we show that CERAMIC outperforms existing LMM and generalized LMM approaches, maintaining high power and correct type 1 error across a wider range of scenarios. CERAMIC results in a particularly large power increase over existing methods when the sample includes related individuals with some missing data (e.g., when some individuals with phenotype and covariate information have missing genotype), because CERAMIC is able to make use of the relationship information to incorporate partially missing data in the analysis while correcting for dependence. Because CERAMIC is based on a retrospective analysis, it is robust to misspecification of the phenotype model, resulting in better control of type 1 error and higher power than that of prospective methods, such as GMMAT, when the phenotype model is misspecified. CERAMIC is computationally efficient for genomewide analysis in samples of related individuals of almost any configuration, including small families, unrelated individuals and even large, complex pedigrees. We apply CERAMIC to data on type 2 diabetes (T2D) from the Framingham Heart Study. In a genome scan, 9 of the 10 smallest CERAMIC p-values occur in or near either known T2D susceptibility loci or plausible candidates, verifying that CERAMIC is able to home in on the important loci in a genome scan. PMID:27695091
Anusavice, Kenneth J; Jadaan, Osama M; Esquivel-Upshaw, Josephine F
2013-11-01
Recent reports on bilayer ceramic crown prostheses suggest that fractures of the veneering ceramic represent the most common reason for prosthesis failure. The aims of this study were to test the hypotheses that: (1) an increase in core ceramic/veneer ceramic thickness ratio for a crown thickness of 1.6mm reduces the time-dependent fracture probability (Pf) of bilayer crowns with a lithium-disilicate-based glass-ceramic core, and (2) oblique loading, within the central fossa, increases Pf for 1.6-mm-thick crowns compared with vertical loading. Time-dependent fracture probabilities were calculated for 1.6-mm-thick, veneered lithium-disilicate-based glass-ceramic molar crowns as a function of core/veneer thickness ratio and load orientation in the central fossa area. Time-dependent fracture probability analyses were computed by CARES/Life software and finite element analysis, using dynamic fatigue strength data for monolithic discs of a lithium-disilicate glass-ceramic core (Empress 2), and ceramic veneer (Empress 2 Veneer Ceramic). Predicted fracture probabilities (Pf) for centrally loaded 1.6-mm-thick bilayer crowns over periods of 1, 5, and 10 years are 1.2%, 2.7%, and 3.5%, respectively, for a core/veneer thickness ratio of 1.0 (0.8mm/0.8mm), and 2.5%, 5.1%, and 7.0%, respectively, for a core/veneer thickness ratio of 0.33 (0.4mm/1.2mm). CARES/Life results support the proposed crown design and load orientation hypotheses. The application of dynamic fatigue data, finite element stress analysis, and CARES/Life analysis represent an optimal approach to optimize fixed dental prosthesis designs produced from dental ceramics and to predict time-dependent fracture probabilities of ceramic-based fixed dental prostheses that can minimize the risk for clinical failures. Copyright © 2013 Academy of Dental Materials. All rights reserved.
Mid-term results of the BIOLOX delta ceramic-on-ceramic total hip arthroplasty.
Lee, Y K; Ha, Y C; Yoo, J-I; Jo, W L; Kim, K-C; Koo, K H
2017-06-01
We conducted a prospective study of a delta ceramic total hip arthroplasty (THA) to determine the rate of ceramic fracture, to characterise post-operative noise, and to evaluate the mid-term results and survivorship. Between March 2009 and March 2011, 274 patients (310 hips) underwent cementless THA using a delta ceramic femoral head and liner. At each follow-up, clinical and radiological outcomes were recorded. A Kaplan-Meier analysis was undertaken to estimate survival. Four patients (four hips) died and 18 patients (20 hips) were lost to follow-up within five years. The remaining 252 patients (286 hips) were followed for a mean of 66.5 months (60 to 84). There were 144 men (166 hips) and 108 women (120 hips) with a mean age of 49.7 years (16 to 83) at surgery. The mean pre-operative Harris Hip Score of 47.1 points improved to 93.8 points at final follow-up. Six patients reported squeaking in seven hips; however, none were audible. Radiolucent lines involving Gruen zones one and/or seven were seen in 52 hips (18.2%). No hip had detectable wear, focal osteolysis or signs of loosening. One hip was revised because of fracture of the ceramic liner, which occurred due to an undetected malseating of the ceramic liner at the time of surgery. One hip was revised for a periprosthetic fracture of the femur, and one hip was treated for periprosthetic joint infection. The six-year survivorship with re-operation for any reason as the endpoint was 99.0% (95% confidence interval 97.8% to 100%). The rate of delta ceramic fracture was 0.3% (one of 286). While ceramic head fracture was dominant in previous ceramic-on-ceramic THA, fracture of the delta ceramic liner due to malseating is a concern. Cite this article: Bone Joint J 2017;99-B:741-8. ©2017 The British Editorial Society of Bone & Joint Surgery.
Ceramic Surface Treatment with a Single-component Primer: Resin Adhesion to Glass Ceramics.
Prado, Mayara; Prochnow, Catina; Marchionatti, Ana Maria Estivalete; Baldissara, Paolo; Valandro, Luiz Felipe; Wandscher, Vinicius Felipe
2018-04-19
To evaluate the microshear bond strength (μSBS) of composite cement bonded to two machined glass ceramics and its durability, comparing conventional surface conditioning (hydrofluoric acid + silane) to a one-step primer (Monobond Etch & Prime). Machined slices of lithium disilicate ceramic (LDC) (IPS e.max CAD) and feldspathic ceramic (FC) (VITA Mark II) glass ceramics were divided into two groups (n = 10) according to two factors: 1. surface treatment: HF+S (ca 5% hydrofluoric acid [IPS Ceramic Etching GEL] + silane coupling agent [SIL; Monobond Plus]) or MEP (single-component ceramic conditioner; Monobond Etch & Prime); 2. storage condition: baseline (without aging; tested 24 h after cementing) or aged (70 days of water storage + 12,000 thermal cycles). Composite cement (Multilink Automix, Ivoclar Vivadent) was applied to starch matrices on the treated ceramic surfaces and photoactivated. A μSBS test was performed (0.5 mm/min) and the failure pattern was determined. Contact angle and micromorphological analyses were also performed. Data were analyzed with Student's t-test (α = 5%). For both ceramic materials, HF+S resulted in higher mean μSBS (MPa) at baseline (LDC: HF+S 21.2 ± 2.2 > MEP 10.4 ± 2.4; FC: HF+S 19.6 ± 4.3 > MEP 13.5 ± 5.4) and after aging (LDC: HF+S 14.64 ± 2.31 > MEP 9 ± 3.4; FC HF+S: 14.73 ± 3.33 > MEP 11.1 ± 3.3). HF+S resulted in a statistically significant decrease in mean μSBS after aging (p = 0.0001), while MEP yielded no significant reduction. The main failure type was adhesive between composite cement and ceramic. HF+S resuted in the lowest contact angle. Hydrofluoric acid + silane resulted in higher mean μSBS than Monobond Etch & Prime for both ceramics; however, Monobond Etch & Prime had stable bonding after aging.
Kocaağaoğlu, Hasan; Manav, Taha; Albayrak, Haydar
2017-04-01
When fracture of an all-ceramic restoration occurs, it can be necessary to repair without removing the restoration. Although there are many studies about the repair of metal-ceramic restorations, there are few about all-ceramic restorations. The aim of this study was to evaluate the shear bond strength between ceramic repair systems and esthetic core materials and to evaluate the wettability of all-ceramic core materials. Disk-like specimens (N = 90) made of three dental ceramic infrastructure materials (zirconia ceramic, alumina ceramic, glass ceramic) were polished with silicon carbide paper, prepared for bonding (abrasion with 30 μm diamond rotary cutting instrument). Thirty specimens of each infrastructure were obtained. Each infrastructure group was divided into three subgroups; they were bonded using 3 repair systems: Bisco Intraoral Repair Kit, Cimara & Cimara Zircon Repair System, and Clearfil Repair System. After 1200 thermocycles, shear bond strength was measured in a universal testing machine at a 0.5 mm/min crosshead speed. In addition, the contact angle values of the infrastructures after surface treatments were examined for wettability. Data were analyzed by using ANOVA and Tukey post hoc tests. Although there were no significant differences among the repair systems (p > 0.05) in the glass ceramic and zirconia groups, a significant difference was found among the repair systems in alumina infrastructure (p < 0.001). There were no statistically significant differences among the infrastructures (p > 0.05); however, a statistically significant difference was found among the repair systems (p < 0.05). No difference was found among the infrastructures and repair systems in terms of contact angle values. Cimara & Cimara Zircon Repair System had higher bond strength values than the other repair systems. Although no difference was found among the infrastructures and repair systems, contact wettability angle was decreased by surface treatments compared with polished surfaces. © 2015 by the American College of Prosthodontists.
Guazzato, Massimiliano; Albakry, Mohammad; Ringer, Simon P; Swain, Michael V
2004-06-01
The present study, divided into two parts, aimed to compare the strength, fracture toughness and microstructure of a range of all-ceramic materials. In part I, three hot-pressed glass-ceramics (IPS-Empress, Empress 2 and a new experimental ceramic) and alumina glass-infiltrated ceramics (In-Ceram Alumina), processed by both slip casting and dry pressing, were compared. Tensile strength was appraised on 10 bar-shaped specimens (20 x 4 x 1.2 mm3) for each material with the three-point bending method; the fracture toughness was measured from 20 specimens (20 x 4 x 2 mm3), by using the indentation strength technique. Data were compared with ANOVA and the Sheffé post hoc test (p = 0.05). The volume fraction of each phase, the dimensions and shapes of the grains, porosity and the crack patterns were investigated using SEM. The average and standard deviation in strength (MPa) and fracture toughness (MPa m(1/2)) were: IPS-Empress 106(17)1, 1.2(0.14)1; Empress 2 306(29)2, 2.9(0.51)2, new experimental ceramic 303(49)2, 3.0(0.65)2, In-Ceram Alumina dry-pressed 440(50)2, 3.6(0.26)2, In-Ceram Alumina slip 594(52)3, 4.4(0.48)3. Values with the same superscript number showed no significant statistical difference. Microscopy revealed the relationship between the glass matrix and the crystalline phase and the characteristics of the latter were correlated to the strengthening and toughening mechanisms of these glass-ceramics. The mechanical properties and microstructure of core materials have been advocated as crucial to the clinical long-term performance of all-ceramic dental restorations. This investigation provides the clinician with data regarding strength, fracture toughness and microstructure of a broad range of current materials. Copyright 2003 Academy of Dental Materials
Anusavice, Kenneth J.; Jadaan, Osama M.; Esquivel–Upshaw, Josephine
2013-01-01
Recent reports on bilayer ceramic crown prostheses suggest that fractures of the veneering ceramic represent the most common reason for prosthesis failure. Objective The aims of this study were to test the hypotheses that: (1) an increase in core ceramic/veneer ceramic thickness ratio for a crown thickness of 1.6 mm reduces the time-dependent fracture probability (Pf) of bilayer crowns with a lithium-disilicate-based glass-ceramic core, and (2) oblique loading, within the central fossa, increases Pf for 1.6-mm-thick crowns compared with vertical loading. Materials and methods Time-dependent fracture probabilities were calculated for 1.6-mm-thick, veneered lithium-disilicate-based glass-ceramic molar crowns as a function of core/veneer thickness ratio and load orientation in the central fossa area. Time-dependent fracture probability analyses were computed by CARES/Life software and finite element analysis, using dynamic fatigue strength data for monolithic discs of a lithium-disilicate glass-ceramic core (Empress 2), and ceramic veneer (Empress 2 Veneer Ceramic). Results Predicted fracture probabilities (Pf) for centrally-loaded 1,6-mm-thick bilayer crowns over periods of 1, 5, and 10 years are 1.2%, 2.7%, and 3.5%, respectively, for a core/veneer thickness ratio of 1.0 (0.8 mm/0.8 mm), and 2.5%, 5.1%, and 7.0%, respectively, for a core/veneer thickness ratio of 0.33 (0.4 mm/1.2 mm). Conclusion CARES/Life results support the proposed crown design and load orientation hypotheses. Significance The application of dynamic fatigue data, finite element stress analysis, and CARES/Life analysis represent an optimal approach to optimize fixed dental prosthesis designs produced from dental ceramics and to predict time-dependent fracture probabilities of ceramic-based fixed dental prostheses that can minimize the risk for clinical failures. PMID:24060349
Saraç, Y Şinasi; Külünk, Tolga; Elekdağ-Türk, Selma; Saraç, Duygu; Türk, Tamer
2011-12-01
The aims of this study were to investigate the effects of two surface-conditioning methods on the shear bond strength (SBS) of metal brackets bonded to three different all-ceramic materials, and to evaluate the mode of failure after debonding. Twenty feldspathic, 20 fluoro-apatite, and 20 leucite-reinforced ceramic specimens were examined following two surface-conditioning methods: air-particle abrasion (APA) with 25 μm Al(2)O(3) and silica coating with 30 μm Al(2)O(3) particles modified by silica. After silane application, metal brackets were bonded with light cure composite and then stored in distilled water for 1 week and thermocycled (×1000 at 5-55°C for 30 seconds). The SBS of the brackets was measured on a universal testing machine. The ceramic surfaces were examined with a stereomicroscope to determine the amount of composite resin remaining using the adhesive remnant index. Two-way analysis of variance, Tukey's multiple comparison test, and Weibull analysis were used for evaluation of SBS. The lowest SBS was with APA for the fluoro-apatite ceramic (11.82 MPa), which was not significantly different from APA for the feldspathic ceramic (13.58 MPa). The SBS for the fluoro-apatite ceramic was significantly lower than that of leucite-reinforced ceramic with APA (14.82 MPa). The highest SBS value was obtained with silica coating of the leucite-reinforced ceramic (24.17 MPa), but this was not significantly different from the SBS for feldspathic and fluoro-apatite ceramic (23.51 and 22.18 MPa, respectively). The SBS values with silica coating showed significant differences from those of APA. For all samples, the adhesive failures were between the ceramic and composite resin. No ceramic fractures or cracks were observed. Chairside tribochemical silica coating significantly increased the mean bond strength values.
Kocaağaoğlu, Hasan; Albayrak, Haydar; Kilinc, Halil Ibrahim; Gümüs, Hasan Önder
2017-11-01
The use of computer-aided design and computer-aided manufacturing (CAD-CAM) for metal-ceramic restorations has increased with advances in the technology. However, little is known about the marginal and internal adaptation of restorations fabricated using laser sintering (LS) and soft milling (SM). Moreover, the effects of repeated ceramic firings on the marginal and internal adaptation of metal-ceramic restorations fabricated with LS and SM is also unknown. The purpose of this in vitro study was to investigate the effects of repeated ceramic firings on the marginal and internal adaptation of metal-ceramic copings fabricated using the lost wax (LW), LS, and SM techniques. Ten LW, 10 LS, and 10 SM cobalt-chromium (Co-Cr) copings were fabricated for an artificial tooth (Frasaco GmbH). After the application of veneering ceramic (VITA VMK Master; VITA Zahnfabrik), the marginal and internal discrepancies of these copings were measured with a silicone indicator paste and a stereomicroscope at ×100 magnification after the first, second, and third clinical simulated ceramic firing cycles. Repeated measures 2-way ANOVA and the Fisher LSD post hoc test were used to evaluate differences in marginal and internal discrepancies (α=.05). Neither fabrication protocol nor repeated ceramic firings had any statistically significant effect on internal discrepancy values (P>.05). Marginal discrepancy values were also statistically unaffected by repeated ceramic firings (P>.05); however, the fabrication protocol had a significant effect on marginal discrepancy values (P<.001), with LW resulting in higher marginal discrepancy values than LS or SM (P<.05). Marginal discrepancy values did not vary between LS and SM (P>.05). All groups demonstrated clinically acceptable marginal adaptation after repeated ceramic firing cycles; however, the LS and SM groups demonstrated better marginal adaptation than that of LW group and may be appropriate clinical alternatives to LW. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
The effects of different polishing techniques on the staining resistance of CAD/CAM resin-ceramics
Demirci, Tevfik; Demirci, Gamze; Sagsoz, Nurdan Polat; Yildiz, Mehmet
2016-01-01
PURPOSE The purposes of this study were to evaluate the staining resistance of CAD/CAM resin-ceramics polished with different techniques and to determine the effectiveness of the polishing techniques on resin-ceramics, comparing it with that of a glazed glass-ceramic. MATERIALS AND METHODS Four different CAD/CAM ceramics (feldspathic ceramic: C-CEREC Blocs, (SIRONA) and three resin-ceramics: L-Lava Ultimate, (3M ESPE), E-Enamic, (VITA) and CS-CeraSmart, (GC)) and one light cure composite resin: ME-Clearfil Majesty Esthetic (Kuraray) were used. Only C samples were glazed (gl). Other restorations were divided into four groups according to the polishing technique: nonpolished control group (c), a group polished with light cure liquid polish (Biscover LV BISCO) (bb), a group polished with ceramic polishing kit (Diapol, EVE) (cd), and a group polished with composite polishing kit (Clearfil Twist Dia, Kuraray) (kc). Glazed C samples and the polished samples were further divided into four subgroups and immersed into different solutions: distilled water, tea, coffee, and fermented black carrot juice. Eight samples (8 × 8 × 1 mm) were prepared for each subgroup. According to CIELab system, four color measurements were made: before immersion, immersion after 1 day, after 1 week, and after 1 month. Data were analyzed with repeated measures of ANOVA (α=.05). RESULTS The highest staining resistance was found in gl samples. There was no difference among gl, kc and cd (P>.05). Staining resistance of gl was significantly higher than that of bb (P<.05). Staining resistances of E and CS were significantly higher than those of L and ME (P<.05). CONCLUSION Ceramic and composite polishing kits can be used for resin ceramics as a counterpart of glazing procedure used for full ceramic materials. Liquid polish has limited indications for resin ceramics. PMID:28018558
Could larger diameter of 4th generation ceramic bearing decrease the rate of dislocation after THA?
Lee, Young-Kyun; Ha, Yong-Chan; Jo, Woo-Lam; Kim, Tae-Young; Jung, Woon-Hwa; Koo, Kyung-Hoi
2016-05-01
Fourth generation (Delta) ceramic bearing was developed to reduce dislocation after total hip arthroplasty (THA) by increasing the head diameter. We tested a hypothesis that 32/36 mm Delta ceramic bearing decreases the dislocation rate. We also evaluated ceramic-related complications and early outcome of this thin liner-on-large head ceramic bearing. We performed a prospective study on patients who underwent THA with use of 32/36 mm Delta ceramic bearing. The dislocation rate was compared with the historical dislocation rate of third generation 28 mm ceramic bearing. We also evaluated ceramic fracture, squeak, short-term results and survival. Follow-up period was minimum 2 years. Between April 2010 and February 2012, we enrolled 250 consecutive patients (278 hips). All patients received cementless prostheses. Four patients (4 hips) who received metal shells ≤ 46 mm and 28 mm heads were excluded. Three patients died and 2 patients were lost within 2 years. The remaining 241 patients (269 hips) were followed for 24-46 months. There were 142 men (161 hips) and 99 women (108 hips) with a mean age of 53.7 years (range, 17-75 years) at the index operation. Dislocation occurred in three hips (1.1%). An old age was a risk factor for dislocation. Ceramic fracture and squeaking did not occur in any patient. Mean Harris hip score was 90.3 points at the latest follow-up. All acetabular and femoral components had bone-ingrowth stability. No hip had detectable wear or osteolysis. The survival was 99.3% in the best case scenario and 97.8% in the worst at 48 months. Total hip arthroplasty with use of 32/36 mm Delta ceramic bearing showed lower incidence of hip dislocation compared with 28 mm third generation ceramic bearing. A caution should be paid to prevent a fall in senile patients even though a large head is used. The short-term results of THA with this type of ceramic articulation are encouraging and we did not find any ceramic-related complications. Copyright © 2016 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.
Heintze, S D; Zellweger, G; Cavalleri, A; Ferracane, J
2006-02-01
The aim of the study was to evaluate two ceramic materials as possible substitutes for enamel using two wear simulation methods, and to compare both methods with regard to the wear results for different materials. Flat specimens (OHSU n=6, Ivoclar n=8) of one compomer and three composite materials (Dyract AP, Tetric Ceram, Z250, experimental composite) were fabricated and subjected to wear using two different wear testing methods and two pressable ceramic materials as stylus (Empress, experimental ceramic). For the OHSU method, enamel styli of the same dimensions as the ceramic stylus were fabricated additionally. Both wear testing methods differ with regard to loading force, lateral movement of stylus, stylus dimension, number of cycles, thermocycling and abrasive medium. In the OHSU method, the wear facets (mean vertical loss) were measured using a contact profilometer, while in the Ivoclar method (maximal vertical loss) a laser scanner was used for this purpose. Additionally, the vertical loss of the ceramic stylus was quantified for the Ivoclar method. The results obtained from each method were compared by ANOVA and Tukey's test (p<0.05). To compare both wear methods, the log-transformed data were used to establish relative ranks between material/stylus combinations and assessed by applying the Pearson correlation coefficient. The experimental ceramic material generated significantly less wear in Tetric Ceram and Z250 specimens compared to the Empress stylus in the Ivoclar method, whereas with the OHSU method, no difference between the two ceramic antagonists was found with regard to abrasion or attrition. The wear generated by the enamel stylus was not statistically different from that generated by the other two ceramic materials in the OHSU method. With the Ivoclar method, wear of the ceramic stylus was only statistically different when in contact with Tetric Ceram. There was a close correlation between the attrition wear of the OHSU and the wear of the Ivoclar method (Pearson coefficient 0.83, p=0.01). Pressable ceramic materials can be used as a substitute for enamel in wear testing machines. However, material ranking may be affected by the type of ceramic material chosen. The attrition wear of the OHSU method was comparable with the wear generated with the Ivoclar method.
Ceramics potential in automotive powerplants
NASA Technical Reports Server (NTRS)
Mclean, A. F.
1983-01-01
The paper addresses the potential that ceramic materials can play an important role in future automotive powerplants - both advanced heat engines and advanced battery systems. A number of related experimental programs are reviewed including ceramics for gasoline and diesel piston engines, gas turbine and Stirling Engines and sodium-sulfur batteries. A strong integrated program to develop ceramics technology is recommended.
Mammalian Cell Interactions with Nanophase Materials
2005-01-01
alumina , titania and hydroxylapatite) as well as on composites of these ceramics with either poly(L-lactic) acid or poly(methyl) methacrylate. Most...osteoblasts on flat, nanophase (versus microphase/conventional) ceramics ( alumina , titania and hydroxylapatite) as a function of decreasing ceramic grain size...acid (PLA) and nanophase (but not on polymer/conventional) ceramics ( alumina , titania and hydroxylapatite) composites [4]. Specifically, osteoblast
Solid composite electrolytes for lithium batteries
Kumar, Binod; Scanlon, Jr., Lawrence G.
2000-01-01
Solid composite electrolytes are provided for use in lithium batteries which exhibit moderate to high ionic conductivity at ambient temperatures and low activation energies. In one embodiment, a ceramic-ceramic composite electrolyte is provided containing lithium nitride and lithium phosphate. The ceramic-ceramic composite is also preferably annealed and exhibits an activation energy of about 0.1 eV.
Ceramic transactions: Fractography of glasses and ceramics III. Volume 64
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varner, J.R.; Frechette, V.D.; Quinn, G.D.
1996-12-31
Reports are presented from the Third Annual Conference on the Fractography of Glasses and Ceramics. Topics include ceramics fracture mode, damage analysis, defect origin, deformation, crack evolution, and the use of laser raman spectroscopy for analysis of residual surface strains. Individual projects have been processed separately for the United States Department of Energy databases.
Coated powder for electrolyte matrix for carbonate fuel cell
Iacovangelo, Charles D.; Browall, Kenneth W.
1985-01-01
A plurality of electrolyte carbonate-coated ceramic particle which does not differ significantly in size from that of the ceramic particle and wherein no significant portion of the ceramic particle is exposed is fabricated into a porous tape comprised of said coated-ceramic particles bonded together by the coating for use in a molten carbonate fuel cell.
Process for making a ceramic composition for immobilization of actinides
Ebbinghaus, Bartley B.; Van Konynenburg, Richard A.; Vance, Eric R.; Stewart, Martin W.; Walls, Philip A.; Brummond, William Allen; Armantrout, Guy A.; Herman, Connie Cicero; Hobson, Beverly F.; Herman, David Thomas; Curtis, Paul G.; Farmer, Joseph
2001-01-01
Disclosed is a process for making a ceramic composition for the immobilization of actinides, particularly uranium and plutonium. The ceramic is a titanate material comprising pyrochlore, brannerite and rutile. The process comprises oxidizing the actinides, milling the oxides to a powder, blending them with ceramic precursors, cold pressing the blend and sintering the pressed material.
Reactive Processing of Environmentally Conscious, Biomorphic Ceramics from Natural Wood Precursors
NASA Technical Reports Server (NTRS)
Singh, M.; Yee, Bo-Moon
2003-01-01
Environmentally conscious, biomorphic ceramics (Ecoceramics) are a new class of materials that are manufactured from renewable resources and wastes. In this study, silicon carbide and oxide-based biomorphic ceramics have been fabricated from pine and jelutong wood precursors. A carbonaceous preform is produced through wood pyrolysis and subsequent infiltration with oxides (ZrO2 sols) and liquid silicon to form ceramics. These biomorphic ceramics show a wide variety of microstructures, densities, and hardness behavior that are determined by the type of wood and infiltrants selected.
Ceramic-glass-ceramic seal by microwave heating
Meek, T.T.; Blake, R.D.
1983-10-04
A method for producing a ceramic-glass-ceramic seal by microwaving, mixes a slurry of glass sealing material and coupling agent and applies same to ceramic workpieces. The slurry and workpieces are placed together, insulated and then microwaved at a power, time and frequency sufficient to cause a liquid phase reaction in the slurry. The reaction of the glass sealing material forms a chemically different seal than that which would be formed by conventional heating because it is formed by a diffusion rather than by wetting of the reactants.
Ceramic-glass-ceramic seal by microwave heating
Meek, Thomas T.; Blake, Rodger D.
1985-01-01
A method for producing a ceramic-glass-ceramic seal by microwaving, mixes a slurry of glass sealing material and coupling agent and applies same to ceramic workpieces. The slurry and workpieces are placed together, insulated and then microwaved at a power, time and frequency sufficient to cause a liquid phase reaction in the slurry. The reaction of the glass sealing material forms a chemically different seal than that which would be formed by conventional heating because it is formed by a diffusion rather than by wetting of the reactants.
Methods of enhancing conductivity of a polymer-ceramic composite electrolyte
Kumar, Binod
2003-12-02
Methods for enhancing conductivity of polymer-ceramic composite electrolytes are provided which include forming a polymer-ceramic composite electrolyte film by a melt casting technique and uniaxially stretching the film from about 5 to 15% in length. The polymer-ceramic composite electrolyte is also preferably annealed after stretching such that it has a room temperature conductivity of from 10.sup.-4 S cm.sup.-1 to 10.sup.-3 S cm.sup.-1. The polymer-ceramic composite electrolyte formed by the methods of the present invention may be used in lithium rechargeable batteries.
Corrosion of Ceramic Materials
NASA Technical Reports Server (NTRS)
Opila, Elizabeth J.; Jacobson, Nathan S.
1999-01-01
Non-oxide ceramics are promising materials for a range of high temperature applications. Selected current and future applications are listed. In all such applications, the ceramics are exposed to high temperature gases. Therefore it is critical to understand the response of these materials to their environment. The variables to be considered here include both the type of ceramic and the environment to which it is exposed. Non-oxide ceramics include borides, nitrides, and carbides. Most high temperature corrosion environments contain oxygen and hence the emphasis of this chapter will be on oxidation processes.
Ceramic vacuum tubes for geothermal well logging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, R.D.
1977-01-12
The results of investigations carried out into the availability and suitability of ceramic vacuum tubes for the development of logging tools for geothermal wells are summarized. Design data acquired in the evaluation of ceramic vacuum tubes for the development of a 500/sup 0/C instrumentation amplifier are presented. The general requirements for ceramic vacuum tubes for application to the development of high temperature well logs are discussed. Commercially available tubes are described and future contract activities that specifically relate to ceramic vacuum tubes are detailed. Supplemental data is presented in the appendix. (MHR)
Interphase for ceramic matrix composites reinforced by non-oxide ceramic fibers
NASA Technical Reports Server (NTRS)
DiCarlo, James A. (Inventor); Bhatt, Ramakrishna (Inventor); Morscher, Gregory N. (Inventor); Yun, Hee-Mann (Inventor)
2008-01-01
A ceramic matrix composite material is disclosed having non-oxide ceramic fibers, which are formed in a complex fiber architecture by conventional textile processes; a thin mechanically weak interphase material, which is coated on the fibers; and a non-oxide or oxide ceramic matrix, which is formed within the interstices of the interphase-coated fiber architecture. During composite fabrication or post treatment, the interphase is allowed to debond from the matrix while still adhering to the fibers, thereby providing enhanced oxidative durability and damage tolerance to the fibers and the composite material.
Method for fabricating a seal between a ceramic and a metal alloy
Kelsey, Jr., Paul V.; Siegel, William T.
1983-01-01
A method of fabricating a seal between a ceramic and an alloy comprising the steps of prefiring the alloy in an atmosphere with a very low partial pressure of oxygen, firing the assembled alloy and ceramic in air, and gradually cooling the fired assembly to avoid the formation of thermal stress in the ceramic. The method forms a bond between the alloy and the ceramic capable of withstanding the environment of a pressurized water reactor and suitable for use in an electrical conductivity sensitive liquid level transducer.
Empress 2. First year clinical results.
Culp, L
1999-03-01
As the search for perfect dental restorative materials continues, it seems we routinely return to ceramics as our standard. Current all-ceramic systems are state-of-the-art with regard to esthetics and function, but are limited in use to single unit restorations. Recently, an all-ceramic lithium disilicate-fluorapatite ceramic system was introduced (IPS Empress 2, Ivoclar North America, Amherst, NY), that allows multiple unit restorations to be fabricated and cemented using adhesive or traditional cementation techniques. This article will overview the technical procedures and advantages of this new ceramic system.
Segmented ceramic liner for induction furnaces
Gorin, Andrew H.; Holcombe, Cressie E.
1994-01-01
A non-fibrous ceramic liner for induction furnaces is provided by vertically stackable ring-shaped liner segments made of ceramic material in a light-weight cellular form. The liner segments can each be fabricated as a single unit or from a plurality of arcuate segments joined together by an interlocking mechanism. Also, the liner segments can be formed of a single ceramic material or can be constructed of multiple concentric layers with the layers being of different ceramic materials and/or cellular forms. Thermomechanically damaged liner segments are selectively replaceable in the furnace.
Segmented ceramic liner for induction furnaces
Gorin, A.H.; Holcombe, C.E.
1994-07-26
A non-fibrous ceramic liner for induction furnaces is provided by vertically stackable ring-shaped liner segments made of ceramic material in a light-weight cellular form. The liner segments can each be fabricated as a single unit or from a plurality of arcuate segments joined together by an interlocking mechanism. Also, the liner segments can be formed of a single ceramic material or can be constructed of multiple concentric layers with the layers being of different ceramic materials and/or cellular forms. Thermomechanically damaged liner segments are selectively replaceable in the furnace. 5 figs.
Method for fabricating a seal between a ceramic and a metal alloy
Kelsey, P.V. Jr.; Siegel, W.T.
1983-08-16
A method of fabricating a seal between a ceramic and an alloy comprising the steps of prefiring the alloy in an atmosphere with a very low partial pressure of oxygen, firing the assembled alloy and ceramic in air, and gradually cooling the fired assembly to avoid the formation of thermal stress in the ceramic. The method forms a bond between the alloy and the ceramic capable of withstanding the environment of a pressurized water reactor and suitable for use in an electrical conductivity sensitive liquid level transducer.
Evaluation of surface roughness and polishing techniques for new ceramic materials.
Campbell, S D
1989-05-01
The surface roughness of crown and bridge materials should be minimized to obtain optimal biocompatability. This study used scanning electron microscopy to evaluate the effect of polishing procedures on two all-ceramic crown materials (Dicor and Cerestore). The "as formed," unpolished specimens of both Dicor and Cerestore materials presented a rough surface. It was found that any attempt to polish the Cerestore coping material resulted in an extremely rough surface. Finishing of the Dicor ceramic resulted in a smoother but pitted surface. Polishing of both ceramic materials resulted in a surface that was rougher than the glazed metal ceramic controls. The smoothest finish was obtained when the glazed veneer (Cerestore) and shading porcelain (Dicor) were applied to the all-ceramic materials.
Stephens, Jr., John J.; Hosking, F. Michael; Yost, Frederick G.
2003-12-16
A binary allow braze composition has been prepared and used in a bonded article of ceramic-ceramic and ceramic-metal materials. The braze composition comprises greater than approximately 95 wt % silver, greater than approximately 2 wt % hafnium and less than approximately 4.1 wt % hafnium, and less than approximately 0.2 wt % trace elements. The binary braze alloy is used to join a ceramic material to another ceramic material or a ceramic material, such as alumina, quartz, aluminum nitride, silicon nitride, silicon carbide, and mullite, to a metal material, such as iron-based metals, cobalt-based metals, nickel-based metals, molybdenum-based metals, tungsten-based metals, niobium-based metals, and tantalum-based metals. A hermetic bonded article is obtained with a strength greater than 10,000 psi.
Ceramic membrane development in NGK
NASA Astrophysics Data System (ADS)
Araki, Kiyoshi; Sakai, Hitoshi
2011-05-01
NGK Insulators, Ltd. was established in 1919 to manufacture the electric porcelain insulators for power transmission lines. Since then, our business has grown as one of the world-leading ceramics manufacturing companies and currently supply with the various environmentally-benign ceramic products to worldwide. In this paper, ceramic membrane development in NGK is described in detail. We have been selling ceramic microfiltration (MF) membranes and ultra-filtration (UF) membranes for many years to be used for solid/liquid separation in various fields such as pharmaceutical, chemical, food and semiconductor industries. In Corporate R&D, new ceramic membranes with sub-nanometer sized pores, which are fabricated on top of the membrane filters as support, are under development for gas and liquid/liquid separation processes.
Ceramic applications in turbine engines
NASA Technical Reports Server (NTRS)
Helms, H. E.; Heitman, P. W.; Lindgren, L. C.; Thrasher, S. R.
1984-01-01
The application of ceramic components to demonstrate improved cycle efficiency by raising the operating temperature of the existing Allison IGI 404 vehicular gas turbine engine is discussed. This effort was called the Ceramic Applications in Turbine Engines (CATE) program and has successfully demonstrated ceramic components. Among these components are two design configurations featuring stationary and rotating caramic components in the IGT 404 engine. A complete discussion of all phases of the program, design, materials development, fabrication of ceramic components, and testing-including rig, engine, and vehicle demonstation test are presented. During the CATE program, a ceramic technology base was established that is now being applied to automotive and other gas turbine engine programs. This technology base is outlined and also provides a description of the CATE program accomplishments.
Processing FeB03 glass-ceramics in space
NASA Technical Reports Server (NTRS)
Li, C. T.
1976-01-01
The possibility of preparing FeBO3 glass-ceramic in space is explored. A transparent glass-ceramic of FeBO3, due to its unique properties could be an excellent material for magneto-optic applications which currently utilize high price materials such as single crystals of Ga-YIG. The unique magneto-optic properties of FeBO3 were found to come from glass-ceramic but not from the glass form. It was anticipated and later confirmed that the FeBO3 glass-ceramics could not be prepared on earth. Phase separation and iron valence reduction, were identified as the two terrestrial manufacturing obstacles. Since the phase separation problem could be overcome by space processing, the preparation of FeBO3 glass-ceramic in space appears attractive.
Durand, Letícia Brandão; Guimarães, Jackeline Coutinho; Monteiro Junior, Sylvio; Baratieri, Luiz Narciso
2015-01-01
The purpose of this study was to determine the effect of cavity depth, ceramic thickness, and resin bases with different elastic modulus on von Mises stress patterns of ceramic inlays. Tridimensional geometric models were developed with SolidWorks image software. The differences between the models were: depth of pulpal wall, ceramic thickness, and presence of composite bases with different thickness and elastic modulus. The geometric models were constrained at the proximal surfaces and base of maxillary bone. A load of 100 N was applied. The stress distribution pattern was analyzed with von Mises stress diagrams. The maximum von Mises stress values ranged from 176 MPa to 263 MPa and varied among the 3D-models. The highest von Mises stress value was found on models with 1-mm-thick composite resin base and 1-mm-thick ceramic inlay. Intermediate values (249-250 MPa) occurred on models with 2-mm-thick composite resin base and 1-mm-thick ceramic inlay and 1-mm-thick composite resin base and 2-mm-thick ceramic inlay. The lowest values were observed on models restored exclusively with ceramic inlay (176 MPa to 182 MPa). It was found that thicker inlays distribute stress more favorably and bases with low elastic modulus increase stress concentrations on the internal surface of the ceramic inlay. The increase of ceramic thickness tends to present more favorable stress distribution, especially when bonded directly onto the cavity without the use of supporting materials. When the use of a composite base is required, composite resin with high elastic modulus and reduced thickness should be preferred.
NASA Astrophysics Data System (ADS)
Liu, Xing; Zhai, Jiwei; Shen, Bo; Li, Feng; Li, Peng
2017-10-01
(1 - x)(Na0.4K0.1Bi0.5)TiO3- xSrTiO3 (NKBT- xST) ceramics with x = 0 mol.%, 3 mol.%, and 5 mol.% (0ST, 3ST, and 5ST) have been prepared by a conventional solid-state reaction method and their ferroelectric, electrostrictive, and pyroelectric properties investigated. Addition of ST considerably disrupted the long-range ferroelectric order of NKBT- xST ceramics, and the 5ST ceramic exhibited ergodic relaxor phase structure. T FR shifted to near or below room temperature for 5ST ceramic, accompanied by a significant decline of ferroelectricity and enhanced strain. As the temperature approached T FR, the NKBT- xST ceramics exhibited predominantly electrostrictive effect, and the 5ST ceramic presented relatively high electrostrictive coefficient Q 33 of 0.0193 m4/C2. High pyroelectric response was observed for 0ST, 3ST, and 5ST ceramics in the vicinity of T FR due to the large polarization release during the ferroelectric-relaxor structural transition. The 5ST ceramic exhibited high and frequency-insensitive (100 Hz to 10 kHz) room-temperature pyroelectric properties with pyroelectric coefficient p of 656 μC m-2 K-1 and figures of merit F i, F v, and F d reaching 233 pm/V, 0.013 m2/C, and 7.61 μPa-1/2, respectively, indicating that 5ST ceramic is a promising candidate to replace PZT-based ceramics.
NASA Astrophysics Data System (ADS)
Todor, Raluca; Negrutiu, Meda-Lavinia; Sinescu, Cosmin; Topala, Florin Ionel; Bradu, Adrian; Duma, Virgil-Florin; Romînu, Mihai; Podoleanu, Adrian G.
2018-03-01
One of the most common fabrication techniques for dental ceramics is sintering, a process of heating of the ceramic to ensure densification. This occurs by viscous flow when the firing temperature is reached. Acceptable restorations require the alloy and ceramic to be chemically, thermally, mechanically, and aesthetically compatible. Thermal and mechanical compatibility include a fusing temperature of ceramic that does not cause distortion of the metal substructure. Decalibration of ovens used for firing of the ceramic layers for metal ceramic dental prostheses leads to stress and cracks in the veneering material, and ultimately to the failure of the restoration. 25 metal ceramic prostheses were made for this study. They were divided in five groups, each sintered at a different temperature: a group at the temperature prescribed by the producer, two groups at lower and two groups at higher temperatures set in the ceramic oven. An established noninvasive biomedical imaging method, swept source (SS) optical coherence tomography (OCT) was employed, in order to evaluate the modifications induced when using temperatures different from those prescribed for firing the samples. A quantitative assessment of the probes is performed by en-face OCT images, taken at constant depths inside the samples. The differences in granulation, thus in reflectivity allow for extracting rules-of-thumb to evaluate fast, by using only the prostheses currently produced the current calibration of the ceramic oven. OCT imaging can allow quick identification of the oven decalibration, to avoid producing dental prostheses with defects.
Al-Wahadni, Ahed M; Hussey, David L; Grey, Nicholas; Hatamleh, Muhanad M
2009-03-01
The aim of this study was to investigate the fracture resistance of two types of ceramic crowns cemented with two different cements. Forty premolar crowns were fabricated using lithium-disilicate (IPS Empress-2) and glass-infiltrated aluminium-oxide (In-Ceram) ceramic systems. The crowns were divided into four groups (n=10) with Group 1 (IPS Empress-2) and Group 2 (In-Ceram) cemented with glass ionomer cement. Group 3 (IPS Empress-2) and Group 4 (In-Ceram) were cemented with resin cement. Crowns were tested in a universal testing machine at a compressive-load speed of 10 mm/min. Fracture modes were grouped into five categories. One way analysis of variance (ANOVA) and Bonferroni post-hoc tests were used to detect statistical significances (p<0.05). The mean (SD) fracture resistance (Newtons) for Groups 1 to 4 were: 245.35 (82.69), 390.48 (67.03), 269.69 (10.33), and 418.36 (26.24). The cement type had no statistical significant effect (p>0.05) on fracture resistance within each ceramic system tested. In-Ceram crowns cemented with either glass ionomer or resin cements exhibited a statistically significantly higher fracture-resistance than IPS Empress-2 crowns (p<0.05). Minimal fracture in the test crowns was the common mode exhibited. Fracture resistance of IPS Empress-2 and In-Ceram crowns was not affected by the type of cement used for luting. Both In-Ceram and IPS Empress-2 crowns can be successfully luted with the cements tested with In-Ceram exhibiting higher fracture resistance than IPS Empress-2.
The effect of abrading and cutting instruments on machinability of dental ceramics.
Sakoda, Satoshi; Nakao, Noriko; Watanabe, Ikuya
2018-03-16
The aim was to investigate the effect of machining instruments on machinability of dental ceramics. Four dental ceramics, including two zirconia ceramics were machined by three types (SiC, diamond vitrified, and diamond sintered) of wheels with a hand-piece engine and two types (diamond and carbide) of burs with a high-speed air turbine. The machining conditions used were abrading speeds of 10,000 and 15,000 r.p.m. with abrading force of 100 gf for the hand-piece engine, and a pressure of 200 kPa and a cutting force of 80 gf for the air-turbine hand-piece. The machinability efficiency was evaluated by volume losses after machining the ceramics. A high-abrading speed had high-abrading efficiency (high-volume loss) compared to low-abrading speed in all abrading instruments used. The diamond vitrified wheels demonstrated higher volume loss for two zirconia ceramics than those of SiC and diamond sintered wheels. When the high-speed air-turbine instruments were used, the diamond points showed higher volume losses compared to the carbide burs for one ceramic and two zirconia ceramics with high-mechanical properties. The results of this study indicated that the machinability of dental ceramics depends on the mechanical and physical properties of dental ceramics and machining instruments. The abrading wheels show autogenous action of abrasive grains, in which ground abrasive grains drop out from the binder during abrasion, then the binder follow to wear out, subsequently new abrasive grains come out onto the instrument surface (autogenous action) and increase the grinding amount (volume loss) of grinding materials.
Effect of surface acid etching on the biaxial flexural strength of two hot-pressed glass ceramics.
Hooshmand, Tabassom; Parvizi, Shaghayegh; Keshvad, Alireza
2008-07-01
The purpose of this study was to assess the effect of surface acid etching on the biaxial flexural strength of two hot-pressed glass ceramics reinforced by leucite or lithium disilicate crystals. Forty glass ceramic disks (14-mm diameter, 2-mm thick) consisting of 20 leucite-based ceramic disks (IPS Empress) and 20 lithia disilicate-based ceramic (IPS Empress 2) were produced by hot-pressing technique. All specimens were polished and then cleaned ultrasonically in distilled water. Ten specimens of each ceramic group were then etched with 9% hydrofluoric (HF) acid gel for 2 minutes and cleaned ultrasonically again. The biaxial flexural strength was measured by the piston-on-three-ball test in a universal testing machine. Data based on ten specimens in each group were analyzed by two-way ANOVA (alpha= 0.05). Microstructure of ceramic surfaces before and after acid etching was also examined by a scanning electron microscope. The mean biaxial flexural strength values for each group tested were (in MPa): nonetched IPS Empress = 118.6 +/- 25.5; etched IPS Empress = 102.9 +/- 15.4; nonetched IPS Empress 2 = 283.0 +/- 48.5; and etched IPS Empress 2 = 250.6 +/- 34.6. The results showed that the etching process reduced the biaxial flexural strengths significantly for both ceramic types (p= 0.025). No significant interaction between the ceramic type and etching process was found (p= 0.407). From the results, it was concluded that surface HF acid etching could have a weakening effect on hot-pressed leucite or lithia disilicate-based glass ceramic systems.
In vitro adherence of oral streptococci to zirconia core and veneering glass-ceramics.
Rosentritt, Martin; Behr, Michael; Bürgers, Ralf; Feilzer, Albert J; Hahnel, Sebastian
2009-10-01
Plaque formation on dental ceramics may cause gingival inflammation and secondary caries. This in vitro study compared the susceptibility of various dental ceramics to adhere oral streptococci, and verified the influence of substratum surface roughness and surface hydrophobicity. Three zirconia ceramic materials and three veneering glass-ceramics were investigated. Fifteen test specimens were prepared for each material, polished, and surface roughness and hydrophobicity were determined. After incubation with artificial saliva (2 h, 37 degrees C) for pellicle formation, specimens were incubated with suspensions of Streptococcus gordonii DSMZ 6777, Streptococcus mutans DSMZ 20523, Streptococcus oralis DSMZ 20627, or Streptococcus sanguinis DSMZ 20068, respectively, for 2.5 h at 37 degrees C. Adherent bacteria were quantified using a fluorescence dye for viable cell quantification (Alamar Blue/Resazurin). Statistical analysis was performed using one- and two-way ANOVA and the Tukey-Kramer multiple comparison test for post hoc analysis (alpha < 0.05). Surface roughness and surface hydrophobicity differed significantly among the various ceramics; protein coating hydrophilized the surfaces, and led to a homogenization of the surface hydrophobicity of the various ceramics. Before protein coating, almost similar relative fluorescence intensities indicating similar adhesion of streptococci were found for the various ceramics; more distinct differences were observed after protein coating. Correlations between surface parameters and streptococcal adhesion were poor. Within the limitations of these experiments, the findings of this in vitro study indicate only little differences between zirconia and glass ceramic with regard to streptococcal adhesion. Judging from these results, it is unlikely that exposed zirconia surfaces yield more plaque than glass ceramic surfaces in vivo. (c) 2009 Wiley Periodicals, Inc.
Soft tissue adhesion of polished versus glazed lithium disilicate ceramic for dental applications.
Brunot-Gohin, C; Duval, J-L; Azogui, E-E; Jannetta, R; Pezron, I; Laurent-Maquin, D; Gangloff, S C; Egles, C
2013-09-01
Ceramics are widely used materials for prosthesis, especially in dental fields. Despite multiple biomedical applications, little is known about ceramic surface modifications and the resulting cell behavior at its contact. The aim of this study is to evaluate the biological response of polished versus glazed surface treatments on lithium disilicate dental ceramic. We studied a lithium disilicate ceramic (IPS e.max(®) Press, Ivoclar Vivadent) with 3 different surface treatments: raw surface treatment, hand polished surface treatment, and glazed surface treatment (control samples are Thermanox(®), Nunc). In order to evaluate the possible modulation of cell response at the surface of ceramic, we compared polished versus glazed ceramics using an organotypic culture model of chicken epithelium. Our results show that the surface roughness is not modified as demonstrated by equivalent Ra measurements. On the contrary, the contact angle θ in water is very different between polished (84°) and glazed (33°) samples. The culture of epithelial tissues allowed a very precise assessment of histocompatibility of these interfaces and showed that polished samples increased cell adhesion and proliferation as compared to glazed samples. Lithium disilicate polished ceramic provided better adhesion and proliferation than lithium disilicate glazed ceramic. Taken together, our results demonstrate for the first time, how it is possible to use simple surface modifications to finely modulate the adhesion of tissues. Our results will help dental surgeons to choose the most appropriate surface treatment for a specific clinical application, in particular for the ceramic implant collar. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Post-irradiation hardening of dual-cured and light-cured resin cements through machinable ceramics.
Yoshida, Keiichi; Atsuta, Mitsuru
2006-10-01
To evaluate the surface hardness (Knoop Hardness Number) of the thin layer in three light-cured and dual-cured resin cements irradiated through or not through 2.0 mm thick machinable ceramics. A piece of adhesive polyethylene tape with a circular hole was positioned on the surface of the ceramic plate to control the cement layer (approximately 50 microm). The cement paste was placed on the ceramic surface within the circle. The ceramic plate with resin cement paste was placed on a clear micro cover glass over a zirconia ceramic block to obtain a flat surface, and the material was polymerized using a visible-light-curing unit. The surface hardness was recorded at a series of time intervals up to 5 days, starting from the end of a light-irradiation period. The hardness steadily increased with post-irradiation time and tended towards a maximum, usually reached after 1 or 2 days. In all cases, the increase in hardness was relatively rapid over the first 30 minutes and continued at a lower rate thereafter. The dual-cured resin cement for each material showed a significantly higher hardness value than the light-cured resin cement irradiated either through or not through ceramics at all post-irradiation times. The resin cements cured through ceramic for each material were significantly less hard compared with those cured not through ceramics at all post-irradiation times.
NASA Astrophysics Data System (ADS)
Lee, Ki-Ju; Tang, Dongxu; Park, K.; Cho, Won-Seung
2010-02-01
Porous Y-doped (Ba,Sr)TiO3 ceramics were prepared by the spark plasma sintering of (Ba,Sr)TiO3 powders with different amounts of carbon black, and by subsequently burning out the carbon black acting as a pore precursor. The microstructure, PTCR and gas-sensing characteristics for porous Y-doped (Ba,Sr)TiO3 ceramics were investigated. Spark plasma sintered (Ba,Sr)TiO3 ceramics revealed a very fine microstructure containing submicron-sized grains with a cubic phase and revealed an increased porosity after the carbon black was burned out. As a result of reoxidation treatment, the grain size of the (Ba,Sr)TiO3 ceramics increased to a few μm and the cubic phase transformed into a tetragonal phase. The phase transformation of (Ba,Sr)TiO3 ceramics was affected by grain size. The PTCR jump in the (Ba,Sr)TiO3 ceramics prepared by adding 40 vol.% carbon black showed an excellent value of 4.72 × 106, which was ten times higher than the PTCR jump in (Ba,Sr)TiO3 ceramics. The electrical resistivity of the porous (Ba,Sr)TiO3 ceramics was recovered as the atmosphere changed from a reducing gas (N2) to an oxidizing gas (O2) under consecutive heating and cooling cycles.
Li, Huan-Cai; Wang, Dian-Gang; Meng, Xiang-Guo; Chen, Chuan-Zhong
2014-09-01
Zirconia-toughened MgO-CaO-SiO2-P2O5-CaF2 glass-ceramics are prepared using sintering techniques, and a series of heat treatment procedures are designed to obtain a glass-ceramic with improved properties. The crystallization behavior, phase composition, and morphology of the glass-ceramics are characterized. The bending strength, elastic modulus, fracture toughness, and microhardness of the glass-ceramics are investigated, and the effect mechanism of heat treatments upon the mechanical properties is discussed. The bioactivity of glass-ceramics is then evaluated using the in vitro simulated body fluid (SBF) soaking test, and the mechanism whereby apatite forms on the glass-ceramic surfaces in the SBF solution is discussed. The results indicate that the main crystal phase of the G-24 sample undergoing two heat treatment procedures is Ca5(PO4)3F (fluorapatite), and those of the G-2444 sample undergoing four heat treatment procedures are Ca5(PO4)3F and β-CaSiO3 (β-wollastonite). The heat treatment procedures are found to greatly influence the mechanical properties of the glass-ceramic, and an apatite layer is induced on the glass-ceramic surface after soaking in the SBF solution.
Effects of ion doping at different sites on electrical properties of multiferroic BiFeO3 ceramics
NASA Astrophysics Data System (ADS)
Yu, Benfang; Li, Meiya; Liu, Jun; Guo, Dongyun; Pei, Ling; Zhao, Xingzhong
2008-03-01
Pure, La3+ doped at A site, V5+ doped at B site, and La3+ and V5+ co-doped multiferroic BiFeO3 ceramics: BiFeO3 (BFO), Bi0.85La0.15FeO3 (BLF), BiFe0.97V0.03O3 (BFV), Bi0.85La0.15Fe0.97V0.03O3 (BLFV), etc were successfully prepared by a rapid liquid sintering technique. X-ray diffraction indicated that these ceramics were of polycrystalline perovskite structures, accompanied with a tiny residual Bi2O3 phase. It was found that, among these ceramics, BLFV ceramic exhibited the best electrical properties. The leakage current density of BLFV ceramic was only 2.1 × 10-6 A cm-2 at 10 kV cm-1, two and one orders of magnitude lower than those of the BLF and BFV ceramics, respectively. In the measuring frequency of 4 KHz-1 MHz, the dielectric constants and losses of this sample exhibited slight variation and the lowest loss tangent was 0.08. The sample had a relatively saturated ferroelectric hysteresis loop. These suggested that the co-doped BiFeO3 ceramic by La3+ and V5+ at A and B sites showed advantages in application over the pure BFO, doped BLF and BFV ceramics, respectively.
Mechanical properties of zirconia reinforced lithium silicate glass-ceramic.
Elsaka, Shaymaa E; Elnaghy, Amr M
2016-07-01
The aim of this study was to assess the mechanical properties of recently introduced zirconia reinforced lithium silicate glass-ceramic. Two types of CAD/CAM glass-ceramics (Vita Suprinity (VS); zirconia reinforced lithium silicate and IPS e.max CAD (IC); lithium disilicate) were used. Fracture toughness, flexural strength, elastic modulus, hardness, brittleness index, and microstructures were evaluated. Data were analyzed using independent t tests. Weibull analysis of flexural strength data was also performed. VS had significantly higher fracture toughness (2.31±0.17MPam(0.5)), flexural strength (443.63±38.90MPa), elastic modulus (70.44±1.97GPa), and hardness (6.53±0.49GPa) than IC (P<0.001). On the other hand, VS glass-ceramic revealed significantly a higher brittleness index (2.84±0.26μm(-1/2)) (lower machinability) than IC glass-ceramic (P<0.05). VS demonstrated a homogeneous fine crystalline structure while, IC revealed a structure with needle-shaped fine-grained crystals embedded in a glassy matrix. The VS glass-ceramic revealed a lower probability of failure and a higher strength than IC glass-ceramic according to Weibull analysis. The VS zirconia reinforced lithium silicate glass-ceramic revealed higher mechanical properties compared with IC lithium disilicate glass-ceramic. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
FR, Wahid Muhamad; Yoon, Dang-Hyok; Raju, Kati; Kim, Seyoung; Song, Kwang-sup; Yu, Ji Haeng
2018-01-01
To fabricate a multi-layered structure for maximizing oxygen production, oxygen transport membrane (OTM) ceramics need to be joined or sealed hermetically metal supports for interfacing with the peripheral components of the system. Therefore, in this study, Ag-10 wt% CuO was evaluated as an effective filler material for the reactive air brazing of dense Ce0.9Gd0.1O2-δ-La0.7Sr0.3MnO3±δ (GDC-LSM) OTM ceramics. Thermal decomposition in air and wetting behavior of the braze filler was performed. Reactive air brazing was performed at 1050 °C for 30 min in air to join GDC-LSM with four different commercially available high temperature-resistant metal alloys, such as Crofer 22 APU, Inconel 600, Fecralloy, and AISI 310S. The microstructure and elemental distribution of the ceramic-ceramic and ceramic-metal interfaces were examined from polished cross-sections. The mechanical shear strength at room temperature for the as-brazed and isothermally aged (800 °C for 24 h) joints of all the samples was compared. The results showed that the strength of the ceramic-ceramic joints was decreased marginally by aging; however, in the case of metal-ceramic joints, different decreases in strengths were observed according to the metal alloy used, which was explained based on the formation of different oxide layers at the interfaces.
Xu, Fang; Liao, Yulong; Zhang, Dainan; Zhou, Tingchuan; Li, Jie; Gan, Gongwen; Zhang, Huaiwu
2017-04-17
LiZn ferrite ceramics with high saturation magnetization (4πM s ) and low ferromagnetic resonance line widths (ΔH) represent a very critical class of material for microwave ferrite devices. Many existing approaches emphasize promotion of the grain growth (average size is 10-50 μm) of ferrite ceramics to improve the gyromagnetic properties at relatively low sintering temperatures. This paper describes a new strategy for obtaining uniform and compact LiZn ferrite ceramics (average grains size is ∼2 μm) with enhanced magnetic performance by suppressing grain growth in great detail. The LiZn ferrites with a formula of Li 0.415 Zn 0.27 Mn 0.06 Ti 0.1 Fe 2.155 O 4 were prepared by solid reaction routes with two new sintering strategies. Interestingly, results show that uniform, compact, and pure spinel ferrite ceramics were synthesized at a low temperature (∼850 °C) without obvious grain growth. We also find that a fast second sintering treatment (FSST) can further improve their gyromagnetic properties, such as higher 4πM s and lower ΔH. The two new strategies are facile and efficient for densification of LiZn ferrite ceramics via suppressing grain growth at low temperatures. The sintering strategy reported in this study also provides a referential experience for other ceramics, such as soft magnetism ferrite ceramics or dielectric ceramics.
Goryainova, Kristina E; Morokov, Egor S; Retinskaja, Marina V; Rusanov, Fedor S; Apresyan, Samvel V; Lebedenko, Igor Yu
2018-01-01
The aim of the present work was to compare the elastic properties and internal structure of 4 different CAD/CAM chairside materials, by the method of Scanning Impulse Acoustic Microscopy (SIAM). Four chairside CAD/CAM materials with different structures from hybrid ceramic (VITA Enamic, VITA Zahnfabrik), feldspatic ceramic (VITABlocs Mark II, VITA Zahnfabrik), leucite glass-ceramic (IPS Empress CAD, Ivoclar Vivadent) and PMMA (Telio CAD, Ivoclar Vivadent) were examined by Scanning Impulse Acoustic Microscope (SIAM). The results of micromorphological research of CAD/CAM chairside materials using SIAM method showed differences between the internal structures of these materials. The internal structure of feldspatic and glass-ceramic samples revealed the presence of pores with different sizes, from 10 to 100 microns; the structure of polymer materials rendered some isolated defects, while in the structure of hybrid material, defects were not found. Based on the results obtained from the present study, in cases of chairside production of dental crowns, it would be advisable to give preference to the blocks of hybrid ceramics. Such ceramics devoid of quite large porosity, glazing for CAD/CAM crowns made from leucite glass-ceramic and feldspatic ceramic may be an option. For these purposes, commercially available special muffle furnace for clinical and laboratory individualization and glazing of ceramic prostheses were provided. Further studies are needed to confirm the evidence emerging from the present research.
Pich, Olena; Franzen, René; Gutknecht, Norbert; Wolfart, Stefan
2015-02-01
In the present paper, we investigate the behaviour of different dental materials under laser irradiation. We have used e.max Ceram, e.max ZirCAD, and e.max Press dental ceramics and glass ionomer cement Ketac Cem in the present study. The dental ceramics were prepared in the form of samples with thickness of 0.5-2 mm. We used two lasers [solid-state laser (Er:YAG, Fidelis III+, Fotona) and an 810- nm diode laser (FOX, A.R.C)] for the transillumination of ceramic samples. It has been shown that the laser energy transmitted through the ceramic material decreases to 30-40% of the original values along with an increase in the thickness of the irradiated sample. Pigmented ceramic samples show more laser energy loss compared to the samples containing no pigment. We investigated the temperature evolution in composite sandwiched ceramic/cement samples under laser treatment. The increase in the irradiation time and laser power led to a temperature increase of up to 80 °C. The surfaces of irradiated ceramic samples were examined with X-ray photoelectron spectroscopy to evaluate changes in chemical composition, such as a decrease in the C signal, accompanied by a strong increase in the Zr peak for the Er:YAG laser, while the 810-nm diode laser showed no change in the ratio of elements on the surface.
NASA/CARES dual-use ceramic technology spinoff applications
NASA Technical Reports Server (NTRS)
Powers, Lynn M.; Janosik, Lesley A.; Gyekenyesi, John P.; Nemeth, Noel N.
1994-01-01
NASA has developed software that enables American industry to establish the reliability and life of ceramic structures in a wide variety of 21st Century applications. Designing ceramic components to survive at higher temperatures than the capability of most metals and in severe loading environments involves the disciplines of statistics and fracture mechanics. Successful application of advanced ceramics material properties and the use of a probabilistic brittle material design methodology. The NASA program, known as CARES (Ceramics Analysis and Reliability Evaluation of Structures), is a comprehensive general purpose design tool that predicts the probability of failure of a ceramic component as a function of its time in service. The latest version of this software, CARESALIFE, is coupled to several commercially available finite element analysis programs (ANSYS, MSC/NASTRAN, ABAQUS, COSMOS/N4, MARC), resulting in an advanced integrated design tool which is adapted to the computing environment of the user. The NASA-developed CARES software has been successfully used by industrial, government, and academic organizations to design and optimize ceramic components for many demanding applications. Industrial sectors impacted by this program include aerospace, automotive, electronic, medical, and energy applications. Dual-use applications include engine components, graphite and ceramic high temperature valves, TV picture tubes, ceramic bearings, electronic chips, glass building panels, infrared windows, radiant heater tubes, heat exchangers, and artificial hips, knee caps, and teeth.
Bergschmidt, Philipp; Dammer, Rebecca; Zietz, Carmen; Finze, Susanne; Mittelmeier, Wolfram; Bader, Rainer
2016-06-01
Evaluation of the adhesive strength of femoral components to the bone cement is a relevant parameter for predicting implant safety. In the present experimental study, three types of cemented femoral components (metallic, ceramic and silica/silane-layered ceramic) of the bicondylar Multigen Plus knee system, implanted on composite femora were analysed. A pull-off test with the femoral components was performed after different load and several cementing conditions (four groups and n=3 components of each metallic, ceramic and silica/silane-layered ceramic in each group). Pull-off forces were comparable for the metallic and the silica/silane-layered ceramic femoral components (mean 4769 N and 4298 N) under standard test condition, whereas uncoated ceramic femoral components showed reduced pull-off forces (mean 2322 N). Loading under worst-case conditions led to decreased adhesive strength by loosening of the interface implant and bone cement using uncoated metallic and ceramic femoral components, respectively. Silica/silane-coated ceramic components were stably fixed even under worst-case conditions. Loading under high flexion angles can induce interfacial tensile stress, which could promote early implant loosening. In conclusion, a silica/silane-coating layer on the femoral component increased their adhesive strength to bone cement. Thicker cement mantles (>2 mm) reduce adhesive strength of the femoral component and can increase the risk of cement break-off.
ERIC Educational Resources Information Center
Schubert, Thorne Erwin
1990-01-01
Describes how junior high school students in Arizona combine what they have learned in ceramic history class with ceramic production skills to create their own personal ceramic heads in their images. (KM)
25 CFR 309.19 - What are examples of pottery and ceramics that are Indian products?
Code of Federal Regulations, 2012 CFR
2012-04-01
... 25 Indians 2 2012-04-01 2012-04-01 false What are examples of pottery and ceramics that are Indian... OF INDIAN ARTS AND CRAFTS PRODUCTS § 309.19 What are examples of pottery and ceramics that are Indian products? (a) Pottery, ceramics, and related arts and crafts items made or significantly decorated by an...
25 CFR 309.19 - What are examples of pottery and ceramics that are Indian products?
Code of Federal Regulations, 2013 CFR
2013-04-01
... 25 Indians 2 2013-04-01 2013-04-01 false What are examples of pottery and ceramics that are Indian... OF INDIAN ARTS AND CRAFTS PRODUCTS § 309.19 What are examples of pottery and ceramics that are Indian products? (a) Pottery, ceramics, and related arts and crafts items made or significantly decorated by an...
25 CFR 309.19 - What are examples of pottery and ceramics that are Indian products?
Code of Federal Regulations, 2014 CFR
2014-04-01
... 25 Indians 2 2014-04-01 2014-04-01 false What are examples of pottery and ceramics that are Indian... OF INDIAN ARTS AND CRAFTS PRODUCTS § 309.19 What are examples of pottery and ceramics that are Indian products? (a) Pottery, ceramics, and related arts and crafts items made or significantly decorated by an...
Uses of ceramics in microelectronics: A survey
NASA Technical Reports Server (NTRS)
Bratschun, W. R.; Mountvala, A. J.; Pincus, A. G.
1971-01-01
The properties and behavior of ceramic materials used in components for electronic circuitry are examined to appraise the present and future directions for microelectronics, and to suggest further product development, and how innovations may be useful in other technologies. Ceramic and glass insulators, resistors, capacitors, and the use of ceramics and glasses in microcircuitry are discussed along with technology transfer to nonaerospace uses.
Directionally Solidified Eutectic Ceramics for Multifunctional Aerospace Applications
2009-06-01
Solidified Alumina - Titania Composites", Key Engineering Materials, 290 (2005) pp 199 - 202. PEER REVIEWED CONFERENCE PROCEEDINGS 22. A. Sayir, S...RESPONSIBLE PERSON 19b. TELEPHONE NUMBER (Include area code) 1 Progress Report for 2006 For the Grant Directionally Solidified Eutectic Ceramics ...incorporating structural ceramics in future aerospace applications: (1) the challenges associated with ceramics are improving strength, toughness and
Hot-Pressed Versus Sintered LiTi2(PO4)3
2009-02-01
Goretta, K. J. Mat. Lett. 1988, 6, 217. 30. Nieh, T.-G.; Wadsworth, J. J. Am. Ceram. Soc. 1989, 72, 1469. 31. Carry, C.; Mocellin , A. Ceram. Inter...1987, 13, 89. 32. Fridez, C. D.; Carry, C.; Mocellin , A. in Advances in Ceramics Vol. 10, Structure and Property of MgO and Al2O3 Ceramics. ed. W.D
Functionally Graded Multifunctional Hybrid Composites for Extreme Environments
2010-02-01
Develop multifunctional FGHC with multiple layers: a ceramic thermal barrier layer, a graded ceramic /metal composite (GCMeC) layer and a high...AFOSR-MURI Functionally Graded Hybrid Composites Actively Cooled PMC White (UIUC) FGHC Fabrication Team Graded Ceramic Metal Composites (GCMeC...Composites Fabrication and Characterization of Bulk Ceramic MAX Phase and MAX–Metal Composites AFOSR-MURI Functionally Graded Hybrid Composites Mn
Sodium nitrate containing mixture for producing ceramic-glass-ceramic seal by microwave heating
Blake, R.D.; Meek, T.T.
1984-10-10
A mixture for, and method of using such a mixture, for producing a ceramic-glass-ceramic seal by the use of microwave energy are disclosed, wherein the mixture comprises a glass sealing material, a coupling agent, and an oxidizer. The seal produced exhibits greater strength due to its different microstructure. Sodium nitrate is the most preferred oxidizer.
Environment Conscious, Biomorphic Ceramics from Pine and Jelutong Wood Precursors
NASA Technical Reports Server (NTRS)
Singh, Mrityunjay; Yee, Bo-Moon; Gray, Hugh R. (Technical Monitor)
2002-01-01
Environment conscious, biomorphic ceramics have been fabricated from pine and jelutong wood precursors. A carbonaceous preform is produced through wood pyrolysis and subsequent infiltration with oxides (ZrO2 sols) and liquid silicon to form ceramics. These biomorphic ceramics show a wide variety of microstructures, densities, and hardness behavior that are determined by the type of wood and infiltrants selected.
Saiki, Osamu; Koizumi, Hiroyasu; Akazawa, Nobutaka; Kodaira, Akihisa; Okamura, Kentaro; Matsumura, Hideo
2016-01-01
This study compared the wear characteristics of a heat-pressed lithium disilicate ceramic material opposed to feldspathic porcelain, a lithium disilicate glass ceramic, and zirconia materials. Ceramic plate specimens were prepared from feldspathic porcelain (EX-3 nA1B), lithium disilicate glass ceramics (e.max CAD MO1/C14), and zirconia (Katana KT 10) and then ground or polished. Rounded rod specimens were fabricated from heat-pressed lithium disilicate glass ceramic (e.max press LT A3) and then glazed or polished. A sliding wear testing apparatus was used for wear testing. Wear of glazed rods was greater than that of polished rods when they were abraded with ground zirconia, ground porcelain, polished porcelain, or polished lithium disilicate ceramics. For both glazed and polished rods, wear was greater when the rods were abraded with ground plates. The findings indicate that application of a polished surface rather than a glazed surface is recommended for single restorations made of heat-pressed lithium disilicate material. In addition, care must be taken when polishing opposing materials, especially those used in occlusal contact areas. (J Oral Sci 58, 117-123, 2016).
Ceramic on ceramic arthroplasty of the hip: new materials confirm appropriate use in young patients.
Sentuerk, U; von Roth, P; Perka, C
2016-01-01
The leading indication for revision total hip arthroplasty (THA) remains aseptic loosening owing to wear. The younger, more active patients currently undergoing THA present unprecedented demands on the bearings. Ceramic-on-ceramic (CoC) bearings have consistently shown the lowest rates of wear. The recent advances, especially involving alumina/zirconia composite ceramic, have led to substantial improvements and good results in vitro. Alumina/zirconia composite ceramics are extremely hard, scratch resistant and biocompatible. They offer a low co-efficient of friction and superior lubrication and lower rates of wear compared with other bearings. The major disadvantage is the risk of fracture of the ceramic. The new composite ceramic has reduced the risk of fracture of the femoral head to 0.002%. The risk of fracture of the liner is slightly higher (0.02%). Assuming that the components are introduced without impingement, CoC bearings have major advantages over other bearings. Owing to the superior hardness, they produce less third body wear and are less vulnerable to intra-operative damage. The improved tribology means that CoC bearings are an excellent choice for young, active patients requiring THA. ©2016 The British Editorial Society of Bone & Joint Surgery.
Dielectric and varistor properties of rare-earth-doped ZnO and CaCu3Ti4O12 composite ceramics
NASA Astrophysics Data System (ADS)
Lu, Huafei; Lin, Yuanhua; Yuan, Jiancong; Nan, Cewen; Chen, Kexin
2013-02-01
To investigate the multi-functional ceramics with both high permittivity and large nonlinear coefficient, we have prepared rare-earth Tb-and-Co doped ZnO and TiO2-rich CaCu3Ti4O12 (TCCTO) powders by chemical co-precipitation and sol-gel methods respectively, and then obtained the TCCTO/ZnO composite ceramics, sintered at 1100°C for 3 h in air. Analyzing the composite ceramics of the microstructure and phase composition indicated that the composite ceramics were composed of the main phases of ZnO and CaCu3Ti4O12 (CCTO). Our results revealed that the TCCTO/ZnO composite ceramics showed both high dielectric and good nonlinear electrical behaviors. The composite ceramic of TCCTO: ZnO = 0.3 exhibited a high dielectric constant of 210(1 kHz) with a nonlinear coefficient of 11. The dielectric behavior of TCCTO/ZnO composite could be explained by the mixture rule. With the high dielectric permittivity and tunable varistor behaviors, the composite ceramics has a potential application for the higher voltage transportation devices.
Surface reactivity and hydroxyapatite formation on Ca5MgSi3O12 ceramics in simulated body fluid
NASA Astrophysics Data System (ADS)
Xu, Jian; Wang, Yaorong; Huang, Yanlin; Cheng, Han; Seo, Hyo Jin
2017-11-01
In this work, the new calcium-magnesium-silicate Ca5MgSi3O12 ceramic was made via traditional solid-state reaction. The bioactivities were investigated by immerging the as-made ceramics in simulated body fluid (SBF) for different time at body temperature (37 °C). Then the samples were taken to measure X-ray powder diffraction (XRD), Scanning electron microscopy (SEM), X-ray energy-dispersive spectra (EDS), and Fourier transform infrared spectroscopy (FT-IR) measurements. The bone-like hydroxyapatite nanoparticles formation was observed on the ceramic surfaces after the immersion in SBF solutions. Ca5MgSi3O12 ceramics possess the Young's modulus and the bending strength and of 96.3 ± 1.2 GPa and 98.7 ± 2.3 MPa, respectively. The data suggest that Ca5MgSi3O12 ceramics can quickly induce HA new layers after soaking in SBF. Ca5MgSi3O12 ceramics are potential to be used as biomaterials for bone-tissue repair. The cell adherence and proliferation experiments are conducted confirming the reliability of the ceramics as a potential candidate.
An insight into current concepts and techniques in resin bonding to high strength ceramics.
Luthra, R; Kaur, P
2016-06-01
Reliable bonding between high strength ceramics and resin composite cement is difficult to achieve because of their chemical inertness and lack of silica content. The aim of this review was to assess the current literature describing methods for resin bonding to ceramics with high flexural strength such as glass-infiltrated alumina and zirconia, densely sintered alumina and yttria-partially stabilized tetragonal zirconia polycrystalline ceramic (Y-TZP) with respect to bond strength and bond durability. Suitable peer reviewed publications in the English language were identified through searches performed in PubMed, Google Search and handsearches. The keywords or phrases used were 'resin-ceramic bond', 'silane coupling agents', 'air particle abrasion', 'zirconia ceramic' and 'resin composite cements'. Studies from January 1989 to June 2015 were included. The literature demonstrated that there are multiple techniques available for surface treatments but bond strength testing under different investigations have produced conflicting results. Within the scope of this review, there is no evidence to support a universal technique of ceramic surface treatment for adhesive cementation. A combination of chemical and mechanical treatments might be the recommended solution. The hydrolytic stability of the resin ceramic bond should be enhanced. © 2016 Australian Dental Association.
Remakes of Colorlogic and IPS Empress ceramic restorations in general practice.
Hekland, Helge; Riise, Trond; Berg, Einar
2003-01-01
The aim of this article was to study frequencies and distribution of remakes of all-ceramic inlays/onlays, veneers, and crowns occurring before and after cementation. A total of 2,069 sintered feldspathic ceramic restorations (Colorlogic) and 1,136 pressure-molded ceramic restorations (IPS Empress 1 and 2) were produced during the study period by one dental laboratory. The laboratory gave an unqualified and unlimited guarantee for their ceramic restorations. The outcome variable was reports from the clinicians to the dental laboratory about any problems related to the restoration, necessitating remake. Problems occurring before cementation occurred in 4.4% of the restorations. Veneers were remade more frequently than the other types of restorations (6.6%). After cementation, the overall 2-year rate of remakes was 1%, indicating a survival rate of the ceramic restorations of 99%, with inlays/onlays exhibiting the highest (99.8%) and crowns the lowest (98.4%) rates. This difference in rates was significant. No significant differences in remakes between ceramics or tooth categories were found. There were few problems in a short- to medium-term perspective that, in the opinion of general practitioners, necessitated remakes of all-ceramic restorations.
Tan, Yongqiang; Luo, Heng; Zhou, Xiaosong; Peng, Shuming; Zhang, Haibin
2018-05-21
The microstructure dependent electromagnetic interference (EMI) shielding properties of nano-layered Ti 3 AlC 2 ceramics were presented in this study by comparing the shielding properties of various Ti 3 AlC 2 ceramics with distinct microstructures. Results indicate that Ti 3 AlC 2 ceramics with dense microstructure and coarse grains are more favourable for superior EMI shielding efficiency. High EMI shielding effectiveness over 40 dB at the whole Ku-band frequency range was achieved in Ti 3 AlC 2 ceramics by microstructure optimization, and the high shielding effectiveness were well maintained up to 600 °C. A further investigation reveals that only the absorption loss displays variations upon modifying microstructure by allowing more extensive multiple reflections in coarse layered grains. Moreover, the absorption loss of Ti 3 AlC 2 was found to be much higher than those of highly conductive TiC ceramics without layered structure. These results demonstrate that nano-layered MAX phase ceramics are promising candidates of high-temperature structural EMI shielding materials and provide insightful suggestions for achieving high EMI shielding efficiency in other ceramic-based shielding materials.
Method for Waterproofing Ceramic Materials
NASA Technical Reports Server (NTRS)
Cagliostro, Domenick E. (Inventor); Hsu, Ming-Ta S. (Inventor)
1998-01-01
Hygroscopic ceramic materials which are difficult to waterproof with a silane, substituted silane or silazane waterproofing agent, such as an alumina containing fibrous, flexible and porous, fibrous ceramic insulation used on a reentry space vehicle, are rendered easy to waterproof if the interior porous surface of the ceramic is first coated with a thin coating of silica. The silica coating is achieved by coating the interior surface of the ceramic with a silica precursor converting the precursor to silica either in-situ or by oxidative pyrolysis and then applying the waterproofing agent to the silica coated ceramic. The silica precursor comprises almost any suitable silicon containing material such as a silane, silicone, siloxane, silazane and the like applied by solution, vapor deposition and the like. If the waterproofing is removed by e.g., burning, the silica remains and the ceramic is easily rewaterproofed. An alumina containing TABI insulation which absorbs more that five times its weight of water, absorbs less than 10 wt. % water after being waterproofed according to the method of the invention.
Characteristics of Ceramic Fiber Modified Asphalt Mortar
Wan, Jiuming; Wu, Shaopeng; Xiao, Yue; Liu, Quantao; Schlangen, Erik
2016-01-01
Ceramic fiber, with a major composition of Al2O3 and SiO2, has advantages of stability at relatively high temperature, big specific surface area and resistance to external mechanical vibration. It has the potential contribution of improving the rutting resistance and temperature sensitivity of modified asphalt binder by proper modification design. In this research, ceramic fiber was introduced into both pen 60/80 and pen 80/100 asphalt binder by different weight ratios. An asphalt penetration test, softening point test, ductility test and dynamic viscoelastic behavior were conducted to characterize and predict the ceramic fiber modified asphalt mortar (CFAM). Research results indicated that the ceramic fiber has a great effect on reinforcement of asphalt, which makes the asphalt stiffer so that the asphalt can only undertake less strain under the same stress. The heat insulation effect of the ceramic fiber will improve the temperature stability. Complex modulus and phase angle results indicate that the ceramic fiber can significantly enhance the high temperature resistance of soft binder. PMID:28773908
Monolithic prestressed ceramic devices and method for making same
NASA Technical Reports Server (NTRS)
Haertling, Gene H. (Inventor)
1996-01-01
Monolithic, internally asymmetrically stress biased electrically active ceramic devices and a method for making same is disclosed. The first step in the method of the present invention is to fabricate a ceramic element having first and second opposing surfaces. Next, only the first surface is chemically reduced by heat treatment in a reducing atmosphere. This produces a concave shaped, internally asymmetrically stress biased ceramic element and an electrically conducting, chemically reduced layer on the first surface which serves as one of the electrodes of the device. Another electrode can be deposited on the second surface to complete the device. In another embodiment of the present invention two dome shaped ceramic devices can be placed together to form a completed clamshell structure or an accordion type structure. In a further embodiment, the clamshell or accordion type structures can be placed on top of one another. In another embodiment, a pair of dome shaped ceramic devices having opposing temperature characteristics can be placed on top of each other to produce an athermalized ceramic device.
Ceramics in Restorative and Prosthetic DENTISTRY1
NASA Astrophysics Data System (ADS)
Kelly, J. Robert
1997-08-01
This review is intended to provide the ceramic engineer with information about the history and current use of ceramics in dentistry, contemporary research topics, and potential research agenda. Background material includes intra-oral design considerations, descriptions of ceramic dental components, and the origin, composition, and microstructure of current dental ceramics. Attention is paid to efforts involving net-shape processing, machining as a forming method, and the analysis of clinical failure. A rationale is presented for the further development of all-ceramic restorative systems. Current research topics receiving attention include microstructure/processing/property relationships, clinical failure mechanisms and in vitro testing, wear damage and wear testing, surface treatments, and microstructural modifications. The status of the field is critically reviewed with an eye toward future work. Significant improvements seem possible in the clinical use of ceramics based on engineering solutions derived from the study of clinically failed restorations, on the incorporation of higher levels of "biomimicry" in new systems, and on the synergistic developments in dental cements and adhesive dentin bonding.
Method for sealing an oxygen transport membrane assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez, Javier E.; Grant, Arthur F.
An improved method of sealing a ceramic part to a solid part made of ceramic, metal, cermet or a ceramic coated metal is provided. The improved method includes placing a bond agent comprising an Al 2O 3 and SiO 2 based glass-ceramic material and organic binder material on adjoining surfaces of the ceramic part and the solid part. The assembly is heated to a first target temperature that removes or dissolves the organic binder material from the bond agent and the assembly is subjected to a second induction heating step at a temperature ramp rate of between about 100.degree. C.more » and 200.degree. C. per minute to temperatures where the glass-ceramic material flows and wets the interface between adjoining surfaces. The assembly is rapidly cooled at a cooling rate of about 140.degree. C. per minute or more to induce nucleation and re-crystallization of the glass-ceramic material to form a dense, durable and gas-tight seal.« less
Characterization of composite materials based on cement-ceramic powder blended binder
NASA Astrophysics Data System (ADS)
Kulovaná, Tereza; Pavlík, Zbyšek
2016-06-01
Characterization of newly developed composite mortars with incorporated ceramic powder coming from precise brick cutting as partial Portland cement replacement up to 40 mass% is presented in the paper. Fine ceramic powder belongs to the pozzolanic materials. Utilization of pozzolanic materials is accompanied by lower request on energy needed for Portland clinker production which generally results in lower production costs of blended binder and lower CO2 emission. In this paper, the ceramic powder is used in cement based mortar composition in amount of 8, 16, 24, 32, and 40 mass% of cement. Chemical composition of ceramic powder is analyzed by X-Ray Fluorescence and X-Ray Diffraction. The particle size distribution of ceramics is accessed on laser diffraction principle. For 28 days cured mortar samples, basic physical and mechanical properties are experimentally determined. The obtained results demonstrate that ceramic powder has potential to replace a part of Portland cement in composition of cement based composites and to reduce negative environmental impact of their production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1978-02-01
The overall objective of this program is to assess and develop nondestructive evaluation procedures for high-temperature ceramics. The program is currently evaluating ceramic heat-exchanger tubing. Ceramic heat exchangers would be useful, for example, in coal-fired Brayton conversion or waste heat-recovery systems. The use of ceramic heat exchangers will allow working fluids to reach temperatures up to 1230/sup 0/C, and, with further materials development, possibly 1650/sup 0/C. If superalloys were employed, working fluids would be limited to approximately 800/sup 0/C. The use of working fluids at higher temperatures would result in more efficient systems. Furthermore, ceramic components are lighter than metallicmore » ones and are made from less costly and more abundant elements. In addition, ceramic heat exchangers would be more resistant to corrosion. In the current NDE effort, several acoustic, optical, and radiographic techniques are being examined for their effectiveness in testing silicon carbide tubing. Some results employing dye-enhanced radiography are discussed.« less
High-Power Piezoelectric Vibration Characteristics of Textured SrBi2Nb2O9 Ceramics
NASA Astrophysics Data System (ADS)
Kawada, Shinichiro; Ogawa, Hirozumi; Kimura, Masahiko; Shiratsuyu, Kosuke; Niimi, Hideaki
2006-09-01
The high-power piezoelectric vibration characteristics of textured SrBi2Nb2O9 (SBN) ceramics, that is bismuth-layer-structured ferroelectrics, were studied in the longitudinal mode (33-mode) by constant current driving method and compared with those of ordinary randomly oriented SBN and widely used Pb(Ti,Zr)O3 (PZT) ceramics. In the case of textured SBN ceramics, resonant properties are stable up to a vibration velocity of 2.6 m/s. Vibration velocity at resonant frequency increases proportionally with the applied electric field, and resonant frequency is almost constant in high-vibration-velocity driving. On the other hand, in the case of randomly oriented SBN and PZT ceramics, the increase in vibration velocity is not proportional to the applied high electric field, and resonant frequency decreases with increasing vibration velocity. The resonant sharpness Q of textured SBN ceramics is about 2000, even at a vibration velocity of 2.6 m/s. Therefore, textured SBN ceramics are good candidates for high-power piezoelectric applications.
Shear bond, wettability and AFM evaluations on CO2 laser-irradiated CAD/CAM ceramic surfaces.
El Gamal, Ahmed; Medioni, Etienne; Rocca, Jean Paul; Fornaini, Carlo; Muhammad, Omid H; Brulat-Bouchard, Nathalie
2017-05-01
The purpose of this study is to determine the CO 2 laser irradiation in comparison with sandblasting (Sb), hydrofluoric acid (Hf) and silane coupling agent (Si) on shear bond strength (SBS), roughness (Rg) and wettability (Wt) of resin cement to CAD/CAM ceramics. Sixty (CAD/CAM) ceramic discs were prepared and distributed into six different groups: group A, control lithium disilicate (Li); group B, control zirconia (Zr); group C, Li: CO 2 /HF/Si; group D, Li: HF/Si; group E, Zr: CO 2 /Sb/Si; group F, Zr: Sb/Si. Result showed significant difference between irradiated and non-irradiated in terms of shear bond strength for zirconia ceramics (p value = 0.014). Moreover, partial surface wettability for irradiated and non-irradiated ceramics. Irradiated surface demonstrated more rough surface in lithium disilicate than zirconia ceramics. CO 2 irradiation could increase shear bond strength, surface roughness and wettability for both CAD/CAM ceramics.
Li, Wen-jing; Chen, Yue; Li, Nai-sheng; Li, Bin; Luo, Wu-gan
2015-03-01
ICP-AES was used to determine the elemental composition of solutions in different conservation steps for understanding the impact of cleaning agents on ceramics from Huaguangjiao I shipwreck. The results showed that high content in solution of Al, Fe, Mg ions, which can be indexes to reflect the damage in conservation of ceramics. According to these indexes, we discovered that agents of strong cleaning ability bring more damage to ceramic samples. Meanwhile, the state of preservation of the ceramics was closely related to the damage in conservation. Ceramics in an excellent state of preservation endure less damage than that in bad state. We also found that each cleaning agent cause certain degree of damage on porcelains, even neutral reagent, like deionized water. Moreover, moderate cleaning reagent, when using a long time, bring the same degree of damage as the strong acid. Therefore, in actual protection procedure, for conservation ceramics safe and effective, damage of each cleaning agents and cumulative damage should be considered.
NASA Technical Reports Server (NTRS)
Mrityunjay, Singh; Gray, Hugh R. (Technical Monitor)
2002-01-01
Fiber reinforced ceramic matrix composites are under active consideration for use in a wide variety of high temperature applications within the aeronautics, energy, process, and nuclear industries. The engineering designs require fabrication and manufacturing of complex shaped parts. In many instances, it is more economical to build up complex shapes by Joining simple geometrical shapes. Thus, joining and attachment have been recognized as enabling technologies for successful utilization of ceramic components in various demanding applications. In this presentation, various challenges and opportunities in design, fabrication, and testing of high temperature joints in ceramic matrix composites will be presented. Various joint design philosophies and design issues in joining of composites will be discussed along with an affordable, robust ceramic joining technology (ARCJoinT). A wide variety of ceramic composites, in different shapes and sizes, have been joined using this technology. Microstructure and mechanical properties of joints will be reported. Current status of various ceramic joining technologies and future prospects for their applications will also be discussed.
Höland, W; Schweiger, M; Frank, M; Rheinberger, V
2000-01-01
The aim of this report is to analyze the microstructures of glass-ceramics of the IPS Empress 2 and IPS Empress systems by scanning electron microscopy. The main properties of the glass-ceramics were determined and compared to each other. The flexural strength of the pressed glass-ceramic (core material) was improved by a factor of more than three for IPS Empress 2 (lithium disilicate glass-ceramic) in comparison with IPS Empress (leucite glass-ceramic). For the fracture toughness, the K(IC) value was measured as 3.3 +/- 0.3 MPa. m(0.5) for IPS Empress 2 and 1.3 +/- 0.1 MPa. m(0.5) for IPS Empress. Abrasion behavior, chemical durability, and optical properties such as translucency of all glass-ceramics fulfill the dental standards. The authors concluded that IPS Empress 2 can be used to fabricate 3-unit bridges up to the second premolar. Copyright 2000 John Wiley & Sons, Inc.
A view of microstructure with technological behavior of waste incorporated ceramic bricks.
Nirmala, G; Viruthagiri, G
2015-01-25
Production of ceramic bricks from mixtures of ceramic industry wastes (up to 50 wt%) from the area of Vriddhachalam, Cuddalore district, Tamilnadu, India and kaolinitic clay from Thiruvananthapuram district, Kerala were investigated. The firing behavior of the ceramic mixtures was studied by determining their changes in mineralogy and basic ceramic properties such as water absorption, porosity, compressive strength and firing shrinkage at temperatures ranging from 900 to 1200 °C in short firing cycles. The effect of the rejects addition gradually up to 50 wt% was analyzed with the variation of temperature on the mechanical properties and microstructure of the bricks. The highest compressive strength and lowest water absorption is observed for the sample with 40% rejects at 1100 °C which is supported by the results of SEM analysis. The resulting ceramic bricks exhibit features that suggest possibilities of using the ceramic rejects in the conventional brick making methods. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jiang, Dongdong; Du, Jinmei; Gu, Yan; Feng, Yujun
2012-03-01
The shock wave induced depoling current of Pb0.99[(Zr0.90Sn0.10)0.96Ti0.04]0.98Nb0.02O3 ceramics was investigated with a system composed of a resistive load and an unpoled ceramic. Disparity in the depoling current was explained by considering the drawing charge effect of unpoled ceramic. The drawing effect for poled ceramics was analysed by developing a model incorporating a time- and electric-field-dependent repolarization. This model predicts that the high-impedance current eventually becomes higher than the short-circuit current, which is consistent with the experimental results in the literature. This work indicates that both the repolarization of uncompressed ceramics caused by the self-generated electric field and depolarization of compressed ceramics caused by the shock wave govern the output current.
Characterization of composite materials based on cement-ceramic powder blended binder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulovaná, Tereza; Pavlík, Zbyšek
Characterization of newly developed composite mortars with incorporated ceramic powder coming from precise brick cutting as partial Portland cement replacement up to 40 mass% is presented in the paper. Fine ceramic powder belongs to the pozzolanic materials. Utilization of pozzolanic materials is accompanied by lower request on energy needed for Portland clinker production which generally results in lower production costs of blended binder and lower CO{sub 2} emission. In this paper, the ceramic powder is used in cement based mortar composition in amount of 8, 16, 24, 32, and 40 mass% of cement. Chemical composition of ceramic powder is analyzedmore » by X-Ray Fluorescence and X-Ray Diffraction. The particle size distribution of ceramics is accessed on laser diffraction principle. For 28 days cured mortar samples, basic physical and mechanical properties are experimentally determined. The obtained results demonstrate that ceramic powder has potential to replace a part of Portland cement in composition of cement based composites and to reduce negative environmental impact of their production.« less
Wedge edge ceramic combustor tile
Shaffer, J.E.; Holsapple, A.C.
1997-06-10
A multipiece combustor has a portion thereof being made of a plurality of ceramic segments. Each of the plurality of ceramic segments have an outer surface and an inner surface. Each of the plurality of ceramic segments have a generally cylindrical configuration and including a plurality of joints. The joints define joint portions, a first portion defining a surface being skewed to the outer surface and the inner surface. The joint portions have a second portion defining a surface being skewed to the outer surface and the inner surface. The joint portions further include a shoulder formed intermediate the first portion and the second portion. The joints provide a sealing interlocking joint between corresponding ones of the plurality of ceramic segments. Thus, the multipiece combustor having the plurality of ceramic segment with the plurality of joints reduces the physical size of the individual components and the degradation of the surface of the ceramic components in a tensile stress zone is generally eliminated reducing the possibility of catastrophic failures. 7 figs.
Wedge edge ceramic combustor tile
Shaffer, James E.; Holsapple, Allan C.
1997-01-01
A multipiece combustor has a portion thereof being made of a plurality of ceramic segments. Each of the plurality of ceramic segments have an outer surface and an inner surface. Each of the plurality of ceramic segments have a generally cylindrical configuration and including a plurality of joints. The joints define joint portions, a first portion defining a surface being skewed to the outer surface and the inner surface. The joint portions have a second portion defining a surface being skewed to the outer surface and the inner surface. The joint portions further include a shoulder formed intermediate the first portion and the second portion. The joints provide a sealing interlocking joint between corresponding ones of the plurality of ceramic segments. Thus, the multipiece combustor having the plurality of ceramic segment with the plurality of joints reduces the physical size of the individual components and the degradation of the surface of the ceramic components in a tensile stress zone is generally eliminated reducing the possibility of catastrophic failures.
Characteristics of Ceramic Fiber Modified Asphalt Mortar.
Wan, Jiuming; Wu, Shaopeng; Xiao, Yue; Liu, Quantao; Schlangen, Erik
2016-09-21
Ceramic fiber, with a major composition of Al₂O₃ and SiO₂, has advantages of stability at relatively high temperature, big specific surface area and resistance to external mechanical vibration. It has the potential contribution of improving the rutting resistance and temperature sensitivity of modified asphalt binder by proper modification design. In this research, ceramic fiber was introduced into both pen 60/80 and pen 80/100 asphalt binder by different weight ratios. An asphalt penetration test, softening point test, ductility test and dynamic viscoelastic behavior were conducted to characterize and predict the ceramic fiber modified asphalt mortar (CFAM). Research results indicated that the ceramic fiber has a great effect on reinforcement of asphalt, which makes the asphalt stiffer so that the asphalt can only undertake less strain under the same stress. The heat insulation effect of the ceramic fiber will improve the temperature stability. Complex modulus and phase angle results indicate that the ceramic fiber can significantly enhance the high temperature resistance of soft binder.
Microstructure and properties of ceramics
NASA Technical Reports Server (NTRS)
Hamano, K.
1984-01-01
The history of research into the microstructure and properties of ceramic ware is discussed; methods of producing ceramics with particular characteristics are investigated. Bubbles, sintering, cracks, and electron microscopy are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niihara, Koichi; Ishizaki, Kozo; Isotani, Mitsuo
This volume contains selected papers presented at a workshop by the Japan Fine Ceramics Center, `Materials Processing and Design Through Better Control of Grain Boundaries: Emphasizing Fine Ceramics II,` which was held March 17-19, 1994, in Koda-cho, Aichi, Japan. The focus of the workshop was the application of grain boundary phenomena to materials processing and design. The topics covered included electronic materials, evaluation methods, structural materials, and interfaces. Also included is an illuminating overview of the current status of work on grain boundary assisted materials processing and design, particularly for fine ceramics. The volume`s chapter titles are: Electron Microscopy, Evaluation,more » Grain Boundary Control and Design, Functional Ceramics, Composite Materials, Synthesis and Sintering, and Mechanical Properties.« less
NASA Technical Reports Server (NTRS)
Frechette, V. D. (Editor); Lacourse, W. C.; Burdick, V. L.
1974-01-01
The characterization of surfaces and interfaces is considered along with the infrared spectra of several N-containing compounds absorbed on montmorillonites, applications of surface characterization techniques to glasses, the observation of electronic spectra in glass and ceramic surfaces, a method for determining the preferred orientation of crystallites normal to a surface, and the friction and wear behavior of glasses and ceramics. Attention is given to the wear behavior of cast surface composites, an experimental investigation of the dynamic and thermal characteristics of the ceramic stock removal process, a dynamic elastic model of ceramic stock removal, and the structure and properties of solid surfaces. Individual items are announced in this issue.
Synthesis and characterization of a novel polyborosilazane for SiBNC ceramic
NASA Astrophysics Data System (ADS)
Zhang, C. Y.; Liu, Y.; Han, K. Q.; Chang, X. F.; Yu, M. H.
2018-05-01
A novel polyborosilazane (PBSZ) for preparing SiBNC ceramics was successfully synthesized via co-condensation approach using tetrachlorosilan (SiCl4), trichloride (BCl3) and propylamine (C3H7NH2) as starting materials. After pyrolysis of these precursors, amorphous SiBNC ceramics were obtained. The chemical composition, structure and thermal stability of the synthesized PBSZ precursor and SiBNC ceramics were analyzed by using FT-IR, NMR, TGA and XRD methods. The results indicated that the PBSZ contained the major framework of –Si-N-B- and six-membered boron-nitrogen rings. The PBSZ precursor had an approximately ceramic yield of 63 wt% prolyzed at 900°C in nitrogen atmosphere. The SiBNC ceramics shows excellent oxidation resistance and maintained amorphous up to 1600°C.
Non-destructive thermo-mechanical behavior assessment of glass-ceramics for dental applications
NASA Astrophysics Data System (ADS)
Kordatos, E. Z.; Abdulkadhim, Z.; Feteira, A. M.
2017-05-01
Every year millions of people seek dental treatment to either repair damaged, unaesthetic and dysfunctional teeth or replace missing natural teeth. Several dental materials have been developed to meet the stringent requirements in terms of mechanical properties, aesthetics and chemical durability in the oral environment. Glass-ceramics exhibit a suitable combination of these properties for dental restorations. This research is focused on the assessment of the thermomechanical behavior of bio-ceramics and particularly lithium aluminosilicate glass-ceramics (LAS glass-ceramics). Specifically, methodologies based on Infrared Thermography (IRT) have been applied in order the structure - property relationship to be evaluated. Non-crystallized, partially crystallized and fully crystallized glass-ceramic samples have been non-destructively assessed in order their thermo-mechanical behavior to be associated with their micro-structural features.
Method for fabrication of ceramic dielectric films on copper foils
Ma, Beihai; Narayanan, Manoj; Dorris, Stephen E.; Balachandran, Uthamalingam
2017-06-14
The present invention provides copper substrate coated with a lead-lanthanum-zirconium-titanium (PLZT) ceramic film, which is prepared by a method comprising applying a layer of a sol-gel composition onto a copper foil. The sol-gel composition comprises a precursor of a ceramic material suspended in 2-methoxyethanol. The layer of sol-gel is then dried at a temperature up to about 250.degree. C. The dried layer is then pyrolyzed at a temperature in the range of about 300 to about 450.degree. C. to form a ceramic film from the ceramic precursor. The ceramic film is then crystallized at a temperature in the range of about 600 to about 750.degree. C. The drying, pyrolyzing and crystallizing are performed under a flowing stream of an inert gas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Z.; Taya, M.; Dunn, M.L.
A hybrid experimental-numerical approach has been used to measure the fracture resistance of a sandwich structure consisting of a 304 stainless steel/partially stabilized zirconia ceramic-matrix composite crack-arresting layer embedded in a partially stabilized zirconia ceramic specimen. The mode 1 fracture toughness increases significantly when the crack propagates from the ceramic into the ceramic-matrix composite region. The increased toughening due to the stainless steel particles is explained reasonably well by a toughening model based on processing-induced thermal residual stresses. In addition, several experimental modifications were made to the chevron-notch wedge-loaded double cantilever beam specimen to overcome numerous problems encountered in generatingmore » a precrack in the small, brittle specimens used in this study.« less
ISOBAR MODEL ANALYSIS OF SINGLE PION PRODUCTION IN PION-NUCLEON COLLISIONS BELOW 1 Bev
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olsson, M.; Yodh, G.B.
1963-04-15
The isobar model of Bergia, Bonsignori, and Stanghellini for single ceramic materia production in ceramic materia -N collisions is shown to account for the majority of the observed mass spectra and the ratio of ceramic materia / sup 0/ to ceramic materia /sup +/ production in ceramic materia /sup +/-p collisions fr3350 Mev to 1 Bev when the p-wave decay of the isobar and requirements of Bose statistics are included. Predictions of this improved model are compared with experimental data and with the predictions of other models. (D.C.W.)
Ceramic Technology Project semiannual progress report, October 1992--March 1993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, D.R.
1993-09-01
This project was developed to meet the ceramic technology requirements of the OTS`s automotive technology programs. Although progress has been made in developing reliable structural ceramics, further work is needed to reduce cost. The work described in this report is organized according to the following work breakdown structure project elements: Materials and processing (monolithics [Si nitride, carbide], ceramic composites, thermal and wear coatings, joining, cost effective ceramic machining), materials design methodology (contact interfaces, new concepts), data base and life prediction (structural qualification, time-dependent behavior, environmental effects, fracture mechanics, nondestructive evaluation development), and technology transfer.
Emerging Applications of Ceramic and Metal Matrix Composites
NASA Astrophysics Data System (ADS)
Krishnamoorthy, Divya; Ramolina, Dheeyana; Sandou, Sherleena
2012-07-01
Almost 500 papers were presented during the 43 sessions of the 27th Annual Cocoa Beach Conference & Exposition on Advanced Ceramics & Composites, which was organized by the Engineering Ceramics Division of the American Ceramic Society and sponsored by several federal agencies: NASA Glenn Research Center, the Army Research Office, the Department of Energy, and the Air Force Office of Scientific Research. Many of these papers focused on composites, both ceramic and metal matrix, and discussed mechanical behavior, design, fibers/interfaces, processing, and applications. Potential applications under development include components for armor, nuclear energy, and automobiles. A few of these applications have reached commercialization.
Method and apparatus for radio frequency ceramic sintering
Hoffman, Daniel J.; Kimrey, Jr., Harold D.
1993-01-01
Radio frequency energy is used to sinter ceramic materials. A coaxial waveguide resonator produces a TEM mode wave which generates a high field capacitive region in which a sample of the ceramic material is located. Frequency of the power source is kept in the range of radio frequency, and preferably between 60-80 MHz. An alternative embodiment provides a tunable radio frequency circuit which includes a series input capacitor and a parallel capacitor, with the sintered ceramic connected by an inductive lead. This arrangement permits matching of impedance over a wide range of dielectric constants, ceramic volumes, and loss tangents.
Method and apparatus for radio frequency ceramic sintering
Hoffman, D.J.; Kimrey, H.D. Jr.
1993-11-30
Radio frequency energy is used to sinter ceramic materials. A coaxial waveguide resonator produces a TEM mode wave which generates a high field capacitive region in which a sample of the ceramic material is located. Frequency of the power source is kept in the range of radio frequency, and preferably between 60-80 MHz. An alternative embodiment provides a tunable radio frequency circuit which includes a series input capacitor and a parallel capacitor, with the sintered ceramic connected by an inductive lead. This arrangement permits matching of impedance over a wide range of dielectric constants, ceramic volumes, and loss tangents. 6 figures.
NASA Astrophysics Data System (ADS)
Deng, Qihuang; Fan, Yuchi; Wang, Lianjun; Xiong, Zhi; Wang, Hongzhi; Li, Yaogang; Zhang, Qinghong; Kawasaki, Akira; Jiang, Wan
2012-01-01
Pb(Zr,Ti)O3 (PZT) ceramics were prepared by the conventional mixed oxide method, and the strength of the resultant PZT ceramics was evaluated using modified small punch (MSP) tests. Load-displacement curve test results showed that the crack-initiation and fracture strengths of PZT ceramics decreased after polarization. The effect of the polarization accelerated the fatigue properties of PZT ceramics. Scanning electron microscopy (SEM) results showed that microcracks were formed before the maximum load in the MSP test, and the first load drop corresponded to crack initiation.
Refractory Oxidative-Resistant Ceramic Carbon Insulation
NASA Technical Reports Server (NTRS)
Leiser, Daniel B. (Inventor); Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)
2001-01-01
High-temperature, lightweight, ceramic carbon insulation is prepared by coating or impregnating a porous carbon substrate with a siloxane gel derived from the reaction of an organodialkoxy silane and an organotrialkoxy silane in an acid or base medium in the presence of the carbon substrate. The siloxane gel is subsequently dried on the carbon substrate to form a ceramic carbon precursor. The carbon precursor is pyrolyzed, in an inert atmosphere, to form the ceramic insulation containing carbon, silicon, and oxygen. The carbon insulation is characterized as a porous, fibrous, carbon ceramic tile which is particularly useful as lightweight tiles for spacecraft.
Method For Removing Volatile Components From A Gel-Cast Ceramic Article
Klug, Frederic Joseph; DeCarr, Sylvia Marie
2004-09-07
A method of removing substantially all of the volatile component in a green, volatile-containing ceramic article is disclosed. The method comprises freezing the ceramic article; and then subjecting the frozen article to a vacuum for a sufficient time to freeze-dry the article. Frequently, the article is heated while being freeze-dried. Use of this method efficiently reduces the propensity for any warpage of the article. The article is often formed from a ceramic slurry in a gel-casting process. A method for fabricating a ceramic core used in investment casting is also described.
Method for removing volatile components from a ceramic article, and related processes
Klug, Frederic Joseph; DeCarr, Sylvia Marie
2002-01-01
A method of removing substantially all of the volatile component in a green, volatile-containing ceramic article is disclosed. The method comprises freezing the ceramic article; and then subjecting the frozen article to a vacuum for a sufficient time to freeze-dry the article. Frequently, the article is heated while being freeze-dried. Use of this method efficiently reduces the propensity for any warpage of the article. The article is often formed from a ceramic slurry in a gel-casting process. A method for fabricating a ceramic core used in investment casting is also described.
Park, Kyung Soon; Diwanji, Sanket R; Kim, Hyung Keun; Song, Eun Kyoo; Yoon, Taek Rim
2009-08-01
Iliopsoas bursitis has been increasingly recognized as a complication of total hip arthroplasty and is usually associated with polyethylene wear. Here, the authors report a case of hemorrhagic iliopsoas bursitis complicating an otherwise well-functioning ceramic-on-ceramic arthroplasty performed by minimal invasive modified 2-incision technique. The bursitis in turn resulted in femoral nerve palsy and femoral vein compression. In this report, there was no evidence to support that the bursitis was due to an inflammatory response to ceramic wear particles or any other wear particles originating from the total hip arthroplasty.
Design and evaluation of experimental ceramic automobile thermal reactors
NASA Technical Reports Server (NTRS)
Stone, P. L.; Blankenship, C. P.
1974-01-01
The paper summarizes the results obtained in an exploratory evaluation of ceramics for automobile thermal reactors. Candidate ceramic materials were evaluated in several reactor designs using both engine dynamometer and vehicle road tests. Silicon carbide contained in a corrugated metal support structure exhibited the best performance, lasting 1100 hours in engine dynamometer tests and for more than 38,600 kilimeters (24,000 miles) in vehicle road tests. Although reactors containing glass-ceramic components did not perform as well as silicon carbide, the glass-ceramics still offer good potential for reactor use with improved reactor designs.
Design and evaluation of experimental ceramic automobile thermal reactors
NASA Technical Reports Server (NTRS)
Stone, P. L.; Blankenship, C. P.
1974-01-01
The results obtained in an exploratory evaluation of ceramics for automobile thermal reactors are summarized. Candidate ceramic materials were evaluated in several reactor designs by using both engine-dynamometer and vehicle road tests. Silicon carbide contained in a corrugated-metal support structure exhibited the best performance, lasting 1100 hr in engine-dynamometer tests and more than 38,600 km (24000 miles) in vehicle road tests. Although reactors containing glass-ceramic components did not perform as well as those containing silicon carbide, the glass-ceramics still offer good potential for reactor use with improved reactor designs.
A fundamental review of the friction and wear behavior of ceramics
NASA Technical Reports Server (NTRS)
Buckley, D. H.
1972-01-01
The basic concepts associated with the friction and wear of materials are discussed as they relate to ceramics. Properties of ceramics such as crystal structure, crystallographic orientation, mechanical deformation, and surface chemistry are reviewed as they influence friction and wear. Both adhesive and abrasive wear of ceramics are discussed. The friction and wear of ceramics are examined in contact with themselves and when in contact with metals. The influences of environmental constituents such as water and hydrocarbons on friction and wear are reviewed. Materials discussed, by way of example, include aluminum oxide, rutile, calcium fluoride, and lithium fluoride.
Improved Slip Casting Of Ceramic Models
NASA Technical Reports Server (NTRS)
Buck, Gregory M.; Vasquez, Peter; Hicks, Lana P.
1994-01-01
Improved technique of investment slip casting developed for making precise ceramic wind-tunnel models. Needed in wind-tunnel experiments to verify predictions of aerothermodynamical computer codes. Ceramic materials used because of their low heat conductivities and ability to survive high temperatures. Present improved slip-casting technique enables casting of highly detailed models from aqueous or nonaqueous solutions. Wet shell molds peeled off models to ensure precise and undamaged details. Used at NASA Langley Research Center to form superconducting ceramic components from nonaqueous slip solutions. Technique has many more applications when ceramic materials developed further for such high-strength/ temperature components as engine parts.
Ceramic applications in the advanced Stirling automotive engine
NASA Technical Reports Server (NTRS)
Tomazic, W. A.; Cairelli, J. E.
1977-01-01
The ideal cycle, its application to a practical machine, and the specific advantages of high efficiency, low emissions, multi-fuel capability, and low noise of the stirling engine are discussed. Certain portions of the Stirling engine must operate continuously at high temperature. Ceramics offer the potential of cost reduction and efficiency improvement for advanced engine applications. Potential applications for ceramics in Stirling engines, and some of the special problems pertinent to using ceramics in the Stirling engine are described. The research and technology program in ceramics which is planned to support the development of advanced Stirling engines is outlined.
Surface degradation of glass ceramics after exposure to acidulated phosphate fluoride.
Ccahuana, Vanessa Zulema S; Ozcan, Mutlu; Mesquita, Alfredo Mikail Melo; Nishioka, Renato Sussumo; Kimpara, Estevão Tomomitsu; Bottino, Marco Antonio
2010-01-01
This study evaluated the surface degradation effect of acidulated phosphate fluoride (APF) gel exposure on the glassy matrix ceramics as a function of time. Disc-shaped ceramic specimens (N = 120, 10/per ceramic material) were prepared in stainless steel molds (inner diameter: 5 mm, height: 2 mm) using 6 dental ceramics: 3 indicated for ceramic-fused-to-metal (Vita Omega 900, Carmen and Vita Titankeramik), 2 for all-ceramic (Vitadur Alpha and Finesse Low Fusing) and 1 for both types of restorations (IPS d.SIGN). The specimens were wet ground finished, ultrasonically cleaned and auto-glazed. All specimens were subjected to calculation of percentage of mass loss, surface roughness analysis and topographical description by scanning electron microscopy (SEM) before (0 min) and after exposure to 1.23 % APF gel for 4 min and 60 min representing short- and long-term etching effect, respectively. The data were analyzed using two-way ANOVA with repeated measures and Tukey's test (a=0.05). Significant effect of the type of the ceramics (p=0.0000, p=0.0031) and exposure time (p=0.0000) was observed in both surface roughness and percentage of mass loss values, respectively. The interaction factor between both parameters was also significant for both parameters (p=0.0904, p=0.0258). Both 4 min (0.44+/-0.1 - 0.81+/-0.2 microm) and 60 min (0.66+/-0.1 - 1.04+/-0.3 microm) APF gel exposure created significantly more surface roughness for all groups when compared to the control groups (0.33+/-0.2 - 0.68+/-0.2 microm) (p<0.05). There were no significant differences in percentage of mass loss between the ceramics at 4 min (p>0.05) but at 60 min exposure, IPS d.SIGN showed the highest percentage of mass loss (0.1151+/-0.11). The mean surface roughness for Vita Titankeramik (0.84+/-0.2 microm) and Finesse Low Fusing (0.74.+/-0.2 microm) was significantly higher than those of the other ceramics (0.59+/-0.1 microm - 0.49+/-0.1 microm) and Vita Titankeramik (p<0.05) regardless of the exposure time. A positive correlation was found between surface roughness and percentage of mass loss for all ceramic materials [(r=0.518 (Vitadur Alpha), r=0.405 (Vita Omega 900), r=0.580 (Carmen), r=0.687 (IPS d.SIGN), r=0.442 (Finesse Low Fusing), r=0.572 (Vita Titankeramik), Pearson's correlation coefficient)]. The qualitative SEM analysis showed evidence of corrosive attack on all of ceramics at varying degrees. The ceramics indicated for either metal-ceramic or all-ceramic restorations were all vulnerable to surface texture changes and mass loss after short-term and long-term APF gel exposure.
Radiopaque Strontium Fluoroapatite Glass-Ceramics.
Höland, Wolfram; Schweiger, Marcel; Dittmer, Marc; Ritzberger, Christian
2015-01-01
The controlled precipitation of strontium fluoroapatite crystals was studied in four base glass compositions derived from the SiO2-Al2O3-Y2O3-SrO-Na2O-K2O/Rb2O/Cs2O-P2O5-F system. The crystal phase formation of these glasses and the main properties of the glass-ceramics, such as thermal and optical properties and radiopacity were compared with a fifth, a reference glass-ceramic. The reference glass-ceramic was characterized as Ca-fluoroapatite glass-ceramic. The four strontium fluoroapatite glass-ceramics showed the following crystal phases: (a) Sr5(PO4)3F - leucite, KAlSi2O6, (b) Sr5(PO4)3F - leucite, KAlSi2O6, and nano-sized NaSrPO4, (c) Sr5(PO4)3F - pollucite, CsAlSi2O6, and nano-sized NaSrPO4, and (d) Sr5(PO4)3F - Rb-leucite, RbAlSi2O6, and nano-sized NaSrPO4. The proof of crystal phase formation was possible by X-ray diffraction. The microstructures, which were studied using scanning electron microscopy, demonstrated a uniform distribution of the crystals in the glass matrix. The Sr-fluoroapatites were precipitated based on an internal crystallization process, and the crystals demonstrated a needle-like morphology. The study of the crystal growth of needle-like Sr-fluoroapatites gave a clear evidence of an Ostwald ripening mechanism. The formation of leucite, pollucite, and Rb-leucite was based on a surface crystallization mechanism. Therefore, a twofold crystallization mechanism was successfully applied to develop these types of glass-ceramics. The main focus of this study was the controlled development of glass-ceramics exhibiting high radiopacity in comparison to the reference glass-ceramic. This goal could be achieved with all four glass-ceramics with the preferred development of the Sr-fluoroapatite - pollucite-type glass-ceramic. In addition to this main development, it was possible to control the thermal properties. Especially the Rb-leucite containing glass-ceramic showed the highest coefficient of thermal expansion (CTE). These glass-ceramics allow optical properties, especially the translucency and color, to be tailored to the needs of biomaterials for dental applications. The authors conclude that it is possible to use twofold crystallization processes to develop glass-ceramic biomaterials featuring different properties, such as specific radiopacity values, CTEs, and optical characteristics.
Radiopaque Strontium Fluoroapatite Glass-Ceramics
Höland, Wolfram; Schweiger, Marcel; Dittmer, Marc; Ritzberger, Christian
2015-01-01
The controlled precipitation of strontium fluoroapatite crystals was studied in four base glass compositions derived from the SiO2–Al2O3–Y2O3–SrO–Na2O–K2O/Rb2O/Cs2O–P2O5–F system. The crystal phase formation of these glasses and the main properties of the glass-ceramics, such as thermal and optical properties and radiopacity were compared with a fifth, a reference glass-ceramic. The reference glass-ceramic was characterized as Ca-fluoroapatite glass-ceramic. The four strontium fluoroapatite glass-ceramics showed the following crystal phases: (a) Sr5(PO4)3F – leucite, KAlSi2O6, (b) Sr5(PO4)3F – leucite, KAlSi2O6, and nano-sized NaSrPO4, (c) Sr5(PO4)3F – pollucite, CsAlSi2O6, and nano-sized NaSrPO4, and (d) Sr5(PO4)3F – Rb-leucite, RbAlSi2O6, and nano-sized NaSrPO4. The proof of crystal phase formation was possible by X-ray diffraction. The microstructures, which were studied using scanning electron microscopy, demonstrated a uniform distribution of the crystals in the glass matrix. The Sr-fluoroapatites were precipitated based on an internal crystallization process, and the crystals demonstrated a needle-like morphology. The study of the crystal growth of needle-like Sr-fluoroapatites gave a clear evidence of an Ostwald ripening mechanism. The formation of leucite, pollucite, and Rb-leucite was based on a surface crystallization mechanism. Therefore, a twofold crystallization mechanism was successfully applied to develop these types of glass-ceramics. The main focus of this study was the controlled development of glass-ceramics exhibiting high radiopacity in comparison to the reference glass-ceramic. This goal could be achieved with all four glass-ceramics with the preferred development of the Sr-fluoroapatite – pollucite-type glass-ceramic. In addition to this main development, it was possible to control the thermal properties. Especially the Rb-leucite containing glass-ceramic showed the highest coefficient of thermal expansion (CTE). These glass-ceramics allow optical properties, especially the translucency and color, to be tailored to the needs of biomaterials for dental applications. The authors conclude that it is possible to use twofold crystallization processes to develop glass-ceramic biomaterials featuring different properties, such as specific radiopacity values, CTEs, and optical characteristics. PMID:26528470
Lee, Jae Hyup; Ryu, Hyun-Seung; Seo, Jun-Hyuk; Lee, Do-Yoon; Chang, Bong-Soon; Lee, Choon-Ki
2014-03-01
Bioactive glass-ceramics have the ability to directly bind to bones and have been widely used as bone graft substitutes due to their high osteoconductivity and biocompatibility. CaO-SiO2-P2O5-B2O3 glass-ceramics are known to have good osteoconductivity and are used as bone graft extenders. This study aimed to evaluate the effects of the resorbing properties of glass-ceramics in bone fusion after producing and analyzing three types of CaO-SiO2-P2O5-B2O3 glass-ceramics with high osteoconductivity that had enhanced resorption by having an increased B2O3 content. The three types of CaO-SiO2-P2O5-B2O3 glass-ceramics with B2O3 contents of 8.0, 9.0, and 9.5 weight % were designated and grouped as P20B80, P10B90, and P5B95, respectively. Glass-ceramic types were tested for fusion rates and bone formation by employing the lumbar 5-6 intertransverse process fusion model in 51 New Zealand male rabbits. Bioactivity was assessed by soaking in simulated body fluid (SBF). In vitro study results showed sufficient hydroxycarbonate apatite layer formation occurred for P20B80 in1 day, for P10B90 in 3 days, and for P5B95 in 5 days after soaking in SBF. For the rabbit lumbar spine posterolateral fusion model, the autograft group recorded a 100% fusion rate with levels significantly higher than those of P20B80 (29.4%), P10B90 (0%), and P5B95 (14.3%), with high resorbing properties. Resorbing property differences among the three glass-ceramic groups were not significant. Histological results showed new bone formation confirming osteoconductivity in all three types of glass-ceramics. Radiomorphometric results also confirmed the resorbing properties of the three glass-ceramic types. The high resorbing properties and osteoconductivity of porous glass-ceramics can be advantageous as no glass-ceramics remain in the body. However, their relatively fast rate of resorption in the body negatively affects their role as an osteoconductive scaffold as glass-ceramics are resorbed before bony fusion.
Bond strength of the porcelain repair system to all-ceramic copings and porcelain.
Lee, Sang J; Cheong, Chan Wook; Wright, Robert F; Chang, Brian M
2014-02-01
The purpose of this study was to investigate the shear bond strength of the porcelain repair system on alumina and zirconia core ceramics, comparing this strength with that of veneering porcelain. Veneering ceramic (n = 12), alumina core (n = 24), and zirconia core (n = 24) blocks measuring 10 × 5 × 5 mm(3) were fabricated. Veneering ceramic blocks were used as the control. Alumina and zirconia core blocks were divided into 2 groups (n = 12 each), and a slot (2 × 2 × 4 mm(3)) filled with veneering ceramics was prepared into one of the alumina and zirconia core groups (n = 12). Followed by surface treatments of micro-abrasion with 30 μm alumina particles, etching with 35% phosphoric acid and silane primer and bond, composite resin blocks (2 × 2 × 2 mm(3)) were built up and light polymerized onto the treated surfaces by 3 configurations: (a) composite blocks bonded onto veneering ceramic surface alone, (b) composite blocks bonded onto alumina core or zirconia core surfaces, (c) a 50% surface area of the composite blocks bonded to veneering ceramics and the other 50% surface area of the composite blocks to alumina core or zirconia core surfaces. The shear bond strength of the composite to each specimen was tested by a universal testing machine at a 0.5 mm/min crosshead speed. The shear bond strength was analyzed by unpaired t-tests for within the configuration groups and ANOVA for among the different configuration groups. When the mean shear bond strength was compared within groups of the same configuration, there were no statistically significant differences. Comparison of the shear bond strength among groups of different configurations revealed statistically significant differences. The mean shear bond strength of composite onto 100% veneering ceramic surface and composite onto 50% veneering 50% all-ceramic cores was statistically higher than that of composite onto 100% all-ceramic cores; however, the differences of the shear bond strength of composite bonded only onto the veneering ceramic surface were not statistically significant from those of 50% surface area of composite bonded onto all-ceramic cores. No statistically significant differences in the bond strength of a porcelain repair system to alumina and zirconia copings were observed. Increasing the surface of veneering ceramics to a porcelain repair system improved the repair material's bond strength. © 2013 by the American College of Prosthodontists.