Reagan, Elizabeth M; Nguyen, Robert T; Ravishankar, Shreyas T; Chabra, Vikram; Fuentes, Barbara; Spiegel, Rebecca; Parnia, Sam
2018-05-01
To date, no studies have examined real-time electroencephalography and cerebral oximetry monitoring during cardiopulmonary resuscitation as markers of the magnitude of global ischemia. We therefore sought to assess the feasibility of combining cerebral oximetry and electroencephalography in patients undergoing cardiopulmonary resuscitation and further to evaluate the electroencephalography patterns during cardiopulmonary resuscitation and their relationship with cerebral oxygenation as measured by cerebral oximetry. Extended case series of in-hospital and out-of-hospital cardiac arrest subjects. Tertiary Medical Center. Inclusion criteria: Convenience sample of 16 patients undergoing cardiopulmonary resuscitation during working hours between March 2014 and March 2015, greater than or equal to 18 years. A portable electroencephalography (Legacy; SedLine, Masimo, Irvine, CA) and cerebral oximetry (Equanox 7600; Nonin Medical, Plymouth, MN) system was used to measure cerebral resuscitation quality. Real-time regional cerebral oxygen saturation and electroencephalography readings were observed during cardiopulmonary resuscitation. The regional cerebral oxygen saturation values and electroencephalography patterns were not used to manage patients by clinical staff. In total, 428 electroencephalography images from 16 subjects were gathered; 40.7% (n = 174/428) were artifactual, therefore 59.3% (n = 254/428) were interpretable. All 16 subjects had interpretable images. Interpretable versus noninterpretable images were not related to a function of time or duration of cardiopulmonary resuscitation but to artifacts that were introduced to the raw data such as diaphoresis, muscle movement, or electrical interference. Interpretable data were able to be obtained immediately after application of the electrode strip. Seven distinct electroencephalography patterns were identified. Voltage suppression was commonest and seen during 78% of overall cardiopulmonary resuscitation time and in 15 of 16 subjects at some point during their cardiopulmonary resuscitation. Other observed patterns and their relative prevalence in relation to overall cardiopulmonary resuscitation time were theta background activity 8%, delta background activity 5%, bi frontotemporal periodic discharge 4%, burst suppression 2%, spike and wave 2%, and rhythmic delta activity 1%. Eight of 16 subjects had greater than one interpretable pattern. At regional cerebral oxygen saturation levels less than or equal to 19%, the observed electroencephalography pattern was exclusively voltage suppression. Delta background activity was only observed at regional cerebral oxygen saturation levels greater than 40%. The remaining patterns were observed throughout regional cerebral oxygen saturation categories above a threshold of 20%. Real-time monitoring of cerebral oxygenation and function during cardiac arrest resuscitation is feasible. Although voltage suppression is the commonest electroencephalography pattern, other distinct patterns exist that may correlate with the quality of cerebral resuscitation and oxygen delivery.
Patterns of human local cerebral glucose metabolism during epileptic seizures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engel, J. Jr.; Kuhl, D.E.; Phelps, M.E.
1982-10-01
Ictal patterns of local cerebral metabolic rate have been studied in epileptic patients by positron computed tomography with /sup 18/F-labeled 2-fluoro-2-deoxy-D-glucose. Partial seizures were associated with activation of anatomic structures unique to each patient studied. Ictal increases and decreases in local cerebral metabolism were observed. Scans performed during generalized convulsions induced by electroshock demonstrated a diffuse ictal increase and postictal decrease in cerebral metabolism. Petit mal absences were associated with a diffuse increase in cerebral metabolic rate. The ictal fluorodeoxyglucose patterns obtained from patients do not resemble autoradiographic patterns obtained from common experimental animal models of epilepsy.
ERIC Educational Resources Information Center
Longo, Egmar; Badia, Marta; Orgaz, Begona M.
2013-01-01
This study analyzed the patterns and predictors of participation in leisure activities outside of school of Spanish children and adolescents with Cerebral Palsy (CP). Children and adolescents with CP (n = 199; 113 males and 86 females) participated in this cross-sectional study. Their mean age was 12.11 years (SD = 3.02; range 8-18 years), and…
Gizewski, Elke R; Krause, Eva; Schlamann, Marc; Happich, Friederike; Ladd, Mark E; Forsting, Michael; Senf, Wolfgang
2009-02-01
Transsexuals harbor the strong feeling of having been born to the wrong sex. There is a continuing controversial discussion of whether or not transsexualism has a biological representation. Differences between males and females in terms of functional imaging during erotic stimuli have been previously described, revealing gender-specific results. Therefore, we postulated that male-to-female (MTF) transsexuals may show specific cerebral activation differing from their biological gender. Cerebral activation patterns during viewing of erotic film excerpts in functional magnetic resonance imaging (fMRI). Twelve male and 12 female heterosexual volunteers and 12 MTF transsexuals before any treatment viewed erotic film excerpts during fMRI. Additionally, subjective rating of sexual arousal was assessed. Statistics were performed using the Statistical Parametric Mapping software. Significantly enhanced activation for men compared with women was revealed in brain areas involved in erotic processing, i.e., the thalamus, the amygdala, and the orbitofrontal and insular cortex, whereas no specific activation for women was found. When comparing MTF transsexuals with male volunteers, activation patterns similar to female volunteers being compared with male volunteers were revealed. Sexual arousal was assessed using standard rating scales and did not differ significantly for the three groups. We revealed a cerebral activation pattern in MTF transsexuals compared with male controls similar to female controls compared with male controls during viewing of erotic stimuli, indicating a tendency of female-like cerebral processing in transsexualism.
Physical and Sedentary Activity in Adolescents with Cerebral Palsy
ERIC Educational Resources Information Center
Maher, Carol A.; Williams, Marie T.; Olds, Tim; Lane, Alison E.
2007-01-01
Participation in regular physical activity (PA) provides health, psychological, and physiological benefits for people with and without a physical disability. This study investigated the physical and sedentary activity patterns of adolescents with cerebral palsy (CP). A cross-sectional, descriptive, postal survey was used, consisting of the…
Pathophysiology of dysarthria in cerebral palsy.
Neilson, P D; O'Dwyer, N J
1981-01-01
Electromyograms were recorded with hooked-wire electrodes from sixteen lip, tongue and jaw muscles in six normal and seven cerebral palsied adult subjects during a variety of speech and non-speech tasks. The recorded patterns of muscle activity fail to support a number of theories concerning the pathophysiology of dysarthria in cerebral palsy. There was no indication of weakness in individual articulator muscles. There was no evidence of uncontrolled sustained background activity or of abnormal tonic stretch reflex responses in lip or tongue muscles. Primitive or pathological reflexes could not be elicited by orofacial stimulation. No imbalance between positive and negative oral responses was observed. The view that random involuntary movement disrupts essentially normal voluntary control in athetosis was not supported. Each cerebral palsied subject displayed an idiosyncratic pattern of abnormal muscle activity which was reproduced across repetitions of the same phrase, indicating a consistent defect in motor programming. PMID:7334387
Carrillo, Beatriz; Gómez-Gil, Esther; Rametti, Giuseppina; Junque, Carme; Gomez, Angel; Karadi, Kazmer; Segovia, Santiago; Guillamon, Antonio
2010-09-01
There is strong evidence of sex differences in mental rotation tasks. Transsexualism is an extreme gender identity disorder in which individuals seek cross-gender treatment to change their sex. The aim of our study was to investigate if male-to-female (MF) and female-to-male (FM) transsexuals receiving cross-sex hormonal treatment have different patterns of cortical activation during a three-dimensional (3D) mental rotation task. An fMRI study was performed using a 3-T scan in a sample of 18 MF and 19 FM under chronic cross-sex hormonal treatment. Twenty-three males and 19 females served as controls. The general pattern of cerebral activation seen while visualizing the rotated and non-rotated figures was similar for all four groups showing strong occipito-parieto-frontal brain activation. However, compared to control males, the activation of MF transsexuals during the task was lower in the superior parietal lobe. Compared to control females, MF transsexuals showed higher activation in orbital and right dorsolateral prefrontal regions and lower activation in the left prefrontal gyrus. FM transsexuals did not differ from either the MF transsexual or control groups. Regression analyses between cerebral activation and the number of months of hormonal treatment showed a significant negative correlation in parietal, occipital and temporal regions in the MF transsexuals. No significant correlations with time were seen in the FM transsexuals. In conclusion, although we did not find a specific pattern of cerebral activation in the FM transsexuals, we have identified a specific pattern of cerebral activation during a mental 3D rotation task in MF transsexuals under cross-sex hormonal treatment that differed from control males in the parietal region and from control females in the orbital prefrontal region. The hypoactivation in MF transsexuals in the parietal region could be due to the hormonal treatment or could reflect a priori cerebral differences between MF transsexual and control subjects. Copyright 2010 Elsevier Ltd. All rights reserved.
Ogrodnik, Justyna; Piszczatowski, Szczepan
2017-01-01
The aim of the present study was to evaluate the influence of modified morphological parameters of the muscle model and excitation pattern on the results of musculoskeletal system numerical simulation in a cerebral palsy patient. The modelling of the musculoskeletal system was performed in the AnyBody Modelling System. The standard model (MoCap) was subjected to modifications consisting of changes in morphological parameters and excitation patterns of selected muscles. The research was conducted with the use of data of a 14-year-old cerebral palsy patient. A reduction of morphological parameters (variant MI) caused a decrease in the value of active force generated by the muscle with changed geometry, and as a consequence the changes in active force generated by other muscles. A simulation of the abnormal excitation pattern (variant MII) resulted in the muscle's additional activity during its lengthening. The simultaneous modification of the muscle morphology and excitation pattern (variant MIII) points to the interdependence of both types of muscle model changes. A significant increase in the value of the reaction force in the hip joint was observed as a consequence of modification of the hip abductor activity. The morphological parameters and the excitation pattern of modelled muscles have a significant influence on the results of numerical simulation of the musculoskeletal system functioning.
Spatial eigenmodes and synchronous oscillation: co-incidence detection in simulated cerebral cortex.
Chapman, Clare L; Wright, James J; Bourke, Paul D
2002-07-01
Zero-lag synchronisation arises between points on the cerebral cortex receiving concurrent independent inputs; an observation generally ascribed to nonlinear mechanisms. Using simulations of cerebral cortex and Principal Component Analysis (PCA) we show patterns of zero-lag synchronisation (associated with empirically realistic spectral content) can arise from both linear and nonlinear mechanisms. For low levels of activation, we show the synchronous field is described by the eigenmodes of the resultant damped wave activity. The first and second spatial eigenmodes (which capture most of the signal variance) arise from the even and odd components of the independent input signals. The pattern of zero-lag synchronisation can be accounted for by the relative dominance of the first mode over the second, in the near-field of the inputs. The simulated cortical surface can act as a few millisecond response coincidence detector for concurrent, but uncorrelated, inputs. As cortical activation levels are increased, local damped oscillations in the gamma band undergo a transition to highly nonlinear undamped activity with 40 Hz dominant frequency. This is associated with "locking" between active sites and spatially segregated phase patterns. The damped wave synchronisation and the locked nonlinear oscillations may combine to permit fast representation of multiple patterns of activity within the same field of neurons.
Perisylvian sulcal morphology and cerebral asymmetry patterns in adults who stutter.
Cykowski, Matthew D; Kochunov, Peter V; Ingham, Roger J; Ingham, Janis C; Mangin, Jean-François; Rivière, Denis; Lancaster, Jack L; Fox, Peter T
2008-03-01
Previous investigations of cerebral anatomy in persistent developmental stutterers have reported bilateral anomalies in the perisylvian region and atypical patterns of cerebral asymmetry. In this study, perisylvian sulcal patterns were analyzed to compare subjects with persistent developmental stuttering (PDS) and an age-, hand-, and gender-matched control group. This analysis was accomplished using software designed for 3-dimensional sulcal identification and extraction. Patterns of cerebral asymmetry were also investigated with standard planimetric measurements. PDS subjects showed a small but significant increase in both the number of sulci connecting with the second segment of the right Sylvian fissure and in the number of suprasylvian gyral banks (of sulci) along this segment. No differences were seen in the left perisylvian region for either sulcal number or gyral bank number. Measurements of asymmetry revealed typical patterns of cerebral asymmetry in both groups with no significant differences in frontal and occipital width asymmetry, frontal and occipital pole asymmetry, or planum temporale and Sylvian fissure asymmetries. The subtle difference in cortical folding of the right perisylvian region observed in PDS subjects may correlate with functional imaging studies that have reported increased right-hemisphere activity during stuttered speech.
NASA Astrophysics Data System (ADS)
Khan, Bilal; Tian, Fenghua; Behbehani, Khosrow; Romero, Mario I.; Delgado, Mauricio R.; Clegg, Nancy J.; Smith, Linsley; Reid, Dahlia; Liu, Hanli; Alexandrakis, George
2010-05-01
We demonstrate the utility of functional near-infrared spectroscopy (fNIRS) as a tool for physicians to study cortical plasticity in children with cerebral palsy (CP). Motor cortex activation patterns were studied in five healthy children and five children with CP (8.4+/-2.3 years old in both groups) performing a finger-tapping protocol. Spatial (distance from center and area difference) and temporal (duration and time-to-peak) image metrics are proposed as potential biomarkers for differentiating abnormal cortical activation in children with CP from healthy pediatric controls. In addition, a similarity image-analysis concept is presented that unveils areas that have similar activation patterns as that of the maximum activation area, but are not discernible by visual inspection of standard activation images. Metrics derived from the images presenting areas of similarity are shown to be sensitive identifiers of abnormal activation patterns in children with CP. Importantly, the proposed similarity concept and related metrics may be applicable to other studies for the identification of cortical activation patterns by fNIRS.
Wang, Jing; Fritzsch, Claire; Bernarding, Johannes; Krause, Thomas; Mauritz, Karl-Heinz; Brunetti, Maddalena; Dohle, Christian
2013-01-01
Mirror therapy (MT) was found to improve motor function after stroke, but its neural mechanisms remain unclear, especially in single stroke patients. The following imaging study was designed to compare brain activation patterns evoked by the mirror illusion in single stroke patients with normal subjects. Fifteen normal volunteers and five stroke patients with severe arm paresis were recruited. Cerebral activations during movement mirroring by means of a video chain were recorded with functional magnetic resonance imaging (fMRI). Single-subject analysis was performed using SPM 8. For normal subjects, ten and thirteen subjects displayed lateralized cerebral activations evoked by the mirror illusion while moving their right and left hand respectively. The magnitude of this effect in the precuneus contralateral to the seen hand was not dependent on movement speed or subjective experience. Negative correlation of activation strength with age was found for the right hand only. The activation pattern in stroke patients is comparable to that of normal subjects and present in four out of five patients. In summary, the mirror illusion can elicit cerebral activation contralateral to the perceived hand in the majority of single normal subjects, but not in all of them. This is similar even in stroke patients with severe hemiparesis.
Food pattern and nutritional status of children with cerebral palsy
Lopes, Patrícia Ayrosa C.; Amancio, Olga Maria S.; Araújo, Roberta Faria C.; Vitalle, Maria Sylvia de S.; Braga, Josefina Aparecida P.
2013-01-01
OBJECTIVES To assess the food intake pattern and the nutritional status of children with cerebral palsy. METHODS Cross-sectional study with 90 children from two to 12.8 years with cerebral palsy in the following forms: hemiplegia, diplegia, and tetraplegia. Nutritional status was assessed by weight, height, and age data. Food intake was verified by the 24-hour recall and food frequency questionnaire. The ability to chew and/or swallowing, intestinal habits, and physical activity were also evaluated. RESULTS For 2-3 year-old age group, the mean energy intake followed the recommended range; in 4-6 year-old age group with hemiplegia and tetraplegia, energy intake was below the recommended limits. All children presented low intake of carbohydrates, adequate intake of proteins and high intake of lipids. The tetraplegia group had a higher prevalence of chewing (41%) and swallowing (12.8%) difficulties compared to 14.5 and 6.6% of children with hemiplegia, respectively. Most children of all groups had a daily intestinal habit. All children presented mild physical activity, while moderate activity was not practiced by any child of the tetraplegia group, which had a significantly lower height/age Z score than those with hemiplegia (-2.14 versus -1.05; p=0.003). CONCLUSIONS The children with cerebral palsy presented inadequate dietary pattern and impaired nutritional status, with special compromise of height. Tetraplegia imposes difficulties regarding chewing/swallowing and moderate physical activity practice. PMID:24142317
Patterns of cerebral activation during lexical and phonological reading in Portuguese.
Senaha, M L H; Martin, M G M; Amaro, E; Campi, C; Caramelli, P
2005-12-01
According to the concepts of cognitive neuropsychology, there are two principal routes of reading processing: a lexical route, in which global reading of words occurs and a phonological route, responsible for the conversion of the graphemes into their respective phonemes. In the present study, functional magnetic resonance imaging (fMRI) was used to investigate the patterns of cerebral activation in lexical and phonological reading by 13 healthy women with a formal educational level greater than 11 years. Participants were submitted to a silent reading task containing three types of stimuli: real words (irregular and foreign words), nonwords and illegitimate graphic stimuli. An increased number of activated voxels were identified by fMRI in the word reading (lexical processing) than in the nonword reading (phonological processing) task. In word reading, activation was greater than for nonwords in the following areas: superior, middle and inferior frontal gyri, and bilateral superior temporal gyrus, right cerebellum and the left precentral gyrus, as indicated by fMRI. In the reading of nonwords, the activation was predominant in the right cerebellum and in the left superior temporal gyrus. The results of the present study suggest the existence of differences in the patterns of cerebral activation during lexical and phonological reading, with greater involvement of the right hemisphere in reading words than nonwords.
Autogenic training alters cerebral activation patterns in fMRI.
Schlamann, Marc; Naglatzki, Ryan; de Greiff, Armin; Forsting, Michael; Gizewski, Elke R
2010-10-01
Cerebral activation patterns during the first three auto-suggestive phases of autogenic training (AT) were investigated in relation to perceived experiences. Nineteen volunteers trained in AT and 19 controls were studied with fMRI during the first steps of autogenic training. FMRI revealed activation of the left postcentral areas during AT in those with experience in AT, which also correlated with the level of AT experience. Activation of prefrontal and insular cortex was significantly higher in the group with experience in AT while insular activation was correlated with number years of simple relaxation exercises. Specific activation in subjects experienced in AT may represent a training effect. Furthermore, the correlation of insular activation suggests that these subjects are different from untrained subjects in emotional processing or self-awareness.
Kirwan, Peter; Turner-Bridger, Benita; Peter, Manuel; Momoh, Ayiba; Arambepola, Devika; Robinson, Hugh P. C.; Livesey, Frederick J.
2015-01-01
A key aspect of nervous system development, including that of the cerebral cortex, is the formation of higher-order neural networks. Developing neural networks undergo several phases with distinct activity patterns in vivo, which are thought to prune and fine-tune network connectivity. We report here that human pluripotent stem cell (hPSC)-derived cerebral cortex neurons form large-scale networks that reflect those found in the developing cerebral cortex in vivo. Synchronised oscillatory networks develop in a highly stereotyped pattern over several weeks in culture. An initial phase of increasing frequency of oscillations is followed by a phase of decreasing frequency, before giving rise to non-synchronous, ordered activity patterns. hPSC-derived cortical neural networks are excitatory, driven by activation of AMPA- and NMDA-type glutamate receptors, and can undergo NMDA-receptor-mediated plasticity. Investigating single neuron connectivity within PSC-derived cultures, using rabies-based trans-synaptic tracing, we found two broad classes of neuronal connectivity: most neurons have small numbers (<10) of presynaptic inputs, whereas a small set of hub-like neurons have large numbers of synaptic connections (>40). These data demonstrate that the formation of hPSC-derived cortical networks mimics in vivo cortical network development and function, demonstrating the utility of in vitro systems for mechanistic studies of human forebrain neural network biology. PMID:26395144
Kirwan, Peter; Turner-Bridger, Benita; Peter, Manuel; Momoh, Ayiba; Arambepola, Devika; Robinson, Hugh P C; Livesey, Frederick J
2015-09-15
A key aspect of nervous system development, including that of the cerebral cortex, is the formation of higher-order neural networks. Developing neural networks undergo several phases with distinct activity patterns in vivo, which are thought to prune and fine-tune network connectivity. We report here that human pluripotent stem cell (hPSC)-derived cerebral cortex neurons form large-scale networks that reflect those found in the developing cerebral cortex in vivo. Synchronised oscillatory networks develop in a highly stereotyped pattern over several weeks in culture. An initial phase of increasing frequency of oscillations is followed by a phase of decreasing frequency, before giving rise to non-synchronous, ordered activity patterns. hPSC-derived cortical neural networks are excitatory, driven by activation of AMPA- and NMDA-type glutamate receptors, and can undergo NMDA-receptor-mediated plasticity. Investigating single neuron connectivity within PSC-derived cultures, using rabies-based trans-synaptic tracing, we found two broad classes of neuronal connectivity: most neurons have small numbers (<10) of presynaptic inputs, whereas a small set of hub-like neurons have large numbers of synaptic connections (>40). These data demonstrate that the formation of hPSC-derived cortical networks mimics in vivo cortical network development and function, demonstrating the utility of in vitro systems for mechanistic studies of human forebrain neural network biology. © 2015. Published by The Company of Biologists Ltd.
Integrative Mechanisms of Oriented Neuronal Migration in the Developing Brain
Evsyukova, Irina; Plestant, Charlotte; Anton, E.S.
2014-01-01
The emergence of functional neuronal connectivity in the developing cerebral cortex depends on neuronal migration. This process enables appropriate positioning of neurons and the emergence of neuronal identity so that the correct patterns of functional synaptic connectivity between the right types and numbers of neurons can emerge. Delineating the complexities of neuronal migration is critical to our understanding of normal cerebral cortical formation and neurodevelopmental disorders resulting from neuronal migration defects. For the most part, the integrated cell biological basis of the complex behavior of oriented neuronal migration within the developing mammalian cerebral cortex remains an enigma. This review aims to analyze the integrative mechanisms that enable neurons to sense environmental guidance cues and translate them into oriented patterns of migration toward defined areas of the cerebral cortex. We discuss how signals emanating from different domains of neurons get integrated to control distinct aspects of migratory behavior and how different types of cortical neurons coordinate their migratory activities within the developing cerebral cortex to produce functionally critical laminar organization. PMID:23937349
Joint Angular Velocity in Spastic Gait and the Influence of Muscle-Tendon Lengthening*
GRANATA, KEVIN P.; ABEL, MARK F.; DAMIANO, DIANE L.
2006-01-01
Background Joint angular velocity (the rate of flexion and extension of a joint) is related to the dynamics of muscle activation and force generation during walking. Therefore, the goal of this research was to examine the joint angular velocity in normal and spastic gait and changes resulting from muscle-tendon lengthening (recession and tenotomy) in patients who have spastic cerebral palsy. Methods The gait patterns of forty patients who had been diagnosed with spastic cerebral palsy (mean age, 8.3 years; range, 3.7 to 14.8 years) and of seventy-three age-matched, normally developing subjects were evaluated with three-dimensional motion analysis and electromyography. The patients who had cerebral palsy were evaluated before muscle-tendon lengthening and nine months after treatment. Results The gait patterns of the patients who had cerebral palsy were characterized by increased flexion of the knee in the stance phase, premature plantar flexion of the ankle, and reduced joint angular velocities compared with the patterns of the normally developing subjects. Even though muscle-tendon lengthening altered sagittal joint angles in gait, the joint angular velocities were generally unchanged at the hip and knee. Only the ankle demonstrated modified angular velocities, including reduced dorsiflexion velocity at foot-strike and improved dorsiflexion velocity through midstance, after treatment. Electromyographic changes included reduced amplitude of the gastrocnemius-soleus during the loading phase and decreased knee coactivity (the ratio of quadriceps and hamstring activation) at toe-off. Principal component analyses showed that, compared with joint-angle data, joint angular velocity was better able to discriminate between the gait patterns of the normal and cerebral palsy groups. Conclusions This study showed that muscle-tendon lengthening corrects biomechanical alignment as reflected by changes in sagittal joint angles. However, joint angular velocity and electromyographic data suggest that the underlying neural input remains largely unchanged at the hip and knee. Conversely, electromyographic changes and changes in velocity in the ankle indicate that the activation pattern of the gastrocnemius-soleus complex in response to stretch was altered by recession of the complex. PMID:10682726
Salinet, Angela S M; Panerai, Ronney B; Robinson, Thompson G
2012-06-01
This study aimed to compare the response of metabolic-induced cerebral hemodynamic changes measured using transcranial Doppler (TCD) ultrasonography during passive, active and motor imagery paradigms, and associated peripheral hemodynamic responses. Continuous recordings of bilateral cerebral blood flow velocity (CBFv), blood pressure, heart rate and end-tidal CO(2) were performed in 12 right-handed subjects (aged ≥45 y) before, during and after 60 s of active, passive and mental-imagined paradigms. The results revealed no significant difference in CBFv responses between the paradigms and, furthermore, the temporal patterns of the hemodynamic responses showed some degree of similarity. Moreover, significant changes were seen in cerebral and peripheral hemodynamic responses for all paradigms. Our results suggest that active, passive and motor imagery paradigms can be used interchangeably to assess hemodynamic responses. This will enable more detailed noninvasive assessment in patients, where voluntary movement is not possible, but where abnormalities of cerebral hemodynamic control mechanisms can be anticipated. Copyright © 2012 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Dipeptidyl peptidase IV, aminopeptidase N and DPIV/APN-like proteases in cerebral ischemia
2012-01-01
Background Cerebral inflammation is a hallmark of neuronal degeneration. Dipeptidyl peptidase IV, aminopeptidase N as well as the dipeptidyl peptidases II, 8 and 9 and cytosolic alanyl-aminopeptidase are involved in the regulation of autoimmunity and inflammation. We studied the expression, localisation and activity patterns of these proteases after endothelin-induced occlusion of the middle cerebral artery in rats, a model of transient and unilateral cerebral ischemia. Methods Male Sprague-Dawley rats were used. RT-PCR, immunohistochemistry and protease activity assays were performed at different time points, lasting from 2 h to 7 days after cerebral ischemia. The effect of protease inhibitors on ischemia-dependent infarct volumes was quantified 7 days post middle cerebral artery occlusion. Statistical analysis was conducted using the t-test. Results Qualitative RT-PCR revealed these proteases in ipsilateral and contralateral cortices. Dipeptidyl peptidase II and aminopeptidase N were up-regulated ipsilaterally from 6 h to 7 days post ischemia, whereas dipeptidyl peptidase 9 and cytosolic alanyl-aminopeptidase were transiently down-regulated at day 3. Dipeptidyl peptidase 8 and aminopeptidase N immunoreactivities were detected in cortical neurons of the contralateral hemisphere. At the same time point, dipeptidyl peptidase IV, 8 and aminopeptidase N were identified in activated microglia and macrophages in the ipsilateral cortex. Seven days post artery occlusion, dipeptidyl peptidase IV immunoreactivity was found in the perikarya of surviving cortical neurons of the ipsilateral hemisphere, whereas their nuclei were dipeptidyl peptidase 8- and amino peptidase N-positive. At the same time point, dipeptidyl peptidase IV, 8 and aminopeptidase N were targeted in astroglial cells. Total dipeptidyl peptidase IV, 8 and 9 activities remained constant in both hemispheres until day 3 post experimental ischemia, but were increased (+165%) in the ipsilateral cortex at day 7. In parallel, aminopeptidase N and cytosolic alanyl-aminopeptidase activities remained unchanged. Conclusions Distinct expression, localization and activity patterns of proline- and alanine-specific proteases indicate their involvement in ischemia-triggered inflammation and neurodegeneration. Consistently, IPC1755, a non-selective protease inhibitor, revealed a significant reduction of cortical lesions after transient cerebral ischemia and may suggest dipeptidyl peptidase IV, aminopeptidase N and proteases with similar substrate specificity as potentially therapy-relevant targets. PMID:22373413
Toppila, Jussi; Salmi, Tapani; Ilmoniemi, Risto J.
2012-01-01
The cyclic alternating pattern (CAP), that is, cyclic variation of brain activity within non-REM sleep stages, is related to sleep instability and preservation, as well as consolidation of learning. Unlike the well-known electrical activity of CAP, its cerebral hemodynamic counterpart has not been assessed in healthy subjects so far. We recorded scalp and cortical hemodynamics with near-infrared spectroscopy on the forehead and systemic hemodynamics (heart rate and amplitude of the photoplethysmograph) with a finger pulse oximeter during 23 nights in 11 subjects. Electrical CAP activity was recorded with a polysomnogram. CAP was related to changes in scalp, cortical, and systemic hemodynamic signals that resembled the ones seen in arousal. Due to their repetitive nature, CAP sequences manifested as low- and very-low-frequency oscillations in the hemodynamic signals. The subtype A3+B showed the strongest hemodynamic changes. A transient hypoxia occurred during CAP cycles, suggesting that an increased CAP rate, especially with the subtype A3+B, which may result from diseases or fragmented sleep, might have an adverse effect on the cerebral vasculature. PMID:23071658
Näsi, Tiina; Virtanen, Jaakko; Toppila, Jussi; Salmi, Tapani; Ilmoniemi, Risto J
2012-01-01
The cyclic alternating pattern (CAP), that is, cyclic variation of brain activity within non-REM sleep stages, is related to sleep instability and preservation, as well as consolidation of learning. Unlike the well-known electrical activity of CAP, its cerebral hemodynamic counterpart has not been assessed in healthy subjects so far. We recorded scalp and cortical hemodynamics with near-infrared spectroscopy on the forehead and systemic hemodynamics (heart rate and amplitude of the photoplethysmograph) with a finger pulse oximeter during 23 nights in 11 subjects. Electrical CAP activity was recorded with a polysomnogram. CAP was related to changes in scalp, cortical, and systemic hemodynamic signals that resembled the ones seen in arousal. Due to their repetitive nature, CAP sequences manifested as low- and very-low-frequency oscillations in the hemodynamic signals. The subtype A3+B showed the strongest hemodynamic changes. A transient hypoxia occurred during CAP cycles, suggesting that an increased CAP rate, especially with the subtype A3+B, which may result from diseases or fragmented sleep, might have an adverse effect on the cerebral vasculature.
Roy, Susmita; Alves-Pinto, Ana; Lampe, Renée
2018-01-01
Cycling on ergometer is often part of rehabilitation programs for patients with cerebral palsy (CP). The present study analyzed activity patterns of individual lower leg muscle during active cycling on ergometer in patients with CP and compared them to similar recordings in healthy participants. Electromyographic (EMG) recordings of lower leg muscle activity were collected from 14 adult patients and 10 adult healthy participants. Activity of the following muscles was recorded: Musculus tibialis anterior, Musculus gastrocnemius, Musculus rectus femoris, and Musculus biceps femoris. Besides qualitative analysis also quantitative analysis of individual muscle activity was performed by computing the coefficient of variation of EMG signal amplitude. More irregular EMG patterns were observed in patients in comparison to healthy participants: agonist-antagonist cocontractions were more frequent, muscle activity measured at specific points of the cycle path was more variable, and dynamic range of muscle activity along the cycle path was narrower in patients. Hypertonicity was also more frequent in patients. Muscle activity patterns during cycling differed substantially across patients. It showed irregular nature and occasional sharp high peaks. Dynamic range was also narrower than in controls. Observations underline the need for individualized cycling training to optimize rehabilitation effects.
Basal cerebral glucose distribution in long-term post-traumatic stress disorder.
Molina, Mario Enrique; Isoardi, Roberto; Prado, Marcela Nathalie; Bentolila, Silvia
2010-03-01
The purpose of this investigation was to study basal cerebral glucose absorption patterns associated to long-term post-traumatic stress disorder. Fluorodeoxyglucose positron emission tomography (FDG-PET) and statistic parametric mapping (SPM) were used to compare regional cerebral glucose absorption between 15 war veterans (Hispanic men, aged 39-41 (M = 39.5, SD = 0.84)) diagnosed with post-traumatic stress disorder (PTSD) based on DSM-IV criteria, and a matching control group of six asymptomatic veterans. This study was conducted 20 years after the traumatic events. PTSD patients presented relatively diminished activity (P<0.005) in: cingulate gyri, precuneus, insula, hippocampus; frontal, pre-frontal and post-central regions; lingual, calcarine, occipital medial and superior gyri, and verbal and paraverbal areas. Relativeley augmented activity (P<0.005) was observed in PTSD patients in: fusiform, temporal superior, medial, and inferior gyri; occipital medial, inferior and lingual gyri; precuneus, and cerebellum. The amygdala and the thalamus showed normal metabolic activity. Various brain regions that showed diminished activity (limbic, frontal and prefrontal cortex, multimodal parieto-occipital areas and verbal and paraverbal areas) have evolved lately, and sub-serve highly complex cognitive and behavioural functions. Metabolic activity patterns are comparable to those observed in personality disorders of the borderline type.
Kavak, Sermin Tukel; Bumin, Gonca
2009-01-01
The aim of this study was to investigate the effect of different ergonomic desk designs and pencil grip patterns on handwriting performance in children with hemiplegic cerebral palsy and healthy children. Twenty-six children with left hemiplegic cerebral palsy and 32 typically developing children were included. The Minnesota Handwriting Assessment was used to evaluate handwriting abilities. Pencil grip posture was assessed with a 5-point rating system. Specifically designed adjustable desks and chairs were used. Four different desk types were used in this study: 1) regular desk; 2) regular desk with a 20 degrees inclination; 3) cutout desk; and 4) cutout desk with a 20 degrees inclination. Statistically significant differences were found between both groups in terms of handwriting ability (p < 0.001). There was no significant difference regarding grip scores between children with cerebral palsy and healthy children (p > 0.05). We found that children with cerebral palsy had better performance using cutout desks in relation to rate and spacing parameters of handwriting (p < 0.05). The results of our study demonstrated that the pencil grip patterns have no effect on the handwriting parameters in both children with cerebral palsy and healthy children. It is recommended that a cutout table be used to provide more upper extremity support in handwriting activities for students with cerebral palsy.
Resting state cerebral blood flow with arterial spin labeling MRI in developing human brains.
Liu, Feng; Duan, Yunsuo; Peterson, Bradley S; Asllani, Iris; Zelaya, Fernando; Lythgoe, David; Kangarlu, Alayar
2018-07-01
The development of brain circuits is coupled with changes in neurovascular coupling, which refers to the close relationship between neural activity and cerebral blood flow (CBF). Studying the characteristics of CBF during resting state in developing brain can be a complementary way to understand the functional connectivity of the developing brain. Arterial spin labeling (ASL), as a noninvasive MR technique, is particularly attractive for studying cerebral perfusion in children and even newborns. We have collected pulsed ASL data in resting state for 47 healthy subjects from young children to adolescence (aged from 6 to 20 years old). In addition to studying the developmental change of static CBF maps during resting state, we also analyzed the CBF time series to reveal the dynamic characteristics of CBF in differing age groups. We used the seed-based correlation analysis to examine the temporal relationship of CBF time series between the selected ROIs and other brain regions. We have shown the developmental patterns in both static CBF maps and dynamic characteristics of CBF. While higher CBF of default mode network (DMN) in all age groups supports that DMN is the prominent active network during the resting state, the CBF connectivity patterns of some typical resting state networks show distinct patterns of metabolic activity during the resting state in the developing brains. Copyright © 2018 European Paediatric Neurology Society. All rights reserved.
Golovchenko, I V; Hayday, M I
The correlations between the indicators of cerebral hemodynamics and electrical activity in children with impaired motor skills of central origin (children with cerebral palsy) were investigated. There is established a high number of links between indicators of rheoencephalogram (REG) and electroencephalogram (EEG) in the left cerebral hemisphere than in the right. In frontomastoidal allocation 19 correlations and in occipitomastoidal - 59 links. We suppose that poor circulation in vertebroplasty-basilar system leads to the defeat of the brain stem, which, with afferent pathways of the reticular formation, connects the thalamus with the cortex. In the reticular formation there is an inhibition of ascending activators influences, which eland to decreasing of the cortex is tonus. You can talk about the functional immaturity of the system of nonspecific activation by the reticular formation of the brain stem. Children with violation of motor activity had significantly more negative and positive significant and high correlation among the existing indicators of electric brain activity and cerebral hemodynamics, in our opinion, is due to the development of interconnection compensation that is carried out by adjustment of the functional systems and the formation of new forms of adaptive responses in conditions of disontogenetik. Feature correlation pattern of the EEG, of children with disorders of motor activity, is associated with a significantly great number of high and significant correlations between measures of electrical brain activity in the δ- and q- rhythms, especially in the temporal areas of the cerebral cortex. According to visual analysis of EEG there is revealed a common manifestation of changes of bioelectric brain activity in children with disorders of motor activity. This is manifested in the development of paroxysmal activity of action potentials of θ- and δ-rhythms with the focus of activity in the anterior areas of the cerebral cortex; the formation of a mosaic representation of the θ-rhythms in temporal areas; the presence of hypersynchronous a-paroxysms in the posterior areas of the cerebral cortex. The given facts testify to activation of mechanisms of limbic-neocortical systems and synchronizing influences of the reticular formation of the stem and diencephalic structures. There is also detected greater number of correlations when occipitomastoidal registration was lone it reflects compensatory redistribution of cerebral blood flow over the affected structures of brain stem structures that are associated with the provision of cortical functions.
Meyer, Georg F; Spray, Amy; Fairlie, Jo E; Uomini, Natalie T
2014-01-01
Current neuroimaging techniques with high spatial resolution constrain participant motion so that many natural tasks cannot be carried out. The aim of this paper is to show how a time-locked correlation-analysis of cerebral blood flow velocity (CBFV) lateralization data, obtained with functional TransCranial Doppler (fTCD) ultrasound, can be used to infer cerebral activation patterns across tasks. In a first experiment we demonstrate that the proposed analysis method results in data that are comparable with the standard Lateralization Index (LI) for within-task comparisons of CBFV patterns, recorded during cued word generation (CWG) at two difficulty levels. In the main experiment we demonstrate that the proposed analysis method shows correlated blood-flow patterns for two different cognitive tasks that are known to draw on common brain areas, CWG, and Music Synthesis. We show that CBFV patterns for Music and CWG are correlated only for participants with prior musical training. CBFV patterns for tasks that draw on distinct brain areas, the Tower of London and CWG, are not correlated. The proposed methodology extends conventional fTCD analysis by including temporal information in the analysis of cerebral blood-flow patterns to provide a robust, non-invasive method to infer whether common brain areas are used in different cognitive tasks. It complements conventional high resolution imaging techniques.
Chen, Guangxiang; Lei, Du; Ren, Jiechuan; Zuo, Panli; Suo, Xueling; Wang, Danny J J; Wang, Meiyun; Zhou, Dong; Gong, Qiyong
2016-07-04
The cerebral haemodynamic status of idiopathic generalized epilepsy (IGE) is a very complicated process. Little attention has been paid to cerebral blood flow (CBF) alterations in IGE detected by arterial spin labelling (ASL) perfusion magnetic resonance imaging (MRI). However, the selection of an optimal delay time is difficult for single-delay ASL. Multi-delay multi-parametric ASL perfusion MRI overcomes the limitations of single-delay ASL. We applied multi-delay multi-parametric ASL perfusion MRI to investigate the patterns of postictal cerebral perfusion in IGE patients with absence seizures. A total of 21 IGE patients with absence seizures and 24 healthy control subjects were enrolled. IGE patients exhibited prolonged arterial transit time (ATT) in the left superior temporal gyrus. The mean CBF of IGE patients was significantly increased in the left middle temporal gyrus, left parahippocampal gyrus and left fusiform gyrus. Prolonged ATT in the left superior temporal gyrus was negatively correlated with the age at onset in IGE patients. This study demonstrated that cortical dysfunction in the temporal lobe and fusiform gyrus may be related to epileptic activity in IGE patients with absence seizures. This information can play an important role in elucidating the pathophysiological mechanism of IGE from a cerebral haemodynamic perspective.
Reversal of normal cerebral sexual dimorphism in schizophrenia: evidence and speculations.
Mendrek, Adrianna
2007-01-01
Sex differences in epidemiology, clinical course and symptomatology of schizophrenia have been widely documented, but still relatively little is known about the brain sexual dimorphism in this psychiatric disorder. While some neuroanatomical and neuropsychological studies have reported existence of differences between male and female patients in a direction of normal sexual dimorphism, others did not find any effect. A few recent reports point to a peculiar disturbance of normal sexual dimorphism in brain regions implicated in the processing of emotions, including amygdala, orbitofrontal cortex and anterior cingulate. Prompted by these findings we compared cerebral activations between the sexes during performance of two emotion processing tasks and found overall much more extensive and intense cerebral activations in men than in women with schizophrenia. Moreover, the pattern of obtained sex differences in cerebral activation in patients differed significantly from what has been observed in the general population. Based on these preliminary structural and functional neuroimaging data, as well as some clinical reports, it is hypothesized in the present paper that schizophrenia is characterized by a reversed (or at least seriously disturbed) cerebral sexual dimorphism. It is further argued that this phenomenon stems from masculinization and/or un-feminization of females and feminizations and/or un-masculinization of males by sex steroid hormones, such as estrogen and testosterone, during both organizational and activational stages of neurodevelopment.
Ducros, Anne; Wolff, Valérie
2016-04-01
During the last 10 years, reversible cerebral vasoconstriction syndrome (RCVS) has emerged as the most frequent cause of thunderclap headache (TCH) in patients without aneurysmal subarachnoid hemorrhage, and as the most frequent cause of recurrent TCHs. The typical TCHs of RCVS are multiple, recurring over a few days to weeks, excruciating, short-lived, and brought up by exertion, sexual activities, emotion, Valsalva maneuvers, or bathing, among other triggers. All these triggers induce sympathetic activation. In a minority of cases with RCVS, TCH heralds stroke and rarely death. Early diagnosis of RCVS in patients who present with isolated headache enables proper management and might reduce the risk of eventual stroke. This review describes the characteristics, triggers, diagnosis, and management of TCH in RCVS. One aim is to underline that the TCH pattern of RCVS is so typical that it enables, according to the 2013 revision of the International Classification of Headache Disorders, the diagnosis of "probable RCVS" in patients with such a headache pattern, normal cerebral angiography, and no other cause. Another objective is to discuss the role of physical and emotional stress in RCVS and in other related conditions involving similar triggers. © 2016 American Headache Society.
Ahlin, Kristina; Jacobsson, Bo; Nilsson, Staffan; Himmelmann, Kate
2017-07-01
Antecedents of accompanying impairments in cerebral palsy and their relation to neuroimaging patterns need to be explored. A population-based study of 309 children with cerebral palsy born at term between 1983 and 1994. Prepartum, intrapartum, and postpartum variables previously studied as antecedents of cerebral palsy type and motor severity were analyzed in children with cerebral palsy and cognitive impairment and/or epilepsy, and in children with cerebral palsy without these accompanying impairments. Neuroimaging patterns and their relation to identified antecedents were analyzed. Data were retrieved from the cerebral palsy register of western Sweden, and from obstetric and neonatal records. Children with cerebral palsy and accompanying impairments more often had low birthweight (kg) (odds ratio 0.5, 95% confidence interval 0.3-0.8), brain maldevelopment known at birth (p = 0.007, odds ratio ∞) and neonatal infection (odds ratio 5.4, 95% confidence interval 1.04-28.4). Moreover, neuroimaging patterns of maldevelopment (odds ratio 7.2, 95% confidence interval 2.9-17.2), cortical/subcortical lesions (odds ratio 5.3, 95% confidence interval 2.3-12.2) and basal ganglia lesions (odds ratio 7.6, 95% confidence interval 1.4-41.3) were more common, wheras white matter injury was found significantly less often (odds ratio 0.2, 95% confidence interval 0.1-0.5). In most children with maldevelopment, the intrapartum and postpartum periods were uneventful (p < 0.05). Cerebral maldevelopment was associated with prepartum antecedents, whereas subcortical/cortical and basal ganglia lesions were associated with intrapartum and postpartum antecedents. No additional factor other than those related to motor impairment was associated with epilepsy and cognitive impairment in cerebral palsy. Timing of antecedents deemed important for the development of cerebral palsy with accompanying impairments were supported by neuroimaging patterns. © 2017 Nordic Federation of Societies of Obstetrics and Gynecology.
Functional magnetic resonance imaging in primary writing tremor and writer’s cramp: A pilot study
Sahni, Hirdesh; Jayakumar, Peruvumba N.; Pal, Pramod Kumar
2010-01-01
Objectives: The precise pathophysiology of primary writing tremor (PWT) and writer’s cramp (WC) is not known. The aim of this study is to compare the cerebral activation patterns in patients of PWT, WC and healthy controls, during a task of signing on paper, using functional magnetic resonance imaging (fMRI). Materials and Methods: Six subjects with PWT, three with WC and six healthy volunteers were examined using a 1.5-Tesla scanner. The paradigm consisted of three times repetition of a set of period of rest and activity. Each set consisted of 10 blood oxygen level dependent (BOLD) echo-planar imaging (EPI) acquisitions at rest followed by 10 BOLD EPI acquisitions while signing their names on paper using the dominant right hand. Entire brain was covered. SPM99 analysis was done. Results: In comparison to the healthy controls, the following differences in cerebral activation were noted in the patients: (a) primary and supplementary motor areas showed overactivation in patients of PWT and underactivation in patients of WC, (b) the cingulate motor area showed underactivation in patients of PWT and overactivation in patients of WC and (c) the cerebellar activity was reduced in both WC and PWT. Conclusion: Our preliminary findings suggest that the cerebral and cerebellar activation patterns in PWT and WC during signing on paper are distinct from each other and from healthy controls. There may be cerebellar dysfunction in addition to motor dysfunctions in the pathogenesis of these disorders. PMID:21085530
1982-05-01
words spoken. Under Age 7 % 30 decibel hearing loss without hearing aid in one or both ears. Epilepsy Parkinson’s Disease Cerebral Palsy Multiple... Intervention in the Care of the Physically Handicapped, Severely Retarded Child." Nursing Clinics of North America, Vol. 10, No. 2 (June 1975): 353...requires assistance to support the essentials of daily living. h. Cerebral Palsy . With: (1) IQ of 83 or less; (2) Abnormal behavior patterns, such as
Neuroimaging somatosensory perception and masking.
Meador, Kimford J; Revill, Kathleen Pirog; Epstein, Charles M; Sathian, K; Loring, David W; Rorden, Chris
2017-01-08
The specific cortical and subcortical regions involved in conscious perception and masking are uncertain. This study sought to identify brain areas involved in conscious perception of somatosensory stimuli during a masking task using functional magnetic resonance (fMRI) to contrast perceived vs. non-perceived targets. Electrical trains were delivered to the right index finger for targets and to the left index finger for masks. Target intensities were adjusted to compensate for threshold drift. Sham target trials were given in ~10% of the trials, and target stimuli without masks were delivered in one of the five runs (68 trials/run). When healthy dextral adult volunteers (n=15) perceived right hand targets, greater left- than right-cerebral activations were seen with similar patterns across the parietal cortex, thalamus, insula, claustrum, and midbrain. When targets were not perceived, left/right cerebral activations were similar overall. Directly comparing perceived vs. non-perceived stimuli with similar intensities in the masking task revealed predominate activations contralateral to masks. In contrast, activations were greater contralateral to perceived targets if no masks were given or if masks were given but target stimulus intensities were greater for perceived than non-perceived targets. The novel aspects of this study include: 1) imaging of cortical and subcortical activations in healthy humans related to somatosensory perception during a masking task, 2) activations in the human thalamus and midbrain related to perception of stimuli compared to matched non-perceived stimuli, and 3) similar left/right cerebral activation patterns across cortical, thalamic and midbrain structures suggesting interactions across all three levels during conscious perception in humans. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cerebral lateralization of praxis in right- and left-handedness: same pattern, different strength.
Vingerhoets, Guy; Acke, Frederic; Alderweireldt, Ann-Sofie; Nys, Jo; Vandemaele, Pieter; Achten, Eric
2012-04-01
We aimed to investigate the effect of hand effector and handedness on the cerebral lateralization of pantomiming learned movements. Fourteen right-handed and 14 left-handed volunteers performed unimanual and bimanual tool-use pantomimes with their dominant or nondominant hand during fMRI. A left hemispheric lateralization was observed in the right- and left-handed group regardless of which hand(s) performed the task. Asymmetry was most marked in the dorsolateral prefrontal cortex (DLPFC), premotor cortex (PMC), and superior and inferior parietal lobules (SPL and IPL). Unimanual pantomimes did not reveal any significant differences in asymmetric cerebral activation patterns between left- and right-handers. Bimanual pantomimes showed increased left premotor and posterior parietal activation in left- and right-handers. Lateralization indices (LI) of the 10% most active voxels in DLPFC, PMC, SPL, and IPL were calculated for each individual in a contrast that compared all tool versus all control conditions. Left-handers showed a significantly reduced overall LI compared with right-handers. This was mainly due to diminished asymmetry in the IPL and SPL. We conclude that the recollection and pantomiming of learned gestures recruits a similar left lateralized activation pattern in right and left-handed individuals. Handedness only influences the strength (not the side) of the lateralization, with left-handers showing a reduced degree of asymmetry that is most readily observed over the posterior parietal region. Together with similar findings in language and visual processing, these results point to a lesser hemispheric specialization in left-handers that may be considered in the cost/benefit assessment to explain the disproportionate handedness polymorphism in humans. Copyright © 2011 Wiley Periodicals, Inc.
Functional imaging of conditioned aversive emotional responses in antisocial personality disorder.
Schneider, F; Habel, U; Kessler, C; Posse, S; Grodd, W; Müller-Gärtner, H W
2000-01-01
Individuals with antisocial personality disorder (n = 12) and healthy controls (n = 12) were examined for cerebral regional activation involved in the processing of negative affect. A differential aversive classical conditioning paradigm was applied with odors as unconditioned stimuli and faces as conditioned stimuli. Functional magnetic resonance imaging (fMRI) based on echo-planar imaging was used while cerebral activity was studied during habituation, acquisition, and extinction. Individually defined cerebral regions were analyzed. Both groups indicated behavioral conditioning following subjective ratings of emotional valence to conditioned stimuli. Differential effects were found during acquisition in the amygdala and dorsolateral prefrontal cortex. Controls showed signal decreases, patients signal increases. These preliminary results revealed unexpected signal increases in cortical/subcortical areas of patients. The increases may result from an additional effort put in by these individuals to form negative emotional associations, a pattern of processing that may correspond to their characteristic deviant emotional behavior. Copyright 2000 S. Karger AG, Basel.
Protective effect of protopine on the focal cerebral ischaemic injury in rats.
Xiao, Xianghua; Liu, Juntian; Hu, Jingwen; Li, Tianxia; Zhang, Yuanhui
2007-08-01
Protopine, an isoquinoline alkaloidis, is known to produce many effects such as vasodilation, down-regulation of glutamate levels in brain and decrease of intracellular calcium. However, so far there is no report on the effect of protopine in cerebral ischaemia. In this study, the effect of protopine on the focal cerebral ischaemia was investigated in rats. Male Sprague-Dawley rats were divided into five groups: sham-operated group, vehicle-treated group and three doses of protopine-treated groups (0.98, 1.96 and 3.92 mg/kg). Protopine was intraperitoneally administered to rats once daily for 3 days prior to the ischaemia and 0.9% normal saline to rats in the vehicle-treated group in the same pattern. Rats in the sham-operated group were given 0.9% normal saline without the ischaemia. The focal cerebral ischaemia was induced by the middle cerebral artery occlusion for 24 hr via the intraluminal filament technique. The results showed that pre-treatment with protopine reduced the cerebral infarction ratio and serum lactate dehydrogenase activity, and improved the ischaemia-induced neurological deficit score and histological changes of brain in a dose-dependent manner. The further studies demonstrated that protopine increased superoxide dismutase activity in serum, and decreased total calcium and terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL)-positive cells in the ischaemic brain tissue in the middle cerebral artery occlusion rats. The results indicate that protopine is able to produce an effective protection on the injury caused by the focal cerebral ischaemia in rats possibly through the multiple effects of calcium antagonism, antioxidation and depression of cell apoptosis.
The systemic pathology of cerebral malaria in African children
Milner, Danny A.; Whitten, Richard O.; Kamiza, Steve; Carr, Richard; Liomba, George; Dzamalala, Charles; Seydel, Karl B.; Molyneux, Malcolm E.; Taylor, Terrie E.
2014-01-01
Pediatric cerebral malaria carries a high mortality rate in sub-Saharan Africa. We present our systematic analysis of the descriptive and quantitative histopathology of all organs sampled from a series of 103 autopsies performed between 1996 and 2010 in Blantyre, Malawi on pediatric cerebral malaria patients and control patients (without coma, or without malaria infection) who were clinically well characterized prior to death. We found brain swelling in all cerebral malaria patients and the majority of controls. The histopathology in patients with sequestration of parasites in the brain demonstrated two patterns: (a) the “classic” appearance (i.e., ring hemorrhages, dense sequestration, and extra-erythrocytic pigment) which was associated with evidence of systemic activation of coagulation and (b) the “sequestration only” appearance associated with shorter duration of illness and higher total burden of parasites in all organs including the spleen. Sequestration of parasites was most intense in the gastrointestinal tract in all parasitemic patients (those with cerebral malarial and those without). PMID:25191643
Glucose metabolism in the developing brain.
Vannucci, R C; Vannucci, S J
2000-04-01
As in adults, glucose is the predominant cerebral energy fuel for the fetus and newborn. Studies in experimental animals and humans indicate that cerebral glucose utilization initially is low and increases with maturation with increasing regional heterogeneity. The increases in cerebral glucose utilization with advancing age occurs as a consequence of increasing functional activity and cerebral energy demands. The levels of expression of the 2 primary facilitative glucose transporter proteins in brain, GLUT1 (blood-brain barrier and glia) and GLUT3 (neuronal), display a similar maturational pattern. Alternate cerebral energy fuels, specifically the ketone bodies and lactate, can substitute for glucose, especially during hypoglycemia, thereby protecting the immature brain from potential untoward effects of hypoglycemia. Unlike adults, glucose supplementation during hypoxia-ischemia is protective in the immature brain, whereas hypoglycemia is deleterious. Accordingly, glucose plays a critical role in the developing brain, not only as the primary substrate for energy production but also to allow for normal biosynthetic processes to proceed.
Impaired plasticity of macrophages in X-linked adrenoleukodystrophy.
Weinhofer, Isabelle; Zierfuss, Bettina; Hametner, Simon; Wagner, Magdalena; Popitsch, Niko; Machacek, Christian; Bartolini, Barbara; Zlabinger, Gerhard; Ohradanova-Repic, Anna; Stockinger, Hannes; Köhler, Wolfgang; Höftberger, Romana; Regelsberger, Günther; Forss-Petter, Sonja; Lassmann, Hans; Berger, Johannes
2018-05-30
X-linked adrenoleukodystrophy is caused by ATP-binding cassette transporter D1 (ABCD1) mutations and manifests by default as slowly progressive spinal cord axonopathy with associated demyelination (adrenomyloneuropathy). In 60% of male cases, however, X-linked adrenoleukodystrophy converts to devastating cerebral inflammation and demyelination (cerebral adrenoleukodystrophy) with infiltrating blood-derived monocytes and macrophages and cytotoxic T cells that can only be stopped by allogeneic haematopoietic stem cell transplantation or gene therapy at an early stage of the disease. Recently, we identified monocytes/macrophages but not T cells to be severely affected metabolically by ABCD1 deficiency. Here we found by whole transcriptome analysis that, although monocytes of patients with X-linked adrenoleukodystrophy have normal capacity for macrophage differentiation and phagocytosis, they are pro-inflammatory skewed also in patients with adrenomyloneuropathy in the absence of cerebral inflammation. Following lipopolysaccharide activation, the ingestion of myelin debris, normally triggering anti-inflammatory polarization, did not fully reverse the pro-inflammatory status of X-linked adrenoleukodystrophy macrophages. Immunohistochemistry on post-mortem cerebral adrenoleukodystrophy lesions reflected the activation pattern by prominent presence of enlarged lipid-laden macrophages strongly positive for the pro-inflammatory marker co-stimulatory molecule CD86. Comparative analyses of lesions with matching macrophage density in cases of cerebral adrenoleukodystrophy and acute multiple sclerosis showed a similar extent of pro-inflammatory activation but a striking reduction of anti-inflammatory mannose receptor (CD206) and haemoglobin-haptoglobin receptor (CD163) expression on cerebral adrenoleukodystrophy macrophages. Accordingly, ABCD1-deficiency leads to an impaired plasticity of macrophages that is reflected in incomplete establishment of anti-inflammatory responses, thus possibly contributing to the devastating rapidly progressive demyelination in cerebral adrenoleukodystrophy that only in rare cases arrests spontaneously. These findings emphasize monocytes/macrophages as crucial therapeutic targets for preventing or stopping myelin destruction in patients with X-linked adrenoleukodystrophy.
Goshen, Sharon; Richardson, Justin; Drunov, VIadimir; Staretz Chacham, Orna; Shany, Eilon
2017-01-01
Introduction Placental histologic examination can assist in revealing the mechanism leading to preterm birth. Accumulating evidence suggests an association between intrauterine pathological processes, morbidity and mortality of premature infants, and their long term outcome. Neonatal brain activity is increasingly monitored in neonatal intensive care units by amplitude integrated EEG (aEEG) and indices of background activity and sleep cycling patterns were correlated with long term outcome. We hypothesized an association between types of placental lesions and abnormal neonatal aEEG patterns. Objective To determine the association between the placental lesions observed in extreme preterm deliveries, and their neonatal aEEG patterns and survival. Patients and methods This prospective cohort study included extreme premature infants, who were born ≤ 28 weeks of gestation, their placentas were available for histologic examination, and had a continues aEEG, soon after birth)n = 34). Infants and maternal clinical data were collected. aEEG data was assessed for percentage of depressed daily activity in the first 3 days of life and for sleep cycling. Associations of placental histology with clinical findings and aEEG activity were explored using parametric and non-parametric statistics. Results Twenty two out of the 34 newborns survived to discharge. Preterm prelabor rupture of membranes (PPROM) or chorioamnionitis were associated with placental lesions consistent with fetal amniotic fluid infection (AFI) or maternal under perfusion (MUP) (P < 0.05). Lesions consistent with fetal response to AFI were associated with absence of SWC pattern during the 1st day of life. Fetal-vascular-thrombo-occlusive lesions of inflammatory type were negatively associated with depressed cerebral activity during the 1st day of life, and with aEEG cycling during the 2nd day of life (P<0.05). Placental lesions associated with MUP were associated with depressed neonatal cerebral activity during the first 3 days of life (P = 0.007). Conclusions Depressed neonatal aEEG patterns are associated with placental lesions consistent with maternal under perfusion, and amniotic fluid infection of fetal type, but not with fetal thrombo-oclusive vascular disease of inflammatory type. Our findings highlight the association between the intrauterine mechanisms leading to preterm parturition and subsequent depressed neonatal cerebral function early after birth, which eventually may put premature infants at risk for abnormal neurodevelopmental outcome. PMID:28644831
Agcaoglu, O; Miller, R; Mayer, A R; Hugdahl, K; Calhoun, V D
2016-12-01
Cerebral lateralization is a well-studied topic. However, most of the research to date in functional magnetic resonance imaging (fMRI) has been carried out on hemodynamic fluctuations of voxels, networks, or regions of interest (ROIs). For example, cerebral differences can be revealed by comparing the temporal activation of an ROI in one hemisphere with the corresponding homotopic region in the other hemisphere. While this approach can reveal significant information about cerebral organization, it does not provide information about the full spatiotemporal organization of the hemispheres. The cerebral differences revealed in literature suggest that hemispheres have different spatiotemporal organization in the resting state. In this study, we evaluate cerebral lateralization in the 4D spatiotemporal frequency domain to compare the hemispheres in the context of general activation patterns at different spatial and temporal scales. We use a gender-balanced resting fMRI dataset comprising over 600 healthy subjects ranging in age from 12 to 71, that have previously been studied with a network specific voxel-wise and global analysis of lateralization (Agcaoglu, et al. NeuroImage, 2014). Our analysis elucidates significant differences in the spatiotemporal organization of brain activity between hemispheres, and generally more spatiotemporal fluctuation in the left hemisphere especially in the high spatial frequency bands, and more power in the right hemisphere in the low and middle spatial frequencies. Importantly, the identified effects are not visible in the context of a typical assessment of voxelwise, regional, or even global laterality, thus our study highlights the value of 4D spatiotemporal frequency domain analyses as a complementary and powerful tool for studying brain function.
Kochunov, Peter; Wey, Hsiao-Ying; Fox, Peter T; Lancaster, Jack L; Davis, Michael D; Wang, Danny J J; Lin, Ai-Ling; Bastarrachea, Raul A; Andrade, Marcia C R; Mattern, Vicki; Frost, Patrice; Higgins, Paul B; Comuzzie, Anthony G; Voruganti, Venkata S
2017-01-01
Changes in cerebral blood flow (CBF) during a hyperglycemic challenge were mapped, using perfusion-weighted MRI, in a group of non-human primates. Seven female baboons were fasted for 16 h prior to 1-h imaging experiment, performed under general anesthesia, that consisted of a 20-min baseline, followed by a bolus infusion of glucose (500 mg/kg). CBF maps were collected every 7 s and blood glucose and insulin levels were sampled at regular intervals. Blood glucose levels rose from 51.3 ± 10.9 to 203.9 ± 38.9 mg/dL and declined to 133.4 ± 22.0 mg/dL, at the end of the experiment. Regional CBF changes consisted of four clusters: cerebral cortex, thalamus, hypothalamus, and mesencephalon. Increases in the hypothalamic blood flow occurred concurrently with the regulatory response to systemic glucose change, whereas CBF declined for other clusters. The return to baseline of hypothalamic blood flow was observed while CBF was still increasing in other brain regions. The spatial pattern of extra-hypothalamic CBF changes was correlated with the patterns of several cerebral networks including the default mode network. These findings suggest that hypothalamic blood flow response to systemic glucose levels can potentially be explained by regulatory activity. The response of extra-hypothalamic clusters followed a different time course and its spatial pattern resembled that of the default-mode network.
ERIC Educational Resources Information Center
Liegeois, Frederique; Connelly, Alan; Baldeweg, Torsten; Vargha-Khadem, Faraneh
2008-01-01
Speech-related fMRI activation was examined in six hemispherectomy patients (three left LX, three right RX, four with congenital and two with late-acquired hemiplegia) operated in childhood for the relief of drug-resistant epilepsy. Although the temporal and sensorimotor pattern of activation was similar to that found in neurologically intact…
Peripheral Nerve Injury in Developing Rats Reorganizes Representation Pattern in Motor Cortex
NASA Astrophysics Data System (ADS)
Donoghue, John P.; Sanes, Jerome N.
1987-02-01
We investigated the effect of neonatal nerve lesions on cerebral motor cortex organization by comparing the cortical motor representation of normal adult rats with adult rats that had one forelimb removed on the day of birth. Mapping of cerebral neocortex with electrical stimulation revealed an altered relationship between the motor cortex and the remaining muscles. Whereas distal forelimb movements are normally elicited at the lowest threshold in the motor cortex forelimb area, the same stimuli activated shoulder and trunk muscles in experimental animals. In addition, an expanded cortical representation of intact body parts was present and there was an absence of a distinct portion of motor cortex. These data demonstrate that representation patterns in motor cortex can be altered by peripheral nerve injury during development.
Pöttker, Bruno; Stöber, Franziska; Hummel, Regina; Angenstein, Frank; Radyushkin, Konstantin; Goldschmidt, Jürgen; Schäfer, Michael K E
2017-12-01
Traumatic brain injury (TBI) is a leading cause of disability and death and survivors often suffer from long-lasting motor impairment, cognitive deficits, anxiety disorders and epilepsy. Few experimental studies have investigated long-term sequelae after TBI and relations between behavioral changes and neural activity patterns remain elusive. We examined these issues in a murine model of TBI combining histology, behavioral analyses and single-photon emission computed tomography (SPECT) imaging of regional cerebral blood flow (CBF) as a proxy for neural activity. Adult C57Bl/6N mice were subjected to unilateral cortical impact injury and investigated at early (15-57 days after lesion, dal) and late (184-225 dal) post-traumatic time points. TBI caused pronounced tissue loss of the parietal cortex and subcortical structures and enduring neurological deficits. Marked perilesional astro- and microgliosis was found at 57 dal and declined at 225 dal. Motor and gait pattern deficits occurred at early time points after TBI and improved over the time. In contrast, impaired performance in the Morris water maze test and decreased anxiety-like behavior persisted together with an increased susceptibility to pentylenetetrazole-induced seizures suggesting alterations in neural activity patterns. Accordingly, SPECT imaging of CBF indicated asymmetric hemispheric baseline neural activity patterns. In the ipsilateral hemisphere, increased baseline neural activity was found in the amygdala. In the contralateral hemisphere, homotopic to the structural brain damage, the hippocampus and distinct cortex regions displayed increased baseline neural activity. Thus, regionally elevated CBF along with behavioral alterations indicate that increased neural activity is critically involved in the long-lasting consequences of TBI.
Biopsychosocial model in Depression revisited.
Garcia-Toro, Mauro; Aguirre, Iratxe
2007-01-01
There are two fundamental etiological perspectives about mental disorders; biomedical and psychosocial. The biopsychosocial model has claimed to integrate these two perspectives in a scientific way, signalling their interconnection and interdependence. To that end, it used a systemic conceptual framework, taking advantage of the possibilities which it offers to establish general principles for diverse systems, independently of their physical, biological or sociological nature. In recent years, drawing on the theory of systems, theories have been developing of the dynamic non-linear systems, applicable to networks of a large quantity of densely interconnected elements (also called complex systems), like the mind or the brain. We believe that this revised systemic conceptual framework can bring integrative ideas to apply to Depression, such as the "binding dysfunction" concept we use in this article. According to this, vulnerability or predisposition to Depression would be associated with the imbalance between activating and inhibiting interactions (between some cognitions and emotions at a mental level, and between certain neuronal groups at a cerebral level). Precipitating factors would imply the increase of the activation level over this pattern of cognitions and emotions, or over those neuronal systems. When stress goes beyond the vulnerability threshold an excessive positive feedback between cognitions and emotions would appear (and between groups of neurons) with insufficient inhibitory control to mitigate it, which would imply a mental/cerebral dissociation in dominions of different level of activation. As a consequence, the generation and dissolution of patterns of cerebral and mental activation will no longer have the dynamism and flexibility that permits an optimal interaction with the environment ("binding dysfunction"). Therefore, our hypothesis is that the person with Depression will suffer at a cerebral level a functional dissociation in neural dominions (some rigidly hyperactive and others rigidly hypoactive) in determined locations, which would be a different combination from those found in other mental disorders. At a mental level, this would correlate with a functional dissociation in several cognitive-emotive dominions; some corresponds to over activated patterns of "depressive" cognitions and emotions that for that reason invade the consciousness frequently, intrusively and repetitively; meanwhile there are other alternative hypoactive emotions and cognitions that do not manage to become powerful enough to avoid the consequent distortion in the communication with the environment.
Borowski, Dariusz; Czuba, Bartosz; Kaczmarek, Piotr; Włoch, Agata; Pawłowicz, Paweł; Wyrwas, Dorota; Wielgos, Mirosław; Sodowski, Krzysztof; Szaflik, Krzysztof
2006-03-01
Umbilical venous pulsation is an important sign of hemodynamic compromise, especially during fetal heart failure and asphyxia. The aim of this study was to determine of the blow flow in the middle cerebral artery and the umbilical artery in fetuses with umbilical venous pulsations. The investigation included 18 fetuses with signs of the intrauterine growth restriction and umbilical venous pulsations after 28th weeks of gestation. We evaluated cerebral-placental ratio (CPR) and pulsation index (PI) in the middle cerebral artery (MCA) and the umbilical artery (UA). We observed brain sparring effect in all cases of analyzing fetuses. There were 77,8% of abnormal flow pattern in umbilical artery. 13 fetuses had a single pulsation pattern in umbilical vein and another 5 had double pulsation pattern. The coexistence of umbilical vein pulsation and abnormal flow pattern in umbilical artery is closely related to increased perinatal mortality.
Poissant, H; Rapin, L; Chenail, S; Mendrek, A
2016-01-01
Objective. The majority of studies investigating neurocognitive processing in attention deficit/hyperactivity disorder (ADHD) have been conducted on male participants. Few studies evaluated females or examined sex differences. Among various cognitive anomalies in ADHD, deficit in forethought seems particularly important as children with ADHD often fail to adequately use previous information in order to prepare for responses. The main goal of this study was to assess sex-specific differences in behavioral and neural correlates of forethought in youth with ADHD. Methods. 21 typically developing (TD) youth and 23 youth with ADHD were asked to judge whether two pictures told a congruent or incongruent story. Reaction time, performance accuracy, and cerebral activations were recorded during functional magnetic resonance imaging (fMRI). Results. Significant sex-specific differences in cerebral activations appeared, despite equivalent performance. Relative to the boys TD participants, boys with ADHD had extensive bilateral frontal and parietal hypoactivations, while girls with ADHD demonstrated more scattered hypoactivations in the right cerebral regions. Conclusion. Present results revealed that youth with ADHD exhibit reduced cerebral activations during forethought. Nevertheless, the pattern of deficits differed between boys and girls, suggesting the use of a different neurocognitive strategy. This emphasizes the importance of including both genders in the investigations of ADHD.
Lerner, Zachary F; Damiano, Diane L; Bulea, Thomas C
2016-08-01
A robotic exoskeleton was designed for individuals with crouch gait caused by cerebral palsy with the intent to supplement existing muscle function during walking. The aim of this study was to evaluate how powered knee extension assistance provided during stance and swing phases of the gait cycle affect knee kinematics, and knee flexor and extensor muscle activity. Muscle activity and kinematic data were collected from four individuals with crouch gait from cerebral palsy during their normal walking condition and while walking with the exoskeleton under stance, swing, and stance & swing assistance. The exoskeleton was effective in reducing crouch by an average of 13.8° in three of the four participants when assistance was provided during the stance phase; assistance during the swing phase alone was ineffective. Peak knee extensor activity was maintained for all of the conditions during the stance and swing phases. Integrated (i.e. area under the curve) knee extensor activity decreased in two of the subjects indicating a more well-modulated activation pattern. Modest increases in peak and integrated antagonist knee flexor activity were exhibited in all participants; the subject without kinematic improvement had the greatest increase. While the exoskeleton was well tolerated, additional training with a focus on reducing knee flexor activity may lead to further improvements in crouch gait reduction.
Bedside diagnosis of mitochondrial dysfunction after malignant middle cerebral artery infarction.
Nielsen, T H; Schalén, W; Ståhl, N; Toft, P; Reinstrup, P; Nordström, C H
2014-08-01
The study explores whether the cerebral biochemical pattern in patients treated with hemicraniectomy after large middle cerebral artery infarcts reflects ongoing ischemia or non-ischemic mitochondrial dysfunction. The study includes 44 patients treated with decompressive hemicraniectomy (DCH) due to malignant middle cerebral artery infarctions. Chemical variables related to energy metabolism obtained by microdialysis were analyzed in the infarcted tissue and in the contralateral hemisphere from the time of DCH until 96 h after DCH. Reperfusion of the infarcted tissue was documented in a previous report. Cerebral lactate/pyruvate ratio (L/P) and lactate were significantly elevated in the infarcted tissue compared to the non-infarcted hemisphere (p < 0.05). From 12 to 96 h after DCH the pyruvate level was significantly higher in the infarcted tissue than in the non-infarcted hemisphere (p < 0.05). After a prolonged period of ischemia and subsequent reperfusion, cerebral tissue shows signs of protracted mitochondrial dysfunction, characterized by a marked increase in cerebral lactate level with a normal or increased cerebral pyruvate level resulting in an increased LP-ratio. This biochemical pattern contrasts to cerebral ischemia, which is characterized by a marked decrease in cerebral pyruvate. The study supports the hypothesis that it is possible to diagnose cerebral mitochondrial dysfunction and to separate it from cerebral ischemia by microdialysis and bed-side biochemical analysis.
Spatiotemporal patterns of ERP based on combined ICA-LORETA analysis
NASA Astrophysics Data System (ADS)
Zhang, Jiacai; Guo, Taomei; Xu, Yaqin; Zhao, Xiaojie; Yao, Li
2007-03-01
In contrast to the FMRI methods widely used up to now, this method try to understand more profoundly how the brain systems work under sentence processing task map accurately the spatiotemporal patterns of activity of the large neuronal populations in the human brain from the analysis of ERP data recorded on the brain scalp. In this study, an event-related brain potential (ERP) paradigm to record the on-line responses to the processing of sentences is chosen as an example. In order to give attention to both utilizing the ERPs' temporal resolution of milliseconds and overcoming the insensibility of cerebral location ERP sources, we separate these sources in space and time based on a combined method of independent component analysis (ICA) and low-resolution tomography (LORETA) algorithms. ICA blindly separate the input ERP data into a sum of temporally independent and spatially fixed components arising from distinct or overlapping brain or extra-brain sources. And then the spatial maps associated with each ICA component are analyzed, with use of LORETA to uniquely locate its cerebral sources throughout the full brain according to the assumption that neighboring neurons are simultaneously and synchronously activated. Our results show that the cerebral computation mechanism underlies content words reading is mediated by the orchestrated activity of several spatially distributed brain sources located in the temporal, frontal, and parietal areas, and activate at distinct time intervals and are grouped into different statistically independent components. Thus ICA-LORETA analysis provides an encouraging and effective method to study brain dynamics from ERP.
The "starfield" pattern of cerebral fat embolism from bone marrow necrosis in sickle cell crisis.
Dhakal, Laxmi P; Bourgeois, Kirk; Barrett, Kevin M; Freeman, William D
2015-04-01
Sickle cell disease may manifest with cerebrovascular and systemic complications. Sickle crisis that results in avascular necrosis of long bones with resultant cerebral fat embolism syndrome is rare and has a characteristic "starfield" pattern on MRI. This "starfield" MRI pattern should raise suspicion for sickle cell crisis in patients without a known history of the disease, which can lead to earlier sickle cell red blood cell exchange transfusion and treatment. We present a case of a male who presented emergently with acute seizure, coma with a characteristic MRI pattern, which lead to the diagnosis of avascular bone marrow necrosis and cerebral fat embolism syndrome from sickle cell crisis.
Opiates and cerebral functional activity in rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trusk, T.C.
1986-01-01
Cerebral activity was measured using the free-fatty acid (1-/sup 14/C) octanoate as a fast functional tracer in conscious, unrestrained rats 5 minutes after intravenous injection of heroin, cocaine or saline vehicle. Regional changes of octanoate labeling density in the autoradiograms relative to saline-injected animals were used to determine the functional activity effects of each drug. Heroin and cocaine each produced a distinctive pattern of activity increases and suppression throughout the rat brain. Similar regional changes induced by both drugs were found in limbic brain regions implicated in drug reinforcement. Labeled octanoate autoradiography was used to measure the cerebral functional responsemore » to a tone that had previously been paired to heroin injections. Rats were trained in groups of three consisting of one heroin self-administration animal, and two animals receiving yoked infusion of heroin or saline. A tone was paired with each infusion during training. Behavioral experiments in similarly trained rats demonstrated that these training conditions impart secondary reinforcing properties to the tone in animals previously self-administering heroin, while the tone remains behaviorally neutral in yoked-infusion rats. Cerebral functional activity was measured during presentation of the tone without drug infusion. Octanoate labeling density changed in fifteen brain areas in response to the tone previously paired to heroin without response contingency. Labeling density was significantly modified in sixteen regions as a result of previously pairing the tone to response-contingent heroin infusions.« less
Nakahachi, Takayuki; Ishii, Ryouhei; Canuet, Leonides; Iwase, Masao
2015-01-01
Crossed cerebello-cerebral diaschisis (CCCD) conventionally refers to decreased resting cerebral activity caused by injury to the contralateral cerebellum. We investigated whether functional activation of a contralesional cerebral cortical region controlling a specific task is reduced during task performance in a patient with a unilateral cerebellar lesion. We also examined functional compensation by the corresponding ipsilesional cerebral cortex. It was hypothesized that dysfunction of the primary sensorimotor cortex (SM1) contralateral to the cerebellar lesion would be detected together with a compensatory increase in neural activity of the ipsilesional SM1. To test these possibilities, we conducted non-invasive functional neuroimaging techniques for bilateral SM1 during hand grasping, a task known to activate predominantly the SM1 contralateral to the grasping hand. Activity in SM1 during hand grasping was measured electrophysiologically by magnetoencephalography and hemodynamically by near-infrared spectroscopy in an adult with mild right hemiataxia associated with a large injury of the right cerebellum due to resection of a tumor in early childhood. During left hand grasping, increased neural activity was detected predominantly in the right SM1, the typical developmental pattern. In contrast, neural activity increased in the bilateral SM1 with slight right-side dominance during right (ataxic) hand grasping. This study reported a case that implied functional CCCD and compensatory neural activity in the SM1 during performance of a simple hand motor task in an adult with unilateral cerebellar injury and mild hemiataxia 24 years prior to the study without rehabilitative interventions. This suggests that unilateral cerebellar injuries in early childhood may result in persistent functional abnormalities in the cerebrum into adulthood. Therapeutic treatments that target functional CCCD and interhemispheric compensation might be effective for treating ataxia due to unilateral cerebellar damage.
Sonographic assessment of normal and abnormal patterns of fetal cerebral lamination.
Pugash, D; Hendson, G; Dunham, C P; Dewar, K; Money, D M; Prayer, D
2012-12-01
Prenatal development of the brain is characterized by gestational age-specific changes in the laminar structure of the brain parenchyma before 30 gestational weeks. Cerebral lamination patterns of normal fetal brain development have been described histologically, by postmortem in-vitro magnetic resonance imaging (MRI) and by in-vivo fetal MRI. The purpose of this study was to evaluate the sonographic appearance of laminar organization of the cerebral wall in normal and abnormal brain development. This was a retrospective study of ultrasound findings in 92 normal fetuses and 68 fetuses with abnormal cerebral lamination patterns for gestational age, at 17-38 weeks' gestation. We investigated the visibility of the subplate zone relative to the intermediate zone and correlated characteristic sonographic findings of cerebral lamination with gestational age in order to evaluate transient structures. In the normal cohort, the subplate zone-intermediate zone interface was identified as early as 17 weeks, and in all 57 fetuses examined up to 28 weeks. In all of these fetuses, the subplate zone appeared anechoic and the intermediate zone appeared homogeneously more echogenic than did the subplate zone. In the 22 fetuses between 28 and 34 weeks, there was a transition period when lamination disappeared in a variable fashion. The subplate zone-intermediate zone interface was not identified in any fetus after 34 weeks (n=13). There were three patterns of abnormal cerebral lamination: (1) no normal laminar pattern before 28 weeks (n=32), in association with severe ventriculomegaly, diffuse ischemia, microcephaly, teratogen exposure or lissencephaly; (2) focal disruption of lamination before 28 weeks (n=24), associated with hemorrhage, porencephaly, stroke, migrational abnormalities, thanatophoric dysplasia, meningomyelocele or encephalocele; (3) increased prominence and echogenicity of the intermediate zone before 28 weeks and/or persistence of a laminar pattern beyond 33 weeks (n=10), associated with Type 1 lissencephaly or CMV infection. There was a mixed focal/diffuse pattern in two fetuses. In CMV infection, the earliest indication of the infection was focal heterogeneity and increased echogenicity of the intermediate zone, which predated the development of microcephaly, ventriculomegaly and intracranial calcification. The fetal subplate and intermediate zones can be demonstrated reliably on routine sonography before 28 weeks and disappear after 34 weeks. These findings represent normal gestational age-dependent transient laminar patterns of cerebral development and are consistent with histological studies. Abnormal fetal cerebral lamination patterns for gestational age are also visible on sonography, and may indicate abnormal brain development. Copyright © 2012 ISUOG. Published by John Wiley & Sons, Ltd.
Wirth, Miranka; Pichet Binette, Alexa; Brunecker, Peter; Köbe, Theresa; Witte, A Veronica; Flöel, Agnes
2017-03-01
Reductions of cerebral blood flow and gray matter structure have been implicated in early pathogenesis of Alzheimer's disease, potentially providing complementary information. The present study evaluated regional patterns of cerebral hypoperfusion and atrophy in patients with mild cognitive impairment and healthy older adults. In each participant, cerebral perfusion and gray matter structure were extracted within selected brain regions vulnerable to Alzheimer's disease using magnetic resonance imaging. Measures were compared between diagnostic groups with/without adjustment for covariates. In mild cognitive impairment patients, cerebral blood flow was significantly reduced in comparison with healthy controls in temporo-parietal regions and the basal ganglia in the absence of local gray matter atrophy. By contrast, gray matter structure was significantly reduced in the hippocampus in the absence of local hypoperfusion. Both, cerebral perfusion and gray matter structure were significantly reduced in the entorhinal and isthmus cingulate cortex in mild cognitive impairment patients compared with healthy older adults. Our results demonstrated partly divergent patterns of temporo-parietal hypoperfusion and medial-temporal atrophy in mild cognitive impairment patients, potentially indicating biomarker sensitivity to dissociable pathological mechanisms. The findings support applicability of cerebral perfusion and gray matter structure as complementary magnetic resonance imaging-based biomarkers in early Alzheimer's disease detection, a hypothesis to be further evaluated in longitudinal studies.
Hemispheric Differences in the Recruitment of Semantic Processing Mechanisms
ERIC Educational Resources Information Center
Kandhadai, Padmapriya; Federmeier, Kara D.
2010-01-01
This study examined how the two cerebral hemispheres recruit semantic processing mechanisms by combining event-related potential measures and visual half-field methods in a word priming paradigm in which semantic strength and predictability were manipulated using lexically associated word pairs. Activation patterns on the late positive complex…
Cerebral somatic pain modulation during autogenic training in fMRI.
Naglatzki, R P; Schlamann, M; Gasser, T; Ladd, M E; Sure, U; Forsting, M; Gizewski, E R
2012-10-01
Functional magnetic resonance imaging (fMRI) studies are increasingly employed in different conscious states. Autogenic training (AT) is a common clinically used relaxation method. The purpose of this study was to investigate the cerebral modulation of pain activity patterns due to AT and to correlate the effects to the degree of experience with AT and strength of stimuli. Thirteen volunteers familiar with AT were studied with fMRI during painful electrical stimulation in a block design alternating between resting state and electrical stimulation, both without AT and while employing the same paradigm when utilizing their AT abilities. The subjective rating of painful stimulation and success in modulation during AT was assessed. During painful electrical stimulation without AT, fMRI revealed activation of midcingulate, right secondary sensory, right supplementary motor, and insular cortices, the right thalamus and left caudate nucleus. In contrast, utilizing AT only activation of left insular and supplementary motor cortices was revealed. The paired t-test revealed pain-related activation in the midcingulate, posterior cingulate and left anterior insular cortices for the condition without AT, and activation in the left ventrolateral prefrontal cortex under AT. Activation of the posterior cingulate cortex and thalamus correlated with the amplitude of electrical stimulation. This study revealed an effect on cerebral pain processing while performing AT. This might represent the cerebral correlate of different painful stimulus processing by subjects who are trained in performing relaxation techniques. However, due to the absence of a control group, further studies are needed to confirm this theory. © 2012 European Federation of International Association for the Study of Pain Chapters.
Xu, Wei-Hai; Wang, Han; Wang, Bo; Niu, Fu-Sheng; Gao, Shan; Cui, Li-Ying
2009-01-15
The dynamic variance of cerebral blood flow velocity (CBFV), monitored by transcranial doppler (TCD), can reveal the integrated effects of cardio-cerebral vascular autoregulation. We investigated the characteristics of CBFV curve during active standing in multiple system atrophy (MSA), Parkinson's disease (PD) and healthy volunteers. The CBFV curve of middle cerebral arteries was recorded using TCD in 22 patients with probable MSA; 20 PD patients and 20 volunteers matched for age. All individuals started in a supine posture, followed by abrupt standing for 2 min before returning to supine. The features of CBFV curve were compared among the groups. In the healthy volunteers, the CBFV decreased following standing up but quickly rebounded and reached the same or greater level as the supine baseline. Afterwards, the CBFV decreased abruptly to a sustained level, lower than the supine baseline, forming a spike wave that appeared in CBFV curve. This spike wave was present in 5/22 of MSA, significantly less than PD patients (18/20) and volunteers (20/20) (P<0.001). The CBFV decrease after standing showed no significant difference between MSA than PD (9+/-7 vs. 6+/-3 cm/s, P=0.163). The different pattern of CBFV curves during active standing suggests MSA may possess cardio-cerebral vascular modulation different from PD. The clinical value of the CBFV curve in differentiating MSA from PD needs further investigation.
Cerebral Hemodynamics Patterns by Transcranial Doppler in Patients With Acute Liver Failure.
Abdo, A; Pérez-Bernal, J; Hinojosa, R; Porras, F; Castellanos, R; Gómez, F; Gutiérrez, J; Castellanos, A; Leal, G; Espinosa, N; Gómez-Bravo, M
2015-11-01
About half of patients with acute liver failure (ALF) show clinical signs of cerebral edema and intracranial hypertension. Neuroimaging diagnostics and electroencephalography have poor correlation with intracranial pressure measurement. The objective of this study was to characterize the cerebral hemodynamics patterns with transcranial Doppler (TCD) sonography in patients with ALF. We studied 21 patients diagnosed with ALF, admitted to the intensive care unit (ICU) at the Centro de Investigaciones Médico Quirúrgicas of Cuba. All of these patients had a TCD performed on arrival at ICU, evaluating the following: systolic (SV), diastolic (DV), and medium (MV) flows velocities and pulsatility index (PI) in right middle cerebral artery (RMCA) via temporal windows. The sonographic patterns of cerebral hemodynamics were as follows: low-flow, 12 patients (57.1%); high resistance, 5 patients (23.8%); and hyperemic, 4 patients (19%). Patients who died while waiting had lower MV RMCA (56.1 vs 58.1 cm/s) and higher PI (1.71 vs 1.41) than patients who could undergo transplantation (P = .800 and P = .787, respectively). In patients diagnosed with ALF admitted to the ICU the predominating cerebral hemodynamic pattern was low-flow with resistance increase. The TCD was shown to be a useful tool in the initial evaluation for prognosis and treatment. Copyright © 2015 Elsevier Inc. All rights reserved.
The “Starfield” Pattern of Cerebral Fat Embolism From Bone Marrow Necrosis in Sickle Cell Crisis
Dhakal, Laxmi P.; Bourgeois, Kirk; Barrett, Kevin M.
2015-01-01
Sickle cell disease may manifest with cerebrovascular and systemic complications. Sickle crisis that results in avascular necrosis of long bones with resultant cerebral fat embolism syndrome is rare and has a characteristic “starfield” pattern on MRI. This “starfield” MRI pattern should raise suspicion for sickle cell crisis in patients without a known history of the disease, which can lead to earlier sickle cell red blood cell exchange transfusion and treatment. We present a case of a male who presented emergently with acute seizure, coma with a characteristic MRI pattern, which lead to the diagnosis of avascular bone marrow necrosis and cerebral fat embolism syndrome from sickle cell crisis PMID:25829988
A computational model of cerebral cortex folding.
Nie, Jingxin; Guo, Lei; Li, Gang; Faraco, Carlos; Stephen Miller, L; Liu, Tianming
2010-05-21
The geometric complexity and variability of the human cerebral cortex have long intrigued the scientific community. As a result, quantitative description of cortical folding patterns and the understanding of underlying folding mechanisms have emerged as important research goals. This paper presents a computational 3D geometric model of cerebral cortex folding initialized by MRI data of a human fetal brain and deformed under the governance of a partial differential equation modeling cortical growth. By applying different simulation parameters, our model is able to generate folding convolutions and shape dynamics of the cerebral cortex. The simulations of this 3D geometric model provide computational experimental support to the following hypotheses: (1) Mechanical constraints of the skull regulate the cortical folding process. (2) The cortical folding pattern is dependent on the global cell growth rate of the whole cortex. (3) The cortical folding pattern is dependent on relative rates of cell growth in different cortical areas. (4) The cortical folding pattern is dependent on the initial geometry of the cortex. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
2013-01-01
Introduction Gastropoda are guided by several sensory organs in the head region, referred to as cephalic sensory organs (CSOs). These CSOs are innervated by distinct nerves. This study proposes a unified terminology for the cerebral nerves and the categories of CSOs and then investigates the neuroanatomy and cellular innervation patterns of these cerebral nerves, in order to homologise them. The homologisation of the cerebral nerves in conjunction with other data, e.g. ontogenetic development or functional morphology, may then provide insights into the homology of the CSOs themselves. Results Nickel-lysine axonal tracing (“backfilling”) was used to stain the somata projecting into specific nerves in representatives of opisthobranch Gastropoda. Tracing patterns revealed the occurrence, size and relative position of somata and their axons and enabled these somata to be mapped to specific cell clusters. Assignment of cells to clusters followed a conservative approach based primarily on relative location of the cells. Each of the four investigated cerebral nerves could be uniquely identified due to a characteristic set of soma clusters projecting into the respective nerves via their axonal pathways. Conclusions As the described tracing patterns are highly conserved morphological characters, they can be used to homologise nerves within the investigated group of gastropods. The combination of adequate number of replicates and a comparative approach allows us to provide preliminary hypotheses on homologies for the cerebral nerves. Based on the hypotheses regarding cerebral nerve homology together with further data on ultrastructure and immunohistochemistry of CSOs published elsewhere, we can propose preliminary hypotheses regarding homology for the CSOs of the Opisthobranchia themselves. PMID:23597272
Nagamitsu, Shinichiro; Nagano, Miki; Yamashita, Yushiro; Takashima, Sachio; Matsuishi, Toyojiro
2006-06-01
Video game playing is an attractive form of entertainment among school-age children. Although this activity reportedly has many adverse effects on child development, these effects remain controversial. To investigate the effect of video game playing on regional cerebral blood volume, we measured cerebral hemoglobin concentrations using near-infrared spectroscopy in 12 normal volunteers consisting of six children and six adults. A Hitachi Optical Topography system was used to measure hemoglobin changes. For all subjects, the video game Donkey Kong was played on a Game Boy device. After spectroscopic probes were positioned on the scalp near the target brain regions, the participants were asked to play the game for nine periods of 15s each, with 15-s rest intervals between these task periods. Significant increases in bilateral prefrontal total-hemoglobin concentrations were observed in four of the adults during video game playing. On the other hand, significant decreases in bilateral prefrontal total-hemoglobin concentrations were seen in two of the children. A significant positive correlation between mean oxy-hemoglobin changes in the prefrontal region and those in the bilateral motor cortex area was seen in adults. Playing video games gave rise to dynamic changes in cerebral blood volume in both age groups, while the difference in the prefrontal oxygenation patterns suggested an age-dependent utilization of different neural circuits during video game tasks.
Research on the performance of the spastic calf muscle of young adults with cerebral palsy.
Lampe, Renee; Mitternacht, Jurgen
2011-02-12
The aim of this study was to find an objective graduation of pes equinus in infantile cerebral palsy, especially with regard to functional aspects, to allow a differentiated choice of the therapeutic options. Very often raises the question of whether a surgical lengthening of the Achilles tendon may let expect a functional improvement. For this documentation 17 patients with pes equinus and a diagnosis of spastic cerebral palsy, primarily of the lower limbs, and hemiplegia were examined first clinically and then by a procedure for calculating the functional kinetic parameters from an in-shoe plantar pressure distribution measurement (novel pedar-X system), which is used in many orthopedic practices and clinics as a standard measuring device. Using additional video motion analysis, the flexion in the ankle joint and the ankle joint torque were determined. From this the physical performance of the spastically shortened calf muscle was calculated. The course of the curves of torque and joint performance allows a functional classification of the pes equinus. Approximately three quarters of all pes equinus demonstrated functional activity of the most part of the normal push-off propulsion power. Even the rigid pes equinus was capable of performing push-off propulsion work, provided it converted energy that was absorbed during the heel-strike phase and released it again during the push-off phase. This suggests that the function of paretic ankle joint is better than its kinematics of motion. A heel strike with a pes equinus triggers via stretching stimuli in the muscle-ligament structure reflex motor functions, thereby causing the typical spastic gait pattern. This remarkable gait pattern is often evaluated as dysfunctional and as absolutely requiring correction. However, an aspect possibly neglected in this instance is the fact that this gait pattern may be efficient for the patient and may in fact be a suitable means allowing for economic locomotion despite the cerebral control deficits. Pes equinus; Cerebral palsy; Pedography; Ankle joint performance.
Hanning, Uta; Husstedt, Ingo W; Niederstadt, Thomas-Ulrich; Evers, Stefan; Heindel, Walter; Kloska, Stephan P
2011-09-01
The aim of this study was to assess the relationship between immune state and cerebral signal intensity abnormalities (SIAs) on T2-weighted magnetic resonance images in subjects with human immunodeficiency virus type 1 infection and highly active antiretroviral therapy. Thirty-two subjects underwent a total of 109 magnetic resonance studies. The presence of human immunodeficiency virus-associated neurocognitive disorder, categorized CD4(+) T lymphocyte count, and plasma viral load were assessed for relationship with the severity and interval change of SIAs for different anatomic locations of the brain. Subjects with multifocal patterns of SIAs had CD4(+) cell counts < 200 cells/μL in 66.0%, whereas subjects with diffuse patterns of SIAs had CD4(+) cell counts < 200 cells/μL in only 31.4% (P < .001). Subjects without SIAs in the basal ganglia had CD4(+) cell counts < 200 cells/μL in 37.0%, whereas subjects with minor and moderate SIAs in the basal ganglia had CD4(+) cell counts < 200 cells/μL in 78.3% and 80.0%, respectively (P < .005). The percentage of subjects with CD4(+) cell counts < 200 cells/μL was 85.7% when there were progressive periventricular SIA changes and 45.5% when periventricular SIA changes were stable in follow-up (P < .05). The presence and progression of cerebral SIAs on T2-weighted magnetic resonance images reflecting cerebral infection with human immunodeficiency virus are significantly related to impaired immune state as measured by CD4(+) cell count. Copyright © 2011 AUR. Published by Elsevier Inc. All rights reserved.
Combined ICA-LORETA analysis of mismatch negativity.
Marco-Pallarés, J; Grau, C; Ruffini, G
2005-04-01
A major challenge for neuroscience is to map accurately the spatiotemporal patterns of activity of the large neuronal populations that are believed to underlie computing in the human brain. To study a specific example, we selected the mismatch negativity (MMN) brain wave (an event-related potential, ERP) because it gives an electrophysiological index of a "primitive intelligence" capable of detecting changes, even abstract ones, in a regular auditory pattern. ERPs have a temporal resolution of milliseconds but appear to result from mixed neuronal contributions whose spatial location is not fully understood. Thus, it is important to separate these sources in space and time. To tackle this problem, a two-step approach was designed combining the independent component analysis (ICA) and low-resolution tomography (LORETA) algorithms. Here we implement this approach to analyze the subsecond spatiotemporal dynamics of MMN cerebral sources using trial-by-trial experimental data. We show evidence that a cerebral computation mechanism underlies MMN. This mechanism is mediated by the orchestrated activity of several spatially distributed brain sources located in the temporal, frontal, and parietal areas, which activate at distinct time intervals and are grouped in six main statistically independent components.
Mannewitz, A; Bock, J; Kreitz, S; Hess, A; Goldschmidt, J; Scheich, H; Braun, Katharina
2018-05-01
Learning can be categorized into cue-instructed and spontaneous learning types; however, so far, there is no detailed comparative analysis of specific brain pathways involved in these learning types. The aim of this study was to compare brain activity patterns during these learning tasks using the in vivo imaging technique of single photon-emission computed tomography (SPECT) of regional cerebral blood flow (rCBF). During spontaneous exploratory learning, higher levels of rCBF compared to cue-instructed learning were observed in motor control regions, including specific subregions of the motor cortex and the striatum, as well as in regions of sensory pathways including olfactory, somatosensory, and visual modalities. In addition, elevated activity was found in limbic areas, including specific subregions of the hippocampal formation, the amygdala, and the insula. The main difference between the two learning paradigms analyzed in this study was the higher rCBF observed in prefrontal cortical regions during cue-instructed learning when compared to spontaneous learning. Higher rCBF during cue-instructed learning was also observed in the anterior insular cortex and in limbic areas, including the ectorhinal and entorhinal cortexes, subregions of the hippocampus, subnuclei of the amygdala, and the septum. Many of the rCBF changes showed hemispheric lateralization. Taken together, our study is the first to compare partly lateralized brain activity patterns during two different types of learning.
Classification of Topographical Pattern of Spasticity in Cerebral Palsy: A Registry Perspective
ERIC Educational Resources Information Center
Reid, Susan M.; Carlin, John B.; Reddihough, Dinah S.
2011-01-01
This study used data from a population-based cerebral palsy (CP) registry and systematic review to assess the amount of heterogeneity between registries in topographical patterns when dichotomised into unilateral (USCP) and bilateral spastic CP (BSCP), and whether the terms diplegia and quadriplegia provide useful additional epidemiological…
Jaisle, F
1996-01-01
The "perinatal asphyxia" is regarded to be one of the causes of cerebral palsy, though in the very most of the children with cerebral palsy there is found no hypoxia during labour. It should be mentioned, that the definition of "perinatal" and "asphyxia" neither are unic nor concret. And also there is no correlation between nonreassuring fetal heart rate patterns and acidosis in fetal blood with the incidence of cerebral palsy. Numerous studies in pregnant animals failed in proving an acute intrapartal hypoxia to be the origin of the cerebral palsy. Myers (1975) describes four patterns of anatomic brain damage after different injuries. Only his so called oligo-acidotic hypoxia, which is protracted and lasts over a longer time is leading to brain injury, which can be regarded in analogy to the injury of children with cerebral palsy. Summarising the update publications about the causes of cerebral palsy and the studies in pregnant animals there is no evidence that hypoxia during labour may be the cause of cerebral palsy. There is a great probability of a pre(and post-)natal origin of brain injury (for instance a periventricular leucomalacia found after birth) which leads to cerebral palsy. Short after labour signs of a so called "asphyxia" may occur in addition to this preexisting injury and misrepresent the cause of cerebral palsy. Finally the prepartal injury may cause both: Cerebral palsy and hypoxia.
Kober, Silvia Erika; Bauernfeind, Günther; Woller, Carina; Sampl, Magdalena; Grieshofer, Peter; Neuper, Christa; Wood, Guilherme
2015-01-01
In the present multiple case study, we examined hemodynamic changes in the brain in response to motor execution (ME) and motor imagery (MI) of swallowing in dysphagia patients compared to healthy matched controls using near-infrared spectroscopy (NIRS). Two stroke patients with cerebral lesions in the right hemisphere, two stroke patients with lesions in the brainstem, and two neurologically healthy control subjects actively swallowed saliva (ME) and mentally imagined to swallow saliva (MI) in a randomized order while changes in concentration of oxygenated hemoglobin (oxy-Hb) and deoxygenated hemoglobin (deoxy-Hb) were assessed. In line with recent findings in healthy young adults, MI and ME of swallowing led to the strongest NIRS signal change in the inferior frontal gyrus in stroke patients as well as in healthy elderly. We found differences in the topographical distribution and time course of the hemodynamic response in dependence on lesion location. Dysphagia patients with lesions in the brainstem showed bilateral hemodynamic signal changes in the inferior frontal gyrus during active swallowing comparable to healthy controls. In contrast, dysphagia patients with cerebral lesions in the right hemisphere showed more unilateral activation patterns during swallowing. Furthermore, patients with cerebral lesions showed a prolonged time course of the hemodynamic response during MI and ME of swallowing compared to healthy controls and patients with brainstem lesions. Brain activation patterns associated with ME and MI of swallowing were largely comparable, especially for changes in deoxy-Hb. Hence, the present results provide new evidence regarding timing and topographical distribution of the hemodynamic response during ME and MI of swallowing in dysphagia patients and may have practical impact on future dysphagia treatment. PMID:26217298
Lee, Samuel C.K.; VanSant, Ann F.; Barbe, Mary F.; Lauer, Richard T.
2010-01-01
Background Poor control of postural muscles is a primary impairment in people with cerebral palsy (CP). Objective The purpose of this study was to investigate differences in the timing characteristics of trunk and hip muscle activity during walking in young children with CP compared with children with typical development (TD). Methods Thirty-one children (16 with TD, 15 with CP) with an average of 28.5 months of walking experience participated in this observational study. Electromyographic data were collected from 16 trunk and hip muscles as participants walked at a self-selected pace. A custom-written computer program determined onset and offset of activity. Activation and coactivation data were analyzed for group differences. Results The children with CP had greater total activation and coactivation for all muscles except the external oblique muscle and differences in the timing of activation for all muscles compared with the TD group. The implications of the observed muscle activation patterns are discussed in reference to existing postural control literature. Limitations The potential influence of recording activity from adjacent deep trunk muscles is discussed, as well as the influence of the use of an assistive device by some children with CP. Conclusions Young children with CP demonstrate excessive, nonreciprocal trunk and hip muscle activation during walking compared with children with TD. Future studies should investigate the efficacy of treatments to reduce excessive muscle activity and improve coordination of postural muscles in CP. PMID:20430948
Cortical Reorganization of Language Functioning Following Perinatal Left MCA Stroke
ERIC Educational Resources Information Center
Tillema, Jan-Mendelt; Byars, Anna W.; Jacola, Lisa M.; Schapiro, Mark B.; Schmithorst, Vince J.; Szaflarski, Jerzy P.; Holland, Scott K.
2008-01-01
Objective: Functional MRI was used to determine differences in patterns of cortical activation between children who suffered perinatal left middle cerebral artery (MCA) stroke and healthy children performing a silent verb generation task. Methods: Ten children with prior perinatal left MCA stroke (age 6-16 years) and ten healthy age matched…
Patterns and Rates of Supplementary Venous Drainage to the Internal Jugular Veins.
Qureshi, Adnan I; Ishfaq, Muhammad Fawad; Herial, Nabeel A; Khan, Asif A; Suri, M Fareed K
2016-07-01
Several studies have found supplemental venous drainage channels in addition to bilateral internal jugular veins for cerebral venous efflux. We performed this study to characterize the supplemental venous outflow patterns in a consecutive series of patients undergoing detailed cerebral angiography with venous phase imaging. The venographic phase of the arteriogram was reviewed to identify and classify supplemental cerebral venous drainage into anterior (cavernous venous sinus draining into pterygoid plexus and retromandibular vein) and posterior drainage pattern. The posterior drainage pattern was further divided into plexiform pattern (with sigmoid venous sinus draining into the paravertebral venous plexus), and solitary vein pattern (dominant single draining deep cervical vein) drainage. The posterior plexiform pattern was further divided into 2 groups: posterior plexiform with or without prominent solitary vein. Supplemental venous drainage was seen ipsilateral to internal jugular vein in 76 (43.7%) of 174 venous drainages (87 patients) analyzed. The patterns were anterior (n = 23, 13.2%), posterior plexiform without prominent solitary vein (n = 40, 23%), posterior plexiform with prominent solitary vein (n = 62, 35.6%), and posterior solitary vein alone (n = 3, 1.7%); occipital emissary veins and/or transosseous veins were seen in 1 supplemental venous drainage. Concurrent ipsilateral anterior and posterior supplemental drainage was seen in 6 of 174 venous drainages analyzed. We provide an assessment of patterns and rates of supplementary venous drainage to internal jugular veins to improve our understanding of anatomical and physiological aspects of cerebral venous drainage. Copyright © 2016 by the American Society of Neuroimaging.
Neural control of locomotion and training-induced plasticity after spinal and cerebral lesions.
Knikou, Maria
2010-10-01
Standing and walking require a plethora of sensorimotor interactions that occur throughout the nervous system. Sensory afferent feedback plays a crucial role in the rhythmical muscle activation pattern, as it affects through spinal reflex circuits the spinal neuronal networks responsible for inducing and maintaining rhythmicity, drives short-term and long-term re-organization of the brain and spinal cord circuits, and contributes to recovery of walking after locomotor training. Therefore, spinal circuits integrating sensory signals are adjustable networks with learning capabilities. In this review, I will synthesize the mechanisms underlying phase-dependent modulation of spinal reflexes in healthy humans as well as those with spinal or cerebral lesions along with findings on afferent regulation of spinal reflexes and central pattern generator in reduced animal preparations. Recovery of walking after locomotor training has been documented in numerous studies but the re-organization of spinal interneuronal and cortical circuits need to be further explored at cellular and physiological levels. For maximizing sensorimotor recovery in people with spinal or cerebral lesions, a multidisciplinary approach (rehabilitation, pharmacology, and electrical stimulation) delivered during various sensorimotor constraints is needed. Copyright 2010 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
The role of the cerebral capillaries in acute ischemic stroke: the extended penumbra model.
Østergaard, Leif; Jespersen, Sune Nørhøj; Mouridsen, Kim; Mikkelsen, Irene Klærke; Jonsdottír, Kristjana Ýr; Tietze, Anna; Blicher, Jakob Udby; Aamand, Rasmus; Hjort, Niels; Iversen, Nina Kerting; Cai, Changsi; Hougaard, Kristina Dupont; Simonsen, Claus Z; Von Weitzel-Mudersbach, Paul; Modrau, Boris; Nagenthiraja, Kartheeban; Riisgaard Ribe, Lars; Hansen, Mikkel Bo; Bekke, Susanne Lise; Dahlman, Martin Gervais; Puig, Josep; Pedraza, Salvador; Serena, Joaquín; Cho, Tae-Hee; Siemonsen, Susanne; Thomalla, Götz; Fiehler, Jens; Nighoghossian, Norbert; Andersen, Grethe
2013-05-01
The pathophysiology of cerebral ischemia is traditionally understood in relation to reductions in cerebral blood flow (CBF). However, a recent reanalysis of the flow-diffusion equation shows that increased capillary transit time heterogeneity (CTTH) can reduce the oxygen extraction efficacy in brain tissue for a given CBF. Changes in capillary morphology are typical of conditions predisposing to stroke and of experimental ischemia. Changes in capillary flow patterns have been observed by direct microscopy in animal models of ischemia and by indirect methods in humans stroke, but their metabolic significance remain unclear. We modeled the effects of progressive increases in CTTH on the way in which brain tissue can secure sufficient oxygen to meet its metabolic needs. Our analysis predicts that as CTTH increases, CBF responses to functional activation and to vasodilators must be suppressed to maintain sufficient tissue oxygenation. Reductions in CBF, increases in CTTH, and combinations thereof can seemingly trigger a critical lack of oxygen in brain tissue, and the restoration of capillary perfusion patterns therefore appears to be crucial for the restoration of the tissue oxygenation after ischemic episodes. In this review, we discuss the possible implications of these findings for the prevention, diagnosis, and treatment of acute stroke.
Cerebral Perfusion Changes in Post-Concussion Syndrome: A Prospective Controlled Cohort Study
Marcil, Lorenzo D.; Dewey, Deborah; Carlson, Helen L.; MacMaster, Frank P.; Brooks, Brian L.; Lebel, R. Marc
2017-01-01
Abstract The biology of post-concussive symptoms is unclear. Symptoms are often increased during activities, and have been linked to decreased cerebrovascular reactivity and perfusion. The aim of this study was to examine cerebral blood flow (CBF) in children with different clinical recovery patterns following mild traumatic brain injury (mTBI). This was a prospective controlled cohort study of children with mTBI (ages 8 to 18 years) who were symptomatic with post-concussive symptoms at one month post-injury (symptomatic, n = 27) and children who had recovered quickly (asymptomatic, n = 24). Pseudo continuous arterial spin labeling magnetic resonance imaging (MRI) was used to quantify CBF. The mTBI groups were imaged at 40 days post-injury. Global and regional CBF were compared with healthy controls of similar age and sex but without a history of mTBI (n = 21). Seventy-two participants (mean age: 14.1 years) underwent neuroimaging. Significant differences in CBF were found: global CBF was higher in the symptomatic group and lower in the asymptomatic group compared with controls, (F(2,69) 9.734; p < 0.001). Post-injury symptom score could be predicted by pre-injury symptoms and CBF in presence of mTBI (adjusted R2 = 0.424; p < 0.001). Altered patterns of cerebral perfusion are seen following mTBI and are associated with the recovery trajectory. Symptomatic children have higher CBF. Children who “recovered” quickly, have decreased CBF suggesting that clinical recovery precedes the cerebral recovery. Further longitudinal studies are required to determine if these perfusion patterns continue to change over time. PMID:27554429
Domagalska-Szopa, Małgorzata; Szopa, Andrzej
2017-11-01
Standing postural alignment in children with cerebral palsy is usually altered by central postural control disorders. The primary aim of this study is to describe body alignment in a quiet standing position in ambulatory children with bilateral cerebral palsy compared with children with typical development. Fifty-eight children with bilateral cerebral palsy (aged 7-13years) and 45 age-matched children with typical development underwent a surface topography examination based on Moiré topography and were classified according to their sagittal postural profiles. The following eight grouping variables were extracted using a data reduction technique: angle of trunk inclination, pelvic tilt, and lordosis, the difference between kyphosis and lordosis, angle of vertebral lateral curvature, shoulder inclination, and shoulder and pelvic rotation. According to the cluster analysis results, 25% of the participants were classified into Cluster 1, 9% into Cluster 2, 49% in Cluster 3, and 17% in Cluster 4. Three different postural patterns emerged in accordance with the sagittal postural profiles in children with bilateral cerebral palsy and were defined as follows: 1) a lordotic postural pattern corresponding to forward-leaning posture; 2) a swayback postural pattern corresponding to backward-leaning posture; and 3) a balanced postural pattern corresponding to balanced posture. Copyright © 2017 Elsevier Ltd. All rights reserved.
Translation of near infrared brain imaging to assess children with cerebral palsy
NASA Astrophysics Data System (ADS)
Alexandrakis, George; Khan, Bilal; Tian, Fenghua; Asanani, Nayan; Behbehani, Khosrow; Delgado, Mauricio R.; Liu, Hanli
2009-02-01
Cerebral palsy (CP) is the most common motor disorder of central origin in childhood and affects at least 2 children per 1000 live births every year. Neuroimaging techniques are needed to study neuroplastic rearrangements in the human brain in vivo as a result of CP. Unfortunately, accurate imaging from currently available techniques often requires the patients' complete body confinement, steadiness and minimal noise for a long period of time, which limits the success rate to less than 50% for normal children and worse for CP-affected ones. In this work we show that functional near infrared (fNIR) imaging is robust to motion artifacts and has excellent potential as a sensitive diagnostic tool for this motor disorder. We have analyzed data from pediatric normal and CP patients performing finger-tapping and handwaving motor cortex activation tasks. From these analyses we have identified both spatial and temporal metrics of NIR-based motor cortex activation patterns that can clearly distinguish between normal and CP patients. We also present data from additional patients where signal processing methods are applied to filter out concurrently recorded hemodynamic signals due to breathing and cardiac pulsation. It is shown that filtering can substantially improve the quality of activation data, thus enabling more accurate comparison of activation patterns between normal and CP-affected children.
Cerebral Lateralization and Aggression.
ERIC Educational Resources Information Center
Hillbrand, Marc; And Others
1994-01-01
A resurgence of interest in the relationship between cerebral lateralization (the functional asymmetry of the cerebral cortex) and aggression has occurred. Most recent studies have found that individuals with abnormal patterns of lateralization are overrepresented among violent individuals. Intervening variables (such as drug and alcohol abuse)…
They Are Laughing at Me: Cerebral Mediation of Cognitive Biases in Social Anxiety
Kreifelts, Benjamin; Brück, Carolin; Ritter, Jan; Ethofer, Thomas; Domin, Martin; Lotze, Martin; Jacob, Heike
2014-01-01
The fear of embarrassment and humiliation is the central element of social anxiety. This frequent condition is associated with cognitive biases indicating increased sensitivity to signals of social threat, which are assumed to play a causal role in the maintenance of social anxiety. Here, we employed laughter, a potent medium for the expression of acceptance and rejection, as an experimental stimulus in participants selected for varying degrees of social anxiety to identify cerebral mediators of cognitive biases in social anxiety using functional magnetic resonance imaging in combination with mediation analysis. We directly demonstrated that cerebral activation patterns within the dorsal attention network including the left dorsolateral and dorsomedial prefrontal cortex mediate the influence of social anxiety on laughter perception. This mediation proved to be specific for social anxiety after correction for measures of general state and trait anxiety and occurred most prominently under bimodal audiovisual laughter presentation when compared with monomodal auditory or visual laughter cues. Considering the possibility to modulate cognitive biases and cerebral activity by neuropsychological trainings, non-invasive electrophysiological stimulation and psychotherapy, this study represents a starting point for a whole line of translational research projects and identifies promising targets for electrophysiological interventions aiming to alleviate cognitive biases and symptom severity in social anxiety. PMID:24918625
They are laughing at me: cerebral mediation of cognitive biases in social anxiety.
Kreifelts, Benjamin; Brück, Carolin; Ritter, Jan; Ethofer, Thomas; Domin, Martin; Lotze, Martin; Jacob, Heike; Schlipf, Sarah; Wildgruber, Dirk
2014-01-01
The fear of embarrassment and humiliation is the central element of social anxiety. This frequent condition is associated with cognitive biases indicating increased sensitivity to signals of social threat, which are assumed to play a causal role in the maintenance of social anxiety. Here, we employed laughter, a potent medium for the expression of acceptance and rejection, as an experimental stimulus in participants selected for varying degrees of social anxiety to identify cerebral mediators of cognitive biases in social anxiety using functional magnetic resonance imaging in combination with mediation analysis. We directly demonstrated that cerebral activation patterns within the dorsal attention network including the left dorsolateral and dorsomedial prefrontal cortex mediate the influence of social anxiety on laughter perception. This mediation proved to be specific for social anxiety after correction for measures of general state and trait anxiety and occurred most prominently under bimodal audiovisual laughter presentation when compared with monomodal auditory or visual laughter cues. Considering the possibility to modulate cognitive biases and cerebral activity by neuropsychological trainings, non-invasive electrophysiological stimulation and psychotherapy, this study represents a starting point for a whole line of translational research projects and identifies promising targets for electrophysiological interventions aiming to alleviate cognitive biases and symptom severity in social anxiety.
Eom, Tae-Yeon; Stanco, Amelia; Guo, Jiami; Wilkins, Gary; Deslauriers, Danielle; Yan, Jessica; Monckton, Chase; Blair, Josh; Oon, Eesim; Perez, Abby; Salas, Eduardo; Oh, Adrianna; Ghukasyan, Vladimir; Snider, William D.; Rubenstein, John L. R.; Anton, E. S.
2014-01-01
Coordinated migration of distinct classes of neurons to appropriate positions leads to the formation of functional neuronal circuitry in the cerebral cortex. Two major classes of cortical neurons, interneurons and projection neurons, utilize distinctly different modes (radial vs. tangential) and routes of migration to arrive at their final positions in the cerebral cortex. Here, we show that adenomatous polyposis coli (APC) modulates microtubule (MT) severing in interneurons to facilitate tangential mode of interneuron migration, but not the glial-guided, radial migration of projection neurons. APC regulates the stability and activity of the MT severing protein p60-katanin in interneurons to promote the rapid remodeling of neuronal processes necessary for interneuron migration. These findings reveal how severing and restructuring of MTs facilitate distinct modes of neuronal migration necessary for laminar organization of neurons in the developing cerebral cortex. PMID:25535916
Structural and functional analyses of human cerebral cortex using a surface-based atlas
NASA Technical Reports Server (NTRS)
Van Essen, D. C.; Drury, H. A.
1997-01-01
We have analyzed the geometry, geography, and functional organization of human cerebral cortex using surface reconstructions and cortical flat maps of the left and right hemispheres generated from a digital atlas (the Visible Man). The total surface area of the reconstructed Visible Man neocortex is 1570 cm2 (both hemispheres), approximately 70% of which is buried in sulci. By linking the Visible Man cerebrum to the Talairach stereotaxic coordinate space, the locations of activation foci reported in neuroimaging studies can be readily visualized in relation to the cortical surface. The associated spatial uncertainty was empirically shown to have a radius in three dimensions of approximately 10 mm. Application of this approach to studies of visual cortex reveals the overall patterns of activation associated with different aspects of visual function and the relationship of these patterns to topographically organized visual areas. Our analysis supports a distinction between an anterior region in ventral occipito-temporal cortex that is selectively involved in form processing and a more posterior region (in or near areas VP and V4v) involved in both form and color processing. Foci associated with motion processing are mainly concentrated in a region along the occipito-temporal junction, the ventral portion of which overlaps with foci also implicated in form processing. Comparisons between flat maps of human and macaque monkey cerebral cortex indicate significant differences as well as many similarities in the relative sizes and positions of cortical regions known or suspected to be homologous in the two species.
Van Overwalle, Frank; Heleven, Elien; Ma, Ning; Mariën, Peter
2017-01-01
This multi-study analysis (6 fMRI studies; 142 participants) explores the functional activation and connectivity of the cerebellum with the cerebrum during repeated behavioral information uptake informing about personality traits of different persons. The results suggest that trait repetition recruits activity in areas belonging to the mentalizing and executive control networks in the cerebrum, and the executive control areas in the cerebellum. Cerebral activation was observed in the executive control network including the posterior medial frontal cortex (pmFC), the bilateral prefrontal cortex (PFC) and bilateral inferior parietal cortex (IPC), in the mentalizing network including the bilateral middle temporal cortex (MTC) extending to the right superior temporal cortex (STC), as well as in the visual network including the left cuneus (Cun) and the left inferior occipital cortex. Moreover, cerebellar activation was found bilaterally in lobules VI and VII belonging to the executive control network. Importantly, significant patterns of functional connectivity were found linking these cerebellar executive areas with cerebral executive areas in the medial pmFC, the left PFC and the left IPC, and mentalizing areas in the left MTC. In addition, connectivity was found between the cerebral areas in the left hemisphere involved in the executive and mentalizing networks, as well as with their homolog areas in the right hemisphere. The discussion centers on the role of these cerebello-cerebral connections in matching internal predictions generated by the cerebellum with external information from the cerebrum, presumably involving the sequencing of behaviors. Copyright © 2016 Elsevier Inc. All rights reserved.
Cerebral Dominance: Its Use in Understanding Learning Styles and Behavioral Patterns.
ERIC Educational Resources Information Center
Matthews, Doris B.
Studies of the human brain suggest that cerebral dominance, the preference for either the right or the left hemisphere to direct the body's behavior, plays a causal role in distinctive learning styles and behavior patterns. The two halves of the brain are physically almost identical at birth, but childhood experiences which utilize one hemisphere…
ERIC Educational Resources Information Center
van Drongelen, Stefan; Dreher, Thomas; Heitzmann, Daniel W. W.; Wolf, Sebastian I.
2013-01-01
To examine gait patterns and gait quality, 7 twins with cerebral palsy were measured preoperatively and after surgical intervention. The aim was to study differences and/or similarities in gait between twins, the influence of personal characteristics and birth conditions, and to describe the development of gait over time after single event…
Interhemispheric Transmission Time in Persons with Down Syndrome
ERIC Educational Resources Information Center
Heath, M.; Grierson, L.; Binsted, G.; Elliott, D.
2007-01-01
Background: The study of cerebral specialization in persons with Down syndrome (DS) has revealed an anomalous pattern of organization. Specifically, persons with DS elicit a right cerebral hemisphere lateralization for receptive language and a left cerebral hemisphere lateralization for the production of simple and complex movements: a pattern…
Gender and rapid alterations of hemispheric dominance during planning.
Schuepbach, Daniel; Skotchko, Tatjana; Duschek, Stefan; Theodoridou, Anastasia; Grimm, Simone; Boeker, Heinz; Seifritz, Erich
2012-01-01
Mental planning and carrying out a plan provoke specific cerebral hemodynamic responses. Gender aspects of hemispheric laterality using rapid cerebral hemodynamics have not been reported. Here, we applied functional transcranial Doppler sonography to examine lateralization of cerebral hemodynamics of the middle cerebral arteries of 28 subjects (14 women and 14 men) performing a standard planning task. There were easy and difficult problems, and mental planning without motor activity was separated from movement execution. Difficult mental planning elicited lateralization to the right hemisphere after 2 or more seconds, a feature that was not observed during movement execution. In females, there was a dominance to the left hemisphere during movement execution. Optimized problem solving yielded an increased laterality change to the right during mental planning. Gender-related hemispheric dominance appears to be condition-dependent, and change of laterality to the right may play a role in optimized performance. Results are of relevance when considering laterality from a perspective of performance enhancement of higher cognitive functions, and also of psychiatric disorders with cognitive dysfunctions and abnormal lateralization patterns such as schizophrenia. Copyright © 2012 S. Karger AG, Basel.
Mascalchi, Mario; Ginestroni, Andrea; Toschi, Nicola; Poggesi, Anna; Cecchi, Paolo; Salvadori, Emilia; Tessa, Carlo; Cosottini, Mirco; De Stefano, Nicola; Pracucci, Giovanni; Pantoni, Leonardo; Inzitari, Domenico; Diciotti, Stefano
2014-03-01
The term leuko-araiosis (LA) describes a common chronic affection of the cerebral white matter (WM) in the elderly due to small vessel disease with variable clinical correlates. To explore whether severity of LA entails some adaptive reorganization in the cerebral cortex we evaluated with functional MRI (fMRI) the cortical activation pattern during a simple motor task in 60 subjects with mild cognitive impairment and moderate or severe (moderate-to-severe LA group, n = 46) and mild (mild LA group, n = 14) LA extension on visual rating. The microstructural damage associated with LA was measured on diffusion tensor data by computation of the mean diffusivity (MD) of the cerebral WM and by applying tract based spatial statistics (TBSS). Subjects were examined with fMRI during continuous tapping of the right dominant hand with task performance measurement. Moderate-to-severe LA group showed hyperactivation of left primary sensorimotor cortex (SM1) and right cerebellum. Regression analyses using the individual median of WM MD as explanatory variable revealed a posterior shift of activation within the left SM1 and hyperactivation of the left SMA and paracentral lobule and of the bilateral cerebellar crus. These data indicate that brain activation is modulated by increasing severity of LA with a local remapping within the SM1 and increased activity in ipsilateral nonprimary sensorimotor cortex and bilateral cerebellum. These potentially adaptive changes as well lack of contralateral cerebral hemisphere hyperactivation are in line with sparing of the U fibers and brainstem and cerebellar WM tracts and the emerging microstructual damage of the corpus callosum revealed by TBSS with increasing severity of LA. Copyright © 2012 Wiley Periodicals, Inc.
Weiss, Harvey R; Liu, Xia; Zhang, Qihang; Chi, Oak Z
2007-08-15
Because there is a strong correlation between tuberous sclerosis and autism, we used a tuberous sclerosis model (Eker rat) to test the hypothesis that these animals would have an altered regional cerebral O2 consumption that might be associated with autism. We also examined whether the altered cerebral O2 consumption was related to changes in the importance of N-methyl-D-aspartate (NMDA) receptors. Young (4 weeks) male control Long Evans (N = 14) and Eker (N = 14) rats (70-100 g) were divided into control and CGS-19755 (10 mg/kg, competitive NMDA antagonist)-treated animals. Cerebral regional blood flow (14C-iodoantipyrine) and O2 consumption (cryomicrospectrophotometry) were determined in isoflurane-anesthetized rats. NMDA receptor protein levels were determined by Western immunoblotting. We found significantly increased basal O2 consumption in the cortex (6.2 +/- 0.6 ml O2/min/100 g Eker vs. 4.7 +/- 0.4 Long Evans), hippocampus, cerebellum, and pons. Regional cerebral blood flow was also elevated in Eker rats at baseline, but cerebral O2 extraction was similar. CGS-19755 significantly lowered O2 consumption in the cortex (2.8 +/- 0.3), hippocampus, and pons of the Long Evans rats but had no effect on cortex (5.8 +/- 0.8) or other regions of the Eker rats. Cerebral blood flow followed a similar pattern. NMDA receptor protein levels (NR1 subunit) were similar between groups. In conclusion, Eker rats had significantly elevated cerebral O2 consumption and blood flow, but this was not related to NMDA receptor activation. In fact, the importance of NMDA receptors in the control of basal cerebral O2 consumption was reduced. This might have important implications in the treatment of autism. Copyright 2007 Wiley-Liss, Inc.
Latin American Consensus on the use of transcranial Doppler in the diagnosis of brain death
2014-01-01
Transcranial Doppler evaluates cerebral hemodynamics in patients with brain injury and is a useful technical tool in diagnosing cerebral circulatory arrest, usually present in the brain-dead patient. This Latin American Consensus was formed by a group of 26 physicians experienced in the use of transcranial Doppler in the context of brain death. The purpose of this agreement was to make recommendations regarding the indications, technique, and interpretation of the study of transcranial ultrasonography in patients with a clinical diagnosis of brain death or in the patient whose clinical diagnosis presents difficulties; a working group was formed to enable further knowledge and to strengthen ties between Latin American physicians working on the same topic. A review of the literature, concepts, and experiences were exchanged in two meetings and via the Internet. Questions about pathophysiology, equipment, techniques, findings, common problems, and the interpretation of transcranial Doppler in the context of brain death were answered. The basic consensus statements are the following: cerebral circulatory arrest is the final stage in the evolution of progressive intracranial hypertension, which is visualized with transcranial Doppler as a "pattern of cerebral circulatory arrest". The following are accepted as the standard of cerebral circulatory arrest: reverberant pattern, systolic spikes, and absence of previously demonstrated flow. Ultrasonography should be used - in acceptable hemodynamic conditions - in the anterior circulation bilaterally (middle cerebral artery) and in the posterior (basilar artery) territory. If no ultrasonographic images are found in any or all of these vessels, their proximal arteries are acceptable to be studied to look for a a pattern of cerebral circulatory arrest. PMID:25295818
Cerebral processing of auditory stimuli in patients with irritable bowel syndrome
Andresen, Viola; Poellinger, Alexander; Tsrouya, Chedwa; Bach, Dominik; Stroh, Albrecht; Foerschler, Annette; Georgiewa, Petra; Schmidtmann, Marco; van der Voort, Ivo R; Kobelt, Peter; Zimmer, Claus; Wiedenmann, Bertram; Klapp, Burghard F; Monnikes, Hubert
2006-01-01
AIM: To determine by brain functional magnetic resonance imaging (fMRI) whether cerebral processing of non-visceral stimuli is altered in irritable bowel syndrome (IBS) patients compared with healthy subjects. To circumvent spinal viscerosomatic convergence mechanisms, we used auditory stimulation, and to identify a possible influence of psychological factors the stimuli differed in their emotional quality. METHODS: In 8 IBS patients and 8 controls, fMRI measurements were performed using a block design of 4 auditory stimuli of different emotional quality (pleasant sounds of chimes, unpleasant peep (2000 Hz), neutral words, and emotional words). A gradient echo T2*-weighted sequence was used for the functional scans. Statistical maps were constructed using the general linear model. RESULTS: To emotional auditory stimuli, IBS patients relative to controls responded with stronger deactivations in a greater variety of emotional processing regions, while the response patterns, unlike in controls, did not differentiate between distressing or pleasant sounds. To neutral auditory stimuli, by contrast, only IBS patients responded with large significant activations. CONCLUSION: Altered cerebral response patterns to auditory stimuli in emotional stimulus-processing regions suggest that altered sensory processing in IBS may not be specific for visceral sensation, but might reflect generalized changes in emotional sensitivity and affective reactivity, possibly associated with the psychological comorbidity often found in IBS patients. PMID:16586541
The role of the cerebral capillaries in acute ischemic stroke: the extended penumbra model
Østergaard, Leif; Jespersen, Sune Nørhøj; Mouridsen, Kim; Mikkelsen, Irene Klærke; Jonsdottír, Kristjana Ýr; Tietze, Anna; Blicher, Jakob Udby; Aamand, Rasmus; Hjort, Niels; Iversen, Nina Kerting; Cai, Changsi; Hougaard, Kristina Dupont; Simonsen, Claus Z; Von Weitzel-Mudersbach, Paul; Modrau, Boris; Nagenthiraja, Kartheeban; Riisgaard Ribe, Lars; Hansen, Mikkel Bo; Bekke, Susanne Lise; Dahlman, Martin Gervais; Puig, Josep; Pedraza, Salvador; Serena, Joaquín; Cho, Tae-Hee; Siemonsen, Susanne; Thomalla, Götz; Fiehler, Jens; Nighoghossian, Norbert; Andersen, Grethe
2013-01-01
The pathophysiology of cerebral ischemia is traditionally understood in relation to reductions in cerebral blood flow (CBF). However, a recent reanalysis of the flow-diffusion equation shows that increased capillary transit time heterogeneity (CTTH) can reduce the oxygen extraction efficacy in brain tissue for a given CBF. Changes in capillary morphology are typical of conditions predisposing to stroke and of experimental ischemia. Changes in capillary flow patterns have been observed by direct microscopy in animal models of ischemia and by indirect methods in humans stroke, but their metabolic significance remain unclear. We modeled the effects of progressive increases in CTTH on the way in which brain tissue can secure sufficient oxygen to meet its metabolic needs. Our analysis predicts that as CTTH increases, CBF responses to functional activation and to vasodilators must be suppressed to maintain sufficient tissue oxygenation. Reductions in CBF, increases in CTTH, and combinations thereof can seemingly trigger a critical lack of oxygen in brain tissue, and the restoration of capillary perfusion patterns therefore appears to be crucial for the restoration of the tissue oxygenation after ischemic episodes. In this review, we discuss the possible implications of these findings for the prevention, diagnosis, and treatment of acute stroke. PMID:23443173
Shikako-Thomas, Keiko; Shevell, Michael; Lach, Lucyna; Law, Mary; Schmitz, Norbert; Poulin, Chantal; Majnemer, Annette
2013-03-01
In recent years attention has been paid to the participation levels of children and youth with Cerebral Palsy (CP), particularly the extent to which they have the opportunity to be involved in and enjoy leisure activities. The objective of this study is to describe the level of participation and enjoyment in leisure activities among adolescents with CP and to identify potential differences in participation patterns related to sociodemographic attributes. A cross-sectional design was used. Participants were 175 adolescents 12-20 years old (M=15.3; ±2.2), GMFCS I=55/II=43/III=13/IV=18/V=39 who completed the Children's Assessment of Participation and Enjoyment (CAPE). The types of activities participants engaged in most frequently were social and recreational activities, whereas self-improvement and skill-based activities were least frequent. Social activities were the activities they enjoyed most. In general, participation decreases, as youth grow older. Girls engaged in more self-improvement activities than boys. Adolescents who study in special segregated schools experienced a lower diversity and intensity of engagement in all leisure activity domains. Adolescents who were not ambulatory and those presenting with more severe manual ability limitations participated less in all activity types except skill-based activities. Adolescents with CP place a high value on the ability to engage in activities of their own choosing and on interacting with friends. Engagement in a variety of leisure activities is important for a healthy development. Understanding the leisure patterns and preferences of this population, in addition to the contextual factors, may help in the elaboration of interventions and programs to promote a healthy development for this population. Copyright © 2012 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Caeyenberghs, K.; Wenderoth, N.; Smits-Engelsman, B. C. M.; Sunaert, S.; Swinnen, S. P.
2009-01-01
Traumatic brain injury (TBI) is a common form of disability in children. Persistent deficits in motor control have been documented following TBI but there has been less emphasis on changes in functional cerebral activity. In the present study, children with moderate to severe TBI (n = 9) and controls (n = 17) were scanned while performing cyclical…
ERIC Educational Resources Information Center
Tillema, Jan-Mendelt; Byars, Anna W.; Jacola, Lisa M.; Schapiro, Mark B.; Schmithorst, Vince J.; Szaflarski, Jerzy P.; Holland, Scott K.
2008-01-01
Objective: Functional MRI was used to determine differences in patterns of cortical activation between children who suffered perinatal left middle cerebral artery (MCA) stroke and healthy children performing a silent verb generation task. Methods: Ten children with prior perinatal left MCA stroke (age 6-16 years) and ten healthy age matched…
Investigation of Dynamic Algorithms for Pattern Recognition Identified in Cerebral Cortex
1991-12-02
oscillatory and possibly chaotic activity forin the actual cortical substrate of the diverse sensory, motor, and cognitive operations now studied in...September Neural Information Processing Systems - Natural and Synthetic, Denver, Colo., November 1989 U.C. San Diego, Cognitive Science Dept...Baird. Biologically applied neural networks may foster the co-evolution of neurobiology and cognitive psychology. Brain and Behavioral Sciences, 37
Role of pattern recognition receptors of the neurovascular unit in inflamm-aging.
Wilhelm, Imola; Nyúl-Tóth, Ádám; Kozma, Mihály; Farkas, Attila E; Krizbai, István A
2017-11-01
Aging is associated with chronic inflammation partly mediated by increased levels of damage-associated molecular patterns, which activate pattern recognition receptors (PRRs) of the innate immune system. Furthermore, many aging-related disorders are associated with inflammation. PRRs, such as Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain-like receptors (NLRs), are expressed not only in cells of the innate immune system but also in other cells, including cells of the neurovascular unit and cerebral vasculature forming the blood-brain barrier. In this review, we summarize our present knowledge about the relationship between activation of PRRs expressed by cells of the neurovascular unit-blood-brain barrier, chronic inflammation, and aging-related pathologies of the brain. The most important damage-associated molecular pattern-sensing PRRs in the brain are TLR2, TLR4, and NLR family pyrin domain-containing protein-1 and pyrin domain-containing protein-3, which are activated during physiological and pathological aging in microglia, neurons, astrocytes, and possibly endothelial cells and pericytes. Copyright © 2017 the American Physiological Society.
Chuang, Yu-Ming; Guo, Wanyuo; Lin, Ching-Po
2010-01-01
Cerebral arteriovenous malformations (AVMs) harbor a network of abnormal vasculatures, namely the nidus between arterial and venous components. The pressure gradient between these two components results in abnormal high-velocity arteriovenous shunts flowing through the nidus and alternate intracranial hemodynamics. This study hypothesizes that the flow patterns of the circle of Willis (CoW) are modulated by the alternation of intracranial hemodynamics occurring in cerebral AVMs. The flow patterns of the CoW before and after AVMs had been corrected and the arteriovenous shunts closed by radiosurgery were assessed to validate the hypothesis. Fifty patients (32 men and 18 women; mean age 35.8 +/- 4.2, range 23-52 years) with cerebral AVMs previously treated by radiosurgery were retrospectively investigated. This investigation used magnetic resonance angiography, performed prior to and after AVM surgery, to assess the CoW flow patterns. The CoW flow patterns in nearly half of the subjects (20/50, 40%) altered after the AVMs had been corrected. The alterations included: (1) decreased size or ceased flow patterns in the CoW vascular segment: ipsilateral A1 (n = 1) of the anterior cerebral artery (ACA), ipsilateral posterior communicating artery (PCoA) segment (n = 7), contralateral PCoA collateral (n = 4), bilateral PCoA (n = 2); (2) increased size or opening of the previous 'hypoplastic' segment of CoW: ipsilateral A1 of ACA (n = 1), contralateral PCoA (n = 2), bilateral PCoA (n = 1), and (3) biphasic alteration of the CoW: ceased ipsilateral PCoA segment and opening ipsilateral A1 of the ACA (n = 1), ceased ipsilateral PCoA and opening contralateral P1 of the posterior cerebral artery (n = 1). The plasticity of the flow patterns in the CoW are modulated by intracranial hemodynamics as shown by the AVM model. The calibers of CoW arterial segments are not a static feature. Willisian collateralization with recruitment of the CoW segment may cease, or hypoplastic segments may reopen after closing arteriovenous shunts of the AVM. (c) 2010 S. Karger AG, Basel.
Cerebral fat embolism and the "starfield" pattern: a case report.
Aravapalli, Amit; Fox, James; Lazaridis, Christos
2009-11-19
Nearly all long-bone fractures are accompanied by some form of fat embolism. The rare complication of clinically significant fat embolism syndrome, however, occurs in only 0.9-2.2% of cases. The clinical triad of fat embolism syndrome consists of respiratory distress, altered mental status, and petechial rash. Cerebral fat embolism causes the neurologic involvement seen in fat embolism syndrome. A 19-year-old African-American male was admitted with gunshot wounds to his right hand and right knee. He had diffuse hyperactive deep tendon reflexes, bilateral ankle clonus and decerebrate posturing with a Glasgow Coma Scale (GCS) score of 4T. Subsequent MRI of the brain showed innumerable punctate areas of restricted diffusion consistent with "starfield" pattern. On a 10-week follow up he has a normal neurological examination and he is discharged home. Despite the severity of the neurologic insult upon initial presentation, the majority of case reports on cerebral fat embolism illustrate that cerebral dysfunction associated with cerebral fat embolism is reversible. When neurologic deterioration occurs in the non-head trauma patient, then a systemic cause such as fat emboli should be considered. We describe a patient with non-head trauma who demonstrated the classic "starfield" pattern on diffusion-weighted MRI imaging.
Drača, S
2015-03-01
Takotsubo cardiomyopathy (Tc) is a transient left ventricular apical ballooning syndrome, with symptoms and signs of acute myocardial infarction. Tc syndrome, which occurs predominantly in postmenopausal women, is characterized by increase of sympathetic activity. Studies on the gender-specific differences in sympatho-vagal regulation and functional cerebral asymmetry (FCA) imply that female pattern of dominance is characterized by the left hemisphere, which is believed to have parasympathetic predominance, whereas male pattern indicates dominance of the right hemisphere, which is believed to have sympathetic predominance. Fluctuating levels of female sex steroids are supposed to change FCA, modulating transcallosal inter-hemispheric inhibition across the menstrual cycle. The findings suggest that FCA is enhanced during the low steroid phase (menstrual phase), whereas, during high estrogen and/or progesterone phases (follicular and luteal phase) FCA is reduced. This theory is in line with concept of decreased magnitude of inter-hemispheric cortical lateralization in premenopausal women compared to men and postmenopausal women. Therefore, if postmenopausal women are more lateralized for a variety of cerebral functions, they have less balanced equilibrium between the right-sided sympathetic and left-sided parasympathetic predominance. Decrease of endogenous female sex steroid levels in postmenopausal women leads to reduced influence of estrogens to the left hemisphere, which is believed to have parasympathetic predominance. If both of these mechanisms result in sympatho-vagal imbalance, increasing sympathetic system activity in postmenopausal women, it seems reasonable why postmenopausal women became more susceptible to sympathetically-mediated syndromes such as Takotsubo cardiomyopathy. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cerebral oxygen metabolism in patients with early Parkinson's disease.
Borghammer, Per; Cumming, Paul; Østergaard, Karen; Gjedde, Albert; Rodell, Anders; Bailey, Christopher J; Vafaee, Manoucher S
2012-02-15
Decreased activity of the mitochondrial electron transport chain (ETC) has been implicated in the pathogenesis of Parkinson's disease (PD). This model would most likely predict a decrease in the rate of cerebral oxygen consumption (CMRO(2)). To test this hypothesis, we compared CMRO(2) and cerebral blood flow (CBF) PET scans from PD patients and healthy controls. Nine early-stage PD patients and 15 healthy age-matched controls underwent PET scans for quantitative mapping of CMRO(2) and CBF. Between-group differences were evaluated for absolute data and intensity-normalized values. No group differences were detected in regional magnitudes of CMRO(2) or CBF. Upon normalization using the reference cluster method, significant relative CMRO(2) decreases were evident in widespread prefrontal, parieto-occipital, and lateral temporal regions. Sensory-motor and subcortical regions, brainstem, and the cerebellum were spared. A similar pattern was evident in normalized CBF data, as described previously. While the data did not reveal substantially altered absolute CMRO(2) in brain of PD patients, employing data-driven intensity normalization revealed widespread relative CMRO(2) decreases in cerebral cortex. The detected pattern was very similar to that reported in earlier CBF and CMRglc studies of PD, and in the CBF images from the same subjects. Thus, the present results are consistent with the occurrence of parallel declines in CMRO(2), CBF, and CMRglc in spatially contiguous cortical regions in early PD, and support the hypothesis that ETC dysfunction could be a primary pathogenic mechanism in early PD. Copyright © 2011 Elsevier B.V. All rights reserved.
Linopirdine. A depolarization-activated releaser of transmitters for treatment of dementia.
Tam, S W; Zaczek, R
1995-01-01
Linopirdine (DuP 996, AVIVA), currently in Phase III clinical trial for the treatment of Alzheimer's disease, is a representative of a class of novel molecules which enhances the stimulus-evoked but not basal release of several neurotransmitters including ACh, DA, 5-HT and Glu. Linopiridine has been shown to enhance ACh release in the hippocampus in vivo. In addition, linopiridine produces a number of effects including EEG patterns of enhanced vigilance, induction of c-fos expression in cerebral cortex, reduction of the increase of cerebral glucose utilization induced by hypoxia, and improved performance in animal models of learning and memory. The specific action of linopiridine on depolarized neurons but not on basal release suggests that compounds of this class will enhance normal brain activity and not lead to a non-specific activation. Furthermore, the effect of linopiridine on multiple neurotransmitter systems that are deficient in Alzheimer's disease suggests that this class of agents may be more efficacious in the treatment of dementia than therapies aimed at individual neurotransmitters systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hua, Fang, E-mail: fhua2@emory.edu; Wang, Jun; Sayeed, Iqbal
TIR domain-containing adaptor protein (TRIF) is an adaptor protein in Toll-like receptor (TLR) signaling pathways. Activation of TRIF leads to the activation of interferon regulatory factor 3 (IRF3) and nuclear factor kappa B (NF-{kappa}B). While studies have shown that TLRs are implicated in cerebral ischemia/reperfusion (I/R) injury and in neuroprotection against ischemia afforded by preconditioning, little is known about TRIF's role in the pathological process following cerebral I/R. The present study investigated the role that TRIF may play in acute cerebral I/R injury. In a mouse model of cerebral I/R induced by transient middle cerebral artery occlusion, we examined themore » activation of NF-{kappa}B and IRF3 signaling in ischemic cerebral tissue using ELISA and Western blots. Neurological function and cerebral infarct size were also evaluated 24 h after cerebral I/R. NF-{kappa}B activity and phosphorylation of the inhibitor of kappa B (I{kappa}B{alpha}) increased in ischemic brains, but IRF3, inhibitor of {kappa}B kinase complex-{epsilon} (IKK{epsilon}), and TANK-binding kinase1 (TBK1) were not activated after cerebral I/R in wild-type (WT) mice. Interestingly, TRIF deficit did not inhibit NF-{kappa}B activity or p-I{kappa}B{alpha} induced by cerebral I/R. Moreover, although cerebral I/R induced neurological and functional impairments and brain infarction in WT mice, the deficits were not improved and brain infarct size was not reduced in TRIF knockout mice compared to WT mice. Our results demonstrate that the TRIF-dependent signaling pathway is not required for the activation of NF-{kappa}B signaling and brain injury after acute cerebral I/R.« less
Perturbed neural activity disrupts cerebral angiogenesis during a postnatal critical period
Whiteus, Christina; Freitas, Catarina; Grutzendler, Jaime
2013-01-01
During the neonatal period, activity-dependent neural circuit remodeling coincides with growth and refinement of the cerebral microvasculature1,2. Whether neural activity also influences the patterning of the vascular bed is not known. Here we show in neonatal mice, that neither reduction of sensory input through whisker trimming nor moderately increased activity by environmental enrichment affected cortical microvascular development. Surprisingly however, chronic stimulation by repetitive sounds, whisker deflection, or motor activity led to a near arrest of angiogenesis in barrel, auditory, and motor cortices, respectively. Chemically-induced seizures also caused robust reductions in microvascular density. Altering neural activity in adult mice, however, did not affect the vasculature. Histological analysis and time-lapse in vivo two-photon microscopy revealed that hyperactivity did not lead to cell death or pruning of existing vessels but rather reduced endothelial proliferation and vessel sprouting. This anti-angiogenic effect was prevented by administration of the nitric oxide synthase (NOS) inhibitor L-NAME and in mice with neuronal and inducible NOS deficiency, suggesting that excessive nitric oxide released from hyperactive interneurons and glia inhibited vessel growth. Vascular deficits persisted long after cessation of hyperstimulation, providing evidence for a critical period after which proper microvascular patterning cannot be re-established. Reduced microvascular density diminished the ability of the brain to compensate for hypoxic challenges, leading to dendritic spine loss in regions distant from capillaries. Therefore, excessive sensorimotor stimulation and repetitive neural activation during early childhood may cause lifelong deficits in microvascular reserve, which could have important consequences on brain development, function, and pathology. PMID:24305053
Perturbed neural activity disrupts cerebral angiogenesis during a postnatal critical period.
Whiteus, Christina; Freitas, Catarina; Grutzendler, Jaime
2014-01-16
During the neonatal period, activity-dependent neural-circuit remodelling coincides with growth and refinement of the cerebral microvasculature. Whether neural activity also influences the patterning of the vascular bed is not known. Here we show in neonatal mice, that neither reduction of sensory input through whisker trimming nor moderately increased activity by environmental enrichment affects cortical microvascular development. Unexpectedly, chronic stimulation by repetitive sounds, whisker deflection or motor activity led to a near arrest of angiogenesis in barrel, auditory and motor cortices, respectively. Chemically induced seizures also caused robust reductions in microvascular density. However, altering neural activity in adult mice did not affect the vasculature. Histological analysis and time-lapse in vivo two-photon microscopy revealed that hyperactivity did not lead to cell death or pruning of existing vessels but rather to reduced endothelial proliferation and vessel sprouting. This anti-angiogenic effect was prevented by administration of the nitric oxide synthase (NOS) inhibitor L-NAME and in mice with neuronal and inducible NOS deficiency, suggesting that excessive nitric oxide released from hyperactive interneurons and glia inhibited vessel growth. Vascular deficits persisted long after cessation of hyperstimulation, providing evidence for a critical period after which proper microvascular patterning cannot be re-established. Reduced microvascular density diminished the ability of the brain to compensate for hypoxic challenges, leading to dendritic spine loss in regions distant from capillaries. Therefore, excessive sensorimotor stimulation and repetitive neural activation during early childhood may cause lifelong deficits in microvascular reserve, which could have important consequences for brain development, function and pathology.
Howcroft, Jennifer; Fehlings, Darcy; Wright, Virginia; Zabjek, Karl; Andrysek, Jan; Biddiss, Elaine
2012-08-01
Active videogames (AVGs) have potential in terms of physical activity and therapy for children with cerebral palsy. However, the effect of social interaction on AVG play has not yet been assessed. The objective of this study is to determine if multiplayer AVG versus solo affects levels of energy expenditure and movement patterns. Fifteen children (9.77 [standard deviation (SD) 1.78] years old) with hemiplegic cerebral palsy (Gross Motor Function Classification System Level I) participated in solo and multiplayer Nintendo(®) "Wii™ Boxing" (Nintendo, Inc., Redmond, WA) AVG play while energy expenditure and punching frequency were monitored. Moderate levels of physical activity were achieved with no significant differences in energy measures during multiplayer and solo play. Dominant arm punching frequency increased during the multiplayer session from 95.75 (SD 37.93) punches/minute to 107.77 (SD 36.99) punches/minute. Conversely, hemiplegic arm punching frequency decreased from 39.05 (SD 29.57) punches/minutes to 30.73 (SD 24.74) punches/minutes during multiplayer game play. Children enjoyed multiplayer more than solo play. Opportunities to play AVGs with friends and family may translate to more frequent participation in this moderate physical activity. Conversely, increased hemiplegic limb use during solo play may have therapeutic advantages. As such, new strategies are recommended to promote use of the hemiplegic hand during multiplayer AVG play and to optimize commercial AVG systems for applications in virtual reality therapy.
Altered Regional Cerebral Blood Flow in Idiopathic Hypersomnia.
Boucetta, Soufiane; Montplaisir, Jacques; Zadra, Antonio; Lachapelle, Francis; Soucy, Jean-Paul; Gravel, Paul; Dang-Vu, Thien Thanh
2017-10-01
Idiopathic hypersomnia is characterized by excessive daytime sleepiness, despite normal or long sleep time. Its pathophysiological mechanisms remain unclear. This pilot study aims at characterizing the neural correlates of idiopathic hypersomnia using single photon emission computed tomography. Thirteen participants with idiopathic hypersomnia and 16 healthy controls were scanned during resting wakefulness using a high-resolution single photon emission computed tomography scanner with 99mTc-ethyl cysteinate dimer to assess cerebral blood flow. The main analysis compared regional cerebral blood flow distribution between the two groups. Exploratory correlations between regional cerebral blood flow and clinical characteristics evaluated the functional correlates of those brain perfusion patterns. Significance was set at p < .05 after correction for multiple comparisons. Participants with idiopathic hypersomnia showed regional cerebral blood flow decreases in medial prefrontal cortex and posterior cingulate cortex and putamen, as well as increases in amygdala and temporo-occipital cortices. Lower regional cerebral blood flow in the medial prefrontal cortex was associated with higher daytime sleepiness. These preliminary findings suggest that idiopathic hypersomnia is characterized by functional alterations in brain areas involved in the modulation of vigilance states, which may contribute to the daytime symptoms of this condition. The distribution of regional cerebral blood flow changes was reminiscent of the patterns associated with normal non-rapid-eye-movement sleep, suggesting the possible presence of incomplete sleep-wake transitions. These abnormalities were strikingly distinct from those induced by acute sleep deprivation, suggesting that the patterns seen here might reflect a trait associated with idiopathic hypersomnia rather than a non-specific state of sleepiness. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Fisher, Jonathan A. N.; Gumenchuk, Iryna
2018-06-01
Objective. The use of transcranial, low intensity focused ultrasound (FUS) is an emerging neuromodulation technology that shows promise for both therapeutic and research applications. Among many, one of the most exciting applications is the use of FUS to rehabilitate or augment human sensory capabilities. While there is compelling empirical evidence demonstrating this capability, basic questions regarding the spatiotemporal extent of the modulatory effects remain. Our objective was to assess the basic, yet often overlooked hypothesis that FUS in fact alters sensory-evoked neural activity within the region of the cerebral cortex at the beam’s focus. Approach. To address this knowledge gap, we developed an approach to optically interrogate patterns of neural activity in the cortex directly at the acoustic focus, in vivo. Implementing simultaneous wide-field optical imaging and FUS stimulation in mice, our experiments probed somatosensory-evoked electrical activity through the use of voltage sensitive dyes (VSDs) and, in transgenic mice expressing GCaMP6f, monitored associated Ca2+ responses. Main results. Our results demonstrate that low-intensity FUS alters both the kinetics and spatial patterns of neural activity in primary somatosensory cortex at the acoustic focus. When preceded by 1 s of pulsed ultrasound at intensities below 1 W cm‑2 (I sppa), the onset of sensory-evoked cortical responses occurred 3.0 ± 0.7 ms earlier and altered the surface spatial morphology of Ca2+ responses. Significance. These findings support the heretofore unconfirmed assumption that FUS-induced sensory modulation reflects, at least in part, altered reactivity in primary sensory cortex at the site of sonication. The findings are significant given the interest in using FUS to target and alter spatial aspects of sensory receptive fields on the cerebral cortex.
Fisher, Jonathan A N; Gumenchuk, Iryna
2018-06-01
The use of transcranial, low intensity focused ultrasound (FUS) is an emerging neuromodulation technology that shows promise for both therapeutic and research applications. Among many, one of the most exciting applications is the use of FUS to rehabilitate or augment human sensory capabilities. While there is compelling empirical evidence demonstrating this capability, basic questions regarding the spatiotemporal extent of the modulatory effects remain. Our objective was to assess the basic, yet often overlooked hypothesis that FUS in fact alters sensory-evoked neural activity within the region of the cerebral cortex at the beam's focus. To address this knowledge gap, we developed an approach to optically interrogate patterns of neural activity in the cortex directly at the acoustic focus, in vivo. Implementing simultaneous wide-field optical imaging and FUS stimulation in mice, our experiments probed somatosensory-evoked electrical activity through the use of voltage sensitive dyes (VSDs) and, in transgenic mice expressing GCaMP6f, monitored associated Ca 2+ responses. Our results demonstrate that low-intensity FUS alters both the kinetics and spatial patterns of neural activity in primary somatosensory cortex at the acoustic focus. When preceded by 1 s of pulsed ultrasound at intensities below 1 W cm -2 (I sppa ), the onset of sensory-evoked cortical responses occurred 3.0 ± 0.7 ms earlier and altered the surface spatial morphology of Ca 2+ responses. These findings support the heretofore unconfirmed assumption that FUS-induced sensory modulation reflects, at least in part, altered reactivity in primary sensory cortex at the site of sonication. The findings are significant given the interest in using FUS to target and alter spatial aspects of sensory receptive fields on the cerebral cortex.
Moscicki, Michele K; Reddon, Adam R; Hurd, Peter L
2011-09-01
Cerebral lateralization, the partitioning of cognitive function preferentially into one hemisphere of the brain, is a trait ubiquitous among vertebrates. Some species exhibit population level lateralization, where the pattern of cerebral lateralization is the same for most members of that species; however, other species show only individual level lateralization, where each member of the species has a unique pattern of lateralized brain function. The pattern of cerebral lateralization within a population and an individual has been shown to differ based on the stimulus being processed. It has been hypothesized that sociality within a species, such as shoaling behaviour in fish, may have led to the development and persistence of population level lateralization. Here we assessed cerebral lateralization in convict cichlids (Amatitlania nigrofasciata), a species that does not shoal as adults but that shoals briefly as juveniles. We show that both male and female convict cichlids display population level lateralization when in a solitary environment but only females show population level lateralization when in a perceived social environment. We also show that the pattern of lateralization differs between these two tasks and that strength of lateralization in one task is not predictive of strength of lateralization in the other task. Copyright © 2011 Elsevier B.V. All rights reserved.
Kolodziej, Angela; Lippert, Michael; Angenstein, Frank; Neubert, Jenni; Pethe, Annette; Grosser, Oliver S; Amthauer, Holger; Schroeder, Ulrich H; Reymann, Klaus G; Scheich, Henning; Ohl, Frank W; Goldschmidt, Jürgen
2014-12-01
Electrical and optogenetic methods for brain stimulation are widely used in rodents for manipulating behavior and analyzing functional connectivities in neuronal circuits. High-resolution in vivo imaging of the global, brain-wide, activation patterns induced by these stimulations has remained challenging, in particular in awake behaving mice. We here mapped brain activation patterns in awake, intracranially self-stimulating mice using a novel protocol for single-photon emission computed tomography (SPECT) imaging of regional cerebral blood flow (rCBF). Mice were implanted with either electrodes for electrical stimulation of the medial forebrain bundle (mfb-microstim) or with optical fibers for blue-light stimulation of channelrhodopsin-2 expressing neurons in the ventral tegmental area (vta-optostim). After training for self-stimulation by current or light application, respectively, mice were implanted with jugular vein catheters and intravenously injected with the flow tracer 99m-technetium hexamethylpropyleneamine oxime (99mTc-HMPAO) during seven to ten minutes of intracranial self-stimulation or ongoing behavior without stimulation. The 99mTc-brain distributions were mapped in anesthetized animals after stimulation using multipinhole SPECT. Upon self-stimulation rCBF strongly increased at the electrode tip in mfb-microstim mice. In vta-optostim mice peak activations were found outside the stimulation site. Partly overlapping brain-wide networks of activations and deactivations were found in both groups. When testing all self-stimulating mice against all controls highly significant activations were found in the rostromedial nucleus accumbens shell. SPECT-imaging of rCBF using intravenous tracer-injection during ongoing behavior is a new tool for imaging regional brain activation patterns in awake behaving rodents providing higher spatial and temporal resolutions than 18F-2-fluoro-2-dexoyglucose positron emission tomography. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Narusuye, Kenji; Nagahama, Tatsumi
2002-11-01
The Japanese species Aplysia kurodai feeds well on Ulva but rejects Gelidium with distinctive rhythmic patterned movements of the jaws and radula. We have previously shown that the patterned jaw movements during the rejection of Gelidium might be caused by long-lasting suppression of the monosynaptic transmission from the multiaction MA neurons to the jaw-closing (JC) motor neurons in the buccal ganglia and that the modulation might be directly produced by some cerebral neurons. In the present paper, we have identified a pair of catecholaminergic neurons (CBM1) in bilateral cerebral M clusters. The CBM1, probably equivalent to CBI-1 in A. californica, simultaneously produced monosynaptic excitatory postsynaptic potentials (EPSPs) in the MA and JC neurons. Firing of the CBM1 reduced the size of the inhibitory postsynaptic currents (IPSCs) in the JC neuron, evoked by the MA spikes, for >100 s. Moreover, the application of dopamine mimicked the CBM1 modulatory effects and pretreatment with a D1 antagonist, SCH23390, blocked the modulatory effects induced by dopamine. It could also largely block the modulatory effects induced by the CBM1 firing. These results suggest that the CBM1 may directly modulate the synaptic transmission by releasing dopamine. Moreover, we explored the CBM1 spike activity induced by taste stimulation of the animal lips with seaweed extracts by the use of calcium imaging. The calcium-sensitive dye, Calcium Green-1, was iontophoretically loaded into a cell body of the CBM1 using a microelectrode. Application of either Ulva or Gelidium extract to the lips increased the fluorescence intensity, but the Gelidium extract always induced a larger change in fluorescence compared with the Ulva extract, although the solution used induced the maximum spike responses of the CBM1 for each of the seaweed extracts. When the firing frequency of the CBM1 activity after taste stimulation was estimated, the Gelidium extract induced a spike activity of ~30 spikes/s while the Ulva extract induced an activity of ~20 spikes/s, consistent with the effective firing frequency (>25 spikes/s) for the synaptic modulation. These results suggest that the CBM1 may be one of the cerebral neurons contributing to the modulation of the basic feeding circuits for rejection induced by the taste of seaweeds such as Gelidium.
Immature Spinal Locomotor Output in Children with Cerebral Palsy.
Cappellini, Germana; Ivanenko, Yury P; Martino, Giovanni; MacLellan, Michael J; Sacco, Annalisa; Morelli, Daniela; Lacquaniti, Francesco
2016-01-01
Detailed descriptions of gait impairments have been reported in cerebral palsy (CP), but it is still unclear how maturation of the spinal motoneuron output is affected. Spatiotemporal alpha-motoneuron activation during walking can be assessed by mapping the electromyographic activity profiles from several, simultaneously recorded muscles onto the anatomical rostrocaudal location of the motoneuron pools in the spinal cord, and by means of factor analysis of the muscle activity profiles. Here, we analyzed gait kinematics and EMG activity of 11 pairs of bilateral muscles with lumbosacral innervation in 35 children with CP (19 diplegic, 16 hemiplegic, 2-12 years) and 33 typically developing (TD) children (1-12 years). TD children showed a progressive reduction of EMG burst durations and a gradual reorganization of the spatiotemporal motoneuron output with increasing age. By contrast, children with CP showed very limited age-related changes of EMG durations and motoneuron output, as well as of limb intersegmental coordination and foot trajectory control (on both sides for diplegic children and the affected side for hemiplegic children). Factorization of the EMG signals revealed a comparable structure of the motor output in children with CP and TD children, but significantly wider temporal activation patterns in children with CP, resembling the patterns of much younger TD infants. A similar picture emerged when considering the spatiotemporal maps of alpha-motoneuron activation. Overall, the results are consistent with the idea that early injuries to developing motor regions of the brain substantially affect the maturation of the spinal locomotor output and consequently the future locomotor behavior.
Immature Spinal Locomotor Output in Children with Cerebral Palsy
Cappellini, Germana; Ivanenko, Yury P.; Martino, Giovanni; MacLellan, Michael J.; Sacco, Annalisa; Morelli, Daniela; Lacquaniti, Francesco
2016-01-01
Detailed descriptions of gait impairments have been reported in cerebral palsy (CP), but it is still unclear how maturation of the spinal motoneuron output is affected. Spatiotemporal alpha-motoneuron activation during walking can be assessed by mapping the electromyographic activity profiles from several, simultaneously recorded muscles onto the anatomical rostrocaudal location of the motoneuron pools in the spinal cord, and by means of factor analysis of the muscle activity profiles. Here, we analyzed gait kinematics and EMG activity of 11 pairs of bilateral muscles with lumbosacral innervation in 35 children with CP (19 diplegic, 16 hemiplegic, 2–12 years) and 33 typically developing (TD) children (1–12 years). TD children showed a progressive reduction of EMG burst durations and a gradual reorganization of the spatiotemporal motoneuron output with increasing age. By contrast, children with CP showed very limited age-related changes of EMG durations and motoneuron output, as well as of limb intersegmental coordination and foot trajectory control (on both sides for diplegic children and the affected side for hemiplegic children). Factorization of the EMG signals revealed a comparable structure of the motor output in children with CP and TD children, but significantly wider temporal activation patterns in children with CP, resembling the patterns of much younger TD infants. A similar picture emerged when considering the spatiotemporal maps of alpha-motoneuron activation. Overall, the results are consistent with the idea that early injuries to developing motor regions of the brain substantially affect the maturation of the spinal locomotor output and consequently the future locomotor behavior. PMID:27826251
Biological substrates of schizophrenia.
Kovelman, J A; Scheibel, A B
1986-01-01
Schizophrenia is increasingly believed to represent a group of organic disorders which primarily, although not exclusively, affect the central nervous system. Our purpose is to review a representative sample of twentieth-century literature which speaks to the biological substrates of the syndrome. Subjects reviewed include genetic and environmental contributions to the onset of illness, early and recent findings of gross structural anomalies, and apparent histopathological alterations in cerebral cortex, cerebellar vermis, limbic system, and brain stem, as well as problems of cerebral asymmetry. Data from a diverse group of electrophysiological studies reveal several promising correlates of these areas of investigation. Despite the inconsistent nature of the findings to date, several themes have begun to emerge, including patterns of hypofrontal/hyperparietal regional cerebral flow and glucose utilization, left hemispheric dysfunction, and deficits of interhemispheric information processing. The interpretation and significance of these emerging patterns remains unclear and must await more profound insights into the nature of normal and abnormal cerebral function.
Kandhadai, Padmapriya; Federmeier, Kara D.
2009-01-01
The coarse coding hypothesis (Jung-Beeman 2005) postulates that the cerebral hemispheres differ in their breadth of semantic activation, with the left hemisphere (LH) activating a narrow, focused semantic field and the right (RH) weakly activating a broader semantic field. In support of coarse coding, studies (e.g., Faust and Lavidor 2003) investigating priming for multiple senses of a lexically ambiguous word have reported a RH benefit. However, studies of mediated priming (Livesay and Burgess 2003; Richards and Chiarello 1995) have failed to find a RH advantage for processing distantly-linked, unambiguous words. To address this debate, the present study made use of a multiple priming paradigm (Balota and Paul, 1996) in which two primes either converged onto the single meaning of an unambiguous, lexically-associated target (LION-STRIPES-TIGER) or diverged onto different meanings of an ambiguous target (KIDNEY-PIANO-ORGAN). In two experiments, participants either made lexical decisions to targets (Experiment 1) or made a semantic relatedness judgment between primes and targets (Experiment 2). In both tasks, for both ambiguous and unambiguous triplets we found equivalent priming strengths and patterns across the two visual fields, counter to the predictions of the coarse coding hypothesis. Priming patterns further suggested that both hemispheres made use of lexical level representations in the lexical decision task and semantic representations in the semantic judgment task. PMID:17459344
Self-reflection and positive schizotypy in the adolescent brain.
Debbané, Martin; Vrtička, Pascal; Lazouret, Marine; Badoud, Deborah; Sander, David; Eliez, Stephan
2014-01-01
Clinical and phenomenological accounts of schizophrenia suggest that impairments in self-reflective processes significantly contribute to psychopathological expression. Recent imaging studies observe atypical cerebral activation patterns during self-reflection, especially around the cortical midline structures, both in psychosis-prone adults and individuals with schizophrenia. Given that self-reflection processes consolidate during adolescence, and that early transient expression of psychosis (positive schizotypy) also arises during this period, the present study sought to examine whether atypical cerebral activation during self-reflection task could be associated with early schizotypic expression during adolescence. Forty-two neurotypical adolescent participants (19 females) aged from 12 to 19 (15.92±1.9) underwent a self-reflection task using functional neuroimaging (fMRI), where they had to evaluate trait adjectives (1 to 4 ratings) about themselves or their same sex best friend. The Schizotypal Personality Questionnaire (SPQ) was employed to assess positive schizotypic expression. Results showed that positive schizotypy in adolescents significantly correlated with cortical midline activation patterns in the dorsomedial prefrontal cortex (dmPFC) and the posterior cingulate cortex (PCC), as well as the dorsolateral PFC and the lingual gyrus. The results are consistent with previous imaging literature on self-reflection and schizophrenia. They further highlight that the relationship between self-reflection processes and positive schizotypy operates at the trait level of expression and can be observed as early as adolescence. Copyright © 2013 Elsevier B.V. All rights reserved.
Memory activation in healthy nonagenarians.
Beeri, Michal Schnaider; Lee, Hedok; Cheng, Hu; Wollman, Daniel; Silverman, Jeremy M; Prohovnik, Isak
2011-03-01
Little is known about brain function in the oldest old, although this is the fastest growing segment of the population in developed countries and is of paramount importance in public health considerations. In this study, we investigated the cerebral response to a memory task in healthy subjects over age 90 compared with healthy younger elderly. We studied 29 healthy elderly subjects, 12 over age 90 and 17 between age 70 and 80. All subjects were cognitively intact, as verified by a neuropsychological battery, and performed a nonverbal memory task while undergoing a functional MRI (fMRI). Activation results were analyzed by a random-effects ANCOVA using SPM5. The task resulted in activation of similar areas of the posterior temporal, parietal, and posterior frontal cortexes, but the activation was more robust in the younger subjects, especially in the right hippocampus, and parietal and temporal cortices. This finding remained after controlling for education, cognition, task performance or cerebral atrophy. The phenomenon of relatively maintained performance, despite significant brain atrophy and lower activation is consistent with the cognitive reserve theory and may be specific to subjects with extremely successful aging. Further investigation of brain activation patterns in the oldest old is warranted. Copyright © 2009 Elsevier Inc. All rights reserved.
Yano, Kazuo; Kawasaki, Koh; Hattori, Tsuyoshi; Tawara, Shunsuke; Toshima, Yoshinori; Ikegaki, Ichiro; Sasaki, Yasuo; Satoh, Shin-ichi; Asano, Toshio; Seto, Minoru
2008-10-10
Evidence that Rho-kinase is involved in cerebral infarction has accumulated. However, it is uncertain whether Rho-kinase is activated in the brain parenchyma in cerebral infarction. To answer this question, we measured Rho-kinase activity in the brain in a rat cerebral infarction model. Sodium laurate was injected into the left internal carotid artery, inducing cerebral infarction in the ipsilateral hemisphere. At 6 h after injection, increase of activating transcription factor 3 (ATF3) and c-Fos was found in the ipsilateral hemisphere, suggesting that neuronal damage occurs. At 0.5, 3, and 6 h after injection of laurate, Rho-kinase activity in extracts of the cerebral hemispheres was measured by an ELISA method. Rho-kinase activity in extracts of the ipsilateral hemisphere was significantly increased compared with that in extracts of the contralateral hemisphere at 3 and 6 h but not 0.5 h after injection of laurate. Next, localization of Rho-kinase activity was evaluated by immunohistochemical analysis in sections of cortex and hippocampus including infarct area 6 h after injection of laurate. Staining for phosphorylation of myosin-binding subunit (phospho-MBS) and myosin light chain (phospho-MLC), substrates of Rho-kinase, was elevated in neuron and blood vessel, respectively, in ipsilateral cerebral sections, compared with those in contralateral cerebral sections. These findings indicate that Rho-kinase is activated in neuronal and vascular cells in a rat cerebral infarction model, and suggest that Rho-kinase could be an important target in the treatment of cerebral infarction.
Goldstein, L H; Newsom-Davis, I C; Bryant, V; Brammer, M; Leigh, P N; Simmons, A
2011-12-01
Since amyotrophic lateral sclerosis (ALS) can be accompanied by executive dysfunction, it is hypothesised that ALS patients will have impaired performance on tests of cognitive inhibition. We predicted that ALS patients would show patterns of abnormal activation in extramotor regions when performing tests requiring the inhibition of prepotent responses (the Stroop effect) and the inhibition of prior negatively primed responses (the negative priming effect) when compared to healthy controls. Functional magnetic resonance imaging was used to measure activation during a sparse sequence block design paradigm investigating the Stroop and negative priming effects in 14 ALS patients and 8 healthy age- and IQ-matched controls. Behavioural measures of performance were collected. Both groups' reaction times (RTs) reflected the Stroop effect during scanning. The ALS and control groups did not differ significantly for any of the behavioural measures but did show significant differences in cerebral activation during both tasks. The ALS group showed increased activation predominantly in the left middle temporal gyrus (BA 20/21), left superior temporal gyrus (BA 22) and left anterior cingulate gyrus (BA 32). Neither group's RT data showed clear evidence of a negative priming effect. However the ALS group showed decreased activation, relative to controls, particularly in the left cingulate gyrus (BA 23/24), left precentral gyrus (BA 4/6) and left medial frontal gyrus (BA 6). Greater cerebral activation in the ALS group accompanying the performance of the Stroop effect and areas of decreased activation during the negative priming comparison suggest altered inhibitory processing in ALS, consistent with other evidence of executive dysfunction in ALS. The current findings require further exploration in a larger study.
Identification of emotional intonation evaluated by fMRI.
Wildgruber, D; Riecker, A; Hertrich, I; Erb, M; Grodd, W; Ethofer, T; Ackermann, H
2005-02-15
During acoustic communication among human beings, emotional information can be expressed both by the propositional content of verbal utterances and by the modulation of speech melody (affective prosody). It is well established that linguistic processing is bound predominantly to the left hemisphere of the brain. By contrast, the encoding of emotional intonation has been assumed to depend specifically upon right-sided cerebral structures. However, prior clinical and functional imaging studies yielded discrepant data with respect to interhemispheric lateralization and intrahemispheric localization of brain regions contributing to processing of affective prosody. In order to delineate the cerebral network engaged in the perception of emotional tone, functional magnetic resonance imaging (fMRI) was performed during recognition of prosodic expressions of five different basic emotions (happy, sad, angry, fearful, and disgusted) and during phonetic monitoring of the same stimuli. As compared to baseline at rest, both tasks yielded widespread bilateral hemodynamic responses within frontal, temporal, and parietal areas, the thalamus, and the cerebellum. A comparison of the respective activation maps, however, revealed comprehension of affective prosody to be bound to a distinct right-hemisphere pattern of activation, encompassing posterior superior temporal sulcus (Brodmann Area [BA] 22), dorsolateral (BA 44/45), and orbitobasal (BA 47) frontal areas. Activation within left-sided speech areas, in contrast, was observed during the phonetic task. These findings indicate that partially distinct cerebral networks subserve processing of phonetic and intonational information during speech perception.
Ryan, Fari; Khodagholi, Fariba; Dargahi, Leila; Minai-Tehrani, Dariush; Ahmadiani, Abolhassan
2018-01-08
Necroptosis, a novel type of programmed cell death, has been recently implicated as a possible mechanism for cerebral ischemia-reperfusion (I/R) injury. We herein studied time-dependent changes of necroptosis markers along with apoptosis- and autophagy-associated proteins in rat hippocampus at 1, 3, 6, 12, 24, and 48 h after global cerebral I/R injury. Furthermore, to determine the cross talk between autophagy and necroptosis, we examined the effects of pretreatment with bafilomycin-A1 (Baf-A1), as a late-stage autophagy inhibitor, on necroptosis. Highest levels of receptor-interacting protein 1 and 3 (RIP1 and RIP3), as key mediators of necroptosis, were observed at 24 h after reperfusion. Alongside, activity of glutamate dehydrogenase (GLUD1), downstream enzyme of RIP3, was increased. Peak time of necroptosis was subsequent to caspase-3-dependent cell death that peaked at 12 h of reperfusion but concurrent with autophagy. Administration of Baf-A1 could attenuate necroptosis, verified by decrease in RIP1 and RIP3 protein levels, as well as GLUD1 activity. However, there was no significant change in caspase-3-dependent cell death. Taken together, our results highlight that global cerebral I/R activates necroptosis that could be triggered by autophagy and interacts reversely with caspase-3-dependent apoptosis.
2010-01-01
Background Ischemic hypoxic brain injury often causes irreversible brain damage. The lack of effective and widely applicable pharmacological treatments for ischemic stroke patients may explain a growing interest in traditional medicines. From the point of view of "self-medication" or "preventive medicine," Cordyceps sinensis was used in the prevention of cerebral ischemia in this paper. Methods The right middle cerebral artery occlusion model was used in the study. The effects of Cordyceps sinensis (Caterpillar fungus) extract on mortality rate, neurobehavior, grip strength, lactate dehydrogenase, glutathione content, Lipid Peroxidation, glutathione peroxidase activity, glutathione reductase activity, catalase activity, Na+K+ATPase activity and glutathione S transferase activity in a rat model were studied respectively. Results Cordyceps sinensis extract significantly improved the outcome in rats after cerebral ischemia and reperfusion in terms of neurobehavioral function. At the same time, supplementation of Cordyceps sinensis extract significantly boosted the defense mechanism against cerebral ischemia by increasing antioxidants activity related to lesion pathogenesis. Restoration of the antioxidant homeostasis in the brain after reperfusion may have helped the brain recover from ischemic injury. Conclusions These experimental results suggest that complement Cordyceps sinensis extract is protective after cerebral ischemia in specific way. The administration of Cordyceps sinensis extract significantly reduced focal cerebral ischemic/reperfusion injury. The defense mechanism against cerebral ischemia was by increasing antioxidants activity related to lesion pathogenesis. PMID:20955613
Liu, Zhenquan; Li, Pengtao; Zhao, Dan; Tang, Huiling; Guo, Jianyou
2010-10-19
Ischemic hypoxic brain injury often causes irreversible brain damage. The lack of effective and widely applicable pharmacological treatments for ischemic stroke patients may explain a growing interest in traditional medicines. From the point of view of "self-medication" or "preventive medicine," Cordyceps sinensis was used in the prevention of cerebral ischemia in this paper. The right middle cerebral artery occlusion model was used in the study. The effects of Cordyceps sinensis (Caterpillar fungus) extract on mortality rate, neurobehavior, grip strength, lactate dehydrogenase, glutathione content, Lipid Peroxidation, glutathione peroxidase activity, glutathione reductase activity, catalase activity, Na+K+ATPase activity and glutathione S transferase activity in a rat model were studied respectively. Cordyceps sinensis extract significantly improved the outcome in rats after cerebral ischemia and reperfusion in terms of neurobehavioral function. At the same time, supplementation of Cordyceps sinensis extract significantly boosted the defense mechanism against cerebral ischemia by increasing antioxidants activity related to lesion pathogenesis. Restoration of the antioxidant homeostasis in the brain after reperfusion may have helped the brain recover from ischemic injury. These experimental results suggest that complement Cordyceps sinensis extract is protective after cerebral ischemia in specific way. The administration of Cordyceps sinensis extract significantly reduced focal cerebral ischemic/reperfusion injury. The defense mechanism against cerebral ischemia was by increasing antioxidants activity related to lesion pathogenesis.
Uhm, Yo-Han; Yang, Dae-Jung
2018-02-01
[Purpose] The purpose of this study was to examine the effect of computerized postural control training using whole body vibration on lower limb muscle activity and cerebral cortical activation in acute stroke patients. [Subjects and Methods] Thirty stroke patients participated and were divided into groups of 10, a group of the computerized postural control training using whole body vibration (Group I), the computerized postural control training combined with aero step (Group II) and computerized postural control training (Group III). MP100 was used to measure lower limb muscle activity, and QEEG-8 was used to measure cerebral cortical activation. [Results] Comparison of muscle activity and cerebral cortical activation before and after intervention between groups showed that Group I had significant differences in lower limb muscle activity and cerebral cortical activation compared to Groups II and III. [Conclusion] This study showed that whole body vibration combined computerized postural control training is effective for improving muscle activity and cerebral cortex activity in stroke patients.
Influence of voluntary control of masticatory side and rhythm on cerebral hemodynamics.
Hasegawa, Yoko; Ono, Takahiro; Sakagami, Joe; Hori, Kazuhiro; Maeda, Yoshinobu; Hamasaki, Toshimitsu; Nokubi, Takashi
2011-02-01
The aim of this study was to investigate the influence on cerebral hemodynamics of voluntary control of masticatory side and rhythm during gum chewing. Blood flow velocity in the middle cerebral artery was measured using transcranial Doppler ultrasonography to evaluate cerebral circulation in healthy volunteers. Heart rate and masseter muscle activity were recorded simultaneously. Volunteers performed three tasks: (1) free gum chewing, (2) gum chewing in which mastication was limited to the right side, and (3) gum chewing in which mastication was limited to the right side and rhythm was set at 1.0 Hz. Changes in cerebral circulation during pre-task, on-task, and post-task periods were analyzed using random effects model, and differences in cerebral circulation and muscle activity between tasks were analyzed using the Friedman test. In all tasks, on-task cerebral circulation was greater than pre-task. Muscle activity and masticatory rhythm varied between tasks, whereas the rate of increase in cerebral circulation did not differ significantly among tasks. These results suggest that cerebral circulation is activated during gum chewing, irrespective of voluntary control of masticatory side and rhythm.
Comparison of laterality index of upper and lower limb movement using brain activated fMRI
NASA Astrophysics Data System (ADS)
Harirchian, Mohammad Hossein; Oghabian, Mohammad Ali; Rezvanizadeh, Alireza; Bolandzadeh, Niousha
2008-03-01
Asymmetry of bilateral cerebral function, i.e. laterality, is an important phenomenon in many brain actions such as motor functions. This asymmetry maybe altered in some clinical conditions such as Multiple Sclerosis (MS). The aim of this study was to delineate the laterality differences for upper and lower limbs in healthy subjects to compare this pattern with subjects suffering from MS in advance. Hence 9 Male healthy subjects underwent fMRI assessment, while they were asked to move their limbs in a predetermined pattern. The results showed that hands movement activates the brain with a significant lateralization in pre-motor cortex in comparison with lower limb. Also, dominant hands activate brain more lateralized than the non-dominant hand. In addition, Left basal ganglia were observed to be activated regardless of the hand used, While, These patterns of Brain activation was not detected in lower limbs. We hypothesize that this difference might be attributed to this point that hand is usually responsible for precise and fine voluntary movements, whereas lower limb joints are mainly responsible for locomotion, a function integrating voluntary and automatic bilateral movements.
Downer, Eric J; Gowran, Aoife; Campbell, Veronica A
2007-10-17
The maternal use of cannabis during pregnancy results in a number of cognitive deficits in the offspring that persist into adulthood. The endocannabinoid system has a role to play in neurodevelopmental processes such as neurogenesis, migration and synaptogenesis. However, exposure to phytocannabinoids, such as Delta(9)-tetrahydrocannabinol, during gestation may interfere with these events to cause abnormal patterns of neuronal wiring and subsequent cognitive impairments. Aberrant cell death evoked by Delta(9)-tetrahydrocannabinol may also contribute to cognitive deficits and in cultured neurones Delta(9)-tetrahydrocannabinol induces apoptosis via the CB(1) cannabinoid receptor. In this study we report that Delta(9)-tetrahydrocannabinol (5-50 microM) activates the stress-activated protein kinase, c-jun N-terminal kinase, and the pro-apoptotic protease, caspase-3, in in vitro cerebral cortical slices obtained from the neonatal rat brain. The proclivity of Delta(9)-tetrahydrocannabinol to impact on these pro-apoptotic signalling molecules was not observed in in vitro cortical slices obtained from the adult rat brain. In vivo, subcutaneous administration of Delta(9)-tetrahydrocannabinol (1-30 mg/kg) activated c-jun N-terminal kinase, caspase-3 and cathepsin-D, and induced DNA fragmentation in the cerebral cortex of neonatal rats. In contrast, in vivo administration of Delta(9)-tetrahydrocannabinol to adult rats was not associated with the apoptotic pathway in the cerebral cortex. The data provide evidence which supports the hypothesis that the neonatal rat brain is more vulnerable to the neurotoxic influence of Delta(9)-tetrahydrocannabinol, suggesting that the cognitive deficits that are observed in humans exposed to marijuana during gestation may be due, in part, to abnormal engagement of the apoptotic cascade during brain development.
Neural correlates of remembering/knowing famous people: an event-related fMRI study.
Denkova, Ekaterina; Botzung, Anne; Manning, Lilianne
2006-01-01
It has been suggested that knowledge about some famous people depends on both a generic semantic component and an autobiographical component [Westmacott, R., & Moscovitch, M. (2003). The contribution of autobiographical significance to semantic memory. Memory and Cognition, 31, 761-774]. The neuropsychological studies of semantic dementia (SD) and Alzheimer disease (AD) demonstrated that the two aspects are very likely to be mediated by different brain structures, with the episodic component being highly dependent upon the integrity of the medial temporal lobe (MTL) [Westmacott, R., Black, S. E., Freedman, M., & Moscovitch, M. (2004). The contribution of autobiographical significance to semantic memory: Evidence from Alzheimer's disease, semantic dementia, and amnesia. Neuropsychologia, 42, 25-48]. Using an fMRI design in healthy participants, we aimed: (i) to investigate the pattern of brain activations sustaining the autobiographical and the semantic aspects of knowledge about famous persons. Moreover, (ii) we examined if the stimulus material (face/name) influences the lateralisation of the cerebral networks. Our findings suggested that different patterns of activation corresponded to the presence or absence of personal significance linked to semantic knowledge; MTL was engaged only in the former case. Although choice of stimulus material did not influence the hemispheric lateralisation in "classical" terms, it did play a role in engaging different cerebral regions.
[Pedophilia: contribution of neurology and neuroimaging techniques].
Fonteille, V; Cazala, F; Moulier, V; Stoléru, S
2012-12-01
Pedophilia is characterized by a persistent sexual interest of an adult for prepubescent children. The development of neuroimaging techniques such as functional Magnetic Resonance Imaging (fMRI) is starting to clarify the cerebral basis of disorders of sexual behavior such as pedophilia, which had been previously suggested by case studies. To review structural and functional neuroimaging studies of pedophilia. An exhaustive consultation of PubMed and Ovid databases was conducted. We obtained 19 articles presented in the present review of the literature. Case studies have demonstrated various changes of sexual behavior in relation to brain lesions, including the late appearance in adults of a sexual attraction to prepubescent children. In most cases of pedophilia associated with brain lesions, these lesions were located in frontal or in temporal regions. Structural neuroimaging studies have compared pedophiles with healthy subjects and tried to relate pedophilia to anatomical differences between these two groups. The location of structural changes is inconsistent across studies. Recent functional neuroimaging studies have also attempted to investigate the cerebral correlates of pedophilia. Results suggest that the activation pattern found in pedophiles in response to pictures of prepubescent nude girls or boys is similar to the pattern observed in healthy subjects in response to pictures of adult nude women or men. However, regions that become more activated in patients than in healthy controls in response to the presentation of pictures of children vary across studies. Studies that have begun to investigate the cerebral correlates of pedophilia demonstrate that it is possible to explore them through neuroimaging techniques. These initial results have to be confirmed by new studies backed with objective measurements of sexual arousal such as phallometry. Copyright © 2012 L’Encéphale, Paris. Published by Elsevier Masson SAS. All rights reserved.
2013-01-01
Background Microglia cells continuously survey the healthy brain in a ramified morphology and, in response to injury, undergo progressive morphological and functional changes that encompass microglia activation. Although ideally positioned for immediate response to ischemic stroke (IS) and reperfusion, their progressive morphological transformation into activated cells has not been quantified. In addition, it is not well understood if diverse microglia morphologies correlate to diverse microglia functions. As such, the dichotomous nature of these cells continues to confound our understanding of microglia-mediated injury after IS and reperfusion. The purpose of this study was to quantitatively characterize the spatiotemporal pattern of microglia morphology during the evolution of cerebral injury after IS and reperfusion. Methods Male C57Bl/6 mice were subjected to focal cerebral ischemia and periods of reperfusion (0, 8 and 24 h). The microglia process length/cell and number of endpoints/cell was quantified from immunofluorescent confocal images of brain regions using a skeleton analysis method developed for this study. Live cell morphology and process activity were measured from movies acquired in acute brain slices from GFP-CX3CR1 transgenic mice after IS and 24-h reperfusion. Regional CD11b and iNOS expressions were measured from confocal images and Western blot, respectively, to assess microglia proinflammatory function. Results Quantitative analysis reveals a significant spatiotemporal relationship between microglia morphology and evolving cerebral injury in the ipsilateral hemisphere after IS and reperfusion. Microglia were both hyper- and de-ramified in striatal and cortical brain regions (respectively) after 60 min of focal cerebral ischemia. However, a de-ramified morphology was prominent when ischemia was coupled to reperfusion. Live microglia were de-ramified, and, in addition, process activity was severely blunted proximal to the necrotic core after IS and 24 h of reperfusion. CD11b expression, but not iNOS expression, was increased in regions of hyper- and de-ramified microglia during the course of ischemic stroke and 24 h of reperfusion. Conclusions Our findings illustrate that microglia activation after stroke includes both increased and decreased cell ramification. Importantly, quantitative analyses of microglial morphology and activity are feasible and, in future studies, would assist in the comprehensive identification and stratification of their dichotomous contribution toward cerebral injury and recovery during IS and reperfusion. PMID:23311642
Human brain networks function in connectome-specific harmonic waves.
Atasoy, Selen; Donnelly, Isaac; Pearson, Joel
2016-01-21
A key characteristic of human brain activity is coherent, spatially distributed oscillations forming behaviour-dependent brain networks. However, a fundamental principle underlying these networks remains unknown. Here we report that functional networks of the human brain are predicted by harmonic patterns, ubiquitous throughout nature, steered by the anatomy of the human cerebral cortex, the human connectome. We introduce a new technique extending the Fourier basis to the human connectome. In this new frequency-specific representation of cortical activity, that we call 'connectome harmonics', oscillatory networks of the human brain at rest match harmonic wave patterns of certain frequencies. We demonstrate a neural mechanism behind the self-organization of connectome harmonics with a continuous neural field model of excitatory-inhibitory interactions on the connectome. Remarkably, the critical relation between the neural field patterns and the delicate excitation-inhibition balance fits the neurophysiological changes observed during the loss and recovery of consciousness.
Sagari, Akira; Iso, Naoki; Moriuchi, Takefumi; Ogahara, Kakuya; Kitajima, Eiji; Tanaka, Koji; Tabira, Takayuki; Higashi, Toshio
2015-01-01
Studies of cerebral hemodynamics during motor learning have mostly focused on neurorehabilitation interventions and their effectiveness. However, only a few imaging studies of motor learning and the underlying complex cognitive processes have been performed. We measured cerebral hemodynamics using near-infrared spectroscopy (NIRS) in relation to acquisition patterns of motor skills in healthy subjects using character entry into a touch-screen terminal. Twenty healthy, right-handed subjects who had no previous experience with character entry using a touch-screen terminal participated in this study. They were asked to enter the characters of a randomly formed Japanese syllabary into the touch-screen terminal. All subjects performed the task with their right thumb for 15 s alternating with 25 s of rest for 30 repetitions. Performance was calculated by subtracting the number of incorrect answers from the number of correct answers, and gains in motor skills were evaluated according to the changes in performance across cycles. Behavioral and oxygenated hemoglobin concentration changes across task cycles were analyzed using Spearman's rank correlations. Performance correlated positively with task cycle, thus confirming motor learning. Hemodynamic activation over the left sensorimotor cortex (SMC) showed a positive correlation with task cycle, whereas activations over the right prefrontal cortex (PFC) and supplementary motor area (SMA) showed negative correlations. We suggest that increases in finger momentum with motor learning are reflected in the activity of the left SMC. We further speculate that the right PFC and SMA were activated during the early phases of motor learning, and that this activity was attenuated with learning progress.
Papoiu, Alexandru D P; Kraft, Robert A; Coghill, Robert C; Yosipovitch, Gil
2015-02-01
Opioid receptors in the central nervous system are important modulators of itch transmission. In this study, we examined the effect of mixed-action opioid butorphanol on histamine itch, cowhage itch, and heat pain in healthy volunteers. Using functional MRI, we investigated significant changes in cerebral perfusion to identify the critical brain centers mediating the antipruritic effect of butorphanol. Butorphanol suppressed the itch induced experimentally with histamine, reduced the intensity of cowhage itch by approximately 35%, and did not affect heat pain sensitivity. In comparison with the placebo, butorphanol produced a bilateral deactivation of claustrum, insula, and putamen, areas activated during itch processing. Analysis of cerebral perfusion patterns of brain processing of itch versus itch inhibition under the effect of the drug revealed that the reduction in cowhage itch by butorphanol was correlated with changes in cerebral perfusion in the midbrain, thalamus, S1, insula, and cerebellum. The suppression of histamine itch by butorphanol was paralleled by the activation of nucleus accumbens and septal nuclei, structures expressing high levels of kappa opioid receptors. In conclusion, important relays of the mesolimbic circuit were involved in the inhibition of itch by butorphanol and could represent potential targets for the development of antipruritic therapy.
Molecular Regulation of DNA Damage-Induced Apoptosis in Neurons of Cerebral Cortex
Liu, Zhiping; Pipino, Jacqueline; Chestnut, Barry; Landek, Melissa A.
2009-01-01
Cerebral cortical neuron degeneration occurs in brain disorders manifesting throughout life, but the mechanisms are understood poorly. We used cultured embryonic mouse cortical neurons and an in vivo mouse model to study mechanisms of DNA damaged-induced apoptosis in immature and differentiated neurons. p53 drives apoptosis of immature and differentiated cortical neurons through its rapid and prominent activation stimulated by DNA strand breaks induced by topoisomerase-I and -II inhibition. Blocking p53-DNA transactivation with α-pifithrin protects immature neurons; blocking p53-mitochondrial functions with μ-pifithrin protects differentiated neurons. Mitochondrial death proteins are upregulated in apoptotic immature and differentiated neurons and have nonredundant proapoptotic functions; Bak is more dominant than Bax in differentiated neurons. p53 phosphorylation is mediated by ataxia telangiectasia mutated (ATM) kinase. ATM inactivation is antiapoptotic, particularly in differentiated neurons, whereas inhibition of c-Abl protects immature neurons but not differentiated neurons. Cell death protein expression patterns in mouse forebrain are mostly similar to cultured neurons. DNA damage induces prominent p53 activation and apoptosis in cerebral cortex in vivo. Thus, DNA strand breaks in cortical neurons induce rapid p53-mediated apoptosis through actions of upstream ATM and c-Abl kinases and downstream mitochondrial death proteins. This molecular network operates through variations depending on neuron maturity. PMID:18820287
Planning-free cerebral blood flow territory mapping in patients with intracranial arterial stenosis
Arteaga, Daniel F; Strother, Megan K; Davis, L Taylor; Fusco, Matthew R; Faraco, Carlos C; Roach, Brent A; Scott, Allison O
2016-01-01
A noninvasive method for quantifying cerebral blood flow and simultaneously visualizing cerebral blood flow territories is vessel-encoded pseudocontinuous arterial spin labeling MRI. However, obstacles to acquiring such information include limited access to the methodology in clinical centers and limited work on how clinically acquired vessel-encoded pseudocontinuous arterial spin labeling data correlate with gold-standard methods. The purpose of this work is to develop and validate a semiautomated pipeline for the online quantification of cerebral blood flow maps and cerebral blood flow territories from planning-free vessel-encoded pseudocontinuous arterial spin labeling MRI with gold-standard digital subtraction angiography. Healthy controls (n = 10) and intracranial atherosclerotic disease patients (n = 34) underwent 3.0 T MRI imaging including vascular (MR angiography) and hemodynamic (cerebral blood flow-weighted arterial spin labeling) MRI. Patients additionally underwent catheter and/or CT angiography. Variations in cross-territorial filling were grouped according to diameters of circle of Willis vessels in controls. In patients, Cohen’s k-statistics were computed to quantify agreement in perfusion patterns between vessel-encoded pseudocontinuous arterial spin labeling and angiography. Cross-territorial filling patterns were consistent with circle of Willis anatomy. The intraobserver Cohen's k-statistics for cerebral blood flow territory and digital subtraction angiography perfusion agreement were 0.730 (95% CI = 0.593–0.867; reader one) and 0.708 (95% CI = 0.561–0.855; reader two). These results support the feasibility of a semiautomated pipeline for evaluating major neurovascular cerebral blood flow territories in patients with intracranial atherosclerotic disease. PMID:27389177
[The Cerebral Function Monitor. Description, functioning and interpretation principles].
Roujas, F; Bertrand, C; Hrouda, P; Laborit, G; Lang, G; Rivet, P
1979-01-01
The Monitor of Cerebral Function enables continuous monitoring of the cerebral electrical activity and this over long periods due to the slow recording speeds. The cerebral electrical signals picked up by the electrodes attached to the scalp are registered in the form of a curve which fluctuates to a greater or lesser extent depending on the recording speed. The examination of the height of the curve with respect to zero and its amplitude indicates the voltage of the cerebral activity and yields information regarding polymorphism. It is thus possible to monitor variations in cerebral activity over a prolonged period during anaesthesia as well as during the revival phase with the Monitor of Cerebral Function, the electroencephalogram being reserved as an aid to precise diagnosis and for localization and close scruting of the anomalies.
Obusez, E C; Hui, F; Hajj-Ali, R A; Cerejo, R; Calabrese, L H; Hammad, T; Jones, S E
2014-08-01
High-resolution MR imaging is an emerging tool for evaluating intracranial artery disease. It has an advantage of defining vessel wall characteristics of intracranial vascular diseases. We investigated high-resolution MR imaging arterial wall characteristics of CNS vasculitis and reversible cerebral vasoconstriction syndrome to determine wall pattern changes during a follow-up period. We retrospectively reviewed 3T-high-resolution MR imaging vessel wall studies performed on 26 patients with a confirmed diagnosis of CNS vasculitis and reversible cerebral vasoconstriction syndrome during a follow-up period. Vessel wall imaging protocol included black-blood contrast-enhanced T1-weighted sequences with fat suppression and a saturation band, and time-of-flight MRA of the circle of Willis. Vessel wall characteristics including enhancement, wall thickening, and lumen narrowing were collected. Thirteen patients with CNS vasculitis and 13 patients with reversible cerebral vasoconstriction syndrome were included. In the CNS vasculitis group, 9 patients showed smooth, concentric wall enhancement and thickening; 3 patients had smooth, eccentric wall enhancement and thickening; and 1 patient was without wall enhancement and thickening. Six of 13 patients had follow-up imaging; 4 patients showed stable smooth, concentric enhancement and thickening; and 2 patients had resoluton of initial imaging findings. In the reversible cerebral vasoconstriction syndrome group, 10 patients showed diffuse, uniform wall thickening with negligible-to-mild enhancement. Nine patients had follow-up imaging, with 8 patients showing complete resolution of the initial findings. Postgadolinium 3T-high-resolution MR imaging appears to be a feasible tool in differentiating vessel wall patterns of CNS vasculitis and reversible cerebral vasoconstriction syndrome changes during a follow-up period. © 2014 by American Journal of Neuroradiology.
Vecchiato, Giovanni; Astolfi, Laura; Cincotti, Febo; De Vico Fallani, Fabrizio; Sorrentino, Domenica M; Mattia, Donatella; Salinari, Serenella; Bianchi, Luigi; Toppi, Jlena; Aloise, Fabio; Babiloni, Fabio
2010-06-03
In the present research we were interested to study the cerebral activity of a group of healthy subjects during the observation a documentary intermingled by a series of TV advertisements. In particular, we desired to examine whether Public Service Announcements (PSAs) are able to elicit a different pattern of activity, when compared with a different class of commercials, and correlate it with the memorization of the showed stimuli, as resulted from a following subject's verbal interview. We recorded the EEG signals from a group of 15 healthy subjects and applied the High Resolution EEG techniques in order to estimate and map their Power Spectral Density (PSD) on a realistic cortical model. The single subjects' activities have been z-score transformed and then grouped to define four different datasets, related to subjects who remembered and forgotten the PSAs and to subjects who remembered and forgotten cars commercials (CAR) respectively, which we contrasted to investigate cortical areas involved in this encoding process. The results we here present show that the cortical activity elicited during the observation of the TV commercials that were remembered (RMB) is higher and localized in the left frontal brain areas when compared to the activity elicited during the vision of the TV commercials that were forgotten (FRG) in theta and gamma bands for both categories of advertisements (PSAs and CAR). Moreover, the cortical maps associated with the PSAs also show an increase of activity in the alpha and beta band. In conclusion, the TV advertisements that will be remembered by the experimental population have increased their cerebral activity, mainly in the left hemisphere. These results seem to be congruent with and well inserted in the already existing literature, on this topic, related to the HERA model. The different pattern of activity in different frequency bands elicited by the observation of PSAs may be justified by the existence of additional cortical networks processing these kind of audiovisual stimuli. Further research with an extended set of subjects will be necessary to further validate the observations reported in this paper.
Wang, Wenqing; Wang, Aihui; Yu, Limin; Han, Xuesong; Jiang, Guiyun; Weng, Changshui; Zhang, Hongwei; Zhou, Zhiqiang
2012-01-01
Stroke patients with hemiplegia exhibit flexor spasms in the upper limb and extensor spasms in the lower limb, and their movement patterns vary greatly. Constraint-induced movement therapy is an upper limb rehabilitation technique used in stroke patients with hemiplegia; however, studies of lower extremity rehabilitation are scarce. In this study, stroke patients with lower limb hemiplegia underwent conventional Bobath therapy for 4 weeks as baseline treatment, followed by constraint-induced movement therapy for an additional 4 weeks. The 10-m maximum walking speed and Berg balance scale scores significantly improved following treatment, and lower extremity motor function also improved. The results of functional MRI showed that constraint-induced movement therapy alleviates the reduction in cerebral functional activation in patients, which indicates activation of functional brain regions and a significant increase in cerebral blood perfusion. These results demonstrate that constraint-induced movement therapy promotes brain functional reorganization in stroke patients with lower limb hemiplegia. PMID:25337108
Complementary and Alternative Therapies for Cerebral Palsy
ERIC Educational Resources Information Center
Liptak, Gregory S.
2005-01-01
The optimal practice of medicine includes integrating individual clinical expertise with the best available clinical evidence from systematic research. This article reviews nine treatment modalities used for children who have cerebral palsy (CP), including hyperbaric oxygen, the Adeli Suit, patterning, electrical stimulation, conductive education,…
Maher, Carol Ann; Toohey, Monica; Ferguson, Monika
2016-01-01
To examine the associations between physical activity, health-related quality of life and happiness in young people with cerebral palsy. A total of 70 young people with cerebral palsy (45 males, 25 females; mean age 13 years 11 months, SD 2 years 0 month) took part in a cross-sectional, descriptive postal survey assessing physical activity (Physical Activity Questionnaire for Adolescents), functional ability (Gross Motor Function Classification System), quality of life (Pediatric Quality of Life Inventory 4.0) and happiness (single Likert-scale item). Relationships between physical activity, quality of life and happiness were examined using backward stepwise linear regression. Physical activity significantly predicted physical quality of life (R(2 )= 0.64, β = 6.12, p = 0.02), social quality of life (R(2 )= 0.28, β = 9.27, p < 0.01) and happiness (R(2 )= 0.08, β = 0.9, p = 0.04). Physical activity was not associated with emotional or school quality of life. This study found a positive association between physical activity, social and physical quality of life, and happiness in young people with cerebral palsy. Findings underscore the potential benefits of physical activity for the wellbeing of young people with cerebral palsy, in addition to its well-recognised physical and health benefits. Physical activity is a key predictor of quality of life and happiness in young people with cerebral palsy. Physical activity is widely recognised as having physical health benefits for young people with cerebral palsy; however, this study also highlights that it may have important benefits for wellbeing, quality of life and happiness. This emphasises the need for clinical services and intervention studies aimed specifically at increasing physical activity amongst children and adolescents with cerebral palsy.
Roche-Labarbe, Nadege; Fenoglio, Angela; Radhakrishnan, Harsha; Kocienski-Filip, Marcia; Carp, Stefan A; Dubb, Jay; Boas, David A; Grant, P Ellen; Franceschini, Maria Angela
2014-01-15
The hemodynamic functional response is used as a reliable marker of neuronal activity in countless studies of brain function and cognition. In newborns and infants, however, conflicting results have appeared in the literature concerning the typical response, and there is little information on brain metabolism and functional activation. Measurement of all hemodynamic components and oxygen metabolism is critical for understanding neurovascular coupling in the developing brain. To this end, we combined multiple near infrared spectroscopy techniques to measure oxy- and deoxy-hemoglobin concentrations, cerebral blood volume (CBV), and relative cerebral blood flow (CBF) in the somatosensory cortex of 6 preterm neonates during passive tactile stimulation of the hand. By combining these measures we estimated relative changes in the cerebral metabolic rate of oxygen consumption (rCMRO2). CBF starts increasing immediately after stimulus onset, and returns to baseline before blood volume. This is consistent with the model of pre-capillary arteriole active dilation driving the CBF response, with a subsequent CBV increase influenced by capillaries and veins dilating passively to accommodate the extra blood. rCMRO2 estimated using the steady-state formulation shows a biphasic pattern: an increase immediately after stimulus onset, followed by a post-stimulus undershoot due to blood flow returning faster to baseline than oxygenation. However, assuming a longer mean transit time from the arterial to the venous compartment, due to the immature vascular system of premature infants, reduces the post-stimulus undershoot and increases the flow/consumption ratio to values closer to adult values reported in the literature. We are the first to report changes in local rCBF and rCMRO2 during functional activation in preterm infants. The ability to measure these variables in addition to hemoglobin concentration changes is critical for understanding neurovascular coupling in the developing brain, and for using this coupling as a reliable functional imaging marker in neonates. Copyright © 2013 Elsevier Inc. All rights reserved.
Weinstein, Joel M; Gilmore, Rick O; Shaikh, Sumera M; Kunselman, Allen R; Trescher, William V; Tashima, Lauren M; Boltz, Marianne E; McAuliffe, Matthew B; Cheung, Albert; Fesi, Jeremy D
2012-07-01
We sought to characterize visual motion processing in children with cerebral visual impairment (CVI) due to periventricular white matter damage caused by either hydrocephalus (eight individuals) or periventricular leukomalacia (PVL) associated with prematurity (11 individuals). Using steady-state visually evoked potentials (ssVEP), we measured cortical activity related to motion processing for two distinct types of visual stimuli: 'local' motion patterns thought to activate mainly primary visual cortex (V1), and 'global' or coherent patterns thought to activate higher cortical visual association areas (V3, V5, etc.). We studied three groups of children: (1) 19 children with CVI (mean age 9y 6mo [SD 3y 8mo]; 9 male; 10 female); (2) 40 neurologically and visually normal comparison children (mean age 9y 6mo [SD 3y 1mo]; 18 male; 22 female); and (3) because strabismus and amblyopia are common in children with CVI, a group of 41 children without neurological problems who had visual deficits due to amblyopia and/or strabismus (mean age 7y 8mo [SD 2y 8mo]; 28 male; 13 female). We found that the processing of global as opposed to local motion was preferentially impaired in individuals with CVI, especially for slower target velocities (p=0.028). Motion processing is impaired in children with CVI. ssVEP may provide useful and objective information about the development of higher visual function in children at risk for CVI. © The Authors. Journal compilation © Mac Keith Press 2011.
ERIC Educational Resources Information Center
Gaskin, Cadeyrn J.; Andersen, Mark B.; Morris, Tony
2012-01-01
Although physical activity can have substantial mental and physical health benefits, people with cerebral palsy usually lead sedentary lives. To understand, at an individual level, this inactivity, we interviewed a 29-year-old minimally active woman with cerebral palsy (Alana) about the meanings and experiences of physical activity throughout her…
Differential diagnosis of bilateral parietal abnormalities in I-123 IMP SPECT imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuwabara, Y.; Ichiya, Y.; Otsuka, M.
1990-12-01
This report discusses the clinical significance of bilateral parietal abnormalities on I-123 IMP SPECT imaging in 158 patients with cerebral disorders. This pattern was seen in 15 out of 21 patients with Alzheimer's disease; it was also seen in 4 out of 5 patients with Parkinson's disease with dementia, in 3 out of 17 patients with vascular dementia, in 1 out of 36 patients with cerebral infarction without dementia, in 1 out of 2 patients with hypoglycemia, and in 1 out of 2 patients with CO intoxication. Detection of bilateral parietal abnormalities is a useful finding in the diagnosis ofmore » Alzheimer's disease, but one should keep in mind that other cerebral disorders may also show a similar pattern with I-123 IMP SPECT imaging.« less
Age and Electromyographic Frequency Alterations during Walking in Children with Cerebral Palsy
Lauer, Richard T.; Pierce, Samuel R.; Tucker, Carole A.; Barbe, Mary F.; Prosser, Laura A.
2009-01-01
The use of surface electromyography (sEMG) recorded during ambulation has provided valuable insight into motor development and changes with age in the pediatric population. However, no studies have reported sEMG differences with age in the children with cerebral palsy (CP). In this study, data from 50 children were divided retrospectively into four groups, representing either an older (above the age of 7 years) or younger (below the age of 7 years) age group with either typical development (TD) or CP. Data were analyzed from 16 children in the younger age group with TD, and eight in the older age group with TD. Data were also available from 14 in the younger age group with CP, and 12 in the older age group with CP. SEMG signals from the rectus femoris (RF) and medial hamstring (MH) were analyzed using wavelet techniques to examine time-frequency content. RF muscle activity was statistically different between all groups (p<0.001), with an elevated instantaneous mean frequency (IMNF) in the older TD group than the younger TD group, an elevated IMNF in the younger CP group than the older CP group, and elevated IMNF in both CP groups compared to both TD groups. Activity for the MH muscle followed the same pattern except for the CP young and old group comparison, which indicated no difference. The results indicate that differences in neuromuscular activation exist between younger and older groups of children with both TD and CP, and may provide new insight into muscle activity pattern changes during the development of walking. PMID:19854058
2011-01-01
Background This study aims to evaluate relationship between three different clinical conditions: Major Depressive Disorders (MDD), Hashimoto Thyroiditis (HT) and reduction in regional Cerebral Blood Flow (rCBF) in order to explore the possibility that patients with HT and MDD have specific pattern(s) of cerebral perfusion. Methods Design: Analysis of data derived from two separate data banks. Sample: 54 subjects, 32 with HT (29 women, mean age 38.8 ± 13.9); 22 without HT (19 women, mean age 36.5 ± 12.25). Assessment: Psychiatric diagnosis was carried out by Simplified Composite International Diagnostic Interview (CIDIS) using DSM-IV categories; cerebral perfusion was measured by 99 mTc-ECD SPECT. Statistical analysis was done through logistic regression. Results MDD appears to be associated with left frontal hypoperfusion, left temporal hypoperfusion, diffuse hypoperfusion and parietal perfusion asymmetry. A statistically significant association between parietal perfusion asymmetry and MDD was found only in the HT group. Conclusion In HT, MDD is characterized by a parietal flow asymmetry. However, the specificity of rCBF in MDD with HT should be confirmed in a control sample with consideration for other health conditions. Moreover, this should be investigated with a longitudinally designed study in order to determine a possible pathogenic cause. Future studies with a much larger sample size should clarify whether a particular perfusion pattern is associated with a specific course or symptom cluster of MDD. PMID:21910915
Lesion patterns in patients with cryptogenic stroke with and without right-to-left-shunt.
Feurer, R; Sadikovic, S; Esposito, L; Schwarze, J; Bockelbrink, A; Hemmer, B; Sander, D; Poppert, H
2009-10-01
Despite numerous studies, the role of patent foramen ovale (PFO) as a risk factor for stroke due to paradoxical embolism is still controversial. On the assumption that specific lesion patterns, in particular multiple acute ischaemic lesions on diffusion-weighted magnetic resonance imaging, indicate a cardioembolic origin, we compared the MRI findings in stroke patients with right-to-left shunt (RLS) and those without. The records of 486 patients with diagnosis of cerebral ischaemia were reviewed. For detection of RLS, contrast-enhanced transcranial Doppler (c-TCD) was carried out in all patients. An MRI scan of the brain was performed in all patients. Affected vascular territories were divided into anterior cerebral artery, middle cerebral artery, vertebrobasilar artery system including posterior cerebral artery, brain stem and cerebellar stroke, and strokes occurring in more than one territory. We did not find a specific difference in neuroradiological lesion patterns in patients with RLS compared with patients without RLS. In particular, 23 of 165 patients (13.9%) with RLS showed multiple ischaemic lesions on MRI in comparison with 45 of 321 patients (14.0%) without RLS (P = 0.98). These findings also applied for the subgroup of cryptogenic strokes with and without RLS. We found no association between an ischaemic lesion pattern that is considered as being typical for stroke due to cardiac embolism and the existence of PFO. Therefore, our findings do not provide any support for the common theory of paradoxical embolism as a major cause of stroke in PFO carriers.
White matter hyperintensity patterns in cerebral amyloid angiopathy and hypertensive arteriopathy.
Charidimou, Andreas; Boulouis, Gregoire; Haley, Kellen; Auriel, Eitan; van Etten, Ellis S; Fotiadis, Panagiotis; Reijmer, Yael; Ayres, Alison; Vashkevich, Anastasia; Dipucchio, Zora Y; Schwab, Kristin M; Martinez-Ramirez, Sergi; Rosand, Jonathan; Viswanathan, Anand; Greenberg, Steven M; Gurol, M Edip
2016-02-09
To identify different white matter hyperintensity (WMH) patterns between 2 hemorrhage-prone cerebral small vessel diseases (SVD): cerebral amyloid angiopathy (CAA) and hypertensive arteriopathy (HA). Consecutive patients with SVD-related intracerebral hemorrhage (ICH) from a single-center prospective cohort were analyzed. Four predefined subcortical WMH patterns were compared between the CAA and HA groups. These WMH patterns were (1) multiple subcortical spots; (2) peri-basal ganglia (BG); (3) large posterior subcortical patches; and (4) anterior subcortical patches. Their associations with other imaging (cerebral microbleeds [CMBs], enlarged perivascular spaces [EPVS]) and clinical markers of SVD were investigated using multivariable logistic regression. The cohort included 319 patients with CAA and 137 patients with HA. Multiple subcortical spots prevalence was higher in the CAA compared to the HA group (29.8% vs 16.8%; p = 0.004). Peri-BG WMH pattern was more common in the HA- vs the CAA-ICH group (19% vs 7.8%; p = 0.001). In multivariable logistic regression, presence of multiple subcortical spots was associated with lobar CMBs (odds ratio [OR] 1.23; 95% confidence interval [CI] 1.01-1.50, p = 0.039) and high degree of centrum semiovale EPVS (OR 2.43; 95% CI 1.56-3.80, p < 0.0001). By contrast, age (OR 1.05; 95% CI 1.02-1.09, p = 0.002), deep CMBs (OR 2.46; 95% CI 1.44-4.20, p = 0.001), total WMH volume (OR 1.02; 95% CI 1.01-1.04, p = 0.002), and high BG EPVS degree (OR 8.81; 95% CI 3.37-23.02, p < 0.0001) were predictors of peri-BG WMH pattern. Different patterns of subcortical leukoaraiosis visually identified on MRI might provide insights into the dominant underlying microangiopathy type as well as mechanisms of tissue injury in patients with ICH. © 2016 American Academy of Neurology.
MyD88 contributes to neuroinflammatory responses induced by cerebral ischemia/reperfusion in mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Xinchun; Kong, Delian; Wang, Jun
Myeloid differentiation primary-response protein-88 (MyD88) is one of adaptor proteins mediating Toll-like receptors (TLRs) signaling. Activation of MyD88 results in the activation of nuclear factor kappa B (NFκB) and the increase of inflammatory responses. Evidences have demonstrated that TLRs signaling contributes to cerebral ischemia/reperfusion (I/R) injury. However, the role of MyD88 in this mechanism of action is disputed and needs to be clarified. In the present study, in a mouse model of cerebral I/R, we examined the activities of NFκB and interferon factor-3 (IRF3), and the inflammatory responses in ischemic brain tissue using ELISA, Western blots, and real-time PCR. Neurologicalmore » function and cerebral infarct size were also evaluated 24 h after cerebral I/R. Our results showed that NFκB activity increased in ischemic brains, but IRF3 was not activated after cerebral I/R, in wild-type (WT) mice. MyD88 deficit inhibited the activation of NFκB, and the expression of interleukin-1β (IL-1β), IL-6, Beclin-1 (BECN1), pellino-1, and cyclooxygenase-2 (COX-2) increased by cerebral I/R compared with WT mice. Interestingly, the expression of interferon Beta 1 (INFB1) and vascular endothelial growth factor (VEGF) increased in MyD88 KO mice. Unexpectedly, although the neurological function improved in the MyD88 knockout (KO) mice, the deficit of MyD88 failed to reduce cerebral infarct size compared to WT mice. We concluded that MyD88-dependent signaling contributes to the inflammatory responses induced by cerebral I/R. MyD88 deficit may inhibit the increased inflammatory response and increase neuroprotective signaling. - Highlights: • Cerebral ischemia/reperfusion activates inflammatory responses in brain tissue. • MyD88-dependent pathway contributes to the activated inflammatory responses. • MyD88 deficit increases neuroprotective signaling in ischemic brain.« less
Fundamental movement skills and physical activity among children with and without cerebral palsy.
Capio, Catherine M; Sit, Cindy H P; Abernethy, Bruce; Masters, Rich S W
2012-01-01
Fundamental movement skills (FMS) proficiency is believed to influence children's physical activity (PA), with those more proficient tending to be more active. Children with cerebral palsy (CP), who represent the largest diagnostic group treated in pediatric rehabilitation, have been found to be less active than typically developing children. This study examined the association of FMS proficiency with PA in a group of children with CP, and compared the data with a group of typically developing children. Five FMS (run, jump, kick, throw, catch) were tested using process- and product-oriented measures, and accelerometers were used to monitor PA over a 7-day period. The results showed that children with CP spent less time in moderate to vigorous physical activity (MVPA), but more time in sedentary behavior than typically developing children. FMS proficiency was negatively associated with sedentary time and positively associated with time spent in MVPA in both groups of children. Process-oriented FMS measures (movement patterns) were found to have a stronger influence on PA in children with CP than in typically developing children. The findings provide evidence that FMS proficiency facilitates activity accrual among children with CP, suggesting that rehabilitation and physical education programs that support FMS development may contribute to PA-related health benefits. Copyright © 2012 Elsevier Ltd. All rights reserved.
Planar implantable sensor for in vivo measurement of cellular oxygen metabolism in brain tissue.
Tsytsarev, Vassiliy; Akkentli, Fatih; Pumbo, Elena; Tang, Qinggong; Chen, Yu; Erzurumlu, Reha S; Papkovsky, Dmitri B
2017-04-01
Brain imaging methods are continually improving. Imaging of the cerebral cortex is widely used in both animal experiments and charting human brain function in health and disease. Among the animal models, the rodent cerebral cortex has been widely used because of patterned neural representation of the whiskers on the snout and relative ease of activating cortical tissue with whisker stimulation. We tested a new planar solid-state oxygen sensor comprising a polymeric film with a phosphorescent oxygen-sensitive coating on the working side, to monitor dynamics of oxygen metabolism in the cerebral cortex following sensory stimulation. Sensory stimulation led to changes in oxygenation and deoxygenation processes of activated areas in the barrel cortex. We demonstrate the possibility of dynamic mapping of relative changes in oxygenation in live mouse brain tissue with such a sensor. Oxygenation-based functional magnetic resonance imaging (fMRI) is very effective method for functional brain mapping but have high costs and limited spatial resolution. Optical imaging of intrinsic signal (IOS) does not provide the required sensitivity, and voltage-sensitive dye optical imaging (VSDi) has limited applicability due to significant toxicity of the voltage-sensitive dye. Our planar solid-state oxygen sensor imaging approach circumvents these limitations, providing a simple optical contrast agent with low toxicity and rapid application. The planar solid-state oxygen sensor described here can be used as a tool in visualization and real-time analysis of sensory-evoked neural activity in vivo. Further, this approach allows visualization of local neural activity with high temporal and spatial resolution. Copyright © 2017 Elsevier B.V. All rights reserved.
Mergani, Adil; Khamis, Ammar H; Fatih Hashim, E L; Gumma, Mohamed; Awadelseed, Bella; Elwali, Nasr Eldin M A; Haboor, Ali Babikir
2015-09-01
Cerebral malaria is considered a leading cause of neuro-disability in sub-Saharan Africa among children and about 25% of survivors have long-term neurological and cognitive deficits or epilepsy. Their development was reported to be associated with protracted seizures, deep and prolonged coma. The study was aimed to determine the discharge pattern and to identify potential and informative predictors of neurological sequelae at discharge, complicating childhood cerebral malaria in central Sudan. A cross-sectional prospective study was carried out during malaria transmission seasons from 2000 to 2004 in Wad Medani, Sinnar and Singa hospitals, central Sudan. Children suspected of having cerebral malaria were examined and diagnosed by a Pediatrician for clinical, laboratory findings and any neurological complications. Univariate and multiple regression model analysis were performed to evaluate the association of clinical and laboratory findings with occurrence of neurological complications using the SPSS. Out of 940 examined children, only 409 were diagnosed with cerebral malaria with a mean age of 6.1 ± 3.3 yr. The mortality rate associated with the study was 14.2% (58) and 18.2% (64) of survivors (351) had neurological sequelae. Abnormal posture, either decerebration or decortication, focal convulsion and coma duration of >48 h were significant predictors for surviving from cerebral malaria with a neurological sequelae in children from central Sudan by Univariate analysis. Multiple logistic regression model fitting these variables, revealed 39.6% sensitivity for prediction of childhood cerebral malaria survivors with neurological sequelae (R² = 0.396; p=0.001). Neurological sequelae are common due to childhood cerebral malaria in central Sudan. Their prediction at admission, clinical presentation and laboratory findings may guide clinical intervention and proper management that may decrease morbidity and improve CM consequences.
Cerebral fat embolism syndrome after long bone fracture due to gunshot injury.
Duran, Latif; Kayhan, Servet; Kati, Celal; Akdemir, Hizir Ufuk; Balci, Kemal; Yavuz, Yucel
2014-03-01
Cerebral fat embolism syndrome is a lethal complication of long-bone fractures and clinically manifasted with respiratory distress, altered mental status, and petechial rash. We presented a 20-year-old male admitted with gun-shot wounds to his left leg. Twenty-four hours after the event, he had generalized tonic clonic seizures, decorticate posture and a Glascow Coma Scale of seven with localization of painful stimuli. Subsequent magnetic resonance imaging of the brain showed a star-field pattern defining multiple lesions of restricted diffusion. On a 4-week follow-up, he had returned to normal neurological function. Despite the severity of the neurological condition upon initial presentation, the case cerebral fat embolism illustrates that, cerebral dysfunction associated with cerebral fat embolism illustrates reversible.
Sánchez, J A; Kirk, M D
2001-12-01
Ingestion of seaweed by Aplysia is in part mediated by cerebral-buccal interneurons that drive rhythmic motor output from the buccal ganglia and in some cases cerebral-buccal interneurons act as members of the feeding central pattern generator. Here we document cooperative interactions between cerebral-buccal interneuron 2 and cerebral-buccal interneuron 12, characterize synaptic input to cerebral-buccal interneuron 2 and cerebral-buccal interneuron 12 from buccal peripheral nerve 2,3, describe a synaptic connection between cerebral-buccal interneuron 1 and buccal neuron B34, further characterize connections made by cerebral-buccal interneurons 2 and -12 with B34 and B61/62, and describe a novel, inhibitory connection made by cerebral-buccal interneuron 2 with a buccal neuron. When cerebral-buccal interneurons 2 and 12 were driven synchronously at low frequencies, ingestion-like buccal motor programs were elicited, and if either was driven alone, indirect synaptic input was recruited in the other cerebral-buccal interneuron. Stimulation of BN2,3 recruited both ingestion and rejection-like motor programs without firing in cerebral-buccal interneurons 2 or 12. During motor programs elicited by cerebral-buccal interneurons 2 or 12, high-voltage stimulation of BN2,3 inhibited firing in both cerebral-buccal interneurons. Our results suggest that cerebral-buccal interneurons 2 and 12 use cooperative interactions to modulate buccal motor programs, yet firing in cerebral-buccal interneurons 2 or 12 is not necessary for recruiting motor programs by buccal peripheral nerve BN2,3, even in preparations with intact cerebral-buccal pathways.
Nieuwenhuys, Angela; Papageorgiou, Eirini; Desloovere, Kaat; Molenaers, Guy; De Laet, Tinne
2017-01-01
Experts recently identified 49 joint motion patterns in children with cerebral palsy during a Delphi consensus study. Pattern definitions were therefore the result of subjective expert opinion. The present study aims to provide objective, quantitative data supporting the identification of these consensus-based patterns. To do so, statistical parametric mapping was used to compare the mean kinematic waveforms of 154 trials of typically developing children (n = 56) to the mean kinematic waveforms of 1719 trials of children with cerebral palsy (n = 356), which were classified following the classification rules of the Delphi study. Three hypotheses stated that: (a) joint motion patterns with 'no or minor gait deviations' (n = 11 patterns) do not differ significantly from the gait pattern of typically developing children; (b) all other pathological joint motion patterns (n = 38 patterns) differ from typically developing gait and the locations of difference within the gait cycle, highlighted by statistical parametric mapping, concur with the consensus-based classification rules. (c) all joint motion patterns at the level of each joint (n = 49 patterns) differ from each other during at least one phase of the gait cycle. Results showed that: (a) ten patterns with 'no or minor gait deviations' differed somewhat unexpectedly from typically developing gait, but these differences were generally small (≤3°); (b) all other joint motion patterns (n = 38) differed from typically developing gait and the significant locations within the gait cycle that were indicated by the statistical analyses, coincided well with the classification rules; (c) joint motion patterns at the level of each joint significantly differed from each other, apart from two sagittal plane pelvic patterns. In addition to these results, for several joints, statistical analyses indicated other significant areas during the gait cycle that were not included in the pattern definitions of the consensus study. Based on these findings, suggestions to improve pattern definitions were made.
Papageorgiou, Eirini; Desloovere, Kaat; Molenaers, Guy; De Laet, Tinne
2017-01-01
Experts recently identified 49 joint motion patterns in children with cerebral palsy during a Delphi consensus study. Pattern definitions were therefore the result of subjective expert opinion. The present study aims to provide objective, quantitative data supporting the identification of these consensus-based patterns. To do so, statistical parametric mapping was used to compare the mean kinematic waveforms of 154 trials of typically developing children (n = 56) to the mean kinematic waveforms of 1719 trials of children with cerebral palsy (n = 356), which were classified following the classification rules of the Delphi study. Three hypotheses stated that: (a) joint motion patterns with ‘no or minor gait deviations’ (n = 11 patterns) do not differ significantly from the gait pattern of typically developing children; (b) all other pathological joint motion patterns (n = 38 patterns) differ from typically developing gait and the locations of difference within the gait cycle, highlighted by statistical parametric mapping, concur with the consensus-based classification rules. (c) all joint motion patterns at the level of each joint (n = 49 patterns) differ from each other during at least one phase of the gait cycle. Results showed that: (a) ten patterns with ‘no or minor gait deviations’ differed somewhat unexpectedly from typically developing gait, but these differences were generally small (≤3°); (b) all other joint motion patterns (n = 38) differed from typically developing gait and the significant locations within the gait cycle that were indicated by the statistical analyses, coincided well with the classification rules; (c) joint motion patterns at the level of each joint significantly differed from each other, apart from two sagittal plane pelvic patterns. In addition to these results, for several joints, statistical analyses indicated other significant areas during the gait cycle that were not included in the pattern definitions of the consensus study. Based on these findings, suggestions to improve pattern definitions were made. PMID:28081229
ERIC Educational Resources Information Center
Pennington, Lindsay; Goldbart, Juliet; Marshall, Julie
2004-01-01
Background: Research has shown that children with cerebral palsy have difficulties acquiring communication skills and that conversation with familiar partners follows restricted patterns, which are characterized by high levels of partner control and children's responsivity. Speech and language therapy often includes training for conversational…
Synchronous Spike Patterns in Macaque Motor Cortex during an Instructed-Delay Reach-to-Grasp Task
Torre, Emiliano; Quaglio, Pietro; Denker, Michael; Brochier, Thomas; Riehle, Alexa
2016-01-01
The computational role of spike time synchronization at millisecond precision among neurons in the cerebral cortex is hotly debated. Studies performed on data of limited size provided experimental evidence that low-order correlations occur in relation to behavior. Advances in electrophysiological technology to record from hundreds of neurons simultaneously provide the opportunity to observe coordinated spiking activity of larger populations of cells. We recently published a method that combines data mining and statistical evaluation to search for significant patterns of synchronous spikes in massively parallel spike trains (Torre et al., 2013). The method solves the computational and multiple testing problems raised by the high dimensionality of the data. In the current study, we used our method on simultaneous recordings from two macaque monkeys engaged in an instructed-delay reach-to-grasp task to determine the emergence of spike synchronization in relation to behavior. We found a multitude of synchronous spike patterns aligned in both monkeys along a preferential mediolateral orientation in brain space. The occurrence of the patterns is highly specific to behavior, indicating that different behaviors are associated with the synchronization of different groups of neurons (“cell assemblies”). However, pooled patterns that overlap in neuronal composition exhibit no specificity, suggesting that exclusive cell assemblies become active during different behaviors, but can recruit partly identical neurons. These findings are consistent across multiple recording sessions analyzed across the two monkeys. SIGNIFICANCE STATEMENT Neurons in the brain communicate via electrical impulses called spikes. How spikes are coordinated to process information is still largely unknown. Synchronous spikes are effective in triggering a spike emission in receiving neurons and have been shown to occur in relation to behavior in a number of studies on simultaneous recordings of few neurons. We recently published a method to extend this type of investigation to larger data. Here, we apply it to simultaneous recordings of hundreds of neurons from the motor cortex of macaque monkeys performing a motor task. Our analysis reveals groups of neurons selectively synchronizing their activity in relation to behavior, which sheds new light on the role of synchrony in information processing in the cerebral cortex. PMID:27511007
Synchronous Spike Patterns in Macaque Motor Cortex during an Instructed-Delay Reach-to-Grasp Task.
Torre, Emiliano; Quaglio, Pietro; Denker, Michael; Brochier, Thomas; Riehle, Alexa; Grün, Sonja
2016-08-10
The computational role of spike time synchronization at millisecond precision among neurons in the cerebral cortex is hotly debated. Studies performed on data of limited size provided experimental evidence that low-order correlations occur in relation to behavior. Advances in electrophysiological technology to record from hundreds of neurons simultaneously provide the opportunity to observe coordinated spiking activity of larger populations of cells. We recently published a method that combines data mining and statistical evaluation to search for significant patterns of synchronous spikes in massively parallel spike trains (Torre et al., 2013). The method solves the computational and multiple testing problems raised by the high dimensionality of the data. In the current study, we used our method on simultaneous recordings from two macaque monkeys engaged in an instructed-delay reach-to-grasp task to determine the emergence of spike synchronization in relation to behavior. We found a multitude of synchronous spike patterns aligned in both monkeys along a preferential mediolateral orientation in brain space. The occurrence of the patterns is highly specific to behavior, indicating that different behaviors are associated with the synchronization of different groups of neurons ("cell assemblies"). However, pooled patterns that overlap in neuronal composition exhibit no specificity, suggesting that exclusive cell assemblies become active during different behaviors, but can recruit partly identical neurons. These findings are consistent across multiple recording sessions analyzed across the two monkeys. Neurons in the brain communicate via electrical impulses called spikes. How spikes are coordinated to process information is still largely unknown. Synchronous spikes are effective in triggering a spike emission in receiving neurons and have been shown to occur in relation to behavior in a number of studies on simultaneous recordings of few neurons. We recently published a method to extend this type of investigation to larger data. Here, we apply it to simultaneous recordings of hundreds of neurons from the motor cortex of macaque monkeys performing a motor task. Our analysis reveals groups of neurons selectively synchronizing their activity in relation to behavior, which sheds new light on the role of synchrony in information processing in the cerebral cortex. Copyright © 2016 Torre, et al.
Defined types of cortical interneurone structure space and spike timing in the hippocampus
Somogyi, Peter; Klausberger, Thomas
2005-01-01
The cerebral cortex encodes, stores and combines information about the internal and external environment in rhythmic activity of multiple frequency ranges. Neurones of the cortex can be defined, recognized and compared on the comprehensive application of the following measures: (i) brain area- and cell domain-specific distribution of input and output synapses, (ii) expression of molecules involved in cell signalling, (iii) membrane and synaptic properties reflecting the expression of membrane proteins, (iv) temporal structure of firing in vivo, resulting from (i)–(iii). Spatial and temporal measures of neurones in the network reflect an indivisible unity of evolutionary design, i.e. neurones do not have separate structure or function. The blueprint of this design is most easily accessible in the CA1 area of the hippocampus, where a relatively uniform population of pyramidal cells and their inputs follow an instantly recognizable laminated pattern and act within stereotyped network activity patterns. Reviewing the cell types and their spatio-temporal interactions, we suggest that CA1 pyramidal cells are supported by at least 16 distinct types of GABAergic neurone. During a given behaviour-contingent network oscillation, interneurones of a given type exhibit similar firing patterns. During different network oscillations representing two distinct brain states, interneurones of the same class show different firing patterns modulating their postsynaptic target-domain in a brain-state-dependent manner. These results suggest roles for specific interneurone types in structuring the activity of pyramidal cells via their respective target domains, and accurately timing and synchronizing pyramidal cell discharge, rather than providing generalized inhibition. Finally, interneurones belonging to different classes may fire preferentially at distinct time points during a given oscillation. As different interneurones innervate distinct domains of the pyramidal cells, the different compartments will receive GABAergic input differentiated in time. Such a dynamic, spatio-temporal, GABAergic control, which evolves distinct patterns during different brain states, is ideally suited to regulating the input integration of individual pyramidal cells contributing to the formation of cell assemblies and representations in the hippocampus and, probably, throughout the cerebral cortex. PMID:15539390
Sakatani, Kaoru; Tanida, Masahiro; Hirao, Naoyasu; Takemura, Naohiro
2014-01-01
In order to clarify the mechanism through which extract of Ginkgo biloba leaves (EGb) improves cognitive function, we examined the effects of EGb on cerebral blood oxygenation in the prefrontal cortex (PFC) and on performance during a working memory task, using near-infrared spectrometry (NIRS). First, we evaluated differences in behavioral performance of the Sternberg working memory test (ST) and in the activation pattern of the PFC during ST between 15 young and 19 middle-aged healthy women. Then, we examined the effect of EGb (120 mg/day for 6 weeks) on ST performance and PFC activation pattern in the middle-aged group. The middle-aged group exhibited a longer reaction time (RT) in ST than the young group and showed a different PFC activation pattern during ST, i.e., the middle-aged group showed bilateral activation while the young group showed right-dominant activation. In the middle-aged group, administration of EGb for 6 weeks shortened the RT of ST and changed the PFC activation pattern to right-dominant, like that in the young group. The results indicate the PFC plays a role in the physiological cognitive function-enhancing effect of EGb. EGb might improve working memory function in middle-aged individuals by counteracting the occurrence of aging-related hemispheric asymmetry reduction.
Changing patterns of brain activation during maze learning.
Van Horn, J D; Gold, J M; Esposito, G; Ostrem, J L; Mattay, V; Weinberger, D R; Berman, K F
1998-05-18
Recent research has found that patterns of brain activation involving the frontal cortex during novel task performance change dramatically following practice and repeat performance. Evidence for differential left vs. right frontal lobe activation, respectively, during episodic memory encoding and retrieval has also been reported. To examine these potentially related issues regional cerebral blood flow (rCBF) was measured in 15 normal volunteers using positron emission tomography (PET) during the naive and practiced performance of a maze task paradigm. SPM analysis indicated a largely right-sided, frontal lobe activation during naive performance. Following training and practice, performance of the same maze task elicited a more posterior pattern of rCBF activation involving posterior cingulate and precuneus. The change in the pattern of rCBF activation between novel and practiced task conditions agrees with results found in previous studies using repeat task methodology, and indicates that the neural circuitry required for encoding novel task information differs from that required when the same task has become familiar and information is being recalled. The right-sided preponderance of activation during naive performance may relate to task novelty and the spatially-based nature of the stimuli, whereas posterior areas activated during repeat performance are those previously found to be associated with visuospatial memory recall. Activation of these areas, however, does not agree with previously reported findings of left-sided activation during verbal episodic memory encoding and right-sided activation during retrieval, suggesting different neural substrates for verbal and visuospatial processing within memory. Copyright 1998 Elsevier Science B.V.
Learning by strategies and learning by drill--evidence from an fMRI study.
Delazer, M; Ischebeck, A; Domahs, F; Zamarian, L; Koppelstaetter, F; Siedentopf, C M; Kaufmann, L; Benke, T; Felber, S
2005-04-15
The present fMRI study investigates, first, whether learning new arithmetic operations is reflected by changing cerebral activation patterns, and second, whether different learning methods lead to differential modifications of brain activation. In a controlled design, subjects were trained over a week on two new complex arithmetic operations, one operation trained by the application of back-up strategies, i.e., a sequence of arithmetic operations, the other by drill, i.e., by learning the association between the operands and the result. In the following fMRI session, new untrained items, items trained by strategy and items trained by drill, were assessed using an event-related design. Untrained items as compared to trained showed large bilateral parietal activations, with the focus of activation along the right intraparietal sulcus. Further foci of activation were found in both inferior frontal gyri. The reverse contrast, trained vs. untrained, showed a more focused activation pattern with activation in both angular gyri. As suggested by the specific activation patterns, newly acquired expertise was implemented in previously existing networks of arithmetic processing and memory. Comparisons between drill and strategy conditions suggest that successful retrieval was associated with different brain activation patterns reflecting the underlying learning methods. While the drill condition more strongly activated medial parietal regions extending to the left angular gyrus, the strategy condition was associated to the activation of the precuneus which may be accounted for by visual imagery in memory retrieval.
Agarwal, Sachin; Presciutti, Alex; Roth, William; Matthews, Elizabeth; Rodriguez, Ashley; Roh, David J; Park, Soojin; Claassen, Jan; Lazar, Ronald M
2018-02-01
To explore factors associated with neurological recovery at 1 year relative to hospital discharge after cardiac arrest. Observational, retrospective review of a prospectively collected cohort. Medical or surgical ICUs in a single tertiary care center. Older than 18 years, resuscitated following either in-hospital or out-of-hospital cardiac arrest and considered for targeted temperature management between 2007 and 2013. None. Logistic regressions to determine factors associated with a poor recovery pattern after 1 year, defined as persistent Cerebral Performance Category Score 3-4 or any worsening of Cerebral Performance Category Score relative to discharge status. In total, 30% (117/385) of patients survived to hospital discharge; among those discharged with Cerebral Performance Category Score 1, 2, 3, and 4, good recovery pattern was seen in 54.5%, 48.4%, 39.5%, and 0%, respectively. Significant variables showing trends in associations with a poor recovery pattern (62.5%) in a multivariate model were age more than 70 years (odds ratio, 4; 95% CIs, 1.1-15; p = 0.04), Hispanic ethnicity (odds ratio, 4; CI, 1.2-13; p = 0.02), and discharge disposition (home needing out-patient services (odds ratio, 1), home requiring no additional services (odds ratio, 0.15; CI, 0.03-0.8; p = 0.02), acute rehabilitation (odds ratio, 0.23; CI, 0.06-0.9; p = 0.04). Patients discharged with mild or moderate cerebral dysfunction sustained their risk of neurological worsening within 1 year of cardiac arrest. Old age, Hispanic ethnicity, and discharge disposition of home with out-patient services may be associated with a poor 1 year neurological recovery pattern after hospital discharge from cardiac arrest.
Health-related physical fitness for children with cerebral palsy
Maltais, Désirée B.; Wiart, Lesley; Fowler, Eileen; Verschuren, Olaf; Damiano, Diane L.
2014-01-01
Low levels of physical activity are a global health concern for all children. Children with cerebral palsy have even lower physical activity levels than their typically developing peers. Low levels of physical activity, and thus an increased risk for related chronic diseases, are associated with deficits in health-related physical fitness. Recent research has provided therapists with the resources to effectively perform physical fitness testing and physical activity training in clinical settings with children who have cerebral palsy, although most testing and training data to date pertains to those who walk. Nevertheless, based on the present evidence, all children with cerebral palsy should engage, to the extent they are able, in aerobic, anaerobic and muscle strengthening activities. Future research is required to determine the best ways to evaluate health-related physical fitness in non-ambulatory children with cerebral palsy and foster long-term changes in physical activity behavior in all children with this condition. PMID:24820339
Conchar, Lauren; Bantjes, Jason; Swartz, Leslie; Derman, Wayne
2016-02-01
Participation in regular physical activity promotes physical health and psychosocial well-being. Interventions are thus needed to promote physical activity, particularly among groups of individuals, such as persons with disability, who are marginalised from physical activity. This study explored the experiences of a group of South African adolescents with cerebral palsy. In-depth semi-structured interviews were conducted with 15 adolescents with cerebral palsy. The results provided insight into a range of factors that promote and hinder participation in physical activity among adolescents with cerebral palsy in resource-scarce environments. © The Author(s) 2014.
Walcott, Brian P; Reinshagen, Clemens; Stapleton, Christopher J; Choudhri, Omar; Rayz, Vitaliy; Saloner, David; Lawton, Michael T
2016-06-01
Cerebral aneurysms are weakened blood vessel dilatations that can result in spontaneous, devastating hemorrhage events. Aneurysm treatment aims to reduce hemorrhage events, and strategies for complex aneurysms often require surgical bypass or endovascular stenting for blood flow diversion. Interventions that divert blood flow from their normal circulation patterns have the potential to result in unintentional ischemia. Recent developments in computational modeling and in vivo assessment of hemodynamics for cerebral aneurysm treatment have entered into clinical practice. Herein, we review how these techniques are currently utilized to improve risk stratification and treatment planning. © The Author(s) 2016.
Electrical Cerebral Stimulation Modifies Inhibitory Systems
NASA Astrophysics Data System (ADS)
Cuéllar-Herrera, M.; Rocha, L.
2003-09-01
Electrical stimulation of the nervous tissue has been proposed as a method to treat some neurological disorders, such as epilepsy. Epileptic seizures result from excessive, synchronous, abnormal firing patterns of neurons that are located predominantly in the cerebral cortex. Many people with epilepsy continue presenting seizures even though they are under regimens of antiepileptic medications. An alternative therapy for treatment resistant epilepsy is cerebral electrical stimulation. The present study is focused to review the effects of different types of electrical stimulation and specifically changes in amino acids.
Cerebral hemodynamic changes in stroke during sleep-disordered breathing.
Pizza, Fabio; Biallas, Martin; Kallweit, Ulf; Wolf, Martin; Bassetti, Claudio L
2012-07-01
Sleep-disordered breathing (SDB) negatively impacts stroke outcome. Near-infrared spectroscopy showed the acute cerebral hemodynamic effects of SDB. Eleven patients (7 men, age 61±13 years) with acute/subacute middle cerebral artery stroke (National Institutes of Health Stroke Scale score 10±7) and SDB (apnea-hypopnea index 32±28/hour) were assessed with nocturnal polysomnography and bilateral near-infrared spectroscopy recording. Cerebral oxygenation and hemoglobin concentration changes during obstructive and central apneas were analyzed. During SDB, near-infrared spectroscopy showed asymmetrical patterns of cerebral oxygenation and hemoglobin concentrations with changes significantly larger on the unaffected compared with the affected hemisphere. Brain tissue hypoxia was more severe during obstructive compared with central apneas. Profound cerebral deoxygenation effects of SDB occurred in acute/subacute stroke. These changes may contribute to poor outcome, arising in the possibility of a potential benefit of SDB treatment in stroke management.
Assessment of cerebral perfusion in childhood strokes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gates, G.F.; Fishman, L.S.; Segall, H.D.
1982-11-01
Thirty-three children who had strokes were studied by dynamic and static scintigraphy, 29 by CT scanning, and 10 by cerebral angiography. The accuracy of dynamic scintigraphy in stroke detection during the first week of clinical symptoms was 94% while CT scanning was 60% accurate and static scintigraphy 11% accurate. During the second week the accuracy of CT scanning increased to 100%, but static scintigraphy improved to only 50%. Fifty percent of scintiangiograms performed during the first week showed either luxuriant perfusion or flip-flop patterns. In some patients these two flow patterns changed to that of cerebral hemispheric ischemia after goingmore » through a phase during which perfusion appeared to be equal in the two hemispheres. Dynamic scintigraphy is believed to be the test of choice for stroke detection in children during the first week.« less
Hu, Xue-yong; Sun, An-sheng; Sui, Yu-xia
2007-11-01
To study the effects of combined use of total alkaloids (TA) of Uncaria rhynchophylla (UR) and Coryadlis ambailis migo (CAM) on cerebral ischemia/reperfusion injury in rats. Rat model of middle cerebral artery ischemia/reperfusion was established, the changes of neurological state was scored before and after treatment with the two kinds of TA, single or combined, and the changes of cerebral infarcted volume, cerebral water content, activities of NOS and SOD and content of MDA in rats' brain were estimated as well. After being treated with the combination of both TA, the average neurological score, cerebral infracted volume, cerebral water content, activity of NOS and content of MDA in the model rats significantly decreased, and the activity of SOD was significantly increased (all P < 0.05). The effect of combined use of the two TA was higher than that of use TA of UR or CAM alone (P <0.05). Moreover, the central nervous system inhibitory effect induced by combined TA was significantly weaker than that of UR. Combined use of TA of UR and CAM may facilitate the protection against cerebral ischemia/reperfusion damage, the action mechanism might be relevant to reducing the lipid peroxidation injury of brain cells through inhibiting the NOS activity and increasing the SOD activity.
Yuan, Bangqing; Shi, Hui; Zheng, Kuang; Su, Zulu; Su, Hai; Zhong, Ming; He, Xuenong; Zhou, Changlong; Chen, Hao; Xiong, Qijiang; Zhang, Yi; Yang, Zhao
2017-01-01
Microglia activation played a vital role in the pathogenesis of white matter lesions (WMLs) by chronic cerebral hypoperfusion. In addition, hypoxia induced up-regulated expression of MCP-1, promotes the activation of microglia. However, the role of MCP-1-mediated microglia activation in chronic cerebral ischemia is still unknown. To explore that, chronic cerebral hypoperfusion model was established by permanent stenosis of bilateral common carotid artery in mice. The activation of microglia and the related signal pathway p38MAPK/PKC in white matter, and working memory of mice were observed. We found that stenosis of common carotid arteries could induce MCP-1-mediated activation of microglia through p38MAPK/PKC pathway and white matter lesions. Taken together, our findings represent a novel mechanism of MCP-1 involved in activation of microglia and provide a novel therapeutical strategy for chronic cerebral hypoperfusion. Copyright © 2016 Elsevier Inc. All rights reserved.
Smooth muscle cell phenotypic switching in stroke.
Poittevin, Marine; Lozeron, Pierre; Hilal, Rose; Levy, Bernard I; Merkulova-Rainon, Tatiana; Kubis, Nathalie
2014-06-01
Disruption of cerebral blood flow after stroke induces cerebral tissue injury through multiple mechanisms that are not yet fully understood. Smooth muscle cells (SMCs) in blood vessel walls play a key role in cerebral blood flow control. Cerebral ischemia triggers these cells to switch to a phenotype that will be either detrimental or beneficial to brain repair. Moreover, SMC can be primarily affected genetically or by toxic metabolic molecules. After stroke, this pathological phenotype has an impact on the incidence, pattern, severity, and outcome of the cerebral ischemic disease. Although little research has been conducted on the pathological role and molecular mechanisms of SMC in cerebrovascular ischemic diseases, some therapeutic targets have already been identified and could be considered for further pharmacological development. We examine these different aspects in this review.
Cerebral fat embolism syndrome after long bone fracture due to gunshot injury
Duran, Latif; Kayhan, Servet; Kati, Celal; Akdemir, Hizir Ufuk; Balci, Kemal; Yavuz, Yucel
2014-01-01
Cerebral fat embolism syndrome is a lethal complication of long-bone fractures and clinically manifasted with respiratory distress, altered mental status, and petechial rash. We presented a 20-year-old male admitted with gun-shot wounds to his left leg. Twenty-four hours after the event, he had generalized tonic clonic seizures, decorticate posture and a Glascow Coma Scale of seven with localization of painful stimuli. Subsequent magnetic resonance imaging of the brain showed a star-field pattern defining multiple lesions of restricted diffusion. On a 4-week follow-up, he had returned to normal neurological function. Despite the severity of the neurological condition upon initial presentation, the case cerebral fat embolism illustrates that, cerebral dysfunction associated with cerebral fat embolism illustrates reversible. PMID:24701067
XU, PENG; LV, LULU; LI, SHAODONG; GE, HAITAO; RONG, YUTAO; HU, CHUNFENG; XU, KAI
2015-01-01
The present study aimed to evaluate the utility of high-resolution magnetic resonance imaging (MRI) in the characterization of atherosclerotic plaques in patients with acute and non-acute cerebral infarction. High-resolution MRI of unilateral stenotic middle cerebral arteries was performed to evaluate the degree of stenosis, the wall and plaque areas, plaque enhancement patterns and lumen remodeling features in 15 and 17 patients with acute and non-acute cerebral infarction, respectively. No significant difference was identified in the vascular stenosis rate between acute and non-acute patients. Overall, plaque eccentricity was observed in 29 patients, including 13 acute and 16 non-acute cases, with no significant difference identified between these groups. The wall area of stenotic arteries and the number of cases with plaque enhancement were significantly greater in the acute patients, but no significant difference in plaque or lumen area was identified between the 2 patient groups. Lumen remodeling patterns of stenotic arteries significantly differed between the acute and non-acute patients; the former predominantly demonstrated positive remodeling, and the latter group demonstrated evidence of negative remodeling. In conclusion, patients with acute and non-acute cerebral infarction exhibit specific characteristics in stenotic arteries and plaques, which can be effectively evaluated by high-resolution MRI. PMID:26668651
Keawutan, Piyapa; Bell, Kristie L; Oftedal, Stina; Davies, Peter S W; Ware, Robert S; Boyd, Roslyn N
2017-01-01
To compare ambulatory status in children with cerebral palsy aged 4 to 5 years with their habitual physical activity and time spent sedentary, and to compare their activity with physical activity guidelines. Sixty-seven participants-independently ambulant, marginally ambulant, and nonambulant-wore accelerometers for 3 days. Time spent sedentary as a percentage of wear time and activity counts were compared between groups. There were significant differences in time spent sedentary and activity counts between groups. Children who were independently ambulant were more likely to meet physical activity guidelines. Children with cerebral palsy spent more than half of their waking hours in sedentary time. Interventions to reduce sedentary behavior and increase habitual physical activity are needed in children with cerebral palsy at age 4 to 5 years.
Dysarthria in Mandarin-Speaking Children with Cerebral Palsy: Speech Subsystem Profiles
ERIC Educational Resources Information Center
Chen, Li-Mei; Hustad, Katherine C.; Kent, Ray D.; Lin, Yu Ching
2018-01-01
Purpose: This study explored the speech characteristics of Mandarin-speaking children with cerebral palsy (CP) and typically developing (TD) children to determine (a) how children in the 2 groups may differ in their speech patterns and (b) the variables correlated with speech intelligibility for words and sentences. Method: Data from 6 children…
Zhang, Zhongxing; Schneider, Maja; Laures, Marco; Qi, Ming; Khatami, Ramin
2016-01-01
Obstructive sleep apnea syndrome (OSA) and restless legs syndrome (RLS) with periodic limb movement during sleep (PLMS) are two sleep disorders characterized by repetitive respiratory or movement events associated with cortical arousals. We compared the cerebral hemodynamic changes linked to periodic apneas/hypopneas with arousals (AHA) in four OSA-patients with periodic limb movements (PLMA) with arousals in four patients with RLS-PLMS using near-infrared spectroscopy (NIRS). AHA induced homogenous pattern of periodic fluctuations in oxygenated (HbO2) and deoxygenated (HHb) hemoglobin, i.e., the decrease of HbO2 was accompanied by an increase of HHb during the respiratory event and resolved to reverse pattern when cortical arousal started. Blood volume (BV) showed the same pattern as HHb but with relative smaller amplitude in most of the AHA events.These changing patterns were significant as Wilcoxon signed-rank tests gave p < 0.001 when comparing the area under the curve of these hemodynamic parameters to zero. By contrast, in PLMA limb movements induced periodic increments in HbO2 and BV (Wilcoxon signed-rank tests, p < 0.001), but HHb changed more heterogeneously even during the events coming from the same patient. Heart rate (HR) also showed different patterns between AHA and PLMA. It significantly decreased during the respiratory event (Wilcoxon signed-rank test, p < 0.001) and then increased after the occurrence of cortical arousal (Wilcoxon signed-rank test, p < 0.001); while in PLMA HR first increased preceding the occurrence of cortical arousal (Wilcoxon signed-rank test, p < 0.001) and then decreased. The results of this preliminary study show that both AHA and PLMA induce changes in cerebral hemodynamics. The occurrence of cortical arousal is accompanied by increased HR in both events, but by different BV changes (i.e., decreased/increased BV in AHA/PLMA, respectively). HR changes may partially account for the increased cerebral hemodynamics during PLMA; whereas in AHA probable vasodilatation mediated by hypoxia/hypercapnia is more crucial for the post-arousal hemodynamics. The differences between changes of cerebral hemodynamics and HR may indicate different pathological mechanisms behind these two sleep disorder events. PMID:27630539
Zhang, Zhongxing; Schneider, Maja; Laures, Marco; Qi, Ming; Khatami, Ramin
2016-01-01
Obstructive sleep apnea syndrome (OSA) and restless legs syndrome (RLS) with periodic limb movement during sleep (PLMS) are two sleep disorders characterized by repetitive respiratory or movement events associated with cortical arousals. We compared the cerebral hemodynamic changes linked to periodic apneas/hypopneas with arousals (AHA) in four OSA-patients with periodic limb movements (PLMA) with arousals in four patients with RLS-PLMS using near-infrared spectroscopy (NIRS). AHA induced homogenous pattern of periodic fluctuations in oxygenated (HbO2) and deoxygenated (HHb) hemoglobin, i.e., the decrease of HbO2 was accompanied by an increase of HHb during the respiratory event and resolved to reverse pattern when cortical arousal started. Blood volume (BV) showed the same pattern as HHb but with relative smaller amplitude in most of the AHA events.These changing patterns were significant as Wilcoxon signed-rank tests gave p < 0.001 when comparing the area under the curve of these hemodynamic parameters to zero. By contrast, in PLMA limb movements induced periodic increments in HbO2 and BV (Wilcoxon signed-rank tests, p < 0.001), but HHb changed more heterogeneously even during the events coming from the same patient. Heart rate (HR) also showed different patterns between AHA and PLMA. It significantly decreased during the respiratory event (Wilcoxon signed-rank test, p < 0.001) and then increased after the occurrence of cortical arousal (Wilcoxon signed-rank test, p < 0.001); while in PLMA HR first increased preceding the occurrence of cortical arousal (Wilcoxon signed-rank test, p < 0.001) and then decreased. The results of this preliminary study show that both AHA and PLMA induce changes in cerebral hemodynamics. The occurrence of cortical arousal is accompanied by increased HR in both events, but by different BV changes (i.e., decreased/increased BV in AHA/PLMA, respectively). HR changes may partially account for the increased cerebral hemodynamics during PLMA; whereas in AHA probable vasodilatation mediated by hypoxia/hypercapnia is more crucial for the post-arousal hemodynamics. The differences between changes of cerebral hemodynamics and HR may indicate different pathological mechanisms behind these two sleep disorder events.
van den Engel-Hoek, Lenie; Erasmus, Corrie E; van Hulst, Karen C M; Arvedson, Joan C; de Groot, Imelda J M; de Swart, Bert J M
2014-05-01
To determine whether findings on videofluoroscopic swallow studies reveal different patterns of dysphagia between children with central and peripheral neurologic disorders, a retrospective study of 118 videofluoroscopic swallow studies was completed. There were 3 groups: cerebral palsy with only spastic features (n = 53), cerebral palsy with dyskinetic features (n = 34), and neuromuscular disorders (myotonic dystrophy I, n = 5; spinal muscular atrophy I-II, n = 8; Duchenne muscular dystrophy, n = 8; other neuromuscular disorder, n = 10). Interpretation of the videofluoroscopic swallow studies was not blinded. The video fluoroscopic swallow study findings were compared dichotomously between the groups. Children with cerebral palsy demonstrated dysphagia in 1 or all phases of swallowing. In neuromuscular disorder, muscle weakness results in pharyngeal residue after swallow. The underlying swallowing problem in neuromuscular disorder is muscle weakness whereas that in cerebral palsy is more complex, having to do with abnormal control of swallowing. This study serves as a first exploration on specific characteristics of swallowing in different neurologic conditions and will help clinicians anticipate what they might expect.
He, Qi; Li, Zhenyu; Wang, Yueting; Hou, Yanghao; Li, Lingyu; Zhao, Jing
2017-09-01
Resveratrol has been reported to protect against cerebral ischemia/reperfusion (I/R) injury in rats, but the underlying mechanism is unclear. In the current study, we examined whether resveratrol ameliorates cerebral I/R injury by inhibiting NLRP3 inflammasome-derived inflammation and whether autophagy is involved in this process. In addition, we explored the role of Sirt1 in resveratrol-mediated protective effects. To answer these questions, healthy male Sprague-Dawley rats were exposed to middle cerebral artery occlusion for 1h followed by 24h reperfusion. We found that cerebral I/R increased levels of activated NLRP3 inflammasome, caspase-1, IL-1β, and IL-18 and enhanced autophagy activity (ratio of LC3B-II/LC3B-I and p62/SQSTM1). Treatment with resveratrol, a specific Sirt1 agonist, attenuated I/R-induced NLRP3 inflammasome-derived inflammation but upregulated autophagy. Furthermore, resveratrol treatment clearly reduced cerebral infarct volume, decreased brain water content, and improved neurological scores. In addition, inhibition of autophagy using 3-MA intracerebroventricular injection blocked the inhibitory effect of resveratrol on NLRP3 inflammasome activation. Finally, Sirt1 knockdown with siRNA significantly blocked resveratrol-induced enhancement of autophagy activity and suppression of NLRP3 inflammasome activation. In conclusion, our results demonstrate that resveratrol protects against cerebral I/R injury by inhibiting NLRP3 inflammasome activation through Sirt1-dependent autophagy activity. Copyright © 2017. Published by Elsevier B.V.
Dynamic cerebral autoregulation during brain activation paradigms.
Panerai, Ronney B; Moody, Michelle; Eames, Penelope J; Potter, John F
2005-09-01
Dynamic cerebral autoregulation (CA) describes the transient response of cerebral blood flow (CBF) to rapid changes in arterial blood pressure (ABP). We tested the hypothesis that the efficiency of dynamic CA is increased by brain activation paradigms designed to induce hemispheric lateralization. CBF velocity [CBFV; bilateral, middle cerebral artery (MCA)], ABP, ECG, and end-tidal Pco(2) were continuously recorded in 14 right-handed healthy subjects (21-43 yr of age), in the seated position, at rest and during 10 repeated presentations (30 s on-off) of a word generation test and a constructional puzzle. Nonstationarities were not found during rest or activation. Transfer function analysis of the ABP-CBFV (i.e., input-output) relation was performed for the 10 separate 51.2-s segments of data during activation and compared with baseline data. During activation, the coherence function below 0.05 Hz was significantly increased for the right MCA recordings for the puzzle tasks compared with baseline values (0.36 +/- 0.16 vs. 0.26 +/- 0.13, P < 0.05) and for the left MCA recordings for the word paradigm (0.48 +/- 0.23 vs. 0.29 +/- 0.16, P < 0.05). In the same frequency range, significant increases in gain were observed during the puzzle paradigm for the right (0.69 +/- 0.37 vs. 0.46 +/- 0.32 cm.s(-1).mmHg(-1), P < 0.05) and left (0.61 +/- 0.29 vs. 0.45 +/- 0.24 cm.s(-1).mmHg(-1), P < 0.05) hemispheres and during the word tasks for the left hemisphere (0.66 +/- 0.31 vs. 0.39 +/- 0.15 cm.s(-1).mmHg(-1), P < 0.01). Significant reductions in phase were observed during activation with the puzzle task for the right (-0.04 +/- 1.01 vs. 0.80 +/- 0.86 rad, P < 0.01) and left (0.11 +/- 0.81 vs. 0.57 +/- 0.51 rad, P < 0.05) hemispheres and with the word paradigm for the right hemisphere (0.05 +/- 0.87 vs. 0.64 +/- 0.59 rad, P < 0.05). Brain activation also led to changes in the temporal pattern of the CBFV step response. We conclude that transfer function analysis suggests important changes in dynamic CA during mental activation tasks.
Hypothalamic digoxin, hemispheric chemical dominance, and creativity.
Kurup, Ravi Kumar; Kurup, Parameswara Achutha
2003-04-01
The human hypothalamus produces an endogenous membrane Na(+)-K+ ATPase inhibitor, digoxin, which regulates neuronal transmission. The digoxin status and neurotransmitter patterns were studied in creative and non-creative individuals, as well as in individuals with differing hemispheric dominance, in order to find out the role of cerebral dominance in this respect. The activity of HMG CoA reductase and serum levels of digoxin, magnesium, tryptophan catabolites, and tyrosine catabolites were measured in creative/non-creative individuals, and in individuals with differing hemispheric dominance. In creative individuals there was increased digoxin synthesis, decreased membrane Na(+)-K+ ATPase activity, increased tryptophan catabolites (serotonin, quinolinic acid, and nicotine), and decreased tyrosine catabolites (dopamine, noradrenaline, and morphine). The pattern in creative individuals correlated with right hemispheric dominance. In non-creative individuals there was decreased digoxin synthesis, increased membrane Na(+)-K+ ATPase activity, decreased tryptophan catabolites (serotonin, quinolinic acid, and nicotine), and increased tyrosine catabolites (dopamine, noradrenaline, and morphine). This pattern in non-creative individuals correlated with that obtained in left hemispheric chemical dominance. Hemispheric chemical dominance and hypothalamic digoxin could regulate the predisposition to creative tendency.
Kim, Kyung Hwan; Kim, Ja Hyun
2006-02-20
The aim of this study was to compare spatiotemporal cortical activation patterns during the visual perception of Korean, English, and Chinese words. The comparison of these three languages offers an opportunity to study the effect of written forms on cortical processing of visually presented words, because of partial similarity/difference among words of these languages, and the familiarity of native Koreans with these three languages at the word level. Single-character words and pictograms were excluded from the stimuli in order to activate neuronal circuitries that are involved only in word perception. Since a variety of cerebral processes are sequentially evoked during visual word perception, a high-temporal resolution is required and thus we utilized event-related potential (ERP) obtained from high-density electroencephalograms. The differences and similarities observed from statistical analyses of ERP amplitudes, the correlation between ERP amplitudes and response times, and the patterns of current source density, appear to be in line with demands of visual and semantic analysis resulting from the characteristics of each language, and the expected task difficulties for native Korean subjects.
Autoregulation of cerebral blood flow in orthostatic hypotension
NASA Technical Reports Server (NTRS)
Novak, V.; Novak, P.; Spies, J. M.; Low, P. A.
1998-01-01
BACKGROUND AND PURPOSE: We sought to evaluate cerebral autoregulation in patients with orthostatic hypotension (OH). METHODS: We studied 21 patients (aged 52 to 78 years) with neurogenic OH during 80 degrees head-up tilt. Blood flow velocities (BFV) from the middle cerebral artery were continuously monitored with transcranial Doppler sonography, as were heart rate, blood pressure (BP), cardiac output, stroke volume, CO2, total peripheral resistance, and cerebrovascular resistance. RESULTS: All OH patients had lower BP (P<.0001), BFV_diastolic (P<.05), CVR (P<.007), and TPR (P<.02) during head-up tilt than control subjects. In control subjects, no correlations between BFV and BP were found during head-up tilt, suggesting normal autoregulation. OH patients could be separated into those with normal or expanded autoregulation (OH_NA; n=16) and those with autoregulatory failure (OH_AF; n=5). The OH_NA group showed either no correlation between BFV and BP (n=8) or had a positive BFV/BP correlation (R2>.75) but with a flat slope. An expansion of the "autoregulated" range was seen in some patients. The OH_AF group was characterized by a profound fall in BFV in response to a small reduction in BP (mean deltaBP <40 mm Hg; R2>.75). CONCLUSIONS: The most common patterns of cerebral response to OH are autoregulatory failure with a flat flow-pressure relationship or intact autoregulation with an expanded autoregulated range. The least common pattern is autoregulatory failure with a steep flow-pressure relationship. Patients with patterns 1 and 2 have an enhanced capacity to cope with OH, while those with pattern 3 have reduced capacity.
Blanquie, Oriane; Yang, Jenq-Wei; Kilb, Werner; Sharopov, Salim; Sinning, Anne; Luhmann, Heiko J
2017-08-21
Programmed cell death widely but heterogeneously affects the developing brain, causing the loss of up to 50% of neurons in rodents. However, whether this heterogeneity originates from neuronal identity and/or network-dependent processes is unknown. Here, we report that the primary motor cortex (M1) and primary somatosensory cortex (S1), two adjacent but functionally distinct areas, display striking differences in density of apoptotic neurons during the early postnatal period. These differences in rate of apoptosis negatively correlate with region-dependent levels of activity. Disrupting this activity either pharmacologically or by electrical stimulation alters the spatial pattern of apoptosis and sensory deprivation leads to exacerbated amounts of apoptotic neurons in the corresponding functional area of the neocortex. Thus, our data demonstrate that spontaneous and periphery-driven activity patterns are important for the structural and functional maturation of the neocortex by refining the final number of cortical neurons in a region-dependent manner.
Longitudinal decrease in blood oxygenation level dependent response in cerebral amyloid angiopathy.
Switzer, Aaron R; McCreary, Cheryl; Batool, Saima; Stafford, Randall B; Frayne, Richard; Goodyear, Bradley G; Smith, Eric E
2016-01-01
Lower blood oxygenation level dependent (BOLD) signal changes in response to a visual stimulus in functional magnetic resonance imaging (fMRI) have been observed in cross-sectional studies of cerebral amyloid angiopathy (CAA), and are presumed to reflect impaired vascular reactivity. We used fMRI to detect a longitudinal change in BOLD responses to a visual stimulus in CAA, and to determine any correlations between these changes and other established biomarkers of CAA progression. Data were acquired from 22 patients diagnosed with probable CAA (using the Boston Criteria) and 16 healthy controls at baseline and one year. BOLD data were generated from the 200 most active voxels of the primary visual cortex during the fMRI visual stimulus (passively viewing an alternating checkerboard pattern). In general, BOLD amplitudes were lower at one year compared to baseline in patients with CAA (p = 0.01) but were unchanged in controls (p = 0.18). The longitudinal difference in BOLD amplitudes was significantly lower in CAA compared to controls (p < 0.001). White matter hyperintensity (WMH) volumes and number of cerebral microbleeds, both presumed to reflect CAA-mediated vascular injury, increased over time in CAA (p = 0.007 and p = 0.001, respectively). Longitudinal increases in WMH (rs = 0.04, p = 0.86) or cerebral microbleeds (rs = -0.18, p = 0.45) were not associated with the longitudinal decrease in BOLD amplitudes.
Cauli, Omar; López-Larrubia, Pilar; Rodrigo, Regina; Agusti, Ana; Boix, Jordi; Nieto-Charques, Laura; Cerdán, Sebastián; Felipo, Vicente
2011-02-01
Patients with acute liver failure (ALF) often die of intracranial pressure (IP) and cerebral herniation. Main contributors to increased IP are ammonia, glutamine, edema, and blood flow. The sequence of events and underlying mechanisms, as well as the temporal pattern, regional distribution, and contribution of each parameter to the progression of neurologic deterioration and IP, are unclear. We studied rats with ALF to follow the progression of changes in ammonia, glutamine, grade and type (vasogenic or cytotoxic) of edema, blood-brain barrier permeability, cerebral blood flow, and IP. We assessed whether the changes in these parameters were similar between frontal cortex and cerebellum and evaluated the presence, type, and progression of edema in 12 brain areas. ALF was induced by injection of galactosamine. The grade and type of edema was assessed by measuring the apparent diffusion coefficient by magnetic resonance imaging. Cerebral blood flow was measured by magnetic resonance and blood-brain barrier permeability by Evans blue-albumin extravasation. Increased IP arises from an early increase of blood-brain barrier permeability in certain areas (including cerebellum but not frontal cortex) followed by vasogenic edema. Ammonia and glutamine then increase progressively, leading to cytotoxic edema in many areas. Alterations in lactate and cerebral blood flow are later events that further increase IP. Different mechanisms in specific regions of the brain contribute, with different temporal patterns, to the progression of cerebral alterations and IP in ALF. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.
A high-glycemic diet is associated with cerebral amyloid burden in cognitively normal older adults.
Taylor, Matthew K; Sullivan, Debra K; Swerdlow, Russell H; Vidoni, Eric D; Morris, Jill K; Mahnken, Jonathan D; Burns, Jeffrey M
2017-12-01
Background: Little is known about the relation between dietary intake and cerebral amyloid accumulation in aging. Objective: We assessed the association of dietary glycemic measures with cerebral amyloid burden and cognitive performance in cognitively normal older adults. Design: We performed cross-sectional analyses relating dietary glycemic measures [adherence to a high-glycemic-load diet (HGLDiet) pattern, intakes of sugar and carbohydrates, and glycemic load] with cerebral amyloid burden (measured by florbetapir F-18 positron emission tomography) and cognitive performance in 128 cognitively normal older adults who provided eligibility screening data for the University of Kansas's Alzheimer's Prevention through Exercise (APEX) Study. The study began in November 2013 and is currently ongoing. Results: Amyloid was elevated in 26% ( n = 33) of participants. HGLDiet pattern adherence ( P = 0.01), sugar intake ( P = 0.03), and carbohydrate intake ( P = 0.05) were significantly higher in participants with elevated amyloid burden. The HGLDiet pattern was positively associated with amyloid burden both globally and in all regions of interest independently of age, sex, and education (all P ≤ 0.001). Individual dietary glycemic measures (sugar intake, carbohydrate intake, and glycemic load) were also positively associated with global amyloid load and nearly all regions of interest independently of age, sex, and educational level ( P ≤ 0.05). Cognitive performance was associated only with daily sugar intake, with higher sugar consumption associated with poorer global cognitive performance (global composite measure and Mini-Mental State Examination) and performance on subtests of Digit Symbol, Trail Making Test B, and Block Design, controlling for age, sex, and education. Conclusion: A high-glycemic diet was associated with greater cerebral amyloid burden, which suggests diet as a potential modifiable behavior for cerebral amyloid accumulation and subsequent Alzheimer disease risk. This trial was registered at clinicaltrials.gov as NCT02000583. © 2017 American Society for Nutrition.
Growth patterns and cerebro-placental hemodynamics in fetuses with congenital heart disease.
Mebius, M J; Clur, S A B; Vink, A S; Pajkrt, E; Kalteren, W S; Kooi, E M W; Bos, A F; du Marchie Sarvaas, G J; Bilardo, C M
2018-05-28
Congenital heart disease (CHD) has been associated with a reduced fetal head circumference (HC). The underlying pathophysiological background remains undetermined. We aimed to define trends in fetal growth and cerebro-placental Doppler flow, and to investigate the association between head growth and cerebro-placental flow in fetuses with CHD. Fetuses with CHD and serial measurements of HC, abdominal circumference (AC), middle cerebral artery pulsatility index (MCA-PI), umbilical artery pulsatility index (UA-PI), and cerebro-placental ratio (CPR) were included. CHD was categorized into 3 groups based on expected cerebral arterial oxygen saturation: normal, mild to moderately reduced, and severely reduced. Trends over time in Z-scores were analyzed using a linear mixed-effects model. 181 fetuses fulfilled the inclusion criteria. Expected cerebral arterial oxygen saturation in CHD was classified as normal in 44, mild to moderately reduced in 84 and severely reduced in 53 cases. HC z-scores showed a tendency to decrease until 23 weeks, then to increase until 33 weeks, followed by a decrease again in the late third trimester. AC increased progressively with advancing gestation. MCA-PI and UA-PI showed significant trends throughout pregnancy, but CPR did not. There were no associations between expected cerebral arterial oxygen saturation and fetal growth. Average trends in MCA-PI were significantly different in the three subgroups (P=0.010), whereas average trends in UA-PI and CPR were similar (P=0.530 and P=0.285). Furthermore, there was no significant association between MCA-PI and HC (P=0.284). Fetal biometry and Doppler flow patterns are within normal ranges in fetuses with CHD, but show trends over time. Fetal head growth is not associated with the cerebral blood flow pattern or placental function and HC is not influenced by the cerebral arterial oxygen saturation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Computational model of cerebral blood flow redistribution during cortical spreading depression
NASA Astrophysics Data System (ADS)
Verisokin, Andrey Y.; Verveyko, Darya V.; Postnov, Dmitry E.
2016-04-01
In recent decades modelling studies on cortical spreading depression (CSD) and migraine waves successfully contributed to formation of modern view on these fundamental phenomena of brain physiology. However, due to the extreme complexity of object under study (brain cortex) and the diversity of involved physiological pathways, the development of new mathematical models of CSD is still a very relevant and challenging research problem. In our study we follow the functional modelling approach aimed to map the action of known physiological pathways to the specific nonlinear mechanisms that govern formation and evolution of CSD wave patterns. Specifically, we address the role of cerebral blood flow (CBF) redistribution that is caused by excessive neuronal activity by means of neurovascular coupling and mediates a spatial pattern of oxygen and glucose delivery. This in turn changes the local metabolic status of neural tissue. To build the model we simplify the web of known cell-to-cell interactions within a neurovascular unit by selecting the most relevant ones, such as local neuron-induced elevation of extracellular potassium concentration and biphasic response of arteriole radius. We propose the lumped description of distance-dependent hemodynamic coupling that fits the most recent experimental findings.
Familial risk of cerebral palsy: population based cohort study.
Tollånes, Mette C; Wilcox, Allen J; Lie, Rolv T; Moster, Dag
2014-07-15
To investigate risks of recurrence of cerebral palsy in family members with various degrees of relatedness to elucidate patterns of hereditability. Population based cohort study. Data from the Medical Birth Registry of Norway, linked to the Norwegian social insurance scheme to identify cases of cerebral palsy and to databases of Statistics Norway to identify relatives. 2,036,741 Norwegians born during 1967-2002, 3649 of whom had a diagnosis of cerebral palsy; 22,558 pairs of twins, 1,851,144 pairs of first degree relatives, 1,699,856 pairs of second degree relatives, and 5,165,968 pairs of third degree relatives were identified. Cerebral palsy. If one twin had cerebral palsy, the relative risk of recurrence of cerebral palsy was 15.6 (95% confidence interval 9.8 to 25) in the other twin. In families with an affected singleton child, risk was increased 9.2 (6.4 to 13)-fold in a subsequent full sibling and 3.0 (1.1 to 8.6)-fold in a half sibling. Affected parents were also at increased risk of having an affected child (6.5 (1.6 to 26)-fold). No evidence was found of differential transmission through mothers or fathers, although the study had limited power to detect such differences. For people with an affected first cousin, only weak evidence existed for an increased risk (1.5 (0.9 to 2.7)-fold). Risks in siblings or cousins were independent of sex of the index case. After exclusion of preterm births (an important risk factor for cerebral palsy), familial risks remained and were often stronger. People born into families in which someone already has cerebral palsy are themselves at elevated risk, depending on their degree of relatedness. Elevated risk may extend even to third degree relatives (first cousins). The patterns of risk suggest multifactorial inheritance, in which multiple genes interact with each other and with environmental factors. These data offer additional evidence that the underlying causes of cerebral palsy extend beyond the clinical management of delivery. © Tollånes et al 2014.
How multi segmental patterns deviate in spastic diplegia from typical developed.
Zago, Matteo; Sforza, Chiarella; Bona, Alessia; Cimolin, Veronica; Costici, Pier Francesco; Condoluci, Claudia; Galli, Manuela
2017-10-01
The relationship between gait features and coordination in children with Cerebral Palsy is not sufficiently analyzed yet. Principal Component Analysis can help in understanding motion patterns decomposing movement into its fundamental components (Principal Movements). This study aims at quantitatively characterizing the functional connections between multi-joint gait patterns in Cerebral Palsy. 65 children with spastic diplegia aged 10.6 (SD 3.7) years participated in standardized gait analysis trials; 31 typically developing adolescents aged 13.6 (4.4) years were also tested. To determine if posture affects gait patterns, patients were split into Crouch and knee Hyperextension group according to knee flexion angle at standing. 3D coordinates of hips, knees, ankles, metatarsal joints, pelvis and shoulders were submitted to Principal Component Analysis. Four Principal Movements accounted for 99% of global variance; components 1-3 explained major sagittal patterns, components 4-5 referred to movements on frontal plane and component 6 to additional movement refinements. Dimensionality was higher in patients than in controls (p<0.01), and the Crouch group significantly differed from controls in the application of components 1 and 4-6 (p<0.05), while the knee Hyperextension group in components 1-2 and 5 (p<0.05). Compensatory strategies of children with Cerebral Palsy (interactions between main and secondary movement patterns), were objectively determined. Principal Movements can reduce the effort in interpreting gait reports, providing an immediate and quantitative picture of the connections between movement components. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bauernfeind, Günther; Wriessnegger, Selina C; Haumann, Sabine; Lenarz, Thomas
2018-03-08
Functional near-infrared spectroscopy (fNIRS) is an emerging technique for the assessment of functional activity of the cerebral cortex. Recently fNIRS was also envisaged as a novel neuroimaging approach for measuring the auditory cortex activity in the field of in auditory diagnostics. This study aimed to investigate differences in brain activity related to spatially presented sounds with different intensities in 10 subjects by means of functional near-infrared spectroscopy (fNIRS). We found pronounced cortical activation patterns in the temporal and frontal regions of both hemispheres. In contrast to these activation patterns, we found deactivation patterns in central and parietal regions of both hemispheres. Furthermore our results showed an influence of spatial presentation and intensity of the presented sounds on brain activity in related regions of interest. These findings are in line with previous fMRI studies which also reported systematic changes of activation in temporal and frontal areas with increasing sound intensity. Although clear evidence for contralaterality effects and hemispheric asymmetries were absent in the group data, these effects were partially visible on the single subject level. Concluding, fNIRS is sensitive enough to capture differences in brain responses during the spatial presentation of sounds with different intensities in several cortical regions. Our results may serve as a valuable contribution for further basic research and the future use of fNIRS in the area of central auditory diagnostics. © 2018 Wiley Periodicals, Inc.
Zhang, Haitao; Bi, Feng; Xiao, Chunlan; Liu, Jianxia; Wang, Zhixia; Liu, Jian-Ning; Zhang, Jing
2010-08-01
Tissue plasminogen activator (TPA) showed brain-protective activity within the first 15 min after cerebral ischemia in rats. To understand its molecular mechanism, TPA derivates were intracerebroventricularly administered at 15 min before, and 15, 90, 120 min after middle cerebral artery occlusion (MCAO) in rats. The reduction in mortality and cerebral infarction at 24 h was seen only with TPA administered at 15 min after MCAO. The down-regulation of endogenous TPA by the intracerebroventricular injection of TPA was found to be responsible for the protective effect on the integrity of blood-brain barrier after MCAO, as well as for the reduction in mortality and cerebral infarction. Moreover, for the first time we have found that the Kringle-2 domain is essential for the brain-protective activity of TPA.
De Cicco, Vincenzo
2012-09-03
A patient affected by asymmetric hemodynamics of cerebro-afferent vessels underwent duplex color scanner investigations in occlusal proprioceptive un- and rebalance conditions. Pupillometric video-oculographic examinations were performed in order to spot connected trigeminal proprioceptive motor patterns able to interfere on sympathetic autonomic activity. The aim of this case report is to verify if involuntary jaw closing during swallowing, executed in unbalance and rebalance myoelectric activity, would be able to modify cerebral hemodynamics. A 56-year-old Caucasian Italian woman affected by asymmetric blood flow of cerebro-afferent vessels underwent an electromyographic investigation of her occlusal muscles in order to assess their occlusal functional balance. The extreme asymmetry of myoelectric activity in dental occlusion evidenced by electromyographic values suggested the rebalancing of the functions of occlusal muscles through concurrent transcutaneous stimulation of the trigeminal nerve supra- and submandibular motor branches. The above-mentioned method allowed the detection of a symmetric craniomandibular muscular relation that can be kept constant through the use of a cusp bite modeled on the inferior dental arch: called orthotic-syntropic bite for its peculiar use of electrostimulation. A few days later, the patient underwent a duplex color scanner investigation and pupillometric video-oculographic examinations in occlusal unbalance and rebalance conditions. A comparative data analysis showed that an unbalanced dental occlusal function may represent an interferential pattern on cerebral hemodynamics velocity and pupillometric evaluations have proved useful both in the analysis of locus coeruleus functional modalities and as a diagnostic tool in the assessment of pathologies involving locus coeruleus and autonomic systems. The inclusion of myoelectric masseter examinations can be useful in patients with asymmetric hemodynamics of cerebro-afferent vessels and dental occlusal proprioceptive rebalance can integrate the complex therapy of patients with increased chronic sympathetic activity.
Hemodynamic monitoring of middle cerebral arteries during cognitive tasks performance.
Boban, Marina; Črnac, Petra; Junaković, Anamari; Malojčić, Branko
2014-11-01
The aim of this study was to obtain temporal pattern and hemispheric dominance of blood flow velocity (BFV) changes and to assess suitability of different cognitive tasks for monitoring of BFV changes in the middle cerebral arteries (MCA). BFV were recorded simultaneously in MCA during performance of phonemic verbal fluency test (pVFT), Trail Making Tests A and B (TMTA and TMTB) and Stroop tests in 14 healthy, right-handed volunteers aged 20-26 years. A significant increase of BFV in both MCA was obtained during performance of all cognitive tasks. Statistically significant lateralization was found during performance of Stroop test with incongruent stimuli, while TMTB was found to have the best activation potential for MCA. Our findings specify TMTB as the most suitable cognitive test for monitoring of BFV in MCA. © 2014 The Authors. Psychiatry and Clinical Neurosciences © 2014 Japanese Society of Psychiatry and Neurology.
Giansily-Blaizot, Muriel; Aguilar-Martinez, Patricia; Briquel, Marie-Elisabeth; d'Oiron, Roseline; De Maistre, Emmanuel; Epelbaum, Serge; Schved, Jean-François
2003-02-01
Factor VII (FVII) is a plasma glycoprotein that plays a key role in the initiation of blood coagulation cascade. Inherited FVII deficiency is a rare autosomal recessive disorder with a wide heterogeneous clinical pattern. The severe form may be associated with intracranial haemorrhages occurring closely to birth with a high mortality rate. In the present article, we report two novel cases of neonatal intracerebral bleeding associated with FVII activity levels below 1% of normal. FVII genotyping investigations revealed particular genotypes including the deleterious Cys135Arg mutation and a novel Ser52Stop nonsense mutation at the homozygous state. Both mutations, through different mechanisms, are expected to be inconsistent with the production of functional FVII. These putative mechanisms are discussed through a review of the literature on phenotypic and genotypic characteristics of cerebral haemorrhages in severe inherited FVII deficiency.
Ma, Yilong; Eidelberg, David
2007-01-01
Brain imaging of cerebral blood flow and glucose metabolism has been playing key roles in describing pathophysiology of Parkinson's disease (PD) and Huntington's disease (HD), respectively. Many biomarkers have been developed in recent years to investigate the abnormality in molecular substrate, track the time course of disease progression, and evaluate the efficacy of novel experimental therapeutics. A growing body of literature has emerged on neurobiology of these two movement disorders in resting states and in response to brain activation tasks. In this paper, we review the latest applications of these approaches in patients and normal volunteers at rest conditions. The discussions focus on brain mapping studies with univariate and multivariate statistical analyses on a voxel basis. In particular, we present data to validate the reproducibility and reliability of unique spatial covariance patterns related with PD and HD.
Kim, Soo Ji; Kwak, Eunmi E; Park, Eun Sook; Cho, Sung-Rae
2012-10-01
To investigate the effects of rhythmic auditory stimulation (RAS) on gait patterns in comparison with changes after neurodevelopmental treatment (NDT/Bobath) in adults with cerebral palsy. A repeated-measures analysis between the pretreatment and posttreatment tests and a comparison study between groups. Human gait analysis laboratory. Twenty-eight cerebral palsy patients with bilateral spasticity participated in this study. The subjects were randomly allocated to either neurodevelopmental treatment (n = 13) or rhythmic auditory stimulation (n = 15). Gait training with rhythmic auditory stimulation or neurodevelopmental treatment was performed three sessions per week for three weeks. Temporal and kinematic data were analysed before and after the intervention. Rhythmic auditory stimulation was provided using a combination of a metronome beat set to the individual's cadence and rhythmic cueing from a live keyboard, while neurodevelopmental treatment was implemented following the traditional method. Temporal data, kinematic parameters and gait deviation index as a measure of overall gait pathology were assessed. Temporal gait measures revealed that rhythmic auditory stimulation significantly increased cadence, walking velocity, stride length, and step length (P < 0.05). Kinematic data demonstrated that anterior tilt of the pelvis and hip flexion during a gait cycle was significantly ameliorated after rhythmic auditory stimulation (P < 0.05). Gait deviation index also showed modest improvement in cerebral palsy patients treated with rhythmic auditory stimulation (P < 0.05). However, neurodevelopmental treatment showed that internal and external rotations of hip joints were significantly improved, whereas rhythmic auditory stimulation showed aggravated maximal internal rotation in the transverse plane (P < 0.05). Gait training with rhythmic auditory stimulation or neurodevelopmental treatment elicited differential effects on gait patterns in adults with cerebral palsy.
Wang, Qi; Shen, Feng-Yan; Zou, Rong; Zheng, Jing-Jing; Yu, Xiang; Wang, Ying-Wei
2017-06-17
The effects of general anesthetics on inducing neuronal apoptosis during early brain development are well-documented. However, since physiological apoptosis also occurs during this developmental window, it is important to determine whether anesthesia-induced apoptosis targets the same cell population as physiological apoptosis or different cell types altogether. To provide an adequate plane of surgery, ketamine was co-administered with dexmedetomidine. The apoptotic neurons in the mouse primary somatosensory cortex (S1) were quantitated by immunohistochemistry. To explore the effect of neural activity on ketamine-induced apoptosis, the approaches of Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) and an environmental enrichment (EE) were performed. Ketamine-induced apoptosis in S1 is most prominent at postnatal days 5 and 7 (P5 - P7), and becomes insignificant by P12. Physiological and ketamine-induced apoptosis follow similar developmental patterns, mostly comprised of layer V pyramidal neurons at P5 and shifting to mostly layer II to IV GABAergic neurons by P9. Changes in neuronal activity induced by the DREADD system bidirectionally regulated the pattern of ketamine-induced apoptosis, with reduced activity inducing increased apoptosis and shifting the lamination pattern to a more immature form. Importantly, rearing mice in an EE significantly reduced the magnitude of ketamine-induced apoptosis and shifted its developmental pattern to a more mature form. Together, these results demonstrate that lamination pattern and cell-type dependent vulnerability to ketamine-induced apoptosis follow the physiological apoptosis pattern and are age- and activity-dependent. Naturally elevating neuronal activity is a possible method for reducing the adverse effects of general anesthesia.
EEG as an Indicator of Cerebral Functioning in Postanoxic Coma.
Juan, Elsa; Kaplan, Peter W; Oddo, Mauro; Rossetti, Andrea O
2015-12-01
Postanoxic coma after cardiac arrest is one of the most serious acute cerebral conditions and a frequent cause of admission to critical care units. Given substantial improvement of outcome over the recent years, a reliable and timely assessment of clinical evolution and prognosis is essential in this context, but may be challenging. In addition to the classic neurologic examination, EEG is increasingly emerging as an important tool to assess cerebral functions noninvasively. Although targeted temperature management and related sedation may delay clinical assessment, EEG provides accurate prognostic information in the early phase of coma. Here, the most frequently encountered EEG patterns in postanoxic coma are summarized and their relations with outcome prediction are discussed. This article also addresses the influence of targeted temperature management on brain signals and the implication of the evolution of EEG patterns over time. Finally, the article ends with a view of the future prospects for EEG in postanoxic management and prognostication.
Cerebral correlates of faking: evidence from a brief implicit association test on doping attitudes.
Schindler, Sebastian; Wolff, Wanja; Kissler, Johanna M; Brand, Ralf
2015-01-01
Direct assessment of attitudes toward socially sensitive topics can be affected by deception attempts. Reaction-time based indirect measures, such as the Implicit Association Test (IAT), are less susceptible to such biases. Neuroscientific evidence shows that deception can evoke characteristic ERP differences. However, the cerebral processes involved in faking an IAT are still unknown. We randomly assigned 20 university students (15 females, 24.65 ± 3.50 years of age) to a counterbalanced repeated-measurements design, requesting them to complete a Brief-IAT (BIAT) on attitudes toward doping without deception instruction, and with the instruction to fake positive and negative doping attitudes. Cerebral activity during BIAT completion was assessed using high-density EEG. Event-related potentials during faking revealed enhanced frontal and reduced occipital negativity, starting around 150 ms after stimulus presentation. Further, a decrease in the P300 and LPP components was observed. Source analyses showed enhanced activity in the right inferior frontal gyrus between 150 and 200 ms during faking, thought to reflect the suppression of automatic responses. Further, more activity was found for faking in the bilateral middle occipital gyri and the bilateral temporoparietal junction. Results indicate that faking reaction-time based tests alter brain processes from early stages of processing and reveal the cortical sources of the effects. Analyzing the EEG helps to uncover response patterns in indirect attitude tests and broadens our understanding of the neural processes involved in such faking. This knowledge might be useful for uncovering faking in socially sensitive contexts, where attitudes are likely to be concealed.
Qiu, Qinyin; Adamovich, Sergei; Saleh, Soha; Lafond, Ian; Merians, Alma S.; Fluet, Gerard G.
2015-01-01
Nine children with cerebral palsy and nine adults with stroke were trained using 5 different upper extremity simulations using the NJIT-RAVR system for approximately nine to twelve hours over a three week period. Both groups made improvements in clinical measurements of upper extremity function and reaching kinematics. Patterns and magnitudes of improvement differ between the two groups. Responses to training required adjustment of the robotic system to accommodate the rehabilitation needs of children with cerebral palsy. PMID:22275632
Delayed cerebral development in twins with congenital hyperthyroidism.
Kopelman, A E
1983-09-01
Twins had congenital hyperthyroidism and delayed cerebral development manifested as ventriculomegaly, increased space in the interhemispheric fissure, and an exaggerated gyral pattern on cranial computed tomographic scans. At 3 1/2 years of age, both children had delayed development. Fetal and neonatal hyperthyroidism may interfere with normal brain growth and maturation with both neuranatomic and developmental sequelae.
Riecker, Axel; Kassubek, Jan; Gröschel, Klaus; Grodd, Wolfgang; Ackermann, Hermann
2006-01-01
So far, only sparse data on the cerebral organization of speech motor control are available. In order to further delineate the neural basis of articulatory functions, fMRI measurements were performed during self-paced syllable repetitions at six different frequencies (2-6 Hz). Bilateral hemodynamic main effects, calculated across all syllable rates considered, emerged within sensorimotor cortex, putamen, thalamus and cerebellum. At the level of the caudatum and the anterior insula, activation was found restricted to the left side. The computation of rate-to-response functions of the BOLD signal revealed a negative linear relationship between syllable frequency and response magnitude within the striatum whereas cortical areas and cerebellar hemispheres exhibited an opposite activation pattern. Dysarthric patients with basal ganglia disorders show unimpaired or even accelerated speaking rate whereas, in contrast, cerebellar dysfunctions give rise to slowed speech tempo which does not fall below a rate of about 3 Hz. The observed rate-to-response profiles of the BOLD signal thus might help to elucidate the pathophysiological mechanisms of dysarthric deficits in central motor disorders.
Zhang, Kaihua; Ma, Jun; Lei, Du; Wang, Mengxing; Zhang, Jilei; Du, Xiaoxia
2015-10-01
Nocturnal enuresis is a common developmental disorder in children, and primary monosymptomatic nocturnal enuresis (PMNE) is the dominant subtype. This study investigated brain functional abnormalities that are specifically related to working memory in children with PMNE using function magnetic resonance imaging (fMRI) in combination with an n-back task. Twenty children with PMNE and 20 healthy children, group-matched for age and sex, participated in this experiment. Several brain regions exhibited reduced activation during the n-back task in children with PMNE, including the right precentral gyrus and the right inferior parietal lobule extending to the postcentral gyrus. Children with PMNE exhibited decreased cerebral activation in the task-positive network, increased task-related cerebral deactivation during a working memory task, and longer response times. Patients exhibited different brain response patterns to different levels of working memory and tended to compensate by greater default mode network deactivation to sustain normal working memory function. Our results suggest that children with PMNE have potential working memory dysfunction.
The impact of chewing gum resistance on immediate free recall.
Rickman, Sarah; Johnson, Andrew; Miles, Christopher
2013-08-01
Although the facilitative effects of chewing gum on free recall have proved contentious (e.g., Tucha, Mecklinger, Maier, Hammerl, & Lange, 2004; Wilkinson, Scholey, & Wesnes, 2002), there are strong physiological grounds, for example, increased cerebral activity and blood flow following the act of mastication, to suppose facilitation. The present study manipulated resistance to mastication, that is, chewing four pellets versus one pellet of gum, with the assumption that increased resistance will accentuate cerebral activity and blood flow. Additionally, chewing rate was recorded for all participants. In a within-participants design, participants performed a series of immediate free recall tasks while chewing gum at learning (one or four pellets) and recall (one or four pellets). Increased chewing resistance was not associated with increased memory performance, despite consistent chewing rates for both the one and four pellet conditions at both learning and recall. However, a pattern of recall consistent with context-dependent memory was observed. Here, participants who chewed the equivalent number of gum pellets at both learning and recall experienced significantly superior word recall compared to those conditions where the number of gum pellets differed. ©2012 The British Psychological Society.
NASA Astrophysics Data System (ADS)
Cao, Jianwei; Khan, Bilal; Hervey, Nathan; Tian, Fenghua; Delgado, Mauricio R.; Clegg, Nancy J.; Smith, Linsley; Roberts, Heather; Tulchin-Francis, Kirsten; Shierk, Angela; Shagman, Laura; MacFarlane, Duncan; Liu, Hanli; Alexandrakis, George
2015-04-01
Sensorimotor cortex plasticity induced by constraint-induced movement therapy (CIMT) in six children (10.2±2.1 years old) with hemiplegic cerebral palsy was assessed by functional near-infrared spectroscopy (fNIRS). The activation laterality index and time-to-peak/duration during a finger-tapping task and the resting-state functional connectivity were quantified before, immediately after, and 6 months after CIMT. These fNIRS-based metrics were used to help explain changes in clinical scores of manual performance obtained concurrently with imaging time points. Five age-matched healthy children (9.8±1.3 years old) were also imaged to provide comparative activation metrics for normal controls. Interestingly, the activation time-to-peak/duration for all sensorimotor centers displayed significant normalization immediately after CIMT that persisted 6 months later. In contrast to this improved localized activation response, the laterality index and resting-state connectivity metrics that depended on communication between sensorimotor centers improved immediately after CIMT, but relapsed 6 months later. In addition, for the subjects measured in this work, there was either a trade-off between improving unimanual versus bimanual performance when sensorimotor activation patterns normalized after CIMT, or an improvement occurred in both unimanual and bimanual performance but at the cost of very abnormal plastic changes in sensorimotor activity.
Fractal dimension values of cerebral and cerebellar activity in rats loaded with aluminium.
Kekovic, Goran; Culic, Milka; Martac, Ljiljana; Stojadinovic, Gordana; Capo, Ivan; Lalosevic, Dusan; Sekulic, Slobodan
2010-07-01
Aluminium interferes with a variety of cellular metabolic processes in the mammalian nervous system and its intake might increase a risk of developing Alzheimer's disease (AD). While cerebral involvement even at the early stages of intoxication is well known, the role of cerebellum is underestimated. Our aim was to investigate cerebral and cerebellar electrocortical activity in adult male rats exposed to chronic aluminium treatment by nonlinear analytic tools. The adult rats in an aluminium-treated group were injected by AlCl(3), intraperitoneally (2 mg Al/kg, daily for 4 weeks). Fractal analysis of brain activity was performed off-line using Higuchi's algorithm. The average fractal dimension of electrocortical activity in aluminium-treated animals was lower than the average fractal dimension of electrocortical activity in the control rats, at cerebral but not at cerebellar level. The changes in the stationary and nonlinear properties of time series were more expressed in cerebral electrocortical activity than in cerebellar activity. This can be useful for developing effective diagnostic and therapeutic strategies in neurodegenerative diseases.
Neural correlates of emotional recognition memory in schizophrenia: effects of valence and arousal.
Lakis, Nadia; Jiménez, José A; Mancini-Marïe, Adham; Stip, Emmanuel; Lavoie, Marc E; Mendrek, Adrianna
2011-12-30
Schizophrenia patients are often impaired in their memory for emotional events compared with healthy subjects. Investigations of the neural correlates of emotional memory in schizophrenia patients are scarce in the literature. The present study aimed to compare cerebral activations in schizophrenia patients and healthy controls during memory retrieval of emotional images that varied in both valence and arousal. In a study with functional magnetic resonance imaging, 37 schizophrenia patients were compared with 37 healthy participants while performing a yes/no recognition paradigm with positive, negative (differing in arousal intensity) and neutral images. Schizophrenia patients performed worse than healthy controls in all experimental conditions. They showed less cerebral activation in limbic and prefrontal regions than controls during retrieval of negatively valenced stimuli, but had a similar pattern of brain activation compared with controls during retrieval of positively valenced stimuli (particularly in the high arousal condition) in the cerebellum, temporal lobe and prefrontal cortex. Both groups demonstrated increased brain activations in the high relative to low arousing conditions. Our results suggest atypical brain function during retrieval of negative pictures, but intact functional circuitry of positive affect during episodic memory retrieval in schizophrenia patients. The arousal data revealed that schizophrenia patients closely resemble the control group at both the behavioral and neurofunctional level. 2011 Elsevier Ireland Ltd. All rights reserved.
Dobryakova, Ekaterina; Wylie, Glenn R; DeLuca, John; Chiaravalloti, Nancy D
2014-09-01
Cognitive impairment in individuals with multiple sclerosis (MS) is now well recognized. One of the most common cognitive deficits is found in memory functioning, largely due to impaired acquisition. We examined functional brain activity 6 months after memory retraining in individuals with MS. The current report presents long term follow-up results from a randomized clinical trial on a memory rehabilitation protocol known as the modified Story Memory Technique. Behavioral memory performance and brain activity of all participants were evaluated at baseline, immediately after treatment, and 6 months after treatment. Results revealed that previously observed increases in patterns of cerebral activation during learning immediately after memory training were maintained 6 months post training.
Sexual Activity as a Risk Factor for the Spontaneous Rupture of Cerebral Aneurysms.
Blanke-Roeser, Constantin; Matschke, Jakob; Püschel, Klaus
2016-06-01
Subarachnoid hemorrhages from ruptured cerebral aneurysms have a high clinical relevance and often lead to death. Approximately 2% to 5% of the people worldwide, even of younger age, are said to have aneurysms at cerebral arteries. In many cases, they remain clinically unapparent for decades. However, there are numerous risk factors for the rupture of an aneurysm, including temporary raises of the blood pressure. Such changes of the blood pressure can be induced even by several everyday behaviors. For example, any sort of sexual activities may cause extensive raises of the blood pressure because of several physical and psychological factors. The term "sexual activity" covers sexual intercourse as well as masturbation. In this article, the remarkable case of a 24-year-old woman with a ruptured cerebral aneurysm in the context of masturbation is presented. It is discussed with respect to the possible pathophysiological effects of sexual activity on cerebral aneurysms.
Fu, Yue; Zhang, Quan; Zhang, Jing; Zhang, Yun Ting
2015-01-01
To compare the effects of active and passive movements on brain activation in patients with cerebral infarction using fMRI. Twenty-four hemiplegic patients with cerebral infarction were evaluated using fMRI. All patients performed active and passive finger opposition movements. Patients were instructed to perform the finger opposition movement for the active movement task. For the passive movement task, the subject's fingers were moved by the examiner to perform the finger opposition movement. Statistical parametric mapping software was used for statistical analyses and to process all data. In the affected hemisphere, sensorimotor cortex (SMC) activation intensity and range were significantly stronger during the passive movement of the affected fingers compared to the active movement of the affected fingers (p < 0.05). However, there were no significant differences between active and passive movements of unaffected fingers in SMC activation intensity and range in the unaffected hemisphere (p > 0.05). In addition, the passive movement activated many other regions of the brain. The brain regions activated by passive movements of the affected fingers tended to center toward the contralateral SMC. Our findings suggest that passive movements induce cortical reorganization in patients with cerebral infarction. Therefore, passive movement is likely beneficial for motor function recovery in patients with cerebral infarction.
"I Do Lots of Things": Children with Cerebral Palsy's Competence for Everyday Activities
ERIC Educational Resources Information Center
Kramer, Jessica M.; Hammel, Joy
2011-01-01
This study explored how children with cerebral palsy describe competent performance in everyday activities and sought to better understand the processes by which the children developed competence. Five children with cerebral palsy aged six to 17 years participated in a three-step procedure that included two observations, one semi-structured…
Cao, Wei; Li, Aiqing; Li, Jiawen; Wu, Chunyi; Cui, Shuang; Zhou, Zhanmei; Liu, Youhua; Wilcox, Christopher S; Hou, Fan Fan
2017-09-01
A kidney-brain interaction has been described in acute kidney injury, but the mechanisms are uncertain. Since we recently described a reno-cerebral reflex, we tested the hypothesis that renal ischemia-reperfusion injury (IRI) activates a sympathetic reflex that interlinks the renal and cerebral renin-angiotensin axis to promote oxidative stress and progression of the injury. Bilateral ischemia-reperfusion activated the intrarenal and cerebral, but not the circulating, renin-angiotensin system (RAS), increased sympathetic activity in the kidney and the cerebral sympathetic regulatory regions, and induced brain inflammation and kidney injury. Selective renal afferent denervation with capsaicin or renal denervation significantly attenuated IRI-induced activation of central RAS and brain inflammation. Central blockade of RAS or oxidative stress by intracerebroventricular (ICV) losartan or tempol reduced the renal ischemic injury score by 65% or 58%, respectively, and selective renal afferent denervation or reduction of sympathetic tone by ICV clonidine decreased the score by 42% or 52%, respectively (all p < 0.05). Ischemia-reperfusion-induced renal damage and dysfunction persisted after controlling blood pressure with hydralazine. This study uncovered a novel reflex pathway between ischemic kidney and the brain that sustains renal oxidative stress and local RAS activation to promote ongoing renal damage. These data suggest that the renal and cerebral renin-angiotensin axes are interlinked by a reno-cerebral sympathetic reflex that is activated by ischemia-reperfusion, which contributes to ischemia-reperfusion-induced brain inflammation and worsening of the acute renal injury. Antioxid. Redox Signal. 27, 415-432.
[Short and long-term changes in cortical circulation caused by autogenic training].
Meyer, H K; Diehl, B J; Ulrich, P; Meinig, G
1987-01-01
The well-known hyperfrontal pattern of hemispheric blood flow measured with 133-Xenon is not found in 12 healthy resting men who have been practicing Autogenic Training for at least six months. This might indicate a long-term decrease in the level of activation. Successfully practiced exercises of Autogenic Training lead to an increased blood flow in the Rolandic area representing the body sceme and to a decreased blood flow in regions related to acoustical attention and to autonomic functions. Left hemispheric cerebral blood flow ist lower in rest. The relative activation of the left hemisphere during Autogenic Training is discussed.
Floris, Gianluca; Di Stefano, Francesca; Cherchi, Maria Valeria; Costa, Gianna; Marrosu, Francesco; Marrosu, Maria Giovanna
2015-01-01
Cerebral microbleeds (CMB) might reflect specific underlying vascular pathologies like cerebral amyloid angiopathy (CAA). In the present study we report the gradient-echo MRI pattern of two siblings with P284S PSEN1 mutation. T2* gradient-echo images of the two subjects demonstrated multiple microbleeds in lobar regions. The role and causes of CMB in sporadic Alzheimer's disease (AD) patients have not been clearly established and useful contributions could derive from familial AD studies. Furthermore, since CAA is a potential risk factor for developing adverse events in AD immunization trials, the identification in vivo of CAA through non-invasive MRI methods could be useful to monitoring side effects.
Baseline brain energy supports the state of consciousness.
Shulman, Robert G; Hyder, Fahmeed; Rothman, Douglas L
2009-07-07
An individual, human or animal, is defined to be in a conscious state empirically by the behavioral ability to respond meaningfully to stimuli, whereas the loss of consciousness is defined by unresponsiveness. PET measurements of glucose or oxygen consumption show a widespread approximately 45% reduction in cerebral energy consumption with anesthesia-induced loss of consciousness. Because baseline brain energy consumption has been shown by (13)C magnetic resonance spectroscopy to be almost exclusively dedicated to neuronal signaling, we propose that the high level of brain energy is a necessary property of the conscious state. Two additional neuronal properties of the conscious state change with anesthesia. The delocalized fMRI activity patterns in rat brain during sensory stimulation at a higher energy state (close to the awake) collapse to a contralateral somatosensory response at lower energy state (deep anesthesia). Firing rates of an ensemble of neurons in the rat somatosensory cortex shift from the gamma-band range (20-40 Hz) at higher energy state to <10 Hz at lower energy state. With the conscious state defined by the individual's behavior and maintained by high cerebral energy, measurable properties of that state are the widespread fMRI patterns and high frequency neuronal activity, both of which support the extensive interregional communication characteristic of consciousness. This usage of high brain energies when the person is in the "state" of consciousness differs from most studies, which attend the smaller energy increments observed during the stimulations that form the "contents" of that state.
Liu, Shu Q.; Roberts, Derek; Zhang, Brian; Ren, Yupeng; Zhang, Li-Qun; Wu, Yu H.
2013-01-01
Cerebral ischemia, while causing neuronal injury, can activate innate neuroprotective mechanisms, minimizing neuronal death. In this report, we demonstrate that experimental cerebral ischemia/reperfusion injury in the mouse causes upregulation of the secretory protein trefoil factor 3 (TFF3) in the hepatocyte in association with an increase in serum TFF3. Partial hepatectomy (~60% liver resection) immediately following cerebral injury significantly lowered the serum level of TFF3, suggesting a contribution of the liver to the elevation of serum TFF3. Compared to wild-type mice, TFF3-/- mice exhibited a significantly higher activity of caspase 3 and level of cell death in the ischemic cerebral lesion, a larger fraction of cerebral infarcts, and a smaller fraction of the injured cerebral hemisphere, accompanied by severer forelimb motor deficits. Intravenous administration of recombinant TFF3 reversed changes in cerebral injury and forelimb motor function due to TFF3 deficiency. These observations suggest an endocrine neuroprotective mechanism involving TFF3 from the liver in experimental cerebral ischemia/reperfusion injury. PMID:24204940
ERIC Educational Resources Information Center
Manouilenko, Irina; Pagani, Marco; Stone-Elander, Sharon; Odh, Richard; Brolin, Fredrik; Hatherly, Robert; Jacobsson, Hans; Larsson, Stig A.; Bejerot, Susanne
2013-01-01
The resting regional cerebral blood flow (rCBF) patterns related to co-occurring symptoms such as inattention, hyperactivity, neurological soft signs and motor problems have not yet been disclosed in autism spectrum disorders (ASD). In this study thirteen adults with ASD and ten matched neurotypical controls underwent PET. The scores of rating…
Gait Patterns in Hemiplegic Children with Cerebral Palsy: Comparison of Right and Left Hemiplegia
ERIC Educational Resources Information Center
Galli, Manuela; Cimolin, Veronica; Rigoldi, Chiara; Tenore, Nunzio; Albertini, Giorgio
2010-01-01
The aims of this study are to compare quantitatively the gait strategy of the right and left hemiplegic children with Cerebral Palsy (CP) using gait analysis. The gait strategy of 28 right hemiparetic CP (RHG) and 23 left hemiparetic CP (LHG) was compared using gait analysis (spatio-temporal and kinematic parameters) and considering the hemiplegic…
ERIC Educational Resources Information Center
Holmstrom, Linda; Vollmer, Brigitte; Tedroff, Kristina; Islam, Mominul; Persson, Jonas Ke; Kits, Annika; Forssberg, Hans; Eliasson, Ann-Christin
2010-01-01
Aim: To investigate relationships between hand function, brain lesions, and corticomotor projections in children with unilateral cerebral palsy (CP). Method: The study included 17 children (nine males, eight females; mean age 11.4 [SD 2.4] range 7-16y), with unilateral CP at Gross Motor Function Classification System level I and Manual Ability…
ERIC Educational Resources Information Center
Varsamis, Panagiotis; Staikopoulos, Konstantinos; Kartasidou, Lefkothea
2012-01-01
One of the purposes of Rhythmic Auditory Stimulation (RAS) is to improve the control of dysfunctional movement patterns. This study aimed to extend the line of research by focussing on secondary students with mental retardation and cerebral palsy. According to the study's assumption, cadence can be controlled through a stable and low signal…
Selective motor control correlates with gait abnormality in children with cerebral palsy.
Chruscikowski, Emily; Fry, Nicola R D; Noble, Jonathan J; Gough, Martin; Shortland, Adam P
2017-02-01
Children with bilateral cerebral palsy (CP) commonly have limited selective motor control (SMC). This affects their ability to complete functional tasks. The impact of impaired SMC on walking has yet to be fully understood. Measures of SMC have been shown to correlate with specific characteristics of gait, however the impact of SMC on overall gait pattern has not been reported. This study explored SMC data collected as part of routine gait analysis in children with bilateral CP. As part of their clinical assessment, SMC was measured with the Selective Control Assessment of the Lower Extremities (SCALE) in 194 patients with bilateral cerebral palsy attending for clinical gait analysis at a single centre. Their summed SCALE score was compared with overall gait impairment, as measured by Gait Profile Score (GPS). Score on SCALE showed a significant negative correlation with GPS (r s =-0.603, p<0.001). Cerebral injuries in CP result in damage to the motor tracts responsible for SMC. Our results indicate that this damage is also associated with changes in the development of walking pattern in children with CP. Copyright © 2016 Elsevier B.V. All rights reserved.
Gao, Yong-Zhe; Zhang, Jun-Jian; Liu, Hui; Wu, Guang-Yao; Xiong, Li; Shu, Min
2013-02-01
Hemodynamic disturbance in cerebral blood flow (CBF) is common in both Alzheimer's disease (AD) and vascular dementia (VaD).The aim of this study is to investigate the different patterns of regional cerebral blood flow (rCBF) change and cerebrovascular reactivity (CVR) in these two types of dementia. Mean flow velocity (MFV) of middle cerebral artery and rCBF were measured by Transcranial Doppler ultrasound (TCD) and arterial spin-labeling (ASL) magnetic resonance, separately. CVR was evaluated by MFV or rCBF change in response to 5% CO2 inhalation. The ASL results showed that, rCBF was significantly lower in both the bilateral frontal and temporal lobes in AD group and lower in left frontal and temporal white matter in patients with VaD. CVR calculated by rCBF was impaired more severely in bilateral frontal cortices in AD. Conversely, TCD tests failed to demonstrate significant difference in MFV and CVR between the two groups. It is concluded that the different patterns detected by ASL in resting rCBF change and cerebrovascular reactivity in response to carbogen inhalation may serve as a potential marker to distinguish AD and VaD.
Le Heron, Campbell J; Wright, Sarah L; Melzer, Tracy R; Myall, Daniel J; MacAskill, Michael R; Livingston, Leslie; Keenan, Ross J; Watts, Richard; Dalrymple-Alford, John C; Anderson, Tim J
2014-06-01
Emerging evidence suggests that Alzheimer's disease (AD) and Parkinson's disease dementia (PDD) share neurodegenerative mechanisms. We sought to directly compare cerebral perfusion in these two conditions using arterial spin labeling magnetic resonance imaging (ASL-MRI). In total, 17 AD, 20 PDD, and 37 matched healthy controls completed ASL and structural MRI, and comprehensive neuropsychological testing. Alzheimer's disease and PDD perfusion was analyzed by whole-brain voxel-based analysis (to assess absolute blood flow), a priori specified region of interest analysis, and principal component analysis (to generate a network differentiating the two groups). Corrections were made for cerebral atrophy, age, sex, education, and MRI scanner software version. Analysis of absolute blood flow showed no significant differences between AD and PDD. Comparing each group with controls revealed an overlapping, posterior pattern of hypoperfusion, including posterior cingulate gyrus, precuneus, and occipital regions. The perfusion network that differentiated AD and PDD groups identified relative differences in medial temporal lobes (AD
AltitudeOmics: effect of ascent and acclimatization to 5260 m on regional cerebral oxygen delivery.
Subudhi, Andrew W; Fan, Jui-Lin; Evero, Oghenero; Bourdillon, Nicolas; Kayser, Bengt; Julian, Colleen G; Lovering, Andrew T; Roach, Robert C
2014-05-01
Cerebral hypoxaemia associated with rapid ascent to high altitude can be life threatening; yet, with proper acclimatization, cerebral function can be maintained well enough for humans to thrive. We investigated adjustments in global and regional cerebral oxygen delivery (DO2) as 21 healthy volunteers rapidly ascended and acclimatized to 5260 m. Ultrasound indices of cerebral blood flow in internal carotid and vertebral arteries were measured at sea level, upon arrival at 5260 m (ALT1; atmospheric pressure 409 mmHg) and after 16 days of acclimatization (ALT16). Cerebral DO2 was calculated as the product of arterial oxygen content and flow in each respective artery and summed to estimate global cerebral blood flow. Vascular resistances were calculated as the quotient of mean arterial pressure and respective flows. Global cerebral blood flow increased by ∼70% upon arrival at ALT1 (P < 0.001) and returned to sea-level values at ALT16 as a result of changes in cerebral vascular resistance. A reciprocal pattern in arterial oxygen content maintained global cerebral DO2 throughout acclimatization, although DO2 to the posterior cerebral circulation was increased by ∼25% at ALT1 (P = 0.032). We conclude that cerebral DO2 is well maintained upon acute exposure and acclimatization to hypoxia, particularly in the posterior and inferior regions of the brain associated with vital homeostatic functions. This tight regulation of cerebral DO2 was achieved through integrated adjustments in local vascular resistances to alter cerebral perfusion during both acute and chronic exposure to hypoxia. © 2013 The Authors. Experimental Physiology © 2013 The Physiological Society.
Rosa, Luciana; Galant, Leticia S; Dall'Igna, Dhébora M; Kolling, Janaina; Siebert, Cassiana; Schuck, Patrícia F; Ferreira, Gustavo C; Wyse, Angela T S; Dal-Pizzol, Felipe; Scaini, Giselli; Streck, Emilio L
2016-08-01
Maple syrup urine disease (MSUD) is a rare metabolic disorder associated with acute and chronic brain dysfunction. This condition has been shown to lead to macroscopic cerebral alterations that are visible on imaging studies. Cerebral oedema is widely considered to be detrimental for MSUD patients; however, the mechanisms involved are still poorly understood. Therefore, we investigated whether acute administration of branched-chain amino acids (BCAA) causes cerebral oedema, modifies the Na(+),K(+)-ATPase activity, affects the permeability of the blood-brain barrier (BBB) and alters the levels of cytokines in the hippocampus and cerebral cortex of 10-day-old rats. Additionally, we investigated the influence of concomitant administration of dexamethasone on the alterations caused by BCAA. Our results showed that the animals submitted to the model of MSUD exhibited an increase in the brain water content, both in the cerebral cortex and in the hippocampus. By investigating the mechanism of cerebral oedema, we discovered an association between H-BCAA and the Na(+),K(+)-ATPase activity and the permeability of the BBB to small molecules. Moreover, the H-BCAA administration increases Il-1β, IL-6 and TNF-α levels in the hippocampus and cerebral cortex, whereas IL-10 levels were decreased in the hippocampus. Interestingly, we showed that the administration of dexamethasone successfully reduced cerebral oedema, preventing the inhibition of Na(+),K(+)-ATPase activity, BBB breakdown and the increase in the cytokines levels. In conclusion, these findings suggest that dexamethasone can improve the acute cerebral oedema and brain injury associated with high levels of BCAA, either through a direct effect on brain capillary Na(+),K(+)-ATPase or through a generalized effect on the permeability of the BBB to all compounds.
Dragon's blood dropping pills have protective effects on focal cerebral ischemia rats model.
Xin, Nian; Yang, Fang-Ju; Li, Yan; Li, Yu-Juan; Dai, Rong-Ji; Meng, Wei-Wei; Chen, Yan; Deng, Yu-Lin
2013-12-15
Dragon's blood is a bright red resin obtained from Dracaena cochinchinensis (Lour.) S.C.Chen (Yunnan, China). As a traditional Chinese medicinal herb, it has great traditional medicinal value and is used for wound healing and to stop bleeding. Its main biological activity comes from phenolic compounds. In this study, phenolic compounds were made into dropping pills and their protective effects were examined by establishing focal cerebral ischemia rats model used method of Middle Cerebral Artery Occlusion (MCAO), and by investigating indexes of neurological scores, infarct volume, cerebral index, cerebral water content and oxidation stress. Compared to model group, high, middle and low groups of Dragon's blood dropping pills could improve the neurological function significantly (p<0.01) and reduce cerebral infarct volume of focal cerebral ischemia rats remarkably (p<0.05-0.01). Meanwhile, each group could alleviate cerebral water content and cerebral index (p<0.05-0.01) and regulate oxidative stress of focal cerebral ischemia rats obviously (p<0.05-0.01). Activities of middle group corresponded with that treated with positive control drug. The results obtained here showed that Dragon's blood dropping pills had protective effects on focal cerebral ischemia rats. Copyright © 2013 Elsevier GmbH. All rights reserved.
Groen, Margriet A; Whitehouse, Andrew J O; Badcock, Nicholas A; Bishop, Dorothy V M
2012-01-01
In the majority of people, language production is lateralized to the left cerebral hemisphere and visuospatial skills to the right. However, questions remain as to when, how, and why humans arrive at this division of labor. In this study, we assessed cerebral lateralization for language production and for visuospatial memory using functional transcranial Doppler ultrasound in a group of 60 typically developing children between the ages of six and 16 years. The typical pattern of left-lateralized activation for language production and right-lateralized activation for visuospatial memory was found in the majority of the children (58%). No age-related change in direction or strength of lateralization was found for language production. In contrast, the strength of lateralization (independent of direction) for visuospatial memory function continued to increase with age. In addition, boys showed a trend for stronger right-hemisphere lateralization for visuospatial memory than girls, but there was no gender effect on language laterality. We tested whether having language and visuospatial functions in the same hemisphere was associated with poor cognitive performance and found no evidence for this “functional crowding” hypothesis. We did, however, find that children with left-lateralized language production had higher vocabulary and nonword reading age-adjusted standard scores than other children, regardless of the laterality of visuospatial memory. Thus, a link between language function and left-hemisphere lateralization exists, and cannot be explained in terms of maturational change. PMID:22741100
Energy metabolism of rat cerebral cortex, hypothalamus and hypophysis during ageing.
Villa, R F; Ferrari, F; Gorini, A
2012-12-27
Ageing is one of the main risk factors for brain disorders. According to the neuroendocrine theory, ageing modifies the sensitivity of hypothalamus-pituitary-adrenal axis to homoeostatic signals coming from the cerebral cortex. The relationships between the energy metabolism of these areas have not been considered yet, in particular with respect to ageing. For these reasons, this study was undertaken to systematically investigate in female Sprague-Dawley rats aged 4, 6, 12, 18, 24, 28 months and in 4-month-old male ones, the catalytic properties of energy-linked enzymes of the Krebs' cycle, electron transport chain, glutamate and related amino acids on different mitochondrial subpopulations, i.e. non-synaptic perikaryal and intra-synaptic (two types) mitochondria. The biochemical enzymatic pattern of these mitochondria shows different expression of the above-mentioned enzymatic activities in the investigated brain areas, including frontal cerebral cortex, hippocampus, striatum, hypothalamus and hypophysis. The study shows that: (i) the energy metabolism of the frontal cerebral cortex is poorly affected by physiological ageing; (ii) the biochemical machinery of non-synaptic perikaryal mitochondria is differently expressed in the considered brain areas; (iii) at 4-6 months, hypothalamus and hypophysis possess lower oxidative metabolism with respect to the frontal cerebral cortex while (iv), during ageing, the opposite situation occurs. We hypothesised that these metabolic modifications likely try to grant HPA functionality in response to the incoming external stress stimuli increased during ageing. It is particularly notable that age-related changes in brain bioenergetics and in mitochondrial functionality may be considered as remarkable factors during physiological ageing and should play important roles in predisposing the brain to physiopathological events, tightly related to molecular mechanisms evoked for pharmacological treatments. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
Shankaran, Seetha; McDonald, Scott A; Laptook, Abbot R; Hintz, Susan R; Barnes, Patrick D; Das, Abhik; Pappas, Athina; Higgins, Rosemary D
2015-11-01
To examine the ability of magnetic resonance imaging (MRI) patterns of neonatal brain injury defined by the National Institute of Child Health and Human Development Neonatal Research Network to predict death or IQ at 6-7 years of age following hypothermia for neonatal encephalopathy. Out of 208 participants, 124 had MRI and primary outcome (death or IQ <70) data. The relationship between injury pattern and outcome was assessed. Death or IQ <70 occurred in 4 of 50 (8%) of children with pattern 0 (normal MRI), 1 of 6 (17%) with 1A (minimal cerebral lesions), 1 of 4 (25%) with 1B (extensive cerebral lesions), 3 of 8 (38%) with 2A (basal ganglia thalamic, anterior or posterior limb of internal capsule, or watershed infarction), 32 of 49 (65%) with 2B (2A with cerebral lesions), and 7 of 7 (100%) with pattern 3 (hemispheric devastation), P < .001; this association was also seen within hypothermia and control subgroups. IQ was 90 ± 13 among the 46 children with a normal MRI and 69 ± 25 among the 50 children with an abnormal MRI. In childhood, for a normal outcome, a normal neonatal MRI had a sensitivity of 61%, specificity of 92%, a positive predictive value of 92%, and a negative predictive value of 59%; for death or IQ <70, the 2B and 3 pattern combined had a sensitivity of 81%, specificity of 78%, positive predictive value of 70%, and a negative predictive value of 87%. The Neonatal Research Network MRI pattern of neonatal brain injury is a biomarker of neurodevelopmental outcome at 6-7 years of age. ClinicalTrials.gov: NCT00005772. Copyright © 2015. Published by Elsevier Inc.
From blood oxygenation level dependent (BOLD) signals to brain temperature maps.
Sotero, Roberto C; Iturria-Medina, Yasser
2011-11-01
A theoretical framework is presented for converting Blood Oxygenation Level Dependent (BOLD) images to brain temperature maps, based on the idea that disproportional local changes in cerebral blood flow (CBF) as compared with cerebral metabolic rate of oxygen consumption (CMRO₂) during functional brain activity, lead to both brain temperature changes and the BOLD effect. Using an oxygen limitation model and a BOLD signal model, we obtain a transcendental equation relating CBF and CMRO₂ changes with the corresponding BOLD signal, which is solved in terms of the Lambert W function. Inserting this result in the dynamic bioheat equation describing the rate of temperature changes in the brain, we obtain a nonautonomous ordinary differential equation that depends on the BOLD response, which is solved numerically for each brain voxel. Temperature maps obtained from a real BOLD dataset registered in an attention to visual motion experiment were calculated, obtaining temperature variations in the range: (-0.15, 0.1) which is consistent with experimental results. The statistical analysis revealed that significant temperature activations have a similar distribution pattern than BOLD activations. An interesting difference was the activation of the precuneus in temperature maps, a region involved in visuospatial processing, an effect that was not observed on BOLD maps. Furthermore, temperature maps were more localized to gray matter regions than the original BOLD maps, showing less activated voxels in white matter and cerebrospinal fluid.
Platelet Factor 4 Mediates Inflammation in Cerebral Malaria
Srivastava, Kalyan; Cockburn, Ian A.; Swaim, AnneMarie; Thompson, Laura E.; Tripathi, Abhai; Fletcher, Craig A.; Shirk, Erin M.; Sun, Henry; Kowalska, M. Anna; Fox-Talbot, Karen; Sullivan, David; Zavala, Fidel; Morrell, Craig N.
2008-01-01
Summary Cerebral malaria is a major complication of Plasmodium falciparum infection in children. The pathogenesis of cerebral malaria involves vascular inflammation, immune stimulation and obstruction of cerebral capillaries. Platelets have a prominent role in both immune responses and vascular obstruction. We now demonstrate that the platelet derived chemokine, platelet factor 4 (PF4)/CXCL4, promotes the development of experimental cerebral malaria. Plasmodium infected red blood cells (RBC) activated platelets independent of vascular effects, resulting in increased plasma PF4. PF4 or CXCR3 null mice had less ECM, decreased brain T-cell recruitment, and platelet depletion or aspirin treatment reduced the development of ECM. We conclude that Plasmodium infected RBC can activate platelets and platelet derived PF4 then contributes to immune activation and T-cell trafficking as part of the pathogenesis of ECM. PMID:18692777
Postnatal change in sulcal length asymmetry in cerebrum of cynomolgus monkeys (Macaca fascicularis).
Sakamoto, Kazuhito; Sawada, Kazuhiko; Fukunishi, Katsuhiro; Noritaka, Imai; Sakata-Haga, Hiromi; Yoshihiro, Fukui
2014-02-01
The purpose of this study was to determine the timing of the onset of adult-type sulcal length asymmetry during postnatal development of the male cynomolgus monkey cerebrum. The monkey brain has already reached adult size by 3 months of age, although the body weight only represents 1/8 of the adult body weight by that time. The fronto-occipital length and the cerebral width also reached adult levels by that postnatal age with no left/right bias. Consistently, lengths of the major primary sulci reached adult levels by 3 months of age, and then decreased slightly in sexually mature monkeys (4-6.5 years of age). Asymmetry quotient analysis showed that sulcal length asymmetry patterns gradually changed during postnatal development. The male adult pattern of sulcal length asymmetry was acquired after 24 months of age. In particular, age-dependent rightward lateralization of the arcuate sulcal length was revealed during cerebral maturation by three-way ANOVA. The results suggest that the regional difference in cerebral maturation from adolescence to young adulthood modifies the sulcal morphology with characteristic asymmetric patterns in male cynomolgus monkeys. Copyright © 2013 Wiley Periodicals, Inc.
Karbowski, Lukasz M; Saroka, Kevin S; Murugan, Nirosha J; Persinger, Michael A
2015-10-01
An array of eight cloistered (completely covered) 470-nm LEDs was attached to the right caudal scalp of subjects while each sat blindfolded within a darkened chamber. The LEDs were activated by a computer-generated complex (frequency-modulated) temporal pattern that, when applied as weak magnetic fields, has elicited sensed presences and changes in LORETA (low-resolution electromagnetic tomography) configurations. Serial 5-min on to 5-min off presentations of the blue light (10,000lx) resulted in suppression of gamma activity within the right cuneus (including the extrastriate area), beta activity within the left angular and right superior temporal regions, and alpha power within the right parahippocampal region. The effect required about 5min to emerge followed by a transient asymptote for about 15 to 20min when diminished current source density was evident even during no light conditions. Subjective experiences, as measured by our standard exit questionnaire, reflected sensations similar to those reported when the pattern was presented as a weak magnetic field. Given previous evidence that photon flux density of this magnitude can penetrate the skull, these results suggest that properly configured LEDs that generate physiologically patterned light sequences might be employed as noninvasive methods to explore the dynamic characteristics of cerebral activity in epileptic and nonepileptic brains. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Golanov, E. V.; Reis, D. J.
1996-01-01
We recorded neurons in rat cerebral cortex with activity relating to the neurogenic elevations in regional cerebral blood flow (rCBF) coupled to stereotyped bursts of EEG activity, burst-cerebrovascular wave complexes, appearing spontaneously or evoked by electrical stimulation of rostral ventrolateral medulla (RVL) or fastigial nucleus (FN). Of 333 spontaneously active neurons only 15 (5%), in layers 5-6, consistently (P < 0.05, chi-square) increased their activity during the earliest potential of the complex, approximately 1.3 s before the rise of rCBF, and during the minutes-long elevation of rCBF elicited by 10 s of stimulation of RVL or FN. The results indicate the presence of a small population of neurons in deep cortical laminae whose activity correlates with neurogenic elevations of rCBF. These neurons may function to transduce afferent neuronal signals into vasodilation.
Streptococcus agalactiae impairs cerebral bioenergetics in experimentally infected silver catfish.
Baldissera, Matheus D; Souza, Carine F; Parmeggiani, Belisa S; Santos, Roberto C V; Leipnitz, Guilhian; Moreira, Karen L S; da Rocha, Maria Izabel U M; da Veiga, Marcelo L; Baldisserotto, Bernardo
2017-10-01
It is becoming evident that bacterial infectious diseases affect brain energy metabolism, where alterations of enzymatic complexes of the mitochondrial respiratory chain and creatine kinase (CK) lead to an impairment of cerebral bioenergetics which contribute to disease pathogenesis in the central nervous system (CNS). Based on this evidence, the aim of this study was to evaluate whether alterations in the activity of complex IV of the respiratory chain and CK contribute to impairment of cerebral bioenergetics during Streptococcus agalactiae infection in silver catfish (Rhamdia quelen). The activity of complex IV of the respiratory chain in brain increased, while the CK activity decreased in infected animals compared to uninfected animals. Brain histopathology revealed inflammatory demyelination, gliosis of the brain and intercellular edema in infected animals. Based on this evidence, S. agalactiae infection causes an impairment in cerebral bioenergetics through the augmentation of complex IV activity, which may be considered an adaptive response to maintain proper functioning of the electron respiratory chain, as well as to ensure ongoing electron flow through the electron transport chain. Moreover, inhibition of cerebral CK activity contributes to lower availability of ATP, contributing to impairment of cerebral energy homeostasis. In summary, these alterations contribute to disease pathogenesis linked to the CNS. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chan, H S S; Lau, P H B; Fong, K H; Poon, D; Lam, C C C
2005-10-01
To study children with cerebral palsy in Hong Kong, their neuroimpairment, activity limitation, and participation restriction in society. Parents' opinion on current medical and rehabilitation services was also sought. Systematic survey using questionnaires. Four associations in Hong Kong: Child Assessment Service, Hong Kong Association for Parents of Children with Physical Disabilities, Association of Parents of the Severely Mentally Handicapped, and Hong Kong Physically Handicapped and Able-Bodied Association. Parents of children with cerebral palsy. Neuroimpairment, activity limitation, and participation restriction. Information from 181 children with cerebral palsy was analysed. Among them, 56% were boys. The mean age was 7 years 6 months (standard deviation, 3 years 11 months). The most common diagnostic type was spastic cerebral palsy. Co-morbidities in children with cerebral palsy were common. Limitation in daily activities including mobility and self-care tasks was considerable and this posed great stress to parents when taking care of their children. Children's participation in both social and leisure activities was regarded as a low priority. A high percentage (70%) of parents reported difficulty in travelling. The reasons involved problems in transportation, building access (entry and exit), and attitudes of the general public. These environmental factors restricted the social participation of the children and their families. Over 75% of parents were satisfied with the current medical and rehabilitation services. Children with cerebral palsy have multiple and complex needs. The findings of this study may serve as a reference for parents, service providers, and policy makers to work in partnership to achieve a more comprehensive health-care service for children with cerebral palsy and to facilitate better integration into the community.
Williams, Rebecca J; Reutens, David C; Hocking, Julia
2015-11-01
Decreased water displacement following increased neural activity has been observed using diffusion-weighted functional MRI (DfMRI) at high b-values. The physiological mechanisms underlying the diffusion signal change may be unique from the standard blood oxygenation level-dependent (BOLD) contrast and closer to the source of neural activity. Whether DfMRI reflects neural activity more directly than BOLD outside the primary cerebral regions remains unclear. Colored and achromatic Mondrian visual stimuli were statistically contrasted to functionally localize the human color center Area V4 in neurologically intact adults. Spatial and temporal properties of DfMRI and BOLD activation were examined across regions of the visual cortex. At the individual level, DfMRI activation patterns showed greater spatial specificity to V4 than BOLD. The BOLD activation patterns were more prominent in the primary visual cortex than DfMRI, where activation was localized to the ventral temporal lobe. Temporally, the diffusion signal change in V4 and V1 both preceded the corresponding hemodynamic response, however the early diffusion signal change was more evident in V1. DfMRI may be of use in imaging applications implementing cognitive subtraction paradigms, and where highly precise individual functional localization is required.
ERIC Educational Resources Information Center
Butler, Jane M.; Scianni, Aline; Ada, Louise
2010-01-01
The question under consideration was does cardiorespiratory training improve aerobic fitness in children with cerebral palsy and is there any carryover into activity? The study design consisted of a systematic review of randomized trials using the Cochrane Collaboration guidelines. Participants were children of school age with cerebral palsy.…
Bertoti, D B; Gross, A L
1988-07-01
Biofeedback devices have been used successfully to improve head control and symmetrical standing in children with cerebral palsy. This clinical report describes a biofeedback seat insert developed to improve erect sitting posture in children with cerebral palsy who have inadequate trunk control. The seat insert is easily placed against the back of any seating device. A momentary-contact pressure switch on the seat insert is activated when the child exerts pressure on it by extending his trunk. The pressure switch then activates a videocassette recorder or can be adapted to activate a television or radio. Five children with spastic cerebral palsy participated in this evaluation of the biofeedback seat insert. The results of this evaluation show that the children used the biofeedback seat insert effectively to actively improve their sitting posture by voluntarily extending their trunk against the pressure switch. The biofeedback seat insert offers physical therapists a valuable therapeutic training tool to encourage carry-over of improved sitting posture away from the clinical setting for children with cerebral palsy.
Avrova, N F; Shestak, K I; Zakharova, I O; Sokolova, T V; Tyurina, Y Y; Tyurin, V A
2000-01-01
Glutamate is shown to induce increases in intracellular Ca2+ concentrations ([Ca2+]i), increases in 45Ca2+ influx, decreases in the activity of Na+,K+-ATPase activity, and activation of the Na+/Ca2+ exchanger in rat cerebral cortex synaptosomes. NMDA receptor antagonists virtually prevented these effects. Preincubation of synaptosomes with alpha-tocopherol, superoxide dismutase, and ganglioside GM1 normalized [Ca2+]i, 45Ca2+ influx, and Na+,K+-ATPase activity in rat cerebral cortex synaptosomes exposed to glutamate. Glutamate and GM1 activated the Na+/K+ exchanger, and their effects were additive. Calcium ions entering cerebral cortex nerve cells via NMDA receptors during exposure to high glutamate concentrations appeared to be only the trigger for the processes activating free-radical reactions. Activation of these reactions led to increases in Ca2+ influx into cells, decreases in Na+,K+-ATPase activity, and significant increases in [Ca2+]i, though this could be prevented by antioxidants and gangliosides.
ERIC Educational Resources Information Center
Jacobson, Lena; Rydberg, Agneta; Eliasson, Ann-Christin; Kits, Annika; Flodmark, Olof
2010-01-01
Aim: To relate visual field function to brain morphology in children with unilateral cerebral palsy (CP). Method: Visual field function was assessed using the confrontation technique and Goldmann perimetry in 29 children (15 males, 14 females; age range 7-17y, median age 11y) with unilateral CP classified at Gross Motor Function Classification…
ERIC Educational Resources Information Center
Glanzman, Allan; Ducret, Walter
2003-01-01
To select an adapted mobility device for a 5-year-old boy with blindness and spastic diplegic cerebral palsy, a multidisciplinary team used 8-millimeter videography to evaluate the subject's joint angle during ambulation with one of three canes and with no cane. The I-style cane provided optimal posture and gait pattern. (Contains references.) (CR)
ERIC Educational Resources Information Center
Krautwurst, Britta K.; Wolf, Sebastian I.; Heitzmann, Daniel W. W.; Gantz, Simone; Braatz, Frank; Dreher, Thomas
2013-01-01
Trendelenburg walking pattern is a common finding in various disorders, including cerebral palsy (CP), where it is seen in children and adults. Clinically, this deviation is viewed as a consequence of hip abductor weakness resulting in pelvic obliquity. Trunk lean to the ipsilateral side is a common compensatory mechanism to counteract pelvic…
ERIC Educational Resources Information Center
Lotz, H. Winky
Written for parents to use in the home environment, this illustrated handbook describes the Maxi-Move program, an intensive one-year program of exercise for children of one to eight years of age, who have cerebral palsy. The program does not use physical therapy, patterning, or specific movement goals, but focuses on having fun, creating…
Experimental study of hemodynamics in the Circle of Willis.
Zhu, Guangyu; Yuan, Qi; Yang, Jian; Yeo, Joon
2015-01-01
The Circle of Willis (CoW) is an important collateral pathway of the cerebral blood flow. An experimental study of the cerebral blood flow (CBF) distribution in different anatomical variations may help to a better understanding of the collateral mechanism of the CoW. An in-vitro test rig was developed to simulate the physiological cerebral blood flow in the CoW. Ten anatomical variations were considered in this study, include a set of different degrees of stenosis in L-ICA and L-ICA occlusion coexist with common anatomical variations. Volume flow rates of efferent arteries and pressure signals at the end of communicating arteries of each case were recorded. Physiological pressure waveforms were applied as inlet boundary condition. In the development of L-ICA stenosis, the total CBF decreases with the increase of stenosis degree. The blood supply of ipsilateral middle cerebral artery (MCA) was affected most by the stenosis of L-ICA. Anterior communicating artery (ACoA) and ipsilateral posterior communicating artery (PCoA) function as important collateral pathways of cerebral collateral circulation when unilateral stenosis occurred. The blood supply of anterior cerebral circulation was compensated by the posterior cerebral circulation through ipsilateral PCoA when L-ICA stenosis degree is greater than 40% and the affected side was compensated immediately by the unaffected side through ACoA. Blood flow of the anterior circulation and the total CBF reached the minimum among all cases studied when L-ICA occlusion coexist with the absence of PCoA. The results demonstrated the flow distribution patterns of the CoW under anatomical variations and clarified the collateral mechanism of the CoW. The flow ACoA is the most sensitive indexes to the morphology change of ipsilateral ICA. The relative independence of the circulation in anterior and posterior sections of the CoW is not broken and the function of ipsilateral PCoA is not activated until a severe stenosis of unilateral ICA occurs. PCoA is the most important collateral pathway of the collateral circulation and the missing of PCoA has the highest risk of stroke when the ipsilateral ICA has severe stenosis. These findings may provide the basis for future therapeutic and diagnosis applications.
Vecchiato, Giovanni; Tieri, Gaetano; Jelic, Andrea; De Matteis, Federico; Maglione, Anton G; Babiloni, Fabio
2015-01-01
Nowadays there is the hope that neuroscientific findings will contribute to the improvement of building design in order to create environments which satisfy man's demands. This can be achieved through the understanding of neurophysiological correlates of architectural perception. To this aim, the electroencephalographic (EEG) signals of 12 healthy subjects were recorded during the perception of three immersive virtual reality environments (VEs). Afterwards, participants were asked to describe their experience in terms of Familiarity, Novelty, Comfort, Pleasantness, Arousal, and Presence using a rating scale from 1 to 9. These perceptual dimensions are hypothesized to influence the pattern of cerebral spectral activity, while Presence is used to assess the realism of the virtual stimulation. Hence, the collected scores were used to analyze the Power Spectral Density (PSD) of the EEG for each behavioral dimension in the theta, alpha and mu bands by means of time-frequency analysis and topographic statistical maps. Analysis of Presence resulted in the activation of the frontal-midline theta, indicating the involvement of sensorimotor integration mechanisms when subjects expressed to feel more present in the VEs. Similar patterns also characterized the experience of familiar and comfortable VEs. In addition, pleasant VEs increased the theta power across visuomotor circuits and activated the alpha band in areas devoted to visuospatial exploration and processing of categorical spatial relations. Finally, the de-synchronization of the mu rhythm described the perception of pleasant and comfortable VEs, showing the involvement of left motor areas and embodied mechanisms for environment appreciation. Overall, these results show the possibility to measure EEG correlates of architectural perception involving the cerebral circuits of sensorimotor integration, spatial navigation, and embodiment. These observations can help testing architectural hypotheses in order to design environments matching the changing needs of humans.
Vecchiato, Giovanni; Tieri, Gaetano; Jelic, Andrea; De Matteis, Federico; Maglione, Anton G.; Babiloni, Fabio
2015-01-01
Nowadays there is the hope that neuroscientific findings will contribute to the improvement of building design in order to create environments which satisfy man's demands. This can be achieved through the understanding of neurophysiological correlates of architectural perception. To this aim, the electroencephalographic (EEG) signals of 12 healthy subjects were recorded during the perception of three immersive virtual reality environments (VEs). Afterwards, participants were asked to describe their experience in terms of Familiarity, Novelty, Comfort, Pleasantness, Arousal, and Presence using a rating scale from 1 to 9. These perceptual dimensions are hypothesized to influence the pattern of cerebral spectral activity, while Presence is used to assess the realism of the virtual stimulation. Hence, the collected scores were used to analyze the Power Spectral Density (PSD) of the EEG for each behavioral dimension in the theta, alpha and mu bands by means of time-frequency analysis and topographic statistical maps. Analysis of Presence resulted in the activation of the frontal-midline theta, indicating the involvement of sensorimotor integration mechanisms when subjects expressed to feel more present in the VEs. Similar patterns also characterized the experience of familiar and comfortable VEs. In addition, pleasant VEs increased the theta power across visuomotor circuits and activated the alpha band in areas devoted to visuospatial exploration and processing of categorical spatial relations. Finally, the de-synchronization of the mu rhythm described the perception of pleasant and comfortable VEs, showing the involvement of left motor areas and embodied mechanisms for environment appreciation. Overall, these results show the possibility to measure EEG correlates of architectural perception involving the cerebral circuits of sensorimotor integration, spatial navigation, and embodiment. These observations can help testing architectural hypotheses in order to design environments matching the changing needs of humans. PMID:26733924
Sakai, Tomoko; Matsui, Mie; Mikami, Akichika; Malkova, Ludise; Hamada, Yuzuru; Tomonaga, Masaki; Suzuki, Juri; Tanaka, Masayuki; Miyabe-Nishiwaki, Takako; Makishima, Haruyuki; Nakatsukasa, Masato; Matsuzawa, Tetsuro
2013-02-22
Developmental prolongation is thought to contribute to the remarkable brain enlargement observed in modern humans (Homo sapiens). However, the developmental trajectories of cerebral tissues have not been explored in chimpanzees (Pan troglodytes), even though they are our closest living relatives. To address this lack of information, the development of cerebral tissues was tracked in growing chimpanzees during infancy and the juvenile stage, using three-dimensional magnetic resonance imaging and compared with that of humans and rhesus macaques (Macaca mulatta). Overall, cerebral development in chimpanzees demonstrated less maturity and a more protracted course during prepuberty, as observed in humans but not in macaques. However, the rapid increase in cerebral total volume and proportional dynamic change in the cerebral tissue in humans during early infancy, when white matter volume increases dramatically, did not occur in chimpanzees. A dynamic reorganization of cerebral tissues of the brain during early infancy, driven mainly by enhancement of neuronal connectivity, is likely to have emerged in the human lineage after the split between humans and chimpanzees and to have promoted the increase in brain volume in humans. Our findings may lead to powerful insights into the ontogenetic mechanism underlying human brain enlargement.
Sakai, Tomoko; Matsui, Mie; Mikami, Akichika; Malkova, Ludise; Hamada, Yuzuru; Tomonaga, Masaki; Suzuki, Juri; Tanaka, Masayuki; Miyabe-Nishiwaki, Takako; Makishima, Haruyuki; Nakatsukasa, Masato; Matsuzawa, Tetsuro
2013-01-01
Developmental prolongation is thought to contribute to the remarkable brain enlargement observed in modern humans (Homo sapiens). However, the developmental trajectories of cerebral tissues have not been explored in chimpanzees (Pan troglodytes), even though they are our closest living relatives. To address this lack of information, the development of cerebral tissues was tracked in growing chimpanzees during infancy and the juvenile stage, using three-dimensional magnetic resonance imaging and compared with that of humans and rhesus macaques (Macaca mulatta). Overall, cerebral development in chimpanzees demonstrated less maturity and a more protracted course during prepuberty, as observed in humans but not in macaques. However, the rapid increase in cerebral total volume and proportional dynamic change in the cerebral tissue in humans during early infancy, when white matter volume increases dramatically, did not occur in chimpanzees. A dynamic reorganization of cerebral tissues of the brain during early infancy, driven mainly by enhancement of neuronal connectivity, is likely to have emerged in the human lineage after the split between humans and chimpanzees and to have promoted the increase in brain volume in humans. Our findings may lead to powerful insights into the ontogenetic mechanism underlying human brain enlargement. PMID:23256194
Spatio-temporal cerebral blood flow perfusion patterns in cortical spreading depression
NASA Astrophysics Data System (ADS)
Verisokin, Andrey Yu.; Verveyko, Darya V.; Postnov, Dmitry E.
2017-04-01
Cortical spreading depression (CSD) is an example of one of the most common abnormalities in biophysical brain functioning. Despite the fact that there are many mathematical models describing the cortical spreading depression (CSD), most of them do not take into consideration the role of redistribution of cerebral blood flow (CBF), that results in the formation of spatio-temporal patterns. The paper presents a mathematical model, which successfully explains the CBD role in the CSD process. Numerical study of this model has revealed the formation of stationary dissipative structures, visually analogous to Turing structures. However, the mechanism of their formation is not diffusion. We show these structures occur due to another type of spatial coupling, that is related to tissue perfusion rate. The proposed model predicts that at similar state of neurons the distribution of blood flow and oxygenation may by different. Currently, this effect is not taken into account when the Blood oxygen-level dependent (BOLD) contrast imaging used in functional magnetic resonance imaging (fMRI). Thus, the diagnosis on the BOLD signal can be ambiguous. We believe that our results can be used in the future for a more correct interpretation of the data obtained with fMRI, NIRS and other similar methods for research of the brain activity.
McCarty, Elizabeth; Morress, Claire
2009-08-01
Children with a diagnosis of cerebral palsy often have significant physical limitations that prevent exploration and full participation in the environment. Assistive technology systems can provide opportunities for children with physical limitations to interact with their world, enabling play, communication, and daily living skills. Efficient access to and control of the technology is critical for successful use; however, establishing consistent access is often difficult because of the nature of the movement patterns exhibited by children with cerebral palsy. This article describes a 3-phase model of evaluation and intervention developed and used by Assistive Technology Services at the Aaron W. Perlman Center, Cincinnati Children's Hospital Medical Center, to establish successful access to technology systems in children with cerebral palsy.
Fridman, Esteban A; Beattie, Bradley J; Broft, Allegra; Laureys, Steven; Schiff, Nicholas D
2014-04-29
Although disorders of consciousness (DOCs) demonstrate widely varying clinical presentations and patterns of structural injury, global down-regulation and bilateral reductions in metabolism of the thalamus and frontoparietal network are consistent findings. We test the hypothesis that global reductions of background synaptic activity in DOCs will associate with changes in the pattern of metabolic activity in the central thalamus and globus pallidus. We compared 32 [(18)F]fluorodeoxyglucose PETs obtained from severely brain-injured patients (BIs) and 10 normal volunteers (NVs). We defined components of the anterior forebrain mesocircuit on high-resolution T1-MRI (ventral, associative, and sensorimotor striatum; globus pallidus; central thalamus and noncentral thalamus). Metabolic profiles for BI and NV demonstrated distinct changes in the pattern of uptake: ventral and association striatum (but not sensorimotor) were significantly reduced relative to global mean uptake after BI; a relative increase in globus pallidus metabolism was evident in BI subjects who also showed a relative reduction of metabolism in the central thalamus. The reversal of globus pallidus and central thalamus profiles across BIs and NVs supports the mesocircuit hypothesis that broad functional (or anatomic) deafferentation may combine to reduce central thalamus activity and release globus pallidus activity in DOCs. In addition, BI subjects showed broad frontoparietal metabolic down-regulation consistent with prior studies supporting the link between central thalamic/pallidal metabolism and down-regulation of the frontoparietal network. Recovery of left hemisphere frontoparietal metabolic activity was further associated with command following.
εPKC confers acute tolerance to cerebral ischemic reperfusion injury
Bright, Rachel; Sun, Guo-Hua; Yenari, Midori A.; Steinberg, Gary K.; Mochly-Rosen, Daria
2008-01-01
In response to mild ischemic stress, the brain elicits endogenous survival mechanisms to protect cells against a subsequent lethal ischemic stress, referred to as ischemic tolerance. The molecular signals that mediate this protection are thought to involve the expression and activation of multiple kinases, including protein kinase C (PKC). Here we demonstrate that εPKC mediates cerebral ischemic tolerance in vivo. Systemic delivery of ψεRACK, an εPKC-selective peptide activator, confers neuroprotection against a subsequent cerebral ischemic event when delivered immediately prior to stroke. In addition, activation of εPKC by ψεRACK treatment decreases vascular tone in vivo, as demonstrated by a reduction in microvascular cerebral blood flow. Here we demonstrate the role of acute and transient εPKC in early cerebral tolerance in vivo and suggest that extra-parenchymal mechanisms, such as vasoconstriction, may contribute to the conferred protection. PMID:18586397
Durmaz, Ramazan; Ozden, Hilmi; Kanbak, Güngör; Aral, Erinç; Arslan, Okan Can; Kartkaya, Kazim; Uzuner, Kubilay
2008-09-01
We hypothesized that dexanabinol can prevent neuronal death by protecting neuronal lysosomes from nitric oxide (NO)-mediated toxicity, and in turn, by suppressing the release of cathepsins during cerebral ischemia. Focal cerebral ischemia was induced in two sets of animals by permanent middle cerebral artery occlusion. The first set was used to monitor NO concentration and cathepsin activity, while the second was used for histological examination with hematoxylin and eosin, and TUNEL staining. In post-ischemic brain tissue, NO content and cathepsin B and L activity increased (p < 0.05). Dexanabinol treatment reduced NO concentration and cathepsin activity to the control level (p > 0.05). The number of eosinophilic and apoptotic neurons increased in the post-ischemic cerebral cortex (p < 0.05). However, dexanabinol treatment lowered both of these (p < 0.05). We conclude that dexanabinol might be a useful agent for the treatment of stroke patients.
Almelli, Talleh; Nuel, Grégory; Bischoff, Emmanuel; Aubouy, Agnès; Elati, Mohamed; Wang, Christian William; Dillies, Marie-Agnès; Coppée, Jean-Yves; Ayissi, Georges Nko; Basco, Leonardo Kishi; Rogier, Christophe; Ndam, Nicaise Tuikue; Deloron, Philippe; Tahar, Rachida
2014-01-01
The mechanisms underlying the heterogeneity of clinical malaria remain largely unknown. We hypothesized that differential gene expression contributes to phenotypic variation of parasites which results in a specific interaction with the host, leading to different clinical features of malaria. In this study, we analyzed the transcriptomes of isolates obtained from asymptomatic carriers and patients with uncomplicated or cerebral malaria. We also investigated the transcriptomes of 3D7 clone and 3D7-Lib that expresses severe malaria associated-variant surface antigen. Our findings revealed a specific up-regulation of genes involved in pathogenesis, adhesion to host cell, and erythrocyte aggregation in parasites from patients with cerebral malaria and 3D7-Lib, compared to parasites from asymptomatic carriers and 3D7, respectively. However, we did not find any significant difference between the transcriptomes of parasites from cerebral malaria and uncomplicated malaria, suggesting similar transcriptomic pattern in these two parasite populations. The difference between isolates from asymptomatic children and cerebral malaria concerned genes coding for exported proteins, Maurer's cleft proteins, transcriptional factor proteins, proteins implicated in protein transport, as well as Plasmodium conserved and hypothetical proteins. Interestingly, UPs A1, A2, A3 and UPs B1 of var genes were predominantly found in cerebral malaria-associated isolates and those containing architectural domains of DC4, DC5, DC13 and their neighboring rif genes in 3D7-lib. Therefore, more investigations are needed to analyze the effective role of these genes during malaria infection to provide with new knowledge on malaria pathology. In addition, concomitant regulation of genes within the chromosomal neighborhood suggests a common mechanism of gene regulation in P. falciparum. PMID:25479608
Shailaja, U; Rao, Prasanna N; Debnath, Parikshit; Adhikari, Anjan
2014-01-01
Cerebral palsy (CP) is the leading cause of childhood disability affecting cognitive function and developments in approximately 1.5 to 3 cases per 1000 live births. Based on Ayurvedic therapeutic principles, CP patients were subjected to Abhyanga (massage) with Moorchita Tila Taila (processed sesame oil) and Svedana (fomentation) with Shastikashali Pinda Sveda (fomentation with bolus of drugs prepared with boiled rice). Study group received Mustadi Rajayapana Basti (enema with herbal decoction) and Baladi Yoga (a poly-herbo-mineral formulation), while the placebo group received Godhuma Vati (tablet prepared with wheat powder) and saline water as enema. Treatment with Mustadi Rajayapana Basti and Baladi Yoga improved the activities of daily life by 8.79%, gross motor functions by 19.76%, and fine motor functions 15.05%, and mental functions like memory retention got improved by 15.43%. The placebo group showed an improvement of 0.21% in daily life activities, 2.8% in gross motor, and 2.4% in fine motor functions. Mustadi Rajayapana Basti and Baladi Yoga proved to be more supportive in improving the motor activities and gross behavioral pattern. Further clinical trials are required to evaluate and validate the maximum effect of the combination therapy in a large sample with repetition of the courses for longer duration.
Shailaja, U; Rao, Prasanna N.; Debnath, Parikshit; Adhikari, Anjan
2014-01-01
Cerebral palsy (CP) is the leading cause of childhood disability affecting cognitive function and developments in approximately 1.5 to 3 cases per 1000 live births. Based on Ayurvedic therapeutic principles, CP patients were subjected to Abhyanga (massage) with Moorchita Tila Taila (processed sesame oil) and Svedana (fomentation) with Shastikashali Pinda Sveda (fomentation with bolus of drugs prepared with boiled rice). Study group received Mustadi Rajayapana Basti (enema with herbal decoction) and Baladi Yoga (a poly-herbo-mineral formulation), while the placebo group received Godhuma Vati (tablet prepared with wheat powder) and saline water as enema. Treatment with Mustadi Rajayapana Basti and Baladi Yoga improved the activities of daily life by 8.79%, gross motor functions by 19.76%, and fine motor functions 15.05%, and mental functions like memory retention got improved by 15.43%. The placebo group showed an improvement of 0.21% in daily life activities, 2.8% in gross motor, and 2.4% in fine motor functions. Mustadi Rajayapana Basti and Baladi Yoga proved to be more supportive in improving the motor activities and gross behavioral pattern. Further clinical trials are required to evaluate and validate the maximum effect of the combination therapy in a large sample with repetition of the courses for longer duration. PMID:24872933
Bekar, Lane K; Wei, Helen S; Nedergaard, Maiken
2012-12-01
Given the brain's uniquely high cell density and tissue oxygen levels bordering on hypoxia, the ability to rapidly and precisely match blood flow to constantly changing patterns in neural activity is an essential feature of cerebrovascular regulation. Locus coeruleus-norepinephrine (LC-NE) projections innervate the cerebral vasculature and can mediate vasoconstriction. However, function of the LC-mediated constriction in blood-flow regulation has never been addressed. Here, using intrinsic optical imaging coupled with an anesthesia regimen that only minimally interferes with LC activity, we show that NE enhances spatial and temporal aspects of functional hyperemia in the mouse somatosensory cortex. Increasing NE levels in the cortex using an α(2)-adrenergic receptor antagonist paradoxically reduces the extent of functional hyperemia while enhancing the surround blood-flow reduction. However, the NE-mediated vasoconstriction optimizes spatial and temporal focusing of the hyperemic response resulting in a sixfold decrease in the disparity between blood volume and oxygen demand. In addition, NE-mediated vasoconstriction accelerated redistribution to subsequently active regions, enhancing temporal synchronization of blood delivery. These observations show an important role for NE in optimizing neurovascular coupling. As LC neuron loss is prominent in Alzheimer and Parkinson diseases, the diminished ability to couple blood volume to oxygen demand may contribute to their pathogenesis.
Im, Doo Soon; Jeon, Jeong Wook; Lee, Jin Soo; Won, Seok Joon; Cho, Sung Ig; Lee, Yong Beom; Gwag, Byoung Joo
2012-05-21
Excess activation of ionotropic glutamate receptors and iron is believed to contribute to free radical production and neuronal death following hypoxic ischemia. We examined the possibility that both NMDA receptor activation and iron overload determine spatial and temporal patterns of free radical production after transient middle cerebral artery occlusion (tMCAO) in male Sprague-Dawley rats. Mitochondrial free radical (MFR) levels were maximally increased in neurons in the core at 1 h and 24 h after tMCAO. Early MFR production was blocked by administration of MK-801, an NMDA receptor antagonist, but not deferoxamine, an iron chelator. Neither MK-801 nor deferoxamine attenuated late MFR production in the core. Increased MFRs were observed in penumbral neurons within 6 h and gradually increased over 24 h after tMCAO. Slowly-evolving MFRs in the core and penumbra were accompanied by iron overload. Deferoxamine blocked iron overload but reduced MFR production only in the penumbra. Combined MK-801/deferoxamine reduced late MFR production in both core and penumbra in an additive manner. Combination therapy significantly ameliorated infarction compared with monotherapy. These findings suggest that the NMDA receptor activation and iron overload mediate late MFR production and infarction after tMCAO. Copyright © 2012 Elsevier B.V. All rights reserved.
Parametric Coding of the Size and Clutter of Natural Scenes in the Human Brain
Park, Soojin; Konkle, Talia; Oliva, Aude
2015-01-01
Estimating the size of a space and its degree of clutter are effortless and ubiquitous tasks of moving agents in a natural environment. Here, we examine how regions along the occipital–temporal lobe respond to pictures of indoor real-world scenes that parametrically vary in their physical “size” (the spatial extent of a space bounded by walls) and functional “clutter” (the organization and quantity of objects that fill up the space). Using a linear regression model on multivoxel pattern activity across regions of interest, we find evidence that both properties of size and clutter are represented in the patterns of parahippocampal cortex, while the retrosplenial cortex activity patterns are predominantly sensitive to the size of a space, rather than the degree of clutter. Parametric whole-brain analyses confirmed these results. Importantly, this size and clutter information was represented in a way that generalized across different semantic categories. These data provide support for a property-based representation of spaces, distributed across multiple scene-selective regions of the cerebral cortex. PMID:24436318
Duning, Thomas; Deppe, Michael; Brand, Eva; Stypmann, Jörg; Becht, Charlotte; Heidbreder, Anna; Young, Peter
2013-01-01
Background The exact underlying pathomechanism of central sleep apnea with Cheyne-Stokes respiration (CSA-CSR) is still unclear. Recent studies have demonstrated an association between cerebral white matter changes and CSA. A dysfunction of central respiratory control centers in the brainstem was suggested by some authors. Novel MR-imaging analysis tools now allow far more subtle assessment of microstructural cerebral changes. The aim of this study was to investigate whether and what severity of subtle structural cerebral changes could lead to CSA-CSR, and whether there is a specific pattern of neurodegenerative changes that cause CSR. Therefore, we examined patients with Fabry disease (FD), an inherited, lysosomal storage disease. White matter lesions are early and frequent findings in FD. Thus, FD can serve as a "model disease" of cerebral microangiopathy to study in more detail the impact of cerebral lesions on central sleep apnea. Patients and Methods Genetically proven FD patients (n = 23) and age-matched healthy controls (n = 44) underwent a cardio-respiratory polysomnography and brain MRI at 3.0 Tesla. We applied different MR-imaging techniques, ranging from semiquantitative measurement of white matter lesion (WML) volumes and automated calculation of brain tissue volumes to VBM of gray matter and voxel-based diffusion tensor imaging (DTI) analysis. Results In 5 of 23 Fabry patients (22%) CSA-CSR was detected. Voxel-based DTI analysis revealed widespread structural changes in FD patients when compared to the healthy controls. When calculated as a separate group, DTI changes of CSA-CSR patients were most prominent in the brainstem. Voxel-based regression analysis revealed a significant association between CSR severity and microstructural DTI changes within the brainstem. Conclusion Subtle microstructural changes in the brainstem might be a neuroanatomical correlate of CSA-CSR in patients at risk of WML. DTI is more sensitive and specific than conventional structural MRI and other advanced MR analyses tools in demonstrating these abnormalities. PMID:23637744
a Comparative Analysis of Fluent and Cerebral Palsied Speech.
NASA Astrophysics Data System (ADS)
van Doorn, Janis Lee
Several features of the acoustic waveforms of fluent and cerebral palsied speech were compared, using six fluent and seven cerebral palsied subjects, with a major emphasis being placed on an investigation of the trajectories of the first three formants (vocal tract resonances). To provide an overall picture which included other acoustic features, fundamental frequency, intensity, speech timing (speech rate and syllable duration), and prevocalization (vocalization prior to initial stop consonants found in cerebral palsied speech) were also investigated. Measurements were made using repetitions of a test sentence which was chosen because it required large excursions of the speech articulators (lips, tongue and jaw), so that differences in the formant trajectories for the fluent and cerebral palsied speakers would be emphasized. The acoustic features were all extracted from the digitized speech waveform (10 kHz sampling rate): the fundamental frequency contours were derived manually, the intensity contours were measured using the signal covariance, speech rate and syllable durations were measured manually, as were the prevocalization durations, while the formant trajectories were derived from short time spectra which were calculated for each 10 ms of speech using linear prediction analysis. Differences which were found in the acoustic features can be summarized as follows. For cerebral palsied speakers, the fundamental frequency contours generally showed inappropriate exaggerated fluctuations, as did some of the intensity contours; the mean fundamental frequencies were either higher or the same as for the fluent subjects; speech rates were reduced, and syllable durations were longer; prevocalization was consistently present at the beginning of the test sentence; formant trajectories were found to have overall reduced frequency ranges, and to contain anomalous transitional features, but it is noteworthy that for any one cerebral palsied subject, the inappropriate trajectory pattern was generally reproducible. The anomalous transitional features took the form of (a) inappropriate transition patterns, (b) reduced frequency excursions, (c) increased transition durations, and (d) decreased maximum rates of frequency change.
Xu, Yu; Liu, Yuliang; Xia, Chen; Gao, Pan; Liu, Jun-Ze
2013-02-01
The present study aimed to investigate the change of proton leak and discuss the role of cerebral uncoupling proteins (UCPs) and its regulatory molecules non-esterified fatty acid (NEFA) in high altitude mitochondrial oxidative phosphorylation deficiency. The model group animals were exposed to acute high altitude hypoxia, and the mitochondrial respiration, protein leak, UCPs abundance/activity and cerebral NEFA concentration were measured. We found that in the model group, cerebral mitochondrial oxidative phosphorylation was severely impaired with decreased ST3 respiration rate and ATP pool. Proton leak kinetics curves demonstrated an increase in proton leak; GTP binding assay pointed out that total cerebral UCPs activity significantly increased; Q-PCR and western blot showed upregulated expression of UCP4 and UCP5. Moreover, cerebral NEFA concentration increased. In conclusion, UCPs mediated proton leak is closely related to cerebral mitochondria oxidative phosphorylation deficiency during acute high altitude hypoxia and NEFA is involved in this signaling pathway.
NASA Astrophysics Data System (ADS)
Sergeeva, Tatiana F.; Moshkova, Albina N.; Erlykina, Elena I.; Khvatova, Elena M.
2016-04-01
Creatine kinase is a key enzyme of energy metabolism in the brain. There are known cytoplasmic and mitochondrial creatine kinase isoenzymes. Mitochondrial creatine kinase exists as a mixture of two oligomeric forms - dimer and octamer. The aim of investigation was to study catalytic properties of cytoplasmic and mitochondrial creatine kinase and using of the method of empirical dependences for the possible prediction of the activity of these enzymes in cerebral ischemia. Ischemia was revealed to be accompanied with the changes of the activity of creatine kinase isoenzymes and oligomeric state of mitochondrial isoform. There were made the models of multiple regression that permit to study the activity of creatine kinase system in cerebral ischemia using a calculating method. Therefore, the mathematical method of empirical dependences can be applied for estimation and prediction of the functional state of the brain by the activity of creatine kinase isoenzymes in cerebral ischemia.
Law, Mary; King, Gillian; King, Susanne; Kertoy, Marilyn; Hurley, Patricia; Rosenbaum, Peter; Young, Nancy; Hanna, Steven
2006-05-01
Children with physical disabilities are at increased risk of limitations to participation in everyday activities. This study describes research examining the participation of children in day-to-day formal and informal activities (excluding mandated academic schooling). Using the Children's Assessment of Participation and Enjoyment (CAPE) measure, data on participation patterns were collected from 427 children (229 males, 198 females; mean age 10 y [SD 2 y 4 mo]; range 6-14 y) with physical limitations and from their families. The primary types of physical disability in the sample included cerebral palsy, spina bifida, acquired brain injury, and musculoskeletal limitations. Findings indicate a broad range of diversity and intensity of participation, with proportionately greater involvement in informal rather than formal activities. Significant differences in participation and enjoyment were found between males and females, and for children more than 12 years of age. Children's participation was less diverse in families reporting lower income, single-parent status, and lower respondent parent education. These findings provide a foundation for an improved understanding of the participation of children with physical disabilities, which can assist families and service providers in planning activities that fit with their child's preferences and ensure active participation.
Castro, M A; Putman, C M; Cebral, J R
2006-09-01
The purpose of this study is to show the influence of the upstream parent artery geometry on intraaneurysmal hemodynamics of cerebral aneurysms. Patient-specific models of 4 cerebral aneurysms (1 posterior communicating artery [PcomA], 2 middle cerebral artery [MCA], and 1 anterior communicating artery [AcomA]) were constructed from 3D rotational angiography images. Two geometric models were constructed for each aneurysm. One model had the native parent vessel geometry; the second model was truncated approximately 1 cm upstream from the aneurysm, and the parent artery replaced with a straight cylinder. Corresponding finite element grids were generated and computational fluid dynamics simulations were carried out under pulsatile flow conditions. The intra-aneurysmal flow patterns and wall shear stress (WSS) distributions were visualized and compared. Models using the truncated parent vessel underestimated the WSS in the aneurysms in all cases and shifted the impaction zone to the neck compared with the native geometry. These effects were more pronounced in the PcomA and AcomA aneurysms where upstream curvature was substantial. The MCA aneurysm with a long M1 segment was the least effected. The more laminar flow pattern within the parent vessel in truncated models resulted in a less complex intra-aneurysmal flow patterns with fewer vortices and less velocity at the dome. Failure to properly model the inflow stream contributed by the upstream parent artery can significantly influence the results of intra-aneurysmal hemodynamic models. The upstream portion of the parent vessel of cerebral aneurysms should be included to accurately represent the intra-aneurysmal hemodynamics.
2014-01-01
Background The combination of single-switch access technology and scanning is the most promising means of augmentative and alternative communication for many children with severe physical disabilities. However, the physical impairment of the child and the technology’s limited ability to interpret the child’s intentions often lead to false positives and negatives (corresponding to accidental and missed selections, respectively) occurring at rates that frustrate the user and preclude functional communication. Multiple psychophysiological studies have associated cardiac deceleration and increased phasic electrodermal activity with self-realization of errors among able-bodied individuals. Thus, physiological measurements have potential utility at enhancing single-switch access, provided that such prototypical autonomic responses exist in persons with profound disabilities. Methods The present case series investigated the autonomic responses of three pediatric single-switch users with severe spastic quadriplegic cerebral palsy, in the context of a single-switch letter matching activity. Each participant exhibited distinct autonomic responses to activity engagement. Results Our analysis confirmed the presence of the autonomic response pattern of cardiac deceleration and increased phasic electrodermal activity following true positives, false positives and false negatives errors, but not subsequent to true negative outcomes. Conclusions These findings suggest that there may be merit in complementing single-switch input with autonomic measurements to improve augmentative and alternative communications for pediatric access technology users. PMID:24607065
Leung, Brian; Chau, Tom
2014-03-08
The combination of single-switch access technology and scanning is the most promising means of augmentative and alternative communication for many children with severe physical disabilities. However, the physical impairment of the child and the technology's limited ability to interpret the child's intentions often lead to false positives and negatives (corresponding to accidental and missed selections, respectively) occurring at rates that frustrate the user and preclude functional communication. Multiple psychophysiological studies have associated cardiac deceleration and increased phasic electrodermal activity with self-realization of errors among able-bodied individuals. Thus, physiological measurements have potential utility at enhancing single-switch access, provided that such prototypical autonomic responses exist in persons with profound disabilities. The present case series investigated the autonomic responses of three pediatric single-switch users with severe spastic quadriplegic cerebral palsy, in the context of a single-switch letter matching activity. Each participant exhibited distinct autonomic responses to activity engagement. Our analysis confirmed the presence of the autonomic response pattern of cardiac deceleration and increased phasic electrodermal activity following true positives, false positives and false negatives errors, but not subsequent to true negative outcomes. These findings suggest that there may be merit in complementing single-switch input with autonomic measurements to improve augmentative and alternative communications for pediatric access technology users.
Santhanam, Anantha Vijay R.; d’Uscio, Livius V.; He, Tongrong; Katusic, Zvonimir S.
2012-01-01
Peroxisome proliferator-activated receptor delta (PPARδ) is ubiquitously expressed in the vasculature, including cerebral circulation. The role of PPARδ in metabolism of tetrahydrobiopterin (BH4) has not been studied in the cerebral microvasculature. In the present study, the effects of PPARδ agonist GW501516 on uncoupling of endothelial nitric oxide synthase (eNOS) were determined in cerebral microvessels of BH4-deficient hph-1 mice. Wild-type (B6CBA) and hph-1 mice were orally gavaged with a selective PPARδ activator, GW501516 (2 mg/kg/day) for 14 days, and thereafter, cerebral microvessels were isolated and studied. Treatment of hph-1 mice with GW501516 significantly reduced oxidation of BH4 and increased the ratio of BH4 to 7,8-BH2 (P<0.05, n=6–9). Attenuation of L-NAME-inhibitable superoxide anion levels by GW501516 demonstrated that activation of PPARδ might prevent uncoupling of endothelial nitric oxide synthase (eNOS, P<0.05, n=6–9). Western blotting studies demonstrated that GW501516 selectively increased the endothelial expressions of CuZn superoxide dismutase (P<0.05, n=6–9) and catalase (P<0.05, n=6–8). PPARδ activation increased the total nitrite and nitrate (NO2 + NO3) content in cerebral microvessels (P<0.05, n=6). Obtained results suggest that in vivo activation of PPARδ prevents eNOS uncoupling, restores bioavailability of NO and may help preserve endothelial function in the BH4-deficient cerebral circulation. PMID:22982594
Santhanam, Anantha Vijay R; d'Uscio, Livius V; He, Tongrong; Katusic, Zvonimir S
2012-11-05
Peroxisome proliferator-activated receptor delta (PPARδ) is ubiquitously expressed in the vasculature, including cerebral circulation. The role of PPARδ in metabolism of tetrahydrobiopterin (BH₄) has not been studied in the cerebral microvasculature. In the present study, the effects of PPARδ agonist GW501516 on uncoupling of endothelial nitric oxide synthase (eNOS) were determined in cerebral microvessels of BH₄-deficient hph-1 mice. Wild-type (B6CBA) and hph-1 mice were orally gavaged with a selective PPARδ activator, GW501516 (2 mg/kg/day) for 14 days, and thereafter, cerebral microvessels were isolated and studied. Treatment of hph-1 mice with GW501516 significantly reduced oxidation of BH₄ and increased the ratio of BH₄ to 7,8-BH₂ (P<0.05, n=6-9). Attenuation of L-NAME-inhibitable superoxide anion levels by GW501516 demonstrated that activation of PPARδ might prevent uncoupling of endothelial nitric oxide synthase (eNOS, P<0.05, n=6-9). Western blotting studies demonstrated that GW501516 selectively increased the endothelial expressions of CuZn superoxide dismutase (P<0.05, n=6-9) and catalase (P<0.05, n=6-8). PPARδ activation increased the total nitrite and nitrate (NO₂+NO₃) content in cerebral microvessels (P<0.05, n=6). Obtained results suggest that in vivo activation of PPARδ prevents eNOS uncoupling, restores bioavailability of NO and may help preserve endothelial function in the BH₄-deficient cerebral circulation. Copyright © 2012 Elsevier B.V. All rights reserved.
Boyer, Elizabeth R; Patterson, Aleksys
2018-05-05
Trips and falls are common concerns reported by parents of children with cerebral palsy. Specific gait pathologies (excessive internal hip rotation, intoeing, and stiff knee gait) are anecdotally associated with higher rates of falls. Is fall frequency higher for the aforementioned gait pathologies? Parent-reported fall frequency from 1063 children with cerebral palsy who also had a three-dimensional gait analysis was retrospectively reviewed. Frequency of 10 common gait pathologies was determined and fall frequency for the gait pathologies of interest were compared to matched control groups. Possible effects of Gross Motor Functional Classification System (GMFCS) level and age on fall frequency were also assessed and matched in the control group, as appropriate. In general, parent-reported fall frequency increased from GMFCS level I to II and then decreased until level IV. Moreover, younger children tended to report greater fall frequency, though children who reported never falling were of similar age as those who reported weekly falls, resulting in an inverted-U shaped relationship. Children with cerebral palsy who walked with excessive internal hip rotation, excessive intoeing, or stiff knee gait did not report increased fall frequencies compared to other children with cerebral palsy matched on GMFCS level and age that did not walk with those gait patterns. Approximately 35% of children reported never falling, 35% reported falling daily, and 30% reported falling monthly or weekly for each gait pattern. Therefore, elevated fall frequency appears to be a generic problem for most children with CP rather than a function of a specific gait pattern. Clinicians should be aware of these relationships, or lack thereof, when trying to decipher the cause of a child's falling and when determining appropriate interventions. Future studies may seek to more objectively quantify fall frequency, as self-report is the main limitation of this study. Copyright © 2018 Elsevier B.V. All rights reserved.
Aoki, T; Nishimura, M; Matsuoka, T; Yamamoto, K; Furuyashiki, T; Kataoka, H; Kitaoka, S; Ishibashi, R; Ishibazawa, A; Miyamoto, S; Morishita, R; Ando, J; Hashimoto, N; Nozaki, K; Narumiya, S
2011-01-01
BACKGROUND AND PURPOSE Cerebral aneurysm is a frequent cerebrovascular event and a major cause of fatal subarachnoid haemorrhage, but there is no medical treatment for this condition. Haemodynamic stress and, recently, chronic inflammation have been proposed as major causes of cerebral aneurysm. Nevertheless, links between haemodynamic stress and chronic inflammation remain ill-defined, and to clarify such links, we evaluated the effects of prostaglandin E2 (PGE2), a mediator of inflammation, on the formation of cerebral aneurysms. EXPERIMENTAL APPROACH Expression of COX and prostaglandin E synthase (PGES) and PGE receptors were examined in human and rodent cerebral aneurysm. The incidence, size and inflammation of cerebral aneurysms were evaluated in rats treated with COX-2 inhibitors and mice lacking each prostaglandin receptor. Effects of shear stress and PGE receptor signalling on expression of pro-inflammatory molecules were studied in primary cultures of human endothelial cells (ECs). KEY RESULTS COX-2, microsomal PGES-1 and prostaglandin E receptor 2 (EP2) were induced in ECs in the walls of cerebral aneurysms. Shear stress applied to primary ECs induced COX-2 and EP2. Inhibition or loss of COX-2 or EP2in vivo attenuated each other's expression, suppressed nuclear factor κB (NF-κB)-mediated chronic inflammation and reduced incidence of cerebral aneurysm. EP2 stimulation in primary ECs induced NF-κB activation and expression of the chemokine (C-C motif) ligand 2, essential for cerebral aneurysm. CONCLUSIONS AND IMPLICATIONS These results suggest that shear stress activated PGE2-EP2 pathway in ECs and amplified chronic inflammation via NF-κB. We propose EP2 as a therapeutic target in cerebral aneurysm. PMID:21426319
Dix, Laura Marie Louise; Weeke, Lauren Carleen; de Vries, Linda Simone; Groenendaal, Floris; Baerts, Willem; van Bel, Frank; Lemmers, Petra Maria Anna
2017-08-01
To evaluate the effects of acute arterial carbon dioxide partial pressure changes on cerebral oxygenation and electrical activity in infants born preterm. This retrospective observational study included ventilated infants born preterm with acute fluctuations of continuous end-tidal CO 2 (etCO 2 ) as a surrogate marker for arterial carbon dioxide partial pressure, during the first 72 hours of life. Regional cerebral oxygen saturation and fractional tissue oxygen extraction were monitored with near-infrared spectroscopy. Brain activity was monitored with 2-channel electroencephalography. Spontaneous activity transients (SATs) rate (SATs/minute) and interval between SATs (in seconds) were calculated. Ten-minute periods were selected for analysis: before, during, and after etCO 2 fluctuations of ≥5 mm Hg. Thirty-eight patients (mean ± SD gestational age of 29 ± 1.8 weeks) were included, with 60 episodes of etCO 2 increase and 70 episodes of etCO 2 decrease. During etCO 2 increases, brain oxygenation increased (regional cerebral oxygen saturation increased, fractional tissue oxygen extraction decreased; P < .01) and electrical activity decreased (SATs/minute decreased, interval between SATs increased; P < .01). All measures recovered when etCO 2 returned to baseline. During etCO 2 decreases, brain oxygenation decreased (regional cerebral oxygen saturation decreased, fractional tissue oxygen extraction decreased; P < .01) and brain activity increased (SATs/minute increased, P < .05), also with recovery after return of etCO 2 to baseline. An acute increase in etCO 2 is associated with increased cerebral oxygenation and decreased brain activity, whereas an acute decrease is associated with decreased cerebral oxygenation and slightly increased brain activity. Combining continuous CO 2 monitoring with near-infrared spectroscopy may enable the detection of otherwise undetected fluctuations in arterial carbon dioxide partial pressure that may be harmful to the neonatal brain. Copyright © 2017 Elsevier Inc. All rights reserved.
Kontani, Satoru; Nakamura, Akinobu; Tokumi, Hiroshi; Hirose, Genjirou
2014-01-01
A 83 years old woman was slipped and injured with right femoral neck fracture. After three days from the fracture, she underwent an artificial head bone replacement operation. Immediately after surgery, she complained of chest discomfort, nausea and dyspnea. A few hours later, she became comatose. Brain CT showed no abnormality and clinical diagnosis of heart failure was made without pulmonary embolism on enhanced chest CT. Magnetic resonance imaging (MRI) of the brain next day showed multiple small patchy hyperintense lesion in bilateral hemispheres on diffusion-weighted images (DWI), producing a "star field pattern''. Based on Criteria of Gurd, this patient had one major criterion and four minor criteria. And according to the Criteria of Schonfeld, this patient had 5 points, consistent with clinical diagnosis of fat embolism. Because of these criteria, she was diagnosed as cerebral fat embolism syndrome. We started supported care and edaravon. Two weeks after surgery, her condition recovered and remaind to stuporous state even six month after surgery. We experienced a typical case of cerebral fat embolism, after bone surgery with diagnostic findings on MRI-DWI. Diagnosis of cerebral fat embolism syndrome requires a history of long bone fracture and/or replacing surgery with typical finding on MRI images, such as "star field pattern''.
Diagnosis of brain death by transcranial Doppler sonography.
Bode, H; Sauer, M; Pringsheim, W
1988-12-01
The blood flow velocities in the basal cerebral arteries can be recorded at any age by transcranial Doppler sonography. We examined nine children with either initial or developing clinical signs of brain death. Soon after successful resuscitation increased diastolic flow velocities indicated a probable decrease in cerebrovascular resistance; this was of no particular prognostic importance. As soon as there was a clinical deterioration, there was a reduction in flow velocities with retrograde flow during early diastole, probably due to an increase in cerebrovascular resistance; this indicated a doubtful prognosis. In eight of the nine children with clinical signs of brain death a typical reverberating flow pattern was found, which was characterised by a counterbalancing short forward flow in systole and a short retrograde flow in early diastole. This indicated arrest of cerebral blood flow. One newborn showed normal systolic and end diastolic flow velocities in the basal cerebral arteries for two days despite clinical and electroencephalographic signs of brain death. Shunting of blood through the circle of Willis without effective cerebral perfusion may explain this phenomenon. No patient had the typical reverberating flow pattern without being clinically brain dead. Transcranial Doppler sonography is a reliable technique, which can be used at the bedside for the confirmation or the exclusion of brain death in children in addition to the clinical examination.
Diagnosis of brain death by transcranial Doppler sonography.
Bode, H; Sauer, M; Pringsheim, W
1988-01-01
The blood flow velocities in the basal cerebral arteries can be recorded at any age by transcranial Doppler sonography. We examined nine children with either initial or developing clinical signs of brain death. Soon after successful resuscitation increased diastolic flow velocities indicated a probable decrease in cerebrovascular resistance; this was of no particular prognostic importance. As soon as there was a clinical deterioration, there was a reduction in flow velocities with retrograde flow during early diastole, probably due to an increase in cerebrovascular resistance; this indicated a doubtful prognosis. In eight of the nine children with clinical signs of brain death a typical reverberating flow pattern was found, which was characterised by a counterbalancing short forward flow in systole and a short retrograde flow in early diastole. This indicated arrest of cerebral blood flow. One newborn showed normal systolic and end diastolic flow velocities in the basal cerebral arteries for two days despite clinical and electroencephalographic signs of brain death. Shunting of blood through the circle of Willis without effective cerebral perfusion may explain this phenomenon. No patient had the typical reverberating flow pattern without being clinically brain dead. Transcranial Doppler sonography is a reliable technique, which can be used at the bedside for the confirmation or the exclusion of brain death in children in addition to the clinical examination. PMID:3069052
Zhu, Hui; Zhao, Teng; Liu, Jingyao
2018-06-01
Paraoxonase1 (PON1) is an antioxidant which confers antioxidant properties to high-density lipoprotein (HDL) and prevents low-density lipoprotein (LDL) oxidation. The purpose of this study was to evaluate the activities of PON1 and oxidative/antioxidative stress markers in acute cerebral infarction. In this study, 161 patients diagnosed with acute cerebral infarction and 161 gender- and age-matched healthy controls were recruited. Based on the clinicoradiological profiles, the patients were further classified into two groups: lacunar infarction group and large-artery atherosclerosis group. We measured the individual lipid status parameters, oxidative and antioxidative stress status parameters, and PON1 activity. Serum total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and oxidative stress parameters in patients with acute cerebral infarction were significantly higher than those in the normal controls (p < 0.05). High-density lipoprotein cholesterol (HDL-C) level, PON1 activity, superoxide dismutase (SOD) activity, and antioxidative stress parameters in patients were lower than in the normal controls (p < 0.05). Superoxide anion (O2-), malondialdehyde (MDA), and PON1 levels in the lacunar infarction group were lower than in the large-artery atherosclerosis group (p < 0.05). Oxidative stress markers and PON1 activity are sensitive indicators of acute cerebral infarction. Our findings suggest a severely impaired antioxidative protection mechanism in these patients. Our study provides new insights into the pathophysiological mechanisms of acute cerebral infarction, which may also provide new therapeutic targets for ischemic cerebrovascular diseases.
NASA Astrophysics Data System (ADS)
Stankovic, Miljan R.; Fujii, Alan M.; Kirby, Debra; Boas, David A.; Ntziachristos, Vasilis; Stubblefield, Phillip G.
1997-12-01
The present study demonstrated that optical variables HbT and SmcO2 can be used to monitor changes in cerebral hemodynamics and oxygenation during asphyxia. Unfortunately none of the individual optical variables alone could be used to monitor changes in cerebral hemodynamics and oxygenation under a variety of possible clinical circumstances. However, all variables together, forming patterns unique to the commonly occurring physiological conditions, might potentially serve as a `silver standard' to aid interpretations of optical signals in clinical settings where `gold standard' techniques are not available, i.g. in the human fetus and neonate.
NASA Astrophysics Data System (ADS)
Stankovic, Miljan R.; Fujii, Alan M.; Kirby, Debra; Boas, David A.; Ntziachristos, Vasilis; Stubblefield, Phillip G.
1998-01-01
The present study demonstrated that optical variables HbT and SmcO2 can be used to monitor changes in cerebral hemodynamics and oxygenation during asphyxia. Unfortunately none of the individual optical variables alone could be used to monitor changes in cerebral hemodynamics and oxygenation under a variety of possible clinical circumstances. However, all variables together, forming patterns unique to the commonly occurring physiological conditions, might potentially serve as a `silver standard' to aid interpretations of optical signals in clinical settings where `gold standard' techniques are not available, i.g. in the human fetus and neonate.
Sidtis, John J; Tagliati, Michele; Alterman, Ron; Sidtis, Diana; Dhawan, Vijay; Eidelberg, David
2012-01-01
Chronic, high-frequency electrical stimulation of the subthalamic nuclei (STNs) has become an effective and widely used therapy in Parkinson's disease (PD), but the therapeutic mechanism is not understood. Stimulation of the STN is believed to reorganize neurophysiological activity patterns within the basal ganglia, whereas local field effects extending to tracts adjacent to the STN are viewed as sources of nontherapeutic side effects. This study is part of a larger project investigating the effects of STN stimulation on speech and regional cerebral blood flow (CBF) in human subjects with PD. While generating measures of global CBF (gCBF) to normalize regional CBF values for a subsequent combined analysis of regional CBF and speech data, we observed a third effect of this therapy: a gCBF increase. This effect was present across three estimates of gCBF ranging from values based on the highest activity voxels to those based on all voxels. The magnitude of the gCBF increase was related to the subject's duration of PD. It is not clear whether this CBF effect has a therapeutic role, but the impact of deep brain stimulation on cerebrovascular control warrants study from neuroscience, pathophysiological, and therapeutic perspectives.
Höller-Wallscheid, Melanie S.; Thier, Peter; Pomper, Jörn K.; Lindner, Axel
2017-01-01
Elderly adults may master challenging cognitive demands by additionally recruiting the cross-hemispheric counterparts of otherwise unilaterally engaged brain regions, a strategy that seems to be at odds with the notion of lateralized functions in cerebral cortex. We wondered whether bilateral activation might be a general coping strategy that is independent of age, task content and brain region. While using functional magnetic resonance imaging (fMRI), we pushed young and old subjects to their working memory (WM) capacity limits in verbal, spatial, and object domains. Then, we compared the fMRI signal reflecting WM maintenance between hemispheric counterparts of various task-relevant cerebral regions that are known to exhibit lateralization. Whereas language-related areas kept their lateralized activation pattern independent of age in difficult tasks, we observed bilaterality in dorsolateral and anterior prefrontal cortex across WM domains and age groups. In summary, the additional recruitment of cross-hemispheric counterparts seems to be an age-independent domain-general strategy to master cognitive challenges. This phenomenon is largely confined to prefrontal cortex, which is arguably less specialized and more flexible than other parts of the brain. PMID:28096364
[P300 event-related potentials in stutterers pre and post treatment: a pilot study].
Andrade, Claudia Regina Furquim de; Sassi, Fernanda Chiarion; Matas, Carla Gentile; Neves, Ivone Ferreira; Martins, Vanessa Oliveira
2007-01-01
P300 event-related potential has been used as an instrument to establish the diagnosis of several disorders as well as to assess therapeutic outcomes. to investigate the relationship between stuttering amelioration and cerebral activity. P300 event-related potentials were obtained in three adult males, all stutterers, aged 20 to 31 years, pre and post-treatment, verifying changes in wave amplitude and latency between waves. results indicate a significant positive correlation between the reduction in the percentage of stuttered syllables and the improvement in wave amplitude for the right ear. stutterers can exhibit different patterns of interhemispheric activity with a tonal P300 task after undergoing a fluency-enhancing program.
Hattori, Naoya; Swan, Megan; Stobbe, Gary A; Uomoto, Jay M; Minoshima, Satoshi; Djang, David; Krishnananthan, Ruben; Lewis, David H
2009-07-01
Patients with mild traumatic brain injury (TBI) often complain of cognitive fatigue during the chronic recovery phase. The Paced Auditory Serial Addition Test (PASAT) is a complex psychologic measure that may demonstrate subtle deficiencies in higher cognitive functions. The purpose of this study was to investigate the brain activation of regional cerebral blood flow (rCBF) with PASAT in patients with mild TBI to explore mechanisms for the cognitive fatigue. Two groups consisting of 15 patients with mild TBI and 15 healthy control subjects underwent (99m)Tc-ethylene cysteine dimer SPECT at rest and during PASAT on a separate day. Cortical rCBF was extracted using a 3-dimensional stereotactic surface projection and statistically analyzed to identify areas of activation, which were compared with PASAT performance scores. Image analysis demonstrated a difference in the pattern of activation between patients with mild TBI and healthy control subjects. Healthy control subjects activated the superior temporal cortex (Brodmann area [BA] 22) bilaterally, the precentral gyrus (BA 9) on the left, and the precentral gyrus (BA 6) and cerebellum bilaterally. Patients with mild TBI demonstrated a larger area of supratentorial activation (BAs 9, 10, 13, and 46) but a smaller area of activation in the cerebellum, indicating frontocerebellar dissociation. Patients with mild TBI and cognitive fatigue demonstrated a different pattern of activation during PASAT. Frontocerebellar dissociation may explain cognitive impairment and cognitive fatigue in the chronic recovery phase of mild traumatic brain injury.
Huang, Hao; Chen, Yang-Mei; Zhu, Fei; Tang, Shi-Ting; Xiao, Ji-Dong; Li, Lv-Li; Lin, Xin-Jing
2015-01-01
This study was aimed to examine whether the Na+/K+ adenosine triphosphatase (Na+/K+-ATPase) activity in ischemic penumbra is associated with the pathogenesis of ischemia/reperfusion-induced brain injury. An experimental model of cerebral ischemia/reperfusion was made by transient middle cerebral artery occlusion (tMCAO) in rats and the changes of Na+/K+-ATPase activity in the ischemic penumbra was examined by Enzyme Assay Kit. Extensive infarction was observed in the frontal and parietal cortical and subcortical areas at 6 h, 24 h, 48 h, 3 d and 7 d after tMCAO. Enzyme Assay analyses revealed the activity of Na+/K+-ATPase was decreased in the ischemic penumbra of model rats after focal cerebral ischemia/reperfusion compared with sham-operated rats, and reduced to its minimum at 48 h, while the infarct volume was enlarged gradually. In addition, accompanied by increased brain water content, apoptosis-related bcl-2 and Bax proteins, apoptotic index and neurologic deficits Longa scores, but fluctuated the ratio of bcl-2/Bax. Correlation analysis showed that the infarct volume, apoptotic index, neurologic deficits Longa scores and brain water content were negatively related with Na+/K+-ATPase activity, while the ratio of bcl-2/Bax was positively related with Na+/K+-ATPase activity. Our results suggest that down-regulated Na+/K+-ATPase activity in ischemic penumbra might be involved in the pathogenesis of cerebral ischemia/reperfusion injury presumably through the imbalance ratio of bcl-2/Bax and neuronal apoptosis, and identify novel target for neuroprotective therapeutic intervention in cerebral ischemic disease. PMID:26722460
Marisco, Patricia C; Carvalho, Fabiano B; Rosa, Michelle M; Girardi, Bruna A; Gutierres, Jessié M; Jaques, Jeandre A S; Salla, Ana P S; Pimentel, Víctor C; Schetinger, Maria Rosa C; Leal, Daniela B R; Mello, Carlos F; Rubin, Maribel A
2013-08-01
Piracetam improves cognitive function in animals and in human beings, but its mechanism of action is still not completely known. In the present study, we investigated whether enzymes involved in extracellular adenine nucleotide metabolism, adenosine triphosphate diphosphohydrolase (NTPDase), 5'-nucleotidase and adenosine deaminase (ADA) are affected by piracetam in the hippocampus and cerebral cortex of animals subjected to scopolamine-induced memory impairment. Piracetam (0.02 μmol/5 μL, intracerebroventricular, 60 min pre-training) prevented memory impairment induced by scopolamine (1 mg/kg, intraperitoneal, immediately post-training) in the inhibitory avoidance learning and in the object recognition task. Scopolamine reduced the activity of NTPDase in hippocampus (53 % for ATP and 53 % for ADP hydrolysis) and cerebral cortex (28 % for ATP hydrolysis). Scopolamine also decreased the activity of 5'-nucleotidase (43 %) and ADA (91 %) in hippocampus. The same effect was observed in the cerebral cortex for 5'-nucleotidase (38 %) and ADA (68 %) activities. Piracetam fully prevented scopolamine-induced memory impairment and decrease of NTPDase, 5'-nucleotidase and adenosine deaminase activities in synaptosomes from cerebral cortex and hippocampus. In vitro experiments show that piracetam and scopolamine did not alter enzymatic activity in cerebral cortex synaptosomes. Moreover, piracetam prevented scopolamine-induced increase of TBARS levels in hippocampus and cerebral cortex. These results suggest that piracetam-induced improvement of memory is associated with protection against oxidative stress and maintenance of NTPDase, 5'-nucleotidase and ADA activities, and suggest the purinergic system as a putative target of piracetam.
The relationship to age and cerebral vascular accidents of fibrin and fibrinolytic activity
Hume, R.
1961-01-01
Three `normal' groups of people—young, middle-aged, and old—have been investigated with regard to the fibrin content and fibrinolytic activity of the blood. The fourth group consisted of middle-aged people who had previously sustained a cerebral vascular accident matched statistically for age with the middle-aged normals. It was concluded that fibrin increases with age but there is an interaction between age and sex, the female having a higher level in the young group and the male a higher level in the middle-aged group. There was no sex difference in the levels of fibrin in the old age group. Fibrinolytic activity increases with age and there is a positive correlation between fibrin and fibrinolytic activity but no age-sex interaction. Those with cerebral vascular accidents tended to have higher fibrin levels and lower fibrinolytic activity but the differences were not statistically significant. There did, however, appear to be an increase in antifibrinolytic activity in the cerebral vascular group. PMID:13716799
Experimental Cerebral Malaria Pathogenesis—Hemodynamics at the Blood Brain Barrier
Nacer, Adéla; Movila, Alexandru; Sohet, Fabien; Girgis, Natasha M.; Gundra, Uma Mahesh; Loke, P'ng; Daneman, Richard; Frevert, Ute
2014-01-01
Cerebral malaria claims the lives of over 600,000 African children every year. To better understand the pathogenesis of this devastating disease, we compared the cellular dynamics in the cortical microvasculature between two infection models, Plasmodium berghei ANKA (PbA) infected CBA/CaJ mice, which develop experimental cerebral malaria (ECM), and P. yoelii 17XL (PyXL) infected mice, which succumb to malarial hyperparasitemia without neurological impairment. Using a combination of intravital imaging and flow cytometry, we show that significantly more CD8+ T cells, neutrophils, and macrophages are recruited to postcapillary venules during ECM compared to hyperparasitemia. ECM correlated with ICAM-1 upregulation on macrophages, while vascular endothelia upregulated ICAM-1 during ECM and hyperparasitemia. The arrest of large numbers of leukocytes in postcapillary and larger venules caused microrheological alterations that significantly restricted the venous blood flow. Treatment with FTY720, which inhibits vascular leakage, neurological signs, and death from ECM, prevented the recruitment of a subpopulation of CD45hi CD8+ T cells, ICAM-1+ macrophages, and neutrophils to postcapillary venules. FTY720 had no effect on the ECM-associated expression of the pattern recognition receptor CD14 in postcapillary venules suggesting that endothelial activation is insufficient to cause vascular pathology. Expression of the endothelial tight junction proteins claudin-5, occludin, and ZO-1 in the cerebral cortex and cerebellum of PbA-infected mice with ECM was unaltered compared to FTY720-treated PbA-infected mice or PyXL-infected mice with hyperparasitemia. Thus, blood brain barrier opening does not involve endothelial injury and is likely reversible, consistent with the rapid recovery of many patients with CM. We conclude that the ECM-associated recruitment of large numbers of activated leukocytes, in particular CD8+ T cells and ICAM+ macrophages, causes a severe restriction in the venous blood efflux from the brain, which exacerbates the vasogenic edema and increases the intracranial pressure. Thus, death from ECM could potentially occur as a consequence of intracranial hypertension. PMID:25474413
Cerebral metabolic intermediate response following severe canine intrauterine growth retardation.
Kliegman, R M
1986-07-01
The effect of intrauterine growth retardation and neonatal hypoglycemia on cerebral metabolic intermediates were determined in newborn dogs subjected to 5 days of maternal canine starvation (MCS) before birth. Birth weight was reduced 23% (232 +/- 6 versus 300 +/- 10 g). Circulating blood glucose was reduced after 3 h of neonatal fasting in MCS pups (2.7 +/- 0.4 +/- versus 5.7 +/- 1.1 mM). Cerebral cortical levels of glucose were also reduced at this time. Cerebral glucose-6-phosphate was not altered; nonetheless fructose-6-phosphate was lower in MCS pups at 6 and 9 h, while fructose 1,6-diphosphate appeared elevated at 3 h. These data suggest that cerebral glycolytic activity may be increased by increased activity of phosphofructokinase. Cerebral glutamine appeared reduced in fasting MCS pups at 3, 6, and 8 h of age. A considerable disturbance of the adenine nucleotide pool was noted between 3-9 h in MCS pups; while the cerebral energy reserve was diminished in MCS pups between 3-24 h. The data of reduced cerebral energy status and reserve suggest that cerebral energy production was diminished. Although glucose levels were low at 3 h, subsequent recovery was not immediate as adenine-nucleotides remained low beyond the period of hypoglycemia. The combined effects of intrauterine growth retardation and transient neonatal hypoglycemia appear to result in reduced cerebral oxidative metabolism; this occurs despite an apparent enhanced utilization of alternate fuels.
Gooijers, Jolien; Beets, Iseult A M; Albouy, Genevieve; Beeckmans, Kurt; Michiels, Karla; Sunaert, Stefan; Swinnen, Stephan P
2016-09-01
Years following the insult, patients with traumatic brain injury often experience persistent motor control problems, including bimanual coordination deficits. Previous studies revealed that such deficits are related to brain structural white and grey matter abnormalities. Here, we assessed, for the first time, cerebral functional activation patterns during bimanual movement preparation and performance in patients with traumatic brain injury, using functional magnetic resonance imaging. Eighteen patients with moderate-to-severe traumatic brain injury (10 females; aged 26.3 years, standard deviation = 5.2; age range: 18.4-34.6 years) and 26 healthy young adults (15 females; aged 23.6 years, standard deviation = 3.8; age range: 19.5-33 years) performed a complex bimanual tracking task, divided into a preparation (2 s) and execution (9 s) phase, and executed either in the presence or absence of augmented visual feedback. Performance on the bimanual tracking task, expressed as the average target error, was impaired for patients as compared to controls (P < 0.001) and for trials in the absence as compared to the presence of augmented visual feedback (P < 0.001). At the cerebral level, movement preparation was characterized by reduced neural activation in the patient group relative to the control group in frontal (bilateral superior frontal gyrus, right dorsolateral prefrontal cortex), parietal (left inferior parietal lobe) and occipital (right striate and extrastriate visual cortex) areas (P's < 0.05). During the execution phase, however, the opposite pattern emerged, i.e. traumatic brain injury patients showed enhanced activations compared with controls in frontal (left dorsolateral prefrontal cortex, left lateral anterior prefrontal cortex, and left orbitofrontal cortex), parietal (bilateral inferior parietal lobe, bilateral superior parietal lobe, right precuneus, right primary somatosensory cortex), occipital (right striate and extrastriate visual cortices), and subcortical (left cerebellum crus II) areas (P's < 0.05). Moreover, a significant interaction effect between Feedback Condition and Group in the primary motor area (bilaterally) (P < 0.001), the cerebellum (left) (P < 0.001) and caudate (left) (P < 0.05), revealed that controls showed less overlap of activation patterns accompanying the two feedback conditions than patients with traumatic brain injury (i.e. decreased neural differentiation). In sum, our findings point towards poorer predictive control in traumatic brain injury patients in comparison to controls. Moreover, irrespective of the feedback condition, overactivations were observed in traumatically brain injured patients during movement execution, pointing to more controlled processing of motor task performance. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Neural Vascular Mechanism for the Cerebral Blood Flow Autoregulation after Hemorrhagic Stroke.
Xiao, Ming; Li, Qiang; Feng, Hua; Zhang, Le; Chen, Yujie
2017-01-01
During the initial stages of hemorrhagic stroke, including intracerebral hemorrhage and subarachnoid hemorrhage, the reflex mechanisms are activated to protect cerebral perfusion, but secondary dysfunction of cerebral flow autoregulation will eventually reduce global cerebral blood flow and the delivery of metabolic substrates, leading to generalized cerebral ischemia, hypoxia, and ultimately, neuronal cell death. Cerebral blood flow is controlled by various regulatory mechanisms, including prevailing arterial pressure, intracranial pressure, arterial blood gases, neural activity, and metabolic demand. Evoked by the concept of vascular neural network, the unveiled neural vascular mechanism gains more and more attentions. Astrocyte, neuron, pericyte, endothelium, and so forth are formed as a communicate network to regulate with each other as well as the cerebral blood flow. However, the signaling molecules responsible for this communication between these new players and blood vessels are yet to be definitively confirmed. Recent evidence suggested the pivotal role of transcriptional mechanism, including but not limited to miRNA, lncRNA, exosome, and so forth, for the cerebral blood flow autoregulation. In the present review, we sought to summarize the hemodynamic changes and underline neural vascular mechanism for cerebral blood flow autoregulation in stroke-prone state and after hemorrhagic stroke and hopefully provide more systematic and innovative research interests for the pathophysiology and therapeutic strategies of hemorrhagic stroke.
Sato, Emi; Matsuda, Kouhei
2018-06-11
The purpose of this study was to examine cerebral blood flow in the frontal cortex area during personality self-rating tasks. Our two hypotheses were (1) cerebral blood flow varies based on personality rating condition and (2) cerebral blood flow varies based on the personality traits. This experiment measured cerebral blood flow under 3 personal computer rating conditions and 2 questionnaire conditions. Comparing the rating conditions, the results of the t-test indicated that cerebral blood flow was higher in the questionnaire condition than it was in the personal computer condition. With respect to the Big Five, the result of the correlation coefficient, that is, cerebral blood flow during a personality rating task, changed according to the trait for agreeableness. The results of the analysis of the 5-cluster on individual differences indicated that certain personality traits were related to the factors that increased or decreased cerebral blood flow. An analysis of variance indicated that openness to experience and Behavioural Activation System-drive was significant given that participants with high intellectual curiosity were motivated in this experiment, thus, their cerebral blood flow may have increased. The significance of this experiment was that by employing certain performance measures we could examine differences in physical changes based on personality traits. © 2018 International Union of Psychological Science.
Fundamental Movement Skills and Physical Activity among Children with and without Cerebral Palsy
ERIC Educational Resources Information Center
Capio, Catherine M.; Sit, Cindy H. P.; Abernethy, Bruce; Masters, Rich S. W.
2012-01-01
Fundamental movement skills (FMS) proficiency is believed to influence children's physical activity (PA), with those more proficient tending to be more active. Children with cerebral palsy (CP), who represent the largest diagnostic group treated in pediatric rehabilitation, have been found to be less active than typically developing children. This…
Metz-Lutz, Marie-Noëlle; Bressan, Yannick; Heider, Nathalie; Otzenberger, Hélène
2010-01-01
Live theater is typically designed to alter the state of mind of the audience. Indeed, the perceptual inputs issuing from a live theatrical performance are intended to represent something else, and the actions, emphasized by the writing and staging, are the key prompting the adhesion of viewers to fiction, i.e., their belief that it is real. This phenomenon raises the issue of the cognitive processes governing access to a fictional reality during live theater and of their cerebral underpinnings. To get insight into the physiological substrates of adhesion we recreated the peculiar context of watching live drama in a functional magnetic resonance imaging (fMRI) experiment, with simultaneous recording of heart activity. The instants of adhesion were defined as the co-occurrence of theatrical events determined a priori by the stage director and the spectators' offline reports of moments when fiction acted as reality. These data served to specify, for each spectator, individual fMRI time-series, used in a random-effect group analysis to define the pattern of brain response to theatrical events. The changes in this pattern related to subjects' adhesion to fiction, were investigated using a region of interest analysis. The results showed that adhesion to theatrical events correlated with increased activity in the left BA47 and posterior superior temporal sulcus, together with a decrease in dynamic heart rate variability, leading us to discuss the hypothesis of subtle changes in the subjects' state of awareness, enabling them to mentally dissociate physical and mental (drama-viewing) experiences, to account for the phenomenon of adhesion to dramatic fiction.
Metz-Lutz, Marie-Noëlle; Bressan, Yannick; Heider, Nathalie; Otzenberger, Hélène
2010-01-01
Live theater is typically designed to alter the state of mind of the audience. Indeed, the perceptual inputs issuing from a live theatrical performance are intended to represent something else, and the actions, emphasized by the writing and staging, are the key prompting the adhesion of viewers to fiction, i.e., their belief that it is real. This phenomenon raises the issue of the cognitive processes governing access to a fictional reality during live theater and of their cerebral underpinnings. To get insight into the physiological substrates of adhesion we recreated the peculiar context of watching live drama in a functional magnetic resonance imaging (fMRI) experiment, with simultaneous recording of heart activity. The instants of adhesion were defined as the co-occurrence of theatrical events determined a priori by the stage director and the spectators’ offline reports of moments when fiction acted as reality. These data served to specify, for each spectator, individual fMRI time-series, used in a random-effect group analysis to define the pattern of brain response to theatrical events. The changes in this pattern related to subjects’ adhesion to fiction, were investigated using a region of interest analysis. The results showed that adhesion to theatrical events correlated with increased activity in the left BA47 and posterior superior temporal sulcus, together with a decrease in dynamic heart rate variability, leading us to discuss the hypothesis of subtle changes in the subjects’ state of awareness, enabling them to mentally dissociate physical and mental (drama-viewing) experiences, to account for the phenomenon of adhesion to dramatic fiction. PMID:20838472
Uggetti, Carla; Ausenda, Carlo D; Squarza, Silvia; Cadioli, Marcello; Grimoldi, Ludovico; Cerri, Cesare; Cariati, Maurizio
2016-08-01
The bilateral transfer of a motor skill is a physiological phenomenon: the development of a motor skill with one hand can trigger the development of the same ability of the other hand. The purpose of this study was to verify whether bilateral transfer is associated with a specific brain activation pattern using functional magnetic resonance imaging (fMRI). The motor task was implemented as the execution of the Nine Hole Peg Test. Fifteen healthy subjects (10 right-handers and five left-handers) underwent two identical fMRI runs performing the motor task with the non-dominant hand. Between the first and the second run, each subject was intensively trained for five minutes to perform the same motor task with the dominant hand. Comparing the two functional scans across the pool of subjects, a change of the motor activation pattern was observed. In particular, we observed, in the second run, a change in the activation pattern both in the cerebellum and in the cerebral cortex. We found activations in cortical areas involved in somatosensory integration, areas involved in procedural memory. Our study shows, in a small group of healthy subjects, the modification of the fMRI activation pathway of a motor task performed by the non-dominant hand after intensive exercise performing the same task with the dominant hand. © The Author(s) 2016.
Arterial spin labelling reveals an abnormal cerebral perfusion pattern in Parkinson's disease.
Melzer, Tracy R; Watts, Richard; MacAskill, Michael R; Pearson, John F; Rüeger, Sina; Pitcher, Toni L; Livingston, Leslie; Graham, Charlotte; Keenan, Ross; Shankaranarayanan, Ajit; Alsop, David C; Dalrymple-Alford, John C; Anderson, Tim J
2011-03-01
There is a need for objective imaging markers of Parkinson's disease status and progression. Positron emission tomography and single photon emission computed tomography studies have suggested patterns of abnormal cerebral perfusion in Parkinson's disease as potential functional biomarkers. This study aimed to identify an arterial spin labelling magnetic resonance-derived perfusion network as an accessible, non-invasive alternative. We used pseudo-continuous arterial spin labelling to measure cerebral grey matter perfusion in 61 subjects with Parkinson's disease with a range of motor and cognitive impairment, including patients with dementia and 29 age- and sex-matched controls. Principal component analysis was used to derive a Parkinson's disease-related perfusion network via logistic regression. Region of interest analysis of absolute perfusion values revealed that the Parkinson's disease pattern was characterized by decreased perfusion in posterior parieto-occipital cortex, precuneus and cuneus, and middle frontal gyri compared with healthy controls. Perfusion was preserved in globus pallidus, putamen, anterior cingulate and post- and pre-central gyri. Both motor and cognitive statuses were significant factors related to network score. A network approach, supported by arterial spin labelling-derived absolute perfusion values may provide a readily accessible neuroimaging method to characterize and track progression of both motor and cognitive status in Parkinson's disease.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herholz, K.; Pietrzyk, U.; Wienhard, K.
1989-09-01
In 20 patients with ischemic cerebrovascular disease, classic migraine, or angiomas, we compared paired dynamic positron emission tomographic measurements of regional cerebral blood flow using both ({sup 15}O)water and ({sup 18}F)fluoromethane as tracers. Cerebral blood flow was also determined according to the autoradiographic technique with a bolus injection of ({sup 15}O)water. There were reasonable overall correlations between dynamic ({sup 15}O)water and ({sup 18}F)fluoromethane values for cerebral blood flow (r = 0.82) and between dynamic and autoradiographic ({sup 15}O)water values for cerebral blood flow (r = 0.83). We found a close correspondence between abnormal pathologic findings and visually evaluated cerebral bloodmore » flow tomograms obtained with the two tracers. On average, dynamic ({sup 15}O)water cerebral blood flow was 6% lower than that measured with ({sup 18}F)fluoromethane. There also was a general trend toward a greater underestimation with ({sup 15}O)water in high-flow areas, particularly in hyperemic areas, probably due to incomplete first-pass extraction of ({sup 15}O)water. Underestimation was not detected in low-flow areas or in the cerebellum. Absolute cerebral blood flow values were less closely correlated between tracers and techniques than cerebral blood flow patterns. The variability of the relation between absolute flow values was probably caused by confounding effects of the variation in the circulatory delay time. The autoradiographic technique was most sensitive to this type error.« less
Is hemiplegic cerebral palsy equivalent to amblyopia of the corticospinal system?
Eyre, Janet A; Smith, Martin; Dabydeen, Lyvia; Clowry, Gavin J; Petacchi, Eliza; Battini, Roberta; Guzzetta, Andrea; Cioni, Giovanni
2007-11-01
Subjects with severe hemiplegic cerebral palsy have increased ipsilateral corticospinal projections from their noninfarcted cortex. We investigated whether their severe impairment might, in part, be caused by activity-dependent, competitive displacement of surviving contralateral corticospinal projections from the affected cortex by more active ipsilateral corticospinal projections from the nonaffected cortex, thereby compounding the impairment. Transcranial magnetic stimulation (TMS) characterized corticospinal tract development from each hemisphere over the first 2 years in 32 healthy children, 14 children with unilateral stroke, and 25 with bilateral lesions. Magnetic resonance imaging and anatomic studies compared corticospinal tract growth in 13 patients with perinatal stroke with 46 healthy subjects. Infants with unilateral lesions initially had responses after TMS of the affected cortex, which became progressively more abnormal, and seven were eventually lost. There was associated hypertrophy of the ipsilateral corticospinal axons projecting from the noninfarcted cortex. Magnetic resonance imaging and anatomic studies demonstrated hypertrophy of the corticospinal tract from the noninfarcted hemisphere. TMS findings soon after the stroke did not predict impairment; subsequent loss of responses and hypertrophy of ipsilateral corticospinal axons from the noninfarcted cortex predicted severe impairment at 2 years. Infants with bilateral lesions maintained responses to TMS from both hemispheres with a normal pattern of development. Rather than representing "reparative plasticity," increased ipsilateral projections from the noninfarcted cortex compound disability by competitively displacing surviving contralateral corticospinal projections from the infarcted cortex. This may provide a pathophysiological explanation for why signs of hemiplegic cerebral palsy appear late and progress over the first 2 years of life.
Comparison of analytical methods of brain [18F]FDG-PET after severe traumatic brain injury.
Madsen, Karine; Hesby, Sara; Poulsen, Ingrid; Fuglsang, Stefan; Graff, Jesper; Larsen, Karen B; Kammersgaard, Lars P; Law, Ian; Siebner, Hartwig R
2017-11-01
Loss of consciousness has been shown to reduce cerebral metabolic rates of glucose (CMRglc) measured by brain [ 18 F]FDG-PET. Measurements of regional metabolic patterns by normalization to global cerebral metabolism or cerebellum may underestimate widespread reductions. The aim of this study was to compare quantification methods of whole brain glucose metabolism, including whole brain [18F]FDG uptake normalized to uptake in cerebellum, normalized to injected activity, normalized to plasma tracer concentration, and two methods for estimating CMRglc. Six patients suffering from severe traumatic brain injury (TBI) and ten healthy controls (HC) underwent a 10min static [ 18 F]FDG-PET scan and venous blood sampling. Except from normalizing to cerebellum, all quantification methods found significant lower level of whole brain glucose metabolism of 25-33% in TBI patients compared to HC. In accordance these measurements correlated to level of consciousness. Our study demonstrates that the analysis method of the [ 18 F]FDG PET data has a substantial impact on the estimated whole brain cerebral glucose metabolism in patients with severe TBI. Importantly, the SUVR method which is often used in a clinical setting was not able to distinguish patients with severe TBI from HC at the whole-brain level. We recommend supplementing a static [ 18 F]FDG scan with a single venous blood sample in future studies of patients with severe TBI or reduced level of consciousness. This can be used for simple semi-quantitative uptake values by normalizing brain activity uptake to plasma tracer concentration, or quantitative estimates of CMRglc. Copyright © 2017 Elsevier B.V. All rights reserved.
Vargus-Adams, J N; Martin, L K
2011-03-01
The aim of this study was to assess the domains of importance in therapeutic intervention for cerebral palsy (CP) using categories of the International Classification of Functioning, Disability, and Health - Children and Youth Version (ICF-CY). A total of 17 youth, 19 parents and 39 medical professionals responded to the open-ended query: 'What are the things you find most important to consider when you evaluate the effects of an intervention for yourself/your child/your patient with cerebral palsy?' Surveys were either mailed or conducted on-line. Responses were coded by two reviewers using the ICF-CY and discrepancies were resolved. Responses were distributed across the ICF-CY domains of Body Functions and Structures, Activities and Participation, and Environmental Factors, as well as non-ICF-CY concepts including quality of life. The most common responses overall were pain, motor function, mobility, community life and public services. Youth identified strength, gait pattern, hand/arm use and use of assistive technologies as priorities whereas parents were concerned with motor function, communication, mobility and provision of public services. Medical professionals listed pain, function, mobility, community life and participation most often. All surveyed groups indicate a desire to see changes in body functions and structures (pain, mental function, strength, movement), activities and participation (communication, hand/arm use, walking, school, recreation/community life) and quality of life following therapeutic interventions for CP. These results demonstrate the multiple, varied concerns regarding CP across the spectrum of functioning and health. © 2010 Blackwell Publishing Ltd.
Zhao, Xudong; Wen, Liting; Dong, Min; Lu, Xiaojie
2016-12-15
Nrf2-ARE pathway reportedly plays a protective role in several central nervous system diseases. No study has explored the role of the Nrf2-ARE pathway in cerebral vasospasm(CVS) after subarachnoid hemorrhage(SAH). The purpose of the present study was to investigate the activation of the cerebral vascular Nrf2-ARE pathway and to determine the potential role of this pathway in the development of CVS following SAH. We investigated whether the administration of sulforaphane (SFN, a specific Nrf2 activator) modulated vascular caliber, Nrf2-ARE pathway activity, proinflammatory cytokine expression, and clinical behavior in a rat model of SAH. A two-hemorrhage protocol was used to generate an animal model of SAH in male Sprague-Dawley rats. Administration of SFN to these rats following SAH enhanced the activity of the Nrf2-ARE pathway and suppressed the release of proinflammatory cytokines. Vasospasm was markedly attenuated in the basilar arteries after SFN therapy. Additionally, SFN administration significantly ameliorated two behavioral functions disrupted by SAH. These results suggest that SFN has a therapeutic benefit in post-SAH, and this may be due to elevated Nrf2-ARE pathway activity and inhibition of cerebral vascular proinflammatory cytokine expression. Copyright © 2016. Published by Elsevier B.V.
Neural coding in graphs of bidirectional associative memories.
Bouchain, A David; Palm, Günther
2012-01-24
In the last years we have developed large neural network models for the realization of complex cognitive tasks in a neural network architecture that resembles the network of the cerebral cortex. We have used networks of several cortical modules that contain two populations of neurons (one excitatory, one inhibitory). The excitatory populations in these so-called "cortical networks" are organized as a graph of Bidirectional Associative Memories (BAMs), where edges of the graph correspond to BAMs connecting two neural modules and nodes of the graph correspond to excitatory populations with associative feedback connections (and inhibitory interneurons). The neural code in each of these modules consists essentially of the firing pattern of the excitatory population, where mainly it is the subset of active neurons that codes the contents to be represented. The overall activity can be used to distinguish different properties of the patterns that are represented which we need to distinguish and control when performing complex tasks like language understanding with these cortical networks. The most important pattern properties or situations are: exactly fitting or matching input, incomplete information or partially matching pattern, superposition of several patterns, conflicting information, and new information that is to be learned. We show simple simulations of these situations in one area or module and discuss how to distinguish these situations based on the overall internal activation of the module. This article is part of a Special Issue entitled "Neural Coding". Copyright © 2011 Elsevier B.V. All rights reserved.
Periodic leg movements during sleep and cerebral hemodynamic changes detected by NIRS.
Pizza, Fabio; Biallas, Martin; Wolf, Martin; Valko, Philipp O; Bassetti, Claudio L
2009-07-01
Periodic leg movements during sleep (PLMS) have been shown to be associated with changes in autonomic and hemispheric activities. Near infrared spectroscopy (NIRS) assesses hemodynamic changes linked to hemispheric/cortical activity. We applied NIRS to test whether cerebral hemodynamic alterations accompany PLMS. Three PLMS patients underwent nocturnal polysomnography coupled with cerebral NIRS. EEG correlates of PLMS were scored and NIRS data were analysed for the identification of correspondent hemodynamic changes. PLMS were constantly associated with cerebral hemodynamic fluctuations that showed greater amplitude when associated to changes in EEG and were present also in absence of any visually detectable arousal or A phase in the EEG. This is the first study documenting cerebral hemodynamic changes linked to PLMS. The clinical relevance of these observations remains to be determined.
Ventilatory Patterning in a Mouse Model of Stroke
Koo, Brian B; Strohl, Kingman P; Gillombardo, Carl B; Jacono, Frank J
2010-01-01
Cheyne-Stokes respiration (CSR) is a breathing pattern characterized by waxing and waning of breath volume and frequency, and is often recognized following stroke, when causal pathways are often obscure. We used an animal model to address the hypothesis that cerebral infarction is a mechanism for producing breathing instability. Fourteen male A/J mice underwent either stroke (n=7) or sham (n=7) procedure. Ventilation was measured using whole body plethysmography. Respiratory rate (RR), tidal volume (VT) and minute ventilation (Ve) mean values and coefficient of variation were computed for ventilation and oscillatory behavior. In addition, the ventilatory data were computationally fit to models to quantify autocorrelation, mutual information, sample entropy and a nonlinear complexity index. At the same time post procedure, stroke when compared to sham animal breathing consisted of a lower RR and autocorrelation, higher coefficient of variation for VT and higher coefficient of variation for Ve. Mutual information and the nonlinear complexity index were higher in breathing following stroke which also demonstrated a waxing/waning pattern. The absence of stroke in the sham animals was verified anatomically. We conclude that ventilatory pattern following cerebral infarction demonstrated increased variability with increased nonlinear patterning and a waxing/waning pattern, consistent with CSR. PMID:20472101
Bruce, C V; Clinton, J; Gentleman, S M; Roberts, G W; Royston, M C
1992-04-01
We have undertaken a study of the distribution of the beta/A4 amyloid deposited in the cerebral cortex in Alzheimer's disease. Previous studies which have examined the differential distribution of amyloid in the cortex in order to determine the laminar pattern of cortical pathology have not proved to be conclusive. We have developed an alternative method for the solution of this problem. It involves the immunostaining of sections followed by computer-enhanced image analysis. A mathematical model is then used to describe both the amount and the pattern of amyloid across the cortex. This method is both accurate and reliable and also removes many of the problems concerning inter and intra-rater variability in measurement. This method will provide the basis for further quantitative studies on the differential distribution of amyloid in Alzheimer's disease and other cases of dementia where cerebral amyloidosis occurs.
Methylmercury exposure and mortality in southern Japan: a close look at causes of death.
Tamashiro, H; Arakaki, M; Futatsuka, M; Lee, E S
1986-01-01
This study examines mortality patterns by cause of death to investigate the effect of exposure to methylmercury in a small area of Minamata City (Kumamoto Prefecture, Japan), which has the highest concentration of patients with Minamata disease. Standardised mortality ratios (SMRs) are computed by cause of death for the study area, using the age specific rates of the entire city as a standard. The SMRs for liver cancer and chronic liver disease in the study area are significantly higher than unity and are consistent with the mortality patterns of registered Minamata disease patients. While an excess mortality is observed for cerebral haemorrhage, mortality from cerebral infarction and other cerebrovascular diseases is considerably lower in the study area. The multiple risk factors of liver related diseases and a possible explanation for the cerebrovascular mortality patterns are discussed to suggest further investigation. PMID:3746182
Zhang, Bin; Song, Cunfeng; Feng, Bo; Fan, Weibing
2016-01-01
Triptolide, an active compound extracted from the Chinese herb thunder god vine (Tripterygium wilfordii Hook F.), has potent antitumor activity. Recently, triptolide was found to have protective effects against acute cerebral ischemia/reperfusion (I/R) injury through inhibition of cell apoptosis. However, the regulatory mechanism of the effect remains unclear. We hypothesize that the regulatory mechanisms of triptolide are mediated by nuclear factor κB (NF-κB) and p53-upregulated-modulator-of-apoptosis signal inhibition. To verify this hypothesis, we occluded the middle cerebral artery in male rats to establish focal cerebral I/R model. The rats received triptolide or vehicle at the onset of reperfusion following middle cerebral artery occlusion. At 24 hours after reperfusion, neurological deficits, infarct volume, and cell apoptosis were evaluated. The expression levels of NF-κBp65, PUMA, and caspase-3 were determined by Western blot. Real-time polymerase chain reaction was used to determine the levels of NF-κBp65 mRNA, PUMA mRNA, and caspase-3 mRNA. NF-κB activity was determined by electrophoretic mobility shift assay. Apoptotic cells were detected using terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) staining. In I/R group, neurological deficit scores, cerebral infarct volume, expression of NF-κBp65, PUMA, caspase-3, NF-κB activity, and TUNEL-positive cells were found to be increased at 24 hours after I/R injury. The I/R/triptolide rats showed significantly better neurological deficit scores, decreased neural apoptosis, and reduced cerebral infarct volume. In addition, the expression of NF-κBp65, PUMA, caspase-3, and NF-κB activity was suppressed in the I/R/triptolide rats. These results indicate that the neuroprotective effects of triptolide during acute cerebral I/R injury are possibly related to the inhibition of apoptosis through suppression of NF-κB/PUMA signaling pathway.
Neurovascular regulation in the ischemic brain.
Jackman, Katherine; Iadecola, Costantino
2015-01-10
The brain has high energetic requirements and is therefore highly dependent on adequate cerebral blood supply. To compensate for dangerous fluctuations in cerebral perfusion, the circulation of the brain has evolved intrinsic safeguarding measures. The vascular network of the brain incorporates a high degree of redundancy, allowing the redirection and redistribution of blood flow in the event of vascular occlusion. Furthermore, active responses such as cerebral autoregulation, which acts to maintain constant cerebral blood flow in response to changing blood pressure, and functional hyperemia, which couples blood supply with synaptic activity, allow the brain to maintain adequate cerebral perfusion in the face of varying supply or demand. In the presence of stroke risk factors, such as hypertension and diabetes, these protective processes are impaired and the susceptibility of the brain to ischemic injury is increased. One potential mechanism for the increased injury is that collateral flow arising from the normally perfused brain and supplying blood flow to the ischemic region is suppressed, resulting in more severe ischemia. Approaches to support collateral flow may ameliorate the outcome of focal cerebral ischemia by rescuing cerebral perfusion in potentially viable regions of the ischemic territory.
Walter Reed Army Medical Center, Washington, D. C. Annual Progress Report FY-89. Volume 2. Part 2
1990-01-02
Patterns of Cerebral Blood Flow Determined by Iodoamphetamine SPECT in Sjogren’s Syndrome and Systemic Lupus Erythematosus: A Pilot Study KEYWORDS: SPECT...scanning in patients with Sjogren’s Syndrome and SLE. To identify possible regional defects in cerebral blood flow and correlate these defects with the...in animals reveals myelosuppression, lymphoid atrophy, * hemorrhagic enterocolitis, renal tubular necrosis, and cochlear damage, as well as some
Zou, Qihong; Gu, Hong; Wang, Danny J J; Gao, Jia-Hong; Yang, Yihong
2011-04-01
Brain activation and deactivation induced by N-back working memory tasks and their load effects have been extensively investigated using positron emission tomography (PET) and blood-oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI). However, the underlying mechanisms of BOLD fMRI are still not completely understood and PET imaging requires injection of radioactive tracers. In this study, a pseudo-continuous arterial spin labeling (pCASL) perfusion imaging technique was used to quantify cerebral blood flow (CBF), a well understood physiological index reflective of cerebral metabolism, in N-back working memory tasks. Using pCASL, we systematically investigated brain activation and deactivation induced by the N-back working memory tasks and further studied the load effects on brain activity based on quantitative CBF. Our data show increased CBF in the fronto-parietal cortices, thalamus, caudate, and cerebellar regions, and decreased CBF in the posterior cingulate cortex and medial prefrontal cortex, during the working memory tasks. Most of the activated/deactivated brain regions show an approximately linear relationship between CBF and task loads (0, 1, 2 and 3 back), although several regions show non-linear relationships (quadratic and cubic). The CBF-based spatial patterns of brain activation/deactivation and load effects from this study agree well with those obtained from BOLD fMRI and PET techniques. These results demonstrate the feasibility of ASL techniques to quantify human brain activity during high cognitive tasks, suggesting its potential application to assessing the mechanisms of cognitive deficits in neuropsychiatric and neurological disorders.
Yuan, Wang; Ming, Zhang; Rana, Netra; Hai, Liu; Chen-wang, Jin; Shao-hui, Ma
2010-01-01
Pain-related studies have mainly been performed through traditional methods, which lack the rigorous analysis of anatomical locations. Functional magnetic resonance imaging (fMRI) is a noninvasive method detecting neural activity, and has the ability to precisely locate related activations in vivo. Moreover, few studies have used painful stimulation of changed intensity to investigate relevant functioning nuclei in the human brain. This study mainly focused on the pain-related activations induced by electrical stimulation with different intensities using fMRI. Furthermore, the electrophysiological characteristics of different pain-susceptible-neurons were analyzed to construct the pain modulatory network, which was corresponding to painful stimulus of changed intensity. Twelve volunteers underwent functional scanning receiving different electrical stimulation. The data were collected and analyzed to generate the corresponding functional activation maps and response time curves related to pain. The common activations were mainly located in several specific regions, including the secondary somatosensory cortex (SII), insula, anterior cingulate cortex (ACC), thalamus, and other cerebral regions. Moreover, innocuous electrical stimulation primarily activated the lateral portions of SII and thalamus, as well as the posterior insula, anterior ACC, whereas noxious electrical stimulation primarily activated the medial portions of SII and thalamus, as well as the anterior insula, the posterior ACC, with larger extensions and greater intensities. Several specified cerebral regions displayed different response patterns during electrical stimulation by means of fMRI, which implied that the corresponding pain-susceptible-neurons might process specific aspects of pain. Elucidation of functions on pain-related regions will help to understand the delicate pain modulation of human brain.
Meyerand, M.E.; Sutula, T.
2015-01-01
Neural activity promotes circuit formation in developing systems and during critical periods permanently modifies circuit organization and functional properties. These observations suggest that excessive neural activity, as occurs during seizures, might influence developing neural circuitry with long-term outcomes that depend on age at the time of seizures. We systematically examined long-term structural and functional consequences of seizures induced in rats by kainic acid, pentylenetetrazol, and hyperthermia across postnatal ages from birth through postnatal day 90 in adulthood (P90). Magnetic resonance imaging (MRI), diffusion tensor imaging (DTI), and electrophysiological methods at ≥P95 following seizures induced from P1 to P90 demonstrated consistent patterns of gross atrophy, microstructural abnormalities in the corpus callosum and hippocampus, and functional alterations in hippocampal circuitry at ≥P95 that were independent of the method of seizure induction and varied systematically as a function of age at the time of seizures. Three distinct epochs were observed in which seizures resulted in distinct long-term structural and functional outcomes at ≥P95. Seizures prior to P20 resulted in DTI abnormalities in corpus callosum and hippocampus in the absence of gross cerebral atrophy, and increased paired pulse inhibition (PPI) in the dentate gyrus at ≥P95. Seizures after P30 induced a different pattern of DTI abnormalities in the fimbria and hippocampus accompanied by gross cerebral atrophy with increases in lateral ventricular volume, as well as increased PPI in the dentate gyrus at ≥P95. In contrast, seizures between P20-P30 did not result in cerebral atrophy or significant imaging abnormalities in the hippocampus or white matter, but irreversibly decreased PPI in the dentate gyrus compared to normal adult controls. These age-specific long-term structural and functional outcomes identify P20-P30 as a potential critical period in hippocampal development defined by distinctive long-term structural and functional properties in adult hippocampal circuitry, including loss of capacity for seizure-induced plasticity in adulthood that could influence epileptogenesis and other hippocampal – dependent behaviors and functional properties. PMID:25555928
Alonso-Alconada, Daniel; Broad, Kevin D; Bainbridge, Alan; Chandrasekaran, Manigandan; Faulkner, Stuart D; Kerenyi, Áron; Hassell, Jane; Rocha-Ferreira, Eridan; Hristova, Mariya; Fleiss, Bobbi; Bennett, Kate; Kelen, Dorottya; Cady, Ernest; Gressens, Pierre; Golay, Xavier; Robertson, Nicola J
2015-01-01
In infants with moderate to severe neonatal encephalopathy, whole-body cooling at 33°C to 34°C for 72 hours is standard care with a number needed to treat to prevent a adverse outcome of 6 to 7. The precise brain temperature providing optimal neuroprotection is unknown. After a quantified global cerebral hypoxic-ischemic insult, 28 piglets aged <24 hours were randomized (each group, n=7) to (1) normothermia (38.5°C throughout) or whole-body cooling 2 to 26 hours after insult to (2) 35°C, (3) 33.5°C, or (4) 30°C. At 48 hours after hypoxia-ischemia, delayed cell death (terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling and cleaved caspase 3) and microglial ramification (ionized calcium-binding adapter molecule 1) were evaluated. At 48 hours after hypoxia-ischemia, substantial cerebral injury was found in the normothermia and 30°C hypothermia groups. However, with 35°C and 33.5°C cooling, a clear reduction in delayed cell death and microglial activation was observed in most brain regions (P<0.05), with no differences between 35°C and 33.5°C cooling groups. A protective pattern was observed, with U-shaped temperature dependence in delayed cell death in periventricular white matter, caudate nucleus, putamen, hippocampus, and thalamus. A microglial activation pattern was also seen, with inverted U-shaped temperature dependence in periventricular white matter, caudate nucleus, internal capsule, and hippocampus (all P<0.05). Cooling to 35°C (an absolute drop of 3.5°C as in therapeutic hypothermia protocols) or to 33.5°C provided protection in most brain regions after a cerebral hypoxic-ischemic insult in the newborn piglet. Although the relatively wide therapeutic range of a 3.5°C to 5°C drop in temperature reassured, overcooling (an 8.5°C drop) was clearly detrimental in some brain regions. © 2014 American Heart Association, Inc.
Cerebral Embolic Activity in a Patient during Acute Crisis of Takayasu's Arteritis
Nogueira, Ricardo de Carvalho; Bor-Seng-Shu, Edson; Marchiori, Paulo Eurípedes; Teixeira, Manoel Jacobsen
2012-01-01
Takayasu's arteritis is a disease that affects large vessels and may cause neurological symptoms either by stenoses/occlusions or embolisms from vessels with an inflammatory process. Transcranial Doppler (TCD) ultrasound can provide useful information for diagnosis and monitoring during the active phase of the disease. Cerebral embolic signals can be detected by TCD and have been considered a risk factor for vascular events. We report a patient in whom TCD ultrasound was used to monitor cerebral embolic signals during the active phase of the disease. This case report suggests that embolic activity in Takayasu's arteritis may represent disease activity, and its monitoring may be useful for evaluating the response to therapy. PMID:22379479
Jiang, Bowen; Bender, Matthew T; Hasjim, Bima; Hsu, Frank P K; Tamargo, Rafael J; Huang, Judy; Colby, Geoffrey P; Coon, Alexander L; Lin, Li-Mei
2017-01-01
The practice patterns of a hybrid open cerebrovascular/neuroendovascular (CVNV) neurosurgeon in early academic practice is unknown. We performed a multi-institutional retrospective cohort study of patients with cerebral aneurysms that were treated within the first 24 months of the neurosurgeon's practice. A total of 533 aneurysms were treated by the three senior authors within the first 24 months of their academic practice. Of these aneurysms, 172 were treated with microsurgical clipping, 191 with coiling, and 170 with flow diversion. Treatment in the setting of acute subarachnoid hemorrhage (SAH) occurred in 23% (122/533) of the aneurysms. Majority of the clipped aneurysms (70%, 121/172) were anterior cerebral artery (ACA), anterior communicating artery (ACOM), or middle cerebral artery (MCA) in location. In comparison, only 23% (82/361) of aneurysms treated with coiling or flow diversion therapy were ACA, ACOM, or MCA in location ( P < 0.05). Additionally, majority of the flow diverted aneurysm (65%, 111/170) were cavernous or ophthalmic/paraophthalmic in location. During the second year of practice, there appeared to be a trend towards more aneurysms treated with neuroendovascular techniques (22% increase), particularly in flow diversion. Although the CVNV neurosurgeon treats cerebral aneurysms more commonly with neuroendovascular techniques, a third of the cerebral aneurysms are still selected for microsurgical clipping. Aneurysms located along the ACA/ACOM or MCA are the most frequent aneurysms reserved for microsurgical clipping. The CVNV neurosurgeon must be prepared to manage a high percentage of ACA/ACOM or MCA aneurysms microsurgically.
Orthostatic hypotension, cerebral hypoperfusion, and visuospatial deficits in Lewy body disorders.
Robertson, Andrew D; Messner, Michelle A; Shirzadi, Zahra; Kleiner-Fisman, Galit; Lee, Joyce; Hopyan, Julia; Lang, Anthony E; Black, Sandra E; MacIntosh, Bradley J; Masellis, Mario
2016-01-01
Orthostatic hypotension and cognitive impairment are two non-motor attributes of Lewy body spectrum disorders that impact independence. This proof-of-concept study examined cerebral blood flow (perfusion) as a mediator of orthostatic hypotension and cognition. In fifteen patients with Lewy body disorders, we estimated regional perfusion using pseudo-continuous arterial spin labeling MRI, and quantified orthostatic hypotension from the change in systolic blood pressure between supine and standing positions. Executive, visuospatial, attention, memory, and language domains were characterized by neuropsychological tests. A matching sample of non-demented adults with cerebral small vessel disease was obtained to contrast perfusion patterns associated with comorbid vascular pathology. Compared to the vascular group, patients with Lewy body disorders exhibited lower perfusion to temporal and occipital lobes than to frontal and parietal lobes (q < 0.05). A greater orthostatic drop in systolic pressure was associated with lower occipito-parietal perfusion in these patients (uncorrected p < 0.005; cluster size ≥ 20 voxels). Although orthostatic hypotension and supine hypertension were strongly correlated (r = -0.79, p < 0.001), the patterns of association for each with perfusion were distinct. Specifically, supine hypertension was associated with high perfusion to anterior and middle cerebral arterial territories, as well as with low perfusion to posterior regions. Perfusion within orthostatic hypotension-defined regions was directly related to performance on visuospatial and attention tasks, independent of dementia severity (p < 0.05). These findings provide new insight that regional cerebral hypoperfusion is related to orthostatic hypotension, and may be involved in domain-specific cognitive deficits in Lewy body disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ma, Xiao-Hui; Gao, Qiang; Jia, Zhen; Zhang, Ze-Wei
2015-02-01
Hundreds of previous studies demonstrated the cytoprotective effect of trichostatin-A (TSA), a kind of histone deacetylases inhibitors (HDACIs), against cerebral ischemia/reperfusion insult. Meanwhile, phosphatidylinositol-3 kinase/Akt (PI3K/Akt) is a well-known, important signaling pathway that mediates neuroprotection. However, it should be remains unclear whether the neuroprotective capabilities of TSA against cerebral ischemia/reperfusion is mediated by activation of the PI3K/Akt signaling pathway. Five groups rats (n = 12 each), with middle cerebral artery occlusion (MCAO) except sham group, were used to investigate the neuroprotective effect of certain concentration (0.05 mg/kg) of TSA, and whether the neuroprotective effect of TSA is associated with activation of the PI3K/Akt signaling pathway through using of wortmannin (0.25 mg/kg). TSA significantly increased the expression of p-Akt protein, reduced infarct volume, and attenuated neurological deficit in rats with transient MCAO, wortmannin weakened such effect of TSA dramatically. TSA could significantly decrease the neurological deficit scores and reduce the cerebral infarct volume during cerebral ischemia/reperfusion injury, which was achieved partly by activation of the PI3K/Akt signaling pathway via upgrading of p-Akt protein.
Neural correlates of the number–size interference task in children
Kaufmann, Liane; Koppelstaetter, Florian; Siedentopf, Christian; Haala, Ilka; Haberlandt, Edda; Zimmerhackl, Lothar-Bernd; Felber, Stefan; Ischebeck, Anja
2010-01-01
In this functional magnetic resonance imaging study, 17 children were asked to make numerical and physical magnitude classifications while ignoring the other stimulus dimension (number–size interference task). Digit pairs were either incongruent (3 8) or neutral (3 8). Generally, numerical magnitude interferes with font size (congruity effect). Moreover, relative to numerically adjacent digits far ones yield quicker responses (distance effect). Behaviourally, robust distance and congruity effects were observed in both tasks. imaging baselline contrasts revealed activations in frontal, parietal, occipital and cerebellar areas bilaterally. Different from results usually reported for adultssmaller distances activated frontal, but not (intra-)parietal areas in children. Congruity effects became significant only in physical comparisons. Thus, even with comparable behavioural performance, cerebral activation patterns may differ substantially between children and adults. PMID:16603917
Organization of excitable dynamics in hierarchical biological networks.
Müller-Linow, Mark; Hilgetag, Claus C; Hütt, Marc-Thorsten
2008-09-26
This study investigates the contributions of network topology features to the dynamic behavior of hierarchically organized excitable networks. Representatives of different types of hierarchical networks as well as two biological neural networks are explored with a three-state model of node activation for systematically varying levels of random background network stimulation. The results demonstrate that two principal topological aspects of hierarchical networks, node centrality and network modularity, correlate with the network activity patterns at different levels of spontaneous network activation. The approach also shows that the dynamic behavior of the cerebral cortical systems network in the cat is dominated by the network's modular organization, while the activation behavior of the cellular neuronal network of Caenorhabditis elegans is strongly influenced by hub nodes. These findings indicate the interaction of multiple topological features and dynamic states in the function of complex biological networks.
Effect of motor imagery in children with unilateral cerebral palsy: fMRI study.
Chinier, Eva; N'Guyen, Sylvie; Lignon, Grégoire; Ter Minassian, Aram; Richard, Isabelle; Dinomais, Mickaël
2014-01-01
Motor imagery is considered as a promising therapeutic tool for rehabilitation of motor planning problems in patients with cerebral palsy. However motor planning problems may lead to poor motor imagery ability. The aim of this functional magnetic resonance imaging study was to examine and compare brain activation following motor imagery tasks in patients with hemiplegic cerebral palsy with left or right early brain lesions. We tested also the influence of the side of imagined hand movement. Twenty patients with clinical hemiplegic cerebral palsy (sixteen males, mean age 12 years and 10 months, aged 6 years 10 months to 20 years 10 months) participated in this study. Using block design, brain activations following motor imagery of a simple opening-closing hand movement performed by either the paretic or nonparetic hand was examined. During motor imagery tasks, patients with early right brain damages activated bilateral fronto-parietal network that comprise most of the nodes of the network well described in healthy subjects. Inversely, in patients with left early brain lesion brain activation following motor imagery tasks was reduced, compared to patients with right brain lesions. We found also a weak influence of the side of imagined hand movement. Decreased activations following motor imagery in patients with right unilateral cerebral palsy highlight the dominance of the left hemisphere during motor imagery tasks. This study gives neuronal substrate to propose motor imagery tasks in unilateral cerebral palsy rehabilitation at least for patients with right brain lesions.
Dorrance, Anne M; Rupp, Nikki C; Nogueira, Edson F
2006-03-01
Mineralocorticoid receptor antagonists protect against ischemic cerebrovascular disease; this appears to be caused by changes in cerebral vessel structure that would promote blood flow. Therefore, we hypothesized that mineralocorticoid receptor activation with deoxycorticosterone acetate would cause deleterious remodeling of the cerebral vasculature and exacerbate the damage caused by cerebral ischemia. Six-week-old male Wistar rats were treated with deoxycorticosterone acetate (200 mg/kg) for 6 weeks. At 12 weeks of age, the deoxycorticosterone acetate-treated rats had elevated systolic blood pressure compared with age-matched controls (157+/-5.9 versus 124+/-3.1 mm Hg deoxycorticosterone acetate versus control; P<0.05). The area of ischemic damage resulting from middle cerebral artery occlusion was greater in the deoxycorticosterone acetate-treated rats than control (63.5+/-3.72 versus 46.6+/-5.52% of the hemisphere infarcted, deoxycorticosterone acetate versus control; P<0.05). Middle cerebral artery structure was assessed using a pressurized arteriograph under calcium-free conditions. Over a range of intralumenal pressures, the lumen and ODs of the middle cerebral arteries were smaller in the deoxycorticosterone acetate-treated rats than the control rats (P<0.05). There was also an increase in the wall thickness and wall:lumen ratio in the vessels from deoxycorticosterone acetate-treated rats (P<0.05). The vessels from the deoxycorticosterone acetate-treated rats were stiffer than those from control rats as evidenced by a leftward shift in the stress/strain curve. These novel data suggest that mineralocorticoid receptor activation without salt loading and nephrectomy is sufficient to elicit deleterious effects on the cerebral vasculature that lead to inward hypertrophic remodeling and an increase in the ischemic damage in the event of a stroke.
Simultaneous and sequential hemorrhage of multiple cerebral cavernous malformations: a case report.
Louis, Nundia; Marsh, Robert
2016-02-09
The etiology of cerebral cavernous malformation hemorrhage is not well understood. Causative physiologic parameters preceding hemorrhagic cavernous malformation events are often not reported. We present a case of an individual with sequential simultaneous hemorrhages in multiple cerebral cavernous malformations with a new onset diagnosis of hypertension. A 42-year-old white man was admitted to our facility with worsening headache, left facial and tongue numbness, dizziness, diplopia, and elevated blood pressure. His past medical history was significant for new onset diagnosis of hypertension and chronic seasonal allergies. Serial imaging over the ensuing 8 days revealed sequential hemorrhagic lesions. He underwent suboccipital craniotomy for resection of the lesions located in the fourth ventricle and right cerebellum. One month after surgery, he had near complete resolution of his symptoms with mild residual vertigo but symptomatic chronic hypertension. Many studies have focused on genetic and inflammatory mechanisms contributing to cerebral cavernous malformation rupture, but few have reported on the potential of hemodynamic changes contributing to cerebral cavernous malformation rupture. Systemic blood pressure changes clearly have an effect on angioma pressures. When considering the histopathological features of cerebral cavernous malformation architecture, changes in arterial pressure could cause meaningful alterations in hemorrhage propensity and patterns.
Mulkey, Sarah B; Yap, Vivien L; Bai, Shasha; Ramakrishnaiah, Raghu H; Glasier, Charles M; Bornemeier, Renee A; Schmitz, Michael L; Bhutta, Adnan T
2015-06-01
The study aims are to evaluate cerebral background patterns using amplitude-integrated electroencephalography in newborns with critical congenital heart disease, determine if amplitude-integrated electroencephalography is predictive of preoperative brain injury, and assess the incidence of preoperative seizures. We hypothesize that amplitude-integrated electroencephalography will show abnormal background patterns in the early preoperative period in infants with congenital heart disease that have preoperative brain injury on magnetic resonance imaging. Twenty-four newborns with congenital heart disease requiring surgery at younger than 30 days of age were prospectively enrolled within the first 3 days of age at a tertiary care pediatric hospital. Infants had amplitude-integrated electroencephalography for 24 hours beginning close to birth and preoperative brain magnetic resonance imaging. The amplitude-integrated electroencephalographies were read to determine if the background pattern was normal, mildly abnormal, or severely abnormal. The presence of seizures and sleep-wake cycling were noted. The preoperative brain magnetic resonance imaging scans were used for brain injury and brain atrophy assessment. Fifteen of 24 infants had abnormal amplitude-integrated electroencephalography at 0.71 (0-2) (mean [range]) days of age. In five infants, the background pattern was severely abnormal. (burst suppression and/or continuous low voltage). Of the 15 infants with abnormal amplitude-integrated electroencephalography, 9 (60%) had brain injury. One infant with brain injury had a seizure on amplitude-integrated electroencephalography. A severely abnormal background pattern on amplitude-integrated electroencephalography was associated with brain atrophy (P = 0.03) and absent sleep-wake cycling (P = 0.022). Background cerebral activity is abnormal on amplitude-integrated electroencephalography following birth in newborns with congenital heart disease who have findings of brain injury and/or brain atrophy on preoperative brain magnetic resonance imaging. Copyright © 2015 Elsevier Inc. All rights reserved.
An Australian population study of factors associated with MRI patterns in cerebral palsy.
Reid, Susan M; Dagia, Charuta D; Ditchfield, Michael R; Carlin, John B; Meehan, Elaine M; Reddihough, Dinah S
2014-02-01
The aim of this study was to describe the distribution of magnetic resonance imaging (MRI) patterns in a large population sample of children with cerebral palsy (CP) and to examine associations between MRI patterns, and antenatal and perinatal variables. Data were retrieved from the Victorian CP Register for 884 children (527 males, 357 females) born between 1999 and 2006. Postneonatal MRI was classified for 594 children. For 563 children (329 males, 234 females) for whom classification was to a single MRI pattern, the frequency of each variable was compared between patterns and with the population frequency. White matter injury was the most common MRI pattern (45%), followed by grey matter injury (14%), normal imaging (13%), malformations (10%), focal vascular insults (9%), and miscellaneous patterns (7%). Parity, birth gestation, level of neonatal care, Apgar score, and time to established respiration varied between MRI patterns (p<0.01). Nulliparity was most strongly associated with focal vascular insults, whereas multiparity was associated only with malformations. Grey matter injury was not associated with birth in a tertiary unit, but was strongly associated with severe perinatal compromise. The frequency of neonatal seizures and of nursery admissions was lowest among children with malformations. As known risk factors for CP are differentially associated with specific MRI patterns, future exploration of causal pathways might be facilitated when performed in pathogenically defined groups. © 2013 Mac Keith Press.
Berding, Georg; Wilke, Florian; Rode, Thilo; Haense, Cathleen; Joseph, Gert; Meyer, Geerd J; Mamach, Martin; Lenarz, Minoo; Geworski, Lilli; Bengel, Frank M; Lenarz, Thomas; Lim, Hubert H
2015-01-01
Considerable progress has been made in the treatment of hearing loss with auditory implants. However, there are still many implanted patients that experience hearing deficiencies, such as limited speech understanding or vanishing perception with continuous stimulation (i.e., abnormal loudness adaptation). The present study aims to identify specific patterns of cerebral cortex activity involved with such deficiencies. We performed O-15-water positron emission tomography (PET) in patients implanted with electrodes within the cochlea, brainstem, or midbrain to investigate the pattern of cortical activation in response to speech or continuous multi-tone stimuli directly inputted into the implant processor that then delivered electrical patterns through those electrodes. Statistical parametric mapping was performed on a single subject basis. Better speech understanding was correlated with a larger extent of bilateral auditory cortex activation. In contrast to speech, the continuous multi-tone stimulus elicited mainly unilateral auditory cortical activity in which greater loudness adaptation corresponded to weaker activation and even deactivation. Interestingly, greater loudness adaptation was correlated with stronger activity within the ventral prefrontal cortex, which could be up-regulated to suppress the irrelevant or aberrant signals into the auditory cortex. The ability to detect these specific cortical patterns and differences across patients and stimuli demonstrates the potential for using PET to diagnose auditory function or dysfunction in implant patients, which in turn could guide the development of appropriate stimulation strategies for improving hearing rehabilitation. Beyond hearing restoration, our study also reveals a potential role of the frontal cortex in suppressing irrelevant or aberrant activity within the auditory cortex, and thus may be relevant for understanding and treating tinnitus.
Berding, Georg; Wilke, Florian; Rode, Thilo; Haense, Cathleen; Joseph, Gert; Meyer, Geerd J.; Mamach, Martin; Lenarz, Minoo; Geworski, Lilli; Bengel, Frank M.; Lenarz, Thomas; Lim, Hubert H.
2015-01-01
Considerable progress has been made in the treatment of hearing loss with auditory implants. However, there are still many implanted patients that experience hearing deficiencies, such as limited speech understanding or vanishing perception with continuous stimulation (i.e., abnormal loudness adaptation). The present study aims to identify specific patterns of cerebral cortex activity involved with such deficiencies. We performed O-15-water positron emission tomography (PET) in patients implanted with electrodes within the cochlea, brainstem, or midbrain to investigate the pattern of cortical activation in response to speech or continuous multi-tone stimuli directly inputted into the implant processor that then delivered electrical patterns through those electrodes. Statistical parametric mapping was performed on a single subject basis. Better speech understanding was correlated with a larger extent of bilateral auditory cortex activation. In contrast to speech, the continuous multi-tone stimulus elicited mainly unilateral auditory cortical activity in which greater loudness adaptation corresponded to weaker activation and even deactivation. Interestingly, greater loudness adaptation was correlated with stronger activity within the ventral prefrontal cortex, which could be up-regulated to suppress the irrelevant or aberrant signals into the auditory cortex. The ability to detect these specific cortical patterns and differences across patients and stimuli demonstrates the potential for using PET to diagnose auditory function or dysfunction in implant patients, which in turn could guide the development of appropriate stimulation strategies for improving hearing rehabilitation. Beyond hearing restoration, our study also reveals a potential role of the frontal cortex in suppressing irrelevant or aberrant activity within the auditory cortex, and thus may be relevant for understanding and treating tinnitus. PMID:26046763
Cerebral ischemia and neuroregeneration
Lee, Reggie H. C.; Lee, Michelle H. H.; Wu, Celeste Y. C.; Couto e Silva, Alexandre; Possoit, Harlee E.; Hsieh, Tsung-Han; Minagar, Alireza; Lin, Hung Wen
2018-01-01
Cerebral ischemia is one of the leading causes of morbidity and mortality worldwide. Although stroke (a form of cerebral ischemia)-related costs are expected to reach 240.67 billion dollars by 2030, options for treatment against cerebral ischemia/stroke are limited. All therapies except anti-thrombolytics (i.e., tissue plasminogen activator) and hypothermia have failed to reduce neuronal injury, neurological deficits, and mortality rates following cerebral ischemia, which suggests that development of novel therapies against stroke/cerebral ischemia are urgently needed. Here, we discuss the possible mechanism(s) underlying cerebral ischemia-induced brain injury, as well as current and future novel therapies (i.e., growth factors, nicotinamide adenine dinucleotide, melatonin, resveratrol, protein kinase C isozymes, pifithrin, hypothermia, fatty acids, sympathoplegic drugs, and stem cells) as it relates to cerebral ischemia. PMID:29623912
Riecker, A; Ackermann, H; Wildgruber, D; Dogil, G; Grodd, W
2000-06-26
Aside from spoken language, singing represents a second mode of acoustic (auditory-vocal) communication in humans. As a new aspect of brain lateralization, functional magnetic resonance imaging (fMRI) revealed two complementary cerebral networks subserving singing and speaking. Reproduction of a non-lyrical tune elicited activation predominantly in the right motor cortex, the right anterior insula, and the left cerebellum whereas the opposite response pattern emerged during a speech task. In contrast to the hemodynamic responses within motor cortex and cerebellum, activation of the intrasylvian cortex turned out to be bound to overt task performance. These findings corroborate the assumption that the left insula supports the coordination of speech articulation. Similarly, the right insula might mediate temporo-spatial control of vocal tract musculature during overt singing. Both speech and melody production require the integration of sound structure or tonal patterns, respectively, with a speaker's emotions and attitudes. Considering the widespread interconnections with premotor cortex and limbic structures, the insula is especially suited for this task.
Importance of orthotic subtalar alignment for development and gait of children with cerebral palsy.
Carmick, Judy
2012-01-01
This case report addresses the assumption that ankle and foot orthoses assist children with cerebral palsy. Outcome research reports are not consistent. Clinical observations and research studies suggest that inappropriate fit and design of orthoses may contribute to poor outcomes. In particular, problems occur when the subtalar joint is out of alignment as children often compensate with unwanted movement patterns that affect progress, development, and function. Four cases are presented to demonstrate problems that can occur when ankle-foot or supramalleolar orthoses are not cast in subtalar neutral. Physical therapists can use their clinical observation skills to evaluate the proper fit and alignment of orthoses for children with cerebral palsy.
Language dominance, handedness and sex: recessive X-linkage theory and test.
Jones, Gregory V; Martin, Maryanne
2010-06-01
The possibility is investigated that cerebral dominance for language and handedness share a common X-linkage and that the relation between the two is therefore a function of sex. In particular, an X-linked recessive account is shown to predict an overall configuration of language dominance, handedness and sex within which there is a sex effect in the pattern of language dominance among right-handed but not left-handed people. The recent accurate determination of cerebral dominance among relatively large samples of the general population by means of functional transcranial Doppler ultrasonography makes it possible to test this new theory rigorously, and its parameter-free pattern of predictions is found to be supported. Copyright (c) 2009 Elsevier Srl. All rights reserved.
NASA Astrophysics Data System (ADS)
Passerini, Tiziano; Veneziani, Alessandro; Sangalli, Laura; Secchi, Piercesare; Vantini, Simone
2010-11-01
In cerebral blood circulation, the interplay of arterial geometrical features and flow dynamics is thought to play a significant role in the development of aneurysms. In the framework of the Aneurisk project, patient-specific morphology reconstructions were conducted with the open-source software VMTK (www.vmtk.org) on a set of computational angiography images provided by Ospedale Niguarda (Milano, Italy). Computational fluid dynamics (CFD) simulations were performed with a software based on the library LifeV (www.lifev.org). The joint statistical analysis of geometries and simulations highlights the possible association of certain spatial patterns of radius, curvature and shear load along the Internal Carotid Artery (ICA) with the presence, position and previous event of rupture of an aneurysm in the entire cerebral vasculature. Moreover, some possible landmarks are identified to be monitored for the assessment of a Potential Rupture Risk Index.
Analysis of PETT images in psychiatric disorders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodie, J.D.; Gomez-Mont, F.; Volkow, N.D.
1983-01-01
A quantitative method is presented for studying the pattern of metabolic activity in a set of Positron Emission Transaxial Tomography (PETT) images. Using complex Fourier coefficients as a feature vector for each image, cluster, principal components, and discriminant function analyses are used to empirically describe metabolic differences between control subjects and patients with DSM III diagnosis for schizophrenia or endogenous depression. We also present data on the effects of neuroleptic treatment on the local cerebral metabolic rate of glucose utilization (LCMRGI) in a group of chronic schizophrenics using the region of interest approach. 15 references, 4 figures, 3 tables.
Kern, Kyle C; Wright, Clinton B; Bergfield, Kaitlin L; Fitzhugh, Megan C; Chen, Kewei; Moeller, James R; Nabizadeh, Nooshin; Elkind, Mitchell S V; Sacco, Ralph L; Stern, Yaakov; DeCarli, Charles S; Alexander, Gene E
2017-01-01
Cerebral small-vessel damage manifests as white matter hyperintensities and cerebral atrophy on brain MRI and is associated with aging, cognitive decline and dementia. We sought to examine the interrelationship of these imaging biomarkers and the influence of hypertension in older individuals. We used a multivariate spatial covariance neuroimaging technique to localize the effects of white matter lesion load on regional gray matter volume and assessed the role of blood pressure control, age and education on this relationship. Using a case-control design matching for age, gender, and educational attainment we selected 64 participants with normal blood pressure, controlled hypertension or uncontrolled hypertension from the Northern Manhattan Study cohort. We applied gray matter voxel-based morphometry with the scaled subprofile model to (1) identify regional covariance patterns of gray matter volume differences associated with white matter lesion load, (2) compare this relationship across blood pressure groups, and (3) relate it to cognitive performance. In this group of participants aged 60-86 years, we identified a pattern of reduced gray matter volume associated with white matter lesion load in bilateral temporal-parietal regions with relative preservation of volume in the basal forebrain, thalami and cingulate cortex. This pattern was expressed most in the uncontrolled hypertension group and least in the normotensives, but was also more evident in older and more educated individuals. Expression of this pattern was associated with worse performance in executive function and memory. In summary, white matter lesions from small-vessel disease are associated with a regional pattern of gray matter atrophy that is mitigated by blood pressure control, exacerbated by aging, and associated with cognitive performance.
Gross, Catharina C; Schulte-Mecklenbeck, Andreas; Hanning, Uta; Posevitz-Fejfár, Anita; Korsukewitz, Catharina; Schwab, Nicholas; Meuth, Sven G; Wiendl, Heinz; Klotz, Luisa
2017-06-01
Distinct lesion topography in relapsing-remitting multiple sclerosis (RRMS) might be due to different antigen presentation and/or trafficking routes of immune cells into the central nervous system (CNS). To investigate whether distinct lesion patterns in multiple sclerosis (MS) might be associated with a predominance of distinct circulating T-helper cell subset as well as their innate counterparts. Flow cytometric analysis of lymphocytes derived from the peripheral blood of patients with exclusively cerebral (n = 20) or predominantly spinal (n = 12) disease manifestation. Patients with exclusively cerebral or preferential spinal lesion manifestation were associated with increased proportions of circulating granulocyte-macrophage colony-stimulating factor (GM-CSF) producing T H 1 cells or interleukin (IL)-17-producing T H 17 cells, respectively. In contrast, proportions of peripheral IL-17/IL-22-producing lymphoid tissue inducer (LTi), the innate counterpart of T H 17 cells, were enhanced in RRMS patients with exclusively cerebral lesion topography. Distinct T-helper and T-helper-like innate lymphoid cell (ILC) subsets are associated with different lesion topography in RRMS.
Song, In-Uk; Chung, Yong-An; Chung, Sung-Woo; Jeong, Jaeseung
2014-01-01
Since patterns of cognitive dysfunction in mild Parkinson's disease associated with dementia (PDD) are similar to those in mild Alzheimer's disease (AD), it is difficult to accurately differentiate between these two types of dementia in their early phases using neuropsychological tests. The purpose of the current study was to investigate differences in cerebral perfusion patterns of patients with AD and PDD at the earliest stages using single photon emission computed tomography (SPECT). We consecutively recruited 31 patients with mild PDD, 32 patients with mild probable AD and 33 age-matched healthy subjects. All subjects underwent (99m)Tc-hexamethylpropyleneamine oxime perfusion SPECT and completed general neuropsychological tests. We found that both mild PDD and AD patients showed distinct hypoperfusion in frontal, parietal and temporal regions, compared with healthy subjects. More importantly, hypoperfusion in occipital and cerebellar regions was observed only in mild PDD. The observation of a significant decrease in cerebral perfusion in occipital and cerebellar regions in patients with mild PDD is likely useful to differentiate between PDD and AD at the earliest stages. © 2013 S. Karger AG, Basel.
Thromboxane A2-induced bi-directional regulation of cerebral arterial tone.
Neppl, Ronald L; Lubomirov, Lubomir T; Momotani, Ko; Pfitzer, Gabriele; Eto, Masumi; Somlyo, Avril V
2009-03-06
Myosin light chain phosphatase plays a critical role in modulating smooth muscle contraction in response to a variety of physiologic stimuli. A downstream target of the RhoA/Rho-kinase and nitric oxide (NO)/cGMP/cyclic GMP-dependent kinase (cGKI) pathways, myosin light chain phosphatase activity reflects the sum of both calcium sensitization and desensitization pathways through phosphorylation and dephosphorylation of the myosin phosphatase targeting subunit (MYPT1). As cerebral blood flow is highly spatio-temporally modulated under normal physiologic conditions, severe perturbations in normal cerebral blood flow, such as in cerebral vasospasm, can induce neurological deficits. In nonpermeabilized cerebral vessels stimulated with U-46619, a stable mimetic of endogenous thromboxane A2 implicated in the etiology of cerebral vasospasm, we observed significant increases in contractile force, RhoA activation, regulatory light chain phosphorylation, as well as phosphorylation of MYPT1 at Thr-696, Thr-853, and surprisingly Ser-695. Inhibition of nitric oxide signaling completely abrogated basal MYPT1 Ser-695 phosphorylation and significantly increased and potentiated U-46619-induced MYPT1 Thr-853 phosphorylation and contractile force, indicating that NO/cGMP/cGKI signaling maintains basal vascular tone through active inhibition of calcium sensitization. Surprisingly, a fall in Ser-695 phosphorylation did not result in an increase in phosphorylation of the Thr-696 site. Although activation of cGKI with exogenous cyclic nucleotides inhibited thromboxane A2-induced MYPT1 membrane association, RhoA activation, contractile force, and regulatory light chain phosphorylation, the anticipated decreases in MYPT1 phosphorylation at Thr-696/Thr-853 were not observed, indicating that the vasorelaxant effects of cGKI are not through dephosphorylation of MYPT1. Thus, thromboxane A2 signaling within the intact cerebral vasculature induces "buffered" vasoconstrictions, in which both the RhoA/Rho-kinase calcium-sensitizing and the NO/cGMP/cGKI calcium-desensitizing pathways are activated.
Signal transducers and activators of transcription: STATs-mediated mitochondrial neuroprotection.
Lin, Hung Wen; Thompson, John W; Morris, Kahlilia C; Perez-Pinzon, Miguel A
2011-05-15
Cerebral ischemia is defined as little or no blood flow in cerebral circulation, characterized by low tissue oxygen and glucose levels, which promotes neuronal mitochondria dysfunction leading to cell death. A strategy to counteract cerebral ischemia-induced neuronal cell death is ischemic preconditioning (IPC). IPC results in neuroprotection, which is conferred by a mild ischemic challenge prior to a normally lethal ischemic insult. Although many IPC-induced mechanisms have been described, many cellular and subcellular mechanisms remain undefined. Some reports have suggested key signal transduction pathways of IPC, such as activation of protein kinase C epsilon, mitogen-activated protein kinase, and hypoxia-inducible factors, that are likely involved in IPC-induced mitochondria mediated-neuroprotection. Moreover, recent findings suggest that signal transducers and activators of transcription (STATs), a family of transcription factors involved in many cellular activities, may be intimately involved in IPC-induced ischemic tolerance. In this review, we explore current signal transduction pathways involved in IPC-induced mitochondria mediated-neuroprotection, STAT activation in the mitochondria as it relates to IPC, and functional significance of STATs in cerebral ischemia.
Signal Transducers and Activators of Transcription: STATs-Mediated Mitochondrial Neuroprotection
Lin, Hung Wen; Thompson, John W.; Morris, Kahlilia C.
2011-01-01
Abstract Cerebral ischemia is defined as little or no blood flow in cerebral circulation, characterized by low tissue oxygen and glucose levels, which promotes neuronal mitochondria dysfunction leading to cell death. A strategy to counteract cerebral ischemia-induced neuronal cell death is ischemic preconditioning (IPC). IPC results in neuroprotection, which is conferred by a mild ischemic challenge prior to a normally lethal ischemic insult. Although many IPC-induced mechanisms have been described, many cellular and subcellular mechanisms remain undefined. Some reports have suggested key signal transduction pathways of IPC, such as activation of protein kinase C epsilon, mitogen-activated protein kinase, and hypoxia-inducible factors, that are likely involved in IPC-induced mitochondria mediated-neuroprotection. Moreover, recent findings suggest that signal transducers and activators of transcription (STATs), a family of transcription factors involved in many cellular activities, may be intimately involved in IPC-induced ischemic tolerance. In this review, we explore current signal transduction pathways involved in IPC-induced mitochondria mediated-neuroprotection, STAT activation in the mitochondria as it relates to IPC, and functional significance of STATs in cerebral ischemia. Antioxid. Redox Signal. 14, 1853–1861. PMID:20712401
Shimabukuro, Marilia Kimie; Langhi, Larissa Gutman Paranhos; Cordeiro, Ingrid; Brito, José M.; Batista, Claudia Maria de Castro; Mattson, Mark P.; de Mello Coelho, Valeria
2016-01-01
We characterized cerebral Oil Red O-positive lipid-laden cells (LLC) of aging mice evaluating their distribution, morphology, density, functional activities and inflammatory phenotype. We identified LLC in meningeal, cortical and neurogenic brain regions. The density of cerebral LLC increased with age. LLC presenting small lipid droplets were visualized adjacent to blood vessels or deeper in the brain cortical and striatal parenchyma of aging mice. LLC with larger droplets were asymmetrically distributed in the cerebral ventricle walls, mainly located in the lateral wall. We also found that LLC in the subventricular region co-expressed beclin-1 or LC3, markers for autophagosome or autophagolysosome formation, and perilipin (PLIN), a lipid droplet-associated protein, suggesting lipophagic activity. Some cerebral LLC exhibited β galactosidase activity indicating a senescence phenotype. Moreover, we detected production of the pro-inflammatory cytokine TNF-α in cortical PLIN+ LLC. Some cortical NeuN+ neurons, GFAP+ glia limitans astrocytes, Iba-1+ microglia and S100β+ ependymal cells expressed PLIN in the aging brain. Our findings suggest that cerebral LLC exhibit distinct cellular phenotypes and may participate in the age-associated neuroinflammatory processes. PMID:27029648
Shimabukuro, Marilia Kimie; Langhi, Larissa Gutman Paranhos; Cordeiro, Ingrid; Brito, José M; Batista, Claudia Maria de Castro; Mattson, Mark P; Mello Coelho, Valeria de
2016-03-31
We characterized cerebral Oil Red O-positive lipid-laden cells (LLC) of aging mice evaluating their distribution, morphology, density, functional activities and inflammatory phenotype. We identified LLC in meningeal, cortical and neurogenic brain regions. The density of cerebral LLC increased with age. LLC presenting small lipid droplets were visualized adjacent to blood vessels or deeper in the brain cortical and striatal parenchyma of aging mice. LLC with larger droplets were asymmetrically distributed in the cerebral ventricle walls, mainly located in the lateral wall. We also found that LLC in the subventricular region co-expressed beclin-1 or LC3, markers for autophagosome or autophagolysosome formation, and perilipin (PLIN), a lipid droplet-associated protein, suggesting lipophagic activity. Some cerebral LLC exhibited β galactosidase activity indicating a senescence phenotype. Moreover, we detected production of the pro-inflammatory cytokine TNF-α in cortical PLIN(+) LLC. Some cortical NeuN(+) neurons, GFAP(+) glia limitans astrocytes, Iba-1(+) microglia and S100β(+) ependymal cells expressed PLIN in the aging brain. Our findings suggest that cerebral LLC exhibit distinct cellular phenotypes and may participate in the age-associated neuroinflammatory processes.
Chen, Han-Sen; Chen, Xi; Li, Wen-Ting; Shen, Jian-Gang
2018-05-01
Reactive nitrogen species (RNS) play important roles in mediating cerebral ischemia-reperfusion injury. RNS activate multiple signaling pathways and participate in different cellular events in cerebral ischemia-reperfusion injury. Recent studies have indicated that caveolin-1 and matrix metalloproteinase (MMP) are important signaling molecules in the pathological process of ischemic brain injury. During cerebral ischemia-reperfusion, the production of nitric oxide (NO) and peroxynitrite (ONOO - ), two representative RNS, down-regulates the expression of caveolin-1 (Cav-1) and, in turn, further activates nitric oxide synthase (NOS) to promote RNS generation. The increased RNS further induce MMP activation and mediate disruption of the blood-brain barrier (BBB), aggravating the brain damage in cerebral ischemia-reperfusion injury. Therefore, the feedback interaction among RNS/Cav-1/MMPs provides an amplified mechanism for aggravating ischemic brain damage during cerebral ischemia-reperfusion injury. Targeting the RNS/Cav-1/MMP pathway could be a promising therapeutic strategy for protecting against cerebral ischemia-reperfusion injury. In this mini-review article, we highlight the important role of the RNS/Cav-1/MMP signaling cascades in ischemic stroke injury and review the current progress of studies seeking therapeutic compounds targeting the RNS/Cav-1/MMP signaling cascades to attenuate cerebral ischemia-reperfusion injury. Several representative natural compounds, including calycosin-7-O-β-D-glucoside, baicalin, Momordica charantia polysaccharide (MCP), chlorogenic acid, lutein and lycopene, have shown potential for targeting the RNS/Cav-1/MMP signaling pathway to protect the brain in ischemic stroke. Therefore, the RNS/Cav-1/MMP pathway is an important therapeutic target in ischemic stroke treatment.
Localization of Basal Ganglia and Thalamic Damage in Dyskinetic Cerebral Palsy.
Aravamuthan, Bhooma R; Waugh, Jeff L
2016-01-01
Dyskinetic cerebral palsy affects 15%-20% of patients with cerebral palsy. Basal ganglia injury is associated with dyskinetic cerebral palsy, but the patterns of injury within the basal ganglia predisposing to dyskinetic cerebral palsy are unknown, making treatment difficult. For example, deep brain stimulation of the globus pallidus interna improves dystonia in only 40% of patients with dyskinetic cerebral palsy. Basal ganglia injury heterogeneity may explain this variability. To investigate this, we conducted a qualitative systematic review of basal ganglia and thalamic damage in dyskinetic cerebral palsy. Reviews and articles primarily addressing genetic or toxic causes of cerebral palsy were excluded yielding 22 studies (304 subjects). Thirteen studies specified the involved basal ganglia nuclei (subthalamic nucleus, caudate, putamen, globus pallidus, or lentiform nuclei, comprised by the putamen and globus pallidus). Studies investigating the lentiform nuclei (without distinguishing between the putamen and globus pallidus) showed that all subjects (19 of 19) had lentiform nuclei damage. Studies simultaneously but independently investigating the putamen and globus pallidus also showed that all subjects (35 of 35) had lentiform nuclei damage (i.e., putamen or globus pallidus damage); this was followed in frequency by damage to the putamen alone (70 of 101, 69%), the subthalamic nucleus (17 of 25, 68%), the thalamus (88 of 142, 62%), the globus pallidus (7/35, 20%), and the caudate (6 of 47, 13%). Globus pallidus damage was almost always coincident with putaminal damage. Noting consistent involvement of the lentiform nuclei in dyskinetic cerebral palsy, these results could suggest two groups of patients with dyskinetic cerebral palsy: those with putamen-predominant damage and those with panlenticular damage involving both the putamen and the globus pallidus. Differentiating between these groups could help predict response to therapies such as deep brain stimulation. Copyright © 2016 Elsevier Inc. All rights reserved.
Reading Aloud Activity in L2 and Cerebral Activation
ERIC Educational Resources Information Center
Takeuchi, Osamu; Ikeda, Maiko; Mizumoto, Atsushi
2012-01-01
This article explores the cerebral mechanism of reading aloud activities in L2 learners. These activities have been widely used in L2 learning and teaching, and its effect has been reported in various Asian L2 learning contexts. However, the reasons for its effectiveness have not been examined. In order to fill in this gap, two studies using a…
The Coordinated Noninvasive Studies (CNS) Project. Phase 1. Appendices
1991-12-01
34Bandwidth of three-element patterns and its effect on relative ear advantages," to Acoustical Society of America, Cincinnati. Abstract: J Acoust Soc Amer...Acoustical Society of America, Cincinnati. Abstract: J Acoust Soc Amer 73: S60. "Cerebral metabolic effects of auditory stimulation," to Brain Breakfast...Laboratory, Los Alamos NM. "PET and the cortex: the effects of auditory stimulation on cerebral blood flow," to Department of Speech and Hearing Sciences
Gallium scanning in cerebral and cranial infections. [/sup 67/Ga, /sup 99m/Tc tracer techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waxman, A.D.; Siemsen, J.K.
1976-08-01
Eighteen patients with cranial or intracranial infections were studied with technetium and gallium brain scans. Seven of 18 lesions were noted with gallium and not with pertechnetate, while the reverse pattern was not seen. Brain abscesses were visualized with gallium but not with pertechnetate in two of five cases. Osteomyelitis of the skull and mastoiditis showed intense gallium uptake in all cases, while meningitis or cerebritis gave inconsistent results.
High Intracranial Pressure Induced Injury in the Healthy Rat Brain.
Dai, Xingping; Bragina, Olga; Zhang, Tongsheng; Yang, Yirong; Rao, Gutti R; Bragin, Denis E; Statom, Gloria; Nemoto, Edwin M
2016-08-01
We recently showed that increased intracranial pressure to 50 mm Hg in the healthy rat brain results in microvascular shunt flow characterized by tissue hypoxia, edema, and increased blood-brain barrier permeability. We now determined whether increased intracranial pressure results in neuronal injury by Fluoro-Jade stain and whether changes in cerebral blood flow and cerebral metabolic rate for oxygen suggest nonnutritive microvascular shunt flow. Intracranial pressure was elevated by a reservoir of artificial cerebrospinal fluid connected to the cisterna magna. Arterial blood gases, cerebral arterial-venous oxygen content difference, and cerebral blood flow by MRI were measured. Fluoro-Jade stain neurons were counted in histologic sections of the right and left dorsal and lateral cortices and hippocampus. University laboratory. Male Sprague Dawley rats. Arterial pressure support if needed by IV dopamine infusion and base deficit corrected by sodium bicarbonate. Fluoro-Jade stain neurons increased 2.5- and 5.5-fold at intracranial pressures of 30 and 50 mm Hg and cerebral perfusion pressures of 57 ± 4 (mean ± SEM) and 47 ± 6 mm Hg, respectively (p < 0.001) (highest in the right and left cortices). Voxel frequency histograms of cerebral blood flow showed a pattern consistent with microvascular shunt flow by dispersion to higher cerebral blood flow at high intracranial pressure and decreased cerebral metabolic rate for oxygen. High intracranial pressure likely caused neuronal injury because of a transition from normal capillary flow to nonnutritive microvascular shunt flow resulting in tissue hypoxia and edema, and it is manifest by a reduction in the cerebral metabolic rate for oxygen.
Aleman, M; Williams, D C; Guedes, A; Madigan, J E
2015-01-01
An overdose of pentobarbital sodium administered i.v. is the most commonly used method of euthanasia in veterinary medicine. Determining death after the infusion relies on the observation of physical variables. However, it is unknown when cortical electrical activity and brainstem function are lost in a sequence of events before death. To examine changes in the electrical activity of the cerebral cortex and brainstem during an overdose of pentobarbital sodium solution for euthanasia. Our testing hypothesis is that isoelectric pattern of the brain in support of brain death occurs before absence of electrocardiogram (ECG) activity. Fifteen horses requiring euthanasia. Prospective observational study. Horses with neurologic, orthopedic, and cardiac illnesses were selected and instrumented for recording of electroencephalogram, electrooculogram, brainstem auditory evoked response (BAER), and ECG. Physical and neurologic (brainstem reflexes) variables were monitored. Loss of cortical electrical activity occurred during or within 52 seconds after the infusion of euthanasia solution. Cessation of brainstem function as evidenced by a lack of brainstem reflexes and disappearance of the BAER happened subsequently. Despite undetectable heart sounds, palpable arterial pulse, and mean arterial pressure, recordable ECG was the last variable to be lost after the infusion (5.5-16 minutes after end of the infusion). Overdose of pentobarbital sodium solution administered i.v. is an effective, fast, and humane method of euthanasia. Brain death occurs within 73-261 seconds of the infusion. Although absence of ECG activity takes longer to occur, brain death has already occurred. Copyright © 2015 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.
Convergent and invariant object representations for sight, sound, and touch.
Man, Kingson; Damasio, Antonio; Meyer, Kaspar; Kaplan, Jonas T
2015-09-01
We continuously perceive objects in the world through multiple sensory channels. In this study, we investigated the convergence of information from different sensory streams within the cerebral cortex. We presented volunteers with three common objects via three different modalities-sight, sound, and touch-and used multivariate pattern analysis of functional magnetic resonance imaging data to map the cortical regions containing information about the identity of the objects. We could reliably predict which of the three stimuli a subject had seen, heard, or touched from the pattern of neural activity in the corresponding early sensory cortices. Intramodal classification was also successful in large portions of the cerebral cortex beyond the primary areas, with multiple regions showing convergence of information from two or all three modalities. Using crossmodal classification, we also searched for brain regions that would represent objects in a similar fashion across different modalities of presentation. We trained a classifier to distinguish objects presented in one modality and then tested it on the same objects presented in a different modality. We detected audiovisual invariance in the right temporo-occipital junction, audiotactile invariance in the left postcentral gyrus and parietal operculum, and visuotactile invariance in the right postcentral and supramarginal gyri. Our maps of multisensory convergence and crossmodal generalization reveal the underlying organization of the association cortices, and may be related to the neural basis for mental concepts. © 2015 Wiley Periodicals, Inc.
Fgf receptor 3 activation promotes selective growth and expansion of occipitotemporal cortex
Thomson, Rachel E; Kind, Peter C; Graham, Nicholas A; Etherson, Michelle L; Kennedy, John; Fernandes, Ana C; Marques, Catia S; Hevner, Robert F; Iwata, Tomoko
2009-01-01
Background Fibroblast growth factors (Fgfs) are important regulators of cerebral cortex development. Fgf2, Fgf8 and Fgf17 promote growth and specification of rostromedial (frontoparietal) cortical areas. Recently, the function of Fgf15 in antagonizing Fgf8 in the rostral signaling center was also reported. However, regulation of caudal area formation by Fgf signaling remains unknown. Results In mutant mice with constitutive activation of Fgf receptor 3 (Fgfr3) in the forebrain, surface area of the caudolateral cortex was markedly expanded at early postnatal stage, while rostromedial surface area remained normal. Cortical thickness was also increased in caudal regions. The expression domain and levels of Fgf8, as well as overall patterning, were unchanged. In contrast, the changes in caudolateral surface area were associated with accelerated cell cycle in early stages of neurogenesis without an alteration of cell cycle exit. Moreover, a marked overproduction of intermediate neuronal progenitors was observed in later stages, indicating prolongation of neurogenesis. Conclusion Activation of Fgfr3 selectively promotes growth of caudolateral (occipitotemporal) cortex. These observations support the 'radial unit' and 'radial amplification' hypotheses and may explain premature sulcation of the occipitotemporal cortex in thanatophoric dysplasia, a human FGFR3 disorder. Together with previous work, this study suggests that formation of rostral and caudal areas are differentially regulated by Fgf signaling in the cerebral cortex. PMID:19192266
Holcomb, H H; Medoff, D R; Caudill, P J; Zhao, Z; Lahti, A C; Dannals, R F; Tamminga, C A
1998-09-01
Tone recognition is partially subserved by neural activity in the right frontal and primary auditory cortices. First we determined the brain areas associated with tone perception and recognition. This study then examined how regional cerebral blood flow (rCBF) in these and other brain regions correlates with the behavioral characteristics of a difficult tone recognition task. rCBF changes were assessed using H2(15)O positron emission tomography. Subtraction procedures were used to localize significant change regions and correlational analyses were applied to determine how response times (RT) predicted rCBF patterns. Twelve trained normal volunteers were studied in three conditions: REST, sensory motor control (SMC) and decision (DEC). The SMC-REST contrast revealed bilateral activation of primary auditory cortices, cerebellum and bilateral inferior frontal gyri. DEC-SMC produced significant clusters in the right middle and inferior frontal gyri, insula and claustrum; the anterior cingulate gyrus and supplementary motor area; the left insula/claustrum; and the left cerebellum. Correlational analyses, RT versus rCBF from DEC scans, showed a positive correlation in right inferior and middle frontal cortex; rCBF in bilateral auditory cortices and cerebellum exhibited significant negative correlations with RT These changes suggest that neural activity in the right frontal, superior temporal and cerebellar regions shifts back and forth in magnitude depending on whether tone recognition RT is relatively fast or slow, during a difficult, accurate assessment.
Experimental study of hemodynamics in the circle of willis
2015-01-01
Background The Circle of Willis (CoW) is an important collateral pathway of the cerebral blood flow. An experimental study of the cerebral blood flow (CBF) distribution in different anatomical variations may help to a better understanding of the collateral mechanism of the CoW. Methods An in-vitro test rig was developed to simulate the physiological cerebral blood flow in the CoW. Ten anatomical variations were considered in this study, include a set of different degrees of stenosis in L-ICA and L-ICA occlusion coexist with common anatomical variations. Volume flow rates of efferent arteries and pressure signals at the end of communicating arteries of each case were recorded. Physiological pressure waveforms were applied as inlet boundary condition. Results In the development of L-ICA stenosis, the total CBF decreases with the increase of stenosis degree. The blood supply of ipsilateral middle cerebral artery (MCA) was affected most by the stenosis of L-ICA. Anterior communicating artery (ACoA) and ipsilateral posterior communicating artery (PCoA) function as important collateral pathways of cerebral collateral circulation when unilateral stenosis occurred. The blood supply of anterior cerebral circulation was compensated by the posterior cerebral circulation through ipsilateral PCoA when L-ICA stenosis degree is greater than 40% and the affected side was compensated immediately by the unaffected side through ACoA. Blood flow of the anterior circulation and the total CBF reached the minimum among all cases studied when L-ICA occlusion coexist with the absence of PCoA. Conclusion The results demonstrated the flow distribution patterns of the CoW under anatomical variations and clarified the collateral mechanism of the CoW. The flow ACoA is the most sensitive indexes to the morphology change of ipsilateral ICA. The relative independence of the circulation in anterior and posterior sections of the CoW is not broken and the function of ipsilateral PCoA is not activated until a severe stenosis of unilateral ICA occurs. PCoA is the most important collateral pathway of the collateral circulation and the missing of PCoA has the highest risk of stroke when the ipsilateral ICA has severe stenosis. These findings may provide the basis for future therapeutic and diagnosis applications. PMID:25603138
Coma in fatal adult human malaria is not caused by cerebral oedema
2011-01-01
Background The role of brain oedema in the pathophysiology of cerebral malaria is controversial. Coma associated with severe Plasmodium falciparum malaria is multifactorial, but associated with histological evidence of parasitized erythrocyte sequestration and resultant microvascular congestion in cerebral vessels. To determine whether these changes cause breakdown of the blood-brain barrier and resultant perivascular or parenchymal cerebral oedema, histology, immunohistochemistry and image analysis were used to define the prevalence of histological patterns of oedema and the expression of specific molecular pathways involved in water balance in the brain in adults with fatal falciparum malaria. Methods The brains of 20 adult Vietnamese patients who died of severe malaria were examined for evidence of disrupted vascular integrity. Immunohistochemistry and image analysis was performed on brainstem sections for activation of the vascular endothelial growth factor (VEGF) receptor 2 and expression of the aquaporin 4 (AQP4) water channel protein. Fibrinogen immunostaining was assessed as evidence of blood-brain barrier leakage and perivascular oedema formation. Correlations were performed with clinical, biochemical and neuropathological parameters of severe malaria infection. Results The presence of oedema, plasma protein leakage and evidence of VEGF signalling were heterogeneous in fatal falciparum malaria and did not correlate with pre-mortem coma. Differences in vascular integrity were observed between brain regions with the greatest prevalence of disruption in the brainstem, compared to the cortex or midbrain. There was a statistically non-significant trend towards higher AQP4 staining in the brainstem of cases that presented with coma (P = .02). Conclusions Histological evidence of cerebral oedema or immunohistochemical evidence of localised loss of vascular integrity did not correlate with the occurrence of pre-mortem coma in adults with fatal falciparum malaria. Enhanced expression of AQP4 water channels in the brainstem may, therefore, reflect a mix of both neuropathological or attempted neuroprotective responses to oedema formation. PMID:21923924
Coma in fatal adult human malaria is not caused by cerebral oedema.
Medana, Isabelle M; Day, Nicholas P J; Sachanonta, Navakanit; Mai, Nguyen T H; Dondorp, Arjen M; Pongponratn, Emsri; Hien, Tran T; White, Nicholas J; Turner, Gareth D H
2011-09-17
The role of brain oedema in the pathophysiology of cerebral malaria is controversial. Coma associated with severe Plasmodium falciparum malaria is multifactorial, but associated with histological evidence of parasitized erythrocyte sequestration and resultant microvascular congestion in cerebral vessels. To determine whether these changes cause breakdown of the blood-brain barrier and resultant perivascular or parenchymal cerebral oedema, histology, immunohistochemistry and image analysis were used to define the prevalence of histological patterns of oedema and the expression of specific molecular pathways involved in water balance in the brain in adults with fatal falciparum malaria. The brains of 20 adult Vietnamese patients who died of severe malaria were examined for evidence of disrupted vascular integrity. Immunohistochemistry and image analysis was performed on brainstem sections for activation of the vascular endothelial growth factor (VEGF) receptor 2 and expression of the aquaporin 4 (AQP4) water channel protein. Fibrinogen immunostaining was assessed as evidence of blood-brain barrier leakage and perivascular oedema formation. Correlations were performed with clinical, biochemical and neuropathological parameters of severe malaria infection. The presence of oedema, plasma protein leakage and evidence of VEGF signalling were heterogeneous in fatal falciparum malaria and did not correlate with pre-mortem coma. Differences in vascular integrity were observed between brain regions with the greatest prevalence of disruption in the brainstem, compared to the cortex or midbrain. There was a statistically non-significant trend towards higher AQP4 staining in the brainstem of cases that presented with coma (P = .02). Histological evidence of cerebral oedema or immunohistochemical evidence of localised loss of vascular integrity did not correlate with the occurrence of pre-mortem coma in adults with fatal falciparum malaria. Enhanced expression of AQP4 water channels in the brainstem may, therefore, reflect a mix of both neuropathological or attempted neuroprotective responses to oedema formation.
Functional stability of cerebral circulatory system
NASA Technical Reports Server (NTRS)
Moskalenko, Y. Y.
1980-01-01
The functional stability of the cerebral circulation system seems to be based on the active mechanisms and on those stemming from specific of the biophysical structure of the system under study. This latter parameter has some relevant criteria for its quantitative estimation. The data obtained suggest that the essential part of the mechanism for active responses of cerebral vessels which maintains the functional stability of this portion of the vascular system, consists of a neurogenic component involving central nervous structures localized, for instance, in the medulla oblongata.
Cortical activity patterns predict speech discrimination ability
Engineer, Crystal T; Perez, Claudia A; Chen, YeTing H; Carraway, Ryan S; Reed, Amanda C; Shetake, Jai A; Jakkamsetti, Vikram; Chang, Kevin Q; Kilgard, Michael P
2010-01-01
Neural activity in the cerebral cortex can explain many aspects of sensory perception. Extensive psychophysical and neurophysiological studies of visual motion and vibrotactile processing show that the firing rate of cortical neurons averaged across 50–500 ms is well correlated with discrimination ability. In this study, we tested the hypothesis that primary auditory cortex (A1) neurons use temporal precision on the order of 1–10 ms to represent speech sounds shifted into the rat hearing range. Neural discrimination was highly correlated with behavioral performance on 11 consonant-discrimination tasks when spike timing was preserved and was not correlated when spike timing was eliminated. This result suggests that spike timing contributes to the auditory cortex representation of consonant sounds. PMID:18425123
Deciphering Neural Codes of Memory during Sleep
Chen, Zhe; Wilson, Matthew A.
2017-01-01
Memories of experiences are stored in the cerebral cortex. Sleep is critical for consolidating hippocampal memory of wake experiences into the neocortex. Understanding representations of neural codes of hippocampal-neocortical networks during sleep would reveal important circuit mechanisms on memory consolidation, and provide novel insights into memory and dreams. Although sleep-associated ensemble spike activity has been investigated, identifying the content of memory in sleep remains challenging. Here, we revisit important experimental findings on sleep-associated memory (i.e., neural activity patterns in sleep that reflect memory processing) and review computational approaches for analyzing sleep-associated neural codes (SANC). We focus on two analysis paradigms for sleep-associated memory, and propose a new unsupervised learning framework (“memory first, meaning later”) for unbiased assessment of SANC. PMID:28390699
Brain Energetics During the Sleep-Wake Cycle
DiNuzzo, Mauro; Nedergaard, Maiken
2017-01-01
Brain activity during wakefulness is associated with high metabolic rates that are believed to support information processing and memory encoding. In spite of loss of consciousness, sleep still carries a substantial energy cost. Experimental evidence supports a cerebral metabolic shift taking place during sleep that suppresses aerobic glycolysis, a hallmark of environment-oriented waking behavior and synaptic plasticity. Recent studies reveal that glial astrocytes respond to the reduction of wake-promoting neuromodulators by regulating volume, composition and glymphatic drainage of interstitial fluid. These events are accompanied by changes in neuronal discharge patterns, astrocyte-neuron interactions, synaptic transactions and underlying metabolic features. Internally-generated neuronal activity and network homeostasis are proposed to account for the high sleep-related energy demand. PMID:29024871
Pires, Paulo W; Ko, Eun-A; Pritchard, Harry A T; Rudokas, Michael; Yamasaki, Evan; Earley, Scott
2017-07-15
The angiotensin II receptor type 1b (AT 1 R b ) is the primary sensor of intraluminal pressure in cerebral arteries. Pressure or membrane-stretch induced stimulation of AT 1 R b activates the TRPM4 channel and results in inward transient cation currents that depolarize smooth muscle cells, leading to vasoconstriction. Activation of either AT 1 R a or AT 1 R b with angiotensin II stimulates TRPM4 currents in cerebral artery myocytes and vasoconstriction of cerebral arteries. The expression of AT 1 R b mRNA is ∼30-fold higher than AT 1 R a in whole cerebral arteries and ∼45-fold higher in isolated cerebral artery smooth muscle cells. Higher levels of expression are likely to account for the obligatory role of AT 1 R b for pressure-induced vasoconstriction . ABSTRACT: Myogenic vasoconstriction, which reflects the intrinsic ability of smooth muscle cells to contract in response to increases in intraluminal pressure, is critically important for the autoregulation of blood flow. In smooth muscle cells from cerebral arteries, increasing intraluminal pressure engages a signalling cascade that stimulates cation influx through transient receptor potential (TRP) melastatin 4 (TRPM4) channels to cause membrane depolarization and vasoconstriction. Substantial evidence indicates that the angiotensin II receptor type 1 (AT 1 R) is inherently mechanosensitive and initiates this signalling pathway. Rodents express two types of AT 1 R - AT 1 R a and AT 1 R b - and conflicting studies provide support for either isoform as the primary sensor of intraluminal pressure in peripheral arteries. We hypothesized that mechanical activation of AT 1 R a increases TRPM4 currents to induce myogenic constriction of cerebral arteries. However, we found that development of myogenic tone was greater in arteries from AT 1 R a knockout animals compared with controls. In patch-clamp experiments using native cerebral arterial myocytes, membrane stretch-induced cation currents were blocked by the TRPM4 inhibitor 9-phenanthrol in both groups. Further, the AT 1 R blocker losartan (1 μm) diminished myogenic tone and blocked stretch-induced cation currents in cerebral arteries from both groups. Activation of AT 1 R with angiotensin II (30 nm) also increased TRPM4 currents in smooth muscle cells and constricted cerebral arteries from both groups. Expression of AT 1 R b mRNA was ∼30-fold greater than AT 1 R a in cerebral arteries, and knockdown of AT 1 R b selectively diminished myogenic constriction. We conclude that AT 1 R b , acting upstream of TRPM4 channels, is the primary sensor of intraluminal pressure in cerebral artery smooth muscle cells. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
Katoh, Hirotaka; Saito, Yu; Ohwan, Yoshiyuki; Kasai, Hideyo; Fujita, Kazuhisa; Kawamura, Mitsuru
2014-10-01
We report a 47-year-old woman who developed a thunderclap headache. Head axial, fluid-attenuated inversion recovery magnetic resonance imaging (FLAIR MRI) revealed high signal lesions in the left occipital and right parietal lobes. Apparent diffusion coefficient mapping showed a vasogenic edema pattern. Upon admission, the patient's blood pressure was normal and the neurological examination was unremarkable. As thunderclap headaches are associated with a repeated rise in blood pressure, we considered cerebral vasoconstriction and administered a calcium channel blocker. Thereafter, her headache with high blood pressure eased significantly and the high signal lesions on FLAIR MRI disappeared. We diagnosed the condition as posterior reversible encephalopathy syndrome (PRES). In addition, head magnetic resonance angiogram showed vasoconstriction of the right anterior cerebral artery, left middle cerebral artery, and bilateral posterior cerebral artery. Calcium channel blocker use was continued and vasoconstriction improved by day 70. In this case, the presenting symptom was thunderclap headache, which is a characteristic feature of reversible cerebral vasoconstriction syndrome (RCVS). Therefore, PRES may be caused by RCVS.
Task-induced activation and hemispheric dominance in cerebral circulation during gum chewing.
Ono, T; Hasegawa, Y; Hori, K; Nokubi, T; Hamasaki, T
2007-10-01
In elderly persons, it is thought that maintenance of masticatory function may have a beneficial effect on maintenance of cerebral function. However, few studies on cerebral circulation during mastication exist. This study aimed to verify a possible increase in cerebral circulation and the presence of cerebral hemispheric dominance during gum chewing. Twelve healthy, young right-handed subjects with normal dentition were enrolled. Bilateral middle cerebral arterial blood flow velocities (MCAV), heart rate, and arterial carbon dioxide levels were measured during a handgrip exercise and gum chewing. During gum chewing, electromyography of the bilateral masseter muscle was recorded.MCAV and heart rate significantly increased during exercise compared to values at rest. During gum chewing, there were no differences in the rate of increase in MCAV between the working and non-working sides, but during the handgrip exercise, the rate of increase in MCAV was significantly greater for the non-working side than for the working side. During gum chewing,muscle activity on the working side was significantly greater than that on the non-working side. These results suggest that during gum chewing, cerebral circulation increases bilaterally and does not show contralateral dominance, as it does during the handgrip exercise.
Jones, Phill B.; Shin, Hwa Kyoung; Boas, David A.; Hyman, Bradley T.; Moskowitz, Michael A.; Ayata, Cenk; Dunn, Andrew K.
2009-01-01
Real-time investigation of cerebral blood flow (CBF), and oxy- and deoxyhemoglobin concentration (HbO, HbR) dynamics has been difficult until recently due to limited spatial and temporal resolution of techniques like laser Doppler flowmetry and magnetic resonance imaging (MRI). The combination of laser speckle flowmetry (LSF) and multispectral reflectance imaging (MSRI) yields high-resolution spatiotemporal maps of hemodynamic and metabolic changes in response to functional cortical activation. During acute focal cerebral ischemia, changes in HbO and HbR are much larger than in functional activation, resulting in the failure of the Beer-Lambert approximation to yield accurate results. We describe the use of simultaneous LSF and MSRI, using a nonlinear Monte Carlo fitting technique, to record rapid changes in CBF, HbO, HbR, and cerebral metabolic rate of oxygen (CMRO2) during acute focal cerebral ischemia induced by distal middle cerebral artery occlusion (dMCAO) and reperfusion. This technique captures CBF and CMRO2 changes during hemodynamic and metabolic events with high temporal and spatial resolution through the intact skull and demonstrates the utility of simultaneous LSF and MSRI in mouse models of cerebrovascular disease. PMID:19021335
Harris, Robert; de Jong, Bauke M
2015-10-22
Using fMRI, cerebral activations were studied in 24 classically-trained keyboard performers and 12 musically unskilled control subjects. Two groups of musicians were recruited: improvising (n=12) and score-dependent (non-improvising) musicians (n=12). While listening to both familiar and unfamiliar music, subjects either (covertly) appraised the presented music performance or imagined they were playing the music themselves. We hypothesized that improvising musicians would exhibit enhanced efficiency of audiomotor transformation reflected by stronger ventral premotor activation. Statistical Parametric Mapping revealed that, while virtually 'playing along׳ with the music, improvising musicians exhibited activation of a right-hemisphere distribution of cerebral areas including posterior-superior parietal and dorsal premotor cortex. Involvement of these right-hemisphere dorsal stream areas suggests that improvising musicians recruited an amodal spatial processing system subserving pitch-to-space transformations to facilitate their virtual motor performance. Score-dependent musicians recruited a primarily left-hemisphere pattern of motor areas together with the posterior part of the right superior temporal sulcus, suggesting a relationship between aural discrimination and symbolic representation. Activations in bilateral auditory cortex were significantly larger for improvising musicians than for score-dependent musicians, suggesting enhanced top-down effects on aural perception. Our results suggest that learning to play a music instrument primarily from notation predisposes musicians toward aural identification and discrimination, while learning by improvisation involves audio-spatial-motor transformations, not only during performance, but also perception. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Van de Winckel, Ann; Klingels, Katrijn; Bruyninckx, Frans; Wenderoth, Nici; Peeters, Ron; Sunaert, Stefan; Van Hecke, Wim; De Cock, Paul; Eyssen, Maria; De Weerdt, Willy; Feys, Hilde
2013-01-01
The aim of the functional magnetic resonance imaging (fMRI) study was to investigate brain activation associated with active and passive movements, and tactile stimulation in 17 children with right-sided unilateral cerebral palsy (CP), compared to 19 typically developing children (TD). The active movements consisted of repetitive opening and…
Schroeder, C E; Mehta, A D; Givre, S J
1998-01-01
We investigated the spatiotemporal activation pattern, produced by one visual stimulus, across cerebral cortical regions in awake monkeys. Laminar profiles of postsynaptic potentials and action potentials were indexed with current source density (CSD) and multiunit activity profiles respectively. Locally, we found contrasting activation profiles in dorsal and ventral stream areas. The former, like V1 and V2, exhibit a 'feedforward' profile, with excitation beginning at the depth of Lamina 4, followed by activation of the extragranular laminae. The latter often displayed a multilaminar/columnar profile, with initial responses distributed across the laminae and reflecting modulation rather than excitation; CSD components were accompanied by either no changes or by suppression of action potentials. System-wide, response latencies indicated a large dorsal/ventral stream latency advantage, which generalizes across a wide range of methods. This predicts a specific temporal ordering of dorsal and ventral stream components of visual analysis, as well as specific patterns of dorsal-ventral stream interaction. Our findings support a hierarchical model of cortical organization that combines serial and parallel elements. Critical in such a model is the recognition that processing within a location typically entails multiple temporal components or 'waves' of activity, driven by input conveyed over heterogeneous pathways from the retina.
Short-Term Variations in Response Distribution to Cortical Stimulation
ERIC Educational Resources Information Center
Lesser, Ronald P.; Lee, Hyang Woon; Webber, W. R. S.; Prince, Barry; Crone, Nathan E.; Miglioretti, Diana L.
2008-01-01
Patterns of responses in the cerebral cortex can vary, and are influenced by pre-existing cortical function, but it is not known how rapidly these variations can occur in humans. We investigated how rapidly response patterns to electrical stimulation can vary in intact human brain. We also investigated whether the type of functional change…
APC sets the Wnt tone necessary for cerebral cortical progenitor development
Nakagawa, Naoki; Li, Jingjun; Yabuno-Nakagawa, Keiko; Eom, Tae-Yeon; Cowles, Martis; Mapp, Tavien; Taylor, Robin; Anton, E.S.
2017-01-01
Adenomatous polyposis coli (APC) regulates the activity of β-catenin, an integral component of Wnt signaling. However, the selective role of the APC–β-catenin pathway in cerebral cortical development is unknown. Here we genetically dissected the relative contributions of APC-regulated β-catenin signaling in cortical progenitor development, a necessary early step in cerebral cortical formation. Radial progenitor-specific inactivation of the APC–β-catenin pathway indicates that the maintenance of appropriate β-catenin-mediated Wnt tone is necessary for the orderly differentiation of cortical progenitors and the resultant formation of the cerebral cortex. APC deletion deregulates β-catenin, leads to high Wnt tone, and disrupts Notch1 signaling and primary cilium maintenance necessary for radial progenitor functions. β-Catenin deregulation directly disrupts cilium maintenance and signaling via Tulp3, essential for intraflagellar transport of ciliary signaling receptors. Surprisingly, deletion of β-catenin or inhibition of β-catenin activity in APC-null progenitors rescues the APC-null phenotype. These results reveal that APC-regulated β-catenin activity in cortical progenitors sets the appropriate Wnt tone necessary for normal cerebral cortical development. PMID:28916710
Ragno, Michele; Sanguigni, Sandro; Manca, Antonio; Pianese, Luigi; Paci, Cristina; Berbellini, Alfonso; Cozzolino, Valeria; Gobbato, Roberto; Peluso, Silvio; De Michele, Giuseppe
2016-06-01
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), the most common hereditary cerebral small vessel disease, is caused by mutations in the NOTCH3 gene on chromosome 19. Clinical manifestations of CADASIL include recurrent transient ischemic attacks, strokes, cognitive defects, epilepsy, migraine and psychiatric symptoms. Parkinsonian features have variably been reported in CADASIL patients, but only a few patients showed a clear parkinsonian syndrome. We studied two patients, a pair of monozygotic twins, carrying the R1006C mutation of the NOTCH3 gene and affected by a parkinsonian syndrome. For the first time in CADASIL patients, we used transcranial sonography (TCS) to assess basal ganglia abnormalities. TCS showed a bilateral hyperechogenic pattern of substantia nigra in one twin, and a right hyperechogenic pattern in the other. In both patients, lenticular nuclei showed a bilateral hyperechogenic pattern, and the width of the third ventricle was slightly increased. The TCS pattern found in our CADASIL patients is characteristic neither for Parkinson's disease, nor for vascular parkinsonism and seems to be specific and related to the disease-specific pathological features.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haining, J.L.; Clower, B.R.; Honma, Y.
From 2 hours to 23 days following experimental subarachnoid hemorrhage, the accumulation of indium-111-labeled platelets on the intimal surface of the middle cerebral artery was studied in 23 cats. Subarachnoid hemorrhage was produced by transorbital rupture of the right middle cerebral artery. Of the 23 cats, 17 exhibited right middle cerebral artery/left middle cerebral artery radioactivity ratios of greater than 1.25. When these results were compared with those of 12 control cats, 0.001 less than p less than 0.005 (chi2 test). Thus, the results from the control and experimental groups are significantly different and indicate early (after 2 hours) preferentialmore » accumulation of intimal platelets in the ruptured right middle cerebral artery compared with the unruptured left middle cerebral artery and new platelet deposition continuing for up to 23 days. However, the experimental group did not reveal a clear pattern for platelet accumulation following subarachnoid hemorrhage. There was no simple correlation between the magnitude of the radioactivity ratios and the time after hemorrhage when the cats were killed although the ratios for 2 hours to 7 days seemed greater than those for 8 to 23 days. Assuming the pivotal role of platelets in the angiopathy of subarachnoid hemorrhage, the administration of antiplatelet agents as soon as possible following its occurrence may be of value.« less
Radon inhalation protects against transient global cerebral ischemic injury in gerbils.
Kataoka, Takahiro; Etani, Reo; Takata, Yuji; Nishiyama, Yuichi; Kawabe, Atsushi; Kumashiro, Masayuki; Taguchi, Takehito; Yamaoka, Kiyonori
2014-10-01
Although brain disorders are not the main indication for radon therapy, our previous study suggested that radon inhalation therapy might mitigate brain disorders. In this study, we assessed whether radon inhalation protects against transient global cerebral ischemic injury in gerbils. Gerbils were treated with inhaled radon at a concentration of 2,000 Bq/m(3) for 24 h. After radon inhalation, transient global cerebral ischemia was induced by bilateral occlusion of the common carotid artery. Results showed that transient global cerebral ischemia induced neuronal damage in hippocampal CA1, and the number of damaged neurons was significantly increased compared with control. However, radon treatment inhibited ischemic damage. Superoxide dismutase (SOD) activity in the radon-treated gerbil brain was significantly higher than that in sham-operated gerbils. These findings suggested that radon inhalation activates antioxidative function, especially SOD, thereby inhibiting transient global cerebral ischemic injury in gerbils.
Physical Activity in a Total Population of Children and Adolescents with Cerebral Palsy
ERIC Educational Resources Information Center
Lauruschkus, Katarina; Westbom, Lena; Hallstrom, Inger; Wagner, Philippe; Nordmark, Eva
2013-01-01
The aims of this study were to describe the participation in physical activity of children with cerebral palsy (CP) at school and during leisure time and to identify characteristics associated with physical activity. The frequency of receiving physiotherapeutic interventions were described as a variable of interest. A total population of 364…
Depletion of GGA3 stabilizes BACE and enhances β-secretase activity
Tesco, Giuseppina; Koh, Young Ho; Kang, Eugene; Cameron, Andrew; Das, Shinjita; Sena-Esteves, Miguel; Hiltunen, Mikko; Yang, Shao-Hua; Zhong, Zhenyu; Shen, Yong; Simpkins, James; Tanzi, Rudolph E.
2007-01-01
Summary Beta-site APP-cleaving enzyme (BACE) is required for production of the Alzheimer's disease (AD)-associated Aβ protein. BACE levels are elevated in AD brain, and increasing evidence reveals BACE as a stress-related protease that is upregulated following cerebral ischemia. However, the molecular mechanism responsible is unknown. We show that increases in BACE and β-secretase activity are due to post-translational stabilization following caspase activation. We also found that during cerebral ischemia, levels of GGA3, an adaptor protein involved in BACE trafficking, are reduced, while BACE levels are increased. RNAi silencing of GGA3 also elevated levels of BACE and Aβ. Finally, in AD brain samples, GGA3 protein levels were significantly decreased and inversely correlated with increased levels of BACE. In summary, we have elucidated a novel GGA3-dependent mechanism regulating BACE levels and β-secretase activity. This mechanism may explain increased cerebral levels of BACE and Aβ following cerebral ischemia and in AD. PMID:17553422
Cerebral blood flow regulation during cognitive tasks
Sorond, Farzaneh A.; Schnyer, D.M.; Serrador, J.M.; Milberg, W.P.; Lipsitz, L.A.
2008-01-01
Aging is associated with frontal subcortical microangiopathy and executive cognitive dysfunction, suggesting that elderly individuals may have impaired metabolic activation of cerebral blood flow to the frontal lobes. We used transcranial Doppler (TCD) ultrasound to examine the cerebral blood flow response to executive control and visual tasks in the anterior and posterior cerebral circulations and to determine the effects of healthy aging on cerebral blood flow regulation during cognitive tasks. Continuous simultaneous anterior cerebral artery (ACA) and posterior cerebral artery (PCA) blood flow velocities (BFVs) and mean arterial pressure (MAP) were measured in response to word stem completion (WSC) and a visual search (VS) task in 29 healthy subjects (14 young, 30 ± 1.5 years; 15 old, 74 ± 1.4 years). We found that: (1) ACA and PCA blood flow velocities are both significantly increased during WSC and VS cognitive tasks, (2) ACA and PCA activations were task specific in our young volunteers, with ACA > PCA BFV during the WSC task and PCA > ACA BFV during the VS task, (3) while healthy elderly subjects also had PCA > ACA BFV during the VS task, they did not have ACA > PCA activation during the WSC task, and (4) healthy elderly subjects tend to have overall greater increases in BFV during both cognitive tasks. We conclude that TCD can be used to monitor cerebrovascular hemodynamics during the performance of cognitive tasks. Our data suggest that there is differential blood flow increase in the ACA and PCA in young versus elderly subjects during cognitive tasks. PMID:18387547
Jiang, Bowen; Bender, Matthew T.; Hasjim, Bima; Hsu, Frank P. K.; Tamargo, Rafael J.; Huang, Judy; Colby, Geoffrey P.; Coon, Alexander L.; Lin, Li-Mei
2017-01-01
Background: The practice patterns of a hybrid open cerebrovascular/neuroendovascular (CVNV) neurosurgeon in early academic practice is unknown. Methods: We performed a multi-institutional retrospective cohort study of patients with cerebral aneurysms that were treated within the first 24 months of the neurosurgeon’s practice. Results: A total of 533 aneurysms were treated by the three senior authors within the first 24 months of their academic practice. Of these aneurysms, 172 were treated with microsurgical clipping, 191 with coiling, and 170 with flow diversion. Treatment in the setting of acute subarachnoid hemorrhage (SAH) occurred in 23% (122/533) of the aneurysms. Majority of the clipped aneurysms (70%, 121/172) were anterior cerebral artery (ACA), anterior communicating artery (ACOM), or middle cerebral artery (MCA) in location. In comparison, only 23% (82/361) of aneurysms treated with coiling or flow diversion therapy were ACA, ACOM, or MCA in location (P < 0.05). Additionally, majority of the flow diverted aneurysm (65%, 111/170) were cavernous or ophthalmic/paraophthalmic in location. During the second year of practice, there appeared to be a trend towards more aneurysms treated with neuroendovascular techniques (22% increase), particularly in flow diversion. Conclusion: Although the CVNV neurosurgeon treats cerebral aneurysms more commonly with neuroendovascular techniques, a third of the cerebral aneurysms are still selected for microsurgical clipping. Aneurysms located along the ACA/ACOM or MCA are the most frequent aneurysms reserved for microsurgical clipping. The CVNV neurosurgeon must be prepared to manage a high percentage of ACA/ACOM or MCA aneurysms microsurgically. PMID:28808603
Network-Level Structure-Function Relationships in Human Neocortex
Mišić, Bratislav; Betzel, Richard F.; de Reus, Marcel A.; van den Heuvel, Martijn P.; Berman, Marc G.; McIntosh, Anthony R.; Sporns, Olaf
2016-01-01
The dynamics of spontaneous fluctuations in neural activity are shaped by underlying patterns of anatomical connectivity. While numerous studies have demonstrated edge-wise correspondence between structural and functional connections, much less is known about how large-scale coherent functional network patterns emerge from the topology of structural networks. In the present study, we deploy a multivariate statistical technique, partial least squares, to investigate the association between spatially extended structural networks and functional networks. We find multiple statistically robust patterns, reflecting reliable combinations of structural and functional subnetworks that are optimally associated with one another. Importantly, these patterns generally do not show a one-to-one correspondence between structural and functional edges, but are instead distributed and heterogeneous, with many functional relationships arising from nonoverlapping sets of anatomical connections. We also find that structural connections between high-degree hubs are disproportionately represented, suggesting that these connections are particularly important in establishing coherent functional networks. Altogether, these results demonstrate that the network organization of the cerebral cortex supports the emergence of diverse functional network configurations that often diverge from the underlying anatomical substrate. PMID:27102654
Preston, N.; Levesley, M.; Mon‐Williams, M.; O'Connor, R.J.
2017-01-01
Abstract Background and purpose Upper limb activity measures for children with cerebral palsy have a number of limitations, for example, lack of validity and poor responsiveness. To overcome these limitations, we developed the Children's Arm Rehabilitation Measure (ChARM), a parent‐reported questionnaire validated for children with cerebral palsy aged 5–16 years. This paper describes both the development of the ChARM items and response categories and its psychometric testing and further refinement using the Rasch measurement model. Methods To generate valid items for the ChARM, we collected goals of therapy specifically developed by therapists, children with cerebral palsy, and their parents for improving activity limitation of the upper limb. The activities, which were the focus of these goals, formed the basis for the items. Therapists typically break an activity into natural stages for the purpose of improving activity performance, and these natural orders of achievement formed each item's response options. Items underwent face validity testing with health care professionals, parents of children with cerebral palsy, academics, and lay persons. A Rasch analysis was performed on ChARM questionnaires completed by the parents of 170 children with cerebral palsy from 12 hospital paediatric services. The ChARM was amended, and the procedure repeated on 148 ChARMs (from children's mean age: 10 years and 1 month; range: 4 years and 8 months to 16 years and 11 months; 85 males; Manual Ability Classification System Levels I = 9, II = 26, III = 48, IV = 45, and V = 18). Results The final 19‐item unidimensional questionnaire displayed fit to the Rasch model (chi‐square p = .18), excellent reliability (person separation index = 0.95, α = 0.95), and no floor or ceiling effects. Items showed no response bias for gender, distribution of impairment, age, or learning disability. Discussion The ChARM is a psychometrically sound measure of upper limb activity validated for children with cerebral palsy aged 5–16 years. The ChARM is freely available for use to clinicians and nonprofit organisations. PMID:28112465
Secreted Metalloproteinase ADAMTS-3 Inactivates Reelin.
Ogino, Himari; Hisanaga, Arisa; Kohno, Takao; Kondo, Yuta; Okumura, Kyoko; Kamei, Takana; Sato, Tempei; Asahara, Hiroshi; Tsuiji, Hitomi; Fukata, Masaki; Hattori, Mitsuharu
2017-03-22
The secreted glycoprotein Reelin regulates embryonic brain development and adult brain functions. It has been suggested that reduced Reelin activity contributes to the pathogenesis of several neuropsychiatric and neurodegenerative disorders, such as schizophrenia and Alzheimer's disease; however, noninvasive methods that can upregulate Reelin activity in vivo have yet to be developed. We previously found that the proteolytic cleavage of Reelin within Reelin repeat 3 (N-t site) abolishes Reelin activity in vitro , but it remains controversial as to whether this effect occurs in vivo Here we partially purified the enzyme that mediates the N-t cleavage of Reelin from the culture supernatant of cerebral cortical neurons. This enzyme was identified as a disintegrin and metalloproteinase with thrombospondin motifs-3 (ADAMTS-3). Recombinant ADAMTS-3 cleaved Reelin at the N-t site. ADAMTS-3 was expressed in excitatory neurons in the cerebral cortex and hippocampus. N-t cleavage of Reelin was markedly decreased in the embryonic cerebral cortex of ADAMTS-3 knock-out (KO) mice. Importantly, the amount of Dab1 and the phosphorylation level of Tau, which inversely correlate with Reelin activity, were significantly decreased in the cerebral cortex of ADAMTS-3 KO mice. Conditional KO mice, in which ADAMTS-3 was deficient only in the excitatory neurons of the forebrain, showed increased dendritic branching and elongation in the postnatal cerebral cortex. Our study shows that ADAMTS-3 is the major enzyme that cleaves and inactivates Reelin in the cerebral cortex and hippocampus. Therefore, inhibition of ADAMTS-3 may be an effective treatment for neuropsychiatric and neurodegenerative disorders. SIGNIFICANCE STATEMENT ADAMTS-3 was identified as the protease that cleaves and inactivates Reelin in the cerebral cortex and hippocampus. ADAMTS-3 was expressed in the excitatory neurons of the embryonic and postnatal cerebral cortex and hippocampus. Cleavage by ADAMTS-3 is the major contributor of Reelin inactivation in vivo Tau phosphorylation was decreased and dendritic branching and elongation was increased in ADAMTS-3-deficient mice. Therefore, inhibition of ADAMTS-3 upregulates Reelin activity and may be a potential therapeutic strategy for the prevention or treatment of neuropsychiatric and neurodegenerative disorders, such as schizophrenia and Alzheimer's disease. Copyright © 2017 the authors 0270-6474/17/373181-11$15.00/0.
Dominant inheritance of cerebral gigantism.
Zonana, J; Sotos, J F; Romshe, C A; Fisher, D A; Elders, M J; Rimoin, D L
1977-08-01
Cerebral gigantism is a syndrome consisting of characteristic dysmorphic features, accelerated growth in early childhood, and variable degrees of mental retardation. Its etiology and pathogenesis have not been defined. Three families are presented with multiple affected members. The vertical transmission of the trait and equal expression in both sexes in these families indicates a genetic etiology with a dominant pattern of inheritance, probably autosomal. As in previously reported cases, extensive endocrine evaluation failed to define the pathogenesis of the accelerated growth present in this disorder.
Modification of the actions of some neuroactive drugs by growth hormone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, L.C.; Cotzias, G.C.
The flat serum growth hormone (GH) patterns of untreated parkinsonian patients develop diurnal rises during treatment with levodopa. This chronic exposure to excesses of GH might lead to the eventual emergence of the ''on-off'' phenomenon, which would indicate a need for animal experiments. Pretreatment of mice with GH increased (1) cerebral dopa and dopamine concentrations in levodopa-treated mice, (2) cerebral accumulation of injected tritiated apomorphine and tritiated thymidine, and (3) behavioral responses to levodopa, L-m-tyrosine, apomorphine hydrochloride, and oxotremorine. (auth)
Steininger, Stefanie C.; Liu, Xinyang; Gietl, Anton; Wyss, Michael; Schreiner, Simon; Gruber, Esmeralda; Treyer, Valerie; Kälin, Andrea; Leh, Sandra; Buck, Alfred; Nitsch, Roger M.; Prüssmann, Klaas P.; Hock, Christoph; Unschuld, Paul G.
2014-01-01
Background: Deposition of cortical amyloid beta (Aβ) is a correlate of aging and a risk factor for Alzheimer disease (AD). While several higher order cognitive processes involve functional interactions between cortex and cerebellum, this study aims to investigate effects of cortical Aβ deposition on coupling within the cerebro-cerebellar system. Methods: We included 15 healthy elderly subjects with normal cognitive performance as assessed by neuropsychological testing. Cortical Aβ was quantified using (11)carbon-labeled Pittsburgh compound B positron-emission-tomography late frame signals. Volumes of brain structures were assessed by applying an automated parcelation algorithm to three dimensional magnetization-prepared rapid gradient-echo T1-weighted images. Basal functional network activity within the cerebro-cerebellar system was assessed using blood-oxygen-level dependent resting state functional magnetic resonance imaging at the high field strength of 7 T for measuring coupling between cerebellar seeds and cerebral gray matter. A bivariate regression approach was applied for identification of brain regions with significant effects of individual cortical Aβ load on coupling. Results: Consistent with earlier reports, a significant degree of positive and negative coupling could be observed between cerebellar seeds and cerebral voxels. Significant positive effects of cortical Aβ load on cerebro-cerebellar coupling resulted for cerebral brain regions located in inferior temporal lobe, prefrontal cortex, hippocampus, parahippocampal gyrus, and thalamus. Conclusion: Our findings indicate that brain amyloidosis in cognitively normal elderly subjects is associated with decreased network efficiency within the cerebro-cerebellar system. While the identified cerebral regions are consistent with established patterns of increased sensitivity for Aβ-associated neurodegeneration, additional studies are needed to elucidate the relationship between dysfunction of the cerebro-cerebellar system and risk for AD. PMID:24672483
Steininger, Stefanie C; Liu, Xinyang; Gietl, Anton; Wyss, Michael; Schreiner, Simon; Gruber, Esmeralda; Treyer, Valerie; Kälin, Andrea; Leh, Sandra; Buck, Alfred; Nitsch, Roger M; Prüssmann, Klaas P; Hock, Christoph; Unschuld, Paul G
2014-01-01
Deposition of cortical amyloid beta (Aβ) is a correlate of aging and a risk factor for Alzheimer disease (AD). While several higher order cognitive processes involve functional interactions between cortex and cerebellum, this study aims to investigate effects of cortical Aβ deposition on coupling within the cerebro-cerebellar system. We included 15 healthy elderly subjects with normal cognitive performance as assessed by neuropsychological testing. Cortical Aβ was quantified using (11)carbon-labeled Pittsburgh compound B positron-emission-tomography late frame signals. Volumes of brain structures were assessed by applying an automated parcelation algorithm to three dimensional magnetization-prepared rapid gradient-echo T1-weighted images. Basal functional network activity within the cerebro-cerebellar system was assessed using blood-oxygen-level dependent resting state functional magnetic resonance imaging at the high field strength of 7 T for measuring coupling between cerebellar seeds and cerebral gray matter. A bivariate regression approach was applied for identification of brain regions with significant effects of individual cortical Aβ load on coupling. Consistent with earlier reports, a significant degree of positive and negative coupling could be observed between cerebellar seeds and cerebral voxels. Significant positive effects of cortical Aβ load on cerebro-cerebellar coupling resulted for cerebral brain regions located in inferior temporal lobe, prefrontal cortex, hippocampus, parahippocampal gyrus, and thalamus. Our findings indicate that brain amyloidosis in cognitively normal elderly subjects is associated with decreased network efficiency within the cerebro-cerebellar system. While the identified cerebral regions are consistent with established patterns of increased sensitivity for Aβ-associated neurodegeneration, additional studies are needed to elucidate the relationship between dysfunction of the cerebro-cerebellar system and risk for AD.
Freeman, Brandi D.; Martins, Yuri C.; Akide-Ndunge, Oscar B.; Bruno, Fernando P.; Wang, Hua; Tanowitz, Herbert B.; Spray, David C.; Desruisseaux, Mahalia S.
2016-01-01
Plasmodium falciparum infection causes a wide spectrum of diseases, including cerebral malaria, a potentially life-threatening encephalopathy. Vasculopathy is thought to contribute to cerebral malaria pathogenesis. The vasoactive compound endothelin-1, a key participant in many inflammatory processes, likely mediates vascular and cognitive dysfunctions in cerebral malaria. We previously demonstrated that C57BL6 mice infected with P. berghei ANKA, our fatal experimental cerebral malaria model, sustained memory loss. Herein, we demonstrate that an endothelin type A receptor (ETA) antagonist prevented experimental cerebral malaria-induced neurocognitive impairments and improved survival. ETA antagonism prevented blood-brain barrier disruption and cerebral vasoconstriction during experimental cerebral malaria, and reduced brain endothelial activation, diminishing brain microvascular congestion. Furthermore, exogenous endothelin-1 administration to P. berghei NK65-infected mice, a model generally regarded as a non-cerebral malaria negative control for P. berghei ANKA infection, led to experimental cerebral malaria-like memory deficits. Our data indicate that endothelin-1 is critical in the development of cerebrovascular and cognitive impairments with experimental cerebral malaria. This vasoactive peptide may thus serve as a potential target for adjunctive therapy in the management of cerebral malaria. PMID:27031954
Hirano, Shigeki; Asanuma, Kotaro; Ma, Yilong; Tang, Chengke; Feigin, Andrew; Dhawan, Vijay; Carbon, Maren; Eidelberg, David
2008-04-16
We compared the metabolic and neurovascular effects of levodopa (LD) therapy for Parkinson's disease (PD). Eleven PD patients were scanned with both [15O]-H2O and [18F]-fluorodeoxyglucose positron emission tomography in the unmedicated state and during intravenous LD infusion. Images were used to quantify LD-mediated changes in the expression of motor- and cognition-related PD covariance patterns in scans of cerebral blood flow (CBF) and cerebral metabolic rate for glucose (CMR). These changes in network activity were compared with those occurring during subthalamic nucleus (STN) deep brain stimulation (DBS), and those observed in a test-retest PD control group. Separate voxel-based searches were conducted to identify individual regions with dissociated treatment-mediated changes in local cerebral blood flow and metabolism. We found a significant dissociation between CBF and CMR in the modulation of the PD motor-related network by LD treatment (p < 0.001). This dissociation was characterized by reductions in network activity in the CMR scans (p < 0.003) occurring concurrently with increases in the CBF scans (p < 0.01). Flow-metabolism dissociation was also evident at the regional level, with LD-mediated reductions in CMR and increases in CBF in the putamen/globus pallidus, dorsal midbrain/pons, STN, and ventral thalamus. CBF responses to LD in the putamen and pons were relatively greater in patients exhibiting drug-induced dyskinesia. In contrast, flow-metabolism dissociation was not present in the STN DBS treatment group or in the PD control group. These findings suggest that flow-metabolism dissociation is a distinctive feature of LD treatment. This phenomenon may be especially pronounced in patients with LD-induced dyskinesia.
Cho, Sang Soo; Pellecchia, Giovanna; Ko, Ji Hyun; Ray, Nicola; Obeso, Ignacio; Houle, Sylvain; Strafella, Antonio P
2012-04-01
Decision making is a cognitive function relaying on a complex neural network. In particular, the right dorsolateral prefrontal cortex (DLPFC) plays a key role within this network. We used positron emission tomography (PET) combined with continuous theta burst transcranial magnetic stimulation (cTBS) to investigate neuronal and behavioral changes in normal volunteers while performing a delay discounting (DD) task. We aimed to test whether stimulation of right DLPFC would modify the activation pattern of the neural circuit underlying decision making during the DD task and influence discounting behavior. We found that cTBS of the right DLPFC influenced decision making by reducing impulsivity and inducing participants to favor large but delayed rewards instead of immediate but small rewards. Stimulation also affected activation in several prefrontal areas associated with DD. In particular, we observed a reduced regional cerebral blood flow (rCBF) in the ipsilateral DLPFC (BA 46) extending into the rostral part of the prefrontal cortex (BA 10) as well as a disrupted relationship between impulsivity (k-value) and rCBF in these and other prefrontal areas. These findings suggest that transcranial magnetic stimulation of the DLPFC influences the neural network underlying impulsive decision making behavior. Copyright © 2012 Elsevier Inc. All rights reserved.
Kahn, Itamar; Wig, Gagan S.; Schacter, Daniel L.
2012-01-01
Asymmetrical specialization of cognitive processes across the cerebral hemispheres is a hallmark of healthy brain development and an important evolutionary trait underlying higher cognition in humans. While previous research, including studies of priming, divided visual field presentation, and split-brain patients, demonstrates a general pattern of right/left asymmetry of form-specific versus form-abstract visual processing, little is known about brain organization underlying this dissociation. Here, using repetition priming of complex visual scenes and high-resolution functional magnetic resonance imaging (MRI), we demonstrate asymmetrical form specificity of visual processing between the right and left hemispheres within a region known to be critical for processing of visual spatial scenes (parahippocampal place area [PPA]). Next, we use resting-state functional connectivity MRI analyses to demonstrate that this functional asymmetry is associated with differential intrinsic activity correlations of the right versus left PPA with regions critically involved in perceptual versus conceptual processing, respectively. Our results demonstrate that the PPA comprises lateralized subregions across the cerebral hemispheres that are engaged in functionally dissociable yet complementary components of visual scene analysis. Furthermore, this functional asymmetry is associated with differential intrinsic functional connectivity of the PPA with distinct brain areas known to mediate dissociable cognitive processes. PMID:21968568
The effects of capillary transit time heterogeneity (CTH) on brain oxygenation
Angleys, Hugo; Østergaard, Leif; Jespersen, Sune N
2015-01-01
We recently extended the classic flow–diffusion equation, which relates blood flow to tissue oxygenation, to take capillary transit time heterogeneity (CTH) into account. Realizing that cerebral oxygen availability depends on both cerebral blood flow (CBF) and capillary flow patterns, we have speculated that CTH may be actively regulated and that changes in the capillary morphology and function, as well as in blood rheology, may be involved in the pathogenesis of conditions such as dementia and ischemia-reperfusion injury. The first extended flow–diffusion equation involved simplifying assumptions which may not hold in tissue. Here, we explicitly incorporate the effects of oxygen metabolism on tissue oxygen tension and extraction efficacy, and assess the extent to which the type of capillary transit time distribution affects the overall effects of CTH on flow–metabolism coupling reported earlier. After incorporating tissue oxygen metabolism, our model predicts changes in oxygen consumption and tissue oxygen tension during functional activation in accordance with literature reports. We find that, for large CTH values, a blood flow increase fails to cause significant improvements in oxygen delivery, and can even decrease it; a condition of malignant CTH. These results are found to be largely insensitive to the choice of the transit time distribution. PMID:25669911
Stevens, W Dale; Kahn, Itamar; Wig, Gagan S; Schacter, Daniel L
2012-08-01
Asymmetrical specialization of cognitive processes across the cerebral hemispheres is a hallmark of healthy brain development and an important evolutionary trait underlying higher cognition in humans. While previous research, including studies of priming, divided visual field presentation, and split-brain patients, demonstrates a general pattern of right/left asymmetry of form-specific versus form-abstract visual processing, little is known about brain organization underlying this dissociation. Here, using repetition priming of complex visual scenes and high-resolution functional magnetic resonance imaging (MRI), we demonstrate asymmetrical form specificity of visual processing between the right and left hemispheres within a region known to be critical for processing of visual spatial scenes (parahippocampal place area [PPA]). Next, we use resting-state functional connectivity MRI analyses to demonstrate that this functional asymmetry is associated with differential intrinsic activity correlations of the right versus left PPA with regions critically involved in perceptual versus conceptual processing, respectively. Our results demonstrate that the PPA comprises lateralized subregions across the cerebral hemispheres that are engaged in functionally dissociable yet complementary components of visual scene analysis. Furthermore, this functional asymmetry is associated with differential intrinsic functional connectivity of the PPA with distinct brain areas known to mediate dissociable cognitive processes.
Synchronization patterns in cerebral blood flow and peripheral blood pressure under minor stroke
NASA Astrophysics Data System (ADS)
Chen, Zhi; Ivanov, Plamen C.; Hu, Kun; Stanley, H. Eugene; Novak, Vera
2003-05-01
Stroke is a leading cause of death and disability in the United States. The autoregulation of cerebral blood flow that adapts to changes in systemic blood pressure is impaired after stroke. We investigate blood flow velocities (BFV) from right and left middle cerebral arteries (MCA) and beat-to-beat blood pressure (BP) simultaneously measured from the finger, in 13 stroke and 11 healthy subjects using the mean value statistics and phase synchronization method. We find an increase in the vascular resistance and a much stronger cross-correlation with a time lag up to 20 seconds with the instantaneous phase increment of the BFV and BP signals for the subjects with stroke compared to healthy subjects.
Cerebral blood flow variations in CNS lupus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kushner, M.J.; Tobin, M.; Fazekas, F.
1990-01-01
We studied the patterns of cerebral blood flow (CBF), over time, in patients with systemic lupus erythematosus and varying neurologic manifestations including headache, stroke, psychosis, and encephalopathy. For 20 paired xenon-133 CBF measurements, CBF was normal during CNS remissions, regardless of the symptoms. CBF was significantly depressed during CNS exacerbations. The magnitude of change in CBF varied with the neurologic syndrome. CBF was least affected in patients with nonspecific symptoms such as headache or malaise, whereas patients with encephalopathy or psychosis exhibited the greatest reductions in CBF. In 1 patient with affective psychosis, without clinical or CT evidence of cerebralmore » ischemia, serial SPECT studies showed resolution of multifocal cerebral perfusion defects which paralleled clinical recovery.« less
Chen, Han-sen; Chen, Xi; Li, Wen-ting; Shen, Jian-gang
2018-01-01
Reactive nitrogen species (RNS) play important roles in mediating cerebral ischemia-reperfusion injury. RNS activate multiple signaling pathways and participate in different cellular events in cerebral ischemia-reperfusion injury. Recent studies have indicated that caveolin-1 and matrix metalloproteinase (MMP) are important signaling molecules in the pathological process of ischemic brain injury. During cerebral ischemia-reperfusion, the production of nitric oxide (NO) and peroxynitrite (ONOO−), two representative RNS, down-regulates the expression of caveolin-1 (Cav-1) and, in turn, further activates nitric oxide synthase (NOS) to promote RNS generation. The increased RNS further induce MMP activation and mediate disruption of the blood-brain barrier (BBB), aggravating the brain damage in cerebral ischemia-reperfusion injury. Therefore, the feedback interaction among RNS/Cav-1/MMPs provides an amplified mechanism for aggravating ischemic brain damage during cerebral ischemia-reperfusion injury. Targeting the RNS/Cav-1/MMP pathway could be a promising therapeutic strategy for protecting against cerebral ischemia-reperfusion injury. In this mini-review article, we highlight the important role of the RNS/Cav-1/MMP signaling cascades in ischemic stroke injury and review the current progress of studies seeking therapeutic compounds targeting the RNS/Cav-1/MMP signaling cascades to attenuate cerebral ischemia-reperfusion injury. Several representative natural compounds, including calycosin-7-O-β-D-glucoside, baicalin, Momordica charantia polysaccharide (MCP), chlorogenic acid, lutein and lycopene, have shown potential for targeting the RNS/Cav-1/MMP signaling pathway to protect the brain in ischemic stroke. Therefore, the RNS/Cav-1/MMP pathway is an important therapeutic target in ischemic stroke treatment. PMID:29595191
Sánchez-González, Alain; García-Zapirain, Begoña; Maestro Saiz, Iratxe; Yurrebaso Santamaría, Izaskun
2015-01-01
Periodic activity in electroencephalography (PA-EEG) is shown as comprising a series of repetitive wave patterns that may appear in different cerebral regions and are due to many different pathologies. The diagnosis based on PA-EEG is an arduous task for experts in Clinical Neurophysiology, being mainly based on other clinical features of patients. Considering this difficulty in the diagnosis it is also very complicated to establish the prognosis of patients who present PA-EEG. The goal of this paper is to propose a method capable of determining patient prognosis based on characteristics of the PA-EEG activity. The approach, based on a parallel classification architecture and a majority vote system has proven successful by obtaining a success rate of 81.94% in the classification of patient prognosis of our database.
Cerebral monitoring during cardiopulmonary bypass in children.
Kern, F H; Schell, R M; Greeley, W J
1993-07-01
Although cerebral monitoring during CPB remains primarily investigational, recent data support its clinical utility. In particular, it is cerebral metabolic monitoring that provides meaningful information in terms of preparing the brain for dhCPB and dhCA. Cerebral blood flow or cerebral blood flow velocity monitoring is less beneficial due to the presence of luxuriant cerebral blood flow at deep hypothermic temperatures. Conventional temperature monitoring can be improved upon by adding jugular venous oxygen saturation monitoring to satisfy the primary goal of cerebral protection--uniform cerebral cooling and metabolic suppression. Although online measures of cerebral cellular metabolism are not widely available, early experience with near infrared technology suggests that it is a feasible and reliable monitor of cerebral metabolic activity and is likely to represent an important noninvasive continuous monitor in the near future. CMRO2 recovery data have suggested that cerebral metabolic suppression is more severe the longer the period of dhCA. Cerebral protection strategies, such as intermittent cerebral perfusion have demonstrated less metabolic suppression of dhCA in animal models and are currently undergoing clinical evaluation in our institution. Finally, the postoperative period remains a high-risk period for neurologic injury because temperatures are normothermic, cardiac output is reduced, cerebral autoregulation is impaired, and management strategies, such as hyperventilation, are commonly used to increase pulmonary blood flow with little knowledge on its effects on cerebral perfusion.
Magnitude of Cerebral Asymmetry at Rest: Covariation with Baseline Cardiovascular Activity
ERIC Educational Resources Information Center
Foster, Paul S.; Harrison, David W.
2006-01-01
The cerebral regulation of cardiovascular functioning varies along both a lateral and a longitudinal axis. The parasympathetic and sympathetic nervous systems are lateralized to the left and right cerebral hemispheres, respectively. Further, the frontal lobes are known to be inhibitory in nature, whereas the temporal lobes are excitatory. However,…
Intensive Dysarthria Therapy for Older Children with Cerebral Palsy: Findings from Six Cases
ERIC Educational Resources Information Center
Pennington, Lindsay; Smallman, Claire; Farrier, Faith
2006-01-01
Children with cerebral palsy often have speech, language and communication difficulties that affect their access to social and educational activities. Speech and language therapy to improve the intelligibility of the speech of children with cerebral palsy has long been advocated, but there is a dearth of research investigating therapy…
Koh, Seong Ho; Lo, Eng H
2015-10-01
Neurologic deficits resulting from stroke remain largely intractable, which has prompted thousands of studies aimed at developing methods for treating these neurologic sequelae. Endogenous neurogenesis is also known to occur after brain damage, including that due to cerebral infarction. Focusing on this process may provide a solution for treating neurologic deficits caused by cerebral infarction. The phosphatidylinositol-3-kinase (PI3K) pathway is known to play important roles in cell survival, and many studies have focused on use of the PI3K pathway to treat brain injury after stroke. Furthermore, since the PI3K pathway may also play key roles in the physiology of neural stem cells (NSCs), eliciting the appropriate activation of the PI3K pathway in NSCs may help to improve the sequelae of cerebral infarction. This review describes the PI3K pathway, its roles in the brain and NSCs after cerebral infarction, and the therapeutic possibility of activating the pathway to improve neurologic deficits after cerebral infarction.
The protective effect of SCR(15-18) on cerebral ischemia-reperfusion injury.
Li, Shu; Xian, Jinhong; He, Li; Luo, Xue; Tan, Bing; Yang, Yongtao; Liu, Gaoke; Wang, Zhengqing
2011-10-01
Soluble complement receptor type 1 (sCR1), a potent inhibitor of complement activation, has been shown to protect brain cells against cerebral ischemic/reperfusion (CI/R) injury due to its decay-accelerating activity for C3/C5 convertase and co-factor activity for C3b/C4b degradation. However, the effect of short consensus repeats (SCRs) 15-18, one of active domains of sCR1 with high C3b/C4b degradability, has not been demonstrated. Here, we investigated the protective effect of recombinant SCR(15-18) protein in middle cerebral artery occlusion (MCAO)-induced focal CI/R injury. Recombinant SCR(15-18) protein was successfully expressed in Escherichia coli and refolded to its optimal bioactivity. Seventy-five Sprague-Dawley rats were randomly assigned into three groups: sham-operated group, CI/R group, and SCR(15-18)+CI/R group pretreated with 20 mg/kg SCR(15-18) protein. After 2 hours of MCAO and subsequent 24 hours of reperfusion, rats were evaluated for neurological deficits and cerebral infarction. Polymorphonuclear leukocyte accumulation, C3b deposition, and morphological changes in cerebral tissue were also estimated. SCR(15-18) pretreatment induced a 20% reduction of infarct size and an improvement of neurological function with 22·2% decrease of neurological deficit scores. Inhibition of cerebral neutrophils infiltration by SCR(15-18) was indicated from the reduction of myeloperoxidase activity in SCR(15-18)+CI/R rats. Decreased C3b deposition and improved morphological changes were also found in cerebral tissue of SCR(15-18)-treated rats. Our studies suggest a definitive moderately protective effect of SCR(15-18) against CI/R damage and provide preclinical experimental evidence supporting the possibility of using it as a small anti-complement therapeutic agent for CI/R injury therapy.
Molecular pathophysiology of cerebral edema
Gerzanich, Volodymyr; Simard, J Marc
2015-01-01
Advancements in molecular biology have led to a greater understanding of the individual proteins responsible for generating cerebral edema. In large part, the study of cerebral edema is the study of maladaptive ion transport. Following acute CNS injury, cells of the neurovascular unit, particularly brain endothelial cells and astrocytes, undergo a program of pre- and post-transcriptional changes in the activity of ion channels and transporters. These changes can result in maladaptive ion transport and the generation of abnormal osmotic forces that, ultimately, manifest as cerebral edema. This review discusses past models and current knowledge regarding the molecular and cellular pathophysiology of cerebral edema. PMID:26661240
NASA Astrophysics Data System (ADS)
Chen, Shuwang; Sha, Zhanyou; Wang, Shuhai; Wen, Huanming
2007-12-01
The research of the brain cognition is mainly to find out the activation position in brain according to the stimulation at present in the world. The research regards the animals as the experimental objects and explores the stimulation response on the cerebral cortex of acupuncture. It provides a new method, which can detect the activation position on the creatural cerebral cortex directly by middle-far infrared imaging. According to the theory of local temperature situation, the difference of cortical temperature maybe associate with the excitement of cortical nerve cells, the metabolism of local tissue and the local hemal circulation. Direct naked detection of temperature variety on cerebral cortex is applied by middle and far infrared imaging technology. So the activation position is ascertained. The effect of stimulation response is superior to other indirect methods. After removing the skulls on the head, full of cerebral cortex of a cat are exposed. By observing the infrared images and measuring the temperatures of the visual cerebral cortex during the process of acupuncturing, the points are used to judge the activation position. The variety in the cortical functional sections is corresponding to the result of the acupuncture points in terms of infrared images and temperatures. According to experimental results, we know that the variety of a cortical functional section is corresponding to a special acupuncture point exactly.
Cerebral Autoregulation in Hypertension and Ischemic Stroke: A Mini Review
Shekhar, Shashank; Liu, Ruen; Travis, Olivia K; Roman, Richard J; Fan, Fan
2017-01-01
Aging and chronic hypertension are associated with dysfunction in vascular smooth muscle, endothelial cells, and neurovascular coupling. These dysfunctions induce impaired myogenic response and cerebral autoregulation, which diminish the protection of cerebral arterioles to the cerebral microcirculation from elevated pressure in hypertension. Chronic hypertension promotes cerebral focal ischemia in response to reductions in blood pressure that are often seen in sedentary elderly patients on antihypertensive therapy. Cerebral autoregulatory dysfunction evokes Blood-Brain Barrier (BBB) leakage, allowing the circulating inflammatory factors to infiltrate the brain to activate glia. The impaired cerebral autoregulation-induced inflammatory and ischemic injury could cause neuronal cell death and synaptic dysfunction which promote cognitive deficits. In this brief review, we summarize the pathogenesis and signaling mechanisms of cerebral autoregulation in hypertension and ischemic stroke-induced cognitive deficits, and discuss our new targets including 20-Hydroxyeicosatetraenoic acid (20-HETE), Gamma-Adducin (Add3) and Matrix Metalloproteinase-9 (MMP-9) that may contribute to the altered cerebral vascular function. PMID:29333537
Cerebral responses to exercise and the influence of heat stress in human fatigue.
Robertson, Caroline V; Marino, Frank E
2017-01-01
There are a number of mechanisms thought to be responsible for the onset of fatigue during exercise-induced hyperthermia. A greater understanding of the way in which fatigue develops during exercise could be gleaned from the studies which have examined the maintenance of cerebral blood flow through the process of cerebral autoregulation. Given that cerebral blood flow is a measure of the cerebral haemodynamics, and might reflect a level of brain activation, it is useful to understand the implications of this response during exercise and in the development of fatigue. It is known that cerebral blood flow is significantly altered under certain conditions such as altitude and exacerbated during exercise induced - hyperthermia. In this brief review we consider the processes of cerebral autoregulation predominantly through the measurement of cerebral blood flow and contrast these responses between exercise undertaken in normothermic versus heat stress conditions in order to draw some conclusions about the role cerebral blood flow might play in determining fatigue. Copyright © 2016. Published by Elsevier Ltd.
Brückner, Melanie; Lasarzik, Irina; Jahn-Eimermacher, Antje; Peetz, Dirk; Werner, Christian; Engelhard, Kristin; Thal, Serge C
2013-09-13
Recent studies demonstrated anticoagulatory, antiinflammatory, antiapoptotic, and neuroprotective properties of activated protein C (APC) in rodent models of acute neurodegenerative diseases, suggesting APC as promising broad acting therapeutic agent. Unfortunately, continuous infusion of recombinant human APC (rhAPC) failed to improve brain damage following cardiac arrest in rats. The present study was designed to investigate the neuroprotective effect after global cerebral ischemia (GI) with an optimized infusion protocol. Rats were subjected to bilateral clip occlusion of the common carotid arteries (BCAO) and controlled hemorrhagic hypotension to 40 mm Hg for 14 min and a subsequent 5h-infusion of rhAPC (2mg/kg bolus+6 mg/kg/h continuous IV) or vehicle (0.9% NaCl). The dosage was calculated to maintain plasma hAPC activity at 150%. Cerebral inflammation, apoptosis and neuronal survival was determined at day 10. rhAPC infusion did not influence cortical cerebral perfusion during reperfusion and failed to reduce neuronal cell loss, microglia activation, and caspase 3 activity. Even an optimized rhAPC infusion protocol designed to maintain a high level of APC plasma activity failed to improve the sequels following GI. Despite positive reports about protective effects of APC following, e.g., ischemic stroke, the present study supports the notion that infusion of APC during the early reperfusion phase does not result in sustained neuroprotection and fails to improve outcome after global cerebral ischemia. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Hou, Linda; Nilsson, Åsa; Pekna, Marcela; Pekny, Milos; Nilsson, Michael
2012-01-01
Sulforaphane-induced activation of the transcription factor NF-E2 related factor 2 (Nrf2 or the gene Nfe2l2) and subsequent induction of the phase II antioxidant system has previously been shown to exert neuroprotective action in a transient model of focal cerebral ischemia. However, its ability to attenuate functional and cellular deficits after permanent focal cerebral ischemia is not clear. We assessed the neuroprotective effects of sulforaphane in the photothrombotic model of permanent focal cerebral ischemia. Sulforaphane was administered (5 or 50 mg/kg, i.p.) after ischemic onset either as a single dose or as daily doses for 3 days. Sulforaphane increased transcription of Nrf2, Hmox1, GCLC and GSTA4 mRNA in the brain confirming activation of the Nrf2 system. Single or repeated administration of sulforaphane had no effect on the infarct volume, nor did it reduce the number of activated glial cells or proliferating cells when analyzed 24 and 72 h after stroke. Motor-function as assessed by beam-walking, cylinder-test, and adhesive test, did not improve after sulforaphane treatment. The results show that sulforaphane treatment initiated after photothrombosis-induced permanent cerebral ischemia does not interfere with key cellular mechanisms underlying tissue damage. PMID:22911746
Porritt, Michelle J; Andersson, Helene C; Hou, Linda; Nilsson, Åsa; Pekna, Marcela; Pekny, Milos; Nilsson, Michael
2012-01-01
Sulforaphane-induced activation of the transcription factor NF-E2 related factor 2 (Nrf2 or the gene Nfe2l2) and subsequent induction of the phase II antioxidant system has previously been shown to exert neuroprotective action in a transient model of focal cerebral ischemia. However, its ability to attenuate functional and cellular deficits after permanent focal cerebral ischemia is not clear. We assessed the neuroprotective effects of sulforaphane in the photothrombotic model of permanent focal cerebral ischemia. Sulforaphane was administered (5 or 50 mg/kg, i.p.) after ischemic onset either as a single dose or as daily doses for 3 days. Sulforaphane increased transcription of Nrf2, Hmox1, GCLC and GSTA4 mRNA in the brain confirming activation of the Nrf2 system. Single or repeated administration of sulforaphane had no effect on the infarct volume, nor did it reduce the number of activated glial cells or proliferating cells when analyzed 24 and 72 h after stroke. Motor-function as assessed by beam-walking, cylinder-test, and adhesive test, did not improve after sulforaphane treatment. The results show that sulforaphane treatment initiated after photothrombosis-induced permanent cerebral ischemia does not interfere with key cellular mechanisms underlying tissue damage.
[Acid-base equilibrium and the brain].
Rabary, O; Boussofara, M; Grimaud, D
1994-01-01
In physiological conditions, the regulation of acid-base balance in brain maintains a noteworthy stability of cerebral pH. During systemic metabolic acid-base imbalances cerebral pH is well controlled as the blood/brain barrier is slowly and poorly permeable to electrolytes (HCO3- and H+). Cerebral pH is regulated by a modulation of the respiratory drive, triggered by the early alterations of interstitial fluid pH, close to medullary chemoreceptors. As blood/brain barrier is highly permeable to Co2, CSF pH is corrected in a few hours, even in case of severe metabolic acidosis and alkalosis. Conversely, during ventilatory acidosis and alkalosis the cerebral pH varies in the same direction and in the same range than blood pH. Therefore, the brain is better protected against metabolic than ventilatory acid-base imbalances. Ventilatory acidosis and alkalosis are able to impair cerebral blood flow and brain activity through interstitial pH alterations. During respiratory acidosis, [HCO3-] increases in extracellular fluids to control cerebral pH by two main ways: a carbonic anhydrase activation at the blood/brain and blood/CSF barriers level and an increase in chloride shift in glial cells (HCO3- exchanged for Cl-). During respiratory alkalosis, [HCO3-] decreases in extracellular fluids by the opposite changes in HCO3- transport and by an increase in lactic acid synthesis by cerebral cells. The treatment of metabolic acidosis with bicarbonates may induce a cerebral acidosis and worsen a cerebral oedema during ketoacidosis. Moderate hypocapnia carried out to treat intracranial hypertension is mainly effective when cerebral blood flow is high and vascular CO2 reactivity maintained. Hypocapnia may restore an altered cerebral blood flow autoregulation. Instrumental hypocapnia requires a control of cerebral perfusion pressure and cerebral arteriovenous difference for oxygen, to select patients for whom this kind of treatment may be of benefit, to choose the optimal level of hypocapnia and to avoid any deleterious effect. If hypocapnia is maintained over several days, an adaptation of CSF pH may limit the therapeutic effect on the cerebral blood flow and the intracranial pressure.
ERIC Educational Resources Information Center
Olsen, Jamie E.; Ross, Sandy A.; Foreman, Matthew H.; Engsberg, Jack R.
2013-01-01
Children with cerebral palsy (CP) are likely to experience decreased participation in activities and less competence in activities of daily living. Studies of children with spastic CP have shown that strengthening programs produce positive results in strength, gait, and functional outcomes (measured by the Gross Motor Function Measure). No…
Famakin, Bolanle M.
2014-01-01
It is currently well established that the immune system is activated in response to transient or focal cerebral ischemia. This acute immune activation occurs in response to damage, and injury, to components of the neurovascular unit and is mediated by the innate and adaptive arms of the immune response. The initial immune activation is rapid, occurs via the innate immune response and leads to inflammation. The inflammatory mediators produced during the innate immune response in turn lead to recruitment of inflammatory cells and the production of more inflammatory mediators that result in activation of the adaptive immune response. Under ideal conditions, this inflammation gives way to tissue repair and attempts at regeneration. However, for reasons that are just being understood, immunosuppression occurs following acute stroke leading to post-stroke immunodepression. This review focuses on the current state of knowledge regarding innate and adaptive immune activation in response to focal cerebral ischemia as well as the immunodepression that can occur following stroke. A better understanding of the intricate and complex events that take place following immune response activation, to acute cerebral ischemia, is imperative for the development of effective novel immunomodulatory therapies for the treatment of acute stroke. PMID:25276490
Murphy, Matthew C; Poplawsky, Alexander J; Vazquez, Alberto L; Chan, Kevin C; Kim, Seong-Gi; Fukuda, Mitsuhiro
2016-08-15
Functional MRI (fMRI) is a popular and important tool for noninvasive mapping of neural activity. As fMRI measures the hemodynamic response, the resulting activation maps do not perfectly reflect the underlying neural activity. The purpose of this work was to design a data-driven model to improve the spatial accuracy of fMRI maps in the rat olfactory bulb. This system is an ideal choice for this investigation since the bulb circuit is well characterized, allowing for an accurate definition of activity patterns in order to train the model. We generated models for both cerebral blood volume weighted (CBVw) and blood oxygen level dependent (BOLD) fMRI data. The results indicate that the spatial accuracy of the activation maps is either significantly improved or at worst not significantly different when using the learned models compared to a conventional general linear model approach, particularly for BOLD images and activity patterns involving deep layers of the bulb. Furthermore, the activation maps computed by CBVw and BOLD data show increased agreement when using the learned models, lending more confidence to their accuracy. The models presented here could have an immediate impact on studies of the olfactory bulb, but perhaps more importantly, demonstrate the potential for similar flexible, data-driven models to improve the quality of activation maps calculated using fMRI data. Copyright © 2016 Elsevier Inc. All rights reserved.
Breschi, Gian Luca; Librizzi, Laura; Pastori, Chiara; Zucca, Ileana; Mastropietro, Alfonso; Cattalini, Alessandro; de Curtis, Marco
2010-08-01
Magnetic resonance imaging (MRI) during the acute phase of a stroke contributes to recognize ischemic regions and is potentially useful to predict clinical outcome. Yet, the functional significance of early MRI alterations during brain ischemia is not clearly understood. We achieved an experimental study to interpret MRI signals in a novel model of focal ischemia in the in vitro isolated guinea pig brain. By combining neurophysiological and morphological analysis with MR-imaging, we evaluated the suitability of MR to identify ischemic and peri-ischemic regions. Extracellular recordings demonstrated depolarizations in the ischemic core, but not in adjacent areas, where evoked activity was preserved and brief peri-infarct depolarizations occurred. Diffusion-weighted MRI and immunostaining performed after neurophysiological characterization showed changes restricted to the core region. Diffusion-weighted MR alterations did not include the penumbra region characterized by peri-infarct depolarizations. Therefore, by comparing neurophysiological, imaging and anatomical data, we can conclude that DW-MRI underestimates the extension of the tissue damage involved in brain ischemia.
NASA Astrophysics Data System (ADS)
Li, Yuandong; Wei, Wei; Li, Chenxi; Wang, Ruikang K.
2017-02-01
We report a novel use of optical coherence tomography (OCT) based angiography to visualize and quantify dynamic response of cerebral capillary flow pattern in mice upon hindpaw electrical stimulation through the measurement of the capillary transit-time heterogeneity (CTH) and capillary mean transit time (MTT) in a wide dynamic range of a great number of vessels in vivo. The OCT system was developed to have a central wavelength of 1310 nm, a spatial resolution of 8 µm and a system dynamic range of 105 dB at an imaging rate of 92 kHz. The mapping of dynamic cerebral microcirculations was enabled by optical microangiography protocol. From the imaging results, the spatial homogenization of capillary velocity (decreased CTH) was observed in the region of interest (ROI) corresponding to the stimulation, along with an increase in the MTT in the ROI to maintain sufficient oxygen exchange within the brain tissue during functional activation. We validated the oxygen consumption due to an increase of the MTT through demonstrating an increase in the deoxygenated hemoglobin (HbR) during the stimulation by the use of laser speckle contrast imaging.
Trace elements during primordial plexiform network formation in human cerebral organoids
Sartore, Rafaela C.; Cardoso, Simone C.; Lages, Yury V.M.; Paraguassu, Julia M.; Stelling, Mariana P.; Madeiro da Costa, Rodrigo F.; Guimaraes, Marilia Z.; Pérez, Carlos A.
2017-01-01
Systematic studies of micronutrients during brain formation are hindered by restrictions to animal models and adult post-mortem tissues. Recently, advances in stem cell biology have enabled recapitulation of the early stages of human telencephalon development in vitro. In the present work, we analyzed cerebral organoids derived from human pluripotent stem cells by synchrotron radiation X-ray fluorescence in order to measure biologically valuable micronutrients incorporated and distributed into the exogenously developing brain. Our findings indicate that elemental inclusion in organoids is consistent with human brain tissue and involves P, S, K, Ca, Fe and Zn. Occurrence of different concentration gradients also suggests active regulation of elemental transmembrane transport. Finally, the analysis of pairs of elements shows interesting elemental interaction patterns that change from 30 to 45 days of development, suggesting short- or long-term associations, such as storage in similar compartments or relevance for time-dependent biological processes. These findings shed light on which trace elements are important during human brain development and will support studies aimed to unravel the consequences of disrupted metal homeostasis for neurodevelopmental diseases, including those manifested in adulthood. PMID:28194309
Degerstedt, Frida; Wiklund, Maria; Enberg, Birgit
Young people with disabilities, especially physical disabilities, report worse health than others. This may be because of the disability, lower levels of physical activity, and discrimination. For children with cerebral palsy, access to physiotherapy and physical activity is a crucial prerequisite for good health and function. To date, there is limited knowledge regarding potential gender bias and inequity in habilitation services. To map how physiotherapeutic interventions (PTI), physical leisure activity, and physical education are allocated for children with cerebral palsy regarding sex, age, level of gross motor function, and county council affiliation. This was done from a gender and equity perspective. A register study using data from the Cerebral Palsy follow-Up Program (CPUP). Data included 313 children ≤18 years with cerebral palsy from the five northern counties in Sweden during 2013. Motor impairment of the children was classified according to the expanded and revised Gross Motor Function Classification System (GMFCS). In three county councils, boys received more physiotherapy interventions and received them more frequently than girls did. Differences between county councils were seen for frequency and reasons for physiotherapy interventions (p < 0.001). The physiotherapist was involved more often with children who had lower motor function and with children who had low physical leisure activity. Children with lower motor function level participated in physical leisure activity less often than children with less motor impairment (p < 0.001). Boys participated more frequently in physical education than did girls (p = 0.028). Gender and county council affiliation affect the distribution of physiotherapy interventions for children with cerebral palsy, and there are associations between gender and physical activity. Thus, the intervention is not always determined by the needs of the child or the degree of impairment. A gender-bias is indicated. Further studies are needed to ensure fair interventions.
Datta, Siddhartha; Chakrabarti, Nilkanta
2018-04-18
Rise in brain lactate is the hallmark of ageing. Separate studies report that ageing is associated with elevation of lactate level and alterations of lactate dehydrogenase (LDH)-A/B mRNA-expression-ratio in cerebral cortex and hippocampus. However, age related lactate rise in brain and its association with LDH status and their brain regional variations are still elusive. In the present study, level of lactate, LDH (A and B) activity and LDH-A expression were evaluated in post-mitochondrial fraction of tissues isolated from four different brain regions (cerebral cortex, hippocampus, substantia nigra and cerebellum) of young and aged mice. Lactate levels elevated in four brain regions with maximum rise in substantia nigra of aged mice. LDH-A protein expression and its activity decreased in cerebral cortex, hippocampus and substantia nigra without any changes of these parameters in cerebellum of aged mice. LDH-B activity decreased in hippocampus, substantia nigra and cerebellum whereas its activity remains unaltered in cerebral cortex of aged mice. Accordingly, the ratio of LDH-A/LDH-B-activity remains unaltered in hippocampus and substantia nigra, decreased in cerebral cortex and increased in cerebellum. Therefore, rise of lactate in three brain regions (cerebral cortex, hippocampus, substantia nigra) appeared to be not correlated with the alterations of its regulatory enzymes activities in these three brain regions, rather it supports the fact of involvement of other mechanisms, like lactate transport and/or aerobic/anaerobic metabolism as the possible cause(s) of lactate rise in these three brain regions. The increase in LDH-A/LDH-B-activity-ratio appeared to be positively correlated with elevated lactate level in cerebellum of aged mice. Overall, the present study indicates that the mechanism of rise in lactate in brain varies with brain regions where LDH status plays an important role during ageing. Copyright © 2018 Elsevier Ltd. All rights reserved.
Degerstedt, Frida; Wiklund, Maria; Enberg, Birgit
2017-01-01
ABSTRACT Background: Young people with disabilities, especially physical disabilities, report worse health than others. This may be because of the disability, lower levels of physical activity, and discrimination. For children with cerebral palsy, access to physiotherapy and physical activity is a crucial prerequisite for good health and function. To date, there is limited knowledge regarding potential gender bias and inequity in habilitation services. Objectives: To map how physiotherapeutic interventions (PTI), physical leisure activity, and physical education are allocated for children with cerebral palsy regarding sex, age, level of gross motor function, and county council affiliation. This was done from a gender and equity perspective. Methods: A register study using data from the Cerebral Palsy follow-Up Program (CPUP). Data included 313 children ≤18 years with cerebral palsy from the five northern counties in Sweden during 2013. Motor impairment of the children was classified according to the expanded and revised Gross Motor Function Classification System (GMFCS). Results: In three county councils, boys received more physiotherapy interventions and received them more frequently than girls did. Differences between county councils were seen for frequency and reasons for physiotherapy interventions (p < 0.001). The physiotherapist was involved more often with children who had lower motor function and with children who had low physical leisure activity. Children with lower motor function level participated in physical leisure activity less often than children with less motor impairment (p < 0.001). Boys participated more frequently in physical education than did girls (p = 0.028). Conclusion: Gender and county council affiliation affect the distribution of physiotherapy interventions for children with cerebral palsy, and there are associations between gender and physical activity. Thus, the intervention is not always determined by the needs of the child or the degree of impairment. A gender-bias is indicated. Further studies are needed to ensure fair interventions. PMID:28219314
PPARδ regulation of miR-15a in ischemia-induced cerebral vascular endothelial injury
Yin, K.J.; Deng, Z.; Hamblin, M.; Xiang, Y.; Huang, H.R.; Zhang, J.; Jiang, X. D.; Wang, Y.; Chen, Y. E.
2010-01-01
Cerebral endothelial cell (CEC) degeneration significantly contributes to blood-brain barrier (BBB) breakdown and neuronal loss after cerebral ischemia. Recently, emerging data suggest that peroxisome proliferator-activated receptor δ (PPARδ) activation has a potential neuroprotective role in ischemic stroke. Here we report for the first time that PPARδ is significantly reduced in oxygen-glucose deprivation (OGD)-induced mouse CEC death. Interestingly, PPARδ overexpression can suppress OGD-induced caspase-3 activity, Golgi fragmentation, and CEC death through an increase of bcl-2 protein levels without change of bcl-2 mRNA levels. To explore the molecular mechanisms, we have identified that upregulation of PPARδ can alleviate ODG-activated microRNA-15a (miR-15a) expression in CECs. Moreover, we have demonstrated that bcl-2 is a translationally-repressed target of miR-15a. Intriguingly, gain- or loss-of-miR-15a function can significantly reduce or increase OGD-induced CEC death, respectively. Furthermore, we have identified that miR-15a is a transcriptional target of PPARδ. Consistent with the in vitro findings, we found that intracerebroventricular infusion of a specific PPARδ agonist, GW 501516, significantly reduced ischemia-induced miR-15a expression, increased bcl-2 protein levels, and attenuated caspase-3 activity and subsequent DNA fragmentation in isolated cerebral microvessels, leading to decreased BBB disruption and reduced cerebral infarction in mice after transient focal cerebral ischemia. Taken together, these results suggest that PPARδ plays a vascular-protective role in ischemia-like insults via transcriptional repression of miR-15a, resulting in subsequent release of its posttranscriptional inhibition of bcl-2. Thus, regulation of PPARδ-mediated miR-15a inhibition of bcl-2 could provide a novel therapeutic strategy for the treatment of stroke-related vascular dysfunction. PMID:20445066
ERIC Educational Resources Information Center
Campbell, Philippa H.; And Others
1989-01-01
Seven full-term infants with severe encephalopathy following perinatal asphyxia were followed longitudinally to two years of age to determine health and developmental outcome and to investigate mother-infant interaction patterns over time. Six infants demonstrated delayed development; five were diagnosed with cerebral palsy. Mother-infant…
Effects of aniracetam on bladder overactivity in rats with cerebral infarction.
Nakada, Y; Yokoyama, O; Komatsu, K; Kodama, K; Yotsuyanagi, S; Niikura, S; Nagasaka, Y; Namiki, M
2000-06-01
Aniracetam has been used to improve the mental condition of patients with cerebrovascular disease. Previous studies have demonstrated that aniracetam activates the residual functions of cholinergic neurons in damaged brain areas. In this study, the effects of aniracetam on bladder overactivity after left middle cerebral artery occlusion were assessed through oral or i.c.v. administration in sham-operated and cerebral infarcted rats. Oral administration of aniracetam (100 and 300 mg/kg) resulted in a significant and dose-dependent increase in bladder capacity in cerebral infarcted rats but had no effect on bladder capacity in sham-operated rats. Intracerebroventricular administration of aniracetam (0.25 and 2.5 microg/rat) resulted in a significant and dose-dependent increase in bladder capacity in cerebral infarcted rats but not in sham-operated rats. Aniracetam had no significant effect on bladder contraction pressure or micturition threshold pressure in either sham-operated or cerebral infarcted rats. Furthermore, i.c.v. administration of atropine (1 microg/rat), a muscarinic acetylcholine receptor antagonist, completely inhibited the enhancing effects of aniracetam on bladder capacity in cerebral infarcted rats. The effects of aniracetam on bladder overactivity are thought to be mediated in part by activation of cholinergic inhibitory mechanisms in the brain. These results indicate that aniracetam may improve the neurogenic voiding dysfunction observed in patients with cerebrovascular disease.
Neurovascular Regulation in the Ischemic Brain
Jackman, Katherine
2015-01-01
Abstract Significance: The brain has high energetic requirements and is therefore highly dependent on adequate cerebral blood supply. To compensate for dangerous fluctuations in cerebral perfusion, the circulation of the brain has evolved intrinsic safeguarding measures. Recent Advances and Critical Issues: The vascular network of the brain incorporates a high degree of redundancy, allowing the redirection and redistribution of blood flow in the event of vascular occlusion. Furthermore, active responses such as cerebral autoregulation, which acts to maintain constant cerebral blood flow in response to changing blood pressure, and functional hyperemia, which couples blood supply with synaptic activity, allow the brain to maintain adequate cerebral perfusion in the face of varying supply or demand. In the presence of stroke risk factors, such as hypertension and diabetes, these protective processes are impaired and the susceptibility of the brain to ischemic injury is increased. One potential mechanism for the increased injury is that collateral flow arising from the normally perfused brain and supplying blood flow to the ischemic region is suppressed, resulting in more severe ischemia. Future Directions: Approaches to support collateral flow may ameliorate the outcome of focal cerebral ischemia by rescuing cerebral perfusion in potentially viable regions of the ischemic territory. Antioxid. Redox Signal. 22, 149–160. PMID:24328757
Mu, Xuetao; Nie, Binbin; Wang, Hong; Duan, Shaofeng; Zhang, Zan; Dai, Guanghui; Ma, Qiaozhi; Shan, Baoci; Ma, Lin
2014-01-01
Spastic diplegic cerebral palsy (SDCP) is a common type of cerebral palsy (CP), which presents as a group of motor-impairment syndromes. Previous conventional MRI studies have reported abnormal structural changes in SDCP, such as periventricular leucomalacia. However, there are roughly 27.8% SDCP patients presenting normal appearance in conventional MRI, which were considered as occult SDCP. In this study, sixteen patients with occult SDCP and 16 age- and sex-matched healthy control subjects were collected and the data were acquired on a 3T MR system. We applied voxel-based morphometry (VBM) and tract-based spatial statistics (TBSS) analysis to investigate whole brain grey and white matter injury in occult SDCP. By using VBM method, the grey matter volume reduction was revealed in the bilateral basal ganglia regions, thalamus, insula, and left cerebral peduncle, whereas the white matter atrophy was found to be located in the posterior part of corpus callosum and right posterior corona radiata in the occult SDCP patients. By using TBSS, reduced fractional anisotropy (FA) values were detected in multiple white matter regions, including bilateral white matter tracts in prefrontal lobe, temporal lobe, internal and external capsule, corpus callosum, cingulum, thalamus, brainstem and cerebellum. Additionally, several regions of white matter tracts injury were found to be significantly correlated with motor dysfunction. These results collectively revealed the spatial patterns of whole brain grey and white matter injury in occult SDCP.
Gama, Gabriela Lopes; Larissa, Coutinho de Lucena; Brasileiro, Ana Carolina de Azevedo Lima; Silva, Emília Márcia Gomes de Souza; Galvão, Élida Rayanne Viana Pinheiro; Maciel, Álvaro Cavalcanti; Lindquist, Ana Raquel Rodrigues
2017-07-01
Studies that evaluate gait rehabilitation programs for individuals with stroke often consider time since stroke of more than six months. In addition, most of these studies do not use lesion etiology or affected cerebral hemisphere as study factors. However, it is unknown whether these factors are associated with post-stroke motor performance after the spontaneous recovery period. To investigate whether time since stroke onset, etiology, and lesion side is associated with spatiotemporal and angular gait parameters of individuals with chronic stroke. Fifty individuals with chronic hemiparesis (20 women) were evaluated. The sample was stratified according to time since stroke (between 6 and 12 months, between 13 and 36 months, and over 36 months), affected cerebral hemisphere (left or right) and lesion etiology (ischemic and hemorrhagic). The participants were evaluated during overground walking at self-selected gait speed, and spatiotemporal and angular gait parameters were calculated. Results Differences between gait speed, stride length, hip flexion, and knee flexion were observed in subgroups stratified based on lesion etiology. Survivors of a hemorrhagic stroke exhibited more severe gait impairment. Subgroups stratified based on time since stroke only showed intergroup differences for stride length, and subgroups stratified based on affected cerebral hemisphere displayed between-group differences for swing time symmetry ratio. In order to recruit a more homogeneous sample, more accurate results were obtained and an appropriate rehabilitation program was offered, researchers and clinicians should consider that gait pattern might be associated with time since stroke, affected cerebral hemisphere and lesion etiology.
Du, Fei; Zhang, Yi; Iltis, Isabelle; Marjanska, Malgorzata; Zhu, Xiao-Hong; Henry, Pierre-Gilles; Chen, Wei
2009-12-01
To quantitatively investigate the effects of pentobarbital anesthesia on brain activity, brain metabolite concentrations and cerebral metabolic rate of glucose, in vivo proton MR spectra, and electroencephalography were measured in the rat brain with various doses of pentobarbital. The results show that (1) the resonances attributed to propylene glycol, a solvent in pentobarbital injection solution, can be robustly detected and quantified in the brain; (2) the concentration of most brain metabolites remained constant under the isoelectric state (silent electroencephalography) with a high dose of pentobarbital compared to mild isoflurane anesthesia condition, except for a reduction of 61% in the brain glucose level, which was associated with a 37% decrease in cerebral metabolic rate of glucose, suggesting a significant amount of "housekeeping" energy for maintaining brain cellular integrity under the isoelectric state; and (3) electroencephalography and cerebral metabolic activities were tightly coupled to the pentobarbital anesthesia depth and they can be indirectly quantified by the propylene glycol resonance signal at 1.13 ppm. This study indicates that in vivo proton MR spectroscopy can be used to measure changes in cerebral metabolite concentrations and cerebral metabolic rate of glucose under varied pentobarbital anesthesia states; moreover, the propylene glycol signal provides a sensitive biomarker for quantitatively monitoring these changes and anesthesia depth noninvasively. (c) 2009 Wiley-Liss, Inc.
Heterogeneity in Kv7 channel function in the cerebral and coronary circulation.
Lee, Sewon; Yang, Yan; Tanner, Miles A; Li, Min; Hill, Michael A
2015-02-01
Kv7 channels are considered important regulators of vascular smooth muscle contractility. The present study aimed to examine the hypotheses that (i) Kv7 channels are present in mouse cerebral and coronary arteries and regulate vascular reactivity and (ii) regional differences exist in the activity of these channels. PCR confirmed that basilar, Circle of Willis and LAD arteries express predominantly Kv7.1 and 7.4. Western blot analysis, however, showed greater Kv7.4 protein levels in the cerebral vessels. Relaxation to the Kv7 channel activator, retigabine (1-50 μM) was significantly greater in the basilar artery compared to the LAD artery. Similarly, the Kv7 channel inhibitor, linopirdine (10 μM) caused a stronger contraction of the basilar artery. Furthermore, pre-incubation with linopirdine reduced forskolin (cAMP activator)-induced vasorelaxation in basilar while not altering forskolin-induced vasorelaxation of the LAD, suggesting that Kv7 channels play a more prominent role in the cerebral than in the coronary circulation. Consistent with the vessel data, whole cell Kv7 currents in cerebral VSMCs were potentiated by retigabine and inhibited by linopirdine, while these responses were blunted in coronary VSMCs. This study provides evidence that mouse Kv7 channels may contribute differently to regulating the functional properties of cerebral and coronary arteries. Such heterogeneity has important implications for developing novel therapeutics for cardiovascular dysfunction. © 2014 John Wiley & Sons Ltd.
Heterogeneity in Kv7 channel function in the Cerebral and Coronary Circulation
Tanner, Miles A.; Li, Min; Hill, Michael A.
2014-01-01
Kv7 channels are considered important regulators of vascular smooth muscle contractility. The present study examined the hypotheses that 1. Kv7 channels are present in mouse cerebral and coronary arteries and regulate vascular reactivity, and 2. regional differences exist in the activity of these channels. PCR confirmed that basilar, Circle of Willis and left anterior descending (LAD) arteries express predominantly Kv7.1 and 7.4. Western blot analysis, however, showed greater Kv7.4 protein levels in the cerebral vessels. Relaxation to the Kv7 channel activator, retigabine (1-50μM) was significantly greater in basilar compared to LAD. Similarly, the Kv7 channel inhibitor, linopirdine (10μM) caused stronger contraction of the basilar artery. Furthermore, pre-incubation with linopirdine reduced forskolin (cAMP activator)-induced vasorelaxation in basilar while not altering forskolin-induced vasorelaxation of the LAD, suggesting that Kv7 channels play a more prominent role in the cerebral than coronary circulation. Consistent with the vessel data, whole cell Kv7 currents in cerebral VSMCs were potentiated by retigabine and inhibited by linopirdine, while these responses were blunted in coronary VSMCs. This study provides evidence that mouse Kv7 channels may contribute differently to regulating the functional properties of cerebral and coronary arteries. Such heterogeneity has important implications for developing novel therapeutics for cardiovascular dysfunction. PMID:25476662
Visual Space and Object Space in the Cerebral Cortex of Retinal Disease Patients
Spileers, Werner; Wagemans, Johan; Op de Beeck, Hans P.
2014-01-01
The lower areas of the hierarchically organized visual cortex are strongly retinotopically organized, with strong responses to specific retinotopic stimuli, and no response to other stimuli outside these preferred regions. Higher areas in the ventral occipitotemporal cortex show a weak eccentricity bias, and are mainly sensitive for object category (e.g., faces versus buildings). This study investigated how the mapping of eccentricity and category sensitivity using functional magnetic resonance imaging is affected by a retinal lesion in two very different low vision patients: a patient with a large central scotoma, affecting central input to the retina (juvenile macular degeneration), and a patient where input to the peripheral retina is lost (retinitis pigmentosa). From the retinal degeneration, we can predict specific losses of retinotopic activation. These predictions were confirmed when comparing stimulus activations with a no-stimulus fixation baseline. At the same time, however, seemingly contradictory patterns of activation, unexpected given the retinal degeneration, were observed when different stimulus conditions were directly compared. These unexpected activations were due to position-specific deactivations, indicating the importance of investigating absolute activation (relative to a no-stimulus baseline) rather than relative activation (comparing different stimulus conditions). Data from two controls, with simulated scotomas that matched the lesions in the two patients also showed that retinotopic mapping results could be explained by a combination of activations at the stimulated locations and deactivations at unstimulated locations. Category sensitivity was preserved in the two patients. In sum, when we take into account the full pattern of activations and deactivations elicited in retinotopic cortex and throughout the ventral object vision pathway in low vision patients, the pattern of (de)activation is consistent with the retinal loss. PMID:24505449
Liu, Yu; Zhang, Lei; Liang, Jiangjiu
2015-04-15
Oxidative stress is considered a major contributing factor in cerebral ischemia/reperfusion injury. Phloretin, a dihydrochalcone belonging to the flavonoid family, is particularly rich in apples and apple-derived products. A large body of evidence demonstrates that phloretin exhibits anti-oxidant properties, and phloretin has potential implications for treating oxidative stress injuries in cerebral ischemia/reperfusion. Therefore, the neuroprotective and antioxidant effects of phloretin against ischemia/reperfusion injury, as well as related probable mechanisms, were investigated. The cerebral ischemic/reperfusion injury model was reproduced in male Sprague-Dawley rats through middle cerebral artery occlusion. At 24h after reperfusion, neurological score, infarct volume, and brain water content were assessed. Oxidative stress was evaluated by superoxide dismutases (SOD), glutathione (GSH), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA) levels. Nrf2 expression was measured by RT-PCR and western blot. Consequently, results showed that phloretin pretreatment for 14days significantly reduced infarct volume and brain edema, and ameliorated neurological scores in focal cerebral ischemia/reperfusion rats. SOD, GSH and GSH-Px activities were greatly decreased, and MDA levels significantly increased after ischemia/reperfusion injury. However, phloretin pretreatment dramatically suppressed these oxidative stress processes. Furthermore, phloretin upregulated Nrf2 mRNA and protein expression of in ischemia/reperfusion brain tissue. Taken together, phloretin exhibited neuroprotective effects in cerebral ischemia/reperfusion, and the mechanisms are associated with oxidative stress inhibition and Nrf2 defense pathway activation. Copyright © 2015 Elsevier B.V. All rights reserved.
Tocilizumab inhibits neuronal cell apoptosis and activates STAT3 in cerebral infarction rat model.
Wang, Shaojun; Zhou, Jun; Kang, Weijie; Dong, Zhaoni; Wang, Hezuo
2016-01-15
Cerebral infarction is a severe hypoxic ischemic necrosis with accelerated neuronal cell apoptosis in the brain. As a monoclonal antibody against interleukin 6, tocilizumab (TCZ) is widely used in immune diseases, whose function in cerebral infarction has not been studied. This study aims to reveal the role of TCZ in regulating neuronal cell apoptosis in cerebral infarction. The cerebral infarction rat model was constructed by middle cerebral artery occlusion and treated with TCZ. Cell apoptosis in hippocampus and cortex of the brain was examined with TUNEL method. Rat neuronal cells cultured in oxygen-glucose deprivation (OGD) conditions and treated with TCZ were used to compare cell viability and apoptosis. Apoptosis-related factors including B-cell lymphoma extra large (Bcl-xL) and Caspase 3, as well as the phosphorylated signal transducer and activator of transcription 3 (p-STAT3) in brain cortex were analyzed from the protein level. Results indicated that TCZ treatment could significantly prevent the promoted cell apoptosis caused by cerebral infarction or OGD (P < 0.05 or P < 0.01). In brain cortex of the rat model, TCZ up-regulated Bcl-xL and down-regulated Caspase 3, consistent with the inhibited cell apoptosis. It also promoted tyrosine 705 phosphorylation of STAT3, which might be the potential regulatory mechanism of TCZ in neuronal cells. This study provided evidence for the protective role of TCZ against neuronal cell apoptosis in cerebral infarction. Based on these fundamental data, TCZ is a promising option for treating cerebral infarction, but further investigations on related mechanisms are still necessary.
Kunz, Alexander; Abe, Takato; Hochrainer, Karin; Shimamura, Munehisa; Anrather, Josef; Racchumi, Gianfranco; Zhou, Ping; Iadecola, Costantino
2008-02-13
CD36, a class-B scavenger receptor involved in multiple functions, including inflammatory signaling, may also contribute to ischemic brain injury through yet unidentified mechanisms. We investigated whether CD36 participates in the molecular events underlying the inflammatory reaction that accompanies cerebral ischemia and may contribute to the tissue damage. We found that activation of nuclear factor-kappaB, a transcription factor that coordinates postischemic gene expression, is attenuated in CD36-null mice subjected to middle cerebral artery occlusion. The infiltration of neutrophils and the glial reaction induced by cerebral ischemia were suppressed. Treatment with an inhibitor of inducible nitric oxide synthase, an enzyme that contributes to the tissue damage, reduced ischemic brain injury in wild-type mice, but not in CD36 nulls. In contrast to cerebral ischemia, the molecular and cellular inflammatory changes induced by intracerebroventricular injection of interleukin-1beta were not attenuated in CD36-null mice. The findings unveil a novel role of CD36 in early molecular events leading to nuclear factor-kappaB activation and postischemic inflammation. Inhibition of CD36 signaling may be a valuable therapeutic approach to counteract the deleterious effects of postischemic inflammation.
APC sets the Wnt tone necessary for cerebral cortical progenitor development.
Nakagawa, Naoki; Li, Jingjun; Yabuno-Nakagawa, Keiko; Eom, Tae-Yeon; Cowles, Martis; Mapp, Tavien; Taylor, Robin; Anton, E S
2017-08-15
Adenomatous polyposis coli (APC) regulates the activity of β-catenin, an integral component of Wnt signaling. However, the selective role of the APC-β-catenin pathway in cerebral cortical development is unknown. Here we genetically dissected the relative contributions of APC-regulated β-catenin signaling in cortical progenitor development, a necessary early step in cerebral cortical formation. Radial progenitor-specific inactivation of the APC-β-catenin pathway indicates that the maintenance of appropriate β-catenin-mediated Wnt tone is necessary for the orderly differentiation of cortical progenitors and the resultant formation of the cerebral cortex. APC deletion deregulates β-catenin, leads to high Wnt tone, and disrupts Notch1 signaling and primary cilium maintenance necessary for radial progenitor functions. β-Catenin deregulation directly disrupts cilium maintenance and signaling via Tulp3, essential for intraflagellar transport of ciliary signaling receptors. Surprisingly, deletion of β-catenin or inhibition of β-catenin activity in APC-null progenitors rescues the APC-null phenotype. These results reveal that APC-regulated β-catenin activity in cortical progenitors sets the appropriate Wnt tone necessary for normal cerebral cortical development. © 2017 Nakagawa et al.; Published by Cold Spring Harbor Laboratory Press.
Zhang, Shao-jie; Ke, Zheng; Li, Le; Yip, Shea-ping; Tong, Kai-yu
2013-04-01
Monitoring the neural activities from the ischemic penumbra provides critical information on neurological recovery after stroke. The purpose of this study is to evaluate the temporal alterations of neural activities using electroencephalography (EEG) from the acute phase to the chronic phase, and to compare EEG with the degree of post-stroke motor function recovery in a rat model of focal ischemic stroke. Male Sprague-Dawley rats were subjected to 90 min transient middle cerebral artery occlusion surgery followed by reperfusion for seven days (n = 58). The EEG signals were recorded at the pre-stroke phase (0 h), acute phase (3, 6 h), subacute phase (12, 24, 48, 72 h) and chronic phase (96, 120, 144, 168 h) (n = 8). This study analyzed post-stroke seizures and polymorphic delta activities (PDAs) and calculated quantitative EEG parameters such as the alpha-to-delta ratio (ADR). The ADR represented the ratio between alpha power and delta power, which indicated how fast the EEG activities were. Forelimb and hindlimb motor functions were measured by De Ryck's test and the beam walking test, respectively. In the acute phase, delta power increased fourfold with the occurrence of PDAs, and the histological staining showed that the infarct was limited to the striatum and secondary sensory cortex. In the subacute phase, the alpha power reduced to 50% of the baseline, and the infarct progressed to the forelimb cortical region. ADRs reduced from 0.23 ± 0.09 to 0.04 ± 0.01 at 3 h in the acute phase and gradually recovered to 0.22 ± 0.08 at 168 h in the chronic phase. In the comparison of correlations between the EEG parameters and the limb motor function from the acute phase to the chronic phase, ADRs were found to have the highest correlation coefficients with the beam walking test (r = 0.9524, p < 0.05) and De Ryck's test (r = 0.8077, p < 0.05). This study measured EEG activities after focal cerebral ischemia and showed that functional recovery was closely correlated with the neural activities in the penumbra. Longitudinal EEG monitoring at different phases after a stroke can provide information on the neural activities, which are well correlated with the motor function recovery.
Han, Qingdong; Liu, Shengwen; Li, Zhengwei; Hu, Feng; Zhang, Qiang; Zhou, Min; Chen, Jingcao; Lei, Ting; Zhang, Huaqiu
2014-01-13
Accumulating evidence indicates that extensive microglia activation-mediated local inflammation contributes to neuronal injury in cerebral ischemia. We have previously shown that 4-(2-butyl-6, 7-dichloro-2-cyclopentyl-indan-1-on-5-yl) oxobutyric acid (DCPIB), a potent volume-regulated anion channel (VRAC) inhibitor, suppresses pathological glutamate release and excitatory neurotoxicity in reversible middle cerebral artery occlusion (rMCAO) model in vivo. In the present study, we sought to determine whether DCPIB also attenuates microglia activation that could contribute to neuronal injury in the cerebral ischemia/reperfusion pathology. We show that oxygen-glucose deprivation (OGD) induced microglia proliferation, migration, and secretion of cytokines and all these pathological changes were effectively inhibited by DCPIB in vitro. In the microglia/neuron co-cultures, OGD induced neuronal damage was reduced markedly in the presence of DCPIB. In rat rMCAO animal model, DCPIB significantly attenuated microglia activation and neuronal death. Activation of mitogen-activated protein kinase (MAPK) signaling pathway is known to be a critical signaling pathway for microglia activation. We further explored a potential involvement of DCPIB in this pathway by western blot analysis. Under the conditions that MAPK pathway was activated either by lipopolysaccharides (LPS) or OGD, the levels of phosphorylated ERK1/2, JNK and p38 were reduced significantly in the presence of DCPIB. Altogether, our study demonstrated that DCPIB inhibits microglia activation potently under ischemic conditions both in vitro and in vivo. The DCPIB effect is likely attributable to both direct inhibition VRAC and indirect inhibition of MAPK pathway in microglia that are beneficial for the survival of neurons in cerebral ischemic conditions. © 2013 Elsevier B.V. All rights reserved.
Goker-Alpan, Ozlem; Masdeu, Joseph C; Kohn, Philip D; Ianni, Angela; Lopez, Grisel; Groden, Catherine; Chapman, Molly C; Cropp, Brett; Eisenberg, Daniel P; Maniwang, Emerson D; Davis, Joie; Wiggs, Edythe; Sidransky, Ellen; Berman, Karen F
2012-08-01
Mutations in GBA, the gene encoding glucocerebrosidase, the enzyme deficient in Gaucher disease, are common risk factors for Parkinson disease, as patients with Parkinson disease are over five times more likely to carry GBA mutations than healthy controls. Patients with GBA mutations generally have an earlier onset of Parkinson disease and more cognitive impairment than those without GBA mutations. We investigated whether GBA mutations alter the neurobiology of Parkinson disease, studying brain dopamine synthesis and resting regional cerebral blood flow in 107 subjects (38 women, 69 men). We measured dopamine synthesis with (18)F-fluorodopa positron emission tomography, and resting regional cerebral blood flow with H(2)(15)O positron emission tomography in the wakeful, resting state in four study groups: (i) patients with Parkinson disease and Gaucher disease (n = 7, average age = 56.6 ± 9.2 years); (ii) patients with Parkinson disease without GBA mutations (n = 11, 62.1 ± 7.1 years); (iii) patients with Gaucher disease without parkinsonism, but with a family history of Parkinson disease (n = 14, 52.6 ± 12.4 years); and (iv) healthy GBA-mutation carriers with a family history of Parkinson disease (n = 7, 50.1 ± 18 years). We compared each study group with a matched control group. Data were analysed with region of interest and voxel-based methods. Disease duration and Parkinson disease functional and staging scores were similar in the two groups with parkinsonism, as was striatal dopamine synthesis: both had greatest loss in the caudal striatum (putamen Ki loss: 44 and 42%, respectively), with less reduction in the caudate (20 and 18% loss). However, the group with both Parkinson and Gaucher diseases showed decreased resting regional cerebral blood flow in the lateral parieto-occipital association cortex and precuneus bilaterally. Furthermore, two subjects with Gaucher disease without parkinsonian manifestations showed diminished striatal dopamine. In conclusion, the pattern of dopamine loss in patients with both Parkinson and Gaucher disease was similar to sporadic Parkinson disease, indicating comparable damage in midbrain neurons. However, H(2)(15)O positron emission tomography studies indicated that these subjects have decreased resting activity in a pattern characteristic of diffuse Lewy body disease. These findings provide insight into the pathophysiology of GBA-associated parkinsonism.
Goker-Alpan, Ozlem; Masdeu, Joseph C.; Kohn, Philip D.; Ianni, Angela; Lopez, Grisel; Groden, Catherine; Chapman, Molly C.; Cropp, Brett; Eisenberg, Daniel P.; Maniwang, Emerson D.; Davis, Joie; Wiggs, Edythe; Berman, Karen F.
2012-01-01
Mutations in GBA, the gene encoding glucocerebrosidase, the enzyme deficient in Gaucher disease, are common risk factors for Parkinson disease, as patients with Parkinson disease are over five times more likely to carry GBA mutations than healthy controls. Patients with GBA mutations generally have an earlier onset of Parkinson disease and more cognitive impairment than those without GBA mutations. We investigated whether GBA mutations alter the neurobiology of Parkinson disease, studying brain dopamine synthesis and resting regional cerebral blood flow in 107 subjects (38 women, 69 men). We measured dopamine synthesis with 18F-fluorodopa positron emission tomography, and resting regional cerebral blood flow with H215O positron emission tomography in the wakeful, resting state in four study groups: (i) patients with Parkinson disease and Gaucher disease (n = 7, average age = 56.6 ± 9.2 years); (ii) patients with Parkinson disease without GBA mutations (n = 11, 62.1 ± 7.1 years); (iii) patients with Gaucher disease without parkinsonism, but with a family history of Parkinson disease (n = 14, 52.6 ± 12.4 years); and (iv) healthy GBA-mutation carriers with a family history of Parkinson disease (n = 7, 50.1 ± 18 years). We compared each study group with a matched control group. Data were analysed with region of interest and voxel-based methods. Disease duration and Parkinson disease functional and staging scores were similar in the two groups with parkinsonism, as was striatal dopamine synthesis: both had greatest loss in the caudal striatum (putamen Ki loss: 44 and 42%, respectively), with less reduction in the caudate (20 and 18% loss). However, the group with both Parkinson and Gaucher diseases showed decreased resting regional cerebral blood flow in the lateral parieto-occipital association cortex and precuneus bilaterally. Furthermore, two subjects with Gaucher disease without parkinsonian manifestations showed diminished striatal dopamine. In conclusion, the pattern of dopamine loss in patients with both Parkinson and Gaucher disease was similar to sporadic Parkinson disease, indicating comparable damage in midbrain neurons. However, H215O positron emission tomography studies indicated that these subjects have decreased resting activity in a pattern characteristic of diffuse Lewy body disease. These findings provide insight into the pathophysiology of GBA-associated parkinsonism. PMID:22843412
2007-05-01
seizures , sub-arachnoid hemorrhaging, prenatal strokes , alopecia universalis (hair loss disease) husband is Active Duty, came from Ft. Hood 4...restriction, failure to thrive, a seizure disorder, cortical blindness husband is Active Duty Army 20 diagnosed with severe cerebral palsy at 3 mo old ex...linked hyper IgM); oldest son has cancer too Active Duty Army officer (wife and husband participated) 3 severe cerebral palsy, seizure disorder
Leisure Activity Preferences for 6- To 12-Year-Old Children with Cerebral Palsy
ERIC Educational Resources Information Center
Majnemer, Annette; Shikako-Thomas, Keiko; Chokron, Nathalie; Law, Mary; Shevell, Michael; Chilingaryan, Gevorg; Poulin, Chantal; Rosenbaum, Peter
2010-01-01
Aim: The objective was to describe leisure activity preferences of children with cerebral palsy (CP) and their relationship to participation. Factors associated with greater interest in leisure activities were identified. Method: Fifty-five school-aged children (36 males, 19 females; mean age 9y 11mo; range 6y 1mo-12y 11mo) with CP (Gross Motor…
ERIC Educational Resources Information Center
Shikako-Thomas, Keiko; Shevell, Michael; Lach, Lucyna; Law, Mary; Schmitz, Norbert; Poulin, Chantal; Majnemer, Annette
2013-01-01
In recent years attention has been paid to the participation levels of children and youth with Cerebral Palsy (CP), particularly the extent to which they have the opportunity to be involved in and enjoy leisure activities. The objective of this study is to describe the level of participation and enjoyment in leisure activities among adolescents…
Cerebral correlates of the "Kohnstamm phenomenon": an fMRI study.
Duclos, C; Roll, R; Kavounoudias, A; Roll, J-P
2007-01-15
This paper addresses the issue of the central correlates of the "Kohnstamm phenomenon", i.e. the long-lasting involuntary muscle contraction which develops after a prolonged isometric voluntary contraction. Although this phenomenon was described as early as 1915, the mechanisms underlying these post-effects are not yet understood. It was therefore proposed to investigate whether specific brain areas may be involved in the motor post-effects induced by either wrist muscle contraction or vibration using the fMRI method. For this purpose, experiments were carried out on the right wrist of 11 healthy subjects. Muscle activity (EMG) and regional cerebral blood flow were recorded during isometric voluntary muscle contraction and muscle vibration, as well as during the subsequent involuntary contractions (the post-effects) which occurred under both conditions. Brain activations were found to occur during the post-contraction and post-vibration periods, which were very similar under both conditions. Brain activation involved motor-related areas usually responsible for voluntary motor command (primary sensory and motor cortices, premotor cortex, anterior and posterior cingulate gyrus) and sensorimotor integration structures such as the posterior parietal cortex. Comparisons between the patterns of brain activation associated with the involuntary post-effects and those accompanying voluntary contraction showed that cerebellar vermis was activated during the post-effect periods whereas the supplementary motor area was activated only during the induction periods. Although post-effects originate from asymmetric proprioceptive inputs, they might also involve a central network where the motor and somatosensory areas and the cerebellum play a key role. In functional terms, they might result from the adaptive recalibration of the postural reference frame altered by the sustained proprioceptive inputs elicited by muscle contraction and vibration.
Continuous involuntary hand movements and schizencephaly: epilepsia partialis continua or dystonia?
Marinelli, Lucio; Bonzano, Laura; Saitta, Laura; Trompetto, Carlo; Abbruzzese, Giovanni
2012-04-01
Schizencephaly is regarded as a malformation of cortical development (due to abnormal neuronal organization) and may be associated with continuous involuntary hand movements. The mechanisms underlying these movements are not clear and both dystonia and epilepsia partialis continua have been considered in previously reported cases. We describe a young patient affected by schizencephaly and continuous involuntary movements of the contralateral hand. Functional MRI showed bilateral cerebral activation, while the subject performed tapping movements with the affected hand and no significant difference in the activation pattern after diazepam infusion. Standard and back-averaged EEG showed no alterations. The results obtained from these investigations and the clinical features of the involuntary movements are not in favor of an epileptic genesis, while support the diagnosis of secondary dystonia.
Hallioğlu, O; Ozge, A; Comelekoglu, U; Topaloglu, A K; Kanik, A; Duzovali, O; Yilgor, E
2001-10-01
This study was undertaken to evaluate resting electroencephalographic (EEG) changes and their relations to cerebral maturation in children with primary nocturnal enuresis. Cerebral maturation is known to be important in the pathogenesis of this disorder. Twenty-five right-handed patients with primary nocturnal enuresis, aged 6 to 14 years, and 23 age- and sex-matched healthy children were included in this cross-sectional case-control study. The abnormalities detected using such techniques as hemispheral asymmetry, regional differences, and hyperventilation response in addition to visual and quantitative EEG analysis were examined statistically by multivariate analysis. A decrease in alpha activity in the left (dominant hemisphere) temporal lobe and in the frontal lobes bilaterally and an increase in delta activity in the right temporal region were observed. We concluded that insufficient cerebral maturation is an important factor in the pathogenesis of primary nocturnal enuresis, and EEG, as a noninvasive and inexpensive method, could be used in evaluating cerebral maturation.
The Role of Neuronal Signaling in Controlling Cerebral Blood Flow
ERIC Educational Resources Information Center
Drake, Carrie T.; Iadecola, Costantino
2007-01-01
Well-regulated blood flow within the brain is vital to normal function. The brain's requirement for sufficient blood flow is ensured by a tight link between neural activity and blood flow. The link between regional synaptic activity and regional cerebral blood flow, termed functional hyperemia, is the basis for several modern imaging techniques…
A Systematic Review of Measures of Activity Limitation for Children with Cerebral Palsy
ERIC Educational Resources Information Center
Harvey, Adrienne; Robin, Jonathan; Morris, Meg E.; Graham, H. Kerr; Baker, Richard
2008-01-01
This systematic review critically appraises the literature on the psychometric properties and clinical utility of evaluative activity limitation outcome measures used for children with cerebral palsy (CP). The search strategy yielded 29 articles for eight outcome measures that met the inclusion criteria for the review. The Gross Motor Function…
Physical Activity Measurement Instruments for Children with Cerebral Palsy: A Systematic Review
ERIC Educational Resources Information Center
Capio, Catherine M.; Sit, Cindy H. P.; Abernethy, Bruce; Rotor, Esmerita R.
2010-01-01
Aim: This paper is a systematic review of physical activity measurement instruments for field-based studies involving children with cerebral palsy (CP). Method: Database searches using PubMed Central, MEDLINE, CINAHL Plus, PsycINFO, EMBASE, Cochrane Library, and PEDro located 12 research papers, identifying seven instruments that met the inclusion…
Benda, William; McGibbon, Nancy H; Grant, Kathryn L
2003-12-01
To evaluate the effect of hippotherapy (physical therapy utilizing the movement of a horse) on muscle activity in children with spastic cerebral palsy. Pretest/post-test control group. Therapeutic Riding of Tucson (TROT), Tucson, AZ. Fifteen (15) children ranging from 4 to 12 years of age diagnosed with spastic cerebral palsy. Children meeting inclusion criteria were randomized to either 8 minutes of hippotherapy or 8 minutes astride a stationary barrel. Remote surface electromyography (EMG) was used to measure muscle activity of the trunk and upper legs during sitting, standing, and walking tasks before and after each intervention. After hippotherapy, significant improvement in symmetry of muscle activity was noted in those muscle groups displaying the highest asymmetry prior to hippotherapy. No significant change was noted after sitting astride a barrel. Eight minutes of hippotherapy, but not stationary sitting astride a barrel, resulted in improved symmetry in muscle activity in children with spastic cerebral palsy. These results suggest that the movement of the horse rather than passive stretching accounts for the measured improvements.
Analgesia and hyperalgesia from GABA-mediated modulation of the cerebral cortex.
Jasmin, Luc; Rabkin, Samuel D; Granato, Alberto; Boudah, Abdennacer; Ohara, Peter T
2003-07-17
It is known that pain perception can be altered by mood, attention and cognition, or by direct stimulation of the cerebral cortex, but we know little of the neural mechanisms underlying the cortical modulation of pain. One of the few cortical areas consistently activated by painful stimuli is the rostral agranular insular cortex (RAIC) where, as in other parts of the cortex, the neurotransmitter gamma-aminobutyric acid (GABA) robustly inhibits neuronal activity. Here we show that changes in GABA neurotransmission in the RAIC can raise or lower the pain threshold--producing analgesia or hyperalgesia, respectively--in freely moving rats. Locally increasing GABA, by using an enzyme inhibitor or gene transfer mediated by a viral vector, produces lasting analgesia by enhancing the descending inhibition of spinal nociceptive neurons. Selectively activating GABA(B)-receptor-bearing RAIC neurons produces hyperalgesia through projections to the amygdala, an area involved in pain and fear. Whereas most studies focus on the role of the cerebral cortex as the end point of nociceptive processing, we suggest that cerebral cortex activity can change the set-point of pain threshold in a top-down manner.
Chen, Juan; Hu, Rong; Liao, Huabao; Zhang, Ya; Lei, Ruixue; Zhang, Zhifeng; Zhuang, Yang; Wan, Yu; Jin, Ping; Feng, Hua; Wan, Qi
2017-06-15
NMDA receptor (NMDAR) is known for its ionotropic function. But recent evidence suggests that NMDAR also has a non-ionotropic property. To determine the role of non-ionotropic activity of NMDARs in clinical relevant conditions, we tested the effect of glycine, a co-agonist of NMDARs, in rat middle cerebral artery occlusion (MCAO), an animal model of cerebral ischemia-reperfusion injury after the animals were injected with the NMDAR channel blocker MK-801 and the glycine receptor antagonist strychnine. We show that glycine reduces the infarct volume in the brain of ischemic stroke animals pre-injected with MK-801 and strychnine. The effect of glycine is sensitive to the antagonist of glycine-GluN1 binding site and blocked by Akt inhibition. In the neurobehavioral tests, glycine improves the functional recovery of stroke animals pre-injected with MK-801 and strychnine. This study suggests that glycine-induced neuroprotection is mediated in part by the non-ionotropic activity of NMDARs via Akt activation in cerebral ischemia-reperfusion injury.
Hoshi, Y
Near-infrared spectroscopy (NIRS) was originally designed for clinical monitoring of tissue oxygenation, and it has also been developed into a useful tool in neuroimaging studies, with the so-called functional NIRS (fNIRS). With NIRS, cerebral activation is detected by measuring the cerebral hemoglobin (Hb), where however, the precise correlation between NIRS signal and neural activity remains to be fully understood. This can in part be attributed to the situation that NIRS signals are inherently subject to contamination by signals arising from extracerebral tissue. In recent years, several approaches have been investigated to distinguish between NIRS signals originating in cerebral tissue and signals originating in extracerebral tissue. Selective measurements of cerebral Hb will enable a further evolution of fNIRS. This chapter is divided into six sections: first a summary of the basic theory of NIRS, NIRS signals arising in the activated areas, correlations between NIRS signals and fMRI signals, correlations between NIRS signals and neural activities, and the influence of a variety of extracerebral tissue on NIRS signals and approaches to this issue are reviewed. Finally, future prospects of fNIRS are described. © 2016 Elsevier B.V. All rights reserved.
Peña-Melián, Angel; Rosas, Antonio; García-Tabernero, Antonio; Bastir, Markus; De La Rasilla, Marco
2011-08-01
The endocranial surface description and comparative analyses of two new neandertal occipital fragments (labelled SD-1149 and SD-370a) from the El Sidrón site (Asturias, Spain) reveal new aspects of neandertal brain morphological asymmetries. The dural sinus drainage pattern, as observed on the sagittal-transverse system, as well as the cerebral occipito-petalias, point out a slightly differential configuration of the neandertal brain when compared to other Homo species, especially H. sapiens. The neandertal dural sinus drainage pattern is organized in a more asymmetric mode, in such a way that the superior sagittal sinus (SSS) drains either to the right or to the left transverse sinuses, but in no case in a confluent mode (i.e. simultaneous continuation of SSS with both right (RTS) and left (LTS) transverse sinuses). Besides, the superior sagittal sinus shows an accentuated deviation from of the mid-sagittal plane in its way to the RTS in 35% of neandertals. This condition, which increases the asymmetry of the system, is almost nonexistent neither in the analyzed Homo fossil species sample nor in that of anatomically modern humans. Regarding the cerebral occipito-petalias, neandertals manifest one of the lowest percentages of left petalia of the Homo sample (including modern H. sapiens). As left occipito-petalia is the predominant pattern in hominins, it seems as if neandertals would have developed a different pattern of brain hemispheres asymmetry. Finally, the relief and position of the the cerebral sulci and gyri impressions observed in the El Sidrón occipital specimens look similar to those observed in modern H. sapiens. Copyright © 2011 Wiley-Liss, Inc.
Abdelhalim, Ahmed N; Alberico, Ronald A; Barczykowski, Amy L; Duffner, Patricia K
2014-02-01
Initial magnetic resonance imaging studies of individuals with Krabbe disease were analyzed to determine whether the pattern of abnormalities corresponded to the phenotype. This was a retrospective, nonblinded study. Families/patients diagnosed with Krabbe disease submitted medical records and magnetic resonance imaging discs for central review. Institutional review board approval/informed consents were obtained. Sixty-four magnetic resonance imaging scans were reviewed by two neuroradiologists and a child neurologist according to phenotype: early infantile (onset 0-6 months) = 39 patients; late infantile (onset 7-12 months) = 10 patients; later onset (onset 13 months-10 years) = 11 patients; adolescent (onset 11-20 years) = one patient; and adult (21 years or greater) = three patients. Local interpretations were compared with central review. Magnetic resonance imaging abnormalities differed among phenotypes. Early infantile patients had a predominance of increased intensity in the dentate/cerebellar white matter as well as changes in the deep cerebral white matter. Later onset patients did not demonstrate involvement in the dentate/cerebellar white matter but had extensive involvement of the deep cerebral white matter, parieto-occipital region, and posterior corpus callosum. Late infantile patients exhibited a mixed pattern; 40% had dentate/cerebellar white matter involvement while all had involvement of the deep cerebral white matter. Adolescent/adult patients demonstrated isolated corticospinal tract involvement. Local and central reviews primarily differed in interpretation of the early infantile phenotype. Analysis of magnetic resonance imaging in a large cohort of symptomatic patients with Krabbe disease demonstrated imaging abnormalities correspond to specific phenotypes. Knowledge of these patterns along with typical clinical signs/symptoms should promote earlier diagnosis and facilitate treatment. Copyright © 2014 Elsevier Inc. All rights reserved.
Singh, Rupinder; Gupta, Vivek; Ahuja, Chirag; Kumar, Ajay; Mukherjee, Kanchan K; Khandelwal, Niranjan
2018-06-01
Introduction The present study aimed to evaluate the accuracy of time-resolved-computed tomographic angiography (TR-CTA) on a 128-slice CT scanner vis-à-vis cerebral digital subtraction angiography (DSA) in defining the morphological and haemodynamic characteristics of cerebral arteriovenous malformation (AVM). Methods Twenty-one patients (age range 10-46, mean 24.8 years) with clinical suspicion of AVM and three patients (age range 23-35, mean 24.3 years) with diagnosed AVM who were on follow-up underwent DSA and TR-CTA, on average 1.5 days apart. Three independent neuroradiologists analysed both studies in a blinded fashion based on the following parameters: AVM location, arterial feeder territories, venous drainage pattern, nidus flow characteristics, venous outflow obstruction, arterial feeder enlargement, external carotid artery feeder, location of aneurysm if any, leptomeningeal and transdural recruitment, neoangiogenesis, and pseudophlebitic pattern. Results The TR-CTA correctly demonstrated AVM in all 21 positive cases. It concordantly detected location (21/21), venous drainage pattern (21/21), nidus flow characteristics (21/21), and the venous outflow obstruction (9/9). However, discordance was seen in the demonstration of the arterial feeder (2/45) ( p = 0.49), arterial enlargement (13/17) ( p = 0.103), external carotid artery feeder (0/1), aneurysmal location (3/5) ( p = 0.40), leptomeningeal recruitment (1/3) ( p = 0.40), neoangiogenesis (0/4) ( p = 0.028) and in the pseudophlebitic pattern (2/5) ( p = 0.167) demonstration. Conclusions The results suggest that TR-CTA can provide the important features of cerebral AVM which are required in patient management.
Direct Interactions Between Gli3, Wnt8b, and Fgfs Underlie Patterning of the Dorsal Telencephalon.
Hasenpusch-Theil, Kerstin; Watson, Julia A; Theil, Thomas
2017-02-01
A key step in the development of the cerebral cortex is a patterning process, which subdivides the telencephalon into several molecularly distinct domains and is critical for cortical arealization. This process is dependent on a complex network of interactions between signaling molecules of the Fgf and Wnt gene families and the Gli3 transcription factor gene, but a better knowledge of the molecular basis of the interplay between these factors is required to gain a deeper understanding of the genetic circuitry underlying telencephalic patterning. Using DNA-binding and reporter gene assays, we here investigate the possibility that Gli3 and these signaling molecules interact by directly regulating each other's expression. We show that Fgf signaling is required for Wnt8b enhancer activity in the cortical hem, whereas Wnt/β-catenin signaling represses Fgf17 forebrain enhancer activity. In contrast, Fgf and Wnt/β-catenin signaling cooperate to regulate Gli3 expression. Taken together, these findings indicate that mutual interactions between Gli3, Wnt8b, and Fgf17 are crucial elements of the balance between these factors thereby conferring robustness to the patterning process. Hence, our study provides a framework for understanding the genetic circuitry underlying telencephalic patterning and how defects in this process can affect the formation of cortical areas. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Entropy as an indicator of cerebral perfusion in patients with increased intracranial pressure.
Khan, James; Mariappan, Ramamani; Venkatraghavan, Lashmi
2014-07-01
Changes in electroencephalogram (EEG) patterns correlate well with changes in cerebral perfusion pressure (CPP) and hence entropy and bispectral index values may also correlate with CPP. To highlight the potential application of entropy, an EEG-based anesthetic depth monitor, on indicating cerebral perfusion in patients with increased intracranial pressure (ICP), we report two cases of emergency neurosurgical procedure in patients with raised ICP where anesthesia was titrated to entropy values and the entropy values suddenly increased after cranial decompression, reflecting the increase in CPP. Maintaining systemic blood pressure in order to maintain the CPP is the anesthetic goal while managing patients with raised ICP. EEG-based anesthetic depth monitors may hold valuable information on guiding anesthetic management in patients with decreased CPP for better neurological outcome.
Merchant, Sana; Medow, Marvin S; Visintainer, Paul; Terilli, Courtney; Stewart, Julian M
2017-04-01
Neurovascular coupling (NVC) describes the link between an increase in task-related neural activity and increased cerebral blood flow denoted "functional hyperemia." We previously showed induced cerebral blood flow oscillations suppressed functional hyperemia; conversely functional hyperemia also suppressed cerebral blood flow oscillations. We used lower body negative pressure (OLBNP) oscillations to force oscillations in middle cerebral artery cerebral blood flow velocity (CBFv). Here, we used N-back testing, an intellectual memory challenge as a neural activation task, to test the hypothesis that OLBNP-induced oscillatory cerebral blood flow can reduce functional hyperemia and NVC produced by a working memory task and can interfere with working memory. We used OLBNP (-30 mmHg) at 0.03, 0.05, and 0.10 Hz and measured spectral power of CBFv at all frequencies. Neither OLBNP nor N-back, alone or combined, affected hemodynamic parameters. 2-Back power and OLBNP individually were compared with 2-back power during OLBNP. 2-Back alone produced a narrow band increase in oscillatory arterial pressure (OAP) and oscillatory cerebral blood flow power centered at 0.0083 Hz. Functional hyperemia in response to 2-back was reduced to near baseline and 2-back memory performance was decreased by 0.03-, 0.05-, and 0.10-Hz OLBNP. OLBNP alone produced increased oscillatory power at frequencies of oscillation not suppressed by added 2-back. However, 2-back preceding OLBNP suppressed OLBNP power. OLBNP-driven oscillatory CBFv blunts NVC and memory performance, while memory task reciprocally interfered with forced CBFv oscillations. This shows that induced cerebral blood flow oscillations suppress functional hyperemia and functional hyperemia suppresses cerebral blood flow oscillations. NEW & NOTEWORTHY We show that induced cerebral blood flow oscillations suppress functional hyperemia produced by a working memory task as well as memory task performance. We conclude that oscillatory cerebral blood flow produces causal reductions of memory task neurovascular coupling and memory task performance. Reductions of functional hyperemia are constrained by autoregulation. Copyright © 2017 the American Physiological Society.
Patterns of 11C-PIB cerebral retention in mild cognitive impairment patients.
Banzo, I; Jiménez-Bonilla, J F; Martínez-Rodríguez, I; Quirce, R; de Arcocha-Torres, M; Bravo-Ferrer, Z; Lavado-Pérez, C; Sánchez-Juan, P; Rodríguez, E; Jiménez-Alonso, M; López-Defilló, J; Carril, J M
2016-01-01
To evaluate the patterns of cerebral cortical distribution of (11)C-PIB in patients with mild cognitive impairment (MCI). The study included 69 patients (37 male, age range 42-79 years) with MCI, sub-classified as 53 with amnestic-MCI (A-MCI), and 16 with non-amnestic-MCI (NA-MCI). Patients underwent (11)C-PIB PET/CT scan 60min after intravenous injection of the radiotracer. A visual analysis of the images was performed by 2 experienced physicians. (11)C-PIB-positive studies were considered when gray matter uptake was equal to or greater than white matter. According to the regions involved, (11)C-PIB-positive studies were classified into A-pattern (predominant retention in frontal, anterior cingulate, lateral temporal, and basal ganglia) and B-pattern (generalized retention). Thirty-nine of the 69 (56%) patients with MCI showed (11)C-PIB retention. Of the 53 A-MCI patients, 36 (68%) showed (11)C-PIB retention. Eleven out of 36 (30%) positive scans in A-MCI patients showed A-pattern, and 25 out of 36 (70%) patients had a B-pattern. Positive (11)C-PIB was observed in 3 out of 16 (19%) patients with NA-MCI. Regional distribution in these 3 patients showed A-pattern in 1, and B-pattern in 2 patients. Cortical retention of (11)C-PIB was more frequent in A-MCI than in NA-MCI patients, and also B-pattern than A-pattern in the (11)C-PIB positive group. The recognition of (11)C-PIB distribution patterns allows MCI patients to be classified, and the A-pattern may offer a therapeutic window for potential future treatments. Copyright © 2015 Elsevier España, S.L.U. and SEMNIM. All rights reserved.
Hemispheric differences of motor execution: a near-infrared spectroscopy study.
Helmich, Ingo; Rein, Robert; Niermann, Nico; Lausberg, Hedda
2013-01-01
Distal movements of the limbs are predominantly controlled by the contralateral hemisphere. However, functional neuroimaging studies do not unequivocally demonstrate a lateralization of the cerebral activation during hand movements. While some studies show a predominant activation of the contralateral hemisphere, other studies provide evidence for a symmetrically distributed bihemispheric activation. However, the divergent results may also be due to methodological shortcomings. Therefore, the present study using functional near-infrared spectroscopy examines cerebral activation in both hemispheres during motor actions of the right and left hands. Twenty participants performed a flexion/extension task with the right- or left-hand thumb. Cerebral oxygenation changes were recorded from 48 channels over the primary motor, pre-motor, supplementary motor, primary somatosensory cortex, subcentral area, and the supramarginal gyrus of each hemisphere. A consistent increase of cerebral oxygenation was found for oxygenated and for total hemoglobin in the hemisphere contralateral to the moving hand, regardless of the laterality. These findings are in line with previous data from localization [1-3] and brain imaging studies [4-6]. The present data support the proposition that there is no hemispheric specialization for simple distal motor tasks. Both hemispheres are equally activated during movement of the contralateral upper limb.
Wu, Chih-Jen; Chen, Jui-Tai; Yen, Ting-Lin; Jayakumar, Thanasekaran; Chou, Duen-Suey; Hsiao, George; Sheu, Joen-Rong
2011-01-01
Tao-Hong-Si-Wu-Tang (THSWT) is a famous traditional Chinese medicine (TMC). In the present study, oral administration of THSWT (0.7 and 1.4 g kg−1day−1) for 14 days before MCAO dose-dependently attenuated focal cerebral ischemia in rats. MCAO-induced focal cerebral ischemia was associated with increases in hypoxia-inducible factor (HIF)-1α, inducible nitric oxide synthase (iNOS), tumor necrosis factor (TNF)-α, and active caspase-3 expressions in ischemic regions. These expressions were obviously inhibited by 0.7 g kg−1day−1 THSWT treatment. In addition, THSWT inhibited platelet aggregation stimulated by collagen in washed platelets. In an in vivo study, THSWT (16 g kg−1) significantly prolonged platelet plug formation in mice. However, THSWT (20 and 40 μg mL−1) did not significantly reduce the electron spin resonance (ESR) signal intensity of hydroxyl radical (OH•) formation. In conclusion, the most important findings of this study demonstrate for the first time that THSWT possesses potent neuroprotective activity against MCAO-induced focal cerebral ischemia in vivo. This effect may be mediated, at least in part, by the inhibition of both HIF-1α and TNF-α activation, followed by the inhibition of inflammatory responses (i.e., iNOS expression), apoptosis formation (active caspase-3), and platelet activation, resulting in a reduction in the infarct volume in ischemia-reperfusion brain injury. PMID:21076527
Siniscalchi, Michael J.; Jing, Jian; Weiss, Klaudiusz R.
2016-01-01
Repetition priming is characterized by increased performance as a behavior is repeated. Although this phenomenon is ubiquitous, mediating mechanisms are poorly understood. We address this issue in a model system, the feeding network of Aplysia. This network generates both ingestive and egestive motor programs. Previous data suggest a chemical coding model: ingestive and egestive inputs to the feeding central pattern generator (CPG) release different modulators, which act via different second messengers to prime motor activity in different ways. The ingestive input to the CPG (neuron CBI-2) releases the peptides feeding circuit activating peptide and cerebral peptide 2, which produce an ingestive pattern of activity. The egestive input to the CPG (the esophageal nerve) releases the peptide small cardioactive peptide. This model is based on research that focused on a single aspect of motor control (radula opening). Here we ask whether repetition priming is observed if activity is triggered with a neuron within the core CPG itself and demonstrate that it is not. Moreover, previous studies demonstrated that effects of modulatory neurotransmitters that induce repetition priming persist. This suggests that it should be possible to “prime” motor programs triggered from within the CPG by first stimulating extrinsic modulatory inputs. We demonstrate that programs triggered after ingestive input activation are ingestive and programs triggered after egestive input activation are egestive. We ask where this priming occurs and demonstrate modifications within the CPG itself. This arrangement is likely to have important consequences for “task” switching, i.e., the cessation of one type of motor activity and the initiation of another. PMID:27466134
Three-Dimensional Analysis of Spiny Dendrites Using Straightening and Unrolling Transforms
Morales, Juan; Benavides-Piccione, Ruth; Pastor, Luis; Yuste, Rafael; DeFelipe, Javier
2014-01-01
Current understanding of the synaptic organization of the brain depends to a large extent on knowledge about the synaptic inputs to the neurons. Indeed, the dendritic surfaces of pyramidal cells (the most common neuron in the cerebral cortex) are covered by thin protrusions named dendritic spines. These represent the targets of most excitatory synapses in the cerebral cortex and therefore, dendritic spines prove critical in learning, memory and cognition. This paper presents a new method that facilitates the analysis of the 3D structure of spine insertions in dendrites, providing insight on spine distribution patterns. This method is based both on the implementation of straightening and unrolling transformations to move the analysis process to a planar, unfolded arrangement, and on the design of DISPINE, an interactive environment that supports the visual analysis of 3D patterns. PMID:22644869
Bon, Laura; Franck, Nicolas
2018-03-01
cognitive remediation involves either intensive training of impaired functions or implementing strategies to compensate for these impairments. In cases of schizophrenia, both methods have demonstrated benefits in terms of behavior and cerebral activity. However, despite the major differences between these two approaches, their impact has not yet been compared. We searched the PsychInfo, Pubmed, and ScienceDirect databases using the key words "cognitive remediation," "schizophrenia," "cerebral activity," and "magnetic resonance imaging," in order to select studies investigating the effects of cognitive remediation on patients with schizophrenia. The studies selected had to present their approach in detail and measure its impact in terms of both cerebral activity and cognitive function, both before and after therapy. We divided the studies into two groups, those using the strategy method and those using the training method. Eight studies were included in the review, four for the strategy method (88 patients, 44 of whom underwent remediation) and 4 for the training method (87 patients, 43 of whom underwent remediation). The analysis of the results of this study indicates that the training method is capable of activating more the targeted brain areas than the strategy method. However, the latter appears to encourage more extensive activation of the cerebral networks. The studies used for this review vary widely in terms of the imaging methods and protocol. However, differences were found between the two methods and lead us to suggest that further studies, with proper bias control, should be conducted to systematically compare the two approaches.
Biological Effects of Electromagnetic Fields
2006-11-27
cerebral activity reflected by high levels of c-Fos- positive neurons in certain brain areas (14). The brain tissue of seizure proneness can be...radiation triggers seizures and increases cerebral c-Fos positivity in rats pretreated with subconvulsive doses of...psychiatric, cardiovascular or neurological diseases); or have a cardiac or cerebral pacemaker. They have no history of head, eye or thorax injury involving
Li, Zhenlan; Hua, Cong; Pan, Xiaoqiang; Fu, Xijia; Wu, Wei
2016-08-01
Increasing evidence demonstrates that inflammation plays an important role in cerebral ischemia. Carvacrol, a monoterpenic phenol, is naturally occurring in various plants belonging to the family Lamiaceae and exerts protective effects in a mice model of focal cerebral ischemia/reperfusion injury by reducing infarct volume and decreasing the expression of cleaved caspase-3. However, the anti-inflammatory mechanisms by which carvacrol protect the brain have yet to be fully elucidated. We investigated the effects of carvacrol on inflammatory reaction and inflammatory mediators in middle cerebral artery occlusion rats. The results of the present study showed that carvacrol inhibited the levels of inflammatory cytokines and myeloperoxidase (MPO) activity, as well as the expression of iNOS and COX-2. It also increased SOD activity and decreased MDA level in ischemic cortical tissues. In addition, carvacrol treatment suppressed the ischemia/reperfusion-induced increase in the protein expression of nuclear NF-kB p65. In conclusion, we have shown that carvacrol inhibits the inflammatory response via inhibition of the NF-kB signaling pathway in a rat model of focal cerebral ischemia. Therefore, carvacrol may be a potential therapeutic agent for the treatment of cerebral ischemia injury.
Earde, Pinailug Tantilipikorn; Praipruk, Aina; Rodpradit, Phanlerd; Seanjumla, Parichad
2018-01-01
To investigate contextual factors that were facilitators and barriers to performing activity and participation for children with cerebral palsy from the caregivers' perspective. Qualitative in-depth interview with primary caregivers of children with cerebral palsy aged 4 to 12 years was conducted in the metropolitan area of Thailand. Semistructured questions related to environmental and personal factors were recorded. Interviews were transcribed verbatim and analyzed for main themes on the basis of the International Classification of Functioning, Disability, and Health-Children and Youth Version (ICF-CY) classification. Twenty-seven caregivers participated. Facilitators were appropriateness of assistive devices, support and acceptance from family, friends, and society, health services, willingness, and self-acceptance. Barriers were inappropriate design and facilities, overprotection of family, nonacceptance from family, friends, and society, inconvenient transportation, financial problems, limited health services, limited access to education, frustration, and being an introvert. Contextual factors that can be facilitators and barriers to perform activities and participation should be considered for improving lives of children with cerebral palsy.
2017-01-01
Ischemic strokes are major causes of death and disability. Searching for potential therapeutic strategies to prevent and treat stroke is necessary, given the increase in overall life expectancy. Epidemiological reports indicate that metformin is an oral antidiabetic medication that can reduce the incidence of ischemic events in patients with diabetes mellitus. Its mechanism of action has not been elucidated, but metformin pleiotropic effects involve actions in addition to glycemic control. AMPK activation has been described as one of the pharmacological mechanisms that explain the action of metformin and that lead to neuroprotective effects. Most experiments done in the cerebral ischemia model, via middle cerebral artery occlusion in rodents (MCAO), had positive results favoring metformin's neuroprotective role and involve several cellular pathways like oxidative stress, endothelial nitric oxide synthase activation, activation of angiogenesis and neurogenesis, autophagia, and apoptosis. We will review the pharmacological properties of metformin and its possible mechanisms that lead to neuroprotection in cerebral ischemia. PMID:28634570
Bonhomme, Vincent; Boveroux, Pierre; Hans, Pol; Brichant, Jean François; Vanhaudenhuyse, Audrey; Boly, Melanie; Laureys, Steven
2011-10-01
To describe recent studies exploring brain function under the influence of hypnotic anesthetic agents, and their implications on the understanding of consciousness physiology and anesthesia-induced alteration of consciousness. Cerebral cortex is the primary target of the hypnotic effect of anesthetic agents, and higher-order association areas are more sensitive to this effect than lower-order processing regions. Increasing concentration of anesthetic agents progressively attenuates connectivity in the consciousness networks, while connectivity in lower-order sensory and motor networks is preserved. Alteration of thalamic sub-cortical regulation could compromise the cortical integration of information despite preserved thalamic activation by external stimuli. At concentrations producing unresponsiveness, the activity of consciousness networks becomes anticorrelated with thalamic activity, while connectivity in lower-order sensory networks persists, although with cross-modal interaction alterations. Accumulating evidence suggests that hypnotic anesthetic agents disrupt large-scale cerebral connectivity. This would result in an inability of the brain to generate and integrate information, while external sensory information is still processed at a lower order of complexity.
Lenzi, Juliana; Rodrigues, Andre Felipe; Rós, Adriana de Sousa; de Castro, Amanda Blanski; de Castro, Bianca Blanski; de Lima, Daniela Delwing; Magro, Débora Delwing Dal; Zeni, Ana Lúcia Bertarello
2015-12-01
Oxidative stress has been claimed a place in pathophysiology of depression; however, the details of the neurobiology of this condition remains incompletely understood. Recently, treatments employing antioxidants have been thoroughly researched. Ferulic acid (FA) is a phenolic compound with antioxidant and antidepressant-like effects. Herein, we investigated the involvement of the antioxidant activity of chronic oral FA treatment in its antidepressant-like effect using the tail suspension test (TST) and the forced swimming test (FST) in mice. The modulation of antioxidant system in blood, hippocampus and cerebral cortex was assessed after stress induction through TST and FST. Our results show that FA at the dose of 1 mg/kg has antidepressant-like effect without affecting locomotor activity. The stress induced by despair tests was able to decrease significantly the activities of superoxide dismutase (SOD) in the blood, catalase (CAT) in the blood and cerebral cortex and glutathione peroxidase (GSH-Px) in the cerebral cortex. Thiobarbituric acid-reactive substances (TBA-RS) levels were increased significantly in the cerebral cortex. Furthermore, the results show that FA was capable to increase SOD, CAT and GSH-Px activities and decrease TBA-RS levels in the blood, hippocampus and cerebral cortex. These findings demonstrated that FA treatment in low doses is capable to exert antidepressant-like effect with the involvement of the antioxidant defense system modulation.
Neonatal deep white matter venous infarction and liquefaction: a pseudo-abscess lesion.
Ruess, Lynne; Dent, Carly M; Tiarks, Hailey J; Yoshida, Michelle A; Rusin, Jerome A
2014-11-01
Deep white matter hemorrhagic venous infarction with subsequent cavitation due to necrosis and liquefaction has been described in neonates and may be associated with infection and meningitis. In our experience, the MRI pattern of these lesions is confused with the pattern seen with cerebral abscesses. The purpose of our study was to characterize the MRI findings of post infarction necrosis and liquefaction after hemorrhagic deep white matter venous infarction in infants and to distinguish these lesions from cerebral abscesses. An institutional review board approved a retrospective review of imaging records to identify all patients with cerebral venous infarction at a children's hospital during a 10-year period. Nine infants had deep white matter hemorrhagic venous infarction with white matter fluid signal cavitary lesions. A diagnosis of cerebral abscess was considered in all. The imaging and laboratory findings in these patients are reviewed and compared to descriptions of abscesses found in the literature. There were six female and three male infants. The mean age at presentation was 20 days (range: 0-90 days), while the corrected age at presentation was less than 30 days for all patients. Seven patients presented with seizures and signs of infection; one infant presented with lethargy and later proved to have protein C deficiency. MRI was performed 0-12 days from presentation in these eight patients. Another patient with known protein C deficiency underwent MRI at 30 days for follow-up of screening US abnormalities. There were a total of 38 deep cerebral white matter fluid signal cavitary lesions: 25 frontal, 9 parietal, 2 temporal, 2 occipital. Larger lesions had dependent debris. All lesions had associated hemorrhage and many lesions had evidence of adjacent small vessel venous thrombosis. Lesions imaged after gadolinium showed peripheral enhancement. Three lesions increased in size on follow-up imaging. Three patients, two with meningitis confirmed via microbiology and one with presumed meningitis by CSF counts, underwent surgical aspiration of a total of six lesions. All specimens were sent for pathology and culture and were negative for microorganisms. Recognizing the MR appearance of cavitary necrosis and liquefaction after deep white matter cerebral venous infarction in neonates can distinguish this entity from cerebral abscess and potentially avoid an unnecessary neurosurgical aspiration procedure.
NASA Astrophysics Data System (ADS)
Chen, Zhi; Hu, Kun; Stanley, H. Eugene; Novak, Vera; Ivanov, Plamen Ch.
2006-03-01
We investigate the relationship between the blood flow velocities (BFV) in the middle cerebral arteries and beat-to-beat blood pressure (BP) recorded from a finger in healthy and post-stroke subjects during the quasisteady state after perturbation for four different physiologic conditions: supine rest, head-up tilt, hyperventilation, and CO2 rebreathing in upright position. To evaluate whether instantaneous BP changes in the steady state are coupled with instantaneous changes in the BFV, we compare dynamical patterns in the instantaneous phases of these signals, obtained from the Hilbert transform, as a function of time. We find that in post-stroke subjects the instantaneous phase increments of BP and BFV exhibit well-pronounced patterns that remain stable in time for all four physiologic conditions, while in healthy subjects these patterns are different, less pronounced, and more variable. We propose an approach based on the cross-correlation of the instantaneous phase increments to quantify the coupling between BP and BFV signals. We find that the maximum correlation strength is different for the two groups and for the different conditions. For healthy subjects the amplitude of the cross-correlation between the instantaneous phase increments of BP and BFV is small and attenuates within 3-5 heartbeats. In contrast, for post-stroke subjects, this amplitude is significantly larger and cross-correlations persist up to 20 heartbeats. Further, we show that the instantaneous phase increments of BP and BFV are cross-correlated even within a single heartbeat cycle. We compare the results of our approach with three complementary methods: direct BP-BFV cross-correlation, transfer function analysis, and phase synchronization analysis. Our findings provide insight into the mechanism of cerebral vascular control in healthy subjects, suggesting that this control mechanism may involve rapid adjustments (within a heartbeat) of the cerebral vessels, so that BFV remains steady in response to changes in peripheral BP.
Chen, Zhi; Hu, Kun; Stanley, H Eugene; Novak, Vera; Ivanov, Plamen Ch
2006-03-01
We investigate the relationship between the blood flow velocities (BFV) in the middle cerebral arteries and beat-to-beat blood pressure (BP) recorded from a finger in healthy and post-stroke subjects during the quasisteady state after perturbation for four different physiologic conditions: supine rest, head-up tilt, hyperventilation, and CO2 rebreathing in upright position. To evaluate whether instantaneous BP changes in the steady state are coupled with instantaneous changes in the BFV, we compare dynamical patterns in the instantaneous phases of these signals, obtained from the Hilbert transform, as a function of time. We find that in post-stroke subjects the instantaneous phase increments of BP and BFV exhibit well-pronounced patterns that remain stable in time for all four physiologic conditions, while in healthy subjects these patterns are different, less pronounced, and more variable. We propose an approach based on the cross-correlation of the instantaneous phase increments to quantify the coupling between BP and BFV signals. We find that the maximum correlation strength is different for the two groups and for the different conditions. For healthy subjects the amplitude of the cross-correlation between the instantaneous phase increments of BP and BFV is small and attenuates within 3-5 heartbeats. In contrast, for post-stroke subjects, this amplitude is significantly larger and cross-correlations persist up to 20 heartbeats. Further, we show that the instantaneous phase increments of BP and BFV are cross-correlated even within a single heartbeat cycle. We compare the results of our approach with three complementary methods: direct BP-BFV cross-correlation, transfer function analysis, and phase synchronization analysis. Our findings provide insight into the mechanism of cerebral vascular control in healthy subjects, suggesting that this control mechanism may involve rapid adjustments (within a heartbeat) of the cerebral vessels, so that BFV remains steady in response to changes in peripheral BP.
ERIC Educational Resources Information Center
Sandberg, Annika Dahlgren; Liliedahl, Marie
2008-01-01
The aim of this study is to examine whether the asymmetrical pattern of communication usually found between people who use augmentative and alternative communication and their partners using natural speech was also found in the interaction between non-vocal young preschool children with cerebral palsy and their parents. Three parent-child dyads…
Mugie, S M; Koppen, I J N; van den Berg, M M; Groot, P F C; Reneman, L; de Ruiter, M B; Benninga, M A
2018-03-01
Decreased sensation of urge to defecate is often reported by children with functional constipation (FC) and functional nonretentive fecal incontinence (FNRFI). The aim of this cross-sectional study was to evaluate cerebral activity in response to rectal distension in adolescents with FC and FNRFI compared with healthy controls (HCs). We included 15 adolescents with FC, 10 adolescents with FNRFI, and 15 young adult HCs. Rectal barostat was performed prior to functional magnetic resonance imaging (fMRI) to determine individual pressure thresholds for urge sensation. Subjects received 2 sessions of 5 × 30 seconds of barostat stimulation during the acquisition of blood oxygenation level-dependent fMRI. Functional magnetic resonance imaging signal differences were analyzed using SPM8 in Matlab. Functional constipation and FNRFI patients had higher thresholds for urgency than HCs (P < .001). During rectal distension, FC patients showed activation in the anterior cingulate cortex, dorsolateral prefrontal cortex, inferior parietal lobule, and putamen. No activations were observed in controls and FNRFI patients. Functional nonretentive fecal incontinence patients showed deactivation in the hippocampus, parahippocampal gyrus, fusiform gyrus (FFG), lingual gyrus, posterior parietal cortex, and precentral gyrus. In HCs, deactivated areas were detected in the hippocampus, amygdala, FFG, insula, thalamus, precuneus, and primary somatosensory cortex. In contrast, no regions with significant deactivation were detected in FC patients. Children with FC differ from children with FNRFI and HCs with respect to patterns of cerebral activation and deactivation during rectal distension. Functional nonretentive fecal incontinence patients seem to resemble HCs when it comes to brain processing of rectal distension. © 2017 John Wiley & Sons Ltd.
Forebrain Mechanisms of Nociception and Pain: Analysis through Imaging
NASA Astrophysics Data System (ADS)
Casey, Kenneth L.
1999-07-01
Pain is a unified experience composed of interacting discriminative, affective-motivational, and cognitive components, each of which is mediated and modulated through forebrain mechanisms acting at spinal, brainstem, and cerebral levels. The size of the human forebrain in relation to the spinal cord gives anatomical emphasis to forebrain control over nociceptive processing. Human forebrain pathology can cause pain without the activation of nociceptors. Functional imaging of the normal human brain with positron emission tomography (PET) shows synaptically induced increases in regional cerebral blood flow (rCBF) in several regions specifically during pain. We have examined the variables of gender, type of noxious stimulus, and the origin of nociceptive input as potential determinants of the pattern and intensity of rCBF responses. The structures most consistently activated across genders and during contact heat pain, cold pain, cutaneous laser pain or intramuscular pain were the contralateral insula and anterior cingulate cortex, the bilateral thalamus and premotor cortex, and the cerebellar vermis. These regions are commonly activated in PET studies of pain conducted by other investigators, and the intensity of the brain rCBF response correlates parametrically with perceived pain intensity. To complement the human studies, we developed an animal model for investigating stimulus-induced rCBF responses in the rat. In accord with behavioral measures and the results of human PET, there is a progressive and selective activation of somatosensory and limbic system structures in the brain and brainstem following the subcutaneous injection of formalin. The animal model and human PET studies should be mutually reinforcing and thus facilitate progress in understanding forebrain mechanisms of normal and pathological pain.
The cerebral correlates of set-shifting: an fMRI study of the trail making test.
Moll, Jorge; de Oliveira-Souza, Ricardo; Moll, Fernanda Tovar; Bramati, Ivanei Edson; Andreiuolo, Pedro Angelo
2002-12-01
The trail making test (TMT) pertains to a family of tests that tap the ability to alternate between cognitive categories. However, the value of the TMT as a localizing instrument remains elusive. Here we report the results of a functional magnetic resonance imaging (fMRI) study of a verbal adaptation of the TMT (vTMT). The vTMT takes advantage of the set-shifting properties of the TMT and, at the same time, minimizes the visuospatial and visuomotor components of the written TMT. Whole brain BOLD fMRI was performed during the alternating execution of vTMTA and vTMTB in seven normal adults with more than 12 years of formal education. Brain activation related to the set-shifting component of vTMTB was investigated by comparing performance on vTMTB with vTMTA, a simple counting task. There was a marked asymmetry of activation in favor of the left hemisphere, most notably in dorsolateral prefrontal cortex (BA 6 lateral, 44 and 46) and supplementary motor area/cingulate sulcus (BA 6 medial and 32). The intraparietal sulcus (BA 7 and 39) was bilaterally activated. These findings are in line with clinico-anatomic and functional neuroimaging data that point to a critical role of the dorsolateral and medial prefrontal cortices as well as the intraparietal sulci in the regulation of cognitive flexibility, intention, and the covert execution of saccades/anti-saccades. Many commonly used neuropsychological paradigms, such as the Stroop, Wisconsin Card Sorting, and go - no go tasks, share some patterns of cerebral activation with the TMT.
Whitehead, Matthew T; Lee, Bonmyong; Gropman, Andrea
2016-08-01
Leigh disease is a metabolic disorder of the mitochondrial respiratory chain culminating in symmetrical necrotizing lesions in the deep gray nuclei or brainstem. Apart from classic gliotic/necrotic lesions, small-vessel proliferation is also characteristic on histopathology. We have observed lesional hyperperfusion on arterial spin-labeling (ASL) sequence in children with Leigh disease. In this cross-sectional analysis, we evaluated lesional ASL perfusion characteristics in children with Leigh syndrome. We searched the imaging database from an academic children's hospital for "arterial spin labeling, perfusion, necrosis, lactate, and Leigh" to build a cohort of children for retrospective analysis. We reviewed each child's medical record to confirm a diagnosis of Leigh disease, excluding exams with artifact, technical limitations, and without ASL images. We evaluated the degree and extent of cerebral blood flow and relationship to brain lesions. Images were compared to normal exams from an aged-matche cohort. The database search yielded 45 exams; 30 were excluded. We evaluated 15 exams from 8 children with Leigh disease and 15 age-matched normal exams. In general, Leigh brain perfusion ranged from hyperintense (n=10) to hypointense (n=5). Necrotic lesions appeared hypointense/hypoperfused. Active lesions with associated restricted diffusion demonstrated hyperperfusion. ASL perfusion patterns differed significantly from those on age-matched normal studies (P=<.0001). Disease activity positively correlated with cerebral deep gray nuclei hyperperfusion (P=0.0037) and lesion grade (P=0.0256). Children with Leigh disease have abnormal perfusion of brain lesions. Hyperperfusion can be found in active brain lesions, possibly associated with small-vessel proliferation characteristic of the disease.
Increased Notch3 Activity Mediates Pathological Changes in Structure of Cerebral Arteries.
Baron-Menguy, Celine; Domenga-Denier, Valérie; Ghezali, Lamia; Faraci, Frank M; Joutel, Anne
2017-01-01
CADASIL (Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy), the most frequent genetic cause of stroke and vascular dementia, is caused by highly stereotyped mutations in the NOTCH3 receptor, which is predominantly expressed in vascular smooth muscle. The well-established TgNotch3 R169C mouse model develops characteristic features of the human disease, with deposition of NOTCH3 and other proteins, including TIMP3 (tissue inhibitor of metalloproteinase 3), on brain vessels, as well as reduced maximal dilation, and attenuated myogenic tone of cerebral arteries, but without elevated blood pressure. Increased TIMP3 levels were recently shown to be a major determinant of altered myogenic tone. In this study, we investigated the contribution of TIMP3 and Notch3 signaling to the impairment of maximal vasodilator capacity caused by the archetypal R169C mutation. Maximally dilated cerebral arteries in TgNotch3 R169C mice exhibited a decrease in lumen diameter over a range of physiological pressures that occurred before myogenic tone deficits. This defect was not prevented by genetic reduction of TIMP3 in TgNotch3 R169C mice and was not observed in mice overexpressing TIMP3. Knock-in mice with the R169C mutation (Notch3 R170C/R170C ) exhibited similar reductions in arterial lumen, and both TgNotch3 R169C and Notch3 R170C/R170C mice showed increased cerebral artery expression of Notch3 target genes. Reduced maximal vasodilation was prevented by conditional reduction of Notch activity in smooth muscle of TgNotch3 R169C mice and mimicked by conditional activation of Notch3 in smooth muscle, an effect that was blood pressure-independent. We conclude that increased Notch3 activity mediates reduction in maximal dilator capacity of cerebral arteries in CADASIL and may contribute to reductions in cerebral blood flow. © 2016 American Heart Association, Inc.
Rapin, Lucile; Poissant, Hélène; Mendrek, Adrianna
2017-10-01
Although several studies suggest heritability of ADHD, only a few investigations of possible associations between people at risk and neural abnormalities in ADHD exist. In this study, we tested whether parents of children with ADHD would show atypical patterns of cerebral activations during forethought, a feature of working memory. Using Functional Magnetic Resonance Imaging (fMRI), we compared 12 parents of children with ADHD and 9 parents of control children during a forethought task. Parents of children with ADHD exhibited significantly increased neural activations in the posterior lobes of the cerebellum and in the left inferior frontal gyrus, relative to parents of control children. These findings are consistent with previous reports in children and suggest the fronto-cerebellar circuit's abnormalities during forethought in parents of children with ADHD. Future studies of people at risk of ADHD are needed to fully understand the extent of the fronto-cerebellar heritability.
Cognitive and emotional processes during dreaming: a neuroimaging view.
Desseilles, Martin; Dang-Vu, Thien Thanh; Sterpenich, Virginie; Schwartz, Sophie
2011-12-01
Dream is a state of consciousness characterized by internally-generated sensory, cognitive and emotional experiences occurring during sleep. Dream reports tend to be particularly abundant, with complex, emotional, and perceptually vivid experiences after awakenings from rapid eye movement (REM) sleep. This is why our current knowledge of the cerebral correlates of dreaming, mainly derives from studies of REM sleep. Neuroimaging results show that REM sleep is characterized by a specific pattern of regional brain activity. We demonstrate that this heterogeneous distribution of brain activity during sleep explains many typical features in dreams. Reciprocally, specific dream characteristics suggest the activation of selective brain regions during sleep. Such an integration of neuroimaging data of human sleep, mental imagery, and the content of dreams is critical for current models of dreaming; it also provides neurobiological support for an implication of sleep and dreaming in some important functions such as emotional regulation. Copyright © 2010 Elsevier Inc. All rights reserved.
Schroeter, Aileen; Grandjean, Joanes; Schlegel, Felix; Saab, Bechara J; Rudin, Markus
2017-07-01
Previously, we reported widespread bilateral increases in stimulus-evoked functional magnetic resonance imaging signals in mouse brain to unilateral sensory paw stimulation. We attributed the pattern to arousal-related cardiovascular changes overruling cerebral autoregulation thereby masking specific signal changes elicited by local neuronal activity. To rule out the possibility that interhemispheric neuronal communication might contribute to bilateral functional magnetic resonance imaging responses, we compared stimulus-evoked functional magnetic resonance imaging responses to unilateral hindpaw stimulation in acallosal I/LnJ, C57BL/6, and BALB/c mice. We found bilateral blood-oxygenation-level dependent signal changes in all three strains, ruling out a dominant contribution of transcallosal communication as reason for bilaterality. Analysis of functional connectivity derived from resting-state functional magnetic resonance imaging, revealed that bilateral cortical functional connectivity is largely abolished in I/LnJ animals. Cortical functional connectivity in all strains correlated with structural connectivity in corpus callosum as revealed by diffusion tensor imaging. Given the profound influence of systemic hemodynamics on stimulus-evoked functional magnetic resonance imaging outcomes, we evaluated whether functional connectivity data might be affected by cerebrovascular parameters, i.e. baseline cerebral blood volume, vascular reactivity, and reserve. We found that effects of cerebral hemodynamics on functional connectivity are largely outweighed by dominating contributions of structural connectivity. In contrast, contributions of transcallosal interhemispheric communication to the occurrence of ipsilateral functional magnetic resonance imaging response of equal amplitude to unilateral stimuli seem negligible.
Howcroft, Jennifer; Klejman, Sue; Fehlings, Darcy; Wright, Virginia; Zabjek, Karl; Andrysek, Jan; Biddiss, Elaine
2012-08-01
To evaluate the potential of active video game (AVG) play for physical activity promotion and rehabilitation therapies in children with cerebral palsy (CP) through a quantitative exploration of energy expenditure, muscle activation, and quality of movement. Single-group, experimental study. Human movement laboratory in an urban rehabilitation hospital. Children (N=17; mean age ± SD, 9.43±1.51y) with CP. Participants played 4 AVGs (bowling, tennis, boxing, and a dance game). Energy expenditure via a portable cardiopulmonary testing unit; upper limb muscle activations via single differential surface electrodes; upper limb kinematics via an optical motion capture system; and self-reported enjoyment via the Physical Activity Enjoyment Scale (PACES). Moderate levels of physical activity were achieved during the dance (metabolic equivalent for task [MET]=3.20±1.04) and boxing (MET=3.36±1.50) games. Muscle activations did not exceed maximum voluntary exertions and were greatest for the boxing AVG and for the wrist extensor bundle. Angular velocities and accelerations were significantly larger in the dominant arm than in the hemiplegic arm during bilateral play. A high level of enjoyment was reported on the PACES (4.5±0.3 out of 5). AVG play via a low-cost, commercially available system can offer an enjoyable opportunity for light to moderate physical activity in children with CP. While all games may encourage motor learning to some extent, AVGs can be strategically selected to address specific therapeutic goals (eg, targeted joints, bilateral limb use). Future research is needed to address the challenge of individual variability in movement patterns/play styles. Likewise, further study exploring home use of AVGs for physical activity promotion and rehabilitation therapies, and its functional outcomes, is warranted. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Experimental and clinical study of EHF treatment of vascular-vestibular dysfunction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mal`tsev, A.E.; Abakarov, A.T.; Istomin, V.S.
1994-07-01
The authors present the results of a study of the effectiveness of EHF radiation on the cerebral hemodynamics, bioelectrical activity of the cerebral cortex, and functional state of the vestibular analyzer in chronic studies of cats using a model of vascular-vestibular dysfunction. The clinical part of the work reflects the results of studies of the functional state of cerebral blood circulation and the vestibular analyzer during the EHF treatment of angiovertebrogenic vestibular dysfunction in a background of initial manifestations of cerebral blood supply deficiency (angiodistonic variant).
Moulier, Virginie; Fonteille, Véronique; Pélégrini-Issac, Mélanie; Cordier, Bernard; Baron-Laforêt, Sophie; Boriasse, Emeline; Durand, Emmanuel; Stoléru, Serge
2012-02-01
Gonadotropin-releasing hormone (GnRH) agonists, such as leuprorelin, are recommended in the patients with pedophilia at highest risk of offending. However, the cerebral mechanisms of the effects of these testosterone-decreasing drugs are poorly known. This study aimed to identify changes caused by leuprorelin in a pedophilic patient's brain responses to pictures representing children. Clinical, endocrine, and fMRI investigations were done of a man with pedophilia before leuprorelin therapy and 5 months into leuprorelin therapy. Patient was compared with an age-matched healthy control also assessed 5 months apart. Before therapy, pictures of boys elicited activation in the left calcarine fissure, left insula, anterior cingulate cortex, and left cerebellar vermis. Five months into therapy, all the above-mentioned activations had disappeared. No such activations and, consequently, no such decreases occurred in the healthy control. The results of this pilot study suggest that leuprorelin decreased activity in regions known to mediate the perceptual, motivational, and affective responses to visual sexual stimuli.
Zhu, Weixin; Qiu, Weihong; Lu, Ailan
2017-12-01
Cerebral stroke is a kind of acute cerebrovascular disease with high incidence, morbidity and disability. Treatments against various types of cerebral stroke are limited at preventive measurements due to the lack of effective therapeutic method. The present study aimed to investigate the protective effect of cryptotanshinone (CPT) on cerebral stroke, and investigate the possible mechanism involved in order to develop a novel therapy against stoke. The phosphoinositide 3‑kinase membrane translocation of cerebral stroke rats pretreated with CPT at various concentrations were measured, as well as the phosphorylation of protein kinase B (AKT) and endothelial nitric oxide synthase (eNOS). Additionally, the expression level of B‑cell lymphoma 2 (Bcl‑2), Bcl‑2‑associated X protein (Bax) and vascular endothelial growth factor were also assessed using western blotting and reverse transcription‑quantitative polymerase chain reaction. Furthermore, biochemical tests were used to measure the activity of superoxide dismutase (SOD), malondialdehyde (MDA) and nitric oxide (NO) in both the cerebral cortex and peripheral blood. As a result, CPT‑pretreated rats presented declined phosphoinositide 3‑kinase (PI3K) and AKT expression levels, indicating that the PI3K/AKT signaling pathway was inhibited. Increased Bcl‑2 and NO levels in both the cerebral cortex and peripheral blood demonstrated the anti‑apoptosis and blood vessel protection effect of CPT. Furthermore, increased SOD activity and declined MDA levels demonstrated suppressed lipid peroxidation. In conclusion, CPT exhibited a protective effect against cerebral stroke through inhibition of the PI3K/AKT‑eNOS signaling pathway. These results suggested the potential of CPT as a promising agent in the treatment of cerebral stroke.
Arrick, Denise M.; Sharpe, Glenda M.; Sun, Hong; Mayhan, William G.
2009-01-01
We examined whether activation of angiotensin-1 receptors (AT1R) could account for impaired responses of cerebral arterioles during Type 1 diabetes (T1D). First, we measured responses of cerebral arterioles in nondiabetic rats to eNOS-dependent (acetylcholine and adenosine diphosphate (ADP)) and -independent (nitroglycerin) agonists before and during application of angiotensin II. Next, we examined whether losartan could improve impaired responses of cerebral arterioles during T1D. In addition, we harvested cerebral microvessels for Western blot analysis of AT1R protein and measured production of superoxide anion by brain tissue under basal conditions and in response to angiotensin II in the absence or presence of losartan. We found that angiotensin II specifically impaired eNOS-dependent reactivity of cerebral arterioles. In addition, while losartan did not alter responses in nondiabetics, losartan restored impaired eNOS-dependent vasodilatation in diabetics. Further, AT1R protein was higher in diabetics compared to nondiabetics. Finally, superoxide production was higher in brain tissue from diabetics compared to nondiabetics under basal conditions, angiotensin II increased superoxide production in nondiabetics and diabetics, and losartan decreased basal (diabetics) and angiotensin II-induced production of superoxide (nondiabetics and diabetics). We suggest that activation of AT1R during T1D plays a critical role in impaired eNOS-dependent dilatation of cerebral arterioles. PMID:18400212
Angiotensin receptors and β-catenin regulate brain endothelial integrity in malaria
Basu-Roy, Upal; Ty, Maureen; Alique, Matilde; Fernandez-Arias, Cristina; Movila, Alexandru; Gomes, Pollyanna; Edagha, Innocent; Wassmer, Samuel C.; Walther, Thomas
2016-01-01
Cerebral malaria is characterized by cytoadhesion of Plasmodium falciparum–infected red blood cells (Pf-iRBCs) to endothelial cells in the brain, disruption of the blood-brain barrier, and cerebral microhemorrhages. No available antimalarial drugs specifically target the endothelial disruptions underlying this complication, which is responsible for the majority of malaria-associated deaths. Here, we have demonstrated that ruptured Pf-iRBCs induce activation of β-catenin, leading to disruption of inter–endothelial cell junctions in human brain microvascular endothelial cells (HBMECs). Inhibition of β-catenin–induced TCF/LEF transcription in the nucleus of HBMECs prevented the disruption of endothelial junctions, confirming that β-catenin is a key mediator of P. falciparum adverse effects on endothelial integrity. Blockade of the angiotensin II type 1 receptor (AT1) or stimulation of the type 2 receptor (AT2) abrogated Pf-iRBC–induced activation of β-catenin and prevented the disruption of HBMEC monolayers. In a mouse model of cerebral malaria, modulation of angiotensin II receptors produced similar effects, leading to protection against cerebral malaria, reduced cerebral hemorrhages, and increased survival. In contrast, AT2-deficient mice were more susceptible to cerebral malaria. The interrelation of the β-catenin and the angiotensin II signaling pathways opens immediate host-targeted therapeutic possibilities for cerebral malaria and other diseases in which brain endothelial integrity is compromised. PMID:27643439
Han, Lijuan; Cai, Wei; Mao, Leilei; Liu, Jia; Li, Peiying; Leak, Rehana K; Xu, Yun; Hu, Xiaoming; Chen, Jun
2015-09-01
Oligodendrogenesis is essential for white matter repair after stroke. Although agonists of peroxisome proliferator-activated receptors γ confer neuroprotection in models of cerebral ischemia, it is not known whether this effect extends to white matter protection. This study tested the hypothesis that the peroxisome proliferator-activated receptors γ agonist rosiglitazone enhances oligodendrogenesis and improves long-term white matter integrity after ischemia/reperfusion. Male adult C57/BL6 mice (25-30 g) were subjected to 60-minute middle cerebral artery occlusion and reperfusion. Rosiglitazone (3 mg/kg) was injected intraperitoneally once daily for 14 days beginning 2 hours after reperfusion. Sensorimotor and cognitive functions were evaluated ≤21 days after middle cerebral artery occlusion. Immunostaining was used to assess infarct volume, myelin loss, and microglial activation. Bromodeoxyuridine (BrdU) was injected for measurements of proliferating NG2(+) oligodendrocyte precursor cells (OPCs) and newly generated adenomatous polyposis coli(+) oligodendrocytes. Mixed glial cultures were used to confirm the effect of rosiglitazone on oligodendrocyte differentiation and microglial polarization. Rosiglitazone significantly reduced brain tissue loss, ameliorated white matter injury, and improved sensorimotor and cognitive functions for at least 21 days after middle cerebral artery occlusion. Rosiglitazone enhanced OPC proliferation and increased the numbers of newly generated mature oligodendrocytes after middle cerebral artery occlusion. Rosiglitazone treatment also reduced the numbers of Iba1(+)/CD16(+) M1 microglia and increased the numbers of Iba1(+)/CD206(+) M2 microglia after stroke. Glial culture experiments confirmed that rosiglitazone promoted oligodendrocyte differentiation, perhaps by promoting microglial M2 polarization. Rosiglitazone treatment improves long-term white matter integrity after cerebral ischemia, at least, in part, by promoting oligodendrogenesis and facilitating microglial polarization toward the beneficial M2 phenotype. © 2015 American Heart Association, Inc.
The cerebellum and cognition: evidence from functional imaging studies.
Stoodley, Catherine J
2012-06-01
Evidence for a role of the human cerebellum in cognitive functions comes from anatomical, clinical and neuroimaging data. Functional neuroimaging reveals cerebellar activation during a variety of cognitive tasks, including language, visual-spatial, executive, and working memory processes. It is important to note that overt movement is not a prerequisite for cerebellar activation: the cerebellum is engaged during conditions which either control for motor output or do not involve motor responses. Resting-state functional connectivity data reveal that, in addition to networks underlying motor control, the cerebellum is part of "cognitive" networks with prefrontal and parietal association cortices. Consistent with these findings, regional differences in activation patterns within the cerebellum are evident depending on the task demands, suggesting that the cerebellum can be broadly divided into functional regions based on the patterns of anatomical connectivity between different regions of the cerebellum and sensorimotor and association areas of the cerebral cortex. However, the distinct contribution of the cerebellum to cognitive tasks is not clear. Here, the functional neuroimaging evidence for cerebellar involvement in cognitive functions is reviewed and related to hypotheses as to why the cerebellum is active during such tasks. Identifying the precise role of the cerebellum in cognition-as well as the mechanism by which the cerebellum modulates performance during a wide range of tasks-remains a challenge for future investigations.
ERIC Educational Resources Information Center
Danilova, L. A.
This four-chapter monograph, translated from a 1977 Russian book written originally in Russian for Russians, describes methodology and results of the study of cognitive activity in children with cerebral palsy. An initial chapter reviews research on impairments in cognitive activity and speech defects in such children and on methods of…
ERIC Educational Resources Information Center
Clanchy, Kelly M.; Tweedy, Sean M.; Boyd, Roslyn
2011-01-01
Aim: This systematic review compares the validity, reliability, and clinical use of habitual physical activity (HPA) performance measures in adolescents with cerebral palsy (CP). Method: Measures of HPA across Gross Motor Function Classification System (GMFCS) levels I-V for adolescents (10-18y) with CP were included if at least 60% of items…
ERIC Educational Resources Information Center
Van de Winckel, Ann; Verheyden, Geert; Wenderoth, Nici; Peeters, Ron; Sunaert, Stefan; Van Hecke, Wim; De Cock, Paul; Desloovere, Kaat; Eyssen, Maria; Feys, Hilde
2013-01-01
Aside from motor impairment, many children with unilateral cerebral palsy (CP) experience altered tactile, proprioceptive, and kinesthetic awareness. Sensory deficits are addressed in rehabilitation programs, which include somatosensory discrimination exercises. In contrast to adult stroke patients, data on brain activation, occurring during…
ERIC Educational Resources Information Center
Peeters, Marieke; de Moor, Jan; Verhoeven, Ludo
2011-01-01
The goal of the present study was to get an overview of the emergent literacy activities, instructional adaptations and school absence of children with cerebral palsy (CP) compared to normally developing peers. The results showed that there were differences between the groups regarding the amount of emergent literacy instruction. While time…
ERIC Educational Resources Information Center
Kerr, Claire; Parkes, Jackie; Stevenson, Mike; Cosgrove, Aidan P.; McDowell, Brona C.
2008-01-01
The aim of the study was to establish if a relationship exists between the energy efficiency of gait, and measures of activity limitation, participation restriction, and health status in a representative sample of children with cerebral palsy (CP). Secondary aims were to investigate potential differences between clinical subtypes and gross motor…
ERIC Educational Resources Information Center
Feltham, Max G.; Ledebt, Annick; Deconinck, Frederik J. A.; Savelsbergh, Geert J. P.
2010-01-01
The study examined the effects of mirror feedback information on neuromuscular activation during bimanual coordination in eight children with spastic hemiparetic cerebral palsy (SHCP) and a matched control group. The "mirror box" creates a visual illusion, which gives rise to a visual perception of a zero lag, symmetric movement between the two…
Negative BOLD with Large Increases in Neuronal Activity
Khubchandani, Manjula; Motelow, Joshua E.; Sanganahalli, Basavaraju G.; Hyder, Fahmeed
2008-01-01
Blood oxygen level–dependent (BOLD) functional magnetic resonance imaging (fMRI) is widely used in neuroscience to study brain activity. However, BOLD fMRI does not measure neuronal activity directly but depends on cerebral blood flow (CBF), cerebral blood volume (CBV), and cerebral metabolic rate of oxygen (CMRO2) consumption. Using fMRI, CBV, CBF, neuronal recordings, and CMRO2 modeling, we investigated how the signals are related during seizures in rats. We found that increases in hemodynamic, neuronal, and metabolic activity were associated with positive BOLD signals in the cortex, but with negative BOLD signals in hippocampus. Our data show that negative BOLD signals do not necessarily imply decreased neuronal activity or CBF, but can result from increased neuronal activity, depending on the interplay between hemodynamics and metabolism. Caution should be used in interpreting fMRI signals because the relationship between neuronal activity and BOLD signals may depend on brain region and state and can be different during normal and pathological conditions. PMID:18063563
Wu, Xu-Dong; Wang, Chen; Zhang, Zhen-Ying; Fu, Yan; Liu, Feng-Ying; Liu, Xiu-Hua
2014-01-01
Puerariae Lobatae Radix (Gegen in Chinese) is the dried root of Pueraria lobata, a semiwoody, perennial, and leguminous vine native to China. Puerarin is one of the effective components of isoflavones isolated from the root of Pueraria lobata. Previous studies showed that extracts derived from the root of Pueraria lobata possessed antihypertensive effect. Our study is to investigate whether puerarin contributes to prevention of stroke by improving cerebral microcirculation in rats. Materials and Methods. Video microscopy and laser Doppler perfusion imaging on the pia mater were used to measure the diameter of microvessel and blood perfusion in 12-week old spontaneously hypertensive rats (SHRs) and age-matched normotensive WKY rats. Histological alterations were observed by hematoxylin and eosin staining, and microvessel density in cerebral tissue was measured by immunohistochemical analysis with anti-Factor VIII antibody. Cell proliferation was detected by [3H]-TdR incorporation, and activities of p42/44 mitogen activated protein kinases (p42/44 MAPKs) were detected by western blot analysis in cultured cerebral microvascular endothelial cells (MECs). Results. Intravenous injection of puerarin relaxed arterioles and increased the blood flow perfusion in the pia mater in SHRs. Puerarin treatment for 14 days reduced the blood pressure to a normal level in SHRs (P < 0.05) and increased the arteriole diameter in the pia mater significantly as compared with vehicle treatment. Arteriole remodeling, edema, and ischemia in cerebral tissue were attenuated in puerarin-treated SHRs. Microvessel density in cerebral tissue was greater with puerarin than with vehicle treatment. Puerarin-treated MECs showed greater proliferation and p42/44 MAPKs activities than vehicle treatment. Conclusions. Puerarin possesses effects of antihypertension and stroke prevention by improved microcirculation in SHRs, which results from the increase in cerebral blood perfusion both by arteriole relaxation and p42/44 MAPKs-mediated angiogenesis. PMID:24715930