Application of a simple cerebellar model to geologic surface mapping
Hagens, A.; Doveton, J.H.
1991-01-01
Neurophysiological research into the structure and function of the cerebellum has inspired computational models that simulate information processing associated with coordination and motor movement. The cerebellar model arithmetic computer (CMAC) has a design structure which makes it readily applicable as an automated mapping device that "senses" a surface, based on a sample of discrete observations of surface elevation. The model operates as an iterative learning process, where cell weights are continuously modified by feedback to improve surface representation. The storage requirements are substantially less than those of a conventional memory allocation, and the model is extended easily to mapping in multidimensional space, where the memory savings are even greater. ?? 1991.
Dual Tasking and Working Memory in Alcoholism: Relation to Frontocerebellar Circuitry
Chanraud, Sandra; Pitel, Anne-Lise; Rohlfing, Torsten; Pfefferbaum, Adolf; Sullivan, Edith V
2010-01-01
Controversy exists regarding the role of cerebellar systems in cognition and whether working memory compromise commonly marking alcoholism can be explained by compromise of nodes of corticocerebellar circuitry. We tested 17 alcoholics and 31 age-matched controls with dual-task, working memory paradigms. Interference tasks competed with verbal and spatial working memory tasks using low (three item) or high (six item) memory loads. Participants also underwent structural MRI to obtain volumes of nodes of the frontocerebellar system. On the verbal working memory task, both groups performed equally. On the spatial working memory with the high-load task, the alcoholic group was disproportionately more affected by the arithmetic distractor than were controls. In alcoholics, volumes of the left thalamus and left cerebellar Crus I volumes were more robust predictors of performance in the spatial working memory task with the arithmetic distractor than the left frontal superior cortex. In controls, volumes of the right middle frontal gyrus and right cerebellar Crus I were independent predictors over the left cerebellar Crus I, left thalamus, right superior parietal cortex, or left middle frontal gyrus of spatial working memory performance with tracking interference. The brain–behavior correlations suggest that alcoholics and controls relied on the integrity of certain nodes of corticocerebellar systems to perform these verbal and spatial working memory tasks, but that the specific pattern of relationships differed by group. The resulting brain structure–function patterns provide correlational support that components of this corticocerebellar system not typically related to normal performance in dual-task conditions may be available to augment otherwise dampened performance by alcoholics. PMID:20410871
Pope, Paul A.; Miall, R. Chris
2014-01-01
Numerous studies have highlighted the possibility of modulating the excitability of cerebro–cerebellar circuits bi-directionally using transcranial electrical brain stimulation, in a manner akin to that observed using magnetic stimulation protocols. It has been proposed that cerebellar stimulation activates Purkinje cells in the cerebellar cortex, leading to inhibition of the dentate nucleus, which exerts a tonic facilitatory drive onto motor and cognitive regions of cortex through a synaptic relay in the ventral–lateral thalamus. Some cerebellar deficits present with cognitive impairments if damage to non-motor regions of the cerebellum disrupts the coupling with cerebral cortical areas for thinking and reasoning. Indeed, white matter changes in the dentato–rubral tract correlate with cognitive assessments in patients with Friedreich ataxia, suggesting that this pathway is one component of the anatomical substrate supporting a cerebellar contribution to cognition. An understanding of the physiology of the cerebro–cerebellar pathway previously helped us to constrain our interpretation of results from two recent studies in which we showed cognitive enhancements in healthy participants during tests of arithmetic after electrical stimulation of the cerebellum, but only when task demands were high. Others studies have also shown how excitation of the prefrontal cortex can enhance performance in a variety of working memory tasks. Thus, future efforts might be guided toward neuro-enhancement in certain patient populations, using what is commonly termed “non-invasive brain stimulation” as a cognitive rehabilitation tool to modulate cerebro–cerebellar circuits, or for stimulation over the cerebral cortex to compensate for decreased cerebellar drive to this region. This article will address these possibilities with a review of the relevant literature covering ataxias and cerebellar cognitive affective disorders, which are characterized by thalamo–cortical disturbances. PMID:24765079
Late effects of radiotherapy on patients with cerebellar medulloblastoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silverman, C.L.; Palkes, H.; Talent, B.
1984-09-01
Nine long-term survivors of cerebellar medulloblastoma treated with surgery and irradiation were retrospectively examined with a complete battery of neuropsychological tests and the results compared with their nonirradiated siblings. Significant decreased scores were found in the full-scale intelligence quotients (IQ), performance IQ, and verbal IQ with all nine irradiated patients scoring below their siblings. Also, educational quotients (EQ) of the irradiated patients were 12 to 17 points below the nonirradiated siblings with arithmetic EQ significantly decreased. Most severely affected were those children younger than 8 years at time of irradiation. No correlation was found with whole-brain dose, or objective physicalmore » or neurologic findings.« less
Sparse distributed memory and related models
NASA Technical Reports Server (NTRS)
Kanerva, Pentti
1992-01-01
Described here is sparse distributed memory (SDM) as a neural-net associative memory. It is characterized by two weight matrices and by a large internal dimension - the number of hidden units is much larger than the number of input or output units. The first matrix, A, is fixed and possibly random, and the second matrix, C, is modifiable. The SDM is compared and contrasted to (1) computer memory, (2) correlation-matrix memory, (3) feet-forward artificial neural network, (4) cortex of the cerebellum, (5) Marr and Albus models of the cerebellum, and (6) Albus' cerebellar model arithmetic computer (CMAC). Several variations of the basic SDM design are discussed: the selected-coordinate and hyperplane designs of Jaeckel, the pseudorandom associative neural memory of Hassoun, and SDM with real-valued input variables by Prager and Fallside. SDM research conducted mainly at the Research Institute for Advanced Computer Science (RIACS) in 1986-1991 is highlighted.
Harmon, Frederick G; Frank, Andrew A; Joshi, Sanjay S
2005-01-01
A Simulink model, a propulsion energy optimization algorithm, and a CMAC controller were developed for a small parallel hybrid-electric unmanned aerial vehicle (UAV). The hybrid-electric UAV is intended for military, homeland security, and disaster-monitoring missions involving intelligence, surveillance, and reconnaissance (ISR). The Simulink model is a forward-facing simulation program used to test different control strategies. The flexible energy optimization algorithm for the propulsion system allows relative importance to be assigned between the use of gasoline, electricity, and recharging. A cerebellar model arithmetic computer (CMAC) neural network approximates the energy optimization results and is used to control the parallel hybrid-electric propulsion system. The hybrid-electric UAV with the CMAC controller uses 67.3% less energy than a two-stroke gasoline-powered UAV during a 1-h ISR mission and 37.8% less energy during a longer 3-h ISR mission.
Distributed Cerebellar Motor Learning: A Spike-Timing-Dependent Plasticity Model
Luque, Niceto R.; Garrido, Jesús A.; Naveros, Francisco; Carrillo, Richard R.; D'Angelo, Egidio; Ros, Eduardo
2016-01-01
Deep cerebellar nuclei neurons receive both inhibitory (GABAergic) synaptic currents from Purkinje cells (within the cerebellar cortex) and excitatory (glutamatergic) synaptic currents from mossy fibers. Those two deep cerebellar nucleus inputs are thought to be also adaptive, embedding interesting properties in the framework of accurate movements. We show that distributed spike-timing-dependent plasticity mechanisms (STDP) located at different cerebellar sites (parallel fibers to Purkinje cells, mossy fibers to deep cerebellar nucleus cells, and Purkinje cells to deep cerebellar nucleus cells) in close-loop simulations provide an explanation for the complex learning properties of the cerebellum in motor learning. Concretely, we propose a new mechanistic cerebellar spiking model. In this new model, deep cerebellar nuclei embed a dual functionality: deep cerebellar nuclei acting as a gain adaptation mechanism and as a facilitator for the slow memory consolidation at mossy fibers to deep cerebellar nucleus synapses. Equipping the cerebellum with excitatory (e-STDP) and inhibitory (i-STDP) mechanisms at deep cerebellar nuclei afferents allows the accommodation of synaptic memories that were formed at parallel fibers to Purkinje cells synapses and then transferred to mossy fibers to deep cerebellar nucleus synapses. These adaptive mechanisms also contribute to modulate the deep-cerebellar-nucleus-output firing rate (output gain modulation toward optimizing its working range). PMID:26973504
Geminiani, Alice; Casellato, Claudia; Antonietti, Alberto; D'Angelo, Egidio; Pedrocchi, Alessandra
2018-06-01
The cerebellum plays a crucial role in sensorimotor control and cerebellar disorders compromise adaptation and learning of motor responses. However, the link between alterations at network level and cerebellar dysfunction is still unclear. In principle, this understanding would benefit of the development of an artificial system embedding the salient neuronal and plastic properties of the cerebellum and operating in closed-loop. To this aim, we have exploited a realistic spiking computational model of the cerebellum to analyze the network correlates of cerebellar impairment. The model was modified to reproduce three different damages of the cerebellar cortex: (i) a loss of the main output neurons (Purkinje Cells), (ii) a lesion to the main cerebellar afferents (Mossy Fibers), and (iii) a damage to a major mechanism of synaptic plasticity (Long Term Depression). The modified network models were challenged with an Eye-Blink Classical Conditioning test, a standard learning paradigm used to evaluate cerebellar impairment, in which the outcome was compared to reference results obtained in human or animal experiments. In all cases, the model reproduced the partial and delayed conditioning typical of the pathologies, indicating that an intact cerebellar cortex functionality is required to accelerate learning by transferring acquired information to the cerebellar nuclei. Interestingly, depending on the type of lesion, the redistribution of synaptic plasticity and response timing varied greatly generating specific adaptation patterns. Thus, not only the present work extends the generalization capabilities of the cerebellar spiking model to pathological cases, but also predicts how changes at the neuronal level are distributed across the network, making it usable to infer cerebellar circuit alterations occurring in cerebellar pathologies.
Träff, Ulf; Olsson, Linda; Skagerlund, Kenny; Östergren, Rickard
2018-03-01
A modified pathways to mathematics model was used to examine the cognitive mechanisms underlying arithmetic skills in third graders. A total of 269 children were assessed on tasks tapping the four pathways and arithmetic skills. A path analysis showed that symbolic number processing was directly supported by the linguistic and approximate quantitative pathways. The direct contribution from the four pathways to arithmetic proficiency varied; the linguistic pathway supported single-digit arithmetic and word problem solving, whereas the approximate quantitative pathway supported only multi-digit calculation. The spatial processing and verbal working memory pathways supported only arithmetic word problem solving. The notion of hierarchical levels of arithmetic was supported by the results, and the different levels were supported by different constellations of pathways. However, the strongest support to the hierarchical levels of arithmetic were provided by the proximal arithmetic skills. Copyright © 2017 Elsevier Inc. All rights reserved.
Distinct cerebellar foliation anomalies in a CHD7 haploinsufficient mouse model of CHARGE syndrome
Whittaker, Danielle E.; Kasah, Sahrunizam; Donovan, Alex P. A.; Ellegood, Jacob; Riegman, Kimberley L. H.; Volk, Holger A.; McGonnell, Imelda; Lerch, Jason P.
2017-01-01
Mutations in the gene encoding the ATP dependent chromatin‐remodeling factor, CHD7 are the major cause of CHARGE (Coloboma, Heart defects, Atresia of the choanae, Retarded growth and development, Genital‐urinary anomalies, and Ear defects) syndrome. Neurodevelopmental defects and a range of neurological signs have been identified in individuals with CHARGE syndrome, including developmental delay, lack of coordination, intellectual disability, and autistic traits. We previously identified cerebellar vermis hypoplasia and abnormal cerebellar foliation in individuals with CHARGE syndrome. Here, we report mild cerebellar hypoplasia and distinct cerebellar foliation anomalies in a Chd7 haploinsufficient mouse model. We describe specific alterations in the precise spatio‐temporal sequence of fissure formation during perinatal cerebellar development responsible for these foliation anomalies. The altered cerebellar foliation pattern in Chd7 haploinsufficient mice show some similarities to those reported in mice with altered Engrailed, Fgf8 or Zic1 gene expression and we propose that mutations or polymorphisms in these genes may modify the cerebellar phenotype in CHARGE syndrome. Our findings in a mouse model of CHARGE syndrome indicate that a careful analysis of cerebellar foliation may be warranted in patients with CHARGE syndrome, particularly in patients with cerebellar hypoplasia and developmental delay. PMID:29168327
Siemann, Julia; Petermann, Franz
2018-01-01
This review reconciles past findings on numerical processing with key assumptions of the most predominant model of arithmetic in the literature, the Triple Code Model (TCM). This is implemented by reporting diverse findings in the literature ranging from behavioral studies on basic arithmetic operations over neuroimaging studies on numerical processing to developmental studies concerned with arithmetic acquisition, with a special focus on developmental dyscalculia (DD). We evaluate whether these studies corroborate the model and discuss possible reasons for contradictory findings. A separate section is dedicated to the transfer of TCM to arithmetic development and to alternative accounts focusing on developmental questions of numerical processing. We conclude with recommendations for future directions of arithmetic research, raising questions that require answers in models of healthy as well as abnormal mathematical development. This review assesses the leading model in the field of arithmetic processing (Triple Code Model) by presenting knowledge from interdisciplinary research. It assesses the observed contradictory findings and integrates the resulting opposing viewpoints. The focus is on the development of arithmetic expertise as well as abnormal mathematical development. The original aspect of this article is that it points to a gap in research on these topics and provides possible solutions for future models. Copyright © 2017 Elsevier Ltd. All rights reserved.
Distinct cerebellar foliation anomalies in a CHD7 haploinsufficient mouse model of CHARGE syndrome.
Whittaker, Danielle E; Kasah, Sahrunizam; Donovan, Alex P A; Ellegood, Jacob; Riegman, Kimberley L H; Volk, Holger A; McGonnell, Imelda; Lerch, Jason P; Basson, M Albert
2017-12-01
Mutations in the gene encoding the ATP dependent chromatin-remodeling factor, CHD7 are the major cause of CHARGE (Coloboma, Heart defects, Atresia of the choanae, Retarded growth and development, Genital-urinary anomalies, and Ear defects) syndrome. Neurodevelopmental defects and a range of neurological signs have been identified in individuals with CHARGE syndrome, including developmental delay, lack of coordination, intellectual disability, and autistic traits. We previously identified cerebellar vermis hypoplasia and abnormal cerebellar foliation in individuals with CHARGE syndrome. Here, we report mild cerebellar hypoplasia and distinct cerebellar foliation anomalies in a Chd7 haploinsufficient mouse model. We describe specific alterations in the precise spatio-temporal sequence of fissure formation during perinatal cerebellar development responsible for these foliation anomalies. The altered cerebellar foliation pattern in Chd7 haploinsufficient mice show some similarities to those reported in mice with altered Engrailed, Fgf8 or Zic1 gene expression and we propose that mutations or polymorphisms in these genes may modify the cerebellar phenotype in CHARGE syndrome. Our findings in a mouse model of CHARGE syndrome indicate that a careful analysis of cerebellar foliation may be warranted in patients with CHARGE syndrome, particularly in patients with cerebellar hypoplasia and developmental delay. © 2017 The Authors. American Journal of Medical Genetics Part C Published by Wiley Periodicals, Inc.
A Computational Model of Fraction Arithmetic
ERIC Educational Resources Information Center
Braithwaite, David W.; Pyke, Aryn A.; Siegler, Robert S.
2017-01-01
Many children fail to master fraction arithmetic even after years of instruction, a failure that hinders their learning of more advanced mathematics as well as their occupational success. To test hypotheses about why children have so many difficulties in this area, we created a computational model of fraction arithmetic learning and presented it…
The cerebellum in action: a simulation and robotics study.
Hofstötter, Constanze; Mintz, Matti; Verschure, Paul F M J
2002-10-01
The control or prediction of the precise timing of events are central aspects of the many tasks assigned to the cerebellum. Despite much detailed knowledge of its physiology and anatomy, it remains unclear how the cerebellar circuitry can achieve such an adaptive timing function. We present a computational model pursuing this question for one extensively studied type of cerebellar-mediated learning: the classical conditioning of discrete motor responses. This model combines multiple current assumptions on the function of the cerebellar circuitry and was used to investigate whether plasticity in the cerebellar cortex alone can mediate adaptive conditioned response timing. In particular, we studied the effect of changes in the strength of the synapses formed between parallel fibres and Purkinje cells under the control of a negative feedback loop formed between inferior olive, cerebellar cortex and cerebellar deep nuclei. The learning performance of the model was evaluated at the circuit level in simulated conditioning experiments as well as at the behavioural level using a mobile robot. We demonstrate that the model supports adaptively timed responses under real-world conditions. Thus, in contrast to many other models that have focused on cerebellar-mediated conditioning, we investigated whether and how the suggested underlying mechanisms could give rise to behavioural phenomena.
Parazzini, Marta; Rossi, Elena; Ferrucci, Roberta; Liorni, Ilaria; Priori, Alberto; Ravazzani, Paolo
2014-03-01
Transcranial Direct Current Stimulation (tDCS) over the cerebellum (or cerebellar tDCS) modulates working memory, changes cerebello-brain interaction, and affects locomotion in humans. Also, the use of tDCS has been proposed for the treatment of disorders characterized by cerebellar dysfunction. Nonetheless, the electric field (E) and current density (J) spatial distributions generated by cerebellar tDCS are unknown. This work aimed to estimate E and J distributions during cerebellar tDCS. Computational electromagnetics techniques were applied in three human realistic models of different ages and gender. The stronger E and J occurred mainly in the cerebellar cortex, with some spread (up to 4%) toward the occipital cortex. Also, changes by ±1cm in the position of the active electrode resulted in a small effect (up to 4%) in the E and J spatial distribution in the cerebellum. Finally, the E and J spreads to the brainstem and the heart were negligible, thus further supporting the safety of this technique. Despite inter-individual differences, our modeling study confirms that the cerebellum is the structure mainly involved by cerebellar tDCS. Modeling approach reveals that during cerebellar tDCS the current spread to other structures outside the cerebellum is unlike to produce functional effects. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
D'Ambrosio, Alessandro; Pagani, Elisabetta; Riccitelli, Gianna C; Colombo, Bruno; Rodegher, Mariaemma; Falini, Andrea; Comi, Giancarlo; Filippi, Massimo; Rocca, Maria A
2017-08-01
To investigate the role of cerebellar sub-regions on motor and cognitive performance in multiple sclerosis (MS) patients. Whole and sub-regional cerebellar volumes, brain volumes, T2 hyperintense lesion volumes (LV), and motor performance scores were obtained from 95 relapse-onset MS patients and 32 healthy controls (HC). MS patients also underwent an evaluation of working memory and processing speed functions. Cerebellar anterior and posterior lobes were segmented using the Spatially Unbiased Infratentorial Toolbox (SUIT) from Statistical Parametric Mapping (SPM12). Multivariate linear regression models assessed the relationship between magnetic resonance imaging (MRI) measures and motor/cognitive scores. Compared to HC, only secondary progressive multiple sclerosis (SPMS) patients had lower cerebellar volumes (total and posterior cerebellum). In MS patients, lower anterior cerebellar volume and brain T2 LV predicted worse motor performance, whereas lower posterior cerebellar volume and brain T2 LV predicted poor cognitive performance. Global measures of brain volume and infratentorial T2 LV were not selected by the final multivariate models. Cerebellar volumetric abnormalities are likely to play an important contribution to explain motor and cognitive performance in MS patients. Consistently with functional mapping studies, cerebellar posterior-inferior volume accounted for variance in cognitive measures, whereas anterior cerebellar volume accounted for variance in motor performance, supporting the assessment of cerebellar damage at sub-regional level.
Tremblay, Sophie; Pai, Alex; Richter, Lindsay; Vafaei, Rod; Potluri, Praneetha; Ellegood, Jacob; Lerch, Jason P; Goldowitz, Daniel
2017-11-01
Despite the increased recognition of cerebellar injury in survivors of preterm birth, the neurodevelopmental consequences of isolated cerebellar injury have been largely unexplored and our current understanding of the functional deficits requires further attention in order to translate knowledge to best practices. Preterm infants are exposed to multiple stressors during their postnatal development including perinatal cerebellar haemorrhage (CBH) and postnatal infection, two major risk factors for neurodevelopmental impairments. We developed a translational mouse model of CBH and/or inflammation to measure the short- and long-term outcomes in cerebellar structure and function. Mice exposed to early combined insults of CBH and early inflammatory state (EIS) have a delay in grasping acquisition, neonatal motor deficits and deficient long-term memory. CBH combined with late inflammatory state (LIS) does not induce neonatal motor problems but leads to poor fine motor function and long-term memory deficits at adulthood. Early combined insults result in poor cerebellar growth from postnatal day 15 until adulthood shown by MRI, which are reflected in diminished volumes of cerebellar structures. There are also decreases in volumes of gray matter and hippocampus. Cerebellar microgliosis appears 24h after the combined insults and persists until postnatal day 15 in the cerebellar molecular layer and cerebellar nuclei in association with a disrupted patterning of myelin deposition, a delay of oligodendrocyte maturation and reduced white matter cerebellar volume. Together, these findings reveal poor outcomes in developing brains exposed to combined cerebellar perinatal insults in association with cerebellar hypoplasia, persistence of microgliosis and alterations of cerebellar white matter maturation and growth. Copyright © 2017 Elsevier Inc. All rights reserved.
Lin, Hong; Magrane, Jordi; Clark, Elisia M; Halawani, Sarah M; Warren, Nathan; Rattelle, Amy; Lynch, David R
2017-12-19
Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disorder with progressive ataxia that affects both the peripheral and central nervous system (CNS). While later CNS neuropathology involves loss of large principal neurons and glutamatergic and GABAergic synaptic terminals in the cerebellar dentate nucleus, early pathological changes in FRDA cerebellum remain largely uncharacterized. Here, we report early cerebellar VGLUT1 (SLC17A7)-specific parallel fiber (PF) synaptic deficits and dysregulated cerebellar circuit in the frataxin knock-in/knockout (KIKO) FRDA mouse model. At asymptomatic ages, VGLUT1 levels in cerebellar homogenates are significantly decreased, whereas VGLUT2 (SLC17A6) levels are significantly increased, in KIKO mice compared with age-matched controls. Additionally, GAD65 (GAD2) levels are significantly increased, while GAD67 (GAD1) levels remain unaltered. This suggests early VGLUT1-specific synaptic input deficits, and dysregulation of VGLUT2 and GAD65 synaptic inputs, in the cerebellum of asymptomatic KIKO mice. Immunohistochemistry and electron microscopy further show specific reductions of VGLUT1-containing PF presynaptic terminals in the cerebellar molecular layer, demonstrating PF synaptic input deficiency in asymptomatic and symptomatic KIKO mice. Moreover, the parvalbumin levels in cerebellar homogenates and Purkinje neurons are significantly reduced, but preserved in other interneurons of the cerebellar molecular layer, suggesting specific parvalbumin dysregulation in Purkinje neurons of these mice. Furthermore, a moderate loss of large principal neurons is observed in the dentate nucleus of asymptomatic KIKO mice, mimicking that of FRDA patients. Our findings thus identify early VGLUT1-specific PF synaptic input deficits and dysregulated cerebellar circuit as potential mediators of cerebellar dysfunction in KIKO mice, reflecting developmental features of FRDA in this mouse model. © 2017. Published by The Company of Biologists Ltd.
Antonietti, Alberto; Casellato, Claudia; D'Angelo, Egidio; Pedrocchi, Alessandra
The cerebellum plays a critical role in sensorimotor control. However, how the specific circuits and plastic mechanisms of the cerebellum are engaged in closed-loop processing is still unclear. We developed an artificial sensorimotor control system embedding a detailed spiking cerebellar microcircuit with three bidirectional plasticity sites. This proved able to reproduce a cerebellar-driven associative paradigm, the eyeblink classical conditioning (EBCC), in which a precise time relationship between an unconditioned stimulus (US) and a conditioned stimulus (CS) is established. We challenged the spiking model to fit an experimental data set from human subjects. Two subsequent sessions of EBCC acquisition and extinction were recorded and transcranial magnetic stimulation (TMS) was applied on the cerebellum to alter circuit function and plasticity. Evolutionary algorithms were used to find the near-optimal model parameters to reproduce the behaviors of subjects in the different sessions of the protocol. The main finding is that the optimized cerebellar model was able to learn to anticipate (predict) conditioned responses with accurate timing and success rate, demonstrating fast acquisition, memory stabilization, rapid extinction, and faster reacquisition as in EBCC in humans. The firing of Purkinje cells (PCs) and deep cerebellar nuclei (DCN) changed during learning under the control of synaptic plasticity, which evolved at different rates, with a faster acquisition in the cerebellar cortex than in DCN synapses. Eventually, a reduced PC activity released DCN discharge just after the CS, precisely anticipating the US and causing the eyeblink. Moreover, a specific alteration in cortical plasticity explained the EBCC changes induced by cerebellar TMS in humans. In this paper, for the first time, it is shown how closed-loop simulations, using detailed cerebellar microcircuit models, can be successfully used to fit real experimental data sets. Thus, the changes of the model parameters in the different sessions of the protocol unveil how implicit microcircuit mechanisms can generate normal and altered associative behaviors.The cerebellum plays a critical role in sensorimotor control. However, how the specific circuits and plastic mechanisms of the cerebellum are engaged in closed-loop processing is still unclear. We developed an artificial sensorimotor control system embedding a detailed spiking cerebellar microcircuit with three bidirectional plasticity sites. This proved able to reproduce a cerebellar-driven associative paradigm, the eyeblink classical conditioning (EBCC), in which a precise time relationship between an unconditioned stimulus (US) and a conditioned stimulus (CS) is established. We challenged the spiking model to fit an experimental data set from human subjects. Two subsequent sessions of EBCC acquisition and extinction were recorded and transcranial magnetic stimulation (TMS) was applied on the cerebellum to alter circuit function and plasticity. Evolutionary algorithms were used to find the near-optimal model parameters to reproduce the behaviors of subjects in the different sessions of the protocol. The main finding is that the optimized cerebellar model was able to learn to anticipate (predict) conditioned responses with accurate timing and success rate, demonstrating fast acquisition, memory stabilization, rapid extinction, and faster reacquisition as in EBCC in humans. The firing of Purkinje cells (PCs) and deep cerebellar nuclei (DCN) changed during learning under the control of synaptic plasticity, which evolved at different rates, with a faster acquisition in the cerebellar cortex than in DCN synapses. Eventually, a reduced PC activity released DCN discharge just after the CS, precisely anticipating the US and causing the eyeblink. Moreover, a specific alteration in cortical plasticity explained the EBCC changes induced by cerebellar TMS in humans. In this paper, for the first time, it is shown how closed-loop simulations, using detailed cerebellar microcircuit models, can be successfully used to fit real experimental data sets. Thus, the changes of the model parameters in the different sessions of the protocol unveil how implicit microcircuit mechanisms can generate normal and altered associative behaviors.
Egeland, Jens; Bosnes, Ole; Johansen, Hans
2009-09-01
Confirmatory Factor Analyses (CFA) of the Wechsler Adult Intelligence Scale-III (WAIS-III) lend partial support to the four-factor model proposed in the test manual. However, the Arithmetic subtest has been especially difficult to allocate to one factor. Using the new Norwegian WAIS-III version, we tested factor models differing in the number of factors and in the placement of the Arithmetic subtest in a mixed clinical sample (n = 272). Only the four-factor solutions had adequate goodness-of-fit values. Allowing Arithmetic to load on both the Verbal Comprehension and Working Memory factors provided a more parsimonious solution compared to considering the subtest only as a measure of Working Memory. Effects of education were particularly high for both the Verbal Comprehension tests and Arithmetic.
Lennon, William; Hecht-Nielsen, Robert; Yamazaki, Tadashi
2014-01-01
While the anatomy of the cerebellar microcircuit is well-studied, how it implements cerebellar function is not understood. A number of models have been proposed to describe this mechanism but few emphasize the role of the vast network Purkinje cells (PKJs) form with the molecular layer interneurons (MLIs)—the stellate and basket cells. We propose a model of the MLI-PKJ network composed of simple spiking neurons incorporating the major anatomical and physiological features. In computer simulations, the model reproduces the irregular firing patterns observed in PKJs and MLIs in vitro and a shift toward faster, more regular firing patterns when inhibitory synaptic currents are blocked. In the model, the time between PKJ spikes is shown to be proportional to the amount of feedforward inhibition from an MLI on average. The two key elements of the model are: (1) spontaneously active PKJs and MLIs due to an endogenous depolarizing current, and (2) adherence to known anatomical connectivity along a parasagittal strip of cerebellar cortex. We propose this model to extend previous spiking network models of the cerebellum and for further computational investigation into the role of irregular firing and MLIs in cerebellar learning and function. PMID:25520646
Gaze‐evoked nystagmus induced by alcohol intoxication
Tarnutzer, Alexander A.; Straumann, Dominik; Ramat, Stefano; Bertolini, Giovanni
2017-01-01
Key points The cerebellum is the core structure controlling gaze stability. Chronic cerebellar diseases and acute alcohol intoxication affect cerebellar function, inducing, among others, gaze instability as gaze‐evoked nystagmus.Gaze‐evoked nystagmus is characterized by increased centripetal eye‐drift. It is used as an important diagnostic sign for patients with cerebellar degeneration and to assess the ‘driving while intoxicated’ condition.We quantified the effect of alcohol on gaze‐holding using an approach allowing, for the first time, the comparison of deficits induced by alcohol intoxication and cerebellar degeneration.Our results showed that alcohol intoxication induces a two‐fold increase of centripetal eye‐drift.We establish analysis techniques for using controlled alcohol intake as a model to support the study of cerebellar deficits.The observed similarity between the effect of alcohol and the clinical signs observed in cerebellar patients suggests a possible pathomechanism for gaze‐holding deficits. Abstract Gaze‐evoked nystagmus (GEN) is an ocular‐motor finding commonly observed in cerebellar disease, characterized by increased centripetal eye‐drift with centrifugal correcting saccades at eccentric gaze. With cerebellar degeneration being a rare and clinically heterogeneous disease, data from patients are limited. We hypothesized that a transient inhibition of cerebellar function by defined amounts of alcohol may provide a suitable model to study gaze‐holding deficits in cerebellar disease. We recorded gaze‐holding at varying horizontal eye positions in 15 healthy participants before and 30 min after alcohol intake required to reach 0.6‰ blood alcohol content (BAC). Changes in ocular‐motor behaviour were quantified measuring eye‐drift velocity as a continuous function of gaze eccentricity over a large range (±40 deg) of horizontal gaze angles and characterized using a two‐parameter tangent model. The effect of alcohol on gaze stability was assessed analysing: (1) overall effects on the gaze‐holding system, (2) specific effects on each eye and (3) differences between gaze angles in the temporal and nasal hemifields. For all subjects, alcohol consumption induced gaze instability, causing a two‐fold increase [2.21 (0.55), median (median absolute deviation); P = 0.002] of eye‐drift velocity at all eccentricities. Results were confirmed analysing each eye and hemifield independently. The alcohol‐induced transient global deficit in gaze‐holding matched the pattern previously described in patients with late‐onset cerebellar degeneration. Controlled intake of alcohol seems a suitable disease model to study cerebellar GEN. With alcohol resulting in global cerebellar hypofunction, we hypothesize that patients matching the gaze‐holding behaviour observed here suffered from diffuse deficits in the gaze‐holding system as well. PMID:27981586
Simulating Network Retrieval of Arithmetic Facts.
ERIC Educational Resources Information Center
Ashcraft, Mark H.
This report describes a simulation of adults' retrieval of arithmetic facts from a network-based memory representation. The goals of the simulation project are to: demonstrate in specific form the nature of a spreading activation model of mental arithmetic; account for three important reaction time effects observed in laboratory investigations;…
Rogers, Tiffany D.; Dickson, Price E.; McKimm, Eric; Heck, Detlef H.; Goldowitz, Dan; Blaha, Charles D.; Mittleman, Guy
2013-01-01
Imaging, clinical and pre-clinical studies have provided ample evidence for a cerebellar involvement in cognitive brain function including cognitive brain disorders, such as autism and schizophrenia. We previously reported that cerebellar activity modulates dopamine release in the mouse medial prefrontal cortex (mPFC) via two distinct pathways: (1) cerebellum to mPFC via dopaminergic projections from the ventral tegmental area [VTA] and (2) cerebellum to mPFC via glutamatergic projections from the mediodorsal and ventrolateral thalamus (ThN md and vl). The present study compared functional adaptations of cerebello-cortical circuitry following developmental cerebellar pathology in a mouse model of developmental loss of Purkinje cells (Lurcher) and a mouse model of fragile X syndrome (Fmr1 KO mice). Fixed potential amperometry was used to measure mPFC dopamine release in response to cerebellar electrical stimulation. Mutant mice of both strains showed an attenuation in cerebellar-evoked mPFC dopamine release compared to respective wildtype mice. This was accompanied by a functional reorganization of the VTA and thalamic pathways mediating cerebellar modulation of mPFC dopamine release. Inactivation of the VTA pathway by intra-VTA lidocaine or kynurenate infusions decreased dopamine release by 50% in wildtype and 20-30% in mutant mice of both strains. Intra-ThN vl infusions of either drug decreased dopamine release by 15% in wildtype and 40% in mutant mice of both strains, while dopamine release remained relatively unchanged following intra-ThN md drug infusions. These results indicate a shift in strength towards the thalamic vl projection, away from the VTA. Thus, cerebellar neuropathologies associated with autism spectrum disorders may cause a reduction in cerebellar modulation of mPFC dopamine release that is related to a reorganization of the mediating neuronal pathways. PMID:23436049
Rogers, Tiffany D; Dickson, Price E; McKimm, Eric; Heck, Detlef H; Goldowitz, Dan; Blaha, Charles D; Mittleman, Guy
2013-08-01
Imaging, clinical, and pre-clinical studies have provided ample evidence for a cerebellar involvement in cognitive brain function including cognitive brain disorders, such as autism and schizophrenia. We previously reported that cerebellar activity modulates dopamine release in the mouse medial prefrontal cortex (mPFC) via two distinct pathways: (1) cerebellum to mPFC via dopaminergic projections from the ventral tegmental area (VTA) and (2) cerebellum to mPFC via glutamatergic projections from the mediodorsal and ventrolateral thalamus (ThN md and vl). The present study compared functional adaptations of cerebello-cortical circuitry following developmental cerebellar pathology in a mouse model of developmental loss of Purkinje cells (Lurcher) and a mouse model of fragile X syndrome (Fmr1 KO mice). Fixed potential amperometry was used to measure mPFC dopamine release in response to cerebellar electrical stimulation. Mutant mice of both strains showed an attenuation in cerebellar-evoked mPFC dopamine release compared to respective wildtype mice. This was accompanied by a functional reorganization of the VTA and thalamic pathways mediating cerebellar modulation of mPFC dopamine release. Inactivation of the VTA pathway by intra-VTA lidocaine or kynurenate infusions decreased dopamine release by 50 % in wildtype and 20-30 % in mutant mice of both strains. Intra-ThN vl infusions of either drug decreased dopamine release by 15 % in wildtype and 40 % in mutant mice of both strains, while dopamine release remained relatively unchanged following intra-ThN md drug infusions. These results indicate a shift in strength towards the thalamic vl projection, away from the VTA. Thus, cerebellar neuropathologies associated with autism spectrum disorders may cause a reduction in cerebellar modulation of mPFC dopamine release that is related to a reorganization of the mediating neuronal pathways.
Berg, Derek H
2008-04-01
The cognitive underpinnings of arithmetic calculation in children are noted to involve working memory; however, cognitive processes related to arithmetic calculation and working memory suggest that this relationship is more complex than stated previously. The purpose of this investigation was to examine the relative contributions of processing speed, short-term memory, working memory, and reading to arithmetic calculation in children. Results suggested four important findings. First, processing speed emerged as a significant contributor of arithmetic calculation only in relation to age-related differences in the general sample. Second, processing speed and short-term memory did not eliminate the contribution of working memory to arithmetic calculation. Third, individual working memory components--verbal working memory and visual-spatial working memory--each contributed unique variance to arithmetic calculation in the presence of all other variables. Fourth, a full model indicated that chronological age remained a significant contributor to arithmetic calculation in the presence of significant contributions from all other variables. Results are discussed in terms of directions for future research on working memory in arithmetic calculation.
The cerebellum: a new key structure in the navigation system
Rochefort, Christelle; Lefort, Julie M.; Rondi-Reig, Laure
2013-01-01
Early investigations of cerebellar function focused on motor learning, in particular on eyeblink conditioning and adaptation of the vestibulo-ocular reflex, and led to the general view that cerebellar long-term depression (LTD) at parallel fiber (PF)–Purkinje cell (PC) synapses is the neural correlate of cerebellar motor learning. Thereafter, while the full complexity of cerebellar plasticities was being unraveled, cerebellar involvement in more cognitive tasks—including spatial navigation—was further investigated. However, cerebellar implication in spatial navigation remains a matter of debate because motor deficits frequently associated with cerebellar damage often prevent the dissociation between its role in spatial cognition from its implication in motor function. Here, we review recent findings from behavioral and electrophysiological analyses of cerebellar mutant mouse models, which show that the cerebellum might participate in the construction of hippocampal spatial representation map (i.e., place cells) and thereby in goal-directed navigation. These recent advances in cerebellar research point toward a model in which computation from the cerebellum could be required for spatial representation and would involve the integration of multi-source self-motion information to: (1) transform the reference frame of vestibular signals and (2) distinguish between self- and externally-generated vestibular signals. We eventually present herein anatomical and functional connectivity data supporting a cerebello-hippocampal interaction. Whilst a direct cerebello-hippocampal projection has been suggested, recent investigations rather favor a multi-synaptic pathway involving posterior parietal and retrosplenial cortices, two regions critically involved in spatial navigation. PMID:23493515
Local and long-range circuit elements for cerebellar function.
Xiao, Le; Scheiffele, Peter
2018-02-01
The view of cerebellar functions has been extended from controlling sensorimotor processes to processing 'contextual' information and generating predictions for a diverse range of behaviors. These functions rely on the computation of the local cerebellar microcircuits and long-range connectivity that relays cerebellar output to various brain areas. In this review, we discuss recent work on two of the circuit elements, which are thought to be fundamental for a wide range of non-sensorimotor behaviors: The role for cerebellar granule cells in multimodal integration in the cerebellar cortex and the long-range connectivity between the deep cerebellar nuclei and the basal ganglia. Lastly, we discuss how studies on synapses and circuits of the cerebellum in rodent models of autism-spectrum disorders might contribute to our understanding of the pathophysiology of this class of neurodevelopmental disorders. Copyright © 2017. Published by Elsevier Ltd.
Gaze-evoked nystagmus induced by alcohol intoxication.
Romano, Fausto; Tarnutzer, Alexander A; Straumann, Dominik; Ramat, Stefano; Bertolini, Giovanni
2017-03-15
The cerebellum is the core structure controlling gaze stability. Chronic cerebellar diseases and acute alcohol intoxication affect cerebellar function, inducing, among others, gaze instability as gaze-evoked nystagmus. Gaze-evoked nystagmus is characterized by increased centripetal eye-drift. It is used as an important diagnostic sign for patients with cerebellar degeneration and to assess the 'driving while intoxicated' condition. We quantified the effect of alcohol on gaze-holding using an approach allowing, for the first time, the comparison of deficits induced by alcohol intoxication and cerebellar degeneration. Our results showed that alcohol intoxication induces a two-fold increase of centripetal eye-drift. We establish analysis techniques for using controlled alcohol intake as a model to support the study of cerebellar deficits. The observed similarity between the effect of alcohol and the clinical signs observed in cerebellar patients suggests a possible pathomechanism for gaze-holding deficits. Gaze-evoked nystagmus (GEN) is an ocular-motor finding commonly observed in cerebellar disease, characterized by increased centripetal eye-drift with centrifugal correcting saccades at eccentric gaze. With cerebellar degeneration being a rare and clinically heterogeneous disease, data from patients are limited. We hypothesized that a transient inhibition of cerebellar function by defined amounts of alcohol may provide a suitable model to study gaze-holding deficits in cerebellar disease. We recorded gaze-holding at varying horizontal eye positions in 15 healthy participants before and 30 min after alcohol intake required to reach 0.6‰ blood alcohol content (BAC). Changes in ocular-motor behaviour were quantified measuring eye-drift velocity as a continuous function of gaze eccentricity over a large range (±40 deg) of horizontal gaze angles and characterized using a two-parameter tangent model. The effect of alcohol on gaze stability was assessed analysing: (1) overall effects on the gaze-holding system, (2) specific effects on each eye and (3) differences between gaze angles in the temporal and nasal hemifields. For all subjects, alcohol consumption induced gaze instability, causing a two-fold increase [2.21 (0.55), median (median absolute deviation); P = 0.002] of eye-drift velocity at all eccentricities. Results were confirmed analysing each eye and hemifield independently. The alcohol-induced transient global deficit in gaze-holding matched the pattern previously described in patients with late-onset cerebellar degeneration. Controlled intake of alcohol seems a suitable disease model to study cerebellar GEN. With alcohol resulting in global cerebellar hypofunction, we hypothesize that patients matching the gaze-holding behaviour observed here suffered from diffuse deficits in the gaze-holding system as well. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Modeling the Cerebellar Microcircuit: New Strategies for a Long-Standing Issue.
D'Angelo, Egidio; Antonietti, Alberto; Casali, Stefano; Casellato, Claudia; Garrido, Jesus A; Luque, Niceto Rafael; Mapelli, Lisa; Masoli, Stefano; Pedrocchi, Alessandra; Prestori, Francesca; Rizza, Martina Francesca; Ros, Eduardo
2016-01-01
The cerebellar microcircuit has been the work bench for theoretical and computational modeling since the beginning of neuroscientific research. The regular neural architecture of the cerebellum inspired different solutions to the long-standing issue of how its circuitry could control motor learning and coordination. Originally, the cerebellar network was modeled using a statistical-topological approach that was later extended by considering the geometrical organization of local microcircuits. However, with the advancement in anatomical and physiological investigations, new discoveries have revealed an unexpected richness of connections, neuronal dynamics and plasticity, calling for a change in modeling strategies, so as to include the multitude of elementary aspects of the network into an integrated and easily updatable computational framework. Recently, biophysically accurate "realistic" models using a bottom-up strategy accounted for both detailed connectivity and neuronal non-linear membrane dynamics. In this perspective review, we will consider the state of the art and discuss how these initial efforts could be further improved. Moreover, we will consider how embodied neurorobotic models including spiking cerebellar networks could help explaining the role and interplay of distributed forms of plasticity. We envisage that realistic modeling, combined with closed-loop simulations, will help to capture the essence of cerebellar computations and could eventually be applied to neurological diseases and neurorobotic control systems.
Modeling the Cerebellar Microcircuit: New Strategies for a Long-Standing Issue
D’Angelo, Egidio; Antonietti, Alberto; Casali, Stefano; Casellato, Claudia; Garrido, Jesus A.; Luque, Niceto Rafael; Mapelli, Lisa; Masoli, Stefano; Pedrocchi, Alessandra; Prestori, Francesca; Rizza, Martina Francesca; Ros, Eduardo
2016-01-01
The cerebellar microcircuit has been the work bench for theoretical and computational modeling since the beginning of neuroscientific research. The regular neural architecture of the cerebellum inspired different solutions to the long-standing issue of how its circuitry could control motor learning and coordination. Originally, the cerebellar network was modeled using a statistical-topological approach that was later extended by considering the geometrical organization of local microcircuits. However, with the advancement in anatomical and physiological investigations, new discoveries have revealed an unexpected richness of connections, neuronal dynamics and plasticity, calling for a change in modeling strategies, so as to include the multitude of elementary aspects of the network into an integrated and easily updatable computational framework. Recently, biophysically accurate “realistic” models using a bottom-up strategy accounted for both detailed connectivity and neuronal non-linear membrane dynamics. In this perspective review, we will consider the state of the art and discuss how these initial efforts could be further improved. Moreover, we will consider how embodied neurorobotic models including spiking cerebellar networks could help explaining the role and interplay of distributed forms of plasticity. We envisage that realistic modeling, combined with closed-loop simulations, will help to capture the essence of cerebellar computations and could eventually be applied to neurological diseases and neurorobotic control systems. PMID:27458345
Metcalfe, Arron W. S.; Ashkenazi, Sarit; Rosenberg-Lee, Miriam; Menon, Vinod
2013-01-01
Baddeley and Hitch’s multi-component working memory (WM) model has played an enduring and influential role in our understanding of cognitive abilities. Very little is known, however, about the neural basis of this multi-component WM model and the differential role each component plays in mediating arithmetic problem solving abilities in children. Here, we investigate the neural basis of the central executive (CE), phonological (PL) and visuo-spatial (VS) components of WM during a demanding mental arithmetic task in 7–9 year old children (N=74). The VS component was the strongest predictor of math ability in children and was associated with increased arithmetic complexity-related responses in left dorsolateral and right ventrolateral prefrontal cortices as well as bilateral intra-parietal sulcus and supramarginal gyrus in posterior parietal cortex. Critically, VS, CE and PL abilities were associated with largely distinct patterns of brain response. Overlap between VS and CE components was observed in left supramarginal gyrus and no overlap was observed between VS and PL components. Our findings point to a central role of visuo-spatial WM during arithmetic problem-solving in young grade-school children and highlight the usefulness of the multi-component Baddeley and Hitch WM model in fractionating the neural correlates of arithmetic problem solving during development. PMID:24212504
Consensus Paper: Pathological Role of the Cerebellum in Autism
Fatemi, S. Hossein; Aldinger, Kimberly A.; Ashwood, Paul; Bauman, Margaret L.; Blaha, Charles D.; Blatt, Gene J.; Chauhan, Abha; Chauhan, Ved; Dager, Stephen R.; Dickson, Price E.; Estes, Annette M.; Goldowitz, Dan; Heck, Detlef H.; Kemper, Thomas L.; King, Bryan H.; Martin, Loren A.; Millen, Kathleen J.; Mittleman, Guy; Mosconi, Matthew W.; Persico, Antonio M.; Sweeney, John A.; Webb, Sara J.; Welsh, John P.
2013-01-01
There has been significant advancement in various aspects of scientific knowledge concerning the role of cerebellum in the etiopathogenesis of autism. In the current consensus paper, we will observe the diversity of opinions regarding the involvement of this important site in the pathology of autism. Recent emergent findings in literature related to cerebellar involvement in autism are discussed, including: cerebellar pathology, cerebellar imaging and symptom expression in autism, cerebellar genetics, cerebellar immune function, oxidative stress and mitochondrial dysfunction, GABAergic and glutamatergic systems, cholinergic, dopaminergic, serotonergic, and oxytocin related changes in autism, motor control and cognitive deficits, cerebellar coordination of movements and cognition, gene-environment interactions, therapeutics in autism and relevant animal models of autism. Points of consensus include presence of abnormal cerebellar anatomy, abnormal neurotransmitter systems, oxidative stress, cerebellar motor and cognitive deficits, and neuroinflammation in subjects with autism. Undefined areas or areas requiring further investigation include lack of treatment options for core symptoms of autism, vermal hypoplasia and other vermal abnormalities as a consistent feature of autism, mechanisms underlying cerebellar contributions to cognition, and unknown mechanisms underlying neuroinflammation. PMID:22370873
Consensus paper: pathological role of the cerebellum in autism.
Fatemi, S Hossein; Aldinger, Kimberly A; Ashwood, Paul; Bauman, Margaret L; Blaha, Charles D; Blatt, Gene J; Chauhan, Abha; Chauhan, Ved; Dager, Stephen R; Dickson, Price E; Estes, Annette M; Goldowitz, Dan; Heck, Detlef H; Kemper, Thomas L; King, Bryan H; Martin, Loren A; Millen, Kathleen J; Mittleman, Guy; Mosconi, Matthew W; Persico, Antonio M; Sweeney, John A; Webb, Sara J; Welsh, John P
2012-09-01
There has been significant advancement in various aspects of scientific knowledge concerning the role of cerebellum in the etiopathogenesis of autism. In the current consensus paper, we will observe the diversity of opinions regarding the involvement of this important site in the pathology of autism. Recent emergent findings in literature related to cerebellar involvement in autism are discussed, including: cerebellar pathology, cerebellar imaging and symptom expression in autism, cerebellar genetics, cerebellar immune function, oxidative stress and mitochondrial dysfunction, GABAergic and glutamatergic systems, cholinergic, dopaminergic, serotonergic, and oxytocin-related changes in autism, motor control and cognitive deficits, cerebellar coordination of movements and cognition, gene-environment interactions, therapeutics in autism, and relevant animal models of autism. Points of consensus include presence of abnormal cerebellar anatomy, abnormal neurotransmitter systems, oxidative stress, cerebellar motor and cognitive deficits, and neuroinflammation in subjects with autism. Undefined areas or areas requiring further investigation include lack of treatment options for core symptoms of autism, vermal hypoplasia, and other vermal abnormalities as a consistent feature of autism, mechanisms underlying cerebellar contributions to cognition, and unknown mechanisms underlying neuroinflammation.
Discrete mathematical physics and particle modeling
NASA Astrophysics Data System (ADS)
Greenspan, D.
The theory and application of the arithmetic approach to the foundations of both Newtonian and special relativistic mechanics are explored. Using only arithmetic, a reformulation of the Newtonian approach is given for: gravity; particle modeling of solids, liquids, and gases; conservative modeling of laminar and turbulent fluid flow, heat conduction, and elastic vibration; and nonconservative modeling of heat convection, shock-wave generation, the liquid drop problem, porous flow, the interface motion of a melting solid, soap films, string vibrations, and solitons. An arithmetic reformulation of special relativistic mechanics is given for theory in one space dimension, relativistic harmonic oscillation, and theory in three space dimensions. A speculative quantum mechanical model of vibrations in the water molecule is also discussed.
Cerebellar models of associative memory: Three papers from IEEE COMPCON spring 1989
NASA Technical Reports Server (NTRS)
Raugh, Michael R. (Editor)
1989-01-01
Three papers are presented on the following topics: (1) a cerebellar-model associative memory as a generalized random-access memory; (2) theories of the cerebellum - two early models of associative memory; and (3) intelligent network management and functional cerebellum synthesis.
A dynamical system view of cerebellar function
NASA Astrophysics Data System (ADS)
Keeler, James D.
1990-06-01
First some previous theories of cerebellar function are reviewed, and deficiencies in how they map onto the neurophysiological structure are pointed out. I hypothesize that the cerebellar cortex builds an internal model, or prediction, of the dynamics of the animal. A class of algorithms for doing prediction based on local reconstruction of attractors are described, and it is shown how this class maps very well onto the structure of the cerebellar cortex. I hypothesize that the climbing fibers multiplex between different trajectories corresponding to different modes of operation. Then the vestibulo-ocular reflex is examined, and experiments to test the proposed model are suggested. The purpose of the presentation here is twofold: (1) To enlighten physiologists to the mathematics of a class of prediction algorithms that map well onto cerebellar architecture. (2) To enlighten dynamical system theorists to the physiological and anatomical details of the cerebellum.
Statistical characteristics of climbing fiber spikes necessary for efficient cerebellar learning.
Kuroda, S; Yamamoto, K; Miyamoto, H; Doya, K; Kawat, M
2001-03-01
Mean firing rates (MFRs), with analogue values, have thus far been used as information carriers of neurons in most brain theories of learning. However, the neurons transmit the signal by spikes, which are discrete events. The climbing fibers (CFs), which are known to be essential for cerebellar motor learning, fire at the ultra-low firing rates (around 1 Hz), and it is not yet understood theoretically how high-frequency information can be conveyed and how learning of smooth and fast movements can be achieved. Here we address whether cerebellar learning can be achieved by CF spikes instead of conventional MFR in an eye movement task, such as the ocular following response (OFR), and an arm movement task. There are two major afferents into cerebellar Purkinje cells: parallel fiber (PF) and CF, and the synaptic weights between PFs and Purkinje cells have been shown to be modulated by the stimulation of both types of fiber. The modulation of the synaptic weights is regulated by the cerebellar synaptic plasticity. In this study we simulated cerebellar learning using CF signals as spikes instead of conventional MFR. To generate the spikes we used the following four spike generation models: (1) a Poisson model in which the spike interval probability follows a Poisson distribution, (2) a gamma model in which the spike interval probability follows the gamma distribution, (3) a max model in which a spike is generated when a synaptic input reaches maximum, and (4) a threshold model in which a spike is generated when the input crosses a certain small threshold. We found that, in an OFR task with a constant visual velocity, learning was successful with stochastic models, such as Poisson and gamma models, but not in the deterministic models, such as max and threshold models. In an OFR with a stepwise velocity change and an arm movement task, learning could be achieved only in the Poisson model. In addition, for efficient cerebellar learning, the distribution of CF spike-occurrence time after stimulus onset must capture at least the first, second and third moments of the temporal distribution of error signals.
Delayed reverberation through time windows as a key to cerebellar function.
Kistler, W M; Leo van Hemmen, J
1999-11-01
We present a functional model of the cerebellum comprising cerebellar cortex, inferior olive, deep cerebellar nuclei, and brain stem nuclei. The discerning feature of the model being time coding, we consistently describe the system in terms of postsynaptic potentials, synchronous action potentials, and propagation delays. We show by means of detailed single-neuron modeling that (i) Golgi cells can fulfill a gating task in that they form short and well-defined time windows within which granule cells can reach firing threshold, thus organizing neuronal activity in discrete 'time slices', and that (ii) rebound firing in cerebellar nuclei cells is a robust mechanism leading to a delayed reverberation of Purkinje cell activity through cerebellar-reticular projections back to the cerebellar cortex. Computer simulations of the whole cerebellar network consisting of several thousand neurons reveal that reverberation in conjunction with long-term plasticity at the parallel fiber-Purkinje cell synapses enables the system to learn, store, and recall spatio-temporal patterns of neuronal activity. Climbing fiber spikes act both as a synchronization and as a teacher signal, not as an error signal. They are due to intrinsic oscillatory properties of inferior olivary neurons and to delayed reverberation within the network. In addition to clear experimental predictions the present theory sheds new light on a number of experimental observation such as the synchronicity of climbing fiber spikes and provides a novel explanation of how the cerebellum solves timing tasks on a time scale of several hundreds of milliseconds.
Blood harmane is correlated with cerebellar metabolism in essential tremor: a pilot study.
Louis, Elan D; Zheng, Wei; Mao, Xiangling; Shungu, Dikoma C
2007-08-07
On proton magnetic resonance spectroscopic imaging ((1)H MRSI), there is a decrease in cerebellar N-acetylaspartate/total creatine (NAA/tCr) in essential tremor (ET), signifying cerebellar neuronal dysfunction or degeneration. Harmane, which is present in the human diet, is a potent tremor-producing neurotoxin. Blood harmane concentrations seem to be elevated in ET. To assess in patients with ET whether blood harmane concentration is correlated with cerebellar NAA/tCR, a neuroimaging measure of neuronal dysfunction or degeneration. Twelve patients with ET underwent (1)H MRSI. The major neuroanatomic structure of interest was the cerebellar cortex. Secondary regions were the central cerebellar white matter, cerebellar vermis, thalamus, and basal ganglia. Blood concentrations of harmane and another neurotoxin, lead, were also assessed. Mean +/- SD cerebellar NAA/tCR was 1.52 +/- 0.41. In a linear regression model that adjusted for age and gender, log blood harmane concentration was a predictor of cerebellar NAA/tCR (beta = -0.41, p = 0.009); every 1 g(-10)/mL unit increase in log blood harmane concentration was associated with a 0.41 unit decrease in cerebellar NAA/tCR. The association between blood harmane concentration and brain NAA/tCR only occurred in the cerebellar cortex; it was not observed in secondary brain regions of interest. Furthermore, the association was specific to harmane and not another neurotoxin, lead. This study provides additional support for the emerging link between harmane, a neurotoxin, and ET. Further studies are warranted to address whether cerebellar harmane concentrations are associated with cerebellar pathology in postmortem studies of the ET brain.
Casellato, Claudia; Antonietti, Alberto; Garrido, Jesus A; Ferrigno, Giancarlo; D'Angelo, Egidio; Pedrocchi, Alessandra
2015-01-01
The cerebellum plays a crucial role in motor learning and it acts as a predictive controller. Modeling it and embedding it into sensorimotor tasks allows us to create functional links between plasticity mechanisms, neural circuits and behavioral learning. Moreover, if applied to real-time control of a neurorobot, the cerebellar model has to deal with a real noisy and changing environment, thus showing its robustness and effectiveness in learning. A biologically inspired cerebellar model with distributed plasticity, both at cortical and nuclear sites, has been used. Two cerebellum-mediated paradigms have been designed: an associative Pavlovian task and a vestibulo-ocular reflex, with multiple sessions of acquisition and extinction and with different stimuli and perturbation patterns. The cerebellar controller succeeded to generate conditioned responses and finely tuned eye movement compensation, thus reproducing human-like behaviors. Through a productive plasticity transfer from cortical to nuclear sites, the distributed cerebellar controller showed in both tasks the capability to optimize learning on multiple time-scales, to store motor memory and to effectively adapt to dynamic ranges of stimuli.
Metcalfe, Arron W S; Ashkenazi, Sarit; Rosenberg-Lee, Miriam; Menon, Vinod
2013-10-01
Baddeley and Hitch's multi-component working memory (WM) model has played an enduring and influential role in our understanding of cognitive abilities. Very little is known, however, about the neural basis of this multi-component WM model and the differential role each component plays in mediating arithmetic problem solving abilities in children. Here, we investigate the neural basis of the central executive (CE), phonological (PL) and visuo-spatial (VS) components of WM during a demanding mental arithmetic task in 7-9 year old children (N=74). The VS component was the strongest predictor of math ability in children and was associated with increased arithmetic complexity-related responses in left dorsolateral and right ventrolateral prefrontal cortices as well as bilateral intra-parietal sulcus and supramarginal gyrus in posterior parietal cortex. Critically, VS, CE and PL abilities were associated with largely distinct patterns of brain response. Overlap between VS and CE components was observed in left supramarginal gyrus and no overlap was observed between VS and PL components. Our findings point to a central role of visuo-spatial WM during arithmetic problem-solving in young grade-school children and highlight the usefulness of the multi-component Baddeley and Hitch WM model in fractionating the neural correlates of arithmetic problem solving during development. Copyright © 2013 Elsevier Ltd. All rights reserved.
Vandervert, Larry
2017-01-01
Mathematicians and scientists have struggled to adequately describe the ultimate foundations of mathematics. Nobel laureates Albert Einstein and Eugene Wigner were perplexed by this issue, with Wigner concluding that the workability of mathematics in the real world is a mystery we cannot explain. In response to this classic enigma, the major purpose of this article is to provide a theoretical model of the ultimate origin of mathematics and "number sense" (as defined by S. Dehaene) that is proposed to involve the learning of inverse dynamics models through the collaboration of the cerebellum and the cerebral cortex (but prominently cerebellum-driven). This model is based upon (1) the modern definition of mathematics as the "science of patterns," (2) cerebellar sequence (pattern) detection, and (3) findings that the manipulation of numbers is automated in the cerebellum. This cerebro-cerebellar approach does not necessarily conflict with mathematics or number sense models that focus on brain functions associated with especially the intraparietal sulcus region of the cerebral cortex. A direct corollary purpose of this article is to offer a cerebellar inner speech explanation for difficulty in developing "number sense" in developmental dyscalculia. It is argued that during infancy the cerebellum learns (1) a first tier of internal models for a primitive physics that constitutes the foundations of visual-spatial working memory, and (2) a second (and more abstract) tier of internal models based on (1) that learns "number" and relationships among dimensions across the primitive physics of the first tier. Within this context it is further argued that difficulty in the early development of the second tier of abstraction (and "number sense") is based on the more demanding attentional requirements imposed on cerebellar inner speech executive control during the learning of cerebellar inverse dynamics models. Finally, it is argued that finger counting improves (does not originate) "number sense" by extending focus of attention in executive control of silent cerebellar inner speech. It is suggested that (1) the origin of mathematics has historically been an enigma only because it is learned below the level of conscious awareness in cerebellar internal models, (2) understandings of the development of "number sense" and developmental dyscalculia can be advanced by first understanding the ultimate foundations of number and mathematics do not simply originate in the cerebral cortex, but rather in cerebro-cerebellar collaboration (predominately driven by the cerebellum). It is concluded that difficulty with "number sense" results from the extended demands on executive control in learning inverse dynamics models associated with cerebellar inner speech related to the second tier of abstraction (numbers) of the infant's primitive physics.
The Cerebellum: Adaptive Prediction for Movement and Cognition
Sokolov, Arseny A.; Miall, R. Chris; Ivry, Richard B.
2017-01-01
Over the past 30 years, cumulative evidence has indicated that cerebellar function extends beyond sensorimotor control. This view has emerged from studies of neuroanatomy, neuroimaging, neuropsychology and brain stimulation, with the results implicating the cerebellum in domains as diverse as attention, language, executive function and social cognition. Although the literature provides sophisticated models of how the cerebellum helps refine movements, it remains unclear how the core mechanisms of these models can be applied when considering a broader conceptualization of cerebellar function. In light of recent multidisciplinary findings, we consider two key concepts that have been suggested as general computational principles of cerebellar function, prediction and error-based learning, examining how these might be relevant in the operation of cognitive cerebro-cerebellar loops. PMID:28385461
A componential model of human interaction with graphs: 1. Linear regression modeling
NASA Technical Reports Server (NTRS)
Gillan, Douglas J.; Lewis, Robert
1994-01-01
Task analyses served as the basis for developing the Mixed Arithmetic-Perceptual (MA-P) model, which proposes (1) that people interacting with common graphs to answer common questions apply a set of component processes-searching for indicators, encoding the value of indicators, performing arithmetic operations on the values, making spatial comparisons among indicators, and repsonding; and (2) that the type of graph and user's task determine the combination and order of the components applied (i.e., the processing steps). Two experiments investigated the prediction that response time will be linearly related to the number of processing steps according to the MA-P model. Subjects used line graphs, scatter plots, and stacked bar graphs to answer comparison questions and questions requiring arithmetic calculations. A one-parameter version of the model (with equal weights for all components) and a two-parameter version (with different weights for arithmetic and nonarithmetic processes) accounted for 76%-85% of individual subjects' variance in response time and 61%-68% of the variance taken across all subjects. The discussion addresses possible modifications in the MA-P model, alternative models, and design implications from the MA-P model.
Modality specificity in the cerebro-cerebellar neurocircuitry during working memory.
Ng, H B Tommy; Kao, K-L Cathy; Chan, Y C; Chew, Effie; Chuang, K H; Chen, S H Annabel
2016-05-15
Previous studies have suggested cerebro-cerebellar circuitry in working memory. The present fMRI study aims to distinguish differential cerebro-cerebellar activation patterns in verbal and visual working memory, and employs a quantitative analysis to deterimine lateralization of the activation patterns observed. Consistent with Chen and Desmond (2005a,b) predictions, verbal working memory activated a cerebro-cerebellar circuitry that comprised left-lateralized language-related brain regions including the inferior frontal and posterior parietal areas, and subcortically, right-lateralized superior (lobule VI) and inferior cerebellar (lobule VIIIA/VIIB) areas. In contrast, a distributed network of bilateral inferior frontal and inferior temporal areas, and bilateral superior (lobule VI) and inferior (lobule VIIB) cerebellar areas, was recruited during visual working memory. Results of the study verified that a distinct cross cerebro-cerebellar circuitry underlies verbal working memory. However, a neural circuitry involving specialized brain areas in bilateral neocortical and bilateral cerebellar hemispheres subserving visual working memory is observed. Findings are discussed in the light of current models of working memory and data from related neuroimaging studies. Copyright © 2016 Elsevier B.V. All rights reserved.
Manto, Mario; Oulad Ben Taib, Nordeyn
2013-06-01
Although considerable progress has been made in developing models of cerebellar function in sensorimotor control, the exact nature of the basic operations performed by the cerebellum remain elusive. Several major theories have emerged these last decades. According to the hypothesis of Marr and Albus, the climbing fiber input carries an error signal weakening the strength of a subset of parallel fibers/Purkinje neurons synapses in the cerebellar cortex. Cerebellar circuits would gain the control of movement through trial and error. The hypothesis of internal models emulating movements is currently highly cited. There is a general agreement that (1) the central nervous system has to cope with an intrinsic time delay of sensory feedback related to motor activities and (2) estimations of future motor states are essential to perform fast and accurate movements. According to this second theory, cerebellar dysmetria, one of the cardinal cerebellar deficits, would result from a distorted predictive control. A third popular theory relates to the inverse models that would be stored in the cerebellum. Acquisition of a motor act would require forward models, and the acquisition process itself would generate an inverse model to allow an unconscious coordinated movement. Recently, an international panel of experts from various disciplines discussed the prevailing opinions in a consensus statement and tried to extract their clinical relevance in terms of pathogenesis of the clinical symptoms. Although a consensus is still not reached, the prevailing opinions provide a sound framework to conduct novel studies and try to discover the secrets of cerebellar circuits.
Representation of natural numbers in quantum mechanics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benioff, Paul
2001-03-01
This paper represents one approach to making explicit some of the assumptions and conditions implied in the widespread representation of numbers by composite quantum systems. Any nonempty set and associated operations is a set of natural numbers or a model of arithmetic if the set and operations satisfy the axioms of number theory or arithmetic. This paper is limited to k-ary representations of length L and to the axioms for arithmetic modulo k{sup L}. A model of the axioms is described based on an abstract L-fold tensor product Hilbert space H{sup arith}. Unitary maps of this space onto a physicalmore » parameter based product space H{sup phy} are then described. Each of these maps makes states in H{sup phy}, and the induced operators, a model of the axioms. Consequences of the existence of many of these maps are discussed along with the dependence of Grover's and Shor's algorithms on these maps. The importance of the main physical requirement, that the basic arithmetic operations are efficiently implementable, is discussed. This condition states that there exist physically realizable Hamiltonians that can implement the basic arithmetic operations and that the space-time and thermodynamic resources required are polynomial in L.« less
Recurrent cerebellar architecture solves the motor-error problem.
Porrill, John; Dean, Paul; Stone, James V.
2004-01-01
Current views of cerebellar function have been heavily influenced by the models of Marr and Albus, who suggested that the climbing fibre input to the cerebellum acts as a teaching signal for motor learning. It is commonly assumed that this teaching signal must be motor error (the difference between actual and correct motor command), but this approach requires complex neural structures to estimate unobservable motor error from its observed sensory consequences. We have proposed elsewhere a recurrent decorrelation control architecture in which Marr-Albus models learn without requiring motor error. Here, we prove convergence for this architecture and demonstrate important advantages for the modular control of systems with multiple degrees of freedom. These results are illustrated by modelling adaptive plant compensation for the three-dimensional vestibular ocular reflex. This provides a functional role for recurrent cerebellar connectivity, which may be a generic anatomical feature of projections between regions of cerebral and cerebellar cortex. PMID:15255096
Cerebellar Hematoma Location: Implications for the Underlying Microangiopathy.
Pasi, Marco; Marini, Sandro; Morotti, Andrea; Boulouis, Gregoire; Xiong, Li; Charidimou, Andreas; Ayres, Alison M; Lee, Myung Joo; Biffi, Alessandro; Goldstein, Joshua N; Rosand, Jonathan; Gurol, M Edip; Greenberg, Steven M; Viswanathan, Anand
2018-01-01
Spontaneous cerebellar intracerebral hemorrhage (ICH) has been reported to be mainly associated with vascular changes secondary to hypertension. However, a subgroup of cerebellar ICH seems related to vascular amyloid deposition (cerebral amyloid angiopathy). We sought to determine whether location of hematoma in the cerebellum (deep and superficial regions) was suggestive of a particular hemorrhage-prone small-vessel disease pathology (cerebral amyloid angiopathy or hypertensive vasculopathy). Consecutive patients with cerebellar ICH from a single tertiary care medical center were recruited. Based on data from pathological reports, patients were divided according to the location of the primary cerebellar hematoma (deep versus superficial). Location of cerebral microbleeds (CMBs; strictly lobar, strictly deep, and mixed CMB) was evaluated on magnetic resonance imaging. One-hundred and eight patients (84%) had a deep cerebellar hematoma, and 20 (16%) a superficial cerebellar hematoma. Hypertension was more prevalent in deep than in patients with superficial cerebellar ICH (89% versus 65%, respectively; P <0.05). Among patients who underwent magnetic resonance imaging, those with superficial cerebellar ICH had higher prevalence of strictly lobar CMB (43%) and lower prevalence of strictly deep or mixed CMB (0%) compared with those with deep superficial cerebellar ICH (6%, 17%, and 38%, respectively). In a multivariable model, presence of strictly lobar CMB was associated with superficial cerebellar ICH (odds ratio, 3.8; 95% confidence interval, 1.5-8.5; P =0.004). Our study showed that superficial cerebellar ICH is related to the presence of strictly lobar CMB-a pathologically proven marker of cerebral amyloid angiopathy. Cerebellar hematoma location may thus help to identify those patients likely to have cerebral amyloid angiopathy pathology. © 2017 American Heart Association, Inc.
Modeled changes of cerebellar activity in mutant mice are predictive of their learning impairments
NASA Astrophysics Data System (ADS)
Badura, Aleksandra; Clopath, Claudia; Schonewille, Martijn; de Zeeuw, Chris I.
2016-11-01
Translating neuronal activity to measurable behavioral changes has been a long-standing goal of systems neuroscience. Recently, we have developed a model of phase-reversal learning of the vestibulo-ocular reflex, a well-established, cerebellar-dependent task. The model, comprising both the cerebellar cortex and vestibular nuclei, reproduces behavioral data and accounts for the changes in neural activity during learning in wild type mice. Here, we used our model to predict Purkinje cell spiking as well as behavior before and after learning of five different lines of mutant mice with distinct cell-specific alterations of the cerebellar cortical circuitry. We tested these predictions by obtaining electrophysiological data depicting changes in neuronal spiking. We show that our data is largely consistent with the model predictions for simple spike modulation of Purkinje cells and concomitant behavioral learning in four of the mutants. In addition, our model accurately predicts a shift in simple spike activity in a mutant mouse with a brainstem specific mutation. This combination of electrophysiological and computational techniques opens a possibility of predicting behavioral impairments from neural activity.
Modeled changes of cerebellar activity in mutant mice are predictive of their learning impairments
Badura, Aleksandra; Clopath, Claudia; Schonewille, Martijn; De Zeeuw, Chris I.
2016-01-01
Translating neuronal activity to measurable behavioral changes has been a long-standing goal of systems neuroscience. Recently, we have developed a model of phase-reversal learning of the vestibulo-ocular reflex, a well-established, cerebellar-dependent task. The model, comprising both the cerebellar cortex and vestibular nuclei, reproduces behavioral data and accounts for the changes in neural activity during learning in wild type mice. Here, we used our model to predict Purkinje cell spiking as well as behavior before and after learning of five different lines of mutant mice with distinct cell-specific alterations of the cerebellar cortical circuitry. We tested these predictions by obtaining electrophysiological data depicting changes in neuronal spiking. We show that our data is largely consistent with the model predictions for simple spike modulation of Purkinje cells and concomitant behavioral learning in four of the mutants. In addition, our model accurately predicts a shift in simple spike activity in a mutant mouse with a brainstem specific mutation. This combination of electrophysiological and computational techniques opens a possibility of predicting behavioral impairments from neural activity. PMID:27805050
Passot, Jean-Baptiste; Luque, Niceto R.; Arleo, Angelo
2013-01-01
The cerebellum is thought to mediate sensorimotor adaptation through the acquisition of internal models of the body-environment interaction. These representations can be of two types, identified as forward and inverse models. The first predicts the sensory consequences of actions, while the second provides the correct commands to achieve desired state transitions. In this paper, we propose a composite architecture consisting of multiple cerebellar internal models to account for the adaptation performance of humans during sensorimotor learning. The proposed model takes inspiration from the cerebellar microcomplex circuit, and employs spiking neurons to process information. We investigate the intrinsic properties of the cerebellar circuitry subserving efficient adaptation properties, and we assess the complementary contributions of internal representations by simulating our model in a procedural adaptation task. Our simulation results suggest that the coupling of internal models enhances learning performance significantly (compared with independent forward and inverse models), and it allows for the reproduction of human adaptation capabilities. Furthermore, we provide a computational explanation for the performance improvement observed after one night of sleep in a wide range of sensorimotor tasks. We predict that internal model coupling is a necessary condition for the offline consolidation of procedural memories. PMID:23874289
How to interpret cognitive training studies: A reply to Lindskog & Winman
Park, Joonkoo; Brannon, Elizabeth M.
2017-01-01
In our previous studies, we demonstrated that repeated training on an approximate arithmetic task selectively improves symbolic arithmetic performance (Park & Brannon, 2013, 2014). We proposed that mental manipulation of quantity is the common cognitive component between approximate arithmetic and symbolic arithmetic, driving the causal relationship between the two. In a commentary to our work, Lindskog and Winman argue that there is no evidence of performance improvement during approximate arithmetic training and that this challenges the proposed causal relationship between approximate arithmetic and symbolic arithmetic. Here, we argue that causality in cognitive training experiments is interpreted from the selectivity of transfer effects and does not hinge upon improved performance in the training task. This is because changes in the unobservable cognitive elements underlying the transfer effect may not be observable from performance measures in the training task. We also question the validity of Lindskog and Winman’s simulation approach for testing for a training effect, given that simulations require a valid and sufficient model of a decision process, which is often difficult to achieve. Finally we provide an empirical approach to testing the training effects in adaptive training. Our analysis reveals new evidence that approximate arithmetic performance improved over the course of training in Park and Brannon (2014). We maintain that our data supports the conclusion that approximate arithmetic training leads to improvement in symbolic arithmetic driven by the common cognitive component of mental quantity manipulation. PMID:26972469
Moll, Kristina; Snowling, Margaret J.; Göbel, Silke M.; Hulme, Charles
2015-01-01
Two important foundations for learning are language and executive skills. Data from a longitudinal study tracking the development of 93 children at family-risk of dyslexia and 76 controls was used to investigate the influence of these skills on the development of arithmetic. A two-group longitudinal path model assessed the relationships between language and executive skills at 3–4 years, verbal number skills (counting and number knowledge) and phonological processing skills at 4–5 years, and written arithmetic in primary school. The same cognitive processes accounted for variability in arithmetic skills in both groups. Early language and executive skills predicted variations in preschool verbal number skills, which in turn, predicted arithmetic skills in school. In contrast, phonological awareness was not a predictor of later arithmetic skills. These results suggest that verbal and executive processes provide the foundation for verbal number skills, which in turn influence the development of formal arithmetic skills. Problems in early language development may explain the comorbidity between reading and mathematics disorder. PMID:26412946
Generalized role for the cerebellum in encoding internal models: evidence from semantic processing.
Moberget, Torgeir; Gullesen, Eva Hilland; Andersson, Stein; Ivry, Richard B; Endestad, Tor
2014-02-19
The striking homogeneity of cerebellar microanatomy is strongly suggestive of a corresponding uniformity of function. Consequently, theoretical models of the cerebellum's role in motor control should offer important clues regarding cerebellar contributions to cognition. One such influential theory holds that the cerebellum encodes internal models, neural representations of the context-specific dynamic properties of an object, to facilitate predictive control when manipulating the object. The present study examined whether this theoretical construct can shed light on the contribution of the cerebellum to language processing. We reasoned that the cerebellum might perform a similar coordinative function when the context provided by the initial part of a sentence can be highly predictive of the end of the sentence. Using functional MRI in humans we tested two predictions derived from this hypothesis, building on previous neuroimaging studies of internal models in motor control. First, focal cerebellar activation-reflecting the operation of acquired internal models-should be enhanced when the linguistic context leads terminal words to be predictable. Second, more widespread activation should be observed when such predictions are violated, reflecting the processing of error signals that can be used to update internal models. Both predictions were confirmed, with predictability and prediction violations associated with increased blood oxygenation level-dependent signal in the posterior cerebellum (Crus I/II). Our results provide further evidence for cerebellar involvement in predictive language processing and suggest that the notion of cerebellar internal models may be extended to the language domain.
A real-time spiking cerebellum model for learning robot control.
Carrillo, Richard R; Ros, Eduardo; Boucheny, Christian; Coenen, Olivier J-M D
2008-01-01
We describe a neural network model of the cerebellum based on integrate-and-fire spiking neurons with conductance-based synapses. The neuron characteristics are derived from our earlier detailed models of the different cerebellar neurons. We tested the cerebellum model in a real-time control application with a robotic platform. Delays were introduced in the different sensorimotor pathways according to the biological system. The main plasticity in the cerebellar model is a spike-timing dependent plasticity (STDP) at the parallel fiber to Purkinje cell connections. This STDP is driven by the inferior olive (IO) activity, which encodes an error signal using a novel probabilistic low frequency model. We demonstrate the cerebellar model in a robot control system using a target-reaching task. We test whether the system learns to reach different target positions in a non-destructive way, therefore abstracting a general dynamics model. To test the system's ability to self-adapt to different dynamical situations, we present results obtained after changing the dynamics of the robotic platform significantly (its friction and load). The experimental results show that the cerebellar-based system is able to adapt dynamically to different contexts.
The Cerebellum: Adaptive Prediction for Movement and Cognition.
Sokolov, Arseny A; Miall, R Chris; Ivry, Richard B
2017-05-01
Over the past 30 years, cumulative evidence has indicated that cerebellar function extends beyond sensorimotor control. This view has emerged from studies of neuroanatomy, neuroimaging, neuropsychology, and brain stimulation, with the results implicating the cerebellum in domains as diverse as attention, language, executive function, and social cognition. Although the literature provides sophisticated models of how the cerebellum helps refine movements, it remains unclear how the core mechanisms of these models can be applied when considering a broader conceptualization of cerebellar function. In light of recent multidisciplinary findings, we examine how two key concepts that have been suggested as general computational principles of cerebellar function- prediction and error-based learning- might be relevant in the operation of cognitive cerebro-cerebellar loops. Copyright © 2017 Elsevier Ltd. All rights reserved.
Arbib, Michael A.; Baldassarre, Gianluca
2017-01-01
Motor tics are a cardinal feature of Tourette syndrome and are traditionally associated with an excess of striatal dopamine in the basal ganglia. Recent evidence increasingly supports a more articulated view where cerebellum and cortex, working closely in concert with basal ganglia, are also involved in tic production. Building on such evidence, this article proposes a computational model of the basal ganglia-cerebellar-thalamo-cortical system to study how motor tics are generated in Tourette syndrome. In particular, the model: (i) reproduces the main results of recent experiments about the involvement of the basal ganglia-cerebellar-thalamo-cortical system in tic generation; (ii) suggests an explanation of the system-level mechanisms underlying motor tic production: in this respect, the model predicts that the interplay between dopaminergic signal and cortical activity contributes to triggering the tic event and that the recently discovered basal ganglia-cerebellar anatomical pathway may support the involvement of the cerebellum in tic production; (iii) furnishes predictions on the amount of tics generated when striatal dopamine increases and when the cortex is externally stimulated. These predictions could be important in identifying new brain target areas for future therapies. Finally, the model represents the first computational attempt to study the role of the recently discovered basal ganglia-cerebellar anatomical links. Studying this non-cortex-mediated basal ganglia-cerebellar interaction could radically change our perspective about how these areas interact with each other and with the cortex. Overall, the model also shows the utility of casting Tourette syndrome within a system-level perspective rather than viewing it as related to the dysfunction of a single brain area. PMID:28358814
Caligiore, Daniele; Mannella, Francesco; Arbib, Michael A; Baldassarre, Gianluca
2017-03-01
Motor tics are a cardinal feature of Tourette syndrome and are traditionally associated with an excess of striatal dopamine in the basal ganglia. Recent evidence increasingly supports a more articulated view where cerebellum and cortex, working closely in concert with basal ganglia, are also involved in tic production. Building on such evidence, this article proposes a computational model of the basal ganglia-cerebellar-thalamo-cortical system to study how motor tics are generated in Tourette syndrome. In particular, the model: (i) reproduces the main results of recent experiments about the involvement of the basal ganglia-cerebellar-thalamo-cortical system in tic generation; (ii) suggests an explanation of the system-level mechanisms underlying motor tic production: in this respect, the model predicts that the interplay between dopaminergic signal and cortical activity contributes to triggering the tic event and that the recently discovered basal ganglia-cerebellar anatomical pathway may support the involvement of the cerebellum in tic production; (iii) furnishes predictions on the amount of tics generated when striatal dopamine increases and when the cortex is externally stimulated. These predictions could be important in identifying new brain target areas for future therapies. Finally, the model represents the first computational attempt to study the role of the recently discovered basal ganglia-cerebellar anatomical links. Studying this non-cortex-mediated basal ganglia-cerebellar interaction could radically change our perspective about how these areas interact with each other and with the cortex. Overall, the model also shows the utility of casting Tourette syndrome within a system-level perspective rather than viewing it as related to the dysfunction of a single brain area.
Mechanisms of human cerebellar dysmetria: experimental evidence and current conceptual bases
Manto, Mario
2009-01-01
The human cerebellum contains more neurons than any other region in the brain and is a major actor in motor control. Cerebellar circuitry is unique by its stereotyped architecture and its modular organization. Understanding the motor codes underlying the organization of limb movement and the rules of signal processing applied by the cerebellar circuits remains a major challenge for the forthcoming decades. One of the cardinal deficits observed in cerebellar patients is dysmetria, designating the inability to perform accurate movements. Patients overshoot (hypermetria) or undershoot (hypometria) the aimed target during voluntary goal-directed tasks. The mechanisms of cerebellar dysmetria are reviewed, with an emphasis on the roles of cerebellar pathways in controlling fundamental aspects of movement control such as anticipation, timing of motor commands, sensorimotor synchronization, maintenance of sensorimotor associations and tuning of the magnitudes of muscle activities. An overview of recent advances in our understanding of the contribution of cerebellar circuitry in the elaboration and shaping of motor commands is provided, with a discussion on the relevant anatomy, the results of the neurophysiological studies, and the computational models which have been proposed to approach cerebellar function. PMID:19364396
Contribution of Cerebellar Sensorimotor Adaptation to Hippocampal Spatial Memory
Passot, Jean-Baptiste; Sheynikhovich, Denis; Duvelle, Éléonore; Arleo, Angelo
2012-01-01
Complementing its primary role in motor control, cerebellar learning has also a bottom-up influence on cognitive functions, where high-level representations build up from elementary sensorimotor memories. In this paper we examine the cerebellar contribution to both procedural and declarative components of spatial cognition. To do so, we model a functional interplay between the cerebellum and the hippocampal formation during goal-oriented navigation. We reinterpret and complete existing genetic behavioural observations by means of quantitative accounts that cross-link synaptic plasticity mechanisms, single cell and population coding properties, and behavioural responses. In contrast to earlier hypotheses positing only a purely procedural impact of cerebellar adaptation deficits, our results suggest a cerebellar involvement in high-level aspects of behaviour. In particular, we propose that cerebellar learning mechanisms may influence hippocampal place fields, by contributing to the path integration process. Our simulations predict differences in place-cell discharge properties between normal mice and L7-PKCI mutant mice lacking long-term depression at cerebellar parallel fibre-Purkinje cell synapses. On the behavioural level, these results suggest that, by influencing the accuracy of hippocampal spatial codes, cerebellar deficits may impact the exploration-exploitation balance during spatial navigation. PMID:22485133
de Diego, Víctor; Martínez-Monseny, Antonio F; Muchart, Jordi; Cuadras, Daniel; Montero, Raquel; Artuch, Rafael; Pérez-Cerdá, Celia; Pérez, Belén; Pérez-Dueñas, Belén; Poretti, Andrea; Serrano, Mercedes
2017-09-01
We aim to delineate the progression of cerebellar atrophy (the primary neuroimaging finding) in children with phosphomannomutase-deficiency (PMM2-CDG) by analyzing longitudinal MRI studies and performing cerebellar volumetric analysis and a 2D cerebellar measurement. Statistical analysis was used to compare MRI measurements [midsagittal vermis relative diameter (MVRD) and volume] of children with PMM2-CDG and sex- and age-matched controls, and to determine the rate of progression of cerebellar atrophy at different ages. Fifty MRI studies of 33 PMM2-CDG patients were used for 2D evaluation, and 19 MRI studies were available for volumetric analysis. Results from a linear regression model showed that patients have a significantly lower MVRD and cerebellar volume compared to controls (p < 0.001 and p < 0.001 respectively). There was a significant negative correlation between age and MVRD for patients (p = 0.014). The rate of cerebellar atrophy measured by the loss of MVRD and cerebellar volume per year was higher at early ages (r = -0.578, p = 0.012 and r = -0.323, p = 0.48 respectively), particularly in patients under 11 years (p = 0.004). There was a significant positive correlation between MVRD and cerebellar volume in PMM2-CDG patients (r = 0.669, p = 0.001). Our study quantifies a progression of cerebellar atrophy in PMM2-CDG patients, particularly during the first decade of life, and suggests a simple and reliable measure, the MVRD, to monitor cerebellar atrophy. Quantitative measurement of MVRD and cerebellar volume are essential for correlation with phenotype and outcome, natural follow-up, and monitoring in view of potential therapies in children with PMM2-CDG.
Deaño, Manuel Deaño; Alfonso, Sonia; Das, Jagannath Prasad
2015-03-01
This study reports the cognitive and arithmetic improvement of a mathematical model based on the program PASS Remedial Program (PREP), which aims to improve specific cognitive processes underlying academic skills such as arithmetic. For this purpose, a group of 20 students from the last four grades of Primary Education was divided into two groups. One group (n=10) received training in the program and the other served as control. Students were assessed at pre and post intervention in the PASS cognitive processes (planning, attention, simultaneous and successive processing), general level of intelligence, and arithmetic performance in calculus and solving problems. Performance of children from the experimental group was significantly higher than that of the control group in cognitive process and arithmetic. This joint enhancement of cognitive and arithmetic processes was a result of the operationalization of training that promotes the encoding task, attention and planning, and learning by induction, mediation and verbalization. The implications of this are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.
Efficient Probabilistic Diagnostics for Electrical Power Systems
NASA Technical Reports Server (NTRS)
Mengshoel, Ole J.; Chavira, Mark; Cascio, Keith; Poll, Scott; Darwiche, Adnan; Uckun, Serdar
2008-01-01
We consider in this work the probabilistic approach to model-based diagnosis when applied to electrical power systems (EPSs). Our probabilistic approach is formally well-founded, as it based on Bayesian networks and arithmetic circuits. We investigate the diagnostic task known as fault isolation, and pay special attention to meeting two of the main challenges . model development and real-time reasoning . often associated with real-world application of model-based diagnosis technologies. To address the challenge of model development, we develop a systematic approach to representing electrical power systems as Bayesian networks, supported by an easy-to-use speci.cation language. To address the real-time reasoning challenge, we compile Bayesian networks into arithmetic circuits. Arithmetic circuit evaluation supports real-time diagnosis by being predictable and fast. In essence, we introduce a high-level EPS speci.cation language from which Bayesian networks that can diagnose multiple simultaneous failures are auto-generated, and we illustrate the feasibility of using arithmetic circuits, compiled from Bayesian networks, for real-time diagnosis on real-world EPSs of interest to NASA. The experimental system is a real-world EPS, namely the Advanced Diagnostic and Prognostic Testbed (ADAPT) located at the NASA Ames Research Center. In experiments with the ADAPT Bayesian network, which currently contains 503 discrete nodes and 579 edges, we .nd high diagnostic accuracy in scenarios where one to three faults, both in components and sensors, were inserted. The time taken to compute the most probable explanation using arithmetic circuits has a small mean of 0.2625 milliseconds and standard deviation of 0.2028 milliseconds. In experiments with data from ADAPT we also show that arithmetic circuit evaluation substantially outperforms joint tree propagation and variable elimination, two alternative algorithms for diagnosis using Bayesian network inference.
A Single-Boundary Accumulator Model of Response Times in an Addition Verification Task
Faulkenberry, Thomas J.
2017-01-01
Current theories of mathematical cognition offer competing accounts of the interplay between encoding and calculation in mental arithmetic. Additive models propose that manipulations of problem format do not interact with the cognitive processes used in calculation. Alternatively, interactive models suppose that format manipulations have a direct effect on calculation processes. In the present study, we tested these competing models by fitting participants' RT distributions in an arithmetic verification task with a single-boundary accumulator model (the shifted Wald distribution). We found that in addition to providing a more complete description of RT distributions, the accumulator model afforded a potentially more sensitive test of format effects. Specifically, we found that format affected drift rate, which implies that problem format has a direct impact on calculation processes. These data give further support for an interactive model of mental arithmetic. PMID:28769853
The prominent role of the cerebellum in the learning, origin and advancement of culture.
Vandervert, Larry
2016-01-01
Vandervert described how, in collaboration with the cerebral cortex, unconscious learning of cerebellar internal models leads to enhanced executive control in working memory in expert music performance and in scientific discovery. Following Vandervert's arguments, it is proposed that since music performance and scientific discovery, two pillars of cultural learning and advancement, are learned through in cerebellar internal models, it is reasonable that additional if not all components of culture may be learned in the same way. Within this perspective strong evidence is presented that argues that the learning, maintenance, and advancement of culture are accomplished primarily by recently-evolved (the last million or so years) motor/cognitive functions of the cerebellum and not primarily by the cerebral cortex as previously assumed. It is suggested that the unconscious cerebellar mechanism behind the origin and learning of culture greatly expands Ito's conception of the cerebellum as "a brain for an implicit self." Through the mechanism of predictive sequence detection in cerebellar internal models related to the body, other persons, or the environment, it is shown how individuals can unconsciously learn the elements of culture and yet, at the same time, be in social sync with other members of culture. Further, this predictive, cerebellar mechanism of socialization toward the norms of culture is hypothesized to be diminished among children who experience excessive television viewing, which results in lower grades, poor socialization, and diminished executive control. It is concluded that the essential components of culture are learned and sustained not by the cerebral cortex alone as many traditionally believe, but are learned through repetitious improvements in prediction and control by internal models in the cerebellum. From this perspective, the following new explanations of culture are discussed: (1) how culture can be learned unconsciously but yet be socially in sync with others, (2) how the recent evolutionary expansion of the cerebellum was involved in the co-evolution of earliest stone tools and language-leading to the cerebellum-driven origin of culture, (3) how cerebellar internal models are blended to produce the creative, forward advances in culture, (4) how the blending of cerebellar internal models led to human, multi-component, infinitely partitionable and communicable working memory, (5) how excessive television viewing may represent a cultural shift that diminishes the observational learning of internal models of the behavior of others and thus may result in a mild, parallel version of Schmahmann's cerebellar cognitive affective syndrome.
Heap, Lucy A.; Goh, Chi Ching; Kassahn, Karin S.; Scott, Ethan K.
2013-01-01
The cerebellum is a brain region responsible for motor coordination and for refining motor programs. While a great deal is known about the structure and connectivity of the mammalian cerebellum, fundamental questions regarding its function in behavior remain unanswered. Recently, the zebrafish has emerged as a useful model organism for cerebellar studies, owing in part to the similarity in cerebellar circuits between zebrafish and mammals. While the cell types composing their cerebellar cortical circuits are generally conserved with mammals, zebrafish lack deep cerebellar nuclei, and instead a majority of cerebellar output comes from a single type of neuron: the eurydendroid cell. To describe spatial patterns of cerebellar output in zebrafish, we have used genetic techniques to label and trace eurydendroid cells individually and en masse. We have found that cerebellar output targets the thalamus and optic tectum, and have confirmed the presence of pre-synaptic terminals from eurydendroid cells in these structures using a synaptically targeted GFP. By observing individual eurydendroid cells, we have shown that different medial-lateral regions of the cerebellum have eurydendroid cells projecting to different targets. Finally, we found topographic organization in the connectivity between the cerebellum and the optic tectum, where more medial eurydendroid cells project to the rostral tectum while lateral cells project to the caudal tectum. These findings indicate that there is spatial logic underpinning cerebellar output in zebrafish with likely implications for cerebellar function. PMID:23554587
Bower, James M.; Conforto, Adriana Bastos; Delgado-García, José M.; da Guarda, Suzete Nascimento Farias; Gerwig, Marcus; Habas, Christophe; Hagura, Nobuhiro; Ivry, Richard B.; Mariën, Peter; Molinari, Marco; Naito, Eiichi; Nowak, Dennis A.; Ben Taib, Nordeyn Oulad; Pelisson, Denis; Tesche, Claudia D.; Tilikete, Caroline; Timmann, Dagmar
2015-01-01
Considerable progress has been made in developing models of cerebellar function in sensorimotor control, as well as in identifying key problems that are the focus of current investigation. In this consensus paper, we discuss the literature on the role of the cerebellar circuitry in motor control, bringing together a range of different viewpoints. The following topics are covered: oculomotor control, classical conditioning (evidence in animals and in humans), cerebellar control of motor speech, control of grip forces, control of voluntary limb movements, timing, sensorimotor synchronization, control of corticomotor excitability, control of movement-related sensory data acquisition, cerebro-cerebellar interaction in visuokinesthetic perception of hand movement, functional neuroimaging studies, and magnetoencephalographic mapping of cortico-cerebellar dynamics. While the field has yet to reach a consensus on the precise role played by the cerebellum in movement control, the literature has witnessed the emergence of broad proposals that address cerebellar function at multiple levels of analysis. This paper highlights the diversity of current opinion, providing a framework for debate and discussion on the role of this quintessential vertebrate structure. PMID:22161499
Hoxha, Eriola; Lippiello, Pellegrino; Scelfo, Bibiana; Tempia, Filippo; Ghirardi, Mirella; Miniaci, Maria Concetta
2017-01-01
The formation of the complex cerebellar cortical circuits follows different phases, with initial synaptogenesis and subsequent processes of refinement guided by a variety of mechanisms. The regularity of the cellular and synaptic organization of the cerebellar cortex allowed detailed studies of the structural plasticity mechanisms underlying the formation of new synapses and retraction of redundant ones. For the attainment of the monoinnervation of the Purkinje cell by a single climbing fiber, several signals are involved, including electrical activity, contact signals, homosynaptic and heterosynaptic interaction, calcium transients, postsynaptic receptors, and transduction pathways. An important role in this developmental program is played by serotonergic projections that, acting on temporally and spatially regulated postsynaptic receptors, induce and modulate the phases of synaptic formation and maturation. In the adult cerebellar cortex, many developmental mechanisms persist but play different roles, such as supporting synaptic plasticity during learning and formation of cerebellar memory traces. A dysfunction at any stage of this process can lead to disorders of cerebellar origin, which include autism spectrum disorders but are not limited to motor deficits. Recent evidence in animal models links impairment of Purkinje cell function with autism-like symptoms including sociability deficits, stereotyped movements, and interspecific communication by vocalization.
Lippiello, Pellegrino; Scelfo, Bibiana
2017-01-01
The formation of the complex cerebellar cortical circuits follows different phases, with initial synaptogenesis and subsequent processes of refinement guided by a variety of mechanisms. The regularity of the cellular and synaptic organization of the cerebellar cortex allowed detailed studies of the structural plasticity mechanisms underlying the formation of new synapses and retraction of redundant ones. For the attainment of the monoinnervation of the Purkinje cell by a single climbing fiber, several signals are involved, including electrical activity, contact signals, homosynaptic and heterosynaptic interaction, calcium transients, postsynaptic receptors, and transduction pathways. An important role in this developmental program is played by serotonergic projections that, acting on temporally and spatially regulated postsynaptic receptors, induce and modulate the phases of synaptic formation and maturation. In the adult cerebellar cortex, many developmental mechanisms persist but play different roles, such as supporting synaptic plasticity during learning and formation of cerebellar memory traces. A dysfunction at any stage of this process can lead to disorders of cerebellar origin, which include autism spectrum disorders but are not limited to motor deficits. Recent evidence in animal models links impairment of Purkinje cell function with autism-like symptoms including sociability deficits, stereotyped movements, and interspecific communication by vocalization. PMID:28894610
Motion perception without Nystagmus--a novel manifestation of cerebellar stroke.
Shaikh, Aasef G
2014-01-01
The motion perception and the vestibulo-ocular reflex (VOR) each serve distinct functions. The VOR keeps the gaze steady on the target of interest, whereas vestibular perception serves a number of tasks, including awareness of self-motion and orientation in space. VOR and motion perception might abide the same neurophysiological principles, but their distinct anatomical correlates were proposed. In patients with cerebellar stroke in distribution of medial division of posterior inferior cerebellar artery, we asked whether specific location of the focal lesion in vestibulocerebellum could cause impaired perception of motion but normal eye movements. Thirteen patients were studied, 5 consistently perceived spinning of surrounding environment (vertigo), but the eye movements were normal. This group was called "disease model." Remaining 8 patients were also symptomatic for vertigo, but they had spontaneous nystagmus. The latter group was called "disease control." Magnetic resonance imaging in both groups consistently revealed focal cerebellar infarct affecting posterior cerebellar vermis (lobule IX). In the "disease model" group, only part of lobule IX was affected. In the disease control group, however, complete lobule IX was involved. This study discovered a novel presentation of cerebellar stroke where only motion perception was affected, but there was an absence of objective neurologic signs. Copyright © 2014 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Palesi, Fulvia; De Rinaldis, Andrea; Castellazzi, Gloria; Calamante, Fernando; Muhlert, Nils; Chard, Declan; Tournier, J Donald; Magenes, Giovanni; D'Angelo, Egidio; Gandini Wheeler-Kingshott, Claudia A M
2017-10-09
Cerebellar involvement in cognition, as well as in sensorimotor control, is increasingly recognized and is thought to depend on connections with the cerebral cortex. Anatomical investigations in animals and post-mortem humans have established that cerebro-cerebellar connections are contralateral to each other and include the cerebello-thalamo-cortical (CTC) and cortico-ponto-cerebellar (CPC) pathways. CTC and CPC characterization in humans in vivo is still challenging. Here advanced tractography was combined with quantitative indices to compare CPC to CTC pathways in healthy subjects. Differently to previous studies, our findings reveal that cerebellar cognitive areas are reached by the largest proportion of the reconstructed CPC, supporting the hypothesis that a CTC-CPC loop provides a substrate for cerebro-cerebellar communication during cognitive processing. Amongst the cerebral areas identified using in vivo tractography, in addition to the cerebral motor cortex, major portions of CPC streamlines leave the prefrontal and temporal cortices. These findings are useful since provide MRI-based indications of possible subtending connectivity and, if confirmed, they are going to be a milestone for instructing computational models of brain function. These results, together with further multi-modal investigations, are warranted to provide important cues on how the cerebro-cerebellar loops operate and on how pathologies involving cerebro-cerebellar connectivity are generated.
Ji, Jingmin; Hassler, Melanie L; Shimobayashi, Etsuko; Paka, Nagendher; Streit, Raphael; Kapfhammer, Josef P
2014-10-01
Spinocerebellar ataxias (SCAs) are hereditary diseases leading to Purkinje cell degeneration and cerebellar dysfunction. Most forms of SCA are caused by expansion of CAG repeats similar to other polyglutamine disorders such as Huntington's disease. In contrast, in the autosomal dominant SCA-14 the disease is caused by mutations in the protein kinase C gamma (PKCγ) gene which is a well characterized signaling molecule in cerebellar Purkinje cells. The study of SCA-14, therefore, offers the unique opportunity to reveal the molecular and pathological mechanism eventually leading to Purkinje cell dysfunction and degeneration. We have created a mouse model of SCA-14 in which PKCγ protein with a mutation found in SCA-14 is specifically expressed in cerebellar Purkinje cells. We find that in mice expressing the mutated PKCγ protein the morphology of Purkinje cells in cerebellar slice cultures is drastically altered and mimics closely the morphology seen after pharmacological PKC activation. Similar morphological abnormalities were seen in localized areas of the cerebellum of juvenile transgenic mice in vivo. In adult transgenic mice there is evidence for some localized loss of Purkinje cells but there is no overall cerebellar atrophy. Transgenic mice show a mild cerebellar ataxia revealed by testing on the rotarod and on the walking beam. Our findings provide evidence for both an increased PKCγ activity in Purkinje cells in vivo and for pathological changes typical for cerebellar disease thus linking the increased and dysregulated activity of PKCγ tightly to the development of cerebellar disease in SCA-14 and possibly also in other forms of SCA. Copyright © 2014 Elsevier Inc. All rights reserved.
File compression and encryption based on LLS and arithmetic coding
NASA Astrophysics Data System (ADS)
Yu, Changzhi; Li, Hengjian; Wang, Xiyu
2018-03-01
e propose a file compression model based on arithmetic coding. Firstly, the original symbols, to be encoded, are input to the encoder one by one, we produce a set of chaotic sequences by using the Logistic and sine chaos system(LLS), and the values of this chaotic sequences are randomly modified the Upper and lower limits of current symbols probability. In order to achieve the purpose of encryption, we modify the upper and lower limits of all character probabilities when encoding each symbols. Experimental results show that the proposed model can achieve the purpose of data encryption while achieving almost the same compression efficiency as the arithmetic coding.
Biohybrid Control of General Linear Systems Using the Adaptive Filter Model of Cerebellum.
Wilson, Emma D; Assaf, Tareq; Pearson, Martin J; Rossiter, Jonathan M; Dean, Paul; Anderson, Sean R; Porrill, John
2015-01-01
The adaptive filter model of the cerebellar microcircuit has been successfully applied to biological motor control problems, such as the vestibulo-ocular reflex (VOR), and to sensory processing problems, such as the adaptive cancelation of reafferent noise. It has also been successfully applied to problems in robotics, such as adaptive camera stabilization and sensor noise cancelation. In previous applications to inverse control problems, the algorithm was applied to the velocity control of a plant dominated by viscous and elastic elements. Naive application of the adaptive filter model to the displacement (as opposed to velocity) control of this plant results in unstable learning and control. To be more generally useful in engineering problems, it is essential to remove this restriction to enable the stable control of plants of any order. We address this problem here by developing a biohybrid model reference adaptive control (MRAC) scheme, which stabilizes the control algorithm for strictly proper plants. We evaluate the performance of this novel cerebellar-inspired algorithm with MRAC scheme in the experimental control of a dielectric electroactive polymer, a class of artificial muscle. The results show that the augmented cerebellar algorithm is able to accurately control the displacement response of the artificial muscle. The proposed solution not only greatly extends the practical applicability of the cerebellar-inspired algorithm, but may also shed light on cerebellar involvement in a wider range of biological control tasks.
Moberget, Torgeir; Ivry, Richard B
2016-04-01
The past 25 years have seen the functional domain of the cerebellum extend beyond the realm of motor control, with considerable discussion of how this subcortical structure contributes to cognitive domains including attention, memory, and language. Drawing on evidence from neuroanatomy, physiology, neuropsychology, and computational work, sophisticated models have been developed to describe cerebellar function in sensorimotor control and learning. In contrast, mechanistic accounts of how the cerebellum contributes to cognition have remained elusive. Inspired by the homogeneous cerebellar microanatomy and a desire for parsimony, many researchers have sought to extend mechanistic ideas from motor control to cognition. One influential hypothesis centers on the idea that the cerebellum implements internal models, representations of the context-specific dynamics of an agent's interactions with the environment, enabling predictive control. We briefly review cerebellar anatomy and physiology, to review the internal model hypothesis as applied in the motor domain, before turning to extensions of these ideas in the linguistic domain, focusing on speech perception and semantic processing. While recent findings are consistent with this computational generalization, they also raise challenging questions regarding the nature of cerebellar learning, and may thus inspire revisions of our views on the role of the cerebellum in sensorimotor control. © 2016 New York Academy of Sciences.
Nguyen, Huy Bang; Sui, Yang; Thai, Truc Quynh; Ikenaka, Kazuhiro; Oda, Toshiyuki; Ohno, Nobuhiko
2018-05-23
Impaired nerve conduction, axonal degeneration, and synaptic alterations contribute to neurological disabilities in inflammatory demyelinating diseases. Cerebellar dysfunction is associated with demyelinating disorders, but the alterations of axon terminals in cerebellar gray matter during chronic demyelination are still unclear. We analyzed the morphological and ultrastructural changes of climbing fiber terminals in a mouse model of hereditary chronic demyelination. Three-dimensional ultrastructural analyses using serial block-face scanning electron microscopy and immunostaining for synaptic markers were performed in a demyelination mouse model caused by extra copies of myelin gene (PLP4e). At 1 month old, many myelinated axons were observed in PLP4e and wild-type mice, but demyelinated axons and axons with abnormally thin myelin were prominent in PLP4e mice at 5 months old. The density of climbing fiber terminals was significantly reduced in PLP4e mice at 5 months old. Reconstruction of climbing fiber terminals revealed that PLP4e climbing fibers had increased varicosity volume and enlarged mitochondria in the varicosities at 5-month-old mice. These results suggest that chronic demyelination is associated with alterations and loss of climbing fiber terminals in the cerebellar cortex, and that synaptic changes may contribute to cerebellar phenotypes observed in hereditary demyelinating disorders.
The MONGOOSE Rational Arithmetic Toolbox.
Le, Christopher; Chindelevitch, Leonid
2018-01-01
The modeling of metabolic networks has seen a rapid expansion following the complete sequencing of thousands of genomes. The constraint-based modeling framework has emerged as one of the most popular approaches to reconstructing and analyzing genome-scale metabolic models. Its main assumption is that of a quasi-steady-state, requiring that the production of each internal metabolite be balanced by its consumption. However, due to the multiscale nature of the models, the large number of reactions and metabolites, and the use of floating-point arithmetic for the stoichiometric coefficients, ensuring that this assumption holds can be challenging.The MONGOOSE toolbox addresses this problem by using rational arithmetic, thus ensuring that models are analyzed in a reproducible manner and consistently with modeling assumptions. In this chapter we present a protocol for the complete analysis of a metabolic network model using the MONGOOSE toolbox, via its newly developed GUI, and describe how it can be used as a model-checking platform both during and after the model construction process.
Autistic-like behaviour and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice.
Tsai, Peter T; Hull, Court; Chu, YunXiang; Greene-Colozzi, Emily; Sadowski, Abbey R; Leech, Jarrett M; Steinberg, Jason; Crawley, Jacqueline N; Regehr, Wade G; Sahin, Mustafa
2012-08-30
Autism spectrum disorders (ASDs) are highly prevalent neurodevelopmental disorders, but the underlying pathogenesis remains poorly understood. Recent studies have implicated the cerebellum in these disorders, with post-mortem studies in ASD patients showing cerebellar Purkinje cell (PC) loss, and isolated cerebellar injury has been associated with a higher incidence of ASDs. However, the extent of cerebellar contribution to the pathogenesis of ASDs remains unclear. Tuberous sclerosis complex (TSC) is a genetic disorder with high rates of comorbid ASDs that result from mutation of either TSC1 or TSC2, whose protein products dimerize and negatively regulate mammalian target of rapamycin (mTOR) signalling. TSC is an intriguing model to investigate the cerebellar contribution to the underlying pathogenesis of ASDs, as recent studies in TSC patients demonstrate cerebellar pathology and correlate cerebellar pathology with increased ASD symptomatology. Functional imaging also shows that TSC patients with ASDs display hypermetabolism in deep cerebellar structures, compared to TSC patients without ASDs. However, the roles of Tsc1 and the sequelae of Tsc1 dysfunction in the cerebellum have not been investigated so far. Here we show that both heterozygous and homozygous loss of Tsc1 in mouse cerebellar PCs results in autistic-like behaviours, including abnormal social interaction, repetitive behaviour and vocalizations, in addition to decreased PC excitability. Treatment of mutant mice with the mTOR inhibitor, rapamycin, prevented the pathological and behavioural deficits. These findings demonstrate new roles for Tsc1 in PC function and define a molecular basis for a cerebellar contribution to cognitive disorders such as autism.
Connaughton, Veronica M; Amiruddin, Azhani; Clunies-Ross, Karen L; French, Noel; Fox, Allison M
2017-05-01
A major model of the cerebral circuits that underpin arithmetic calculation is the triple-code model of numerical processing. This model proposes that the lateralization of mathematical operations is organized across three circuits: a left-hemispheric dominant verbal code; a bilateral magnitude representation of numbers and a bilateral Arabic number code. This study simultaneously measured the blood flow of both middle cerebral arteries using functional transcranial Doppler ultrasonography to assess hemispheric specialization during the performance of both language and arithmetic tasks. The propositions of the triple-code model were assessed in a non-clinical adult group by measuring cerebral blood flow during the performance of multiplication and subtraction problems. Participants were 17 adults aged between 18-27 years. We obtained laterality indices for each type of mathematical operation and compared these in participants with left-hemispheric language dominance. It was hypothesized that blood flow would lateralize to the left hemisphere during the performance of multiplication operations, but would not lateralize during the performance of subtraction operations. Hemispheric blood flow was significantly left lateralized during the multiplication task, but was not lateralized during the subtraction task. Compared to high spatial resolution neuroimaging techniques previously used to measure cerebral lateralization, functional transcranial Doppler ultrasonography is a cost-effective measure that provides a superior temporal representation of arithmetic cognition. These results provide support for the triple-code model of arithmetic processing and offer complementary evidence that multiplication operations are processed differently in the adult brain compared to subtraction operations. Copyright © 2017 Elsevier B.V. All rights reserved.
Cerebellar learning mechanisms
Freeman, John H.
2014-01-01
The mechanisms underlying cerebellar learning are reviewed with an emphasis on old arguments and new perspectives on eyeblink conditioning. Eyeblink conditioning has been used for decades a model system for elucidating cerebellar learning mechanisms. The standard model of the mechanisms underlying eyeblink conditioning is that there two synaptic plasticity processes within the cerebellum that are necessary for acquisition of the conditioned response: 1) long-term depression (LTD) at parallel fiber-Purkinje cell synapses and 2) long-term potentiation (LTP) at mossy fiber-interpositus nucleus synapses. Additional Purkinje cell plasticity mechanisms may also contribute to eyeblink conditioning including LTP, excitability, and entrainment of deep nucleus activity. Recent analyses of the sensory input pathways necessary for eyeblink conditioning indicate that the cerebellum regulates its inputs to facilitate learning and maintain plasticity. Cerebellar learning during eyeblink conditioning is therefore a dynamic interactive process which maximizes responding to significant stimuli and suppresses responding to irrelevant or redundant stimuli. PMID:25289586
Evaluation of Morphological Plasticity in the Cerebella of Basketball Players with MRI
Park, In Sung; Han, Jong Woo; Lee, Kea Joo; Lee, Nam Joon; Lee, Won Teak; Park, Kyung Ah
2006-01-01
Cerebellum is a key structure involved in motor learning and coordination. In animal models, motor skill learning increased the volume of molecular layer and the number of synapses on Purkinje cells in the cerebellar cortex. The aim of this study is to investigate whether the analogous change of cerebellar volume occurs in human population who learn specialized motor skills and practice them intensively for a long time. Magnetic resonance image (MRI)-based cerebellar volumetry was performed in basketball players and matched controls with V-works image software. Total brain volume, absolute and relative cerebellar volumes were compared between two groups. There was no significant group difference in the total brain volume, the absolute and the relative cerebellar volume. Thus we could not detect structural change in the cerebellum of this athlete group in the macroscopic level. PMID:16614526
Frontoparietal white matter diffusion properties predict mental arithmetic skills in children
Tsang, Jessica M.; Dougherty, Robert F.; Deutsch, Gayle K.; Wandell, Brian A.; Ben-Shachar, Michal
2009-01-01
Functional MRI studies of mental arithmetic consistently report blood oxygen level–dependent signals in the parietal and frontal regions. We tested whether white matter pathways connecting these regions are related to mental arithmetic ability by using diffusion tensor imaging (DTI) to measure these pathways in 28 children (age 10–15 years, 14 girls) and assessing their mental arithmetic skills. For each child, we identified anatomically the anterior portion of the superior longitudinal fasciculus (aSLF), a pathway connecting parietal and frontal cortex. We measured fractional anisotropy in a core region centered along the length of the aSLF. Fractional anisotropy in the left aSLF positively correlates with arithmetic approximation skill, as measured by a mental addition task with approximate answer choices. The correlation is stable in adjacent core aSLF regions but lower toward the pathway endpoints. The correlation is not explained by shared variance with other cognitive abilities and did not pass significance in the right aSLF. These measurements used DTI, a structural method, to test a specific functional model of mental arithmetic. PMID:19948963
Stress-induced brain activity, brain atrophy, and clinical disability in multiple sclerosis
Weygandt, Martin; Meyer-Arndt, Lil; Behrens, Janina Ruth; Wakonig, Katharina; Bellmann-Strobl, Judith; Ritter, Kerstin; Scheel, Michael; Brandt, Alexander U.; Labadie, Christian; Hetzer, Stefan; Gold, Stefan M.; Paul, Friedemann; Haynes, John-Dylan
2016-01-01
Prospective clinical studies support a link between psychological stress and multiple sclerosis (MS) disease severity, and peripheral stress systems are frequently dysregulated in MS patients. However, the exact link between neurobiological stress systems and MS symptoms is unknown. To evaluate the link between neural stress responses and disease parameters, we used an arterial-spin–labeling functional MRI stress paradigm in 36 MS patients and 21 healthy controls. Specifically, we measured brain activity during a mental arithmetic paradigm with performance-adaptive task frequency and performance feedback and related this activity to disease parameters. Across all participants, stress increased heart rate, perceived stress, and neural activity in the visual, cerebellar and insular cortex areas compared with a resting condition. None of these responses was related to cognitive load (task frequency). Consistently, although performance and cognitive load were lower in patients than in controls, stress responses did not differ between groups. Insula activity elevated during stress compared with rest was negatively linked to impairment of pyramidal and cerebral functions in patients. Cerebellar activation was related negatively to gray matter (GM) atrophy (i.e., positively to GM volume) in patients. Interestingly, this link was also observed in overlapping areas in controls. Cognitive load did not contribute to these associations. The results show that our task induced psychological stress independent of cognitive load. Moreover, stress-induced brain activity reflects clinical disability in MS. Finally, the link between stress-induced activity and GM volume in patients and controls in overlapping areas suggests that this link cannot be caused by the disease alone. PMID:27821732
Yokoi, Fumiaki; Dang, Mai T.; Yang, Guang; Li, JinDong; Doroodchi, Atbin; Zhou, Tong; Li, Yuqing
2011-01-01
Myoclonus-dystonia (M-D) is a movement disorder characterized by myoclonic jerks with dystonia. DYT11 M-D is caused by mutations in SGCE which codes for ε-sarcoglycan. SGCE is maternally imprinted and paternally expressed. Abnormal nuclear envelope has been reported in mouse models of DYT1 generalized torsion dystonia. However, it is not known whether similar alterations occur in DYT11 M-D. We developed a mouse model of DYT11 M-D using paternally-inherited Sgce heterozygous knockout (Sgce KO) mice and reported that they had myoclonus and motor coordination and learning deficits in the beam-walking test. However, the specific brain regions that contribute to these phenotypes have not been identified. Since ε-sarcoglycan is highly expressed in the cerebellar Purkinje cells, here we examined the nuclear envelope in these cells using a transmission electron microscope and found that they are abnormal in Sgce KO mice. Our results put DYT11 M-D in a growing family of nuclear envelopathies. To analyze the effect of loss of ε-sarcoglycan function in the cerebellar Purkinje cells, we produced paternally-inherited cerebellar Purkinje cell-specific Sgce conditional knockout (Sgce pKO) mice. Sgce pKO mice showed motor learning deficits, while they did not show abnormal nuclear envelope in the cerebellar Purkinje cells, robust motor deficits, or myoclonus. The results suggest that ε-sarcoglycan in the cerebellar Purkinje cells contributes to the motor learning, while loss of ε-sarcoglycan in other brain regions may contribute to nuclear envelope abnormality, myoclonus and motor coordination deficits. PMID:22040906
If Gravity is Geometry, is Dark Energy just Arithmetic?
NASA Astrophysics Data System (ADS)
Czachor, Marek
2017-04-01
Arithmetic operations (addition, subtraction, multiplication, division), as well as the calculus they imply, are non-unique. The examples of four-dimensional spaces, R+4 and (- L/2, L/2)4, are considered where different types of arithmetic and calculus coexist simultaneously. In all the examples there exists a non-Diophantine arithmetic that makes the space globally Minkowskian, and thus the laws of physics are formulated in terms of the corresponding calculus. However, when one switches to the `natural' Diophantine arithmetic and calculus, the Minkowskian character of the space is lost and what one effectively obtains is a Lorentzian manifold. I discuss in more detail the problem of electromagnetic fields produced by a pointlike charge. The solution has the standard form when expressed in terms of the non-Diophantine formalism. When the `natural' formalsm is used, the same solution looks as if the fields were created by a charge located in an expanding universe, with nontrivially accelerating expansion. The effect is clearly visible also in solutions of the Friedman equation with vanishing cosmological constant. All of this suggests that phenomena attributed to dark energy may be a manifestation of a miss-match between the arithmetic employed in mathematical modeling, and the one occurring at the level of natural laws. Arithmetic is as physical as geometry.
Automated MRI Cerebellar Size Measurements Using Active Appearance Modeling
Price, Mathew; Cardenas, Valerie A.; Fein, George
2014-01-01
Although the human cerebellum has been increasingly identified as an important hub that shows potential for helping in the diagnosis of a large spectrum of disorders, such as alcoholism, autism, and fetal alcohol spectrum disorder, the high costs associated with manual segmentation, and low availability of reliable automated cerebellar segmentation tools, has resulted in a limited focus on cerebellar measurement in human neuroimaging studies. We present here the CATK (Cerebellar Analysis Toolkit), which is based on the Bayesian framework implemented in FMRIB’s FIRST. This approach involves training Active Appearance Models (AAM) using hand-delineated examples. CATK can currently delineate the cerebellar hemispheres and three vermal groups (lobules I–V, VI–VII, and VIII–X). Linear registration with the low-resolution MNI152 template is used to provide initial alignment, and Point Distribution Models (PDM) are parameterized using stellar sampling. The Bayesian approach models the relationship between shape and texture through computation of conditionals in the training set. Our method varies from the FIRST framework in that initial fitting is driven by 1D intensity profile matching, and the conditional likelihood function is subsequently used to refine fitting. The method was developed using T1-weighted images from 63 subjects that were imaged and manually labeled: 43 subjects were scanned once and were used for training models, and 20 subjects were imaged twice (with manual labeling applied to both runs) and used to assess reliability and validity. Intraclass correlation analysis shows that CATK is highly reliable (average test-retest ICCs of 0.96), and offers excellent agreement with the gold standard (average validity ICC of 0.87 against manual labels). Comparisons against an alternative atlas-based approach, SUIT (Spatially Unbiased Infratentorial Template), that registers images with a high-resolution template of the cerebellum, show that our AAM approach offers superior reliability and validity. Extensions of CATK to cerebellar hemisphere parcels is envisioned. PMID:25192657
Arabidopsis plants perform arithmetic division to prevent starvation at night
Scialdone, Antonio; Mugford, Sam T; Feike, Doreen; Skeffington, Alastair; Borrill, Philippa; Graf, Alexander; Smith, Alison M; Howard, Martin
2013-01-01
Photosynthetic starch reserves that accumulate in Arabidopsis leaves during the day decrease approximately linearly with time at night to support metabolism and growth. We find that the rate of decrease is adjusted to accommodate variation in the time of onset of darkness and starch content, such that reserves last almost precisely until dawn. Generation of these dynamics therefore requires an arithmetic division computation between the starch content and expected time to dawn. We introduce two novel chemical kinetic models capable of implementing analog arithmetic division. Predictions from the models are successfully tested in plants perturbed by a night-time light period or by mutations in starch degradation pathways. Our experiments indicate which components of the starch degradation apparatus may be important for appropriate arithmetic division. Our results are potentially relevant for any biological system dependent on a food reserve for survival over a predictable time period. DOI: http://dx.doi.org/10.7554/eLife.00669.001 PMID:23805380
Xu, Tao; Xiao, Na; Zhai, Xiaolong; Kwan Chan, Pak; Tin, Chung
2018-02-01
Damage to the brain, as a result of various medical conditions, impacts the everyday life of patients and there is still no complete cure to neurological disorders. Neuroprostheses that can functionally replace the damaged neural circuit have recently emerged as a possible solution to these problems. Here we describe the development of a real-time cerebellar neuroprosthetic system to substitute neural function in cerebellar circuitry for learning delay eyeblink conditioning (DEC). The system was empowered by a biologically realistic spiking neural network (SNN) model of the cerebellar neural circuit, which considers the neuronal population and anatomical connectivity of the network. The model simulated synaptic plasticity critical for learning DEC. This SNN model was carefully implemented on a field programmable gate array (FPGA) platform for real-time simulation. This hardware system was interfaced in in vivo experiments with anesthetized rats and it used neural spikes recorded online from the animal to learn and trigger conditioned eyeblink in the animal during training. This rat-FPGA hybrid system was able to process neuronal spikes in real-time with an embedded cerebellum model of ~10 000 neurons and reproduce learning of DEC with different inter-stimulus intervals. Our results validated that the system performance is physiologically relevant at both the neural (firing pattern) and behavioral (eyeblink pattern) levels. This integrated system provides the sufficient computation power for mimicking the cerebellar circuit in real-time. The system interacts with the biological system naturally at the spike level and can be generalized for including other neural components (neuron types and plasticity) and neural functions for potential neuroprosthetic applications.
Discrete model of the olivo-cerebellar system: structure and dynamics
NASA Astrophysics Data System (ADS)
Maslennikov, O. V.; Nekorkin, V. I.
2012-08-01
We propose a discrete model of the olivo-cerebellar system. The model consists of three layers of interacting elements, namely, inferior olive neurons, Purkinje cells, and deep cerebellar nuclear neurons combined into a structure by axonal connections. Each element of the structure is described by a two-dimensional map with an individual set of parameters for each type of neurons. Dynamic properties of different types of neurons are described and spontaneous and stimulusinduced dynamics of the system is explored. Unlike the previously proposed models, this study takes into account the axonal interaction of neurons of different layers, as well as the interaction of the inferior olive neurons through electrical synapses with the property of plasticity. It is shown that the inclusion of these factors plays a significant role in the formation of spatio-temporal activity of the inferior olive neurons.
Past, Present and Future Therapeutics for Cerebellar Ataxias
Marmolino, D; Manto, M
2010-01-01
Cerebellar ataxias are a group of disabling neurological disorders. Patients exhibit a cerebellar syndrome and can also present with extra-cerebellar deficits, namely pigmentary retinopathy, extrapyramidal movement disorders, pyramidal signs, cortical symptoms (seizures, cognitive impairment/behavioural symptoms), and peripheral neuropathy. Recently, deficits in cognitive operations have been unraveled. Cerebellar ataxias are heterogeneous both at the phenotypic and genotypic point of view. Therapeutical trials performed during these last 4 decades have failed in most cases, in particular because drugs were not targeting a deleterious pathway, but were given to counteract putative defects in neurotransmission. The identification of the causative mutations of many hereditary ataxias, the development of relevant animal models and the recent identifications of the molecular mechanisms underlying ataxias are impacting on the development of new drugs. We provide an overview of the pharmacological treatments currently used in the clinical practice and we discuss the drugs under development. PMID:20808545
Pinzon-Morales, Ruben-Dario; Hirata, Yutaka
2015-01-01
The cerebellar granule cells (GCs) have been proposed to perform lossless, adaptive spatio-temporal coding of incoming sensory/motor information required by downstream cerebellar circuits to support motor learning, motor coordination, and cognition. Here we use a physio-anatomically inspired bi-hemispheric cerebellar neuronal network (biCNN) to selectively enable/disable the output of GCs and evaluate the behavioral and neural consequences during three different control scenarios. The control scenarios are a simple direct current motor (1 degree of freedom: DOF), an unstable two-wheel balancing robot (2 DOFs), and a simulation model of a quadcopter (6 DOFs). Results showed that adequate control was maintained with a relatively small number of GCs (< 200) in all the control scenarios. However, the minimum number of GCs required to successfully govern each control plant increased with their complexity (i.e., DOFs). It was also shown that increasing the number of GCs resulted in higher robustness against changes in the initialization parameters of the biCNN model (i.e., synaptic connections and synaptic weights). Therefore, we suggest that the abundant GCs in the cerebellar cortex provide the computational power during the large repertoire of motor activities and motor plants the cerebellum is involved with, and bring robustness against changes in the cerebellar microcircuit (e.g., neuronal connections).
Chindelevitch, Leonid; Trigg, Jason; Regev, Aviv; Berger, Bonnie
2014-01-01
Constraint-based models are currently the only methodology that allows the study of metabolism at the whole-genome scale. Flux balance analysis is commonly used to analyse constraint-based models. Curiously, the results of this analysis vary with the software being run, a situation that we show can be remedied by using exact rather than floating-point arithmetic. Here we introduce MONGOOSE, a toolbox for analysing the structure of constraint-based metabolic models in exact arithmetic. We apply MONGOOSE to the analysis of 98 existing metabolic network models and find that the biomass reaction is surprisingly blocked (unable to sustain non-zero flux) in nearly half of them. We propose a principled approach for unblocking these reactions and extend it to the problems of identifying essential and synthetic lethal reactions and minimal media. Our structural insights enable a systematic study of constraint-based metabolic models, yielding a deeper understanding of their possibilities and limitations. PMID:25291352
Yokoi, Fumiaki; Dang, Mai T; Yang, Guang; Li, Jindong; Doroodchi, Atbin; Zhou, Tong; Li, Yuqing
2012-02-01
Myoclonus-dystonia (M-D) is a movement disorder characterized by myoclonic jerks with dystonia. DYT11 M-D is caused by mutations in SGCE which codes for ɛ-sarcoglycan. SGCE is maternally imprinted and paternally expressed. Abnormal nuclear envelope has been reported in mouse models of DYT1 generalized torsion dystonia. However, it is not known whether similar alterations occur in DYT11 M-D. We developed a mouse model of DYT11 M-D using paternally inherited Sgce heterozygous knockout (Sgce KO) mice and reported that they had myoclonus and motor coordination and learning deficits in the beam-walking test. However, the specific brain regions that contribute to these phenotypes have not been identified. Since ɛ-sarcoglycan is highly expressed in the cerebellar Purkinje cells, here we examined the nuclear envelope in these cells using a transmission electron microscope and found that they are abnormal in Sgce KO mice. Our results put DYT11 M-D in a growing family of nuclear envelopathies. To analyze the effect of loss of ɛ-sarcoglycan function in the cerebellar Purkinje cells, we produced paternally inherited cerebellar Purkinje cell-specific Sgce conditional knockout (Sgce pKO) mice. Sgce pKO mice showed motor learning deficits, while they did not show abnormal nuclear envelope in the cerebellar Purkinje cells, robust motor deficits, or myoclonus. The results suggest that ɛ-sarcoglycan in the cerebellar Purkinje cells contributes to the motor learning, while loss of ɛ-sarcoglycan in other brain regions may contribute to nuclear envelope abnormality, myoclonus and motor coordination deficits. Copyright © 2011 Elsevier B.V. All rights reserved.
Automatic and controlled processing in the corticocerebellar system.
Ramnani, Narender
2014-01-01
During learning, performance changes often involve a transition from controlled processing in which performance is flexible and responsive to ongoing error feedback, but effortful and slow, to a state in which processing becomes swift and automatic. In this state, performance is unencumbered by the requirement to process feedback, but its insensitivity to feedback reduces its flexibility. Many properties of automatic processing are similar to those that one would expect of forward models, and many have suggested that these may be instantiated in cerebellar circuitry. Since hierarchically organized frontal lobe areas can both send and receive commands, I discuss the possibility that they can act both as controllers and controlled objects and that their behaviors can be independently modeled by forward models in cerebellar circuits. Since areas of the prefrontal cortex contribute to this hierarchically organized system and send outputs to the cerebellar cortex, I suggest that the cerebellum is likely to contribute to the automation of cognitive skills, and to the formation of habitual behavior which is resistant to error feedback. An important prerequisite to these ideas is that cerebellar circuitry should have access to higher order error feedback that signals the success or failure of cognitive processing. I have discussed the pathways through which such feedback could arrive via the inferior olive and the dopamine system. Cerebellar outputs inhibit both the inferior olive and the dopamine system. It is possible that learned representations in the cerebellum use this as a mechanism to suppress the processing of feedback in other parts of the nervous system. Thus, cerebellar processes that control automatic performance may be completed without triggering the engagement of controlled processes by prefrontal mechanisms. © 2014 Elsevier B.V. All rights reserved.
Motor network disruption in essential tremor: a functional and effective connectivity study.
Buijink, Arthur W G; van der Stouwe, A M Madelein; Broersma, Marja; Sharifi, Sarvi; Groot, Paul F C; Speelman, Johannes D; Maurits, Natasha M; van Rootselaar, Anne-Fleur
2015-10-01
Although involvement of the cerebello-thalamo-cortical network has often been suggested in essential tremor, the source of oscillatory activity remains largely unknown. To elucidate mechanisms of tremor generation, it is of crucial importance to study the dynamics within the cerebello-thalamo-cortical network. Using a combination of electromyography and functional magnetic resonance imaging, it is possible to record the peripheral manifestation of tremor simultaneously with brain activity related to tremor generation. Our first aim was to study the intrinsic activity of regions within the cerebello-thalamo-cortical network using dynamic causal modelling to estimate effective connectivity driven by the concurrently recorded tremor signal. Our second aim was to objectify how the functional integrity of the cerebello-thalamo-cortical network is affected in essential tremor. We investigated the functional connectivity between cerebellar and cortical motor regions showing activations during a motor task. Twenty-two essential tremor patients and 22 healthy controls were analysed. For the effective connectivity analysis, a network of tremor-signal related regions was constructed, consisting of the left primary motor cortex, premotor cortex, supplementary motor area, left thalamus, and right cerebellar motor regions lobule V and lobule VIII. A measure of variation in tremor severity over time, derived from the electromyogram, was included as modulatory input on intrinsic connections and on the extrinsic cerebello-thalamic connections, giving a total of 128 models. Bayesian model selection and random effects Bayesian model averaging were used. Separate seed-based functional connectivity analyses for the left primary motor cortex, left supplementary motor area and right cerebellar lobules IV, V, VI and VIII were performed. We report two novel findings that support an important role for the cerebellar system in the pathophysiology of essential tremor. First, in the effective connectivity analysis, tremor variation during the motor task has an excitatory effect on both the extrinsic connection from cerebellar lobule V to the thalamus, and the intrinsic activity of cerebellar lobule V and thalamus. Second, the functional integrity of the motor network is affected in essential tremor, with a decrease in functional connectivity between cortical and cerebellar motor regions. This decrease in functional connectivity, related to the motor task, correlates with an increase in clinical tremor severity. Interestingly, increased functional connectivity between right cerebellar lobules I-IV and the left thalamus correlates with an increase in clinical tremor severity. In conclusion, our findings suggest that cerebello-dentato-thalamic activity and cerebello-cortical connectivity is disturbed in essential tremor, supporting previous evidence of functional cerebellar changes in essential tremor. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Haldipur, Parthiv; Dang, Derek; Aldinger, Kimberly A; Janson, Olivia K; Guimiot, Fabien; Adle-Biasette, Homa; Dobyns, William B; Siebert, Joseph R; Russo, Rosa; Millen, Kathleen J
2017-01-16
FOXC1 loss contributes to Dandy-Walker malformation (DWM), a common human cerebellar malformation. Previously, we found that complete Foxc1 loss leads to aberrations in proliferation, neuronal differentiation and migration in the embryonic mouse cerebellum (Haldipur et al., 2014). We now demonstrate that hypomorphic Foxc1 mutant mice have granule and Purkinje cell abnormalities causing subsequent disruptions in postnatal cerebellar foliation and lamination. Particularly striking is the presence of a partially formed posterior lobule which echoes the posterior vermis DW 'tail sign' observed in human imaging studies. Lineage tracing experiments in Foxc1 mutant mouse cerebella indicate that aberrant migration of granule cell progenitors destined to form the posterior-most lobule causes this unique phenotype. Analyses of rare human del chr 6p25 fetal cerebella demonstrate extensive phenotypic overlap with our Foxc1 mutant mouse models, validating our DWM models and demonstrating that many key mechanisms controlling cerebellar development are likely conserved between mouse and human.
NASA Astrophysics Data System (ADS)
Hogri, Roni; Bamford, Simeon A.; Taub, Aryeh H.; Magal, Ari; Giudice, Paolo Del; Mintz, Matti
2015-02-01
Neuroprostheses could potentially recover functions lost due to neural damage. Typical neuroprostheses connect an intact brain with the external environment, thus replacing damaged sensory or motor pathways. Recently, closed-loop neuroprostheses, bidirectionally interfaced with the brain, have begun to emerge, offering an opportunity to substitute malfunctioning brain structures. In this proof-of-concept study, we demonstrate a neuro-inspired model-based approach to neuroprostheses. A VLSI chip was designed to implement essential cerebellar synaptic plasticity rules, and was interfaced with cerebellar input and output nuclei in real time, thus reproducing cerebellum-dependent learning in anesthetized rats. Such a model-based approach does not require prior system identification, allowing for de novo experience-based learning in the brain-chip hybrid, with potential clinical advantages and limitations when compared to existing parametric ``black box'' models.
Inexact hardware for modelling weather & climate
NASA Astrophysics Data System (ADS)
Düben, Peter D.; McNamara, Hugh; Palmer, Tim
2014-05-01
The use of stochastic processing hardware and low precision arithmetic in atmospheric models is investigated. Stochastic processors allow hardware-induced faults in calculations, sacrificing exact calculations in exchange for improvements in performance and potentially accuracy and a reduction in power consumption. A similar trade-off is achieved using low precision arithmetic, with improvements in computation and communication speed and savings in storage and memory requirements. As high-performance computing becomes more massively parallel and power intensive, these two approaches may be important stepping stones in the pursuit of global cloud resolving atmospheric modelling. The impact of both, hardware induced faults and low precision arithmetic is tested in the dynamical core of a global atmosphere model. Our simulations show that both approaches to inexact calculations do not substantially affect the quality of the model simulations, provided they are restricted to act only on smaller scales. This suggests that inexact calculations at the small scale could reduce computation and power costs without adversely affecting the quality of the simulations.
The use of imprecise processing to improve accuracy in weather & climate prediction
NASA Astrophysics Data System (ADS)
Düben, Peter D.; McNamara, Hugh; Palmer, T. N.
2014-08-01
The use of stochastic processing hardware and low precision arithmetic in atmospheric models is investigated. Stochastic processors allow hardware-induced faults in calculations, sacrificing bit-reproducibility and precision in exchange for improvements in performance and potentially accuracy of forecasts, due to a reduction in power consumption that could allow higher resolution. A similar trade-off is achieved using low precision arithmetic, with improvements in computation and communication speed and savings in storage and memory requirements. As high-performance computing becomes more massively parallel and power intensive, these two approaches may be important stepping stones in the pursuit of global cloud-resolving atmospheric modelling. The impact of both hardware induced faults and low precision arithmetic is tested using the Lorenz '96 model and the dynamical core of a global atmosphere model. In the Lorenz '96 model there is a natural scale separation; the spectral discretisation used in the dynamical core also allows large and small scale dynamics to be treated separately within the code. Such scale separation allows the impact of lower-accuracy arithmetic to be restricted to components close to the truncation scales and hence close to the necessarily inexact parametrised representations of unresolved processes. By contrast, the larger scales are calculated using high precision deterministic arithmetic. Hardware faults from stochastic processors are emulated using a bit-flip model with different fault rates. Our simulations show that both approaches to inexact calculations do not substantially affect the large scale behaviour, provided they are restricted to act only on smaller scales. By contrast, results from the Lorenz '96 simulations are superior when small scales are calculated on an emulated stochastic processor than when those small scales are parametrised. This suggests that inexact calculations at the small scale could reduce computation and power costs without adversely affecting the quality of the simulations. This would allow higher resolution models to be run at the same computational cost.
Chang, Joshua C; Leung, Mark; Gokozan, Hamza Numan; Gygli, Patrick Edwin; Catacutan, Fay Patsy; Czeisler, Catherine; Otero, José Javier
2015-03-01
Late embryonic and postnatal cerebellar folial surface area expansion promotes cerebellar cortical cytoarchitectural lamination. We developed a streamlined sampling scheme to generate unbiased estimates of murine cerebellar surface area and volume using stereologic principles. We demonstrate that, during the proliferative phase of the external granular layer (EGL) and folial surface area expansion, EGL thickness does not change and thus is a topological proxy for progenitor self-renewal. The topological constraints indicate that, during proliferative phases, migration out of the EGL is balanced by self-renewal. Progenitor self-renewal must, therefore, include mitotic events yielding 2 cells in the same layer to increase surface area (β events) and mitotic events yielding 2 cells, with 1 cell in a superficial layer and 1 cell in a deeper layer (α events). As the cerebellum grows, therefore, β events lie upstream of α events. Using a mathematical model constrained by the measurements of volume and surface area, we could quantify intermitotic times for β events on a per-cell basis in postnatal mouse cerebellum. Furthermore, we found that loss of CCNA2, which decreases EGL proliferation and secondarily induces cerebellar cortical dyslamination, shows preserved α-type events. Thus, CCNA2-null cerebellar granule progenitor cells are capable of self-renewal of the EGL stem cell niche; this is concordant with prior findings of extensive apoptosis in CCNA2-null mice. Similar methodologies may provide another layer of depth to the interpretation of results from stereologic studies.
NASA Astrophysics Data System (ADS)
Xu, Tao; Xiao, Na; Zhai, Xiaolong; Chan, Pak Kwan; Tin, Chung
2018-02-01
Objective. Damage to the brain, as a result of various medical conditions, impacts the everyday life of patients and there is still no complete cure to neurological disorders. Neuroprostheses that can functionally replace the damaged neural circuit have recently emerged as a possible solution to these problems. Here we describe the development of a real-time cerebellar neuroprosthetic system to substitute neural function in cerebellar circuitry for learning delay eyeblink conditioning (DEC). Approach. The system was empowered by a biologically realistic spiking neural network (SNN) model of the cerebellar neural circuit, which considers the neuronal population and anatomical connectivity of the network. The model simulated synaptic plasticity critical for learning DEC. This SNN model was carefully implemented on a field programmable gate array (FPGA) platform for real-time simulation. This hardware system was interfaced in in vivo experiments with anesthetized rats and it used neural spikes recorded online from the animal to learn and trigger conditioned eyeblink in the animal during training. Main results. This rat-FPGA hybrid system was able to process neuronal spikes in real-time with an embedded cerebellum model of ~10 000 neurons and reproduce learning of DEC with different inter-stimulus intervals. Our results validated that the system performance is physiologically relevant at both the neural (firing pattern) and behavioral (eyeblink pattern) levels. Significance. This integrated system provides the sufficient computation power for mimicking the cerebellar circuit in real-time. The system interacts with the biological system naturally at the spike level and can be generalized for including other neural components (neuron types and plasticity) and neural functions for potential neuroprosthetic applications.
Synchrony and neural coding in cerebellar circuits
Person, Abigail L.; Raman, Indira M.
2012-01-01
The cerebellum regulates complex movements and is also implicated in cognitive tasks, and cerebellar dysfunction is consequently associated not only with movement disorders, but also with conditions like autism and dyslexia. How information is encoded by specific cerebellar firing patterns remains debated, however. A central question is how the cerebellar cortex transmits its integrated output to the cerebellar nuclei via GABAergic synapses from Purkinje neurons. Possible answers come from accumulating evidence that subsets of Purkinje cells synchronize their firing during behaviors that require the cerebellum. Consistent with models predicting that coherent activity of inhibitory networks has the capacity to dictate firing patterns of target neurons, recent experimental work supports the idea that inhibitory synchrony may regulate the response of cerebellar nuclear cells to Purkinje inputs, owing to the interplay between unusually fast inhibitory synaptic responses and high rates of intrinsic activity. Data from multiple laboratories lead to a working hypothesis that synchronous inhibitory input from Purkinje cells can set the timing and rate of action potentials produced by cerebellar nuclear cells, thereby relaying information out of the cerebellum. If so, then changing spatiotemporal patterns of Purkinje activity would allow different subsets of inhibitory neurons to control cerebellar output at different times. Here we explore the evidence for and against the idea that a synchrony code defines, at least in part, the input–output function between the cerebellar cortex and nuclei. We consider the literature on the existence of simple spike synchrony, convergence of Purkinje neurons onto nuclear neurons, and intrinsic properties of nuclear neurons that contribute to responses to inhibition. Finally, we discuss factors that may disrupt or modulate a synchrony code and describe the potential contributions of inhibitory synchrony to other motor circuits. PMID:23248585
Network-targeted cerebellar transcranial magnetic stimulation improves attentional control
Esterman, Michael; Thai, Michelle; Okabe, Hidefusa; DeGutis, Joseph; Saad, Elyana; Laganiere, Simon E.; Halko, Mark A.
2018-01-01
Developing non-invasive brain stimulation interventions to improve attentional control is extremely relevant to a variety of neurologic and psychiatric populations, yet few studies have identified reliable biomarkers that can be readily modified to improve attentional control. One potential biomarker of attention is functional connectivity in the core cortical network supporting attention - the dorsal attention network (DAN). We used a network-targeted cerebellar transcranial magnetic stimulation (TMS) procedure, intended to enhance cortical functional connectivity in the DAN. Specifically, in healthy young adults we administered intermittent theta burst TMS (iTBS) to the midline cerebellar node of the DAN and, as a control, the right cerebellar node of the default mode network (DMN). These cerebellar targets were localized using individual resting-state fMRI scans. Participants completed assessments of both sustained (gradual onset continuous performance task, gradCPT) and transient attentional control (attentional blink) immediately before and after stimulation, in two sessions (cerebellar DAN and DMN). Following cerebellar DAN stimulation, participants had significantly fewer attentional lapses (lower commission error rates) on the gradCPT. In contrast, stimulation to the cerebellar DMN did not affect gradCPT performance. Further, in the DAN condition, individuals with worse baseline gradCPT performance showed the greatest enhancement in gradCPT performance. These results suggest that temporarily increasing functional connectivity in the DAN via network-targeted cerebellar stimulation can enhance sustained attention, particularly in those with poor baseline performance. With regard to transient attention, TMS stimulation improved attentional blink performance across both stimulation sites, suggesting increasing functional connectivity in both networks can enhance this aspect of attention. These findings have important implications for intervention applications of TMS and theoretical models of functional connectivity. PMID:28495634
Developmental Dissociation in the Neural Responses to Simple Multiplication and Subtraction Problems
ERIC Educational Resources Information Center
Prado, Jérôme; Mutreja, Rachna; Booth, James R.
2014-01-01
Mastering single-digit arithmetic during school years is commonly thought to depend upon an increasing reliance on verbally memorized facts. An alternative model, however, posits that fluency in single-digit arithmetic might also be achieved via the increasing use of efficient calculation procedures. To test between these hypotheses, we used a…
Measuring Middle Grades Teachers' Understanding of Rational Numbers with the Mixture Rasch Model
ERIC Educational Resources Information Center
Izsak, Andrew; Orrill, Chandra Hawley; Cohen, Allan S.; Brown, Rachael Eriksen
2010-01-01
We report the development of a multiple-choice instrument that measures the mathematical knowledge needed for teaching arithmetic with fractions, decimals, and proportions. In particular, the instrument emphasizes the knowledge needed to reason about such arithmetic when numbers are embedded in problem situations. We administered our instrument to…
Adaptive and predictive control of a simulated robot arm.
Tolu, Silvia; Vanegas, Mauricio; Garrido, Jesús A; Luque, Niceto R; Ros, Eduardo
2013-06-01
In this work, a basic cerebellar neural layer and a machine learning engine are embedded in a recurrent loop which avoids dealing with the motor error or distal error problem. The presented approach learns the motor control based on available sensor error estimates (position, velocity, and acceleration) without explicitly knowing the motor errors. The paper focuses on how to decompose the input into different components in order to facilitate the learning process using an automatic incremental learning model (locally weighted projection regression (LWPR) algorithm). LWPR incrementally learns the forward model of the robot arm and provides the cerebellar module with optimal pre-processed signals. We present a recurrent adaptive control architecture in which an adaptive feedback (AF) controller guarantees a precise, compliant, and stable control during the manipulation of objects. Therefore, this approach efficiently integrates a bio-inspired module (cerebellar circuitry) with a machine learning component (LWPR). The cerebellar-LWPR synergy makes the robot adaptable to changing conditions. We evaluate how this scheme scales for robot-arms of a high number of degrees of freedom (DOFs) using a simulated model of a robot arm of the new generation of light weight robots (LWRs).
Control of a simulated arm using a novel combination of Cerebellar learning mechanisms
NASA Technical Reports Server (NTRS)
Assad, C.; Hartmann, M.; Paulin, M. G.
2001-01-01
We present a model of cerebellar cortex that combines two types of learning: feedforward predicitve association based on local Hebbian-type learning between granule cell ascending branch and parallel fiber inputs, and reinforcement learning with feedback error correction based on climbing fiber activity.
Laterality and the evolution of the prefronto-cerebellar system in anthropoids.
Smaers, Jeroen B; Steele, James; Case, Charleen R; Amunts, Katrin
2013-06-01
There is extensive evidence for an early vertebrate origin of lateralized motor behavior and of related asymmetries in underlying brain systems. We investigate human lateralized motor functioning in a broad comparative context of evolutionary neural reorganization. We quantify evolutionary trends in the fronto-cerebellar system (involved in motor learning) across 46 million years of divergent primate evolution by comparing rates of evolution of prefrontal cortex, frontal motor cortex, and posterior cerebellar hemispheres along individual branches of the primate tree of life. We provide a detailed evolutionary model of the neuroanatomical changes leading to modern human lateralized motor functioning, demonstrating an increased role for the fronto-cerebellar system in the apes dating to their evolutionary divergence from the monkeys (∼30 million years ago (Mya)), and a subsequent shift toward an increased role for prefrontal cortex over frontal motor cortex in the fronto-cerebellar system in the Homo-Pan ancestral lineage (∼10 Mya) and in the human ancestral lineage (∼6 Mya). We discuss these results in the context of cortico-cerebellar functions and their likely role in the evolution of human tool use and speech. © 2013 New York Academy of Sciences.
On the structure of arithmetic sums of Cantor sets with constant ratios of dissection
NASA Astrophysics Data System (ADS)
Anisca, Razvan; Chlebovec, Christopher
2009-09-01
We investigate conditions which imply that the topological structure of the arithmetic sum of two Cantor sets with constant ratios of dissection at each step is either: a Cantor set, a finite union of closed intervals, or three mixed models (L, R and M-Cantorval). We obtain general results that apply in particular for the case of homogeneous Cantor sets, thus generalizing the results of Mendes and Oliveira. The method used here is new in this context. We also produce results regarding the arithmetic sum of two affine Cantor sets of a special kind.
Blank, Marissa C.; Grinberg, Inessa; Aryee, Emmanuel; Laliberte, Christine; Chizhikov, Victor V.; Henkelman, R. Mark; Millen, Kathleen J.
2011-01-01
Heterozygous deletions encompassing the ZIC1;ZIC4 locus have been identified in a subset of individuals with the common cerebellar birth defect Dandy-Walker malformation (DWM). Deletion of Zic1 and Zic4 in mice produces both cerebellar size and foliation defects similar to human DWM, confirming a requirement for these genes in cerebellar development and providing a model to delineate the developmental basis of this clinically important congenital malformation. Here, we show that reduced cerebellar size in Zic1 and Zic4 mutants results from decreased postnatal granule cell progenitor proliferation. Through genetic and molecular analyses, we show that Zic1 and Zic4 have Shh-dependent function promoting proliferation of granule cell progenitors. Expression of the Shh-downstream genes Ptch1, Gli1 and Mycn was downregulated in Zic1/4 mutants, although Shh production and Purkinje cell gene expression were normal. Reduction of Shh dose on the Zic1+/−;Zic4+/− background also resulted in cerebellar size reductions and gene expression changes comparable with those observed in Zic1−/−;Zic4−/− mice. Zic1 and Zic4 are additionally required to pattern anterior vermis foliation. Zic mutant folial patterning abnormalities correlated with disrupted cerebellar anlage gene expression and Purkinje cell topography during late embryonic stages; however, this phenotype was Shh independent. In Zic1+/−;Zic4+/−;Shh+/−, we observed normal cerebellar anlage patterning and foliation. Furthermore, cerebellar patterning was normal in both Gli2-cko and Smo-cko mutant mice, where all Shh function was removed from the developing cerebellum. Thus, our data demonstrate that Zic1 and Zic4 have both Shh-dependent and -independent roles during cerebellar development and that multiple developmental disruptions underlie Zic1/4-related DWM. PMID:21307096
Antonietti, Alberto; Casellato, Claudia; Garrido, Jesús A; Luque, Niceto R; Naveros, Francisco; Ros, Eduardo; D' Angelo, Egidio; Pedrocchi, Alessandra
2016-01-01
In this study, we defined a realistic cerebellar model through the use of artificial spiking neural networks, testing it in computational simulations that reproduce associative motor tasks in multiple sessions of acquisition and extinction. By evolutionary algorithms, we tuned the cerebellar microcircuit to find out the near-optimal plasticity mechanism parameters that better reproduced human-like behavior in eye blink classical conditioning, one of the most extensively studied paradigms related to the cerebellum. We used two models: one with only the cortical plasticity and another including two additional plasticity sites at nuclear level. First, both spiking cerebellar models were able to well reproduce the real human behaviors, in terms of both "timing" and "amplitude", expressing rapid acquisition, stable late acquisition, rapid extinction, and faster reacquisition of an associative motor task. Even though the model with only the cortical plasticity site showed good learning capabilities, the model with distributed plasticity produced faster and more stable acquisition of conditioned responses in the reacquisition phase. This behavior is explained by the effect of the nuclear plasticities, which have slow dynamics and can express memory consolidation and saving. We showed how the spiking dynamics of multiple interactive neural mechanisms implicitly drive multiple essential components of complex learning processes. This study presents a very advanced computational model, developed together by biomedical engineers, computer scientists, and neuroscientists. Since its realistic features, the proposed model can provide confirmations and suggestions about neurophysiological and pathological hypotheses and can be used in challenging clinical applications.
Oculopalatal tremor explained by a model of inferior olivary hypertrophy and cerebellar plasticity
Shaikh, Aasef G.; Hong, Simon; Liao, Ke; Tian, Jing; Solomon, David; Zee, David S.; Leigh, R. John
2010-01-01
The inferior olivary nuclei clearly play a role in creating oculopalatal tremor, but the exact mechanism is unknown. Oculopalatal tremor develops some time after a lesion in the brain that interrupts inhibition of the inferior olive by the deep cerebellar nuclei. Over time the inferior olive gradually becomes hypertrophic and its neurons enlarge developing abnormal soma-somatic gap junctions. However, results from several experimental studies have confounded the issue because they seem inconsistent with a role for the inferior olive in oculopalatal tremor, or because they ascribe the tremor to other brain areas. Here we look at 3D binocular eye movements in 15 oculopalatal tremor patients and compare their behaviour to the output of our recent mathematical model of oculopalatal tremor. This model has two mechanisms that interact to create oculopalatal tremor: an oscillator in the inferior olive and a modulator in the cerebellum. Here we show that this dual mechanism model can reproduce the basic features of oculopalatal tremor and plausibly refute the confounding experimental results. Oscillations in all patients and simulations were aperiodic, with a complicated frequency spectrum showing dominant components from 1 to 3 Hz. The model’s synchronized inferior olive output was too small to induce noticeable ocular oscillations, requiring amplification by the cerebellar cortex. Simulations show that reducing the influence of the cerebellar cortex on the oculomotor pathway reduces the amplitude of ocular tremor, makes it more periodic and pulse-like, but leaves its frequency unchanged. Reducing the coupling among cells in the inferior olive decreases the oscillation’s amplitude until they stop (at ∼20% of full coupling strength), but does not change their frequency. The dual-mechanism model accounts for many of the properties of oculopalatal tremor. Simulations suggest that drug therapies designed to reduce electrotonic coupling within the inferior olive or reduce the disinhibition of the cerebellar cortex on the deep cerebellar nuclei could treat oculopalatal tremor. We conclude that oculopalatal tremor oscillations originate in the hypertrophic inferior olive and are amplified by learning in the cerebellum. PMID:20080879
Integrated plasticity at inhibitory and excitatory synapses in the cerebellar circuit.
Mapelli, Lisa; Pagani, Martina; Garrido, Jesus A; D'Angelo, Egidio
2015-01-01
The way long-term potentiation (LTP) and depression (LTD) are integrated within the different synapses of brain neuronal circuits is poorly understood. In order to progress beyond the identification of specific molecular mechanisms, a system in which multiple forms of plasticity can be correlated with large-scale neural processing is required. In this paper we take as an example the cerebellar network, in which extensive investigations have revealed LTP and LTD at several excitatory and inhibitory synapses. Cerebellar LTP and LTD occur in all three main cerebellar subcircuits (granular layer, molecular layer, deep cerebellar nuclei) and correspondingly regulate the function of their three main neurons: granule cells (GrCs), Purkinje cells (PCs) and deep cerebellar nuclear (DCN) cells. All these neurons, in addition to be excited, are reached by feed-forward and feed-back inhibitory connections, in which LTP and LTD may either operate synergistically or homeostatically in order to control information flow through the circuit. Although the investigation of individual synaptic plasticities in vitro is essential to prove their existence and mechanisms, it is insufficient to generate a coherent view of their impact on network functioning in vivo. Recent computational models and cell-specific genetic mutations in mice are shedding light on how plasticity at multiple excitatory and inhibitory synapses might regulate neuronal activities in the cerebellar circuit and contribute to learning and memory and behavioral control.
Cerebellar contribution to locomotor behavior: A neurodevelopmental perspective.
Sathyanesan, Aaron; Gallo, Vittorio
2018-04-30
The developmental trajectory of the formation of cerebellar circuitry has significant implications for locomotor plasticity and adaptive learning at later stages. While there is a wealth of knowledge on the development of locomotor behavior in human infants, children, and adolescents, pre-clinical animal models have fallen behind on the study of the emergence of behavioral motifs in locomotor function across postnatal development. Since cerebellar development is protracted, it is subject to higher risk of genetic or environmental disruption, potentially leading to abnormal behavioral development. This highlights the need for more sophisticated and specific functional analyses of adaptive cerebellar behavior within the context of whole-body locomotion across the entire span of postnatal development. Here we review evidence on cerebellar contribution to adaptive locomotor behavior, highlighting methodologies employed to quantify and categorize behavior at different developmental stages, with the ultimate goal of following the course of early behavioral alterations in neurodevelopmental disorders. Since experimental paradigms used to study cerebellar behavior are lacking in both specificity and applicability to locomotor contexts, we highlight the use of the Erasmus Ladder - an advanced, computerized, fully automated system to quantify adaptive cerebellar learning in conjunction with locomotor function. Finally, we emphasize the need to develop objective, quantitative, behavioral tasks which can track changes in developmental trajectories rather than endpoint measurement at the adult stage of behavior. Copyright © 2018 Elsevier Inc. All rights reserved.
Jenks, Kathleen M; de Moor, Jan; van Lieshout, Ernest C D M; Maathuis, Karel G B; Keus, Inge; Gorter, Jan Willem
2007-01-01
The development of addition and subtraction accuracy was assessed in first graders with cerebral palsy (CP) in both mainstream (16) and special education (41) and a control group of first graders in mainstream education (16). The control group out-performed the CP groups in addition and subtraction accuracy and this difference could not be fully explained by differences in intelligence. Both CP groups showed evidence of working memory deficits. The three groups exhibited different developmental patterns in the area of early numeracy skills. Children with CP in special education were found to receive less arithmetic instruction and instruction time was positively related to arithmetic accuracy. Structural equation modeling revealed that the effect of CP on arithmetic accuracy is mediated by intelligence, working memory, early numeracy, and instruction time.
Fatigue damage prognosis using affine arithmetic
NASA Astrophysics Data System (ADS)
Gbaguidi, Audrey; Kim, Daewon
2014-02-01
Among the essential steps to be taken in structural health monitoring systems, damage prognosis would be the field that is least investigated due to the complexity of the uncertainties. This paper presents the possibility of using Affine Arithmetic for uncertainty propagation of crack damage in damage prognosis. The structures examined are thin rectangular plates made of titanium alloys with central mode I cracks and a composite plate with an internal delamination caused by mixed mode I and II fracture modes, under a harmonic uniaxial loading condition. The model-based method for crack growth rates are considered using the Paris Erdogan law model for the isotropic plates and the delamination growth law model proposed by Kardomateas for the composite plate. The parameters for both models are randomly taken and their uncertainties are considered as defined by an interval instead of a probability distribution. A Monte Carlo method is also applied to check whether Affine Arithmetic (AA) leads to tight bounds on the lifetime of the structure.
Evolution of the cerebellum as a neuronal machine for Bayesian state estimation
NASA Astrophysics Data System (ADS)
Paulin, M. G.
2005-09-01
The cerebellum evolved in association with the electric sense and vestibular sense of the earliest vertebrates. Accurate information provided by these sensory systems would have been essential for precise control of orienting behavior in predation. A simple model shows that individual spikes in electrosensory primary afferent neurons can be interpreted as measurements of prey location. Using this result, I construct a computational neural model in which the spatial distribution of spikes in a secondary electrosensory map forms a Monte Carlo approximation to the Bayesian posterior distribution of prey locations given the sense data. The neural circuit that emerges naturally to perform this task resembles the cerebellar-like hindbrain electrosensory filtering circuitry of sharks and other electrosensory vertebrates. The optimal filtering mechanism can be extended to handle dynamical targets observed from a dynamical platform; that is, to construct an optimal dynamical state estimator using spiking neurons. This may provide a generic model of cerebellar computation. Vertebrate motion-sensing neurons have specific fractional-order dynamical characteristics that allow Bayesian state estimators to be implemented elegantly and efficiently, using simple operations with asynchronous pulses, i.e. spikes. The computational neural models described in this paper represent a novel kind of particle filter, using spikes as particles. The models are specific and make testable predictions about computational mechanisms in cerebellar circuitry, while providing a plausible explanation of cerebellar contributions to aspects of motor control, perception and cognition.
Brandauer, B; Timmann, D; Häusler, A; Hermsdörfer, J
2010-02-01
Various studies showed a clear impairment of cerebellar patients to modulate grip force in anticipation of the loads resulting from movements with a grasped object. This failure corroborated the theory of internal feedforward models in the cerebellum. Cerebellar damage also impairs the coordination of multiple-joint movements and this has been related to deficient prediction and compensation of movement-induced torques. To study the effects of disturbed torque control on feedforward grip-force control, two self-generated load conditions with different demands on torque control-one with movement-induced and the other with isometrically generated load changes-were directly compared in patients with cerebellar degeneration. Furthermore the cerebellum is thought to be more involved in grip-force adjustment to self-generated loads than to externally generated loads. Consequently, an additional condition with externally generated loads was introduced to further test this hypothesis. Analysis of 23 patients with degenerative cerebellar damage revealed clear impairments in predictive feedforward mechanisms in the control of both self-generated load types. Besides feedforward control, the cerebellar damage also affected more reactive responses when the externally generated load destabilized the grip, although this impairment may vary with the type of load as suggested by control experiments. The present findings provide further support that the cerebellum plays a major role in predictive control mechanisms. However, this impact of the cerebellum does not strongly depend on the nature of the load and the specific internal forward model. Contributions to reactive (grip force) control are not negligible, but seem to be dependent on the physical characteristics of an externally generated load.
Petrosini, Laura; Cutuli, Debora; Picerni, Eleonora; Laricchiuta, Daniela
2017-02-01
The variance in the range of personality trait expression appears to be linked to structural variance in specific brain regions. In evidencing associations between personality factors and neurobiological measures, it seems evident that the cerebellum has not been up to now thought as having a key role in personality. This paper will review the most recent structural and functional neuroimaging literature that engages the cerebellum in personality traits, as novelty seeking and harm avoidance, and it will discuss the findings in the context of contemporary theories of affective and cognitive cerebellar function. By using region of interest (ROI)- and voxel-based approaches, we recently evidenced that the cerebellar volumes correlate positively with novelty seeking scores and negatively with harm avoidance scores. Subjects who search for new situations as a novelty seeker does (and a harm avoiding does not do) show a different engagement of their cerebellar circuitries in order to rapidly adapt to changing environments. The emerging model of cerebellar functionality may explain how the cerebellar abilities in planning, controlling, and putting into action the behavior are associated to normal or abnormal personality constructs. In this framework, it is worth reporting that increased cerebellar volumes are even associated with high scores in alexithymia, construct of personality characterized by impairment in cognitive, emotional, and affective processing. On such a basis, it seems necessary to go over the traditional cortico-centric view of personality constructs and to address the function of the cerebellar system in sustaining aspects of motivational network that characterizes the different temperamental traits.
Lungu, Ovidiu; Barakat, Marc; Laventure, Samuel; Debas, Karen; Proulx, Sébastien; Luck, David; Stip, Emmanuel
2013-07-01
Clinical evidence and structural neuroimaging studies linked cerebellar deficits to cognitive-related symptoms in schizophrenia. Yet, in functional neuroimaging literature to date, the role of the cerebellum in schizophrenia was not explored in a systematic fashion. Here, we reviewed 234 functional magnetic resonance imaging studies indexed by PubMed and published in 1997-2010 that had at least one group of schizophrenia patients, used blood oxygenation level dependent contrast and the general linear model to assess neuronal activity. We quantified presence/absence of cerebellar findings and the frequency of hypo- and hyperactivations (ie, less or more activity in patients relative to healthy controls). We used peaks of activations reported in these studies to build a topographical representation of group differences on a cerebellar map. Cerebellar activity was reported in patients in 41.02% of the articles, with more than 80% of these dedicated to cognitive, emotional, and executive processes in schizophrenia. Almost two-thirds of group comparisons resulted in cerebellar hypoactivation, with a frequency that presented an inverted U shape across different age categories. The majority of the hypoactivation foci were located in the medial portion of the anterior lobe and the lateral hemispheres (lobules IV-V) of the cerebellum. Even though most experimental manipulations did not target explicitly the cerebellum's functions in schizophrenia, the cerebellar findings are frequent and cerebellar hypoactivations predominant. Therefore, although the cerebellum seems to play an important functional role in schizophrenia, the lack of reporting and interpretation of these data may hamper the full understanding of the disorder.
Sveinsdóttir, Kristbjörg; Länsberg, John-Kalle; Sveinsdóttir, Snjólaug; Garwicz, Martin; Ohlsson, Lennart; Hellström, Ann; Smith, Lois; Gram, Magnus; Ley, David
2018-01-01
Cerebellar growth is impeded following very preterm birth in human infants and the observed reduction in cerebellar volume is associated with neurodevelopmental impairment. Decreased levels of circulating insulin-like growth factor 1 (IGF-1) are associated with decreased cerebellar volume. The relationship between preterm birth, circulating IGF-1, and key cell populations supporting cerebellar proliferation is unknown. The aim of this study was to evaluate the effect of preterm birth on postnatal growth, circulating IGF-1, and cerebellar maturation in a preterm rabbit pup model. Preterm rabbit pups (PT) were delivered by cesarean section at day 29 of gestation, cared for in closed incubators with humidified air, and gavage fed with formula. Control term pups (T) delivered by spontaneous vaginal delivery at day 32 of gestation were housed and fed by their lactating doe. In vivo perfusion-fixation for immunohistochemical evaluation of cerebellar proliferation, cell maturation, and apoptosis was performed at repeated time points in PT and T pups. Results show that the mean weight of the pups and circulating IGF-1 protein levels were lower in the PT group at all time points (p < 0.05) than in the T group. Postnatal weight development correlated with circulating IGF-1 (r2 = 0.89) independently of gestational age at birth and postnatal age. The proliferative (Ki-67-positive) portion of the external granular layer (EGL) was decreased in the PT group at postnatal day 2 (P2) compared to in the T group (p = 0.01). Purkinje cells exhibited decreased calbindin staining at P0 (p = 0.003), P2 (p = 0.004), and P5 (p = 0.04) in the PT group compared to in the T group. Staining for sonic hedgehog was positive in neuronal EGL progenitors and Purkinje cells at early time points but was restricted to a well-defined Purkinje cell monolayer at later time points. Preterm birth in rabbit pups is associated with lower circulating levels of IGF-1, decreased postnatal growth, and decreased cerebellar EGL proliferation and Purkinje cell maturation. The preterm rabbit pup model exhibits important characteristics of human preterm birth, and may thus be suitable for the evaluation of interventions aiming to modify growth and cerebellar development in the preterm population. PMID:28972955
Healthy and pathological cerebellar Spiking Neural Networks in Vestibulo-Ocular Reflex.
Antonietti, Alberto; Casellato, Claudia; Geminiani, Alice; D'Angelo, Egidio; Pedrocchi, Alessandra
2015-01-01
Since the Marr-Albus model, computational neuroscientists have been developing a variety of models of the cerebellum, with different approaches and features. In this work, we developed and tested realistic artificial Spiking Neural Networks inspired to this brain region. We tested in computational simulations of the Vestibulo-Ocular Reflex protocol three different models: a network equipped with a single plasticity site, at the cortical level; a network equipped with a distributed plasticity, at both cortical and nuclear levels; a network with a pathological plasticity mechanism at the cortical level. We analyzed the learning performance of the three different models, highlighting the behavioral differences among them. We proved that the model with a distributed plasticity produces a faster and more accurate cerebellar response, especially during a second session of acquisition, compared with the single plasticity model. Furthermore, the pathological model shows an impaired learning capability in Vestibulo-Ocular Reflex acquisition, as found in neurophysiological studies. The effect of the different plasticity conditions, which change fast and slow dynamics, memory consolidation and, in general, learning capabilities of the cerebellar network, explains differences in the behavioral outcome.
When is working memory important for arithmetic? The impact of strategy and age.
Cragg, Lucy; Richardson, Sophie; Hubber, Paula J; Keeble, Sarah; Gilmore, Camilla
2017-01-01
Our ability to perform arithmetic relies heavily on working memory, the manipulation and maintenance of information in mind. Previous research has found that in adults, procedural strategies, particularly counting, rely on working memory to a greater extent than retrieval strategies. During childhood there are changes in the types of strategies employed, as well as an increase in the accuracy and efficiency of strategy execution. As such it seems likely that the role of working memory in arithmetic may also change, however children and adults have never been directly compared. This study used traditional dual-task methodology, with the addition of a control load condition, to investigate the extent to which working memory requirements for different arithmetic strategies change with age between 9-11 years, 12-14 years and young adulthood. We showed that both children and adults employ working memory when solving arithmetic problems, no matter what strategy they choose. This study highlights the importance of considering working memory in understanding the difficulties that some children and adults have with mathematics, as well as the need to include working memory in theoretical models of mathematical cognition.
Right Lateral Cerebellum Represents Linguistic Predictability.
Lesage, Elise; Hansen, Peter C; Miall, R Chris
2017-06-28
Mounting evidence indicates that posterolateral portions of the cerebellum (right Crus I/II) contribute to language processing, but the nature of this role remains unclear. Based on a well-supported theory of cerebellar motor function, which ascribes to the cerebellum a role in short-term prediction through internal modeling, we hypothesize that right cerebellar Crus I/II supports prediction of upcoming sentence content. We tested this hypothesis using event-related fMRI in male and female human subjects by manipulating the predictability of written sentences. Our design controlled for motor planning and execution, as well as for linguistic features and working memory load; it also allowed separation of the prediction interval from the presentation of the final sentence item. In addition, three further fMRI tasks captured semantic, phonological, and orthographic processing to shed light on the nature of the information processed. As hypothesized, activity in right posterolateral cerebellum correlated with the predictability of the upcoming target word. This cerebellar region also responded to prediction error during the outcome of the trial. Further, this region was engaged in phonological, but not semantic or orthographic, processing. This is the first imaging study to demonstrate a right cerebellar contribution in language comprehension independently from motor, cognitive, and linguistic confounds. These results complement our work using other methodologies showing cerebellar engagement in linguistic prediction and suggest that internal modeling of phonological representations aids language production and comprehension. SIGNIFICANCE STATEMENT The cerebellum is traditionally seen as a motor structure that allows for smooth movement by predicting upcoming signals. However, the cerebellum is also consistently implicated in nonmotor functions such as language and working memory. Using fMRI, we identify a cerebellar area that is active when words are predicted and when these predictions are violated. This area is active in a separate task that requires phonological processing, but not in tasks that require semantic or visuospatial processing. Our results support the idea of prediction as a unifying cerebellar function in motor and nonmotor domains. We provide new insights by linking the cerebellar role in prediction to its role in verbal working memory, suggesting that these predictions involve phonological processing. Copyright © 2017 Lesage et al.
A hypothetical universal model of cerebellar function: reconsideration of the current dogma.
Magal, Ari
2013-10-01
The cerebellum is commonly studied in the context of the classical eyeblink conditioning model, which attributes an adaptive motor function to cerebellar learning processes. This model of cerebellar function has quite a few shortcomings and may in fact be somewhat deficient in explaining the myriad functions attributed to the cerebellum, functions ranging from motor sequencing to emotion and cognition. The involvement of the cerebellum in these motor and non-motor functions has been demonstrated in both animals and humans in electrophysiological, behavioral, tracing, functional neuroimaging, and PET studies, as well as in clinical human case studies. A closer look at the cerebellum's evolutionary origin provides a clue to its underlying purpose as a tool which evolved to aid predation rather than as a tool for protection. Based upon this evidence, an alternative model of cerebellar function is proposed, one which might more comprehensively account both for the cerebellum's involvement in a myriad of motor, affective, and cognitive functions and for the relative simplicity and ubiquitous repetitiveness of its circuitry. This alternative model suggests that the cerebellum has the ability to detect coincidences of events, be they sensory, motor, affective, or cognitive in nature, and, after having learned to associate these, it can then trigger (or "mirror") these events after having temporally adjusted their onset based on positive/negative reinforcement. The model also provides for the cerebellum's direction of the proper and uninterrupted sequence of events resulting from this learning through the inhibition of efferent structures (as demonstrated in our lab).
Solution Strategies and Achievement in Dutch Complex Arithmetic: Latent Variable Modeling of Change
ERIC Educational Resources Information Center
Hickendorff, Marian; Heiser, Willem J.; van Putten, Cornelis M.; Verhelst, Norman D.
2009-01-01
In the Netherlands, national assessments at the end of primary school (Grade 6) show a decline of achievement on problems of complex or written arithmetic over the last two decades. The present study aims at contributing to an explanation of the large achievement decrease on complex division, by investigating the strategies students used in…
A Teachable Agent Game Engaging Primary School Children to Learn Arithmetic Concepts and Reasoning
ERIC Educational Resources Information Center
Pareto, Lena
2014-01-01
In this paper we will describe a learning environment designed to foster conceptual understanding and reasoning in mathematics among younger school children. The learning environment consists of 48 2-player game variants based on a graphical model of arithmetic where the mathematical content is intrinsically interwoven with the game idea. The…
Behavioral Analysis and Rescue of a Novel Cerebellar Mouse Model of Tuberous Sclerosis Complex
2012-05-01
and Silva; Lee et al.; Marui et al., 2004). Therefore, dysregulation of mTORC1 appears to be an important pathway leading to the autistic-phenotype...for understanding the role of cerebellar pathology in autism. Eur J Neurosci. 31, 544-55. Marui , T., et al., 2004. Association between the
Haldipur, Parthiv; Dang, Derek; Aldinger, Kimberly A; Janson, Olivia K; Guimiot, Fabien; Adle-Biasette, Homa; Dobyns, William B; Siebert, Joseph R; Russo, Rosa; Millen, Kathleen J
2017-01-01
FOXC1 loss contributes to Dandy-Walker malformation (DWM), a common human cerebellar malformation. Previously, we found that complete Foxc1 loss leads to aberrations in proliferation, neuronal differentiation and migration in the embryonic mouse cerebellum (Haldipur et al., 2014). We now demonstrate that hypomorphic Foxc1 mutant mice have granule and Purkinje cell abnormalities causing subsequent disruptions in postnatal cerebellar foliation and lamination. Particularly striking is the presence of a partially formed posterior lobule which echoes the posterior vermis DW 'tail sign' observed in human imaging studies. Lineage tracing experiments in Foxc1 mutant mouse cerebella indicate that aberrant migration of granule cell progenitors destined to form the posterior-most lobule causes this unique phenotype. Analyses of rare human del chr 6p25 fetal cerebella demonstrate extensive phenotypic overlap with our Foxc1 mutant mouse models, validating our DWM models and demonstrating that many key mechanisms controlling cerebellar development are likely conserved between mouse and human. DOI: http://dx.doi.org/10.7554/eLife.20898.001 PMID:28092268
The cognitive foundations of reading and arithmetic skills in 7- to 10-year-olds.
Durand, Marianne; Hulme, Charles; Larkin, Rebecca; Snowling, Margaret
2005-06-01
A range of possible predictors of arithmetic and reading were assessed in a large sample (N=162) of children between ages 7 years 5 months and 10 years 4 months. A confirmatory factor analysis of the predictors revealed a good fit to a model consisting of four latent variables (verbal ability, nonverbal ability, search speed, and phonological memory) and two manifest variables (digit comparison and phoneme deletion). A path analysis showed that digit comparison and verbal ability were unique predictors of variations in arithmetic skills, whereas phoneme deletion and verbal ability were unique predictors of variations in reading skills. These results confirm earlier findings that phoneme deletion ability appears to be a critical foundation for learning to read (decode). In addition, variations in the speed of accessing numerical quantity information appear to be a critical foundation for the development of arithmetic skills.
Lonchamp, Etienne; Dupont, Jean-Luc; Beekenkamp, Huguette; Poulain, Bernard; Bossu, Jean-Louis
2006-01-01
Thin acute slices and dissociated cell cultures taken from different parts of the brain have been widely used to examine the function of the nervous system, neuron-specific interactions, and neuronal development (specifically, neurobiology, neuropharmacology, and neurotoxicology studies). Here, we focus on an alternative in vitro model: brain-slice cultures in roller tubes, initially introduced by Beat Gähwiler for studies with rats, that we have recently adapted for studies of mouse cerebellum. Cultured cerebellar slices afford many of the advantages of dissociated cultures of neurons and thin acute slices. Organotypic slice cultures were established from newborn or 10-15-day-old mice. After 3-4 weeks in culture, the slices flattened to form a cell monolayer. The main types of cerebellar neurons could be identified with immunostaining techniques, while their electrophysiological properties could be easily characterized with the patch-clamp recording technique. When slices were taken from newborn mice and cultured for 3 weeks, aspects of the cerebellar development were displayed. A functional neuronal network was established despite the absence of mossy and climbing fibers, which are the two excitatory afferent projections to the cerebellum. When slices were made from 10-15-day-old mice, which are at a developmental stage when cerebellum organization is almost established, the structure and neuronal pathways were intact after 3-4 weeks in culture. These unique characteristics make organotypic slice cultures of mouse cerebellar cortex a valuable model for analyzing the consequences of gene mutations that profoundly alter neuronal function and compromise postnatal survival.
Robustness effect of gap junctions between Golgi cells on cerebellar cortex oscillations
2011-01-01
Background Previous one-dimensional network modeling of the cerebellar granular layer has been successfully linked with a range of cerebellar cortex oscillations observed in vivo. However, the recent discovery of gap junctions between Golgi cells (GoCs), which may cause oscillations by themselves, has raised the question of how gap-junction coupling affects GoC and granular-layer oscillations. To investigate this question, we developed a novel two-dimensional computational model of the GoC-granule cell (GC) circuit with and without gap junctions between GoCs. Results Isolated GoCs coupled by gap junctions had a strong tendency to generate spontaneous oscillations without affecting their mean firing frequencies in response to distributed mossy fiber input. Conversely, when GoCs were synaptically connected in the granular layer, gap junctions increased the power of the oscillations, but the oscillations were primarily driven by the synaptic feedback loop between GoCs and GCs, and the gap junctions did not change oscillation frequency or the mean firing rate of either GoCs or GCs. Conclusion Our modeling results suggest that gap junctions between GoCs increase the robustness of cerebellar cortex oscillations that are primarily driven by the feedback loop between GoCs and GCs. The robustness effect of gap junctions on synaptically driven oscillations observed in our model may be a general mechanism, also present in other regions of the brain. PMID:22330240
Neudert, Franziska; Nuernberger, Krishna-K Monique; Redies, Christoph
2008-12-20
The cerebellum shows remarkable variations in the relative size of its divisions among vertebrate species. In the present study, we compare the cerebella of two mammals (ferret and mouse) by mapping the expression of three cadherins (cadherin-8, protocadherin-7, and protocadherin-10) at similar postnatal stages. The three cadherins are expressed differentially in parasagittal stripes in the cerebellar cortex, in the portions of the deep cerebellar nuclei, in the divisions of the inferior olivary nucleus, and in the lateral vestibular nucleus. The expression profiles suggest that the cadherin-positive structures are interconnected. The expression patterns resemble each other in ferret and mouse, although some differences can be observed. The general resemblance indicates that cerebellar organization is based on a common set of embryonic divisions in the two species. Consequently, the large differences in cerebellar morphology between the two species are more likely caused by differential growth of these embryonic divisions than by differences in early embryonic patterning. Based on the cadherin expression patterns, a model of corticonuclear projection territories in ferret and mouse is proposed. In summary, our results indicate that the cerebellar systems of rodents and carnivores display a relatively large degree of similarity in their molecular and functional organization.
Cortico-Cerebellar Structural Connectivity Is Related to Residual Motor Output in Chronic Stroke.
Schulz, Robert; Frey, Benedikt M; Koch, Philipp; Zimerman, Maximo; Bönstrup, Marlene; Feldheim, Jan; Timmermann, Jan E; Schön, Gerhard; Cheng, Bastian; Thomalla, Götz; Gerloff, Christian; Hummel, Friedhelm C
2017-01-01
Functional imaging studies have argued that interactions between cortical motor areas and the cerebellum are relevant for motor output and recovery processes after stroke. However, the impact of the underlying structural connections is poorly understood. To investigate this, diffusion-weighted brain imaging was conducted in 26 well-characterized chronic stroke patients (aged 63 ± 1.9 years, 18 males) with supratentorial ischemic lesions and 26 healthy participants. Probabilistic tractography was used to reconstruct reciprocal cortico-cerebellar tracts and to relate their microstructural integrity to residual motor functioning applying linear regression modeling. The main finding was a significant association between cortico-cerebellar structural connectivity and residual motor function, independent from the level of damage to the cortico-spinal tract. Specifically, white matter integrity of the cerebellar outflow tract, the dentato-thalamo-cortical tract, was positively related to both general motor output and fine motor skills. Additionally, the integrity of the descending cortico-ponto-cerebellar tract contributed to rather fine motor skills. A comparable structure-function relationship was not evident in the controls. The present study provides first tract-related structural data demonstrating a critical importance of distinct cortico-cerebellar connections for motor output after stroke. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Sullivan, Edith V; Rose, Jessica; Pfefferbaum, Adolf
2006-08-01
Postural balance is impaired in individuals with pathology of the anterior superior vermis of the cerebellum. Chronic alcoholism, with its known vermian pathology, provides a viable model for studying the relationship between cerebellar pathology and postural stability. Decades of separate study of recovering alcoholics and post-mortem neuroanatomical analysis have demonstrated vermian pathology but few studies have used quantitative posturography, acquired concurrently with quantitative neuroimaging, to establish whether this brain structure-function relationship is selective in vivo. Here, 30 healthy men and 39 chronic alcoholic men, abstinent from alcohol for several months, underwent MRI for volumetric quantitation of the cerebellar vermis and three comparison brain regions, the cerebellar hemispheres, supratentorial cortex and corpus callosum. All subjects also participated in an experiment involving a force platform that measured sway path length and tremor during static standing balance under four sensory conditions and two stance conditions. Three novel findings emerged: (i) sway path length, a physiological index of postural control, was selectively related to volume of the cerebellar vermis and not to any comparison brain region in the alcoholics; (ii) spectral analysis revealed sway prominence in the 2-5 Hz band, another physiological sign of vermian lesions and also selectively related to vermian volume in the alcoholics; and (iii) despite substantial postural sway in the patients, they successfully used vision, touch and stance to normalize sway and reduce tremor. The selective relationship of sway path to vermian but not lateral cerebellar volume provides correlational evidence for functional differentiation of these cerebellar regions. Improvement to virtual normal levels in balance and reduction in sway and tremor with changes in vision, touch and stance provide evidence that adaptive mechanisms recruiting sensorimotor integration can be invoked to compensate for underlying cerebellar vermian-related dysfunction.
Cerebellar tDCS Modulates Neural Circuits during Semantic Prediction: A Combined tDCS-fMRI Study.
D'Mello, Anila M; Turkeltaub, Peter E; Stoodley, Catherine J
2017-02-08
It has been proposed that the cerebellum acquires internal models of mental processes that enable prediction, allowing for the optimization of behavior. In language, semantic prediction speeds speech production and comprehension. Right cerebellar lobules VI and VII (including Crus I/II) are engaged during a variety of language processes and are functionally connected with cerebral cortical language networks. Further, right posterolateral cerebellar neuromodulation modifies behavior during predictive language processing. These data are consistent with a role for the cerebellum in semantic processing and semantic prediction. We combined transcranial direct current stimulation (tDCS) and fMRI to assess the behavioral and neural consequences of cerebellar tDCS during a sentence completion task. Task-based and resting-state fMRI data were acquired in healthy human adults ( n = 32; μ = 23.1 years) both before and after 20 min of 1.5 mA anodal ( n = 18) or sham ( n = 14) tDCS applied to the right posterolateral cerebellum. In the sentence completion task, the first four words of the sentence modulated the predictability of the final target word. In some sentences, the preceding context strongly predicted the target word, whereas other sentences were nonpredictive. Completion of predictive sentences increased activation in right Crus I/II of the cerebellum. Relative to sham tDCS, anodal tDCS increased activation in right Crus I/II during semantic prediction and enhanced resting-state functional connectivity between hubs of the reading/language networks. These results are consistent with a role for the right posterolateral cerebellum beyond motor aspects of language, and suggest that cerebellar internal models of linguistic stimuli support semantic prediction. SIGNIFICANCE STATEMENT Cerebellar involvement in language tasks and language networks is now well established, yet the specific cerebellar contribution to language processing remains unclear. It is thought that the cerebellum acquires internal models of mental processes that enable prediction, allowing for the optimization of behavior. Here we combined neuroimaging and neuromodulation to provide evidence that the cerebellum is specifically involved in semantic prediction during sentence processing. We found that activation within right Crus I/II was enhanced when semantic predictions were made, and we show that modulation of this region with transcranial direct current stimulation alters both activation patterns and functional connectivity within whole-brain language networks. For the first time, these data show that cerebellar neuromodulation impacts activation patterns specifically during predictive language processing. Copyright © 2017 the authors 0270-6474/17/371604-10$15.00/0.
Assaf, Tareq; Rossiter, Jonathan M.; Porrill, John
2016-01-01
Electroactive polymer actuators are important for soft robotics, but can be difficult to control because of compliance, creep and nonlinearities. Because biological control mechanisms have evolved to deal with such problems, we investigated whether a control scheme based on the cerebellum would be useful for controlling a nonlinear dielectric elastomer actuator, a class of artificial muscle. The cerebellum was represented by the adaptive filter model, and acted in parallel with a brainstem, an approximate inverse plant model. The recurrent connections between the two allowed for direct use of sensory error to adjust motor commands. Accurate tracking of a displacement command in the actuator's nonlinear range was achieved by either semi-linear basis functions in the cerebellar model or semi-linear functions in the brainstem corresponding to recruitment in biological muscle. In addition, allowing transfer of training between cerebellum and brainstem as has been observed in the vestibulo-ocular reflex prevented the steady increase in cerebellar output otherwise required to deal with creep. The extensibility and relative simplicity of the cerebellar-based adaptive-inverse control scheme suggests that it is a plausible candidate for controlling this type of actuator. Moreover, its performance highlights important features of biological control, particularly nonlinear basis functions, recruitment and transfer of training. PMID:27655667
Szabo, Gergely G.; Armstrong, Caren; Oijala, Mikko; Soltesz, Ivan
2014-01-01
Abstract Cover Figure Krook-Magnuson et al. report a bidirectional functional connectivity between the hippocampus and the cerebellum in a mouse model of temporal lobe epilepsy, and demonstrate that cerebellar directed on-demand optogenetic intervention can stop seizures recorded from the hippocampus. Temporal lobe epilepsy is often medically refractory and new targets for intervention are needed. We used a mouse model of temporal lobe epilepsy, on-line seizure detection, and responsive optogenetic intervention to investigate the potential for cerebellar control of spontaneous temporal lobe seizures. Cerebellar targeted intervention inhibited spontaneous temporal lobe seizures during the chronic phase of the disorder. We further report that the direction of modulation as well as the location of intervention within the cerebellum can affect the outcome of intervention. Specifically, on-demand optogenetic excitation or inhibition of parvalbumin-expressing neurons, including Purkinje cells, in the lateral or midline cerebellum results in a decrease in seizure duration. In contrast, a consistent reduction in spontaneous seizure frequency occurs uniquely with on-demand optogenetic excitation of the midline cerebellum, and was not seen with intervention directly targeting the hippocampal formation. These findings demonstrate that the cerebellum is a powerful modulator of temporal lobe epilepsy, and that intervention targeting the cerebellum as a potential therapy for epilepsy should be revisited. PMID:25599088
The Evolution of Human Handedness
Smaers, Jeroen B; Steele, James; Case, Charleen R; Amunts, Katrin
2013-01-01
There is extensive evidence for an early vertebrate origin of lateralized motor behavior and of related asymmetries in underlying brain systems. We investigate human lateralized motor functioning in a broad comparative context of evolutionary neural reorganization. We quantify evolutionary trends in the fronto-cerebellar system (involved in motor learning) across 46 million years of divergent primate evolution by comparing rates of evolution of prefrontal cortex, frontal motor cortex, and posterior cerebellar hemispheres along individual branches of the primate tree of life. We provide a detailed evolutionary model of the neuroanatomical changes leading to modern human lateralized motor functioning, demonstrating an increased role for the fronto-cerebellar system in the apes dating to their evolutionary divergence from the monkeys (∼30 million years ago (Mya)), and a subsequent shift toward an increased role for prefrontal cortex over frontal motor cortex in the fronto-cerebellar system in the Homo-Pan ancestral lineage (∼10 Mya) and in the human ancestral lineage (∼6 Mya). We discuss these results in the context of cortico-cerebellar functions and their likely role in the evolution of human tool use and speech. PMID:23647442
Specific Learning Disorder: Prevalence and Gender Differences
Moll, Kristina; Kunze, Sarah; Neuhoff, Nina; Bruder, Jennifer; Schulte-Körne, Gerd
2014-01-01
Comprehensive models of learning disorders have to consider both isolated learning disorders that affect one learning domain only, as well as comorbidity between learning disorders. However, empirical evidence on comorbidity rates including all three learning disorders as defined by DSM-5 (deficits in reading, writing, and mathematics) is scarce. The current study assessed prevalence rates and gender ratios for isolated as well as comorbid learning disorders in a representative sample of 1633 German speaking children in 3rd and 4th Grade. Prevalence rates were analysed for isolated as well as combined learning disorders and for different deficit criteria, including a criterion for normal performance. Comorbid learning disorders occurred as frequently as isolated learning disorders, even when stricter cutoff criteria were applied. The relative proportion of isolated and combined disorders did not change when including a criterion for normal performance. Reading and spelling deficits differed with respect to their association with arithmetic problems: Deficits in arithmetic co-occurred more often with deficits in spelling than with deficits in reading. In addition, comorbidity rates for arithmetic and reading decreased when applying stricter deficit criteria, but stayed high for arithmetic and spelling irrespective of the chosen deficit criterion. These findings suggest that the processes underlying the relationship between arithmetic and reading might differ from those underlying the relationship between arithmetic and spelling. With respect to gender ratios, more boys than girls showed spelling deficits, while more girls were impaired in arithmetic. No gender differences were observed for isolated reading problems and for the combination of all three learning disorders. Implications of these findings for assessment and intervention of learning disorders are discussed. PMID:25072465
Specific learning disorder: prevalence and gender differences.
Moll, Kristina; Kunze, Sarah; Neuhoff, Nina; Bruder, Jennifer; Schulte-Körne, Gerd
2014-01-01
Comprehensive models of learning disorders have to consider both isolated learning disorders that affect one learning domain only, as well as comorbidity between learning disorders. However, empirical evidence on comorbidity rates including all three learning disorders as defined by DSM-5 (deficits in reading, writing, and mathematics) is scarce. The current study assessed prevalence rates and gender ratios for isolated as well as comorbid learning disorders in a representative sample of 1633 German speaking children in 3rd and 4th Grade. Prevalence rates were analysed for isolated as well as combined learning disorders and for different deficit criteria, including a criterion for normal performance. Comorbid learning disorders occurred as frequently as isolated learning disorders, even when stricter cutoff criteria were applied. The relative proportion of isolated and combined disorders did not change when including a criterion for normal performance. Reading and spelling deficits differed with respect to their association with arithmetic problems: Deficits in arithmetic co-occurred more often with deficits in spelling than with deficits in reading. In addition, comorbidity rates for arithmetic and reading decreased when applying stricter deficit criteria, but stayed high for arithmetic and spelling irrespective of the chosen deficit criterion. These findings suggest that the processes underlying the relationship between arithmetic and reading might differ from those underlying the relationship between arithmetic and spelling. With respect to gender ratios, more boys than girls showed spelling deficits, while more girls were impaired in arithmetic. No gender differences were observed for isolated reading problems and for the combination of all three learning disorders. Implications of these findings for assessment and intervention of learning disorders are discussed.
ERIC Educational Resources Information Center
Rickard, Timothy C.; Bajic, Daniel
2006-01-01
The applicability of the identical elements (IE) model of arithmetic fact retrieval (T. C. Rickard, A. F. Healy, & L. E. Bourne, 1994) to cued recall from episodic (image and sentence) memory was explored in 3 transfer experiments. In agreement with results from arithmetic, speedup following even minimal practice recalling a missing word from an…
The Cognitive Foundations of Reading and Arithmetic Skills in 7- to 10-Year-Olds
ERIC Educational Resources Information Center
Durand, Marianne; Hulme, Charles; Larkin, Rebecca; Snowling, Margaret
2005-01-01
A range of possible predictors of arithmetic and reading were assessed in a large sample (N=162) of children between ages 7 years 5 months and 10 years 4 months. A confirmatory factor analysis of the predictors revealed a good fit to a model consisting of four latent variables (verbal ability, nonverbal ability, search speed, and phonological…
ERIC Educational Resources Information Center
Wagner, William J.
The application of a linear learning model, which combines learning theory with a structural analysis of the exercises given to students, to an elementary mathematics curriculum is examined. Elementary arithmetic items taken by about 100 second-grade students on 26 weekly tests form the data base. Weekly predictions of group performance on…
ERIC Educational Resources Information Center
Suppes, Patrick; And Others
This report presents a theory of eye movement that accounts for main features of the stochastic behavior of eye-fixation durations and direction of movement of saccades in the process of solving arithmetic exercises of addition and subtraction. The best-fitting distribution of fixation durations with a relatively simple theoretical justification…
Koning, Irene V.; Groenenberg, Irene A. L.; Gotink, Anniek W.; Willemsen, Sten P.; Gijtenbeek, Manon; Dudink, Jeroen; Go, Attie T. J. I.; Reiss, Irwin K. M.; Steegers, Eric A. P.; Steegers-Theunissen, Régine P. M.
2015-01-01
We aimed to investigate whether periconceptional maternal folate status affects human embryonic cerebellar size and growth trajectories. In a prospective periconceptional cohort participants filled out questionnaires and received weekly transvaginal 3D-ultrasounds between 7+0 and 12+6 weeks gestational age (GA). Viable non-malformed singleton pregnancies were selected for cerebellar measurements; transcerebellar diameter, (TCD), left and right cerebellar diameters (LCD, RCD). Linear mixed models were performed to estimate associations between questionnaire data on the timing of maternal folic acid supplement initiation and longitudinal cerebellar measurements as a function of crown-rump length (CRL) and GA. Maternal red blood cell folate concentrations were analysed before 8 weeks GA to validate the associations. A total of 263 serial high quality three-dimensional ultrasound scans of 135 pregnancies were studied. Preconceptional compared to postconceptional initiation of folic acid use was associated with slightly larger cerebellar diameters per millimetre increase of CRL (TCD: β = 0.260mm, 95%CI = 0.023–0.491, p<0.05; LCD: β = 0.171mm, 95%CI = 0.038–0.305, p<0.05; RCD: β = 0.156mm, 95%CI = 0.032–0.280, p<0.05) and with proportional cerebellar growth (TCD/CRL:β = 0.015mm/mm, 95%CI = 0.005–0.024, p<0.01; LCD/CRL:β = 0.012mm/mm, 95%CI = 0.005–0.018, p<0.01; RCD/CRL:β = 0.011mm/mm, 95%CI = 0.005–0.017, p<0.01). Cerebellar growth was significantly highest in the third quartile of maternal red blood cell folate levels (1538–1813 nmol/L). These first findings show that periconceptional maternal folate status is associated with human embryonic cerebellar development. Implications of these small but significant variations for fetal cerebellar growth trajectories and the child’s neurodevelopmental outcome are yet unknown and warrant further investigation. PMID:26491876
NASA Astrophysics Data System (ADS)
Power, Sarah D.; Falk, Tiago H.; Chau, Tom
2010-04-01
Near-infrared spectroscopy (NIRS) has recently been investigated as a non-invasive brain-computer interface (BCI). In particular, previous research has shown that NIRS signals recorded from the motor cortex during left- and right-hand imagery can be distinguished, providing a basis for a two-choice NIRS-BCI. In this study, we investigated the feasibility of an alternative two-choice NIRS-BCI paradigm based on the classification of prefrontal activity due to two cognitive tasks, specifically mental arithmetic and music imagery. Deploying a dual-wavelength frequency domain near-infrared spectrometer, we interrogated nine sites around the frontopolar locations (International 10-20 System) while ten able-bodied adults performed mental arithmetic and music imagery within a synchronous shape-matching paradigm. With the 18 filtered AC signals, we created task- and subject-specific maximum likelihood classifiers using hidden Markov models. Mental arithmetic and music imagery were classified with an average accuracy of 77.2% ± 7.0 across participants, with all participants significantly exceeding chance accuracies. The results suggest the potential of a two-choice NIRS-BCI based on cognitive rather than motor tasks.
Benavides-Varela, S; Piva, D; Burgio, F; Passarini, L; Rolma, G; Meneghello, F; Semenza, C
2017-03-01
Arithmetical deficits in right-hemisphere damaged patients have been traditionally considered secondary to visuo-spatial impairments, although the exact relationship between the two deficits has rarely been assessed. The present study implemented a voxelwise lesion analysis among 30 right-hemisphere damaged patients and a controlled, matched-sample, cross-sectional analysis with 35 cognitively normal controls regressing three composite cognitive measures on standardized numerical measures. The results showed that patients and controls significantly differ in Number comprehension, Transcoding, and Written operations, particularly subtractions and multiplications. The percentage of patients performing below the cutoffs ranged between 27% and 47% across these tasks. Spatial errors were associated with extensive lesions in fronto-temporo-parietal regions -which frequently lead to neglect- whereas pure arithmetical errors appeared related to more confined lesions in the right angular gyrus and its proximity. Stepwise regression models consistently revealed that spatial errors were primarily predicted by composite measures of visuo-spatial attention/neglect and representational abilities. Conversely, specific errors of arithmetic nature linked to representational abilities only. Crucially, the proportion of arithmetical errors (ranging from 65% to 100% across tasks) was higher than that of spatial ones. These findings thus suggest that unilateral right hemisphere lesions can directly affect core numerical/arithmetical processes, and that right-hemisphere acalculia is not only ascribable to visuo-spatial deficits as traditionally thought. Copyright © 2017 Elsevier Ltd. All rights reserved.
Beitzel, Christy S.; Houck, Brenda D.; Lewis, Samantha M.
2017-01-01
Understanding cerebellar contributions to motor coordination requires deeper insight into how the output structures of the cerebellum, the cerebellar nuclei, integrate their inputs and influence downstream motor pathways. The magnocellular red nucleus (RNm), a brainstem premotor structure, is a major target of the interposed nucleus (IN), and has also been described in previous studies to send feedback collaterals to the cerebellum. Because such a pathway is in a key position to provide motor efferent information to the cerebellum, satisfying predictions about the use of corollary discharge in cerebellar computations, we studied it in mice of both sexes. Using anterograde viral tracing, we show that innervation of cerebellum by rubrospinal neuron collaterals is remarkably selective for the IN compared with the cerebellar cortex. Optogenetic activation of the pathway in acute mouse brain slices drove IN activity despite small amplitude synaptic currents, suggesting an active role in IN information processing. Monosynaptic transsynaptic rabies tracing indicated the pathway contacts multiple cell types within the IN. By contrast, IN inputs to the RNm targeted a region that lacked inhibitory neurons. Optogenetic drive of IN inputs to the RNm revealed strong, direct excitation but no inhibition of RNm neurons. Together, these data indicate that the cerebellar nuclei are under afferent control independent of the cerebellar cortex, potentially diversifying its roles in motor control. SIGNIFICANCE STATEMENT The common assumption that all cerebellar mossy fibers uniformly collateralize to the cerebellar nuclei and cortex underlies classic models of convergent Purkinje influence on cerebellar output. Specifically, mossy fibers are thought to both directly excite nuclear neurons and drive polysynaptic feedforward inhibition via Purkinje neurons, setting up a fundamental computational unit. Here we present data that challenge this rule. A dedicated cerebellar nuclear afferent comprised of feedback collaterals from premotor rubrospinal neurons can directly modulate IN output independent of Purkinje cell modulation. In contrast to the IN-RNm pathway, the RNm-IN feedback pathway targets multiple cell types, potentially influencing both motor output pathways and nucleo-olivary feedback. PMID:28916520
Beitzel, Christy S; Houck, Brenda D; Lewis, Samantha M; Person, Abigail L
2017-10-18
Understanding cerebellar contributions to motor coordination requires deeper insight into how the output structures of the cerebellum, the cerebellar nuclei, integrate their inputs and influence downstream motor pathways. The magnocellular red nucleus (RNm), a brainstem premotor structure, is a major target of the interposed nucleus (IN), and has also been described in previous studies to send feedback collaterals to the cerebellum. Because such a pathway is in a key position to provide motor efferent information to the cerebellum, satisfying predictions about the use of corollary discharge in cerebellar computations, we studied it in mice of both sexes. Using anterograde viral tracing, we show that innervation of cerebellum by rubrospinal neuron collaterals is remarkably selective for the IN compared with the cerebellar cortex. Optogenetic activation of the pathway in acute mouse brain slices drove IN activity despite small amplitude synaptic currents, suggesting an active role in IN information processing. Monosynaptic transsynaptic rabies tracing indicated the pathway contacts multiple cell types within the IN. By contrast, IN inputs to the RNm targeted a region that lacked inhibitory neurons. Optogenetic drive of IN inputs to the RNm revealed strong, direct excitation but no inhibition of RNm neurons. Together, these data indicate that the cerebellar nuclei are under afferent control independent of the cerebellar cortex, potentially diversifying its roles in motor control. SIGNIFICANCE STATEMENT The common assumption that all cerebellar mossy fibers uniformly collateralize to the cerebellar nuclei and cortex underlies classic models of convergent Purkinje influence on cerebellar output. Specifically, mossy fibers are thought to both directly excite nuclear neurons and drive polysynaptic feedforward inhibition via Purkinje neurons, setting up a fundamental computational unit. Here we present data that challenge this rule. A dedicated cerebellar nuclear afferent comprised of feedback collaterals from premotor rubrospinal neurons can directly modulate IN output independent of Purkinje cell modulation. In contrast to the IN-RNm pathway, the RNm-IN feedback pathway targets multiple cell types, potentially influencing both motor output pathways and nucleo-olivary feedback. Copyright © 2017 the authors 0270-6474/17/3710085-12$15.00/0.
Induced pluripotent stem cell technology for modelling and therapy of cerebellar ataxia
Watson, Lauren M.; Wong, Maggie M. K.; Becker, Esther B. E.
2015-01-01
Induced pluripotent stem cell (iPSC) technology has emerged as an important tool in understanding, and potentially reversing, disease pathology. This is particularly true in the case of neurodegenerative diseases, in which the affected cell types are not readily accessible for study. Since the first descriptions of iPSC-based disease modelling, considerable advances have been made in understanding the aetiology and progression of a diverse array of neurodegenerative conditions, including Parkinson's disease and Alzheimer's disease. To date, however, relatively few studies have succeeded in using iPSCs to model the neurodegeneration observed in cerebellar ataxia. Given the distinct neurodevelopmental phenotypes associated with certain types of ataxia, iPSC-based models are likely to provide significant insights, not only into disease progression, but also to the development of early-intervention therapies. In this review, we describe the existing iPSC-based disease models of this heterogeneous group of conditions and explore the challenges associated with generating cerebellar neurons from iPSCs, which have thus far hindered the expansion of this research. PMID:26136256
The Cerebellar Mossy Fiber Synapse as a Model for High-Frequency Transmission in the Mammalian CNS.
Delvendahl, Igor; Hallermann, Stefan
2016-11-01
The speed of neuronal information processing depends on neuronal firing frequency. Here, we describe the evolutionary advantages and ubiquitous occurrence of high-frequency firing within the mammalian nervous system in general. The highest firing frequencies so far have been observed at the cerebellar mossy fiber to granule cell synapse. The mechanisms enabling high-frequency transmission at this synapse are reviewed and compared with other synapses. Finally, information coding of high-frequency signals at the mossy fiber synapse is discussed. The exceptionally high firing frequencies and amenability to high-resolution technical approaches both in vitro and in vivo establish the cerebellar mossy fiber synapse as an attractive model to investigate high-frequency signaling from the molecular up to the network level. Copyright © 2016 Elsevier Ltd. All rights reserved.
Model-Checking with Edge-Valued Decision Diagrams
NASA Technical Reports Server (NTRS)
Roux, Pierre; Siminiceanu, Radu I.
2010-01-01
We describe an algebra of Edge-Valued Decision Diagrams (EVMDDs) to encode arithmetic functions and its implementation in a model checking library along with state-of-the-art algorithms for building the transition relation and the state space of discrete state systems. We provide efficient algorithms for manipulating EVMDDs and give upper bounds of the theoretical time complexity of these algorithms for all basic arithmetic and relational operators. We also demonstrate that the time complexity of the generic recursive algorithm for applying a binary operator on EVMDDs is no worse than that of Multi-Terminal Decision Diagrams. We have implemented a new symbolic model checker with the intention to represent in one formalism the best techniques available at the moment across a spectrum of existing tools: EVMDDs for encoding arithmetic expressions, identity-reduced MDDs for representing the transition relation, and the saturation algorithm for reachability analysis. We compare our new symbolic model checking EVMDD library with the widely used CUDD package and show that, in many cases, our tool is several orders of magnitude faster than CUDD.
Cerebellar contribution to feedforward control of locomotion.
Pisotta, Iolanda; Molinari, Marco
2014-01-01
The cerebellum is an important contributor to feedforward control mechanisms of the central nervous system, and sequencing-the process that allows spatial and temporal relationships between events to be recognized-has been implicated as the fundamental cerebellar mode of operation. By adopting such a mode and because cerebellar activity patterns are sensitive to a variety of sensorimotor-related tasks, the cerebellum is believed to support motor and cognitive functions that are encoded in the frontal and parietal lobes of the cerebral cortex. In this model, the cerebellum is hypothesized to make predictions about the consequences of a motor or cognitive command that originates from the cortex to prepare the entire system to cope with ongoing changes. In this framework, cerebellar predictive mechanisms for locomotion are addressed, focusing on sensorial and motoric sequencing. The hypothesis that sequence recognition is the mechanism by which the cerebellum functions in gait control is presented and discussed.
Cerebellar contribution to feedforward control of locomotion
Pisotta, Iolanda; Molinari, Marco
2014-01-01
The cerebellum is an important contributor to feedforward control mechanisms of the central nervous system, and sequencing—the process that allows spatial and temporal relationships between events to be recognized—has been implicated as the fundamental cerebellar mode of operation. By adopting such a mode and because cerebellar activity patterns are sensitive to a variety of sensorimotor-related tasks, the cerebellum is believed to support motor and cognitive functions that are encoded in the frontal and parietal lobes of the cerebral cortex. In this model, the cerebellum is hypothesized to make predictions about the consequences of a motor or cognitive command that originates from the cortex to prepare the entire system to cope with ongoing changes. In this framework, cerebellar predictive mechanisms for locomotion are addressed, focusing on sensorial and motoric sequencing. The hypothesis that sequence recognition is the mechanism by which the cerebellum functions in gait control is presented and discussed. PMID:25009490
NASA Astrophysics Data System (ADS)
Winarti, Yuyun Guna; Noviyanti, Lienda; Setyanto, Gatot R.
2017-03-01
The stock investment is a high risk investment. Therefore, there are derivative securities to reduce these risks. One of them is Asian option. The most fundamental of option is option pricing. Many factors that determine the option price are underlying asset price, strike price, maturity date, volatility, risk free interest rate and dividends. Various option pricing usually assume that risk free interest rate is constant. While in reality, this factor is stochastic process. The arithmetic Asian option is free from distribution, then, its pricing is done using the modified Black-Scholes model. In this research, the modification use the Curran approximation. This research focuses on the arithmetic Asian option pricing without dividends. The data used is the stock daily closing data of Telkom from January 1 2016 to June 30 2016. Finnaly, those option price can be used as an option trading strategy.
When is working memory important for arithmetic? The impact of strategy and age
Richardson, Sophie; Hubber, Paula J.; Keeble, Sarah; Gilmore, Camilla
2017-01-01
Our ability to perform arithmetic relies heavily on working memory, the manipulation and maintenance of information in mind. Previous research has found that in adults, procedural strategies, particularly counting, rely on working memory to a greater extent than retrieval strategies. During childhood there are changes in the types of strategies employed, as well as an increase in the accuracy and efficiency of strategy execution. As such it seems likely that the role of working memory in arithmetic may also change, however children and adults have never been directly compared. This study used traditional dual-task methodology, with the addition of a control load condition, to investigate the extent to which working memory requirements for different arithmetic strategies change with age between 9–11 years, 12–14 years and young adulthood. We showed that both children and adults employ working memory when solving arithmetic problems, no matter what strategy they choose. This study highlights the importance of considering working memory in understanding the difficulties that some children and adults have with mathematics, as well as the need to include working memory in theoretical models of mathematical cognition. PMID:29228008
Predicting Arithmetic Abilities: The Role of Preparatory Arithmetic Markers and Intelligence
ERIC Educational Resources Information Center
Stock, Pieter; Desoete, Annemie; Roeyers, Herbert
2009-01-01
Arithmetic abilities acquired in kindergarten are found to be strong predictors for later deficient arithmetic abilities. This longitudinal study (N = 684) was designed to examine if it was possible to predict the level of children's arithmetic abilities in first and second grade from their performance on preparatory arithmetic abilities in…
Efficient Craig Interpolation for Linear Diophantine (Dis)Equations and Linear Modular Equations
2008-02-01
Craig interpolants has enabled the development of powerful hardware and software model checking techniques. Efficient algorithms are known for computing...interpolants in rational and real linear arithmetic. We focus on subsets of integer linear arithmetic. Our main results are polynomial time algorithms ...congruences), and linear diophantine disequations. We show the utility of the proposed interpolation algorithms for discovering modular/divisibility predicates
Code of Federal Regulations, 2012 CFR
2012-07-01
... averages into the appropriate averaging times and units? 60.3042 Section 60.3042 Protection of Environment... Construction On or Before December 9, 2004 Model Rule-Monitoring § 60.3042 How do I convert my 1-hour arithmetic averages into the appropriate averaging times and units? (a) Use Equation 1 in § 60.3076 to...
Code of Federal Regulations, 2010 CFR
2010-07-01
... averages into the appropriate averaging times and units? 60.3042 Section 60.3042 Protection of Environment... Construction On or Before December 9, 2004 Model Rule-Monitoring § 60.3042 How do I convert my 1-hour arithmetic averages into the appropriate averaging times and units? (a) Use Equation 1 in § 60.3076 to...
Code of Federal Regulations, 2013 CFR
2013-07-01
... averages into the appropriate averaging times and units? 60.3042 Section 60.3042 Protection of Environment... Construction On or Before December 9, 2004 Model Rule-Monitoring § 60.3042 How do I convert my 1-hour arithmetic averages into the appropriate averaging times and units? (a) Use Equation 1 in § 60.3076 to...
Code of Federal Regulations, 2011 CFR
2011-07-01
... averages into the appropriate averaging times and units? 60.3042 Section 60.3042 Protection of Environment... Construction On or Before December 9, 2004 Model Rule-Monitoring § 60.3042 How do I convert my 1-hour arithmetic averages into the appropriate averaging times and units? (a) Use Equation 1 in § 60.3076 to...
Code of Federal Regulations, 2014 CFR
2014-07-01
... averages into the appropriate averaging times and units? 60.3042 Section 60.3042 Protection of Environment... Construction On or Before December 9, 2004 Model Rule-Monitoring § 60.3042 How do I convert my 1-hour arithmetic averages into the appropriate averaging times and units? (a) Use Equation 1 in § 60.3076 to...
Hearst, Scoty M; Shao, Qingmei; Lopez, Mariper; Raucher, Drazen; Vig, Parminder J S
2014-10-01
Spinocerebellar ataxia 1 (SCA1) results from pathologic glutamine expansion in the ataxin-1 protein (ATXN1). This misfolded ATXN1 causes severe Purkinje cell (PC) loss and cerebellar ataxia in both humans and mice with the SCA1 disease. The molecular chaperone heat-shock proteins (HSPs) are known to modulate polyglutamine protein aggregation and are neuroprotective. Since HSPs are induced under stress, we explored the effects of focused laser light induced hyperthermia (HT) on HSP-mediated protection against ATXN1 toxicity. We first tested the effects of HT in a cell culture model and found that HT induced Hsp70 and increased its localization to nuclear inclusions in HeLa cells expressing GFP-ATXN1[82Q]. HT treatment decreased ATXN1 aggregation by making GFP-ATXN1[82Q] inclusions smaller and more numerous compared to non-treated cells. Further, we tested our HT approach in vivo using a transgenic (Tg) mouse model of SCA1. We found that our laser method increased cerebellar temperature from 38 to 40 °C without causing any neuronal damage or inflammatory response. Interestingly, mild cerebellar HT stimulated the production of Hsp70 to a significant level. Furthermore, multiple exposure of focused cerebellar laser light induced HT to heterozygous SCA1 transgenic (Tg) mice significantly suppressed the SCA1 phenotype as compared to sham-treated control animals. Moreover, in treated SCA1 Tg mice, the levels of PC calcium signaling/buffering protein calbindin-D28k markedly increased followed by a reduction in PC neurodegenerative morphology. Taken together, our data suggest that laser light induced HT is a novel non-invasive approach to treat SCA1 and maybe other polyglutamine disorders.
Updated energy budgets for neural computation in the neocortex and cerebellum
Howarth, Clare; Gleeson, Padraig; Attwell, David
2012-01-01
The brain's energy supply determines its information processing power, and generates functional imaging signals. The energy use on the different subcellular processes underlying neural information processing has been estimated previously for the grey matter of the cerebral and cerebellar cortex. However, these estimates need reevaluating following recent work demonstrating that action potentials in mammalian neurons are much more energy efficient than was previously thought. Using this new knowledge, this paper provides revised estimates for the energy expenditure on neural computation in a simple model for the cerebral cortex and a detailed model of the cerebellar cortex. In cerebral cortex, most signaling energy (50%) is used on postsynaptic glutamate receptors, 21% is used on action potentials, 20% on resting potentials, 5% on presynaptic transmitter release, and 4% on transmitter recycling. In the cerebellar cortex, excitatory neurons use 75% and inhibitory neurons 25% of the signaling energy, and most energy is used on information processing by non-principal neurons: Purkinje cells use only 15% of the signaling energy. The majority of cerebellar signaling energy use is on the maintenance of resting potentials (54%) and postsynaptic receptors (22%), while action potentials account for only 17% of the signaling energy use. PMID:22434069
Inverse Stochastic Resonance in Cerebellar Purkinje Cells
Häusser, Michael; Gutkin, Boris S.; Roth, Arnd
2016-01-01
Purkinje neurons play an important role in cerebellar computation since their axons are the only projection from the cerebellar cortex to deeper cerebellar structures. They have complex internal dynamics, which allow them to fire spontaneously, display bistability, and also to be involved in network phenomena such as high frequency oscillations and travelling waves. Purkinje cells exhibit type II excitability, which can be revealed by a discontinuity in their f-I curves. We show that this excitability mechanism allows Purkinje cells to be efficiently inhibited by noise of a particular variance, a phenomenon known as inverse stochastic resonance (ISR). While ISR has been described in theoretical models of single neurons, here we provide the first experimental evidence for this effect. We find that an adaptive exponential integrate-and-fire model fitted to the basic Purkinje cell characteristics using a modified dynamic IV method displays ISR and bistability between the resting state and a repetitive activity limit cycle. ISR allows the Purkinje cell to operate in different functional regimes: the all-or-none toggle or the linear filter mode, depending on the variance of the synaptic input. We propose that synaptic noise allows Purkinje cells to quickly switch between these functional regimes. Using mutual information analysis, we demonstrate that ISR can lead to a locally optimal information transfer between the input and output spike train of the Purkinje cell. These results provide the first experimental evidence for ISR and suggest a functional role for ISR in cerebellar information processing. PMID:27541958
Oculomotor evidence for neocortical systems but not cerebellar dysfunction in autism
Minshew, Nancy J.; Luna, Beatriz; Sweeney, John A.
2010-01-01
Objective To investigate the functional integrity of cerebellar and frontal system in autism using oculomotor paradigms. Background Cerebellar and neocortical systems models of autism have been proposed. Courchesne and colleagues have argued that cognitive deficits such as shifting attention disturbances result from dysfunction of vermal lobules VI and VII. Such a vermal deficit should be associated with dysmetric saccadic eye movements because of the major role these areas play in guiding the motor precision of saccades. In contrast, neocortical models of autism predict intact saccade metrics, but impairments on tasks requiring the higher cognitive control of saccades. Methods A total of 26 rigorously diagnosed nonmentally retarded autistic subjects and 26 matched healthy control subjects were assessed with a visually guided saccade task and two volitional saccade tasks, the oculomotor delayed-response task and the antisaccade task. Results Metrics and dynamic of the visually guided saccades were normal in autistic subjects, documenting the absence of disturbances in cerebellar vermal lobules VI and VII and in automatic shifts of visual attention. Deficits were demonstrated on both volitional saccade tasks, indicating dysfunction in the circuitry of prefrontal cortex and its connections with the parietal cortex, and associated cognitive impairments in spatial working memory and in the ability to voluntarily suppress context-inappropriate responses. Conclusions These findings demonstrate intrinsic neocortical, not cerebellar, dysfunction in autism, and parallel deficits in higher order cognitive mechanisms and not in elementary attentional and sensorimotor systems in autism. PMID:10102406
Cerebellar Plasticity and Motor Learning Deficits in a Copy Number Variation Mouse Model of Autism
Piochon, Claire; Kloth, Alexander D; Grasselli, Giorgio; Titley, Heather K; Nakayama, Hisako; Hashimoto, Kouichi; Wan, Vivian; Simmons, Dana H; Eissa, Tahra; Nakatani, Jin; Cherskov, Adriana; Miyazaki, Taisuke; Watanabe, Masahiko; Takumi, Toru; Kano, Masanobu; Wang, Samuel S-H; Hansel, Christian
2014-01-01
A common feature of autism spectrum disorder (ASD) is the impairment of motor control and learning, occurring in a majority of children with autism, consistent with perturbation in cerebellar function. Here we report alterations in motor behavior and cerebellar synaptic plasticity in a mouse model (patDp/+) for the human 15q11-13 duplication, one of the most frequently observed genetic aberrations in autism. These mice show ASD-resembling social behavior deficits. We find that in patDp/+ mice delay eyeblink conditioning—a form of cerebellum-dependent motor learning—is impaired, and observe deregulation of a putative cellular mechanism for motor learning, long-term depression (LTD) at parallel fiber-Purkinje cell synapses. Moreover, developmental elimination of surplus climbing fibers—a model for activity-dependent synaptic pruning—is impaired. These findings point to deficits in synaptic plasticity and pruning as potential causes for motor problems and abnormal circuit development in autism. PMID:25418414
Abbasi, Samira; Maran, Selva K.; Cao, Ying; Abbasi, Ataollah; Heck, Detlef H.
2017-01-01
Neural coding through inhibitory projection pathways remains poorly understood. We analyze the transmission properties of the Purkinje cell (PC) to cerebellar nucleus (CN) pathway in a modeling study using a data set recorded in awake mice containing respiratory rate modulation. We find that inhibitory transmission from tonically active PCs can transmit a behavioral rate code with high fidelity. We parameterized the required population code in PC activity and determined that 20% of PC inputs to a full compartmental CN neuron model need to be rate-comodulated for transmission of a rate code. Rate covariance in PC inputs also accounts for the high coefficient of variation in CN spike trains, while the balance between excitation and inhibition determines spike rate and local spike train variability. Overall, our modeling study can fully account for observed spike train properties of cerebellar output in awake mice, and strongly supports rate coding in the cerebellum. PMID:28617798
Repeated prenatal exposure to valproic acid results in cerebellar hypoplasia and ataxia.
Main, Stacey L; Kulesza, Randy J
2017-01-06
Autism spectrum disorder (ASD) is a developmental brain disorder characterized by restricted and repetitive patterns of behavior, social and communication defects, and is commonly associated with difficulties with motor coordination. The etiology of ASD, while mostly idiopathic, has been linked to hereditary factors and teratogens, such as valproic acid (VPA). VPA is used clinically to treat epilepsy, mood disorders, and in the prevention of migraines. The use of VPA during pregnancy significantly increases the risk of ASD in the offspring. Neuropathological studies show decreased cerebellar function in patients with ASD, resulting in gait, balance and coordination impairments. Herein, we have exposed pregnant rats to a repeated oral dose of VPA on embryonic days 10 and 12 and performed a detailed investigation of the structure and function of the cerebellar vermis. We found that throughout all ten lobules of the cerebellar vermis, Purkinje cells were significantly smaller and expression of the calcium binding protein calbindin (CB) was significantly reduced. We also found that dendritic arbors of Purkinje cells were shorter and less complex. Additionally, animals exposed to a repeated dose of VPA performed significantly worse in a number of motor tasks, including beam walking and the rotarod. These results suggest that repeated embryonic exposure to VPA induces significant cerebellar dysfunction and is an effective animal model to study the cerebellar alterations in ASD. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Therrien, Amanda S; Wolpert, Daniel M; Bastian, Amy J
2016-01-01
Reinforcement and error-based processes are essential for motor learning, with the cerebellum thought to be required only for the error-based mechanism. Here we examined learning and retention of a reaching skill under both processes. Control subjects learned similarly from reinforcement and error-based feedback, but showed much better retention under reinforcement. To apply reinforcement to cerebellar patients, we developed a closed-loop reinforcement schedule in which task difficulty was controlled based on recent performance. This schedule produced substantial learning in cerebellar patients and controls. Cerebellar patients varied in their learning under reinforcement but fully retained what was learned. In contrast, they showed complete lack of retention in error-based learning. We developed a mechanistic model of the reinforcement task and found that learning depended on a balance between exploration variability and motor noise. While the cerebellar and control groups had similar exploration variability, the patients had greater motor noise and hence learned less. Our results suggest that cerebellar damage indirectly impairs reinforcement learning by increasing motor noise, but does not interfere with the reinforcement mechanism itself. Therefore, reinforcement can be used to learn and retain novel skills, but optimal reinforcement learning requires a balance between exploration variability and motor noise. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain.
Therrien, Amanda S.; Wolpert, Daniel M.
2016-01-01
Abstract See Miall and Galea (doi: 10.1093/awv343 ) for a scientific commentary on this article. Reinforcement and error-based processes are essential for motor learning, with the cerebellum thought to be required only for the error-based mechanism. Here we examined learning and retention of a reaching skill under both processes. Control subjects learned similarly from reinforcement and error-based feedback, but showed much better retention under reinforcement. To apply reinforcement to cerebellar patients, we developed a closed-loop reinforcement schedule in which task difficulty was controlled based on recent performance. This schedule produced substantial learning in cerebellar patients and controls. Cerebellar patients varied in their learning under reinforcement but fully retained what was learned. In contrast, they showed complete lack of retention in error-based learning. We developed a mechanistic model of the reinforcement task and found that learning depended on a balance between exploration variability and motor noise. While the cerebellar and control groups had similar exploration variability, the patients had greater motor noise and hence learned less. Our results suggest that cerebellar damage indirectly impairs reinforcement learning by increasing motor noise, but does not interfere with the reinforcement mechanism itself. Therefore, reinforcement can be used to learn and retain novel skills, but optimal reinforcement learning requires a balance between exploration variability and motor noise. PMID:26626368
Diffusion Tensor Tractography of the Cerebellar Peduncles in Prematurely Born 7-Year-Old Children.
Shany, Eilon; Inder, Terrie E; Goshen, Sharon; Lee, Iris; Neil, Jeffrey J; Smyser, Christopher D; Doyle, Lex W; Anderson, Peter J; Shimony, Joshua S
2017-04-01
The objective of this study was to correlate neurodevelopmental outcome of preterm-born children and their perinatal clinical and imaging characteristics with diffusion magnetic resonance imaging (MRI) measures of the three cerebellar peduncles at age 7. Included in this prospective longitudinal study were 140 preterm-born children (<30 weeks gestation) who underwent neurodevelopmental assessment (IQ, motor, language, working memory) and diffusion-weighted imaging (DWI) at age 7 years. White matter tracts in the superior, middle, and inferior cerebellar peduncles were delineated using regions of interest drawn on T2-weighted images and fractional anisotropy (FA) maps. Diffusion measures (mean diffusivity (MD) and FA) and tract volumes were calculated. Linear regression was used to assess relationships with outcome. The severity of white matter injury in the neonatal period was associated with lower FA in the right superior cerebellar peduncle (SCP) and lower tract volumes of both SCPs and middle cerebellar peduncles (MCPs). In the MCP, higher IQ was associated with lower MD in the whole group and higher FA in right-handed children. In the SCP, lower motor scores were associated with higher MD and higher language scores were associated with higher FA. These associations remained significant in multivariable models. This study adds to the body of literature detailing the importance of cerebellar involvement in cognitive function related to reciprocal connections with supratentorial structures.
Gentili, Rodolphe J.; Papaxanthis, Charalambos; Ebadzadeh, Mehdi; Eskiizmirliler, Selim; Ouanezar, Sofiane; Darlot, Christian
2009-01-01
Background Several authors suggested that gravitational forces are centrally represented in the brain for planning, control and sensorimotor predictions of movements. Furthermore, some studies proposed that the cerebellum computes the inverse dynamics (internal inverse model) whereas others suggested that it computes sensorimotor predictions (internal forward model). Methodology/Principal Findings This study proposes a model of cerebellar pathways deduced from both biological and physical constraints. The model learns the dynamic inverse computation of the effect of gravitational torques from its sensorimotor predictions without calculating an explicit inverse computation. By using supervised learning, this model learns to control an anthropomorphic robot arm actuated by two antagonists McKibben artificial muscles. This was achieved by using internal parallel feedback loops containing neural networks which anticipate the sensorimotor consequences of the neural commands. The artificial neural networks architecture was similar to the large-scale connectivity of the cerebellar cortex. Movements in the sagittal plane were performed during three sessions combining different initial positions, amplitudes and directions of movements to vary the effects of the gravitational torques applied to the robotic arm. The results show that this model acquired an internal representation of the gravitational effects during vertical arm pointing movements. Conclusions/Significance This is consistent with the proposal that the cerebellar cortex contains an internal representation of gravitational torques which is encoded through a learning process. Furthermore, this model suggests that the cerebellum performs the inverse dynamics computation based on sensorimotor predictions. This highlights the importance of sensorimotor predictions of gravitational torques acting on upper limb movements performed in the gravitational field. PMID:19384420
Neurocognitive predictors of financial capacity in traumatic brain injury.
Martin, Roy C; Triebel, Kristen; Dreer, Laura E; Novack, Thomas A; Turner, Crystal; Marson, Daniel C
2012-01-01
To develop cognitive models of financial capacity (FC) in patients with traumatic brain injury (TBI). Longitudinal design. Inpatient brain injury rehabilitation unit. Twenty healthy controls, and 24 adults with moderate-to-severe TBI were assessed at baseline (30 days postinjury) and 6 months postinjury. The FC instrument (FCI) and a neuropsychological test battery. Univariate correlation and multiple regression procedures were employed to develop cognitive models of FCI performance in the TBI group, at baseline and 6-month time follow-up. Three cognitive predictor models of FC were developed. At baseline, measures of mental arithmetic/working memory and immediate verbal memory predicted baseline FCI performance (R = 0.72). At 6-month follow-up, measures of executive function and mental arithmetic/working memory predicted 6-month FCI performance (R = 0.79), and a third model found that these 2 measures at baseline predicted 6-month FCI performance (R = 0.71). Multiple cognitive functions are associated with initial impairment and partial recovery of FC in moderate-to-severe TBI patients. In particular, arithmetic, working memory, and executive function skills appear critical to recovery of FC in TBI. The study results represent an initial step toward developing a neurocognitive model of FC in patients with TBI.
NASA Astrophysics Data System (ADS)
Tohir, M.; Abidin, Z.; Dafik; Hobri
2018-04-01
Arithmetics is one of the topics in Mathematics, which deals with logic and detailed process upon generalizing formula. Creativity and flexibility are needed in generalizing formula of arithmetics series. This research aimed at analyzing students creative thinking skills in generalizing arithmetic series. The triangulation method and research-based learning was used in this research. The subjects were students of the Master Program of Mathematics Education in Faculty of Teacher Training and Education at Jember University. The data was collected by giving assignments to the students. The data collection was done by giving open problem-solving task and documentation study to the students to arrange generalization pattern based on the dependent function formula i and the function depend on i and j. Then, the students finished the next problem-solving task to construct arithmetic generalization patterns based on the function formula which depends on i and i + n and the sum formula of functions dependent on i and j of the arithmetic compiled. The data analysis techniques operative in this study was Miles and Huberman analysis model. Based on the result of data analysis on task 1, the levels of students creative thinking skill were classified as follows; 22,22% of the students categorized as “not creative” 38.89% of the students categorized as “less creative” category; 22.22% of the students categorized as “sufficiently creative” and 16.67% of the students categorized as “creative”. By contrast, the results of data analysis on task 2 found that the levels of students creative thinking skills were classified as follows; 22.22% of the students categorized as “sufficiently creative”, 44.44% of the students categorized as “creative” and 33.33% of the students categorized as “very creative”. This analysis result can set the basis for teaching references and actualizing a better teaching model in order to increase students creative thinking skills.
Dieni, Cristina V; Ferraresi, Aldo; Sullivan, Jacqueline A; Grassi, Sivarosa; Pettorossi, Vito E; Panichi, Roberto
2018-03-01
The vestibulo-ocular reflex (VOR) adaptation is an ideal model for investigating how the neurosteroid 17 beta-estradiol (E2) contributes to the modification of behavior by regulating synaptic activities. We hypothesized that E2 impacts VOR adaptation by affecting cerebellar synaptic plasticity at the parallel fiber-Purkinje cell (PF) synapse. To verify this hypothesis, we investigated the acute effect of blocking E2 synthesis on gain increases and decreases in adaptation of the VOR in male rats using an oral dose (2.5 mg/kg) of the aromatase inhibitor letrozole. We also assessed the effect of letrozole on synaptic plasticity at the PF synapse in vitro, using cerebellar slices from male rats. We found that letrozole acutely impaired both gain increases and decreases adaptation of the VOR without altering basal ocular-motor performance. Moreover, letrozole prevented long-term potentiation at the PF synapse (PF-LTP) without affecting long-term depression (PF-LTD). Thus, in male rats neurosteroid E2 has a relevant impact on VOR adaptation and affects exclusively PF-LTP. These findings suggest that E2 might regulate changes in VOR adaptation by acting locally on cerebellar and extra-cerebellar synaptic plasticity sites.
Sillitoe, Roy V; Künzle, Heinz; Hawkes, Richard
2003-01-01
The mammalian cerebellum is histologically uniform. However, underlying the simple laminar architecture is a complex arrangement of parasagittal stripes and transverse zones that can be revealed by the expression of zebrin II/aldolase C. The cerebellar cortex of rodents, for example, is organized into four transverse zones: anterior, central, posterior and nodular. Within the anterior and posterior zones, parasagittal stripes of Purkinje cells expressing zebrin II alternate with those that do not. Zonal boundaries appear to be independent of cerebellar lobulation. To explore this model further, and to broaden our understanding of the evolution of cerebellar patterning, zebrin II expression has been studied in the cerebellum of the Madagascan hedgehog tenrec (Echinops telfairi), a basal insectivore with a lissiform cerebellum with only five lobules. Zebrin II expression in the tenrec reveals an array of four transverse zones as in rodents, two with homogeneous zebrin II expression, two further subdivided into stripes, that closely resembles the expression pattern described in other mammals. We conclude that a zone-and-stripe organization may be a common feature of the mammalian cerebellar vermis and hemispheres, and that zonal boundaries and cerebellar lobules and fissures form independently. PMID:14529046
Raghubar, Kimberly P.; Barnes, Marcia A.; Dennis, Maureen; Cirino, Paul T.; Taylor, Heather; Landry, Susan
2015-01-01
Objective Math and attention are related in neurobiological and behavioral models of mathematical cognition. This study employed model-driven assessments of attention and math in children with spina bifida myelomeningocele (SBM), who have known math difficulties and specific attentional deficits, to more directly examine putative relations between attention and mathematical processing. The relation of other domain general abilities and math was also investigated. Method Participants were 9.5-year-old children with SBM (N = 44) and typically developing children (N = 50). Participants were administered experimental exact and approximate arithmetic tasks, and standardized measures of math fluency and calculation. Cognitive measures included the Attention Network Test (ANT), and standardized measures of fine motor skills, verbal working memory (WM), and visual-spatial WM. Results Children with SBM performed similarly to peers on exact arithmetic but more poorly on approximate and standardized arithmetic measures. On the ANT, children with SBM differed from controls on orienting attention but not alerting and executive attention. Multiple mediation models showed that: fine motor skills and verbal WM mediated the relation of group to approximate arithmetic; fine motor skills and visual-spatial WM mediated the relation of group to math fluency; and verbal and visual-spatial WM mediated the relation of group to math calculation. Attention was not a significant mediator of the effects of group for any aspect of math in this study. Conclusions Results are discussed with reference to models of attention, WM, and mathematical cognition. PMID:26011113
Raghubar, Kimberly P; Barnes, Marcia A; Dennis, Maureen; Cirino, Paul T; Taylor, Heather; Landry, Susan
2015-11-01
Math and attention are related in neurobiological and behavioral models of mathematical cognition. This study employed model-driven assessments of attention and math in children with spina bifida myelomeningocele (SBM), who have known math difficulties and specific attentional deficits, to more directly examine putative relations between attention and mathematical processing. The relation of other domain general abilities and math was also investigated. Participants were 9.5-year-old children with SBM (n = 44) and typically developing children (n = 50). Participants were administered experimental exact and approximate arithmetic tasks, and standardized measures of math fluency and calculation. Cognitive measures included the Attention Network Test (ANT), and standardized measures of fine motor skills, verbal working memory (WM), and visual-spatial WM. Children with SBM performed similarly to peers on exact arithmetic, but more poorly on approximate and standardized arithmetic measures. On the ANT, children with SBM differed from controls on orienting attention, but not on alerting and executive attention. Multiple mediation models showed that fine motor skills and verbal WM mediated the relation of group to approximate arithmetic; fine motor skills and visual-spatial WM mediated the relation of group to math fluency; and verbal and visual-spatial WM mediated the relation of group to math calculation. Attention was not a significant mediator of the effects of group for any aspect of math in this study. Results are discussed with reference to models of attention, WM, and mathematical cognition. (c) 2015 APA, all rights reserved).
Cerebellar Hypoplasia and Dysmorphia in Neurofibromatosis Type 1.
Toelle, Sandra P; Poretti, Andrea; Weber, Peter; Seute, Tatjana; Bromberg, Jacoline E C; Scheer, Ianina; Boltshauser, Eugen
2015-12-01
Unidentified bright objects (UBO) and tumors are well-known cerebellar abnormalities in neurofibromatosis type 1 (NF1). Literature reports on malformative cerebellar anomalies in neurofibromatosis type 1 (NF1), however, are scant. We retrospectively studied the clinical and neuroimaging findings of 5 patients with NF1 (4 females, age 6 to 29 years at last follow-up) and cerebellar anomalies. Cerebellar symptoms on neurological examination were mild or even not evident whereas learning disabilities were more or less pronounced in four patients. Two patients had cerebellar hypoplasia (diffusely enlarged cerebellar interfoliar spaces) and three cerebellar dysmorphias involving mainly one cerebellar hemisphere. In NF1, malformative cerebellar anomalies are rare (estimated prevalence of about 1%), but most likely underestimated and easily overlooked, because physicians tend to focus on more prevalent, obvious, and well-known findings such as optic pathway gliomas, other tumors, and UBO. This kind of cerebellar anomaly in NF1 has most likely a malformative origin, but the exact pathogenesis is unknown. The individual clinical significance is difficult to determine. We suggest that cerebellar anomalies should be systematically evaluated in neuroimaging studies of NF1 patients.
Martí, Joaquín; Santa-Cruz, María C; Hervás, José P; Bayer, Shirley A; Villegas, Sandra
2016-01-01
Ataxias are neurological disorders associated with the degeneration of Purkinje cells (PCs). Homozygous weaver mice (wv/wv) have been proposed as a model for hereditary cerebellar ataxia because they present motor abnormalities and PC loss. To ascertain the physiopathology of the weaver condition, the development of the cerebellar cortex lobes was examined at postnatal day (P): P8, P20 and P90. Three approaches were used: 1) quantitative determination of several cerebellar features; 2) qualitative evaluation of the developmental changes occurring in the cortical lobes; and 3) autoradiographic analyses of PC generation and placement. Our results revealed a reduction in the size of the wv/wv cerebellum as a whole, confirming previous results. However, as distinguished from these reports, we observed that quantified parameters contribute differently to the abnormal growth of the wv/wv cerebellar lobes. Qualitative analysis showed anomalies in wv/wv cerebellar cytoarchitecture, depending on the age and lobe analyzed. Such abnormalities included the presence of the external granular layer after P20 and, at P90, ectopic cells located in the molecular layer following several placement patterns. Finally, we obtained autoradiographic evidence that wild-type and wv/wv PCs presented similar neurogenetic timetables, as reported. However, the innovative character of this current work lies in the fact that the neurogenetic gradients of wv/wv PCs were not modified from P8 to P90. A tendency for the accumulation of late-formed PCs in the anterior and posterior lobes was found, whereas early-generated PCs were concentrated in the central and inferior lobes. These data suggested that wv/wv PCs may migrate properly to their final destinations. The extrapolation of our results to patients affected with cerebellar ataxias suggests that all cerebellar cortex lobes are affected with several age-dependent alterations in cytoarchitectonics. We also propose that PC loss may be regionally variable and not related to their neurogenetic timetables.
Tan, Glaiza A; Furber, Kendra L; Thangaraj, Merlin P; Sobchishin, LaRhonda; Doucette, J Ronald; Nazarali, Adil J
2018-01-01
Experimental models of multiple sclerosis (MS) have significantly advanced our understanding of pathophysiology and therapeutic interventions. Although in vivo rodent models are considered to most closely represent the complex cellular and molecular disease states of the human central nervous system (CNS), these can be costly to maintain and require long timelines. Organotypic slice cultures maintain the cytotypic organization observed in the intact CNS, yet provide many of the experimental advantages of in vitro cell culture models. Cerebellar organotypic cultures have proven useful for studying myelination and remyelination, but this model has only been established using early postnatal tissue. This young brain tissue allows for neuro development ex vivo to mimic the 'mature' CNS; however, there are many differences between postnatal and adult organotypic cultures. This may be particularly relevant to MS, as a major barrier to myelin regeneration is age. This paper describes a modified protocol to study demyelination and remyelination in adult cerebellar tissue, which has been used to demonstrate neuroprotection with omega-3 fatty acids. Thus, adult cerebellar organotypic cultures provide a novel ex vivo platform for screening potential therapies in myelin degeneration and repair.
In and out of the loop: external and internal modulation of the olivo-cerebellar loop
Libster, Avraham M.; Yarom, Yosef
2013-01-01
Cerebellar anatomy is known for its crystal like structure, where neurons and connections are precisely and repeatedly organized with minor variations across the Cerebellar Cortex. The olivo-cerebellar loop, denoting the connections between the Cerebellar cortex, Inferior Olive and Cerebellar Nuclei (CN), is also modularly organized to form what is known as the cerebellar module. In contrast to the relatively organized and static anatomy, the cerebellum is innervated by a wide variety of neuromodulator carrying axons that are heterogeneously distributed along the olivo-cerebellar loop, providing heterogeneity to the static structure. In this manuscript we review modulatory processes in the olivo-cerebellar loop. We start by discussing the relationship between neuromodulators and the animal behavioral states. This is followed with an overview of the cerebellar neuromodulatory signals and a short discussion of why and when the cerebellar activity should be modulated. We then devote a section for three types of neurons where we briefly review its properties and propose possible neuromodulation scenarios. PMID:23626524
Online EEG-Based Workload Adaptation of an Arithmetic Learning Environment.
Walter, Carina; Rosenstiel, Wolfgang; Bogdan, Martin; Gerjets, Peter; Spüler, Martin
2017-01-01
In this paper, we demonstrate a closed-loop EEG-based learning environment, that adapts instructional learning material online, to improve learning success in students during arithmetic learning. The amount of cognitive workload during learning is crucial for successful learning and should be held in the optimal range for each learner. Based on EEG data from 10 subjects, we created a prediction model that estimates the learner's workload to obtain an unobtrusive workload measure. Furthermore, we developed an interactive learning environment that uses the prediction model to estimate the learner's workload online based on the EEG data and adapt the difficulty of the learning material to keep the learner's workload in an optimal range. The EEG-based learning environment was used by 13 subjects to learn arithmetic addition in the octal number system, leading to a significant learning effect. The results suggest that it is feasible to use EEG as an unobtrusive measure of cognitive workload to adapt the learning content. Further it demonstrates that a promptly workload prediction is possible using a generalized prediction model without the need for a user-specific calibration.
Cignini, Pietro; Giorlandino, Maurizio; Brutti, Pierpaolo; Mangiafico, Lucia; Aloisi, Alessia; Giorlandino, Claudio
2016-01-01
Objective To establish reference charts for fetal cerebellar vermis height in an unselected population. Methods A prospective cross-sectional study between September 2009 and December 2014 was carried out at ALTAMEDICA Fetal–Maternal Medical Centre, Rome, Italy. Of 25203 fetal biometric measurements, 12167 (48%) measurements of the cerebellar vermis were available. After excluding 1562 (12.8%) measurements, a total of 10605 (87.2%) fetuses were considered and analyzed once only. Parametric and nonparametric quantile regression models were used for the statistical analysis. In order to evaluate the robustness of the proposed reference charts regarding various distributional assumptions on the ultrasound measurements at hand, we compared the gestational age-specific reference curves we produced through the statistical methods used. Normal mean height based on parametric and nonparametric methods were defined for each week of gestation and the regression equation expressing the height of the cerebellar vermis as a function of gestational age was calculated. Finally the correlation between dimension/gestation was measured. Results The mean height of the cerebellar vermis was 12.7mm (SD, 1.6mm; 95% confidence interval, 12.7–12.8mm). The regression equation expressing the height of the CV as a function of the gestational age was: height (mm) = -4.85+0.78 x gestational age. The correlation between dimension/gestation was expressed by the coefficient r = 0.87. Conclusion This is the first prospective cross-sectional study on fetal cerebellar vermis biometry with such a large sample size reported in literature. It is a detailed statistical survey and contains new centile-based reference charts for fetal height of cerebellar vermis measurements. PMID:26812238
Quality of Arithmetic Education for Children with Cerebral Palsy
ERIC Educational Resources Information Center
Jenks, Kathleen M.; de Moor, Jan; van Lieshout, Ernest C. D. M.; Withagen, Floortje
2010-01-01
The aim of this exploratory study was to investigate the quality of arithmetic education for children with cerebral palsy. The use of individual educational plans, amount of arithmetic instruction time, arithmetic instructional grouping, and type of arithmetic teaching method were explored in three groups: children with cerebral palsy (CP) in…
Wong, Terry Tin-Yau
2017-12-01
The current study examined the unique and shared contributions of arithmetic operation understanding and numerical magnitude representation to children's mathematics achievement. A sample of 124 fourth graders was tested on their arithmetic operation understanding (as reflected by their understanding of arithmetic principles and the knowledge about the application of arithmetic operations) and their precision of rational number magnitude representation. They were also tested on their mathematics achievement and arithmetic computation performance as well as the potential confounding factors. The findings suggested that both arithmetic operation understanding and numerical magnitude representation uniquely predicted children's mathematics achievement. The findings highlight the significance of arithmetic operation understanding in mathematics learning. Copyright © 2017 Elsevier Inc. All rights reserved.
Cerebellar ataxia: abnormal control of interaction torques across multiple joints.
Bastian, A J; Martin, T A; Keating, J G; Thach, W T
1996-07-01
1. We studied seven subjects with cerebellar lesions and seven control subjects as they made reaching movements in the sagittal plane to a target directly in front of them. Reaches were made under three different conditions: 1) "slow-accurate," 2) "fast-accurate," and 3) "fast as possible." All subjects were videotaped moving in a sagittal plane with markers on the index finger, wrist, elbow, and shoulder. Marker positions were digitized and then used to calculate joint angles. For each of the shoulder, elbow and wrist joints, inverse dynamics equations based on a three-segment limb model were used to estimate the net torque (sum of components) and each of the component torques. The component torques consisted of the torque due to gravity, the dynamic interaction torques induced passively by the movement of the adjacent joint, and the torque produced by the muscles and passive tissue elements (sometimes called "residual" torque). 2. A kinematic analysis of the movement trajectory and the change in joint angles showed that the reaches of subjects with cerebellar lesions were abnormal compared with reaches of control subjects. In both the slow-accurate and fast-accurate conditions the cerebellar subjects made abnormally curved wrist paths; the curvature was greater in the slow-accurate condition. During the slow-accurate condition, cerebellar subjects showed target undershoot and tended to move one joint at a time (decomposition). During the fast-accurate reaches, the cerebellar subjects showed target overshoot. Additionally, in the fast-accurate condition, cerebellar subjects moved the joints at abnormal rates relative to one another, but the movements were less decomposed. Only three subjects were tested in the fast as possible condition; this condition was analyzed only to determine maximal reaching speeds of subjects with cerebellar lesions. Cerebellar subjects moved more slowly than controls in all three conditions. 3. A kinetic analysis of torques generated at each joint during the slow-accurate reaches and the fast-accurate reaches revealed that subjects with cerebellar lesions produced very different torque profiles compared with control subjects. In the slow-accurate condition, the cerebellar subjects produced abnormal elbow muscle torques that prevented the normal elbow extension early in the reach. In the fast-accurate condition, the cerebellar subjects produced inappropriate levels of shoulder muscle torque and also produced elbow muscle torques that did not very appropriately with the dynamic interaction torques that occurred at the elbow. Lack of appropriate muscle torque resulted in excessive contributions of the dynamic interaction torque during the fast-accurate reaches. 4. The inability to produce muscle torques that predict, accommodate, and compensate for the dynamic interaction torques appears to be an important cause of the classic kinematic deficits shown by cerebellar subjects during attempted reaching. These kinematic deficits include incoordination of the shoulder and the elbow joints, a curved trajectory, and overshoot. In the fast-accurate condition, cerebellar subjects often made inappropriate muscle torques relative to the dynamic interaction torques. Because of this, interaction torques often determined the pattern of incoordination of the elbow and shoulder that produced the curved trajectory and target overshoot. In the slow-accurate condition, we reason that the cerebellar subjects may use a decomposition strategy so as to simplify the movement and not have to control both joints simultaneously. From these results, we suggest that a major role of the cerebellum is in generating muscle torques at a joint that will predict the interaction torques being generated by other moving joints and compensate for them as they occur.
Hoffman, Joel C; Sierszen, Michael E; Cotter, Anne M
2015-11-15
Normalizing δ(13) C values of animal tissue for lipid content is necessary to accurately interpret food-web relationships from stable isotope analysis. To reduce the effort and expense associated with chemical extraction of lipids, various studies have tested arithmetic mass balance to mathematically normalize δ(13) C values for lipid content; however, the approach assumes that lipid content is related to the tissue C:N ratio. We evaluated two commonly used models for estimating tissue lipid content based on C:N ratio (a mass balance model and a stoichiometric model) by comparing model predictions to measure the lipid content of white muscle tissue. We then determined the effect of lipid model choice on δ(13) C values normalized using arithmetic mass balance. To do so, we used a collection of fish from Lake Superior spanning a wide range in lipid content (5% to 73% lipid). We found that the lipid content was positively related to the bulk muscle tissue C:N ratio. The two different lipid models produced similar estimates of lipid content based on tissue C:N, within 6% for tissue C:N values <7. Normalizing δ(13) C values using an arithmetic mass-balance equation based on either model yielded similar results, with a small bias (<1‰) compared with results based on chemical extraction. Among-species consistency in the relationship between fish muscle tissue C:N ratio and lipid content supports the application of arithmetic mass balance to normalize δ(13) C values for lipid content. The uncertainty associated with both lipid extraction quality and choice of model parameters constrains the achievable precision of normalized δ(13) C values to about ±1.0‰. Published in 2015. This article is a U.S. Government work and is in the public domain in the U.S.A.
Cerebellar infarction in the territory of the medial branch of the superior cerebellar artery.
Sohn, Sung-Il; Lee, Hyung; Lee, Seong-Ryong; Baloh, Robert W
2006-01-10
The authors studied 14 patients with an isolated cerebellar infarct in the territory of the medial branch of the superior cerebellar artery (MSCA). The most common clinical finding was severe gait ataxia with sudden falling (n = 9) or severe veering (n = 2). Cerebellar dysarthria was found in 8 patients. Eight patients had a mild unilateral limb ataxia. These findings emphasize that MSCA territory cerebellar infarction presented with the prominent gait ataxia and cerebellar dysarthria.
Volumetric analysis of cerebellum in short-track speed skating players.
Park, In Sung; Lee, Nam Joon; Kim, Tae-Young; Park, Jin-Hoon; Won, Yu-Mi; Jung, Yong-Ju; Yoon, Jin-Hwan; Rhyu, Im Joo
2012-12-01
The cerebellum is associated with balance control and coordination, which might be important for gliding on smooth ice at high speeds. A number of case studies have shown that cerebellar damage induces impaired balance and coordination. As a positive model, therefore, we investigated whether plastic changes in the volumes of cerebellar subregions occur in short-track speed skating players who must have extraordinary abilities of balance and coordination, using three-dimensional magnetic resonance imaging volumetry. The manual tracing was performed and the volumes of cerebellar hemisphere and vermian lobules were compared between short-track speed skating players (n=16) and matched healthy controls (n=18). We found larger right cerebellar hemisphere volume and vermian lobules VI-VII (declive, folium, and tuber) in short-track speed skating players in comparison with the matched controls. The finding suggests that the specialized abilities of balance and coordination are associated with structural plasticity of the right hemisphere of cerebellum and vermian VI-VII and these regions play an essential role in balance and coordination.
Convergence of pontine and proprioceptive streams onto multimodal cerebellar granule cells
Huang, Cheng-Chiu; Sugino, Ken; Shima, Yasuyuki; Guo, Caiying; Bai, Suxia; Mensh, Brett D; Nelson, Sacha B; Hantman, Adam W
2013-01-01
Cerebellar granule cells constitute the majority of neurons in the brain and are the primary conveyors of sensory and motor-related mossy fiber information to Purkinje cells. The functional capability of the cerebellum hinges on whether individual granule cells receive mossy fiber inputs from multiple precerebellar nuclei or are instead unimodal; this distinction is unresolved. Using cell-type-specific projection mapping with synaptic resolution, we observed the convergence of separate sensory (upper body proprioceptive) and basilar pontine pathways onto individual granule cells and mapped this convergence across cerebellar cortex. These findings inform the long-standing debate about the multimodality of mammalian granule cells and substantiate their associative capacity predicted in the Marr-Albus theory of cerebellar function. We also provide evidence that the convergent basilar pontine pathways carry corollary discharges from upper body motor cortical areas. Such merging of related corollary and sensory streams is a critical component of circuit models of predictive motor control. DOI: http://dx.doi.org/10.7554/eLife.00400.001 PMID:23467508
NASA Astrophysics Data System (ADS)
Gbaguidi, Audrey J.-M.
Structural health monitoring (SHM) has become indispensable for reducing maintenance costs and increasing the in-service capacity of a structure. The increased use of lightweight composite materials in aircraft structures drastically increased the effects of fatigue induced damage on their critical structural components and thus the necessity to predict the remaining life of those components. Damage prognosis, one of the least investigated fields in SHM, uses the current damage state of the system to forecast its future performance by estimating the expected loading environments. A successful damage prediction model requires the integration of technologies in areas like measurements, materials science, mechanics of materials, and probability theories, but most importantly the quantification of uncertainty in all these areas. In this study, Affine Arithmetic is used as a method for incorporating the uncertainties due to the material properties into the fatigue life prognosis of composite plates subjected to cyclic compressive loadings. When loadings are compressive in nature, the composite plates undergo repeated buckling-unloading of the delaminated layer which induces mixed modes I and II states of stress at the tip of the delamination in the plates. The Kardomateas model-based prediction law is used to predict the growth of the delamination, while the integration of the effects of the uncertainties for modes I and II coefficients in the fatigue life prediction model is handled using Affine arithmetic. The Mode I and Mode II interlaminar fracture toughness and fatigue characterization of the composite plates are first experimentally studied to obtain the material coefficients and fracture toughness, respectively. Next, these obtained coefficients are used in the Kardomateas law to predict the delamination lengths in the composite plates while using Affine Arithmetic to handle their uncertainties. At last, the fatigue characterization of the composite plates during compressive-buckling loadings is experimentally studied, and the delamination lengths obtained are compared with the predicted values to check the performance of Affine Arithmetic as an uncertainty propagation tool.
The control of a manipulator by a computer model of the cerebellum.
NASA Technical Reports Server (NTRS)
Albus, J. S.
1973-01-01
Extension of previous work by Albus (1971, 1972) on the theory of cerebellar function to an application of a computer model of the cerebellum to manipulator control. Following a discussion of the cerebellar function and of a perceptron analogy of the cerebellum, particularly in regard to learning, an electromechanical model of the cerebellum is considered in the form of an IBM 1800 computer connected to a Rancho Los Amigos arm with seven degrees of freedom. It is shown that the computer memory makes it possible to train the arm on some representative sample of the universe of possible states and to achieve satisfactory performance.
Eye-blink conditioning deficits indicate temporal processing abnormalities in schizophrenia.
Bolbecker, Amanda R; Mehta, Crystal S; Edwards, Chad R; Steinmetz, Joseph E; O'Donnell, Brian F; Hetrick, William P
2009-06-01
Theoretical models suggest that symptoms of schizophrenia may be due to a dysfunctional modulatory system associated with the cerebellum. Although it has long been known that the cerebellum plays a critical role in associative learning and motor timing, recent evidence suggests that it also plays a role in nonmotor psychological processes. Indeed, cerebellar anomalies in schizophrenia have been linked to cognitive dysfunction and poor long-term outcome. To test the hypothesis that schizophrenia is associated with cerebellar dysfunction, cerebellar-dependent, delay eye-blink conditioning was examined in 62 individuals with schizophrenia and 62 age-matched non-psychiatric comparison subjects. The conditioned stimulus was a 400 ms tone, which co-terminated with a 50 ms unconditioned stimulus air puff. A subset of participants (25 with schizophrenia and 29 controls) also completed the Wechsler Abbreviated Scale of Intelligence. Participants with schizophrenia exhibited lower rates of eye-blink conditioning, including earlier (less adaptively timed) conditioned response latencies. Cognitive functioning was correlated with the rate of conditioned responsing in the non-psychiatric comparison subjects but not among those with schizophrenia, and the magnitude of these correlations significantly differed between groups. These findings are consistent with models of schizophrenia in which disruptions within the cortico-cerebellar-thalamic-cortical (CCTC) brain circuit are postulated to underlie the cognitive fragmentation that characterizes the disorder.
Eye-Blink Conditioning Deficits Indicate Temporal Processing Abnormalities in Schizophrenia
Bolbecker, Amanda R.; Mehta, Crystal; Edwards, Chad R.; Steinmetz, Joseph E.; O’Donnell, Brian F.; Hetrick, William P.
2009-01-01
Theoretical models suggest that symptoms of schizophrenia may be due to a dysfunctional modulatory system associated with the cerebellum. Although it has long been known that the cerebellum plays a critical role in associative learning and motor timing, recent evidence suggests that it also plays a role in nonmotor psychological processes. Indeed, cerebellar anomalies in schizophrenia have been linked to cognitive dysfunction and poor long-term outcome. To test the hypothesis that schizophrenia is associated with cerebellar dysfunction, cerebellar-dependent, delay eye-blink conditioning was examined in 62 individuals with schizophrenia and 62 age-matched non-psychiatric comparison subjects. The conditioned stimulus was a 400 ms tone, which co-terminated with a 50 ms unconditioned stimulus air puff. A subset of participants (25 with schizophrenia and 29 controls) also completed the Wechsler Abbreviated Scale of Intelligence. Participants with schizophrenia exhibited lower rates of eye-blink conditioning, including earlier (less adaptively timed) conditioned response latencies. Cognitive functioning was correlated with the rate of conditioned responsing in the non-psychiatric comparison subjects but not among those with schizophrenia, and the magnitude of these correlations significantly differed between groups. These findings are consistent with models of schizophrenia in which disruptions within the cortico-cerebellar-thalamic-cortical (CCTC) brain circuit are postulated to underlie the cognitive fragmentation that characterizes the disorder. PMID:19351577
NASA Astrophysics Data System (ADS)
Pi, E. I.; Siegel, E.
2010-03-01
Siegel[AMS Natl.Mtg.(2002)-Abs.973-60-124] digits logarithmic- law inversion to ONLY BEQS BEC:Quanta/Bosons=#: EMP-like SEVERE VULNERABILITY of ONLY #-networks(VS.ANALOG INvulnerability) via Barabasi NP(VS.dynamics[Not.AMS(5/2009)] critique);(so called)``quantum-computing''(QC) = simple-arithmetic (sansdivision);algorithmiccomplexities:INtractibility/UNdecidabi lity/INefficiency/NONcomputability/HARDNESS(so MIScalled) ``noise''-induced-phase-transition(NIT)ACCELERATION:Cook-Levin theorem Reducibility = RG fixed-points; #-Randomness DEFINITION via WHAT? Query(VS. Goldreich[Not.AMS(2002)] How? mea culpa)= ONLY MBCS hot-plasma v #-clumping NON-random BEC; Modular-Arithmetic Congruences = Signal x Noise PRODUCTS = clock-model; NON-Shor[Physica A,341,586(04)]BEC logarithmic-law inversion factorization: Watkins #-theory U statistical- physics); P=/=NP C-S TRIVIAL Proof: Euclid!!! [(So Miscalled) computational-complexity J-O obviation(3 millennia AGO geometry: NO:CC,``CS'';``Feet of Clay!!!'']; Query WHAT?:Definition: (so MIScalled)``complexity''=UTTER-SIMPLICITY!! v COMPLICATEDNESS MEASURE(S).
Implicit Learning of Arithmetic Regularities Is Facilitated by Proximal Contrast
Prather, Richard W.
2012-01-01
Natural number arithmetic is a simple, powerful and important symbolic system. Despite intense focus on learning in cognitive development and educational research many adults have weak knowledge of the system. In current study participants learn arithmetic principles via an implicit learning paradigm. Participants learn not by solving arithmetic equations, but through viewing and evaluating example equations, similar to the implicit learning of artificial grammars. We expand this to the symbolic arithmetic system. Specifically we find that exposure to principle-inconsistent examples facilitates the acquisition of arithmetic principle knowledge if the equations are presented to the learning in a temporally proximate fashion. The results expand on research of the implicit learning of regularities and suggest that contrasting cases, show to facilitate explicit arithmetic learning, is also relevant to implicit learning of arithmetic. PMID:23119101
Arithmetic Circuit Verification Based on Symbolic Computer Algebra
NASA Astrophysics Data System (ADS)
Watanabe, Yuki; Homma, Naofumi; Aoki, Takafumi; Higuchi, Tatsuo
This paper presents a formal approach to verify arithmetic circuits using symbolic computer algebra. Our method describes arithmetic circuits directly with high-level mathematical objects based on weighted number systems and arithmetic formulae. Such circuit description can be effectively verified by polynomial reduction techniques using Gröbner Bases. In this paper, we describe how the symbolic computer algebra can be used to describe and verify arithmetic circuits. The advantageous effects of the proposed approach are demonstrated through experimental verification of some arithmetic circuits such as multiply-accumulator and FIR filter. The result shows that the proposed approach has a definite possibility of verifying practical arithmetic circuits.
Keser, Zafer; Hasan, Khader M.; Mwangi, Benson I.; Kamali, Arash; Ucisik-Keser, Fehime Eymen; Riascos, Roy F.; Yozbatiran, Nuray; Francisco, Gerard E.; Narayana, Ponnada A.
2015-01-01
Cerebellar white matter (WM) connections to the central nervous system are classified functionally into the Spinocerebellar (SC), vestibulocerebellar (VC), and cerebrocerebellar subdivisions. The SC pathways project from spinal cord to cerebellum, whereas the VC pathways project from vestibular organs of the inner ear. Cerebrocerebellar connections are composed of feed forward and feedback connections between cerebrum and cerebellum including the cortico-ponto-cerebellar (CPC) pathways being of cortical origin and the dentate-rubro-thalamo-cortical (DRTC) pathway being of cerebellar origin. In this study we systematically quantified the whole cerebellar system connections using diffusion tensor magnetic resonance imaging (DT-MRI). Ten right-handed healthy subjects (7 males and 3 females, age range 20–51 years) were studied. DT-MRI data were acquired with a voxel size = 2 mm × 2 mm × 2 mm at a 3.0 Tesla clinical MRI scanner. The DT-MRI data were prepared and analyzed using anatomically-guided deterministic tractography methods to reconstruct the SC, DRTC, fronto-ponto-cerebellar (FPC), parieto-ponto-cerebellar (PPC), temporo-ponto-cerebellar (TPC) and occipito-ponto-cerebellar (OPC). The DTI-attributes or the cerebellar tracts along with their cortical representation (Brodmann areas) were presented in standard Montréal Neurological Institute space. All cerebellar tract volumes were quantified and correlated with volumes of cerebral cortical, subcortical gray matter (GM), cerebral WM and cerebellar GM, and cerebellar WM. On our healthy cohort, the ratio of total cerebellar GM-to-WM was ~3.29 ± 0.24, whereas the ratio of cerebral GM-to-WM was approximately 1.10 ± 0.11. The sum of all cerebellar tract volumes is ~25.8 ± 7.3 mL, or a percentage of 1.6 ± 0.45 of the total intracranial volume (ICV). PMID:25904851
The neural circuits for arithmetic principles.
Liu, Jie; Zhang, Han; Chen, Chuansheng; Chen, Hui; Cui, Jiaxin; Zhou, Xinlin
2017-02-15
Arithmetic principles are the regularities underlying arithmetic computation. Little is known about how the brain supports the processing of arithmetic principles. The current fMRI study examined neural activation and functional connectivity during the processing of verbalized arithmetic principles, as compared to numerical computation and general language processing. As expected, arithmetic principles elicited stronger activation in bilateral horizontal intraparietal sulcus and right supramarginal gyrus than did language processing, and stronger activation in left middle temporal lobe and left orbital part of inferior frontal gyrus than did computation. In contrast, computation elicited greater activation in bilateral horizontal intraparietal sulcus (extending to posterior superior parietal lobule) than did either arithmetic principles or language processing. Functional connectivity analysis with the psychophysiological interaction approach (PPI) showed that left temporal-parietal (MTG-HIPS) connectivity was stronger during the processing of arithmetic principle and language than during computation, whereas parietal-occipital connectivities were stronger during computation than during the processing of arithmetic principles and language. Additionally, the left fronto-parietal (orbital IFG-HIPS) connectivity was stronger during the processing of arithmetic principles than during computation. The results suggest that verbalized arithmetic principles engage a neural network that overlaps but is distinct from the networks for computation and language processing. Copyright © 2016 Elsevier Inc. All rights reserved.
Current Perspectives on the Cerebellum and Reading Development.
Alvarez, Travis A; Fiez, Julie A
2018-05-03
The dominant neural models of typical and atypical reading focus on the cerebral cortex. However, Nicolson et al. (2001) proposed a model, the cerebellar deficit hypothesis, in which the cerebellum plays an important role in reading. To evaluate the evidence in support of this model, we qualitatively review the current literature and employ meta-analytic tools examining patterns of functional connectivity between the cerebellum and the cerebral reading network. We find evidence for a phonological circuit with connectivity between the cerebellum and a dorsal fronto-parietal pathway, and a semantic circuit with cerebellar connectivity to a ventral fronto-temporal pathway. Furthermore, both cerebral pathways have functional connections with the mid-fusiform gyrus, a region implicated in orthographic processing. Consideration of these circuits within the context of the current literature suggests the cerebellum is positioned to influence both phonological and word-based decoding procedures for recognizing unfamiliar printed words. Overall, multiple lines of research provide support for the cerebellar deficit hypothesis, while also highlighting the need for further research to test mechanistic hypotheses. Copyright © 2018. Published by Elsevier Ltd.
Muguruma, Keiko
2018-02-01
Recent advances in the techniques that differentiate induced pluripotent stem cells (iPSCs) into specific types of cells enabled us to establish in vitro cell-based models as a platform for drug discovery. iPSC-derived disease models are advantageous to generation of a large number of cells required for high-throughput screening. Furthermore, disease-relevant cells differentiated from patient-derived iPSCs are expected to recapitulate the disorder-specific pathogenesis and physiology in vitro. Such disease-relevant cells will be useful for developing effective therapies. We demonstrated that cerebellar tissues are generated from human PSCs (hPSCs) in 3D culture systems that recapitulate the in vivo microenvironments associated with the isthmic organizer. Recently, we have succeeded in generation of spinocerebellar ataxia (SCA) patient-derived Purkinje cells by combining the iPSC technology and the self-organizing stem cell 3D culture technology. We demonstrated that SCA6-derived Purkinje cells exhibit vulnerability to triiodothyronine depletion, which is suppressed by treatment with thyrotropin-releasing hormone and Riluzole. We further discuss applications of patient-specific iPSCs to intractable cerebellar disease.
Specificity and Overlap in Skills Underpinning Reading and Arithmetical Fluency
ERIC Educational Resources Information Center
van Daal, Victor; van der Leij, Aryan; Ader, Herman
2013-01-01
The aim of this study was to examine unique and common causes of problems in reading and arithmetic fluency. 13- to 14-year-old students were placed into one of five groups: reading disabled (RD, n = 16), arithmetic disabled (AD, n = 34), reading and arithmetic disabled (RAD, n = 17), reading, arithmetic, and listening comprehension disabled…
Magnetic Resonance Imaging of Malformations of Midbrain-Hindbrain.
Abdel Razek, Ahmed Abdel Khalek; Castillo, Mauricio
2016-01-01
We aim to review the magnetic resonance imaging appearance of malformations of midbrain and hindbrain. These can be classified as predominantly cerebellar malformations, combined cerebellar and brain stem malformations, and predominantly brain stem malformations. The diagnostic criteria for the majority of these morphological malformations are based on neuroimaging findings. The predominantly cerebellar malformations include predominantly vermian hypoplasia seen in Dandy-Walker malformation and rhombencephalosynapsis, global cerebellar hypoplasia reported in lissencephaly and microlissencephaly, and unilateral cerebellar hypoplasia seen in PHACES, vanishing cerebellum, and cerebellar cleft. Cerebellar dysplasias are seen in Chudley-McCullough syndrome, associated with LAMA1 mutations and GPR56 mutations; Lhermitte-Duclos disease; and focal cerebellar dysplasias. Cerebellar hyperplasias are seen in megalencephaly-related syndromes and hemimegalencephaly with ipsilateral cerebellomegaly. Cerebellar and brain stem malformations include tubulinopathies, Joubert syndrome, cobblestone malformations, pontocerebellar hypoplasias, and congenital disorders of glycosylation type Ia. Predominantly brain stem malformations include congenital innervation dysgenesis syndrome, pontine tegmental cap dysplasia, diencephalic-mesencephalic junction dysplasia, disconnection syndrome, and pontine clefts.
Decreased cerebellar-cerebral connectivity contributes to complex task performance
Knops, André
2016-01-01
The cerebellum's role in nonmotor processes is now well accepted, but cerebellar interaction with cerebral targets is not well understood. Complex cognitive tasks activate cerebellar, parietal, and frontal regions, but the effective connectivity between these regions has never been tested. To this end, we used psycho-physiological interactions (PPI) analysis to test connectivity changes of cerebellar and parietal seed regions in complex (2-digit by 1-digit multiplication, e.g., 12 × 3) vs. simple (1-digit by 1-digit multiplication, e.g., 4 × 3) task conditions (“complex − simple”). For cerebellar seed regions (lobule VI, hemisphere and vermis), we found significantly decreased cerebellar-parietal, cerebellar-cingulate, and cerebellar-frontal connectivity in complex multiplication. For parietal seed regions (PFcm, PFop, PFm) we found significantly increased parietal-parietal and parietal-frontal connectivity in complex multiplication. These results suggest that decreased cerebellar-cerebral connectivity contributes to complex task performance. Interestingly, BOLD activity contrasts revealed partially overlapping parietal areas of increased BOLD activity but decreased cerebellar-parietal PPI connectivity. PMID:27334957
Digital hardware implementation of a stochastic two-dimensional neuron model.
Grassia, F; Kohno, T; Levi, T
2016-11-01
This study explores the feasibility of stochastic neuron simulation in digital systems (FPGA), which realizes an implementation of a two-dimensional neuron model. The stochasticity is added by a source of current noise in the silicon neuron using an Ornstein-Uhlenbeck process. This approach uses digital computation to emulate individual neuron behavior using fixed point arithmetic operation. The neuron model's computations are performed in arithmetic pipelines. It was designed in VHDL language and simulated prior to mapping in the FPGA. The experimental results confirmed the validity of the developed stochastic FPGA implementation, which makes the implementation of the silicon neuron more biologically plausible for future hybrid experiments. Copyright © 2017 Elsevier Ltd. All rights reserved.
Model Checking with Edge-Valued Decision Diagrams
NASA Technical Reports Server (NTRS)
Roux, Pierre; Siminiceanu, Radu I.
2010-01-01
We describe an algebra of Edge-Valued Decision Diagrams (EVMDDs) to encode arithmetic functions and its implementation in a model checking library. We provide efficient algorithms for manipulating EVMDDs and review the theoretical time complexity of these algorithms for all basic arithmetic and relational operators. We also demonstrate that the time complexity of the generic recursive algorithm for applying a binary operator on EVMDDs is no worse than that of Multi- Terminal Decision Diagrams. We have implemented a new symbolic model checker with the intention to represent in one formalism the best techniques available at the moment across a spectrum of existing tools. Compared to the CUDD package, our tool is several orders of magnitude faster
Turner, Jill R; Ortinski, Pavel I; Sherrard, Rachel M; Kellar, Kenneth J
2011-12-01
Although recent studies have delineated the specific nicotinic subtypes present in the mammalian cerebellum, very little is known about their location or function within the cerebellum. This is of increased interest since nicotinic receptors (nAChRs) in the cerebellum have recently been implicated in the pathology of autism spectrum disorders. To begin to better understand the roles of these heteromeric nAChRs in the cerebellar circuitry and their therapeutic potential as targets for drug development, we used various chemical and stereotaxic lesion models in conjunction with slice electrophysiology to examine how specific heteromeric nAChR subtypes may influence the surrounding cerebellar circuitry. Using subunit-specific immunoprecipitation of radiolabeled nAChRs in the cerebella following N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride, p-chloroamphetamine, and pendunculotomy lesions, we show that most, if not all, cerebellar nicotinic receptors are present in cells within the cerebellum itself and not in extracerebellar afferents. Furthermore, we demonstrate that the β4-containing, but not the β2-containing, nAChRs intrinsic to the cerebellum can regulate inhibitory synaptic efficacy at two major classes of cerebellar neurons. These tandem findings suggest that nAChRs may present a potential drug target for disorders involving the cerebellum.
Turner, Jill R.; Ortinski, Pavel I.; Sherrard, Rachel M.
2016-01-01
Although recent studies have delineated the specific nicotinic subtypes present in the mammalian cerebellum, very little is known about their location or function within the cerebellum. This is of increased interest since nicotinic receptors (nAChRs) in the cerebellum have recently been implicated in the pathology of autism spectrum disorders. To begin to better understand the roles of these heteromeric nAChRs in the cerebellar circuitry and their therapeutic potential as targets for drug development, we used various chemical and stereotaxic lesion models in conjunction with slice electrophysiology to examine how specific heteromeric nAChR subtypes may influence the surrounding cerebellar circuitry. Using subunit-specific immunoprecipitation of radiolabeled nAChRs in the cerebella following N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride, p-chloroamphetamine, and pendunculotomy lesions, we show that most, if not all, cerebellar nicotinic receptors are present in cells within the cerebellum itself and not in extracerebellar afferents. Furthermore, we demonstrate that the β4-containing, but not the β2-containing, nAChRs intrinsic to the cerebellum can regulate inhibitory synaptic efficacy at two major classes of cerebellar neurons. These tandem findings suggest that nAChRs may present a potential drug target for disorders involving the cerebellum. PMID:21562921
Damme, Markus; Stroobants, Stijn; Walkley, Steven U.; Lüllmann-Rauch, Renate; D`Hooge, Rudi; Fogh, Jens; Saftig, Paul; Lübke, Torben; Blanz, Judith
2011-01-01
α-Mannosidosis is a rare lysosomal storage disease with accumulation of undegraded mannosyl-linked oligosaccharides in cells throughout the body, most notably in the CNS. This leads to a broad spectrum of neurological manifestations, including progressive intellectual impairment, disturbed motor functions and cerebellar atrophy. To develop therapeutic outcome measures for enzyme replacement therapy (ERT) that could be used for human patients, a gene knockout model of α-mannosidosis in mice was analyzed for CNS pathology and motor deficits. In the cerebellar molecular layer, α-mannosidosis mice display clusters of activated Bergman glia, infiltration of phagocytic macrophages and accumulation of free cholesterol and gangliosides (GM1), notably in regions lacking Purkinje cells. α-mannosidosis brain lysates also displayed increased expression of Lamp1 and hyperglycosylation of the cholesterol binding protein NPC2. Detailed assessment of motor function revealed age-dependent gait defects in the mice that resemble the disturbed motor function in human patients. Short-term ERT partially reversed the observed cerebellar pathology with fewer activated macrophages and astrocytes but unchanged levels of hyperglycosylated NPC2, gangliosides and cholesterol. The present study demonstrates cerebellar alterations in α-mannosidosis mice that relate to the motor deficits and pathological changes seen in human patients and can be used as therapeutic outcome measures. PMID:21157375
Cerebellar Nuclear Neurons Use Time and Rate Coding to Transmit Purkinje Neuron Pauses.
Sudhakar, Shyam Kumar; Torben-Nielsen, Benjamin; De Schutter, Erik
2015-12-01
Neurons of the cerebellar nuclei convey the final output of the cerebellum to their targets in various parts of the brain. Within the cerebellum their direct upstream connections originate from inhibitory Purkinje neurons. Purkinje neurons have a complex firing pattern of regular spikes interrupted by intermittent pauses of variable length. How can the cerebellar nucleus process this complex input pattern? In this modeling study, we investigate different forms of Purkinje neuron simple spike pause synchrony and its influence on candidate coding strategies in the cerebellar nuclei. That is, we investigate how different alignments of synchronous pauses in synthetic Purkinje neuron spike trains affect either time-locking or rate-changes in the downstream nuclei. We find that Purkinje neuron synchrony is mainly represented by changes in the firing rate of cerebellar nuclei neurons. Pause beginning synchronization produced a unique effect on nuclei neuron firing, while the effect of pause ending and pause overlapping synchronization could not be distinguished from each other. Pause beginning synchronization produced better time-locking of nuclear neurons for short length pauses. We also characterize the effect of pause length and spike jitter on the nuclear neuron firing. Additionally, we find that the rate of rebound responses in nuclear neurons after a synchronous pause is controlled by the firing rate of Purkinje neurons preceding it.
ERIC Educational Resources Information Center
Zhang, Xiao; Räsänen, Pekka; Koponen, Tuire; Aunola, Kaisa; Lerkkanen, Marja-Kristiina; Nurmi, Jari-Erik
2017-01-01
The longitudinal relations of domain-general and numerical skills at ages 6-7 years to 3 cognitive domains of arithmetic learning, namely knowing (written computation), applying (arithmetic word problems), and reasoning (arithmetic reasoning) at age 11, were examined for a representative sample of 378 Finnish children. The results showed that…
Foley, Alana E; Vasilyeva, Marina; Laski, Elida V
2017-06-01
This study examined the mediating role of children's use of decomposition strategies in the relation between visuospatial memory (VSM) and arithmetic accuracy. Children (N = 78; Age M = 9.36) completed assessments of VSM, arithmetic strategies, and arithmetic accuracy. Consistent with previous findings, VSM predicted arithmetic accuracy in children. Extending previous findings, the current study showed that the relation between VSM and arithmetic performance was mediated by the frequency of children's use of decomposition strategies. Identifying the role of arithmetic strategies in this relation has implications for increasing the math performance of children with lower VSM. Statement of contribution What is already known on this subject? The link between children's visuospatial working memory and arithmetic accuracy is well documented. Frequency of decomposition strategy use is positively related to children's arithmetic accuracy. Children's spatial skill positively predicts the frequency with which they use decomposition. What does this study add? Short-term visuospatial memory (VSM) positively relates to the frequency of children's decomposition use. Decomposition use mediates the relation between short-term VSM and arithmetic accuracy. Children with limited short-term VSM may struggle to use decomposition, decreasing accuracy. © 2016 The British Psychological Society.
Reading instead of reasoning? Predictors of arithmetic skills in children with cochlear implants.
Huber, Maria; Kipman, Ulrike; Pletzer, Belinda
2014-07-01
The aim of the present study was to evaluate whether the arithmetic achievement of children with cochlear implants (CI) was lower or comparable to that of their normal hearing peers and to identify predictors of arithmetic achievement in children with CI. In particular we related the arithmetic achievement of children with CI to nonverbal IQ, reading skills and hearing variables. 23 children with CI (onset of hearing loss in the first 24 months, cochlear implantation in the first 60 months of life, atleast 3 years of hearing experience with the first CI) and 23 normal hearing peers matched by age, gender, and social background participated in this case control study. All attended grades two to four in primary schools. To assess their arithmetic achievement, all children completed the "Arithmetic Operations" part of the "Heidelberger Rechentest" (HRT), a German arithmetic test. To assess reading skills and nonverbal intelligence as potential predictors of arithmetic achievement, all children completed the "Salzburger Lesetest" (SLS), a German reading screening, and the Culture Fair Intelligence Test (CFIT), a nonverbal intelligence test. Children with CI did not differ significantly from hearing children in their arithmetic achievement. Correlation and regression analyses revealed that in children with CI, arithmetic achievement was significantly (positively) related to reading skills, but not to nonverbal IQ. Reading skills and nonverbal IQ were not related to each other. In normal hearing children, arithmetic achievement was significantly (positively) related to nonverbal IQ, but not to reading skills. Reading skills and nonverbal IQ were positively correlated. Hearing variables were not related to arithmetic achievement. Children with CI do not show lower performance in non-verbal arithmetic tasks, compared to normal hearing peers. Copyright © 2014. Published by Elsevier Ireland Ltd.
A model-based theory on the origin of downbeat nystagmus.
Marti, Sarah; Straumann, Dominik; Büttner, Ulrich; Glasauer, Stefan
2008-07-01
The pathomechanism of downbeat nystagmus (DBN), an ocular motor sign typical for vestibulo-cerebellar lesions, remains unclear. Previous hypotheses conjectured various deficits such as an imbalance of central vertical vestibular or smooth pursuit pathways to be causative for the generation of spontaneous upward drift. However, none of the previous theories explains the full range of ocular motor deficits associated with DBN, i.e., impaired vertical smooth pursuit (SP), gaze evoked nystagmus, and gravity dependence of the upward drift. We propose a new hypothesis, which explains the ocular motor signs of DBN by damage of the inhibitory vertical gaze-velocity sensitive Purkinje cells (PCs) in the cerebellar flocculus (FL). These PCs show spontaneous activity and a physiological asymmetry in that most of them exhibit downward on-directions. Accordingly, a loss of vertical floccular PCs will lead to disinhibition of their brainstem target neurons and, consequently, to spontaneous upward drift, i.e., DBN. Since the FL is involved in generation and control of SP and gaze holding, a single lesion, e.g., damage to vertical floccular PCs, may also explain the associated ocular motor deficits. To test our hypothesis, we developed a computational model of vertical eye movements based on known ocular motor anatomy and physiology, which illustrates how cortical, cerebellar, and brainstem regions interact to generate the range of vertical eye movements seen in healthy subjects. Model simulation of the effect of extensive loss of floccular PCs resulted in ocular motor features typically associated with cerebellar DBN: (1) spontaneous upward drift due to decreased spontaneous PC activity, (2) gaze evoked nystagmus corresponding to failure of the cerebellar loop supporting neural integrator function, (3) asymmetric vertical SP deficit due to low gain and asymmetric attenuation of PC firing, and (4) gravity-dependence of DBN caused by an interaction of otolith-ocular pathways with impaired neural integrator function.
Cerebellar supervised learning revisited: biophysical modeling and degrees-of-freedom control.
Kawato, Mitsuo; Kuroda, Shinya; Schweighofer, Nicolas
2011-10-01
The biophysical models of spike-timing-dependent plasticity have explored dynamics with molecular basis for such computational concepts as coincidence detection, synaptic eligibility trace, and Hebbian learning. They overall support different learning algorithms in different brain areas, especially supervised learning in the cerebellum. Because a single spine is physically very small, chemical reactions at it are essentially stochastic, and thus sensitivity-longevity dilemma exists in the synaptic memory. Here, the cascade of excitable and bistable dynamics is proposed to overcome this difficulty. All kinds of learning algorithms in different brain regions confront with difficult generalization problems. For resolution of this issue, the control of the degrees-of-freedom can be realized by changing synchronicity of neural firing. Especially, for cerebellar supervised learning, the triangle closed-loop circuit consisting of Purkinje cells, the inferior olive nucleus, and the cerebellar nucleus is proposed as a circuit to optimally control synchronous firing and degrees-of-freedom in learning. Copyright © 2011 Elsevier Ltd. All rights reserved.
Exploring the Feasibility of a DNA Computer: Design of an ALU Using Sticker-Based DNA Model.
Sarkar, Mayukh; Ghosal, Prasun; Mohanty, Saraju P
2017-09-01
Since its inception, DNA computing has advanced to offer an extremely powerful, energy-efficient emerging technology for solving hard computational problems with its inherent massive parallelism and extremely high data density. This would be much more powerful and general purpose when combined with other existing well-known algorithmic solutions that exist for conventional computing architectures using a suitable ALU. Thus, a specifically designed DNA Arithmetic and Logic Unit (ALU) that can address operations suitable for both domains can mitigate the gap between these two. An ALU must be able to perform all possible logic operations, including NOT, OR, AND, XOR, NOR, NAND, and XNOR; compare, shift etc., integer and floating point arithmetic operations (addition, subtraction, multiplication, and division). In this paper, design of an ALU has been proposed using sticker-based DNA model with experimental feasibility analysis. Novelties of this paper may be in manifold. First, the integer arithmetic operations performed here are 2s complement arithmetic, and the floating point operations follow the IEEE 754 floating point format, resembling closely to a conventional ALU. Also, the output of each operation can be reused for any next operation. So any algorithm or program logic that users can think of can be implemented directly on the DNA computer without any modification. Second, once the basic operations of sticker model can be automated, the implementations proposed in this paper become highly suitable to design a fully automated ALU. Third, proposed approaches are easy to implement. Finally, these approaches can work on sufficiently large binary numbers.
The Cerebellum and Neurodevelopmental Disorders.
Stoodley, Catherine J
2016-02-01
Cerebellar dysfunction is evident in several developmental disorders, including autism, attention deficit-hyperactivity disorder (ADHD), and developmental dyslexia, and damage to the cerebellum early in development can have long-term effects on movement, cognition, and affective regulation. Early cerebellar damage is often associated with poorer outcomes than cerebellar damage in adulthood, suggesting that the cerebellum is particularly important during development. Differences in cerebellar development and/or early cerebellar damage could impact a wide range of behaviors via the closed-loop circuits connecting the cerebellum with multiple cerebral cortical regions. Based on these anatomical circuits, behavioral outcomes should depend on which cerebro-cerebellar circuits are affected. Here, we briefly review cerebellar structural and functional differences in autism, ADHD, and developmental dyslexia, and discuss clinical outcomes following pediatric cerebellar damage. These data confirm the prediction that abnormalities in different cerebellar subregions produce behavioral symptoms related to the functional disruption of specific cerebro-cerebellar circuits. These circuits might also be crucial to structural brain development, as peri-natal cerebellar lesions have been associated with impaired growth of the contralateral cerebral cortex. The specific contribution of the cerebellum to typical development may therefore involve the optimization of both the structure and function of cerebro-cerebellar circuits underlying skill acquisition in multiple domains; when this process is disrupted, particularly in early development, there could be long-term alterations of these neural circuits, with significant impacts on behavior.
The cerebellum and neurodevelopmental disorders
Stoodley, Catherine J.
2015-01-01
Cerebellar dysfunction is evident in several developmental disorders, including autism, attention deficit hyperactivity disorder (ADHD), and developmental dyslexia, and damage to the cerebellum early in development can have long-term effects on movement, cognition, and affective regulation. Early cerebellar damage is often associated with poorer outcomes than cerebellar damage in adulthood, suggesting that the cerebellum is particularly important during development. Differences in cerebellar development and/or early cerebellar damage could impact a wide range of behaviors via the closed-loop circuits connecting the cerebellum with multiple cerebral cortical regions. Based on these anatomical circuits, behavioral outcomes should depend on which cerebro-cerebellar circuits are affected. Here, we briefly review cerebellar structural and functional differences in autism, ADHD, and developmental dyslexia, and discuss clinical outcomes following pediatric cerebellar damage. These data confirm the prediction that abnormalities in different cerebellar subregions produce behavioral symptoms related to the functional disruption of specific cerebro-cerebellar circuits. These circuits might also be crucial to structural brain development, as peri-natal cerebellar lesions have been associated with impaired growth of the contralateral cerebral cortex. The specific contribution of the cerebellum to typical development may therefore involve the optimization of both the structure and function of cerebro-cerebellar circuits underlying skill acquisition in multiple domains; when this process is disrupted, particularly in early development, there could be long-term alterations of these neural circuits, with significant impacts on behavior. PMID:26298473
NASA Astrophysics Data System (ADS)
Nguon, K.; Ladd, B.; Baxter, M. G.; Sajdel-Sulkowska, E. M.
2006-01-01
We previously reported that the developing rat cerebellum is affected by exposure to hypergravity. In the present study, we explored the hypothesis that the changes in cerebellar structure in hypergravity-exposed rat neonates may affect their motor coordination. Furthermore, we hypothesized that the changes observed at 1.5G will be magnified at higher gravitational loading. To test this hypothesis, we compared motor behavior, cerebellar structure, and protein expression in rat neonates exposed to 1.5 1.75G on a 24-ft centrifuge daily for 22.5 h starting on gestational day (G) 10, through birth on G22/G23 and through postnatal day (P) 21. Exposure to hypergravity impacted the neurodevelopmental process as indicated by: (1) impaired righting response on P3, more than doubling the righting time at 1.75G, and (2) delayed onset of the startle response by one day, from P9 in controls to P10 in hypergravity-exposed pups. Hypergravity exposure resulted in impaired motor functions as evidenced by performance on a rotarod on P21; the duration of the stay on the rotarod recorded for 1.75G pups of both sexes was one tenth that of the stationary control (SC) pups. These changes in motor behavior were associated with cerebellar changes: (1) cerebellar mass on P6 was decreased by 7.5% in 1.5G-exposed male pups, 27.5% in 1.75G-exposed male pups, 17.5% in 1.5G-exposed female pups, and 22.5% in 1.75G female pups and (2) changes in the expression of glial and neuronal proteins. The results of this study suggest that perinatal exposure to hypergravity affects cerebellar development as evidenced by decreased cerebellar mass and altered cerebellar protein expression; cerebellar changes observed in hypergravity-exposed rat neonates are associated with impaired motor behavior. Furthermore, the response to hypergravity appears to be different in male and female neonates. If one accepts that the hypergravity paradigm is a useful animal model with which to predict those biological processes in the CNS affected by microgravity, and because males and females were shown to respond differently to hypergravity, it can be surmised that males and females may respond differently to the microgravity encountered in space.
Pinzon-Morales, Ruben-Dario; Hirata, Yutaka
2014-01-01
To acquire and maintain precise movement controls over a lifespan, changes in the physical and physiological characteristics of muscles must be compensated for adaptively. The cerebellum plays a crucial role in such adaptation. Changes in muscle characteristics are not always symmetrical. For example, it is unlikely that muscles that bend and straighten a joint will change to the same degree. Thus, different (i.e., asymmetrical) adaptation is required for bending and straightening motions. To date, little is known about the role of the cerebellum in asymmetrical adaptation. Here, we investigate the cerebellar mechanisms required for asymmetrical adaptation using a bi-hemispheric cerebellar neuronal network model (biCNN). The bi-hemispheric structure is inspired by the observation that lesioning one hemisphere reduces motor performance asymmetrically. The biCNN model was constructed to run in real-time and used to control an unstable two-wheeled balancing robot. The load of the robot and its environment were modified to create asymmetrical perturbations. Plasticity at parallel fiber-Purkinje cell synapses in the biCNN model was driven by error signal in the climbing fiber (cf) input. This cf input was configured to increase and decrease its firing rate from its spontaneous firing rate (approximately 1 Hz) with sensory errors in the preferred and non-preferred direction of each hemisphere, as demonstrated in the monkey cerebellum. Our results showed that asymmetrical conditions were successfully handled by the biCNN model, in contrast to a single hemisphere model or a classical non-adaptive proportional and derivative controller. Further, the spontaneous activity of the cf, while relatively small, was critical for balancing the contribution of each cerebellar hemisphere to the overall motor command sent to the robot. Eliminating the spontaneous activity compromised the asymmetrical learning capabilities of the biCNN model. Thus, we conclude that a bi-hemispheric structure and adequate spontaneous activity of cf inputs are critical for cerebellar asymmetrical motor learning.
Pinzon-Morales, Ruben-Dario; Hirata, Yutaka
2014-01-01
To acquire and maintain precise movement controls over a lifespan, changes in the physical and physiological characteristics of muscles must be compensated for adaptively. The cerebellum plays a crucial role in such adaptation. Changes in muscle characteristics are not always symmetrical. For example, it is unlikely that muscles that bend and straighten a joint will change to the same degree. Thus, different (i.e., asymmetrical) adaptation is required for bending and straightening motions. To date, little is known about the role of the cerebellum in asymmetrical adaptation. Here, we investigate the cerebellar mechanisms required for asymmetrical adaptation using a bi-hemispheric cerebellar neuronal network model (biCNN). The bi-hemispheric structure is inspired by the observation that lesioning one hemisphere reduces motor performance asymmetrically. The biCNN model was constructed to run in real-time and used to control an unstable two-wheeled balancing robot. The load of the robot and its environment were modified to create asymmetrical perturbations. Plasticity at parallel fiber-Purkinje cell synapses in the biCNN model was driven by error signal in the climbing fiber (cf) input. This cf input was configured to increase and decrease its firing rate from its spontaneous firing rate (approximately 1 Hz) with sensory errors in the preferred and non-preferred direction of each hemisphere, as demonstrated in the monkey cerebellum. Our results showed that asymmetrical conditions were successfully handled by the biCNN model, in contrast to a single hemisphere model or a classical non-adaptive proportional and derivative controller. Further, the spontaneous activity of the cf, while relatively small, was critical for balancing the contribution of each cerebellar hemisphere to the overall motor command sent to the robot. Eliminating the spontaneous activity compromised the asymmetrical learning capabilities of the biCNN model. Thus, we conclude that a bi-hemispheric structure and adequate spontaneous activity of cf inputs are critical for cerebellar asymmetrical motor learning. PMID:25414644
McCairn, Kevin W; Iriki, Atsushi; Isoda, Masaki
2013-01-09
Motor tics, a cardinal symptom of Tourette syndrome (TS), are hypothesized to arise from abnormalities within cerebro-basal ganglia circuits. Yet noninvasive neuroimaging of TS has previously identified robust activation in the cerebellum. To date, electrophysiological properties of cerebellar activation and its role in basal ganglia-mediated tic expression remain unknown. We performed multisite, multielectrode recordings of single-unit activity and local field potentials from the cerebellum, basal ganglia, and primary motor cortex using a pharmacologic monkey model of motor tics/TS. Following microinjections of bicuculline into the sensorimotor putamen, periodic tics occurred predominantly in the orofacial region, and a sizable number of cerebellar neurons showed phasic changes in activity associated with tic episodes. Specifically, 64% of the recorded cerebellar cortex neurons exhibited increases in activity, and 85% of the dentate nucleus neurons displayed excitatory, inhibitory, or multiphasic responses. Critically, abnormal discharges of cerebellar cortex neurons and excitatory-type dentate neurons mostly preceded behavioral tic onset, indicating their central origins. Latencies of pathological activity in the cerebellum and primary motor cortex substantially overlapped, suggesting that aberrant signals may be traveling along divergent pathways to these structures from the basal ganglia. Furthermore, the occurrence of tic movement was most closely associated with local field potential spikes in the cerebellum and primary motor cortex, implying that these structures may function as a gate to release overt tic movements. These findings indicate that tic-generating networks in basal ganglia mediated tic disorders extend beyond classical cerebro-basal ganglia circuits, leading to global network dysrhythmia including cerebellar circuits.
Cendelín, Jan; Korelusová, Ivana; Vozeh, Frantisek
2009-03-01
Lurcher mutant mice represent a model of olivocerebellar degeneration. They are used to investigate cerebellar functions, consequences of cerebellar degeneration and methods of therapy influencing them. The aim of the work was to assess the effect of foetal cerebellar graft transplantation, repeated enforced physical activity and the combination of both these types of treatment on motor skills, spontaneous motor activity and spatial learning ability in adult B6CBA Lurcher mice. Foetal cerebellar grafts were applied into the cerebellum of Lurchers in the form of solid tissue pieces. Enforced motor activity was realised through rotarod training. Motor functions were examined using bar, ladder and rotarod tests. Spatial learning was tested in the Morris water maze. Spontaneous motor activity in the open field was observed. The presence of the graft was examined histologically. Enforced physical activity led to moderate improvement of some motor skills and to a significant amelioration of spatial learning ability in Lurchers. The transplantation of cerebellar tissue did not influence motor functions significantly but led to an improvement of spatial learning ability. Mutual advancement of the effects of both types of treatment was not observed. Spontaneous motor activity was influenced neither by physical activity nor by the transplantation. Physical activity did not influence the graft survival and development. Because nerve sprouting and cell migration from the graft to the host cerebellum was poor, the functional effects of the graft should be explained with regard to its trophic influence rather than with any involvement of the grafted cells into neural circuitries.
Contributions of the cerebellum and the motor cortex to acquisition and retention of motor memories
Herzfeld, David J.; Pastor, Damien; Haith, Adrian M.; Rossetti, Yves; Shadmehr, Reza; O’Shea, Jacinta
2014-01-01
We investigated the contributions of the cerebellum and the motor cortex (M1) to acquisition and retention of human motor memories in a force field reaching task. We found that anodal transcranial direct current stimulation (tDCS) of the cerebellum, a technique that is thought to increase neuronal excitability, increased the ability to learn from error and form an internal model of the field, while cathodal cerebellar stimulation reduced this error-dependent learning. In addition, cathodal cerebellar stimulation disrupted the ability to respond to error within a reaching movement, reducing the gain of the sensory-motor feedback loop. By contrast, anodal M1 stimulation had no significant effects on these variables. During sham stimulation, early in training the acquired motor memory exhibited rapid decay in error-clamp trials. With further training the rate of decay decreased, suggesting that with training the motor memory was transformed from a labile to a more stable state. Surprisingly, neither cerebellar nor M1 stimulation altered these decay patterns. Participants returned 24 hours later and were re-tested in error-clamp trials without stimulation. The cerebellar group that had learned the task with cathodal stimulation exhibited significantly impaired retention, and retention was not improved by M1 anodal stimulation. In summary, non-invasive cerebellar stimulation resulted in polarity-dependent up- or down-regulation of error-dependent motor learning. In addition, cathodal cerebellar stimulation during acquisition impaired the ability to retain the motor memory overnight. Thus, in the force field task we found a critical role for the cerebellum in both formation of motor memory and its retention. PMID:24816533
Improved segmentation of cerebellar structures in children
Narayanan, Priya Lakshmi; Boonazier, Natalie; Warton, Christopher; Molteno, Christopher D; Joseph, Jesuchristopher; Jacobson, Joseph L; Jacobson, Sandra W; Zöllei, Lilla; Meintjes, Ernesta M
2016-01-01
Background Consistent localization of cerebellar cortex in a standard coordinate system is important for functional studies and detection of anatomical alterations in studies of morphometry. To date, no pediatric cerebellar atlas is available. New method The probabilistic Cape Town Pediatric Cerebellar Atlas (CAPCA18) was constructed in the age-appropriate National Institute of Health Pediatric Database asymmetric template space using manual tracings of 16 cerebellar compartments in 18 healthy children (9–13 years) from Cape Town, South Africa. The individual atlases of the training subjects were also used to implement multi atlas label fusion using multi atlas majority voting (MAMV) and multi atlas generative model (MAGM) approaches. Segmentation accuracy in 14 test subjects was compared for each method to ‘gold standard’ manual tracings. Results Spatial overlap between manual tracings and CAPCA18 automated segmentation was 73% or higher for all lobules in both hemispheres, except VIIb and X. Automated segmentation using MAGM yielded the best segmentation accuracy over all lobules (mean Dice Similarity Coefficient 0.76; range 0.55–0.91). Comparison with existing methods In all lobules, spatial overlap of CAPCA18 segmentations with manual tracings was similar or higher than those obtained with SUIT (spatially unbiased infra-tentorial template), providing additional evidence of the benefits of an age appropriate atlas. MAGM segmentation accuracy was comparable to values reported recently by Park et al. (2014) in adults (across all lobules mean DSC = 0.73, range 0.40–0.89). Conclusions CAPCA18 and the associated multi atlases of the training subjects yield improved segmentation of cerebellar structures in children. PMID:26743973
Cerebro-cerebellar circuits in autism spectrum disorder.
D'Mello, Anila M; Stoodley, Catherine J
2015-01-01
The cerebellum is one of the most consistent sites of abnormality in autism spectrum disorder (ASD) and cerebellar damage is associated with an increased risk of ASD symptoms, suggesting that cerebellar dysfunction may play a crucial role in the etiology of ASD. The cerebellum forms multiple closed-loop circuits with cerebral cortical regions that underpin movement, language, and social processing. Through these circuits, cerebellar dysfunction could impact the core ASD symptoms of social and communication deficits and repetitive and stereotyped behaviors. The emerging topography of sensorimotor, cognitive, and affective subregions in the cerebellum provides a new framework for interpreting the significance of regional cerebellar findings in ASD and their relationship to broader cerebro-cerebellar circuits. Further, recent research supports the idea that the integrity of cerebro-cerebellar loops might be important for early cortical development; disruptions in specific cerebro-cerebellar loops in ASD might impede the specialization of cortical regions involved in motor control, language, and social interaction, leading to impairments in these domains. Consistent with this concept, structural, and functional differences in sensorimotor regions of the cerebellum and sensorimotor cerebro-cerebellar circuits are associated with deficits in motor control and increased repetitive and stereotyped behaviors in ASD. Further, communication and social impairments are associated with atypical activation and structure in cerebro-cerebellar loops underpinning language and social cognition. Finally, there is converging evidence from structural, functional, and connectivity neuroimaging studies that cerebellar right Crus I/II abnormalities are related to more severe ASD impairments in all domains. We propose that cerebellar abnormalities may disrupt optimization of both structure and function in specific cerebro-cerebellar circuits in ASD.
Cerebro-cerebellar circuits in autism spectrum disorder
D'Mello, Anila M.; Stoodley, Catherine J.
2015-01-01
The cerebellum is one of the most consistent sites of abnormality in autism spectrum disorder (ASD) and cerebellar damage is associated with an increased risk of ASD symptoms, suggesting that cerebellar dysfunction may play a crucial role in the etiology of ASD. The cerebellum forms multiple closed-loop circuits with cerebral cortical regions that underpin movement, language, and social processing. Through these circuits, cerebellar dysfunction could impact the core ASD symptoms of social and communication deficits and repetitive and stereotyped behaviors. The emerging topography of sensorimotor, cognitive, and affective subregions in the cerebellum provides a new framework for interpreting the significance of regional cerebellar findings in ASD and their relationship to broader cerebro-cerebellar circuits. Further, recent research supports the idea that the integrity of cerebro-cerebellar loops might be important for early cortical development; disruptions in specific cerebro-cerebellar loops in ASD might impede the specialization of cortical regions involved in motor control, language, and social interaction, leading to impairments in these domains. Consistent with this concept, structural, and functional differences in sensorimotor regions of the cerebellum and sensorimotor cerebro-cerebellar circuits are associated with deficits in motor control and increased repetitive and stereotyped behaviors in ASD. Further, communication and social impairments are associated with atypical activation and structure in cerebro-cerebellar loops underpinning language and social cognition. Finally, there is converging evidence from structural, functional, and connectivity neuroimaging studies that cerebellar right Crus I/II abnormalities are related to more severe ASD impairments in all domains. We propose that cerebellar abnormalities may disrupt optimization of both structure and function in specific cerebro-cerebellar circuits in ASD. PMID:26594140
Recent Advances in Cerebellar Ischemic Stroke Syndromes Causing Vertigo and Hearing Loss.
Kim, Hyun-Ah; Yi, Hyon-Ah; Lee, Hyung
2016-12-01
Cerebellar ischemic stroke is one of the common causes of vascular vertigo. It usually accompanies other neurological symptoms or signs, but a small infarct in the cerebellum can present with vertigo without other localizing symptoms. Approximately 11 % of the patients with isolated cerebellar infarction simulated acute peripheral vestibulopathy, and most patients had an infarct in the territory of the medial branch of the posterior inferior cerebellar artery (PICA). A head impulse test can differentiate acute isolated vertigo associated with PICA territory cerebellar infarction from more benign disorders involving the inner ear. Acute hearing loss (AHL) of a vascular cause is mostly associated with cerebellar infarction in the territory of the anterior inferior cerebellar artery (AICA), but PICA territory cerebellar infarction rarely causes AHL. To date, at least eight subgroups of AICA territory infarction have been identified according to the pattern of neurotological presentations, among which the most common pattern of audiovestibular dysfunction is the combined loss of auditory and vestibular functions. Sometimes acute isolated audiovestibular loss can be the initial symptom of impending posterior circulation ischemic stroke (particularly within the territory of the AICA). Audiovestibular loss from cerebellar infarction has a good long-term outcome than previously thought. Approximately half of patients with superior cerebellar artery territory (SCA) cerebellar infarction experienced true vertigo, suggesting that the vertigo and nystagmus in the SCA territory cerebellar infarctions are more common than previously thought. In this article, recent findings on clinical features of vertigo and hearing loss from cerebellar ischemic stroke syndrome are summarized.
Morphological Constraints on Cerebellar Granule Cell Combinatorial Diversity.
Gilmer, Jesse I; Person, Abigail L
2017-12-13
Combinatorial expansion by the cerebellar granule cell layer (GCL) is fundamental to theories of cerebellar contributions to motor control and learning. Granule cells (GrCs) sample approximately four mossy fiber inputs and are thought to form a combinatorial code useful for pattern separation and learning. We constructed a spatially realistic model of the cerebellar GCL and examined how GCL architecture contributes to GrC combinatorial diversity. We found that GrC combinatorial diversity saturates quickly as mossy fiber input diversity increases, and that this saturation is in part a consequence of short dendrites, which limit access to diverse inputs and favor dense sampling of local inputs. This local sampling also produced GrCs that were combinatorially redundant, even when input diversity was extremely high. In addition, we found that mossy fiber clustering, which is a common anatomical pattern, also led to increased redundancy of GrC input combinations. We related this redundancy to hypothesized roles of temporal expansion of GrC information encoding in service of learned timing, and we show that GCL architecture produces GrC populations that support both temporal and combinatorial expansion. Finally, we used novel anatomical measurements from mice of either sex to inform modeling of sparse and filopodia-bearing mossy fibers, finding that these circuit features uniquely contribute to enhancing GrC diversification and redundancy. Our results complement information theoretic studies of granule layer structure and provide insight into the contributions of granule layer anatomical features to afferent mixing. SIGNIFICANCE STATEMENT Cerebellar granule cells are among the simplest neurons, with tiny somata and, on average, just four dendrites. These characteristics, along with their dense organization, inspired influential theoretical work on the granule cell layer as a combinatorial expander, where each granule cell represents a unique combination of inputs. Despite the centrality of these theories to cerebellar physiology, the degree of expansion supported by anatomically realistic patterns of inputs is unknown. Using modeling and anatomy, we show that realistic input patterns constrain combinatorial diversity by producing redundant combinations, which nevertheless could support temporal diversification of like combinations, suitable for learned timing. Our study suggests a neural substrate for producing high levels of both combinatorial and temporal diversity in the granule cell layer. Copyright © 2017 the authors 0270-6474/17/3712153-14$15.00/0.
Cerebellar abiotrophy in a miniature schnauzer.
Berry, Michelle L; Blas-Machado, Uriel
2003-08-01
A 3.5-month-old miniature schnauzer was presented for signs of progressive cerebellar ataxia. Necropsy revealed cerebellar abiotrophy. This is the first reported case of cerebellar abiotrophy in a purebred miniature schnauzer.
Spontaneous Cerebellar Hematoma: Decision Making in Conscious Adults.
Alkosha, Hazem M; Ali, Nabil Mansour
2017-06-01
To detect predictors of the clinical course and outcome of cerebellar hematoma in conscious patients that may help in decision making. This study entails retrospective and prospective review and collection of the demographic, clinical, and radiologic data of 92 patients with cerebellar hematoma presented conscious and initially treated conservatively. Primary outcome was deterioration lower than a Glasgow Coma Scale score of 14 and secondary outcome was Glasgow Outcome Scale score at discharge and 3 months later. Relevant data to primary outcome were used to create a prediction model and derive a risk score. The model was validated using a bootstrap technique and performance measures of the score were presented. Surgical interventions and secondary outcomes were correlated to the score to explore its use in future decision making. Demographic and clinical data showed no relevance to outcome. The relevant initial computed tomography criteria were used to build up the prediction model. A score was derived after the model proved to be valid using internal validation with bootstrapping technique. The score (0-6) had a cutoff value of ≥2, with sensitivity of 93.3% and specificity of 88.0%. It was found to have a significant negative association with the onset of neurologic deterioration, end point Glasgow Coma Scale scores and the Glasgow Outcome Scale scores at discharge. The score was positively correlated to the aggressiveness of surgical interventions and the length of hospital stay. Early definitive management is critical in conscious patients with cerebellar hematomas and can improve outcome. Our proposed score is a simple tool with high discrimination power that may help in timely decision making in those patients. Copyright © 2017 Elsevier Inc. All rights reserved.
Formal verification of mathematical software
NASA Technical Reports Server (NTRS)
Sutherland, D.
1984-01-01
Methods are investigated for formally specifying and verifying the correctness of mathematical software (software which uses floating point numbers and arithmetic). Previous work in the field was reviewed. A new model of floating point arithmetic called the asymptotic paradigm was developed and formalized. Two different conceptual approaches to program verification, the classical Verification Condition approach and the more recently developed Programming Logic approach, were adapted to use the asymptotic paradigm. These approaches were then used to verify several programs; the programs chosen were simplified versions of actual mathematical software.
Mankiw, Catherine; Park, Min Tae M.; Reardon, P.K.; Fish, Ari M.; Clasen, Liv S.; Greenstein, Deanna; Blumenthal, Jonathan D.; Lerch, Jason P.; Chakravarty, M. Mallar
2017-01-01
The cerebellum is a large hindbrain structure that is increasingly recognized for its contribution to diverse domains of cognitive and affective processing in human health and disease. Although several of these domains are sex biased, our fundamental understanding of cerebellar sex differences—including their spatial distribution, potential biological determinants, and independence from brain volume variation—lags far behind that for the cerebrum. Here, we harness automated neuroimaging methods for cerebellar morphometrics in 417 individuals to (1) localize normative male–female differences in raw cerebellar volume, (2) compare these to sex chromosome effects estimated across five rare sex (X/Y) chromosome aneuploidy (SCA) syndromes, and (3) clarify brain size-independent effects of sex and SCA on cerebellar anatomy using a generalizable allometric approach that considers scaling relationships between regional cerebellar volume and brain volume in health. The integration of these approaches shows that (1) sex and SCA effects on raw cerebellar volume are large and distributed, but regionally heterogeneous, (2) human cerebellar volume scales with brain volume in a highly nonlinear and regionally heterogeneous fashion that departs from documented patterns of cerebellar scaling in phylogeny, and (3) cerebellar organization is modified in a brain size-independent manner by sex (relative expansion of total cerebellum, flocculus, and Crus II-lobule VIIIB volumes in males) and SCA (contraction of total cerebellar, lobule IV, and Crus I volumes with additional X- or Y-chromosomes; X-specific contraction of Crus II-lobule VIIIB). Our methods and results clarify the shifts in human cerebellar organization that accompany interwoven variations in sex, sex chromosome complement, and brain size. SIGNIFICANCE STATEMENT Cerebellar systems are implicated in diverse domains of sex-biased behavior and pathology, but we lack a basic understanding of how sex differences in the human cerebellum are distributed and determined. We leverage a rare neuroimaging dataset to deconvolve the interwoven effects of sex, sex chromosome complement, and brain size on human cerebellar organization. We reveal topographically variegated scaling relationships between regional cerebellar volume and brain size in humans, which (1) are distinct from those observed in phylogeny, (2) invalidate a traditional neuroimaging method for brain volume correction, and (3) allow more valid and accurate resolution of which cerebellar subcomponents are sensitive to sex and sex chromosome complement. These findings advance understanding of cerebellar organization in health and sex chromosome aneuploidy. PMID:28314818
Cerebellar abiotrophy in a miniature schnauzer
Berry, Michelle L.; Blas-Machado, Uriel
2003-01-01
A 3.5-month-old miniature schnauzer was presented for signs of progressive cerebellar ataxia. Necropsy revealed cerebellar abiotrophy. This is the first reported case of cerebellar abiotrophy in a purebred miniature schnauzer. PMID:13677598
Benussi, Alberto; Dell'Era, Valentina; Cotelli, Maria Sofia; Turla, Marinella; Casali, Carlo; Padovani, Alessandro; Borroni, Barbara
Neurodegenerative cerebellar ataxias represent a group of disabling disorders for which we currently lack effective therapies. Cerebellar transcranial direct current stimulation (tDCS) is a non-invasive technique, which has been demonstrated to modulate cerebellar excitability and improve symptoms in patients with cerebellar ataxias. The present study investigated whether a two-weeks' treatment with cerebellar anodal tDCS could improve symptoms in patients with neurodegenerative cerebellar ataxia and could modulate cerebello-motor connectivity, at short and long term. We performed a double-blind, randomized, sham controlled trial with cerebellar tDCS (5 days/week for 2 weeks) in twenty patients with ataxia. Each patient underwent a clinical evaluation pre- and post-anodal tDCS or sham stimulation. A follow-up evaluation was performed at one and three months. Cerebello-motor connectivity was evaluated using transcranial magnetic stimulation (TMS) at baseline and at follow-up. Patients who underwent anodal tDCS showed a significant improvement in all performance scores (scale for the assessment and rating of ataxia, international cooperative ataxia rating scale, 9-hole peg test, 8-m walking time) and in cerebellar brain inhibition compared to patients who underwent sham stimulation. A two-weeks' treatment with anodal cerebellar tDCS improves symptoms in patients with ataxia and restores physiological cerebellar brain inhibition pathways. Cerebellar tDCS might represent a promising future therapeutic and rehabilitative approach in patients with neurodegenerative ataxia. Copyright © 2016 Elsevier Inc. All rights reserved.
Postnatal Migration of Cerebellar Interneurons
Galas, Ludovic; Bénard, Magalie; Lebon, Alexis; Komuro, Yutaro; Schapman, Damien; Vaudry, Hubert; Vaudry, David; Komuro, Hitoshi
2017-01-01
Due to its continuing development after birth, the cerebellum represents a unique model for studying the postnatal orchestration of interneuron migration. The combination of fluorescent labeling and ex/in vivo imaging revealed a cellular highway network within cerebellar cortical layers (the external granular layer, the molecular layer, the Purkinje cell layer, and the internal granular layer). During the first two postnatal weeks, saltatory movements, transient stop phases, cell-cell interaction/contact, and degradation of the extracellular matrix mark out the route of cerebellar interneurons, notably granule cells and basket/stellate cells, to their final location. In addition, cortical-layer specific regulatory factors such as neuropeptides (pituitary adenylate cyclase-activating polypeptide (PACAP), somatostatin) or proteins (tissue-type plasminogen activator (tPA), insulin growth factor-1 (IGF-1)) have been shown to inhibit or stimulate the migratory process of interneurons. These factors show further complexity because somatostatin, PACAP, or tPA have opposite or no effect on interneuron migration depending on which layer or cell type they act upon. External factors originating from environmental conditions (light stimuli, pollutants), nutrients or drug of abuse (alcohol) also alter normal cell migration, leading to cerebellar disorders. PMID:28587295
Kim, Edward; Wang, Yuan; Kim, Sun-Jung; Bornhorst, Miriam; Jecrois, Emmanuelle S; Anthony, Todd E; Wang, Chenran; Li, Yi E; Guan, Jun-Lin; Murphy, Geoffrey G; Zhu, Yuan
2014-12-23
Individuals with neurofibromatosis type 1 (NF1) frequently exhibit cognitive and motor impairments and characteristics of autism. The cerebellum plays a critical role in motor control, cognition, and social interaction, suggesting that cerebellar defects likely contribute to NF1-associated neurodevelopmental disorders. Here we show that Nf1 inactivation during early, but not late stages of cerebellar development, disrupts neuronal lamination, which is partially caused by overproduction of glia and subsequent disruption of the Bergmann glia (BG) scaffold. Specific Nf1 inactivation in glutamatergic neuronal precursors causes premature differentiation of granule cell (GC) precursors and ectopic production of unipolar brush cells (UBCs), indirectly disrupting neuronal migration. Transient MEK inhibition during a neonatal window prevents cerebellar developmental defects and improves long-term motor performance of Nf1-deficient mice. This study reveals essential roles of Nf1 in GC/UBC migration by generating correct numbers of glia and controlling GC/UBC fate-specification/differentiation, identifying a therapeutic prevention strategy for multiple NF1-associcated developmental abnormalities.
The Changeable Nervous System: Studies On Neuroplasticity In Cerebellar Cultures
Seil, Fredrick J.
2014-01-01
Circuit reorganization after injury was studied in a cerebellar culture model. When cerebellar cultures derived from newborn mice were exposed at explantation to a preparation of cytosine arabinoside that destroyed granule cells and oligodendrocytes and compromised astrocytes, Purkinje cells surviving in greater than usual numbers were unensheathed by astrocytic processes and received twice the control number of inhibitory axosomatic synapses. Purkinje cell axon collaterals sprouted and many of their terminals formed heterotypical synapses with other Purkinje cell dendritic spines. The resulting circuit reorganization preserved inhibition in the cerebellar cortex. Following this reorganization, replacement of the missing granule cells and glia was followed by a restitution of the normal circuitry. Most of these developmental and reconstructive changes were not dependent on neuronal activity, the major exception being inhibitory synaptogenesis. The full complement of inhibitory synapses did not develop in the absence of neuronal activity, which could be mitigated by application of exogenous TrkB receptor ligands. Inhibitory synaptogenesis could also be promoted by activity-induced release of endogenous TrkB receptor ligands or by antibody activation of the TrkB receptor. PMID:24933693
Congenital hypoplasia of the cerebellum: developmental causes and behavioral consequences
Basson, M. Albert; Wingate, Richard J.
2013-01-01
Over the last 60 years, the spotlight of research has periodically returned to the cerebellum as new techniques and insights have emerged. Because of its simple homogeneous structure, limited diversity of cell types and characteristic behavioral pathologies, the cerebellum is a natural home for studies of cell specification, patterning, and neuronal migration. However, recent evidence has extended the traditional range of perceived cerebellar function to include modulation of cognitive processes and implicated cerebellar hypoplasia and Purkinje neuron hypo-cellularity with autistic spectrum disorder. In the light of this emerging frontier, we review the key stages and genetic mechanisms behind cerebellum development. In particular, we discuss the role of the midbrain hindbrain isthmic organizer in the development of the cerebellar vermis and the specification and differentiation of Purkinje cells and granule neurons. These developmental processes are then considered in relation to recent insights into selected human developmental cerebellar defects: Joubert syndrome, Dandy–Walker malformation, and pontocerebellar hypoplasia. Finally, we review current research that opens up the possibility of using the mouse as a genetic model to study the role of the cerebellum in cognitive function. PMID:24027500
Chung, Chan; Elrick, Matthew J; Dell'Orco, James M; Qin, Zhaohui S; Kalyana-Sundaram, Shanker; Chinnaiyan, Arul M; Shakkottai, Vikram G; Lieberman, Andrew P
2016-05-01
Selective neuronal vulnerability is characteristic of most degenerative disorders of the CNS, yet mechanisms underlying this phenomenon remain poorly characterized. Many forms of cerebellar degeneration exhibit an anterior-to-posterior gradient of Purkinje cell loss including Niemann-Pick type C1 (NPC) disease, a lysosomal storage disorder characterized by progressive neurological deficits that often begin in childhood. Here, we sought to identify candidate genes underlying vulnerability of Purkinje cells in anterior cerebellar lobules using data freely available in the Allen Brain Atlas. This approach led to the identification of 16 candidate neuroprotective or susceptibility genes. We demonstrate that one candidate gene, heat shock protein beta-1 (HSPB1), promoted neuronal survival in cellular models of NPC disease through a mechanism that involved inhibition of apoptosis. Additionally, we show that over-expression of wild type HSPB1 or a phosphomimetic mutant in NPC mice slowed the progression of motor impairment and diminished cerebellar Purkinje cell loss. We confirmed the modulatory effect of Hspb1 on Purkinje cell degeneration in vivo, as knockdown by Hspb1 shRNA significantly enhanced neuron loss. These results suggest that strategies to promote HSPB1 activity may slow the rate of cerebellar degeneration in NPC disease and highlight the use of bioinformatics tools to uncover pathways leading to neuronal protection in neurodegenerative disorders.
Nonverbal arithmetic in humans: light from noise.
Cordes, Sara; Gallistel, C R; Gelman, Rochel; Latham, Peter
2007-10-01
Animal and human data suggest the existence of a cross-species system of analog number representation (e.g., Cordes, Gelman, Gallistel, & Whalen, 2001; Meeck & Church, 1983), which may mediate the computation of statistical regularities in the environment (Gallistel, Gelman, & Cordes, 2006). However, evidence of arithmetic manipulation of these nonverbal magnitude representations is sparse and lacking in depth. This study uses the analysis of variability as a tool for understanding properties of these combinatorial processes. Human subjects participated in tasks requiring responses dependent upon the addition, subtraction, or reproduction of nonverbal counts. Variance analyses revealed that the magnitude of both inputs and answer contributed to the variability in the arithmetic responses, with operand variability dominating. Other contributing factors to the observed variability and implications for logarithmic versus scalar models of magnitude representation are discussed in light of these results.
Cerebellar liponeurocytoma with extracranial extension: case report.
Ben Nsir, A; Ben Said, I; Hammami, N; Sebai, R; Jemel, H
2014-01-01
Cerebellar liponeurocytoma is a newly recognized, rare clinicopathological entity commonly described in the cerebellar hemispheres or the vermis. We present a rare case of cerebellar liponeurocytoma arising from the left cerebellar amygdala with extracranial extension. Such a condition has never been previously reported. Copyright © 2014 Polish Neurological Society. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
Inconsistencies in Numerical Simulations of Dynamical Systems Using Interval Arithmetic
NASA Astrophysics Data System (ADS)
Nepomuceno, Erivelton G.; Peixoto, Márcia L. C.; Martins, Samir A. M.; Rodrigues, Heitor M.; Perc, Matjaž
Over the past few decades, interval arithmetic has been attracting widespread interest from the scientific community. With the expansion of computing power, scientific computing is encountering a noteworthy shift from floating-point arithmetic toward increased use of interval arithmetic. Notwithstanding the significant reliability of interval arithmetic, this paper presents a theoretical inconsistency in a simulation of dynamical systems using a well-known implementation of arithmetic interval. We have observed that two natural interval extensions present an empty intersection during a finite time range, which is contrary to the fundamental theorem of interval analysis. We have proposed a procedure to at least partially overcome this problem, based on the union of the two generated pseudo-orbits. This paper also shows a successful case of interval arithmetic application in the reduction of interval width size on the simulation of discrete map. The implications of our findings on the reliability of scientific computing using interval arithmetic have been properly addressed using two numerical examples.
Yildiz, Ozlem; Kabatas, Serdar; Yilmaz, Cem; Altinors, Nur; Agaoglu, Belma
2010-01-01
Tumors of the cerebellum and brainstem account for half of all brain tumors in children. The realization that cerebellar lesions produce clinically relevant intellectual disability makes it important to determine whether neuropsychological abnormalities occur in long-term survivors of pediatric cerebellar tumors. Little is known about the neurobehavioral sequale resulting specifically from the resection of these tumors in this population. We therefore reviewed neuropsychological findings associated with postoperative cerebellar mutism syndrome and discuss the further implications for cerebellar cognitive function. PMID:20436742
Improving cerebellar segmentation with statistical fusion
NASA Astrophysics Data System (ADS)
Plassard, Andrew J.; Yang, Zhen; Prince, Jerry L.; Claassen, Daniel O.; Landman, Bennett A.
2016-03-01
The cerebellum is a somatotopically organized central component of the central nervous system well known to be involved with motor coordination and increasingly recognized roles in cognition and planning. Recent work in multiatlas labeling has created methods that offer the potential for fully automated 3-D parcellation of the cerebellar lobules and vermis (which are organizationally equivalent to cortical gray matter areas). This work explores the trade offs of using different statistical fusion techniques and post hoc optimizations in two datasets with distinct imaging protocols. We offer a novel fusion technique by extending the ideas of the Selective and Iterative Method for Performance Level Estimation (SIMPLE) to a patch-based performance model. We demonstrate the effectiveness of our algorithm, Non- Local SIMPLE, for segmentation of a mixed population of healthy subjects and patients with severe cerebellar anatomy. Under the first imaging protocol, we show that Non-Local SIMPLE outperforms previous gold-standard segmentation techniques. In the second imaging protocol, we show that Non-Local SIMPLE outperforms previous gold standard techniques but is outperformed by a non-locally weighted vote with the deeper population of atlases available. This work advances the state of the art in open source cerebellar segmentation algorithms and offers the opportunity for routinely including cerebellar segmentation in magnetic resonance imaging studies that acquire whole brain T1-weighted volumes with approximately 1 mm isotropic resolution.
Jiang, Chen; Gai, Nan; Zou, Yongyi; Zheng, Yu; Ma, Ruiyu; Wei, Xianda; Liang, Desheng; Wu, Lingqian
2017-01-01
Galloway-Mowat syndrome (GMS) is a very rare autosomal-recessive disorder characterized by nephrotic syndrome associated with microcephaly, and various central nervous system abnormalities, mostly cerebral hypoplasia or cerebellar atrophy, intellectual disability and neural-migration defects. WDR73 is the only gene known to cause GMS, and has never been implicated in other disease. Here we present a Chinese consanguineous family with infantile onset intellectual disability and cerebellar hypoplasia but no microcephaly. Whole exome sequencing identified a WDR73 p.W371G missense mutation. The mutation is confirmed to be segregated in this family by Sanger sequencing according to a recessive inheritance pattern. It is predicted to be deleterious by multiple algorithms and affect highly conserved site. Structural modeling revealed conformational differences between the wild type protein and the p.W371G protein. Real-time PCR and Western blotting revealed altered mRNA and protein levels in mutated samples. Our study indicates the novel WDR73 p.W371G missense mutation causes infantile onset intellectual disability and cerebellar hypoplasia in recessive mode of inheritance. Our findings imply that microcephaly is a variable phenotype in WDR73-related disease, suggest WDR73 to be a candidate gene of severe intellectual disability and cerebellar hypoplasia, and expand the molecular spectrum of WDR73-related disease. Copyright © 2016 Elsevier B.V. All rights reserved.
Motor Deficits and Cerebellar Atrophy in Elovl5 Knock Out Mice.
Hoxha, Eriola; Gabriele, Rebecca M C; Balbo, Ilaria; Ravera, Francesco; Masante, Linda; Zambelli, Vanessa; Albergo, Cristian; Mitro, Nico; Caruso, Donatella; Di Gregorio, Eleonora; Brusco, Alfredo; Borroni, Barbara; Tempia, Filippo
2017-01-01
Spino-Cerebellar-Ataxia type 38 (SCA38) is caused by missense mutations in the very long chain fatty acid elongase 5 gene, ELOVL5 . The main clinical findings in this disease are ataxia, hyposmia and cerebellar atrophy. Mice in which Elovl5 has been knocked out represent a model of the loss of function hypothesis of SCA38. In agreement with this hypothesis, Elovl5 knock out mice reproduced the main symptoms of patients, motor deficits at the beam balance test and hyposmia. The cerebellar cortex of Elovl5 knock out mice showed a reduction of thickness of the molecular layer, already detectable at 6 months of age, confirmed at 12 and 18 months. The total perimeter length of the Purkinje cell (PC) layer was also reduced in Elovl5 knock out mice. Since Elovl5 transcripts are expressed by PCs, whose dendrites are a major component of the molecular layer, we hypothesized that an alteration of their dendrites might be responsible for the reduced thickness of this layer. Reconstruction of the dendritic tree of biocytin-filled PCs, followed by Sholl analysis, showed that the distribution of distal dendrites was significantly reduced in Elovl5 knock out mice. Dendritic spine density was conserved. These results suggest that Elovl5 knock out mice recapitulate SCA38 symptoms and that their cerebellar atrophy is due, at least in part, to a reduced extension of PC dendritic arborization.
Neural mechanisms underlying spatial realignment during adaptation to optical wedge prisms.
Chapman, Heidi L; Eramudugolla, Ranmalee; Gavrilescu, Maria; Strudwick, Mark W; Loftus, Andrea; Cunnington, Ross; Mattingley, Jason B
2010-07-01
Visuomotor adaptation to a shift in visual input produced by prismatic lenses is an example of dynamic sensory-motor plasticity within the brain. Prism adaptation is readily induced in healthy individuals, and is thought to reflect the brain's ability to compensate for drifts in spatial calibration between different sensory systems. The neural correlate of this form of functional plasticity is largely unknown, although current models predict the involvement of parieto-cerebellar circuits. Recent studies that have employed event-related functional magnetic resonance imaging (fMRI) to identify brain regions associated with prism adaptation have discovered patterns of parietal and cerebellar modulation as participants corrected their visuomotor errors during the early part of adaptation. However, the role of these regions in the later stage of adaptation, when 'spatial realignment' or true adaptation is predicted to occur, remains unclear. Here, we used fMRI to quantify the distinctive patterns of parieto-cerebellar activity as visuomotor adaptation develops. We directly contrasted activation patterns during the initial error correction phase of visuomotor adaptation with that during the later spatial realignment phase, and found significant recruitment of the parieto-cerebellar network--with activations in the right inferior parietal lobe and the right posterior cerebellum. These findings provide the first evidence of both cerebellar and parietal involvement during the spatial realignment phase of prism adaptation. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Lonnemann, Jan; Li, Su; Zhao, Pei; Li, Peng; Linkersdörfer, Janosch; Lindberg, Sven; Hasselhorn, Marcus; Yan, Song
2017-01-01
Human beings are assumed to possess an approximate number system (ANS) dedicated to extracting and representing approximate numerical magnitude information. The ANS is assumed to be fundamental to arithmetic learning and has been shown to be associated with arithmetic performance. It is, however, still a matter of debate whether better arithmetic skills are reflected in the ANS. To address this issue, Chinese and German adults were compared regarding their performance in simple arithmetic tasks and in a non-symbolic numerical magnitude comparison task. Chinese participants showed a better performance in solving simple arithmetic tasks and faster reaction times in the non-symbolic numerical magnitude comparison task without making more errors than their German peers. These differences in performance could not be ascribed to differences in general cognitive abilities. Better arithmetic skills were thus found to be accompanied by a higher speed of retrieving non-symbolic numerical magnitude knowledge but not by a higher precision of non-symbolic numerical magnitude representations. The group difference in the speed of retrieving non-symbolic numerical magnitude knowledge was fully mediated by the performance in arithmetic tasks, suggesting that arithmetic skills shape non-symbolic numerical magnitude processing skills. PMID:28384191
Sommer, Wieland H; Bollwein, Christine; Thierfelder, Kolja M; Baumann, Alena; Janssen, Hendrik; Ertl-Wagner, Birgit; Reiser, Maximilian F; Plate, Annika; Straube, Andreas
2015-01-01
We aimed to investigate the overall prevalence and possible factors influencing the occurrence of crossed cerebellar diaschisis after acute middle cerebral artery infarction using whole-brain CT perfusion. A total of 156 patients with unilateral hypoperfusion of the middle cerebral artery territory formed the study cohort; 352 patients without hypoperfusion served as controls. We performed blinded reading of different perfusion maps for the presence of crossed cerebellar diaschisis and determined the relative supratentorial and cerebellar perfusion reduction. Moreover, imaging patterns (location and volume of hypoperfusion) and clinical factors (age, sex, time from symptom onset) resulting in crossed cerebellar diaschisis were analysed. Crossed cerebellar diaschisis was detected in 35.3% of the patients with middle cerebral artery infarction. Crossed cerebellar diaschisis was significantly associated with hypoperfusion involving the left hemisphere, the frontal lobe and the thalamus. The degree of the relative supratentorial perfusion reduction was significantly more pronounced in crossed cerebellar diaschisis-positive patients but did not correlate with the relative cerebellar perfusion reduction. Our data suggest that (i) crossed cerebellar diaschisis is a common feature after middle cerebral artery infarction which can robustly be detected using whole-brain CT perfusion, (ii) its occurrence is influenced by location and degree of the supratentorial perfusion reduction rather than infarct volume (iii) other clinical factors (age, sex and time from symptom onset) did not affect the occurrence of crossed cerebellar diaschisis. PMID:26661242
Cerebellar contribution to mental rotation: a cTBS study.
Picazio, Silvia; Oliveri, Massimiliano; Koch, Giacomo; Caltagirone, Carlo; Petrosini, Laura
2013-12-01
A cerebellar role in spatial information processing has been advanced even in the absence of physical manipulation, as occurring in mental rotation. The present study was aimed at investigating the specific involvement of left and right cerebellar hemispheres in two tasks of mental rotation. We used continuous theta burst stimulation to downregulate cerebellar hemisphere excitability in healthy adult subjects performing two mental rotation tasks: an Embodied Mental Rotation (EMR) task, entailing an egocentric strategy, and an Abstract Mental Rotation (AMR) task entailing an allocentric strategy. Following downregulation of left cerebellar hemisphere, reaction times were slower in comparison to sham stimulation in both EMR and AMR tasks. Conversely, identical reaction times were obtained in both tasks following right cerebellar hemisphere and sham stimulations. No effect of cerebellar stimulation side was found on response accuracy. The present findings document a specialization of the left cerebellar hemisphere in mental rotation regardless of the kind of stimulus to be rotated.
Hegarty, John P; Weber, Dylan J; Cirstea, Carmen M; Beversdorf, David Q
2018-05-23
Atypical functional connectivity (FC) and an imbalance of excitation-to-inhibition (E/I) have been previously reported in cerebro-cerebellar circuits in autism spectrum disorder (ASD). The current investigation used resting state fMRI and proton magnetic resonance spectroscopy ( 1 H-MRS) to examine the relationships between E/I (glutamate + glutamine/GABA) and FC of the dorsolateral prefrontal cortex and posterolateral cerebellar hemisphere from 14 adolescents/adults with ASD and 12 age/sex/IQ-matched controls. In this pilot sample, cerebro-cerebellar FC was positively associated with cerebellar E/I and listening comprehension abilities in individuals with ASD but not controls. Additionally, a subgroup of individuals with ASD and low FC (n = 5) exhibited reduced E/I and impaired listening comprehension. Thus, altered functional coherence of cerebro-cerebellar circuits in ASD may be related with a cerebellar E/I imbalance.
Lonnemann, Jan; Linkersdörfer, Janosch; Hasselhorn, Marcus; Lindberg, Sven
2016-01-01
Symbolic numerical magnitude processing skills are assumed to be fundamental to arithmetic learning. It is, however, still an open question whether better arithmetic skills are reflected in symbolic numerical magnitude processing skills. To address this issue, Chinese and German third graders were compared regarding their performance in arithmetic tasks and in a symbolic numerical magnitude comparison task. Chinese children performed better in the arithmetic tasks and were faster in deciding which one of two Arabic numbers was numerically larger. The group difference in symbolic numerical magnitude processing was fully mediated by the performance in arithmetic tasks. We assume that a higher degree of familiarity with arithmetic in Chinese compared to German children leads to a higher speed of retrieving symbolic numerical magnitude knowledge. PMID:27630606
Bartelet, Dimona; Vaessen, Anniek; Blomert, Leo; Ansari, Daniel
2014-01-01
Relations between children's mathematics achievement and their basic number processing skills have been reported in both cross-sectional and longitudinal studies. Yet, some key questions are currently unresolved, including which kindergarten skills uniquely predict children's arithmetic fluency during the first year of formal schooling and the degree to which predictors are contingent on children's level of arithmetic proficiency. The current study assessed kindergarteners' non-symbolic and symbolic number processing efficiency. In addition, the contribution of children's underlying magnitude representations to differences in arithmetic achievement was assessed. Subsequently, in January of Grade 1, their arithmetic proficiency was assessed. Hierarchical regression analysis revealed that children's efficiency to compare digits, count, and estimate numerosities uniquely predicted arithmetic differences above and beyond the non-numerical factors included. Moreover, quantile regression analysis indicated that symbolic number processing efficiency was consistently a significant predictor of arithmetic achievement scores regardless of children's level of arithmetic proficiency, whereas their non-symbolic number processing efficiency was not. Finally, none of the task-specific effects indexing children's representational precision was significantly associated with arithmetic fluency. The implications of the results are 2-fold. First, the findings indicate that children's efficiency to process symbols is important for the development of their arithmetic fluency in Grade 1 above and beyond the influence of non-numerical factors. Second, the impact of children's non-symbolic number processing skills does not depend on their arithmetic achievement level given that they are selected from a nonclinical population. Copyright © 2013 Elsevier Inc. All rights reserved.
Role of cerebellum in learning postural tasks.
Ioffe, M E; Chernikova, L A; Ustinova, K I
2007-01-01
For a long time, the cerebellum has been known to be a structure related to posture and equilibrium control. According to the anatomic structure of inputs and internal structure of the cerebellum, its role in learning was theoretically reasoned and experimentally proved. The hypothesis of an inverse internal model based on feedback-error learning mechanism combines feedforward control by the cerebellum and feedback control by the cerebral motor cortex. The cerebellar cortex is suggested to acquire internal models of the body and objects in the external world. During learning of a new tool the motor cortex receives feedback from the realized movement while the cerebellum produces only feedforward command. To realize a desired movement without feedback of the realized movement, the cerebellum needs to form an inverse model of the hand/arm system. This suggestion was supported by FMRi data. The role of cerebellum in learning new postural tasks mainly concerns reorganization of natural synergies. A learned postural pattern in dogs has been shown to be disturbed after lesions of the cerebral motor cortex or cerebellar nuclei. In humans, learning voluntary control of center of pressure position is greatly disturbed after cerebellar lesions. However, motor cortex and basal ganglia are also involved in the feedback learning postural tasks.
Tubulin-related cerebellar dysplasia: definition of a distinct pattern of cerebellar malformation.
Romaniello, Romina; Arrigoni, Filippo; Panzeri, Elena; Poretti, Andrea; Micalizzi, Alessia; Citterio, Andrea; Bedeschi, Maria Francesca; Berardinelli, Angela; Cusmai, Raffaella; D'Arrigo, Stefano; Ferraris, Alessandro; Hackenberg, Annette; Kuechler, Alma; Mancardi, Margherita; Nuovo, Sara; Oehl-Jaschkowitz, Barbara; Rossi, Andrea; Signorini, Sabrina; Tüttelmann, Frank; Wahl, Dagmar; Hehr, Ute; Boltshauser, Eugen; Bassi, Maria Teresa; Valente, Enza Maria; Borgatti, Renato
2017-12-01
To determine the neuroimaging pattern of cerebellar dysplasia (CD) and other posterior fossa morphological anomalies associated with mutations in tubulin genes and to perform clinical and genetic correlations. Twenty-eight patients harbouring 23 heterozygous pathogenic variants (ten novel) in tubulin genes TUBA1A (n = 10), TUBB2B (n = 8) or TUBB3 (n = 5) were studied by a brain MRI scan performed either on a 1.5 T (n = 10) or 3 T (n = 18) MR scanner with focus on the posterior fossa. Cerebellar anomalies were detected in 24/28 patients (86%). CD was recognised in 19/28 (68%) including cortical cerebellar dysplasia (CCD) in 18/28, either involving only the cerebellar hemispheres (12/28) or associated with vermis dysplasia (6/28). CCD was located only in the right hemisphere in 13/18 (72%), including four TUBB2B-, four TUBB3- and five TUBA1A-mutated patients, while in the other five TUBA1A cases it was located only in the left hemisphere or in both hemispheres. The postero-superior region of the cerebellar hemispheres was most frequently affected. The cerebellar involvement in tubulinopathies shows specific features that may be labelled as 'tubulin-related CD'. This pattern is unique and differs from other genetic causes of cerebellar dysplasia. • Cortical cerebellar dysplasia without cysts is suggestive of tubulin-related disorder. • Cerebellar dysplasia in tubulinopathies shows specific features labelled as 'tubulin-related CD'. • Focal and unilateral involvement of cerebellar hemispheres has important implications for counselling.
ERIC Educational Resources Information Center
Rhodes, Katherine T.; Branum-Martin, Lee; Washington, Julie A.; Fuchs, Lynn S.
2017-01-01
Using multitrait, multimethod data, and confirmatory factor analysis, the current study examined the effects of arithmetic item formatting and the possibility that across formats, abilities other than arithmetic may contribute to children's answers. Measurement hypotheses were guided by several leading theories of arithmetic cognition. With a…
Personal Experience and Arithmetic Meaning in Semantic Dementia
ERIC Educational Resources Information Center
Julien, Camille L.; Neary, David; Snowden, Julie S.
2010-01-01
Arithmetic skills are generally claimed to be preserved in semantic dementia (SD), suggesting functional independence of arithmetic knowledge from other aspects of semantic memory. However, in a recent case series analysis we showed that arithmetic performance in SD is not entirely normal. The finding of a direct association between severity of…
Dystonia and Cerebellar Degeneration in the Leaner Mouse Mutant
Raike, Robert S.; Hess, Ellen J.; Jinnah, H.A.
2015-01-01
Cerebellar degeneration is traditionally associated with ataxia. Yet, there are examples of both ataxia and dystonia occurring in individuals with cerebellar degeneration. There is also substantial evidence suggesting that cerebellar dysfunction alone may cause dystonia. The types of cerebellar defects that may cause ataxia, dystonia, or both have not been delineated. In the current study, we explored the relationship between cerebellar degeneration and dystonia using the leaner mouse mutant. Leaner mice have severe dystonia that is associated with dysfunctional and degenerating cerebellar Purkinje cells. Whereas the density of Purkinje cells was not significantly reduced in 4 week-old leaner mice, approximately 50% of the neurons were lost by 34 weeks of age. On the other hand, the dystonia and associated functional disability became significantly less severe during this same interval. In other words, dystonia improved as Purkinje cells were lost, suggesting that dysfunctional Purkinje cells, rather than Purkinje cell loss, contribute to the dystonia. These results provide evidence that distorted cerebellar function may cause dystonia and support the concept that different types of cerebellar defects can have different functional consequences. PMID:25791619
Mankiw, Catherine; Park, Min Tae M; Reardon, P K; Fish, Ari M; Clasen, Liv S; Greenstein, Deanna; Giedd, Jay N; Blumenthal, Jonathan D; Lerch, Jason P; Chakravarty, M Mallar; Raznahan, Armin
2017-05-24
The cerebellum is a large hindbrain structure that is increasingly recognized for its contribution to diverse domains of cognitive and affective processing in human health and disease. Although several of these domains are sex biased, our fundamental understanding of cerebellar sex differences-including their spatial distribution, potential biological determinants, and independence from brain volume variation-lags far behind that for the cerebrum. Here, we harness automated neuroimaging methods for cerebellar morphometrics in 417 individuals to (1) localize normative male-female differences in raw cerebellar volume, (2) compare these to sex chromosome effects estimated across five rare sex (X/Y) chromosome aneuploidy (SCA) syndromes, and (3) clarify brain size-independent effects of sex and SCA on cerebellar anatomy using a generalizable allometric approach that considers scaling relationships between regional cerebellar volume and brain volume in health. The integration of these approaches shows that (1) sex and SCA effects on raw cerebellar volume are large and distributed, but regionally heterogeneous, (2) human cerebellar volume scales with brain volume in a highly nonlinear and regionally heterogeneous fashion that departs from documented patterns of cerebellar scaling in phylogeny, and (3) cerebellar organization is modified in a brain size-independent manner by sex (relative expansion of total cerebellum, flocculus, and Crus II-lobule VIIIB volumes in males) and SCA (contraction of total cerebellar, lobule IV, and Crus I volumes with additional X- or Y-chromosomes; X-specific contraction of Crus II-lobule VIIIB). Our methods and results clarify the shifts in human cerebellar organization that accompany interwoven variations in sex, sex chromosome complement, and brain size. SIGNIFICANCE STATEMENT Cerebellar systems are implicated in diverse domains of sex-biased behavior and pathology, but we lack a basic understanding of how sex differences in the human cerebellum are distributed and determined. We leverage a rare neuroimaging dataset to deconvolve the interwoven effects of sex, sex chromosome complement, and brain size on human cerebellar organization. We reveal topographically variegated scaling relationships between regional cerebellar volume and brain size in humans, which (1) are distinct from those observed in phylogeny, (2) invalidate a traditional neuroimaging method for brain volume correction, and (3) allow more valid and accurate resolution of which cerebellar subcomponents are sensitive to sex and sex chromosome complement. These findings advance understanding of cerebellar organization in health and sex chromosome aneuploidy. Copyright © 2017 the authors 0270-6474/17/375222-11$15.00/0.
Cerebellar learning properties are modulated by the CRF receptor in granular cells.
Ezra-Nevo, Gili; Prestori, Francesca; Locatelli, Francesca; Soda, Teresa; Ten Brinke, Michiel M; Engel, Mareen; Boele, Henk-Jan; Botta, Laura; Leshkowitz, Dena; Ramot, Assaf; Tsoory, Michael; Biton, Inbal E; Deussing, Jan; D'Angelo, Egidio; De Zeeuw, Chris I; Chen, Alon
2018-06-22
Corticotropin-releasing factor (CRF) and its type 1 receptor (CRFR 1 ) play an important role in the responses to stressful challenges. Despite the well-established expression of CRFR 1 in granular cells (GrCs), its role in procedural motor performance and memory formation remains elusive. To investigate the role of CRFR 1 expression in cerebellar GrCs, we used a mouse model depleted of CRFR 1 in these cells. We detected changes in the cellular learning mechanisms in GrCs depleted of CRFR 1 in that they showed changes in intrinsic excitability and long-term synaptic plasticity. Moreover, male mice depleted of CRFR 1 specifically in GrCs showed accelerated Pavlovian associative eye-blink conditioning, but no differences in baseline motor performance, locomotion or fear and anxiety-related behaviors. Last, we analyzed cerebella transcriptome of KO and control mice and detected prominent alterations in the expression of calcium signaling pathways components. Our findings shed light on the interplay between stress-related central mechanisms and cerebellar motor conditioning, highlighting the role of the CRF system in regulating particular forms of cerebellar learning. SIGNIFICANCE STATEMENT Although it is known that CRFR 1 is highly expressed in the cerebellum, little attention has been given to its role in cerebellar functions in the behaving animal. Moreover, most of the attention was directed to the effect of CRF on Purkinje cells at the cellular level, and to this date, almost no data exist on the role of this stress-related receptor in other cerebellar structures. Here, we explored the behavioral and cellular effect of GrCs specific ablation of CRFR 1 We found a profound effect on learning, both at the cellular and behavioral levels, without affecting baseline motor skills. Copyright © 2018 the authors.
Cellular and genetic regulation of the development of the cerebellar system.
Sotelo, Constantino
2004-04-01
Recent advances in molecular biology have drastically changed our vision on the development of the nervous system, the cerebellum in particular. After a classical descriptive period, we are now in a modern mechanistic epoch as we begin to answer crucial questions in our quest to understand the mechanisms underlying the emergence of brain complexity. This review begins with an analysis of the role of the "isthmic organizer" in the induction and specification of the cerebellar territory and progresses through cerebellar development to the formation of cerebellar maps. It gathers information about the control of the proliferation of granule cell precursors by Purkinje cells and the role of Shh/Gli-patched signaling. The migratory routes for cerebellar and precerebellar neurons, together with the long-range and short-range cues guiding gliophilic and, particularly, neurophilic migrations, are also discussed. Because these cues are similar to those involved in axon guidance, both processes are under the same molecular constraints. Finally, using primarily the olivocerebellar projection as a model, the cellular and molecular mechanisms involved in the formation of cerebellar maps are discussed. During embryonic development, Purkinje cells in the cerebellum and neurons in the inferior olive follow a simultaneous, but independent, process of intrinsic parcellation, giving rise to subsets of biochemically different cortical compartments. The occurrence of positional information shared between olivary axons and their postsynaptic targets, the Purkinje cells, provides a molecular code for the formation of coarse-grained maps. Activity-dependent mechanisms are required for the transition from crude to fine-grained maps. This important refinement, which confers ultimate specificity to the maps, is under the regulation of parallel fiber-Purkinje cell synaptic activity.
Adaptive robotic control driven by a versatile spiking cerebellar network.
Casellato, Claudia; Antonietti, Alberto; Garrido, Jesus A; Carrillo, Richard R; Luque, Niceto R; Ros, Eduardo; Pedrocchi, Alessandra; D'Angelo, Egidio
2014-01-01
The cerebellum is involved in a large number of different neural processes, especially in associative learning and in fine motor control. To develop a comprehensive theory of sensorimotor learning and control, it is crucial to determine the neural basis of coding and plasticity embedded into the cerebellar neural circuit and how they are translated into behavioral outcomes in learning paradigms. Learning has to be inferred from the interaction of an embodied system with its real environment, and the same cerebellar principles derived from cell physiology have to be able to drive a variety of tasks of different nature, calling for complex timing and movement patterns. We have coupled a realistic cerebellar spiking neural network (SNN) with a real robot and challenged it in multiple diverse sensorimotor tasks. Encoding and decoding strategies based on neuronal firing rates were applied. Adaptive motor control protocols with acquisition and extinction phases have been designed and tested, including an associative Pavlovian task (Eye blinking classical conditioning), a vestibulo-ocular task and a perturbed arm reaching task operating in closed-loop. The SNN processed in real-time mossy fiber inputs as arbitrary contextual signals, irrespective of whether they conveyed a tone, a vestibular stimulus or the position of a limb. A bidirectional long-term plasticity rule implemented at parallel fibers-Purkinje cell synapses modulated the output activity in the deep cerebellar nuclei. In all tasks, the neurorobot learned to adjust timing and gain of the motor responses by tuning its output discharge. It succeeded in reproducing how human biological systems acquire, extinguish and express knowledge of a noisy and changing world. By varying stimuli and perturbations patterns, real-time control robustness and generalizability were validated. The implicit spiking dynamics of the cerebellar model fulfill timing, prediction and learning functions.
Mauri, Nico; Kleiter, Miriam; Leschnik, Michael; Högler, Sandra; Dietschi, Elisabeth; Wiedmer, Michaela; Dietrich, Joëlle; Henke, Diana; Steffen, Frank; Schuller, Simone; Gurtner, Corinne; Stokar-Regenscheit, Nadine; O'Toole, Donal; Bilzer, Thomas; Herden, Christiane; Oevermann, Anna; Jagannathan, Vidhya; Leeb, Tosso
2017-02-09
Spongy degeneration with cerebellar ataxia (SDCA) is a severe neurodegenerative disease with monogenic autosomal recessive inheritance in Malinois dogs, one of the four varieties of the Belgian Shepherd breed. We performed a genetic investigation in six families and seven isolated cases of Malinois dogs with signs of cerebellar dysfunction. Linkage analysis revealed an unexpected genetic heterogeneity within the studied cases. The affected dogs from four families and one isolated case shared a ∼1.4 Mb common homozygous haplotype segment on chromosome 38. Whole genome sequence analysis of three affected and 140 control dogs revealed a missense variant in the KCNJ10 gene encoding a potassium channel (c.986T>C; p.Leu329Pro). Pathogenic variants in KCNJ10 were reported previously in humans, mice, and dogs with neurological phenotypes. Therefore, we consider KCNJ10 :c.986T>C the most likely candidate causative variant for one subtype of SDCA in Malinois dogs, which we propose to term spongy degeneration with cerebellar ataxia 1 (SDCA1). However, our study also comprised samples from 12 Malinois dogs with cerebellar dysfunction which were not homozygous for this variant, suggesting a different genetic basis in these dogs. A retrospective detailed clinical and histopathological analysis revealed subtle neuropathological differences with respect to SDCA1-affected dogs. Thus, our study highlights the genetic and phenotypic complexity underlying cerebellar dysfunction in Malinois dogs and provides the basis for a genetic test to eradicate one specific neurodegenerative disease from the breeding population. These dogs represent an animal model for the human EAST syndrome. Copyright © 2017 Mauri et al.
Marti, Sarah; Straumann, Dominik; Glasauer, Stefan
2005-04-01
Various hypotheses on the origin of cerebellar downbeat nystagmus (DBN) have been presented; the exact pathomechanism, however, is still not known. Based on previous anatomical and electrophysiological studies, we propose that an asymmetry in the distribution of on-directions of vertical gaze-velocity Purkinje cells leads to spontaneous upward ocular drift in cerebellar disease, and therefore, to DBN. Our hypothesis is supported by a computational model for vertical eye movements.
Real-time mental arithmetic task recognition from EEG signals.
Wang, Qiang; Sourina, Olga
2013-03-01
Electroencephalography (EEG)-based monitoring the state of the user's brain functioning and giving her/him the visual/audio/tactile feedback is called neurofeedback technique, and it could allow the user to train the corresponding brain functions. It could provide an alternative way of treatment for some psychological disorders such as attention deficit hyperactivity disorder (ADHD), where concentration function deficit exists, autism spectrum disorder (ASD), or dyscalculia where the difficulty in learning and comprehending the arithmetic exists. In this paper, a novel method for multifractal analysis of EEG signals named generalized Higuchi fractal dimension spectrum (GHFDS) was proposed and applied in mental arithmetic task recognition from EEG signals. Other features such as power spectrum density (PSD), autoregressive model (AR), and statistical features were analyzed as well. The usage of the proposed fractal dimension spectrum of EEG signal in combination with other features improved the mental arithmetic task recognition accuracy in both multi-channel and one-channel subject-dependent algorithms up to 97.87% and 84.15% correspondingly. Based on the channel ranking, four channels were chosen which gave the accuracy up to 97.11%. Reliable real-time neurofeedback system could be implemented based on the algorithms proposed in this paper.
Cerebellar input configuration toward object model abstraction in manipulation tasks.
Luque, Niceto R; Garrido, Jesus A; Carrillo, Richard R; Coenen, Olivier J-M D; Ros, Eduardo
2011-08-01
It is widely assumed that the cerebellum is one of the main nervous centers involved in correcting and refining planned movement and accounting for disturbances occurring during movement, for instance, due to the manipulation of objects which affect the kinematics and dynamics of the robot-arm plant model. In this brief, we evaluate a way in which a cerebellar-like structure can store a model in the granular and molecular layers. Furthermore, we study how its microstructure and input representations (context labels and sensorimotor signals) can efficiently support model abstraction toward delivering accurate corrective torque values for increasing precision during different-object manipulation. We also describe how the explicit (object-related input labels) and implicit state input representations (sensorimotor signals) complement each other to better handle different models and allow interpolation between two already stored models. This facilitates accurate corrections during manipulations of new objects taking advantage of already stored models.
Pinel, Philippe; Dehaene, Stanislas
2010-01-01
Language and arithmetic are both lateralized to the left hemisphere in the majority of right-handed adults. Yet, does this similar lateralization reflect a single overall constraint of brain organization, such an overall "dominance" of the left hemisphere for all linguistic and symbolic operations? Is it related to the lateralization of specific cerebral subregions? Or is it merely coincidental? To shed light on this issue, we performed a "colateralization analysis" over 209 healthy subjects: We investigated whether normal variations in the degree of left hemispheric asymmetry in areas involved in sentence listening and reading are mirrored in the asymmetry of areas involved in mental arithmetic. Within the language network, a region-of-interest analysis disclosed partially dissociated patterns of lateralization, inconsistent with an overall "dominance" model. Only two of these areas presented a lateralization during sentence listening and reading which correlated strongly with the lateralization of two regions active during calculation. Specifically, the profile of asymmetry in the posterior superior temporal sulcus during sentence processing covaried with the asymmetry of calculation-induced activation in the intraparietal sulcus, and a similar colateralization linked the middle frontal gyrus with the superior posterior parietal lobule. Given recent neuroimaging results suggesting a late emergence of hemispheric asymmetries for symbolic arithmetic during childhood, we speculate that these colateralizations might constitute developmental traces of how the acquisition of linguistic symbols affects the cerebral organization of the arithmetic network.
Tam, Emily W.Y.; Miller, Steven P.; Studholme, Colin; Chau, Vann; Glidden, David; Poskitt, Kenneth J.; Ferriero, Donna M.; Barkovich, A. James
2010-01-01
Objective To hypothesize that detailed examination of early cerebellar volumes over time would distinguish differences in cerebellar growth associated with intraventricular hemorrhage (IVH) and white matter injury (WMI) in preterm infants. Study design Preterm newborns at the University of California San Francisco (n=57) and the University of British Columbia (n=115) were studied using serial MRI scans near birth and again at near term-equivalent age. Interactive semi-automated tools were used to determine volumes of the cerebellar hemispheres. Results Adjusting for supratentorial brain injury, cerebellar hemorrhage, and study site, cerebellar volume increased 1.7cm3/week postmenstrual age (95% CI 1.6–1.7, P<0.001). More severe supratentorial IVH was associated with slower growth of cerebellar volumes (P<0.001). Volumes by 40 weeks were 1.4 cm3 lower in premature infants with grade 1–2 IVH and 5.4 cm3 lower with grade 3–4 IVH. The same magnitude of decrease was found between ipsilateral and contralateral IVH. No association was found with severity of WMI (P=0.3). Conclusions Early effects of decreased cerebellar volume associated with supratentorial IVH in either hemisphere may be a result of concurrent cerebellar injury or direct effects of subarachnoid blood on cerebellar development. PMID:20961562
Early but not late blindness leads to enhanced arithmetic and working memory abilities.
Dormal, Valérie; Crollen, Virginie; Baumans, Christine; Lepore, Franco; Collignon, Olivier
2016-10-01
Behavioural and neurophysiological evidence suggest that vision plays an important role in the emergence and development of arithmetic abilities. However, how visual deprivation impacts on the development of arithmetic processing remains poorly understood. We compared the performances of early (EB), late blind (LB) and sighted control (SC) individuals during various arithmetic tasks involving addition, subtraction and multiplication of various complexities. We also assessed working memory (WM) performances to determine if they relate to a blind person's arithmetic capacities. Results showed that EB participants performed better than LB and SC in arithmetic tasks, especially in conditions in which verbal routines and WM abilities are needed. Moreover, EB participants also showed higher WM abilities. Together, our findings demonstrate that the absence of developmental vision does not prevent the development of refined arithmetic skills and can even trigger the refinement of these abilities in specific tasks. Copyright © 2016 Elsevier Ltd. All rights reserved.
Long, Imogen; Malone, Stephanie A; Tolan, Anne; Burgoyne, Kelly; Heron-Delaney, Michelle; Witteveen, Kate; Hulme, Charles
2016-12-01
Following on from ideas developed by Gerstmann, a body of work has suggested that impairments in finger gnosis may be causally related to children's difficulties in learning arithmetic. We report a study with a large sample of typically developing children (N=197) in which we assessed finger gnosis and arithmetic along with a range of other relevant cognitive predictors of arithmetic skills (vocabulary, counting, and symbolic and nonsymbolic magnitude judgments). Contrary to some earlier claims, we found no meaningful association between finger gnosis and arithmetic skills. Counting and symbolic magnitude comparison were, however, powerful predictors of arithmetic skills, replicating a number of earlier findings. Our findings seriously question theories that posit either a simple association or a causal connection between finger gnosis and the development of arithmetic skills. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.
A probabilistic atlas of the cerebellar white matter.
van Baarsen, K M; Kleinnijenhuis, M; Jbabdi, S; Sotiropoulos, S N; Grotenhuis, J A; van Cappellen van Walsum, A M
2016-01-01
Imaging of the cerebellar cortex, deep cerebellar nuclei and their connectivity are gaining attraction, due to the important role the cerebellum plays in cognition and motor control. Atlases of the cerebellar cortex and nuclei are used to locate regions of interest in clinical and neuroscience studies. However, the white matter that connects these relay stations is of at least similar functional importance. Damage to these cerebellar white matter tracts may lead to serious language, cognitive and emotional disturbances, although the pathophysiological mechanism behind it is still debated. Differences in white matter integrity between patients and controls might shed light on structure-function correlations. A probabilistic parcellation atlas of the cerebellar white matter would help these studies by facilitating automatic segmentation of the cerebellar peduncles, the localization of lesions and the comparison of white matter integrity between patients and controls. In this work a digital three-dimensional probabilistic atlas of the cerebellar white matter is presented, based on high quality 3T, 1.25mm resolution diffusion MRI data from 90 subjects participating in the Human Connectome Project. The white matter tracts were estimated using probabilistic tractography. Results over 90 subjects were symmetrical and trajectories of superior, middle and inferior cerebellar peduncles resembled the anatomy as known from anatomical studies. This atlas will contribute to a better understanding of cerebellar white matter architecture. It may eventually aid in defining structure-function correlations in patients with cerebellar disorders. Copyright © 2015 Elsevier Inc. All rights reserved.
Sommer, Wieland H; Bollwein, Christine; Thierfelder, Kolja M; Baumann, Alena; Janssen, Hendrik; Ertl-Wagner, Birgit; Reiser, Maximilian F; Plate, Annika; Straube, Andreas; von Baumgarten, Louisa
2016-04-01
We aimed to investigate the overall prevalence and possible factors influencing the occurrence of crossed cerebellar diaschisis after acute middle cerebral artery infarction using whole-brain CT perfusion. A total of 156 patients with unilateral hypoperfusion of the middle cerebral artery territory formed the study cohort; 352 patients without hypoperfusion served as controls. We performed blinded reading of different perfusion maps for the presence of crossed cerebellar diaschisis and determined the relative supratentorial and cerebellar perfusion reduction. Moreover, imaging patterns (location and volume of hypoperfusion) and clinical factors (age, sex, time from symptom onset) resulting in crossed cerebellar diaschisis were analysed. Crossed cerebellar diaschisis was detected in 35.3% of the patients with middle cerebral artery infarction. Crossed cerebellar diaschisis was significantly associated with hypoperfusion involving the left hemisphere, the frontal lobe and the thalamus. The degree of the relative supratentorial perfusion reduction was significantly more pronounced in crossed cerebellar diaschisis-positive patients but did not correlate with the relative cerebellar perfusion reduction. Our data suggest that (i) crossed cerebellar diaschisis is a common feature after middle cerebral artery infarction which can robustly be detected using whole-brain CT perfusion, (ii) its occurrence is influenced by location and degree of the supratentorial perfusion reduction rather than infarct volume (iii) other clinical factors (age, sex and time from symptom onset) did not affect the occurrence of crossed cerebellar diaschisis. © The Author(s) 2015.
Cerebrocerebellar networks during articulatory rehearsal and verbal working memory tasks.
Chen, S H Annabel; Desmond, John E
2005-01-15
Converging evidence has implicated the cerebellum in verbal working memory. The current fMRI study sought to further characterize cerebrocerebellar participation in this cognitive process by revealing regions of activation common to a verbal working task and an articulatory control task, as well as regions that are uniquely activated by working memory. Consistent with our model's predictions, load-dependent activations were observed in Broca's area (BA 44/6) and the superior cerebellar hemisphere (VI/CrusI) for both working memory and motoric rehearsal. In contrast, activations unique to verbal working memory were found in the inferior parietal lobule (BA 40) and the right inferior cerebellum hemisphere (VIIB). These findings provide evidence for two cerebrocerebellar networks for verbal working memory: a frontal/superior cerebellar articulatory control system and a parietal/inferior cerebellar phonological storage system.
[Acquisition of arithmetic knowledge].
Fayol, Michel
2008-01-01
The focus of this paper is on contemporary research on the number counting and arithmetical competencies that emerge during infancy, the preschool years, and the elementary school. I provide a brief overview of the evolution of children's conceptual knowledge of arithmetic knowledge, the acquisition and use of counting and how they solve simple arithmetic problems (e.g. 4 + 3).
The Development of Arithmetic Principle Knowledge: How Do We Know What Learners Know?
ERIC Educational Resources Information Center
Prather, Richard W.; Alibali, Martha W.
2009-01-01
This paper reviews research on learners' knowledge of three arithmetic principles: "Commutativity", "Relation to Operands", and "Inversion." Studies of arithmetic principle knowledge vary along several dimensions, including the age of the participants, the context in which the arithmetic is presented, and most importantly, the type of knowledge…
NASA Astrophysics Data System (ADS)
Jorand, Rachel; Fehr, Annick; Koch, Andreas; Clauser, Christoph
2011-08-01
In this paper, we present a method that allows one to correct thermal conductivity measurements for the effect of water loss when extrapolating laboratory data to in situ conditions. The water loss in shales and unconsolidated rocks is a serious problem that can introduce errors in the characterization of reservoirs. For this study, we measure the thermal conductivity of four sandstones with and without clay minerals according to different water saturation levels using an optical scanner. Thermal conductivity does not decrease linearly with water saturation. At high saturation and very low saturation, thermal conductivity decreases more quickly because of spontaneous liquid displacement and capillarity effects. Apart from these two effects, thermal conductivity decreases quasi-linearly. We also notice that the samples containing clay minerals are not completely drained, and thermal conductivity reaches a minimum value. In order to fit the variation of thermal conductivity with the water saturation as a whole, we used modified models commonly presented in thermal conductivity studies: harmonic and arithmetic mean and geometric models. These models take into account different types of porosity, especially those attributable to the abundance of clay, using measurements obtained from nuclear magnetic resonance (NMR). For argillaceous sandstones, a modified arithmetic-harmonic model fits the data best. For clean quartz sandstones under low water saturation, the closest fit to the data is obtained with the modified arithmetic-harmonic model, while for high water saturation, a modified geometric mean model proves to be the best.
The neural correlates of mental arithmetic in adolescents: a longitudinal fNIRS study.
Artemenko, Christina; Soltanlou, Mojtaba; Ehlis, Ann-Christine; Nuerk, Hans-Christoph; Dresler, Thomas
2018-03-10
Arithmetic processing in adults is known to rely on a frontal-parietal network. However, neurocognitive research focusing on the neural and behavioral correlates of arithmetic development has been scarce, even though the acquisition of arithmetic skills is accompanied by changes within the fronto-parietal network of the developing brain. Furthermore, experimental procedures are typically adjusted to constraints of functional magnetic resonance imaging, which may not reflect natural settings in which children and adolescents actually perform arithmetic. Therefore, we investigated the longitudinal neurocognitive development of processes involved in performing the four basic arithmetic operations in 19 adolescents. By using functional near-infrared spectroscopy, we were able to use an ecologically valid task, i.e., a written production paradigm. A common pattern of activation in the bilateral fronto-parietal network for arithmetic processing was found for all basic arithmetic operations. Moreover, evidence was obtained for decreasing activation during subtraction over the course of 1 year in middle and inferior frontal gyri, and increased activation during addition and multiplication in angular and middle temporal gyri. In the self-paced block design, parietal activation in multiplication and left angular and temporal activation in addition were observed to be higher for simple than for complex blocks, reflecting an inverse effect of arithmetic complexity. In general, the findings suggest that the brain network for arithmetic processing is already established in 12-14 year-old adolescents, but still undergoes developmental changes.
Approximate Arithmetic Training Improves Informal Math Performance in Low Achieving Preschoolers
Szkudlarek, Emily; Brannon, Elizabeth M.
2018-01-01
Recent studies suggest that practice with approximate and non-symbolic arithmetic problems improves the math performance of adults, school aged children, and preschoolers. However, the relative effectiveness of approximate arithmetic training compared to available educational games, and the type of math skills that approximate arithmetic targets are unknown. The present study was designed to (1) compare the effectiveness of approximate arithmetic training to two commercially available numeral and letter identification tablet applications and (2) to examine the specific type of math skills that benefit from approximate arithmetic training. Preschool children (n = 158) were pseudo-randomly assigned to one of three conditions: approximate arithmetic, letter identification, or numeral identification. All children were trained for 10 short sessions and given pre and post tests of informal and formal math, executive function, short term memory, vocabulary, alphabet knowledge, and number word knowledge. We found a significant interaction between initial math performance and training condition, such that children with low pretest math performance benefited from approximate arithmetic training, and children with high pretest math performance benefited from symbol identification training. This effect was restricted to informal, and not formal, math problems. There were also effects of gender, socio-economic status, and age on post-test informal math score after intervention. A median split on pretest math ability indicated that children in the low half of math scores in the approximate arithmetic training condition performed significantly better than children in the letter identification training condition on post-test informal math problems when controlling for pretest, age, gender, and socio-economic status. Our results support the conclusion that approximate arithmetic training may be especially effective for children with low math skills, and that approximate arithmetic training improves early informal, but not formal, math skills. PMID:29867624
Approximate Arithmetic Training Improves Informal Math Performance in Low Achieving Preschoolers.
Szkudlarek, Emily; Brannon, Elizabeth M
2018-01-01
Recent studies suggest that practice with approximate and non-symbolic arithmetic problems improves the math performance of adults, school aged children, and preschoolers. However, the relative effectiveness of approximate arithmetic training compared to available educational games, and the type of math skills that approximate arithmetic targets are unknown. The present study was designed to (1) compare the effectiveness of approximate arithmetic training to two commercially available numeral and letter identification tablet applications and (2) to examine the specific type of math skills that benefit from approximate arithmetic training. Preschool children ( n = 158) were pseudo-randomly assigned to one of three conditions: approximate arithmetic, letter identification, or numeral identification. All children were trained for 10 short sessions and given pre and post tests of informal and formal math, executive function, short term memory, vocabulary, alphabet knowledge, and number word knowledge. We found a significant interaction between initial math performance and training condition, such that children with low pretest math performance benefited from approximate arithmetic training, and children with high pretest math performance benefited from symbol identification training. This effect was restricted to informal, and not formal, math problems. There were also effects of gender, socio-economic status, and age on post-test informal math score after intervention. A median split on pretest math ability indicated that children in the low half of math scores in the approximate arithmetic training condition performed significantly better than children in the letter identification training condition on post-test informal math problems when controlling for pretest, age, gender, and socio-economic status. Our results support the conclusion that approximate arithmetic training may be especially effective for children with low math skills, and that approximate arithmetic training improves early informal, but not formal, math skills.
Rare Disease Patient Registry & Natural History Study - Coordination of Rare Diseases at Sanford
2017-09-28
Rare Disorders; Undiagnosed Disorders; Disorders of Unknown Prevalence; Cornelia De Lange Syndrome; Prenatal Benign Hypophosphatasia; Perinatal Lethal Hypophosphatasia; Odontohypophosphatasia; Adult Hypophosphatasia; Childhood-onset Hypophosphatasia; Infantile Hypophosphatasia; Hypophosphatasia; Kabuki Syndrome; Bohring-Opitz Syndrome; Narcolepsy Without Cataplexy; Narcolepsy-cataplexy; Hypersomnolence Disorder; Idiopathic Hypersomnia Without Long Sleep Time; Idiopathic Hypersomnia With Long Sleep Time; Idiopathic Hypersomnia; Kleine-Levin Syndrome; Kawasaki Disease; Leiomyosarcoma; Leiomyosarcoma of the Corpus Uteri; Leiomyosarcoma of the Cervix Uteri; Leiomyosarcoma of Small Intestine; Acquired Myasthenia Gravis; Addison Disease; Hyperacusis (Hyperacousis); Juvenile Myasthenia Gravis; Transient Neonatal Myasthenia Gravis; Williams Syndrome; Lyme Disease; Myasthenia Gravis; Marinesco Sjogren Syndrome(Marinesco-Sjogren Syndrome); Isolated Klippel-Feil Syndrome; Frasier Syndrome; Denys-Drash Syndrome; Beckwith-Wiedemann Syndrome; Emanuel Syndrome; Isolated Aniridia; Beckwith-Wiedemann Syndrome Due to Paternal Uniparental Disomy of Chromosome 11; Beckwith-Wiedemann Syndrome Due to Imprinting Defect of 11p15; Beckwith-Wiedemann Syndrome Due to 11p15 Translocation/Inversion; Beckwith-Wiedemann Syndrome Due to 11p15 Microduplication; Beckwith-Wiedemann Syndrome Due to 11p15 Microdeletion; Axenfeld-Rieger Syndrome; Aniridia-intellectual Disability Syndrome; Aniridia - Renal Agenesis - Psychomotor Retardation; Aniridia - Ptosis - Intellectual Disability - Familial Obesity; Aniridia - Cerebellar Ataxia - Intellectual Disability; Aniridia - Absent Patella; Aniridia; Peters Anomaly - Cataract; Peters Anomaly; Potocki-Shaffer Syndrome; Silver-Russell Syndrome Due to Maternal Uniparental Disomy of Chromosome 11; Silver-Russell Syndrome Due to Imprinting Defect of 11p15; Silver-Russell Syndrome Due to 11p15 Microduplication; Syndromic Aniridia; WAGR Syndrome; Wolf-Hirschhorn Syndrome; 4p16.3 Microduplication Syndrome; 4p Deletion Syndrome, Non-Wolf-Hirschhorn Syndrome; Autosomal Recessive Stickler Syndrome; Stickler Syndrome Type 2; Stickler Syndrome Type 1; Stickler Syndrome; Mucolipidosis Type 4; X-linked Spinocerebellar Ataxia Type 4; X-linked Spinocerebellar Ataxia Type 3; X-linked Intellectual Disability - Ataxia - Apraxia; X-linked Progressive Cerebellar Ataxia; X-linked Non Progressive Cerebellar Ataxia; X-linked Cerebellar Ataxia; Vitamin B12 Deficiency Ataxia; Toxic Exposure Ataxia; Unclassified Autosomal Dominant Spinocerebellar Ataxia; Thyroid Antibody Ataxia; Sporadic Adult-onset Ataxia of Unknown Etiology; Spinocerebellar Ataxia With Oculomotor Anomaly; Spinocerebellar Ataxia With Epilepsy; Spinocerebellar Ataxia With Axonal Neuropathy Type 2; Spinocerebellar Ataxia Type 8; Spinocerebellar Ataxia Type 7; Spinocerebellar Ataxia Type 6; Spinocerebellar Ataxia Type 5; Spinocerebellar Ataxia Type 4; Spinocerebellar Ataxia Type 37; Spinocerebellar Ataxia Type 36; Spinocerebellar Ataxia Type 35; Spinocerebellar Ataxia Type 34; Spinocerebellar Ataxia Type 32; Spinocerebellar Ataxia Type 31; Spinocerebellar Ataxia Type 30; Spinocerebellar Ataxia Type 3; Spinocerebellar Ataxia Type 29; Spinocerebellar Ataxia Type 28; Spinocerebellar Ataxia Type 27; Spinocerebellar Ataxia Type 26; Spinocerebellar Ataxia Type 25; Spinocerebellar Ataxia Type 23; Spinocerebellar Ataxia Type 22; Spinocerebellar Ataxia Type 21; Spinocerebellar Ataxia Type 20; Spinocerebellar Ataxia Type 2; Spinocerebellar Ataxia Type 19/22; Spinocerebellar Ataxia Type 18; Spinocerebellar Ataxia Type 17; Spinocerebellar Ataxia Type 16; Spinocerebellar Ataxia Type 15/16; Spinocerebellar Ataxia Type 14; Spinocerebellar Ataxia Type 13; Spinocerebellar Ataxia Type 12; Spinocerebellar Ataxia Type 11; Spinocerebellar Ataxia Type 10; Spinocerebellar Ataxia Type 1 With Axonal Neuropathy; Spinocerebellar Ataxia Type 1; Spinocerebellar Ataxia - Unknown; Spinocerebellar Ataxia - Dysmorphism; Non Progressive Epilepsy and/or Ataxia With Myoclonus as a Major Feature; Spectrin-associated Autosomal Recessive Cerebellar Ataxia; Spasticity-ataxia-gait Anomalies Syndrome; Spastic Ataxia With Congenital Miosis; Spastic Ataxia - Corneal Dystrophy; Spastic Ataxia; Rare Hereditary Ataxia; Rare Ataxia; Recessive Mitochondrial Ataxia Syndrome; Progressive Epilepsy and/or Ataxia With Myoclonus as a Major Feature; Posterior Column Ataxia - Retinitis Pigmentosa; Post-Stroke Ataxia; Post-Head Injury Ataxia; Post Vaccination Ataxia; Polyneuropathy - Hearing Loss - Ataxia - Retinitis Pigmentosa - Cataract; Muscular Atrophy - Ataxia - Retinitis Pigmentosa - Diabetes Mellitus; Non-progressive Cerebellar Ataxia With Intellectual Disability; Non-hereditary Degenerative Ataxia; Paroxysmal Dystonic Choreathetosis With Episodic Ataxia and Spasticity; Olivopontocerebellar Atrophy - Deafness; NARP Syndrome; Myoclonus - Cerebellar Ataxia - Deafness; Multiple System Atrophy, Parkinsonian Type; Multiple System Atrophy, Cerebellar Type; Multiple System Atrophy; Maternally-inherited Leigh Syndrome; Machado-Joseph Disease Type 3; Machado-Joseph Disease Type 2; Machado-Joseph Disease Type 1; Lethal Ataxia With Deafness and Optic Atrophy; Leigh Syndrome; Leukoencephalopathy With Mild Cerebellar Ataxia and White Matter Edema; Leukoencephalopathy - Ataxia - Hypodontia - Hypomyelination; Leigh Syndrome With Nephrotic Syndrome; Leigh Syndrome With Leukodystrophy; Leigh Syndrome With Cardiomyopathy; Late-onset Ataxia With Dementia; Intellectual Disability-hyperkinetic Movement-truncal Ataxia Syndrome; Infection or Post Infection Ataxia; Infantile-onset Autosomal Recessive Nonprogressive Cerebellar Ataxia; Infantile Onset Spinocerebellar Ataxia; GAD Ataxia; Hereditary Episodic Ataxia; Gliadin/Gluten Ataxia; Friedreich Ataxia; Fragile X-associated Tremor/Ataxia Syndrome; Familial Paroxysmal Ataxia; Exposure to Medications Ataxia; Episodic Ataxia With Slurred Speech; Episodic Ataxia Unknown Type; Episodic Ataxia Type 7; Episodic Ataxia Type 6; Episodic Ataxia Type 5; Episodic Ataxia Type 4; Episodic Ataxia Type 3; Episodic Ataxia Type 1; Epilepsy and/or Ataxia With Myoclonus as Major Feature; Early-onset Spastic Ataxia-neuropathy Syndrome; Early-onset Progressive Neurodegeneration - Blindness - Ataxia - Spasticity; Early-onset Cerebellar Ataxia With Retained Tendon Reflexes; Early-onset Ataxia With Dementia; Childhood-onset Autosomal Recessive Slowly Progressive Spinocerebellar Ataxia; Dilated Cardiomyopathy With Ataxia; Cataract - Ataxia - Deafness; Cerebellar Ataxia, Cayman Type; Cerebellar Ataxia With Peripheral Neuropathy; Cerebellar Ataxia - Hypogonadism; Cerebellar Ataxia - Ectodermal Dysplasia; Cerebellar Ataxia - Areflexia - Pes Cavus - Optic Atrophy - Sensorineural Hearing Loss; Brain Tumor Ataxia; Brachydactyly - Nystagmus - Cerebellar Ataxia; Benign Paroxysmal Tonic Upgaze of Childhood With Ataxia; Autosomal Recessive Syndromic Cerebellar Ataxia; Autosomal Recessive Spastic Ataxia With Leukoencephalopathy; Autosomal Recessive Spastic Ataxia of Charlevoix-Saguenay; Autosomal Recessive Spastic Ataxia - Optic Atrophy - Dysarthria; Autosomal Recessive Spastic Ataxia; Autosomal Recessive Metabolic Cerebellar Ataxia; Autosomal Dominant Spinocerebellar Ataxia Due to Repeat Expansions That do Not Encode Polyglutamine; Autosomal Recessive Ataxia, Beauce Type; Autosomal Recessive Ataxia Due to Ubiquinone Deficiency; Autosomal Recessive Ataxia Due to PEX10 Deficiency; Autosomal Recessive Degenerative and Progressive Cerebellar Ataxia; Autosomal Recessive Congenital Cerebellar Ataxia Due to MGLUR1 Deficiency; Autosomal Recessive Congenital Cerebellar Ataxia Due to GRID2 Deficiency; Autosomal Recessive Congenital Cerebellar Ataxia; Autosomal Recessive Cerebellar Ataxia-pyramidal Signs-nystagmus-oculomotor Apraxia Syndrome; Autosomal Recessive Cerebellar Ataxia-epilepsy-intellectual Disability Syndrome Due to WWOX Deficiency; Autosomal Recessive Cerebellar Ataxia-epilepsy-intellectual Disability Syndrome Due to TUD Deficiency; Autosomal Recessive Cerebellar Ataxia-epilepsy-intellectual Disability Syndrome Due to KIAA0226 Deficiency; Autosomal Recessive Cerebellar Ataxia-epilepsy-intellectual Disability Syndrome; Autosomal Recessive Cerebellar Ataxia With Late-onset Spasticity; Autosomal Recessive Cerebellar Ataxia Due to STUB1 Deficiency; Autosomal Recessive Cerebellar Ataxia Due to a DNA Repair Defect; Autosomal Recessive Cerebellar Ataxia - Saccadic Intrusion; Autosomal Recessive Cerebellar Ataxia - Psychomotor Retardation; Autosomal Recessive Cerebellar Ataxia - Blindness - Deafness; Autosomal Recessive Cerebellar Ataxia; Autosomal Dominant Spinocerebellar Ataxia Due to a Polyglutamine Anomaly; Autosomal Dominant Spinocerebellar Ataxia Due to a Point Mutation; Autosomal Dominant Spinocerebellar Ataxia Due to a Channelopathy; Autosomal Dominant Spastic Ataxia Type 1; Autosomal Dominant Spastic Ataxia; Autosomal Dominant Optic Atrophy; Ataxia-telangiectasia Variant; Ataxia-telangiectasia; Autosomal Dominant Cerebellar Ataxia, Deafness and Narcolepsy; Autosomal Dominant Cerebellar Ataxia Type 4; Autosomal Dominant Cerebellar Ataxia Type 3; Autosomal Dominant Cerebellar Ataxia Type 2; Autosomal Dominant Cerebellar Ataxia Type 1; Autosomal Dominant Cerebellar Ataxia; Ataxia-telangiectasia-like Disorder; Ataxia-intellectual Disability-oculomotor Apraxia-cerebellar Cysts Syndrome; Ataxia-deafness-intellectual Disability Syndrome; Ataxia With Vitamin E Deficiency; Ataxia With Dementia; Ataxia Neuropathy Spectrum; Ataxia - Tapetoretinal Degeneration; Ataxia - Photosensitivity - Short Stature; Ataxia - Pancytopenia; Ataxia - Oculomotor Apraxia Type 1; Ataxia - Hypogonadism - Choroidal Dystrophy; Ataxia - Other; Ataxia - Genetic Diagnosis - Unknown; Acquired Ataxia; Adult-onset Autosomal Recessive Cerebellar Ataxia; Alcohol Related Ataxia; Multiple Endocrine Neoplasia; Multiple Endocrine Neoplasia Type II; Multiple Endocrine Neoplasia Type 1; Multiple Endocrine Neoplasia Type 2; Multiple Endocrine Neoplasia, Type IV; Multiple Endocrine Neoplasia, Type 3; Multiple Endocrine Neoplasia (MEN) Syndrome; Multiple Endocrine Neoplasia Type 2B; Multiple Endocrine Neoplasia Type 2A; Atypical Hemolytic Uremic Syndrome; Atypical HUS; Wiedemann-Steiner Syndrome; Breast Implant-Associated Anaplastic Large Cell Lymphoma; Autoimmune/Inflammatory Syndrome Induced by Adjuvants (ASIA); Hemophagocytic Lymphohistiocytosis; Behcet's Disease
Rauscher, Larissa; Kohn, Juliane; Käser, Tanja; Mayer, Verena; Kucian, Karin; McCaskey, Ursina; Esser, Günter; von Aster, Michael
2016-01-01
Calcularis is a computer-based training program which focuses on basic numerical skills, spatial representation of numbers and arithmetic operations. The program includes a user model allowing flexible adaptation to the child's individual knowledge and learning profile. The study design to evaluate the training comprises three conditions (Calcularis group, waiting control group, spelling training group). One hundred and thirty-eight children from second to fifth grade participated in the study. Training duration comprised a minimum of 24 training sessions of 20 min within a time period of 6-8 weeks. Compared to the group without training (waiting control group) and the group with an alternative training (spelling training group), the children of the Calcularis group demonstrated a higher benefit in subtraction and number line estimation with medium to large effect sizes. Therefore, Calcularis can be used effectively to support children in arithmetic performance and spatial number representation.
di Penta, Alessandra; Moreno, Beatriz; Reix, Stephanie; Fernandez-Diez, Begoña; Villanueva, Maite; Errea, Oihana; Escala, Nagore; Vandenbroeck, Koen; Comella, Joan X.; Villoslada, Pablo
2013-01-01
Background Demyelination and axonal damage are critical processes in the pathogenesis of multiple sclerosis (MS). Oxidative stress and pro-inflammatory cytokines elicited by inflammation mediates tissue damage. Methods/Principal Findings To monitor the demyelination and axonal injury associated with microglia activation we employed a model using cerebellar organotypic cultures stimulated with lipopolysaccharide (LPS). Microglia activated by LPS released pro-inflammatory cytokines (IL-1β, IL-6 and TNFα), and increased the expression of inducible nitric oxide synthase (iNOS) and production of reactive oxygen species (ROS). This activation was associated with demyelination and axonal damage in cerebellar cultures. Axonal damage, as revealed by the presence of non-phosphorylated neurofilaments, mitochondrial accumulation in axonal spheroids, and axonal transection, was associated with stronger iNOS expression and concomitant increases in ROS. Moreover, we analyzed the contribution of pro-inflammatory cytokines and oxidative stress in demyelination and axonal degeneration using the iNOS inhibitor ethyl pyruvate, a free-scavenger and xanthine oxidase inhibitor allopurinol, as well as via blockage of pro-inflammatory cytokines using a Fc-TNFR1 construct. We found that blocking microglia activation with ethyl pyruvate or allopurinol significantly decreased axonal damage, and to a lesser extent, demyelination. Blocking TNFα significantly decreased demyelination but did not prevented axonal damage. Moreover, the most common therapy for MS, interferon-beta, was used as an example of an immunomodulator compound that can be tested in this model. In vitro, interferon-beta treatment decreased oxidative stress (iNOS and ROS levels) and the release of pro-inflammatory cytokines after LPS stimulation, reducing axonal damage. Conclusion The model of neuroinflammation using cerebellar culture stimulated with endotoxin mimicked myelin and axonal damage mediated by the combination of oxidative stress and pro-inflammatory cytokines. This model may both facilitate understanding of the events involved in neuroinflammation and aid in the development of neuroprotective therapies for the treatment of MS and other neurodegenerative diseases. PMID:23431360
Insights into cerebellar development and medulloblastoma.
Bihannic, Laure; Ayrault, Olivier
2016-01-01
Cerebellar development is an extensive process that begins during early embryonic stages and persists more than one year after birth in human. Therefore, the cerebellum is susceptible to acquire various developmental abnormalities leading to numerous diseases such as medulloblastoma, the most common pediatric malignant brain tumor. One third of the patients with medulloblastoma are incurable and survivors have a poor quality of life due to the aggressiveness of the broad-spectrum treatments. Within the past few years, it has been highlighted that medulloblastoma is a heterogeneous disease that is divided in four molecular subgroups. This recent advance in the field, combined with the development of associated preclinical models for each subgroup, should enable, in the future, the discovery and use of targeted therapy in clinical treatments for each subtype of medulloblastoma. In this review, we first aim to show how deregulation of cerebellar development can lead to medulloblastoma formation and then to present the advances in the molecular subgrouping of medulloblastoma and the associated preclinical models. Copyright © 2015 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.
Neural circuitry and plasticity mechanisms underlying delay eyeblink conditioning
Freeman, John H.; Steinmetz, Adam B.
2011-01-01
Pavlovian eyeblink conditioning has been used extensively as a model system for examining the neural mechanisms underlying associative learning. Delay eyeblink conditioning depends on the intermediate cerebellum ipsilateral to the conditioned eye. Evidence favors a two-site plasticity model within the cerebellum with long-term depression of parallel fiber synapses on Purkinje cells and long-term potentiation of mossy fiber synapses on neurons in the anterior interpositus nucleus. Conditioned stimulus and unconditioned stimulus inputs arise from the pontine nuclei and inferior olive, respectively, converging in the cerebellar cortex and deep nuclei. Projections from subcortical sensory nuclei to the pontine nuclei that are necessary for eyeblink conditioning are beginning to be identified, and recent studies indicate that there are dynamic interactions between sensory thalamic nuclei and the cerebellum during eyeblink conditioning. Cerebellar output is projected to the magnocellular red nucleus and then to the motor nuclei that generate the blink response(s). Tremendous progress has been made toward determining the neural mechanisms of delay eyeblink conditioning but there are still significant gaps in our understanding of the necessary neural circuitry and plasticity mechanisms underlying cerebellar learning. PMID:21969489
Computation of linear acceleration through an internal model in the macaque cerebellum
Laurens, Jean; Meng, Hui; Angelaki, Dora E.
2013-01-01
A combination of theory and behavioral findings has supported a role for internal models in the resolution of sensory ambiguities and sensorimotor processing. Although the cerebellum has been proposed as a candidate for implementation of internal models, concrete evidence from neural responses is lacking. Here we exploit un-natural motion stimuli, which induce incorrect self-motion perception and eye movements, to explore the neural correlates of an internal model proposed to compensate for Einstein’s equivalence principle and generate neural estimates of linear acceleration and gravity. We show that caudal cerebellar vermis Purkinje cells and cerebellar nuclei neurons selective for actual linear acceleration also encode erroneous linear acceleration, as expected from the internal model hypothesis, even when no actual linear acceleration occurs. These findings provide strong evidence that the cerebellum might be involved in the implementation of internal models that mimic physical principles to interpret sensory signals, as previously hypothesized by theorists. PMID:24077562
Altered cerebellar feedback projections in Asperger syndrome.
Catani, Marco; Jones, Derek K; Daly, Eileen; Embiricos, Nitzia; Deeley, Quinton; Pugliese, Luca; Curran, Sarah; Robertson, Dene; Murphy, Declan G M
2008-07-15
It has been proposed that the biological basis of autism spectrum disorder includes cerebellar 'disconnection'. However, direct in vivo evidence in support of this is lacking. Here, the microstructural integrity of cerebellar white matter in adults with Asperger syndrome was studied using diffusion tensor magnetic resonance tractography. Fifteen adults with Asperger syndrome and 16 age-IQ-gender-matched healthy controls underwent diffusion tensor magnetic resonance imaging. For each subject, tract-specific measurements of mean diffusivity and fractional anisotropy were made within the inferior, middle, superior cerebellar peduncles and short intracerebellar fibres. No group differences were observed in mean diffusivity. However, people with Asperger syndrome had significantly lower fractional anisotropy in the short intracerebellar fibres (p<0.001) and right superior cerebellar (output) peduncle (p<0.001) compared to controls; but no difference in the input tracts. Severity of social impairment, as measured by the Autistic Diagnostic Interview, was negatively correlated with diffusion anisotropy in the fibres of the left superior cerebellar peduncle. These findings suggest a vulnerability of specific cerebellar neural pathways in people with Asperger syndrome. The localised abnormalities in the main cerebellar outflow pathway may prevent the cerebral cortex from receiving those cerebellar feedback inputs necessary for a successful adaptive social behaviour.
Shaikh, Aasef G; Miller, Benjamin R; Sundararajan, Sophia; Katirji, Bashar
2014-04-01
Cerebellar lesions may present with gravity-dependent nystagmus, where the direction and velocity of the drifts change with alterations in head position. Two patients had acute onset of hearing loss, vertigo, oscillopsia, nausea, and vomiting. Examination revealed gravity-dependent nystagmus, unilateral hypoactive vestibulo-ocular reflex (VOR), and hearing loss ipsilateral to the VOR hypofunction. Traditionally, the hypoactive VOR and hearing loss suggest inner-ear dysfunction. Vertigo, nausea, vomiting, and nystagmus may suggest peripheral or central vestibulopathy. The gravity-dependent modulation of nystagmus, however, localizes to the posterior cerebellar vermis. Magnetic resonance imaging in our patients revealed acute cerebellar infarct affecting posterior cerebellar vermis, in the vascular distribution of the posterior inferior cerebellar artery (PICA). This lesion explains the gravity-dependent nystagmus, nausea, and vomiting. Acute onset of unilateral hearing loss and VOR hypofunction could be the manifestation of inner-ear ischemic injury secondary to the anterior inferior cerebellar artery (AICA) compromise. In cases of combined AICA and PICA infarction, the symptoms of peripheral vestibulopathy might masquerade the central vestibular syndrome and harbor a cerebellar stroke. However, the gravity-dependent nystagmus allows prompt identification of acute cerebellar infarct. Copyright © 2014 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Rhythmic finger tapping reveals cerebellar dysfunction in essential tremor.
Buijink, A W G; Broersma, M; van der Stouwe, A M M; van Wingen, G A; Groot, P F C; Speelman, J D; Maurits, N M; van Rootselaar, A F
2015-04-01
Cerebellar circuits are hypothesized to play a central role in the pathogenesis of essential tremor. Rhythmic finger tapping is known to strongly engage the cerebellar motor circuitry. We characterize cerebellar and, more specifically, dentate nucleus function, and neural correlates of cerebellar output in essential tremor during rhythmic finger tapping employing functional MRI. Thirty-one propranolol-sensitive essential tremor patients with upper limb tremor and 29 healthy controls were measured. T2*-weighted EPI sequences were acquired. The task consisted of alternating rest and finger tapping blocks. A whole-brain and region-of-interest analysis was performed, the latter focusing on the cerebellar cortex, dentate nucleus and inferior olive nucleus. Activations were also related to tremor severity. In patients, dentate activation correlated positively with tremor severity as measured by the tremor rating scale part A. Patients had reduced activation in widespread cerebellar cortical regions, and additionally in the inferior olive nucleus, and parietal and frontal cortex, compared to controls. The increase in dentate activation with tremor severity supports involvement of the dentate nucleus in essential tremor. Cortical and cerebellar changes during a motor timing task in essential tremor might point to widespread changes in cerebellar output in essential tremor. Copyright © 2015 Elsevier Ltd. All rights reserved.
Bit-parallel arithmetic in a massively-parallel associative processor
NASA Technical Reports Server (NTRS)
Scherson, Isaac D.; Kramer, David A.; Alleyne, Brian D.
1992-01-01
A simple but powerful new architecture based on a classical associative processor model is presented. Algorithms for performing the four basic arithmetic operations both for integer and floating point operands are described. For m-bit operands, the proposed architecture makes it possible to execute complex operations in O(m) cycles as opposed to O(m exp 2) for bit-serial machines. A word-parallel, bit-parallel, massively-parallel computing system can be constructed using this architecture with VLSI technology. The operation of this system is demonstrated for the fast Fourier transform and matrix multiplication.
NASA Astrophysics Data System (ADS)
Bogdanov, Alexander; Khramushin, Vasily
2016-02-01
The architecture of a digital computing system determines the technical foundation of a unified mathematical language for exact arithmetic-logical description of phenomena and laws of continuum mechanics for applications in fluid mechanics and theoretical physics. The deep parallelization of the computing processes results in functional programming at a new technological level, providing traceability of the computing processes with automatic application of multiscale hybrid circuits and adaptive mathematical models for the true reproduction of the fundamental laws of physics and continuum mechanics.
ERIC Educational Resources Information Center
Hitt, Fernando; Saboya, Mireille; Cortés Zavala, Carlos
2016-01-01
This paper presents an experiment that attempts to mobilise an arithmetic-algebraic way of thinking in order to articulate between arithmetic thinking and the early algebraic thinking, which is considered a prelude to algebraic thinking. In the process of building this latter way of thinking, researchers analysed pupils' spontaneous production…
Non-symbolic arithmetic in adults and young children.
Barth, Hilary; La Mont, Kristen; Lipton, Jennifer; Dehaene, Stanislas; Kanwisher, Nancy; Spelke, Elizabeth
2006-01-01
Five experiments investigated whether adults and preschool children can perform simple arithmetic calculations on non-symbolic numerosities. Previous research has demonstrated that human adults, human infants, and non-human animals can process numerical quantities through approximate representations of their magnitudes. Here we consider whether these non-symbolic numerical representations might serve as a building block of uniquely human, learned mathematics. Both adults and children with no training in arithmetic successfully performed approximate arithmetic on large sets of elements. Success at these tasks did not depend on non-numerical continuous quantities, modality-specific quantity information, the adoption of alternative non-arithmetic strategies, or learned symbolic arithmetic knowledge. Abstract numerical quantity representations therefore are computationally functional and may provide a foundation for formal mathematics.
IQ of four-year-olds who go on to develop dyslexia.
van Bergen, Elsje; de Jong, Peter F; Maassen, Ben; Krikhaar, Evelien; Plakas, Anna; van der Leij, Aryan
2014-01-01
Do children who go on to develop dyslexia show normal verbal and nonverbal development before reading onset? According to the aptitude-achievement discrepancy model, dyslexia is defined as a discrepancy between intelligence and reading achievement. One of the underlying assumptions is that the general cognitive development of children who fail to learn to read has been normal. The current study tests this assumption. In addition, we investigated whether possible IQ deficits are uniquely related to later reading or are also related to arithmetic. Four-year-olds (N = 212) with and without familial risk for dyslexia were assessed on 10 IQ subtests. Reading and arithmetic skills were measured 4 years later, at the end of Grade 2. Relative to the controls, the at-risk group without dyslexia had subtle impairments only in the verbal domain, whereas the at-risk group with dyslexia lagged behind across IQ tasks. Nonverbal IQ was associated with both reading and arithmetic, whereas verbal IQ was uniquely related to later reading. The children who went on to develop dyslexia performed relatively poorly in both verbal and nonverbal abilities at age 4, which challenges the discrepancy model. Furthermore, we discuss possible causal and epiphenomenal models explaining the links between early IQ and later reading. © Hammill Institute on Disabilities 2013.
Bernardino, Filipa; Rentmeister, Kai; Schmidt, Martin J.; Bruehschwein, Andreas; Matiasek, Kaspar; Matiasek, Lara A.; Lauda, Alexander; Schoon, Heinz A.; Fischer, Andrea
2015-01-01
Cerebellar malformations can be inherited or caused by insults during cerebellar development. To date, only sporadic cases of cerebellar malformations have been reported in dogs, and the genetic background has remained obscure. Therefore, this study`s objective was to describe the clinical characteristics, imaging features and pedigree data of a familial cerebellar hypoplasia in purebred Eurasier dogs. A uniform cerebellar malformation characterized by consistent absence of the caudal portions of the cerebellar vermis and, to a lesser degree, the caudal portions of the cerebellar hemispheres in association with large retrocerebellar fluid accumulations was recognized in 14 closely related Eurasier dogs. Hydrocephalus was an additional feature in some dogs. All dogs displayed non-progressive ataxia, which had already been noted when the dogs were 5 – 6 weeks old. The severity of the ataxia varied between dogs, from mild truncal sway, subtle dysmetric gait, dysequilibrium and pelvic limb ataxia to severe cerebellar ataxia in puppies and episodic falling or rolling. Follow-up examinations in adult dogs showed improvement of the cerebellar ataxia and a still absent menace response. Epileptic seizures occurred in some dogs. The association of partial vermis agenesis with an enlarged fourth ventricle and an enlarged caudal (posterior) fossa resembled a Dandy-Walker-like malformation in some dogs. Pedigree analyses were consistent with autosomal recessive inheritance. PMID:25668516
Recovery of biological motion perception and network plasticity after cerebellar tumor removal.
Sokolov, Arseny A; Erb, Michael; Grodd, Wolfgang; Tatagiba, Marcos S; Frackowiak, Richard S J; Pavlova, Marina A
2014-10-01
Visual perception of body motion is vital for everyday activities such as social interaction, motor learning or car driving. Tumors to the left lateral cerebellum impair visual perception of body motion. However, compensatory potential after cerebellar damage and underlying neural mechanisms remain unknown. In the present study, visual sensitivity to point-light body motion was psychophysically assessed in patient SL with dysplastic gangliocytoma (Lhermitte-Duclos disease) to the left cerebellum before and after neurosurgery, and in a group of healthy matched controls. Brain activity during processing of body motion was assessed by functional magnetic resonance imaging (MRI). Alterations in underlying cerebro-cerebellar circuitry were studied by psychophysiological interaction (PPI) analysis. Visual sensitivity to body motion in patient SL before neurosurgery was substantially lower than in controls, with significant improvement after neurosurgery. Functional MRI in patient SL revealed a similar pattern of cerebellar activation during biological motion processing as in healthy participants, but located more medially, in the left cerebellar lobules III and IX. As in normalcy, PPI analysis showed cerebellar communication with a region in the superior temporal sulcus, but located more anteriorly. The findings demonstrate a potential for recovery of visual body motion processing after cerebellar damage, likely mediated by topographic shifts within the corresponding cerebro-cerebellar circuitry induced by cerebellar reorganization. The outcome is of importance for further understanding of cerebellar plasticity and neural circuits underpinning visual social cognition.
Balsters, J H; Cussans, E; Diedrichsen, J; Phillips, K A; Preuss, T M; Rilling, J K; Ramnani, N
2010-02-01
It has been suggested that interconnected brain areas evolve in tandem because evolutionary pressures act on complete functional systems rather than on individual brain areas. The cerebellar cortex has reciprocal connections with both the prefrontal cortex and motor cortex, forming independent loops with each. Specifically, in capuchin monkeys cerebellar cortical lobules Crus I and Crus II connect with prefrontal cortex, whereas the primary motor cortex connects with cerebellar lobules V, VI, VIIb, and VIIIa. Comparisons of extant primate species suggest that the prefrontal cortex has expanded more than cortical motor areas in human evolution. Given the enlargement of the prefrontal cortex relative to motor cortex in humans, our hypothesis would predict corresponding volumetric increases in the parts of the cerebellum connected to the prefrontal cortex, relative to cerebellar lobules connected to the motor cortex. We tested the hypothesis by comparing the volumes of cerebellar lobules in structural MRI scans in capuchins, chimpanzees and humans. The fractions of cerebellar volume occupied by Crus I and Crus II were significantly larger in humans compared to chimpanzees and capuchins. Our results therefore support the hypothesis that in the cortico-cerebellar system, functionally related structures evolve in concert with each other. The evolutionary expansion of these prefrontal-projecting cerebellar territories might contribute to the evolution of the higher cognitive functions of humans. Copyright (c) 2009 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Chung, Kun-Jen
2012-08-01
Cardenas-Barron [Cardenas-Barron, L.E. (2010) 'A Simple Method to Compute Economic order Quantities: Some Observations', Applied Mathematical Modelling, 34, 1684-1688] indicates that there are several functions in which the arithmetic-geometric mean method (AGM) does not give the minimum. This article presents another situation to reveal that the AGM inequality to locate the optimal solution may be invalid for Teng, Chen, and Goyal [Teng, J.T., Chen, J., and Goyal S.K. (2009), 'A Comprehensive Note on: An Inventory Model under Two Levels of Trade Credit and Limited Storage Space Derived without Derivatives', Applied Mathematical Modelling, 33, 4388-4396], Teng and Goyal [Teng, J.T., and Goyal S.K. (2009), 'Comment on 'Optimal Inventory Replenishment Policy for the EPQ Model under Trade Credit Derived without Derivatives', International Journal of Systems Science, 40, 1095-1098] and Hsieh, Chang, Weng, and Dye [Hsieh, T.P., Chang, H.J., Weng, M.W., and Dye, C.Y. (2008), 'A Simple Approach to an Integrated Single-vendor Single-buyer Inventory System with Shortage', Production Planning and Control, 19, 601-604]. So, the main purpose of this article is to adopt the calculus approach not only to overcome shortcomings of the arithmetic-geometric mean method of Teng et al. (2009), Teng and Goyal (2009) and Hsieh et al. (2008), but also to develop the complete solution procedures for them.
Probabilistic arithmetic automata and their applications.
Marschall, Tobias; Herms, Inke; Kaltenbach, Hans-Michael; Rahmann, Sven
2012-01-01
We present a comprehensive review on probabilistic arithmetic automata (PAAs), a general model to describe chains of operations whose operands depend on chance, along with two algorithms to numerically compute the distribution of the results of such probabilistic calculations. PAAs provide a unifying framework to approach many problems arising in computational biology and elsewhere. We present five different applications, namely 1) pattern matching statistics on random texts, including the computation of the distribution of occurrence counts, waiting times, and clump sizes under hidden Markov background models; 2) exact analysis of window-based pattern matching algorithms; 3) sensitivity of filtration seeds used to detect candidate sequence alignments; 4) length and mass statistics of peptide fragments resulting from enzymatic cleavage reactions; and 5) read length statistics of 454 and IonTorrent sequencing reads. The diversity of these applications indicates the flexibility and unifying character of the presented framework. While the construction of a PAA depends on the particular application, we single out a frequently applicable construction method: We introduce deterministic arithmetic automata (DAAs) to model deterministic calculations on sequences, and demonstrate how to construct a PAA from a given DAA and a finite-memory random text model. This procedure is used for all five discussed applications and greatly simplifies the construction of PAAs. Implementations are available as part of the MoSDi package. Its application programming interface facilitates the rapid development of new applications based on the PAA framework.
Changes in the cerebellar and cerebro-cerebellar circuit in type 2 diabetes.
Fang, Peng; An, Jie; Tan, Xin; Zeng, Ling-Li; Shen, Hui; Qiu, Shijun; Hu, Dewen
2017-04-01
Currently, 422 million adults suffer from diabetes worldwide, leading to tremendous disabilities and a great burden to families and society. Functional and structural MRIs have demonstrated that patients with type 2 diabetes mellitus (T2DM) exhibit abnormalities in brain regions in the cerebral cortex. However, the changes of cerebellar anatomical connections in diabetic patients remains unclear. In the current study, diffusion tensor imaging deterministic tractography and statistical analysis were employed to investigate abnormal cerebellar anatomical connections in diabetic patients. This is the first study to investigate the altered cerebellar anatomical connectivity in T2DM patients. Decreased anatomical connections were found in the cerebellar and cerebro-cerebellar circuits of T2DM patients, providing valuable new insights into the potential neuro-pathophysiology of diabetes-related motor and cognitive deficits. Copyright © 2017. Published by Elsevier Inc.
Cheron, Julian; Cheron, Guy
2018-02-20
The cerebellum displays various sorts of rhythmic activities covering both low- and high-frequency oscillations. These cerebellar high-frequency oscillations were observed in the cerebellar cortex. Here, we hypothesised that not only is the cerebellar cortex a generator of high-frequency oscillations but also that the deep cerebellar nuclei may also play a similar role. Thus, we analysed local field potentials and single-unit activities in the deep cerebellar nuclei before, during and after electric stimulation in the inferior olive of awake mice. A high-frequency oscillation of 350 Hz triggered by the stimulation of the inferior olive, within the beta-gamma range, was observed in the deep cerebellar nuclei. The amplitude and frequency of the oscillation were independent of the frequency of stimulation. This oscillation emerged during the period of stimulation and persisted after the end of the stimulation. The oscillation coincided with the inhibition of deep cerebellar neurons. As the inhibition of the deep cerebellar nuclei is related to inhibitory inputs from Purkinje cells, we speculate that the oscillation represents the unmasking of the synchronous activation of another subtype of deep cerebellar neuronal subtype, devoid of GABA receptors and under the direct control of the climbing fibres from the inferior olive. Still, the mechanism sustaining this oscillation remains to be deciphered. Our study sheds new light on the role of the olivo-cerebellar loop as the final output control of the intercerebellar circuitry. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Cerebellar lesions in tuberous sclerosis complex: neurobehavioral and neuroimaging correlates.
Eluvathingal, Thomas J; Behen, Michael E; Chugani, Harry T; Janisse, James; Bernardi, Bruno; Chakraborty, Pulak; Juhasz, Csaba; Muzik, Otto; Chugani, Diane C
2006-10-01
We assessed the structural and functional imaging features of cerebellar lesions and their neurobehavioral correlates in a large cohort of patients with tuberous sclerosis complex. A consecutive series of 78 patients with tuberous sclerosis complex underwent magnetic resonance imaging (MRI) and positron emission tomography (PET) studies with [(18)F]fluorodeoxyglucose (FDG) and alpha-[(11)C]methyl-l-tryptophan (AMT) as part of their evaluation for epilepsy surgery. Neurobehavioral assessment included the Gilliam Autism Rating Scales (GARS) and the Vineland Adaptive Behavior Scales (VABS). Twenty-one patients (27%) had cerebellar lesions (10 boys; mean age 9 +/- 8 years; 9 had right-sided, 10 had left-sided, and 2 had bilateral cerebellar lesions). The lesions showed decreased glucose metabolism (0.79 +/- 0.10) and increased (1.04 +/- 0.10) AMT uptake compared with the normal (nonlesional) cerebellar cortex. Comparisons between patients with (n = 20) and without (n = 57) a cerebellar lesion on neurobehavioral functioning, controlling for the number and location of cortical tubers, revealed that the cerebellar lesion group had higher overall autistic symptomatology. Within-group analyses of the cerebellar lesion group revealed that children with right-sided cerebellar lesions had higher social isolation and communicative and developmental disturbance compared with children with left-sided cerebellar lesions. The side of the cerebellar lesion was not related to adaptive behavior functioning. These findings provide additional empiric support for a role of the cerebellum in autistic symptomatology. Further investigation of the potential role of the right cerebellum in autism, particularly with regard to the dentatothalamofrontal circuit, is warranted.
Cerebellar gray matter and lobular volumes correlate with core autism symptoms
D'Mello, Anila M.; Crocetti, Deana; Mostofsky, Stewart H.; Stoodley, Catherine J.
2015-01-01
Neuroanatomical differences in the cerebellum are among the most consistent findings in autism spectrum disorder (ASD), but little is known about the relationship between cerebellar dysfunction and core ASD symptoms. The newly-emerging existence of cerebellar sensorimotor and cognitive subregions provides a new framework for interpreting the functional significance of cerebellar findings in ASD. Here we use two complementary analyses — whole-brain voxel-based morphometry (VBM) and the SUIT cerebellar atlas — to investigate cerebellar regional gray matter (GM) and volumetric lobular measurements in 35 children with ASD and 35 typically-developing (TD) children (mean age 10.4 ± 1.6 years; range 8–13 years). To examine the relationships between cerebellar structure and core ASD symptoms, correlations were calculated between scores on the Autism Diagnostic Observation Schedule (ADOS) and Autism Diagnostic Interview (ADI) and the VBM and volumetric data. Both VBM and the SUIT analyses revealed reduced GM in ASD children in cerebellar lobule VII (Crus I/II). The degree of regional and lobular gray matter reductions in different cerebellar subregions correlated with the severity of symptoms in social interaction, communication, and repetitive behaviors. Structural differences and behavioral correlations converged on right cerebellar Crus I/II, a region which shows structural and functional connectivity with fronto-parietal and default mode networks. These results emphasize the importance of the location within the cerebellum to the potential functional impact of structural differences in ASD, and suggest that GM differences in cerebellar right Crus I/II are associated with the core ASD profile. PMID:25844317
Neuroimaging and Neurodevelopmental Outcome in Extremely Preterm Infants
Barnes, Patrick D.; Bulas, Dorothy; Slovis, Thomas L.; Finer, Neil N.; Wrage, Lisa A.; Das, Abhik; Tyson, Jon E.; Stevenson, David K.; Carlo, Waldemar A.; Walsh, Michele C.; Laptook, Abbot R.; Yoder, Bradley A.; Van Meurs, Krisa P.; Faix, Roger G.; Rich, Wade; Newman, Nancy S.; Cheng, Helen; Heyne, Roy J.; Vohr, Betty R.; Acarregui, Michael J.; Vaucher, Yvonne E.; Pappas, Athina; Peralta-Carcelen, Myriam; Wilson-Costello, Deanne E.; Evans, Patricia W.; Goldstein, Ricki F.; Myers, Gary J.; Poindexter, Brenda B.; McGowan, Elisabeth C.; Adams-Chapman, Ira; Fuller, Janell; Higgins, Rosemary D.
2015-01-01
BACKGROUND: Extremely preterm infants are at risk for neurodevelopmental impairment (NDI). Early cranial ultrasound (CUS) is usual practice, but near-term brain MRI has been reported to better predict outcomes. We prospectively evaluated MRI white matter abnormality (WMA) and cerebellar lesions, and serial CUS adverse findings as predictors of outcomes at 18 to 22 months’ corrected age. METHODS: Early and late CUS, and brain MRI were read by masked central readers, in a large cohort (n = 480) of infants <28 weeks’ gestation surviving to near term in the Neonatal Research Network. Outcomes included NDI or death after neuroimaging, and significant gross motor impairment or death, with NDI defined as cognitive composite score <70, significant gross motor impairment, and severe hearing or visual impairment. Multivariable models evaluated the relative predictive value of neuroimaging while controlling for other factors. RESULTS: Of 480 infants, 15 died and 20 were lost. Increasing severity of WMA and significant cerebellar lesions on MRI were associated with adverse outcomes. Cerebellar lesions were rarely identified by CUS. In full multivariable models, both late CUS and MRI, but not early CUS, remained independently associated with NDI or death (MRI cerebellar lesions: odds ratio, 3.0 [95% confidence interval: 1.3–6.8]; late CUS: odds ratio, 9.8 [95% confidence interval: 2.8–35]), and significant gross motor impairment or death. In models that did not include late CUS, MRI moderate-severe WMA was independently associated with adverse outcomes. CONCLUSIONS: Both late CUS and near-term MRI abnormalities were associated with outcomes, independent of early CUS and other factors, underscoring the relative prognostic value of near-term neuroimaging. PMID:25554820
Cerebellum, temporal predictability and the updating of a mental model.
Kotz, Sonja A; Stockert, Anika; Schwartze, Michael
2014-12-19
We live in a dynamic and changing environment, which necessitates that we adapt to and efficiently respond to changes of stimulus form ('what') and stimulus occurrence ('when'). Consequently, behaviour is optimal when we can anticipate both the 'what' and 'when' dimensions of a stimulus. For example, to perceive a temporally expected stimulus, a listener needs to establish a fairly precise internal representation of its external temporal structure, a function ascribed to classical sensorimotor areas such as the cerebellum. Here we investigated how patients with cerebellar lesions and healthy matched controls exploit temporal regularity during auditory deviance processing. We expected modulations of the N2b and P3b components of the event-related potential in response to deviant tones, and also a stronger P3b response when deviant tones are embedded in temporally regular compared to irregular tone sequences. We further tested to what degree structural damage to the cerebellar temporal processing system affects the N2b and P3b responses associated with voluntary attention to change detection and the predictive adaptation of a mental model of the environment, respectively. Results revealed that healthy controls and cerebellar patients display an increased N2b response to deviant tones independent of temporal context. However, while healthy controls showed the expected enhanced P3b response to deviant tones in temporally regular sequences, the P3b response in cerebellar patients was significantly smaller in these sequences. The current data provide evidence that structural damage to the cerebellum affects the predictive adaptation to the temporal structure of events and the updating of a mental model of the environment under voluntary attention. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Cerebellum, temporal predictability and the updating of a mental model
Kotz, Sonja A.; Stockert, Anika; Schwartze, Michael
2014-01-01
We live in a dynamic and changing environment, which necessitates that we adapt to and efficiently respond to changes of stimulus form (‘what’) and stimulus occurrence (‘when’). Consequently, behaviour is optimal when we can anticipate both the ‘what’ and ‘when’ dimensions of a stimulus. For example, to perceive a temporally expected stimulus, a listener needs to establish a fairly precise internal representation of its external temporal structure, a function ascribed to classical sensorimotor areas such as the cerebellum. Here we investigated how patients with cerebellar lesions and healthy matched controls exploit temporal regularity during auditory deviance processing. We expected modulations of the N2b and P3b components of the event-related potential in response to deviant tones, and also a stronger P3b response when deviant tones are embedded in temporally regular compared to irregular tone sequences. We further tested to what degree structural damage to the cerebellar temporal processing system affects the N2b and P3b responses associated with voluntary attention to change detection and the predictive adaptation of a mental model of the environment, respectively. Results revealed that healthy controls and cerebellar patients display an increased N2b response to deviant tones independent of temporal context. However, while healthy controls showed the expected enhanced P3b response to deviant tones in temporally regular sequences, the P3b response in cerebellar patients was significantly smaller in these sequences. The current data provide evidence that structural damage to the cerebellum affects the predictive adaptation to the temporal structure of events and the updating of a mental model of the environment under voluntary attention. PMID:25385781
Kim, Edward; Wang, Yuan; Kim, Sun-Jung; Bornhorst, Miriam; Jecrois, Emmanuelle S; Anthony, Todd E; Wang, Chenran; Li, Yi E; Guan, Jun-Lin; Murphy, Geoffrey G; Zhu, Yuan
2014-01-01
Individuals with neurofibromatosis type 1 (NF1) frequently exhibit cognitive and motor impairments and characteristics of autism. The cerebellum plays a critical role in motor control, cognition, and social interaction, suggesting that cerebellar defects likely contribute to NF1-associated neurodevelopmental disorders. Here we show that Nf1 inactivation during early, but not late stages of cerebellar development, disrupts neuronal lamination, which is partially caused by overproduction of glia and subsequent disruption of the Bergmann glia (BG) scaffold. Specific Nf1 inactivation in glutamatergic neuronal precursors causes premature differentiation of granule cell (GC) precursors and ectopic production of unipolar brush cells (UBCs), indirectly disrupting neuronal migration. Transient MEK inhibition during a neonatal window prevents cerebellar developmental defects and improves long-term motor performance of Nf1-deficient mice. This study reveals essential roles of Nf1 in GC/UBC migration by generating correct numbers of glia and controlling GC/UBC fate-specification/differentiation, identifying a therapeutic prevention strategy for multiple NF1-associcated developmental abnormalities. DOI: http://dx.doi.org/10.7554/eLife.05151.001 PMID:25535838
Ait Khelifa-Gallois, N; Puget, S; Longaud, A; Laroussinie, F; Soria, C; Sainte-Rose, C; Dellatolas, G
2015-04-01
It has been suggested that the cerebellum is involved in reading acquisition and in particular in the progression from automatic grapheme-phoneme conversion to the internalization of speech required for silent reading. This idea is in line with clinical and neuroimaging data showing a cerebellar role in subvocal rehearsal for printed verbalizable material and with computational "internal models" of the cerebellum suggesting its role in inner speech (i.e. covert speech without mouthing the words). However, studies examining a possible cerebellar role in the suppression of articulatory movements during silent reading acquisition in children are lacking. Here, we report clinical evidence that the cerebellum plays a part in this transition. Reading performances were compared between a group of 17 paediatric patients treated for benign cerebellar tumours and a group of controls matched for age, gender, and parental socio-educational level. The patients scored significantly lower on all reading, but the most striking difference concerned silent reading, perfectly acquired by almost all controls, contrasting with 41 % of the patients who were unable to read any item silently. Silent reading was correlated with the Working Memory Index. The present findings converge with previous reports on an implication of the cerebellum in inner speech and in the automatization of reading. This cerebellar implication is probably not specific to reading, as it also seems to affect non-reading tasks such as counting.
Fehr, Thorsten; Code, Chris; Herrmann, Manfred
2007-10-03
The issue of how and where arithmetic operations are represented in the brain has been addressed in numerous studies. Lesion studies suggest that a network of different brain areas are involved in mental calculation. Neuroimaging studies have reported inferior parietal and lateral frontal activations during mental arithmetic using tasks of different complexities and using different operators (addition, subtraction, etc.). Indeed, it has been difficult to compare brain activation across studies because of the variety of different operators and different presentation modalities used. The present experiment examined fMRI-BOLD activity in participants during calculation tasks entailing different arithmetic operations -- addition, subtraction, multiplication and division -- of different complexities. Functional imaging data revealed a common activation pattern comprising right precuneus, left and right middle and superior frontal regions during all arithmetic operations. All other regional activations were operation specific and distributed in prominently frontal, parietal and central regions when contrasting complex and simple calculation tasks. The present results largely confirm former studies suggesting that activation patterns due to mental arithmetic appear to reflect a basic anatomical substrate of working memory, numerical knowledge and processing based on finger counting, and derived from a network originally related to finger movement. We emphasize that in mental arithmetic research different arithmetic operations should always be examined and discussed independently of each other in order to avoid invalid generalizations on arithmetics and involved brain areas.
Cui, Jiaxin; Georgiou, George K; Zhang, Yiyun; Li, Yixun; Shu, Hua; Zhou, Xinlin
2017-02-01
Rapid automatized naming (RAN) has been found to predict mathematics. However, the nature of their relationship remains unclear. Thus, the purpose of this study was twofold: (a) to examine how RAN (numeric and non-numeric) predicts a subdomain of mathematics (arithmetic fluency) and (b) to examine what processing skills may account for the RAN-arithmetic fluency relationship. A total of 160 third-year kindergarten Chinese children (83 boys and 77 girls, mean age=5.11years) were assessed on RAN (colors, objects, digits, and dice), nonverbal IQ, visual-verbal paired associate learning, phonological awareness, short-term memory, speed of processing, approximate number system acuity, and arithmetic fluency (addition and subtraction). The results indicated first that RAN was a significant correlate of arithmetic fluency and the correlations did not vary as a function of type of RAN or arithmetic fluency tasks. In addition, RAN continued to predict addition and subtraction fluency even after controlling for all other processing skills. Taken together, these findings challenge the existing theoretical accounts of the RAN-arithmetic fluency relationship and suggest that, similar to reading fluency, multiple processes underlie the RAN-arithmetic fluency relationship. Copyright © 2016 Elsevier Inc. All rights reserved.
Schweighofer, N; Spoelstra, J; Arbib, M A; Kawato, M
1998-01-01
The cerebellum is essential for the control of multijoint movements; when the cerebellum is lesioned, the performance error is more than the summed errors produced by single joints. In the companion paper (Schweighofer et al., 1998), a functional anatomical model for visually guided arm movement was proposed. The model comprised a basic feedforward/feedback controller with realistic transmission delays and was connected to a two-link, six-muscle, planar arm. In the present study, we examined the role of the cerebellum in reaching movements by embedding a novel, detailed cerebellar neural network in this functional control model. We could derive realistic cerebellar inputs and the role of the cerebellum in learning to control the arm was assessed. This cerebellar network learned the part of the inverse dynamics of the arm not provided by the basic feedforward/feedback controller. Despite realistically low inferior olive firing rates and noisy mossy fibre inputs, the model could reduce the error between intended and planned movements. The responses of the different cell groups were comparable to those of biological cell groups. In particular, the modelled Purkinje cells exhibited directional tuning after learning and the parallel fibres, due to their length, provide Purkinje cells with the input required for this coordination task. The inferior olive responses contained two different components; the earlier response, locked to movement onset, was always present and the later response disappeared after learning. These results support the theory that the cerebellum is involved in motor learning.
Lu, Jian-Hua; Wang, Xiao-Qin; Huang, Yan; Qiu, Yi-Hua; Peng, Yu-Ping
2015-06-15
Our previous work has shown that cerebellar interposed nucleus (IN) modulates immune function. Herein, we reveal mechanism underlying the immunomodulation. Treatment of bilateral cerebellar IN of rats with 3-mercaptopropionic acid (3-MP), a glutamic acid decarboxylase antagonist that reduces γ-aminobutyric acid (GABA) synthesis, enhanced cellular and humoral immune responses to bovine serum albumin, whereas injection of vigabatrin, a GABA-transaminase inhibitor that inhibits GABA degradation, in bilateral cerebellar IN attenuated the immune responses. The 3-MP or vigabatrin administrations in the cerebellar IN decreased or increased hypothalamic GABA content and lymphoid tissues' norepinephrine content, respectively, but did not alter adrenocortical or thyroid hormone levels in serum. In addition, a direct GABAergic projection from cerebellar IN to hypothalamus was found. These findings suggest that GABAergic neurons in cerebellar IN regulate immune system via hypothalamic and sympathetic pathways. Copyright © 2015 Elsevier B.V. All rights reserved.
Cerebellar mutism--report of four cases.
Ozimek, A; Richter, S; Hein-Kropp, C; Schoch, B; Gorissen, B; Kaiser, O; Gizewski, E; Ziegler, W; Timmann, D
2004-08-01
The aim of the present study was to investigate the manifestations of mutism after surgery in children with cerebellar tumors. Speech impairment following cerebellar mutism in children was investigated based on standardized acoustic speech parameters and perceptual criteria. Mutistic and non-mutistic children after cerebellar surgery as well as orthopedic controls were tested pre-and postoperatively. Speech impairment was compared with the localization of cerebellar lesions (i. e. affected lobules and nuclei). Whereas both control groups showed no abnormalities in speech and behavior, the mutistic group could be divided into children with dysarthria in post mutistic phase and children with mainly behavioral disturbances. In the mutistic children involvement of dentate and fastigial nuclei tended to be more frequent and extended than in the nonmutistic cerebellar children. Cerebellar mutism is a complex phenomenon of at least two types. Dysarthric symptoms during resolution of mutism support the anarthria hypothesis, while mainly behavioral changes suggest an explanation independent from speech motor control.
Fujita, Masahiko
2016-03-01
Lesions of the cerebellum result in large errors in movements. The cerebellum adaptively controls the strength and timing of motor command signals depending on the internal and external environments of movements. The present theory describes how the cerebellar cortex can control signals for accurate and timed movements. A model network of the cerebellar Golgi and granule cells is shown to be equivalent to a multiple-input (from mossy fibers) hierarchical neural network with a single hidden layer of threshold units (granule cells) that receive a common recurrent inhibition (from a Golgi cell). The weighted sum of the hidden unit signals (Purkinje cell output) is theoretically analyzed regarding the capability of the network to perform two types of universal function approximation. The hidden units begin firing as the excitatory inputs exceed the recurrent inhibition. This simple threshold feature leads to the first approximation theory, and the network final output can be any continuous function of the multiple inputs. When the input is constant, this output becomes stationary. However, when the recurrent unit activity is triggered to decrease or the recurrent inhibition is triggered to increase through a certain mechanism (metabotropic modulation or extrasynaptic spillover), the network can generate any continuous signals for a prolonged period of change in the activity of recurrent signals, as the second approximation theory shows. By incorporating the cerebellar capability of two such types of approximations to a motor system, in which learning proceeds through repeated movement trials with accompanying corrections, accurate and timed responses for reaching the target can be adaptively acquired. Simple models of motor control can solve the motor error vs. sensory error problem, as well as the structural aspects of credit (or error) assignment problem. Two physiological experiments are proposed for examining the delay and trace conditioning of eyelid responses, as well as saccade adaptation, to investigate this novel idea of cerebellar processing. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cellular commitment in the developing cerebellum
Marzban, Hassan; Del Bigio, Marc R.; Alizadeh, Javad; Ghavami, Saeid; Zachariah, Robby M.; Rastegar, Mojgan
2014-01-01
The mammalian cerebellum is located in the posterior cranial fossa and is critical for motor coordination and non-motor functions including cognitive and emotional processes. The anatomical structure of cerebellum is distinct with a three-layered cortex. During development, neurogenesis and fate decisions of cerebellar primordium cells are orchestrated through tightly controlled molecular events involving multiple genetic pathways. In this review, we will highlight the anatomical structure of human and mouse cerebellum, the cellular composition of developing cerebellum, and the underlying gene expression programs involved in cell fate commitments in the cerebellum. A critical evaluation of the cell death literature suggests that apoptosis occurs in ~5% of cerebellar cells, most shortly after mitosis. Apoptosis and cellular autophagy likely play significant roles in cerebellar development, we provide a comprehensive discussion of their role in cerebellar development and organization. We also address the possible function of unfolded protein response in regulation of cerebellar neurogenesis. We discuss recent advancements in understanding the epigenetic signature of cerebellar compartments and possible connections between DNA methylation, microRNAs and cerebellar neurodegeneration. Finally, we discuss genetic diseases associated with cerebellar dysfunction and their role in the aging cerebellum. PMID:25628535
Araujo Júnior, Edward; Martins, Wellington P; Nardozza, Luciano Marcondes Machado; Pires, Claudio Rodrigues; Filho, Sebastião Marques Zanforlin
2015-02-01
To determine a reference range of fetal transverse cerebellar diameter in Brazilian population. This was a retrospective cross-sectional study with 3772 normal singleton pregnancies between 18 and 24 weeks of pregnancy. The transverse cerebellar diameter was measured on the axial plane of the fetal head at the level of the lateral ventricles, including the thalamus, cavum septum pellucidum, and third ventricle. To assess the correlation between transverse cerebellar diameter and gestational age, polynomial equations were calculated, with adjustments by the determination coefficient (R2). The mean of fetal transverse cerebellar diameter ranged from 18.49 ± 1.24 mm at 18 weeks to 25.86 ± 1.66 mm at 24 weeks of pregnancy. We observed a good correlation between transverse cerebellar diameter and gestational age, which was best represented by a linear equation: transverse cerebellar diameter: -6.21 + 1.307*gestational age (R2 = 0.707). We determined a reference range of fetal transverse cerebellar diameter for the second trimester of pregnancy in Brazilian population. © The Author(s) 2014.
Functional imaging and the cerebellum: recent developments and challenges. Editorial.
Habas, Christophe
2012-06-01
Recent neuroimaging developments allow a better in vivo characterization of the structural and functional connectivity of the human cerebellum. Ultrahigh fields, which considerably increase spatial resolution, enable to visualize deep cerebellar nuclei and cerebello-cortical sublayers. Tractography reconstructs afferent and efferent pathway of the cerebellum. Resting-state functional connectivity individualizes the prewired, parallel close-looped sensorimotor, cognitive, and affective networks passing through the cerebellum. These results are un agreement with activation maps obtained during stimulation functional neuroimaging or inferred from neurological deficits due to cerebellar lesions. Therefore, neuroimaging supports the hypothesis that cerebellum constitutes a general modulator involved in optimizing mental performance and computing internal models. However, the great challenges will remain to unravel: (1) the functional role of red and bulbar olivary nuclei, (2) the information processing in the cerebellar microcircuitry, and (3) the abstract computation performed by the cerebellum and shared by sensorimotor, cognitive, and affective domains.
Arithmetic on Your Phone: A Large Scale Investigation of Simple Additions and Multiplications.
Zimmerman, Federico; Shalom, Diego; Gonzalez, Pablo A; Garrido, Juan Manuel; Alvarez Heduan, Facundo; Dehaene, Stanislas; Sigman, Mariano; Rieznik, Andres
2016-01-01
We present the results of a gamified mobile device arithmetic application which allowed us to collect vast amount of data in simple arithmetic operations. Our results confirm and replicate, on a large sample, six of the main principles derived in a long tradition of investigation: size effect, tie effect, size-tie interaction effect, five-effect, RTs and error rates correlation effect, and most common error effect. Our dataset allowed us to perform a robust analysis of order effects for each individual problem, for which there is controversy both in experimental findings and in the predictions of theoretical models. For addition problems, the order effect was dominated by a max-then-min structure (i.e 7+4 is easier than 4+7). This result is predicted by models in which additions are performed as a translation starting from the first addend, with a distance given by the second addend. In multiplication, we observed a dominance of two effects: (1) a max-then-min pattern that can be accounted by the fact that it is easier to perform fewer additions of the largest number (i.e. 8x3 is easier to compute as 8+8+8 than as 3+3+…+3) and (2) a phonological effect by which problems for which there is a rhyme (i.e. "seis por cuatro es veinticuatro") are performed faster. Above and beyond these results, our study bares an important practical conclusion, as proof of concept, that participants can be motivated to perform substantial arithmetic training simply by presenting it in a gamified format.
Arithmetic on Your Phone: A Large Scale Investigation of Simple Additions and Multiplications
Zimmerman, Federico; Shalom, Diego; Gonzalez, Pablo A.; Garrido, Juan Manuel; Alvarez Heduan, Facundo; Dehaene, Stanislas; Sigman, Mariano; Rieznik, Andres
2016-01-01
We present the results of a gamified mobile device arithmetic application which allowed us to collect vast amount of data in simple arithmetic operations. Our results confirm and replicate, on a large sample, six of the main principles derived in a long tradition of investigation: size effect, tie effect, size-tie interaction effect, five-effect, RTs and error rates correlation effect, and most common error effect. Our dataset allowed us to perform a robust analysis of order effects for each individual problem, for which there is controversy both in experimental findings and in the predictions of theoretical models. For addition problems, the order effect was dominated by a max-then-min structure (i.e 7+4 is easier than 4+7). This result is predicted by models in which additions are performed as a translation starting from the first addend, with a distance given by the second addend. In multiplication, we observed a dominance of two effects: (1) a max-then-min pattern that can be accounted by the fact that it is easier to perform fewer additions of the largest number (i.e. 8x3 is easier to compute as 8+8+8 than as 3+3+…+3) and (2) a phonological effect by which problems for which there is a rhyme (i.e. "seis por cuatro es veinticuatro") are performed faster. Above and beyond these results, our study bares an important practical conclusion, as proof of concept, that participants can be motivated to perform substantial arithmetic training simply by presenting it in a gamified format. PMID:28033357
Synthesis of geophysical data with space-acquired imagery: a review
Hastings, David A.
1983-01-01
Statistical correlation has been used to determine the applicability of specific data sets to the development of geologic or exploration models. Various arithmetic functions have proven useful in developing models from such data sets.
Math anxiety and its relationship with basic arithmetic skills among primary school children.
Sorvo, Riikka; Koponen, Tuire; Viholainen, Helena; Aro, Tuija; Räikkönen, Eija; Peura, Pilvi; Dowker, Ann; Aro, Mikko
2017-09-01
Children have been found to report and demonstrate math anxiety as early as the first grade. However, previous results concerning the relationship between math anxiety and performance are contradictory, with some studies establishing a correlation between them while others do not. These contradictory results might be related to varying operationalizations of math anxiety. In this study, we aimed to examine the prevalence of math anxiety and its relationship with basic arithmetic skills in primary school children, with explicit focus on two aspects of math anxiety: anxiety about failure in mathematics and anxiety in math-related situations. The participants comprised 1,327 children at grades 2-5. Math anxiety was assessed using six items, and basic arithmetic skills were assessed using three assessment tasks. Around one-third of the participants reported anxiety about being unable to do math, one-fifth about having to answer teachers' questions, and one tenth about having to do math. Confirmatory factor analysis indicated that anxiety about math-related situations and anxiety about failure in mathematics are separable aspects of math anxiety. Structural equation modelling suggested that anxiety about math-related situations was more strongly associated with arithmetic fluency than anxiety about failure. Anxiety about math-related situations was most common among second graders and least common among fifth graders. As math anxiety, particularly about math-related situations, was related to arithmetic fluency even as early as the second grade, children's negative feelings and math anxiety should be identified and addressed from the early primary school years. © 2017 The British Psychological Society.
Oppel, S.; Federer, R.N.; O'Brien, D. M.; Powell, A.N.; Hollmén, Tuula E.
2010-01-01
Many studies of nutrient allocation to egg production in birds use stable isotope ratios of egg yolk to identify the origin of nutrients. Dry egg yolk contains >50% lipids, which are known to be depleted in 13C. Currently, researchers remove lipids from egg yolk using a chemical lipid-extraction procedure before analyzing the isotopic composition of protein in egg yolk. We examined the effects of chemical lipid extraction on ??13C, ??15N, and ??34S of avian egg yolk and explored the utility of an arithmetic lipid correction model to adjust whole yolk ??13C for lipid content. We analyzed the dried yolk of 15 captive Spectacled Eider (Somateriafischeri) and 20 wild King Eider (S. spectabilis) eggs, both as whole yolk and after lipid extraction with a 2:1 chloroform:methanol solution. We found that chemical lipid extraction leads to an increase of (mean ?? SD) 3.3 ?? 1.1% in ??13C, 1.1 ?? 0.5% in ??15N, and 2.3 ?? 1.1% in ??34S. Arithmetic lipid correction provided accurate values for lipid-extracted S13C in captive Spectacled Eiders fed on a homogeneous high-quality diet. However, arithmetic lipid correction was unreliable for wild King Eiders, likely because of their differential incorporation of macronutrients from isotopically distinct environments during migration. For that reason, we caution against applying arithmetic lipid correction to the whole yolk ??13C of migratory birds, because these methods assume that all egg macronutrients are derived from the same dietary sources. ?? 2010 The American Ornithologists' Union.
Träff, Ulf
2013-10-01
This study examined the relative contributions of general cognitive abilities and number abilities to word problem solving, calculation, and arithmetic fact retrieval in a sample of 134 children aged 10 to 13 years. The following tasks were administered: listening span, visual matrix span, verbal fluency, color naming, Raven's Progressive Matrices, enumeration, number line estimation, and digit comparison. Hierarchical multiple regressions demonstrated that number abilities provided an independent contribution to fact retrieval and word problem solving. General cognitive abilities contributed to problem solving and calculation. All three number tasks accounted for a similar amount of variance in fact retrieval, whereas only the number line estimation task contributed unique variance in word problem solving. Verbal fluency and Raven's matrices accounted for an equal amount of variance in problem solving and calculation. The current findings demonstrate, in accordance with Fuchs and colleagues' developmental model of mathematical learning (Developmental Psychology, 2010, Vol. 46, pp. 1731-1746), that both number abilities and general cognitive abilities underlie 10- to 13-year-olds' proficiency in problem solving, whereas only number abilities underlie arithmetic fact retrieval. Thus, the amount and type of cognitive contribution to arithmetic proficiency varies between the different aspects of arithmetic. Furthermore, how closely linked a specific aspect of arithmetic is to the whole number representation systems is not the only factor determining the amount and type of cognitive contribution in 10- to 13-year-olds. In addition, the mathematical complexity of the task appears to influence the amount and type of cognitive support. Copyright © 2013 Elsevier Inc. All rights reserved.
Confirmatory factor analysis of the Early Arithmetic, Reading, and Learning Indicators (EARLI)☆
Norwalk, Kate E.; DiPerna, James Clyde; Lei, Pui-Wa
2015-01-01
Despite growing interest in early intervention, there are few measures available to monitor the progress of early academic skills in preschoolers. The Early Arithmetic, Reading, and Learning Indicators (EARLI; DiPerna, Morgan, & Lei, 2007) were developed as brief assessments of critical early literacy and numeracy skills. The purpose of the current study was to examine the factor structure of the EARLI probes via confirmatory factor analysis (CFA) in a sample of Head Start preschoolers (N = 289). A two-factor model with correlated error terms and a bifactor model provided comparable fit to the data, although there were some structural problems with the latter model. The utility of the bifactor model for explaining the structure of early academic skills as well as the utility of the EARLI probes as measures of literacy and numeracy skills in preschool are discussed. PMID:24495496
Consensus Paper: Revisiting the Symptoms and Signs of Cerebellar Syndrome
Bodranghien, Florian; Bastian, Amy; Casali, Carlo; Hallett, Mark; Louis, Elan D.; Mariën, Peter; Nowak, Dennis A.; Schmahmann, Jeremy D.; Serrao, Mariano; Steiner, Katharina Marie; Strupp, Michael; Tilikete, Caroline; Timmann, Dagmar; van Dun, Kim
2017-01-01
The cerebellum is involved in sensorimotor operations, cognitive tasks and affective processes. Here, we revisit the concept of the cerebellar syndrome in the light of recent advances in our understanding of cerebellar operations. The key symptoms and signs of cerebellar dysfunction, often grouped under the generic term of ataxia, are discussed. Vertigo, dizziness, and imbalance are associated with lesions of the vestibulo-cerebellar, vestibulo-spinal, or cerebellar ocular motor systems. The cerebellum plays a major role in the online to long-term control of eye movements (control of calibration, reduction of eye instability, maintenance of ocular alignment). Ocular instability, nystagmus, saccadic intrusions, impaired smooth pursuit, impaired vestibulo-ocular reflex (VOR), and ocular misalignment are at the core of oculomotor cerebellar deficits. As a motor speech disorder, ataxic dysarthria is highly suggestive of cerebellar pathology. Regarding motor control of limbs, hypotonia, a- or dysdiadochokinesia, dysmetria, grasping deficits and various tremor phenomenologies are observed in cerebellar disorders to varying degrees. There is clear evidence that the cerebellum participates in force perception and proprioceptive sense during active movements. Gait is staggering with a wide base, and tandem gait is very often impaired in cerebellar disorders. In terms of cognitive and affective operations, impairments are found in executive functions, visual-spatial processing, linguistic function, and affective regulation (Schmahmann’s syndrome). Nonmotor linguistic deficits including disruption of articulatory and graphomotor planning, language dynamics, verbal fluency, phonological, and semantic word retrieval, expressive and receptive syntax, and various aspects of reading and writing may be impaired after cerebellar damage. The cerebellum is organized into (a) a primary sensorimotor region in the anterior lobe and adjacent part of lobule VI, (b) a second sensorimotor region in lobule VIII, and (c) cognitive and limbic regions located in the posterior lobe (lobule VI, lobule VIIA which includes crus I and crus II, and lobule VIIB). The limbic cerebellum is mainly represented in the posterior vermis. The cortico-ponto-cerebellar and cerebello-thalamocortical loops establish close functional connections between the cerebellum and the supratentorial motor, paralimbic and association cortices, and cerebellar symptoms are associated with a disruption of these loops. PMID:26105056
Students’ Relational Thinking of Impulsive and Reflective in Solving Mathematical Problem
NASA Astrophysics Data System (ADS)
Satriawan, M. A.; Budiarto, M. T.; Siswono, T. Y. E.
2018-01-01
This is a descriptive research which qualitatively investigates students’ relational thinking of impulsive and reflective cognitive style in solving mathematical problem. The method used in this research are test and interview. The data analyzed by reducing, presenting and concluding the data. The results of research show that the students’ reflective cognitive style can possibly help to find out important elements in understanding a problem. Reading more than one is useful to identify what is being questioned and write the information which is known, building relation in every element and connecting information with arithmetic operation, connecting between what is being questioned with known information, making equation model to find out the value by using substitution, and building a connection on re-checking, re-reading, and re-counting. The impulsive students’ cognitive style supports important elements in understanding problems, building a connection in every element, connecting information with arithmetic operation, building a relation about a problem comprehensively by connecting between what is being questioned with known information, finding out the unknown value by using arithmetic operation without making any equation model. The result of re-checking problem solving, impulsive student was only reading at glance without re-counting the result of problem solving.
Li, Yongxin; Hu, Yuzheng; Wang, Yunqi; Weng, Jian; Chen, Feiyan
2013-01-01
Arithmetic skill is of critical importance for academic achievement, professional success and everyday life, and childhood is the key period to acquire this skill. Neuroimaging studies have identified that left parietal regions are a key neural substrate for representing arithmetic skill. Although the relationship between functional brain activity in left parietal regions and arithmetic skill has been studied in detail, it remains unclear about the relationship between arithmetic achievement and structural properties in left inferior parietal area in schoolchildren. The current study employed a combination of voxel-based morphometry (VBM) for high-resolution T1-weighted images and fiber tracking on diffusion tensor imaging (DTI) to examine the relationship between structural properties in the inferior parietal area and arithmetic achievement in 10-year-old schoolchildren. VBM of the T1-weighted images revealed that individual differences in arithmetic scores were significantly and positively correlated with the gray matter (GM) volume in the left intraparietal sulcus (IPS). Fiber tracking analysis revealed that the forceps major, left superior longitudinal fasciculus (SLF), bilateral inferior longitudinal fasciculus (ILF) and inferior fronto-occipital fasciculus (IFOF) were the primary pathways connecting the left IPS with other brain areas. Furthermore, the regression analysis of the probabilistic pathways revealed a significant and positive correlation between the fractional anisotropy (FA) values in the left SLF, ILF and bilateral IFOF and arithmetic scores. The brain structure-behavior correlation analyses indicated that the GM volumes in the left IPS and the FA values in the tract pathways connecting left IPS were both related to children's arithmetic achievement. The present findings provide evidence that individual structural differences in the left IPS are associated with arithmetic scores in schoolchildren. PMID:24367320
Vukovic, Rose K; Lesaux, Nonie K
2013-06-01
This longitudinal study examined how language ability relates to mathematical development in a linguistically and ethnically diverse sample of children from 6 to 9 years of age. Study participants were 75 native English speakers and 92 language minority learners followed from first to fourth grades. Autoregression in a structural equation modeling (SEM) framework was used to evaluate the relation between children's language ability and gains in different domains of mathematical cognition (i.e., arithmetic, data analysis/probability, algebra, and geometry). The results showed that language ability predicts gains in data analysis/probability and geometry, but not in arithmetic or algebra, after controlling for visual-spatial working memory, reading ability, and sex. The effect of language on gains in mathematical cognition did not differ between language minority learners and native English speakers. These findings suggest that language influences how children make meaning of mathematics but is not involved in complex arithmetical procedures whether presented with Arabic symbols as in arithmetic or with abstract symbols as in algebraic reasoning. The findings further indicate that early language experiences are important for later mathematical development regardless of language background, denoting the need for intensive and targeted language opportunities for language minority and native English learners to develop mathematical concepts and representations. Copyright © 2013. Published by Elsevier Inc.
Unpacking symbolic number comparison and its relation with arithmetic in adults.
Sasanguie, Delphine; Lyons, Ian M; De Smedt, Bert; Reynvoet, Bert
2017-08-01
Symbolic number - or digit - comparison has been a central tool in the domain of numerical cognition for decades. More recently, individual differences in performance on this task have been shown to robustly relate to individual differences in more complex math processing - a result that has been replicated across many different age groups. In this study, we 'unpack' the underlying components of digit comparison (i.e. digit identification, digit to number-word matching, digit ordering and general comparison) in a sample of adults. In a first experiment, we showed that digit comparison performance was most strongly related to digit ordering ability - i.e., the ability to judge whether symbolic numbers are in numerical order. Furthermore, path analyses indicated that the relation between digit comparison and arithmetic was partly mediated by digit ordering and fully mediated when non-numerical (letter) ordering was also entered into the model. In a second experiment, we examined whether a general order working memory component could account for the relation between digit comparison and arithmetic. It could not. Instead, results were more consistent with the notion that fluent access and activation of long-term stored associations between numbers explains the relation between arithmetic and both digit comparison and digit ordering tasks. Copyright © 2017 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Wells, Elizabeth M.; Walsh, Karin S.; Khademian, Zarir P.; Keating, Robert F.; Packer, Roger J.
2008-01-01
The postoperative cerebellar mutism syndrome (CMS), consisting of diminished speech output, hypotonia, ataxia, and emotional lability, occurs after surgery in up to 25% of patients with medulloblastoma and occasionally after removal of other posterior fossa tumors. Although the mutism is transient, speech rarely normalizes and the syndrome is…
Hinault, T; Lemaire, P
2016-01-01
In this review, we provide an overview of how age-related changes in executive control influence aging effects in arithmetic processing. More specifically, we consider the role of executive control in strategic variations with age during arithmetic problem solving. Previous studies found that age-related differences in arithmetic performance are associated with strategic variations. That is, when they accomplish arithmetic problem-solving tasks, older adults use fewer strategies than young adults, use strategies in different proportions, and select and execute strategies less efficiently. Here, we review recent evidence, suggesting that age-related changes in inhibition, cognitive flexibility, and working memory processes underlie age-related changes in strategic variations during arithmetic problem solving. We discuss both behavioral and neural mechanisms underlying age-related changes in these executive control processes. © 2016 Elsevier B.V. All rights reserved.
Reconfigurable data path processor
NASA Technical Reports Server (NTRS)
Donohoe, Gregory (Inventor)
2005-01-01
A reconfigurable data path processor comprises a plurality of independent processing elements. Each of the processing elements advantageously comprising an identical architecture. Each processing element comprises a plurality of data processing means for generating a potential output. Each processor is also capable of through-putting an input as a potential output with little or no processing. Each processing element comprises a conditional multiplexer having a first conditional multiplexer input, a second conditional multiplexer input and a conditional multiplexer output. A first potential output value is transmitted to the first conditional multiplexer input, and a second potential output value is transmitted to the second conditional multiplexer output. The conditional multiplexer couples either the first conditional multiplexer input or the second conditional multiplexer input to the conditional multiplexer output, according to an output control command. The output control command is generated by processing a set of arithmetic status-bits through a logical mask. The conditional multiplexer output is coupled to a first processing element output. A first set of arithmetic bits are generated according to the processing of the first processable value. A second set of arithmetic bits may be generated from a second processing operation. The selection of the arithmetic status-bits is performed by an arithmetic-status bit multiplexer selects the desired set of arithmetic status bits from among the first and second set of arithmetic status bits. The conditional multiplexer evaluates the select arithmetic status bits according to logical mask defining an algorithm for evaluating the arithmetic status bits.
Garrido, Jesús A.; Luque, Niceto R.; D'Angelo, Egidio; Ros, Eduardo
2013-01-01
Adaptable gain regulation is at the core of the forward controller operation performed by the cerebro-cerebellar loops and it allows the intensity of motor acts to be finely tuned in a predictive manner. In order to learn and store information about body-object dynamics and to generate an internal model of movement, the cerebellum is thought to employ long-term synaptic plasticity. LTD at the PF-PC synapse has classically been assumed to subserve this function (Marr, 1969). However, this plasticity alone cannot account for the broad dynamic ranges and time scales of cerebellar adaptation. We therefore tested the role of plasticity distributed over multiple synaptic sites (Hansel et al., 2001; Gao et al., 2012) by generating an analog cerebellar model embedded into a control loop connected to a robotic simulator. The robot used a three-joint arm and performed repetitive fast manipulations with different masses along an 8-shape trajectory. In accordance with biological evidence, the cerebellum model was endowed with both LTD and LTP at the PF-PC, MF-DCN and PC-DCN synapses. This resulted in a network scheme whose effectiveness was extended considerably compared to one including just PF-PC synaptic plasticity. Indeed, the system including distributed plasticity reliably self-adapted to manipulate different masses and to learn the arm-object dynamics over a time course that included fast learning and consolidation, along the lines of what has been observed in behavioral tests. In particular, PF-PC plasticity operated as a time correlator between the actual input state and the system error, while MF-DCN and PC-DCN plasticity played a key role in generating the gain controller. This model suggests that distributed synaptic plasticity allows generation of the complex learning properties of the cerebellum. The incorporation of further plasticity mechanisms and of spiking signal processing will allow this concept to be extended in a more realistic computational scenario. PMID:24130518
ERIC Educational Resources Information Center
Berg, Derek H.; Hutchinson, Nancy L.
2010-01-01
This study investigated whether processing speed, short-term memory, and working memory accounted for the differential mental addition fluency between children typically achieving in arithmetic (TA) and children at-risk for failure in arithmetic (AR). Further, we drew attention to fluency differences in simple (e.g., 5 + 3) and complex (e.g., 16 +…
Vandervert, Larry
2015-01-01
Following in the vein of studies that concluded that music training resulted in plastic changes in Einstein's cerebral cortex, controlled research has shown that music training (1) enhances central executive attentional processes in working memory, and (2) has also been shown to be of significant therapeutic value in neurological disorders. Within this framework of music training-induced enhancement of central executive attentional processes, the purpose of this article is to argue that: (1) The foundational basis of the central executive begins in infancy as attentional control during the establishment of working memory, (2) In accordance with Akshoomoff, Courchesne and Townsend's and Leggio and Molinari's cerebellar sequence detection and prediction models, the rigors of volitional control demands of music training can enhance voluntary manipulation of information in thought and movement, (3) The music training-enhanced blending of cerebellar internal models in working memory as can be experienced as intuition in scientific discovery (as Einstein often indicated) or, equally, as moments of therapeutic advancement toward goals in the development of voluntary control in neurological disorders, and (4) The blending of internal models as in (3) thus provides a mechanism by which music training enhances central executive processes in working memory that can lead to scientific discovery and improved therapeutic outcomes in neurological disorders. Within the framework of Leggio and Molinari's cerebellar sequence detection model, it is determined that intuitive steps forward that occur in both scientific discovery and during therapy in those with neurological disorders operate according to the same mechanism of adaptive error-driven blending of cerebellar internal models. It is concluded that the entire framework of the central executive structure of working memory is a product of the cerebrocerebellar system which can, through the learning of internal models, incorporate the multi-dimensional rigor and volitional-control demands of music training and, thereby, enhance voluntary control. It is further concluded that this cerebrocerebellar view of the music training-induced enhancement of central executive control in working memory provides a needed mechanism to explain both the highest level of scientific discovery and the efficacy of music training in the remediation of neurological impairments.
NASA Astrophysics Data System (ADS)
Wang, Li-Qun; Saito, Masao
We used 1.5T functional magnetic resonance imaging (fMRI) to explore that which brain areas contribute uniquely to numeric computation. The BOLD effect activation pattern of metal arithmetic task (successive subtraction: actual calculation task) was compared with multiplication tables repetition task (rote verbal arithmetic memory task) response. The activation found in right parietal lobule during metal arithmetic task suggested that quantitative cognition or numeric computation may need the assistance of sensuous convert, such as spatial imagination and spatial sensuous convert. In addition, this mechanism may be an ’analog algorithm’ in the simple mental arithmetic processing.
Effects of Ethanol on the Cerebellum: Advances and Prospects.
Luo, Jia
2015-08-01
Alcohol abuse causes cerebellar dysfunction and cerebellar ataxia is a common feature in alcoholics. Alcohol exposure during development also impacts the cerebellum. Children with fetal alcohol spectrum disorder (FASD) show many symptoms associated specifically with cerebellar deficits. However, the cellular and molecular mechanisms are unclear. This special issue discusses the most recent advances in the study of mechanisms underlying alcoholinduced cerebellar deficits. The alteration in GABAA receptor-dependent neurotransmission is a potential mechanism for ethanol-induced cerebellar dysfunction. Recent advances indicate ethanol-induced increases in GABA release are not only in Purkinje cells (PCs), but also in molecular layer interneurons and granule cells. Ethanol is shown to disrupt the molecular events at the mossy fiber - granule cell - Golgi cell (MGG) synaptic site and granule cell parallel fibers - PCs (GPP) synaptic site, which may be responsible for ethanol-induced cerebellar ataxia. Aging and ethanol may affect the smooth endoplasmic reticulum (SER) of PC dendrites and cause dendritic regression. Ethanol withdrawal causes mitochondrial damage and aberrant gene modifications in the cerebellum. The interaction between these events may result in neuronal degeneration, thereby contributing to motoric deficit. Ethanol activates doublestranded RNA (dsRNA)-activated protein kinase (PKR) and PKR activation is involved ethanolinduced neuroinflammation and neurotoxicity in the developing cerebellum. Ethanol alters the development of cerebellar circuitry following the loss of PCs, which could result in modifications of the structure and function of other brain regions that receive cerebellar inputs. Lastly, choline, an essential nutrient is evaluated for its potential protection against ethanol-induced cerebellar damages. Choline is shown to ameliorate ethanol-induced cerebellar dysfunction when given before ethanol exposure.
Mittleman, Guy; Goldowitz, Daniel; Heck, Detlef H; Blaha, Charles D
2008-07-01
Cerebellar and frontal cortical pathologies have been commonly reported in schizophrenia, autism, and other developmental disorders. Whether there is a relationship between prefrontal and cerebellar pathologies is unknown. Using fixed potential amperometry, dopamine (DA) efflux evoked by cerebellar or, dentate nucleus electrical stimulation (50 Hz, 200 muA) was recorded in prefrontal cortex of urethane anesthetized lurcher (Lc/+) mice with 100% loss of cerebellar Purkinje cells and wildtype (+/+) control mice. Cerebellar stimulation with 25 and 100 pulses evoked prefrontal cortex DA efflux in +/+ mice that persisted for 12 and 25 s poststimulation, respectively. In contrast, 25 pulse cerebellar stimulation failed to evoke prefrontal cortex DA efflux in Lc/+ mice indicating a dependency on cerebellar Purkinje cell outputs. Dentate nucleus stimulation (25 pulses) evoked a comparable but briefer (baseline recovery within 7 s) increase in prefrontal cortex DA efflux compared to similar cerebellar stimulation in +/+ mice. However, in Lc/+ mice 25 pulse dentate nucleus evoked prefrontal cortex DA efflux was attenuated by 60% with baseline recovery within 4 s suggesting that dentate nucleus outputs to prefrontal cortex remain partially functional. DA reuptake blockade enhanced 100 pulse stimulation evoked prefrontal cortex responses, while serotonin or norepinephrine reuptake blockade were without effect indicating the specificity of the amperometric recordings to DA. Results provide neurochemical evidence that the cerebellum can modulate DA efflux in the prefrontal cortex. Together, these findings may explain why cerebellar and frontal cortical pathologies co-occur, and may provide a mechanism that accounts for the diversity of symptoms common to multiple developmental disorders.
MITTLEMAN, GUY; GOLDOWITZ, DANIEL; HECK, DETLEF H.; BLAHA, CHARLES D.
2013-01-01
Cerebellar and frontal cortical pathologies have been commonly reported in schizophrenia, autism, and other developmental disorders. Whether there is a relationship between prefrontal and cerebellar pathologies is unknown. Using fixed potential amperometry, dopamine (DA) efflux evoked by cerebellar or, dentate nucleus electrical stimulation (50 Hz, 200 μA) was recorded in prefrontal cortex of urethane anesthetized lurcher (Lc/+) mice with 100% loss of cerebellar Purkinje cells and wildtype (+/+) control mice. Cerebellar stimulation with 25 and 100 pulses evoked prefrontal cortex DA efflux in +/+ mice that persisted for 12 and 25 s poststimulation, respectively. In contrast, 25 pulse cerebellar stimulation failed to evoke prefrontal cortex DA efflux in Lc/+ mice indicating a dependency on cerebellar Purkinje cell outputs. Dentate nucleus stimulation (25 pulses) evoked a comparable but briefer (baseline recovery within 7 s) increase in prefrontal cortex DA efflux compared to similar cerebellar stimulation in +/+ mice. However, in Lc/+ mice 25 pulse dentate nucleus evoked prefrontal cortex DA efflux was attenuated by 60% with baseline recovery within 4 s suggesting that dentate nucleus outputs to prefrontal cortex remain partially functional. DA reuptake blockade enhanced 100 pulse stimulation evoked pre-frontal cortex responses, while serotonin or norepinephrine reuptake blockade were without effect indicating the specificity of the amperometric recordings to DA. Results provide neurochemical evidence that the cerebellum can modulate DA efflux in the prefrontal cortex. Together, these findings may explain why cerebellar and frontal cortical pathologies co-occur, and may provide a mechanism that accounts for the diversity of symptoms common to multiple developmental disorders. PMID:18435424
Li, Ning; Zhao, Wei-Guo; Pu, Chun-Hua; Yang, Wen-Lei
2017-06-01
This study prospectively investigated the relationship between cerebellar retraction factors measured on preoperative magnetic resonance and the development of postoperative hearing loss and evaluated their potential role in predicting the possibility of hearing loss after microvascular decompression (MVD) for hemifacial spasm (HFS). The study included 110 patients clinically diagnosed with primary HFS who underwent MVD in our department. The cerebellar retraction factors were quantitatively measured on preoperative magnetic resonance. Associations of cerebellar retraction and other risk factors with postoperative hearing loss were analyzed. Eleven patients (10%) developed nonserviceable hearing loss after MVD. Compared with the group without hearing loss, the cerebellar retraction distance and depth of the group with hearing loss were significantly greater (P < 0.05). Multivariate logistic regression analysis showed that greater cerebellar retraction depth was significantly associated with the higher incidence of postoperative hearing loss (P < 0.05). The results in this study strongly suggested the correlation between the cerebellar retraction depth and the possibility of hearing loss after MVD for HFS. In addition, cerebellar retraction depth could be considered as a useful tool to predict the risk of post-MVD hearing loss. Copyright © 2017 Elsevier Inc. All rights reserved.
Maternal Postsecondary Education Associated With Improved Cerebellar Growth After Preterm Birth.
Stiver, Mikaela L; Kamino, Daphne; Guo, Ting; Thompson, Angela; Duerden, Emma G; Taylor, Margot J; Tam, Emily W Y
2015-10-01
The preterm cerebellum is vulnerable to impaired development impacting long-term outcome. Preterm newborns (<32 weeks) underwent serial magnetic resonance imaging (MRI) scans. The association between parental education and cerebellar volume at each time point was assessed, adjusting for age at scan. In 26 infants, cerebellar volumes at term (P = .001), but not birth (P = .4), were associated with 2-year volumes. For 1 cm(3) smaller cerebellar volume (4% total volume) at term, the cerebellum was 3.18 cm(3) smaller (3% total volume) by 2 years. Maternal postsecondary education was not associated with cerebellar volume at term (P = .16). Maternal postsecondary education was a significant confounder in the relationship between term and 2-year cerebellar volumes (P = .016), with higher education associated with improved volumes by 2 years. Although preterm birth has been found to be associated with smaller cerebellar volumes at term, maternal postsecondary education is associated with improved growth detectable by 2 years. © The Author(s) 2015.
Neurodevelopmental Malformations of the Cerebellar Vermis in Genetically Engineered Rats.
Ramos, Raddy L; Van Dine, Sarah E; Gilbert, Mary E; Leheste, Joerg R; Torres, German
2015-12-01
The cerebellar vermis is particularly vulnerable to neurodevelopmental malformations in humans and rodents. Sprague-Dawley, and Long-Evans rats exhibit spontaneous cerebellar malformations consisting of heterotopic neurons and glia in the molecular layer of the vermis. Malformations are almost exclusively found along the primary fissure and are indicative of deficits of neuronal migration during cerebellar development. In the present report, we test the prediction that genetically engineered rats on Sprague-Dawley or Long-Evans backgrounds will also exhibit the same cerebellar malformations. Consistent with our hypothesis, we found that three different transgenic lines on two different backgrounds had cerebellar malformations. Heterotopia in transgenic rats had identical cytoarchitecture as that observed in wild-type rats including altered morphology of Bergmann glia. In light of the possibility that heterotopia could affect results from behavioral studies, these data suggest that histological analyses be performed in studies of cerebellar function or development when using genetically engineered rats on these backgrounds in order to have more careful interpretation of experimental findings.
[Cerebellar cognitive affective syndrome secondary to a cerebellar tumour].
Domínguez-Carral, J; Carreras-Sáez, I; García-Peñas, J J; Fournier-Del Castillo, C; Villalobos-Reales, J
2015-01-01
Cerebellar cognitive affective syndrome is characterized by disturbances of executive function, impaired spatial cognition, linguistic difficulties, and personality change. The case of an 11 year old boy is presented, with behavior problems, learning difficulties and social interaction problems. In the physical examination he had poor visual contact, immature behavior, reduced expressive language and global motor disability with gait dyspraxia, with no defined cerebellar motor signs. In the neuropsychological evaluation he has a full scale overall intellectual quotient of 84, with signs of cerebellar cognitive affective syndrome. A tumour affecting inferior cerebellar vermis was observed in the magnetic resonance imaging, which had not significantly grown during 5 years of follow up. The cerebellum participates in controlling cognitive and affective functions. Cerebellar pathology must be considered in the differential diagnosis of children with cognitive or learning disorder with associated behavioral and emotional components. Copyright © 2013 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.
The cerebellum: a neuronal learning machine?
NASA Technical Reports Server (NTRS)
Raymond, J. L.; Lisberger, S. G.; Mauk, M. D.
1996-01-01
Comparison of two seemingly quite different behaviors yields a surprisingly consistent picture of the role of the cerebellum in motor learning. Behavioral and physiological data about classical conditioning of the eyelid response and motor learning in the vestibulo-ocular reflex suggests that (i) plasticity is distributed between the cerebellar cortex and the deep cerebellar nuclei; (ii) the cerebellar cortex plays a special role in learning the timing of movement; and (iii) the cerebellar cortex guides learning in the deep nuclei, which may allow learning to be transferred from the cortex to the deep nuclei. Because many of the similarities in the data from the two systems typify general features of cerebellar organization, the cerebellar mechanisms of learning in these two systems may represent principles that apply to many motor systems.
Questioning the cerebellar doctrine.
Galliano, Elisa; De Zeeuw, Chris I
2014-01-01
The basic principles of cerebellar function were originally described by Flourens, Cajal, and Marr/Albus/Ito, and they constitute the pillars of what can be considered to be the classic cerebellar doctrine. In their concepts, the main cerebellar function is to control motor behavior, Purkinje cells are the only cortical neuron receiving and integrating inputs from climbing fiber and mossy-parallel fiber pathways, and plastic modification at the parallel fiber synapses onto Purkinje cells constitutes the substrate of motor learning. Yet, because of recent technical advances and new angles of investigation, all pillars of the cerebellar doctrine now face regular re-examination. In this review, after summarizing the classic concepts and recent disputes, we attempt to synthesize an integrated view and propose a revisited version of the cerebellar doctrine. © 2014 Elsevier B.V. All rights reserved.
Ljungberg, Lovisa; Cormier, Alexander; Quilez, Sabrina
2015-01-01
Abstract Spinocerebellar ataxia type 6 (SCA6) is an autosomal-dominant cerebellar ataxia that has been associated with loss of cerebellar Purkinje cells. Disease onset is typically at midlife, although it can vary widely from late teens to old age in SCA6 patients. Our study focused on an SCA6 knock-in mouse model with a hyper-expanded (84X) CAG repeat expansion that displays midlife-onset motor deficits at ∼7 months old, reminiscent of midlife-onset symptoms in SCA6 patients, although a detailed phenotypic analysis of these mice has not yet been reported. Here, we characterize the onset of motor deficits in SCA684Q mice using a battery of behavioral assays to test for impairments in motor coordination, balance, and gait. We found that these mice performed normally on these assays up to and including at 6 months, but motor impairment was detected at 7 months with all motor coordination assays used, suggesting that motor deficits emerge rapidly during a narrow age window in SCA684Q mice. In contrast to what is seen in SCA6 patients, the decrease in motor coordination was observed without alterations in gait. No loss of cerebellar Purkinje cells or striatal neurons were observed at 7 months, the age at which motor deficits were first detected, but significant Purkinje cell loss was observed in 2-year-old SCA684Q mice, arguing that Purkinje cell death does not significantly contribute to the early stages of SCA6. PMID:26730403
Spanne, Anton; Geborek, Pontus; Bengtsson, Fredrik; Jörntell, Henrik
2014-01-01
The spinocerebellar systems are essential for the brain in the performance of coordinated movements, but our knowledge about the spinocerebellar interactions is very limited. Recently, several crucial pieces of information have been acquired for the spinal border cell (SBC) component of the ventral spinocerebellar tract (VSCT), as well as the effects of SBC mossy fiber activation in granule cells of the cerebellar cortex. SBCs receive monosynaptic input from the reticulospinal tract (RST), which is an important driving system under locomotion, and disynaptic inhibition from Ib muscle afferents. The patterns of activity of RST neurons and Ib afferents under locomotion are known. The activity of VSCT neurons under fictive locomotion, i.e. without sensory feedback, is also known, but there is little information on how these neurons behave under actual locomotion and for cerebellar granule cells receiving SBC input this is completely unknown. But the available information makes it possible to simulate the interactions between the spinal and cerebellar neuronal circuitries with a relatively large set of biological constraints. Using a model of the various neuronal elements and the network they compose, we simulated the modulation of the SBCs and their target granule cells under locomotion and hence generated testable predictions of their general pattern of modulation under this condition. This particular system offers a unique opportunity to simulate these interactions with a limited number of assumptions, which helps making the model biologically plausible. Similar principles of information processing may be expected to apply to all spinocerebellar systems.
Teachers’ Beliefs and Practices Regarding the Role of Executive Functions in Reading and Arithmetic
Rapoport, Shirley; Rubinsten, Orly; Katzir, Tami
2016-01-01
The current study investigated early elementary school teachers’ beliefs and practices regarding the role of Executive Functions (EFs) in reading and arithmetic. A new research questionnaire was developed and judged by professionals in the academia and the field. Reponses were obtained from 144 teachers from Israel. Factor analysis divided the questionnaire into three valid and reliable subscales, reflecting (1) beliefs regarding the contribution of EFs to reading and arithmetic, (2) pedagogical practices, and (3) a connection between the cognitive mechanisms of reading and arithmetic. Findings indicate that teachers believe EFs affect students’ performance in reading and arithmetic. These beliefs were also correlated with pedagogical practices. Additionally, special education teachers’ scored higher on the different subscales compared to general education teachers. These findings shed light on the way teachers perceive the cognitive foundations of reading and arithmetic and indicate to which extent these perceptions guide their teaching practices. PMID:27799917
Teachers' Beliefs and Practices Regarding the Role of Executive Functions in Reading and Arithmetic.
Rapoport, Shirley; Rubinsten, Orly; Katzir, Tami
2016-01-01
The current study investigated early elementary school teachers' beliefs and practices regarding the role of Executive Functions (EFs) in reading and arithmetic. A new research questionnaire was developed and judged by professionals in the academia and the field. Reponses were obtained from 144 teachers from Israel. Factor analysis divided the questionnaire into three valid and reliable subscales, reflecting (1) beliefs regarding the contribution of EFs to reading and arithmetic, (2) pedagogical practices, and (3) a connection between the cognitive mechanisms of reading and arithmetic. Findings indicate that teachers believe EFs affect students' performance in reading and arithmetic. These beliefs were also correlated with pedagogical practices. Additionally, special education teachers' scored higher on the different subscales compared to general education teachers. These findings shed light on the way teachers perceive the cognitive foundations of reading and arithmetic and indicate to which extent these perceptions guide their teaching practices.
An agonist–antagonist cerebellar nuclear system controlling eyelid kinematics during motor learning
Sánchez-Campusano, Raudel; Gruart, Agnès; Fernández-Mas, Rodrigo; Delgado-García, José M.
2012-01-01
The presence of two antagonistic groups of deep cerebellar nuclei neurons has been reported as necessary for a proper dynamic control of learned motor responses. Most models of cerebellar function seem to ignore the biomechanical need for a double activation–deactivation system controlling eyelid kinematics, since most of them accept that, for closing the eyelid, only the activation of the orbicularis oculi (OO) muscle (via the red nucleus to the facial motor nucleus) is necessary, without a simultaneous deactivation of levator palpebrae motoneurons (via unknown pathways projecting to the perioculomotor area). We have analyzed the kinetic neural commands of two antagonistic types of cerebellar posterior interpositus neuron (IPn) (types A and B), the electromyographic (EMG) activity of the OO muscle, and eyelid kinematic variables in alert behaving cats during classical eyeblink conditioning, using a delay paradigm. We addressed the hypothesis that the interpositus nucleus can be considered an agonist–antagonist system controlling eyelid kinematics during motor learning. To carry out a comparative study of the kinetic–kinematic relationships, we applied timing and dispersion pattern analyses. We concluded that, in accordance with a dominant role of cerebellar circuits for the facilitation of flexor responses, type A neurons fire during active eyelid downward displacements—i.e., during the active contraction of the OO muscle. In contrast, type B neurons present a high tonic rate when the eyelids are wide open, and stop firing during any active downward displacement of the upper eyelid. From a functional point of view, it could be suggested that type B neurons play a facilitative role for the antagonistic action of the levator palpebrae muscle. From an anatomical point of view, the possibility that cerebellar nuclear type B neurons project to the perioculomotor area—i.e., more or less directly onto levator palpebrae motoneurons—is highly appealing. PMID:22435053
Lock-and-key mechanisms of cerebellar memory recall based on rebound currents.
Wetmore, Daniel Z; Mukamel, Eran A; Schnitzer, Mark J
2008-10-01
A basic question for theories of learning and memory is whether neuronal plasticity suffices to guide proper memory recall. Alternatively, information processing that is additional to readout of stored memories might occur during recall. We formulate a "lock-and-key" hypothesis regarding cerebellum-dependent motor memory in which successful learning shapes neural activity to match a temporal filter that prevents expression of stored but inappropriate motor responses. Thus, neuronal plasticity by itself is necessary but not sufficient to modify motor behavior. We explored this idea through computational studies of two cerebellar behaviors and examined whether deep cerebellar and vestibular nuclei neurons can filter signals from Purkinje cells that would otherwise drive inappropriate motor responses. In eyeblink conditioning, reflex acquisition requires the conditioned stimulus (CS) to precede the unconditioned stimulus (US) by >100 ms. In our biophysical models of cerebellar nuclei neurons this requirement arises through the phenomenon of postinhibitory rebound depolarization and matches longstanding behavioral data on conditioned reflex timing and reliability. Although CS-US intervals<100 ms may induce Purkinje cell plasticity, cerebellar nuclei neurons drive conditioned responses only if the CS-US training interval was >100 ms. This bound reflects the minimum time for deinactivation of rebound currents such as T-type Ca2+. In vestibulo-ocular reflex adaptation, hyperpolarization-activated currents in vestibular nuclei neurons may underlie analogous dependence of adaptation magnitude on the timing of visual and vestibular stimuli. Thus, the proposed lock-and-key mechanisms link channel kinetics to recall performance and yield specific predictions of how perturbations to rebound depolarization affect motor expression.
Fujita, Masahiko
2013-06-01
A new supervised learning theory is proposed for a hierarchical neural network with a single hidden layer of threshold units, which can approximate any continuous transformation, and applied to a cerebellar function to suppress the end-point variability of saccades. In motor systems, feedback control can reduce noise effects if the noise is added in a pathway from a motor center to a peripheral effector; however, it cannot reduce noise effects if the noise is generated in the motor center itself: a new control scheme is necessary for such noise. The cerebellar cortex is well known as a supervised learning system, and a novel theory of cerebellar cortical function developed in this study can explain the capability of the cerebellum to feedforwardly reduce noise effects, such as end-point variability of saccades. This theory assumes that a Golgi-granule cell system can encode the strength of a mossy fiber input as the state of neuronal activity of parallel fibers. By combining these parallel fiber signals with appropriate connection weights to produce a Purkinje cell output, an arbitrary continuous input-output relationship can be obtained. By incorporating such flexible computation and learning ability in a process of saccadic gain adaptation, a new control scheme in which the cerebellar cortex feedforwardly suppresses the end-point variability when it detects a variation in saccadic commands can be devised. Computer simulation confirmed the efficiency of such learning and showed a reduction in the variability of saccadic end points, similar to results obtained from experimental data.
Increased cerebellar PET glucose metabolism corresponds to ataxia in Wernicke-Korsakoff syndrome.
Fellgiebel, Andreas; Siessmeier, Thomas; Winterer, Georg; Lüddens, Hartmut; Mann, Klaus; Schmidt, Lutz G; Bartenstein, Peter
2004-01-01
To investigate a possible relationship between cerebellar glucose metabolism and recovery from ataxia in the first months of acute Wernicke-Korsakoff syndrome. Two cases of alcoholic Wernicke-Korsakoff syndrome were followed up with the clinical status and cerebral glucose metabolism over a 4- and 9-month period. Initially both patients showed severe ataxia and elevated cerebellar glucose metabolism that decreased corresponding to the restitution of stance and gait. Increased cerebellar glucose metabolism at the onset of the illness may reflect the reorganization process of disturbed motor skills and may indicate cerebellar plasticity.
Current Opinions and Areas of Consensus on the Role of the Cerebellum in Dystonia
Batla, Amit; Bhatia, Kailash; Dauer, William T; Dresel, Christian; Niethammer, Martin; Eidelberg, David; Raike, Robert S.; Smith, Yoland; Jinnah, H. A.; Hess, Ellen J.; Meunier, Sabine; Hallett, Mark; Fremont, Rachel; Khodakhah, Kamran; LeDoux, Mark S.; Popa, Traian; Gallea, Cécile; Lehericy, Stéphane; Bostan, Andreea C.; Strick, Peter L.
2016-01-01
A role for the cerebellum in causing ataxia, a disorder characterized by uncoordinated movement, is widely accepted. Recent work has suggested that alterations in activity, connectivity, and structure of the cerebellum are also associated with dystonia, a neurological disorder characterized by abnormal and sustained muscle contractions often leading to abnormal maintained postures. In this manuscript, the authors discuss their views on how the cerebellum may play a role in dystonia. The following topics are discussed: The relationships between neuronal/network dysfunctions and motor abnormalities in rodent models of dystonia.Data about brain structure, cerebellar metabolism, cerebellar connections, and noninvasive cerebellar stimulation that support (or not) a role for the cerebellum in human dystonia.Connections between the cerebellum and motor cortical and sub-cortical structures that could support a role for the cerebellum in dystonia. Overall points of consensus include: Neuronal dysfunction originating in the cerebellum can drive dystonic movements in rodent model systems.Imaging and neurophysiological studies in humans suggest that the cerebellum plays a role in the pathophysiology of dystonia, but do not provide conclusive evidence that the cerebellum is the primary or sole neuroanatomical site of origin. PMID:27734238
Current Opinions and Areas of Consensus on the Role of the Cerebellum in Dystonia.
Shakkottai, Vikram G; Batla, Amit; Bhatia, Kailash; Dauer, William T; Dresel, Christian; Niethammer, Martin; Eidelberg, David; Raike, Robert S; Smith, Yoland; Jinnah, H A; Hess, Ellen J; Meunier, Sabine; Hallett, Mark; Fremont, Rachel; Khodakhah, Kamran; LeDoux, Mark S; Popa, Traian; Gallea, Cécile; Lehericy, Stéphane; Bostan, Andreea C; Strick, Peter L
2017-04-01
A role for the cerebellum in causing ataxia, a disorder characterized by uncoordinated movement, is widely accepted. Recent work has suggested that alterations in activity, connectivity, and structure of the cerebellum are also associated with dystonia, a neurological disorder characterized by abnormal and sustained muscle contractions often leading to abnormal maintained postures. In this manuscript, the authors discuss their views on how the cerebellum may play a role in dystonia. The following topics are discussed: The relationships between neuronal/network dysfunctions and motor abnormalities in rodent models of dystonia. Data about brain structure, cerebellar metabolism, cerebellar connections, and noninvasive cerebellar stimulation that support (or not) a role for the cerebellum in human dystonia. Connections between the cerebellum and motor cortical and sub-cortical structures that could support a role for the cerebellum in dystonia. Overall points of consensus include: Neuronal dysfunction originating in the cerebellum can drive dystonic movements in rodent model systems. Imaging and neurophysiological studies in humans suggest that the cerebellum plays a role in the pathophysiology of dystonia, but do not provide conclusive evidence that the cerebellum is the primary or sole neuroanatomical site of origin.
Cerebellar White Matter Abnormalities following Primary Blast Injury in US Military Personnel
Mac Donald, Christine; Johnson, Ann; Cooper, Dana; Malone, Thomas; Sorrell, James; Shimony, Joshua; Parsons, Matthew; Snyder, Abraham; Raichle, Marcus; Fang, Raymond; Flaherty, Stephen; Russell, Michael; Brody, David L.
2013-01-01
Little is known about the effects of blast exposure on the human brain in the absence of head impact. Clinical reports, experimental animal studies, and computational modeling of blast exposure have suggested effects on the cerebellum and brainstem. In US military personnel with isolated, primary blast-related ‘mild’ traumatic brain injury and no other known insult, we found diffusion tensor MRI abnormalities consistent with cerebellar white matter injury in 3 of 4 subjects. No abnormalities in other brain regions were detected. These findings add to the evidence supporting the hypothesis that primary blast exposure contributes to brain injury in the absence of head impact and that the cerebellum may be particularly vulnerable. However, the clinical effects of these abnormalities cannot be determined with certainty; none of the subjects had ataxia or other detected evidence of cerebellar dysfunction. The details of the blast events themselves cannot be disclosed at this time, thus additional animal and computational modeling will be required to dissect the mechanisms underlying primary blast-related traumatic brain injury. Furthermore, the effects of possible subconcussive impacts and other military-related exposures cannot be determined from the data presented. Thus many aspects of topic will require further investigation. PMID:23409052
Arán Filippetti, Vanessa; Richaud, María Cristina
2017-10-01
Though the relationship between executive functions (EFs) and mathematical skills has been well documented, little is known about how both EFs and IQ differentially support diverse math domains in primary students. Inconsistency of results may be due to the statistical techniques employed, specifically, if the analysis is conducted with observed variables, i.e., regression analysis, or at the latent level, i.e., structural equation modeling (SEM). The current study explores the contribution of both EFs and IQ in mathematics through an SEM approach. A total of 118 8- to 12-year-olds were administered measures of EFs, crystallized (Gc) and fluid (Gf) intelligence, and math abilities (i.e., number production, mental calculus and arithmetical problem-solving). Confirmatory factor analysis (CFA) offered support for the three-factor solution of EFs: (1) working memory (WM), (2) shifting, and (3) inhibition. Regarding the relationship among EFs, IQ and math abilities, the results of the SEM analysis showed that (i) WM and age predict number production and mental calculus, and (ii) shifting and sex predict arithmetical problem-solving. In all of the SEM models, EFs partially or totally mediated the relationship between IQ, age and math achievement. These results suggest that EFs differentially supports math abilities in primary-school children and is a more significant predictor of math achievement than IQ level.
NASA Astrophysics Data System (ADS)
Kan-On, Yukio
2007-04-01
This paper is concerned with the bifurcation structure of positive stationary solutions for a generalized Lotka-Volterra competition model with diffusion. To establish the structure, the bifurcation theory and the interval arithmetic are employed.
NASA Astrophysics Data System (ADS)
Oztekin, Halit; Temurtas, Feyzullah; Gulbag, Ali
The Arithmetic and Logic Unit (ALU) design is one of the important topics in Computer Architecture and Organization course in Computer and Electrical Engineering departments. There are ALU designs that have non-modular nature to be used as an educational tool. As the programmable logic technology has developed rapidly, it is feasible that ALU design based on Field Programmable Gate Array (FPGA) is implemented in this course. In this paper, we have adopted the modular approach to ALU design based on FPGA. All the modules in the ALU design are realized using schematic structure on Altera's Cyclone II Development board. Under this model, the ALU content is divided into four distinct modules. These are arithmetic unit except for multiplication and division operations, logic unit, multiplication unit and division unit. User can easily design any size of ALU unit since this approach has the modular nature. Then, this approach was applied to microcomputer architecture design named BZK.SAU.FPGA10.0 instead of the current ALU unit.
Hecht, Steven A
2006-01-01
We used the choice/no-choice methodology in two experiments to examine patterns of strategy selection and execution in groups of undergraduates. Comparisons between choice and no-choice trials revealed three groups. Some participants good retrievers) were consistently able to use retrieval to solve almost all arithmetic problems. Other participants (perfectionists) successfully used retrieval substantially less often in choice-allowed trials than when strategy choices were prohibited. Not-so-good retrievers retrieved correct answers less often than the other participants in both the choice-allowed and no-choice conditions. No group differences emerged with respect to time needed to search and access answers from long-term memory; however, not-so-good retrievers were consistently slower than the other subgroups at executing fact-retrieval processes that are peripheral to memory search and access. Theoretical models of simple arithmetic, such as the Strategy Choice and Discovery Simulation (Shrager & Siegler, 1998), should be updated to include the existence of both perfectionist and not-so-good retriever adults.
Arithmetic learning with the use of graphic organiser
NASA Astrophysics Data System (ADS)
Sai, F. L.; Shahrill, M.; Tan, A.; Han, S. H.
2018-01-01
For this study, Zollman’s four corners-and-a-diamond mathematics graphic organiser embedded with Polya’s Problem Solving Model was used to investigate secondary school students’ performance in arithmetic word problems. This instructional learning tool was used to help students break down the given information into smaller units for better strategic planning. The participants were Year 7 students, comprised of 21 male and 20 female students, aged between 11-13 years old, from a co-ed secondary school in Brunei Darussalam. This study mainly adopted a quantitative approach to investigate the types of differences found in the arithmetic word problem pre- and post-tests results from the use of the learning tool. Although the findings revealed slight improvements in the overall comparisons of the students’ test results, the in-depth analysis of the students’ responses in their activity worksheets shows a different outcome. Some students were able to make good attempts in breaking down the key points into smaller information in order to solve the word problems.
Distributed Circuit Plasticity: New Clues for the Cerebellar Mechanisms of Learning.
D'Angelo, Egidio; Mapelli, Lisa; Casellato, Claudia; Garrido, Jesus A; Luque, Niceto; Monaco, Jessica; Prestori, Francesca; Pedrocchi, Alessandra; Ros, Eduardo
2016-04-01
The cerebellum is involved in learning and memory of sensory motor skills. However, the way this process takes place in local microcircuits is still unclear. The initial proposal, casted into the Motor Learning Theory, suggested that learning had to occur at the parallel fiber-Purkinje cell synapse under supervision of climbing fibers. However, the uniqueness of this mechanism has been questioned, and multiple forms of long-term plasticity have been revealed at various locations in the cerebellar circuit, including synapses and neurons in the granular layer, molecular layer and deep-cerebellar nuclei. At present, more than 15 forms of plasticity have been reported. There has been a long debate on which plasticity is more relevant to specific aspects of learning, but this question turned out to be hard to answer using physiological analysis alone. Recent experiments and models making use of closed-loop robotic simulations are revealing a radically new view: one single form of plasticity is insufficient, while altogether, the different forms of plasticity can explain the multiplicity of properties characterizing cerebellar learning. These include multi-rate acquisition and extinction, reversibility, self-scalability, and generalization. Moreover, when the circuit embeds multiple forms of plasticity, it can easily cope with multiple behaviors endowing therefore the cerebellum with the properties needed to operate as an effective generalized forward controller.
Hindbrain regional growth in preterm newborns and its impairment in relation to brain injury
Kim, Hosung; Gano, Dawn; Ho, Mai-Lan; Guo, Xiaoyue M.; Unzueta, Alisa; Hess, Christopher; Ferriero, Donna M.; Xu, Duan; Barkovich, A. James
2016-01-01
Premature birth globally affects about 11.1% of all newborns and is a risk factor for neurodevelopmental disability in surviving infants. Histology has suggested that hindbrain subdivisions grow differentially, especially in the third trimester. Prematurity-related brain injuries occurring in this period may selectively affect more rapidly developing areas of hindbrain, thus accompanying region-specific impairments in growth and ultimately neurodevelopmental deficits. The current study aimed to quantify regional growth of the cerebellum and the brainstem in preterm neonates (n=65 with individually multiple scans). We probed associations of the regional volumes with severity of brain injury. In neonates with no imaging evidence of injury, our analysis using a mixed-effect linear model showed faster growth in the pons and the lateral convexity of anterior/posterior cerebellar lobes. Different patterns of growth impairment were found in relation to early cerebral intraventricular hemorrhage and cerebellar hemorrhage (p<0.05), likely explaining different mechanisms through which neurogenesis is disrupted. The pattern of cerebellar growth identified in our study agreed excellently with details of cerebellar morphogenesis in perinatal development, which has only been observed in histological data. Our proposed analytic framework may provide predictive imaging biomarkers for neurodevelopmental outcome, enabling early identification and treatment of high-risk patients. PMID:26589992
Can clues from evolution unlock the molecular development of the cerebellum?
Butts, Thomas; Chaplin, Natalie; Wingate, Richard J T
2011-02-01
The cerebellum sits at the rostral end of the vertebrate hindbrain and is responsible for sensory and motor integration. Owing to its relatively simple architecture, it is one of the most powerful model systems for studying brain evolution and development. Over the last decade, the combination of molecular fate mapping techniques in the mouse and experimental studies, both in vitro and in vivo, in mouse and chick have significantly advanced our understanding of cerebellar neurogenesis in space and time. In amniotes, the most numerous cell type in the cerebellum, and indeed the brain, is the cerebellar granule neurons, and these are born from a transient secondary proliferative zone, the external granule layer (EGL), where proliferation is driven by sonic hedgehog signalling and causes cerebellar foliation. Recent studies in zebrafish and sharks have shown that while the molecular mechanisms of neurogenesis appear conserved across vertebrates, the EGL as a site of shh-driven transit amplification is not, and is therefore implicated as a key amniote innovation that facilitated the evolution of the elaborate foliated cerebella found in birds and mammals. Ellucidating the molecular mechanisms underlying the origin of the EGL in evolution could have significant impacts on our understanding of the molecular details of cerebellar development.
Tubbs, R Shane; Kirkpatrick, Christina M; Rizk, Elias; Chern, Joshua J; Oskouian, Rod J; Oakes, W Jerry
2016-03-01
In the past, diagnosis of the Chiari I malformation has primarily been made on midsagittal MRI. We hypothesized that based on the frequent presentation of opisthotonos in patients with hindbrain hernia (primarily Chiari II malformation but sometimes Chiari I malformation) that the hyperextension might be a compensatory technique used by such patients to bring the cerebellar tonsils up out of the cervical spine. This prospective study reviewed imaging of patients with Chiari I malformation who underwent flexion/extension MRI for evaluation of their hindbrain herniation. Age-matched controls were used for comparison. In general, there was elevation of the cerebellar tonsils with extension and increased descent with flexion of the cervical spine. In 72 % of patients, flexion of the neck resulted in descent of the cerebellar tonsils. In 64 % of patients, extension of the neck resulted in ascent of the cerebellar tonsils. In the 14 patients with an associated syrinx, 71 % were found to have caudal movement of the cerebellar tonsils with neck flexion, and only 43 % were observed to have any movement of the cerebellar tonsils in neck extension compared to patients without a syrinx where ascent of the tonsils was seen in only nine during neck extension. Two patients were observed to have the reverse finding of ascent of the cerebellar tonsils with neck flexion and descent of the cerebellar tonsils with neck extension. Five patients had no movement of the cerebellar tonsils in either flexion or extension of the neck, and one of these had a small syrinx. Although minimal and not in all patients, we observed elevation of the herniated cerebellar tonsils with extension of the cervical spine in patients with Chiari I malformation. This finding provides evidence as to why some patients with hindbrain herniation present with opisthotonos and supports earlier findings that CSF flow is reduced at the craniocervical junction in flexion in patients with Chiari I malformation.
Functional topography of the cerebellum for motor and cognitive tasks: an fMRI study
Stoodley, Catherine J.; Valera, Eve M.; Schmahmann, Jeremy D.
2011-01-01
Anatomical, clinical and imaging findings suggest that the cerebellum is engaged in cognitive and affective functions as well as motor control. Evidence from converging modalities also indicates that there is a functional topography in the human cerebellum for overt control of movement vs. higher functions, such that the cerebellum can be divided into zones depending on connectivity with sensorimotor vs. multimodal association cortices. Using functional MRI, we show that regions active during overt movement differ from those involved in higher-level language, spatial processing and working memory tasks. Nine healthy participants each completed five tasks in order to determine the relative activation patterns for the different paradigms. Right-handed finger-tapping activated right cerebellar lobules IV-V and VIII, consistent with descriptions of the cerebellar homunculi. Verb generation engaged right cerebellar lobules VI-Crus I and a second cluster in lobules VIIB-VIIIA. Mental rotation activation peaks were localized to medial left cerebellar lobule VII (Crus II). A 2-back working memory task activated bilateral regions of lobules VI-VII. Viewing arousing vs. neutral images did not reliably activate the cerebellum or cerebral limbic areas in this study. The cerebellar functional topography identified in this study reflects the involvement of different cerebro-cerebellar circuits depending on the demands of the task being performed: overt movement activated sensorimotor cortices along with contralateral cerebellar lobules IV-VI and VIII, whereas more cognitively demanding tasks engaged prefrontal and parietal cortices along with cerebellar lobules VI and VII. These findings provide further support for a cerebellar role in both motor and cognitive tasks, and better establish the existence of functional subregions in the cerebellum. Future studies are needed to determine the exact contribution of the cerebellum – and different cerebro-cerebellar circuits – to task performance. PMID:21907811
Jung, Brian C.; Choi, Soo I.; Du, Annie X.; Cuzzocreo, Jennifer L.; Geng, Zhuo Z.; Ying, Howard S.; Perlman, Susan L.; Toga, Arthur W.; Prince, Jerry L.
2014-01-01
Although “cerebellar ataxia” is often used in reference to a disease process, presumably there are different underlying pathogenetic mechanisms for different subtypes. Indeed, spinocerebellar ataxia (SCA) types 2 and 6 demonstrate complementary phenotypes, thus predicting a different anatomic pattern of degeneration. Here, we show that an unsupervised classification method, based on principal component analysis (PCA) of cerebellar shape characteristics, can be used to separate SCA2 and SCA6 into two classes, which may represent disease-specific archetypes. Patients with SCA2 (n=11) and SCA6 (n=7) were compared against controls (n=15) using PCA to classify cerebellar anatomic shape characteristics. Within the first three principal components, SCA2 and SCA6 differed from controls and from each other. In a secondary analysis, we studied five additional subjects and found that these patients were consistent with the previously defined archetypal clusters of clinical and anatomical characteristics. Secondary analysis of five subjects with related diagnoses showed that disease groups that were clinically and pathophysiologically similar also shared similar anatomic characteristics. Specifically, Archetype #1 consisted of SCA3 (n=1) and SCA2, suggesting that cerebellar syndromes accompanied by atrophy of the pons may be associated with a characteristic pattern of cerebellar neurodegeneration. In comparison, Archetype #2 was comprised of disease groups with pure cerebellar atrophy (episodic ataxia type 2 (n=1), idiopathic late-onset cerebellar ataxias (n=3), and SCA6). This suggests that cerebellar shape analysis could aid in discriminating between different pathologies. Our findings further suggest that magnetic resonance imaging is a promising imaging biomarker that could aid in the diagnosis and therapeutic management in patients with cerebellar syndromes. PMID:22258915
Price, Gavin R; Yeo, Darren J; Wilkey, Eric D; Cutting, Laurie E
2018-04-01
The present study investigates the relation between resting-state functional connectivity (rsFC) of cytoarchitectonically defined subdivisions of the parietal cortex at the end of 1st grade and arithmetic performance at the end of 2nd grade. Results revealed a dissociable pattern of relations between rsFC and arithmetic competence among subdivisions of intraparietal sulcus (IPS) and angular gyrus (AG). rsFC between right hemisphere IPS subdivisions and contralateral IPS subdivisions positively correlated with arithmetic competence. In contrast, rsFC between the left hIP1 and the right medial temporal lobe, and rsFC between the left AG and left superior frontal gyrus, were negatively correlated with arithmetic competence. These results suggest that strong inter-hemispheric IPS connectivity is important for math development, reflecting either neurocognitive mechanisms specific to arithmetic processing, domain-general mechanisms that are particularly relevant to arithmetic competence, or structural 'cortical maturity'. Stronger connectivity between IPS, and AG, subdivisions and frontal and temporal cortices, however, appears to be negatively associated with math development, possibly reflecting the ability to disengage suboptimal problem-solving strategies during mathematical processing, or to flexibly reorient task-based networks. Importantly, the reported results pertain even when controlling for reading, spatial attention, and working memory, suggesting that the observed rsFC-behavior relations are specific to arithmetic competence. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Linking Essential Tremor to the Cerebellum-Animal Model Evidence.
Handforth, Adrian
2016-06-01
In this review, we hope to stimulate interest in animal models as opportunities to understand tremor mechanisms within the cerebellar system. We begin by considering the harmaline model of essential tremor (ET), which has ET-like anatomy and pharmacology. Harmaline induces the inferior olive (IO) to burst fire rhythmically, recruiting rhythmic activity in Purkinje cells (PCs) and deep cerebellar nuclei (DCN). This model has fostered the IO hypothesis of ET, which postulates that factors that promote excess IO, and hence PC complex spike synchrony, also promote tremor. In contrast, the PC hypothesis postulates that partial PC cell loss underlies tremor of ET. We describe models in which chronic partial PC loss is associated with tremor, such as the Weaver mouse, and others with PC loss that do not show tremor, such as the Purkinje cell degeneration mouse. We postulate that partial PC loss with tremor is associated with terminal axonal sprouting. We then discuss tremor that occurs with large lesions of the cerebellum in primates. This tremor has variable frequency and is an ataxic tremor not related to ET. Another tremor type that is not likely related to ET is tremor in mice with mutations that cause prolonged synaptic GABA action. This tremor is probably due to mistiming within cerebellar circuitry. In the final section, we catalog tremor models involving neurotransmitter and ion channel perturbations. Some appear to be related to the IO hypothesis of ET, while in others tremor may be ataxic or due to mistiming. In summary, we offer a tentative framework for classifying animal action tremor, such that various models may be considered potentially relevant to ET, subscribing to IO or PC hypotheses, or not likely relevant, as with mistiming or ataxic tremor. Considerable further research is needed to elucidate the mechanisms of tremor in animal models.
Honjo, Kie; Ohshita, Tomohiko; Kawakami, Hideshi; Naka, Hiromitsu; Imon, Yukari; Maruyama, Hirofumi; Mimori, Yasuyo; Matsumoto, Masayasu
2004-06-01
Spinocerebellar ataxia type 6 (SCA6) is an autosomal dominant cerebellar ataxia caused by CAG trinucleotide expansion. The characteristics of regional cerebral blood flow (rCBF) in SCA6 patients have not been established, whereas it has been reported that decreased rCBF in the cerebrum seems to be a remote effect of cerebellar impairment in other cerebellar disorders. To clarify the characteristics of rCBF, including cerebro-cerebellar relationship, and its correlation with clinical manifestations in patients with genetically confirmed SCA6 using quantitative assessment of rCBF by brain single-photon emission computed tomography (SPECT). Technetium Tc 99m ethyl cysteinate dimer SPECT study using a Patlak plot. Patients Hiroshima University Hospital, Hiroshima, Japan. Ten patients with SCA6 and 9 healthy controls. Main Outcome Measure The rCBF of the cerebellar vermis, cerebellar hemisphere, and frontal lobes. In SCA6 patients, rCBF was decreased only in the cerebellar vermis and hemisphere compared with healthy controls, and this was inversely correlated with duration of illness. The rCBF in the frontal lobes was slightly correlated with duration of illness without statistical significance. The rCBF in the vermis was inversely correlated with severity of dysarthria, but there was no significant correlation with CAG repeated expansions. Decrease in rCBF was found only in the cerebellum and was associated with duration of illness, dysarthria and ataxia, and cerebellar atrophy. No remote effect of cerebellar hypoperfusion was found in the SCA6 patients.
Humor and laughter in patients with cerebellar degeneration.
Frank, B; Propson, B; Göricke, S; Jacobi, H; Wild, B; Timmann, D
2012-06-01
Humor is a complex behavior which includes cognitive, affective and motor responses. Based on observations of affective changes in patients with cerebellar lesions, the cerebellum may support cerebral and brainstem areas involved in understanding and appreciation of humorous stimuli and expression of laughter. The aim of the present study was to examine if humor appreciation, perception of humorous stimuli, and the succeeding facial reaction differ between patients with cerebellar degeneration and healthy controls. Twenty-three adults with pure cerebellar degeneration were compared with 23 age-, gender-, and education-matched healthy control subjects. No significant difference in humor appreciation and perception of humorous stimuli could be found between groups using the 3 Witz-Dimensionen Test, a validated test asking for funniness and aversiveness of jokes and cartoons. Furthermore, while observing jokes, humorous cartoons, and video sketches, facial expressions of subjects were videotaped and afterwards analysed using the Facial Action Coding System. Using depression as a covariate, the number, and to a lesser degree, the duration of facial expressions during laughter were reduced in cerebellar patients compared to healthy controls. In sum, appreciation of humor appears to be largely preserved in patients with chronic cerebellar degeneration. Cerebellar circuits may contribute to the expression of laughter. Findings add to the literature that non-motor disorders in patients with chronic cerebellar disease are generally mild, but do not exclude that more marked disorders may show up in acute cerebellar disease and/or in more specific tests of humor appreciation.
Special relativity from observer's mathematics point of view
NASA Astrophysics Data System (ADS)
Khots, Boris; Khots, Dmitriy
2015-09-01
When we create mathematical models for quantum theory of light we assume that the mathematical apparatus used in modeling, at least the simplest mathematical apparatus, is infallible. In particular, this relates to the use of "infinitely small" and "infinitely large" quantities in arithmetic and the use of Newton - Cauchy definitions of a limit and derivative in analysis. We believe that is where the main problem lies in contemporary study of nature. We have introduced a new concept of Observer's Mathematics (see www.mathrelativity.com). Observer's Mathematics creates new arithmetic, algebra, geometry, topology, analysis and logic which do not contain the concept of continuum, but locally coincide with the standard fields. We use Einstein special relativity principles and get the analogue of classical Lorentz transformation. This work considers this transformation from Observer's Mathematics point of view.
Morsanyi, Kinga; O'Mahony, Eileen; McCormack, Teresa
2017-12-01
Recent evidence has highlighted the important role that number-ordering skills play in arithmetic abilities, both in children and adults. In the current study, we demonstrated that number comparison and ordering skills were both significantly related to arithmetic performance in adults, and the effect size was greater in the case of ordering skills. Additionally, we found that the effect of number comparison skills on arithmetic performance was mediated by number-ordering skills. Moreover, performance on comparison and ordering tasks involving the months of the year was also strongly correlated with arithmetic skills, and participants displayed similar (canonical or reverse) distance effects on the comparison and ordering tasks involving months as when the tasks included numbers. This suggests that the processes responsible for the link between comparison and ordering skills and arithmetic performance are not specific to the domain of numbers. Finally, a factor analysis indicated that performance on comparison and ordering tasks loaded on a factor that included performance on a number line task and self-reported spatial thinking styles. These results substantially extend previous research on the role of order processing abilities in mental arithmetic.
Cognitive precursors of arithmetic development in primary school children with cerebral palsy.
Van Rooijen, M; Verhoeven, L; Smits, D W; Dallmeijer, A J; Becher, J G; Steenbergen, B
2014-04-01
The aim of this study was to examine the development of arithmetic performance and its cognitive precursors in children with CP from 7 till 9 years of age. Previous research has shown that children with CP are generally delayed in arithmetic performance compared to their typically developing peers. In children with CP, the developmental trajectory of the ability to solve addition- and subtraction tasks has, however, rarely been studied, as well as the cognitive factors affecting this trajectory. Sixty children (M=7.2 years, SD=.23 months at study entry) with CP participated in this study. Standardized tests were administered to assess arithmetic performance, word decoding skills, non-verbal intelligence, and working memory. The results showed that the ability to solve addition- and subtraction tasks increased over a two year period. Word decoding skills were positively related to the initial status of arithmetic performance. In addition, non-verbal intelligence and working memory were associated with the initial status and growth rate of arithmetic performance from 7 till 9 years of age. The current study highlights the importance of non-verbal intelligence and working memory to the development of arithmetic performance of children with CP. Copyright © 2014 Elsevier Ltd. All rights reserved.
Separating stages of arithmetic verification: An ERP study with a novel paradigm.
Avancini, Chiara; Soltész, Fruzsina; Szűcs, Dénes
2015-08-01
In studies of arithmetic verification, participants typically encounter two operands and they carry out an operation on these (e.g. adding them). Operands are followed by a proposed answer and participants decide whether this answer is correct or incorrect. However, interpretation of results is difficult because multiple parallel, temporally overlapping numerical and non-numerical processes of the human brain may contribute to task execution. In order to overcome this problem here we used a novel paradigm specifically designed to tease apart the overlapping cognitive processes active during arithmetic verification. Specifically, we aimed to separate effects related to detection of arithmetic correctness, detection of the violation of strategic expectations, detection of physical stimulus properties mismatch and numerical magnitude comparison (numerical distance effects). Arithmetic correctness, physical stimulus properties and magnitude information were not task-relevant properties of the stimuli. We distinguished between a series of temporally highly overlapping cognitive processes which in turn elicited overlapping ERP effects with distinct scalp topographies. We suggest that arithmetic verification relies on two major temporal phases which include parallel running processes. Our paradigm offers a new method for investigating specific arithmetic verification processes in detail. Copyright © 2015 Elsevier Ltd. All rights reserved.
Do Children Understand Fraction Addition?
ERIC Educational Resources Information Center
Braithwaite, David W.; Tian, Jing; Siegler, Robert S.
2017-01-01
Many children fail to master fraction arithmetic even after years of instruction. A recent theory of fraction arithmetic (Braithwaite, Pyke, & Siegler, in press) hypothesized that this poor learning of fraction arithmetic procedures reflects poor conceptual understanding of them. To test this hypothesis, we performed three experiments…
Priori, Alberto; Ciocca, Matteo; Parazzini, Marta; Vergari, Maurizio; Ferrucci, Roberta
2014-01-01
Two neuromodulatory techniques based on applying direct current (DC) non-invasively through the skin, transcranial cerebellar direct current stimulation (tDCS) and transcutaneous spinal DCS, can induce prolonged functional changes consistent with a direct influence on the human cerebellum and spinal cord. In this article we review the major experimental works on cerebellar tDCS and on spinal tDCS, and their preliminary clinical applications. Cerebellar tDCS modulates cerebellar motor cortical inhibition, gait adaptation, motor behaviour, and cognition (learning, language, memory, attention). Spinal tDCS influences the ascending and descending spinal pathways, and spinal reflex excitability. In the anaesthetised mouse, DC stimulation applied under the skin along the entire spinal cord may affect GABAergic and glutamatergic systems. Preliminary clinical studies in patients with cerebellar disorders, and in animals and patients with spinal cord injuries, have reported beneficial effects. Overall the available data show that cerebellar tDCS and spinal tDCS are two novel approaches for inducing prolonged functional changes and neuroplasticity in the human cerebellum and spinal cord, and both are new tools for experimental and clinical neuroscientists. PMID:24907311
Li, Ning; Zhao, Wei-Guo; Pu, Chun-Hua; Yang, Wen-Lei
2018-01-01
This prospective study quantitatively measured the cerebellar retraction factors, including retraction distance, depth and duration, and evaluated their potential relationship to the development of hearing loss after microvascular decompression (MVD) for hemifacial spasm (HFS). One hundred ten patients with primary HFS who underwent MVD in our department were included into this study. The cerebellar retraction factors were quantitatively measured on preoperative MR and timed during MVD. Associations of cerebellar retraction and other factors to postoperative hearing loss were analyzed. Eleven (10%) patients developed hearing loss after MVD. Compared with the group without hearing loss, the cerebellar retraction distance, depth and duration of the group with hearing loss were significantly greater (p < 0.05). Multivariate regression analysis showed that greater cerebellar retraction depth and longer retraction duration were significantly associated with a higher incidence of postoperative hearing impairment (p < 0.05). This study strongly suggested a correlation between the cerebellar retraction factors, especially retraction depth and duration, and possibility of hearing loss following MVD for HFS.
Stoodley, Catherine J.; Limperopoulos, Catherine
2016-01-01
SUMMARY The increasing appreciation of the role of the cerebellum in motor and non-motor functions is crucial to understanding the outcomes of acquired cerebellar injury and developmental lesions in high-risk fetal and neonatal populations, children with cerebellar damage (e.g. posterior fossa tumors), and neurodevelopmental disorders (e.g. autism). We review available data regarding the relationship between the topography of cerebellar injury or abnormality and functional outcomes. We report emerging structure–function relationships with specific symptoms: cerebellar regions that interconnect with sensorimotor cortices are associated with motor impairments when damaged; disruption to posterolateral cerebellar regions that form circuits with association cortices impact long-term cognitive outcomes; and midline posterior vermal damage is associated with behavioral dysregulation and an autism-like phenotype. We also explore the impact of age and the potential role for critical periods on cerebellar structure and child function. These findings suggest that the cerebellum plays a critical role in motor, cognitive, and social–behavioral development, possibly via modulatory effects on the developing cerebral cortex. PMID:27184461
Cerebellar Development and Disease
Gleeson, Joseph G.
2008-01-01
Recent Advances The molecular control of cell type specification within the developing cerebellum as well as the genetic causes of the most common human developmental cerebellar disorders have long remained mysterious. Recent genetic lineage and loss-of-function data from mice have revealed unique and non-overlapping anatomical origins for GABAergic neurons from ventricular zone precursors and glutamatergic cell from rhombic lip precursors, mirroring distinct origins for these neurotransmitter-specific cell types in the cerebral cortex. Mouse studies elucidating the role of Ptf1a as a cerebellar ventricular zone GABerigic fate switch were actually preceded by the recognition that PTF1A mutations in humans cause cerebellar agenesis, a birth defect of the human cerebellum. Indeed, several genes for congenital human cerebellar malformations have recently been identified, including genes causing Joubert syndrome, Dandy-Walker malformation and Ponto-cerebellar hypoplasia. These studies have pointed to surprisingly complex roles for transcriptional regulation, mitochondrial function and neuronal cilia in patterning, homeostasis and cell proliferation during cerebellar development. Together mouse and human studies are synergistically advancing our understanding of the developmental mechanisms that generate the uniquely complex mature cerebellum. PMID:18513948
Incidence and anatomy of gaze-evoked nystagmus in patients with cerebellar lesions.
Baier, Bernhard; Dieterich, Marianne
2011-01-25
Disorders of gaze-holding--organized by a neural network located in the brainstem or the cerebellum--may lead to nystagmus. Based on previous animal studies it was concluded that one key player of the cerebellar part of this gaze-holding neural network is the flocculus. Up to now, in humans there are no systematic studies in patients with cerebellar lesions examining one of the most common forms of nystagmus: gaze-evoked nystagmus (GEN). The aim of our present study was to clarify which cerebellar structures are involved in the generation of GEN. Twenty-one patients with acute unilateral cerebellar stroke were analyzed by means of modern MRI-based voxel-wise lesion-behavior mapping. Our data indicate that cerebellar structures such as the vermal pyramid, the uvula, and the tonsil, but also parts of the biventer lobule and the inferior semilunar lobule, were affected in horizontal GEN. It seems that these structures are part of a gaze-holding neural integrator control system. Furthermore, GEN might present a diagnostic sign pointing toward ipsilesionally located lesions of midline and lower cerebellar structures.
Jang, Sung Ho; Chang, Chul Hoon; Jung, Young Jin; Kwon, Hyeok Gyu
2017-01-01
We report on a patient with hypersomnia who showed injury of the lower ascending reticular activating system (ARAS) following cerebellar herniation due to a cerebellar infarct, detected on diffusion tensor tractography (DTT). A 53-year-old male patient was diagnosed as a left cerebellar infarct, and underwent decompressive suboccipital craniectomy due to brain edema at 2 days after the onset of a cerebellar infarct. Three weeks after onset when the patient started rehabilitation, he showed hypersomnia without impairment of consciousness; he fell asleep most of daytime without external stimulation and showed an abnormal score on the Epworth Sleepiness Scale: 15 (full score: 24, cut off for hypersomnia: 10). On 3-week DTT, narrowing of the upper portion of the lower ventral ARAS between the pontine reticular formation and the hypothalamus was observed on both sides. In addition, partial tearing was observed in the middle portion of the right lower ventral ARAS. In conclusion, we found injury of the lower ventral ARAS in a patient with hypersomnia following cerebellar herniation due to a cerebellar infarct.
ANIMAL MODELS OF DYSTONIA: LESSONS FROM A MUTANT RAT
LeDoux, Mark S.
2010-01-01
Dystonia is a motor sign characterized by involuntary muscle contractions which produce abnormal postures. Genetic factors contribute significantly to primary dystonia. In comparison, secondary dystonia can be caused by a wide variety of metabolic, structural, infectious, toxic and inflammatory insults to the nervous system. Although classically ascribed to dysfunction of the basal ganglia, studies of diverse animal models have pointed out that dystonia is a network disorder with important contributions from abnormal olivocerebellar signaling. In particular, work with the dystonic (dt) rat has engendered dramatic paradigm shifts in dystonia research. The dt rat manifests generalized dystonia caused by deficiency of the neuronally-restricted protein caytaxin. Electrophysiological and biochemical studies have shown that defects at the climbing fiber-Purkinje cell synapse in the dt rat lead to abnormal bursting firing patterns in the cerebellar nuclei, which increases linearly with postnatal age. In a general sense, the dt rat has shown the scientific and clinical communities that dystonia can arise from dysfunctional cerebellar cortex. Furthermore, work with the dt rat has provided evidence that dystonia (1) is a neurodevelopmental network disorder and (2) can be driven by abnormal cerebellar output. In large part, work with other animal models has expanded upon studies in the dt rat and shown that primary dystonia is a multi-nodal network disorder associated with defective sensorimotor integration. In addition, experiments in genetically-engineered models have been used to examine the underlying cellular pathologies that drive primary dystonia. PMID:21081162
Avancini, Chiara; Galfano, Giovanni; Szűcs, Dénes
2014-12-01
Event-related potential (ERP) studies have detected several characteristic consecutive amplitude modulations in both implicit and explicit mental arithmetic tasks. Implicit tasks typically focused on the arithmetic relatedness effect (in which performance is affected by semantic associations between numbers) while explicit tasks focused on the distance effect (in which performance is affected by the numerical difference of to-be-compared numbers). Both task types elicit morphologically similar ERP waves which were explained in functionally similar terms. However, to date, the relationship between these tasks has not been investigated explicitly and systematically. In order to fill this gap, here we examined whether ERP effects and their underlying cognitive processes in implicit and explicit mental arithmetic tasks differ from each other. The same group of participants performed both an implicit number-matching task (in which arithmetic knowledge is task-irrelevant) and an explicit arithmetic-verification task (in which arithmetic knowledge is task-relevant). 129-channel ERP data differed substantially between tasks. In the number-matching task, the arithmetic relatedness effect appeared as a negativity over left-frontal electrodes whereas the distance effect was more prominent over right centro-parietal electrodes. In the verification task, all probe types elicited similar N2b waves over right fronto-central electrodes and typical centro-parietal N400 effects over central electrodes. The distance effect appeared as an early-rising, long-lasting left parietal negativity. We suggest that ERP effects in the implicit task reflect access to semantic memory networks and to magnitude discrimination, respectively. In contrast, effects of expectation violation are more prominent in explicit tasks and may mask more delicate cognitive processes. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Avancini, Chiara; Galfano, Giovanni; Szűcs, Dénes
2014-01-01
Event-related potential (ERP) studies have detected several characteristic consecutive amplitude modulations in both implicit and explicit mental arithmetic tasks. Implicit tasks typically focused on the arithmetic relatedness effect (in which performance is affected by semantic associations between numbers) while explicit tasks focused on the distance effect (in which performance is affected by the numerical difference of to-be-compared numbers). Both task types elicit morphologically similar ERP waves which were explained in functionally similar terms. However, to date, the relationship between these tasks has not been investigated explicitly and systematically. In order to fill this gap, here we examined whether ERP effects and their underlying cognitive processes in implicit and explicit mental arithmetic tasks differ from each other. The same group of participants performed both an implicit number-matching task (in which arithmetic knowledge is task-irrelevant) and an explicit arithmetic-verification task (in which arithmetic knowledge is task-relevant). 129-channel ERP data differed substantially between tasks. In the number-matching task, the arithmetic relatedness effect appeared as a negativity over left-frontal electrodes whereas the distance effect was more prominent over right centro-parietal electrodes. In the verification task, all probe types elicited similar N2b waves over right fronto-central electrodes and typical centro-parietal N400 effects over central electrodes. The distance effect appeared as an early-rising, long-lasting left parietal negativity. We suggest that ERP effects in the implicit task reflect access to semantic memory networks and to magnitude discrimination, respectively. In contrast, effects of expectation violation are more prominent in explicit tasks and may mask more delicate cognitive processes. PMID:25450162
Aztec arithmetic revisited: land-area algorithms and Acolhua congruence arithmetic.
Williams, Barbara J; Jorge y Jorge, María del Carmen
2008-04-04
Acolhua-Aztec land records depicting areas and side dimensions of agricultural fields provide insight into Aztec arithmetic. Hypothesizing that recorded areas resulted from indigenous calculation, in a study of sample quadrilateral fields we found that 60% of the area values could be reproduced exactly by computation. In remaining cases, discrepancies between computed and recorded areas were consistently small, suggesting use of an unknown indigenous arithmetic. In revisiting the research, we discovered evidence for the use of congruence principles, based on proportions between the standard linear Acolhua measure and their units of shorter length. This procedure substitutes for computation with fractions and is labeled "Acolhua congruence arithmetic." The findings also clarify variance between Acolhua and Tenochca linear units, long an issue in understanding Aztec metrology.
Reconfigurable pipelined processor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saccardi, R.J.
1989-09-19
This patent describes a reconfigurable pipelined processor for processing data. It comprises: a plurality of memory devices for storing bits of data; a plurality of arithmetic units for performing arithmetic functions with the data; cross bar means for connecting the memory devices with the arithmetic units for transferring data therebetween; at least one counter connected with the cross bar means for providing a source of addresses to the memory devices; at least one variable tick delay device connected with each of the memory devices and arithmetic units; and means for providing control bits to the variable tick delay device formore » variably controlling the input and output operations thereof to selectively delay the memory devices and arithmetic units to align the data for processing in a selected sequence.« less
Single-digit arithmetic processing—anatomical evidence from statistical voxel-based lesion analysis
Mihulowicz, Urszula; Willmes, Klaus; Karnath, Hans-Otto; Klein, Elise
2014-01-01
Different specific mechanisms have been suggested for solving single-digit arithmetic operations. However, the neural correlates underlying basic arithmetic (multiplication, addition, subtraction) are still under debate. In the present study, we systematically assessed single-digit arithmetic in a group of acute stroke patients (n = 45) with circumscribed left- or right-hemispheric brain lesions. Lesion sites significantly related to impaired performance were found only in the left-hemisphere damaged (LHD) group. Deficits in multiplication and addition were related to subcortical/white matter brain regions differing from those for subtraction tasks, corroborating the notion of distinct processing pathways for different arithmetic tasks. Additionally, our results further point to the importance of investigating fiber pathways in numerical cognition. PMID:24847238
Gupta, Ranjana; Joshi, Sandeep; Mittal, Amit; Luthra, Ishita; Mittal, Puneet; Verma, Vibha
2015-01-01
Acquired Dyke-Davidoff-Masson syndrome, also known as hemispheric atrophy, is characterized by loss of volume of one cerebral hemisphere from an insult in early life. Crossed cerebellar diaschisis refers to dysfunction/atrophy of cerebellar hemisphere which is secondary to contralateral supratentorial insult. We describe magnetic resonance imaging findings in two cases of acquired Dyke-Davidoff-Masson syndrome with crossed cerebro-cerebellar diaschisis.
Sawada, Kazuhiko; Saito, Shigeyoshi; Horiuchi-Hirose, Miwa; Mori, Yuki; Yoshioka, Yoshichika; Murase, Kenya
2013-09-01
Cerebellar abnormalities in 4-week-old rats with a single whole body X-irradiation at a dose of 0.5, 1.0, or 1.5 Gy on embryonic day (ED) 15 were examined by magnetic resonance imaging (MRI) volumetry. A 3D T2 W-MRI anatomical sequence with high-spatial resolution at 11.7-tesla was acquired from the fixed rat heads. By MRI volumetry, whole cerebellar volumes decreased dose-dependently. Multiple linear regression analysis revealed that the cortical volume (standardized β=0.901; P<0.001) was a major explanatory variable for the whole cerebellar volume, whereas both volumes of the white matter and deep cerebellar nuclei also decreased depending on the X-irradiation dose. The present MRI volumetric analysis revealed a dose-related cerebellar cortical hypoplasia by prenatal exposure to X-irradiation on E15. © 2013 The Authors. Congenital Anomalies © 2013 Japanese Teratology Society.
Rao, Raghavendra S; Sheshadri, Shubha; Bhattacharjee, Dipanjan; Patil, Navin; Rao, Karthik
2018-03-13
Progressive non-familial adult onset cerebellar degeneration has been rarely associated with hypothyroidism and is known to be reversible after therapy. We report a case of cerebellar atrophy in a 31 year old female whose detailed evaluation had revealed sub-clinical hypothyroidism secondary to autoimmune thyroiditis with a very high anti-TPO (anti-thyroid peroxidase) antibody levels. MRI (Magnetic Resonanace Imaging) of brain showed diffuse bilateral cerebellar atrophy. She was treated with thyroid hormone supplementation and after one year of follow up, cerebellar signs had disappeared completely with significant reduction in anti-TPO antibody levels. Imaging of the brain post one year of follow-up revealed normal cerebellum. Hence, we opine that thyroid dysfunction should always be kept in mind while evaluating patients presenting with acute onset cerebellar ataxia as it can be easily reversed with thyroid hormone replacement therapy.
Cerebellar ataxia and epilepsy with anti-GAD antibodies: treatment with IVIG and plasmapheresis
Georgieva, Zoya; Parton, Matthew
2014-01-01
Glutamic acid decarboxylase autoantibody (GAD-65) catalyses glutamate conversion into γ-aminobutyric acid (GABA) in the central nervous system and in the pancreatic β cells. Antibodies targeting GAD-65 are of uncertain pathogenic significance and occur in stiff person syndrome, cerebellar ataxia, epilepsy, limbic encephalitis and combinations thereof and diabetes mellitus. A 45-year-old man with a cerebellar gait ataxia, dysmetria, nystagmus and mild cerebellar dysarthria was diagnosed with insulin-dependent diabetes mellitus a year after the onset of neurological symptoms. He also developed complex and tonic-clonic seizures, resistant to anticonvulsant medication and deteriorated cognitively. Blood and cerebrospinal fluid serology, and imaging supported the diagnosis of GAD-65 cerebellar ataxia and epilepsy. He was treated with intravenous immunoglobulin and subsequently plasmapheresis. We report the outcome of 3 years of treatment, which resulted in the improvement of cerebellar signs (particularly gait), with some ultimate decline of efficacy. PMID:24419643
Lidzba, K; Wilke, M; Staudt, M; Krägeloh-Mann, I; Grodd, W
2008-09-01
Patients with congenital lesions of the left cerebral hemisphere may reorganize language functions into the right hemisphere. In these patients, language production is represented homotopically to the left-hemispheric language areas. We studied cerebellar activation in five patients with congenital lesions of the left cerebral hemisphere to assess if the language network is reorganized completely in these patients, i.e. including also cerebellar language functions. As compared to a group of controls matched for age, sex, and verbal IQ, the patients recruited an area not in the right but in the left cerebellar hemisphere. The extent of laterality of the cerebellar activation correlated significantly with the laterality of the frontal activation. We suggest that the developing brain reacts to early focal lesions in the left hemisphere with a mirror-image organization of the entire cerebro-cerebellar network engaged in speech production.
Fuchs, Lynn S.; Compton, Donald L.; Fuchs, Douglas; Powell, Sarah R.; Schumacher, Robin F.; Hamlett, Carol L.; Vernier, Emily; Namkung, Jessica M.; Vukovic, Rose K.
2012-01-01
The purpose of this study was to investigate the contributions of domain-general cognitive resources and different forms of arithmetic development to individual differences in pre-algebraic knowledge. Children (n=279; mean age=7.59 yrs) were assessed on 7 domain-general cognitive resources as well as arithmetic calculations and word problems at start of 2nd grade and on calculations, word problems, and pre-algebraic knowledge at end of 3rd grade. Multilevel path analysis, controlling for instructional effects associated with the sequence of classrooms in which students were nested across grades 2–3, indicated arithmetic calculations and word problems are foundational to pre-algebraic knowledge. Also, results revealed direct contributions of nonverbal reasoning and oral language to pre-algebraic knowledge, beyond indirect effects that are mediated via arithmetic calculations and word problems. By contrast, attentive behavior, phonological processing, and processing speed contributed to pre-algebraic knowledge only indirectly via arithmetic calculations and word problems. PMID:22409764
A natural history of mathematics: George Peacock and the making of English algebra.
Lambert, Kevin
2013-06-01
In a series of papers read to the Cambridge Philosophical Society through the 1820s, the Cambridge mathematician George Peacock laid the foundation for a natural history of arithmetic that would tell a story of human progress from counting to modern arithmetic. The trajectory of that history, Peacock argued, established algebraic analysis as a form of universal reasoning that used empirically warranted operations of mind to think with symbols on paper. The science of counting would suggest arithmetic, arithmetic would suggest arithmetical algebra, and, finally, arithmetical algebra would suggest symbolic algebra. This philosophy of suggestion provided the foundation for Peacock's "principle of equivalent forms," which justified the practice of nineteenth-century English symbolic algebra. Peacock's philosophy of suggestion owed a considerable debt to the early Cambridge Philosophical Society culture of natural history. The aim of this essay is to show how that culture of natural history was constitutively significant to the practice of nineteenth-century English algebra.
Barnes, Marcia A; Stubbs, Allison; Raghubar, Kimberly P; Agostino, Alba; Taylor, Heather; Landry, Susan; Fletcher, Jack M; Smith-Chant, Brenda
2011-05-01
Preschoolers with spina bifida (SB) were compared to typically developing (TD) children on tasks tapping mathematical knowledge at 36 months (n = 102) and 60 months of age (n = 98). The group with SB had difficulty compared to TD peers on all mathematical tasks except for transformation on quantities in the subitizable range. At 36 months, vocabulary knowledge, visual-spatial, and fine motor abilities predicted achievement on a measure of informal math knowledge in both groups. At 60 months of age, phonological awareness, visual-spatial ability, and fine motor skill were uniquely and differentially related to counting knowledge, oral counting, object-based arithmetic skills, and quantitative concepts. Importantly, the patterns of association between these predictors and mathematical performance were similar across the groups. A novel finding is that fine motor skill uniquely predicted object-based arithmetic abilities in both groups, suggesting developmental continuity in the neurocognitive correlates of early object-based and later symbolic arithmetic problem solving. Models combining 36-month mathematical ability and these language-based, visual-spatial, and fine motor abilities at 60 months accounted for considerable variance on 60-month informal mathematical outcomes. Results are discussed with reference to models of mathematical development and early identification of risk in preschoolers with neurodevelopmental disorder.
Barnes, Marcia A.; Stubbs, Allison; Raghubar, Kimberly P.; Agostino, Alba; Taylor, Heather; Landry, Susan; Fletcher, Jack M.; Smith-Chant, Brenda
2011-01-01
Preschoolers with spina bifida (SB) were compared to typically developing (TD) children on tasks tapping mathematical knowledge at 36 months (n = 102) and 60 months of age (n = 98). The group with SB had difficulty compared to TD peers on all mathematical tasks except for transformation on quantities in the subitizable range. At 36 months, vocabulary knowledge, visual–spatial, and fine motor abilities predicted achievement on a measure of informal math knowledge in both groups. At 60 months of age, phonological awareness, visual–spatial ability, and fine motor skill were uniquely and differentially related to counting knowledge, oral counting, object-based arithmetic skills, and quantitative concepts. Importantly, the patterns of association between these predictors and mathematical performance were similar across the groups. A novel finding is that fine motor skill uniquely predicted object-based arithmetic abilities in both groups, suggesting developmental continuity in the neurocognitive correlates of early object-based and later symbolic arithmetic problem solving. Models combining 36-month mathematical ability and these language-based, visual–spatial, and fine motor abilities at 60 months accounted for considerable variance on 60-month informal mathematical outcomes. Results are discussed with reference to models of mathematical development and early identification of risk in preschoolers with neurodevelopmental disorder. PMID:21418718
Jayabal, Sriram; Chang, Hui Ho Vanessa; Cullen, Kathleen E.; Watt, Alanna J.
2016-01-01
Spinocerebellar ataxia type 6 (SCA6) is a devastating midlife-onset autosomal dominant motor control disease with no known treatment. Using a hyper-expanded polyglutamine (84Q) knock-in mouse, we found that cerebellar Purkinje cell firing precision was degraded in heterozygous (SCA684Q/+) mice at 19 months when motor deficits are observed. Similar alterations in firing precision and motor control were observed at disease onset at 7 months in homozygous (SCA684Q/84Q) mice, as well as a reduction in firing rate. We further found that chronic administration of the FDA-approved drug 4-aminopyridine (4-AP), which targets potassium channels, alleviated motor coordination deficits and restored cerebellar Purkinje cell firing precision to wildtype (WT) levels in SCA684Q/84Q mice both in acute slices and in vivo. These results provide a novel therapeutic approach for treating ataxic symptoms associated with SCA6. PMID:27381005
Jayabal, Sriram; Chang, Hui Ho Vanessa; Cullen, Kathleen E; Watt, Alanna J
2016-07-06
Spinocerebellar ataxia type 6 (SCA6) is a devastating midlife-onset autosomal dominant motor control disease with no known treatment. Using a hyper-expanded polyglutamine (84Q) knock-in mouse, we found that cerebellar Purkinje cell firing precision was degraded in heterozygous (SCA6(84Q/+)) mice at 19 months when motor deficits are observed. Similar alterations in firing precision and motor control were observed at disease onset at 7 months in homozygous (SCA6(84Q/84Q)) mice, as well as a reduction in firing rate. We further found that chronic administration of the FDA-approved drug 4-aminopyridine (4-AP), which targets potassium channels, alleviated motor coordination deficits and restored cerebellar Purkinje cell firing precision to wildtype (WT) levels in SCA6(84Q/84Q) mice both in acute slices and in vivo. These results provide a novel therapeutic approach for treating ataxic symptoms associated with SCA6.
Joubert syndrome: congenital cerebellar ataxia with the “molar tooth”
Romani, Marta; Micalizzi, Alessia; Valente, Enza Maria
2013-01-01
Joubert syndrome (JS) is a congenital cerebellar ataxia with autosomal recessive or X-linked inheritance, which diagnostic hallmark is a unique cerebellar and brainstem malformation recognizable on brain imaging, the “molar tooth sign”. Neurological signs are present from neonatal age and include hypotonia evolving into ataxia, global developmental delay, ocular motor apraxia and breathing dysregulation. These are variably associated with multiorgan involvement, mainly of the retina, kidneys, skeleton and liver. To date, 21 causative genes have been identified, all encoding for proteins of the primary cilium or its apparatus. This is a subcellular organelle that plays key roles in development and in many cellular functions, making JS part of the expanding family of ciliopathies. There is marked clinical and genetic overlap among distinct ciliopathies, which may co-occur even within families. Such variability is likely explained by an oligogenic model of inheritance, in which mutations, rare variants and polymorphisms at distinct loci interplay to modulate the expressivity of the ciliary phenotype. PMID:23870701
Shimizu, Renee E; Wu, Allan D; Knowlton, Barbara J
2016-12-01
Effective learning results not only in improved performance on a practiced task, but also in the ability to transfer the acquired knowledge to novel, similar tasks. Using a modified serial reaction time (RT) task, the authors examined the ability to transfer to novel sequences after practicing sequences in a repetitive order versus a nonrepeating interleaved order. Interleaved practice resulted in better performance on new sequences than repetitive practice. In a second study, participants practiced interleaved sequences in a functional MRI (fMRI) scanner and received a transfer test of novel sequences. Transfer ability was positively correlated with cerebellar blood oxygen level dependent activity during practice, indicating that greater cerebellar engagement during training resulted in better subsequent transfer performance. Interleaved practice may thus result in a more generalized representation that is robust to interference, and the degree of activation in the cerebellum may be a reflection of the instantiation and engagement of internal models. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
NASA Technical Reports Server (NTRS)
Sulkowski, G. M.; Li, G-H; Sajdel-Sulkowska, E. M.
2004-01-01
We have previously reported that the developing rat cerebellum is affected by hypergravity exposure. The effect is observed during a period of both granule and glial cell proliferation and neuronal migration in the cerebellum and coincides with changes in thyroid hormone levels. The present study begins to address the molecular mechanisms involved in the cerebellar response to hypergravity. Specifically, the study focuses on the expression of cerebellar proteins that are known to be directly involved in cell-cell interactions [protein expressing 3-fucosyl-N-acetyl-lactosamine antigen (CD15), neuronal cell adhesion molecule (NCAM-L1)] and those that affect cell-cell interactions indirectly [glial fibrillary acidic protein (GFAP)] in rat neonates exposed to centrifuge-produced hypergravity. Cerebellar mass and protein expression in rat neonates exposed to hypergravity (1.5 G) from gestational day (G) 11 to postnatal day (P) 30 were compared at one of six time points between P6 and P30 against rat neonates developing under normal gravity. Proteins were analyzed by quantitative western blots of cerebellar homogenates prepared from male or female neonates. Cerebellar size was most clearly reduced in male neonates on P6 and in female neonates on P9, with a significant gender difference; differences in cerebellar mass remained significant even when change in total body mass was factored in. Densitometric analysis of western blots revealed both quantitative and temporal changes in the expression of selected cerebellar proteins that coincided with changes in cerebellar mass and were gender-specific. In fact, our data indicated certain significant differences even between male and female control animals. A maximal decrease in expression of CD15 was observed in HG females on P9, coinciding with maximal change in their cerebellar mass. A shift in the time-course of NCAM-L1 expression resulted in a significant increase in NCAM-L1 in HG males on P18, an isolated time at which cerebellar mass does not significantly differ between HG and SC neonates. A maximal decrease in expression of GFAP was observed in HG males on P6, coinciding with maximal change in their cerebellar mass. Altered expression of cerebellar proteins is likely to affect a number of developmental processes and contribute to the structural and functional alterations seen in the CNS developing under altered gravity. Our data suggest that both cerebellar development and its response to gravitational manipulations differ in males and females. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sulkowski, G. M.; Li, G.-H.; Sajdel-Sulkowska, E. M.
2004-01-01
We have previously reported that the developing rat cerebellum is affected by hypergravity exposure. The effect is observed during a period of both granule and glial cell proliferation and neuronal migration in the cerebellum and coincides with changes in thyroid hormone levels. The present study begins to address the molecular mechanisms involved in the cerebellar response to hypergravity. Specifically, the study focuses on the expression of cerebellar proteins that are known to be directly involved in cell-cell interactions [protein expressing 3-fucosyl- N-acetyl-lactosamine antigen (CD15), neuronal cell adhesion molecule (NCAM-L1)] and those that affect cell-cell interactions indirectly [glial fibrillary acidic protein (GFAP)] in rat neonates exposed to centrifuge-produced hypergravity. Cerebellar mass and protein expression in rat neonates exposed to hypergravity (1.5 G) from gestational day (G) 11 to postnatal day (P) 30 were compared at one of six time points between P6 and P30 against rat neonates developing under normal gravity. Proteins were analyzed by quantitative western blots of cerebellar homogenates prepared from male or female neonates. Cerebellar size was most clearly reduced in male neonates on P6 and in female neonates on P9, with a significant gender difference; differences in cerebellar mass remained significant even when change in total body mass was factored in. Densitometric analysis of western blots revealed both quantitative and temporal changes in the expression of selected cerebellar proteins that coincided with changes in cerebellar mass and were gender-specific. In fact, our data indicated certain significant differences even between male and female control animals. A maximal decrease in expression of CD15 was observed in HG females on P9, coinciding with maximal change in their cerebellar mass. A shift in the time-course of NCAM-L1 expression resulted in a significant increase in NCAM-L1 in HG males on P18, an isolated time at which cerebellar mass does not significantly differ between HG and SC neonates. A maximal decrease in expression of GFAP was observed in HG males on P6, coinciding with maximal change in their cerebellar mass. Altered expression of cerebellar proteins is likely to affect a number of developmental processes and contribute to the structural and functional alterations seen in the CNS developing under altered gravity. Our data suggest that both cerebellar development and its response to gravitational manipulations differ in males and females.
Jenks, Kathleen M; de Moor, Jan; van Lieshout, Ernest C D M
2009-07-01
Although it is believed that children with cerebral palsy are at high risk for learning difficulties and arithmetic difficulties in particular, few studies have investigated this issue. Arithmetic ability was longitudinally assessed in children with cerebral palsy in special (n = 41) and mainstream education (n = 16) and controls in mainstream education (n = 16). Second grade executive function and working memory scores were used to predict third grade arithmetic accuracy and response time. Children with cerebral palsy in special education were less accurate and slower than their peers on all arithmetic tests, even after controlling for IQ, whereas children with cerebral palsy in mainstream education performed as well as controls. Although the performance gap became smaller over time, it did not disappear. Children with cerebral palsy in special education showed evidence of executive function and working memory deficits in shifting, updating, visuospatial sketchpad and phonological loop (for digits, not words) whereas children with cerebral palsy in mainstream education only had a deficit in visuospatial sketchpad. Hierarchical regression revealed that, after controlling for intelligence, components of executive function and working memory explained large proportions of unique variance in arithmetic accuracy and response time and these variables were sufficient to explain group differences in simple, but not complex, arithmetic. Children with cerebral palsy are at risk for specific executive function and working memory deficits that, when present, increase the risk for arithmetic difficulties in these children.
Hanaie, Ryuzo; Mohri, Ikuko; Kagitani-Shimono, Kuriko; Tachibana, Masaya; Azuma, Junji; Matsuzaki, Junko; Watanabe, Yoshiyuki; Fujita, Norihiko; Taniike, Masako
2013-10-01
Many studies have reported motor impairments in autistic spectrum disorders (ASD). However, the brain mechanism underlying motor impairment in ASD remains unclear. Recent neuroimaging studies have suggested that underconnectivity between the cerebellum and other brain regions contributes to the features of ASD. In this study, we investigated the microstructural integrity of the cerebellar pathways, including the superior, middle, and inferior cerebellar peduncles, of children with and without ASD by using diffusion tensor imaging (DTI) tractography to determine whether the microstructural integrity of the cerebellar pathways is related to motor function in children with ASD. Thirteen children with ASD and 11 age-, gender-, handedness-, and IQ-matched typically developing (TD) controls were enrolled in this study. DTI outcome measurements, such as fractional anisotropy (FA), axial diffusivity (AD), and radial diffusivity (RD), for the cerebellar pathways were calculated. The Movement Assessment Battery for Children 2 (M-ABC 2) was used for assessing motor functions. There were no significant differences between the two groups in RD. However, compared to the TD subjects, patients with ASD had a significantly lower FA in the right superior cerebellar peduncle and lower AD in the left superior cerebellar peduncle, in addition to a significantly lower score in ball skills and the total test score of M-ABC 2. There was a significant positive correlation between the total test score of M-ABC 2 and FA in the right superior cerebellar peduncle in the ASD group. These findings suggest that the altered microstructural integrity of the superior cerebellar peduncle may be related to motor impairment in ASD.
Neubauer, Vera; Djurdjevic, Tanja; Griesmaier, Elke; Biermayr, Marlene; Gizewski, Elke Ruth; Kiechl-Kohlendorfer, Ursula
2018-01-01
Recent advances in magnetic resonance imaging (MRI) techniques have prompted reconsideration of the anatomical correlates of adverse outcomes in preterm infants. The importance of the contribution made by the cerebellum is now increasingly appreciated. The effect of cerebellar haemorrhage (CBH) on the microstructure of the cerebellar-cerebral circuit is largely unexplored. To investigate the effect of CBH on the microstructure of cerebellar-cerebral connections in preterm infants aged <32 gestational weeks. Infants underwent diffusion tensor MRI at term-equivalent age. MRI was evaluated for CBH and additional supratentorial brain injury using a validated scoring system. Region of interest-based measures of brain microstructure (fractional anisotropy [FA] and apparent diffusion coefficient) were quantified in 5 vulnerable regions (the centrum semiovale, posterior limb of the internal capsule, corpus callosum, and superior and middle cerebellar peduncles). Group differences between infants with CBH and infants without CBH were assessed. There were 267 infants included in the study. Infants with CBH (isolated and combined) had significantly lower FA values in all regions investigated. Infants with isolated CBH showed lower FA in the middle and superior cerebellar peduncles and in the posterior limb of the internal capsule. This study provides evidence that CBH causes alterations in localised and remote WM pathways in the developing brain. The disruption of the cerebellar-cerebral microstructure at multiple sites adds further support for the concept of developmental diaschisis, which is propagated as an explanation for the consequences of early cerebellar injury on cognitive and affective domains. © 2017 S. Karger AG, Basel.
Neurodevelopmental malformations of the cerebellar vermis in genetically engineered rats
The cerebellar vermis is particularly vulnerable to neurodevelopmental malformations in humans and rodents. Sprague-Dawley, and Long-Evans rats exhibit spontaneous cerebellar malformations consisting of heterotopic neurons and glia in the molecular layer of the vermis. Malformati...
Conceptual Knowledge of Fraction Arithmetic
ERIC Educational Resources Information Center
Siegler, Robert S.; Lortie-Forgues, Hugues
2015-01-01
Understanding an arithmetic operation implies, at minimum, knowing the direction of effects that the operation produces. However, many children and adults, even those who execute arithmetic procedures correctly, may lack this knowledge on some operations and types of numbers. To test this hypothesis, we presented preservice teachers (Study 1),…
ERIC Educational Resources Information Center
Rourke, Byron P.; Conway, James A.
1997-01-01
Reviews current research on brain-behavior relationships in disabilities of arithmetic and mathematical reasoning from both a neurological and a neuropsychological perspective. Defines developmental dyscalculia and the developmental importance of right versus left hemisphere integrity for the mediation of arithmetic learning and explores…
Canto, Cathrin B; Onuki, Yoshiyuki; Bruinsma, Bastiaan; van der Werf, Ysbrand D; De Zeeuw, Chris I
2017-05-01
We sleep almost one-third of our lives and sleep plays an important role in critical brain functions like memory formation and consolidation. The role of sleep in cerebellar processing, however, constitutes an enigma in the field of neuroscience; we know little about cerebellar sleep-physiology, cerebro-cerebellar interactions during sleep, or the contributions of sleep to cerebellum-dependent memory consolidation. Likewise, we do not understand why cerebellar malfunction can lead to changes in the sleep-wake cycle and sleep disorders. In this review, we evaluate how sleep and cerebellar processing may influence one another and highlight which scientific routes and technical approaches could be taken to uncover the mechanisms underlying these interactions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Srivastava, Rupali; Kumar, Manoj; Peineau, Stéphane; Csaba, Zsolt; Mani, Shyamala; Gressens, Pierre; El Ghouzzi, Vincent
2013-04-01
Directing differentiation of embryonic stem cells (ESCs) to specific neuronal subtype is critical for modeling disease pathology in vitro. An attractive means of action would be to combine regulatory differentiation factors and extrinsic inductive signals added to the culture medium. In this study, we have generated mature cerebellar granule neurons by combining a temporally controlled transient expression of Math1, a master gene in granule neuron differentiation, with inductive extrinsic factors involved in cerebellar development. Using a Tetracyclin-On transactivation system, we overexpressed Math1 at various stages of ESCs differentiation and found that the yield of progenitors was considerably increased when Math1 was induced during embryonic body stage. Math1 triggered expression of Mbh1 and Mbh2, two target genes directly involved in granule neuron precursor formation and strong expression of early cerebellar territory markers En1 and NeuroD1. Three weeks after induction, we observed a decrease in the number of glial cells and an increase in that of neurons albeit still immature. Combining Math1 induction with extrinsic factors specifically increased the number of neurons that expressed Pde1c, Zic1, and GABAα6R characteristic of mature granule neurons, formed "T-shaped" axons typical of granule neurons, and generated synaptic contacts and action potentials in vitro. Finally, in vivo implantation of Math1-induced progenitors into young adult mice resulted in cell migration and settling of newly generated neurons in the cerebellum. These results show that conditional induction of Math1 drives ESCs toward the cerebellar fate and indicate that acting on both intrinsic and extrinsic factors is a powerful means to modulate ESCs differentiation and maturation into a specific neuronal lineage. Copyright © 2012 AlphaMed Press.
Macedo-Júnior, Sérgio José; Luiz-Cerutti, Murilo; Nascimento, Denise B; Farina, Marcelo; Soares Santos, Adair Roberto; de Azevedo Maia, Alcíbia Helena
2017-01-01
Various studies on methylmercury (MeHg)-induced toxicity focused on the central nervous system (CNS) as a primary target. However, MeHg-mediated toxicity is related to metallic interaction with electrophilic groups, which are not solely restricted to the CNS, but these reactive groups are present ubiquitously in several systems/organs. The aim of this study was thus to examine MeHg-induced systemic toxicity in mice using a standardized neurotoxicology testing exposure model to measure cerebellar neurotoxicity by determining biochemical and behavioral parameters in the cerebellum. After 2 weeks exposure to MeHg (40 µg/ml; diluted in drinking water; ad libitum), adult male Swiss mice showed a marked motor impairment characteristic of cerebellar toxicity as noted in the following tests: rotarod, beam walking, pole, and hind limb clasping. MeHg treatment resulted in Hg deposition in the cerebellum as well as reduction in cerebellar weight, glutathione peroxidase (GPx) activity, and interleukin (IL)-6 levels. MeHg ingestion increased cerebellar glutathione reductase (GR) activity and brain-derived neurotrophic factor (BDNF) levels. In addition to cerebellar toxicity, MeHg treatment also elevated total and non-high density lipoprotein (non-HDL) cholesterol levels, as well as serum aspartate transaminase (AST) and alanine transaminase (ALT) enzymatic activities, systemic parameters. Increased liver weight and reduced serum urea levels were also noted in MeHg-exposed mice. Taken together, our findings demonstrated that a well-standardized exposure protocol to examine MeHg-induced neurotoxicity also produced systemic toxicity in mice, which was characterized by changes in markers of hepatic function as well as serum lipid homeostasis.
Transplantation of Embryonic Cerebellar Grafts Improves Gait Parameters in Ataxic Lurcher Mice.
Babuska, Vaclav; Houdek, Zbynek; Tuma, Jan; Purkartova, Zdenka; Tumova, Jana; Kralickova, Milena; Vozeh, Frantisek; Cendelin, Jan
2015-12-01
Hereditary cerebellar ataxias are severe diseases for which therapy is currently not sufficiently effective. One of the possible therapeutic approaches could be neurotransplantation. Lurcher mutant mice are a natural model of olivocerebellar degeneration representing a tool to investigate its pathogenesis as well as experimental therapies for hereditary cerebellar ataxias. The effect of intracerebellar transplantation of embryonic cerebellar solid tissue or cell suspension on motor performance in adult Lurcher mutant and healthy wild-type mice was studied. Brain-derived neurotrophic factor level was measured in the graft and adult cerebellar tissue. Gait analysis and rotarod, horizontal wire, and wooden beam tests were carried out 2 or 6 months after the transplantation. Higher level of the brain-derived neurotrophic factor was found in the Lurcher cerebellum than in the embryonic and adult wild-type tissue. A mild improvement of gait parameters was found in graft-treated Lurcher mice. The effect was more marked in cell suspension grafts than in solid transplants and after the longer period than after the short one. Lurcher mice treated with cell suspension and examined 6 months later had a longer hind paw stride (4.11 vs. 3.73 mm, P < 0.05) and higher swing speed for both forepaws (52.46 vs. 32.79 cm/s, P < 0.01) and hind paws (63.46 vs. 43.67 cm/s, P < 0.001) than controls. On the other hand, classical motor tests were not capable of detecting clearly the change in the motor performance. No strong long-lasting negative effect of the transplantation was seen in wild-type mice, suggesting that the treatment has no harmful impact on the healthy cerebellum.
Bilateral cerebellar activation in unilaterally challenged essential tremor.
Broersma, Marja; van der Stouwe, Anna M M; Buijink, Arthur W G; de Jong, Bauke M; Groot, Paul F C; Speelman, Johannes D; Tijssen, Marina A J; van Rootselaar, Anne-Fleur; Maurits, Natasha M
2016-01-01
Essential tremor (ET) is one of the most common hyperkinetic movement disorders. Previous research into the pathophysiology of ET suggested underlying cerebellar abnormalities. In this study, we added electromyography as an index of tremor intensity to functional Magnetic Resonance Imaging (EMG-fMRI) to study a group of ET patients selected according to strict criteria to achieve maximal homogeneity. With this approach we expected to improve upon the localization of the bilateral cerebellar abnormalities found in earlier fMRI studies. We included 21 propranolol sensitive patients, who were not using other tremor medication, with a definite diagnosis of ET defined by the Tremor Investigation Group. Simultaneous EMG-fMRI recordings were performed while patients were off tremor medication. Patients performed unilateral right hand and arm extension, inducing tremor, alternated with relaxation (rest). Twenty-one healthy, age- and sex-matched participants mimicked tremor during right arm extension. EMG power variability at the individual tremor frequency as a measure of tremor intensity variability was used as a regressor, mathematically independent of the block regressor, in the general linear model used for fMRI analysis, to find specific tremor-related activations. Block-related activations were found in the classical upper-limb motor network, both for ET patients and healthy participants in motor, premotor and supplementary motor areas. In ET patients, we found tremor-related activations bilaterally in the cerebellum: in left lobules V, VI, VIIb and IX and in right lobules V, VI, VIIIa and b, and in the brainstem. In healthy controls we found simulated tremor-related activations in right cerebellar lobule V. Our results expand on previous findings of bilateral cerebellar involvement in ET. We have identified specific areas in the bilateral somatomotor regions of the cerebellum: lobules V, VI and VIII.
Austdal, L P E; Bjørnstad, S; Mathisen, G H; Aden, P K; Mikkola, I; Paulsen, R E; Rakkestad, K E
2016-12-01
The developing cerebellum is vulnerable to effects of glucocorticoids and cerebellar dysfunction is associated with neurodevelopmental disorders (e.g. autism). Transcription factor PAX6 and matrix metalloproteinase-9 (MMP-9) are critical for normal cerebellar development and are highly expressed in migrating neurones. Alterations in MMP-9 and PAX6 are associated with altered cerebellar development. In the present study, we characterised the growth rate and development of the cortical layers, and further investigated how the levels of PAX6 and MMP-9, as well as glucocorticoid receptor (GR) and proliferating cell nuclear antigen (PCNA), change in the cerebellum during the foetal period [embryonic day (E)12-21] in chicken, which corresponds to the human perinatal period. Dexamethasone (DEX) was administered in ovo at E13 and E16, aiming to investigate how prenatal exposure to glucocorticoids interferes with normal development. DEX reduced foetal and cerebellar weight at E17 in a dose-dependent manner linked to a reduced level of PCNA and, over time, down-regulation of GR. We report that promoter activity of PAX6 and MMP-9 increased as a result of GR-stimulation in vitro. Prenatal DEX increased the protein level of PAX6 in a transient manner. PAX6 is reduced in mature granule neurones, and this occurred earlier in embryos exposed to DEX than in non-exposed controls. DEX exposure also led to a slow-onset down-regulation of MMP-9. Taken together, these findings indicate that excess prenatal glucocorticoid stimulation disturbs normal development of the cerebellum through mechanisms associated with reduced proliferation and accelerated maturation where PAX6 and MMP-9 play important roles. © 2016 British Society for Neuroendocrinology.
Cheng, Lei; Guo, Pin; Liao, Yi-Wei; Zhang, Hong-Liang; Li, Huan-Ting; Yuan, Xianrui
2017-11-13
In certain surgical procedures sacrifice of the superior petrosal vein (SPV) is required. Previous studies have reported transient cerebellar edema, venous infarction or hemorrhage might occur after sectioning of the SPV. This study investigated the pathophysiological changes of cerebellum and brain stem after SPV sacrifice. Rabbits were divided into the operation group where the SPV was sacrificed and the control group where the SPV remained intact. Each group was further subdivided into 4, 8, 12, 24, 48 and 72 hours groups which represented the time period from sacrifice of the SPV to sacrifice of the rabbits. The water content (WC), Na + content, K + content and pathophysiological changes of cerebellum and brain stem tissue were measured. In comparison to the control, the WC and Na + content of cerebellar tissue were increased in the 4h, 8h, 12h and 24h operation subgroups (p<0.05), but only increased in the 4h subgroup of the brain stem tissue (p<0.05). The K + content of the cerebellar tissue decreased in the 4h, 8h, 12h and 24h operation subgroups (p<0.05) but only decreased in the 4h subgroup of brain stem tissue (p<0.05). Nissl staining and transmission electron microscopy demonstrated that cerebellar edema occurred in the 4h, 8h, 12h and 24h operation subgroups but not in the 48h and 72h subgroups. Brain stem edema occurred in the 4h operation subgroup. In summary, cerebellum and brain stem edema can be observed at different time points after sacrifice of the SPV in the rabbit model. ©2017 The Author(s).
Zwicker, Jill G; Miller, Steven P; Grunau, Ruth E; Chau, Vann; Brant, Rollin; Studholme, Colin; Liu, Mengyuan; Synnes, Anne; Poskitt, Kenneth J; Stiver, Mikaela L; Tam, Emily W Y
2016-05-01
To examine the relationship between morphine exposure and growth of the cerebellum and cerebrum in very preterm neonates from early in life to term-equivalent age, as well as to examine morphine exposure and brain volumes in relation to neurodevelopmental outcomes at 18 months corrected age (CA). A prospective cohort of 136 very preterm neonates (24-32 weeks gestational age) was serially scanned with magnetic resonance imaging near birth and at term-equivalent age for volumetric measurements of the cerebellum and cerebrum. Motor outcomes were assessed with the Peabody Developmental Motor Scales, Second Edition and cognitive outcomes with the Bayley Scales of Infant and Toddler Development, Third Edition at 18 months CA. Generalized least squares models and linear regression models were used to assess relationships between morphine exposure, brain volumes, and neurodevelopmental outcomes. A 10-fold increase in morphine exposure was associated with a 5.5% decrease in cerebellar volume, after adjustment for multiple clinical confounders and total brain volume (P = .04). When infants exposed to glucocorticoids were excluded, the association of morphine was more pronounced, with an 8.1% decrease in cerebellar volume. Morphine exposure was not associated with cerebral volume (P = .30). Greater morphine exposure also predicted poorer motor (P < .001) and cognitive outcomes (P = .006) at 18 months CA, an association mediated, in part, by slower brain growth. Morphine exposure in very preterm neonates is independently associated with impaired cerebellar growth in the neonatal period and poorer neurodevelopmental outcomes in early childhood. Alternatives to better manage pain in preterm neonates that optimize brain development and functional outcomes are urgently needed. Copyright © 2016 Elsevier Inc. All rights reserved.
Yokoi, Fumiaki; Dang, Mai Tu; Li, Yuqing
2012-01-01
Early-onset generalized torsion dystonia (dystonia 1) is an inherited movement disorder caused by mutations in DYT1 (TOR1A), which codes for torsinA. Most patients have a 3-base pair deletion (ΔGAG) in one allele of DYT1, corresponding to a loss of a glutamic acid residue (ΔE) in the C-terminal region of the protein. Functional alterations in basal ganglia circuits and the cerebellum have been reported in dystonia. Pharmacological manipulations or mutations in genes that result in functional alterations of the cerebellum have been reported to have dystonic symptoms and have been used as phenotypic rodent models. Additionally, structural lesions in the abnormal cerebellar circuits, such as cerebellectomy, have therapeutic effects in these models. A previous study has shown that the Dyt1 ΔGAG heterozygous knock-in (KI) mice exhibit motor deficits in the beam-walking test. Both Dyt1 ΔGAG heterozygous knock-in (KI) and Dyt1 Purkinje cell-specific knockout (Dyt1 pKO) mice exhibit dendritic alterations of cerebellar Purkinje cells. Here, Dyt1 pKO mice exhibited significantly less slip numbers in the beam-walking test, suggesting better motor performance than control littermates, and normal gait. Furthermore, Dyt1 ΔGAG KI/Dyt1 pKO double mutant mice exhibited significantly lower numbers of slips than Dyt1 ΔGAG heterozygous KI mice, suggesting Purkinje-cell specific knockout of Dyt1 wild-type (WT) allele in Dyt1 ΔGAG heterozygous KI mice rescued the motor deficits. The results suggest that molecular lesions of torsinA in Purkinje cells by gene therapy or intervening in the signaling pathway downstream of the cerebellar Purkinje cells may rescue motor symptoms in dystonia 1. PMID:22391119
Zwicker, Jill G; Miller, Steven P; Grunau, Ruth E; Chau, Vann; Brant, Rollin; Studholme, Colin; Liu, Mengyuan; Synnes, Anne; Poskitt, Kenneth J; Stiver, Mikaela L; Tam, Emily WY
2017-01-01
Objective To examine the relationship between morphine exposure and growth of the cerebellum and cerebrum in very preterm neonates from early in life to term-equivalent age, as well as to examine morphine exposure and brain volumes in relation to neurodevelopmental outcomes at 18 months corrected age (CA). Study design A prospective cohort of 136 very preterm neonates (24–32 weeks gestational age) was serially scanned with MRI near birth and at term-equivalent age for volumetric measurements of the cerebellum and cerebrum. Motor outcomes were assessed with the Peabody Scales of Motor Development-2 and cognitive outcomes with the Bayley-III at 18 months CA. Generalized least squares models and linear regression models were used to assess relationships between morphine exposure, brain volumes, and neurodevelopmental outcomes. Results A 10-fold increase in morphine exposure was associated with a 5.5% decrease in cerebellar volume, after adjustment for multiple clinical confounders and total brain volume (P=0.04). When infants exposed to glucocorticoids were excluded, the association of morphine was more pronounced, with an 8.2% decrease in cerebellar volume. Morphine exposure was not associated with cerebral volume (P=0.30). Greater morphine exposure also predicted poorer motor (P<0.001) and cognitive outcomes (P=0.006) at 18 months CA, an association mediated, in part, by slower brain growth. Conclusions Morphine exposure in very preterm neonates is independently associated with impaired cerebellar growth in the neonatal period and poorer neurodevelopmental outcomes in early childhood. Alternatives to better manage pain in preterm neonates that optimize brain development and functional outcomes are urgently needed. PMID:26763312
Abnormal cerebellar morphometry in abstinent adolescent marijuana users
Medina, Krista Lisdahl; Nagel, Bonnie J.; Tapert, Susan F.
2010-01-01
Background Functional neuroimaging data from adults have, in general, found frontocerebellar dysfunction associated with acute and chronic marijuana (MJ) use (Loeber & Yurgelun-Todd, 1999). One structural neuroimaging study found reduced cerebellar vermis volume in young adult MJ users with a history of heavy polysubstance use (Aasly et al., 1993). The goal of this study was to characterize cerebellar volume in adolescent chronic MJ users following one month of monitored abstinence. Method Participants were MJ users (n=16) and controls (n=16) aged 16-18 years. Extensive exclusionary criteria included history of psychiatric or neurologic disorders. Drug use history, neuropsychological data, and structural brain scans were collected after 28 days of monitored abstinence. Trained research staff defined cerebellar volumes (including three cerebellar vermis lobes and both cerebellar hemispheres) on high-resolution T1-weighted magnetic resonance images. Results Adolescent MJ users demonstrated significantly larger inferior posterior (lobules VIII-X) vermis volume (p<.009) than controls, above and beyond effects of lifetime alcohol and other drug use, gender, and intracranial volume. Larger vermis volumes were associated with poorer executive functioning (p’s<.05). Conclusions Following one month of abstinence, adolescent MJ users had significantly larger posterior cerebellar vermis volumes than non-using controls. These greater volumes are suggested to be pathological based on linkage to poorer executive functioning. Longitudinal studies are needed to examine typical cerebellar development during adolescence and the influence of marijuana use. PMID:20413277
Raz, N; Dupuis, J H; Briggs, S D; McGavran, C; Acker, J D
1998-01-01
The purpose of this study was to determine the effects of age and sex on the size of the cerebellar hemispheres, the cerebellar vermis, and the pons in healthy adults. We estimated the volumes of the cerebellar hemispheres (excluding the vermis and the peduncles), the cross-sectional area of the vermis, and the cross-sectional area of the ventral pons from MR images obtained in 146 healthy volunteers, 18 to 77 years old. We found a mild but significant age-related reduction in the volume of the cerebellar hemispheres and in the total area of the cerebellar vermis; however, the analysis of age trends in the vermian lobules revealed differential age-related declines. The areas of lobules VI and VII and of the posterior vermian lobules (VIII-X) declined significantly with age, whereas the anterior vermis (I-V) showed no significant age-related shrinkage. The volume of the cerebellar hemispheres (especially the right) and the area of the anterior vermis were greater in men, even after adjustment for height. Neither age nor sex affected the area of the ventral pons. Normal aging of the cerebellum is associated with selective regional shrinkage. The cerebellar hemispheres and the area of the anterior vermis may be larger in men than in women regardless of differences in body size.
Magistretti, Jacopo; Castelli, Loretta; Forti, Lia; D'Angelo, Egidio
2006-01-01
Cerebellar neurones show complex and differentiated mechanisms of action potential generation that have been proposed to depend on peculiar properties of their voltage-dependent Na+ currents. In this study we analysed voltage-dependent Na+ currents of rat cerebellar granule cells (GCs) by performing whole-cell, patch-clamp experiments in acute rat cerebellar slices. A transient Na+ current (INaT) was always present and had the properties of a typical fast-activating/inactivating Na+ current. In addition to INaT, robust persistent (INaP) and resurgent (INaR) Na+ currents were observed. INaP peaked at ∼−40 mV, showed half-maximal activation at ∼−55 mV, and its maximal amplitude was about 1.5% of that of INaT. INaR was elicited by repolarizing pulses applied following step depolarizations able to activate/inactivate INaT, and showed voltage- and time-dependent activation and voltage-dependent decay kinetics. The conductance underlying INaR showed a bell-shaped voltage dependence, with peak at −35 mV. A significant correlation was found between GC INaR and INaT peak amplitudes; however, GCs expressing INaT of similar size showed marked variability in terms of INaR amplitude, and in a fraction of cells INaR was undetectable. INaT, INaP and INaR could be accounted for by a 13-state kinetic scheme comprising closed, open, inactivated and blocked states. Current-clamp experiments carried out to identify possible functional correlates of INaP and/or INaR revealed that in GCs single action potentials were followed by depolarizing afterpotentials (DAPs). In a majority of cells, DAPs showed properties consistent with INaR playing a role in their generation. Computer modelling showed that INaR promotes DAP generation and enhances high-frequency firing, whereas INaP boosts near-threshold firing activity. Our findings suggest that special properties of voltage-dependent Na+ currents provides GCs with mechanisms suitable for shaping activity patterns, with potentially important consequences for cerebellar information transfer and computation. PMID:16527854
Cerebellar subjects show impaired adaptation of anticipatory EMG during catching.
Lang, C E; Bastian, A J
1999-11-01
We evaluated the role of the cerebellum in adapting anticipatory muscle activity during a multijointed catching task. Individuals with and without cerebellar damage caught a series of balls of different weights dropped from above. In Experiment 1 (light-heavy-light), each subject was required to catch light balls (baseline phase), heavy balls (adaptation phase), and then light balls again (postadaptation phase). Subjects were not told when the balls would be switched, and they were required to keep their hand within a vertical spatial "window" during the catch. During the series of trials, we measured three-dimensional (3-D) position and electromyogram (EMG) from the catching arm. We modeled the adaptation process using an exponential decay function; this model allowed us to dissociate adaptation from performance variability. Results from the position data show that cerebellar subjects did not adapt or adapted very slowly to the changed ball weight when compared with the control subjects. The cerebellar group required an average of 30.9 +/- 8.7 trials (mean +/- SE) to progress approximately two-thirds of the way through the adaptation compared with 1.7 +/- 0.2 trials for the control group. Only control subjects showed a negative aftereffect indicating storage of the adaptation. No difference in performance variability existed between the two groups. EMG data show that control subjects increased their anticipatory muscle activity in the flexor muscles of the arm to control the momentum of the ball at impact. Cerebellar subjects were unable to differentially increase the anticipatory muscle activity across three joints to perform the task successfully. In Experiment 2 (heavy-light-heavy), we tested to see whether the rate of adaptation changed when adapting to a light ball versus a heavy ball. Subjects caught the heavy balls (baseline phase), the light balls (adaptation phase), and then heavy balls again (postadaptation phase). Comparison of rates of adaptation between Experiment 1 and Experiment 2 showed that the rate of adaptation was unchanged whether adapting to a light ball or a heavy ball. Given these findings, we conclude that the cerebellum is important in generating the appropriate anticipatory muscle activity across multiple muscles and modifying it in response to changing demands though trial-and-error practice.
Bertolini, Giovanni; Ramat, Stefano; Bockisch, Christopher J.; Marti, Sarah; Straumann, Dominik; Palla, Antonella
2012-01-01
Background The rotational vestibulo-ocular reflex (rVOR) generates compensatory eye movements in response to rotational head accelerations. The velocity-storage mechanism (VSM), which is controlled by the vestibulo-cerebellar nodulus and uvula, determines the rVOR time constant. In healthy subjects, it has been suggested that self-motion perception in response to earth-vertical axis rotations depends on the VSM in a similar way as reflexive eye movements. We aimed at further investigating this hypothesis and speculated that if the rVOR and rotational self-motion perception share a common VSM, alteration in the latter, such as those occurring after a loss of the regulatory control by vestibulo-cerebellar structures, would result in similar reflexive and perceptual response changes. We therefore set out to explore both responses in patients with vestibulo-cerebellar degeneration. Methodology/Principal Findings Reflexive eye movements and perceived rotational velocity were simultaneously recorded in 14 patients with chronic vestibulo-cerebellar degeneration (28–81yrs) and 12 age-matched healthy subjects (30–72yrs) after the sudden deceleration (90°/s2) from constant-velocity (90°/s) rotations about the earth-vertical yaw and pitch axes. rVOR and perceived rotational velocity data were analyzed using a two-exponential model with a direct pathway, representing semicircular canal activity, and an indirect pathway, implementing the VSM. We found that VSM time constants of rVOR and perceived rotational velocity co-varied in cerebellar patients and in healthy controls (Pearson correlation coefficient for yaw 0.95; for pitch 0.93, p<0.01). When constraining model parameters to use the same VSM time constant for rVOR and perceived rotational velocity, moreover, no significant deterioration of the quality of fit was found for both populations (variance-accounted-for >0.8). Conclusions/Significance Our results confirm that self-motion perception in response to rotational velocity-steps may be controlled by the same velocity storage network that controls reflexive eye movements and that no additional, e.g. cortical, mechanisms are required to explain perceptual dynamics. PMID:22719833
El-Beltagy, Abd El-Fattah B M; Abou-El-Naga, Amoura M; Sabry, Dalia M
2015-10-01
Long-acting nicotine is known to exert pathological effects on almost all tissues including the cerebellar cortex. The present work was designed to elucidate the effect of nicotine on the development of cerebellar cortex of chick embryo during incubation period. The fertilized eggs of hen (Gallus gallus domesticus) were injected into the air space by a single dose of long acting nicotine (1.6 mg/kg/egg) at the 4th day of incubation. The embryos were taken out of the eggs on days 8, 12 and 16 of incubation. The cerebellum of the control and treated embryos at above ages were processed for histopathological examination. The TEM were examined at 16th day of incubation. The results of the present study revealed that, exposure to long-acting nicotine markedly influence the histogenesis of cerebellar cortex of chick embryo during the incubation period. At 8th day of incubation, nicotine delayed the differentiation of the cerebellar analge; especially the external granular layer (EGL) and inner cortical layer (ICL). Furthermore, at 12th day of incubation, the cerebellar foliation was irregular and the Purkinje cells not recognized. By 16th day of incubation, the cerebellar foliations were irregular with interrupted cerebellar cortex and irregular arrangement of Purkinje cells. Immunohistochemical analysis for antibody P53 protein revealed that the cerebellar cortex in all stages of nicotine treated groups possessed a moderate to weak reaction for P53 protein however; this reaction was markedly stronger in the cerebellar cortex of control groups. Moreover, the flow cytometric analysis confirmed that the percentage of apoptosis in control group was significantly higher compared with that of nicotine treated group. At the TEM level, the cerebellar Purkinje cells of 16th day of treated groups showed multiple subcellular alterations in compared with those of the corresponding control group. Such changes represented by appearing of vacuolated mitochondria, cisternal fragmentation of RER, irregular grooves of Golgi tubules. Also, multiple cytoplasmic vacuoles and aggregation of Nissl granules were recorded around pyknotic nucleus. Copyright © 2015 Elsevier Ltd. All rights reserved.
Children Learn Spurious Associations in Their Math Textbooks: Examples from Fraction Arithmetic
ERIC Educational Resources Information Center
Braithwaite, David W.; Siegler, Robert S.
2018-01-01
Fraction arithmetic is among the most important and difficult topics children encounter in elementary and middle school mathematics. Braithwaite, Pyke, and Siegler (2017) hypothesized that difficulties learning fraction arithmetic often reflect reliance on associative knowledge--rather than understanding of mathematical concepts and procedures--to…
Arithmetic 400. A Computer Educational Program.
ERIC Educational Resources Information Center
Firestein, Laurie
"ARITHMETIC 400" is the first of the next generation of educational programs designed to encourage thinking about arithmetic problems. Presented in video game format, performance is a measure of correctness, speed, accuracy, and fortune as well. Play presents a challenge to individuals at various skill levels. The program, run on an Apple…
Individual Differences in Children's Understanding of Inversion and Arithmetical Skill
ERIC Educational Resources Information Center
Gilmore, Camilla K.; Bryant, Peter
2006-01-01
Background and aims: In order to develop arithmetic expertise, children must understand arithmetic principles, such as the inverse relationship between addition and subtraction, in addition to learning calculation skills. We report two experiments that investigate children's understanding of the principle of inversion and the relationship between…
The Practice of Arithmetic in Liberian Schools.
ERIC Educational Resources Information Center
Brenner, Mary E.
1985-01-01
Describes a study of Liberian schools in which students of the Vai tribe are instructed in Western mathematical practices which differ from those of the students' home culture. Reports that the Vai children employed syncretic arithmetic practices, combining two distinct systems of arithmetic in a classroom environment that tacitly facilitated the…
From Arithmetic Sequences to Linear Equations
ERIC Educational Resources Information Center
Matsuura, Ryota; Harless, Patrick
2012-01-01
The first part of the article focuses on deriving the essential properties of arithmetic sequences by appealing to students' sense making and reasoning. The second part describes how to guide students to translate their knowledge of arithmetic sequences into an understanding of linear equations. Ryota Matsuura originally wrote these lessons for…
Baby Arithmetic: One Object Plus One Tone
ERIC Educational Resources Information Center
Kobayashi, Tessei; Hiraki, Kazuo; Mugitani, Ryoko; Hasegawa, Toshikazu
2004-01-01
Recent studies using a violation-of-expectation task suggest that preverbal infants are capable of recognizing basic arithmetical operations involving visual objects. There is still debate, however, over whether their performance is based on any expectation of the arithmetical operations, or on a general perceptual tendency to prefer visually…
Conceptual Knowledge of Decimal Arithmetic
ERIC Educational Resources Information Center
Lortie-Forgues, Hugues; Siegler, Robert S.
2016-01-01
In two studies (N's = 55 and 54), we examined a basic form of conceptual understanding of rational number arithmetic, the direction of effect of decimal arithmetic operations, at a level of detail useful for informing instruction. Middle school students were presented tasks examining knowledge of the direction of effects (e.g., "True or…
IBM system/360 assembly language interval arithmetic software
NASA Technical Reports Server (NTRS)
Phillips, E. J.
1972-01-01
Computer software designed to perform interval arithmetic is described. An interval is defined as the set of all real numbers between two given numbers including or excluding one or both endpoints. Interval arithmetic consists of the various elementary arithmetic operations defined on the set of all intervals, such as interval addition, subtraction, union, etc. One of the main applications of interval arithmetic is in the area of error analysis of computer calculations. For example, it has been used sucessfully to compute bounds on sounding errors in the solution of linear algebraic systems, error bounds in numerical solutions of ordinary differential equations, as well as integral equations and boundary value problems. The described software enables users to implement algorithms of the type described in references efficiently on the IBM 360 system.
Children learn spurious associations in their math textbooks: Examples from fraction arithmetic.
Braithwaite, David W; Siegler, Robert S
2018-04-26
Fraction arithmetic is among the most important and difficult topics children encounter in elementary and middle school mathematics. Braithwaite, Pyke, and Siegler (2017) hypothesized that difficulties learning fraction arithmetic often reflect reliance on associative knowledge-rather than understanding of mathematical concepts and procedures-to guide choices of solution strategies. They further proposed that this associative knowledge reflects distributional characteristics of the fraction arithmetic problems children encounter. To test these hypotheses, we examined textbooks and middle school children in the United States (Experiments 1 and 2) and China (Experiment 3). We asked the children to predict which arithmetic operation would accompany a specified pair of operands, to generate operands to accompany a specified arithmetic operation, and to match operands and operations. In both countries, children's responses indicated that they associated operand pairs having equal denominators with addition and subtraction, and operand pairs having a whole number and a fraction with multiplication and division. The children's associations paralleled the textbook input in both countries, which was consistent with the hypothesis that children learned the associations from the practice problems. Differences in the effects of such associative knowledge on U.S. and Chinese children's fraction arithmetic performance are discussed, as are implications of these differences for educational practice. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Cipora, Krzysztof; Nuerk, Hans-Christoph
2013-01-01
The SNARC (spatial-numerical association of response codes) described that larger numbers are responded faster with the right hand and smaller numbers with the left hand. It is held in the literature that arithmetically skilled and nonskilled adults differ in the SNARC. However, the respective data are descriptive, and the decisive tests are nonsignificant. Possible reasons for this nonsignificance could be that in previous studies (a) very small samples were used, (b) there were too few repetitions producing too little power and, consequently, reliabilities that were too small to reach conventional significance levels for the descriptive skill differences in the SNARC, and (c) general mathematical ability was assessed by the field of study of students, while individual arithmetic skills were not examined. Therefore we used a much bigger sample, a lot more repetitions, and direct assessment of arithmetic skills to explore relations between the SNARC effect and arithmetic skills. Nevertheless, a difference in SNARC effect between arithmetically skilled and nonskilled participants was not obtained. Bayesian analysis showed positive evidence of a true null effect, not just a power problem. Hence we conclude that the idea that arithmetically skilled and nonskilled participants generally differ in the SNARC effect is not warranted by our data.
Reich, Martin M; Brumberg, Joachim; Pozzi, Nicolò G; Marotta, Giorgio; Roothans, Jonas; Åström, Mattias; Musacchio, Thomas; Lopiano, Leonardo; Lanotte, Michele; Lehrke, Ralph; Buck, Andreas K; Volkmann, Jens; Isaias, Ioannis U
2016-11-01
Thalamic deep brain stimulation is a mainstay treatment for severe and drug-refractory essential tremor, but postoperative management may be complicated in some patients by a progressive cerebellar syndrome including gait ataxia, dysmetria, worsening of intention tremor and dysarthria. Typically, this syndrome manifests several months after an initially effective therapy and necessitates frequent adjustments in stimulation parameters. There is an ongoing debate as to whether progressive ataxia reflects a delayed therapeutic failure due to disease progression or an adverse effect related to repeated increases of stimulation intensity. In this study we used a multimodal approach comparing clinical stimulation responses, modelling of volume of tissue activated and metabolic brain maps in essential tremor patients with and without progressive ataxia to disentangle a disease-related from a stimulation-induced aetiology. Ten subjects with stable and effective bilateral thalamic stimulation were stratified according to the presence (five subjects) of severe chronic-progressive gait ataxia. We quantified stimulated brain areas and identified the stimulation-induced brain metabolic changes by multiple 18 F-fluorodeoxyglucose positron emission tomography performed with and without active neurostimulation. Three days after deactivating thalamic stimulation and following an initial rebound of symptom severity, gait ataxia had dramatically improved in all affected patients, while tremor had worsened to the presurgical severity, thus indicating a stimulation rather than disease-related phenomenon. Models of the volume of tissue activated revealed a more ventrocaudal stimulation in the (sub)thalamic area of patients with progressive gait ataxia. Metabolic maps of both patient groups differed by an increased glucose uptake in the cerebellar nodule of patients with gait ataxia. Our data suggest that chronic progressive gait ataxia in essential tremor is a reversible cerebellar syndrome caused by a maladaptive response to neurostimulation of the (sub)thalamic area. The metabolic signature of progressive gait ataxia is an activation of the cerebellar nodule, which may be caused by inadvertent current spread and antidromic stimulation of a cerebellar outflow pathway originating in the vermis. An anatomical candidate could be the ascending limb of the uncinate tract in the subthalamic area. Adjustments in programming and precise placement of the electrode may prevent this adverse effect and help fine-tuning deep brain stimulation to ameliorate tremor without negative cerebellar signs. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Burello, Lorena; De Bartolo, Paola; Gelfo, Francesca; Foti, Francesca; Angelucci, Francesco; Petrosini, Laura
2012-01-01
Since brain injuries in adulthood are a leading cause of long-term disabilities, the development of rehabilitative strategies able to impact on functional outcomes requires detailing adaptive neurobiological responses. Functional recovery following brain insult is mainly ascribed to brain neuroplastic properties although the close linkage between neuronal plasticity and functional recovery is not yet fully clarified. The present study analyzed the reactive responses of pre-cerebellar (inferior olive, lateral reticular nucleus and pontine nuclei) and deep cerebellar nuclei after a hemicerebellectomy, considering the great plastic potential of the cerebellar system in physiological and pathological conditions. The time course of the plastic reorganization following cerebellar lesion was investigated by monitoring the Growth Associated Protein-43 (GAP-43) immunoreactivity. The time course of recovery from cerebellar symptoms was also assessed to parallel behavioral and neurobiological parameters. A key role of GAP-43 in neuronal reactive responses was evidenced. Neurons that underwent an axotomy as consequence of the right hemicerebellectomy (neurons of left inferior olive, right lateral reticular nucleus and left pontine nuclei) exhibited enhanced GAP-43 immunoreactivity and cell death. As for the not-axotomized neurons, we found enhanced GAP-43 immunoreactivity only in right pontine nuclei projecting to the spared (left) hemicerebellum. GAP-43 levels augmented also in the three deep cerebellar nuclei of the spared hemicerebellum, indicating the ponto-cerebellar circuit as crucially involved in functional recovery. Interestingly, each nucleus showed a distinct time course in GAP-43 immunoreactivity. GAP-43 levels peaked during the first post-operative week in the fastigial and interposed nuclei and after one month in the dentate nucleus. These results suggest that the earlier plastic events of the fastigial and interposed nuclei were driving compensation of the elementary features of posture and locomotion, while the later plastic events of the dentate nucleus were mediating the recovered ability to flexibly adjust the locomotor plan. Copyright © 2011. Published by Elsevier Inc.
Altered soleus responses to magnetic stimulation in pure cerebellar ataxia.
Kurokawa-Kuroda, Tomomi; Ogata, Katsuya; Suga, Rie; Goto, Yoshinobu; Taniwaki, Takayuki; Kira, Jun-Ichi; Tobimatsu, Shozo
2007-06-01
Transcranial magnetic stimulation (TMS) over the leg motor area elicits a soleus primary response (SPR) and a soleus late response (SLR). We evaluated the influence of the cerebellofugal pathway on the SPR and SLR in patients with 'pure' cerebellar ataxia. SPRs and SLRs were recorded from 11 healthy subjects and 9 patients with 'pure' cerebellar cortical degeneration; 5 with spinocerebellar ataxia type 6 (SCA6), and 4 with late cortical cerebellar ataxia (LCCA). In addition, three patients with localized cerebellar lesions were tested. The SPR latency was significantly longer in patients than in controls, but primary responses in the tibialis anterior muscle were normal. The frequency of abnormal SLR was 38.9% in the supine position and 83.3% in the standing position. Two out of three patients with localized cerebellar lesions also showed abnormal SLR. Altered SPRs in patients may result from a dysfunction of the primary motor cortex caused by crossed cerebello-cerebral diaschisis. In addition, our results suggest that 'pure' cerebellar degeneration involves the mechanism responsible for evoking SLR which is related to the control of posture. SLR can be a useful neurophysiological parameter for evaluating cerebellofugal function.
Doubly stochastic Poisson processes in artificial neural learning.
Card, H C
1998-01-01
This paper investigates neuron activation statistics in artificial neural networks employing stochastic arithmetic. It is shown that a doubly stochastic Poisson process is an appropriate model for the signals in these circuits.
Kim, Hee-Jin; Lee, Jae-Jung; Lee, Phil Hyu
2009-01-01
Progressive multifocal leukoencephalopathy (PML) is a demyelinating disease of the central nervous system (CNS) caused by JC virus infection in oligodendrocytes, especially in patients with acquired immunodeficiency syndrome (AIDS). Movement disorders associated with PML are very rare. Here, we report a case of PML in an AIDS patient who presented with a cerebellar tremor, caused by lesions in the cerebellar outflow tract. A cerebellar tremor can be a rare clinical manifestation in patients with PML. PMID:24868366
Rickard, Timothy C; Bajic, Daniel
2006-07-01
The applicability of the identical elements (IE) model of arithmetic fact retrieval (T. C. Rickard, A. F. Healy, & L. E. Bourne, 1994) to cued recall from episodic (image and sentence) memory was explored in 3 transfer experiments. In agreement with results from arithmetic, speedup following even minimal practice recalling a missing word from an episodically bound word triplet did not transfer positively to other cued recall items involving the same triplet. The shape of the learning curve further supported a shift from episode-based to IE-based recall, extending some models of skill learning to cued recall practice. In contrast with previous findings, these results indicate that a form of representation that is independent of the original episodic memory underlies cued-recall performance following minimal practice. Copyright 2006 APA, all rights reserved.
A structural equation modeling analysis of students' understanding in basic mathematics
NASA Astrophysics Data System (ADS)
Oktavia, Rini; Arif, Salmawaty; Ferdhiana, Ridha; Yuni, Syarifah Meurah; Ihsan, Mahyus
2017-11-01
This research, in general, aims to identify incoming students' understanding and misconceptions of several basic concepts in mathematics. The participants of this study are the 2015 incoming students of Faculty of Mathematics and Natural Science of Syiah Kuala University, Indonesia. Using an instrument that were developed based on some anecdotal and empirical evidences on students' misconceptions, a survey involving 325 participants was administered and several quantitative and qualitative analysis of the survey data were conducted. In this article, we discuss the confirmatory factor analysis using Structural Equation Modeling (SEM) on factors that determine the new students' overall understanding of basic mathematics. The results showed that students' understanding on algebra, arithmetic, and geometry were significant predictors for their overall understanding of basic mathematics. This result supported that arithmetic and algebra are not the only predictors of students' understanding of basic mathematics.
Kim, Hyun-Ah; Yi, Hyon-Ah; Lee, Hyung
2016-04-01
To investigate the frequency and pattern of failure of the fixation suppression (FFS) of spontaneous nystagmus (SN) in unilateral cerebellar infarction, and to identify the structure responsible for FFS, 29 patients with acute, mainly unilateral, isolated cerebellar infarction who had SN with a predominantly horizontal component were enrolled in this study. The ocular fixation index (OFI) was defined as the mean slow phase velocity (SPV) of the horizontal component of SN with fixation divided by the mean SPV of the horizontal component of SN without fixation. The OFI from age- and sex-matched patients with vestibular neuritis was calculated and used as the control data. The FFS of SN was only found in less than half (41 %, 12/29) of the patients. Approximately 65 % (n = 7) of the patients with isolated anterior inferior cerebellar artery territory cerebellar infarction showed FFS, whereas only a quarter (n = 3) of the patients with isolated posterior inferior cerebellar artery (PICA) territory cerebellar infarction showed FFS. The proportion of gaze-evoked nystagmus (6/12 [50 %] vs. 2/17 [12 %], p = 0.04) and deficient gain of ipsilesional pursuit (10/12 [83 %] vs. 6/17 [35 %], p = 0.05) was more frequent in the FFS group than in the group without FFS. Lesion subtraction analysis in isolated PICA territory cerebellar infarction revealed that the nodulus was commonly damaged in patients with FFS, compared to that of patients without FFS. Our study shows that FFS of SN due to acute cerebellar infarction is less common than previously thought and the nodulus may be an important structure for the suppression of SN in humans.
Amer, Mona G; Karam, Rehab A
2018-03-25
Zinc oxide nanoparticles (ZnONPs) are widely used in the last decades. Therefore, investigation of its neurotoxic effect is important. This work aimed to investigate the potential adverse effects of ZnONPs on rat's cerebellar cortex and the possible neuroprotective role of curcumin (Cur). Forty male albino rats were randomly divided into four equal groups. Two groups were injected with ZnONPs and one group was previously received Cur before ZnONPs. At the end of the experiment, cerebellar tissue samples were prepared for histological, morphometric, immunohistochemical study, and tissue levels of oxidative stress markers and cytokine analysis. cerebellar damage is clearly visible with ZnONPs. Degeneration, loss, disorganization of cerebellar neurons was observed. Histopathological degeneration of Purkinje and granular cells together with loss of Nissl substance, astrocyte gliosis, and affection of cerebellar blood brain barrier were detected. Moreover, an apoptotic marker (caspase-3) was significantly expressed in Purkinje and granular layers together with elevated gene expression of P53 and COX-2 in cerebellar tissue of ZnONPs intoxicated group. Astrocyte gliosis and inflammatory markers IL-1, IL-6, and TNF-α were expressed significantly in ZnONPs intoxicated cerebellum. These changes were associated with evidence of cerebellar oxidative stress. Strikingly, treatment with Cur together with ZnONPs recorded morphological improvement, with increased number of Purkinje cells and decreased caspase +ve cells. These findings were confirmed by morphometric and statistical analysis. Cur ameliorates the deterious effect of ZnONPs on the cerebellar cortex through its antioxidant, antiapoptotic, and anti-inflammatory efficacies. Anat Rec, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
Cerebellar stroke presenting with isolated dizziness: Brain MRI in 136 patients.
Perloff, Michael D; Patel, Nimesh S; Kase, Carlos S; Oza, Anuja U; Voetsch, Barbara; Romero, Jose R
2017-11-01
To evaluate occurrence of cerebellar stroke in Emergency Department (ED) presentations of isolated dizziness (dizziness with a normal exam and negative neurological review of systems). A 5-year retrospective study of ED patients presenting with a chief complaint of "dizziness or vertigo", without other symptoms or signs in narrative history or on exam to suggest a central nervous system lesion, and work-up included a brain MRI within 48h. Patients with symptoms commonly peripheral in etiology (nystagmus, tinnitus, gait instability, etc.) were included in the study. Patient demographics, stroke risk factors, and gait assessments were recorded. One hundred and thirty-six patients, who had a brain MRI for isolated dizziness, were included. There was a low correlation of gait assessment between ED physician and Neurologist (49 patients, Spearman's correlation r 2 =0.17). Based on MRI DWI sequence, 3.7% (5/136 patients) had acute cerebellar strokes, limited to or including, the medial posterior inferior cerebellar artery vascular territory. In the 5 cerebellar stroke patients, mean age, body mass index (BMI), hemoglobin A1c, gender distribution, and prevalence of hypertension were similar to the non-cerebellar stroke patient group. Mean LDL/HDL ratio was 3.63±0.80 and smoking prevalence was 80% in the cerebellar stroke group compared to 2.43±0.79 and 22% (respectively, p values<0.01) in the non-cerebellar stroke group. Though there was preselection bias for stroke risk factors, our study suggests an important proportion of cerebellar stroke among ED patients with isolated dizziness, considering how common this complaint is. Copyright © 2017 Elsevier Inc. All rights reserved.
Hindbrain regional growth in preterm newborns and its impairment in relation to brain injury.
Kim, Hosung; Gano, Dawn; Ho, Mai-Lan; Guo, Xiaoyue M; Unzueta, Alisa; Hess, Christopher; Ferriero, Donna M; Xu, Duan; Barkovich, A James
2016-02-01
Premature birth globally affects about 11.1% of all newborns and is a risk factor for neurodevelopmental disability in surviving infants. Histology has suggested that hindbrain subdivisions grow differentially, especially in the third trimester. Prematurity-related brain injuries occurring in this period may selectively affect more rapidly developing areas of hindbrain, thus accompanying region-specific impairments in growth and ultimately neurodevelopmental deficits. The current study aimed to quantify regional growth of the cerebellum and the brainstem in preterm neonates (n = 65 with individually multiple scans). We probed associations of the regional volumes with severity of brain injury. In neonates with no imaging evidence of injury, our analysis using a mixed-effect linear model showed faster growth in the pons and the lateral convexity of anterior/posterior cerebellar lobes. Different patterns of growth impairment were found in relation to early cerebral intraventricular hemorrhage and cerebellar hemorrhage (P < 0.05), likely explaining different mechanisms through which neurogenesis is disrupted. The pattern of cerebellar growth identified in our study agreed excellently with details of cerebellar morphogenesis in perinatal development, which has only been observed in histological data. Our proposed analytic framework may provide predictive imaging biomarkers for neurodevelopmental outcome, enabling early identification and treatment of high-risk patients. Hum Brain Mapp 37:678-688, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Individual differences in children's understanding of inversion and arithmetical skill.
Gilmore, Camilla K; Bryant, Peter
2006-06-01
Background and aims. In order to develop arithmetic expertise, children must understand arithmetic principles, such as the inverse relationship between addition and subtraction, in addition to learning calculation skills. We report two experiments that investigate children's understanding of the principle of inversion and the relationship between their conceptual understanding and arithmetical skills. A group of 127 children from primary schools took part in the study. The children were from 2 age groups (6-7 and 8-9 years). Children's accuracy on inverse and control problems in a variety of presentation formats and in canonical and non-canonical forms was measured. Tests of general arithmetic ability were also administered. Children consistently performed better on inverse than control problems, which indicates that they could make use of the inverse principle. Presentation format affected performance: picture presentation allowed children to apply their conceptual understanding flexibly regardless of the problem type, while word problems restricted their ability to use their conceptual knowledge. Cluster analyses revealed three subgroups with different profiles of conceptual understanding and arithmetical skill. Children in the 'high ability' and 'low ability' groups showed conceptual understanding that was in-line with their arithmetical skill, whilst a 3rd group of children had more advanced conceptual understanding than arithmetical skill. The three subgroups may represent different points along a single developmental path or distinct developmental paths. The discovery of the existence of the three groups has important consequences for education. It demonstrates the importance of considering the pattern of individual children's conceptual understanding and problem-solving skills.
Gurer, G; Sahin, G; Cekirge, S; Tan, E; Saribas, O
2001-10-01
The most frequent type of cerebellar infarcts involved the posterior inferior cerebellar artery (PICA) and superior cerebellar artery territories but bilateral involvement of lateral or medial branches of PICA is extremely rare. In this report, we present a 55-year-old male who admitted to hospital with vomiting, nausea and dizziness. On examination left-sided hemiparesia and ataxic gait were detected. Infarct on bilateral medial branch of PICA artery territories was found out with cranial magnetic resonance imaging (MRI) technique and 99% stenosis of the left vertebral artery was found out with digital subtraction arteriography. The patient was put on heparin treatment. After 3 weeks, his complaints and symptoms had disappeared except for mild gait ataxia.
Homolateral ataxia and crural paresis: a crossed cerebral-cerebellar diaschisis.
Giroud, M; Creisson, E; Fayolle, H; Gras, P; Vion, P; Brunotte, F; Dumas, R
1994-01-01
A patient developed weakness of the right leg and homolateral ataxia of the arm, caused by a subcortical infarct in the area supplied by the anterior cerebral artery in the left paracentral region, demonstrated by CT and MRI. Cerebral blood flow studied by technetium-labelled hexamethyl-propylene-amine oxime using single photon emission computed tomography showed decreased blood flow in the left lateral frontal cortex and in the right cerebellar hemisphere ("crossed cerebral-cerebellar diaschisis"). The homolateral ataxia of the arm may be caused by decreased function of the right cerebellar hemisphere, because of a lesion of the corticopontine-cerebellar tracts, whereas crural hemiparesis is caused by a lesion of the upper part of the corona radiata. Images PMID:8126511
Parvovirus associated cerebellar hypoplasia and hydrocephalus in day-old broiler chickens
USDA-ARS?s Scientific Manuscript database
Cerebellar hypoplasia and hydrocephalus were detected in day-old broiler chickens. Brains of chickens evaluated at necropsy appeared to be abnormal; some were disfigured and cerebellae appeared to be smaller than normal. Histopathologic examination of brains revealed cerebellar folia that were sho...
Postoperative cerebellar mutism and autistic spectrum disorder.
Tasdemiroğlu, Erol; Kaya, Miktat; Yildirim, Can Hakan; Firat, Levent
2011-06-01
I read the article "An Inside View of Autism" written by a 44-year-old autistic woman who had a successful international career designing livestock equipment. In this article, she wrote about her life, disease, and experiences as an autistic individual. She stated that "It is interesting that my speech resembled the stressed speech in young children who have had tumors removed from the cerebellum". In this article, we intend to review and extensively document both postoperative cerebellar mutism and autistic spectrum disorder. We reviewed the clinical and neurological findings, etio-pathogenesis, neuroanatomy, mechanisms of development, and similarities between the etio-pathogenesis of both diseases. Cerebellar lesions can produce mutism and dysarthria, symptoms sometimes seen in autistic spectrum disorder. In mammals, cerebellar lesions disturb motivated behavior and reduce social interactions, functions that are disturbed in autistic spectrum disorder and cerebellar mutism. The cerebellum and two regions within the frontal lobes are active in certain language tasks. Language is abnormal in autistic spectrum disorder and cerebellar mutism.
A Substituting Meaning for the Equals Sign in Arithmetic Notating Tasks
ERIC Educational Resources Information Center
Jones, Ian; Pratt, Dave
2012-01-01
Three studies explore arithmetic tasks that support both substitutive and basic relational meanings for the equals sign. The duality of meanings enabled children to engage meaningfully and purposefully with the structural properties of arithmetic statements in novel ways. Some, but not all, children were successful at the adapted task and were…
Children's Acquisition of Arithmetic Principles: The Role of Experience
ERIC Educational Resources Information Center
Prather, Richard; Alibali, Martha W.
2011-01-01
The current study investigated how young learners' experiences with arithmetic equations can lead to learning of an arithmetic principle. The focus was elementary school children's acquisition of the Relation to Operands principle for subtraction (i.e., for natural numbers, the difference must be less than the minuend). In Experiment 1, children…
ERIC Educational Resources Information Center
Koontz, Kristine L.; Berch, Daniel B.
1996-01-01
Children with arithmetic learning disabilities (n=16) and normally achieving controls (n=16) in grades 3-5 were administered a battery of computerized tasks. Memory spans for both letters and digits were found to be smaller among the arithmetic learning disabled children. Implications for teaching are discussed. (Author/CMS)
Arithmetic Abilities in Children with Developmental Dyslexia: Performance on French ZAREKI-R Test
ERIC Educational Resources Information Center
De Clercq-Quaegebeur, Maryse; Casalis, Séverine; Vilette, Bruno; Lemaitre, Marie-Pierre; Vallée, Louis
2018-01-01
A high comorbidity between reading and arithmetic disabilities has already been reported. The present study aims at identifying more precisely patterns of arithmetic performance in children with developmental dyslexia, defined with severe and specific criteria. By means of a standardized test of achievement in mathematics ("Calculation and…
Binary Arithmetic From Hariot (CA, 1600 A.D.) to the Computer Age.
ERIC Educational Resources Information Center
Glaser, Anton
This history of binary arithmetic begins with details of Thomas Hariot's contribution and includes specific references to Hariot's manuscripts kept at the British Museum. A binary code developed by Sir Francis Bacon is discussed. Briefly mentioned are contributions to binary arithmetic made by Leibniz, Fontenelle, Gauss, Euler, Benzout, Barlow,…
How Is Phonological Processing Related to Individual Differences in Children's Arithmetic Skills?
ERIC Educational Resources Information Center
De Smedt, Bert; Taylor, Jessica; Archibald, Lisa; Ansari, Daniel
2010-01-01
While there is evidence for an association between the development of reading and arithmetic, the precise locus of this relationship remains to be determined. Findings from cognitive neuroscience research that point to shared neural correlates for phonological processing and arithmetic as well as recent behavioral evidence led to the present…
ASIC For Complex Fixed-Point Arithmetic
NASA Technical Reports Server (NTRS)
Petilli, Stephen G.; Grimm, Michael J.; Olson, Erlend M.
1995-01-01
Application-specific integrated circuit (ASIC) performs 24-bit, fixed-point arithmetic operations on arrays of complex-valued input data. High-performance, wide-band arithmetic logic unit (ALU) designed for use in computing fast Fourier transforms (FFTs) and for performing ditigal filtering functions. Other applications include general computations involved in analysis of spectra and digital signal processing.
Arithmetic Performance of Children with Cerebral Palsy: The Influence of Cognitive and Motor Factors
ERIC Educational Resources Information Center
van Rooijen, Maaike; Verhoeven, Ludo; Smits, Dirk-Wouter; Ketelaar, Marjolijn; Becher, Jules G.; Steenbergen, Bert
2012-01-01
Children diagnosed with cerebral palsy (CP) often show difficulties in arithmetic compared to their typically developing peers. The present study explores whether cognitive and motor variables are related to arithmetic performance of a large group of primary school children with CP. More specifically, the relative influence of non-verbal…
Cognitive Arithmetic: Evidence for the Development of Automaticity.
ERIC Educational Resources Information Center
LeFevre, Jo-Anne; Bisanz, Jeffrey
To determine whether children's knowledge of arithmetic facts becomes increasingly "automatic" with age, 7-year-olds, 11-year-olds, and adults were given a number-matching task for which mental arithmetic should have been irrelevant. Specifically, students were required to verify the presence of a probe number in a previously presented pair (e.g.,…
ERIC Educational Resources Information Center
McNeil, Nicole M.; Rittle-Johnson, Bethany; Hattikudur, Shanta; Petersen, Lori A.
2010-01-01
This study examined if solving arithmetic problems hinders undergraduates' accuracy on algebra problems. The hypothesis was that solving arithmetic problems would hinder accuracy because it activates an operational view of equations, even in educated adults who have years of experience with algebra. In three experiments, undergraduates (N = 184)…
Fostering Formal Commutativity Knowledge with Approximate Arithmetic
Hansen, Sonja Maria; Haider, Hilde; Eichler, Alexandra; Godau, Claudia; Frensch, Peter A.; Gaschler, Robert
2015-01-01
How can we enhance the understanding of abstract mathematical principles in elementary school? Different studies found out that nonsymbolic estimation could foster subsequent exact number processing and simple arithmetic. Taking the commutativity principle as a test case, we investigated if the approximate calculation of symbolic commutative quantities can also alter the access to procedural and conceptual knowledge of a more abstract arithmetic principle. Experiment 1 tested first graders who had not been instructed about commutativity in school yet. Approximate calculation with symbolic quantities positively influenced the use of commutativity-based shortcuts in formal arithmetic. We replicated this finding with older first graders (Experiment 2) and third graders (Experiment 3). Despite the positive effect of approximation on the spontaneous application of commutativity-based shortcuts in arithmetic problems, we found no comparable impact on the application of conceptual knowledge of the commutativity principle. Overall, our results show that the usage of a specific arithmetic principle can benefit from approximation. However, the findings also suggest that the correct use of certain procedures does not always imply conceptual understanding. Rather, the conceptual understanding of commutativity seems to lag behind procedural proficiency during elementary school. PMID:26560311
Bernard, Jessica A.; Seidler, Rachael D.
2013-01-01
The cerebellum has been implicated in both sensorimotor and cognitive function, but is known to undergo volumetric declines with advanced age. Individual differences in regional cerebellar volume may therefore provide insight into performance variability across the lifespan, as has been shown with other brain structures and behaviors. Here, we investigated whether there are regional age differences in cerebellar volume in young and older adults, and whether these volumes explain, in part, individual differences in sensorimotor and cognitive task performance. We found that older adults had smaller cerebellar volume than young adults; specifically, lobules in the anterior cerebellum were more impacted by age. Multiple regression analyses for both age groups revealed associations between sensorimotor task performance in several domains (balance, choice reaction time, and timing) and regional cerebellar volume. There were also relationships with working memory, but none with measures of general cognitive or executive function. Follow-up analyses revealed several differential relationships with age between regional volume and sensorimotor performance. These relationships were predominantly selective to cerebellar regions that have been implicated in cognitive functions. Therefore, it may be the cognitive aspects of sensorimotor task performance that are best explained by individual differences in regional cerebellar volumes. In sum, our results demonstrate the importance of regional cerebellar volume with respect to both sensorimotor and cognitive performance, and we provide additional insight into the role of the cerebellum in age-related performance declines. PMID:23625382
Origin, lineage and function of cerebellar glia.
Buffo, Annalisa; Rossi, Ferdinando
2013-10-01
The glial cells of the cerebellum, and particularly astrocytes and oligodendrocytes, are characterized by a remarkable phenotypic variety, in which highly peculiar morphological features are associated with specific functional features, unique among the glial cells of the entire CNS. Here, we provide a critical report about the present knowledge of the development of cerebellar glia, including lineage relationships between cerebellar neurons, astrocytes and oligodendrocytes, the origins and the genesis of the repertoire of glial types, and the processes underlying their acquisition of mature morphological and functional traits. In parallel, we describe and discuss some fundamental roles played by specific categories of glial cells during cerebellar development. In particular, we propose that Bergmann glia exerts a crucial scaffolding activity that, together with the organizing function of Purkinje cells, is necessary to achieve the normal pattern of foliation and layering of the cerebellar cortex. Moreover, we discuss some of the functional tasks of cerebellar astrocytes and oligodendrocytes that are distinctive of cerebellar glia throughout the CNS. Notably, we report about the regulation of synaptic signalling in the molecular and granular layer mediated by Bergmann glia and parenchymal astrocytes, and the functional interaction between oligodendrocyte precursor cells and neurons. On the whole, this review provides an extensive overview of the available literature and some novel insights about the origin and differentiation of the variety of cerebellar glial cells and their function in the developing and mature cerebellum. Copyright © 2013 Elsevier Ltd. All rights reserved.
Redies, Christoph; Neudert, Franziska; Lin, Juntang
2011-09-01
Cadherins are cell adhesion molecules with multiple morphogenic functions in brain development, for example, in neuroblast migration and aggregation, axon navigation, neural circuit formation, and synaptogenesis. More than 100 members of the cadherin superfamily are expressed in the developing and mature brain. Most of the cadherins investigated, in particular classic cadherins and δ-protocadherins, are expressed in the cerebellum. For several cadherin subtypes, expression begins at early embryonic stages and persists until mature stages of cerebellar development. At intermediate stages, distinct Purkinje cell clusters exhibit unique rostrocaudal and mediolateral expression profiles for each cadherin. In the chicken, mouse, and other species, the Purkinje cell clusters are separated by intervening raphes of migrating granule cells. This pattern of Purkinje cell clusters/raphes is, at least in part, continuous with the parasagittal striping pattern that is apparent in the mature cerebellar cortex, for example, for zebrin II/aldolase C. Moreover, subregions of the deep cerebellar nuclei, vestibular nuclei and the olivary complex also express cadherins differentially. Neuroanatomical evidence suggests that the nuclear subregions and cortical domains that express the same cadherin subtype are connected to each other, to form neural subcircuits of the cerebellar system. Cadherins thus provide a molecular code that specifies not only embryonic structures but also functional cerebellar compartmentalization. By following the implementation of this code, it can be revealed how mature functional architecture emerges from embryonic patterning during cerebellar development. Dysfunction of some cadherins is associated with psychiatric diseases and developmental impairments and may also affect cerebellar function.
Umari, Amjad M.J.; Gorelick, Steven M.
1986-01-01
In the numerical modeling of groundwater solute transport, explicit solutions may be obtained for the concentration field at any future time without computing concentrations at intermediate times. The spatial variables are discretized and time is left continuous in the governing differential equation. These semianalytical solutions have been presented in the literature and involve the eigensystem of a coefficient matrix. This eigensystem may be complex (i.e., have imaginary components) due to the asymmetry created by the advection term in the governing advection-dispersion equation. Previous investigators have either used complex arithmetic to represent a complex eigensystem or chosen large dispersivity values for which the imaginary components of the complex eigenvalues may be ignored without significant error. It is shown here that the error due to ignoring the imaginary components of complex eigenvalues is large for small dispersivity values. A new algorithm that represents the complex eigensystem by converting it to a real eigensystem is presented. The method requires only real arithmetic.
NASA Technical Reports Server (NTRS)
Habiby, Sarry F.
1987-01-01
The design and implementation of a digital (numerical) optical matrix-vector multiplier are presented. The objective is to demonstrate the operation of an optical processor designed to minimize computation time in performing a practical computing application. This is done by using the large array of processing elements in a Hughes liquid crystal light valve, and relying on the residue arithmetic representation, a holographic optical memory, and position coded optical look-up tables. In the design, all operations are performed in effectively one light valve response time regardless of matrix size. The features of the design allowing fast computation include the residue arithmetic representation, the mapping approach to computation, and the holographic memory. In addition, other features of the work include a practical light valve configuration for efficient polarization control, a model for recording multiple exposures in silver halides with equal reconstruction efficiency, and using light from an optical fiber for a reference beam source in constructing the hologram. The design can be extended to implement larger matrix arrays without increasing computation time.
Raman, M R Gauthama; Somu, Nivethitha; Kirthivasan, Kannan; Sriram, V S Shankar
2017-08-01
Over the past few decades, the design of an intelligent Intrusion Detection System (IDS) remains an open challenge to the research community. Continuous efforts by the researchers have resulted in the development of several learning models based on Artificial Neural Network (ANN) to improve the performance of the IDSs. However, there exists a tradeoff with respect to the stability of ANN architecture and the detection rate for less frequent attacks. This paper presents a novel approach based on Helly property of Hypergraph and Arithmetic Residue-based Probabilistic Neural Network (HG AR-PNN) to address the classification problem in IDS. The Helly property of Hypergraph was exploited for the identification of the optimal feature subset and the arithmetic residue of the optimal feature subset was used to train the PNN. The performance of HG AR-PNN was evaluated using KDD CUP 1999 intrusion dataset. Experimental results prove the dominance of HG AR-PNN classifier over the existing classifiers with respect to the stability and improved detection rate for less frequent attacks. Copyright © 2017 Elsevier Ltd. All rights reserved.
Realistic modeling of neurons and networks: towards brain simulation.
D'Angelo, Egidio; Solinas, Sergio; Garrido, Jesus; Casellato, Claudia; Pedrocchi, Alessandra; Mapelli, Jonathan; Gandolfi, Daniela; Prestori, Francesca
2013-01-01
Realistic modeling is a new advanced methodology for investigating brain functions. Realistic modeling is based on a detailed biophysical description of neurons and synapses, which can be integrated into microcircuits. The latter can, in turn, be further integrated to form large-scale brain networks and eventually to reconstruct complex brain systems. Here we provide a review of the realistic simulation strategy and use the cerebellar network as an example. This network has been carefully investigated at molecular and cellular level and has been the object of intense theoretical investigation. The cerebellum is thought to lie at the core of the forward controller operations of the brain and to implement timing and sensory prediction functions. The cerebellum is well described and provides a challenging field in which one of the most advanced realistic microcircuit models has been generated. We illustrate how these models can be elaborated and embedded into robotic control systems to gain insight into how the cellular properties of cerebellar neurons emerge in integrated behaviors. Realistic network modeling opens up new perspectives for the investigation of brain pathologies and for the neurorobotic field.
Realistic modeling of neurons and networks: towards brain simulation
D’Angelo, Egidio; Solinas, Sergio; Garrido, Jesus; Casellato, Claudia; Pedrocchi, Alessandra; Mapelli, Jonathan; Gandolfi, Daniela; Prestori, Francesca
Summary Realistic modeling is a new advanced methodology for investigating brain functions. Realistic modeling is based on a detailed biophysical description of neurons and synapses, which can be integrated into microcircuits. The latter can, in turn, be further integrated to form large-scale brain networks and eventually to reconstruct complex brain systems. Here we provide a review of the realistic simulation strategy and use the cerebellar network as an example. This network has been carefully investigated at molecular and cellular level and has been the object of intense theoretical investigation. The cerebellum is thought to lie at the core of the forward controller operations of the brain and to implement timing and sensory prediction functions. The cerebellum is well described and provides a challenging field in which one of the most advanced realistic microcircuit models has been generated. We illustrate how these models can be elaborated and embedded into robotic control systems to gain insight into how the cellular properties of cerebellar neurons emerge in integrated behaviors. Realistic network modeling opens up new perspectives for the investigation of brain pathologies and for the neurorobotic field. PMID:24139652
Bug Distribution and Statistical Pattern Classification.
ERIC Educational Resources Information Center
Tatsuoka, Kikumi K.; Tatsuoka, Maurice M.
1987-01-01
The rule space model permits measurement of cognitive skill acquisition and error diagnosis. Further discussion introduces Bayesian hypothesis testing and bug distribution. An illustration involves an artificial intelligence approach to testing fractions and arithmetic. (Author/GDC)
ERIC Educational Resources Information Center
Pape, Stephen J.
2004-01-01
Many children read mathematics word problems and directly translate them to arithmetic operations. More sophisticated problem solvers transform word problems into object-based or mental models. Subsequent solutions are often qualitatively different because these models differentially support cognitive processing. Based on a conception of problem…
Chakraverty, S; Sahoo, B K; Rao, T D; Karunakar, P; Sapra, B K
2018-02-01
Modelling radon transport in the earth crust is a useful tool to investigate the changes in the geo-physical processes prior to earthquake event. Radon transport is modeled generally through the deterministic advection-diffusion equation. However, in order to determine the magnitudes of parameters governing these processes from experimental measurements, it is necessary to investigate the role of uncertainties in these parameters. Present paper investigates this aspect by combining the concept of interval uncertainties in transport parameters such as soil diffusivity, advection velocity etc, occurring in the radon transport equation as applied to soil matrix. The predictions made with interval arithmetic have been compared and discussed with the results of classical deterministic model. The practical applicability of the model is demonstrated through a case study involving radon flux measurements at the soil surface with an accumulator deployed in steady-state mode. It is possible to detect the presence of very low levels of advection processes by applying uncertainty bounds on the variations in the observed concentration data in the accumulator. The results are further discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Miller, Justin B; Axelrod, Bradley N; Schutte, Christian
2012-01-01
The recent release of the Wechsler Memory Scale Fourth Edition contains many improvements from a theoretical and administration perspective, including demographic corrections using the Advanced Clinical Solutions. Although the administration time has been reduced from previous versions, a shortened version may be desirable in certain situations given practical time limitations in clinical practice. The current study evaluated two- and three-subtest estimations of demographically corrected Immediate and Delayed Memory index scores using both simple arithmetic prorating and regression models. All estimated values were significantly associated with observed index scores. Use of Lin's Concordance Correlation Coefficient as a measure of agreement showed a high degree of precision and virtually zero bias in the models, although the regression models showed a stronger association than prorated models. Regression-based models proved to be more accurate than prorated estimates with less dispersion around observed values, particularly when using three subtest regression models. Overall, the present research shows strong support for estimating demographically corrected index scores on the WMS-IV in clinical practice with an adequate performance using arithmetically prorated models and a stronger performance using regression models to predict index scores.
Acute cerebellar ataxia and infectious mononucleosis.
Wadhwa, N. K.; Ghose, R. R.
1983-01-01
A 28-year-old man, who presented with acute cerebellar ataxia, was found to have haematological features of infectious mononucleosis. There was serological evidence of recent infection with Epstein-Barr virus. It is speculated that cerebellar dysfunction results from virus-induced inflammatory changes within the central nervous system. PMID:6312442
Learning of Sensory Sequences in Cerebellar Patients
ERIC Educational Resources Information Center
Frings, Markus; Boenisch, Raoul; Gerwig, Marcus; Diener, Hans-Christoph; Timmann, Dagmar
2004-01-01
A possible role of the cerebellum in detecting and recognizing event sequences has been proposed. The present study sought to determine whether patients with cerebellar lesions are impaired in the acquisition and discrimination of sequences of sensory stimuli of different modalities. A group of 26 cerebellar patients and 26 controls matched for…
Incidence of Dysarthria in Children with Cerebellar Tumors: A Prospective Study
ERIC Educational Resources Information Center
Richter, S.; Schoch, B.; Ozimek, A.; Gorissen, B.; Hein-Kropp, C.; Kaiser, O.; Hovel, M.; Wieland, R.; Gizewski, E.; Timmann, D.
2005-01-01
The present study investigated dysarthric symptoms in children with cerebellar tumors. Ten children with cerebellar tumors and 10 orthopedic control children were tested prior and one week after surgery. Clinical dysarthric symptoms were quantified in spontaneous speech. Syllable durations were analyzed in syllable repetition and sentence…
Cerebellar abiotrophy in a family of Border Collie dogs.
Sandy, J R; Slocombe, R E; Mitten, R W; Jedwab, D
2002-11-01
Cerebellar abiotrophies have a nonsex-linked, autosomal, recessively inherited basis in a number of species, and lesions typically reflect profound and progressive loss of Purkinje cells. In this report, an unusual form of abiotrophy is described for two sibling Border Collies. Extensive loss of the cerebellar granular cell layer was present with relative sparing of Purkinje cells of two female pups. The biochemical basis for this form of cerebellar abiotrophy is unknown, but the lack of disease in other siblings supports an autosomal recessive mode of inheritance.
Heat stroke induced cerebellar dysfunction: A “forgotten syndrome”
Kosgallana, Athula D; Mallik, Shreyashee; Patel, Vishal; Beran, Roy G
2013-01-01
We report a case of heat stroke induced acute cerebellar dysfunction, a rare neurological disease characterized by gross cerebellar dysfunction with no acute radiographic changes, in a 61 years old ship captain presenting with slurred speech and gait ataxia. A systematic review of the literature on heat stroke induced cerebellar dysfunction was performed, with a focus on investigations, treatment and outcomes. After review of the literature and detailed patient investigation it was concluded that this patient suffered heat stroke at a temperature less than that quoted in the literature. PMID:24340279
Paraneoplastic cerebellar ataxia and the paraneoplastic syndromes
Afzal, Sadaf; Recio, Maria
2015-01-01
Paraneoplastic cerebellar ataxia, also known as paraneoplastic cerebellar degeneration, is one of the wide array of paraneoplastic neurological syndromes in which neurological symptoms are indirectly caused by an underlying malignancy, most commonly gynecological, breast, or lung cancer or Hodgkin's lymphoma. We describe a patient with severe cerebellar dysfunction attributed to a paraneoplastic neurological syndrome. The case highlights the need to look for paraneoplastic syndromes—both to discover malignancies early, at a treatable stage, and, as in our case, to address very distressing symptoms for the patient's relief even if the malignancy is not curable. PMID:25829659
Kobatake, Yui; Miyabayashi, Takayoshi; Yada, Naoko; Kachi, Shingo; Ohta, George; Sakai, Hiroki; Maeda, Sadatoshi; Kamishina, Hiroaki
2013-10-01
A 12-week-old female Wire-haired miniature dachshund presented with non-progressive ataxia and hypermetria. Due to the animal's clinical history and symptoms, cerebellar malformations were suspected. Computed tomography (CT) and magnetic resonance imaging (MRI) detected bilateral ventriculomegaly, dorsal displacement of the cerebellar tentorium, a defect in the cerebellar tentorium and a large fluid-filled cystic structure that occupied the regions where the cerebellar vermis and occipital lobes are normally located. The abovementioned cystic structure and the defect in the cerebellar tentorium were comparable to those seen in humans with Dandy-Walker syndrome. However, the presence of the cystic structure in the occipital lobe region was unique to the present case. During necropsy, the MRI findings were confirmed, but the etiology of the condition was not determined.
Cerebellum tunes the excitability of the motor system: evidence from peripheral motor axons.
Nodera, Hiroyuki; Manto, Mario
2014-12-01
Cerebellum is highly connected with the contralateral cerebral cortex. So far, the motor deficits observed in acute focal cerebellar lesions in human have been mainly explained on the basis of a disruption of the cerebello-thalamo-cortical projections. Cerebellar circuits have also numerous anatomical and functional interactions with brainstem nuclei and projects also directly to the spinal cord. Cerebellar lesions alter the excitability of peripheral motor axons as demonstrated by peripheral motor threshold-tracking techniques in cerebellar stroke. The biophysical changes are correlated with the functional scores. Nerve excitability measurements represent an attractive tool to extract the rules underlying the tuning of excitability of the motor pathways by the cerebellum and to discover the contributions of each cerebellar nucleus in this key function, contributing to early plasticity and sensorimotor learning.
Ikeda, O; Okajima, T; Korogi, Y; Kitajima, M; Uchino, M; Takahasi, M
1997-02-01
We evaluated atrophic patterns of the cerebellar vermis in seven patients with Minamata disease (MD) and nine patients with spino-cerebellar degeneration (SCD) on MR images. Twenty-five control subjects were also examined. The cerebellar vermis was divided into superior, middle, and inferior parts by the primary fissure and the prepyramidal fissure on the median sagittal T1-weighted MR image. The length and area of each part were measured. In the patients with SCD, there were no significant differences in the degree of atrophy among the three parts. However, MR images of the patients with MD showed more severe atrophy in the middle and inferior parts than in the superior part. Atrophy of the superior part was less frequently observed in MD patients.
Anticoagulation therapy is harmful to large-sized cerebellar infarction.
Zhang, She-Qing; Wang, Wei; Ma, Xiao-Long; Xia, Yu-Ye; Liu, Ai-Jun
2014-09-01
Anticoagulants are commonly used to treat ischemic stroke. Its impact on cerebellar infarction has not been fully understood. In the clinical study, we reviewed a consecutive series of patients with large-sized cerebellar infarction (diameter > 3 cm, n = 30) treated with or without anticoagulation. In animal study, cerebellar infarction operation was performed in 12 Cynomolgus monkeys. Then the animals were administrated with low molecular weight heparin (LMWH) or vehicle for 14 days. Six patients died during the following treatment. All the subjects that died received anticoagulation therapy, while nobody in the survival group received such a therapy. Compared with sham-operated animals, all monkeys with cerebellar infarction have obvious neurological deficits. The number and size of the Purkinje cells in the cerebellar area were also reduced. Two animals in the LMWH group (33%) died, while all animals in the vehicle control group survived. Compared with the vehicle group, the neurological score in the LMWH group was significantly increased (P < 0.05). The water content in the cerebella was also significantly higher (P < 0.05). Edema, hemorrhage, and subarachnoid hemorrhage occurred in the cerebella as well as brainstem of all the LMWH treated animals. These results indicated the harmful effects of anticoagulation therapy on large-sized cerebellar infarction. © 2014 John Wiley & Sons Ltd.
Cerebellar Volume in Children With Attention-Deficit Hyperactivity Disorder (ADHD).
Wyciszkiewicz, Aleksandra; Pawlak, Mikolaj A; Krawiec, Krzysztof
2017-02-01
Attention Deficit Hyperactivity Disorder (ADHD) is associated with altered cerebellar volume and cerebellum is associated with cognitive performance. However there are mixed results regarding the cerebellar volume in young patients with ADHD. To clarify the size and direction of this effect, we conducted the analysis on the large public database of brain images. The aim of this study was to confirm that cerebellar volume in ADHD is smaller than in control subjects in currently the largest publicly available cohort of ADHD subjects.We applied cross-sectional case control study design by comparing 286 ADHD patients (61 female) with age and gender matched control subjects. Volumetric measurements of cerebellum were obtained using automated segmentation with FreeSurfer 5.1. Statistical analysis was performed in R-CRAN statistical environment. Patients with ADHD had significantly smaller total cerebellar volumes (134.5±17.11cm 3 vs.138.90±15.32 cm 3 ). The effect was present in both females and males (males 136.9±14.37 cm 3 vs. 141.20±14.75 cm 3 ; females 125.7±12.34 cm 3 vs. 131.20±15.03 cm 3 ). Age was positively and significantly associated with the cerebellar volumes. These results indicate either delayed or disrupted cerebellar development possibly contributing to ADHD pathophysiology.
Aberrant cerebellar connectivity in bipolar disorder with psychosis.
Shinn, Ann K; Roh, Youkyung S; Ravichandran, Caitlin T; Baker, Justin T; Öngür, Dost; Cohen, Bruce M
2017-07-01
The cerebellum, which modulates affect and cognition in addition to motor functions, may contribute substantially to the pathophysiology of mood and psychotic disorders, such as bipolar disorder. A growing literature points to cerebellar abnormalities in bipolar disorder. However, no studies have investigated the topographic representations of resting state cerebellar networks in bipolar disorder, specifically their functional connectivity to cerebral cortical networks. Using a well-defined cerebral cortical parcellation scheme as functional connectivity seeds, we compared ten cerebellar resting state networks in 49 patients with bipolar disorder and a lifetime history of psychotic features and 55 healthy control participants matched for age, sex, and image signal-to-noise ratio. Patients with psychotic bipolar disorder showed reduced cerebro-cerebellar functional connectivity in somatomotor A, ventral attention, salience, and frontoparietal control A and B networks relative to healthy control participants. These findings were not significantly correlated with current symptoms. Patients with psychotic bipolar disorder showed evidence of cerebro-cerebellar dysconnectivity in selective networks. These disease-related changes were substantial and not explained by medication exposure or substance use. Therefore, they may be mechanistically relevant to the underlying susceptibility to mood dysregulation and psychosis. Cerebellar mechanisms deserve further exploration in psychiatric conditions, and this study's findings may have value in guiding future studies on pathophysiology and treatment of mood and psychotic disorders, in particular.
Cerebellum engages in automation of verb-generation skill.
Yang, Zhi; Wu, Paula; Weng, Xuchu; Bandettini, Peter A
2014-03-01
Numerous studies have shown cerebellar involvement in item-specific association, a form of explicit learning. However, very few have demonstrated cerebellar participation in automation of non-motor cognitive tasks. Applying fMRI to a repeated verb-generation task, we sought to distinguish cerebellar involvement in learning of item-specific noun-verb association and automation of verb generation skill. The same set of nouns was repeated in six verb-generation blocks so that subjects practiced generating verbs for the nouns. The practice was followed by a novel block with a different set of nouns. The cerebellar vermis (IV/V) and the right cerebellar lobule VI showed decreased activation following practice; activation in the right cerebellar Crus I was significantly lower in the novel challenge than in the initial verb-generation task. Furthermore, activation in this region during well-practiced blocks strongly correlated with improvement of behavioral performance in both the well-practiced and the novel blocks, suggesting its role in the learning of general mental skills not specific to the practiced noun-verb pairs. Therefore, the cerebellum processes both explicit verbal associative learning and automation of cognitive tasks. Different cerebellar regions predominate in this processing: lobule VI during the acquisition of item-specific association, and Crus I during automation of verb-generation skills through practice.
Dziadkowiak, Edyta; Chojdak-Łukasiewicz, Justyna; Guziński, Maciej; Noga, Leszek; Paradowski, Bogusław
2016-04-01
Cerebellar stroke is a rare condition with very nonspecific clinical features. The symptoms in the acute phase could imitate acute peripheral vestibular disorders or a brainstem lesion. The aim of this study was to assess the usefulness of the Trial of Org 10172 in Acute Stroke Treatment (TOAST) classification in cerebellar stroke and the impact of clinical features on the prognosis. We retrospectively analyzed 107 patients with diagnosed ischemic cerebellar infarction. We studied the clinical features and compared them based on the location of the ischemic lesion and its distribution in the posterior interior cerebellar artery (PICA), superior cerebellar artery (SCA), and anterior inferior cerebellar artery (AICA) territories. According to the TOAST classification, stroke was more prevalent in atrial fibrillation (26/107) and when the lesion was in the PICA territory (39/107). Pyramidal signs occurred in 29/107 of patients and were more prevalent when the lesion was distributed in more than two vascular regions (p = 0.00640). Mortality was higher among patients with ischemic lesion caused by cardiac sources (p = 0.00094) and with pyramidal signs (p = 0.00640). The TOAST classification is less useful in assessing supratentorial ischemic infarcts. Cardioembolic etiology, location of the ischemic lesion, and pyramidal signs support a negative prognosis.
Naro, Antonino; Milardi, Demetrio; Cacciola, Alberto; Russo, Margherita; Sciarrone, Francesca; La Rosa, Gianluca; Bramanti, Alessia; Bramanti, Placido; Calabrò, Rocco Salvatore
2017-08-01
Several cerebellar functions related to upper limb motor control have been studied using non-invasive brain stimulation paradigms. We have recently shown that transcranial alternating current stimulation (tACS) may be a promising approach in shaping the plasticity of cerebellum-brain pathways in a safe and effective manner. This study aimed to assess whether cerebellar tACS at different frequencies may tune M1-leg excitability and modify gait control in healthy human subjects. To this end, we tested the effects of different cerebellar tACS frequencies over the right cerebellar hemisphere (at 10, 50, and 300 Hz, besides a sham-tACS) on M1-leg excitability, cerebellum-brain inhibition (CBI), and gait parameters in a sample of 25 healthy volunteers. Fifty and 300 Hz tACS differently modified M1-leg excitability and CBI from both lower limbs, without significant gait perturbations. We hypothesize that tACS aftereffect may depend on a selective entrainment of distinct cerebellar networks related to lower limb motor functions. Therefore, cerebellar tACS might represent a useful tool to modulate walking training in people with cerebellum-related gait impairment, given that tACS may potentially reset abnormal cerebellar circuitries.
Factors associated with the misdiagnosis of cerebellar infarction.
Masuda, Yoko; Tei, Hideaki; Shimizu, Satoru; Uchiyama, Shinichiro
2013-10-01
Cerebellar infarction is easily misdiagnosed or underdiagnosed. In this study, we investigated factors leading to misdiagnosis of cerebellar infarction in patients with acute ischemic stroke. Data on neurological and radiological findings from 114 consecutive patients with acute cerebellar infarction were analyzed. We investigated factors associated with misdiagnosis from the data on clinical findings. Thirty-two (28%) patients were misdiagnosed on admission. Misdiagnosis was significantly more frequent in patients below 60 years of age and in patients with vertebral artery dissection, and significantly less frequent in patients with dysarthria. It tended to be more frequent in patients with the medial branch of posterior inferior cerebellar artery territory infarction, and infrequent in patients with the medial branch of the superior cerebellar artery territory infarction. Thirty out of 32 (94%) misdiagnosed patients were seen by physicians that were not neurologists at the first visit. Twenty-four of 32 (75%) misdiagnosed patients were screened only by brain CT. However, patients were not checked by brain MRI or follow-up CT until their conditions worsened. Patients below 60 years of age and patients with vertebral artery dissection are more likely to have a cerebellar infarction misdiagnosed by physicians other than neurologists. Copyright © 2013 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Ultastructural analysis on acetylcholinesterase localization in the cerebellar cortex of teleosts.
Contestabile, A; Villani, L; Ciani, F
1977-12-28
The histochemical localization of acetylcholinesterase (AChE) was studied by electron microscopy in the cerebellar cortex of the goldfish and the catfish. The patterns of enzyme distribution show noticeable differences in the two teleost species at the level of the corresponding cerebellar structures. Among the most distinctive features is the prevailing intracellular localization of enzyme activity in the goldfish and the prevailing extracellular localization in the catfish in the molecular layer and, to a lesser extent, the granular layer. Only quantitative differences in the ability to synthesize AChE can be recorded among the different cerebellar neurons in the two species, since all these neurons exhibit different amounts of enzyme activity linked to their cytoplasmic structures. Comparing the results obtained with those of previous histochemical, experimental and developmental researches, the hypothesis seems well founded that the embryonic pool of cerebellar neurons is made up of AChE-synthesizing nruroblasts which, during development, loss or maintain to a different the mechanisms for AChE synthesis. In addition the light and electron microscope histochemistry reveals at different levels of resolution that the final pattern of AChE distribution in the cerebellar cortex is the sum of different degress of AChE synthesis by cerebellar neurons and different degrees of enzyme release in extracellular spaces.
Defective cerebellar control of cortical plasticity in writer’s cramp
Hubsch, Cecile; Roze, Emmanuel; Popa, Traian; Russo, Margherita; Balachandran, Ammu; Pradeep, Salini; Mueller, Florian; Brochard, Vanessa; Quartarone, Angelo; Degos, Bertrand; Vidailhet, Marie; Kishore, Asha
2013-01-01
A large body of evidence points to a role of basal ganglia dysfunction in the pathophysiology of dystonia, but recent studies indicate that cerebellar dysfunction may also be involved. The cerebellum influences sensorimotor adaptation by modulating sensorimotor plasticity of the primary motor cortex. Motor cortex sensorimotor plasticity is maladaptive in patients with writer’s cramp. Here we examined whether putative cerebellar dysfunction in dystonia is linked to these patients’ maladaptive plasticity. To that end we compared the performances of patients and healthy control subjects in a reaching task involving a visuomotor conflict generated by imposing a random deviation (−40° to 40°) on the direction of movement of the mouse/cursor. Such a task is known to involve the cerebellum. We also compared, between patients and healthy control subjects, how the cerebellum modulates the extent and duration of an ongoing sensorimotor plasticity in the motor cortex. The cerebellar cortex was excited or inhibited by means of repeated transcranial magnetic stimulation before artificial sensorimotor plasticity was induced in the motor cortex by paired associative stimulation. Patients with writer’s cramp were slower than the healthy control subjects to reach the target and, after having repeatedly adapted their trajectories to the deviations, they were less efficient than the healthy control subjects to perform reaching movement without imposed deviation. It was interpreted as impaired washing-out abilities. In healthy subjects, cerebellar cortex excitation prevented the paired associative stimulation to induce a sensorimotor plasticity in the primary motor cortex, whereas cerebellar cortex inhibition led the paired associative stimulation to be more efficient in inducing the plasticity. In patients with writer’s cramp, cerebellar cortex excitation and inhibition were both ineffective in modulating sensorimotor plasticity. In patients with writer’s cramp, but not in healthy subjects, behavioural parameters reflecting their capacity for adapting to the rotation and for washing-out of an earlier adaptation predicted the efficacy of inhibitory cerebellar conditioning to influence sensorimotor plasticity: the better the online adaptation, the smaller the influence of cerebellar inhibitory stimulation on motor cortex plasticity. Altered cerebellar encoding of incoming afferent volleys may result in decoupling the motor component from the afferent information flow, and also in maladjusted sensorimotor calibration. The loss of cerebellar control over sensorimotor plasticity might also lead to building up an incorrect motor program to specific adaptation tasks such as writing. PMID:23801734
ERIC Educational Resources Information Center
Berg, Derek H.
2008-01-01
The cognitive underpinnings of arithmetic calculation in children are noted to involve working memory; however, cognitive processes related to arithmetic calculation and working memory suggest that this relationship is more complex than stated previously. The purpose of this investigation was to examine the relative contributions of processing…
Arithmetic Achievement in Children with Cerebral Palsy or Spina Bifida Meningomyelocele
ERIC Educational Resources Information Center
Jenks, Kathleen M.; van Lieshout, Ernest C. D. M.; de Moor, Jan
2009-01-01
The aim of this study was to establish whether children with a physical disability resulting from central nervous system disorders (CNSd) show a level of arithmetic achievement lower than that of non-CNSd children and whether this is related to poor automaticity of number facts or reduced arithmetic instruction time. Twenty-two children with CNSd…