Science.gov

Sample records for cerebral glucose consumption

  1. Cerebral glucose consumption following verbal auditory stimulation.

    PubMed

    Kushner, M J; Schwartz, R; Alavi, A; Dann, R; Rosen, M; Silver, F; Reivich, M

    1987-04-14

    We studied the effect of auditory stimulation upon cerebral glucose metabolism in young normals. The stimulus consisted of a non-English discourse which was presented monaurally to 10 normal blindfolded subjects (5 left ear, 5 right); the opposite ear was plugged. Six subjects studied blindfolded and with ears plugged served as controls. Sixteen discrete homologous cortical and subcortical regions of interest were examined. Regional glucose consumption and side-to-side differences in glucose metabolism were analyzed. Monaural stimulation produced significant increases in temporal metabolism contralateral to the side of stimulation. Significant asymmetries in metabolism were found at the temporoparietal junction, inferior parietal region, insula and corpus collosum. The left frontal speech areas remained unaffected. These findings demonstrate that in man the primary auditory pathways retain a contralateral organization. Further, cerebral activation induced by non-meaningful verbal stimulation is widespread within the left temporal and parietal regions but does not impact upon the frontal speech cortices.

  2. Age and sex differences in cerebral glucose consumption measured by pet using (18-F) fluorodeoxyglucose (FDG)

    SciTech Connect

    Duara, R.; Barker, W.; Chang, J.; Apicella, A.; Finn, R.; Gilson, A.

    1985-05-01

    Resting cerebral glucose metabolic rates (CMRglc) were measured in 23 subjects by PET using FDG. Subjects were divided into several groups (mean age +- S.D.) 5 young males (YM) (27 +- 6); 6 young females (YF)(33 +9); 5 elderly males (EM)(73 +- 5); 7 elderly females (EF)(69 +- 7). Additionally, from these groups 4 YM, 3YF, 5EM and 4EF were studied again within 6 weeks under identical conditions. CMRglc in the YF group again was significantly hider than YM (p 0.05). No obvious relationships of CMRglc to the phase of the menstrual cycle was found in this small group. There was a trend (p=0.06) toward a higher CMRglc in YF than EF. These results support the findings of higher CBF in YF versus YM. The differences between the results of Kuhl et al (J. Cereb. and a reduction of CMRglc with age was found in a mixed group of males and females (58and female), and where no age effect was found the males, are also resolved by these findings. The authors suggest that the apparent age effect, in females in this study, is principally a hormonal one.

  3. Ketones suppress brain glucose consumption.

    PubMed

    LaManna, Joseph C; Salem, Nicolas; Puchowicz, Michelle; Erokwu, Bernadette; Koppaka, Smruta; Flask, Chris; Lee, Zhenghong

    2009-01-01

    The brain is dependent on glucose as a primary energy substrate, but is capable of utilizing ketones such as beta-hydroxybutyrate (beta HB) and acetoacetate (AcAc), as occurs with fasting, prolonged starvation or chronic feeding of a high fat/low carbohydrate diet (ketogenic diet). In this study, the local cerebral metabolic rate of glucose consumption (CMRglu; microM/min/100g) was calculated in the cortex and cerebellum of control and ketotic rats using Patlak analysis. Rats were imaged on a rodent PET scanner and MRI was performed on a 7-Tesla Bruker scanner for registration with the PET images. Plasma glucose and beta HB concentrations were measured and 90-minute dynamic PET scans were started simultaneously with bolus injection of 2-Deoxy-2[18F]Fluoro-D-Glucose (FDG). The blood radioactivity concentration was automatically sampled from the tail vein for 3 min following injection and manual periodic blood samples were taken. The calculated local CMRGlu decreased with increasing plasma BHB concentration in the cerebellum (CMRGlu = -4.07*[BHB] + 61.4, r2 = 0.3) and in the frontal cortex (CMRGlu = -3.93*[BHB] + 42.7, r2 = 0.5). These data indicate that, under conditions of ketosis, glucose consumption is decreased in the cortex and cerebellum by about 10% per each mM of plasma ketone bodies.

  4. Patterns of human local cerebral glucose metabolism during epileptic seizures

    SciTech Connect

    Engel, J. Jr.; Kuhl, D.E.; Phelps, M.E.

    1982-10-01

    Ictal patterns of local cerebral metabolic rate have been studied in epileptic patients by positron computed tomography with /sup 18/F-labeled 2-fluoro-2-deoxy-D-glucose. Partial seizures were associated with activation of anatomic structures unique to each patient studied. Ictal increases and decreases in local cerebral metabolism were observed. Scans performed during generalized convulsions induced by electroshock demonstrated a diffuse ictal increase and postictal decrease in cerebral metabolism. Petit mal absences were associated with a diffuse increase in cerebral metabolic rate. The ictal fluorodeoxyglucose patterns obtained from patients do not resemble autoradiographic patterns obtained from common experimental animal models of epilepsy.

  5. A critical period of brain development: studies of cerebral glucose utilization with PET.

    PubMed

    Chugani, H T

    1998-01-01

    Studies with positron emission tomography indicate that the human brain undergoes a period of postnatal maturation that is much more protracted than previously suspected. In the newborn, the highest degree of glucose metabolism (representative of functional activity) is in primary sensory and motor cortex, cingulate cortex, thalamus, brain stem, cerebellar vermis, and hippocampal region. At 2 to 3 months of age, glucose utilization increases in the parietal, temporal, and primary visual cortex; basal ganglia; and cerebellar hemispheres. Between 6 and 12 months, glucose utilization increases in frontal cortex. These metabolic changes correspond to the emergence of various behaviors during the first year of life. The measurement of absolute rates of glucose utilization during development indicates that the cerebral cortex undergoes a dynamic course of metabolic maturation that persists until ages 16-18 years. Initially, there is a rise in the rates of glucose utilization from birth until about age 4 years, at which time the child's cerebral cortex uses over twice as much glucose as that of adults. From age 4 to 10 years, these very high rates of glucose consumption are maintained, and only after then is there a gradual decline of glucose metabolic rates to reach adult values by age 16-18 years. Correlations between glucose utilization rates and synaptogenesis are discussed, and the argument is made that these findings have important implications with respect to human brain plasticity following injury as well as to "critical periods" of maximal learning capacity.

  6. Nonoxidative Glucose Consumption during Focal Physiologic Neural Activity

    NASA Astrophysics Data System (ADS)

    Fox, Peter T.; Raichle, Marcus E.; Mintun, Mark A.; Dence, Carmen

    1988-07-01

    Brain glucose uptake, oxygen metabolism, and blood flow in humans were measured with positron emission tomography, and a resting-state molar ratio of oxygen to glucose consumption of 4.1:1 was obtained. Physiological neural activity, however, increased glucose uptake and blood flow much more (51 and 50 percent, respectively) than oxygen consumption (5 percent) and produced a molar ratio for the increases of 0.4:1. Transient increases in neural activity cause a tissue uptake of glucose in excess of that consumed by oxidative metabolism, acutely consume much less energy than previously believed, and regulate local blood flow for purposes other than oxidative metabolism.

  7. Global cerebral glucose utilization is independent of brain size: a PET Study

    SciTech Connect

    Hatazawa, J.; Brooks, R.A.; Di Chiro, G.; Campbell, G.

    1987-07-01

    Cerebral glucose metabolic rates were measured in 80 normal volunteers by studying the uptake of (/sup 18/F)deoxyglucose with positron emission tomography (PET), using three PET scanners. A brain size index was determined from the PET images using either length-width or area measurements of the brain at a standard level. There was a significant negative correlation between glucose metabolism per unit volume and brain size that was well described by an inverse functional relationship, implying that the total glucose consumption of the brain is approximately constant. Analyses of men versus women revealed no sex differences in total brain glucose consumption, although there were differences in brain size and in glucose metabolism per unit volume. Similarly there was no significant correlation of total brain glucose consumption with age. The variation with brain size accounted for 46% of the logarithmic intersubject metabolic variance. When comparing global metabolic rates in different subjects, multiplying the rates by a brain size index has the dual advantage of correcting for differences related to brain size and correcting for differences in cerebrospinal fluid volume.

  8. Exenatide Regulates Cerebral Glucose Metabolism in Brain Areas Associated With Glucose Homeostasis and Reward System.

    PubMed

    Daniele, Giuseppe; Iozzo, Patricia; Molina-Carrion, Marjorie; Lancaster, Jack; Ciociaro, Demetrio; Cersosimo, Eugenio; Tripathy, Devjit; Triplitt, Curtis; Fox, Peter; Musi, Nicolas; DeFronzo, Ralph; Gastaldelli, Amalia

    2015-10-01

    Glucagon-like peptide 1 receptors (GLP-1Rs) have been found in the brain, but whether GLP-1R agonists (GLP-1RAs) influence brain glucose metabolism is currently unknown. The study aim was to evaluate the effects of a single injection of the GLP-1RA exenatide on cerebral and peripheral glucose metabolism in response to a glucose load. In 15 male subjects with HbA1c of 5.7 ± 0.1%, fasting glucose of 114 ± 3 mg/dL, and 2-h glucose of 177 ± 11 mg/dL, exenatide (5 μg) or placebo was injected in double-blind, randomized fashion subcutaneously 30 min before an oral glucose tolerance test (OGTT). The cerebral glucose metabolic rate (CMRglu) was measured by positron emission tomography after an injection of [(18)F]2-fluoro-2-deoxy-d-glucose before the OGTT, and the rate of glucose absorption (RaO) and disposal was assessed using stable isotope tracers. Exenatide reduced RaO0-60 min (4.6 ± 1.4 vs. 13.1 ± 1.7 μmol/min ⋅ kg) and decreased the rise in mean glucose0-60 min (107 ± 6 vs. 138 ± 8 mg/dL) and insulin0-60 min (17.3 ± 3.1 vs. 24.7 ± 3.8 mU/L). Exenatide increased CMRglu in areas of the brain related to glucose homeostasis, appetite, and food reward, despite lower plasma insulin concentrations, but reduced glucose uptake in the hypothalamus. Decreased RaO0-60 min after exenatide was inversely correlated to CMRglu. In conclusion, these results demonstrate, for the first time in man, a major effect of a GLP-1RA on regulation of brain glucose metabolism in the absorptive state.

  9. Altered Brain Glucose Consumption in Cogan's Syndrome

    PubMed Central

    Ruffini, Livia; Ghirardini, Stella; Scarlattei, Maura; Baldari, Giorgio; Cidda, Carla; Gandolfi, Stefano A.; Orsoni, Jelka G.

    2016-01-01

    Purpose. Prospective, controlled cohort study to investigate possible alterations in brain glucose metabolism (CMRglc) in patients with Cogan's syndrome (CS). Patients and Methods. Functional mapping of the CMRglc was obtained by quantitative molecular imaging positron emission tomography, combined with computed tomography (FDG-PET/CT). The patients were divided into three clinical groups: typical CS; atypical CS (ACS); autoimmune inner ear disease (AIED). The unmatched control group (CG) consisted of subjects requiring FDG-PET/CT for an extracranial pathology. Statistical mapping searched areas of significant glucose hypometabolism in all the affected patients (DG) and in each clinical subgroup. The results were compared with those of the CG. Results. 44 patients were enrolled (DG) and assigned to the three study groups: 8 patients to the CS group; 21 patients to the ACS group; and 15 to the AIED group. Sixteen subjects formed the CG group. Areas of significant brain glucose hypometabolism were identified in all the study groups, with the largest number and extension in the DG and CS. Conclusions. This study revealed areas of significantly altered CMRglc in patients with CS (any subform) without neurologic complains and normal conventional neuroimaging. Our results suggest that FDG-PET/CT may represent a very useful tool for the global assessment of patients with Cogan's syndrome. PMID:28050276

  10. Regional cerebral glucose metabolism in patients with alcoholic Korsakoff's syndrome

    SciTech Connect

    Kessler, R.M.; Parker, E.S.; Clark, C.M.; Martin, P.R.; George, D.T.; Weingartner, H.; Sokoloff, L.; Ebert, M.H.; Mishkin, M.

    1985-05-01

    Seven alcoholic male subjects diagnosed as having Korsakoff's syndrome and eight age-matched male normal volunteers were studied with /sup 18/F 2-fluoro-2-deoxy-D-glucose (2/sup 18/FDG). All subjects were examined at rest with eyes covered in a quiet, darkened room. Serial plasma samples were obtained following injection of 4 to 5 mCi of 2/sup 18/FDG. Tomographic slices spaced at 10mm axial increments were obtained (in-plane resolution = 1.75 cm, axial resolution = 1.78 cm). Four planes were selected from each subject, and a total of 46 regions of interest were sampled and glucose metabolic rates for each region calculated. The mean glucose metalbolic rate for the 46 regions in the Korsakoff subjects was significantly lower than that in the normal controls (5.17 +- .43 versus 6.6 +- 1.31). A Q-component analysis, which examined each subject's regional rates relative to his mean rate, revealed two distinct patterns in the Korsakoff group. Glucose metabolism was significantly reduced in 37 of the 46 regions sampled. Reduced cerebral glucose metabolism in a nondemented group of subjects has not previously been reported. The reduction in cortical metabolism may be the result of damage to sub-cortical projecting systems. The differing patterns of cerebral metabolism in Korsakoff's syndrome suggests subgroups with differing neuropathology. Regions implicated in memory function, medial temporal, thalamic and medial prefrontal were among the regions reduced in metabolism.

  11. The Effects of Capillary Transit Time Heterogeneity (CTH) on the Cerebral Uptake of Glucose and Glucose Analogs: Application to FDG and Comparison to Oxygen Uptake

    PubMed Central

    Angleys, Hugo; Jespersen, Sune N.; Østergaard, Leif

    2016-01-01

    Glucose is the brain's principal source of ATP, but the extent to which cerebral glucose consumption (CMRglc) is coupled with its oxygen consumption (CMRO2) remains unclear. Measurements of the brain's oxygen-glucose index OGI = CMRO2/CMRglc suggest that its oxygen uptake largely suffices for oxidative phosphorylation. Nevertheless, during functional activation and in some disease states, brain tissue seemingly produces lactate although cerebral blood flow (CBF) delivers sufficient oxygen, so-called aerobic glycolysis. OGI measurements, in turn, are method-dependent in that estimates based on glucose analog uptake depend on the so-called lumped constant (LC) to arrive at CMRglc. Capillary transit time heterogeneity (CTH), which is believed to change during functional activation and in some disease states, affects the extraction efficacy of oxygen from blood. We developed a three-compartment model of glucose extraction to examine whether CTH also affects glucose extraction into brain tissue. We then combined this model with our previous model of oxygen extraction to examine whether differential glucose and oxygen extraction might favor non-oxidative glucose metabolism under certain conditions. Our model predicts that glucose uptake is largely unaffected by changes in its plasma concentration, while changes in CBF and CTH affect glucose and oxygen uptake to different extents. Accordingly, functional hyperemia facilitates glucose uptake more than oxygen uptake, favoring aerobic glycolysis during enhanced energy demands. Applying our model to glucose analogs, we observe that LC depends on physiological state, with a risk of overestimating relative increases in CMRglc during functional activation by as much as 50%. PMID:27790110

  12. EFFECTS OF RAPAMYCIN ON CEREBRAL OXYGEN SUPPLY AND CONSUMPTION DURING REPERFUSION AFTER CEREBRAL ISCHEMIA

    PubMed Central

    CHI, O. Z.; BARSOUM, S.; VEGA-COTTO, N. M.; JACINTO, E.; LIU, X.; MELLENDER, S. J.; WEISS, H. R.

    2016-01-01

    Abstract—Activation of the mammalian target of rapamycin (mTOR) leads to cell growth and survival. We tested the hypothesis that inhibition of mTOR would increase infarct size and decrease microregional O2 supply/consumption balance after cerebral ischemia–reperfusion. This was tested in isoflurane-anesthetized rats with middle cerebral artery blockade for 1 h and reperfusion for 2 h with and without rapamycin (20 mg/kg once daily for two days prior to ischemia). Regional cerebral blood flow was determined using a C14-iodoantipyrine autoradiographic technique. Regional small-vessel arterial and venous oxygen saturations were determined microspectrophotometrically. The control ischemic-reperfused cortex had a similar blood flow and O2 consumption to the contralateral cortex. However, microregional O2 supply/consumption balance was significantly reduced in the ischemic-reperfused cortex. Rapamycin significantly increased cerebral O2 consumption and further reduced O2 supply/consumption balance in the reperfused area. This was associated with an increased cortical infarct size (13.5 ± 0.8% control vs. 21.5 ± 0.9% rapamycin). We also found that ischemia–reperfusion increased AKT and S6K1 phosphorylation, while rapamycin decreased this phosphorylation in both the control and ischemic-reperfused cortex. This suggests that mTOR is important for not only cell survival, but also for the control of oxygen balance after cerebral ischemia–reperfusion. PMID:26742793

  13. Effects of rapamycin on cerebral oxygen supply and consumption during reperfusion after cerebral ischemia.

    PubMed

    Chi, O Z; Barsoum, S; Vega-Cotto, N M; Jacinto, E; Liu, X; Mellender, S J; Weiss, H R

    2016-03-01

    Activation of the mammalian target of rapamycin (mTOR) leads to cell growth and survival. We tested the hypothesis that inhibition of mTOR would increase infarct size and decrease microregional O2 supply/consumption balance after cerebral ischemia-reperfusion. This was tested in isoflurane-anesthetized rats with middle cerebral artery blockade for 1h and reperfusion for 2h with and without rapamycin (20mg/kg once daily for two days prior to ischemia). Regional cerebral blood flow was determined using a C(14)-iodoantipyrine autoradiographic technique. Regional small-vessel arterial and venous oxygen saturations were determined microspectrophotometrically. The control ischemic-reperfused cortex had a similar blood flow and O2 consumption to the contralateral cortex. However, microregional O2 supply/consumption balance was significantly reduced in the ischemic-reperfused cortex. Rapamycin significantly increased cerebral O2 consumption and further reduced O2 supply/consumption balance in the reperfused area. This was associated with an increased cortical infarct size (13.5±0.8% control vs. 21.5±0.9% rapamycin). We also found that ischemia-reperfusion increased AKT and S6K1 phosphorylation, while rapamycin decreased this phosphorylation in both the control and ischemic-reperfused cortex. This suggests that mTOR is important for not only cell survival, but also for the control of oxygen balance after cerebral ischemia-reperfusion.

  14. Cerebral glucose utilization during stage 2 sleep in man.

    PubMed

    Maquet, P; Dive, D; Salmon, E; Sadzot, B; Franco, G; Poirrier, R; Franck, G

    1992-01-31

    Using [18F]fluorodeoxyglucose method and positron emission tomography, we performed paired determinations of the cerebral glucose utilization at one week intervals during sleep and wakefulness, in 12 young normal subjects. During 6 of 28 sleep runs, a stable stage 2 SWS was observed that fulfilled the steady-state conditions of the model. The cerebral glucose utilization during stage 2 SWS was lower than during wakefulness, but the variation did not significantly differ from zero (mean variation: -11.5 +/- 25.57%, P = 0.28). The analysis of 89 regions of interest showed that glucose metabolism differed significantly from that observed at wake in 6 brain regions, among them both thalamic nuclei. We conclude that the brain energy metabolism is not homogeneous throughout all the stages of non-REMS but decreases from stage 2 SWS to deep SWS; we suggest that a low thalamic glucose metabolism is a metabolic feature common to both stage 2 and deep SWS, reflecting the inhibitory processes observed in the thalamus during these stages of sleep. Stage 2 SWS might protect the stability of sleep by insulating the subject from the environment and might be a prerequisite to the full development of other phases of sleep, especially deep SWS.

  15. Cerebral metabolism of glucose in benign hereditary chorea

    SciTech Connect

    Suchowersky, O.; Hayden, M.R.; Martin, W.R.; Stoessl, A.J.; Hildebrand, A.M.; Pate, B.D.

    1986-01-01

    Benign hereditary chorea (BHC) is an autosomal dominant disorder characterized by chorea of early onset with little or no progression. There is marked clinical variability in this disease with some subjects having onset in infancy and others with onset in early adulthood. In contrast to Huntington's disease (HD), there is no dementia. Computed tomography is normal in all subjects with no evidence of caudate nucleus atrophy. We present the results of positron emission tomography using YF-2-fluorodeoxyglucose on three patients with this disorder from two families. Cerebral glucose metabolism in one patient was decreased in the caudate nucleus, as previously reported in HD. The other two persons from a second family showed a relative decrease in metabolic rates of glucose in the caudate when compared with the thalamus. It appears that caudate hypometabolism is not specific for HD. These findings suggest that the caudate nucleus may play a significant role in the pathophysiology of some persons with BHC.

  16. Cerebral glucose metabolism in Wernicke's, Broca's, and conduction aphasia

    SciTech Connect

    Metter, E.J.; Kempler, D.; Jackson, C.; Hanson, W.R.; Mazziotta, J.C.; Phelps, M.E.

    1989-01-01

    Cerebral glucose metabolism was evaluated in patients with either Wernicke's (N = 7), Broca's (N = 11), or conduction (N = 10) aphasia using /sup 18/F-2-fluoro-2-deoxy-D-glucose with positron emission tomography. The three aphasic syndromes differed in the degree of left-to-right frontal metabolic asymmetry, with Broca's aphasia showing severe asymmetry and Wernicke's aphasia mild-to-moderate metabolic asymmetry, while patients with conduction aphasia were metabolically symmetric. On the other hand, the three syndromes showed the same degree of metabolic decline in the left temporal region. The parietal region appeared to separate conduction aphasia from both Broca's and Wernicke's aphasias. Common aphasic features in the three syndromes appear to be due to common changes in the temporal region, while unique features were associated with frontal and parietal metabolic differences.

  17. Cerebral Oxygen Delivery and Consumption During Evoked Neural Activity

    PubMed Central

    Vazquez, Alberto L.; Masamoto, Kazuto; Fukuda, Mitsuhiro; Kim, Seong-Gi

    2010-01-01

    Increases in neural activity evoke increases in the delivery and consumption of oxygen. Beyond observations of cerebral tissue and blood oxygen, the role and properties of cerebral oxygen delivery and consumption during changes in brain function are not well understood. This work overviews the current knowledge of functional oxygen delivery and consumption and introduces recent and preliminary findings to explore the mechanisms by which oxygen is delivered to tissue as well as the temporal dynamics of oxygen metabolism. Vascular oxygen tension measurements have shown that a relatively large amount of oxygen exits pial arterioles prior to capillaries. Additionally, increases in cerebral blood flow (CBF) induced by evoked neural activation are accompanied by arterial vasodilation and also by increases in arteriolar oxygenation. This increase contributes not only to the down-stream delivery of oxygen to tissue, but also to delivery of additional oxygen to extra-vascular spaces surrounding the arterioles. On the other hand, the changes in tissue oxygen tension due to functional increases in oxygen consumption have been investigated using a method to suppress the evoked CBF response. The functional decreases in tissue oxygen tension induced by increases in oxygen consumption are slow to evoked changes in CBF under control conditions. Preliminary findings obtained using flavoprotein autofluorescence imaging suggest cellular oxidative metabolism changes at a faster rate than the average changes in tissue oxygen. These issues are important in the determination of the dynamic changes in tissue oxygen metabolism from hemoglobin-based imaging techniques such as blood oxygenation-level dependent functional magnetic resonance imaging (fMRI). PMID:20616881

  18. Arachidonic acid stimulates glucose uptake in cerebral cortical astrocytes.

    PubMed Central

    Yu, N; Martin, J L; Stella, N; Magistretti, P J

    1993-01-01

    Arachidonic acid (AA) has recently been shown to influence various cellular functions in the central nervous system. Here we report that AA increases, in a time- and concentration-dependent manner, 2-deoxy-D-[1-3H]glucose ([3H]2DG) uptake in primary cultures of astrocytes prepared from the cerebral cortex of neonatal mice. This effect is mimicked by an unsaturated fatty acid such as linolenic acid, while palmitic and arachidic acids, two saturated fatty acids, are inactive. Pharmacological agents that increase the endogenous levels of AA by stimulating AA release (melittin) or by inhibiting its reacylation (thimerosal) also promote [3H]2DG uptake by astrocytes. We also report that norepinephrine (NE) stimulates the release of [3H]AA from membrane phospholipids, with an EC50 of 3 microM; this effect is accompanied, with a temporal delay of approximately 4 min, by the stimulation of [3H]2DG uptake, for which the EC50 of NE is 1 microM. Since the cerebral cortex, the brain region from which astrocytes used in this study were prepared, receives a massive noradrenergic innervation, originating from the locus coeruleus, the effects of NE reported here further stress the notion that certain neurotransmitters may play a role in the regulation of energy metabolism in the cerebral cortex and point at astrocytes as the likely targets of such metabolic effects. PMID:8483920

  19. Cerebral non-oxidative carbohydrate consumption in humans driven by adrenaline.

    PubMed

    Seifert, Thomas S; Brassard, Patrice; Jørgensen, Thomas B; Hamada, Ahmad J; Rasmussen, Peter; Quistorff, Bjørn; Secher, Niels H; Nielsen, Henning B

    2009-01-15

    During brain activation, the decrease in the ratio between cerebral oxygen and carbohydrate uptake (6 O(2)/(glucose + (1)/(2) lactate); the oxygen-carbohydrate index, OCI) is attenuated by the non-selective beta-adrenergic receptor antagonist propranolol, whereas OCI remains unaffected by the beta(1)-adrenergic receptor antagonist metroprolol. These observations suggest involvement of a beta(2)-adrenergic mechanism in non-oxidative metabolism for the brain. Therefore, we evaluated the effect of adrenaline (0.08 microg kg(-1) min(-1) i.v. for 15 min) and noradrenaline (0.5, 0.1 and 0.15 microg kg(-1) min(-1) i.v. for 20 min) on the arterial to internal jugular venous concentration differences (a-v diff) of O(2), glucose and lactate in healthy humans. Adrenaline (n = 10) increased the arterial concentrations of O(2), glucose and lactate (P < 0.05) and also increased the a-v diff for glucose from 0.6 +/- 0.1 to 0.8 +/- 0.2 mM (mean +/- s.d.; P < 0.05). The a-v diff for lactate shifted from a net cerebral release to an uptake and OCI was lowered from 5.1 +/- 1.5 to 3.6 +/- 0.4 (P < 0.05) indicating an 8-fold increase in the rate of non-oxidative carbohydrate uptake during adrenaline infusion (P < 0.01). Conversely, noradrenaline (n = 8) did not affect the OCI despite an increase in the a-v diff for glucose (P < 0.05). These results support that non-oxidative carbohydrate consumption for the brain is driven by a beta(2)-adrenergic mechanism, giving neurons an abundant provision of energy when plasma adrenaline increases.

  20. Cerebral energy metabolism, glucose transport and blood flow: changes with maturation and adaptation to hypoglycaemia.

    PubMed

    Nehlig, A

    1997-02-01

    Brain maturation is characterized by a peak of cerebral energy metabolism and blood flow occurring between 3 and 8 years of age in humans and around 14-17 days of postnatal life in rats. This high activity coincides with the period of active brain growth. The human brain is dependent on glucose alone during that period, whereas rat brain uses both glucose and ketone bodies to cover its energetic and biosynthetic needs. The maturation of the density of glucose transporter sites-GLUT1 located at the blood-brain barrier and GLUT3 at the neuronal membrane-parallels the development of cerebral glucose utilization. During moderate acute hypoglycaemia, there are no changes in cerebral functional activity; cerebral glucose utilization decreases and blood flow increases only when hypoglycaemia is severe (lower than 2 mumol/ml). During chronic hypoglycaemia, the brain adapts to the low circulating levels of glucose: the number of glucose transporter sites is increased, and cerebral glucose utilization and function are maintained at normal levels while cerebral blood flow is more moderately increased than during acute hypoglycaemia. Neuronal damage consecutive to severe and prolonged hypoglycaemia occurs mainly in the cerebral cortex, hippocampus and caudate-putamen as a result of active release of excitatory amino acids.

  1. Dietary glucose regulates yeast consumption in adult Drosophila males

    PubMed Central

    Lebreton, Sébastien; Witzgall, Peter; Olsson, Marie; Becher, Paul G.

    2014-01-01

    The adjustment of feeding behavior in response to hunger and satiety contributes to homeostatic regulation in animals. The fruit fly Drosophila melanogaster feeds on yeasts growing on overripe fruit, providing nutrients required for adult survival, reproduction and larval growth. Here, we present data on how the nutritional value of food affects subsequent yeast consumption in Drosophila adult males. After a period of starvation, flies showed intensive yeast consumption. In comparison, flies stopped feeding after having access to a nutritive cornmeal diet. Interestingly, dietary glucose was equally efficient as the complex cornmeal diet. In contrast, flies fed with sucralose, a non-metabolizable sweetener, behaved as if they were starved. The adipokinetic hormone and insulin-like peptides regulate metabolic processes in insects. We did not find any effect of the adipokinetic hormone pathway on this modulation. Instead, the insulin pathway was involved in these changes. Flies lacking the insulin receptor (InR) did not respond to nutrient deprivation by increasing yeast consumption. Together these results show the importance of insulin in the regulation of yeast consumption in response to starvation in adult D. melanogaster males. PMID:25566097

  2. Reduction of cerebral glucose utilization by the HIV envelope glycoprotein Gp-120

    SciTech Connect

    Kimes, A.S.; London, E.D.; Szabo, G.; Raymon, L.; Tabakoff, B. )

    1991-05-01

    Gp-120 is a glycoprotein constituent of the human immunodeficiency virus (HIV) envelope. The effects of gp-120 on cerebral glucose utilization in rats were studied by the quantitative 2-deoxy-D-(1-14C) glucose method. Intracerebroventricular injection of gp-120 significantly reduced glucose utilization in the lateral habenula and the suprachiasmatic nucleus and decreased the global cerebral metabolic rate for glucose. The findings suggest that gp-120 and closely related peptides can alter neuronal function, thereby contributing to the sequelae of HIV infection.

  3. Brain-derived neurotrophic factor inhibits glucose intolerance after cerebral ischemia

    PubMed Central

    Shu, Xiaoliang; Zhang, Yongsheng; Xu, Han; Kang, Kai; Cai, Donglian

    2013-01-01

    Brain-derived neurotrophic factor is associated with the insulin signaling pathway and glucose tabolism. We hypothesized that expression of brain-derived neurotrophic factor and its receptor may be involved in glucose intolerance following ischemic stress. To verify this hypothesis, this study aimed to observe the changes in brain-derived neurotrophic factor and tyrosine kinase B receptor expression in glucose metabolism-associated regions following cerebral ischemic stress in mice. At day 1 after middle cerebral artery occlusion, the expression levels of brain-derived neurotrophic factor were significantly decreased in the ischemic cortex, hypothalamus, liver, skeletal muscle, and pancreas. The expression levels of tyrosine kinase B receptor were decreased in the hypothalamus and liver, and increased in the skeletal muscle and pancreas, but remained unchanged in the cortex. Intrahypothalamic administration of brain-derived neurotrophic factor (40 ng) suppressed the decrease in insulin receptor and tyrosine-phosphorylated insulin receptor expression in the liver and skeletal muscle, and inhibited the overexpression of gluconeogenesis-associated phosphoenolpyruvate carboxykinase and glucose-6-phosphatase in the liver of cerebral ischemic mice. However, serum insulin levels remained unchanged. Our experimental findings indicate that brain-derived neurotrophic factor can promote glucose metabolism, reduce gluconeogenesis, and decrease blood glucose levels after cerebral ischemic stress. The low expression of brain-derived neurotrophic factor following cerebral ischemia may be involved in the development of glucose intolerance. PMID:25206547

  4. Brain-derived neurotrophic factor inhibits glucose intolerance after cerebral ischemia.

    PubMed

    Shu, Xiaoliang; Zhang, Yongsheng; Xu, Han; Kang, Kai; Cai, Donglian

    2013-09-05

    Brain-derived neurotrophic factor is associated with the insulin signaling pathway and glucose tabolism. We hypothesized that expression of brain-derived neurotrophic factor and its receptor may be involved in glucose intolerance following ischemic stress. To verify this hypothesis, this study aimed to observe the changes in brain-derived neurotrophic factor and tyrosine kinase B receptor expression in glucose metabolism-associated regions following cerebral ischemic stress in mice. At day 1 after middle cerebral artery occlusion, the expression levels of brain-derived neurotrophic factor were significantly decreased in the ischemic cortex, hypothalamus, liver, skeletal muscle, and pancreas. The expression levels of tyrosine kinase B receptor were decreased in the hypothalamus and liver, and increased in the skeletal muscle and pancreas, but remained unchanged in the cortex. Intrahypothalamic administration of brain-derived neurotrophic factor (40 ng) suppressed the decrease in insulin receptor and tyrosine-phosphorylated insulin receptor expression in the liver and skeletal muscle, and inhibited the overexpression of gluconeogenesis-associated phosphoenolpyruvate carboxykinase and glucose-6-phosphatase in the liver of cerebral ischemic mice. However, serum insulin levels remained unchanged. Our experimental findings indicate that brain-derived neurotrophic factor can promote glucose metabolism, reduce gluconeogenesis, and decrease blood glucose levels after cerebral ischemic stress. The low expression of brain-derived neurotrophic factor following cerebral ischemia may be involved in the development of glucose intolerance.

  5. Age differences in intercorrelations between regional cerebral metabolic rates for glucose

    SciTech Connect

    Horwitz, B.; Duara, R.; Rapoport, S.I.

    1986-01-01

    Patterns of cerebral metabolic intercorrelations were compared in the resting state in 15 healthy young men (ages 20 to 32 years) and 15 healthy elderly men (ages 64 to 83 years). Controlling for whole-brain glucose metabolism, partial correlation coefficients were determined between pairs of regional cerebral metabolic rates for glucose determined by positron emission tomography using (18F)fluorodeoxyglucose and obtained in 59 brain regions. Compared with the young men, the elderly men had fewer statistically significant correlations, with the most notable reductions observed between the parietal lobe regions, and between the parietal and frontal lobe regions. These results suggest that cerebral functional interactions are reduced in healthy elderly men.

  6. Heterogeneous cerebral glucose metabolism in normal pressure hydrocephalus.

    PubMed Central

    Tedeschi, E; Hasselbalch, S G; Waldemar, G; Juhler, M; Høgh, P; Holm, S; Garde, L; Knudsen, L L; Klinken, L; Gjerris, F

    1995-01-01

    The regional cerebral metabolic rate for glucose (rCMRglu) has never been investigated in large consecutive groups of patients with normal pressure hydrocephalus (NPH), a potentially treatable form of dementia with an unpredictable outcome after shunt surgery. Using PET and 18F-2-fluorodeoxyglucose, rCMRglu was studied in 18 patients who fulfilled hydrodynamic criteria for NPH and in whom a biopsy of the frontal cortex was obtained. When compared with an age matched group of 11 healthy subjects, the patients with NPH showed a significant rCMRglu reduction in all cortical and subcortical regions of interest. Individual metabolic patterns, however, disclosed a large topographical heterogeneity. Furthermore, histopathological examination identified Alzheimer's disease or cerebrovascular disease in six cases, and no parenchymal disease or non-specific degenerative processes in the remaining 12. After separating the patients according to the histological diagnosis, the rCMRglu patterns were still heterogeneous, the abnormalities ranging from focal to diffuse in both subgroups. After shunt operation, 11 patients did not improve or worsened clinically. Six patients improved; of those, two had Alzheimer changes and two cerebrovascular changes in their biopsy. The metabolic pattern of these six patients did not differ from the rest of the NPH group. The results indicate that the NPH syndrome may be non-specifically associated with different degenerative disorders. The metabolic heterogeneity, together with the heterogeneous histopathological findings, indicate the necessity of reevaluating the pathogenesis of the NPH syndrome, and may account for the high variability in the success rate of shunt surgery series. Images PMID:7500099

  7. Cerebral glucose utilization and blood flow in Huntington's Disease (HD)

    SciTech Connect

    Phelps, M.E.; Mazziotta, J.C.; Wapenski, J.; Riege, W.; Baxter, L.R.

    1985-05-01

    Previous studies in the authors' Laboratory have been carried out on 13 patients symptomatic of HD (SHD) and 15 asymptomatic at-risk for HD (ARHD) with a ECAT II and identification of changes in caudate metabolism using an index technique. The authors report now studies of additional 28 subjects (11 SHD, 17 ARHD) studied drug free and compared to age/sex matched controls using the higher resolution NeuroECAT, FDG for glucose utilization (LCMRGlc) and 0-15 water for cerebral blood flow (CBF). Patients had neurological, psychiatric-tests, x-ray CT and were video taped to determine type, timing and amount of choreathetic movements during study. In SHD (disease duration 4.9 +- 2.7 yrs), significant decreases (30%) in LCMRGlc were found in striatum (SHD=19.3 +- 7.7, controls = 29.9 +- 5.8 ..mu.. moles/min/100g) despite no to moderate caudate atrophy on x-ray CT. Hemisphere and cortical CMRGlc were not significantly decreased. There was a significant correlation between disease duration and ratio of caudate to putamen (Cd/Put). Pattern of LCMRGlc and CBF matched in SHD. The caudate to hemisphere LCMRGlc ratio was not different between ARHD and controls except variance was about 4 times greater for ARHD (ARHD=1.21 +- 0.15, controls = 1.28 +- 0.04) indicating presence of subpopulations in ARHD group. Four ARHD subjects had a ratio of 1 Std. Dev. from mean of SHD (no normals had values in this range). The 2 ARHD subjects with lowest caudate LCMRGlc had Cd/Put ratios > 2 Std. Dev. from controls. Results show 1) LCMRGlc abnormalities in all SHD patients and subpopulations in ARHD, 2) metabolic alterations appear to begin in caudate and spread to putamen and that a Cd/Put value of 0.7 should be found at start of symptoms, and 3) cortex and thalamus are relatively spared in ARHD and early SHD.

  8. Glucose and fatty acid metabolism in normal and diabetic rabbit cerebral microvessels

    SciTech Connect

    Hingorani, V.; Brecher, P.

    1987-05-01

    Rabbit cerebral microvessels were used to study fatty acid metabolism and its utilization relative to glucose. Microvessels were incubated with either (6-/sup 14/C)glucose or (1-/sup 14/C)oleic acid and the incorporation of radioactivity into /sup 14/CO/sub 2/, lactate, triglyceride, cholesterol ester, and phospholipid was determined. The inclusion of 5.5 mM glucose in the incubation mixture reduced oleate oxidation by 50% and increased esterification into both phospholipid and triglyceride. Glucose oxidation to CO/sub 2/ was reduced by oleate addition, whereas lactate production was unaffected. 2'-Tetradecylglycidic acid, an inhibitor of carnitine acyltransferase I, blocked oleic acid oxidation in the presence and absence of glucose. It did not effect fatty acid esterification when glucose was absent and eliminated the inhibition of oleate on glucose oxidation. Glucose oxidation to /sup 14/CO/sub 2/ was markedly suppressed in microvessels from alloxan-treated diabetic rabbits but lactate formation was unchanged. Fatty acid oxidation to CO/sub 2/ and incorporation into triglyceride, phospholipid, and cholesterol ester remained unchanged in the diabetic state. The experiments show that both fatty acid and glucose can be used as a fuel source by the cerebral microvessels, and the interactions found between fatty acid and glucose metabolism are similar to the fatty acid-glucose cycle, described previously.

  9. ALDH2 polymorphism is associated with fasting blood glucose through alcohol consumption in Japanese men

    PubMed Central

    Yin, Guang; Naito, Mariko; Wakai, Kenji; Morita, Emi; Kawai, Sayo; Hamajima, Nobuyuki; Suzuki, Sadao; Kita, Yoshikuni; Takezaki, Toshiro; Tanaka, Keitaro; Morita, Makiko; Uemura, Hirokazu; Ozaki, Etsuko; Hosono, Satoyo; Mikami, Haruo; Kubo, Michiaki; Tanaka, Hideo

    2016-01-01

    ABSTRACT Associations between alcohol consumption and type 2 diabetes risk are inconsistent in epidemiologic studies. This study investigated the associations of ADH1B and ALDH2 polymorphisms with fasting blood glucose levels, and the impact of the associations of alcohol consumption with fasting blood glucose levels in Japanese individuals. This cross-sectional study included 907 men and 912 women, aged 35–69 years. The subjects were selected from among the Japan Multi-institutional Collaborative Cohort study across six areas of Japan. The ADH1B and ALDH2 polymorphisms were genotyped by Invader Assays. The ALDH2 Glu504Lys genotypes were associated with different levels of fasting blood glucose in men (P = 0.04). Mean fasting glucose level was positively associated with alcohol consumption in men with the ALDH2 504 Lys allele (Ptrend = 0.02), but not in men with the ALDH2 504Glu/Glu genotype (Ptrend = 0.45), resulting in no statistically significant interaction (P = 0.38). Alcohol consumption was associated with elevated fasting blood glucose levels compared with non-consumers in men (Ptrend = 0.002). The ADH1B Arg48His polymorphism was not associated with FBG levels overall or after stratification for alcohol consumption. These findings suggest that the ALDH2 polymorphism is associated with different levels of fasting blood glucose through alcohol consumption in Japanese men. The interaction of ALDH2 polymorphisms in the association between alcohol consumption and fasting blood glucose warrants further investigation. PMID:27303105

  10. The effects of oxiracetam (CT-848) on local cerebral glucose utilization after focal cerebral ischemia in rats.

    PubMed

    Hokonohara, T; Sako, K; Shinoda, Y; Tomabechi, M; Yonemasu, Y

    1992-02-01

    The effects of oxiracetam on the reduction of brain metabolism induced by focal cerebral ischemia were investigated by measuring local cerebral glucose utilization (LCGU) in rats 24 hr after left middle cerebral artery occlusion. Focal cerebral ischemia reduced LCGU in the entire ipsilateral cortex, the greatest reduction being in the lateral parts of the frontoparietal cortex. LCGU was slightly reduced in the contralateral cortex; this reduction was considered to be caused by diaschisis. Oxiracetam was administered intraperitoneally for 3 days prior to middle cerebral artery occlusion. In the ipsilateral cortex, LCGU reduction was minimized in the ischemic center areas by oxiracetam at a dose of 400 mg/kg and in more extensive areas, by a dose of 800 mg/kg. Moreover, oxiracetam at a dose of 800 mg/kg enhanced metabolism impaired by diaschisis in the caudal areas of the contralateral cortex. These findings suggest that oxiracetam minimizes the reduction of brain function induced by ischemia and may therefore be useful in the treatment of cerebrovascular disease.

  11. Brain Size and Cerebral Glucose Metabolic Rate in Nonspecific Retardation and Down Syndrome.

    ERIC Educational Resources Information Center

    Haier, Richard J.; And Others

    1995-01-01

    Brain size and cerebral glucose metabolic rate were determined for 10 individuals with mild mental retardation (MR), 7 individuals with Down syndrome (DS), and 10 matched controls. MR and DS groups both had brain volumes of about 80% compared to controls, with variance greatest within the MR group. (SLD)

  12. Mapping cerebral glutamate 13C turnover and oxygen consumption by in vivo NMR.

    PubMed

    Hyder, Fahmeed; Brown, Peter; Nixon, Terennce W; Behar, Kevin L

    2003-01-01

    Regional rates of 13C incorporation from glucose to glutamate were detected in anesthetized rat brain in vivo at 7T with high temporal and spatial resolution using NMR method ICED PEPSI (in vivo carbon edited detection with proton echo planar spectroscopic imaging). Time courses of regional glutamate 13C turnover were fitted by a metabolic model to obtain regional tri-carboxylic acid (TCA) cycle flux and cerebral metabolic rate of oxygen consumption (CMRO2) in each voxel (8 microL) of rat cortex. CMRO2 maps obtained for rats under either alpha-chloralose or morphine anesthesia revealed average cortical values of 1.5 +/- 0.2 (n = 3) and 3.2 +/- 0.3 (n = 4) mumol/g/min, respectively. These values of CMRO2 are in good agreement with previous cortical measurements with coarser spatial resolution. The heterogeneity within each map, which depicted predominantly gray and white matter differences, was significantly greater under morphine (higher cortical activity) than under-alpha-chloralose (lower cortical activity) anesthesia. The regional variations in the basal awake state, which are expected to be even greater, should be considered to avoid partial-volume artifacts in functional activation studies of awake subjects.

  13. Regional brain blood flow and cerebral hemispheric oxygen consumption during acute hypoxaemia in the llama fetus

    PubMed Central

    Llanos, Aníbal J; Riquelme, Raquel A; Sanhueza, Emilia M; Herrera, Emilio; Cabello, Gertrudis; Giussani, Dino A; Parer, Julian T

    2002-01-01

    Unlike fetal animals of lowland species, the llama fetus does not increase its cerebral blood flow during an episode of acute hypoxaemia. This study tested the hypothesis that the fetal llama brain maintains cerebral hemispheric O2 consumption by increasing cerebral O2 extraction rather than decreasing cerebral oxygen utilisation during acute hypoxaemia. Six llama fetuses were surgically instrumented under general anaesthesia at 217 days of gestation (term ca 350 days) with vascular and amniotic catheters in order to carry out cardiorespiratory studies. Following a control period of 1 h, the llama fetuses underwent 3 × 20 min episodes of progressive hypoxaemia, induced by maternal inhalational hypoxia. During basal conditions and during each of the 20 min of hypoxaemia, fetal cerebral blood flow was measured with radioactive microspheres, cerebral oxygen extraction was calculated, and fetal cerebral hemispheric O2 consumption was determined by the modified Fick principle. During hypoxaemia, fetal arterial O2 tension and fetal pH decreased progressively from 24 ± 1 to 20 ± 1 Torr and from 7.36 ± 0.01 to 7.33 ± 0.01, respectively, during the first 20 min episode, to 16 ± 1 Torr and 7.25 ± 0.05 during the second 20 min episode and to 14 ± 1 Torr and 7.21 ± 0.04 during the final 20 min episode. Fetal arterial partial pressure of CO2 (Pa,CO2, 42 ± 2 Torr) remained unaltered from baseline throughout the experiment. Fetal cerebral hemispheric blood flow and cerebral hemispheric oxygen extraction were unaltered from baseline during progressive hypoxaemia. In contrast, a progressive fall in fetal cerebral hemispheric oxygen consumption occurred during the hypoxaemic challenge. In conclusion, these data do not support the hypothesis that the fetal llama brain maintains cerebral hemispheric O2 consumption by increasing cerebral hemispheric O2 extraction. Rather, the data show that in the llama fetus, a reduction in cerebral hemispheric metabolism occurs during acute

  14. Neuroenergetic Response to Prolonged Cerebral Glucose Depletion after Severe Brain Injury and the Role of Lactate.

    PubMed

    Patet, Camille; Quintard, Hervé; Suys, Tamarah; Bloch, Jocelyne; Daniel, Roy T; Pellerin, Luc; Magistretti, Pierre J; Oddo, Mauro

    2015-10-15

    Lactate may represent a supplemental fuel for the brain. We examined cerebral lactate metabolism during prolonged brain glucose depletion (GD) in acute brain injury (ABI) patients monitored with cerebral microdialysis (CMD). Sixty episodes of GD (defined as spontaneous decreases of CMD glucose from normal to low [<1.0 mmol/L] for at least 2 h) were identified among 26 patients. During GD, we found a significant increase of CMD lactate (from 4 ± 2.3 to 5.4 ± 2.9 mmol/L), pyruvate (126.9 ± 65.1 to 172.3 ± 74.1 μmol/L), and lactate/pyruvate ratio (LPR; 27 ± 6 to 35 ± 9; all, p < 0.005), while brain oxygen and blood lactate remained normal. Dynamics of lactate and glucose supply during GD were further studied by analyzing the relationships between blood and CMD samples. There was a strong correlation between blood and brain lactate when LPR was normal (r = 0.56; p < 0.0001), while an inverse correlation (r = -0.11; p = 0.04) was observed at elevated LPR >25. The correlation between blood and brain glucose also decreased from r = 0.62 to r = 0.45. These findings in ABI patients suggest increased cerebral lactate delivery in the absence of brain hypoxia when glucose availability is limited and support the concept that lactate acts as alternative fuel.

  15. Program for PET image alignment: Effects on calculated differences in cerebral metabolic rates for glucose

    SciTech Connect

    Phillips, R.L.; London, E.D.; Links, J.M.; Cascella, N.G. )

    1990-12-01

    A program was developed to align positron emission tomography images from multiple studies on the same subject. The program allowed alignment of two images with a fineness of one-tenth the width of a pixel. The indications and effects of misalignment were assessed in eight subjects from a placebo-controlled double-blind crossover study on the effects of cocaine on regional cerebral metabolic rates for glucose. Visual examination of a difference image provided a sensitive and accurate tool for assessing image alignment. Image alignment within 2.8 mm was essential to reduce variability of measured cerebral metabolic rates for glucose. Misalignment by this amount introduced errors on the order of 20% in the computed metabolic rate for glucose. These errors propagate to the difference between metabolic rates for a subject measured in basal versus perturbed states.

  16. Cerebral glucose metabolism in neurofibromatosis type 1 assessed with [18F]-2-fluoro-2-deoxy-D-glucose and PET.

    PubMed Central

    Balestri, P; Lucignani, G; Fois, A; Magliani, L; Calistri, L; Grana, C; Di Bartolo, R M; Perani, D; Fazio, F

    1994-01-01

    Cerebral PET with [18F]-2-fluoro-2-deoxy-D-glucose has been performed in four patients with neurofibromatosis type 1 (NF1) to assess the relation between cerebral metabolic activity, MRI, and the presence of neurological symptoms, including seizures, as well as mental and language retardation. Widespread hypometabolism occurred in three of the patients. The lesions on MRI, which were localised in the subcortical white matter and grey structures, had normal rates of glucose metabolism. This finding suggests that the abnormalities seen on MRI are not due to defective blood supply, localised oedema, or grey matter heterotopic foci as previously hypothesised. The presence of the hypometabolic areas seems to be inconsistently related to the occurrence of seizures and is not proportional to the degree of mental impairment. This study provides evidence of a widespread cerebral hypometabolism that is not related to the presence of MRI abnormalities; conversely normal metabolism was present in the areas with an abnormal MRI signal. Images PMID:7798976

  17. Induction of microcin B17 formation in Escherichia coli ZK650 by limitation of oxygen and glucose is independent of glucose consumption rate

    NASA Technical Reports Server (NTRS)

    Gao, Q.; Fang, A.; Demain, A. L.

    2001-01-01

    We examined the consumption of glucose from the media in which Escherichia coli ZK650 was grown. This organism, which produces the polypeptide antibiotic microcin B17 best under conditions of limiting supplies of glucose and air, was grown with a low level of glucose (0.5 mg/ml) as well as a high level (5.0 mg/ml) under both high and low aeration. Glucose consumption rates were virtually identical under both high and low aeration. Thus, glucose consumption rate is not a regulating factor in microcin B17 formation.

  18. p-Synephrine stimulates glucose consumption via AMPK in L6 skeletal muscle cells.

    PubMed

    Hong, Na-Young; Cui, Zhi-Gang; Kang, Hee-Kyoung; Lee, Dae-Ho; Lee, Young-Ki; Park, Deok-Bae

    2012-02-24

    Interest in p-synephrine, the primary protoalkaloid in the extract of bitter orange and other citrus species, has increased due to its various pharmacological effects and related adverse effects. The lipolytic activity of p-synephrine has been repeatedly revealed by in vitro and in vivo studies and p-synephrine is currently marketed as a dietary supplement for weight loss. The present study investigated the effect of p-synephrine on glucose consumption and its action mechanism in L6 skeletal muscle cells. Treatment of L6 skeletal muscle cells with p-synephrine (0-100μM) did not affect cell viability and increased basal glucose consumption up to 50% over the control in a dose-dependent manner. The basal- or insulin-stimulated lactic acid production as well as glucose consumption was significantly increased by the addition of p-synephrine. p-Synephrine stimulated the phosphorylation of AMPK but not of Akt. p-Synephrine-induced glucose consumption was sensitive to the inhibition of AMPK but not to the inhibition of PI3 kinase. p-Synephrine also stimulated the translocation of Glut4 from the cytoplasm to the plasma membrane; this stimulation was suppressed by the inhibition of AMPK, but not of PI3 kinase. Taken together, p-synephrine can stimulate glucose consumption (Glut4-dependent glucose uptake) by stimulating AMPK activity, regardless of insulin-stimulated PI3 kinase-Akt activity in L6 skeletal muscle cells.

  19. Low Cerebral Glucose Metabolism: A Potential Predictor for the Severity of Vascular Parkinsonism and Parkinson's Disease.

    PubMed

    Xu, Yunqi; Wei, Xiaobo; Liu, Xu; Liao, Jinchi; Lin, Jiaping; Zhu, Cansheng; Meng, Xiaochun; Xie, Dongsi; Chao, Dongman; Fenoy, Albert J; Cheng, Muhua; Tang, Beisha; Zhang, Zhuohua; Xia, Ying; Wang, Qing

    2015-11-01

    This study explored the association between cerebral metabolic rates of glucose (CMRGlc) and the severity of Vascular Parkinsonism (VP) and Parkinson's disease (PD). A cross-sectional study was performed to compare CMRGlc in normal subjects vs. VP and PD patients. Twelve normal subjects, 22 VP, and 11 PD patients were evaluated with the H&Y and MMSE, and underwent 18F-FDG measurements. Pearson's correlations were used to identify potential associations between the severity of VP/PD and CMRGlc. A pronounced reduction of CMRGlc in the frontal lobe and caudate putamen was detected in patients with VP and PD when compared with normal subjects. The VP patients displayed a slight CMRGlc decrease in the caudate putamen and frontal lobe in comparison with PD patients. These decreases in CMRGlc in the frontal lobe and caudate putamen were significantly correlated with the VP patients' H&Y, UPDRS II, UPDRS III, MMSE, cardiovascular, and attention/memory scores. Similarly, significant correlations were observed in patients with PD. This is the first clinical study finding strong evidence for an association between low cerebral glucose metabolism and the severity of VP and PD. Our findings suggest that these changes in glucose metabolism in the frontal lobe and caudate putamen may underlie the pathophysiological mechanisms of VP and PD. As the scramble to find imaging biomarkers or predictors of the disease intensifies, a better understanding of the roles of cerebral glucose metabolism may give us insight into the pathogenesis of VP and PD.

  20. [Study of regional cerebral glucose metabolism, in man, while awake or asleep, by positron emission tomography].

    PubMed

    Franck, G; Salmon, E; Poirrier, R; Sadzot, B; Franco, G

    1987-03-01

    Measurements of regional cerebral glucose uptake by the 18F-fluorodeoxyglucose technique (18FDG) and positron emission tomography (PET) along with polygraph recordings were made serially during relaxed wakefulness and different stages of nocturnal sleep in two right-handed normal volunteers. During stage III-IV sleep, values declined diffusely in both hemispheric regions (-31%), thalamus (-33%), cerebellum (-33%) and brain stem (-25%). During paradoxical sleep regional values increased diffusely compared with slow wave sleep. Compared to wakefulness, regional metabolic values seemed to increase but the results were more variable from one volunteer to the other. These preliminary data indicate important regional alterations in cerebral metabolism between sleep states.

  1. Similarities of cerebral glucose metabolism in Alzheimer's and Parkinsonian dementia

    SciTech Connect

    Kuhl, D.E.; Metter, E.J.; Benson, D.F.; Ashford, J.W.; Riege, W.H.; Fujikawa, D.G.; Markham, C.H.; Maltese, A.

    1985-05-01

    In the dementia of probable Alzheimer's Disease (AD), there is a decrease in the metabolic ratio of parietal cortex/caudate-thalamus which relates measures in the most and in the least severely affected locations. Since some demented patients with Parkinson's Disease (PDD) are known to share pathological and neurochemical features with AD patients, the authors evaluated if the distribution of cerebral hypometabolism in PDD and AD were the same. Local cerebral metabolic rates were determined using the FDG method and positron tomography in subjects with AD (N=23), and PDD (N=7), multiple infarct dementia (MID)(N=6), and controls (N=10). In MID, the mean par/caudthal ratio was normal (0.79 +- 0.9, N=6). In AD and PDD patients, this ratio correlated negatively with both the severity (r=-0.624, rho=0.001) and duration (r=-0.657, rho=0.001) of dementia. The ratio was markedly decreased in subjects with mild to severe dementia (0.46 +- 0.09, N=21) and with dementia duration greater than two years (0.44 +- 0.08, N=18), but the ratio was also significantly decreased in patients with less advanced disease, i.e., when dementia was only questionable (0.64 +- 0.14, N=9) (t=2.27, rho<0.037) and when duration was two years or less (0.62 +- 0.13, N=12)(t=2.88, rho<0.009). This similarity of hypometabolism in AD and PDD is additional evidence that a common mechanism may operate in both disorders. The par/caud-thal metabolic ratio may be an index useful in the differential diagnosis of early dementia.

  2. Adaptive use of a personal glucose meter (PGM) for acute biotoxicity assessment based on the glucose consumption of microbes.

    PubMed

    Fang, Deyu; Gao, Guanyue; Yu, Yuan; Shen, Jie; Zhi, Jinfang

    2016-05-10

    In this study, a new method for acute biotoxicity assessment was proposed by measuring the glucose consumption of microbes with a personal glucose meter (PGM). To obtain an ideal biotoxicity assessment performance, an appropriate microbe was selected first, and then the relevant parameters, such as temperature and microbial concentration were optimized. Under the optimized parameters, the acute biotoxicity of four environmental pollutants (As(3+), Ni(2+), 4-chlorophenol, and 2,4-dichlorophenol), three wastewater samples and three soil samples were evaluated. This technology breakthrough will help us develop a low cost, easy to use water-environmental early-warning kit.

  3. Sugarcoated isolation: evidence that social avoidance is linked to higher basal glucose levels and higher consumption of glucose

    PubMed Central

    Ein-Dor, Tsachi; Coan, James A.; Reizer, Abira; Gross, Elizabeth B.; Dahan, Dana; Wegener, Meredyth A.; Carel, Rafael; Cloninger, Claude R.; Zohar, Ada H.

    2015-01-01

    Objective: The human brain adjusts its level of effort in coping with various life stressors as a partial function of perceived access to social resources. We examined whether people who avoid social ties maintain a higher fasting basal level of glucose in their bloodstream and consume more sugar-rich food, reflecting strategies to draw more on personal resources when threatened. Methods: In Study 1 (N = 60), we obtained fasting blood glucose and adult attachment orientations data. In Study 2 (N = 285), we collected measures of fasting blood glucose and adult attachment orientations from older adults of mixed gender, using a measure of attachment style different from Study 1. In Study 3 (N = 108), we examined the link between trait-like attachment avoidance, manipulation of an asocial state, and consumption of sugar-rich food. In Study 4 (N = 115), we examined whether manipulating the social network will moderate the effect of attachment avoidance on consumption of sugar-rich food. Results: In Study 1, fasting blood glucose levels corresponded with higher attachment avoidance scores after statistically adjusting for time of assessment and interpersonal anxiety. For Study 2, fasting blood glucose continued to correspond with higher adult attachment avoidance even after statistically adjusting for interpersonal anxiety, stress indices, age, gender, social support and body mass. In Study 3, people high in attachment avoidance consume more sugar-rich food, especially when reminded of asocial tendencies. Study 4 indicated that after facing a stressful task in the presence of others, avoidant people gather more sugar-rich food than more socially oriented people. Conclusion: Results are consistent with the suggestion that socially avoidant individuals upwardly adjust their basal glucose levels and consume more glucose-rich food with the expectation of increased personal effort because of limited access to social resources. Further investigation of this link is warranted

  4. Regional Cerebral Glucose Metabolism in Novelty Seeking and Antisocial Personality: A Positron Emission Tomography Study

    PubMed Central

    Park, So Hyeon; Park, Hyun Soo

    2016-01-01

    Novelty seeking (NS) and antisocial personality (ASP) are commonly exhibited by those who suffer from addictions, such as substance abuse. NS has been suggested to be a fundamental aspect of ASP. To investigate the neurobiological substrate of NS and ASP, we tested the relationship between regional cerebral glucose metabolism and the level of NS, determining the differences between individuals with and without ASP. Seventy-two healthy adults (43 males, mean age±SD=38.8±16.6 years, range=20~70 years; 29 females, 44.2±20.1 years, range=19~72 years) underwent resting-state brain positron emission tomography (PET) 40 minutes after 18F-fluorodeoxyglucose (FDG) injection. Within 10 days of the FDG PET study, participants completed Cloninger's 240-item Temperament and Character Inventory (TCI) to determine NS scores. Participants with and without ASP were grouped according to their TCI profiles. Statistical parametric mapping analysis was performed using the FDG PET and TCI profile data. NS scores positively correlated with metabolism in the left anterior cingulate gyrus and the insula on both sides of the brain and negatively correlated with metabolism in the right pallidum and putamen. Participants with ASP showed differences in cerebral glucose metabolism across various cortical and subcortical regions, mainly in the frontal and prefrontal areas. These data demonstrate altered regional cerebral glucose metabolism in individuals with NS and ASP and inform our understanding of the neurobiological substrates of problematic behaviors and personality disorders. PMID:27574485

  5. Fatal hypoglycemia in malignant pheochromocytoma: direct glucose consumption as suggested by (18)F-2-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography imaging.

    PubMed

    Habra, Mouhammed Amir; Núñez, Rodolfo; Chuang, Hubert; Ayala-Ramirez, Montserrat; Rich, Thereasa; Kyle, Karen; Jimenez, Camilo

    2010-02-01

    We present a patient with metastatic pheochromocytoma, who developed progressive and fatal hypoglycemia most likely secondary to direct tumor glucose consumption that did not respond to high-dose glucose infusion, corticosteroids, or glucagon therapy. The pattern of glucose uptake on (18)F-2-fluoro-2-deoxy-D-glucose positron emission tomography, with preferential tumor glucose uptake in association with a marked reduction in normal uptake in the heart, muscles, and brain, is highly suggestive of direct consumption of glucose by the tumor rather than insulin-like growth factor-2 mediated hypoglycemia. In patients with large-volume metastatic malignancies, direct tumor glucose consumption should be considered in the differential diagnosis of hypoglycemia. Nuclear medicine imaging techniques can illustrate the pathophysiology of hypoglycemia in such cases.

  6. Cerebral glucose metabolism in childhood-onset obsessive-compulsive disorder

    SciTech Connect

    Swedo, S.E.; Schapiro, M.B.; Grady, C.L.; Cheslow, D.L.; Leonard, H.L.; Kumar, A.; Friedland, R.; Rapoport, S.I.; Rapoport, J.L.

    1989-06-01

    The cerebral metabolic rate for glucose was studied in 18 adults with childhood-onset obsessive-compulsive disorder (OCD) and in age- and sex-matched controls using positron emission tomography and fludeoxyglucose F 18. Both groups were scanned during rest, with reduced auditory and visual stimulation. The group with OCD showed an increased glucose metabolism in the left orbital frontal, right sensorimotor, and bilateral prefrontal and anterior cingulate regions as compared with controls. Ratios of regional activity to mean cortical gray matter metabolism were increased for the right prefrontal and left anterior cingulate regions in the group with OCD as a whole. Correlations between glucose metabolism and clinical assessment measures showed a significant relationship between metabolic activity and both state and trait measurements of OCD and anxiety as well as the response to clomipramine hydrochloride therapy. These results are consistent with the suggestion that OCD may result from a functional disturbance in the frontal-limbic-basal ganglia system.

  7. Brain metabolism in autism. Resting cerebral glucose utilization rates as measured with positron emission tomography

    SciTech Connect

    Rumsey, J.M.; Duara, R.; Grady, C.; Rapoport, J.L.; Margolin, R.A.; Rapoport, S.I.; Cutler, N.R.

    1985-05-01

    The cerebral metabolic rate for glucose was studied in ten men (mean age = 26 years) with well-documented histories of infantile autism and in 15 age-matched normal male controls using positron emission tomography and (F-18) 2-fluoro-2-deoxy-D-glucose. Positron emission tomography was completed during rest, with reduced visual and auditory stimulation. While the autistic group as a whole showed significantly elevated glucose utilization in widespread regions of the brain, there was considerable overlap between the two groups. No brain region showed a reduced metabolic rate in the autistic group. Significantly more autistic, as compared with control, subjects showed extreme relative metabolic rates (ratios of regional metabolic rates to whole brain rates and asymmetries) in one or more brain regions.

  8. Early Detection of Cerebral Glucose Uptake Changes in the 5XFAD Mouse

    PubMed Central

    I.R, Macdonald; D.R, DeBay; G.A, Reid; T.P, O’Leary; C.T, Jollymore; G, Mawko; S, Burrell; E, Martin; C.V, Bowen; R.E, Brown; S, Darvesh

    2014-01-01

    Brain glucose hypometabolism has been observed in Alzheimer’s disease (AD) patients, and is detected with 18F radiolabelled glucose, using positron emission tomography. A pathological hallmark of AD is deposition of brain β-amyloid plaques that may influence cerebral glucose metabolism. The five times familial AD (5XFAD) mouse is a model of brain amyloidosis exhibiting AD-like phenotypes. This study examines brain β-amyloid plaque deposition and 18FDG uptake, to search for an early biomarker distinguishing 5XFAD from wild-type mice. Thus, brain 18FDG uptake and plaque deposition was studied in these mice at age 2, 5 and 13 months. The 5XFAD mice demonstrated significantly reduced brain 18FDG uptake at 13 months relative to wild-type controls but not in younger mice, despite substantial β-amyloid plaque deposition. However, by comparing the ratio of uptake values for glucose in different regions in the same brain, 5XFAD mice could be distinguished from controls at age 2 months. This method of measuring altered glucose metabolism may represent an early biomarker for the progression of amyloid deposition in the brain. We conclude that brain 18FDG uptake can be a sensitive biomarker for early detection of abnormal metabolism in the 5XFAD mouse when alternative relative uptake values are utilized. PMID:24801216

  9. Patterns of cerebral glucose utilization in depression, multiple infarct dementia, and Alzheimer's disease

    SciTech Connect

    Kuhl, D.E.; Metter, E.J.; Riege, W.H.

    1983-01-01

    Patterns of local cerebral glucose utilization were determined in moderately to severely disabled patients with depression (n=7), multiple infarct dementia (n=6), and Alzheimer's disease (n=6), and in normal controls (n=6), using positron emission tomography with the /sup 18/F-fluorodeoxyglucose method. Average global metabolic rate was decreased 30% in patients with Alzheimer's disease, but overlap among the other groups reduced the discriminant value of this measure. In depressed patients, the cerebral metabolic pattern was normal, except for evidence of hypometabolic zone in the posterior-inferior frontal cortex which was of marginal statistical significance. In multiple infarct dementia, focal metabolic defects were scattered throughout the brain and exceeded the extent of infarction. In Alzheimer's disease, metabolism was markedly reduced in cortex, especially parietal cortex, but relatively preserved in caudate, thalamus, anterior cingulate gyrus, pre and post central gyrus, and calcarine occipital cortex, a pattern duplicating the degree and location of pathological and neurochemical alterations characteristic of this disorder.

  10. Regional cerebral glucose metabolic rate in human sleep assessed by positron emission tomography

    SciTech Connect

    Buchsbaum, M.S.; Wu, J.; Hazlett, E.; Sicotte, N.; Bunney, W.E. Jr. ); Gillin, J.C. )

    1989-01-01

    The cerebral metabolic rate of glucose was measured during nighttime sleep in 36 normal volunteers using positron emission tomography and fluorine-18-labeled 2-deoxyglucose (FDG). In comparison to waking controls, subjects given FDG during non-rapid eye movement (NREM) sleep showed about a 23% reduction in metabolic rate across the entire brain. This decrease was greater for the frontal than temporal or occipital lobes, and greater for basal ganglia and thalamus than cortex. Subjects in rapid eye movement (REM) sleep tended to have higher cortical metabolic rates than walking subjects. The cingulate gyrus was the only cortical structure to show a significant increase in glucose metabolic rate in REM sleep in comparison to waking. The basal ganglia were relatively more active on the right in REM sleep and symmetrical in NREM sleep.

  11. Targeting glucose consumption and autophagy in myeloma with the novel nucleoside analogue 8-aminoadenosine.

    PubMed

    Shanmugam, Mala; McBrayer, Samuel K; Qian, Jun; Raikoff, Kiril; Avram, Michael J; Singhal, Seema; Gandhi, Varsha; Schumacker, Paul T; Krett, Nancy L; Rosen, Steven T

    2009-09-25

    Multiple myeloma, an incurable plasma cell malignancy, is characterized by altered cellular metabolism and resistance to apoptosis. Recent connections between glucose metabolism and resistance to apoptosis provide a compelling rationale for targeting metabolic changes in cancer. In this study, we have examined the ability of the purine analogue 8-aminoadenosine to acutely reduce glucose consumption by regulating localization and expression of key glucose transporters. Myeloma cells counteracted the metabolic stress by activating autophagy. Co-treatment with inhibitors of autophagy results in marked enhancement of cell death. Glucose consumption by drug-resistant myeloma cells was unaffected by 8-aminoadenosine, and accordingly, no activation of autophagy was observed. However, these cells can be sensitized to 8-aminoadenosine under glucose-limiting conditions. The prosurvival autophagic response of myeloma to nutrient deprivation or to nucleoside analogue treatment has not been described previously. This study establishes the potential of metabolic targeting as a broader means to kill and sensitize myeloma and identifies a compound that can achieve this goal.

  12. Metabolic responses to prolonged consumption of glucose- and fructose-sweetened beverages are not associated with postprandial or 24-hour glucose and insulin excursions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It has been proposed that the adverse metabolic effects of chronic consumption of sugar-sweetened beverages which contain both glucose and fructose are a consequence of increased circulating glucose and insulin excursions, i.e dietary glycemic index (GI). Objective: We determined if the greater adv...

  13. Effects of oxotremorine on local glucose utilization in the rat cerebral cortex

    SciTech Connect

    Dam, M.; Wamsley, J.K.; Rapoport, S.I.; London, E.D.

    1982-08-01

    The (/sup 14/C)2-deoxy-D-glucose technique was used to examine the effects of central muscarinic stimulation on local cerebral glucose utilization (LCGU) in the cerebral cortex of the unanesthetized rat. Systemic administration of the muscarinic agonist oxotremorine (OXO, 0.1 to 1.0 mg/kg, i.p.) increased LCGU in the neocortex, mesocortex, and paleocortex. In the neocortex, OXO was more potent in elevating LCGU of the auditory, frontal, and sensorimotor regions compared with the visual cortex. Within these neocortical regions, OXO effects were greatest in cortical layers IV and V. OXO effects were more dramatic in the neocortex than in the meso- or paleocortex, and no significant effect occurred in the perirhinal and pyriform cortices. OXO-induced LCGU increases were not influenced by methylatropine (1 mg/kg, s.c.) but were antagonized completely by scopolamine (2.5 mg/kg, i.p.). Scopolamine reduced LCGU in layer IV of the auditory cortex and in the retrosplenial cortex. The distribution and magnitude of the cortical LCGU response to OXO apparently were related to the distributions of cholinergic neurochemical markers, especially high affinity muscarinic binding sites.

  14. Determination of patterns of regional cerebral glucose metabolism in normal aging and dementia

    SciTech Connect

    Alavi, A.; Chawluk, J.; Hurtig, H.; Dann, R.; Rosen, M.; Kushner, M.; Silver, F.; Reivich, M.

    1985-05-01

    Regional cerebral metabolic rates for glucose (rCMRGlc) were measured using 18F-FDG and positron emission tomography (PET) in 14 patients with probable Alzheimer's disease (AD) (age=64), 9 elderly controls (age=61), and 9 young controls (age=28). PET studies were performed without sensory stimulation or deprivation. Metabolic rates in individual brain regions were determined using an atlas overlay. Relative metabolic rates (rCMRGl c/global CMRGlc) were determined for all subjects. Comparison of young and elderly controls demonstrated significant decreases in frontal metabolism (rho<0.005) and right inferior parietal (IP) metabolism (rho<0.02) with normal aging. Patients with mild-moderate AD (NMAD) (n=8) when compared to age-matched controls, showed further reduction in right IP metabolism (rho<0.02). SAD patients also demonstrated metabolic decrements in left hemisphere language areas (rho<0.01). This latter finding is consistent with language disturbance observed late in the course of the disease. Out data reveal progressive changes in patterns of cerebral glucose utilization with aging and demential with reflect salient clinical features of these processes.

  15. Effects of gamma-aminobutyric acid agonist and antagonist drugs on local cerebral glucose utilization

    SciTech Connect

    Palacios, J.M.; Kuhar, M.J.; Rapoport, S.I.; London, E.D.

    1982-07-01

    The (/sup 14/C)2-deoxy-D-glucose method of Sokoloff et al. was used to study local cerebral glucose utilization (LCGU) in rats treated with gamma-aminobutyric acid (GABA) agonist (muscimol and 4,5,6,7-tetrahydroisoxazolo(5,4-C)pyridin-3-ol, THIP) and antagonist (bicuculline) drugs. It was of interest to determine if the pattern of LCGU responses to GABA agonists and antagonists administered systemically in vivo would reflect the known distributions of markers for central GABAergic synapses. The patterns of LCGU responses to muscimol and THIP generally were similar. Most brain regions showed dose-dependent decreases in LCGU; others showed no effects; but the red nucleus showed an increase. The GABA antagonist bicuculline produced convulsions and variable LCGU responses, depending on the time of administration. Bicuculline also partially antagonized the depressant effects of muscimol of LCGU. The magnitudes and distribution of in vivo cerebral metabolic responses to specific GABA agonists were not correlated simply with markers for GABAergic synapses. This lack of correlation indicates that additional factors, such as neural circuitry, regulate the LCGU responses to GABAergic drugs.

  16. Berberine promotes glucose consumption independently of AMP-activated protein kinase activation.

    PubMed

    Xu, Miao; Xiao, Yuanyuan; Yin, Jun; Hou, Wolin; Yu, Xueying; Shen, Li; Liu, Fang; Wei, Li; Jia, Weiping

    2014-01-01

    Berberine is a plant alkaloid with anti-diabetic action. Activation of AMP-activated protein kinase (AMPK) pathway has been proposed as mechanism for berberine's action. This study aimed to examine whether AMPK activation was necessary for berberine's glucose-lowering effect. We found that in HepG2 hepatocytes and C2C12 myotubes, berberine significantly increased glucose consumption and lactate release in a dose-dependent manner. AMPK and acetyl coenzyme A synthetase (ACC) phosphorylation were stimulated by 20 µmol/L berberine. Nevertheless, berberine was still effective on stimulating glucose utilization and lactate production, when the AMPK activation was blocked by (1) inhibition of AMPK activity by Compound C, (2) suppression of AMPKα expression by siRNA, and (3) blockade of AMPK pathway by adenoviruses containing dominant-negative forms of AMPKα1/α2. To test the effect of berberine on oxygen consumption, extracellular flux analysis was performed in Seahorse XF24 analyzer. The activity of respiratory chain complex I was almost fully blocked in C2C12 myotubes by berberine. Metformin, as a positive control, showed similar effects as berberine. These results suggest that berberine and metformin promote glucose metabolism by stimulating glycolysis, which probably results from inhibition of mitochondrial respiratory chain complex I, independent of AMPK activation.

  17. Chronic levodopa treatment alters basal and dopamine agonist-stimulated cerebral glucose utilization

    SciTech Connect

    Engber, T.M.; Susel, Z.; Kuo, S.; Chase, T.N. )

    1990-12-01

    The effect of chronic levodopa administration on the functional activity of the basal ganglia and its output regions was evaluated by means of the 2-deoxyglucose (2-DG) autoradiographic technique in rats with a unilateral 6-hydroxydopamine lesion of the nigrostriatal pathway. The rates of local cerebral glucose utilization were studied under basal conditions as well as in response to challenge with a selective D1 or D2 dopamine-receptor agonist. Levodopa (100 mg/kg/d, i.p.) was administered for 19 d either continuously via infusion with an osmotic pump or intermittently by twice-daily injections. Following a 3-d washout, glucose utilization was found to be decreased by both levodopa regimens in the nucleus accumbens; intermittent levodopa also decreased glucose utilization in the entopeduncular nucleus, subthalamic nucleus, ventrolateral thalamus, ventromedial thalamus, ventroposterolateral thalamus, and lateral habenula. In control (lesioned and treated chronically with saline) rats, the D1 agonist SKF 38393 (5 mg/kg, i.v.) increased 2-DG uptake in the substantia nigra pars reticulata and entopeduncular nucleus ipsilateral to the lesion by 84% and 56%, respectively. Both continuous and intermittent levodopa blunted the SKF 38393-induced elevation in glucose metabolism in the substantia nigra pars reticulata, while intermittent levodopa also attenuated the increase in the entopeduncular nucleus. The D2 agonist quinpirole (0.4 mg/kg, i.v.) did not increase glucose utilization in any brain region in control animals; following intermittent levodopa treatment, however, quinpirole increased 2-DG uptake by 64% in the subthalamic nucleus and by 39% in the deep layers of the superior colliculus on the ipsilateral side.

  18. Effects of nitrous oxide on oxygen consumption by isolated cerebral cortex mitochondria

    SciTech Connect

    Becker, G.L.; Pelligrino, D.A.; Miletich, D.J.; Albrecht, R.F.

    1986-04-01

    The influence of N2O on O2 consumption by mitochondria isolated from the cerebral cortex of goats was examined in incubations preequilibrated with N2O-O2 or N2-O2. Rates of O2 consumption were measured polarographically in a closed system while adenosine triphosphate (ATP) formation was maximal (after addition of excess adenosine diphosphate (ADP), state 3 respiration) and then when it was at zero (after addition of excess oligomycin, state 4 respiration). Compared with 90% N2, 90% N2O produced no change in the rate of state 3 respiration; but an observed 9% decrease in the state 4 rate and an 11% increase in the state 3: state 4 ratio were statistically significant (P less than 0.05). These differences were not seen with N2 and N2O at 70% rather than at 90%, or when succinate rather than pyruvate-malate was used as the respiratory substrate. We conclude the following: Unlike other inhalation anesthetics, N2O at comparable anesthetic concentrations does not inhibit mitochondrial electron transport or ATP formation coupled to it (oxidative phosphorylation). N2O does inhibit one or more other processes, as yet unidentified, which are energetically coupled to electron transport. The increased cerebral O2 consumption that accompanies N2O anesthesia cannot be attributed to a direct effect of N2O on mitochondrial respiration.

  19. Consumption of a glucose diet enhances the sensitivity of pancreatic islets from adrenalectomized genetically obese (ob/ob) mice to glucose-induced insulin secretion.

    PubMed

    Mistry, A M; Chen, N G; Lee, Y S; Romsos, D R

    1995-03-01

    Consumption of a glucose diet for 4 d markedly elevates plasma insulin concentrations in adrenalectomized ob/ob mice. The present study examined regulation of insulin secretion from perifused pancreatic islets of female adrenalectomized genetically obese (ob/ob) and lean mice fed a glucose diet for 4 d. These mice were fed a high carbohydrate commercial diet for 21 d, or the high carbohydrate commercial diet for 17 d and a purified high glucose diet for the last 4 d of the 21-d feeding period. Adrenalectomy equalized plasma insulin concentrations, pancreatic islet size, rates of insulin secretion in response to 20 mmol/L glucose and insulin mRNA relative abundance in ob/ob and lean mice fed the commercial diet, but the threshold for glucose-induced insulin secretion determined by a linear glucose gradient remained lower in islets from adrenalectomized ob/ob mice than in those from lean mice (3.8 +/- 0.1 vs. 4.9 +/- 0.2 mmol/L glucose), and addition of acetylcholine to the perifusate lowered the threshold to only 2.0 +/- 0.1 mmol/L glucose in islets from ob/ob mice vs. 3.3 +/- 0.1 mmol/L glucose in lean mice. Switching from the commercial diet to the glucose diet for 4 d increased plasma insulin concentrations -10-fold in islets from adrenalectomized ob/ob mice without affecting islet size, 20 mmol/L glucose-induced insulin secretion or insulin mRNA abundance. Consumption of the glucose diet did, however, markedly lower the threshold for glucose-induced insulin secretion in islets from adrenalectomized ob/ob mice to approximate the abnormally low glucose thresholds in intact ob/ob mice.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Fish oil consumption prevents glucose intolerance and hypercorticosteronemy in footshock-stressed rats

    PubMed Central

    2011-01-01

    Background Environmental stress plays an important role in the development of glucose intolerance influencing lipid and glucose metabolism through sympathetic nervous system, cytokines and hormones such as glucocorticoids, catecholamines and glucagon. Otherwise, fish oil prevents glucose intolerance and insulin resistance. Although the mechanisms involved are not fully understood, it is known that sympathetic and HPA responses are blunted and catecholamines and glucocorticoids concentrations can be modulated by fish consumption. The aim of the present study was to evaluate whether fish oil, on a normal lipidic diet: 1) could prevent the effect of footshock-stress on the development of glucose intolerance; 2) modified adiponectin receptor and serum concentration; and 3) also modified TNF-α, IL-6 and interleukin-10 (IL-10) levels in adipose tissue and liver. The study was performed in thirty day-old male Wistar randomly assigned into four groups: no stressed (C) and stressed (CS) rats fed with control diet, and no stressed (F) and stressed (FS) rats fed with a fish oil rich diet. The stress was performed as a three daily footshock stress sessions. Results Body weight, carcass fat and protein content were not different among groups. FS presented a reduction on the relative weight of RET. Basal serum glucose levels were higher in CS and FS but 15 min after glucose load just CS remained with higher levels than other groups. Serum corticosterone concentration was increased in CS, this effect was inhibited in FS. However, 15 min after footshock-stress, corticosterone levels were similar among groups. IL-6 was increased in EPI of CS but fish oil consumption prevented IL-6 increase in FS. Similar levels of TNF-α and IL-10 in RET, EPI, and liver were observed among groups. Adipo R1 protein concentration was not different among groups. Footshock-stress did not modify AdipoR2 concentration, but fish oil diet increases AdipoR2 protein concentration. Conclusions Footshock

  1. Cerebral glucose utilization during sleep-wake cycle in man determined by positron emission tomography and [18F]2-fluoro-2-deoxy-D-glucose method.

    PubMed

    Maquet, P; Dive, D; Salmon, E; Sadzot, B; Franco, G; Poirrier, R; von Frenckell, R; Franck, G

    1990-04-09

    Using the [18F]fluorodeoxyglucose method and positron emission tomography, we studied cerebral glucose utilization during sleep and wakefulness in 11 young normal subjects. Each of them was studied at least thrice: during wakefulness, slow wave sleep (SWS) and rapid eye movement sleep (REMS), at 1 week intervals. Four stage 3-4 SWS and 4 REMS fulfilled the steady state conditions of the model. The control population consisted of 9 normal age-matched subjects studied twice during wakefulness at, at least, 1 week intervals. Under these conditions, the average difference between the first and the second cerebral glucose metabolic rates (CMRGlu was: -7.91 +/- 15.46%, which does not differ significantly from zero (P = 0.13). During SWS, a significant decrease in CMRGlu was observed as compared to wakefulness (mean difference: -43.80 +/- 14.10%, P less than 0.01). All brain regions were equally affected but thalamic nuclei had significantly lower glucose utilization than the average cortex. During REMS, the CMRGlu were as high as during wakefulness (mean difference: 4.30 +/- 7.40%, P = 0.35). The metabolic pattern during REMS appeared more heterogeneous than at wake. An activation of left temporal and occipital areas is suggested. It is hypothetized that energy requirements for maintaining membrane polarity are reduced during SWS because of a decreased rate of synaptic events. During REMS, cerebral glucose utilization is similar to that of wakefulness, presumably because of reactivated neurotransmission and increased need for ion gradients maintenance.

  2. Reversal of cerebral glucose hypometabolism on positron emission tomography with electroconvulsive therapy in an elderly patient with a psychotic episode.

    PubMed

    Hassamal, Sameer; Jolles, Paul; Pandurangi, Ananda

    2016-11-01

    AB, a 74-year-old Caucasian woman, was admitted for acute onset of psychosis, anxiety, and cognitive impairment. Pharmacotherapy was unsuccessful and the patient was referred for electroconvulsive therapy (ECT). Pre-ECT, (18) F-fluorodeoxyglucose-positron emission tomography (PET)/computed tomography showed extensive frontal, parietal, and temporal cortical hypometabolism suggestive of a neurodegenerative disease. After eight ECT sessions, the psychotic and anxiety symptoms as well as the cognitive impairment resolved. The rapid improvement in symptoms was more suggestive of a psychotic episode rather than dementia. Two days after the ECT course, (18) F-fluorodeoxyglucose-PET/computed tomography showed improvements in cerebral cortical hypometabolism, especially in the left parietal cortex, left temporal/occipital cortex. and bifrontal regions. At a follow-up visit 2 months after the ECT course, the psychotic episode was still in remission, and (18) F-fluorodeoxyglucose-PET/computed tomography continued to show improved cerebral cortical hypometabolism in these areas. This case illustrated the effect of ECT in reversing cerebral glucose hypometabolism on PET. The improvement in cerebral glucose hypometabolism may represent the neurophysiological mechanism of ECT in the treatment of a psychotic episode. Improved cerebral glucose hypometabolism was present 2 months post-ECT, which suggests that ECT caused sustained functional neural changes.

  3. Cerebral glucose metabolism after portacaval shunting in the rat. Patterns of metabolism and implications for the pathogenesis of hepatic encephalopathy.

    PubMed Central

    Lockwood, A H; Ginsberg, M D; Rhoades, H M; Gutierrez, M T

    1986-01-01

    The regional cerebral metabolic rate for glucose was measured in normal and portacaval shunted rats and the effects of unilateral carotid infusions of "threshold" amounts of ammonia were assessed. 8 wk after shunting the glucose metabolic rate was increased in all 20 brain regions sampled. Effects on subcortical and phylogenetically older regions of the brain were most pronounced with a 74% increase observed in the reticular formation at the collicular level. Increases in the cerebral cortex ranged from 12 to 18%. Unilateral infusions of ammonia did not affect behavior but altered the electroencephalogram and selectively increased the glucose metabolic rate in the thalamus, hypothalamus, and substantia nigra in half of the animals, a pattern similar to that seen after a portacaval shunt, suggesting hyperammonemia as the cause of postshunt increases in glucose metabolism. Visual inspection of autoradiograms, computed correlation coefficients relating interregional metabolism, and principal component analysis suggest that normal cerebral metabolic and functional interrelationships are altered by shunting. Ammonia stimulation of the hypothalamic satiety centers may suppress appetite and lead to cachexia. Reductions in the ammonia detoxification capacity of skeletal muscle may increase the probability of developing future episodes of hyperammonemia, perpetuating the process. Direct effects of ammonia on specific brain centers such as the dorsomedial hypothalamus and reticular activating system may combine with global disruptions of cerebral metabolic-functional relationships to produce the protean manifestations of portal-systemic encephalopathy. Images PMID:3722388

  4. Reduced cerebral glucose metabolism and increased brain capillary permeability following high-dose methotrexate chemotherapy: a positron emission tomographic study

    SciTech Connect

    Phillips, P.C.; Dhawan, V.; Strother, S.C.; Sidtis, J.J.; Evans, A.C.; Allen, J.C.; Rottenberg, D.A.

    1987-01-01

    Regional glucose metabolic rate constants and blood-to-brain transport of rubidium were estimated using positron emission tomography in an adolescent patient with a brain tumor, before and after chemotherapy with intravenous high-dose methotrexate. Widespread depression of cerebral glucose metabolism was apparent 24 hours after drug administration, which may reflect reduced glucose phosphorylation, and the influx rate constant for /sup 82/Rb was increased, indicating a drug-induced alteration in blood-brain barrier function. Associated changes in neuropsychological performance, electroencephalogram, and plasma amino acid concentration were identified in the absence of evidence of systemic methotrexate toxicity, suggesting primary methotrexate neurotoxicity.

  5. Insulin regulates glucose consumption and lactate production through reactive oxygen species and pyruvate kinase M2.

    PubMed

    Li, Qi; Liu, Xue; Yin, Yu; Zheng, Ji-Tai; Jiang, Cheng-Fei; Wang, Jing; Shen, Hua; Li, Chong-Yong; Wang, Min; Liu, Ling-Zhi; Jiang, Bing-Hua

    2014-01-01

    Although insulin is known to regulate glucose metabolism and closely associate with liver cancer, the molecular mechanisms still remain to be elucidated. In this study, we attempt to understand the mechanism of insulin in promotion of liver cancer metabolism. We found that insulin increased pyruvate kinase M2 (PKM2) expression through reactive oxygen species (ROS) for regulating glucose consumption and lactate production, key process of glycolysis in hepatocellular carcinoma HepG2 and Bel7402 cells. Interestingly, insulin-induced ROS was found responsible for the suppression of miR-145 and miR-128, and forced expression of either miR-145 or miR-128 was sufficient to abolish insulin-induced PKM2 expression. Furthermore, the knockdown of PKM2 expression also inhibited cancer cell growth and insulin-induced glucose consumption and lactate production, suggesting that PKM2 is a functional downstream effecter of insulin. Taken together, this study would provide a new insight into the mechanism of insulin-induced glycolysis.

  6. Stability of regional cerebral glucose metabolism in the normal brain measured by positron emission tomography

    SciTech Connect

    Tyler, J.L.; Strother, S.C.; Zatorre, R.J.; Alivisatos, B.; Worsley, K.J.; Diksic, M.; Yamamoto, Y.L.

    1988-05-01

    Cerebral glucose utilization (LCMRGI) was measured using the (/sup 18/F)fluorodeoxyglucose method with PET in two groups of ten healthy young volunteers, each scanned in a resting state under different methodological conditions. In addition, five subjects had a second scan within 48 hr. Mean hemispheric values averaged 45.8 +/- 3.3 mumol/100 g/min in the right cerebral hemisphere and 47.0 +/- 3.7 mumol/100 g/min in the left hemisphere. A four-way analysis of variance (group, sex, region, hemisphere) was carried out on the results using three different methods of data manipulation: (a) the raw values of glucose utilization, (b) LCMRGI values normalized by the mean hemispheric gray matter LCMRGI value, and (c) log transformed LCMRGI values. For all analysis techniques, significantly higher LCMRGI values were consistently seen in the left mid and posterior temporal area and caudate nucleus relative to the right, and in the right occipital region relative to the left. The coefficient of variation of intrasubject regional differences (9.9%) was significantly smaller than the coefficient of variation for regions between subjects (16.5%). No differences were noted between the sexes and no effect of repeat procedures was seen in subjects having multiple scans. In addition, inter-regional LCMRGI correlations were examined both in values from the 20 normal subjects, as well as in a set of hypothetical abnormal values. Results were compared with those reported from other PET centers; despite certain methodological differences, the intersubject and inter-regional variation of LCMRGI is fairly constant.

  7. PET imaging of cerebral perfusion and oxygen consumption in acute ischemic stroke: Relation to outcome

    SciTech Connect

    Marchal, G.; Serrati, C.; Rioux, P.; Petit-Taboue, M.C.; Viader, F.; Sayette, V. de la; Doze, F. le; Lonchon, P; Derlon, J.M.; Orgogozo, J.M.; Baron, J.C.

    1993-04-10

    The authors used positron emission tomography (PET) to assess the relation between combined imaging of cerebral blood flow and oxygen consumption 5-18 h after first middle cerebral artery (MCA) stroke and neurological outcome at 2 months. All 18 patients could be classified into three visually defined PET patterns of perfusion and oxygen consumption changes. Pattern 1 suggested extensive irreversible damage and was consistently associated with poor outcome. Pattern 2 suggested continuing ischemia and was associated with variable outcome. Pattern 3 with hyperperfusion and little or no metabolic alteration, was associated with excellent recovery, which suggests that early reperfusion is beneficial. This relation between PET and outcome was highly significant. The results suggest that within 5-18 h of stroke onset, PET is a good predictor of outcome in patterns 1 and 3, for which therapy seems limited. The absence of predictive value for pattern 2 suggests that it is due to a reversible ischemic state that is possibly amenable to therapy. These findings may have important implications for acute MCA stroke management and for patients' selection for therapeutic trials.

  8. Cerebral Blood Flow and Glucose Metabolism Measured With Positron Emission Tomography Are Decreased in Human Type 1 Diabetes

    PubMed Central

    van Golen, Larissa W.; Huisman, Marc C.; Ijzerman, Richard G.; Hoetjes, Nikie J.; Schwarte, Lothar A.; Lammertsma, Adriaan A.; Diamant, Michaela

    2013-01-01

    Subclinical systemic microvascular dysfunction exists in asymptomatic patients with type 1 diabetes. We hypothesized that microangiopathy, resulting from long-standing systemic hyperglycemia and hyperinsulinemia, may be generalized to the brain, resulting in changes in cerebral blood flow (CBF) and metabolism in these patients. We performed dynamic [15O]H2O and [18F]-fluoro-2-deoxy-d-glucose brain positron emission tomography scans to measure CBF and cerebral glucose metabolism (CMRglu), respectively, in 30 type 1 diabetic patients and 12 age-matched healthy controls after an overnight fast. Regions of interest were automatically delineated on coregistered magnetic resonance images and full kinetic analysis was performed. Plasma glucose and insulin levels were higher in patients versus controls. Total gray matter CBF was 9%, whereas CMRglu was 21% lower in type 1 diabetic subjects versus control subjects. We conclude that at real-life fasting glucose and insulin levels, type 1 diabetes is associated with decreased resting cerebral glucose metabolism, which is only partially explained by the decreased CBF. These findings suggest that mechanisms other than generalized microangiopathy account for the altered CMRglu observed in well-controlled type 1 diabetes. PMID:23530004

  9. Effect of glucose concentration on the rate of fructose consumption in native strains isolated from the fermentation of Agave duranguensis.

    PubMed

    Díaz-Campillo, M; Urtíz, N; Soto, O; Barrio, E; Rutiaga, M; Páez, J

    2012-12-01

    Studies on hexose consumption by Saccharomyces cerevisiae show that glucose is consumed faster than fructose when both are present (9:1 fructose to glucose) in the medium during the fermentation of Agave. The objective of this work was to select strains of S. cerevisiae that consume fructose equal to or faster than glucose at high fructose concentrations by analyzing the influence of different glucose concentrations on the fructose consumption rate. The optimal growth conditions were determined by a kinetics assay using high performance liquid chromatography (HPLC) using 50 g of glucose and 50 g of fructose per liter of synthetic medium containing peptone and yeast extract. Using the same substrate concentrations, strain ITD-00185 was shown to have a higher reaction rate for fructose over glucose. At 75 g of fructose and 25 g of glucose per liter, strain ITD-00185 had a productivity of 1.02 gL(-1) h(-1) after 40 h and a fructose rate constant of 0.071 h(-1). It was observed that glucose concentration positively influences fructose consumption when present in a 3:1 ratio of fructose to glucose. Therefore, adapted strains at high fructose concentrations could be used as an alternative to traditional fermentation processes.

  10. Positron computed tomography studies of cerebral glucose metabolism in man: theory and application in nuclear medicine.

    PubMed

    Phelps, M E

    1981-01-01

    The capability of positron computed tomography (PCT) to delineate the substructures of the brain and its facility for accurately measuring the local tissue radioactivity concentration allow the application of tracer kinetic models for the study of local cerebral function in man. This principle and an adaptation of the 14C-deoxyglucose (DG) model of Sokoloff et al. with 18F-2-fluoro-deoxy-D-glucose (FDG) is being used at UCLA. Brookhaven National Laboratory, University of Pennsylvania, NIH, and the Massachusetts General Hospital to determine the local cerebral glucose metabolic rate (LCMRGIc) in normal man at rest and during sensory activation and the changes that occur in patients with a variety of cerebral disorders. Kinetic studies with PCT have been employed to measure the rate constants of the model in different gray and white matter structures of the brain in both normal and ischemic states. The precision of the method in normals has been shown to be about +/- 5% for 1.5-2.0 sq cm regions of the brain. Studies in normals have yielded values for hemispheric CMRGIc that are in agreement with measurement using the Kety-Schmidt technique and LCMRGIc values in agreement with values in monkeys using DG autoradiography. Studies in volunteers subjected to visual and auditory stimulation are demonstrating the potential of this technique for investigating the human brain's response to different stimuli. STudies in patients with stroke show excellent correlation between the degree, extent, and particular structures involved and the clinical symptoms. The method consistently detected hypometabolism in cortical, thalamic, and striatal tissues that were dysfunctional due to deactivation or damage but which appeared normal on x-ray CT. Studies in patients with partial epilepsy have shown hypometabolic zones that highly correlated anatomically with interictal EEG spike foci and were associated with normal x-ray CT studies in 77% of the patients studied. The studies on

  11. Brain hyperthermia alters local cerebral glucose utilization: a comparison of hyperthermic agents.

    PubMed

    Mickley, G A; Cobb, B L; Farrell, S T

    1997-01-01

    Microwaves have been proposed to alter neural functioning through both thermal and non-thermal mechanisms. We attempted to determine if local cerebral glucose utilization (LCGU) depends on the type of hyperthermic agent employed. We exposed the heads of rats to two different hyperthermic agents (5.6 GHz microwave exposure or exposure to hot/moist air) to create a 2 degree C rise in midbrain temperature. Other rats were sham exposed and remained normothermic. The 2-Deoxy-D-glucose (2DG) autoradiographic method was then used to determine LCGU during a 45-min period of stable hyperthermia. Hyperthermia (created by either hyperthermic agent) caused a general rise in brain glucose utilization. Hot-air exposed rats showed significantly higher LCGUs than microwaved rats in portions of the motor cortex, hypothalamus, lateral lemniscus and the substantia nigra (reticulata). Microwave exposure did not produce significantly higher levels of LCGU (compared to hot-air exposed hyperthermic controls) in any of the 47 brain areas sampled. A time analysis of lateral hypothalamic (LH) temperature during these different heating procedures revealed that microwave exposure produced a more-rapid rise in temperature than did not/moist air. Thus, we wondered if the nuclei-specific differences in LCGU could be explained by localized differences in rate of brain heating during the two hyperthermic treatments. In a second study we carefully matched both the rate of lateral hypothalamic temperature rise and the peak temperatures achieved by our two hyperthermic methods and again measured LH LCGUs. We found that this precise matching eliminated the difference in hypothalamic LCGU previously observed following microwave or hot-air exposure. These data suggest that hyperthermia causes a general rise in brain metabolism and that (as long as steady state and rate of local brain temperature increase are well matched) microwave and hot-air induced hyperthermia produce similar changes in LCGU.

  12. Impaired fasting blood glucose is associated to cognitive impairment and cerebral atrophy in middle-aged non-human primates

    PubMed Central

    Djelti, Fathia; Dhenain, Marc; Terrien, Jérémy; Picq, Jean-Luc; Hardy, Isabelle; Champeval, Delphine; Perret, Martine; Schenker, Esther; Epelbaum, Jacques; Aujard, Fabienne

    2017-01-01

    Age-associated cognitive impairment is a major health and social issue because of increasing aged population. Cognitive decline is not homogeneous in humans and the determinants leading to differences between subjects are not fully understood. In middle-aged healthy humans, fasting blood glucose levels in the upper normal range are associated with memory impairment and cerebral atrophy. Due to a close evolutional similarity to Man, non-human primates may be useful to investigate the relationships between glucose homeostasis, cognitive deficits and structural brain alterations. In the grey mouse lemur, Microcebus murinus, spatial memory deficits have been associated with age and cerebral atrophy but the origin of these alterations have not been clearly identified. Herein, we showed that, on 28 female grey mouse lemurs (age range 2.4-6.1 years-old), age correlated with impaired fasting blood glucose (rs=0.37) but not with impaired glucose tolerance or insulin resistance. In middle-aged animals (4.1-6.1 years-old), fasting blood glucose was inversely and closely linked with spatial memory performance (rs=0.56) and hippocampus (rs=−0.62) or septum (rs=−0.55) volumes. These findings corroborate observations in humans and further support the grey mouse lemur as a natural model to unravel mechanisms which link impaired glucose homeostasis, brain atrophy and cognitive processes. PMID:28039490

  13. Significant decrease of broth viscosity and glucose consumption in erythromycin fermentation by dynamic regulation of ammonium sulfate and phosphate.

    PubMed

    Chen, Yong; Wang, Zejian; Chu, Ju; Zhuang, Yingping; Zhang, Siliang; Yu, Xiaoguang

    2013-04-01

    In this study, the effects of nitrogen sources on broth viscosity and glucose consumption in erythromycin fermentation were investigated. By controlling ammonium sulfate concentration, broth viscosity and glucose consumption were decreased by 18.2% and 61.6%, respectively, whereas erythromycin biosynthesis was little affected. Furthermore, erythromycin A production was increased by 8.7% still with characteristics of low broth viscosity and glucose consumption through the rational regulations of phosphate salt, soybean meal and ammonium sulfate. It was found that ammonium sulfate could effectively control proteinase activity, which was correlated with the utilization of soybean meal as well as cell growth. The pollets formation contributed much to the decrease of broth viscosity. The accumulation of extracellular propionate and succinate under the new regulation strategy indicated that higher propanol consumption might increase the concentration of methylmalonyl-CoA and propionyl-CoA and thus could increase the flux leading to erythromycin A.

  14. Schisandra polysaccharide increased glucose consumption by up-regulating the expression of GLUT-4.

    PubMed

    Jin, Dun; Zhao, Ting; Feng, Wei-Wei; Mao, Guang-Hua; Zou, Ye; Wang, Wei; Li, Qian; Chen, Yao; Wang, Xin-Tong; Yang, Liu-Qing; Wu, Xiang-Yang

    2016-06-01

    In our previous study, a polysaccharide was extracted from Schisandra Chinensis (Trucz.) Baill and found with anti-diabetic effects. The aim of this study was to investigate the anti-diabetic effects of the low weight molecular polysaccharide (SCPP11) purified from crude Schisandra polysaccharide and illustrate the underlying mechanism in buffalo rat liver cells. The insulin resistance model of BRL cells was established by incubating with insulin solution for 24h. The effects of SCPP11 on regulating related protein and mRNA expression in an insulin and AMPK signal pathway were investigated by western blot and RT-PCR analysis. SCPP11 showed no cytotoxicity to BRL cells and could improve the glucose consumption in BRL cells. SCPP11 increased the protein expression of Akt, p-AMPK and GLUT-4 in BRL cells. Moreover, SCPP11 could enhance the mRNA expression levels of IRS-1, PI3K, Akt, GLUT-4, AMPKα and PPAR-γ in BRL cells at the same time. In conclusion, SCPP11 possessed effects in improving glucose consumption by up-regulating the expression of GLUT-4 which might occur via insulin and AMPK signal pathway and could be a potential functional food to prevent and mitigate the insulin resistance condition.

  15. The Impact of Opium Consumption on Blood Glucose, Serum Lipids and Blood Pressure, and Related Mechanisms.

    PubMed

    Najafipour, Hamid; Beik, Ahmad

    2016-01-01

    Aim: Substance abuse has become a universal crisis in our modern age. Among illegal substances, opium and its derivatives have been ranked second in terms of usage after cannabis in the world. In many Asian regions, the use of opium enjoys a high social acceptance; hence, some common people and even medical practitioners believe that opium lowers blood glucose and pressure and treat dyslipidemia. How much this belief is scientifically justified? Method: The results of available studies on both humans and animals searched in different search engines up to mid-2016 were integrated (78 articles). Upon the findings we try to offer a more transparent picture of the effects of opium on the mentioned factors along with the probable underlying mechanisms of its action. Results: Taken together, a variety of evidences suggest that the consumption of opium has no scientific justification for amendment of these biochemical variables. The mechanisms proposed so far for the action of opium in the three above disorders are summarized at the end of the article. Short term effects seems to be mostly mediated through central nervous system (neural and hormonal mechanisms), but long term effects are often due to the structural and functional alterations in some body organs. Conclusion: Although opium may temporarily reduce blood pressure, but it increases blood glucose and most of blood lipids. Moreover its long term use has negative impacts and thus it aggravates diabetes, dyslipidemia and hypertension. Accordingly, it is necessary to inform societies about the potential disadvantages of unauthorized opium consumption.

  16. The Impact of Opium Consumption on Blood Glucose, Serum Lipids and Blood Pressure, and Related Mechanisms

    PubMed Central

    Najafipour, Hamid; Beik, Ahmad

    2016-01-01

    Aim: Substance abuse has become a universal crisis in our modern age. Among illegal substances, opium and its derivatives have been ranked second in terms of usage after cannabis in the world. In many Asian regions, the use of opium enjoys a high social acceptance; hence, some common people and even medical practitioners believe that opium lowers blood glucose and pressure and treat dyslipidemia. How much this belief is scientifically justified? Method: The results of available studies on both humans and animals searched in different search engines up to mid-2016 were integrated (78 articles). Upon the findings we try to offer a more transparent picture of the effects of opium on the mentioned factors along with the probable underlying mechanisms of its action. Results: Taken together, a variety of evidences suggest that the consumption of opium has no scientific justification for amendment of these biochemical variables. The mechanisms proposed so far for the action of opium in the three above disorders are summarized at the end of the article. Short term effects seems to be mostly mediated through central nervous system (neural and hormonal mechanisms), but long term effects are often due to the structural and functional alterations in some body organs. Conclusion: Although opium may temporarily reduce blood pressure, but it increases blood glucose and most of blood lipids. Moreover its long term use has negative impacts and thus it aggravates diabetes, dyslipidemia and hypertension. Accordingly, it is necessary to inform societies about the potential disadvantages of unauthorized opium consumption. PMID:27790151

  17. Development and application of a self-referencing glucose microsensor for the measurement of glucose consumption by pancreatic beta-cells.

    PubMed

    Jung, S K; Trimarchi, J R; Sanger, R H; Smith, P J

    2001-08-01

    Glucose gradients generated by an artificial source and beta-cells were measured using an enzyme-based glucose microsensor, 8-microm tip diameter, as a self-referencing electrode. The technique is based on a difference measurement between two locations in a gradient and thus allows us to obtain real-time flux values with minimal impact of sensor drift or noise. Flux values were derived by incorporation of the measured differential current into Fick's first equation. In an artificial glucose gradient, a flux detection limit of 8.2 +/- 0.4 pmol.cm(-2).s(-1) (mean +/- SEM, n = 7) with a sensor sensitivity of 7.0 +/- 0.4 pA/ mM (mean +/- SEM, n = 16) was demonstrated. Under biological conditions, the glucose sensor showed no oxygen dependence with 5 mM glucose in the bulk medium. The addition of catalase to the bulk medium was shown to ameliorate surface-dependent flux distortion close to specimens, suggesting an underlying local accumulation of hydrogen peroxide. Glucose flux from beta-cell clusters, measured in the presence of 5 mM glucose, was 61.7 +/- 9.5 fmol.nL(-1).s(-1) (mean +/- SEM, n = 9) and could be pharmacologically modulated. Glucose consumption in response to FCCP (1 microM) transiently increased, subsequently decreasing to below basal by 93 +/- 16 and 56 +/- 6%, respectively (mean +/- SEM, n = 5). Consumption was decreased after the application of 10 microM rotenone by 74 +/- 5% (mean +/- SEM, n = 4). These results demonstrate that an enzyme-based amperometric microsensor can be applied in the self-referencing mode. Further, in obtaining glucose flux measurements from small clusters of cells, these are the first recordings of the real-time dynamic of glucose movements in a biological microenvironment.

  18. Performance effects and metabolic consequences of caffeine and caffeinated energy drink consumption on glucose disposal.

    PubMed

    Shearer, Jane; Graham, Terry E

    2014-10-01

    This review documents two opposing effects of caffeine and caffeine-containing energy drinks, i.e., their positive effects on athletic performance and their negative impacts on glucose tolerance in the sedentary state. Analysis of studies examining caffeine administration prior to performance-based exercise showed caffeine improved completion time by 3.6%. Similar analyses following consumption of caffeine-containing energy drinks yielded positive, but more varied, benefits, which were likely due to the diverse nature of the studies performed, the highly variable composition of the beverages consumed, and the range of caffeine doses administered. Conversely, analyses of studies administering caffeine prior to either an oral glucose tolerance test or insulin clamp showed a decline in whole-body glucose disposal of ~30%. The consequences of this resistance are unknown, but there may be implications for the development of a number of chronic diseases. Both caffeine-induced performance enhancement and insulin resistance converge with the primary actions of caffeine on skeletal muscle.

  19. Impacts of small arteriovenous malformations (AVM) on regional cerebral blood flow and glucose metabolism

    SciTech Connect

    Liu, R.S.; Yeh, S.H.; Chu, L.S.

    1994-05-01

    This study assessed the effects of small AVMs (<3 cm) on the regional cerebral blood flow (rCBF) by Tc-99m HMPAO SPECT and on the glucose metabolism (rCGlcM) by [F-18]-FDG PET. Seven AVM patients (pts) were studied. All AVMs were confirmed by cerebral angiography and CT/MR scans. Tc-99m HMPAO SPECT and [F-18]-PDG PET images were interpreted visually to detect the changes of rCBF and rCGlcM. All pts except one brain stem AVM had defects in the regions of nidi on HMPAO and FDG images. FDG PET disclosed low rCGlcM in surrounding areas of AVMs in 6 pts, while HMPAO SPECT detected only 4 cases. One AVM had increased rCBF surrounding the nidus despite of decreased rCGlcM in the same region. Five pts had abnormal rCGlcM over ipsilateral remote cortex but only one had corresponding abnormal rCBF. Contralateral cortical hypofunction was noted in 3 pts by FDG PET but none by HMPAO SPECT. Cross cerebellar diaschisis was found in 2 AVMs by FDG PET and only one by HMPAO SPECT. All regions with abnormal HMPAO uptake did not look as discernibly as seen on the FDG PET scan. CT/MR scans detected the nidi of AVMs of all pts and old hemorrhage in one pt. In conclusion, either HMPAO SPECT or FDG PET is sensitive to detect the functional abnormalities in the region of nidus of small AVM and the surrounding brain tissue. FDG PET is better than HMPAO SPECT to detect functional changes in the remote cortex and diaschisis.

  20. Intragastric administration of allyl isothiocyanate reduces hyperglycemia in intraperitoneal glucose tolerance test (IPGTT) by enhancing blood glucose consumption in mice.

    PubMed

    Mori, Noriyuki; Kurata, Manami; Yamazaki, Hanae; Hosokawa, Hiroshi; Nadamoto, Tomonori; Inoue, Kazuo; Fushiki, Tohru

    2013-01-01

    We investigated the effects of allyl isothiocyanate (AITC) on the blood glucose levels of mice using an intraperitoneal glucose tolerance test. The intragastric administration of 25 mg/kg body weight AITC reduced the increase in blood glucose level after 2 g/kg body weight glucose was given intraperitoneally, compared with that of control mice. To elucidate the mechanism responsible for the reduction, respiratory gas analysis employing (13)C-labeled glucose was performed. The intragastrically administering AITC increased (13)CO2 emission, compared to vehicle, after intraperitoneal administration of (13)C-labeled glucose. This indicated that AITC increased the utilization of exogenously administered glucose, which was excessive glucose in the blood. To examine whether transient receptor potential (TRP) channels mediated this reduction in the blood glucose levels, we used TRPA1 and TRPV1 knockout (KO) mice. Intragastrically administering AITC reduced the increase in the blood glucose level in TRPA1 KO mice but not in TRPV1 KO mice. These findings suggest that dietary AITC might reduce the increases in blood glucose levels by increasing the utilization of excessive glucose in the blood by activating TRPV1.

  1. The Effects of Moderate Whole Grain Consumption on Fasting Glucose and Lipids, Gastrointestinal Symptoms, and Microbiota

    PubMed Central

    Cooper, Danielle N.; Kable, Mary E.; Marco, Maria L.; De Leon, Angela; Rust, Bret; Baker, Julita E.; Horn, William; Burnett, Dustin; Keim, Nancy L.

    2017-01-01

    This study was designed to determine if providing wheat, corn, and rice as whole (WG) or refined grains (RG) under free-living conditions will change parameters of health over a six-week intervention in healthy, habitual non-WG consumers. Measurements of body composition, fecal microbiota, fasting blood glucose, total cholesterol, high density lipoprotein (HDL), low density lipoprotein (LDL), and triglycerides were made at baseline and post intervention. Subjects were given adequate servings of either WG or RG products based on their caloric need and asked to keep records of grain consumption, bowel movements, and GI symptoms weekly. After six weeks, subjects repeated baseline testing. Significant decreases in total, LDL, and non-HDL cholesterol were seen after the WG treatments but were not observed in the RG treatment. During Week 6, bowel movement frequency increased with increased WG consumption. No significant differences in microbiota were seen between baseline and post intervention, although, abundance of order Erysipelotrichales increased in RG subjects who ate more than 50% of the RG market basket products. Increasing consumption of WGs can alter parameters of health, but more research is needed to better elucidate the relationship between the amount consumed and the health-related outcome. PMID:28230784

  2. The Effects of Moderate Whole Grain Consumption on Fasting Glucose and Lipids, Gastrointestinal Symptoms, and Microbiota.

    PubMed

    Cooper, Danielle N; Kable, Mary E; Marco, Maria L; De Leon, Angela; Rust, Bret; Baker, Julita E; Horn, William; Burnett, Dustin; Keim, Nancy L

    2017-02-21

    This study was designed to determine if providing wheat, corn, and rice as whole (WG) or refined grains (RG) under free-living conditions will change parameters of health over a six-week intervention in healthy, habitual non-WG consumers. Measurements of body composition, fecal microbiota, fasting blood glucose, total cholesterol, high density lipoprotein (HDL), low density lipoprotein (LDL), and triglycerides were made at baseline and post intervention. Subjects were given adequate servings of either WG or RG products based on their caloric need and asked to keep records of grain consumption, bowel movements, and GI symptoms weekly. After six weeks, subjects repeated baseline testing. Significant decreases in total, LDL, and non-HDL cholesterol were seen after the WG treatments but were not observed in the RG treatment. During Week 6, bowel movement frequency increased with increased WG consumption. No significant differences in microbiota were seen between baseline and post intervention, although, abundance of order Erysipelotrichales increased in RG subjects who ate more than 50% of the RG market basket products. Increasing consumption of WGs can alter parameters of health, but more research is needed to better elucidate the relationship between the amount consumed and the health-related outcome.

  3. Local cerebral glucose utilization in the neocortical areas of the rat brain.

    PubMed

    Wree, A; Zilles, K; Schleicher, A

    1990-01-01

    The neocortex of the rat brain can be subdivided into regions of different local cerebral glucose utilization (LCGU). However, only a few neocortical areas can be delineated by differences in mean LCGUs between neighbouring areas. These area borders correspond exactly with cytoarchitectonically defined borders found in adjacent Nissl-stained preparations. On the other hand, nearly all of the architectonically defined area borders are also recognizable in the LCGU pictures, if differences in laminar distribution patterns of LCGU are taken into account. Furthermore, interareal differences in mean LCGU mainly reflect changes in layer IV, whereas layers II-III and V-VI show nearly identical LCGU values in all neocortical areas of the rat brain. The primary sensory areas exhibit the highest LCGU in layer IV, while the primary motor cortex shows a high LCGU in layer V. As the cytoarchitectonically defined pattern of the cortex is generally corroborated by the regional and laminar LCGU distribution, anatomical, metabolic and functional aspects of cortical architecture are associated.

  4. In vivo dynamic turnover of cerebral 13C isotopomers from [U- 13C]glucose

    NASA Astrophysics Data System (ADS)

    Xu, Su; Shen, Jun

    2006-10-01

    An INEPT-based 13C MRS method and a cost-effective and widely available 11.7 Tesla 89-mm bore vertical magnet were used to detect dynamic 13C isotopomer turnover from intravenously infused [U- 13C]glucose in a 211 μL voxel located in the adult rat brain. The INEPT-based 1H → 13C polarization transfer method is mostly adiabatic and therefore minimizes signal loss due to B 1 inhomogeneity of the surface coils used. High quality and reproducible data were acquired as a result of combined use of outer volume suppression, ISIS, and the single-shot three-dimensional localization scheme built in the INEPT pulse sequence. Isotopomer patterns of both glutamate C4 at 34.00 ppm and glutamine C4 at 31.38 ppm are dominated first by a doublet originated from labeling at C4 and C5 but not at C3 (with 1JC4C5 = 51 Hz) and then by a quartet originated from labeling at C3, C4, and C5 (with 1JC3C4 = 35 Hz). A lag in the transition of glutamine C4 pattern from doublet-dominance to quartet dominance as compared to glutamate C4 was observed, which provides an independent verification of the precursor-product relationship between neuronal glutamate and glial glutamine and a significant intercompartmental cerebral glutamate-glutamine cycle between neurons and glial cells.

  5. Cerebral glucose metabolic patterns in Alzheimer's disease. Effect of gender and age at dementia onset

    SciTech Connect

    Small, G.W.; Kuhl, D.E.; Riege, W.H.; Fujikawa, D.G.; Ashford, J.W.; Metter, E.J.; Mazziotta, J.C.

    1989-06-01

    No previous study of Alzheimer's disease has, to our knowledge, assessed the effect of both age at dementia onset and gender on cerebral glucose metabolic patterns. To this end, we used positron emission tomography (fludeoxyglucose F 18 method) to study 24 patients with clinical diagnoses of probable Alzheimer's disease. Comparisons of the 13 patients with early-onset dementia (less than 65 years of age) with the 11 patients with late-onset dementia (greater than 65 years of age) revealed significantly lower left parietal metabolic ratios (left posterior parietal region divided by the hemispheric average) in the early-onset group. The metabolic ratio of posterior parietal cortex divided by the relatively disease-stable average of caudate and thalamus also separated patients with early-onset dementia from those with late-onset dementia, but not men from women. Further comparisons between sexes showed that, in all brain regions studied, the 9 postmenopausal women had higher nonweighted mean metabolic rates than the 15 men from the same age group, with hemispheric sex differences of 9% on the right and 7% on the left. These results demonstrate decreased parietal ratios in early-onset dementia of Alzheimer's disease, independent of a gender effect.

  6. Brazilein inhibits neuronal inflammation induced by cerebral ischemia and oxygen-glucose deprivation through targeting NOD2 expression.

    PubMed

    Yan, Xiao-Jin; Chai, Yu-Shuang; Yuan, Zhi-Yi; Wang, Xin-Pei; Jiang, Jing-Fei; Lei, Fan; Xing, Dong-Ming; DU, Li-Jun

    2016-05-01

    Brazilein is reported to have immunosuppressive effect on cardiovascular and cerebral-vascular diseases. The essential roles of innate immunity in cerebral ischemia are increasingly identified, but no studies concerning the influence of brazilein on the innate immunity receptors have been reported. The present study was designed to investigate the regulation of NOD2 (Nucleotide-binding oligomerization domain-containing protein 2) by brazilein for its protection of neuron in cerebral ischemia in vivo and oxygen-glucose deprivation in vitro. The results showed that brazilein could reverse the elevated expression of NOD2 and TNFα (tumor necrosis factor alpha) elicited by cerebral ischemia and reperfusion. This reduction could also be detected in normal mice and C17.2 cells, indicating that this suppressive effect of brazilein was correlated with NOD2. The results from GFP reporter plasmid assay suggested brazilein inhibited NOD2 gene transcription. In conclusion, brazilein could attenuate NOD2 and TNFα expression in cerebral ischemia and NOD2 may be one possible target of brazilein for its immune suppressive effect in neuro-inflammation.

  7. Restoration of Normal Cerebral Oxygen Consumption with Rapamycin Treatment in a Rat Model of Autism–Tuberous Sclerosis

    PubMed Central

    Chi, Oak Z.; Wu, Chang-Chih; Liu, Xia; Rah, Kang H.; Jacinto, Estela

    2016-01-01

    Tuberous sclerosis (TSC) is associated with autism spectrum disorders and has been linked to metabolic dysfunction and unrestrained signaling of the mammalian target of rapamycin (mTOR). Inhibition of mTOR by rapamycin can mitigate some of the phenotypic abnormalities associated with TSC and autism, but whether this is due to the mTOR-related function in energy metabolism remains to be elucidated. In young Eker rats, an animal model of TSC and autism, which harbors a germ line heterozygous Tsc2 mutation, we previously reported that cerebral oxygen consumption was pronouncedly elevated. Young (4 weeks) male control Long–Evans and Eker rats were divided into control and rapamycin-treated (20 mg/kg once daily for 2 days) animals. Cerebral regional blood flow (14C-iodoantipyrine) and O2 consumption (cryomicrospectrophotometry) were determined in isoflurane-anesthetized rats. We found significantly increased basal O2 consumption in the cortex (8.7 ± 1.5 ml O2/min/100 g Eker vs. 2.7 ± 0.2 control), hippocampus, pons and cerebellum. Regional cerebral blood flow and cerebral O2 extractions were also elevated in all brain regions. Rapamycin had no significant effect on O2 consumption in any brain region of the control rats, but significantly reduced consumption in the cortex (4.1 ± 0.3) and all other examined regions of the Eker rats. Phosphorylation of mTOR and S6K1 was similar in the two groups and equally reduced by rapamycin. Thus, a rapamycin-sensitive, mTOR-dependent but S6K1-independent, signal led to enhanced oxidative metabolism in the Eker brain. We found decreased Akt phosphorylation in Eker but not Long–Evans rat brains, suggesting that this may be related to the increased cerebral O2 consumption in the Eker rat. Our findings suggest that rapamycin targeting of Akt to restore normal cerebral metabolism could have therapeutic potential in tuberous sclerosis and autism. PMID:26048361

  8. Restoration of Normal Cerebral Oxygen Consumption with Rapamycin Treatment in a Rat Model of Autism-Tuberous Sclerosis.

    PubMed

    Chi, Oak Z; Wu, Chang-Chih; Liu, Xia; Rah, Kang H; Jacinto, Estela; Weiss, Harvey R

    2015-09-01

    Tuberous sclerosis (TSC) is associated with autism spectrum disorders and has been linked to metabolic dysfunction and unrestrained signaling of the mammalian target of rapamycin (mTOR). Inhibition of mTOR by rapamycin can mitigate some of the phenotypic abnormalities associated with TSC and autism, but whether this is due to the mTOR-related function in energy metabolism remains to be elucidated. In young Eker rats, an animal model of TSC and autism, which harbors a germ line heterozygous Tsc2 mutation, we previously reported that cerebral oxygen consumption was pronouncedly elevated. Young (4 weeks) male control Long-Evans and Eker rats were divided into control and rapamycin-treated (20 mg/kg once daily for 2 days) animals. Cerebral regional blood flow ((14)C-iodoantipyrine) and O2 consumption (cryomicrospectrophotometry) were determined in isoflurane-anesthetized rats. We found significantly increased basal O2 consumption in the cortex (8.7 ± 1.5 ml O2/min/100 g Eker vs. 2.7 ± 0.2 control), hippocampus, pons and cerebellum. Regional cerebral blood flow and cerebral O2 extractions were also elevated in all brain regions. Rapamycin had no significant effect on O2 consumption in any brain region of the control rats, but significantly reduced consumption in the cortex (4.1 ± 0.3) and all other examined regions of the Eker rats. Phosphorylation of mTOR and S6K1 was similar in the two groups and equally reduced by rapamycin. Thus, a rapamycin-sensitive, mTOR-dependent but S6K1-independent, signal led to enhanced oxidative metabolism in the Eker brain. We found decreased Akt phosphorylation in Eker but not Long-Evans rat brains, suggesting that this may be related to the increased cerebral O2 consumption in the Eker rat. Our findings suggest that rapamycin targeting of Akt to restore normal cerebral metabolism could have therapeutic potential in tuberous sclerosis and autism.

  9. Mechanical work and energy consumption in children with cerebral palsy after single-event multilevel surgery.

    PubMed

    Marconi, Valeria; Hachez, Hélèn; Renders, Anne; Docquier, Pierre-Louis; Detrembleur, Chrisitine

    2014-09-01

    Multilevel surgery is commonly performed to improve walking in children with cerebral palsy (CP). Classical gait analysis (kinetics, kinematics) demonstrated positive outcomes after this intervention, however it doesn't give global indication about gait's features. The assessment of energy cost and mechanical work of locomotion can provide an overall description of walking functionality. Therefore, we propose to describe the effects of multilevel surgery in children with CP, considering energetics, mechanical work, kinetic and kinematic of walking. We measured external, internal, total work, energy cost, recovery, efficiency, kinetic and kinematic of walking in 10 children with CP (4 girls, 6 boys; 13 years ± 2) before and 1 year after multilevel surgery. Kinetic and kinematic results are partially comparable to previous findings, energy cost of walking is significantly reduced (p < 0.05); external, internal, total work, recovery, efficiency are not significantly different (p = 0.129; p = 0.147; p = 0.795; p = 0.119; p = 0.21). The improvement of the walking's energy consumption is not accompanied by a corresponding improvement of mechanical work. Therefore it is conceivable that the improvement of walking economy depend on a reduced effort of the muscle to maintain the posture, rather then to an improvement of the mechanism of energy recovery typical of human locomotion.

  10. Ameliorating effect of hypothalamic brain-derived neurotrophic factor against impaired glucose metabolism after cerebral ischemic stress in mice.

    PubMed

    Harada, Shinichi; Fujita-Hamabe, Wakako; Tokuyama, Shogo

    2012-01-01

    Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, has potent neuroprotective effects against brain injury. We recently reported that glucose intolerance/hyperglycemia could be induced by ischemic stress (i.e., post-ischemic glucose intolerance) following ischemic neuronal damage. Therefore, the aim of this study was to determine the effects of BDNF on the development of post-ischemic glucose intolerance and ischemic neuronal damage. Male ddY mice were subjected to middle cerebral artery occlusion (MCAO) for 2 h. On day 1, the expression levels of BDNF were significantly decreased in the cortex, hypothalamus, liver, skeletal muscle, and pancreas. The expression levels of tyrosine kinase B receptor, a BDNF receptor, decreased in the hypothalamus and liver and increased in the skeletal muscle and pancreas, but remained unchanged in the cortex. Intrahypothalamic administration of BDNF (50 ng/mouse) suppressed the development of post-ischemic glucose intolerance on day 1 and neuronal damage on day 3 after MCAO. In the liver and skeletal muscle, the expression levels of insulin receptors decreased, while gluconeogenic enzyme levels increased on day 1 after MCAO. These changes completely recovered to normal levels in the presence of BDNF. These results indicate that regulation of post-ischemic glucose intolerance by BDNF may suppress ischemic neuronal damage.

  11. Consumption of honey, sucrose, and high fructose corn syrup produce similar metabolic effects in glucose tolerant and glucose intolerant individuals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Current public health recommendations call for reduction of added sugars; however, controversy exits over whether all nutritive sweeteners produce similar metabolic effects. Objective: To compare effects of chronic consumption of three nutritive sweeteners (honey, sucrose and high fructo...

  12. Cerebral blood flow decreases with time whereas cerebral oxygen consumption remains stable during hypothermic cardiopulmonary bypass in humans

    SciTech Connect

    Prough, D.S.; Rogers, A.T.; Stump, D.A.; Roy, R.C.; Cordell, A.R.; Phipps, J.; Taylor, C.L. )

    1991-02-01

    Recent investigations demonstrate that cerebral blood flow (CBF) progressively declines during hypothermic, nonpulsatile cardiopulmonary bypass (CPB). If CBF declines because of brain cooling, the cerebral metabolic rate for oxygen (CMRO2) should decline in parallel with the reduction in CBF. Therefore we studied the response of CBF, the cerebral arteriovenous oxygen content difference (A-VDcereO2) and CMRO2 as a function of the duration of CPB in humans. To do this, we compared the cerebrovascular response to changes in the PaCO2. Because sequential CBF measurements using xenon 133 (133Xe) clearance must be separated by 15-25 min, we hypothesized that a time-dependent decline in CBF would accentuate the CBF reduction caused by a decrease in PaCO2, but would blunt the CBF increase associated with a rise in PaCO2. We measured CBF in 25 patients and calculated the cerebral arteriovenous oxygen content difference using radial arterial and jugular venous bulb blood samples. Patients were randomly assigned to management within either a lower (32-48 mm Hg) or higher (50-71 mm Hg) range of PaCO2 uncorrected for temperature. Each patient underwent two randomly ordered sets of measurements, one at a lower PaCO2 and the other at a higher PaCO2 within the respective ranges. Cerebrovascular responsiveness to changes in PaCO2 was calculated as specific reactivity (SR), the change in CBF divided by the change in PaCO2, expressed in mL.100 g-1.min-1.mm Hg-1.

  13. Triheptanoin for glucose transporter type I deficiency (G1D): Modulation of human ictogenesis, cerebral metabolic rate and cognitive indices by a food supplement

    PubMed Central

    Pascual, Juan M.; Liu, Peiying; Mao, Deng; Kelly, Dorothy; Hernandez, Ana; Sheng, Min; Good, Levi B.; Ma, Qian; Marin-Valencia, Isaac; Zhang, Xuchen; Park, Jason Y.; Hynan, Linda S.; Stavinoha, Peter; Roe, Charles R.; Lu, Hanzhang

    2015-01-01

    Objective G1D is commonly associated with electrographic spike-wave and - less-noticeably – with absence seizures. The G1D syndrome has long been attributed to energy (i.e., ATP-synthetic) failure, as have experimental, toxic-rodent epilepsies to impaired brain metabolism and tricarboxylic acid (TCA) cycle intermediate depletion. Indeed, a (seldom-acknowledged) function of glucose and other substrates is the generation of brain TCAs via carbon-donor reactions collectively named anaplerosis. However, TCAs are preserved in murine G1D. This renders inferences about energy failure premature and suggests a different hypothesis, also grounded on our findings, that consumption of alternate TCA precursors is stimulated, potentially detracting from other functions. Second, common ketogenic diets can ameliorate G1D seizures, but lead to a therapeutically-counterintuitive reduction in blood glucose available to the brain, and they can prove ineffective in 1/3 of cases. While developing G1D treatments, all of this motivated us to: a) uphold (rather than attenuate) the residual brain glucose flux that all G1D patients possess; and b) stimulate the TCA cycle, including anaplerosis. Therefore, we tested the medium-chain triglyceride triheptanoin, a widely-used medical food supplement that can fulfill both of these metabolic roles. The rationale is that ketone bodies derived from ketogenic diets are not anaplerotic, in contrast with triheptanoin metabolites, as we have shown in the G1D mouse brain. Design We supplemented the regular diet of a case series of G1D patients with food-grade triheptanoin. First we confirmed that, despite their frequent electroencephalographic (EEG) presence as spike-waves, most seizures are rarely visible, such that perceptions by patients or others are inadequate for treatment evaluation. Thus, we used EEG, quantitative neuropsychological, blood analytical, and MRI cerebral metabolic rate measurements as main outcomes. Setting Academic and

  14. Anti-CD3 antibody treatment induces hypoglycemia and super tolerance to glucose challenge in mice through enhancing glucose consumption by activated lymphocytes.

    PubMed

    Xia, Chang-Qing; Chernatynskaya, Anna V; Looney, Benjamin; Wan, Suigui; Clare-Salzler, Michael J

    2014-01-01

    Anti-CD3 antibody has been employed for various immune-mediated disorders. However, whether anti-CD3 administration leads to rapid metabolic alternation has not been well investigated. In the current study, we studied how anti-CD3 treatment affected blood glucose levels in mice. We found that anti-CD3 treatment induced immediate reduction of blood glucose after administration. Furthermore, a single dose of anti-CD3 treatment corrected hyperglycemia in all nonobese diabetic mice with recently diagnosed diabetes. This glucose-lowering effect was not attributable to major T cell produced cytokines. Of interest, when tested in a normal strain of mice (C57BL/6), the serum levels of C-peptide in anti-CD3 treated animals were significantly lower than control mice. Paradoxically, anti-CD3 treated animals were highly tolerant to exogenous glucose challenge. Additionally, we found that anti-CD3 treatment significantly induced activation of T and B cells in vitro and in vivo. Further studies demonstrated that anti-CD3 treatment lowered the glucose levels in T cell culture media and increased the intracellular transportation of 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2 deoxyglucose (2-NBDG) particularly in activated T and B cells. In addition, injection of anti-CD3 antibodies induced enhanced levels of Glut1 expression in spleen cells. This study suggests that anti-CD3 therapy-induced hypoglycemia likely results from increased glucose transportation and consumption by the activated lymphocytes.

  15. Effects of RS-8359 on reduced local cerebral glucose utilization in the rat subjected to transient forebrain ischemia.

    PubMed

    Kozuka, M; Kobayashi, K; Iwata, N

    1994-04-01

    Changes in local cerebral glucose utilization (LCGU) of the postischemic rat brain were investigated using the rat four-vessel occlusion model. Following 20 or 30 min of ischemia, LCGUs of the cerebral cortices, striatum and hippocampus were decreased at 1 and 3 days postischemia, but were recovered at 7 days postischemia. Effects of repeated administration of RS-8359, (+-)-4-(4-cyanoanilino)-7-hydroxycyclopenta(3,2-e)pyrimidin e, (30 mg/kg x 2/day, p.o., 4 days) were examined at 3 days postischemia following 20 min of ischemia. Compared with the sham-operated group, the LCGUs of 22 out of 34 structures examined in the ischemic-control group were significantly reduced. In the RS-8359-treated group, however, significant reduction was observed in only 9 structures. Compared with the ischemic-control group, RS-8359 significantly ameliorated the reduction of LCGU in 12 structures. These results suggest that RS-8359 has beneficial effects on reduced glucose metabolism in the postischemic brain.

  16. Coexistence of translocated cytochrome c and nitrated protein in neurons of the rat cerebral cortex after oxygen and glucose deprivation.

    PubMed

    Alonso, D; Encinas, J M; Uttenthal, L O; Boscá, L; Serrano, J; Fernández, A P; Castro-Blanco, S; Santacana, M; Bentura, M L; Richart, A; Fernández-Vizarra, P; Rodrigo, J

    2002-01-01

    Changes in the distribution of immunoreactive cytochrome c and protein nitration were studied in the rat cerebral cortex after oxygen and glucose deprivation by bright field, confocal and electron microscopy. In control cerebral cortex, nitrotyrosine immunoreactivity indicating protein nitration was found mostly in the neuronal nuclear region, with only a small amount distributed in the cytosol, whereas cytochrome c immunoreactivity was found at the inner membrane and in the intermembrane space of the mitochondria. During the recovery phase after oxygen and glucose deprivation, cytochrome c immunoreactivity was released from the intermembrane space of swollen mitochondria into the surrounding cytosol. The cytosol now also displayed nitrotyrosine immunoreactivity, which had diminished in the nuclear region. Both immunoreactivities were dispersed throughout the soma and processes of the cortical neurons. These changes were largely prevented by the administration of cyclosporin A, which inhibits both the mitochondrial permeability transition and the neuronal isoform of nitric oxide synthase while blocking the induction of the inducible isoform. Ischemia/reperfusion injury increases the production of nitric oxide, reactive oxygen species and intracellular factors that damage the mitochondria and liberate apoptotic factors. We suggest that translocation of cytochrome c from the mitochondria to the cytosol, which has been shown to precede the mitochondrial permeability transition, could result from peroxynitrite-mediated nitration. This phenomenon is attenuated by cyclosporin A administration, suggesting a neuroprotective role for this agent.

  17. Glucose metabolism is accelerated by exposure to t-butylhydroperoxide during NADH consumption in human erythrocytes.

    PubMed

    Ogasawara, Yuki; Funakoshi, Masayo; Ishii, Kazuyuki

    2008-01-01

    Several mechanisms have been proposed to underlie the events that occur during oxidative damage in red blood cells (RBCs) exposed to reactive oxygen species. This work explores what happens when metabolites related to redox regulation in human RBCs are oxidized to form alkoxyl radical and peroxyl radical as a result of exposure to tert-buthylhydroperoxide (BHP). During exposure to BHP, the glutathione level and the ratio of NADPH to total nicotinamide adenine dinucleotide phosphate (NADPH plus NADP(+)) were significantly decreased. Although alteration in the concentration of monosaccharides metabolized in the pentose phosphate pathway (PPP) was not observed, exposing RBCs to BHP caused the formation of methemoglobin (metHb) and a significant decrease in NADH. Moreover, we detected a significant increase in one of the peaks during BHP exposure by using HPLC with dansyl hydrazine as a prelabel reagent. A complete enzymatic conversion procedure was used to identify the peak as pyruvate based on comparison with standards. These results suggest that the rapid recovery in the level of glutathione and the formation of metHb by BHP require NADPH and NADH consumption. Subsequently, glucose metabolism accelerates to reproduce NADPH and NADH, which results in pyruvate accumulation. Our findings indicate that the level of pyruvate markedly increases upon exposure to a radical-generating oxidant capable of forming metHb. Methemoglobin reductase requires NADH as a co-factor, and oxidized form (NHADP(+)) is reduced via the glycolytic reaction catalyzed by glyceraldehyde 3-phosphate dehydrogenase. Thus, the overall acceleration of glycolysis induced by BHP is strongly dependent on the NADH reproducing pathway. In addition, the decrease in NADH enhances the increase in pyruvate by inhibiting the conversion of pyruvate to lactate in the presence of lactate dehydrogenase.

  18. High consumption of fructose rather than glucose promotes a diet-induced obese phenotype in Drosophila melanogaster.

    PubMed

    Rovenko, Bohdana M; Perkhulyn, Natalia V; Gospodaryov, Dmytro V; Sanz, Alberto; Lushchak, Oleh V; Lushchak, Volodymyr I

    2015-02-01

    During the last 20 years, there has been a considerable scientific debate about the possible mechanisms of induction of metabolic disorders by reducing monosaccharides such as glucose or fructose. In this study, we report the metabolic rearrangement in response to consumption of these monosaccharides at concentrations ranging from 0.25% to 20% in a Drosophila model. Flies raised on high-glucose diet displayed delay in pupation and increased developmental mortality compared with fructose consumers. Both monosaccharides at high concentrations promoted an obese-like phenotype indicated by increased fly body mass, levels of uric acid, and circulating and stored carbohydrates and lipids; and decreased percentage of water in the body. However, flies raised on fructose showed lower levels of circulating glucose and higher concentrations of stored carbohydrates, lipids, and uric acid. The preferential induction of obesity caused by fructose in Drosophila was associated with increased food consumption and reduced mRNA levels of DILP2 and DILP5 in the brain of adult flies. Our data show that glucose and fructose differently affect carbohydrate and lipid metabolism in Drosophila in part by modulation of insulin/insulin-like growth factor signaling. Some reported similarities with effects observed in mammals make Drosophila as a useful model to study carbohydrate influence on metabolism and development of metabolic disorders.

  19. A combination of physical activity and computerized brain training improves verbal memory and increases cerebral glucose metabolism in the elderly.

    PubMed

    Shah, T; Verdile, G; Sohrabi, H; Campbell, A; Putland, E; Cheetham, C; Dhaliwal, S; Weinborn, M; Maruff, P; Darby, D; Martins, R N

    2014-12-02

    Physical exercise interventions and cognitive training programs have individually been reported to improve cognition in the healthy elderly population; however, the clinical significance of using a combined approach is currently lacking. This study evaluated whether physical activity (PA), computerized cognitive training and/or a combination of both could improve cognition. In this nonrandomized study, 224 healthy community-dwelling older adults (60-85 years) were assigned to 16 weeks home-based PA (n=64), computerized cognitive stimulation (n=62), a combination of both (combined, n=51) or a control group (n=47). Cognition was assessed using the Rey Auditory Verbal Learning Test, Controlled Oral Word Association Test and the CogState computerized battery at baseline, 8 and 16 weeks post intervention. Physical fitness assessments were performed at all time points. A subset (total n=45) of participants underwent [(18)F] fluorodeoxyglucose positron emission tomography scans at 16 weeks (post-intervention). One hundred and ninety-one participants completed the study and the data of 172 participants were included in the final analysis. Compared with the control group, the combined group showed improved verbal episodic memory and significantly higher brain glucose metabolism in the left sensorimotor cortex after controlling for age, sex, premorbid IQ, apolipoprotein E (APOE) status and history of head injury. The higher cerebral glucose metabolism in this brain region was positively associated with improved verbal memory seen in the combined group only. Our study provides evidence that a specific combination of physical and mental exercises for 16 weeks can improve cognition and increase cerebral glucose metabolism in cognitively intact healthy older adults.

  20. A combination of physical activity and computerized brain training improves verbal memory and increases cerebral glucose metabolism in the elderly

    PubMed Central

    Shah, T; Verdile, G; Sohrabi, H; Campbell, A; Putland, E; Cheetham, C; Dhaliwal, S; Weinborn, M; Maruff, P; Darby, D; Martins, R N

    2014-01-01

    Physical exercise interventions and cognitive training programs have individually been reported to improve cognition in the healthy elderly population; however, the clinical significance of using a combined approach is currently lacking. This study evaluated whether physical activity (PA), computerized cognitive training and/or a combination of both could improve cognition. In this nonrandomized study, 224 healthy community-dwelling older adults (60–85 years) were assigned to 16 weeks home-based PA (n=64), computerized cognitive stimulation (n=62), a combination of both (combined, n=51) or a control group (n=47). Cognition was assessed using the Rey Auditory Verbal Learning Test, Controlled Oral Word Association Test and the CogState computerized battery at baseline, 8 and 16 weeks post intervention. Physical fitness assessments were performed at all time points. A subset (total n=45) of participants underwent [18F] fluorodeoxyglucose positron emission tomography scans at 16 weeks (post-intervention). One hundred and ninety-one participants completed the study and the data of 172 participants were included in the final analysis. Compared with the control group, the combined group showed improved verbal episodic memory and significantly higher brain glucose metabolism in the left sensorimotor cortex after controlling for age, sex, premorbid IQ, apolipoprotein E (APOE) status and history of head injury. The higher cerebral glucose metabolism in this brain region was positively associated with improved verbal memory seen in the combined group only. Our study provides evidence that a specific combination of physical and mental exercises for 16 weeks can improve cognition and increase cerebral glucose metabolism in cognitively intact healthy older adults. PMID:25463973

  1. Multimodal Neuroprotection Induced by PACAP38 in Oxygen–Glucose Deprivation and Middle Cerebral Artery Occlusion Stroke Models

    PubMed Central

    Cohen, Gadi; Arien-Zakay, Hadar; Chen, Jieli; Zhang, Chunling; Chopp, Michael; Jiang, Hao

    2014-01-01

    Pituitary adenylate cyclase activating peptide (PACAP), a potent neuropeptide which crosses the blood–brain barrier, is known to provide neuroprotection in rat stroke models of middle cerebral artery occlusion (MCAO) by mechanism(s) which deserve clarification. We confirmed that following i.v. injection of 30 ng/kg of PACAP38 in rats exposed to 2 h of MCAO focal cerebral ischemia and 48 h reoxygenation, 50 % neuroprotection was measured by reduced caspase-3 activity and volume of cerebral infarction. Similar neuroprotective effects were measured upon PACAP38 treatment of oxygen–glucose deprivation and reoxygenation of brain cortical neurons. The neuroprotection was temporally associated with increased expression of brain-derived neurotrophic factor, phosphorylation of its receptor—tropomyosin-related kinase receptor type B (trkB), activation of phosphoinositide 3-kinase and Akt, and reduction of extracellular signal-regulated kinases 1/2 phosphorylation. PACAP38 increased expression of neuronal markers beta-tubulin III, microtubule-associated protein-2, and growth-associated protein-43. PACAP38 induced stimulation of Rac and suppression of Rho GTPase activities. PACAP38 down-regulated the nerve growth factor receptor (p75NTR) and associated Nogo-(Neurite outgrowth-A) receptor. Collectively, these in vitro and in vivo results propose that PACAP exhibits neuroprotective effects in cerebral ischemia by three mechanisms: a direct one, mediated by PACAP receptors, and two indirect, induced by neurotrophin release, activation of the trkB receptors and attenuation of neuronal growth inhibitory signaling molecules p75NTR and Nogo receptor. PMID:22678884

  2. Multimodal neuroprotection induced by PACAP38 in oxygen-glucose deprivation and middle cerebral artery occlusion stroke models.

    PubMed

    Lazarovici, Philip; Cohen, Gadi; Arien-Zakay, Hadar; Chen, Jieli; Zhang, Chunling; Chopp, Michael; Jiang, Hao

    2012-11-01

    Pituitary adenylate cyclase activating peptide (PACAP), a potent neuropeptide which crosses the blood-brain barrier, is known to provide neuroprotection in rat stroke models of middle cerebral artery occlusion (MCAO) by mechanism(s) which deserve clarification. We confirmed that following i.v. injection of 30 ng/kg of PACAP38 in rats exposed to 2 h of MCAO focal cerebral ischemia and 48 h reoxygenation, 50 % neuroprotection was measured by reduced caspase-3 activity and volume of cerebral infarction. Similar neuroprotective effects were measured upon PACAP38 treatment of oxygen-glucose deprivation and reoxygenation of brain cortical neurons. The neuroprotection was temporally associated with increased expression of brain-derived neurotrophic factor, phosphorylation of its receptor-tropomyosin-related kinase receptor type B (trkB), activation of phosphoinositide 3-kinase and Akt, and reduction of extracellular signal-regulated kinases 1/2 phosphorylation. PACAP38 increased expression of neuronal markers beta-tubulin III, microtubule-associated protein-2, and growth-associated protein-43. PACAP38 induced stimulation of Rac and suppression of Rho GTPase activities. PACAP38 downregulated the nerve growth factor receptor (p75(NTR)) and associated Nogo-(Neurite outgrowth-A) receptor. Collectively, these in vitro and in vivo results propose that PACAP exhibits neuroprotective effects in cerebral ischemia by three mechanisms: a direct one, mediated by PACAP receptors, and two indirect, induced by neurotrophin release, activation of the trkB receptors and attenuation of neuronal growth inhibitory signaling molecules p75(NTR) and Nogo receptor.

  3. Elevated Oxygen Consumption Rate in Response to Acute Low- Glucose Stress: Metformin Restores Rate to Normal Level

    PubMed Central

    Williams, Emmanuel D.; Rogers, Steven C.; Zhang, Xiaomin; Azhar, Gohar; Wei, Jeanne Y.

    2015-01-01

    Cardiovascular Disease (CVD) continues to be the leading cause of mortality among all age demographics in the United States, with the highest occurrence in populations aged 65 and older. Glucose levels, particularly hyperglycemia, are associated with the premature onset of age-related diseases including CVD. A major challenge in the treatment of elderly patients with chronically elevated blood glucose is the frequency of hypoglycemic episodes. Molecular mechanisms of hypoglycemia remain unclear, but are associated with premature onset of age-related-diseases. Here we report a mitochondrial metabolic profile assessing short-term (up to six hours) and longer-term (12–24 hours) durations of low-glucose stress. We observed that the antidiabetic biguanide and mitochondrial complex I inhibitor, metformin, can lower and restore the elevated oxygen consumption rate during shorter-term glucose stress to levels similar to that of cells cultured in normal glucose. This effect appears, in part, to involve activation of the 5′ AMP-activated protein kinase (AMPK). PMID:26256471

  4. Increased interictal cerebral glucose metabolism in a cortical-subcortical network in drug naive patients with cryptogenic temporal lobe epilepsy.

    PubMed Central

    Franceschi, M; Lucignani, G; Del Sole, A; Grana, C; Bressi, S; Minicucci, F; Messa, C; Canevini, M P; Fazio, F

    1995-01-01

    Positron emission tomography with [18F]-2-fluoro-2-deoxy-D-glucose ([18F]FDG) has been used to assess the pattern of cerebral metabolism in different types of epilepsies. However, PET with [18F]FDG has never been used to evaluate drug naive patients with cryptogenic temporal lobe epilepsy, in whom the mechanism of origin and diffusion of the epileptic discharge may differ from that underlying other epilepsies. In a group of patients with cryptogenic temporal lobe epilepsy, never treated with antiepileptic drugs, evidence has been found of significant interictal glucose hypermetabolism in a bilateral neural network including the temporal lobes, thalami, basal ganglia, and cingular cortices. The metabolism in these areas and frontal lateral cortex enables the correct classification of all patients with temporal lobe epilepsy and controls by discriminant function analysis. Other cortical areas--namely, frontal basal and lateral, temporal mesial, and cerebellar cortices--had bilateral increases of glucose metabolism ranging from 10 to 15% of normal controls, although lacking stringent statistical significance. This metabolic pattern could represent a pathophysiological state of hyperactivity predisposing to epileptic discharge generation or diffusion, or else a network of inhibitory circuits activated to prevent the diffusion of the epileptic discharge. PMID:7561924

  5. Cerebral metabolic rate for glucose during the first six months of life: an FDG positron emission tomography study.

    PubMed Central

    Kinnala, A.; Suhonen-Polvi, H.; Aärimaa, T.; Kero, P.; Korvenranta, H.; Ruotsalainen, U.; Bergman, J.; Haaparanta, M.; Solin, O.; Nuutila, P.; Wegelius, U.

    1996-01-01

    AIM: To measure the local cerebral metabolic rate for glucose (LCMRGlc) in neonatal brains during maturation using positron emission tomography (PET) and 2-[18F]fluoro-2-deoxy-D-glucose (FDG). METHODS: Twenty infants were studied using PET during the neonatal period. The postconceptional age ranged from 32.7 to 60.3 weeks. All infants had normal neurodevelopment and were normoglycaemic. The development of the infants was carefully evaluated (follow up 12-36 months) clinically, and by using a method based on Gesell Amatruda's developmental diagnosis. LCMRGlc was quantitated using PET derived from FDG kinetics and calculated in the whole brain and for regional brain structures. RESULTS: LCMRGlc for various cortical brain regions and the basal ganglia was low at birth (from 4 to 16 mumol/100 g/minute). In infants 2 months of age and younger LCMRGlc was highest in the sensorimotor cortex, thalamus, and brain stem. By 5 months, LCMRGlc had increased in the frontal, parietal, temporal, occipital and cerebellar cortical regions. In general, the whole brain LCMRGlc correlated with postconceptional age (r = 0.90; P < 0.001). The change in the glucose metabolic pattern observed in the neonatal brain reflects the functional maturation of these brain regions. CONCLUSION: These findings show that LCMRGlc in infants increases with maturation. Accordingly, when LCMRGlc is measured during infancy, the postconceptional age has to be taken into account when interpretating the results. Images Figure 1 PMID:8777676

  6. Lactate and glucose concomitant consumption as a self-regulated pH detoxification mechanism in HEK293 cell cultures.

    PubMed

    Liste-Calleja, Leticia; Lecina, Martí; Lopez-Repullo, Jonatan; Albiol, Joan; Solà, Carles; Cairó, Jordi Joan

    2015-12-01

    One of the most important limitations of mammalian cell-based processes is the secretion and accumulation of lactate as a by-product of their metabolism. Among the cell lines commonly used in industrial bioprocesses, HEK293 has been gaining importance over the last years. Up recently, HEK293 cells were known to consume lactate in late stages of cell culture usually when glucose and/or glutamine were depleted from media. Remarkably, in both scenarios, no significant cell growth was reported. However, we have observed a different metabolic behavior regarding lactate production and consumption in HEK293 cultures. HEK293 cells were able to co-metabolize glucose and lactate simultaneously, even in exponentially growing cell cultures. Our deep study of the effects of environmental conditions on lactate metabolism revealed that pH was the key to trigger the metabolic shift from lactate production to lactate and glucose concomitant consumption. Remarkably, this shift could be triggered at will when pH was set at 6.8. Even more interesting was the fact that lowering pH to 6.6 and supplementing media with exogenous lactate resulted in co-consumption of glucose and lactate from the beginning of cell culture, without affecting cell growth or protein productivity. On the contrary, cell growth was clearly hampered at this low pH if extracellular lactate was lacking. From our results, we hypothesize that HEK293 cells metabolize extracellular lactate as a strategy for pH detoxification, by means of co-transporting extracellular protons together with lactate into the cytosol. This novel hypothesis for unraveling lactate metabolism in HEK293 cells could open a door to re-direct genetic engineering strategies in order to obtain more efficient cell lines and also to further develop animal cell technology applications.

  7. Time course of radiolabeled 2-deoxy-D-glucose 6-phosphate turnover in cerebral cortex of goats

    SciTech Connect

    Pelligrino, D.A.; Miletich, D.J.; Albrecht, R.F.

    1987-02-01

    The vivo dephosphorylation rate of 2-deoxy-D-glucose 6-phosphate (DGP) in the cerebral cortex of goats injected intravenously with radiolabeled 2-deoxy-D-glucose (DG) was investigated. Serial rapidly frozen samples of parietal cortical gray tissue were obtained at regular intervals over time periods from 45 min to 3 h in awake goats or in paralyzed and artificially ventilated goats maintained under 70% N/sub 2/O or pentobarbital sodium anesthesia. The samples were analyzed for glucose content and separate DG and DGP activities. The rate parameters for phosphorylation (k/sup *//sub 4/) and dephosphorylation (k/sup *//sub 4/) were estimated in each animal. The glucose phosphorylation rate (PR) was calculated over the intervals 3-5 (or 6), 3-10, 3-20, 3-30, and 3-45 min, assuming k/sup *//sub 4/ = O. As the evaluation period was extended beyond 10 min, the calculated PR became increasingly less when compared with that calculated over the 3- to 5- (or 6) min interval (PR/sub i/). Furthermore, as metabolic activity decreased, the magnitude of the error increased such that at 45 min pentobarbital-anesthetize goats underestimated the PR/sub i/ by 46.5% compared with only 23.1 in N/sub 2/O-anesthetized goats. This was also reflected in the >twofold higher k/sup *//sub 4//k/sup *//sub 3/ ratio in the pentobarbital vs. N/sub 2/O-anesthetized group. It is concluded that when using the DG method in the goat, DGP dephosphorylation cannot be ignored when employing >10-min evaluation periods.

  8. Sleep-Wake Differences in Relative Regional Cerebral Metabolic Rate for Glucose among Patients with Insomnia Compared with Good Sleepers

    PubMed Central

    Kay, Daniel B.; Karim, Helmet T.; Soehner, Adriane M.; Hasler, Brant P.; Wilckens, Kristine A.; James, Jeffrey A.; Aizenstein, Howard J.; Price, Julie C.; Rosario, Bedda L.; Kupfer, David J.; Germain, Anne; Hall, Martica H.; Franzen, Peter L.; Nofzinger, Eric A.; Buysse, Daniel J.

    2016-01-01

    Study Objectives: The neurobiological mechanisms of insomnia may involve altered patterns of activation across sleep-wake states in brain regions associated with cognition, self-referential processes, affect, and sleep-wake promotion. The objective of this study was to compare relative regional cerebral metabolic rate for glucose (rCMRglc) in these brain regions across wake and nonrapid eye movement (NREM) sleep states in patients with primary insomnia (PI) and good sleeper controls (GS). Methods: Participants included 44 PI and 40 GS matched for age (mean = 37 y old, range 21–60), sex, and race. We conducted [18F]fluoro-2-deoxy-d-glucose positron emission tomography scans in PI and GS during both morning wakefulness and NREM sleep at night. Repeated measures analysis of variance was used to test for group (PI vs. GS) by state (wake vs. NREM sleep) interactions in relative rCMRglc. Results: Significant group-by-state interactions in relative rCMRglc were found in the precuneus/posterior cingulate cortex, left middle frontal gyrus, left inferior/superior parietal lobules, left lingual/fusiform/occipital gyri, and right lingual gyrus. All clusters were significant at Pcorrected < 0.05. Conclusions: Insomnia was characterized by regional alterations in relative glucose metabolism across NREM sleep and wakefulness. Significant group-by-state interactions in relative rCMRglc suggest that insomnia is associated with impaired disengagement of brain regions involved in cognition (left frontoparietal), self-referential processes (precuneus/posterior cingulate), and affect (left middle frontal, fusiform/lingual gyri) during NREM sleep, or alternatively, to impaired engagement of these regions during wakefulness. Citation: Kay DB, Karim HT, Soehner AM, Hasler BP, Wilckens KA, James JA, Aizenstein HJ, Price JC, Rosario BL, Kupfer DJ, Germain A, Hall MH, Franzen PL, Nofzinger EA, Buysse DJ. Sleep-wake differences in relative regional cerebral metabolic rate for glucose among

  9. Characterization of the interaction between local cerebral metabolic rate for glucose and acid-base index in ischemic rat brain employing a double-isotope methodology

    SciTech Connect

    Peek, K.E.H.

    1988-01-01

    The association between increases in cerebral glucose metabolism and the development of acidosis is largely inferential, based on reports linking hyperglycemia with poor neurological outcome, lactate accumulation, and the severity of acidosis. We measured local cerebral metabolic rate for glucose (lCMRglc) and an index of brain pH-the acid-base index (ABI)-concurrently and characterized their interaction in a model of focal cerebral ischemia in rats in a double-label autoradiographic study, using ({sup 14}C)2-deoxyglucose and ({sup 14}C)dimethyloxazolidinedione. Computer-assisted digitization and analysis permitted the simultaneous quantification of the two variables on a pixel-by-pixel basis in the same brain slices.

  10. Time-dependent homeostasis between glucose uptake and consumption in astrocytes exposed to CoCl₂ treatment.

    PubMed

    Wang, Peng; Li, Ling; Zhang, Zhenxiang; Kan, Quancheng; Chen, Suyan; Gao, Feng

    2016-03-01

    Hypoxia has been implicated in the pathology of the central nervous system during stroke. It also has a significant effect on the regulation of glucose transporters (GLUTs), and homeostasis between glucose uptake and consumption. CoCl2 is a hypoxia‑mimetic agent, and thus stabilizes the hypoxia‑inducible factor 1α (HIF‑1α) subunit and regulates GLUT genes. GLUT‑1 and GLUT‑3 are the most common isoforms of the GLUT family present in the brain, with the former primarily expressed in astrocytes and the latter in neurons under physiological conditions. However, it remains controversial whether GLUT‑3 is expressed in astrocytes. Additionally, it is unclear whether the regulation of GLUT‑1 and GLUT‑3, and glucose homeostasis, are affected by CoCl2 treatment in a time‑dependent manner. In the present study, mRNA and protein levels of GLUT‑1, GLUT‑3 and HIF‑1α in astrocytes were examined by reverse transcription‑quantitative polymerase chain reaction and western blot analysis, respectively. The intracellular glucose concentration, glycogen storage, ATP content, pyruvate concentration, lactate dehydrogenase (LDH) release activity and cell viability in astrocytes were also investigated. The observations of the current study confirmed that both protein and mRNA levels of GLUT‑1 and GLUT‑3 were elevated in a time‑dependent manner induced by CoCl2 treatment, followed by accumulation of HIF‑1α. Furthermore, in the early period of CoCl2 treatment (≤8 h at 100 µM), LDH release, ATP content, glycogen storage and cell viability remained unchanged, whereas intracellular pyruvate concentration increased and glucose concentration was reduced. However, in the later period of CoCl2 treatment (>8 h at 100 µM), LDH release and intracellular pyruvate concentration increased, while intracellular glucose concentration, ATP content and glycogen storage were reduced. This may be due to disruption of homeostasis and reduced cell viability. In conclusion

  11. Decreased cholinergic function in the cerebral cortex of hypoxic neonatal rats: role of glucose, oxygen and epinephrine resuscitation.

    PubMed

    Anju, T R; Smijin, S; Chinthu, R; Paulose, C S

    2012-01-15

    Molecular processes regulating cholinergic functions play an important role in the control of respiration under hypoxia. Cholinergic alterations and its further complications in learning and memory due to hypoxic insult in neonatal rats and the effect of glucose, oxygen and epinephrine resuscitation was evaluated in the present study. Receptor binding and gene expression studies were done in the cerebral cortex to analyze the changes in total muscarinic receptors, muscarinic M1, M2, M3 receptors and the enzymes involved in acetylcholine metabolism - choline acetyltransferase and acetylcholine esterase. Neonatal hypoxia decreased total muscarinic receptors with reduced muscarinic M1, M2 and M3 receptor genes. The reduction in acetylcholine metabolism is indicated by the down regulated choline acetyltransferase and up regulated acetylcholine esterase expression. These cholinergic disturbances were reversed to near control in glucose resuscitated hypoxic neonates. The adverse effects of immediate oxygenation and epinephrine administration are also reported. This has immense clinical significance in establishing a proper resuscitation for the management of neonatal hypoxia.

  12. Intelligence and Changes in Regional Cerebral Glucose Metabolic Rate Following Learning.

    ERIC Educational Resources Information Center

    Haier, Richard J.; And Others

    1992-01-01

    A study of eight normal right-handed men demonstrates widespread significant decreases in brain glucose metabolic rate (GMR) following learning a complex computer task, a computer game. Correlations between magnitude of GMR change and intelligence scores are also demonstrated. (SLD)

  13. Regional cerebral incorporation of plasma (/sup 14/C)palmitate, and cerebral glucose utilization, in water-deprived Long-Evans and Brattleboro rats

    SciTech Connect

    Noronha, J.G.; Larson, D.M.; Rapoport, S.I.

    1989-03-01

    Regional rates of incorporation into brain of intravenously administered (/sup 14/C)palmitate and regional cerebral metabolic rates for glucose (rCMRglc) were measured in water-provided (WP) and water-deprived (WD) homozygous (DI) and heterozygous (HZ) Brattleboro rats, a mutant strain unable to synthesize vasopressin, and in the parent Long-Evans (LE) strain. Following 15 h or 4 days of water deprivation, rCMRglc was elevated threefold in the pituitary neural lobe of LE-WD and DI-WD as compared with LE-WP rats, and in the paraventricular nucleus of LE-WD, and the supraoptic nucleus of DI-WD rats. However, incorporation of (/sup 14/C)palmitate into these regions was not specifically altered. The results indicate that water deprivation for up to 4 days increases rCMRglc in some brain regions involved with vasopressin, but does not alter (/sup 14/C)palmitate incorporation into these regions. Incorporation of plasma (/sup 14/C)palmitate is independent of unlabeled plasma palmitate at brain regions which have an intact blood-brain barrier, but at nonbarrier regions falls according to saturation kinetics as cold plasma concentration rises, with a mean half-saturation constant (Km) equal to 0.136 mumol.ml-1.

  14. The effects of wild blueberry consumption on plasma markers and gene expression related to glucose metabolism in the obese Zucker rat.

    PubMed

    Vendrame, Stefano; Zhao, Alice; Merrow, Thomas; Klimis-Zacas, Dorothy

    2015-06-01

    Impaired fasting blood glucose is one of the landmark signs of metabolic syndrome, together with hyperinsulinemia, dyslipidemia, hypertension, and a chronic proinflammatory, pro-oxidative, and prothrombotic environment. This study investigates the effect of wild blueberry (WB) consumption on blood glucose levels and other parameters involved in glucose metabolism in the obese Zucker rat (OZR), an experimental model of metabolic syndrome. Sixteen OZRs and 16 lean littermate controls (lean Zucker rat [LZR]) were fed an 8% enriched WB diet or a control (C) diet for 8 weeks. Plasma concentrations of glucose, insulin, glycated hemoglobin GHbA1c, resistin, and retinol-binding protein 4 (RBP4) were measured. Expression of the resistin, RBP4, and glucose transporter GLUT4 genes was also determined both in the liver and the abdominal adipose tissue (AAT). Plasma glycated hemoglobin HbA1c, RBP4, and resistin concentrations were significantly lower in OZRs following the WB diet (-20%, -22%, and -27%, respectively, compared to C diet, P<.05). Following WB consumption, resistin expression was significantly downregulated in the liver of both OZRs and LZRs (-28% and -61%, respectively, P<.05), while RBP4 expression was significantly downregulated in the AAT of both OZRs and LZRs (-87% and -43%, respectively, P<.05). All other markers were not significantly affected following WB consumption. In conclusion, WB consumption normalizes some markers related to glucose metabolism in the OZR model of metabolic syndrome, but has no effect on fasting blood glucose or insulin concentrations.

  15. Engineered Kluyveromyces marxianus for pyruvate production at elevated temperature with simultaneous consumption of xylose and glucose.

    PubMed

    Zhang, Biao; Zhu, Yelin; Zhang, Jia; Wang, Dongmei; Sun, Lianhong; Hong, Jiong

    2017-01-01

    Xylose and glucose from lignocellulose are sustainable sources for production of pyruvate, which is the starting material for the synthesis of many drugs and agrochemicals. In this study, the pyruvate decarboxylase gene (KmPDC1) and glycerol-3-phosphate dehydrogenase gene (KmGPD1) of Kluyveromyces marxianus YZJ051 were disrupted to prevent ethanol and glycerol accumulation. The deficient growth of PDC disruption was rescued by overexpressing mutant KmMTH1-ΔT. Then pentose phosphate pathway and xylitol dehydrogenase SsXYL2-ARS genes were overexpressed to obtain strain YZB053 which produced pyruvate with xylose other than glucose. It produced 24.62g/L pyruvate from 80g/L xylose with productivity of 0.51g/L/h at 42°C. Then, xylose-specific transporter ScGAL2-N376F was overexpressed to obtain strain YZB058, which simultaneously consumed 40g/L glucose and 20g/L xylose and produced 29.21g/L pyruvate with productivity of 0.81g/L/h at 42°C. Therefore, a platform for pyruvate production from glucose and xylose at elevated temperature was developed.

  16. Stereo-specific glucose consumption may be used to distinguish between chemical and biological reactivity on Mars: a preliminary test on Earth.

    PubMed

    Sun, Henry J; Saccomanno, Vienna; Hedlund, Brian; McKay, Christopher P

    2009-06-01

    Two alternative hypotheses explain the degradation of organics in the Viking Labeled Release experiment on Mars. Either martian soil contains live indigenous microorganisms or it is sterile but chemically reactive. These two possibilities could be distinguished by the use of pure preparations of glucose isomers. In the laboratory, selected eukaryotes, bacteria, and archaea consumed only D-glucose, not L-glucose, while permanganate oxidized both isomers. On Mars, selective consumption of either D- or L-glucose would constitute evidence for biological activity.

  17. Physiologically relevant online electrochemical method for continuous and simultaneous monitoring of striatum glucose and lactate following global cerebral ischemia/reperfusion.

    PubMed

    Lin, Yuqing; Zhu, Ningning; Yu, Ping; Su, Lei; Mao, Lanqun

    2009-03-15

    This study demonstrates a new electroanalytical method with a high physiological relevance for simultaneous online monitoring of glucose and lactate in the striatum of the rat brain following global cerebral ischemia/reperfusion. The online analytical method is based on the efficient integration of in vivo microdialysis sampling with an online selective electrochemical detection with the electrochemical biosensors with dehydrogenases, i.e., glucose and lactate dehydrogenases, as recognition elements. The dehydrogenase-based electrochemical biosensors are developed onto the dual split-disk plastic carbon film (SPCF) electrodes with methylene green (MG) adsorbed onto single-walled carbon nanotubes (SWNTs) as the electrocatalyst for the oxidation of dihydronicotiamide adenine dinucleotide (NADH) at a low potential of 0.0 V (vs Ag/AgCl). Artificial cerebrospinal fluid (aCSF) containing NAD(+) is externally perfused from a second pump and online mixed with the brain microdialysates to minimize the variation of pH that occurred following the cerebral ischemia/reperfusion and to supply NAD(+) cofactor and O(2) for the enzymatic reactions of dehydrogenases and ascorbate oxidase, respectively. As a result, the developed online electroanalytical method exhibits a high selectivity against the electrochemically active species endogenously existing in the cerebral systems and a high tolerance against the variation of pH and O(2) following cerebral ischemia/reperfusion. This property, along with the good linearity and a high stability toward glucose and lactate as well as little cross-talk between two biosensors, substantially makes this method possible for the continuous, simultaneous, and online monitoring of glucose and lactate in the rat brain following global cerebral ischemia/reperfusion. This study establishes a new and effective platform for the investigation of the energy metabolism in physiological and pathological processes.

  18. Altered cerebral glucose metabolism in an animal model of diabetes insipidus: a micro-PET study.

    PubMed

    Idbaih, Ahmed; Burlet, Arlette; Adle-Biassette, Homa; Boisgard, Raphaël; Coulon, Christine; Paris, Sophie; Marie, Yannick; Donadieu, Jean; Hoang-Xuan, Khê; Ribeiro, Maria-Joao

    2007-07-16

    The Brattleboro rat is an animal model of genetically induced central diabetes insipidus. These rats show cognitive and behavioral disorders, but no neurodegenerative disease has been observed. We studied brain glucose uptake, a marker of neuronal activity, in 6 Brattleboro rats, in comparison with 6 matched Long-Evans (LE) control rats. A group of 3 Brattleboro rats and 3 Long-Evans rats was studied in vivo and another group of animals was studied ex vivo. In vivo studies were performed using fluorodeoxyglucose labeled with fluorine 18 ((18)F-FDG) and a dedicated small-animal PET device. At 30 min and 60 min p.i., (18)F-FDG uptake was significantly higher in the frontal cortex, striatum, thalamus and cerebellum of Brattleboro rats than in LE rats when measured by PET in vivo (p<0.05), but only a trend towards higher values was found ex vivo. Our results show for the first time that brain glucose metabolism is modified in Brattleboro rats. This altered brain glucose metabolism in Brattleboro rats may be related to the observed cognitive and behavioral disorders. Functional analyses of brain metabolism are promising to investigate cognitive behavioral disturbances observed in Brattleboro rats and their link to diabetes insipidus.

  19. Fructose consumption during pregnancy and lactation induces fatty liver and glucose intolerance in rats.

    PubMed

    Zou, Mi; Arentson, Emily J; Teegarden, Dorothy; Koser, Stephanie L; Onyskow, Laurie; Donkin, Shawn S

    2012-08-01

    Nutritional insults during pregnancy and lactation are health risks for mother and offspring. Both fructose (FR) and low-protein (LP) diets are linked to hepatic steatosis and insulin resistance in nonpregnant animals. We hypothesized that dietary FR or LP intake during pregnancy may exacerbate the already compromised glucose homeostasis to induce gestational diabetes and fatty liver. Therefore, we investigated and compared the effects of LP or FR intake on hepatic steatosis and insulin resistance in unmated controls (CTs) and pregnant and lactating rats. Sprague-Dawley rats were fed a CT, or a 63% FR, or an 8% LP diet. Glucose tolerance test at day 17 of the study revealed greater (P < .05) blood glucose at 10 (75.6 mg/dL vs 64.0 ± 4.8 mg/dL) minutes and 20 (72.4 mg/dL vs 58.6 ± 4.0 mg/dL) minutes after glucose dose and greater area under the curve (4302.3 mg∙dL(-1)∙min(-1) vs 3763.4 ± 263.6 mg∙dL(-1)∙min(-1)) for FR-fed dams compared with CT-fed dams. The rats were euthanized at 21 days postpartum. Both the FR- and LP-fed dams had enlarged (P < .05) livers (9.3%, 7.1% body weight vs 4.8% ± 0.2% body weight) and elevated (P < .05) liver triacylglycerol (216.0, 130.0 mg/g vs 19.9 ± 12.6 mg/g liver weight) compared with CT-fed dams. Fructose induced fatty liver and glucose intolerance in pregnant and lactating rats, but not unmated CT rats. The data demonstrate a unique physiological status response to diet resulting in the development of gestational diabetes coupled with hepatic steatosis in FR-fed dams, which is more severe than an LP diet.

  20. The effect of moderate glycemic energy bar consumption on blood glucose and mood in dancers.

    PubMed

    Brown, Derrick; Wyon, Matthew

    2014-03-01

    Ingesting quality carbohydrates has been shown to be essential for dancers. Given that most dance classes take place in the morning, it has been recommended that dancers eat a well-balanced breakfast containing carbohydrates, fats, and protein as a means of fuelling this activity. The aim of this study was to determine the effect of a moderate glycemic index energy (MGI) bar or a fasting condition on dancers' blood glucose levels and perceived pleasure-displeasure response during the first dance class of the day. In a randomized counterbalanced design, 10 female preprofessional dance students took their regular scheduled contemporary dance class, on four separate occasions. On each occasion, they consumed either a commercially prepared carbohydrate (CHO)-dense energy bar (47.3 g CHO) or water (FAST). Plasma glucose responses and pleasure-displeasure affect were measured before and at two time points during the class. Dancers who consumed the MGI bar had significantly greater peak blood glucose levels at all time points than those who fasted (p<0.05). Regarding affective state measures, participants who had breakfast had significantly greater pleasure scores than those who only ingested water(p<0.05). In conclusion, results suggest that CHO with an MGI value positively impacts blood glucose concentrations during a dance class. Further, we conclude that skipping breakfast can have an unfavorable effect on the pleasure-displeasure state of dancers. These findings highlight the impact of breakfast on how one feels, as well as the physiological and metabolic benefits of CHO as an exogenous energy source in dancers.

  1. Mapping of change in cerebral glucose utilization using fluorine-18 fluorodeoxyglucose double injection and the constrained weighted-integration method

    SciTech Connect

    Murase, K. |; Kuwabara, Hiroto; Yasuhara, Yoshifumi; Evans, A.C.; Gjedde, A.

    1996-12-01

    The authors developed a method for mapping the change in cerebral glucose utilization at two different physiological states using [{sup 18}F]fluorodeoxyglucose (FDG) double injection and the constrained weighted-integration method. They studied young normal subjects without (baseline-baseline group, n = 5) and with (baseline-stimulation group, n = 5) vibrotactile stimulation of the fingertips of the right hand. Dynamic scans were performed using positron emission tomography (PET) following an initial dose (the first session, 0--30 min) and an additional dose (the second session, 30--60 min). The parametric images of the net clearance of FDG from blood to brain (K*), unidirectional blood-to-brain clearance (K*{sub 1}) and cerebral metabolic rate of glucose (CMR{sub glc}) of the two sessions were generated. The averaged subtraction (second minus first session) and t-statistic images were generated, which were rendered into Talairach`s sterotaxic coordinates and merged with the averaged magnetic resonance imaging (MRI) image. In the baseline-baseline group, regional K*, K*{sub 1}, and CMR{sub glc} in the first and second sessions were strongly correlated (r{sup 2} = 0.953, 0.935, and 0.951, respectively, n = 340). In the baseline-stimulation group, significant increases in these estimates were obtained in the contralateral primary somatosensory cortex (SI) (from 3.43 {+-} 0.78 to 4.02 {+-} 1.01 ml/100 g/min for K*, 7.85 {+-} 1.88 to 9.09 {+-} 1.71 ml/100 g/min for K*{sub 1}, and 28.0 {+-} 5.9 to 32.3 {+-} 5.5 {micro}mol/100 g/min for CMR{sub glc}), while there were no significant changes in the ipsilateral SI (from 3.45 {+-} 0.84 to 3.39 {+-} 0.72 ml/100 g/min for K*, 8.17 {+-} 2.33 to 8.37 {+-} 1.75 ml/100 g/min for K*{sub 1}, and 29.5 {+-} 8.1 to 29.1 {+-} 8.2 {micro}mol/100 g/min for CMR{sub glc}). Significant increases in K* and CMR{sub glc} in the contralateral SI were clearly demonstrated in the t-statistic image.

  2. Blast Overpressure Waves Induce Transient Anxiety and Regional Changes in Cerebral Glucose Metabolism and Delayed Hyperarousal in Rats.

    PubMed

    Awwad, Hibah O; Gonzalez, Larry P; Tompkins, Paul; Lerner, Megan; Brackett, Daniel J; Awasthi, Vibhudutta; Standifer, Kelly M

    2015-01-01

    Physiological alterations, anxiety, and cognitive disorders are strongly associated with blast-induced traumatic brain injury (blast TBI), and are common symptoms in service personnel exposed to blasts. Since 2006, 25,000-30,000 new TBI cases are diagnosed annually in U.S. Service members; increasing evidence confirms that primary blast exposure causes diffuse axonal injury and is often accompanied by altered behavioral outcomes. Behavioral and acute metabolic effects resulting from blast to the head in the absence of thoracic contributions from the periphery were examined, following a single blast wave directed to the head of male Sprague-Dawley rats protected by a lead shield over the torso. An 80 psi head blast produced cognitive deficits that were detected in working memory. Blast TBI rats displayed increased anxiety as determined by elevated plus maze at day 9 post-blast compared to sham rats; blast TBI rats spent significantly more time than the sham controls in the closed arms (p < 0.05; n = 8-11). Interestingly, anxiety symptoms were absent at days 22 and 48 post-blast. Instead, blast TBI rats displayed increased rearing behavior at day 48 post-blast compared to sham rats. Blast TBI rats also exhibited suppressed acoustic startle responses, but similar pre-pulse inhibition at day 15 post-blast compared to sham rats. Acute physiological alterations in cerebral glucose metabolism were determined by positron emission tomography 1 and 9 days post-blast using (18)F-fluorodeoxyglucose ((18)F-FDG). Global glucose uptake in blast TBI rat brains increased at day 1 post-blast (p < 0.05; n = 4-6) and returned to sham levels by day 9. Our results indicate a transient increase in cerebral metabolism following a blast injury. Markers for reactive astrogliosis and neuronal damage were noted by immunoblotting motor cortex tissue from day 10 post-blast in blast TBI rats compared to sham controls (p < 0.05; n = 5-6).

  3. Oral glucose before venepuncture relieves neonates of pain, but stress is still evidenced by increase in oxygen consumption, energy expenditure, and heart rate.

    PubMed

    Bauer, Karl; Ketteler, Jörg; Hellwig, Magdalena; Laurenz, Maren; Versmold, Hans

    2004-04-01

    Oral glucose was recommended as pain therapy during venepuncture in neonates. It is unclear whether this intervention reduces excess oxygen consumption (o(2)), energy loss, or cardiovascular destabilization associated with venepuncture, and whether <2 mL glucose solution is effective. We tested the hypothesis that oral glucose solution attenuates the increases in neonatal oxygen consumption, energy expenditure (EE), and heart rate associated with venepuncture for two different volumes of glucose solution (2 and 0.4 mL). In this prospective, randomized, controlled, double-blind trial, 58 neonates (gestational age, 31-42 wk; postnatal age, 1-7 d) were randomized to 2 mL glucose 30%, 0.4 mL glucose 30%, or 2 mL water by mouth before venepuncture. The videotaped behavioral pain reactions were scored with the Premature Infant Pain Profile. Cry duration, o(2), EE (indirect calorimetry), and heart rate were measured. The 2 mL glucose solution reduced pain score and crying after venepuncture compared with controls [median pain score, 5.5 (interquartile range, 4-9) versus 11 (7-12), p = 0.01; median duration of first cry, 0 s (0-43 s) versus 13 s (2-47 s), p < 0.05, respectively]. The 0.4 mL glucose solution had no effect. The 2 mL glucose solution did not attenuate the o(2) increase during venepuncture (1.5 +/- 0.2 mL/kg min (water) versus 1.7 +/- 0.5 (0.4 mL glucose) versus 1.1 +/- 0.2 (2 mL glucose) (mean +/- SEM) nor EE nor heart rate. We conclude that oral administration of 2 mL glucose 30% before venepuncture reduced pain expression and crying, but did not prevent the rise in o(2), EE, or heart rate. Alternative therapies against the stress of nonpainful handling during venepuncture should be explored.

  4. Regionally selective alterations in local cerebral glucose utilization evoked by charybdotoxin, a blocker of central voltage-activated K+-channels.

    PubMed

    Cochran, S M; Harvey, A L; Pratt, J A

    2001-11-01

    The quantitative [14C]-2-deoxyglucose autoradiographic technique was employed to investigate the effect of charybdotoxin, a blocker of certain voltage-activated K+ channels, on functional activity, as reflected by changes in local rates of cerebral glucose utilization in rat brain. Intracerebroventricular administration of charybdotoxin, at doses below those producing seizure activity, produced a heterogeneous effect on glucose utilization throughout the brain. Out of the 75 brain regions investigated, 24 displayed alterations in glucose utilization. The majority of these changes were observed with the intermediate dose of charybdotoxin administered (12.5 pmol), with the lower (6.25 pmol) and higher (25 pmol) doses of charybdotoxin producing a much more restricted pattern of change in glucose utilization. In brain regions which displayed alterations in glucose at all doses of charybdotoxin administered, no dose dependency in terms of the magnitude of change was observed. The 21 brain regions which displayed altered functional activity after administration of 12.5 pmol charybdotoxin were predominantly limited to the hippocampus, limbic and motor structures. In particular, glucose utilization was altered within three pathways implicated within learning and memory processes, the septohippocampal pathway, Schaffer collaterals within the hippocampus and the Papez circuit. The nigrostriatal pathway also displayed altered local cerebral glucose utilization. These data indicate that charybdotoxin produces alterations in functional activity within selected pathways in the brain. Furthermore the results raise the possibility that manipulation of particular subtypes of Kv1 channels in the hippocampus and related structures may be a means of altering cognitive processes without causing global changes in neural activity throughout the brain.

  5. Bioassay-based isolation and identification of phenolics from sweet cherry that promote active glucose consumption by HepG2 cells.

    PubMed

    Cao, Jinping; Li, Xin; Liu, Yunxi; Leng, Feng; Li, Xian; Sun, Chongde; Chen, Kunsong

    2015-02-01

    A variety of phenolics had been found to be functional in promoting cellular glucose consumption that is important for blood glucose regulation. Sweet cherry (Prunus avium) is rich in such kinds of phenolics, including hydrocinnamic acids, anthocyanins, flavonols, and flavan-3-ols. Furthermore, a sweet cherry phenolics-rich extract (PRE) was found to be effective in promoting HepG2 glucose consumption. Seventeen components were preliminarily identified by HPLC-ESI-MS, including 9 hydrocinnamic acids, 4 anthocyanins, 3 flavonols, and 1 flavan-3-ol. To investigate the cellular glucose consumption-promotion activity of different phneolics subclasses, the phenolics were further fractionated into an anthocyanin-rich fraction (ARF), hydrocinnamic acid-rich fraction (HRF), and flavonol-rich fraction (FRF) through liquid-liquid extraction and mix-mode cation-exchange solid-phase extraction. The 3 fractions promoted HepG2 glucose consumption to different levels, with the promotion effects of HRF and FRF stronger than that of the ARF. The results provide guidance on the use of sweet cherry as a functional fruit.

  6. Comparison of cerebral regional glucose metabolic relationships in resting and auditory stimulated states

    SciTech Connect

    Metter, E.J.; Riege, W.H.; Mazziotta, J.C.; Phelps, M.E.; Kuhl, D.E.

    1984-01-01

    FDG positron computed tomography has demonstrated strong correlations between high frontal and occipital glucose metabolism in normal resting subjects, which varied by age and were lost in Huntington's and Parkinson's Diseases. The studies raised the question whether the findings may be explained by anatomic and not metabolic factors. An approach to the issue was to examine subjects scanned under two states, where functional and not anatomic features would account for relationship differences. Seventeen subjects were identified who had scans under resting and auditory stimulated states. Measurements were taken from 12 brain regions and were expressed as percentage of mean metabolism. A principal components analysis of the resting state demonstrated 3 components (73% of variance), while the stimulated states showed 4 (79% of variance). The first resting factor related frontal, right posterior inferior frontal and superior temporal regions, while in the stimulated, the frontal associated with the occipital. The second resting factor related both angular gyri and posterior temporal, while the third related left posterior inferior frontal, superior temporal and right occipital. With stimulation both factors were replaced by three others. The change in the first factor and its presence in other subject groups points to a functional relationship between the regions. Comparison to previous studies suggest the frontal-occipital association may involve aspects of attention. The variability in other factors was similar to loose correlations noted in normal studies and may reflect the differential response to several tasks.

  7. Imaging the time-integrated cerebral metabolic activity with subcellular resolution through nanometer-scale detection of biosynthetic products deriving from (13)C-glucose.

    PubMed

    Takado, Yuhei; Knott, Graham; Humbel, Bruno M; Masoodi, Mojgan; Escrig, Stéphane; Meibom, Anders; Comment, Arnaud

    2015-11-01

    Glucose is the primary source of energy for the brain but also an important source of building blocks for proteins, lipids, and nucleic acids. Little is known about the use of glucose for biosynthesis in tissues at the cellular level. We demonstrate that local cerebral metabolic activity can be mapped in mouse brain tissue by quantitatively imaging the biosynthetic products deriving from [U-(13)C]glucose metabolism using a combination of in situ electron microscopy and secondary ion mass-spectroscopy (NanoSIMS). Images of the (13)C-label incorporated into cerebral ultrastructure with ca. 100 nm resolution allowed us to determine the timescale on which the metabolic products of glucose are incorporated into different cells, their sub-compartments and organelles. These were mapped in astrocytes and neurons in the different layers of the motor cortex. We see evidence for high metabolic activity in neurons via the nucleus (13)C enrichment. We observe that in all the major cell compartments, such as e.g. nucleus and Golgi apparatus, neurons incorporate substantially higher concentrations of (13)C-label than astrocytes.

  8. Multiplexed MRI methods for rapid estimation of global cerebral metabolic rate of oxygen consumption.

    PubMed

    Lee, Hyunyeol; Langham, Michael C; Rodriguez-Soto, Ana E; Wehrli, Felix W

    2017-04-01

    The global cerebral metabolic rate of oxygen (CMRO2), which reflects metabolic activity of the brain under various physiologic conditions, can be quantified using a method, referred to as 'OxFlow', which simultaneously measures hemoglobin oxygen saturation in a draining vein (Yv) and total cerebral blood flow (tCBF). Conventional OxFlow (Conv-OxFlow) entails four interleaves incorporated in a single pulse sequence - two for phase-contrast based measurement of tCBF in the supplying arteries of the neck, and two to measure the intra- to extravascular phase difference in the superior sagittal sinus to derive Yv [Jain et al., JCBFM 2010]. However, this approach limits achievable temporal resolution thus precluding capture of rapid changes of brain metabolic states such as the response to apneic stimuli. Here, we developed a time-efficient, multiplexed OxFlow method and evaluated its potential for measuring dynamic alterations in global CMRO2 during a breath-hold challenge. Two different implementations of multiplexed OxFlow were investigated: 1) simultaneous-echo-refocusing based OxFlow (SER-OxFlow) and 2) simultaneous-multi-slice imaging-based dual-band OxFlow (DB-OxFlow). The two sequences were implemented on 3T scanners (Siemens TIM Trio and Prisma) and their performance was evaluated in comparison to Conv-OxFlow in ten healthy subjects for baseline CMRO2 quantification. Comparison of measured parameters (Yv, tCBF, CMRO2) revealed no significant bias of SER-OxFlow and DB-OxFlow, with respect to the reference Conv-OxFlow while improving temporal resolution two-fold (12.5 versus 25s). Further acceleration shortened scan time to 8 and 6s for SER and DB-OxFlow, respectively, for time-resolved CMRO2 measurement. The two sequences were able of capturing smooth transitions of Yv, tCBF, and CMRO2 over the time course consisting of 30s of normal breathing, 30s of volitional apnea, and 90s of recovery. While both SER- and DB-OxFlow techniques provide significantly improved

  9. High temporal resolution MRI quantification of global cerebral metabolic rate of oxygen consumption in response to apneic challenge.

    PubMed

    Rodgers, Zachary B; Jain, Varsha; Englund, Erin K; Langham, Michael C; Wehrli, Felix W

    2013-10-01

    We present a technique for quantifying global cerebral metabolic rate of oxygen consumption (CMRO2) in absolute physiologic units at 3-second temporal resolution and apply the technique to quantify the dynamic CMRO2 response to volitional apnea. Temporal resolution of 3 seconds was achieved via a combination of view sharing and superior sagittal sinus-based estimation of total cerebral blood flow (tCBF) rather than tCBF measurement in the neck arteries. These modifications were first validated in three healthy adults and demonstrated to produce minimal errors in image-derived blood flow and venous oxygen saturation (SvO2) values. The technique was then applied in 10 healthy adults during an apnea paradigm of three repeated 30-second breath-holds. Subject-averaged baseline tCBF, arteriovenous oxygen difference (AVO2D), and CMRO2 were 48.6 ± 7.0 mL/100 g per minute, 29.4 ± 3.4 %HbO2, and 125.1 ± 11.4 μmol/100 g per minute, respectively. Subject-averaged maximum changes in tCBF and AVO2D were 43.5 ± 9.4% and -32.1 ± 5.7%, respectively, resulting in a small (6.0 ± 3.5%) but statistically significant (P=0.00044, two-tailed t-test) increase in average end-apneic CMRO2. This method could be used to investigate neurometabolic-hemodynamic relationships in normal physiology, to better define the biophysical origins of the BOLD signal, and to quantify neurometabolic responsiveness in diseases of altered neurovascular reactivity.

  10. High glucose-induced mitochondrial respiration and reactive oxygen species in mouse cerebral pericytes is reversed by pharmacological inhibition of mitochondrial carbonic anhydrases: Implications for cerebral microvascular disease in diabetes.

    PubMed

    Shah, Gul N; Morofuji, Yoichi; Banks, William A; Price, Tulin O

    2013-10-18

    Hyperglycemia-induced oxidative stress leads to diabetes-associated damage to the microvasculature of the brain. Pericytes in close proximity to endothelial cells in the brain microvessels are vital to the integrity of the blood-brain barrier and are especially susceptible to oxidative stress. According to our recently published results, streptozotocin-diabetic mouse brain exhibits oxidative stress and loose pericytes by twelve weeks of diabetes, and cerebral pericytes cultured in high glucose media suffer intracellular oxidative stress and apoptosis. Oxidative stress in diabetes is hypothesized to be caused by reactive oxygen species (ROS) produced during hyperglycemia-induced enhanced oxidative metabolism of glucose (respiration). To test this hypothesis, we investigated the effect of high glucose on respiration rate and ROS production in mouse cerebral pericytes. Previously, we showed that pharmacological inhibition of mitochondrial carbonic anhydrases protects the brain from oxidative stress and pericyte loss. The high glucose-induced intracellular oxidative stress and apoptosis of pericytes in culture were also reversed by inhibition of mitochondrial carbonic anhydrases. Therefore, we extended our current study to determine the effect of these inhibitors on high glucose-induced increases in pericyte respiration and ROS. We now report that both the respiration and ROS are significantly increased in pericytes challenged with high glucose. Furthermore, inhibition of mitochondrial carbonic anhydrases significantly slowed down both the rate of respiration and ROS production. These data provide new evidence that pharmacological inhibitors of mitochondrial carbonic anhydrases, already in clinical use, may prove beneficial in protecting the brain from oxidative stress caused by ROS produced as a consequence of hyperglycemia-induced enhanced respiration.

  11. Gadd45b prevents autophagy and apoptosis against rat cerebral neuron oxygen-glucose deprivation/reperfusion injury.

    PubMed

    He, Guoqian; Xu, Wenming; Tong, Linyan; Li, Shuaishuai; Su, Shiceng; Tan, Xiaodan; Li, Changqing

    2016-04-01

    Autophagic (type II) cell death has been suggested to play pathogenetic roles in cerebral ischemia. Growth arrest and DNA damage response 45b (Gadd45b) has been shown to protect against rat brain ischemia injury through inhibiting apoptosis. However, the relationship between Gadd45b and autophagy in cerebral ischemia/reperfusion (I/R) injury remains uncertain. The aim of this study is to investigate the effect of Gadd45b on autophagy. We adopt the oxygen-glucose deprivation and reperfusion (OGD/R) model of rat primary cortex neurons, and lentivirus interference used to silence Gadd45b expression. Cell viability and injury assay were performed using CCK-8 and LDH kit. Autophagy activation was monitored by expression of ATG5, LC3, Beclin-1, ATG7 and ATG3. Neuron apoptosis was monitored by expression of Bcl-2, Bax, cleaved caspase3, p53 and TUNEL assay. Neuron neurites were assayed by double immunofluorescent labeling with Tuj1 and LC3B. Here, we demonstrated that the expression of Gadd45b was strongly up-regulated at 24 h after 3 h OGD treatment. ShRNA-Gadd45b increased the expression of autophagy related proteins, aggravated OGD/R-induced neuron cell apoptosis and neurites injury. ShRNA-Gadd45b co-treatment with autophagy inhibitor 3-methyladenine (3-MA) or Wortmannin partly inhibited the ratio of LC3II/LC3I, and slightly ameliorated neuron cell apoptosis under OGD/R. Furthermore, shRNA-Gadd45b inhibited the p-p38 level involved in autophagy, but increased the p-JNK level involved in apoptosis. ShRNA-Gadd45b co-treatment with p38 inhibitor obviously induced autophagy. ShRNA-Gadd45b co-treatment with JNK inhibitor alleviated neuron cell apoptosis. In conclusion, our data suggested that Gadd45b inhibited autophagy and apoptosis under OGD/R. Gadd45b may be a common regulatory protein to control autophagy and apoptosis.

  12. Twenty-four Hour Endocrine and Metabolic Profiles Following Consumption of High Fructose Corn Syrup-, Sucrose- Fructose-, and Glucose-Sweetened Beverages with Meals

    PubMed Central

    Stanhope, Kimber L.; Griffen, Steven C.; Bair, Brandi R.; Swarbrick, Michael M.; Keim, Nancy L.; Havel, Peter J.

    2011-01-01

    Background We have reported that compared with glucose-sweetened beverages, consuming fructose-sweetened beverages with meals results in lower 24-h circulating glucose, insulin and leptin concentrations, and elevated triacylglycerol (TG). However, pure fructose and glucose are not commonly used as sweeteners. High fructose corn syrup (HFCS) has replaced sucrose as the predominant sweetener in beverages in the U.S. Objective We compared the metabolic/endocrine effects of HFCS with sucrose, and in a subset of subjects with pure fructose and glucose. Design 34 men and women consumed 3 isocaloric meals with either sucrose- or HFCS-sweetened beverages, and blood samples were collected over 24 hours. Eight of the male subjects were also studied when fructose- or glucose-sweetened beverages were consumed. Results In 34 subjects, 24-h glucose, insulin, leptin, ghrelin and TG profiles were similar between days that sucrose or HFCS were consumed. Postprandial TG excursions after HFCS or sucrose were larger in men than women. In the men in whom the effects of 4 sweeteners were compared, the 24-h glucose and insulin responses induced by HFCS and sucrose were intermediate between the lower responses during consumption of fructose and the higher responses during glucose. Unexpectedly, postprandial TG profiles after HFCS or sucrose were not intermediate, but comparably high as after pure fructose. Conclusions Sucrose and HFCS do not have substantially different short-term endocrine/metabolic effects. In male subjects, short-term consumption of sucrose and HFCS resulted in postprandial TG responses comparable to those induced by fructose. PMID:18469239

  13. Effects of oxygen and glucose deprivation on the expression and distribution of neuronal and inducible nitric oxide synthases and on protein nitration in rat cerebral cortex.

    PubMed

    Alonso, David; Serrano, Julia; Rodríguez, Ignacio; Ruíz-Cabello, Jesús; Fernández, Ana Patricia; Encinas, Juan Manuel; Castro-Blanco, Susana; Bentura, María Luisa; Santacana, María; Richart, Ana; Fernández-Vizarra, Paula; Uttenthal, Lars Otto; Rodrigo, José

    2002-02-04

    Changes in the nitric oxide (NO) system of the rat cerebral cortex were investigated by immunohistochemistry, immunoblotting, NO synthase (NOS) activity assay, and magnetic resonance imaging (MRI) in an experimental model of global cerebral ischemia and reperfusion. Brains were perfused transcardially with an oxygenated plasma substitute and subjected to 30 minutes of oxygen and glucose deprivation, followed by reperfusion for up to 12 hours with oxygenated medium containing glucose. A sham group was perfused without oxygen or glucose deprivation, and a further group was treated with the NOS inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME) before and during perfusion. Global ischemia led to cerebrocortical injury as shown by diffusion MRI. This was accompanied by increasing morphologic changes in the large type I interneurons expressing neuronal NOS (nNOS) and the appearance of nNOS immunoreactivity in small type II neurons. The nNOS-immunoreactive band and calcium-dependent NOS activity showed an initial increase, followed by a fall after 6 hours of reperfusion. Inducible NOS immunoreactivity appeared in neurons, especially pyramidal cells of layers IV-V, after 4 hours of reperfusion, with corresponding changes on immunoblotting and in calcium-independent NOS activity. Immunoreactive protein nitrotyrosine, present in the nuclear area of neurons in nonperfused controls and sham-perfused animals, showed changes in intensity and distribution, appearing in the neuronal processes during the reperfusion period. Prior and concurrent L-NAME administration blocked the changes on diffusion MRI and attenuated the morphologic changes, suggesting that NO and consequent peroxynitrite formation during ischemia-reperfusion contributes to cerebral injury.

  14. Consumption of meat is associated with higher fasting glucose and insulin concentrations regardless of glucose and insulin genetic risk scores: a meta-analysis of 50,345 Caucasians12

    PubMed Central

    Fretts, Amanda M; Follis, Jack L; Nettleton, Jennifer A; Lemaitre, Rozenn N; Ngwa, Julius S; Wojczynski, Mary K; Kalafati, Ioanna Panagiota; Varga, Tibor V; Frazier-Wood, Alexis C; Houston, Denise K; Lahti, Jari; Ericson, Ulrika; van den Hooven, Edith H; Mikkilä, Vera; Kiefte-de Jong, Jessica C; Mozaffarian, Dariush; Rice, Kenneth; Renström, Frida; North, Kari E; McKeown, Nicola M; Feitosa, Mary F; Kanoni, Stavroula; Smith, Caren E; Garcia, Melissa E; Tiainen, Anna-Maija; Sonestedt, Emily; Manichaikul, Ani; van Rooij, Frank JA; Dimitriou, Maria; Raitakari, Olli; Pankow, James S; Djoussé, Luc; Province, Michael A; Hu, Frank B; Lai, Chao-Qiang; Keller, Margaux F; Perälä, Mia-Maria; Rotter, Jerome I; Hofman, Albert; Graff, Misa; Kähönen, Mika; Mukamal, Kenneth; Johansson, Ingegerd; Ordovas, Jose M; Liu, Yongmei; Männistö, Satu; Uitterlinden, André G; Deloukas, Panos; Seppälä, Ilkka; Psaty, Bruce M; Cupples, L Adrienne; Borecki, Ingrid B; Franks, Paul W; Arnett, Donna K; Nalls, Mike A; Eriksson, Johan G; Orho-Melander, Marju; Franco, Oscar H; Lehtimäki, Terho; Dedoussis, George V; Meigs, James B; Siscovick, David S

    2015-01-01

    loci known to influence fasting glucose or insulin resistance. Conclusion: The association of higher fasting glucose and insulin concentrations with meat consumption was not modified by an index of glucose- and insulin-related single-nucleotide polymorphisms. Six of the participating studies are registered at clinicaltrials.gov as NCT0000513 (Atherosclerosis Risk in Communities), NCT00149435 (Cardiovascular Health Study), NCT00005136 (Family Heart Study), NCT00005121 (Framingham Heart Study), NCT00083369 (Genetics of Lipid Lowering Drugs and Diet Network), and NCT00005487 (Multi-Ethnic Study of Atherosclerosis). PMID:26354543

  15. Vinegar Consumption Increases Insulin-Stimulated Glucose Uptake by the Forearm Muscle in Humans with Type 2 Diabetes

    PubMed Central

    Mitrou, Panayota; Maratou, Eirini; Lambadiari, Vaia; Dimitriadis, Panayiotis; Spanoudi, Filio; Raptis, Sotirios A.; Dimitriadis, George

    2015-01-01

    Background and Aims. Vinegar has been shown to have a glucose-lowering effect in patients with glucose abnormalities. However, the mechanisms of this effect are still obscure. The aim of this randomised, crossover study was to investigate the effect of vinegar on glucose metabolism in muscle which is the most important tissue for insulin-stimulated glucose disposal. Materials and Methods. Eleven subjects with DM2 consumed vinegar or placebo (at random order on two separate days, a week apart), before a mixed meal. Plasma glucose, insulin, triglycerides, nonesterified fatty acids (NEFA), and glycerol were measured preprandially and at 30–60 min for 300 min postprandially from the radial artery and from a forearm vein. Muscle blood flow was measured with strain-gauge plethysmography. Glucose uptake was calculated as the arteriovenous difference of glucose multiplied by blood flow. Results. Vinegar compared to placebo (1) increased forearm glucose uptake (p = 0.0357), (2) decreased plasma glucose (p = 0.0279), insulin (p = 0.0457), and triglycerides (p = 0.0439), and (3) did not change NEFA and glycerol. Conclusions. In DM2 vinegar reduces postprandial hyperglycaemia, hyperinsulinaemia, and hypertriglyceridaemia without affecting lipolysis. Vinegar's effect on carbohydrate metabolism may be partly accounted for by an increase in glucose uptake, demonstrating an improvement in insulin action in skeletal muscle. This trial is registered with Clinicaltrials.gov NCT02309424. PMID:26064976

  16. Cerebral blood flow response to functional activation

    PubMed Central

    Paulson, Olaf B; Hasselbalch, Steen G; Rostrup, Egill; Knudsen, Gitte Moos; Pelligrino, Dale

    2010-01-01

    Cerebral blood flow (CBF) and cerebral metabolic rate are normally coupled, that is an increase in metabolic demand will lead to an increase in flow. However, during functional activation, CBF and glucose metabolism remain coupled as they increase in proportion, whereas oxygen metabolism only increases to a minor degree—the so-called uncoupling of CBF and oxidative metabolism. Several studies have dealt with these issues, and theories have been forwarded regarding the underlying mechanisms. Some reports have speculated about the existence of a potentially deficient oxygen supply to the tissue most distant from the capillaries, whereas other studies point to a shift toward a higher degree of non-oxidative glucose consumption during activation. In this review, we argue that the key mechanism responsible for the regional CBF (rCBF) increase during functional activation is a tight coupling between rCBF and glucose metabolism. We assert that uncoupling of rCBF and oxidative metabolism is a consequence of a less pronounced increase in oxygen consumption. On the basis of earlier studies, we take into consideration the functional recruitment of capillaries and attempt to accommodate the cerebral tissue's increased demand for glucose supply during neural activation with recent evidence supporting a key function for astrocytes in rCBF regulation. PMID:19738630

  17. Uncoupling Protein 2 (UCP2) Function in the Brain as Revealed by the Cerebral Metabolism of (1-(13)C)-Glucose.

    PubMed

    Contreras, Laura; Rial, Eduardo; Cerdan, Sebastian; Satrustegui, Jorgina

    2017-01-01

    The mitochondrial aspartate/glutamate transporter Aralar/AGC1/Slc25a12 is critically involved in brain aspartate synthesis, and AGC1 deficiency results in a drastic fall of brain aspartate levels in humans and mice. It has recently been described that the uncoupling protein UCP2 transports four carbon metabolites including aspartate. Since UCP2 is expressed in several brain cell types and AGC1 is mainly neuronal, we set to test whether UCP2 could be a mitochondrial aspartate carrier in the brain glial compartment. The study of the cerebral metabolism of (1-(13)C)-glucose in vivo in wild type and UCP2-knockout mice showed no differences in C3 or C2 labeling of aspartate, suggesting that UCP2 does not function as a mitochondrial aspartate carrier in brain. However, surprisingly, a clear decrease (of about 30-35 %) in the fractional enrichment of glutamate, glutamine and GABA was observed in the brains of UCP2-KO mice which was not associated with differences in either glucose or lactate enrichments. The results suggest that the dilution in the labeling of glutamate and its downstream metabolites could originate from the uptake of an unlabeled substrate that could not leave the matrix via UCP2 becoming trapped in the matrix. Understanding the nature of the unlabeled substrate and its precursor(s) as alternative substrates to glucose is of interest in the context of neurological diseases associated with UCP2.

  18. Pulsed addition of HMF and furfural to batch-grown xylose-utilizing Saccharomyces cerevisiae results in different physiological responses in glucose and xylose consumption phase

    PubMed Central

    2013-01-01

    Background Pretreatment of lignocellulosic biomass generates a number of undesired degradation products that can inhibit microbial metabolism. Two of these compounds, the furan aldehydes 5-hydroxymethylfurfural (HMF) and 2-furaldehyde (furfural), have been shown to be an impediment for viable ethanol production. In the present study, HMF and furfural were pulse-added during either the glucose or the xylose consumption phase in order to dissect the effects of these inhibitors on energy state, redox metabolism, and gene expression of xylose-consuming Saccharomyces cerevisiae. Results Pulsed addition of 3.9 g L-1 HMF and 1.2 g L-1 furfural during either the glucose or the xylose consumption phase resulted in distinct physiological responses. Addition of furan aldehydes in the glucose consumption phase was followed by a decrease in the specific growth rate and the glycerol yield, whereas the acetate yield increased 7.3-fold, suggesting that NAD(P)H for furan aldehyde conversion was generated by acetate synthesis. No change in the intracellular levels of NAD(P)H was observed 1 hour after pulsing, whereas the intracellular concentration of ATP increased by 58%. An investigation of the response at transcriptional level revealed changes known to be correlated with perturbations in the specific growth rate, such as protein and nucleotide biosynthesis. Addition of furan aldehydes during the xylose consumption phase brought about an increase in the glycerol and acetate yields, whereas the xylitol yield was severely reduced. The intracellular concentrations of NADH and NADPH decreased by 58 and 85%, respectively, hence suggesting that HMF and furfural drained the cells of reducing power. The intracellular concentration of ATP was reduced by 42% 1 hour after pulsing of inhibitors, suggesting that energy-requiring repair or maintenance processes were activated. Transcriptome profiling showed that NADPH-requiring processes such as amino acid biosynthesis and sulfate and

  19. [Glucose homeostasis in children. I. Regulation of blood glucose].

    PubMed

    Otto Buczkowska, E; Szirer, G; Jarosz-Chobot, P

    2001-01-01

    The amount of glucose in the circulation depends on its absorption from the intestine, uptake by and release from the liver and uptake by peripheral tissues. Insulin and glucagon together control the metabolities required by peripheral tissues and both are involved in maintaining glucose homeostasis. Insulin is considered to be an anabolic hormone in that it promotes the synthesis of protein, lipid and glycogen. The key target tissues for insulin are liver, muscles and adipose tissue. Glucagon acts largely to increase catabolic processes. Between meals or during fast, the most tightly regulated process is the release of glucose from the liver. During fasting glucose is produced from glycogen and is formed by enzymes on the gluconeogenic pathway. Fetal metabolism is directed to ensure anabolism with formation of glycogen, fat and protein. Glucogen is stored in the liver and serves as the immediate source of new glucose during first few hours after birth. Glucose is the most important substrate for brain metabolism. Due to the large size of neonatal brain in relation to body weight cerebral glucose consumption is particularly high. Postnatal hormonal changes have a central role in regulating glucose mobilization through glycogenolysis and gluconeogenesis. The initial glucagon surge is the key adaptive change which triggers the switch to glucose production. The control of insulin and glucagon secretion is of fundamental importance during first hours after birth. Children have a decreased tolerance to starvation when compared with adults, they are more prone to develop hypoglycaemia after short fasting. The faster rate in the fall of blood glucose and gluconeogenic substrates and rapid rate of ketogenesis are characteristic features of fasting adaptation in children.

  20. Consumption of sericin reduces serum lipids, ameliorates glucose tolerance and elevates serum adiponectin in rats fed a high-fat diet.

    PubMed

    Okazaki, Yukako; Kakehi, Shoko; Xu, Yonghui; Tsujimoto, Kazuhisa; Sasaki, Masahiro; Ogawa, Hiroshi; Kato, Norihisa

    2010-01-01

    The effect was examined of dietary sericin on the lipid and carbohydrate metabolism in rats fed with a high-fat diet. The rats were fed with a 20% beef tallow diet with or without sericin at the level of 4% for 5 weeks. The final body weight and white adipose tissue weight were unaffected by dietary manipulation. The consumption of sericin significantly reduced the serum levels of triglyceride, cholesterol, phospholipids and free fatty acids. Serum very-low-density lipoprotein (VLDL)-triglyceride, VLDL-cholesterol, low-density lipoprotein (LDL)-cholesterol and LDL-phospholipids were also significantly reduced by the sericin intake. Liver triglyceride and the activities of glucose 6-phosphate dehydrogenase and malic enzyme, the lipogenic enzymes, were also reduced by the sericin intake. Dietary sericin caused a marked elevation in serum adiponectin. The consumption of sericin suppressed the increases in plasma glucose and insulin levels after an intraperitoneal glucose injection. These results imply the usefulness of sericin for improving the lipid and carbohydrate metabolism in rats fed on a high-fat diet.

  1. A novel dual-glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide receptor agonist is neuroprotective in transient focal cerebral ischemia in the rat.

    PubMed

    Han, Ling; Hölscher, Christian; Xue, Guo-Fang; Li, Guanglai; Li, Dongfang

    2016-01-06

    Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) receptor agonists have been shown to be neuroprotective in previous studies in animal models of Alzheimer's or Parkinson's disease. Recently, novel dual-GLP-1/GIP receptor agonists that activate both receptors (DA) were developed to treat diabetes. We tested the protective effects of a novel potent DA against middle cerebral artery occlusion injury in rats and compared it with a potent GLP-1 analog, Val(8)-GLP-1(glu-PAL). Animals were evaluated for neurologic deficit score, infarct volume, and immunohistochemical analyses of the brain at several time points after ischemia. The Val(8)-GLP-1(glu-PAL)-treated and DA-treated groups showed significantly reduced scores of neurological dysfunction, cerebral infarction size, and percentage of TUNEL-positive apoptotic neurons. Furthermore, the expression of the apoptosis marker Bax, the inflammation marker iNOS, and the survival marker Bcl-2 was significantly increased. The DA-treated group was better protected against neurodegeneration than the Val(8)-GLP-1(glu-PAL) group, and the scores of neurological dysfunction, cerebral infarction size, and expression of Bcl-2 were higher, whereas the percentage of TUNEL-positive neurons and the levels of Bax and iNOS were lower in the DA group. DA treatment reduced the infarct volume and improved the functional deficit. It also suppressed the inflammatory response and cell apoptosis after reperfusion. In conclusion, the novel GIP and GLP-1 dual-receptor agonist is more neuroprotective than a GLP-1 receptor agonist in key biomarkers of neuronal degeneration.

  2. Magnetic resonance angiography-defined intracranial vasculopathy is associated with silent cerebral infarcts and glucose-6-phosphate dehydrogenase mutation in children with sickle cell anaemia.

    PubMed

    Thangarajh, Mathula; Yang, Genyan; Fuchs, Dana; Ponisio, Maria R; McKinstry, Robert C; Jaju, Alok; Noetzel, Michael J; Casella, James F; Barron-Casella, Emily; Hooper, W Craig; Boulet, Sheree L; Bean, Christopher J; Pyle, Meredith E; Payne, Amanda B; Driggers, Jennifer; Trau, Heidi A; Vendt, Bruce A; Rodeghier, Mark; DeBaun, Michael R

    2012-11-01

    Silent cerebral infarct (SCI) is the most commonly recognized cause of neurological injury in sickle cell anaemia (SCA). We tested the hypothesis that magnetic resonance angiography (MRA)-defined vasculopathy is associated with SCI. Furthermore, we examined genetic variations in glucose-6-phosphate dehydrogenase (G6PD) and HBA (α-globin) genes to determine their association with intracranial vasculopathy in children with SCA. Magnetic resonance imaging (MRI) of the brain and MRA of the cerebral vasculature were available in 516 paediatric patients with SCA, enrolled in the Silent Infarct Transfusion (SIT) Trial. All patients were screened for G6PD mutations and HBA deletions. SCI were present in 41·5% (214 of 516) of SIT Trial children. The frequency of intracranial vasculopathy with and without SCI was 15·9% and 6·3%, respectively (P < 0·001). Using a multivariable logistic regression model, only the presence of a SCI was associated with increased odds of vasculopathy (P = 0·0007, odds ratio (OR) 2·84; 95% Confidence Interval (CI) = 1·55-5·21). Among male children with SCA, G6PD status was associated with vasculopathy (P = 0·04, OR 2·78; 95% CI = 1·04-7·42), while no significant association was noted for HBA deletions. Intracranial vasculopathy was observed in a minority of children with SCA, and when present, was associated with G6PD status in males and SCI.

  3. Neurotrophin-3 promotes cell death induced in cerebral ischemia, oxygen-glucose deprivation, and oxidative stress: possible involvement of oxygen free radicals.

    PubMed

    Bates, Brian; Hirt, Lorenz; Thomas, Sunu S; Akbarian, Schahram; Le, Dean; Amin-Hanjani, Sepideh; Whalen, Michael; Jaenisch, Rudolf; Moskowitz, Michael A

    2002-02-01

    To explore the role of neurotrophin-3 (NT-3) during cerebral ischemia, NT-3-deficient brains were subjected to transient focal ischemia. Conditional mutant brains produced undetectable amounts of NT-3 mRNA, whereas the expression of the neurotrophin, BDNF, the NT-3 receptor, TrkC, and the nonselective, low-affinity neurotrophin receptor p75NTR, were comparable to wild-type. Baseline absolute blood flow, vascular and neuroanatomical features, as well as physiological measurements were also indistinguishable from wild-type. Interestingly, the absence of NT-3 led to a significantly decreased infarct volume 23 h after middle cerebral artery occlusion. Consistent with this, the addition of NT-3 to primary cortical cell cultures exacerbated neuronal death caused by oxygen-glucose deprivation. Coincubation with the oxygen free radical chelator, trolox, diminished potentiation of neuronal death. NT-3 also enhanced neuronal cell death and the production of reactive oxygen species caused by oxidative damage inducing agents. We conclude that endogenous NT-3 enhanced neuronal injury during acute stroke, possible by increasing oxygen-radical mediated cell death.

  4. No effect of acute beetroot juice ingestion on oxygen consumption, glucose kinetics, or skeletal muscle metabolism during submaximal exercise in males.

    PubMed

    Betteridge, Scott; Bescós, Raúl; Martorell, Miquel; Pons, Antoni; Garnham, Andrew P; Stathis, Christos C; McConell, Glenn K

    2016-02-15

    Beetroot juice, which is rich in nitrate (NO3 (-)), has been shown in some studies to decrease oxygen consumption (V̇o2) for a given exercise workload, i.e., increasing efficiency and exercise tolerance. Few studies have examined the effect of beetroot juice or nitrate supplementation on exercise metabolism. Eight healthy recreationally active males participated in three trials involving ingestion of either beetroot juice (Beet; ∼8 mmol NO3 (-)), Placebo (nitrate-depleted Beet), or Beet + mouthwash (Beet+MW), all of which were performed in a randomized single-blind crossover design. Two-and-a-half hours later, participants cycled for 60 min on an ergometer at 65% of V̇o2 peak. [6,6-(2)H]glucose was infused to determine glucose kinetics, blood samples obtained throughout exercise, and skeletal muscle biopsies that were obtained pre- and postexercise. Plasma nitrite [NO2 (-)] increased significantly (∼130%) with Beet, and this was attenuated in MW+Beet. Beet and Beet+MW had no significant effect on oxygen consumption, blood glucose, blood lactate, plasma nonesterified fatty acids, or plasma insulin during exercise. Beet and Beet+MW also had no significant effect on the increase in glucose disposal during exercise. In addition, Beet and Beet+MW had no significant effect on the decrease in muscle glycogen and phosphocreatine and the increase in muscle creatine, lactate, and phosphorylated acetyl CoA carboxylase during exercise. In conclusion, at the dose used, acute ingestion of beetroot juice had little effect on skeletal muscle metabolism during exercise.

  5. Purification and Characterization of Aporphine Alkaloids from Leaves of Nelumbo nucifera Gaertn and Their Effects on Glucose Consumption in 3T3-L1 Adipocytes

    PubMed Central

    Ma, Chengjun; Wang, Jinjun; Chu, Hongmei; Zhang, Xiaoxiao; Wang, Zhenhua; Wang, Honglun; Li, Gang

    2014-01-01

    Aporphine alkaloids from the leaves of Nelumbo nucifera Gaertn are substances of great interest because of their important pharmacological activities, particularly anti-diabetic, anti-obesity, anti-hyperlipidemic, anti-oxidant, and anti-HIV’s activities. In order to produce large amounts of pure alkaloid for research purposes, a novel method using high-speed counter-current chromatography (HSCCC) was developed. Without any initial cleanup steps, four main aporphine alkaloids, including 2-hydroxy-1-methoxyaporphine, pronuciferine, nuciferine and roemerine were successfully purified from the crude extract by HSCCC in one step. The separation was performed with a simple two-phase solvent system composed of n-hexane-ethyl acetate-methanol-acetonitrile-water (5:3:3:2.5:5, v/v/v/v/v). In each operation, 100 mg crude extracts was separated and yielded 6.3 mg of 2-hydroxy-1-methoxyaporphine (95.1% purity), 1.1 mg of pronuciferine (96.8% purity), 8.5 mg of nuciferine (98.9% purity), and 2.7 mg of roemerine (97.4%) respectively. The chemical structure of four aporphine alkaloids are identified by means of electrospray ionization MS (ESI-MS) and nuclear magnetic resonance (NMR) analysis. Moreover, the effects of four separated aporphine alkaloids on insulin-stimulated glucose consumption were examined in 3T3-L1 adipocytes. The results showed that 2-hydroxy-1-methoxyaporphine and pronuciferine increased the glucose consumption significantly as rosiglitazone did. PMID:24577311

  6. A mixture of apple pomace and rosemary extract improves fructose consumption-induced insulin resistance in rats: modulation of sarcolemmal CD36 and glucose transporter-4

    PubMed Central

    Ma, Peng; Yao, Ling; Lin, Xuemei; Gu, Tieguang; Rong, Xianglu; Batey, Robert; Yamahara, Johji; Wang, Jianwei; Li, Yuhao

    2016-01-01

    Apple pomace is a by-product of the processing of apple for juice, cider or wine preparation. Rosemary is a herb commonly used as spice and flavoring agent in food processing. Evidence suggests that both apple pomace and rosemary have rich bioactive molecules with numerous metabolic effects. To provide more information for using apple pomace and rosemary as functional foods for management of metabolism-associated disorders, the present study investigated the insulin-sensitizing effect of a mixture of apple pomace and rosemary extract (AR). The results showed that treatment with AR (500 mg/kg, daily, by gavage) for 5 weeks attenuated chronic liquid fructose consumption-induced increases in fasting plasma insulin concentration, the homeostasis model assessment of insulin resistance index and the adipose tissue insulin resistance index in rats. Mechanistically, AR suppressed fructose-induced acceleration of the clearance of plasma non-esterified fatty acids during oral glucose tolerance test, and decreased excessive triglyceride accumulation and the increased Oil Red O staining area in the gastrocnemius. Furthermore, AR restored fructose-induced overexpression of sarcolemmal CD36 that is known to contribute to etiology of insulin resistance by facilitating fatty acid uptake, and downregulation of sarcolemmal glucose transporter (GLUT)-4 that is the insulin-responsive glucose transporter. Thus, these results demonstrate that AR improves fructose-induced insulin resistance in rats via modulation of sarcolemmal CD36 and GLUT-4. PMID:27725859

  7. A mixture of apple pomace and rosemary extract improves fructose consumption-induced insulin resistance in rats: modulation of sarcolemmal CD36 and glucose transporter-4.

    PubMed

    Ma, Peng; Yao, Ling; Lin, Xuemei; Gu, Tieguang; Rong, Xianglu; Batey, Robert; Yamahara, Johji; Wang, Jianwei; Li, Yuhao

    2016-01-01

    Apple pomace is a by-product of the processing of apple for juice, cider or wine preparation. Rosemary is a herb commonly used as spice and flavoring agent in food processing. Evidence suggests that both apple pomace and rosemary have rich bioactive molecules with numerous metabolic effects. To provide more information for using apple pomace and rosemary as functional foods for management of metabolism-associated disorders, the present study investigated the insulin-sensitizing effect of a mixture of apple pomace and rosemary extract (AR). The results showed that treatment with AR (500 mg/kg, daily, by gavage) for 5 weeks attenuated chronic liquid fructose consumption-induced increases in fasting plasma insulin concentration, the homeostasis model assessment of insulin resistance index and the adipose tissue insulin resistance index in rats. Mechanistically, AR suppressed fructose-induced acceleration of the clearance of plasma non-esterified fatty acids during oral glucose tolerance test, and decreased excessive triglyceride accumulation and the increased Oil Red O staining area in the gastrocnemius. Furthermore, AR restored fructose-induced overexpression of sarcolemmal CD36 that is known to contribute to etiology of insulin resistance by facilitating fatty acid uptake, and downregulation of sarcolemmal glucose transporter (GLUT)-4 that is the insulin-responsive glucose transporter. Thus, these results demonstrate that AR improves fructose-induced insulin resistance in rats via modulation of sarcolemmal CD36 and GLUT-4.

  8. Effects of Acute Caffeinated Coffee Consumption on Energy Utilization Related to Glucose and Lipid Oxidation from Short Submaximal Treadmill Exercise in Sedentary Men

    PubMed Central

    Leelarungrayub, Donrawee; Sallepan, Maliwan; Charoenwattana, Sukanya

    2011-01-01

    Objective: Aim of this study was to evaluate the short term effect of coffee drinking on energy utilization in sedentary men. Methods: This study was performed in healthy sedentary men, who were randomized into three groups, control (n = 6), decaffeinated (n = 10), and caffeine (n = 10). The caffeine dose in coffee was rechecked and calculated for individual volunteers at 5 mg/kg. Baseline before drinking, complete blood count (CBC), glucose, antioxidant capacity, lipid peroxide, and caffeine in blood was evaluated. After drinking coffee for 1 hr, the submaximal exercise test with a modified Bruce protocol was carried out, and the VO2 and RER were analyzed individually at 80% maximal heart rate, then the blood was repeat evaluated. Results: Three groups showed a nonsignificant difference in CBC results and physical characteristics. The caffeine group showed significant changes in all parameters; higher VO2 levels, (P = 0.037) and lower RER (P = 0.047), when compared to the baseline. Furthermore, the glucose level after exercise test increased significantly (P = 0.033) as well as lipid peroxide levels (P = 0.005), whereas antioxidant capacity did not change significantly (P = 0.759), when compared to the before exercise testing. In addition, the blood caffeine level also increased only in the caffeine group (P = 0.008). Conclusion: Short consumption of caffeinated coffee (5 mg/kg of caffeine), improves energy utilization and relates to glucose derivation and lipid oxidation. PMID:23946663

  9. INSULIN RESISTANCE IS ASSOCIATED WITH ALZHEIMER-LIKE REDUCTIONS IN REGIONAL CEREBRAL GLUCOSE METABOLISM FOR COGNITIVELY NORMAL ADULTS WITH PRE-DIABETES OR EARLY TYPE 2 DIABETES

    PubMed Central

    Baker, Laura D.; Cross, Donna; Minoshima, Satoshi; Belongia, Dana; Watson, G. Stennis; Craft, Suzanne

    2010-01-01

    Background Insulin resistance is a causal factor in pre-diabetes and type 2 diabetes (T2D), and also increases the risk of developing Alzheimer’s disease (AD). Reductions in cerebral glucose metabolic rate (CMRglu) as measured by fluorodeoxyglucose positron emission tomography (FDG PET) in parietotemporal, frontal, and cingulate cortex are also associated with increased AD risk, and can be observed years before dementia onset. Objectives We examined whether greater insulin resistance as indexed by the homeostasis model assessment (HOMA-IR) would be associated with reduced resting CMRglu in areas known to be vulnerable in AD in a sample of cognitively normal adults with newly diagnosed pre-diabetes or T2D (P-D/T2D). We also determined whether P-D/T2D adults have abnormal patterns of CMRglu during a memory encoding task. Design Randomized crossover design of resting and activation [F-18] FDG-PET. Setting University Imaging Center and VA Clinical Research Unit. Participants Participants included 23 older adults (mean age±SEM=74.4±1.4) with no prior diagnosis of or treatment for diabetes, but who met American Diabetes Association glycemic criteria for pre-diabetes (n=11) or diabetes (n=12) based on fasting or 2-h oral glucose tolerance test (OGTT) glucose values, and 6 adults (mean age±SEM=74.3±2.8) with normal fasting glucose and glucose tolerance. No participant met Petersen criteria for mild cognitive impairment (MCI). Intervention Fasting participants rested with eyes open in a dimly lit room and underwent resting and cognitive activation [F-18]FDG PET imaging on separate days, in randomized order, at 9 am. Following a 30-min transmission scan, subjects received an intravenous injection of 5 mCi [F-18]FDG, and the emission scan commenced 40 min post-injection. In the activation condition, a 35-min memory encoding task was initiated at the time of tracer injection. Subjects were instructed to remember a repeating list of 20 words that were randomly presented

  10. Associations of Sleep Apnea, NRG1 Polymorphisms, Alcohol Consumption, and Cerebral White Matter Hyperintensities: Analysis with Genome-Wide Association Data

    PubMed Central

    Baik, Inkyung; Seo, Hyung Suk; Yoon, Daewui; Kim, Seong Hwan; Shin, Chol

    2015-01-01

    Study Objective: There are few studies on gene-environment interactions with obstructive sleep apnea (OSA). Our study aimed to explore genetic polymorphisms associated with OSA using genome-wide association (GWA) data and evaluate the effects of relevant polymorphisms on the association between risk factors, including obesity and alcohol consumption, and OSA. We also investigated on these associations in relation to cerebral white matter hyperintensities (WMH) on magnetic resonance images. Design: A cross-sectional design. Setting: A polysomnography study embedded in a population-based cohort from the Korean Genome Epidemiology Study was conducted in 2011–2013. Participants: 1,763 participants aged 48–78 years. Results: 251 individuals were identified to have OSA with an apnea-hypopnea index ≥ 15. A common polymorphism of neuregulin-1 gene (NRG1), rs10097555, was selected as the most suggestive locus associated with OSA (P value < 10−5) based on the results of GWA analysis in a matched case-control subsample (n = 470). Among 1,763 participants, we found that the presence of the NRG1 polymorphism is inversely associated with OSA (P value < 0.01) even after taking into account potential risk factors; the multivariate odds ratio (95% confidence interval) for the mutant alleles was 0.57 (0.39–0.82) compared with the wild-type. We observed that this association is modified by alcohol consumption (P < 0.05), not by obesity. We also observed that WMH are positively associated with OSA independent of the NRG1 polymorphism and alcohol consumption (P < 0.05). Conclusions: These findings suggest that the neuregulin-1 gene (NRG1) may be involved in the etiological mechanisms of obstructive sleep apnea (OSA) and that carriers of a particular NRG1 mutation may be less likely to have OSA if they do not drink alcoholic beverages. Citation: Baik I, Seo HS, Yoon D, Kim SH, Shin C. Associations of sleep apnea, NRG1 polymorphisms, alcohol consumption, and cerebral white

  11. Intestinal Fluid and Glucose Transport in Wistar Rats following Chronic Consumption of Fresh or Oxidised Palm Oil Diet

    PubMed Central

    Obembe, Agona O.; Owu, Daniel U.; Okwari, Obem O.; Antai, Atim B.; Osim, Eme E.

    2011-01-01

    Chronic ingestion of thermoxidized palm oil causes functional derangement of various tissues. This study was therefore carried out to determine the effect of chronic ingestion of thermoxidized and fresh palm oil diets on intestinal fluid and glucose absorption in rats using the everted sac technique. Thirty Wistar rats were divided into three groups of 10 rats per group. The first group was the control and was fed on normal rat chow while the second (FPO) and third groups (TPO) were fed diet containing either fresh or thermoxidized palm oil (15% wt/wt) for 14 weeks. Villus height and crypt depth were measured. The gut fluid uptake and gut glucose uptake were significantly (P < .001) lower in the TPO group than those in the FPO and control groups, respectively. The villus height in the TPO was significantly (P < .01) lower than that in FPO and control. The villus depth in TPO was significantly (P < .05) higher than that in FPO and control groups, respectively. These results suggest that ingestion of thermoxidized palm oil and not fresh palm oil may lead to distortion in villus morphology with a concomitant malabsorption of fluid and glucose in rats due to its harmful free radicals. PMID:21991537

  12. Alterations in Purkinje cell GABAA receptor pharmacology following oxygen and glucose deprivation and cerebral ischemia reveal novel contribution of β1-subunit-containing receptors

    PubMed Central

    Kelley, Melissa H.; Ortiz, Justin; Shimizu, Kaori; Grewal, Himmat; Quillinan, Nidia; Herson, Paco S.

    2013-01-01

    Cerebellar Purkinje cells (PCs) are particularly sensitive to cerebral ischemia, and decreased GABAA receptor function following injury is thought to contribute to PC sensitivity to ischemia-induced excitotoxicity. Here we examined the functional properties of the GABAA receptors that are spared following ischemia in cultured Purkinje cells from rat and in vivo ischemia in mouse. Using subunit-specific positive modulators of GABAA receptors, we observed that oxygen and glucose deprivation (OGD) and cardiac arrest-induced cerebral ischemia cause a decrease in sensitivity to the β2/3-subunit-preferring compound, etomidate. However, sensitivity to propofol, a β-subunit-acting compound that modulates β1–3-subunits, was not affected by OGD. The α/γ-subunit-act-ing compounds, diazepam and zolpidem, were also unaffected by OGD. We performed single-cell reverse transcription–polymerase chain reaction on isolated PCs from acutely dissociated cerebellar tissue and observed that PCs expressed the β1-subunit, contrary to previous reports examining GABAA receptor subunit expression in PCs. GABAA receptor β1-subunit protein was also detected in cultured PCs by western blot and by immunohistochemistry in the adult mouse cerebellum and levels remained unaffected by ischemia. High concentrations of loreclezole (30 µm) inhibited PC GABA-mediated currents, as previously demonstrated with β1-subunit-containing GABAA receptors expressed in heterologous systems. From our data we conclude that PCs express the β1-subunit and that there is a greater contribution of β1-subunit-containing GABAA receptors following OGD. PMID:23176253

  13. Regional cerebral glucose metabolism differentiates danger- and non-danger-based traumas in post-traumatic stress disorder

    PubMed Central

    Litz, Brett T.; Resick, Patricia A.; Woolsey, Mary D.; Dondanville, Katherine A.; Young-McCaughan, Stacey; Borah, Adam M.; Borah, Elisa V.; Peterson, Alan L.; Fox, Peter T.

    2016-01-01

    Post-traumatic stress disorder (PTSD) is presumably the result of life threats and conditioned fear. However, the neurobiology of fear fails to explain the impact of traumas that do not entail threats. Neuronal function, assessed as glucose metabolism with 18fluoro-deoxyglucose positron emission tomography, was contrasted in active duty, treatment-seeking US Army Soldiers with PTSD endorsing either danger- (n = 19) or non-danger-based (n = 26) traumas, and was compared with soldiers without PTSD (Combat Controls, n = 26) and Civilian Controls (n = 24). Prior meta-analyses of regions associated with fear or trauma script imagery in PTSD were used to compare glucose metabolism across groups. Danger-based traumas were associated with higher metabolism in the right amygdala than the control groups, while non-danger-based traumas associated with heightened precuneus metabolism relative to the danger group. In the danger group, PTSD severity was associated with higher metabolism in precuneus and dorsal anterior cingulate and lower metabolism in left amygdala (R2 = 0.61). In the non-danger group, PTSD symptom severity was associated with higher precuneus metabolism and lower right amygdala metabolism (R2 = 0.64). These findings suggest a biological basis to consider subtyping PTSD according to the nature of the traumatic context. PMID:26373348

  14. Improved cerebral energetics and ketone body metabolism in db/db mice.

    PubMed

    Andersen, Jens V; Christensen, Sofie K; Nissen, Jakob D; Waagepetersen, Helle S

    2017-03-01

    It is becoming evident that type 2 diabetes mellitus is affecting brain energy metabolism. The importance of alternative substrates for the brain in type 2 diabetes mellitus is poorly understood. The aim of this study was to investigate whether ketone bodies are relevant candidates to compensate for cerebral glucose hypometabolism and unravel the functionality of cerebral mitochondria in type 2 diabetes mellitus. Acutely isolated cerebral cortical and hippocampal slices of db/db mice were incubated in media containing [U-(13)C]glucose, [1,2-(13)C]acetate or [U-(13)C]β-hydroxybutyrate and tissue extracts were analysed by mass spectrometry. Oxygen consumption and ATP synthesis of brain mitochondria of db/db mice were assessed by Seahorse XFe96 and luciferin-luciferase assay, respectively. Glucose hypometabolism was observed for both cerebral cortical and hippocampal slices of db/db mice. Significant increased metabolism of [1,2-(13)C]acetate and [U-(13)C]β-hydroxybutyrate was observed for hippocampal slices of db/db mice. Furthermore, brain mitochondria of db/db mice exhibited elevated oxygen consumption and ATP synthesis rate. This study provides evidence of several changes in brain energy metabolism in type 2 diabetes mellitus. The increased hippocampal ketone body utilization and improved mitochondrial function in db/db mice, may act as adaptive mechanisms in order to maintain cerebral energetics during hampered glucose metabolism.

  15. Diazepam and Jacobson's progressive relaxation show similar attenuating short-term effects on stress-related brain glucose consumption.

    PubMed

    Pifarré, P; Simó, M; Gispert, J-D; Plaza, P; Fernández, A; Pujol, J

    2015-02-01

    A non-pharmacological method to reduce anxiety is "progressive relaxation" (PR). The aim of the method is to reduce mental stress and associated mental processes by means of progressive suppression of muscle tension. The study was addressed to evaluate changes in brain glucose metabolism induced by PR in patients under a stressing state generated by a diagnostic medical intervention. The effect of PR was compared to a dose of sublingual diazepam, with the prediction that both interventions would be associated with a reduction in brain metabolism. Eighty-four oncological patients were assessed with 18F-fluorodeoxyglucose-positron emission tomography. Maps of brain glucose distribution from 28 patients receiving PR were compared with maps from 28 patients receiving sublingual diazepam and with 28 patients with no treatment intervention. Compared to reference control subjects, the PR and diazepam groups showed a statistically significant, bilateral and generalized cortical hypometabolism. Regions showing the most prominent changes were the prefrontal cortex and anterior cingulate cortex. No significant differences were identified in the direct comparison between relaxation technique and sublingual diazepam. Our findings suggest that relaxation induced by a physical/psychological procedure can be as effective as a reference anxiolytic in reducing brain activity during a stressful state.

  16. Beneficial effects of cinnamon proanthocyanidins on the formation of specific advanced glycation endproducts and methylglyoxal-induced impairment on glucose consumption.

    PubMed

    Peng, Xiaofang; Ma, Jinyu; Chao, Jianfei; Sun, Zheng; Chang, Raymond Chuen-Chung; Tse, Iris; Li, Edmund T S; Chen, Feng; Wang, Mingfu

    2010-06-09

    Advanced glycation endproducts (AGEs) are a group of complex and heterogeneous compounds formed from nonenzymatic reactions. The accumulation of AGEs in vivo has been implicated as a major pathogenic process in diabetic complications and other health disorders, such as atherosclerosis and Alzheimer's disease, and normal aging. In this study, we investigate the inhibitory effects of cinnamon bark proanthocyanidins, catechin, epicatechin, and procyanidin B2 on the formation of specific AGE representatives including pentosidine, N(epsilon)-(carboxymethyl)lysine (CML), and methylglyoxal (MGO) derived AGEs. These compounds displayed obvious inhibitory effects on these specific AGEs, which are largely attributed to both their antioxidant activities and carbonyl scavenging capacities. Meanwhile, in terms of their potent MGO scavenging capacities, effects of these proanthocyanidins on insulin signaling pathways interfered by MGO were evaluated in 3T3-L1 adipocytes. According to the results, proanthocyanidins exerted protective effects on glucose consumption impaired by MGO in 3T3-L1 fat cells.

  17. Cerebral circulatory and metabolic effects of 5-hydroxytryptamine in anesthetized baboons.

    PubMed Central

    Harper, M A; MacKenzie, E T

    1977-01-01

    1. The cerebral circulatory effects of the intracarotid administration of 5-hydroxytryptamine were examined in anaesthetized baboons. Cerebral blood flow was measured by the intracarotid 133Xe technique, cerebral O2 consumption and glucose uptake were measured as indices of brain metabolism and electrocortical activity was continuously monitored. 2. Despite a marked reduction in the calibre of the internal carotid artery (assessed angiographically), the intracarotid infusion of 5-hydroxytryptamine 0-1 microgram/kg. min did not effect any significant changes in cerebral blood flow, O2 consumption or glucose uptake. 3. Following transient osmotic disruption of the blood-brain barrier with the intracarotid infusion of hypertonic urea, the same dose of 5-hydroxytryptamine effected a marked reduction in cerebral blood flow from 51 +/- 2 to 36 +/- 2 ml./100 g. min (mean +/- S.E.; P less than 0-01). Both indices of cerebral metabolism were reduced significantly and the e.e.g. showed a more pronounced suppression-burst pattern. 4. We postulate that the cerebral circulatory responses to 5-hydroxytryptamine are dependent upon the integrity of the blood-brain barrier and the predominant effect of the intravascular administration of 5-hydroxytryptamine is on cortical activity or metabolism, rather than on cerebrovascular smooth muscle. Images Plate 1 PMID:411921

  18. Acute consumption of organic and conventional tropical grape juices (Vitis labrusca L.) increases antioxidants in plasma and erythrocytes, but not glucose and uric acid levels, in healthy individuals.

    PubMed

    Toaldo, Isabela Maia; Cruz, Fernanda Alves; da Silva, Edson Luiz; Bordignon-Luiz, Marilde T

    2016-08-01

    Bioactive polyphenols in grapes are influenced by grape variety and cultivation conditions. The Vitis labrusca L. varieties are cultivated in tropical regions and used for grape juice production. We hypothesized that polyphenols from tropical grape juices would beneficially affect redox homeostasis in humans. Therefore, the effects of acute consumption of organic and conventional grape juices from V labrusca L. on antioxidants biomarkers were investigated in healthy individuals. In a controlled, randomized, crossover, intervention trial, 24 individuals were assigned to drink 400 mL of conventional juice, organic juice, or water. Each intervention was followed by a 14-day washout period. Blood samples were obtained before and 1 hour after acute intake and analyzed for erythrocyte reduced glutathione, serum total antioxidant capacity, antioxidant enzymes in erythrocytes, and glucose and uric acid in serum. The ingestion of both grape juices resulted in elevated levels of reduced glutathione (P< .001) and serum total antioxidant capacity (P< .05) and increased activity of catalase (P< .001), superoxide dismutase (P< .001), and glutathione peroxidase (P< .05) compared with the control intervention, with no significant differences between grape juices (P< .05). The intake of juices did not affect significantly the concentrations of glucose or uric acid. Grape juice polyphenols were associated with increased antioxidants, and the chemical differences between organic and conventional juices were not predictive of the observed responses. The results suggest a bioactive potential of V labrusca L. juices to improve redox homeostasis, which is involved in defense against oxidative stress in humans.

  19. Objective 3D surface evaluation of intracranial electrophysiologic correlates of cerebral glucose metabolic abnormalities in children with focal epilepsy.

    PubMed

    Jeong, Jeong-Won; Asano, Eishi; Kumar Pilli, Vinod; Nakai, Yasuo; Chugani, Harry T; Juhász, Csaba

    2017-03-21

    To determine the spatial relationship between 2-deoxy-2[(18) F]fluoro-D-glucose (FDG) metabolic and intracranial electrophysiological abnormalities in children undergoing two-stage epilepsy surgery, statistical parametric mapping (SPM) was used to correlate hypo- and hypermetabolic cortical regions with ictal and interictal electrocorticography (ECoG) changes mapped onto the brain surface. Preoperative FDG-PET scans of 37 children with intractable epilepsy (31 with non-localizing MRI) were compared with age-matched pseudo-normal pediatric control PET data. Hypo-/hypermetabolic maps were transformed to 3D-MRI brain surface to compare the locations of metabolic changes with electrode coordinates of the ECoG-defined seizure onset zone (SOZ) and interictal spiking. While hypometabolic clusters showed a good agreement with the SOZ on the lobar level (sensitivity/specificity = 0.74/0.64), detailed surface-distance analysis demonstrated that large portions of ECoG-defined SOZ and interictal spiking area were located at least 3 cm beyond hypometabolic regions with the same statistical threshold (sensitivity/specificity = 0.18-0.25/0.94-0.90 for overlap 3-cm distance); for a lower threshold, sensitivity for SOZ at 3 cm increased to 0.39 with a modest compromise of specificity. Performance of FDG-PET SPM was slightly better in children with smaller as compared with widespread SOZ. The results demonstrate that SPM utilizing age-matched pseudocontrols can reliably detect the lobe of seizure onset. However, the spatial mismatch between metabolic and EEG epileptiform abnormalities indicates that a more complete SOZ detection could be achieved by extending intracranial electrode coverage at least 3 cm beyond the metabolic abnormality. Considering that the extent of feasible electrode coverage is limited, localization information from other modalities is particularly important to optimize grid coverage in cases of large hypometabolic cortex. Hum Brain Mapp, 2017. © 2017

  20. Nymphaea nouchali Burm. f. hydroalcoholic seed extract increases glucose consumption in 3T3-L1 adipocytes through activation of peroxisome proliferator-activated receptor gamma and insulin sensitization

    PubMed Central

    Parimala, Mabel; Debjani, M.; Vasanthi, Hannah Rachel; Shoba, Francis Gricilda

    2015-01-01

    Nymphaea nouchali Burm. f. (Family – Nymphaeaceae) is a well-known medicinal plant used in the Indian ayurvedic system of medicine for treating diabetes. The seeds especially have been prescribed for diabetes. The hydroalcoholic extract of N. nouchali seeds has been demonstrated to possess anti-hyperglycemic effects in diabetic rats, but the functional mechanism remains unknown. The nuclear receptor, peroxisome proliferator-activated receptor gamma (PPARγ) is noted to play an important role in glucose and lipid homeostasis. This study was hence focused in evaluating the effect of the extract on PPARγ activation, adipocyte differentiation, and glucose consumption in 3T3-L1 cells. Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), followed by adipogenesis assay using Oil Red O technique. Glucose consumption of preadipocytes and adipocytes in the presence of the extract was also determined. Real-time polymerase chain reaction was performed to identify the expression of genes involved in glucose consumption in the adipocytes. MTT assay confirmed the extract to be nontoxic, and Oil Red O staining confirmed enhanced adipocyte differentiation of 3T3-L1 cells in a dose-dependent manner. The extract also increased the expression of PPARγ target gene, which in turn enhanced the expression of GLUT-4. The data, therefore, suggests that N. nouchali seed extract promotes adipocyte differentiation and glucose consumption by inducing PPARγ activation, which in turn increases mRNA GLUT-4 expression and subsequently enhances insulin-responsiveness in insulin target tissues. PMID:26605160

  1. Nymphaea nouchali Burm. f. hydroalcoholic seed extract increases glucose consumption in 3T3-L1 adipocytes through activation of peroxisome proliferator-activated receptor gamma and insulin sensitization.

    PubMed

    Parimala, Mabel; Debjani, M; Vasanthi, Hannah Rachel; Shoba, Francis Gricilda

    2015-01-01

    Nymphaea nouchali Burm. f. (Family - Nymphaeaceae) is a well-known medicinal plant used in the Indian ayurvedic system of medicine for treating diabetes. The seeds especially have been prescribed for diabetes. The hydroalcoholic extract of N. nouchali seeds has been demonstrated to possess anti-hyperglycemic effects in diabetic rats, but the functional mechanism remains unknown. The nuclear receptor, peroxisome proliferator-activated receptor gamma (PPARγ) is noted to play an important role in glucose and lipid homeostasis. This study was hence focused in evaluating the effect of the extract on PPARγ activation, adipocyte differentiation, and glucose consumption in 3T3-L1 cells. Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), followed by adipogenesis assay using Oil Red O technique. Glucose consumption of preadipocytes and adipocytes in the presence of the extract was also determined. Real-time polymerase chain reaction was performed to identify the expression of genes involved in glucose consumption in the adipocytes. MTT assay confirmed the extract to be nontoxic, and Oil Red O staining confirmed enhanced adipocyte differentiation of 3T3-L1 cells in a dose-dependent manner. The extract also increased the expression of PPARγ target gene, which in turn enhanced the expression of GLUT-4. The data, therefore, suggests that N. nouchali seed extract promotes adipocyte differentiation and glucose consumption by inducing PPARγ activation, which in turn increases mRNA GLUT-4 expression and subsequently enhances insulin-responsiveness in insulin target tissues.

  2. Consumption of fructose- but not glucose-sweetened beverages for 10 weeks increases circulating concentrations of uric acid, retinol binding protein-4, and gamma-glutamyl transferase activity in overweight/obese humans

    PubMed Central

    2012-01-01

    Background Prospective studies in humans examining the effects of fructose consumption on biological markers associated with the development of metabolic syndrome are lacking. Therefore we investigated the relative effects of 10 wks of fructose or glucose consumption on plasma uric acid and RBP-4 concentrations, as well as liver enzyme (AST, ALT, and GGT) activities in men and women. Methods As part of a parallel arm study, older (age 40–72), overweight and obese male and female subjects (BMI 25–35 kg/m2) consumed glucose- or fructose-sweetened beverages providing 25% of energy requirements for 10 wks. Fasting and 24-h blood collections were performed at baseline and following 10 wks of intervention and plasma concentrations of uric acid, RBP-4 and liver enzyme activities were measured. Results Consumption of fructose, but not glucose, led to significant increases of 24-h uric acid profiles (P < 0.0001) and RBP-4 concentrations (P = 0.012), as well as plasma GGT activity (P = 0.04). Fasting plasma uric acid concentrations increased in both groups; however, the response was significantly greater in subjects consuming fructose (P = 0.002 for effect of sugar). Within the fructose group male subjects exhibited larger increases of RBP-4 levels than women (P = 0.024). Conclusions These findings suggest that consumption of fructose at 25% of energy requirements for 10 wks, compared with isocaloric consumption of glucose, may contribute to the development of components of the metabolic syndrome by increasing circulating uric acid, GGT activity, suggesting alteration of hepatic function, and the production of RBP-4. PMID:22828276

  3. Twenty-four Hour Endocrine and Metabolic Profiles Following Consumption of High Fructose Corn Syrup-, Sucrose- Fructose-, and Glucose-Sweetened Beverages with Meals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have reported that compared with glucose-sweetened beverages, consuming fructose-sweetened beverages with meals results in lower 24-h circulating glucose, insulin and leptin concentrations, and elevated triacylglycerol (TG). However, pure fructose and glucose are not commonly used as sweeteners. ...

  4. The effect of nopal (Opuntia ficus indica) on postprandial blood glucose, incretins, and antioxidant activity in Mexican patients with type 2 diabetes after consumption of two different composition breakfasts.

    PubMed

    López-Romero, Patricia; Pichardo-Ontiveros, Edgar; Avila-Nava, Azalia; Vázquez-Manjarrez, Natalia; Tovar, Armando R; Pedraza-Chaverri, José; Torres, Nimbe

    2014-11-01

    Nopal is a plant used in traditional Mexican medicine to treat diabetes. However, there is insufficient scientific evidence to demonstrate whether nopal can regulate postprandial glucose. The purpose for conducting this study was to evaluate the glycemic index, insulinemic index, glucose-dependent insulinotropic peptide (GIP) index, and the glucagon-like peptide 1 (GLP-1) index, and the effect of nopal on patients with type 2 diabetes after consumption of a high-carbohydrate breakfast (HCB) or high-soy-protein breakfast (HSPB) on the postprandial response of glucose, insulin, GIP, GLP-1, and antioxidant activity. In study 1, the glycemic index, insulinemic index, GIP index, and GLP-1 index were calculated for seven healthy participants who consumed 50 g of available carbohydrates from glucose or dehydrated nopal. In study 2, 14 patients with type 2 diabetes consumed nopal in HCB or HSPB with or without 300 g steamed nopal. The glycemic index of nopal was 32.5±4, insulinemic index was 36.1±6, GIP index was 6.5±3.0, and GLP-1 index was 25.9±18. For those patients with type 2 diabetes who consumed the HCB+nopal, there was significantly lower area under the curve for glucose (287±30) than for those who consumed the HCB only (443±49), and lower incremental area under the curve for insulin (5,952±833 vs 7,313±1,090), and those patients with type 2 diabetes who consumed the HSPB avoided postprandial blood glucose peaks. Consumption of the HSPB+nopal significantly reduced the postprandial peaks of GIP concentration at 30 and 45 minutes and increased the antioxidant activity after 2 hours measured by the 2,2-diphenyl-1-picrilhidracyl method. These findings suggest that nopal could reduce postprandial blood glucose, serum insulin, and plasma GIP peaks, as well as increase antioxidant activity in healthy people and patients with type 2 diabetes.

  5. Using simple models to describe the kinetics of growth, glucose consumption, and monoclonal antibody formation in naive and infliximab producer CHO cells.

    PubMed

    López-Meza, Julián; Araíz-Hernández, Diana; Carrillo-Cocom, Leydi Maribel; López-Pacheco, Felipe; Rocha-Pizaña, María Del Refugio; Alvarez, Mario Moisés

    2016-08-01

    Despite their practical and commercial relevance, there are few reports on the kinetics of growth and production of Chinese hamster ovary (CHO) cells-the most frequently used host for the industrial production of therapeutic proteins. We characterize the kinetics of cell growth, substrate consumption, and product formation in naive and monoclonal antibody (mAb) producing recombinant CHO cells. Culture experiments were performed in 125 mL shake flasks on commercial culture medium (CD Opti CHO™ Invitrogen, Carlsbad, CA, USA) diluted to different glucose concentrations (1.2-4.8 g/L). The time evolution of cell, glucose, lactic acid concentration and monoclonal antibody concentrations was monitored on a daily basis for mAb-producing cultures and their naive counterparts. The time series were differentiated to calculate the corresponding kinetic rates (rx = d[X]/dt; rs = d[S]/dt; rp = d[mAb]/dt). Results showed that these cell lines could be modeled by Monod-like kinetics if a threshold substrate concentration value of [S]t = 0.58 g/L (for recombinant cells) and [S]t = 0.96 g/L (for naïve cells), below which growth is not observed, was considered. A set of values for μmax, and Ks was determined for naive and recombinant cell cultures cultured at 33 and 37 °C. The yield coefficient (Yx/s) was observed to be a function of substrate concentration, with values in the range of 0.27-1.08 × 10(7) cell/mL and 0.72-2.79 × 10(6) cells/mL for naive and recombinant cultures, respectively. The kinetics of mAb production can be described by a Luedeking-Piret model (d[mAb]/dt = αd[X]/dt + β[X]) with values of α = 7.65 × 10(-7) µg/cell and β = 7.68 × 10(-8) µg/cell/h for cultures conducted in batch-agitated flasks and batch and instrumented bioreactors operated in batch and fed-batch mode.

  6. Short-term consumption of sucralose, a nonnutritive sweetener, is similar to water with regard to select markers of hunger signaling and short-term glucose homeostasis in women.

    PubMed

    Brown, Andrew W; Bohan Brown, Michelle M; Onken, Kristine L; Beitz, Donald C

    2011-12-01

    Nonnutritive sweeteners have been used to lower the energy density of foods with the intention of affecting weight loss or weight maintenance. However, some epidemiological and animal evidence indicates an association between weight gain or insulin resistance and artificial sweetener consumption. In the present study, we hypothesized that the nonnutritive sweetener sucralose, a trichlorinated sucrose molecule, would elicit responses similar to water but different from sucrose and sucrose combined with sucralose on subjective and hormonal indications of hunger and short-term glucose homeostasis. Eight female volunteers (body mass index, 22.16 ± 1.71 kg/m(2); age, 21.75 ± 2.25 years) consumed sucrose and/or sucralose in water in a factorial design. Blood samples were taken at fasting and 30 and 60 minutes after treatment followed by a standardized breakfast across treatments, and blood samples were taken 30, 60, 90, and 120 minutes after breakfast. Plasma was analyzed for glucose, insulin, glucagon, triacylglycerols (TAG), and acylated ghrelin. Perceptions of hunger and other subjective measurements were assessed before each blood sample. No differences were detected in subjective responses, circulating triacylglycerol, or glucagon concentrations among treatments over time. Significant differences were observed in insulin, glucose, and acylated ghrelin concentrations over time only between sucrose-containing treatments and non-sucrose-containing treatments regardless of sucralose consumption. Therefore, sucralose may be a relatively inert nonnutritive sweetener with regard to hunger signaling and short-term glucose homeostasis.

  7. Consumption of meat is associated with higher fasting glucose and insulin concentrations regardless of glucose and insulin genetic risk scores: a meta-analysis of 50,345 Caucasians

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent studies suggest that meat intake is associated with diabetes-related phenotypes. However, whether the associations of meat intake and glucose and insulin homeostasis are modified by genes related to glucose and insulin is unknown. We investigated the associations of meat intake and the intera...

  8. Consumption of meat is associated with higher fasting glucose and insulin concentrations regardless of glucose and insulin genetic risk scores: a meta-analysis of 50,345 Caucasians

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BACKGROUND: Recent studies suggest that meat intake is associated with diabetes-related phenotypes. However, whether the associations of meat intake and glucose and insulin homeostasis are modified by genes related to glucose and insulin is unknown. OBJECTIVE: We investigated the associations of mea...

  9. Berberine treatment attenuates the palmitate-mediated inhibition of glucose uptake and consumption through increased 1,2,3-triacyl-sn-glycerol synthesis and accumulation in H9c2 cardiomyocytes.

    PubMed

    Chang, Wenguang; Chen, Li; Hatch, Grant M

    2016-04-01

    Dysfunction of lipid metabolism and accumulation of 1,2-diacyl-sn-glycerol (DAG) may be a key factor in the development of insulin resistance in type 2 diabetes. Berberine (BBR) is an isoquinoline alkaloid extract that has shown promise as a hypoglycemic agent in the management of diabetes in animal and human studies. However, its mechanism of action is not well understood. To determine the effect of BBR on lipid synthesis and its relationship to insulin resistance in H9c2 cardiomyocytes, we measured neutral lipid and phospholipid synthesis and their relationship to glucose uptake. Compared with controls, BBR treatment stimulated 2-[1,2-(3)H(N)]deoxy-D-glucose uptake and consumption in palmitate-mediated insulin resistant H9c2 cells. The mechanism was though an increase in protein kinase B (AKT) activity and GLUT-4 glucose transporter expression. DAG accumulated in palmitate-mediated insulin resistant H9c2 cells and treatment with BBR reduced this DAG accumulation and increased accumulation of 1,2,3-triacyl-sn-glycerol (TAG) compared to controls. Treatment of palmitate-mediated insulin resistant H9c2 cells with BBR increased [1,3-(3)H]glycerol and [1-(14)C]glucose incorporation into TAG and reduced their incorporation into DAG compared to control. In addition, BBR treatment of these cells increased [1-(14)C]palmitic acid incorporation into TAG and decreased its incorporation into DAG compared to controls. BBR treatment did not alter phosphatidylcholine or phosphatidylethanolamine synthesis. The mechanism for the BBR-mediated decreased precursor incorporation into DAG and increased incorporation into TAG in palmitate-incubated cells was an increase in DAG acyltransferase-2 activity and its expression and a decrease in TAG hydrolysis. Thus, BBR treatment attenuates palmitate-induced reduction in glucose uptake and consumption, in part, through reduction in cellular DAG levels and accumulation of TAG in H9c2 cells.

  10. Cooking enhances beneficial effects of pea seed coat consumption on glucose tolerance, incretin, and pancreatic hormones in high-fat-diet-fed rats.

    PubMed

    Hashemi, Zohre; Yang, Kaiyuan; Yang, Han; Jin, Alena; Ozga, Jocelyn; Chan, Catherine B

    2015-04-01

    Pulses, including dried peas, are nutrient- and fibre-rich foods that improve glucose control in diabetic subjects compared with other fibre sources. We hypothesized feeding cooked pea seed coats to insulin-resistant rats would improve glucose tolerance by modifying gut responses to glucose and reducing stress on pancreatic islets. Glucose intolerance induced in male Sprague-Dawley rats with high-fat diet (HFD; 10% cellulose as fibre) was followed by 3 weeks of HFD with fibre (10%) provided by cellulose, raw-pea seed coat (RP), or cooked-pea seed coat (CP). A fourth group consumed low-fat diet with 10% cellulose. Oral and intraperitoneal glucose tolerance tests (oGTT, ipGTT) were done. CP rats had 30% and 50% lower glucose and insulin responses in oGTT, respectively, compared with the HFD group (P < 0.05) but ipGTT was not different. Plasma islet and incretin hormone concentrations were measured. α- and β-cell areas in the pancreas and density of K- and L-cells in jejunum and ileum were quantified. Jejunal expression of hexose transporters was measured. CP feeding increased fasting glucagon-like peptide 1 and glucose-stimulated gastric inhibitory polypeptide responses (P < 0.05), but K- and L-cells densities were comparable to HFD, as was abundance of SGLT1 and GLUT2 mRNA. No significant difference in β-cell area between diet groups was observed. α-cell area was significantly smaller in CP compared with RP rats (P < 0.05). Overall, our results demonstrate that CP feeding can reverse adverse effects of HFD on glucose homeostasis and is associated with enhanced incretin secretion and reduced α-cell abundance.

  11. Cerebral ischemic post-conditioning induces autophagy inhibition and a HMGB1 secretion attenuation feedback loop to protect against ischemia reperfusion injury in an oxygen glucose deprivation cellular model

    PubMed Central

    Wang, Jue; Han, Dong; Sun, Miao; Feng, Juan

    2016-01-01

    Cerebral ischemic postconditioning (IPOC) has been demonstrated to be neuroprotective against cerebral ischemia reperfusion injury. The present study aimed to determine whether IPOC could inhibit autophagy and high mobility group box 1 (HMGB1) release in a PC12 cell oxygen glucose deprivation/reperfusion (OGD/R) model. An 8 h OGD and 24 h reperfusion cellular model was developed to mimic cerebral ischemia reperfusion injury, with 3 cycles of 10 min OGD/5 min reperfusion treatment to imitate IPOC. Cell viability was determined to demonstrate the efficiency of OGD/R, IPOC and autophagy activator, rapamycin (RAP), treatment. Transmission electron microscopy was performed to observe the formation of autophagosomes, and immunofluorescence, western blot and co-immunoprecipitation were used to examine the expression of autophagy-associated proteins and HMGB1. Enzyme-linked immunosorbent assay analysis was conducted to examine the level of HMGB1 in cell supernatants. Additionally, PC12 cells were treated with RAP to examine the effect of autophagy on HMGB1 release, and the effect of recombinant human HMGB1 and Beclin1 small interfering RNA on autophagy was investigated. The present study confirmed that IPOC inhibited autophagy and HMGB1 secretion, autophagy inhibition induced a decrease in HMGB1 secretion, and HMGB1 secretion attenuation caused autophagy inhibition in return, as demonstrated by immunofluorescence and western blot analyses. Autophagy inhibition and HMGB1 secretion attenuation were, therefore, demonstrated to form a feedback loop under IPOC. These mechanisms illustrated the protective effects of IPOC and may accelerate the clinical use of IPOC. PMID:27666823

  12. Cerebral ischemic post‑conditioning induces autophagy inhibition and a HMGB1 secretion attenuation feedback loop to protect against ischemia reperfusion injury in an oxygen glucose deprivation cellular model.

    PubMed

    Wang, Jue; Han, Dong; Sun, Miao; Feng, Juan

    2016-11-01

    Cerebral ischemic postconditioning (IPOC) has been demonstrated to be neuroprotective against cerebral ischemia reperfusion injury. The present study aimed to determine whether IPOC could inhibit autophagy and high mobility group box 1 (HMGB1) release in a PC12 cell oxygen glucose deprivation/reperfusion (OGD/R) model. An 8 h OGD and 24 h reperfusion cellular model was developed to mimic cerebral ischemia reperfusion injury, with 3 cycles of 10 min OGD/5 min reperfusion treatment to imitate IPOC. Cell viability was determined to demonstrate the efficiency of OGD/R, IPOC and autophagy activator, rapamycin (RAP), treatment. Transmission electron microscopy was performed to observe the formation of autophagosomes, and immunofluorescence, western blot and co‑immunoprecipitation were used to examine the expression of autophagy‑associated proteins and HMGB1. Enzyme‑linked immunosorbent assay analysis was conducted to examine the level of HMGB1 in cell supernatants. Additionally, PC12 cells were treated with RAP to examine the effect of autophagy on HMGB1 release, and the effect of recombinant human HMGB1 and Beclin1 small interfering RNA on autophagy was investigated. The present study confirmed that IPOC inhibited autophagy and HMGB1 secretion, autophagy inhibition induced a decrease in HMGB1 secretion, and HMGB1 secretion attenuation caused autophagy inhibition in return, as demonstrated by immunofluorescence and western blot analyses. Autophagy inhibition and HMGB1 secretion attenuation were, therefore, demonstrated to form a feedback loop under IPOC. These mechanisms illustrated the protective effects of IPOC and may accelerate the clinical use of IPOC.

  13. Coupling of cerebral blood flow and oxygen consumption during hypothermia in newborn piglets as measured by time-resolved near-infrared spectroscopy: a pilot study

    PubMed Central

    Bakhsheshi, Mohammad Fazel; Diop, Mamadou; Morrison, Laura B.; St. Lawrence, Keith; Lee, Ting-Yim

    2015-01-01

    Abstract. Hypothermia (HT) is a potent neuroprotective therapy that is now widely used in following neurological emergencies, such as neonatal asphyxia. An important mechanism of HT-induced neuroprotection is attributed to the associated reduction in the cerebral metabolic rate of oxygen (CMRO2). Since cerebral circulation and metabolism are tightly regulated, reduction in CMRO2 typically results in decreased cerebral blood flow (CBF); it is only under oxidative stress, e.g., hypoxia-ischemia, that oxygen extraction fraction (OEF) deviates from its basal value, which can lead to cerebral dysfunction. As such, it is critical to measure these key physiological parameters during therapeutic HT. This report investigates a noninvasive method of measuring the coupling of CMRO2 and CBF under HT and different anesthetic combinations of propofol/nitrous-oxide (N2O) that may be used in clinical practice. Both CBF and CMRO2 decreased with decreasing temperature, but the OEF remained unchanged, which indicates a tight coupling of flow and metabolism under different anesthetics and over the mild HT temperature range (38°C to 33°C). PMID:26835481

  14. Effects of a mindfulness-based intervention on mindful eating, sweets consumption, and fasting glucose levels in obese adults: data from the SHINE randomized controlled trial.

    PubMed

    Mason, Ashley E; Epel, Elissa S; Kristeller, Jean; Moran, Patricia J; Dallman, Mary; Lustig, Robert H; Acree, Michael; Bacchetti, Peter; Laraia, Barbara A; Hecht, Frederick M; Daubenmier, Jennifer

    2016-04-01

    We evaluated changes in mindful eating as a potential mechanism underlying the effects of a mindfulness-based intervention for weight loss on eating of sweet foods and fasting glucose levels. We randomized 194 obese individuals (M age = 47.0 ± 12.7 years; BMI = 35.5 ± 3.6; 78% women) to a 5.5-month diet-exercise program with or without mindfulness training. The mindfulness group, relative to the active control group, evidenced increases in mindful eating and maintenance of fasting glucose from baseline to 12-month assessment. Increases in mindful eating were associated with decreased eating of sweets and fasting glucose levels among mindfulness group participants, but this association was not statistically significant among active control group participants. Twelve-month increases in mindful eating partially mediated the effect of intervention arm on changes in fasting glucose levels from baseline to 12-month assessment. Increases in mindful eating may contribute to the effects of mindfulness-based weight loss interventions on eating of sweets and fasting glucose levels.

  15. Effects of a mindfulness-based intervention on mindful eating, sweets consumption, and fasting glucose levels in obese adults: data from the SHINE randomized controlled trial

    PubMed Central

    Epel, Elissa S.; Kristeller, Jean; Moran, Patricia J.; Dallman, Mary; Lustig, Robert H.; Acree, Michael; Bacchetti, Peter; Laraia, Barbara A.; Hecht, Frederick M.; Daubenmier, Jennifer

    2016-01-01

    We evaluated changes in mindful eating as a potential mechanism underlying the effects of a mindfulness-based intervention for weight loss on eating of sweet foods and fasting glucose levels. We randomized 194 obese individuals (M age = 47.0 ± 12.7 years; BMI = 35.5 ± 3.6; 78 % women) to a 5.5-month diet-exercise program with or without mindfulness training. The mindfulness group, relative to the active control group, evidenced increases in mindful eating and maintenance of fasting glucose from baseline to 12-month assessment. Increases in mindful eating were associated with decreased eating of sweets and fasting glucose levels among mindfulness group participants, but this association was not statistically significant among active control group participants. Twelve-month increases in mindful eating partially mediated the effect of intervention arm on changes in fasting glucose levels from baseline to 12-month assessment. Increases in mindful eating may contribute to the effects of mindfulness-based weight loss interventions on eating of sweets and fasting glucose levels. PMID:26563148

  16. Effects of combined xenon and hypothermia on cerebral blood flow and oxygen consumption in newborn piglets measured with a time-resolved near-infrared technique

    NASA Astrophysics Data System (ADS)

    Fazel Bakhsheshi, Mohammad; Hadway, Jennifer; Morrison, Laura B.; Diop, Mamadou; St. Lawrence, Keith; Lee, Ting-Yim

    2013-02-01

    Mild hypothermia (HT), in which the brain is cooled to 32-33°C, has been shown to be neuroprotective for neurological emergencies such as head trauma and neonatal asphyxia. Xenon (Xe), a scarce and expensive anesthetic gas, has also shown great promise as a neuroprotectant, particularly when combined with HT. The purpose of the present study was to investigate the combined effect of Xe and HT on the cerebral metabolic rate of oxygen (CMRO2) and cerebral blood flow (CBF). A closed circuit re-breathing system was used to deliver the Xe in order to make the treatment efficient and economical. A bolus-tracking method using indocyanine green (ICG) as a flow tracer with time-resolved near-infrared (TR-NIR) technique was used to measure CBF and CMRO2 in newborn piglets.

  17. Regulation of cerebral metabolism during cortical spreading depression

    PubMed Central

    Feuerstein, Delphine; Gramer, Markus; Takagaki, Masatoshi; Gabel, Paula; Kumagai, Tetsuya; Graf, Rudolf

    2015-01-01

    We analyzed the metabolic response to cortical spreading depression that drastically increases local energy demand to restore ion homeostasis. During single and multiple cortical spreading depressions in the rat cortex, we simultaneously monitored extracellular levels of glucose and lactate using rapid sampling microdialysis and glucose influx using 18 F-fluorodeoxyglucose positron emission tomography while tracking cortical spreading depression using laser speckle imaging. Combining the acquired data with steady-state requirements we developed a mass-conserving compartment model including neurons and glia that was consistent with the observed data. In summary, our findings are: (1) Early breakdown of glial glycogen provides a major source of energy during increased energy demand and leaves 80% of blood-borne glucose to neurons. (2) Lactate is used solely by neurons and only if extracellular lactate levels are >80% above normal. (3) Although the ratio of oxygen and glucose consumption transiently reaches levels <3, the major part (>90%) of the overall energy supply is from oxidative metabolism. (4) During cortical spreading depression, brain release of lactate exceeds its consumption suggesting that lactate is only a circumstantial energy substrate. Our findings provide a general scenario for the metabolic response to increased cerebral energy demand. PMID:26661217

  18. Consumption of caffeinated coffee and a high carbohydrate meal affects postprandial metabolism of a subsequent oral glucose tolerance test in young, healthy males.

    PubMed

    Moisey, Lesley L; Robinson, Lindsay E; Graham, Terry E

    2010-03-01

    Caffeine and caffeinated coffee (CC) elicit acute insulin insensitivity when ingested before a carbohydrate load. The effects of CC on glucose tolerance and insulin sensitivity when co-ingested with a high carbohydrate meal and on postprandial metabolism of a subsequent (second) carbohydrate load have not been studied. In a randomised, crossover design, ten healthy males ingested either CC (5 mg caffeine/kg body weight), decaffeinated coffee (DC) or water (W; equal volume) co-ingested with a high glycaemic index cereal followed 3 h later by a 75 g oral glucose tolerance test. After the initial meal, insulin area under the curve (AUC) and insulin sensitivity index did not differ between treatments, although glucose AUC for CC (107 (sem 18) mmol/l x 3 h) and DC (74 (sem 15) mmol/l x 3 h) was greater than W ( - 0.2 (sem 29) mmol/l x 3 h, P < 0.05). After the second carbohydrate load, insulin AUC for CC was 49 % and 57 % greater (P < 0.01) than for DC and W, respectively. Despite the greater insulin response, glucose AUC for CC (217 (sem 24) mmol/l x 2 h) was greater than both DC (126 (sem 11) mmol/l x 2 h, P = 0.01) and W (55 (sem 34) mmol/l x 2 h, P < 0.001). Insulin sensitivity index after the second meal was lower after CC (8.2 (sem 0.9)) compared with both DC (12.4 (sem 1.2), P < 0.01) and W (13.4 (sem 1.4), P < 0.001). Co-ingestion of CC with one meal resulted in insulin insensitivity during the postprandial phase of a second meal in the absence of further CC ingestion. Thus, CC may play a role in daily glycaemic management.

  19. Effect on Insulin, Glucose and Lipids in Overweight/Obese Australian Adults of 12 Months Consumption of Two Different Fibre Supplements in a Randomised Trial

    PubMed Central

    Pal, Sebely; Ho, Suleen; Gahler, Roland J.; Wood, Simon

    2017-01-01

    Higher fibre intakes are associated with risk reduction for chronic diseases. This study investigated the effects of supplementation with PolyGlycopleX® (PGX), a complexed polysaccharide, on insulin, glucose and lipids in overweight and obese individuals. In this double-blind 12 months study, participants were randomised into three groups: control (rice flour); PGX or psyllium (PSY). Participants followed their usual lifestyle and diet but consumed 5 g of their supplement before meals. Insulin was significantly lower in the PGX and PSY groups compared to control at 3 and 6 months and in the PSY group compared to control at 12 months. Serum glucose was significantly lower in the PGX group at 3 months compared to control. Total cholesterol was significantly lower in the PGX and PSY groups compared to control at 3 and 6 months. High density lipoprotein (HDL) cholesterol was significantly increased in the PGX group compared to control at 12 months. low density lipoprotein (LDL) cholesterol was significantly lower in the PGX group at 3 and 6 months compared to control and in the PSY group at 3 months compared to control. A simple strategy of fibre supplementation may offer an effective solution to glucose, insulin and lipid management without the need for other nutrient modification. PMID:28146065

  20. Subarachnoid hemorrhage in the rat: cerebral blood flow and glucose metabolism after selective lesions of the catecholamine systems in the brainstem

    SciTech Connect

    Delgado, T.J.; Diemer, N.H.; Svendgaard, N.A.

    1986-10-01

    A double-isotope autoradiographic technique was used to evaluate CBF and glucose metabolism 2 days after a subarachnoid hemorrhage (SAH) in rats with lesions in the lower brainstem. Lesioning in the mesencephalon of the ascending catecholamine pathways from locus ceruleus and from the A1 and A2 nuclei, or lesioning in the medulla oblongata of the ascending fibers from A1 and A2, prevents the development of the global changes in flow and metabolism seen in normal animals post SAH. Also the focal low-flow areas with markedly elevated deoxyglucose uptake, which can develop in normal animals 2 days post SAH, were not seen in the lesioned animals after the SAH. The findings indicate that the A1 and A2 nuclei, which project to the hypothalamus-pituitary, are essential for the flow and metabolic changes after an SAH. The lesions per se did not change baseline flow and metabolism as compared with sham-lesioned animals.

  1. Ablation of TRPM5 in Mice Results in Reduced Body Weight Gain and Improved Glucose Tolerance and Protects from Excessive Consumption of Sweet Palatable Food when Fed High Caloric Diets.

    PubMed

    Larsson, Marie H; Håkansson, Pernilla; Jansen, Frank P; Magnell, Kerstin; Brodin, Peter

    2015-01-01

    The calcium activated cation channel transient receptor potential channel type M5 (TRPM5) is part of the downstream machinery of the taste receptors and have been shown to play a central role in taste signalling. In addition it is also found in other types of chemosensory cells in various parts of the body as well as in pancreatic β-cells. The aim of this study was to investigate the effects of TRPM5 gene ablation on body weight, insulin sensitivity and other metabolic parameters in long-term high caloric diet induced obesity. Trpm5-/- mice gained significantly less body weight and fat mass on both palatable carbohydrate and fat rich cafeteria diet and 60% high fat diet (HFD) and developed less insulin resistance compared to wild type mice. A main finding was the clearly improved glucose tolerance in Trpm5-/- mice compared to wild type mice on cafeteria diet, which was independent of body weight. In addition, it was shown that Trpm5-/- mice consumed the same amount of calories when fed a HFD only or a HFD in combination with a palatable chocolate ball, which is in contrast to wild type mice that increased their caloric intake when fed the combination, mainly due to excessive consumption of the chocolate ball. Thus the palatable sugar containing diet induced overeating was prevented in Trpm5-/- mice. This indicates that sweet taste induced overeating may be a cause for the increased energy intake and glucose intolerance development seen for wild type mice on a sugar and high fat rich cafeteria diet compared to when on a high fat diet. This study point to an important role for the taste signalling system and TRPM5 in diet induced glucose intolerance.

  2. Ablation of TRPM5 in Mice Results in Reduced Body Weight Gain and Improved Glucose Tolerance and Protects from Excessive Consumption of Sweet Palatable Food when Fed High Caloric Diets

    PubMed Central

    Larsson, Marie H.; Håkansson, Pernilla; Jansen, Frank P.; Magnell, Kerstin; Brodin, Peter

    2015-01-01

    The calcium activated cation channel transient receptor potential channel type M5 (TRPM5) is part of the downstream machinery of the taste receptors and have been shown to play a central role in taste signalling. In addition it is also found in other types of chemosensory cells in various parts of the body as well as in pancreatic β-cells. The aim of this study was to investigate the effects of TRPM5 gene ablation on body weight, insulin sensitivity and other metabolic parameters in long-term high caloric diet induced obesity. Trpm5-/- mice gained significantly less body weight and fat mass on both palatable carbohydrate and fat rich cafeteria diet and 60% high fat diet (HFD) and developed less insulin resistance compared to wild type mice. A main finding was the clearly improved glucose tolerance in Trpm5-/- mice compared to wild type mice on cafeteria diet, which was independent of body weight. In addition, it was shown that Trpm5-/- mice consumed the same amount of calories when fed a HFD only or a HFD in combination with a palatable chocolate ball, which is in contrast to wild type mice that increased their caloric intake when fed the combination, mainly due to excessive consumption of the chocolate ball. Thus the palatable sugar containing diet induced overeating was prevented in Trpm5-/- mice. This indicates that sweet taste induced overeating may be a cause for the increased energy intake and glucose intolerance development seen for wild type mice on a sugar and high fat rich cafeteria diet compared to when on a high fat diet. This study point to an important role for the taste signalling system and TRPM5 in diet induced glucose intolerance. PMID:26397098

  3. Excessive fluoride consumption increases haematological alteration in subjects with iron deficiency, thalassaemia, and glucose-6-phosphate dehydrogenase (G-6-PD) deficiency.

    PubMed

    Pornprasert, Sakorn; Wanachantararak, Phenphichar; Kantawong, Fahsai; Chamnanprai, Supoj; Kongpan, Chatpat; Pienthai, Nattasit; Yanola, Jintana; Duangmano, Suwit; Prasannarong, Mujalin

    2016-06-18

    Excessive fluoride consumption leads to accelerated red blood cell death and anaemia. Whether that increases the haematological alteration in subjects with haematological disorders (iron deficiency, thalassaemia, and G-6-PD deficiency) is still unclear. The fluoride in serum and urine and haematological parameters of students at Mae Tuen School (fluoride endemic area) were analysed and compared to those of students at Baan Yang Poa and Baan Mai Schools (control areas). Iron deficiency, thalassaemia, and G-6-PD deficiency were also diagnosed in these students. The students at Mae Tuen School had significantly (P < 0.001) higher levels of mean fluoride in the serum and urine than those in control areas. In both control and fluoride endemic areas, students with haematological disorders had significantly lower levels of Hb, Hct, MCV, MCH, and MCHC than those without haematological disorders. Moreover, the lowest levels of Hb, MCH, and MCHC were observed in the students with haematological disorders who live in the fluoride endemic area. Thus, the excessive fluoride consumption increased haematological alteration in subjects with iron deficiency, thalassaemia, and G-6-PD deficiency and that may increase the risk of anaemia in these subjects.

  4. Cerebral Palsy

    MedlinePlus

    Cerebral palsy is a group of disorders that affect a person's ability to move and to maintain balance ... do not get worse over time. People with cerebral palsy may have difficulty walking. They may also have ...

  5. Deletion of TRPC6 Attenuates NMDA Receptor-Mediated Ca2+ Entry and Ca2+-Induced Neurotoxicity Following Cerebral Ischemia and Oxygen-Glucose Deprivation

    PubMed Central

    Chen, Jin; Li, Zhaozhong; Hatcher, Jeffery T.; Chen, Qing-Hui; Chen, Li; Wurster, Robert D.; Chan, Sic L.; Cheng, Zixi

    2017-01-01

    Transient receptor potential canonical 6 (TRPC6) channels are permeable to Na+ and Ca2+ and are widely expressed in the brain. In this study, the role of TRPC6 was investigated following ischemia/reperfusion (I/R) and oxygen-glucose deprivation (OGD). We found that TRPC6 expression was increased in wild-type (WT) mice cortical neurons following I/R and in primary neurons with OGD, and that deletion of TRPC6 reduced the I/R-induced brain infarct in mice and the OGD- /neurotoxin-induced neuronal death. Using live-cell imaging to examine intracellular Ca2+ levels ([Ca2+]i), we found that OGD induced a significant higher increase in glutamate-evoked Ca2+ influx compared to untreated control and such an increase was reduced by TRPC6 deletion. Enhancement of TRPC6 expression using AdCMV-TRPC6-GFP infection in WT neurons increased [Ca2+]i in response to glutamate application compared to AdCMV-GFP control. Inhibition of N-methyl-d-aspartic acid receptor (NMDAR) with MK801 decreased TRPC6-dependent increase of [Ca2+]i in TRPC6 infected cells, indicating that such a Ca2+ influx was NMDAR dependent. Furthermore, TRPC6-dependent Ca2+ influx was blunted by blockade of Na+ entry in TRPC6 infected cells. Finally, OGD-enhanced Ca2+ influx was reduced, but not completely blocked, in the presence of voltage-dependent Na+ channel blocker tetrodotoxin (TTX) and dl-α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) blocker CNQX. Altogether, we concluded that I/R-induced brain damage was, in part, due to upregulation of TRPC6 in cortical neurons. We postulate that overexpression of TRPC6 following I/R may induce neuronal death partially through TRPC6-dependent Na+ entry which activated NMDAR, thus leading to a damaging Ca2+ overload. These findings may provide a potential target for future intervention in stroke-induced brain damage.

  6. Egg consumption as part of an energy-restricted high-protein diet improves blood lipid and blood glucose profiles in individuals with type 2 diabetes.

    PubMed

    Pearce, Karma L; Clifton, Peter M; Noakes, Manny

    2011-02-01

    The role of dietary cholesterol in people with diabetes has been little studied. We investigated the effect of a hypoenergetic high-protein high-cholesterol (HPHchol) diet compared to a similar amount of animal protein (high-protein low-cholesterol, HPLchol) on plasma lipids, glycaemic control and cardiovascular risk markers in individuals with type 2 diabetes. A total of sixty-five participants with type 2 diabetes or impaired glucose tolerance (age 54·4 (sd 8·2) years; BMI 34·1 (sd 4·8) kg/m2; LDL-cholesterol (LDL-C) 2·67 (sd 0·10) mmol/l) were randomised to either HPHchol or HPLchol. Both hypoenergetic dietary interventions (6-7 MJ; 1·4-1·7 Mcal) and total carbohydrate:protein:fat ratio of 40:30:30 % were similar but differed in cholesterol content (HPHchol, 590 mg cholesterol; HPLchol, 213 mg cholesterol). HPHchol participants consumed two eggs per d, whereas HPHchol participants replaced the eggs with 100 g of lean animal protein. After 12 weeks, weight loss was 6·0 (sd 0·4) kg (P < 0·001). LDL-C and homocysteine remained unchanged. All the subjects reduced total cholesterol ( - 0·3 (sd 0·1) mmol/l, P < 0·001), TAG ( - 0·4 (sd 0·1) mmol/l, P < 0·001), non-HDL-cholesterol (HDL-C, - 0·4 (sd 0·1) mmol/l, P < 0·001), apo-B ( - 0·04 (sd 0·02) mmol/l, P < 0·01), HbA1c ( - 0·6 (sd 0·1) %, P < 0·001), fasting blood glucose ( - 0·5 (sd 0·2) mmol/l, P < 0·01), fasting insulin ( - 1·7 (sd 0·7) mIU/l, P < 0·01), systolic blood pressure ( - 7·6 (sd 1·7) mmHg, P < 0·001) and diastolic blood pressure ( - 4·6 (sd 1·0) mmHg; P < 0·001). Significance was not altered by diet, sex, medication or amount of weight loss. HDL-C increased on HPHchol (+0·02 (sd 0·02) mmol/l) and decreased on HPLchol ( - 0·07 (sd 0·03) mmol/l, P < 0·05). Plasma folate and lutein increased more on HPHchol (P < 0·05). These results suggest that a high-protein energy-restricted diet high in

  7. Regionally selective and dose-dependent effects of the ampakines Org 26576 and Org 24448 on local cerebral glucose utilisation in the mouse as assessed by 14C-2-deoxyglucose autoradiography.

    PubMed

    Jordan, Graeme R; McCulloch, James; Shahid, Mohammed; Hill, David R; Henry, Brian; Horsburgh, Karen

    2005-08-01

    AMPA receptor potentiating drugs (e.g. ampakines) enhance glutamatergic neurotransmission, and may have potential therapeutic consequences in CNS disorders. The neuroanatomical basis of action for these compounds is at present unclear. This study aimed to identify the effects of two novel ampakines, Org 26576 and Org 24448, on local cerebral glucose use (LCGU) in the mouse. C57BL/6J mice received Org 26576 (0.1, 1, 10 mg/kg i.p.) or Org 24448 (3, 10, 30 mg/kg i.p.) or vehicle and LCGU was assessed using 14C-2-deoxyglucose autoradiography. Both compounds produced dose-dependent increases in LCGU with specific regional activation at low doses. Org 26576 (1 mg/kg) produced significant increases in 9 of the 43 areas examined, including the anteroventral and laterodorsal thalamus, cingulate cortex, dentate gyrus and CA3 subfield of the hippocampus. Org 24448 (3 mg/kg) produced significant increases in LCGU in 4 of the 43 regions examined, including the dorsal raphe nucleus, medial lateral habenula, CA1 subfield of the hippocampus and median forebrain bundle. Furthermore, the increases in LCGU observed with both Org 26576 (10 mg/kg) and Org 24448 (10 mg/kg) were blocked by pre-treatment with the AMPA receptor antagonist NBQX (10 mg/kg). These data demonstrate that both Org 26576 and Org 24448 produce dose-dependent AMPA receptor mediated increases in LCGU and provide an anatomical basis suggestive that these drugs may be of use in the treatment of conditions such as depression or schizophrenia.

  8. [Contribution of the kidney to glucose homeostasis].

    PubMed

    Segura, Julián; Ruilope, Luis Miguel

    2013-09-01

    The kidney is involved in glucose homeostasis through three major mechanisms: renal gluconeogenesis, renal glucose consumption, and glucose reabsorption in the proximal tubule. Glucose reabsorption is one of the most important physiological functions of the kidney, allowing full recovery of filtered glucose, elimination of glucose from the urine, and prevention of calorie loss. Approximately 90% of the glucose is reabsorbed in the S1 segment of the proximal tubule, where glucose transporter-2 (GLUT2) and sodium-glucose transporter-2 (SGLT2) are located, while the remaining 10% is reabsorbed in the S3 segment by SGLT1 and GLUT1 transporters. In patients with hyperglycemia, the kidney continues to reabsorb glucose, thus maintaining hyperglycemia. Most of the renal glucose reabsorption is mediated by SGLT2. Several experimental and clinical studies suggest that pharmacological blockade of this transporter might be beneficial in the management of hyperglycemia in patients with type 2 diabetes.

  9. Glucose Variability

    PubMed Central

    Le Floch, Jean-Pierre; Kessler, Laurence

    2016-01-01

    Background: Glucose variability has been suspected to be a major factor of diabetic complications. Several indices have been proposed for measuring glucose variability, but their interest remains discussed. Our aim was to compare different indices. Methods: Glucose variability was studied in 150 insulin-treated diabetic patients (46% men, 42% type 1 diabetes, age 52 ± 11 years) using a continuous glucose monitoring system (668 ± 564 glucose values; mean glucose value 173 ± 38 mg/dL). Results from the mean, the median, different indices (SD, MAGE, MAG, glucose fluctuation index (GFI), and percentages of low [<60 mg/dL] and high [>180 mg/dL] glucose values), and ratios (CV = SD/m, MAGE/m, MAG/m, and GCF = GFI/m) were compared using Pearson linear correlations and a multivariate principal component analysis (PCA). Results: CV, MAGE/m (ns), GCF and GFI (P < .05), MAG and MAG/m (P < .01) were not strongly correlated with the mean. The percentage of high glucose values was mainly correlated with indices. The percentage of low glucose values was mainly correlated with ratios. PCA showed 3 main axes; the first was associated with descriptive data (mean, SD, CV, MAGE, MAGE/m, and percentage of high glucose values); the second with ratios MAG/m and GCF and with the percentage of low glucose values; and the third with MAG, GFI, and the percentage of high glucose values. Conclusions: Indices and ratios provide complementary pieces of information associated with high and low glucose values, respectively. The pairs MAG+MAG/m and GFI+GCF appear to be the most reliable markers of glucose variability in diabetic patients. PMID:26880391

  10. Rosemary tea consumption results to anxiolytic- and anti-depressant-like behavior of adult male mice and inhibits all cerebral area and liver cholinesterase activity; phytochemical investigation and in silico studies.

    PubMed

    Ferlemi, Anastasia-Varvara; Katsikoudi, Antigoni; Kontogianni, Vassiliki G; Kellici, Tahsin F; Iatrou, Grigoris; Lamari, Fotini N; Tzakos, Andreas G; Margarity, Marigoula

    2015-07-25

    Our aim was to investigate the possible effects of regular drinking of Rosmarinus officinalis L. leaf infusion on behavior and on AChE activity of mice. Rosemary tea (2% w/w) phytochemical profile was investigated through LC/DAD/ESI-MS(n). Adult male mice were randomly divided into two groups: "Rosemary-treated" that received orally the rosemary tea for 4weeks and "control" that received drinking water. The effects of regular drinking of rosemary tea on behavioral parameters were assessed by passive avoidance, elevated plus maze and forced swimming tests. Moreover, its effects on cerebral and liver cholinesterase (ChE) isoforms activity were examined colorimetricaly. Phytochemical analysis revealed the presence of diterpenes, flavonoids and hydroxycinnamic derivatives in rosemary tea; the major compounds were quantitatively determined. Its consumption rigorously affected anxiety/fear and depression-like behavior of mice, though memory/learning was unaffected. ChE isoforms activity was significantly decreased in brain and liver of "rosemary treated" mice. In order to explain the tissue ChE inhibition, principal component analysis, pharmacophore alignment and molecular docking were used to explore a possible relationship between main identified compounds of rosemary tea, i.e. rosmarinic acid, luteolin-7-O-glucuronide, caffeic acid and known AChE inhibitors. Results revealed potential common pharmacophores of the phenolic components with the inhibitors. Our findings suggest that rosemary tea administration exerts anxiolytic and antidepressant effects on mice and inhibits ChE activity; its main phytochemicals may function in a similar way as inhibitors.

  11. Comparison of the long-term effects of high-fat v. low-fat diet consumption on cardiometabolic risk factors in subjects with abnormal glucose metabolism: a systematic review and meta-analysis.

    PubMed

    Schwingshackl, Lukas; Hoffmann, Georg

    2014-06-28

    The aim of the present systematic review and meta-analysis was to examine the long-term effects (≥ 12 months) of high-fat (HF) v. low-fat (LF) diet consumption on the indicators of glycaemic control as well as cardiovascular risk factors in pre-diabetic and diabetic individuals. Literature search was carried out using the electronic databases MEDLINE, Embase and the Cochrane Trial Register until November 2013. Study-specific weighted mean differences (MD) were pooled using a random-effects model of the Cochrane software package Review Manager 5.1 and Stata 12.0 was used for meta-regressions. A total of fourteen trials met the inclusion criteria and a maximum of 1753 subjects were included in the meta-analysis. HF regimens were found to result in a significant decrease in TAG levels (MD -0·19 mmol/l, 95 % CI -0·23, -0·14, P< 0·001; I² = 0 %, P= 0·58) and diastolic blood pressure (MD -1·30 mmHg, 95 % CI -1·73, -0·87, P< 0·001; I² = 0 %, P= 0·60) and a significant increase in HDL-cholesterol levels (MD 0·05 mmol/l, 95 % CI 0·01, 0·08, P= 0·01; I² = 57 %, P= 0·01). In addition, MD in the reductions of fasting glucose levels (-0·41 mmol/l, 95 % CI -0·74, -0·08, P= 0·01; I² = 56 %, P= 0·02) were significantly high in patients with type 2 diabetes adhering to a HF diet. HF and LF diets might not be of equal value in the management of either pre-diabetes or type 2 diabetes, leading to emphasis being placed on the recommendations of HF diets.

  12. Cerebral Gluconeogenesis and Diseases

    PubMed Central

    Yip, James; Geng, Xiaokun; Shen, Jiamei; Ding, Yuchuan

    2017-01-01

    The gluconeogenesis pathway, which has been known to normally present in the liver, kidney, intestine, or muscle, has four irreversible steps catalyzed by the enzymes: pyruvate carboxylase, phosphoenolpyruvate carboxykinase, fructose 1,6-bisphosphatase, and glucose 6-phosphatase. Studies have also demonstrated evidence that gluconeogenesis exists in brain astrocytes but no convincing data have yet been found in neurons. Astrocytes exhibit significant 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 activity, a key mechanism for regulating glycolysis and gluconeogenesis. Astrocytes are unique in that they use glycolysis to produce lactate, which is then shuttled into neurons and used as gluconeogenic precursors for reduction. This gluconeogenesis pathway found in astrocytes is becoming more recognized as an important alternative glucose source for neurons, specifically in ischemic stroke and brain tumor. Further studies are needed to discover how the gluconeogenesis pathway is controlled in the brain, which may lead to the development of therapeutic targets to control energy levels and cellular survival in ischemic stroke patients, or inhibit gluconeogenesis in brain tumors to promote malignant cell death and tumor regression. While there are extensive studies on the mechanisms of cerebral glycolysis in ischemic stroke and brain tumors, studies on cerebral gluconeogenesis are limited. Here, we review studies done to date regarding gluconeogenesis to evaluate whether this metabolic pathway is beneficial or detrimental to the brain under these pathological conditions. PMID:28101056

  13. Cerebral Paragonimiasis.

    PubMed

    Miyazaki, I

    1975-01-01

    The first case of cerebral paragonimiasis was reported by Otani in Japan in 1887. This was nine years after Kerbert's discovery of the fluke in the lungs of Bengal tigers and seven years after a human pulmonary infection by the fluke was demonstrated by Baelz and Manson. The first case was a 26-year-old man who had been suffering from cough and hemosputum for one year. The patient developed convulsive seizures with subsequent coma and died. The postmortem examination showed cystic lesions in the right frontal and occipital lobes. An adult fluke was found in the occipital lesion and another was seen in a gross specimen of normal brain tissue around the affected occipital lobe. Two years after Otani's discovery, at autopsy a 29-year-old man with a history of Jacksonian seizure was reported as having cerebral paragonimiasis. Some time later, however, it was confirmed that the case was actually cerebral schistosomiasis japonica. Subsequently, cases of cerebral paragonimiasis were reported. However, the majority of these cases were not confirmed histologically. It was pointed out that some of these early cases were probably not Paragonimus infection. After World War II, reviews as well as case reports were published. Recently, investigations have been reported from Korea, with a clinicla study on 62 cases of cerebral paragonimiasis seen at the Neurology Department of the National Medical Center, Seoul, between 1958 and 1964. In 1971 Higashi described a statistical study on 105 cases of cerebral paragonimiasis that had been treated surgically in Japan.

  14. Cerebral Palsy (For Parents)

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old Cerebral Palsy KidsHealth > For Parents > Cerebral Palsy A A A ... kids who are living with the condition. About Cerebral Palsy Cerebral palsy is one of the most common ...

  15. Cerebral palsy - resources

    MedlinePlus

    Resources - cerebral palsy ... The following organizations are good resources for information on cerebral palsy : National Institute of Neurological Disorders and Stroke -- www.ninds.nih.gov/disorders/cerebral_palsy/cerebral_palsy. ...

  16. Cerebral palsy.

    PubMed

    Colver, Allan; Fairhurst, Charles; Pharoah, Peter O D

    2014-04-05

    The syndrome of cerebral palsy encompasses a large group of childhood movement and posture disorders. Severity, patterns of motor involvement, and associated impairments such as those of communication, intellectual ability, and epilepsy vary widely. Overall prevalence has remained stable in the past 40 years at 2-3·5 cases per 1000 livebirths, despite changes in antenatal and perinatal care. The few studies available from developing countries suggest prevalence of comparable magnitude. Cerebral palsy is a lifelong disorder; approaches to intervention, whether at an individual or environmental level, should recognise that quality of life and social participation throughout life are what individuals with cerebral palsy seek, not improved physical function for its own sake. In the past few years, the cerebral palsy community has learned that the evidence of benefit for the numerous drugs, surgery, and therapies used over previous decades is weak. Improved understanding of the role of multiple gestation in pathogenesis, of gene environment interaction, and how to influence brain plasticity could yield significant advances in treatment of the disorder. Reduction in the prevalence of post-neonatal cerebral palsy, especially in developing countries, should be possible through improved nutrition, infection control, and accident prevention.

  17. Ketosis proportionately spares glucose utilization in brain.

    PubMed

    Zhang, Yifan; Kuang, Youzhi; Xu, Kui; Harris, Donald; Lee, Zhenghong; LaManna, Joseph; Puchowicz, Michelle A

    2013-08-01

    The brain is dependent on glucose as a primary energy substrate, but is capable of utilizing ketones such as β-hydroxybutyrate and acetoacetate, as occurs with fasting, starvation, or chronic feeding of a ketogenic diet. The relationship between changes in cerebral metabolic rates of glucose (CMRglc) and degree or duration of ketosis remains uncertain. To investigate if CMRglc decreases with chronic ketosis, 2-[(18)F]fluoro-2-deoxy-D-glucose in combination with positron emission tomography, was applied in anesthetized young adult rats fed 3 weeks of either standard or ketogenic diets. Cerebral metabolic rates of glucose (μmol/min per 100 g) was determined in the cerebral cortex and cerebellum using Gjedde-Patlak analysis. The average CMRglc significantly decreased in the cerebral cortex (23.0±4.9 versus 32.9±4.7) and cerebellum (29.3±8.6 versus 41.2±6.4) with increased plasma ketone bodies in the ketotic rats compared with standard diet group. The reduction of CMRglc in both brain regions correlates linearly by ∼9% for each 1 mmol/L increase of total plasma ketone bodies (0.3 to 6.3 mmol/L). Together with our meta-analysis, these data revealed that the degree and duration of ketosis has a major role in determining the corresponding change in CMRglc with ketosis.

  18. Non-invasive optical measurement of cerebral metabolism and hemodynamics in infants.

    PubMed

    Lin, Pei-Yi; Roche-Labarbe, Nadege; Dehaes, Mathieu; Carp, Stefan; Fenoglio, Angela; Barbieri, Beniamino; Hagan, Katherine; Grant, P Ellen; Franceschini, Maria Angela

    2013-03-14

    Perinatal brain injury remains a significant cause of infant mortality and morbidity, but there is not yet an effective bedside tool that can accurately screen for brain injury, monitor injury evolution, or assess response to therapy. The energy used by neurons is derived largely from tissue oxidative metabolism, and neural hyperactivity and cell death are reflected by corresponding changes in cerebral oxygen metabolism (CMRO₂). Thus, measures of CMRO₂ are reflective of neuronal viability and provide critical diagnostic information, making CMRO₂ an ideal target for bedside measurement of brain health. Brain-imaging techniques such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT) yield measures of cerebral glucose and oxygen metabolism, but these techniques require the administration of radionucleotides, so they are used in only the most acute cases. Continuous-wave near-infrared spectroscopy (CWNIRS) provides non-invasive and non-ionizing radiation measures of hemoglobin oxygen saturation (SO₂) as a surrogate for cerebral oxygen consumption. However, SO₂ is less than ideal as a surrogate for cerebral oxygen metabolism as it is influenced by both oxygen delivery and consumption. Furthermore, measurements of SO₂ are not sensitive enough to detect brain injury hours after the insult, because oxygen consumption and delivery reach equilibrium after acute transients. We investigated the possibility of using more sophisticated NIRS optical methods to quantify cerebral oxygen metabolism at the bedside in healthy and brain-injured newborns. More specifically, we combined the frequency-domain NIRS (FDNIRS) measure of SO2 with the diffuse correlation spectroscopy (DCS) measure of blood flow index (CBFi) to yield an index of CMRO₂ (CMRO₂i). With the combined FDNIRS/DCS system we are able to quantify cerebral metabolism and hemodynamics. This represents an improvement over CWNIRS for detecting brain health, brain

  19. Effects of consuming fructose- or glucose-sweetened beverages for 10 weeks on lipids, insulin sensitivity and adiposity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Animal studies have documented that, compared with glucose, dietary fructose promotes dyslipidemia and insulin resistance. Experimental evidence that fructose consumption in humans promotes dyslipidemia and insulin resistance compared with glucose consumption has been equivocal. We tested the hypoth...

  20. Cerebral Malaria.

    PubMed

    Marsden, P D; Bruce-Chwatt, L J

    1975-01-01

    Cerebral malaria is an acute diffuse encephalopathy associated only with Plasmodium falciparum. It is probably a consequence of the rapid proliferation of the parasites in the body of man in relation to red cell invasion, and results in stagnation of blood flow in cerebralcapillaries with thromobotic occlusion of large numbers of cerebral capillaries. The subsequent cerebral pathology is cerebral infarction with haemorrhage and cerebral oedema. The wide prevalence of P. falciparum in highly endemic areas results in daily challenges to patients from several infected mosquitoes. It is thus important to understand the characteristics of P. falciparum, since this is one of the most important protozoan parasites of man and severe infection from it constitutes one of the few real clinical emergencies in tropical medicine. One of the more important aspects of the practice of medicine in the tropics is to establish a good understanding of the pattern of medical practice in that area. This applies to malaria as well as to other diseases. The neophyte might be somewhat surprised to learn, for example that an experienced colleague who lives in a holoendemic malarious area such as West Africa, sees no cerebral malaria. But the explanation is simple when the doctor concerned has a practice which involves treating adults only. Cerebral malaria is rare in adults, because in highly endemic areas, by the age of 1 year most of the infants in a group under study have already experienced their first falciparum infection. By the time they reach adult life, they have a solid immunity against severe falciparum infections. In fact, "clinical malaria" could occur in such a group under only two circumstances: 1) in pregnancy, a patent infection with P. falciparum might develop, probably due to an IgG drain across the placenta to the foetus;2) in an individual who has constantly taken antimalarials and who may have an immunity at such a low level that when antimalarial therapy is interrupted

  1. Cerebral Tissue Oxygenation during Immediate Neonatal Transition and Resuscitation

    PubMed Central

    Pichler, Gerhard; Schmölzer, Georg M.; Urlesberger, Berndt

    2017-01-01

    This article provides a review of cerebral tissue oxygenation during immediate transition after birth in human neonates. Recommended routine monitoring, especially if resuscitation is needed, during this period includes arterial oxygen saturation and heart rate measured by pulse oximetry and electrocardiogram. However, there is increasing interest to monitor in addition with near-infrared spectroscopy (NIRS) the oxygenation of the brain. There is a different pattern of increase between cerebral tissue oxygenation and arterial oxygen saturation during the immediate transition, with cerebral tissue oxygenation reaching a plateau faster than arterial oxygen saturation. Differences can be explained, since cerebral tissue oxygenation is not only affected by arterial oxygen saturation but also by cerebral blood flow, hemoglobin content, and cerebral oxygen consumption. Normal values have already been established for different devices, gestational ages, and modes of delivery in neonates without any medical support. Cerebral hypoxia during immediate transition might cause brain damage. In preterm neonates with cerebral hemorrhage evolving in the first week after birth, the cerebral tissue oxygenation is already lower in the first minutes after birth compared to preterm neonates without cerebral hemorrhage. Using cerebral NIRS in combination with intervention guidelines has been shown to reduce the burden of cerebral hypoxia in preterm neonates. Cerebral tissue oxygenation during immediate transition seems to have an impact on outcome, whereby NIRS monitoring is feasible and has the advantage of continuous, non-invasive recording. The impact of NIRS monitoring and interventions on short- and long-term outcomes still need to be evaluated. PMID:28280719

  2. Cerebral Tissue Oxygenation during Immediate Neonatal Transition and Resuscitation.

    PubMed

    Pichler, Gerhard; Schmölzer, Georg M; Urlesberger, Berndt

    2017-01-01

    This article provides a review of cerebral tissue oxygenation during immediate transition after birth in human neonates. Recommended routine monitoring, especially if resuscitation is needed, during this period includes arterial oxygen saturation and heart rate measured by pulse oximetry and electrocardiogram. However, there is increasing interest to monitor in addition with near-infrared spectroscopy (NIRS) the oxygenation of the brain. There is a different pattern of increase between cerebral tissue oxygenation and arterial oxygen saturation during the immediate transition, with cerebral tissue oxygenation reaching a plateau faster than arterial oxygen saturation. Differences can be explained, since cerebral tissue oxygenation is not only affected by arterial oxygen saturation but also by cerebral blood flow, hemoglobin content, and cerebral oxygen consumption. Normal values have already been established for different devices, gestational ages, and modes of delivery in neonates without any medical support. Cerebral hypoxia during immediate transition might cause brain damage. In preterm neonates with cerebral hemorrhage evolving in the first week after birth, the cerebral tissue oxygenation is already lower in the first minutes after birth compared to preterm neonates without cerebral hemorrhage. Using cerebral NIRS in combination with intervention guidelines has been shown to reduce the burden of cerebral hypoxia in preterm neonates. Cerebral tissue oxygenation during immediate transition seems to have an impact on outcome, whereby NIRS monitoring is feasible and has the advantage of continuous, non-invasive recording. The impact of NIRS monitoring and interventions on short- and long-term outcomes still need to be evaluated.

  3. Glucose Tests

    MedlinePlus

    ... L) in high-risk ethnic groups with higher prevalence of gestational diabetes. Gestational Diabetes Two-Step Approach ( ... trauma, heart attack , and stroke for instance) Chronic kidney disease Cushing syndrome Excessive consumption of food Hyperthyroidism Pancreatic ...

  4. Cerebral malaria

    PubMed Central

    Newton, C.; Hien, T. T.; White, N.

    2000-01-01

    Cerebral malaria may be the most common non-traumatic encephalopathy in the world. The pathogenesis is heterogenous and the neurological complications are often part of a multisystem dysfunction. The clinical presentation and pathophysiology differs between adults and children. Recent studies have elucidated the molecular mechanisms of pathogenesis and raised possible interventions. Antimalarial drugs, however, remain the only intervention that unequivocally affects outcome, although increasing resistance to the established antimalarial drugs is of grave concern. Artemisinin derivatives have made an impact on treatment, but other drugs may be required. With appropriate antimalarial drugs, the prognosis of cerebral malaria often depends on the management of other complications—for example, renal failure and acidosis. Neurological sequelae are increasingly recognised, but further research on the pathogenesis of coma and neurological damage is required to develop other ancillary treatments.

 PMID:10990500

  5. Maternal consumption of high-prebiotic fibre or -protein diets during pregnancy and lactation differentially influences satiety hormones and expression of genes involved in glucose and lipid metabolism in offspring in rats.

    PubMed

    Maurer, Alannah D; Reimer, Raylene A

    2011-02-01

    Risk of developing the metabolic syndrome may be influenced by nutritional environment early in life. We examined the effects of high-fibre (HF) and high-protein (HP) diets consumed during pregnancy and lactation on satiety hormones and expression of genes involved in glucose and lipid metabolism in offspring. Wistar dams were fed a control (C), HF or HP diets during pregnancy and lactation. At parturition, litters were culled to ten pups. At 21 d, all pups were weaned onto C diet. At 7, 14, 21, 28 and 35 d after birth, blood was analysed for satiety hormones and tissues for mRNA expression in offspring. No differences were observed in litter size or birth weight. At 21 d, offspring of HF dams had greater adjusted intestinal mass and lower liver weight than those of C but not of HP dams. Plasma glucose at 28 d and amylin at 7, 14 and 28 d were lower in HF v. C and HP offspring. Glucagon-like peptide-1 was higher in HP offspring than in HF offspring at 7 d but was higher in HF v. C offspring at 21 d. Offspring of HF dams had higher glucose transporter (GLUT2 and Na+-dependent glucose/galactose transporter) mRNA expression at 21 d v. C and HP offspring. In brown adipose tissue, HF and HP up-regulated uncoupling protein-1 and PPAR-γ coactivator. HP was associated with increased resistin and IL-6 mRNA expression. The present study demonstrates that maternal diet composition differentially regulates circulating satiety hormones and genes involved in glucose transport and energy metabolism in offspring. These early changes could have long-term consequences for obesity risk.

  6. FRET-based glucose monitoring for bioprocessing

    NASA Astrophysics Data System (ADS)

    Bartolome, Amelita; Smalls-Mantey, Lauren; Lin, Debora; Rao, Govind; Tolosa, Leah

    2006-02-01

    The glucose-mediated conformational changes in the glucose binding protein (GBP) have been exploited in the development of fluorescence based glucose sensors. The fluorescence response is generated by a polarity sensitive dye attached to a specific site. Such fluorescent sensors respond to submicromolar glucose at diffusion-controlled rates mimicking the wild type. However, such sensors have been limited to in vitro glucose sensing because of the preliminary dye-labeling step. In the study described here, the dye-labeling step is omitted by genetically encoding the GBP with two green fluorescent mutants namely, the green fluorescent protein (GFP) and the yellow fluorescent protein (YFP) in the N- and C-terminal ends, respectively. These two GFP mutants comprise a fluorescence resonance energy transfer (FRET) donor and acceptor pair. Thus, when glucose binds with GBP, the conformational changes affect the FRET efficiency yielding a dose-dependent response. A potential application for this FRET-based glucose biosensor is online glucose sensing in bioprocessing and cell culture. This was demonstrated by the measurement of glucose consumption in yeast fermentation. Further development of this system should yield in vivo measurement of glucose in bioprocesses.

  7. Cerebral metabolism following traumatic brain injury: new discoveries with implications for treatment.

    PubMed

    Brooks, George A; Martin, Neil A

    2014-01-01

    Because it is the product of glycolysis and main substrate for mitochondrial respiration, lactate is the central metabolic intermediate in cerebral energy substrate delivery. Our recent studies on healthy controls and patients following traumatic brain injury (TBI) using [6,6-(2)H2]glucose and [3-(13)C]lactate, along with cerebral blood flow (CBF) and arterial-venous (jugular bulb) difference measurements for oxygen, metabolite levels, isotopic enrichments and (13)CO2 show a massive and previously unrecognized mobilization of lactate from corporeal (muscle, skin, and other) glycogen reserves in TBI patients who were studied 5.7 ± 2.2 days after injury at which time brain oxygen consumption and glucose uptake (CMRO2 and CMRgluc, respectively) were depressed. By tracking the incorporation of the (13)C from lactate tracer we found that gluconeogenesis (GNG) from lactate accounted for 67.1 ± 6.9%, of whole-body glucose appearance rate (Ra) in TBI, which was compared to 15.2 ± 2.8% (mean ± SD, respectively) in healthy, well-nourished controls. Standard of care treatment of TBI patients in state-of-the-art facilities by talented and dedicated heath care professionals reveals presence of a catabolic Body Energy State (BES). Results are interpreted to mean that additional nutritive support is required to fuel the body and brain following TBI. Use of a diagnostic to monitor BES to provide health care professionals with actionable data in providing nutritive formulations to fuel the body and brain and achieve exquisite glycemic control are discussed. In particular, the advantages of using inorganic and organic lactate salts, esters and other compounds are examined. To date, several investigations on brain-injured patients with intact hepatic and renal functions show that compared to dextrose + insulin treatment, exogenous lactate infusion results in normal glycemia.

  8. Lean consumption.

    PubMed

    Womack, James P; Jones, Daniel T

    2005-03-01

    During the past 20 years, the real price of most consumer goods has fallen worldwide, the variety of goods and the range of sales channels offering them have continued to grow, and product quality has steadily improved. So why is consumption often so frustrating? It doesn't have to be--and shouldn't be--the authors say. They argue that it's time to apply lean thinking to the processes of consumption--to give consumers the full value they want from goods and services with the greatest efficiency and the least pain. Companies may think they save time and money by off-loading work to the consumer but, in fact, the opposite is true. By streamlining their systems for providing goods and services, and by making it easier for customers to buy and use those products and services, a growing number of companies are actually lowering costs while saving everyone time. In the process, these businesses are learning more about their customers, strengthening consumer loyalty, and attracting new customers who are defecting from less user-friendly competitors. The challenge lies with the retailers, service providers, manufacturers, and suppliers that are not used to looking at total cost from the standpoint of the consumer and even less accustomed to working with customers to optimize the consumption process. Lean consumption requires a fundamental shift in the way companies think about the relationship between provision and consumption, and the role their customers play in these processes. It also requires consumers to change the nature of their relationships with the companies they patronize. Lean production has clearly triumphed over similar obstacles in recent years to become the dominant global manufacturing model. Lean consumption, its logical companion, can't be far behind.

  9. Correspondence of continuous interstitial glucose measurement against arterialised and capillary glucose following an oral glucose tolerance test in healthy volunteers.

    PubMed

    Dye, Louise; Mansfield, Michael; Lasikiewicz, Nicola; Mahawish, Lena; Schnell, Rainer; Talbot, Duncan; Chauhan, Hitesh; Croden, Fiona; Lawton, Clare

    2010-01-01

    The aim of the present study was to validate the Glucoday continuous interstitial ambulatory glucose-monitoring device (AGD) against plasma glucose measured from arterialised venous (AV) and glucose from capillary whole blood (finger prick, FP) in non-diabetic subjects in response to an oral glucose tolerance test. Fifteen healthy overweight men (age 30-49 years, BMI 26-31 kg/m2) participated. Glucose levels were measured before, during and after consumption of an oral 75 g glucose load using twelve FP samples and forty-four 1 ml AV blood samples during 180 min. Interstitial glucose was measured via the AGD. Three venous samples for fasting insulin were taken to estimate insulin resistance. Profiles of AGD, AV and FP glucose were generated for each participant. Glucose values for each minute of the measurement period were interpolated using a locally weighted scatterplot smoother. Data were compared using Bland-Altman plots that showed good correspondence between all pairs of measurements. Concordance between the three methods was 0.8771 (Kendall's W, n 15, P < 0.001). Concordance was greater between AV and FP (W = 0.9696) than AGD and AV (W = 0.8770) or AGD and FP (W = 0.8764). Analysis of time to peak glucose indicated that AGD measures lagged approximately 15 min behind FP and AV measures. Percent body fat was significantly correlated with time to peak glucose levels for each measure, while BMI and estimated insulin resistance (homeostatic model assessment, HOMA) were not. In conclusion, AGD shows good correspondence with FP and AV glucose measures in response to a glucose load with a 15 min time lag. Taking this into account, AGD has potential application in nutrition and behaviour studies.

  10. Neuroscience of glucose homeostasis.

    PubMed

    La Fleur, S E; Fliers, E; Kalsbeek, A

    2014-01-01

    Plasma glucose concentrations are homeostatically regulated and maintained within strict boundaries. Several mechanisms are in place to increase glucose output when glucose levels in the circulation drop as a result of glucose utilization, or to decrease glucose output and increase tissue glucose uptake to prevent hyperglycemia. Although the term homeostasis mostly refers to stable levels, the blood glucose concentrations fluctuate over the day/night cycle, with the highest concentrations occurring just prior to the activity period in anticipation of increased caloric need. In this chapter we describe how the brain, particularly the hypothalamus, is involved in both the daily rhythm of plasma glucose concentrations and acute glucose challenges.

  11. Experience-dependent escalation of glucose drinking and the development of glucose preference over fructose - association with glucose entry into the brain.

    PubMed

    Wakabayashi, Ken T; Spekterman, Laurence; Kiyatkin, Eugene A

    2016-06-01

    Glucose, a primary metabolic substrate for cellular activity, must be delivered to the brain for normal neural functions. Glucose is also a unique reinforcer; in addition to its rewarding sensory properties and metabolic effects, which all natural sugars have, glucose crosses the blood-brain barrier and acts on glucoreceptors expressed on multiple brain cells. To clarify the role of this direct glucose action in the brain, we compared the neural and behavioural effects of glucose with those induced by fructose, a sweeter yet metabolically equivalent sugar. First, by using enzyme-based biosensors in freely moving rats, we confirmed that glucose rapidly increased in the nucleus accumbens in a dose-dependent manner after its intravenous delivery. In contrast, fructose induced a minimal response only after a large-dose injection. Second, we showed that naive rats during unrestricted access consumed larger volumes of glucose than fructose solution; the difference appeared with a definite latency during the initial exposure and strongly increased during subsequent tests. When rats with equal sugar experience were presented with either glucose or fructose in alternating order, the consumption of both substances was initially equal, but only the consumption of glucose increased during subsequent sessions. Finally, rats with equal glucose-fructose experience developed a strong preference for glucose over fructose during a two-bottle choice procedure; the effect appeared with a definite latency during the initial test and greatly amplified during subsequent tests. Our results suggest that direct entry of glucose in the brain and its subsequent effects on brain cells could be critical for the experience-dependent escalation of glucose consumption and the development of glucose preference over fructose.

  12. Effects of Chronic Consumption of Sugar-Enriched Diets on Brain Metabolism and Insulin Sensitivity in Adult Yucatan Minipigs

    PubMed Central

    Ochoa, Melissa; Malbert, Charles-Henri; Meurice, Paul; Val-Laillet, David

    2016-01-01

    Excessive sugar intake might increase the risk to develop eating disorders via an altered reward circuitry, but it remains unknown whether different sugar sources induce different neural effects and whether these effects are dependent from body weight. Therefore, we compared the effects of three high-fat and isocaloric diets varying only in their carbohydrate sources on brain activity of reward-related regions, and assessed whether brain activity is dependent on insulin sensitivity. Twenty-four minipigs underwent 18FDG PET brain imaging following 7-month intake of high-fat diets of which 20% in dry matter weight (36.3% of metabolisable energy) was provided by starch, glucose or fructose (n = 8 per diet). Animals were then subjected to a euglycemic hyperinsulinemic clamp to determine peripheral insulin sensitivity. After a 7-month diet treatment, all groups had substantial increases in body weight (from 36.02±0.85 to 63.33±0.81 kg; P<0.0001), regardless of the diet. All groups presented similar insulin sensitivity index (ISI = 1.39±0.10 mL·min-1·μUI·kg). Compared to starch, chronic exposure to fructose and glucose induced bilateral brain activations, i.e. increased basal cerebral glucose metabolism, in several reward-related brain regions including the anterior and dorsolateral prefrontal cortex, the orbitofrontal cortex, the anterior cingulate cortex, the caudate and putamen. The lack of differences in insulin sensitivity index and body weight suggests that the observed differences in basal brain glucose metabolism are not related to differences in peripheral insulin sensitivity and weight gain. The differences in basal brain metabolism in reward-related brain areas suggest the onset of cerebral functional alterations induced by chronic consumption of dietary sugars. Further studies should explore the underlying mechanisms, such as the availability of intestinal and brain sugar transporter, or the appearance of addictive-like behavioral correlates of these

  13. Cerebral Palsy (For Kids)

    MedlinePlus

    ... de los dientes Video: Getting an X-ray Cerebral Palsy KidsHealth > For Kids > Cerebral Palsy Print A A ... the things that kids do every day. What's CP? Some kids with CP use wheelchairs and others ...

  14. Cerebral Palsy (For Kids)

    MedlinePlus

    ... Emergency Room? What Happens in the Operating Room? Cerebral Palsy KidsHealth > For Kids > Cerebral Palsy A A A ... the things that kids do every day. What's CP? Some kids with CP use wheelchairs and others ...

  15. Seasonal variations in plasma glucose and insulin concentrations after glucose loading in the edible dormouse (Glis glis L.).

    PubMed

    Castex, C; Donnio, R; Sutter, B C

    1979-01-01

    Glucose tolerance tests made in the Edible dormouse showed annual variations in B cell secretory capacity, associated with glucose tolerance changes. 1. During autumn and winter, the B cell is sensitive to glucose, and insulin regulates the high peripheral consumption of this hexose. 2. At the beginning of spring, insulin secretion decreases and glucose tolerance is impaired. In June, the B cell response si low or absent and a poor tolerance to glucose still persists. 3. The variations in B cell activity can be related to changing energy requirements during the year.

  16. Aging and Cerebral Palsy.

    ERIC Educational Resources Information Center

    Networker, 1993

    1993-01-01

    This special edition of "The Networker" contains several articles focusing on aging and cerebral palsy (CP). "Aging and Cerebral Palsy: Pathways to Successful Aging" (Jenny C. Overeynder) reports on the National Invitational Colloquium on Aging and Cerebral Palsy held in April 1993. "Observations from an Observer" (Kathleen K. Barrett) describes…

  17. CSF glucose test

    MedlinePlus

    Glucose test - CSF; Cerebrospinal fluid glucose test ... The glucose level in the CSF should be 50 to 80 mg/100 mL (or greater than 2/3 ... Abnormal results include higher and lower glucose levels. Abnormal ... or fungus) Inflammation of the central nervous system Tumor

  18. Blood Test: Glucose

    MedlinePlus

    ... Your 1- to 2-Year-Old Blood Test: Glucose KidsHealth > For Parents > Blood Test: Glucose A A A What's in this article? What ... de sangre: glucosa What It Is A blood glucose test measures the amount of glucose (the main ...

  19. Diet-induced ketosis does not cause cerebral acidosis.

    PubMed

    Al-Mudallal, A S; LaManna, J C; Lust, W D; Harik, S I

    1996-03-01

    Ketosis is beneficial for seizure control, possibly through induction of cerebral acidosis. However, cerebral intracellular pH has not previously been measured in ketotic humans and the animal data are sparse. We describe a high-fat diet, avidly consumed by rats, that induced consistent and moderate ketosis. Adult male rats were fed either the high-fat ketogenic diet, a high-carbohydrate diet with the same protein content as the ketogenic diet, or regular laboratory chow. Five to 6 weeks later, the rats were anesthetized, paralyzed, and injected with neutral red; their brains were frozen in situ. Intracellular pH of the cerebral cortex and cerebral glucose, lactate, ATP, phosphocreatine, and gama-aminobutyric acid (GABA) levels were measured. Rats fed the ketogenic diet had > 10-fold increase in their plasma ketones, but we noted no significant differences in cerebral pH or in cerebral metabolites and GABA levels among the three groups. Therefore, the antiepileptic effect of the ketogenic diet probably is not mediated by cerebral acidosis or changes in total cerebral GABA levels.

  20. Insulin Signaling in the Control of Glucose and Lipid Homeostasis.

    PubMed

    Saltiel, Alan R

    2016-01-01

    A continuous supply of glucose is necessary to ensure proper function and survival of all organs. Plasma glucose levels are thus maintained in a narrow range around 5 mM, which is considered the physiological set point. Glucose homeostasis is controlled primarily by the liver, fat, and skeletal muscle. Following a meal, most glucose disposals occur in the skeletal muscle, whereas fasting plasma glucose levels are determined primarily by glucose output from the liver. The balance between the utilization and production of glucose is primarily maintained at equilibrium by two opposing hormones, insulin and glucagon. In response to an elevation in plasma glucose and amino acids (after consumption of a meal), insulin is released from the beta cells of the islets of Langerhans in the pancreas. When plasma glucose falls (during fasting or exercise), glucagon is secreted by α cells, which surround the beta cells in the pancreas. Both cell types are extremely sensitive to glucose concentrations, can regulate hormone synthesis, and are released in response to small changes in plasma glucose levels. At the same time, insulin serves as the major physiological anabolic agent, promoting the synthesis and storage of glucose, lipids, and proteins and inhibiting their degradation and release back into the circulation. This chapter will focus mainly on signal transduction mechanisms by which insulin exerts its plethora of effects in liver, muscle, and fat cells, focusing on those pathways that are crucial in the control of glucose and lipid homeostasis.

  1. Cerebral metabolic adaptation and ketone metabolism after brain injury.

    PubMed

    Prins, Mayumi L

    2008-01-01

    The developing central nervous system has the capacity to metabolize ketone bodies. It was once accepted that on weaning, the 'post-weaned/adult' brain was limited solely to glucose metabolism. However, increasing evidence from conditions of inadequate glucose availability or increased energy demands has shown that the adult brain is not static in its fuel options. The objective of this review is to summarize the body of literature specifically regarding cerebral ketone metabolism at different ages, under conditions of starvation and after various pathologic conditions. The evidence presented supports the following findings: (1) there is an inverse relationship between age and the brain's capacity for ketone metabolism that continues well after weaning; (2) neuroprotective potentials of ketone administration have been shown for neurodegenerative conditions, epilepsy, hypoxia/ischemia, and traumatic brain injury; and (3) there is an age-related therapeutic potential for ketone as an alternative substrate. The concept of cerebral metabolic adaptation under various physiologic and pathologic conditions is not new, but it has taken the contribution of numerous studies over many years to break the previously accepted dogma of cerebral metabolism. Our emerging understanding of cerebral metabolism is far more complex than could have been imagined. It is clear that in addition to glucose, other substrates must be considered along with fuel interactions, metabolic challenges, and cerebral maturation.

  2. Lifestyle, glucose regulation and the cognitive effects of glucose load in middle-aged adults.

    PubMed

    Riby, Leigh M; McLaughlin, Jennifer; Riby, Deborah M; Graham, Cheryl

    2008-11-01

    Interventions aimed at improving glucose regulatory mechanisms have been suggested as a possible source of cognitive enhancement in the elderly. In particular, previous research has identified episodic memory as a target for facilitation after either moderate increases in glycaemia (after a glucose drink) or after improvements in glucose regulation. The present study aimed to extend this research by examining the joint effects of glucose ingestion and glucose regulation on cognition. In addition, risk factors associated with the development of poor glucose regulation in middle-aged adults were considered. In a repeated measures design, thirty-three middle-aged adults (aged 35-55 years) performed a battery of memory and non-memory tasks after either 25 g or 50 g glucose or a sweetness matched placebo drink. To assess the impact of individual differences in glucose regulation, blood glucose measurements were taken on four occasions during testing. A lifestyle and diet questionnaire was also administered. Consistent with previous research, episodic memory ability benefited from glucose ingestion when task demands were high. Blood glucose concentration was also found to predict performance across a number of cognitive domains. Interestingly, the risk factors associated with poor glucose regulation were linked to dietary impacts traditionally associated with poor health, e.g. the consumption of high-sugar sweets and drinks. The research replicates earlier work suggesting that task demands are critical to the glucose facilitation effect. Importantly, the data demonstrate clear associations between elevated glycaemia and relatively poor cognitive performance, which may be partly due to the effect of dietary and lifestyle factors.

  3. Cerebral hypometabolism in progressive supranuclear palsy studied with positron emission tomography

    SciTech Connect

    Foster, N.L.; Gilman, S.; Berent, S.; Morin, E.M.; Brown, M.B.; Koeppe, R.A.

    1988-09-01

    Progressive supranuclear palsy (PSP) is characterized by supranuclear palsy of gaze, axial dystonia, bradykinesia, rigidity, and a progressive dementia. Pathological changes in this disorder are generally restricted to subcortical structures, yet the type and range of cognitive deficits suggest the involvement of many cerebral regions. We examined the extent of functional impairment to cerebral cortical and subcortical structures as measured by the level of glucose metabolic activity at rest. Fourteen patients with PSP were compared to 21 normal volunteers of similar age using 18F-2-fluoro-2-deoxy-D-glucose and positron emission tomography. Glucose metabolism was reduced in the caudate nucleus, putamen, thalamus, pons, and cerebral cortex, but not in the cerebellum in the patients with PSP as compared to the normal subjects. Analysis of individual brain regions revealed significant declines in cerebral glucose utilization in most regions throughout the cerebral cortex, particularly those in the superior half of the frontal lobe. Declines in the most affected regions of cerebral cortex were greater than those in any single subcortical structure. Although using conventional neuropathological techniques the cerebral cortex appears to be unaffected in PSP, significant and pervasive functional impairments in both cortical and subcortical structures are present. These observations help to account for the constellation of cognitive symptoms in individual patients with PSP and the difficulty encountered in identifying a characteristic psychometric profile for this group of patients.

  4. Astrocytic Insulin Signaling Couples Brain Glucose Uptake with Nutrient Availability.

    PubMed

    García-Cáceres, Cristina; Quarta, Carmelo; Varela, Luis; Gao, Yuanqing; Gruber, Tim; Legutko, Beata; Jastroch, Martin; Johansson, Pia; Ninkovic, Jovica; Yi, Chun-Xia; Le Thuc, Ophelia; Szigeti-Buck, Klara; Cai, Weikang; Meyer, Carola W; Pfluger, Paul T; Fernandez, Ana M; Luquet, Serge; Woods, Stephen C; Torres-Alemán, Ignacio; Kahn, C Ronald; Götz, Magdalena; Horvath, Tamas L; Tschöp, Matthias H

    2016-08-11

    We report that astrocytic insulin signaling co-regulates hypothalamic glucose sensing and systemic glucose metabolism. Postnatal ablation of insulin receptors (IRs) in glial fibrillary acidic protein (GFAP)-expressing cells affects hypothalamic astrocyte morphology, mitochondrial function, and circuit connectivity. Accordingly, astrocytic IR ablation reduces glucose-induced activation of hypothalamic pro-opio-melanocortin (POMC) neurons and impairs physiological responses to changes in glucose availability. Hypothalamus-specific knockout of astrocytic IRs, as well as postnatal ablation by targeting glutamate aspartate transporter (GLAST)-expressing cells, replicates such alterations. A normal response to altering directly CNS glucose levels in mice lacking astrocytic IRs indicates a role in glucose transport across the blood-brain barrier (BBB). This was confirmed in vivo in GFAP-IR KO mice by using positron emission tomography and glucose monitoring in cerebral spinal fluid. We conclude that insulin signaling in hypothalamic astrocytes co-controls CNS glucose sensing and systemic glucose metabolism via regulation of glucose uptake across the BBB.

  5. Astrocytic glucose-6-phosphatase and the permeability of brain microsomes to glucose 6-phosphate.

    PubMed Central

    Forsyth, R J; Bartlett, K; Burchell, A; Scott, H M; Eyre, J A

    1993-01-01

    Cells from primary rat astrocyte cultures express a 36.5 kDa protein that cross-reacts with polyclonal antibodies to the catalytic subunit of rat hepatic glucose-6-phosphatase on Western blotting. Glucose-6-phosphate-hydrolysing activity of the order of 10 nmol/min per mg of total cellular protein can be demonstrated in cell homogenates. This activity shows latency, and is localized to the microsomal fraction. Kinetic analysis shows a Km of 15 mM and a Vmax. of 30 nmol/min per mg of microsomal protein in disrupted microsomes. Approx. 40% of the total phosphohydrolase activity is specific glucose-6-phosphatase, as judged by sensitivity to exposure to pH 5 at 37 degrees C. Previous reports that the brain microsomal glucose-6-phosphatase system does not distinguish glucose 6-phosphate and mannose 6-phosphate are confirmed in astrocyte microsomes. However, we demonstrate significant phosphomannose isomerase activity in brain microsomes, allowing for ready interconversion between mannose 6-phosphate and glucose 6-phosphate (Vmax. 15 nmol/min per mg of microsomal protein; apparent Km < 1 mM; pH optimum 5-6 for the two-step conversion). This finding invalidates the past inference from the failure of brain microsomes to distinguish mannose 6-phosphate and glucose 6-phosphate that the cerebral glucose-6-phosphatase system lacks a 'glucose 6-phosphate translocase' [Fishman and Karnovsky (1986) J. Neurochem. 46, 371-378]. Furthermore, light-scattering experiments confirm that a proportion of whole brain microsomes is readily permeable to glucose 6-phosphate. Images Figure 1 PMID:8395816

  6. Medium- and long-term effects of repeated bicuculline-induced seizures in developing rats on local cerebral energy metabolism.

    PubMed

    Doriat, J F; Koziel, V; Humbert, A C; Daval, J L

    1998-07-27

    To assess long-term metabolic consequences of recurrent ictal events arising during development, seizures were repeatedly generated in rats at different stages of cerebral maturation. Seizures were induced by i.p. injections of bicuculline for three consecutive days, starting from postnatal day 5 (P5), when the brain is very immature, or from P15, a period at which the brain is more structurally organized. Local cerebral metabolic rates for glucose were measured in 74 structures at P15, P25 and in adults (P60), by the autoradiographic method using 2-D-[14C]deoxyglucose. Repeated seizures in P5 to P7 pups led to a reduction (16-34%) of glucose consumption at P15, mainly significant in sensory, motor and functionally non-specific areas as well as in cerebellar nuclei. Selective decreases in metabolic activity were still recorded in adults, mostly in auditory system (20%) and cerebellar nuclei (27%). Seizures generated from P15 to P17 led to an overall mortality rate of 62% (versus 22% at P5 to P7). Surviving animals exhibited reduced metabolic rates for glucose (by 7-27%) at P25, significant in 23 structures, and depicting pronounced changes in limbic, hypothalamic, sensory and white matter areas, whereas brain functional activity finally returned to basal values at P60. Therefore, while younger rats seemed to better tolerate repeated bicuculline-induced seizures than older animals, the reverse was true for long-term metabolic effects, and the more immature the brain when seizures arise, the more persistent the functional consequences.

  7. Identification of Glucose Transporters in Aspergillus nidulans

    PubMed Central

    dos Reis, Thaila Fernanda; Menino, João Filipe; Bom, Vinícius Leite Pedro; Brown, Neil Andrew; Colabardini, Ana Cristina; Savoldi, Marcela; Goldman, Maria Helena S.; Rodrigues, Fernando; Goldman, Gustavo Henrique

    2013-01-01

    To characterize the mechanisms involved in glucose transport, in the filamentous fungus Aspergillus nidulans, we have identified four glucose transporter encoding genes hxtB-E. We evaluated the ability of hxtB-E to functionally complement the Saccharomyces cerevisiae EBY.VW4000 strain that is unable to grow on glucose, fructose, mannose or galactose as single carbon source. In S. cerevisiae HxtB-E were targeted to the plasma membrane. The expression of HxtB, HxtC and HxtE was able to restore growth on glucose, fructose, mannose or galactose, indicating that these transporters accept multiple sugars as a substrate through an energy dependent process. A tenfold excess of unlabeled maltose, galactose, fructose, and mannose were able to inhibit glucose uptake to different levels (50 to 80 %) in these s. cerevisiae complemented strains. Moreover, experiments with cyanide-m-chlorophenylhydrazone (CCCP), strongly suggest that hxtB, -C, and –E mediate glucose transport via active proton symport. The A. nidulans ΔhxtB, ΔhxtC or ΔhxtE null mutants showed ~2.5-fold reduction in the affinity for glucose, while ΔhxtB and -C also showed a 2-fold reduction in the capacity for glucose uptake. The ΔhxtD mutant had a 7.8-fold reduction in affinity, but a 3-fold increase in the capacity for glucose uptake. However, only the ΔhxtB mutant strain showed a detectable decreased rate of glucose consumption at low concentrations and an increased resistance to 2-deoxyglucose. PMID:24282591

  8. The human brain produces fructose from glucose

    PubMed Central

    Hwang, Janice J.; Jiang, Lihong; Hamza, Muhammad; Dai, Feng; Cline, Gary; Rothman, Douglas L.; Mason, Graeme; Sherwin, Robert S.

    2017-01-01

    Fructose has been implicated in the pathogenesis of obesity and type 2 diabetes. In contrast to glucose, CNS delivery of fructose in rodents promotes feeding behavior. However, because circulating plasma fructose levels are exceedingly low, it remains unclear to what extent fructose crosses the blood-brain barrier to exert CNS effects. To determine whether fructose can be endogenously generated from glucose via the polyol pathway (glucose → sorbitol → fructose) in human brain, 8 healthy subjects (4 women/4 men; age, 28.8 ± 6.2 years; BMI, 23.4 ± 2.6; HbA1C, 4.9% ± 0.2%) underwent 1H magnetic resonance spectroscopy scanning to measure intracerebral glucose and fructose levels during a 4-hour hyperglycemic clamp (plasma glucose, 220 mg/dl). Using mixed-effects regression model analysis, intracerebral glucose rose significantly over time and differed from baseline at 20 to 230 minutes. Intracerebral fructose levels also rose over time, differing from baseline at 30 to 230 minutes. The changes in intracerebral fructose were related to changes in intracerebral glucose but not to plasma fructose levels. Our findings suggest that the polyol pathway contributes to endogenous CNS production of fructose and that the effects of fructose in the CNS may extend beyond its direct dietary consumption. PMID:28239653

  9. Enzymatic Glucose Sensor Compensation for Variations in Ambient Oxygen Concentration

    PubMed Central

    Collier, Bradley B.; McShane, Michael J.

    2014-01-01

    Due to the increasing prevalence of diabetes, research toward painless glucose sensing continues. Oxygen sensitive phosphors with glucose oxidase (GOx) can be used to determine glucose levels indirectly by monitoring oxygen consumption. This is an attractive combination because of its speed and specificity. Packaging these molecules together in “smart materials” for implantation will enable non-invasive glucose monitoring. As glucose levels increase, oxygen levels decrease; consequently, the luminescence intensity and lifetime of the phosphor increase. Although the response of the sensor is dependent on glucose concentration, the ambient oxygen concentration also plays a key role. This could lead to inaccurate glucose readings and increase the risk of hyper- or hypoglycemia. To mitigate this risk, the dependence of hydrogel glucose sensor response on oxygen levels was investigated and compensation methods explored. Sensors were calibrated at different oxygen concentrations using a single generic logistic equation, such that trends in oxygen-dependence were determined as varying parameters in the equation. Each parameter was found to be a function of oxygen concentration, such that the correct glucose calibration equation can be calculated if the oxygen level is known. Accuracy of compensation will be determined by developing an overall calibration, using both glucose and oxygen sensors in parallel, correcting for oxygen fluctuations in real time by intentionally varying oxygen, and calculating the error in actual and predicted glucose levels. While this method was developed for compensation of enzymatic glucose sensors, in principle it can also be implemented with other kinds of sensors utilizing oxidases. PMID:26257458

  10. Glycolysis-induced discordance between glucose metabolic rates measured with radiolabeled fluorodeoxyglucose and glucose

    SciTech Connect

    Ackermann, R.F.; Lear, J.L. )

    1989-12-01

    We have developed an autoradiographic method for estimating the oxidative and glycolytic components of local CMRglc (LCMRglc), using sequentially administered ({sup 18}F)fluorodeoxyglucose (FDG) and ({sup 14}C)-6-glucose (GLC). FDG-6-phosphate accumulation is proportional to the rate of glucose phosphorylation, which occurs before the divergence of glycolytic (GMg) and oxidative (GMo) glucose metabolism and is therefore related to total cerebral glucose metabolism GMt: GMg + GMo = GMt. With oxidative metabolism, the {sup 14}C label of GLC is temporarily retained in Krebs cycle-related substrate pools. We hypothesize that with glycolytic metabolism, however, a significant fraction of the {sup 14}C label is lost from the brain via lactate production and efflux from the brain. Thus, cerebral GLC metabolite concentration may be more closely related to GMo than to GMt. If true, the glycolytic metabolic rate will be related to the difference between FDG- and GLC-derived LCMRglc. Thus far, we have studied normal awake rats, rats with limbic activation induced by kainic acid (KA), and rats visually stimulated with 16-Hz flashes. In KA-treated rats, significant discordance between FDG and GLC accumulation, which we attribute to glycolysis, occurred only in activated limbic structures. In visually stimulated rats, significant discordance occurred only in the optic tectum.

  11. Cerebral energy metabolism and microdialysis in neurocritical care.

    PubMed

    Nordström, Carl-Henrik

    2010-04-01

    It is of obvious clinical importance to monitor cerebral metabolism--in particular, cerebral energy metabolism and indicators of cellular damage-online at the bedside. The technique of cerebral microdialysis provides the opportunity for continuous monitoring of metabolic changes in the tissue before they are reflected in peripheral blood chemistry or in systemic physiological parameters. The basic idea of microdialysis is to mimic the function of a blood capillary by positioning a thin dialysis tube in the tissue and to be used to analyze the chemical composition of the interstitial fluid. The biochemical variables used during routine monitoring were chosen to cover important aspects of cerebral energy metabolism (glucose, pyruvate and lactate), to indicate excessive interstitial levels of excitatory transmitter substance (glutamate) and to give indications of degradation of cellular membranes (glycerol). Furthermore, pharmokinetic studies can be conducted using microdialysis. This article discusses technical and physiological aspects of microdialysis, and its clinical applications in brain injury.

  12. Effects of celiac superior mesenteric ganglionectomy on glucose homeostasis and hormonal changes during oral glucose tolerance testing in rats.

    PubMed

    Kumakura, Atsushi; Shikuma, Junpei; Ogihara, Norikazu; Eiki, Jun-ichi; Kanazawa, Masao; Notoya, Yōko; Kikuchi, Masatoshi; Odawara, Masato

    2013-01-01

    The liver plays an important role in maintaining glucose homeostasis in the body. In the prandial state, some of the glucose which is absorbed by the gastrointestinal tract is converted into glycogen and stored in the liver. In contrast, the liver produces glucose by glycogenolysis and gluconeogenesis while fasting. Thus, the liver contributes to maintaining blood glucose level within normoglycemic range. Glycogenesis and glycogenolysis are regulated by various mechanisms including hormones, the sympathetic and parasympathetic nervous systems and the hepatic glucose content. In this study, we examined a rat model in which the celiac superior mesenteric ganglion (CSMG) was resected. We attempted to elucidate how the celiac sympathetic nervous system is involved in regulating glucose homeostasis by assessing the effects of CSMG resection on glucose excursion during an oral glucose tolerance test, and by examining hepatic glycogen content and hepatic glycogen phosphorylase (GP) activity. On the oral glucose tolerance test, CSMG-resected rats demonstrated improved glucose tolerance and significantly increased GP activity compared with sham-operated rats, whereas there were no significant differences in insulin, glucagon or catecholamine levels between the 2 groups. These results suggest that the celiac sympathetic nervous system is involved in regulating the rate of glycogen consumption through GP activity. In conclusion, the examined rat model showed that the celiac sympathetic nervous system regulates hepatic glucose metabolism in conjunction with vagal nerve innervations and is a critical component in the maintenance of blood glucose homeostasis.

  13. Diminished brain glucose metabolism is a significant determinant for falling rates of systemic glucose utilization during sleep in normal humans.

    PubMed Central

    Boyle, P J; Scott, J C; Krentz, A J; Nagy, R J; Comstock, E; Hoffman, C

    1994-01-01

    Systemic glucose utilization declines during sleep in man. We tested the hypothesis that this decline in utilization is largely accounted for by reduced brain glucose metabolism. 10 normal subjects underwent internal jugular and radial artery cannulation to determine cerebral blood flow by N2O equilibrium technique and to quantitate cross-brain glucose and oxygen differences before and every 3 h during sleep. Sleep stage was graded by continuous electroencephalogram, and systemic glucose turnover was estimated by isotope dilution. Brain glucose metabolism fell from 33.6 +/- 2.2 mumol/100 g per min (mean +/- SE) before sleep (2300 h) to a mean nadir of 24.3 +/- 1.1 mumol/100 g per min at 0300 h during sleep (P = 0.001). Corresponding rates of systemic glucose utilization fell from 13.2 +/- 0.8 to 11.0 +/- 0.5 mumol/kg per min (P = 0.003). Diminished brain glucose metabolism was the product of a reduced arteriovenous glucose difference, 0.643 +/- 0.024 to 0.546 +/- 0.020 mmol/liter (P = 0.002), and cerebral blood flow, 50.3 +/- 2.8 to 44.6 +/- 1.4 cc/100 g per min (P = 0.021). Brain oxygen metabolism fell commensurately from 153.4 +/- 11.8 to 128.0 +/- 8.4 mumol/100 g per min (P = 0.045). The observed reduction in brain metabolism occurred independent of stage of central nervous system electrical activity (electroencephalographic data), and was more closely linked to duration of sleep. We conclude that a decline in brain glucose metabolism is a significant determinant of falling rates of systemic glucose utilization during sleep. Images PMID:8113391

  14. Statins and cerebral hemodynamics

    PubMed Central

    Giannopoulos, Sotirios; Katsanos, Aristeidis H; Tsivgoulis, Georgios; Marshall, Randolph S

    2012-01-01

    HMG-CoA reductase inhibitors (statins) are associated with improved stroke outcome. This observation has been attributed in part to the palliative effect of statins on cerebral hemodynamics and cerebral autoregulation (CA), which are mediated mainly through the upregulation of endothelium nitric oxide synthase (eNOS). Several animal studies indicate that statin pretreatment enhances cerebral blood flow after ischemic stroke, although this finding is not further supported in clinical settings. Cerebral vasomotor reactivity, however, is significantly improved after long-term statin administration in most patients with severe small vessel disease, aneurysmal subarachnoid hemorrhage, or impaired baseline CA. PMID:22929438

  15. Glucose test (image)

    MedlinePlus

    ... person with diabetes constantly manages their blood's sugar (glucose) levels. After a blood sample is taken and tested, it is determined whether the glucose levels are low or high. Following your health ...

  16. Blood Glucose Monitoring Devices

    MedlinePlus

    ... the Bar for Blood Glucose Meter Performance Recalls & Alerts Shasta Technologies GenStrip Blood Glucose Test Strips May ... Latest Recalls Report an Adverse Event MedWatch Safety Alerts News Releases Consumer Updates About FDA Contact FDA ...

  17. Quantification of extra-cerebral and cerebral hemoglobin concentrations during physical exercise using time-domain near infrared spectroscopy.

    PubMed

    Auger, Héloïse; Bherer, Louis; Boucher, Étienne; Hoge, Richard; Lesage, Frédéric; Dehaes, Mathieu

    2016-10-01

    Fitness is known to have beneficial effects on brain anatomy and function. However, the understanding of mechanisms underlying immediate and long-term neurophysiological changes due to exercise is currently incomplete due to the lack of tools to investigate brain function during physical activity. In this study, we used time-domain near infrared spectroscopy (TD-NIRS) to quantify and discriminate extra-cerebral and cerebral hemoglobin concentrations and oxygen saturation (SO2) in young adults at rest and during incremental intensity exercise. In extra-cerebral tissue, an increase in deoxy-hemoglobin (HbR) and a decrease in SO2 were observed while only cerebral HbR increased at high intensity exercise. Results in extra-cerebral tissue are consistent with thermoregulatory mechanisms to dissipate excess heat through skin blood flow, while cerebral changes are in agreement with cerebral blood flow (CBF) redistribution mechanisms to meet oxygen demand in activated regions during exercise. No significant difference was observed in oxy- (HbO2) and total hemoglobin (HbT). In addition HbO2, HbR and HbT increased with subject's peak power output (equivalent to the maximum oxygen volume consumption; VO2 peak) supporting previous observations of increased total mass of red blood cells in trained individuals. Our results also revealed known gender differences with higher hemoglobin in men. Our approach in quantifying both extra-cerebral and cerebral absolute hemoglobin during exercise may help to better interpret past and future continuous-wave NIRS studies that are prone to extra-cerebral contamination and allow a better understanding of acute cerebral changes due to physical exercise.

  18. Quantification of extra-cerebral and cerebral hemoglobin concentrations during physical exercise using time-domain near infrared spectroscopy

    PubMed Central

    Auger, Héloïse; Bherer, Louis; Boucher, Étienne; Hoge, Richard; Lesage, Frédéric; Dehaes, Mathieu

    2016-01-01

    Fitness is known to have beneficial effects on brain anatomy and function. However, the understanding of mechanisms underlying immediate and long-term neurophysiological changes due to exercise is currently incomplete due to the lack of tools to investigate brain function during physical activity. In this study, we used time-domain near infrared spectroscopy (TD-NIRS) to quantify and discriminate extra-cerebral and cerebral hemoglobin concentrations and oxygen saturation (SO2) in young adults at rest and during incremental intensity exercise. In extra-cerebral tissue, an increase in deoxy-hemoglobin (HbR) and a decrease in SO2 were observed while only cerebral HbR increased at high intensity exercise. Results in extra-cerebral tissue are consistent with thermoregulatory mechanisms to dissipate excess heat through skin blood flow, while cerebral changes are in agreement with cerebral blood flow (CBF) redistribution mechanisms to meet oxygen demand in activated regions during exercise. No significant difference was observed in oxy- (HbO2) and total hemoglobin (HbT). In addition HbO2, HbR and HbT increased with subject’s peak power output (equivalent to the maximum oxygen volume consumption; VO2 peak) supporting previous observations of increased total mass of red blood cells in trained individuals. Our results also revealed known gender differences with higher hemoglobin in men. Our approach in quantifying both extra-cerebral and cerebral absolute hemoglobin during exercise may help to better interpret past and future continuous-wave NIRS studies that are prone to extra-cerebral contamination and allow a better understanding of acute cerebral changes due to physical exercise. PMID:27867696

  19. All about Blood Glucose

    MedlinePlus

    Toolkit No. 15 All About Blood Glucose Keeping your blood glucose (sugar)in your target range can prevent or delay the health problems ... Diabetes Association, Inc. 1/15 Toolkit No.15: All About Blood Glucose continued team about when and ...

  20. Cerebral Asymmetries and Reading Acquisition

    ERIC Educational Resources Information Center

    Pirozzolo, Francis J.

    1978-01-01

    Reviewed are historical developments regarding the concepts of cerebral localization, and analyzed are implications of current research on the role of the cerebral hemispheres in reading disorders. (CL)

  1. Ambulatory glucose profile: Flash glucose monitoring.

    PubMed

    Kalra, Sanjay; Gupta, Yashdeep

    2015-12-01

    Ambulatory glucose profile (AGP) is a novel way of assessing glycaemic levels on a 24 hour basis, through a minimally invasive method, known as flash glucose monitoring. This review describes the unique features of AGP, differentiates it from existing methods of glucose monitoring, and explains how it helps pursue the glycaemic pentad. The review suggests pragmatic usage of this technology, including pre-test, intra-test, and post-test counselling, and lists specific clinical scenarios where the investigation seems to be of immense benefit.

  2. Cerebral Palsy Gait, Clinical Importance

    PubMed Central

    TUGUI, Raluca Dana; ANTONESCU, Dinu

    2013-01-01

    ABSTRACT Cerebral palsy refers to a lesion on an immature brain, that determines permanent neurological disorders. Knowing the exact cause of the disease does not alter the treatment management. The etiology is 2-2.5/1000 births and the rate is constant in the last 40-50 years because advances in medical technologies have permitted the survival of smaller and premature new born children. Gait analysis has four directions: kinematics (represents body movements analysis without calculating the forces), kinetics (represents body moments and forces), energy consumption (measured by oximetry), and neuromuscular activity (measured by EMG). Gait analysis can observe specific deviations in a patient, allowing us to be more accurate in motor diagnoses and treatment solutions: surgery intervention, botulinum toxin injection, use of orthosis, physical kinetic therapy, oral medications, baclofen pump. PMID:24790675

  3. Glucose screening tests during pregnancy

    MedlinePlus

    Oral glucose tolerance test - pregnancy; OGTT - pregnancy; Glucose challenge test - pregnancy; Gestational diabetes - glucose screening ... first step, you will have a glucose screening test: You DO NOT need to prepare or change ...

  4. Cerebral Palsy (CP) Quiz

    MedlinePlus

    ... Submit Button Past Emails CDC Features Pop Quiz: Cerebral Palsy Language: English Español (Spanish) Recommend on Facebook Tweet ... Sandy is the parent of a child with cerebral palsy and the Board President of Gio’s Garden , a ...

  5. Aspartame intake is associated with greater glucose intolerance in individuals with obesity.

    PubMed

    Kuk, Jennifer L; Brown, Ruth E

    2016-07-01

    This study examined whether sucrose, fructose, aspartame, and saccharin influences the association between obesity and glucose tolerance in 2856 adults from the NHANES III survey. Aspartame intake significantly influenced the association between body mass index (BMI) and glucose tolerance (interaction: P = 0.004), wherein only those reporting aspartame intake had a steeper positive association between BMI and glucose tolerance than those reporting no aspartame intake. Therefore, consumption of aspartame is associated with greater obesity-related impairments in glucose tolerance.

  6. Hyperosmolar sodium chloride is toxic to cultured neurons and causes reduction of glucose metabolism and ATP levels, an increase in glutamate uptake, and a reduction in cytosolic calcium.

    PubMed

    Morland, Cecilie; Pettersen, Mi Nguyen; Hassel, Bjørnar

    2016-05-01

    Elevation of serum sodium, hypernatremia, which may occur during dehydration or treatment with sodium chloride, may cause brain dysfunction and damage, but toxic mechanisms are poorly understood. We found that exposure to excess NaCl, 10-100mmol/L, for 20h caused cell death in cultured cerebellar granule cells (neurons). Toxicity was due to Na(+), since substituting excess Na(+) with choline reduced cell death to control levels, whereas gluconate instead of excess Cl(-) did not. Prior to cell death from hyperosmolar NaCl, glucose consumption and lactate formation were reduced, and intracellular aspartate levels were elevated, consistent with reduced glycolysis or glucose uptake. Concomitantly, the level of ATP became reduced. Pyruvate, 10mmol/L, reduced NaCl-induced cell death. The extracellular levels of glutamate, taurine, and GABA were concentration-dependently reduced by excess NaCl; high-affinity glutamate uptake increased. High extracellular [Na(+)] caused reduction in intracellular free [Ca(2+)], but a similar effect was seen with mannitol, which was not neurotoxic. We suggest that inhibition of glucose metabolism with ensuing loss of ATP is a neurotoxic mechanism of hyperosmolar sodium, whereas increased uptake of extracellular neuroactive amino acids and reduced intracellular [Ca(2+)] may, if they occur in vivo, contribute to the cerebral dysfunction and delirium described in hypernatremia.

  7. SUPPLY AND DEMAND IN CEREBRAL ENERGY METABOLISM: THE ROLE OF NUTRIENT TRANSPORTERS

    PubMed Central

    Simpson, Ian A.; Carruthers, Anthony; Vannucci, Susan J.

    2007-01-01

    Glucose is the obligate energetic fuel for the mammalian brain and most studies of cerebral energy metabolism assume that the vast majority of cerebral glucose utilization fuels neuronal activity via oxidative metabolism, both in the basal and activated state. Glucose transporter proteins (GLUTs) deliver glucose from the circulation to the brain: GLUT1 in the microvascular endothelial cells of the blood brain barrier (BBB) and glia; GLUT3 in neurons. Lactate, the glycolytic product of glucose metabolism, is transported into and out of neural cells by the monocarboxylate transporters: MCT1 in the BBB and astrocytes and MCT2 in neurons. The proposal of the astrocyte-neuron lactate shuttle hypothesis (Pellerin and Magistretti, 1994) suggested that astrocytes play the primary role in cerebral glucose utilization and generate lactate for neuronal energetics, especially during activation. Since the identification of the GLUTs and MCTs in brain, much has been learned about their transport properties, i.e. capacity and affinity for substrate, which must be considered in any model of cerebral glucose uptake and utilization. Using concentrations and kinetic parameters of GLUT1 and GLUT3 in BBB endothelial cells, astrocytes and neurons, along with the corresponding kinetic properties of the monocarboxylate transporters, we have successfully modeled brain glucose and lactate levels as well as lactate transients in response to neuronal stimulation. Simulations based on these parameters suggest that glucose readily diffuses through the basal lamina and interstitium to neurons, which are primarily responsible for glucose uptake, metabolism, and the generation of the lactate transients observed upon neuronal activation. PMID:17579656

  8. Changes in Glucose and Glutamine Lymphocyte Metabolisms Induced by Type I Interferon α

    PubMed Central

    Navarro, Francisco; Bacurau, Aline V. N.; Vanzelli, Andréa; Meneguello-Coutinho, Marcela; Uchida, Marco C.; Moraes, Milton R.; Almeida, Sandro S.; Wasinski, Frederick; Barros, Carlos C.; Würtele, Martin; Araújo, Ronaldo C.; Costa Rosa, Luís F. B.; Bacurau, Reury F. P.

    2010-01-01

    In lymphocytes (LY), the well-documented antiproliferative effects of IFN-α are associated with inhibition of protein synthesis, decreased amino acid incorporation, and cell cycle arrest. However, the effects of this cytokine on the metabolism of glucose and glutamine in these cells have not been well investigated. Thus, mesenteric and spleen LY of male Wistar rats were cultured in the presence or absence of IFN-α, and the changes on glucose and glutamine metabolisms were investigated. The reduced proliferation of mesenteric LY was accompanied by a reduction in glucose total consumption (35%), aerobic glucose metabolism (55%), maximal activity of glucose-6-phosphate dehydrogenase (49%), citrate synthase activity (34%), total glutamine consumption (30%), aerobic glutamine consumption (20.3%) and glutaminase activity (56%). In LY isolated from spleen, IFNα also reduced the proliferation and impaired metabolism. These data demonstrate that in LY, the antiproliferative effects of IFNα are associated with a reduction in glucose and glutamine metabolisms. PMID:21234393

  9. Exogenous amino acids suppress glucose oxidation and potentiate hepatic glucose production in late gestation fetal sheep.

    PubMed

    Brown, Laura D; Kohn, Jaden R; Rozance, Paul J; Hay, William W; Wesolowski, Stephanie R

    2017-02-08

    Acute amino acid (AA) infusion increases AA oxidation rates in normal late gestation fetal sheep. Because fetal oxygen consumption rate does not change with increased AA oxidation, we hypothesized that AA infusion would suppress glucose oxidation pathways and that the additional carbon supply from AA would activate hepatic glucose production. To test this, late gestation fetal sheep were infused intravenously for 3h with saline or exogenous AA (AA). Glucose tracer metabolic studies were performed and skeletal muscle and liver tissues samples were collected. AA infusion increased fetal arterial plasma branched chain AA, cortisol, and glucagon concentrations. Fetal glucose utilization rates were similar between basal and AA periods, yet the fraction of glucose oxidized and glucose oxidation rate were decreased by 40% in the AA period. AA infusion increased expression of PDK4, an inhibitor of glucose oxidation, nearly 2-fold in muscle and liver. In liver, AA infusion tended to increase PCK1 gluconeogenic gene and PCK1 correlated with plasma cortisol concentrations. AA infusion also increased liver mRNA expression of lactate transporter gene (MCT1), protein expression of GLUT2 and LDHA, and phosphorylation of AMPK, 4EBP1, and S6 proteins. In isolated fetal hepatocytes, AA supplementation increased glucose production and PCK1, LDHA, and MCT1 gene expression. These results demonstrate that AA infusion into fetal sheep competitively suppresses glucose oxidation and potentiates hepatic glucose production. These metabolic patterns support flexibility in fetal metabolism in response to increased nutrient substrate supply while maintaining a relatively stable rate of oxidative metabolism.

  10. GLUT2, glucose sensing and glucose homeostasis.

    PubMed

    Thorens, Bernard

    2015-02-01

    The glucose transporter isoform GLUT2 is expressed in liver, intestine, kidney and pancreatic islet beta cells, as well as in the central nervous system, in neurons, astrocytes and tanycytes. Physiological studies of genetically modified mice have revealed a role for GLUT2 in several regulatory mechanisms. In pancreatic beta cells, GLUT2 is required for glucose-stimulated insulin secretion. In hepatocytes, suppression of GLUT2 expression revealed the existence of an unsuspected glucose output pathway that may depend on a membrane traffic-dependent mechanism. GLUT2 expression is nevertheless required for the physiological control of glucose-sensitive genes, and its inactivation in the liver leads to impaired glucose-stimulated insulin secretion, revealing a liver-beta cell axis, which is likely to be dependent on bile acids controlling beta cell secretion capacity. In the nervous system, GLUT2-dependent glucose sensing controls feeding, thermoregulation and pancreatic islet cell mass and function, as well as sympathetic and parasympathetic activities. Electrophysiological and optogenetic techniques established that Glut2 (also known as Slc2a2)-expressing neurons of the nucleus tractus solitarius can be activated by hypoglycaemia to stimulate glucagon secretion. In humans, inactivating mutations in GLUT2 cause Fanconi-Bickel syndrome, which is characterised by hepatomegaly and kidney disease; defects in insulin secretion are rare in adult patients, but GLUT2 mutations cause transient neonatal diabetes. Genome-wide association studies have reported that GLUT2 variants increase the risks of fasting hyperglycaemia, transition to type 2 diabetes, hypercholesterolaemia and cardiovascular diseases. Individuals with a missense mutation in GLUT2 show preference for sugar-containing foods. We will discuss how studies in mice help interpret the role of GLUT2 in human physiology.

  11. The glucose oxidase-peroxidase assay for glucose

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The glucose oxidase-peroxidase assay for glucose has served as a very specific, sensitive, and repeatable assay for detection of glucose in biological samples. It has been used successfully for analysis of glucose in samples from blood and urine, to analysis of glucose released from starch or glycog...

  12. Cerebral autoregulation and flow/metabolism coupling during cardiopulmonary bypass: the influence of PaCO/sub 2/

    SciTech Connect

    Murkin, J.M.; Farrar, J.K.; Tweed, W.A.; McKenzie, F.N.; Guiraudon, G.

    1987-09-01

    Measurement of /sup 133/Xe clearance and effluent cerebral venous blood sampling were used in 38 patients to determine the effects of cardiopulmonary bypass, and of maintaining temperature corrected or noncorrected PaCO/sub 2/ at 40 mm Hg on regulation of cerebral blood flow (CBF) and flow/metabolism coupling. After induction of anesthesia with diazepam and fentanyl, mean CBF was 25 ml X 100 g-1 X min-1 and cerebral oxygen consumption, 1.67 ml X 100 g-1 X min-1. Cerebral oxygen consumption during nonpulsatile cardiopulmonary bypass at 26 degrees C was reduced to 0.42 ml X 100 g-1 X min-1 in both groups. CBF was reduced to 14-15 ml X 100 g-1 X min-1 in the non-temperature-corrected group (n = 21), was independent of cerebral perfusion pressure over the range of 20-100 mm Hg, but correlated with cerebral oxygen consumption. In the temperature-corrected group (n = 17), CBF varied from 22 to 32 ml X 100 g-1 X min-1, and flow/metabolism coupling was not maintained (i.e., CBF and cerebral oxygen consumption varied independently). However, variation in CBF correlated significantly with cerebral perfusion pressure over the pressure range of 15-95 mm Hg. This study demonstrates a profound reduction in cerebral oxygen consumption during hypothermic nonpulsatile cardiopulmonary bypass. When a non-temperature-corrected PaCO/sub 2/ of approximately 40 mm Hg was maintained, CBF was lower, and analysis of pooled data suggested that CBF regulation was better preserved, i.e., CBF was independent of pressure changes and dependent upon cerebral oxygen consumption.

  13. Cerebral Palsy (For Parents)

    MedlinePlus

    ... palsy — causes a problem with balance and depth perception Since cerebral palsy affects muscle control and coordination, ... fluid into the lungs) gastroesophageal reflux (spitting up) speech problems drooling tooth decay sleep disorders osteoporosis (weak, ...

  14. Cerebral Contusions and Lacerations

    MedlinePlus

    ... Sports-Related Concussion Diffuse Axonal Injury Intracranial Hematomas Skull Fracture Cerebral contusions are bruises of the brain, ... object or pushed-in bone fragment from a skull fracture. Motor vehicle crashes and blows to the ...

  15. Cerebral amyloid angiopathy

    MedlinePlus

    ... 911) if you have sudden loss of movement , sensation, vision, or speech. Alternative Names Amyloidosis - cerebral; CAA; Congophilic angiopathy Images Amyloidosis on the fingers Arteries of the brain References Kase CS, Shoamanesh A. Intracerebral hemorrhage. In: Daroff ...

  16. Glucose-specific signaling effects on delay discounting in intertemporal choice.

    PubMed

    Wang, X T Xiao-Tian; Huangfu, Gang

    2017-02-01

    We propose that decisions related to resource management (e.g., intertemporal choice between a smaller-and-sooner reward and a larger-and-later reward) are sensitive to and regulated by fluctuating blood glucose levels. Circulating glucose affects intertemporal choice by means of signaling body energy condition instead of serving as a replenishing resource for effortful cognitive processing. We intend to dissociate calorie-supplying functions from glucose-unique anticipatory effects on behavioral resource management, measured by delay discounting in making intertemporal choices. Regarding the anticipatory functions of the glucose-insulin system in regulating the degree of delay discounting, we tested three predictions: First, we predict that the signaling effects of circulating glucose on delay discounting do not need to be dose-dependent as long as glucose fluctuation indicates a directional trend in body energy budget. Second, such effects of glucose fluctuation on delay discounting are phagic (appetite related) instead of dipsian (thirst related). Third, this glucose-insulin signaling system requires glucose as the specific input, thus is insensitive to other forms of sugar that are not insulin regulated. In Study 1, fasting participants were randomly assigned to one of five groups: water consumption, zero-consumption, and three glucose consumption (18g, 36g, and 72g cane sugar/250ml water) groups. The participants competed two sets of intertemporal choice questions with varying delay discounting rates before and after a beverage intervention. The results showed that the rate of delay discounting was negatively correlated to blood glucose levels. The effects of circulating glucose on delay discounting closely followed the changes in blood glucose levels showing a plateau on both dose-response curves (i.e., the sugar dose-blood glucose level curve and the sugar does-delay discounting curve). Secondly, the effects of circulating glucose on delay discounting were

  17. Glucose utilization in the inferior cerebellar vermis and ocular myoclonus.

    PubMed

    Yakushiji, Y; Otsubo, R; Hayashi, T; Fukuchi, K; Yamada, N; Hasegawa, Y; Minematsu, K

    2006-07-11

    In a patient with symptomatic ocular myoclonus, the authors observed the regional cerebral metabolic rate of glucose use (rCMRGlu) before and after successful treatment with clonazepam. Even after the symptoms resolved, the rCMRGlu in the hypertrophic olive increased persistently, whereas that in the inferior cerebellar vermis contralateral to the hypertrophic olive decreased. The inferior cerebellar vermis, belonging to the vestibulocerebellar system, may be associated with the generation of symptomatic ocular myoclonus.

  18. Nanomedicine in cerebral palsy.

    PubMed

    Balakrishnan, Bindu; Nance, Elizabeth; Johnston, Michael V; Kannan, Rangaramanujam; Kannan, Sujatha

    2013-01-01

    Cerebral palsy is a chronic childhood disorder that can have diverse etiologies. Injury to the developing brain that occurs either in utero or soon after birth can result in the motor, sensory, and cognitive deficits seen in cerebral palsy. Although the etiologies for cerebral palsy are variable, neuroinflammation plays a key role in the pathophysiology of the brain injury irrespective of the etiology. Currently, there is no effective cure for cerebral palsy. Nanomedicine offers a new frontier in the development of therapies for prevention and treatment of brain injury resulting in cerebral palsy. Nanomaterials such as dendrimers provide opportunities for the targeted delivery of multiple drugs that can mitigate several pathways involved in injury and can be delivered specifically to the cells that are responsible for neuroinflammation and injury. These materials also offer the opportunity to deliver agents that would promote repair and regeneration in the brain, resulting not only in attenuation of injury, but also enabling normal growth. In this review, the current advances in nanotechnology for treatment of brain injury are discussed with specific relevance to cerebral palsy. Future directions that would facilitate clinical translation in neonates and children are also addressed.

  19. Glucose: detection and analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glucose is an aldosic monosaccharide that is centrally entrenched in the processes of photosynthesis and respiration, serving as an energy reserve and metabolic fuel in most organisms. As both a monomer and as part of more complex structures such as polysaccharides and glucosides, glucose also pla...

  20. In vivo metabolic response of glucose to dichloroacetate in humans.

    PubMed

    Brown, J A; Gore, D C

    1996-03-01

    Hyperglycemia is common in severely ill patients and is related principally to an increase in glucose production. Dichloroacetate (DCA), which is known to increase the rate of pyruvate oxidation, has been shown to lower plasma glucose concentrations in normal fasting subjects and in diabetics and thus may be efficacious in treating stress induced hyperglycemia. However, the mechanism by which DCA lowers the plasma glucose concentration in humans has not been elucidated. To examine the human in vivo metabolic alterations induced by DCA, six fasting volunteers were infused with 6,6-D2-glucose and indirect calorimetry was performed prior to and following DCA administration. Glucose, lactate, and alanine net balance across the leg were also quantitated. Following DCA administration, plasma glucose concentrations decreased by 9% due to a proportional decrease in the rate of glucose production (P < 0.05). DCA had no affect on glucose clearance or leg net balance; however, the rate of glucose oxidation increased by 24% from baseline (P < 0.05). This increase in glucose oxidation without a compensatory change in peripheral glucose consumption suggests an improved efficiency in peripheral glucose utilization induced by DCA. Plasma concentrations of lactate and alanine were also lowered by DCA (56% for lactate, 66% for alanine, P < 0.05) without a significant alteration in leg net balance. These results suggest that DCA may decrease gluconeogenesis by limiting the availability of the precursor substrates lactate and alanine. Thus dichloroacetate may be an appropriate alternative to insulin in correcting mild elevations in plasma glucose concentrations. Furthermore, DCA may be especially effective in severely ill patients where hyperglycemia is largely due to increases in gluconeogenesis.

  1. Effects of forskolin on cerebral blood flow: implications for a role of adenylate cyclase

    SciTech Connect

    Wysham, D.G.; Brotherton, A.F.; Heistad, D.D.

    1986-11-01

    We have studied cerebral vascular effects of forskolin, a drug which stimulates adenylate cyclase and potentiates dilator effects of adenosine in other vascular beds. Our goals were to determine whether forskolin is a cerebral vasodilator and whether it potentiates cerebral vasodilator responses to adenosine. We measured cerebral blood flow with microspheres in anesthetized rabbits. Forskolin (10 micrograms/kg per min) increased blood flow (ml/min per 100 gm) from 39 +/- 5 (mean +/- S.E.) to 56 +/- 9 (p less than 0.05) in cerebrum, and increased flow to myocardium and kidney despite a decrease in mean arterial pressure. Forskolin did not alter cerebral oxygen consumption, which indicates that the increase in cerebral blood flow is a direct vasodilator effect and is not secondary to increased metabolism. We also examined effects of forskolin on the response to infusion of adenosine. Cerebral blood flow was measured during infusion of 1-5 microM/min adenosine into one internal carotid artery, under control conditions and during infusion of forskolin at 3 micrograms/kg per min i.v. Adenosine alone increased ipsilateral cerebral blood flow from 32 +/- 3 to 45 +/- 5 (p less than 0.05). Responses to adenosine were not augmented during infusion of forskolin. We conclude that forskolin is a direct cerebral vasodilator and forskolin does not potentiate cerebral vasodilator responses to adenosine.

  2. Complementary acupuncture treatment increases cerebral metabolism in patients with Parkinson's disease.

    PubMed

    Huang, Yong; Jiang, Xuemei; Zhuo, Ying; Tang, Anwu; Wik, Gustav

    2009-01-01

    We used positron emission tomography (PET) and the 18-flourodeoxyglucose tracer to study cerebral effects of complementary acupuncture in Parkinson's disease. Five patients received scalp-acupuncture and Madopa, while the other five had Madopa only. PET scans before and after 5 weeks of complementary acupuncture treatment show increased glucose metabolisms in parietal, temporal, occipital lobes, the thalamus, and the cerebellum in the light-diseased hemisphere, and in parietal and occipital lobes of the severe-diseased hemisphere. No changes were observed in the Madopa-only group. Acupuncture in combination with Madopa may improve cerebral glucose metabolism in Parkinson's disease.

  3. Effects of tetrahydrocannabinol on glucose uptake in the rat brain.

    PubMed

    Miederer, I; Uebbing, K; Röhrich, J; Maus, S; Bausbacher, N; Krauter, K; Weyer-Elberich, V; Lutz, B; Schreckenberger, M; Urban, R

    2017-02-20

    Δ(9)-Tetrahydrocannabinol (THC) is the psychoactive component of the plant Cannabis sativa and acts as a partial agonist at cannabinoid type 1 and type 2 receptors in the brain. The goal of this study was to assess the effect of THC on the cerebral glucose uptake in the rat brain. 21 male Sprague Dawley rats (12-13 w) were examined and received five different doses of THC ranging from 0.01 to 1 mg/kg. For data acquisition a Focus 120 small animal PET scanner was used and 24.1-28.0 MBq of [(18)F]-fluoro-2-deoxy-d-glucose were injected. The data were acquired for 70 min and arterial blood samples were collected throughout the scan. THC, THC-OH and THC-COOH were determined at 55 min p.i. Nine volumes of interest were defined, and the cerebral glucose uptake was calculated for each brain region. Low blood THC levels of < 1 ng/ml (injected dose: ≤ 0.01 mg/kg) corresponded to an increased glucose uptake (6-30 %), particularly in the hypothalamus (p = 0.007), while blood THC levels > 10 ng/ml (injected dose: ≥ 0.05 mg/kg) coincided with a decreased glucose uptake (-2 to -22 %), especially in the cerebellar cortex (p = 0.008). The effective concentration in this region was estimated 2.4 ng/ml. This glucose PET study showed that stimulation of CB1 receptors by THC affects the glucose uptake in the rat brain, whereby the effect of THC is regionally different and dependent on dose - an effect that may be of relevance in behavioural studies.

  4. Metabolic Pattern of the Acute Phase of Subarachnoid Hemorrhage in a Novel Porcine Model: Studies with Cerebral Microdialysis with High Temporal Resolution

    PubMed Central

    Nyberg, Christoffer; Karlsson, Torbjörn; Hillered, Lars; Engström, Elisabeth Ronne

    2014-01-01

    Background Aneurysmal subarachnoid hemorrhage (SAH) may produce cerebral ischemia and systemic responses including stress. To study immediate cerebral and systemic changes in response to aneurysm rupture, animal models are needed. Objective To study early cerebral energy changes in an animal model. Methods Experimental SAH was induced in 11 pigs by autologous blood injection to the anterior skull base, with simultaneous control of intracranial and cerebral perfusion pressures. Intracerebral microdialysis was used to monitor concentrations of glucose, pyruvate and lactate. Results In nine of the pigs, a pattern of transient ischemia was produced, with a dramatic reduction of cerebral perfusion pressure soon after blood injection, associated with a quick glucose and pyruvate decrease. This was followed by a lactate increase and a delayed pyruvate increase, producing a marked but short elevation of the lactate/pyruvate ratio. Glucose, pyruvate, lactate and lactate/pyruvate ratio thereafter returned toward baseline. The two remaining pigs had a more severe metabolic reaction with glucose and pyruvate rapidly decreasing to undetectable levels while lactate increased and remained elevated, suggesting persisting ischemia. Conclusion The animal model simulates the conditions of SAH not only by deposition of blood in the basal cisterns, but also creating the transient global ischemic impact of aneurysmal SAH. The metabolic cerebral changes suggest immediate transient substrate failure followed by hypermetabolism of glucose upon reperfusion. The model has features that resemble spontaneous bleeding, and is suitable for future research of the early cerebral and systemic responses to SAH that are difficult to study in humans. PMID:24940881

  5. Changes in cerebral blood flow, cerebral metabolites, and breathing movements in the sheep fetus following asphyxia produced by occlusion of the umbilical cord.

    PubMed

    Yan, Edwin B; Baburamani, Ana A; Walker, Adrian M; Walker, David W

    2009-07-01

    Severe global fetal asphyxia, if caused by a brief occlusion of the umbilical cord, results in prolonged cerebral hypoperfusion in fetal sheep. In this study, we sought evidence to support the hypothesis that cerebral hypoperfusion is a consequence of suppressed cerebral metabolism. In the 24 h following complete occlusion of the umbilical cord for 10 min, sagittal sinus blood flow velocity was significantly decreased for up to 12 h. Capillary blood flow, measured using microspheres, decreased at 1 and 5 h after cord occlusion in many brain regions, including cortical gray and white matter. Microdialysis probes implanted in the cerebral cortex revealed an increase in extracellular glucose concentrations in gray matter for 7-8 h postasphyxia, while lactate increased only briefly, suggesting decreased cerebral glucose utilization over this time. Although these data, as well as the concurrent suppression of breathing movements and electrocortical activity, support the concept of hypometabolic hypoperfusion, the significant increase of pyruvate and glycerol concentrations in dialysate fluid obtained from the cerebral cortex at 3-8 h after cord occlusion suggests an eventual loss of membrane integrity. The prolonged increase of breathing movements for many hours suggests loss of the pontine/thalamic control that produces the distinct pattern of fetal breathing movements.

  6. Simultaneous Voltammetric Measurements of Glucose and Dopamine Demonstrate the Coupling of Glucose Availability with Increased Metabolic Demand in the Rat Striatum.

    PubMed

    Smith, Samantha K; Lee, Christie A; Dausch, Matthew E; Horman, Brian M; Patisaul, Heather B; McCarty, Gregory S; Sombers, Leslie A

    2017-02-15

    Cerebral blood flow ensures delivery of nutrients, such as glucose, to brain sites with increased metabolic demand. However, little is known about rapid glucose dynamics at discrete locations during neuronal activation in vivo. Acute exposure to many substances of abuse elicits dopamine release and neuronal activation in the striatum; however, the concomitant changes in striatal glucose remain largely unknown. Recent developments have combined fast-scan cyclic voltammetry with glucose oxidase enzyme modified carbon-fiber microelectrodes to enable the measurement of glucose dynamics with subsecond temporal resolution in the mammalian brain. This work evaluates several waveforms to enable the first simultaneous detection of endogenous glucose and dopamine at single recording sites. These molecules, one electroactive and one nonelectroactive, were found to fluctuate in the dorsal striatum in response to electrical stimulation of the midbrain and systemic infusion of cocaine/raclopride. The data reveal the second-by-second dynamics of these species in a striatal microenvironment, and directly demonstrate the coupling of glucose availability with increased metabolic demand. This work provides a foundation that will enable detailed investigation of local mechanisms that regulate the coupling of cerebral blood flow with metabolic demand under normal conditions, and in animal studies of drug abuse and addiction.

  7. Pyruvate dehydrogenase activity in the rat cerebral cortex following cerebral ischemia.

    PubMed

    Cardell, M; Koide, T; Wieloch, T

    1989-06-01

    The effect of cerebral ischemia on the activity of pyruvate dehydrogenase (PDH) enzyme complex (PDHC) was investigated in homogenates of frozen rat cerebral cortex following 15 min of bilateral common carotid occlusion ischemia and following 15 min, 60 min, and 6 h of recirculation after 15 min of ischemia. In frozen cortical tissue from the same animals, the levels of labile phosphate compounds, glucose, glycogen, lactate, and pyruvate was determined. In cortex from control animals, the rate of [1(-14)C]pyruvate decarboxylation was 9.6 +/- 0.5 nmol CO2/(min-mg protein) or 40% of the total PDHC activity. This fraction increased to 89% at the end of 15 min of ischemia. At 15 min of recirculation following 15 min of ischemia, the PDHC activity decreased to 50% of control levels and was depressed for up to 6 h post ischemia. This decrease in activity was not due to a decrease in total PDHC activity. Apart from a reduction in ATP levels, the acute changes in the levels of energy metabolites were essentially normalized at 6 h of recovery. Dichloroacetate (DCA), an inhibitor of PDH kinase, given to rats at 250 mg/kg i.p. four times over 2 h, significantly decreased blood glucose levels from 7.4 +/- 0.6 to 5.1 +/- 0.3 mmol/L and fully activated PDHC. In animals in which the plasma glucose level was maintained at control levels of 8.3 +/- 0.5 mumol/g by intravenous infusion of glucose, the active portion of PDHC increased to 95 +/- 4%. In contrast, the depressed PDHC activity at 15 min following ischemia was not affected by the DCA treatment.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Hypernatraemia in cerebral disorders

    PubMed Central

    Taylor, W. H.

    1962-01-01

    Six patients are described in whom cerebral damage was associated with raised plasma sodium and chloride concentrations and with extremely low urinary outputs of sodium and chloride. The patients were not clinically dehydrated and direct determinations showed that the blood and plasma volumes, the endogenous creatinine clearance, and the urinary output of antidiuretic hormone were normal. For these and other reasons it is concluded that the metabolic picture results not from diminished circulatory volume, water deficiency, sodium deficiency, undetected diabetes insipidus or osmotic diuresis, but from the cerebral damage itself. In these and other cited cases, the cerebral damage was localized chiefly in the frontal lobes, hypothalamus or lower brain-stem, thus suggesting a descending pathway, the relationship of which to the pineal area controlling aldosterone secretion requires clarification. Images PMID:13920001

  9. Duplicated middle cerebral artery.

    PubMed

    Perez, Jesus; Machado, Calixto; Scherle, Claudio; Hierro, Daniel

    2009-01-01

    Duplicated middle cerebral artery (DMCA) is an anomalous vessel arising from the internal carotid artery. The incidence DMCA is relatively law, and an association between this anomaly and cerebral aneurysms has been documented. There is a controversy whether DMCA may have perforating arteries. This is an important fact to consider in aneurysm surgery. We report the case of a 34-year-old black woman who suffered a subarachnoid hemorrhage and the angiography a left DMCA, and an aneurysm in an inferior branch of the main MCA. The DMCA and the MCA had perforating arteries. The aneurysm was clipped without complications. The observation of perforating arteries in our patient confirms that the DMCA may have perforating arteries. This is very important to be considered in cerebral aneurysms surgery. Moreover, the DMCA may potentially serve as a collateral blood supply to the MCA territory in cases of MCA occlusion.

  10. [Cerebral ischemia and histamine].

    PubMed

    Adachi, Naoto

    2002-10-01

    Cerebral ischemia induces excess release of glutamate and an increase in the intracellular Ca2+ concentration, which provoke catastrophic enzymatic processes leading to irreversible neuronal injury. Histamine plays the role of neurotransmitter in the central nervous system, and histaminergic fibers are widely distributed in the brain. In cerebral ischemia, release of histamine from nerve endings has been shown to be enhanced by facilitation of its activity. An inhibition of the histaminergic activity in ischemia aggravates the histologic outcome. In contrast, intracerebroventricular administration of histamine improves the aggravation, whereas blockade of histamine H2 receptors aggravates ischemic injury. Furthermore, H2 blockade enhances ischemic release of glutamate and dopamine. These findings suggest that central histamine provides beneficial effects against ischemic neuronal damage by suppressing release of excitatory neurotransmitters. However, histaminergic H2 action facilitates the permeability of the blood-brain barrier and shows deleterious effects on cerebral edema.

  11. Recombinant glucose uptake system

    DOEpatents

    Ingrahm, Lonnie O.; Snoep, Jacob L.; Arfman, Nico

    1997-01-01

    Recombinant organisms are disclosed that contain a pathway for glucose uptake other than the pathway normally utilized by the host cell. In particular, the host cell is one in which glucose transport into the cell normally is coupled to PEP production. This host cell is transformed so that it uses an alternative pathway for glucose transport that is not coupled to PEP production. In a preferred embodiment, the host cell is a bacterium other than Z. mobilis that has been transformed to contain the glf and glk genes of Z. mobilis. By uncoupling glucose transport into the cell from PEP utilization, more PEP is produced for synthesis of products of commercial importance from a given quantity of biomass supplied to the host cells.

  12. Continuous Glucose Monitoring

    MedlinePlus

    ... la salud en español Health Statistics Healthy Moments Radio Broadcast Clinical Trials For Health Care Professionals Community ... A transmitter sends information about glucose levels via radio waves from the sensor to a pagerlike wireless ...

  13. Vascular Glucose Sensor Symposium

    PubMed Central

    Joseph, Jeffrey I; Torjman, Marc C.; Strasma, Paul J.

    2015-01-01

    Hyperglycemia, hypoglycemia, and glycemic variability have been associated with increased morbidity, mortality, length of stay, and cost in a variety of critical care and non–critical care patient populations in the hospital. The results from prospective randomized clinical trials designed to determine the risks and benefits of intensive insulin therapy and tight glycemic control have been confusing; and at times conflicting. The limitations of point-of-care blood glucose (BG) monitoring in the hospital highlight the great clinical need for an automated real-time continuous glucose monitoring system (CGMS) that can accurately measure the concentration of glucose every few minutes. Automation and standardization of the glucose measurement process have the potential to significantly improve BG control, clinical outcome, safety and cost. PMID:26078254

  14. Glucose: Detection and analysis.

    PubMed

    Galant, A L; Kaufman, R C; Wilson, J D

    2015-12-01

    Glucose is an aldosic monosaccharide that is centrally entrenched in the processes of photosynthesis and respiration, serving as an energy reserve and metabolic fuel in most organisms. As both a monomer and as part of more complex structures such as polysaccharides and glucosides, glucose also plays a major role in modern food products, particularly where flavor and or structure are concerned. Over the years, many diverse methods for detecting and quantifying glucose have been developed; this review presents an overview of the most widely employed and historically significant, including copper iodometry, HPLC, GC, CZE, and enzyme based systems such as glucose meters. The relative strengths and limitations of each method are evaluated, and examples of their recent application in the realm of food chemistry are discussed.

  15. Glucose urine test

    MedlinePlus

    Urine sugar test; Urine glucose test; Glucosuria test; Glycosuria test ... After you provide a urine sample, it is tested right away. The health care provider uses a dipstick made with a color-sensitive pad. The ...

  16. Glucose metabolism and hyperglycemia.

    PubMed

    Giugliano, Dario; Ceriello, Antonio; Esposito, Katherine

    2008-01-01

    Islet dysfunction and peripheral insulin resistance are both present in type 2 diabetes and are both necessary for the development of hyperglycemia. In both type 1 and type 2 diabetes, large, prospective clinical studies have shown a strong relation between time-averaged mean values of glycemia, measured as glycated hemoglobin (HbA1c), and vascular diabetic complications. These studies are the basis for the American Diabetes Association's current recommended treatment goal that HbA1c should be <7%. The measurement of the HbA1c concentration is considered the gold standard for assessing long-term glycemia; however, it does not reveal any information on the extent or frequency of blood glucose excursions, but provides an overall mean value only. Postprandial hyperglycemia occurs frequently in patients with diabetes receiving active treatment and can occur even when metabolic control is apparently good. Interventional studies indicate that reducing postmeal glucose excursions is as important as controlling fasting plasma glucose in persons with diabetes and impaired glucose tolerance. Evidence exists for a causal relation between postmeal glucose increases and microvascular and macrovascular outcomes; therefore, it is not surprising that treatment with different compounds that have specific effects on postprandial glucose regulation is accompanied by a significant improvement of many pathways supposed to be involved in diabetic complications, including oxidative stress, endothelial dysfunction, inflammation, and nuclear factor-kappaB activation. The goal of therapy should be to achieve glycemic status as near to normal as safely possible in all 3 components of glycemic control: HbA1c, fasting glucose, and postmeal glucose peak.

  17. Cerebral venous sinus thrombosis with cerebral hemorrhage during early pregnancy

    PubMed Central

    Nie, Quanmin; Guo, Pin; Ge, Jianwei; Qiu, Yongming

    2015-01-01

    Cerebral venous sinus thrombosis (CVST) rarely induces cerebral hemorrhage, and CVST with cerebral hemorrhage during early pregnancy is extremely rare. Upon literature review, we are able to find only one case of CVST with cerebral hemorrhage in early pregnancy. In this paper, we report another case of a 27-year-old patient who developed CVST with cerebral hemorrhage in her fifth week of pregnancy. Although the optimal treatment for this infrequent condition remains controversial, we adopted anticoagulation as the first choice of treatment and obtained favorable results. PMID:25630781

  18. An acoustic glucose sensor.

    PubMed

    Hu, Ruifen; Stevenson, Adrian C; Lowe, Christopher R

    2012-05-15

    In vivo glucose monitoring is required for tighter glycaemic control. This report describes a new approach to construct a miniature implantable device based on a magnetic acoustic resonance sensor (MARS). A ≈ 600-800 nm thick glucose-responsive poly(acrylamide-co-3-acrylamidophenylboronic acid) (poly(acrylamide-co-3-APB)) film was polymerised on the quartz disc (12 mm in diameter and 0.25 mm thick) of the MARS. The swelling/shrinking of the polymer film induced by the glucose binding to the phenylboronate caused changes in the resonance amplitude of the quartz disc in the MARS. A linear relationship between the response of the MARS and the glucose concentration in the range ≈ 0-15 mM was observed, with the optimum response of the MARS sensor being obtained when the polymer films contained ≈ 20 mol% 3-APB. The MARS glucose sensor also functioned under flow conditions (9 μl/min) with a response almost identical to the sensor under static or non-flow conditions. The results suggest that the MARS could offer a promising strategy for developing a small subcutaneously implanted continuous glucose monitor.

  19. Hepatic and cerebral energy metabolism after neonatal canine alimentation.

    PubMed

    Kliegman, R M; Miettinen, E L; Morton, S K

    1983-04-01

    Intrahepatic and intracerebral metabolic responses to neonatal fasting or enteric carbohydrate alimentation were investigated among newborn dogs. Pups were either fasted or given an intravenous glucose infusion (alimented) before an enteric feeding of physiologic quantities of either glucose or galactose. These pups were also compared to another group which was completely starved throughout the study period. Gastrointestinal carbohydrate feeding resulted in enhanced hepatic glycogen content among pups after a prior state of fasting. Though there were no differences of glycogen content between glucose or galactose feeding in this previously fasted group, combined intravenous glucose and enteric galactose administration produced the greatest effect on hepatic glycogen synthesis. Intrahepatic fructose 1, 6-diphosphate and phosphoenolpyruvate levels were increased among previously fasted pups fed enteric monosaccharides compared to completely starved control pups, whereas intrahepatic phosphoenolpyruvate and pyruvate levels were elevated after combined intravenous and enteric carbohydrate administration. Of greater interest was the observation that hepatic levels of ATP were significantly elevated among all groups given exogenous carbohydrates compared to the completely starved control group. In contrast to the augmented hepatic glycogen and ATP levels, there were no alterations of cerebral glycogen or ATP after alimentation. Nevertheless, cerebral pyruvate and/or phosphoenolpyruvate concentrations were elevated after enteric or combined intravenous and enteric alimentation compared to the totally starved control pups.

  20. Influence of ketamine on regional brain glucose use

    SciTech Connect

    Davis, D.W.; Mans, A.M.; Biebuyck, J.F.; Hawkins, R.A.

    1988-08-01

    The purpose of this study was to determine the effect of different doses of ketamine on cerebral function at the level of individual brain structures as reflected by glucose use. Rats received either 5 or 30 mg/kg ketamine intravenously as a loading dose, followed by an infusion to maintain a steady-state level of the drug. An additional group received 30 mg/kg as a single injection only, and was studied 20 min later, by which time they were recovering consciousness (withdrawal group). Regional brain energy metabolism was evaluated with (6-/sup 14/C)glucose and quantitative autoradiography during a 5-min experimental period. A subhypnotic, steady-state dose (5 mg/kg) of ketamine caused a stimulation of glucose use in most brain areas, with an average increase of 20%. At the larger steady-state dose (30 mg/kg, which is sufficient to cause anesthesia), there was no significant effect on most brain regions; some sensory nuclei were depressed (inferior colliculus, -29%; cerebellar dentate nucleus, -18%; vestibular nucleus, -16%), but glucose use in the ventral posterior hippocampus was increased by 33%. In contrast, during withdrawal from a 30-mg/kg bolus, there was a stimulation of glucose use throughout the brain (21-78%), at a time when plasma ketamine levels were similar to the levels in the 5 mg/kg group. At each steady-state dose, as well as during withdrawal, ketamine caused a notable stimulation of glucose use by the hippocampus.

  1. HDL and glucose metabolism: current evidence and therapeutic potential.

    PubMed

    Siebel, Andrew L; Heywood, Sarah Elizabeth; Kingwell, Bronwyn A

    2015-01-01

    High-density lipoprotein (HDL) and its principal apolipoprotein A-I (ApoA-I) have now been convincingly shown to influence glucose metabolism through multiple mechanisms. The key clinically relevant observations are that both acute HDL elevation via short-term reconstituted HDL (rHDL) infusion and chronically raising HDL via a cholesteryl ester transfer protein (CETP) inhibitor reduce blood glucose in individuals with type 2 diabetes mellitus (T2DM). HDL may mediate effects on glucose metabolism through actions in multiple organs (e.g., pancreas, skeletal muscle, heart, adipose, liver, brain) by three distinct mechanisms: (i) Insulin secretion from pancreatic beta cells, (ii) Insulin-independent glucose uptake, (iii) Insulin sensitivity. The molecular mechanisms appear to involve both direct HDL signaling actions as well as effects secondary to lipid removal from cells. The implications of glucoregulatory mechanisms linked to HDL extend from glycemic control to potential anti-ischemic actions via increased tissue glucose uptake and utilization. Such effects not only have implications for the prevention and management of diabetes, but also for ischemic vascular diseases including angina pectoris, intermittent claudication, cerebral ischemia and even some forms of dementia. This review will discuss the growing evidence for a role of HDL in glucose metabolism and outline related potential for HDL therapies.

  2. HDL and glucose metabolism: current evidence and therapeutic potential

    PubMed Central

    Siebel, Andrew L.; Heywood, Sarah Elizabeth; Kingwell, Bronwyn A.

    2015-01-01

    High-density lipoprotein (HDL) and its principal apolipoprotein A-I (ApoA-I) have now been convincingly shown to influence glucose metabolism through multiple mechanisms. The key clinically relevant observations are that both acute HDL elevation via short-term reconstituted HDL (rHDL) infusion and chronically raising HDL via a cholesteryl ester transfer protein (CETP) inhibitor reduce blood glucose in individuals with type 2 diabetes mellitus (T2DM). HDL may mediate effects on glucose metabolism through actions in multiple organs (e.g., pancreas, skeletal muscle, heart, adipose, liver, brain) by three distinct mechanisms: (i) Insulin secretion from pancreatic beta cells, (ii) Insulin-independent glucose uptake, (iii) Insulin sensitivity. The molecular mechanisms appear to involve both direct HDL signaling actions as well as effects secondary to lipid removal from cells. The implications of glucoregulatory mechanisms linked to HDL extend from glycemic control to potential anti-ischemic actions via increased tissue glucose uptake and utilization. Such effects not only have implications for the prevention and management of diabetes, but also for ischemic vascular diseases including angina pectoris, intermittent claudication, cerebral ischemia and even some forms of dementia. This review will discuss the growing evidence for a role of HDL in glucose metabolism and outline related potential for HDL therapies. PMID:26582989

  3. Linking neuronal brain activity to the glucose metabolism

    PubMed Central

    2013-01-01

    Background Energy homeostasis ensures the functionality of the entire organism. The human brain as a missing link in the global regulation of the complex whole body energy metabolism is subject to recent investigation. The goal of this study is to gain insight into the influence of neuronal brain activity on cerebral and peripheral energy metabolism. In particular, the tight link between brain energy supply and metabolic responses of the organism is of interest. We aim to identifying regulatory elements of the human brain in the whole body energy homeostasis. Methods First, we introduce a general mathematical model describing the human whole body energy metabolism. It takes into account the two central roles of the brain in terms of energy metabolism. The brain is considered as energy consumer as well as regulatory instance. Secondly, we validate our mathematical model by experimental data. Cerebral high-energy phosphate content and peripheral glucose metabolism are measured in healthy men upon neuronal activation induced by transcranial direct current stimulation versus sham stimulation. By parameter estimation we identify model parameters that provide insight into underlying neurophysiological processes. Identified parameters reveal effects of neuronal activity on regulatory mechanisms of systemic glucose metabolism. Results Our examinations support the view that the brain increases its glucose supply upon neuronal activation. The results indicate that the brain supplies itself with energy according to its needs, and preeminence of cerebral energy supply is reflected. This mechanism ensures balanced cerebral energy homeostasis. Conclusions The hypothesis of the central role of the brain in whole body energy homeostasis as active controller is supported. PMID:23988084

  4. Neurometabolic coupling between neural activity, glucose, and lactate in activated visual cortex.

    PubMed

    Li, Baowang; Freeman, Ralph D

    2015-11-01

    Neural activity is closely coupled with energy metabolism but details of the association remain to be identified. One basic area involves the relationships between neural activity and the main supportive substrates of glucose and lactate. This is of fundamental significance for the interpretation of non-invasive neural imaging. Here, we use microelectrodes with high spatial and temporal resolution to determine simultaneous co-localized changes in glucose, lactate, and neural activity during visual activation of the cerebral cortex in the cat. Tissue glucose and lactate concentration levels are measured with electrochemical microelectrodes while neural spiking activity and local field potentials are sampled by a microelectrode. These measurements are performed simultaneously while neurons are activated by visual stimuli of different contrast levels, orientations, and sizes. We find immediate decreases in tissue glucose concentration and simultaneous increases in lactate during neural activation. Both glucose and lactate signals return to their baseline levels instantly as neurons cease firing. No sustained changes or initial dips in glucose or lactate signals are elicited by visual stimulation. However, co-localized measurements of cerebral blood flow and neural activity demonstrate a clear delay in the cerebral blood flow signal such that it does not correlate temporally with the neural response. These results provide direct real-time evidence regarding the coupling between co-localized energy metabolism and neural activity during physiological stimulation. They are also relevant to a current question regarding the role of lactate in energy metabolism in the brain during neural activation. Dynamic changes in energy metabolites can be measured directly with high spatial and temporal resolution by use of enzyme-based microelectrodes. Here, to examine neuro-metabolic coupling during brain activation, we use combined microelectrodes to simultaneously measure

  5. A role for glucose in hypothermic hamsters

    NASA Technical Reports Server (NTRS)

    Resch, G. E.; Musacchia, X. J.

    1976-01-01

    Hypothermic hamsters at a rectal temperature of 7 C showed a fivefold increase in survival times from 20 to 100.5 hr when infused with glucose which maintained a blood level at about 45 mg/100 ml. A potential role for osmotic effects of the infusion was tested and eliminated. There was no improvement in survival of 3-O-methylglucose or dextran 40-infused animals. The fact that death eventually occurs even in the glucose-infused animal after about 4 days and that oxygen consumption undergoes a slow decrement in that period suggests that hypothermic survival is not wholly substrate limited. Radioactive tracer showed that localization of the C-14 was greatest in brain tissue and diaphragm, intermediate in heart and kidney, and lowest in skeletal muscle and liver. The significance of the label at sites important to respiration and circulation was presented.

  6. Effects of dehydroepiandrosterone (DHEA) and lactate on glucose uptake in the central nervous system.

    PubMed

    de Souza, Danielle Kaiser; Ribeiro, Maria Flávia Marques; Kucharski, Luiz Carlos Rios

    2012-01-17

    Dehydroepiandrosterone (DHEA) prevents brain aging, enhances the cerebral metabolism and interacts with energy substrates. The interaction between lactate and DHEA on glucose uptake and lactate oxidation by various nervous structures was investigated and results demonstrate that the 2-(14)C-deoxiglucose (2-(14)C-Dglucose) uptake was stimulated by 10mM lactate in the hypothalamus and olfactory bulb, inhibited in the cerebral cortex and cerebellum, and unaffected in the hippocampus. We also show that, in both the cerebral cortex and hypothalamus, (14)C-lactate oxidation was higher than (14)C-glucose oxidation (p≤0.001), demonstrating a relevant role for lactate as energy substrate. The interaction of lactate and 10(-8)M DHEA was tested and, although DHEA had no significant effect on uptake in the cerebellum, hippocampus, or hypothalamus, 10(-8)M DHEA increased the 2-(14)C-Dglucose uptake in the cerebral cortex in the presence of lactate (p≤0.001), and in the olfactory bulb in the absence of lactate (p<0.05). However, DHEA had no significant effect on (14)C-lactate oxidation. We suggest that DHEA improves glucose uptake in specific conditions. Thus, DHEA may affect CNS metabolism and interact with lactate, which is the most important neuronal energy substrate, on glucose uptake.

  7. Cerebral Folate Deficiency

    ERIC Educational Resources Information Center

    Gordon, Neil

    2009-01-01

    Cerebral folate deficiency (CFD) is associated with low levels of 5-methyltetrahydrofolate in the cerebrospinal fluid (CSF) with normal folate levels in the plasma and red blood cells. The onset of symptoms caused by the deficiency of folates in the brain is at around 4 to 6 months of age. This is followed by delayed development, with deceleration…

  8. United Cerebral Palsy

    MedlinePlus

    ... be sure to follow us on Twitter ! Affiliate Network UCP affiliates provide services and support on a community-by-community basis, serving the unique needs of people with disabilities in their region. Find your ... and their networks. Individuals with cerebral palsy and other disabilities deserve ...

  9. Cerebral Palsy (For Teens)

    MedlinePlus

    ... brain is affected and which parts of the body that section of the brain controls. If CP affects both arms and both legs, ... the case of spastic CP) or to help control seizures. And some might have special surgeries to keep their arms or legs straighter and more ... Coping With Cerebral Palsy Puberty can ...

  10. Cerebral Palsy Litigation

    PubMed Central

    Sartwelle, Thomas P.

    2015-01-01

    The cardinal driver of cerebral palsy litigation is electronic fetal monitoring, which has continued unabated for 40 years. Electronic fetal monitoring, however, is based on 19th-century childbirth myths, a virtually nonexistent scientific foundation, and has a false positive rate exceeding 99%. It has not affected the incidence of cerebral palsy. Electronic fetal monitoring has, however, increased the cesarian section rate, with the expected increase in mortality and morbidity risks to mothers and babies alike. This article explains why electronic fetal monitoring remains endorsed as efficacious in the worlds’ labor rooms and courtrooms despite being such a feeble medical modality. It also reviews the reasons professional organizations have failed to condemn the use of electronic fetal monitoring in courtrooms. The failures of tort reform, special cerebral palsy courts, and damage limits to stem the escalating litigation are discussed. Finally, the authors propose using a currently available evidence rule—the Daubert doctrine that excludes “junk science” from the courtroom—as the beginning of the end to cerebral palsy litigation and electronic fetal monitoring’s 40-year masquerade as science. PMID:25183322

  11. Fractional uptake value as a good indicator for glucose metabolism

    SciTech Connect

    Nishizawa, S.; Yonekura, Y.; Mukai, T. |

    1995-05-01

    In a previous paper, we demonstrated that hyperglycemia enhanced brain tumor detection in FDG-PET studies. However, the autoradiographic method underestimated cerebral glucose metabolism (CMRglc) in hyperglycemia, while dynamic PET scans are often not feasible due to patient`s condition. For such situations, we propose the use of the fractional uptake value (FUV) which is given by Ci(t)/{integral}Ca(t)dt where Ci(t) and Ca(t) are radio-activities in brain and plasma. In this study, we tested FUV as an indicator of the net clearance coefficient of FDG (K*) over a side range of plasma glucose levels. Seven patients with brain tumor underwent FDG-PET studies in normoglycemia (mean: 5.2 mM) and hyperglycemia (mean: 14.6 mM) on separate days. Dynamic PET scan was performed for 40 min with arterial sampling after an i.v. injection of 160-370 MBq of FDG. Data analysis was carried out on cortices contralateral of the tumor. The rate constants (K1*,k2*,k3*, and k4*) and cerebral blood volume of a 3 compartment model were estimated by non-linear least squared optimization. K* was defined as K*=K1*,k3*/(k2*+k3*). FUV was calculated using 4-min scan data from 36 to 40 min of the dynamic scan. The FUV demonstrated a good relationship with K value over a wide range of plasma glucose level (K*=2.0 10{sup -3} +1.02 FUV r=0.99), and proved to be a good indicator for cerebral glucose metabolism.

  12. [Differential effects of isoflurane and nitrous oxide on cerebral blood flow, metabolism and electrocorticogram after incomplete cerebral ischemia in the rat].

    PubMed

    Ishikawa, T; Maekawa, T; Shinohara, K; Sakabe, T; Takeshita, H

    1989-07-01

    Differential effects of isoflurane (ISOF) and N2O on cerebral blood flow, metabolism and electrocorticogram (ECoG) were examined in rats subjected to 15 min-incomplete cerebral ischemia. In the first study, regional cerebral blood flow (rCBF) and ECoG were measured during and after ischemia. In the second study, local cerebral blood flow (LCBF) and glucose utilization (LCGU) were determined at 60 min after reperfusion. In the N2O group, rCBF in both the cerebral cortex and hippocampus decreased significantly to less than 10% of the pre-ischemic value during ischemia, and it increased to 170% at 10 min after reperfusion. The ECoG became flat during ischemia and reappeared at 21 min after reperfusion. In the ISOF group, rCBF decreased significantly to 25% during ischemia and returned to the preischemic value after reperfusion. The ECoG became flat during ischemia and reappeared at 14 min. In the N2O group, LCBFs decreased significantly to 40-50% of the pre-ischemic values in the forebrain. LCGUs decreased significantly to 30-50% in all structures of the forebrain. In the ISOF group, LCBFs decreased significantly to 60-80% in the forebrain, but were not different in other structures. LCGUs did not differ from pre-ischemic values in all structures except for in the thalamus and habenula. These results may indicate cerebral protective effects of ISOF on incomplete cerebral ischemia in rats.

  13. The impact of low and no-caloric sweeteners on glucose absorption, incretin secretion and glucose tolerance.

    PubMed

    Chan, Catherine B; Hashemi, Zohre; Subhan, Fatheema Begum

    2017-04-13

    The consumption of non-nutritive, low or no-calorie sweeteners (LCS) is increasing globally. Previously thought to be physiologically inert, there is a growing body of evidence that LCS not only provide a sweet taste but may also elicit metabolic effects in the gastrointestinal tract. This review provides a brief overview of the chemical and receptor-binding properties and effects on chemosensation of different LCS but focuses on the extent to which LCS stimulates glucose transport, incretin and insulin secretion, and effects on glucose tolerance. Aspartame and sucralose both bind to a similar region of the sweet receptor. For sucralose, the data are contradictory regarding effects on glucose tolerance in humans and may depend on the food or beverage matrix and the duration of administration, as suggested by longer-term rodent studies. For aspartame, there are fewer data. On the other hand, acesulfame-potassium (Ace-K) and saccharin have similar binding characteristics to each other but, while Ace-K may increase incretin secretion and glucose responses in humans, there are no data on saccharin except in rats, which show impaired glucose tolerance after chronic administration. Additional research, particularly of the effects of chronic consumption, is needed to provide concrete evidence for beneficial or detrimental effects of LCS on blood glucose regulation in humans.

  14. A glucose sensor protein for continuous glucose monitoring.

    PubMed

    Veetil, Jithesh V; Jin, Sha; Ye, Kaiming

    2010-12-15

    In vivo continuous glucose monitoring has posed a significant challenge to glucose sensor development due to the lack of reliable techniques that are non- or at least minimally-invasive. In this proof-of-concept study, we demonstrated the development of a new glucose sensor protein, AcGFP1-GBPcys-mCherry, and an optical sensor assembly, capable of generating quantifiable FRET (fluorescence resonance energy transfer) signals for glucose monitoring. Our experimental data showed that the engineered glucose sensor protein can generate measurable FRET signals in response to glucose concentrations varying from 25 to 800 μM. The sensor developed based on this protein had a shelf-life of up to 3 weeks. The sensor response was devoid of interference from compounds like galactose, fructose, lactose, mannose, and mannitol when tested at physiologically significant concentrations of these compounds. This new glucose sensor protein can potentially be used to develop implantable glucose sensors for continuous glucose monitoring.

  15. Artificial sweeteners induce glucose intolerance by altering the gut microbiota.

    PubMed

    Suez, Jotham; Korem, Tal; Zeevi, David; Zilberman-Schapira, Gili; Thaiss, Christoph A; Maza, Ori; Israeli, David; Zmora, Niv; Gilad, Shlomit; Weinberger, Adina; Kuperman, Yael; Harmelin, Alon; Kolodkin-Gal, Ilana; Shapiro, Hagit; Halpern, Zamir; Segal, Eran; Elinav, Eran

    2014-10-09

    Non-caloric artificial sweeteners (NAS) are among the most widely used food additives worldwide, regularly consumed by lean and obese individuals alike. NAS consumption is considered safe and beneficial owing to their low caloric content, yet supporting scientific data remain sparse and controversial. Here we demonstrate that consumption of commonly used NAS formulations drives the development of glucose intolerance through induction of compositional and functional alterations to the intestinal microbiota. These NAS-mediated deleterious metabolic effects are abrogated by antibiotic treatment, and are fully transferrable to germ-free mice upon faecal transplantation of microbiota configurations from NAS-consuming mice, or of microbiota anaerobically incubated in the presence of NAS. We identify NAS-altered microbial metabolic pathways that are linked to host susceptibility to metabolic disease, and demonstrate similar NAS-induced dysbiosis and glucose intolerance in healthy human subjects. Collectively, our results link NAS consumption, dysbiosis and metabolic abnormalities, thereby calling for a reassessment of massive NAS usage.

  16. Augmentation of Regional Cerebral Blood Flow by Microvascular Anastomosis

    DTIC Science & Technology

    1974-06-01

    flow and oxygen consumption in man. Physiol, Rev, 39:183-238, 1959, 9. Lassen, N, A, The luxury - perfusion syndrome and its possible relation to...phenomena of autoregulation and luxury perfusion . Neurology 18:613-621, 1968. 15. Ya§argil, M. G. Microsurgery Applied to Neurosurgery, pp. 105-119...autoregulation of flow was tested using Neo-Synephrine or oligemic hypotension to effect changes in cerebral perfusion pressure. Vasoreactivity to hypercapnia

  17. Continuous Glucose Monitoring

    PubMed Central

    Fritschi, Cynthia; Quinn, Laurie; Penckofer, Sue; Surdyk, Patricia M.

    2010-01-01

    Purpose The purpose of this descriptive study was to document the experience of wearing a continuous glucose monitoring (CGM) device in women with type 2 diabetes (T2DM). The availability of CGM has provided patients and clinicians with the opportunity to describe the immediate effects of diet, exercise, and medications on blood glucose levels; however, there are few data examining patients’ experiences and acceptability of using CGM. Methods Thirty-five women with T2DM wore a CGM for 3 days. Semistructured interviews were conducted to capture the self-described experience of wearing a CGM. Three open-ended questions were used to guide the participants’ self-reflection. Interviews were transcribed and analyzed. Results The women verbalized both positive and negative aspects of needing to check their blood glucose more frequently and wearing the monitor. After viewing the results, most women were surprised by the magnitude and frequency of blood glucose excursions. They immediately examined their behaviors during the time they wore the CGM. Independent problem-solving skills became apparent as they attempted to identify reasons for hyperglycemia by retracing food intake, physical activity, and stress experiences during the period of CGM. Most important, the majority of women stated they were interested in changing their diabetes-related self-care behaviors, especially eating and exercise behaviors, after reviewing their CGM results. Conclusions CGM is generally acceptable to women with T2DM and offers patients and their health care practitioners a possible alternative to routine glucose monitoring for assessing the effects of real-life events on blood glucose levels. PMID:20016057

  18. Sodium-glucose cotransport

    PubMed Central

    Poulsen, Søren Brandt; Fenton, Robert A.; Rieg, Timo

    2017-01-01

    Purpose of review Sodium-glucose cotransporters (SGLTs) are important mediators of glucose uptake across apical cell membranes. SGLT1 mediates almost all sodium-dependent glucose uptake in the small intestine, while in the kidney SGLT2, and to a lesser extent SGLT1, account for more than 90% and nearly 3%, respectively, of glucose reabsorption from the glomerular ultrafiltrate. Although the recent availability of SGLT2 inhibitors for the treatment of diabetes mellitus has increased the number of clinical studies, this review has a focus on mechanisms contributing to the cellular regulation of SGLTs. Recent findings Studies have focused on the regulation of SGLT expression under different physiological/pathophysiological conditions, for example diet, age or diabetes mellitus. Several studies provide evidence of SGLT regulation via cyclic adenosine monophosphate/protein kinase A, protein kinase C, glucagon-like peptide 2, insulin, leptin, signal transducer and activator of transcription-3 (STAT3), phosphoinositide-3 kinase (PI3K)/Akt, mitogen-activated protein kinases (MAPKs), nuclear factor-kappaB (NF-kappaB), with-no-K[Lys] kinases/STE20/SPS1-related proline/alanine-rich kinase (Wnk/SPAK) and regulatory solute carrier protein 1 (RS1) pathways. Summary SGLT inhibitors are important drugs for glycemic control in diabetes mellitus. Although the contribution of SGLT1 for absorption of glucose from the intestine as well as SGLT2/SGLT1 for renal glucose reabsorption has been comprehensively defined, this review provides an up-to-date outline for the mechanistic regulation of SGLT1/SGLT2. PMID:26125647

  19. Redundancy in Glucose Sensing

    PubMed Central

    Sharifi, Amin; Varsavsky, Andrea; Ulloa, Johanna; Horsburgh, Jodie C.; McAuley, Sybil A.; Krishnamurthy, Balasubramanian; Jenkins, Alicia J.; Colman, Peter G.; Ward, Glenn M.; MacIsaac, Richard J.; Shah, Rajiv; O’Neal, David N.

    2015-01-01

    Background: Current electrochemical glucose sensors use a single electrode. Multiple electrodes (redundancy) may enhance sensor performance. We evaluated an electrochemical redundant sensor (ERS) incorporating two working electrodes (WE1 and WE2) onto a single subcutaneous insertion platform with a processing algorithm providing a single real-time continuous glucose measure. Methods: Twenty-three adults with type 1 diabetes each wore two ERSs concurrently for 168 hours. Post-insertion a frequent sampling test (FST) was performed with ERS benchmarked against a glucose meter (Bayer Contour Link). Day 4 and 7 FSTs were performed with a standard meal and venous blood collected for reference glucose measurements (YSI and meter). Between visits, ERS was worn with capillary blood glucose testing ≥8 times/day. Sensor glucose data were processed prospectively. Results: Mean absolute relative deviation (MARD) for ERS day 1-7 (3,297 paired points with glucose meter) was (mean [SD]) 10.1 [11.5]% versus 11.4 [11.9]% for WE1 and 12.0 [11.9]% for WE2; P < .0001. ERS Clarke A and A+B were 90.2% and 99.8%, respectively. ERS day 4 plus day 7 MARD (1,237 pairs with YSI) was 9.4 [9.5]% versus 9.6 [9.7]% for WE1 and 9.9 [9.7]% for WE2; P = ns. ERS day 1-7 precision absolute relative deviation (PARD) was 9.9 [3.6]% versus 11.5 [6.2]% for WE1 and 10.1 [4.4]% for WE2; P = ns. ERS sensor display time was 97.8 [6.0]% versus 91.0 [22.3]% for WE1 and 94.1 [14.3]% for WE2; P < .05. Conclusions: Electrochemical redundancy enhances glucose sensor accuracy and display time compared with each individual sensing element alone. ERS performance compares favorably with ‘best-in-class’ of non-redundant sensors. PMID:26499476

  20. A Review on Microfluidic Paper-Based Analytical Devices for Glucose Detection

    PubMed Central

    Liu, Shuopeng; Su, Wenqiong; Ding, Xianting

    2016-01-01

    Glucose, as an essential substance directly involved in metabolic processes, is closely related to the occurrence of various diseases such as glucose metabolism disorders and islet cell carcinoma. Therefore, it is crucial to develop sensitive, accurate, rapid, and cost effective methods for frequent and convenient detections of glucose. Microfluidic Paper-based Analytical Devices (μPADs) not only satisfying the above requirements but also occupying the advantages of portability and minimal sample consumption, have exhibited great potential in the field of glucose detection. This article reviews and summarizes the most recent improvements in glucose detection in two aspects of colorimetric and electrochemical μPADs. The progressive techniques for fabricating channels on μPADs are also emphasized in this article. With the growth of diabetes and other glucose indication diseases in the underdeveloped and developing countries, low-cost and reliably commercial μPADs for glucose detection will be in unprecedentedly demand. PMID:27941634

  1. Effect of fish oil intake on glucose levels in rat prefrontal cortex, as measured by microdialysis

    PubMed Central

    2013-01-01

    Background Brain glucose sensing may contribute to energy homeostasis control. The prefrontal cortex (PFC) participates in the hedonic component of feeding control. As high-fat diets may disrupt energy homeostasis, we evaluated in male Wistar rats whether intake of high-fat fish-oil diet modified cortical glucose extracellular levels and the feeding induced by intracerebroventricular glucose or PFC glucoprivation. Methods Glucose levels in PFC microdialysates were measured before and after a 30-min meal. Food intake was measured in animals receiving intracerebroventricular glucose followed, 30-min. later, by 2-deoxy-D-glucose injected into the PFC. Results The fish-oil group showed normal body weight and serum insulin while fat pads weight and glucose levels were increased. Baseline PFC glucose and 30-min. carbohydrates intake were similar between the groups. Feeding-induced PFC glucose levels increased earlier and more pronouncedly in fish-oil than in control rats. Intracerebroventricular glucose inhibited feeding consistently in the control but not in the fish-oil group. Local PFC glucoprivation with 2-DG attenuated glucose-induced hypophagia. Conclusions The present experiments have shown that, following food intake, more glucose reached the prefrontal cortex of the rats fed the high-fat fish-oil diet than of the rats fed the control diet. However, when administered directly into the lateral cerebral ventricle, glucose was able to consistently inhibit feeding only in the control rats. The findings indicate that, an impairment of glucose transport into the brain does not contribute to the disturbances induced by the high-fat fish-oil feeding. PMID:24369745

  2. Effects of lindane on the glucose metabolism in rat brain cortex cells

    SciTech Connect

    Pulido, J.A.; del Hoyo, N.; Perez-Albarsanz, M.A. )

    1990-01-01

    The influence of 0.5 mM {gamma}-hexachlorocyclohexane ({gamma}-HCH, lindane) on glucose transport has been investigated using the analog 3-O-methyl-D(U-{sup 14}C) glucose. The glucose uptake was lineal for at least 10 sec. Preincubation of dissociated brain cortex cells with lindane decreased the transport of glucose with respect to the controls. The treatment of brain cortex cells with other organochlorine compounds indicated that the {alpha}-, {delta}-HCH isomers and dieldrin reproduced the same inhibitory pattern, while {beta}-HCH and endrin were inactive. The total radioactivity incorporated into CO{sub 2} from (U-{sup 14}C) glucose in the cerebral cortex is also inhibited by lindane in a time dependent manner.

  3. Influence of spinal cord injury on cerebral sensorimotor systems: a PET study.

    PubMed Central

    Roelcke, U; Curt, A; Otte, A; Missimer, J; Maguire, R P; Dietz, V; Leenders, K L

    1997-01-01

    OBJECTIVES: To assess the effect of a transverse spinal cord lesion on cerebral energy metabolism in view of sensorimotor reorganisation. METHODS: PET and 18F-fluorodeoxyglucose were used to study resting cerebral glucose metabolism in 11 patients with complete paraplegia or tetraplegia after spinal cord injury and 12 healthy subjects. Regions of interest analysis was performed to determine global glucose metabolism (CMRGlu). Statistical parametric mapping was applied to compare both groups on a pixel by pixel basis (significance level P = 0.001). RESULTS: Global absolute CMRGlu was lower in spinal cord injury (33.6 (6.6) mumol/100 ml/min (mean (SD)) than in controls (45.6 (6.2), Mann-Whitney P = 0.0026). Statistical parametric mapping analysis disclosed relatively increased glucose metabolism particularly in the supplementary motor area, anterior cingulate, and putamen. Relatively reduced glucose metabolism in patients with spinal cord injury was found in the midbrain, cerebellar hemispheres, and temporal cortex. CONCLUSIONS: It is assumed that cerebral deafferentiation due to reduction or loss of sensorimotor function results in the low level of absolute global CMRGlu found in patients with spinal cord injury. Relatively increased glucose metabolism in brain regions involved in attention and initiation of movement may be related to secondary disinhibition of these regions. PMID:9010401

  4. Biology of glucose transport in the mammary gland.

    PubMed

    Zhao, Feng-Qi

    2014-03-01

    Glucose is the major precursor of lactose, which is synthesized in Golgi vesicles of mammary secretory alveolar epithelial cells during lactation. Glucose is taken up by mammary epithelial cells through a passive, facilitative process, which is driven by the downward glucose concentration gradient across the plasma membrane. This process is mediated by facilitative glucose transporters (GLUTs), of which there are 14 known isoforms. Mammary glands mainly express GLUT1 and GLUT8, and GLUT1 is the predominant isoform with a Km of ~10 mM and transport activity for mannose and galactose in addition to glucose. Mammary glucose transport activity increases dramatically from the virgin state to the lactation state, with a concomitant increase in GLUT expression. The increased GLUT expression during lactogenesis is not stimulated by the accepted lactogenic hormones. New evidence indicates that a possible low oxygen tension resulting from increased metabolic rate and oxygen consumption may play a major role in stimulating glucose uptake and GLUT1 expression in mammary epithelial cells during lactogenesis. In addition to its primary presence on the plasma membrane, GLUT1 is also expressed on the Golgi membrane of mammary epithelial cells and is likely involved in facilitating the uptake of glucose and galactose to the site of lactose synthesis. Because lactose synthesis dictates milk volume, regulation of GLUT expression and trafficking represents potentially fruitful areas for further research in dairy production. In addition, this research will have pathological implications for the treatment of breast cancer because glucose uptake and GLUT expression are up-regulated in breast cancer cells to accommodate the increased glucose need.

  5. Managing Malignant Cerebral Infarction

    PubMed Central

    Sahuquillo, Juan; Sheth, Kevin N.; Kahle, Kristopher T.; Walcott, Brian P.

    2011-01-01

    Opinion statement Managing patients with malignant cerebral infarction remains one of the foremost challenges in medicine. These patients are at high risk for progressive neurologic deterioration and death due to malignant cerebral edema, and they are best cared for in the intensive care unit of a comprehensive stroke center. Careful initial assessment of neurologic function and of findings on MRI, coupled with frequent reassessment of clinical and radiologic findings using CT or MRI are mandatory to promote the prompt initiation of treatments that will ensure the best outcome in these patients. Significant deterioration in either neurologic function or radiologic findings or both demand timely treatment using the best medical management, which may include osmotherapy (mannitol or hypertonic saline), endotracheal intubation, and mechanical ventilation. Under appropriate circumstances, decompressive craniectomy may be warranted to improve outcome or to prevent death. PMID:21190097

  6. Glucose-6-phosphate dehydrogenase

    MedlinePlus

    ... Elsevier Saunders; 2012:chap 42. Read More Enzyme Glucose-6-phosphate dehydrogenase deficiency Hemoglobin Review Date 2/11/2016 Updated by: ... A.M. Editorial team. Related MedlinePlus Health Topics G6PD Deficiency Browse the Encyclopedia A.D.A.M., Inc. ...

  7. Glucose Tolerance and Hyperkinesis.

    ERIC Educational Resources Information Center

    Langseth, Lillian; Dowd, Judith

    Examined were medical records of 265 hyperkinetic children (7-9 years old). Clinical blood chemistries, hematology, and 5-hour glucose tolerance test (GTT) results indicated that hematocrit levels were low in 27% of the Ss, eosinophil levels were abnormally high in 86% of the Ss, and GTT results were abnormal in a maority of Ss. (CL)

  8. High Altitude Cerebral Edema

    DTIC Science & Technology

    1986-03-01

    English literature and Hultgren et al (3.1) described four more cases of HAPE within the next year. In 1960, Chiodi (5) first reported on a Peruvian...altitude and treatment with steroids and diuretics, CSF pressure was 85 mm H 0. In 1960, Chiodi .(5) described a patient 2 suffering with HACE who...Biol. Chem., 157, 297-302, 1945. 5. Chiodi H: "Mal de montana a forma cerebral; possible mecanismo etiopathogenico," An. Fac. Med. Lima., 43, 437

  9. Overview of Alcohol Consumption

    MedlinePlus

    ... Work Our Funding Our Staff Jobs & Training Our Location Contact Us You are here Home » Alcohol & Your Health » Overview of Alcohol Consumption In this Section Alcohol Facts & Statistics What Is A Standard Drink? Drinking Levels Defined Overview of Alcohol Consumption ...

  10. Primary cerebral malignant melanoma

    PubMed Central

    Tang, Kai; Kong, Xiangyi; Mao, Gengsheng; Qiu, Ming; Zhu, Haibo; Zhou, Lei; Nie, Qingbin; Xu, Yi; Du, Shiwei

    2017-01-01

    Abstract Primary intracranial melanomas are uncommon and constitute approximately 1% of all melanoma cases and 0.07% of all brain tumors. In nature, these primary melanomas are very aggressive and can spread to other organs. We report an uncommon case of primary cerebral malignant melanoma—a challenging diagnosis guided by clinical presentations, radiological features, and surgical biopsy results, aiming to emphasize the importance of considering primary melanoma when making differential diagnoses of intracranial lesions. We present a rare case of a primary cerebral melanoma in the left temporal lobe. The mass appeared iso-hypodense on brain computed tomography (CT), short signal on T1-weighted magnetic resonance images (T1WI) and long signal on T2WI. It was not easy to make an accurate diagnosis before surgery. We showed the patient's disease course and reviewed related literatures, for readers’ reference. Written informed consent was obtained from the patient for publication of this case report and any accompanying images. Because of this, there is no need to conduct special ethic review and the ethical approval is not necessary. After surgery, the pathological examination confirmed the diagnosis of melanoma. The patient was discharged without any complications and went on to receive adjuvant radiochemotherapy. It is difficult to diagnose primary cerebral melanoma in the absence of any cutaneous melanosis. A high index of clinical suspicion along with good pathology reporting is the key in diagnosing these extremely rare tumors. PMID:28121927

  11. Adrenergic and prostanoid mechanisms in control of cerebral blood flow in hypotensive newborn pigs

    SciTech Connect

    Armstead, W.M.; Leffler, C.W.; Busija, D.W.; Beasley, D.G.; Mirro, R. )

    1988-04-01

    The interaction between adrenergic and prostanoid mechanisms in the control of cerebral hemodynamics in the conscious, hypotensive newborn pig was investigated. Pretreatment with the selective {alpha}{sub 1}- and {alpha}{sub 2}-adrenoceptor antagonists prazosin and yohimbine, respectively, had no effect on cerebral blood flow, calculated cerebral vascular resistance, or cerebral metabolic rate either before or after hemmorrhagic hypotension. Indomethacin treatment (5 mg/kg ia) of piglets following hemorrhage caused a significant decrease in blood flow to all brain regions within 20 min. This decrease in cerebral blood flow resulted from increased cerebral vascular resistances of 54 and 177%, 20 and 40 min after treatment, respectively. Cerebral oxygen consumption was reduced from 2.42 {+-} 0.28 to 1.45 {+-} 0.28 ml{center dot}100 g{sup {minus}1} and to 1.0 {+-} 0.28 ml{center dot}100 g{sup {minus}1}{center dot}min{sup {minus}1} 20 and 40 min after indomethacin, respectively, in hemorrhaged piglets. Decreases in cerebral blood flow and metabolic rate and increases in vascular resistance on treatment with indomethacin were the same as in animals pretreated with vehicle, prazosin, or yohimbine. These data are consistent with the hypothesis that the prostanoid system contributes to the maintenance of cerebral blood flow and cerebral metabolic rate during hypotension in the newborn, as reported previously. These data do not implicate removal of sympathetic modulation by prostanoids as a mechanism for indomethacin-induced cerebral vasoconstriction in hypotensive newborn piglets.

  12. Dynamic modeling of methylprednisolone effects on body weight and glucose regulation in rats

    PubMed Central

    Fang, Jing; DuBois, Debra C.; He, Yang; Almon, Richard R.

    2012-01-01

    Influences of methylprednisolone (MPL) and food consumption on body weight (BW), and the effects of MPL on glycemic control including food consumption and the dynamic interactions among glucose, insulin, and free fatty acids (FFA) were evaluated in normal male Wistar rats. Six groups of animals received either saline or MPL via subcutaneous infusions at the rate of 0.03, 0.1, 0.2, 0.3 and 0.4 mg/kg/h for different treatment periods. BW and food consumption were measured twice a week. Plasma concentrations of MPL and corticosterone (CST) were determined at animal sacrifice. Plasma glucose, insulin, and FFA were measured at various times after infusion. Plasma MPL concentrations were simulated by a two-compartment model and used as the driving force in the pharmacodynamic (PD) analysis. All data were modeled using ADAPT 5. The MPL treatments caused reduction of food consumption and body weights in all dosing groups. The steroid also caused changes in plasma glucose, insulin, and FFA concentrations. Hyper-insulinemia was achieved rapidly at the first sampling time of 6 h; significant elevations of FFA were observed in all drug treatment groups; whereas only modest increases in plasma glucose were observed in the low dosing groups (0.03 and 0.1 mg/kg/h). Body weight changes were modeled by dual actions of MPL: inhibition of food consumption and stimulation of weight loss, with food consumption accounting for the input of energy for body weight. Dynamic models of glucose and insulin feedback interactions were extended to capture the major metabolic effects of FFA: stimulation of insulin secretion and inhibition of insulin-stimulated glucose utilization. These models of body weight and glucose regulation adequately captured the experimental data and reflect significant physiological interactions among glucose, insulin, and FFA. These mechanism-based PD models provide further insights into the multi-factor control of this essential metabolic system. PMID:21394487

  13. Molecular pathophysiology of cerebral edema

    PubMed Central

    Gerzanich, Volodymyr; Simard, J Marc

    2015-01-01

    Advancements in molecular biology have led to a greater understanding of the individual proteins responsible for generating cerebral edema. In large part, the study of cerebral edema is the study of maladaptive ion transport. Following acute CNS injury, cells of the neurovascular unit, particularly brain endothelial cells and astrocytes, undergo a program of pre- and post-transcriptional changes in the activity of ion channels and transporters. These changes can result in maladaptive ion transport and the generation of abnormal osmotic forces that, ultimately, manifest as cerebral edema. This review discusses past models and current knowledge regarding the molecular and cellular pathophysiology of cerebral edema. PMID:26661240

  14. Molecular pathophysiology of cerebral edema.

    PubMed

    Stokum, Jesse A; Gerzanich, Volodymyr; Simard, J Marc

    2016-03-01

    Advancements in molecular biology have led to a greater understanding of the individual proteins responsible for generating cerebral edema. In large part, the study of cerebral edema is the study of maladaptive ion transport. Following acute CNS injury, cells of the neurovascular unit, particularly brain endothelial cells and astrocytes, undergo a program of pre- and post-transcriptional changes in the activity of ion channels and transporters. These changes can result in maladaptive ion transport and the generation of abnormal osmotic forces that, ultimately, manifest as cerebral edema. This review discusses past models and current knowledge regarding the molecular and cellular pathophysiology of cerebral edema.

  15. Functional Recovery after Scutellarin Treatment in Transient Cerebral Ischemic Rats: A Pilot Study with 18F-Fluorodeoxyglucose MicroPET

    PubMed Central

    Li, Jin-hui; Lu, Jing; Zhang, Hong

    2013-01-01

    Objective. To investigate neuroprotective effects of scutellarin (Scu) in a rat model of cerebral ischemia with use of 18F-fluorodeoxyglucose (18F-FDG) micro positron emission tomography (microPET). Method. Middle cerebral artery occlusion was used to establish cerebral ischemia. Rats were divided into 5 groups: sham operation, cerebral ischemia-reperfusion untreated (CIRU) group, Scu-25 group (Scu 25 mg/kg/d), Scu-50 group (Scu 50 mg/kg/d), and nimodipine (10 mg/Kg/d). The treatment groups were given for 2 weeks. The therapeutic effects in terms of cerebral infarct volume, neurological deficit scores, and cerebral glucose metabolism were evaluated. Levels of vascular density factor (vWF), glial marker (GFAP), and mature neuronal marker (NeuN) were assessed by immunohistochemistry. Results. The neurological deficit scores were significantly decreased in the Scu-50 group compared to the CIRU group (P < 0.001). 18F-FDG accumulation in the ipsilateral cerebral infarction increased steadily over time in Scu-50 group compared with CIRU group (P < 0.01) and Scu-25 group (P < 0.01). Immunohistochemical analysis demonstrated Scu-50 enhanced neuronal maturation. Conclusion. 18F-FDG microPET imaging demonstrated metabolic recovery after Scu-50 treatment in the rat model of cerebral ischemia. The neuroprotective effects of Scu on cerebral ischemic injury might be associated with increased regional glucose activity and neuronal maturation. PMID:23737833

  16. Beneficial synergistic effects of concurrent treatment with theanine and caffeine against cerebral ischemia-reperfusion injury in rats.

    PubMed

    Sun, Lingyan; Tian, Xia; Gou, Lingshan; Ling, Xin; Wang, Ling; Feng, Yan; Yin, Xiaoxing; Liu, Yi

    2013-07-01

    Theanine and caffeine, 2 naturally occurring components in tea, have repeatedly been shown to deliver unique cognitive benefits when consumed in combination. In this study, we assessed the beneficial synergistic effects of concurrent treatment with theanine and caffeine against cerebral damage in rats. Theanine and caffeine had no effect on physiological variables, including pH, partial pressures of oxygen (PaO2) and carbon dioxide (PaCO2), mean arterial blood pressure, plasma glucose, or regional cerebral blood flow. Treatment with theanine (1 mg/kg body mass, intraperitoneal injection) alone significantly reduced cerebral infarction induced by cerebral ischemia-reperfusion, but caffeine (10 mg/kg, intravenous administration) alone only had a marginal effect. However, the combination of theanine plus caffeine resulted in a significant reduction of cerebral infarction and brain edema compared with theanine monotherapy. Meanwhile, increased malondialdehyde levels as well as decreased superoxide dismutase activity, glutathione peroxidase activity, and glutathione levels observed in the cerebral cortex after cerebral ischemia-reperfusion were significantly ameliorated by the combination therapy. Furthermore, the elevated inflammatory response levels observed in the cortex after cerebral ischemia-reperfusion were markedly attenuated by the combined treatment. Thus, it is suggested that the neuroprotective potential of a combination therapy with theanine and caffeine against cerebral ischemia-reperfusion is partly ascribed to their antioxidant and anti-inflammatory properties.

  17. Perfusion of a cerebral protective solution enhances neuroprotection in a rabbit model of occlusion-reperfusion: prolonged cerebral dormancy time.

    PubMed

    Ye, Libin; Hua, Aiyuan; Dai, Bo; Lu, Tingting; Zhang, Zhaolin; Ye, Meilin; Weintraub, Michael; Li, Qingdi Quentin

    2014-01-01

    In the present study, we investigated the effect of a cerebral protective solution on prolongation of cerebral dormancy time in a rabbit model of occlusion-reperfusion. In a control group, rabbits were anesthetized and the four cerebral arteries (the left and right common carotid arteries and vertebral arteries) were occluded for 7.5 min followed by reperfusion. All six rabbits in the control group died. In contrast, a second group underwent perfusion of a cerebral protective solution for 15 min between artery occlusion and reperfusion. All six rabbits in this group survived. However, when the perfusion solution was changed to 5% glucose solution or rabbit plasma in two other groups, the rabbits in both the latter two groups also died. Neuroprotection was also observed when the protective solution was administered for 30-60 min after the onset of artery occlusion and before the return of blood flow (reperfusion). To understand the high rate of thrombotic stroke in the clinic, we assessed the influence of different organ tissue infusions on blood coagulation in vitro and found that blood clotting occurred faster in the presence of brain tissue infusion compared to liver, kidney, and heart tissue infusions. These results indicate a higher rate of thrombosis in brain tissue compared to any of the other tissues tested. The current study shows that perfusion of a cerebral protective solution produced a significant neuroprotective benefit in our rabbit model of occlusion-reperfusion, suggesting that administration of a cerebral protective solution may be an effective approach for the treatment of ischemic stroke.

  18. Nitroxyl exacerbates ischemic cerebral injury and oxidative neurotoxicity.

    PubMed

    Choe, Chi-un; Lewerenz, Jan; Fischer, Gerry; Uliasz, Tracy F; Espey, Michael Graham; Hummel, Friedhelm C; King, Stephen Bruce; Schwedhelm, Edzard; Böger, Rainer H; Gerloff, Christian; Hewett, Sandra J; Magnus, Tim; Donzelli, Sonia

    2009-09-01

    Nitroxyl (HNO) donor compounds function as potent vasorelaxants, improve myocardial contractility and reduce ischemia-reperfusion injury in the cardiovascular system. With respect to the nervous system, HNO donors have been shown to attenuate NMDA receptor activity and neuronal injury, suggesting that its production may be protective against cerebral ischemic damage. Hence, we studied the effect of the classical HNO-donor, Angeli's salt (AS), on a cerebral ischemia/reperfusion injury in a mouse model of experimental stroke and on related in vitro paradigms of neurotoxicity. I.p. injection of AS (40 mumol/kg) in mice prior to middle cerebral artery occlusion exacerbated cortical infarct size and worsened the persistent neurological deficit. AS not only decreased systolic blood pressure, but also induced systemic oxidative stress in vivo indicated by increased isoprostane levels in urine and serum. In vitro, neuronal damage induced by oxygen-glucose-deprivation of mature neuronal cultures was exacerbated by AS, although there was no direct effect on glutamate excitotoxicity. Finally, AS exacerbated oxidative glutamate toxicity - that is, cell death propagated via oxidative stress in immature neurons devoid of ionotropic glutamate receptors. Taken together, our data indicate that HNO might worsen cerebral ischemia-reperfusion injury by increasing oxidative stress and decreasing brain perfusion at concentrations shown to be cardioprotective in vivo.

  19. Bat consumption in Thailand

    PubMed Central

    Suwannarong, Kanokwan; Schuler, Sidney

    2016-01-01

    Background Human consumption of bats poses an increasing public health threat globally. Communities in which bat guano is mined from caves have extensive exposure to bat excreta, often harvest bats for consumption, and are at risk for bat-borne diseases. Methods This rapid ethnographic study was conducted in four provinces of Thailand (Ratchaburi, Sakaeo, Nakorn Sawan, and Phitsanulok), where bat guano was mined and sold during the period April–August 2014. The aim of this study was to understand behaviors and risk perceptions associated with bat conservation, exposure to bats and their excreta, and bat consumption. Sixty-seven respondents playing various roles in bat guano mining, packaging, sale, and use as fertilizer participated in the study. Data were collected through interviews and/or focus group discussions. Results In spite of a bat conservation program dating back to the 1980s, the benefits of conserving bats and the risks associated with bat consumption were not clear and infrequently articulated by study respondents. Discussion Since bat consumption continues, albeit covertly, the risk of bat-borne diseases remains high. There is an opportunity to reduce the risk of bat-borne diseases in guano-mining communities by strengthening bat conservation efforts and raising awareness of the health risks of bat consumption. Further research is suggested to test behavior change strategies for reducing bat consumption. PMID:26806167

  20. Excess glucose induces hypoxia-inducible factor-1α in pancreatic cancer cells and stimulates glucose metabolism and cell migration

    PubMed Central

    Liu, Zhiwen; Jia, Xiaohui; Duan, Yijie; Xiao, Huijie; Sundqvist, Karl-Gösta; Permert, Johan; Wang, Feng

    2013-01-01

    Pancreatic cancer patients frequently show hyperglycemia, but it is uncertain whether hyperglycemia stimulates pancreatic cancer cells. We have investigated whether excess glucose induces hypoxia-inducible factor-1α (HIF-1α) and stimulates glucose metabolism and cell migration in pancreatic cancer cells. We studied wild-type (wt) MiaPaCa2 pancreatic cancer cells and a MiaPaCa2 subline (namely si-MiaPaCa2) that had HIF-1α-specific small interfering RNA. Wt-MiaPaCa2 cells are known to be HIF-1α-positive in hypoxia and HIF-1α-negative in normoxia, whereas si-MiaPaCa2 cells are devoid of HIF-1α in both normoxia and hypoxia. We incubated these cells with different amounts of glucose and determined HIF-1α mRNA and protein by real-time polymerase chain reaction and western blotting. We determined glucose consumption, lactate production and intracellular hexokinase-II and ATP to assess glucose metabolisms and determined pyruvate dehydrogenase kinase-1, reactive oxygen species and fumarate to assess mitochondrial activities. Further, we studied cell migration using a Boyden chamber. Excess glucose (16.7−22.2mM) increased HIF-1α in hypoxic wt-MiaPaCa2 cells. HIF-1α expression increased ATP contents and inhibited mitochondrial activities. Extracellular glucose and hypoxia stimulated glucose metabolisms independent of HIF-1α. Excess glucose stimulated the migration of wt- and si-MiaPaCa2 cells in both normoxia and hypoxia. Thus, glucose stimulated cell migration independent of HIF-1α. Nevertheless, hypoxic wt-MiaPaCa2 cells showed greater migrating ability than their si-MiaPaCa2 counterparts. We conclude that (1) excess glucose increases HIF-1α and ATP in hypoxic wt-MiaPaCa2 cells, (2) extracellular glucose and hypoxia regulate glucose metabolisms independent of HIF-1α and (3) glucose stimulates cell migration by mechanisms that are both dependent on HIF-1α and independent of it. PMID:23377827

  1. Effect of anxiety on cortical cerebral blood flow and metabolism

    SciTech Connect

    Gur, R.C.; Gur, R.E.; Resnick, S.M.; Skolnick, B.E.; Alavi, A.; Reivich, M.

    1987-04-01

    The relation between anxiety and cortical activity was compared in two samples of normal volunteers. One group was studied with the noninvasive xenon-133 inhalation technique for measuring cerebral blood flow (CBF) and the other with positron emission tomography (PET) using /sup 18/Flurodeoxyglucose (/sup 18/FDG) for measuring cerebral metabolic rates (CMR) for glucose. The inhalation technique produced less anxiety than the PET procedure, and for low anxiety subjects, there was a linear increase in CBF with anxiety. For higher anxiety subjects, however, there was a linear decrease in CBF with increased anxiety. The PET group manifested a linear decrease in CMR with increased anxiety. The results indicate that anxiety can have systematic effects on cortical activity, and this should be taken into consideration when comparing data from different procedures. They also suggest a physiologic explanation of a fundamental behavioral law that stipulates a curvilinear, inverted-U relationship between anxiety and performance.

  2. Energy-consumption modelling

    SciTech Connect

    Reiter, E.R.

    1980-01-01

    A highly sophisticated and accurate approach is described to compute on an hourly or daily basis the energy consumption for space heating by individual buildings, urban sectors, and whole cities. The need for models and specifically weather-sensitive models, composite models, and space-heating models are discussed. Development of the Colorado State University Model, based on heat-transfer equations and on a heuristic, adaptive, self-organizing computation learning approach, is described. Results of modeling energy consumption by the city of Minneapolis and Cheyenne are given. Some data on energy consumption in individual buildings are included.

  3. Glucose and Aging

    NASA Astrophysics Data System (ADS)

    Ely, John T. A.

    2008-04-01

    When a human's enzymes attach glucose to proteins they do so at specific sites on a specific molecule for a specific purpose that also can include ascorbic acid (AA) at a high level such as 1 gram per hour during exposure. In an AA synthesizing animal the manifold increase of AA produced in response to illness is automatic. In contrast, the human non-enzymatic process adds glucose haphazardly to any number of sites along available peptide chains. As Cerami clarified decades ago, extensive crosslinking of proteins contributes to loss of elasticity in aging tissues. Ascorbic acid reduces the random non-enyzmatic glycation of proteins. Moreover, AA is a cofactor for hydroxylase enzymes that are necessary for the production and replacement of collagen and other structural proteins. We will discuss the relevance of ``aging is scurvy'' to the biochemistry of human aging.

  4. Effects of berberine on glucose metabolism in vitro.

    PubMed

    Yin, Jun; Hu, Renming; Chen, Mingdao; Tang, Jinfeng; Li, Fengying; Yang, Ying; Chen, Jialun

    2002-11-01

    The action of berberine was compared with metformin and troglitazone (TZD) with regard to the glucose-lowering action in vitro. HepG2 cell line, phenotypically similar to human hepatocytes, was used for glucose consumption (GC) studies. Cell proliferation was measured by methylthiotetrazole (MTT) assay. In moderate high glucose concentration (11.1 mmol/L), GC of HepG2 cells was increased by 32% to 60% (P <.001 to P <.0001) with 5 x 10(-6) mol/L to 1 x 10(-4) mol/L berberine, which was comparable to that with 1 x 10(-3) mol/L metformin. The glucose-lowering effect of berberine decreased as the glucose concentration increased. The maximal potency was reached in the presence of 5.5 mmol/L glucose, and it was abolished when the glucose concentration increased to 22.2 mmol/L. The effect was not dependent on insulin concentration, which was similar to that of metformin and was different from that of TZD, whose glucose-lowering effect is insulin dependent. TZD had a better antihyperglycemic potency than metformin when insulin was added (P <.001). In the meantime, a significant toxicity of the drug to HepG2 cells was also observed. The betaTC3 cell line was used for insulin release testing, and no secretogogue effect of berberine was observed. These observations suggest that berberine is able to exert a glucose-lowering effect in hepatocytes, which is insulin independent and similar to that of metformin, but has no effect on insulin secretion.

  5. [Consumption pattern and recommended intakes of sugar].

    PubMed

    Quiles i Izquierdo, Joan

    2013-07-01

    Sugars are sweet-flavored carbohydrates that provide energy to the body. The adult brain uses about 140 g of glucose per day, amount which can represent up to 50 of the total number of carbohydrates consumed. In our country the sugar in food consumption pattern remains constant, while the consumption of soft drinks has increased in the past four years. The national survey of dietary intake of Spain (ENIDE, 2010-11) estimated that 20% of calories intake comes from carbohydrates called sugars. Sugar consumption has been associated with various pathologies (diabetes, obesity, tooth decay, cardiovascular disease) but these relationships are not consistent enough. Food information through nutritional labeling, including sugars present in food, pretend to protect the consumer health and to guarantee their right to information so they can make their own decisions with criterion. In view of different appraisals and existing studies, and above all, in the absence of a solid scientific evidence that concrete data on which make recommendations, the best nutritional advice for the general population could be a diet varied and balanced with food and nutrients from different sources, combining such a diet with exercise and physical activity. More specifically in terms of moderate consumption of sugar in the previous context of varied and balanced diet is perfectly compatible.

  6. Liver glucose metabolism in humans

    PubMed Central

    Adeva-Andany, María M.; Pérez-Felpete, Noemi; Fernández-Fernández, Carlos; Donapetry-García, Cristóbal; Pazos-García, Cristina

    2016-01-01

    Information about normal hepatic glucose metabolism may help to understand pathogenic mechanisms underlying obesity and diabetes mellitus. In addition, liver glucose metabolism is involved in glycosylation reactions and connected with fatty acid metabolism. The liver receives dietary carbohydrates directly from the intestine via the portal vein. Glucokinase phosphorylates glucose to glucose 6-phosphate inside the hepatocyte, ensuring that an adequate flow of glucose enters the cell to be metabolized. Glucose 6-phosphate may proceed to several metabolic pathways. During the post-prandial period, most glucose 6-phosphate is used to synthesize glycogen via the formation of glucose 1-phosphate and UDP–glucose. Minor amounts of UDP–glucose are used to form UDP–glucuronate and UDP–galactose, which are donors of monosaccharide units used in glycosylation. A second pathway of glucose 6-phosphate metabolism is the formation of fructose 6-phosphate, which may either start the hexosamine pathway to produce UDP-N-acetylglucosamine or follow the glycolytic pathway to generate pyruvate and then acetyl-CoA. Acetyl-CoA may enter the tricarboxylic acid (TCA) cycle to be oxidized or may be exported to the cytosol to synthesize fatty acids, when excess glucose is present within the hepatocyte. Finally, glucose 6-phosphate may produce NADPH and ribose 5-phosphate through the pentose phosphate pathway. Glucose metabolism supplies intermediates for glycosylation, a post-translational modification of proteins and lipids that modulates their activity. Congenital deficiency of phosphoglucomutase (PGM)-1 and PGM-3 is associated with impaired glycosylation. In addition to metabolize carbohydrates, the liver produces glucose to be used by other tissues, from glycogen breakdown or from de novo synthesis using primarily lactate and alanine (gluconeogenesis). PMID:27707936

  7. Middle Cerebral Artery Calcification

    PubMed Central

    Kao, Hung-Wen; Liou, Michelle; Chung, Hsiao-Wen; Liu, Hua-Shan; Tsai, Ping-Huei; Chiang, Shih-Wei; Chou, Ming-Chung; Peng, Giia-Sheun; Huang, Guo-Shu; Hsu, Hsian-He; Chen, Cheng-Yu

    2015-01-01

    Abstract Calcification of the middle cerebral artery (MCA) is uncommon in the healthy elderly. Whether calcification of the MCA is associated with cerebral ischemic stroke remains undetermined. We intended to investigate the association using Agatston calcium scoring of the MCA. This study retrospectively included 354 subjects with ischemic stroke in the MCA territory and 1518 control subjects who underwent computed tomography (CT) of the brain. We recorded major known risk factors for ischemic stroke, including age, gender, hypertension, diabetes mellitus, smoking, hyperlipidemia, and obesity, along with the MCA calcium burden, measured with the Agatston calcium scoring method. Univariate and modified logistic regression analyses were performed to examine the association between the MCA calcification and ischemic stroke. The univariate analyses showed significant associations of ischemic stroke with age, hypertension, diabetes mellitus, smoking, total MCA Agatston score, and the presence of calcification on both or either side of the MCA. Subjects with the presence of MCA calcification on both or either side of the MCA were 8.46 times (95% confidence interval, 4.93–14.53; P < 0.001) more likely to have a cerebral infarct than subjects without MCA calcification after adjustment for the major known risk factors, including age, hypertension, diabetes mellitus, and smoking. However, a higher degree of MCA calcification reflected by the Agatston score was not associated with higher risk of MCA ischemic stroke after adjustment for the confounding factors and presence of MCA calcification. These results suggest that MCA calcification is associated with ischemic stroke in the MCA territory. Further prospective studies are required to verify the clinical implications of the MCA calcification. PMID:26683969

  8. Acetylcholine esterase activity and behavioral response in hypoxia induced neonatal rats: effect of glucose, oxygen and epinephrine supplementation.

    PubMed

    Chathu, Finla; Krishnakumar, Amee; Paulose, Cheramadathikudyil S

    2008-10-01

    Brain damage due to an episode of hypoxia remains a major problem in infants causing deficit in motor and sensory function. Hypoxia leads to neuronal functional failure, cerebral palsy and neuro-developmental delay with characteristic biochemical and molecular alterations resulting in permanent or transitory neurological sequelae or even death. During neonatal hypoxia, traditional resuscitation practices include the routine administration of 100% oxygen, epinephrine and glucose. In the present study, we assessed the changes in the cholinergic system by measuring the acetylcholinesterase (AChE) activity and the behavioral responses shown by hypoxia induced neonatal rats and hypoxic rats supplemented with glucose, oxygen and epinephrine using elevated plus-maze and open-field test. The acetylcholine esterase enzyme activity showed a significant decrease in cerebral cortex, whereas it increased significantly in the muscle of experimental rats when compared to control. Hypoxic rats supplemented with glucose, glucose and oxygen showed a reversal to the control status. Behavioral studies were carried out in experimental rats with elevated plus-maze test and open-field test. Hypolocomotion and anxiogenic behavioral responses were observed in all experimental rats when compared to control, hypoxic rats supplemented with glucose, glucose and oxygen. Thus, our results suggest that brain damage due to hypoxia, oxygen and epinephrine supplementation in the neonatal rats cause acetylcholine-neuromuscular-defect leading to hypolocomotion and anxiogenic behavioral response. Glucose and glucose with oxygen supplementation to hypoxic neonates protect the brain damage for a better functional status in the later life.

  9. Rituals enhance consumption.

    PubMed

    Vohs, Kathleen D; Wang, Yajin; Gino, Francesca; Norton, Michael I

    2013-09-01

    Four experiments tested the novel hypothesis that ritualistic behavior potentiates and enhances ensuing consumption--an effect found for chocolates, lemonade, and even carrots. Experiment 1 showed that participants who engaged in ritualized behavior, compared with those who did not, evaluated chocolate as more flavorful, valuable, and deserving of behavioral savoring. Experiment 2 demonstrated that random gestures do not boost consumption as much as ritualistic gestures do. It further showed that a delay between a ritual and the opportunity to consume heightens enjoyment, which attests to the idea that ritual behavior stimulates goal-directed action (to consume). Experiment 3 found that performing a ritual oneself enhances consumption more than watching someone else perform the same ritual, suggesting that personal involvement is crucial for the benefits of rituals to emerge. Finally, Experiment 4 provided direct evidence of the underlying process: Rituals enhance the enjoyment of consumption because of the greater involvement in the experience that they prompt.

  10. Human Biomass Consumption

    NASA Video Gallery

    Humans are using an increasing amount of Earth’s annual production of plants. Research shows that, from 1995 to 2005, consumption rose from 20 to 25 percent of the planet's annual production. Wha...

  11. Resting cerebral blood flow

    PubMed Central

    Ances, B M.; Sisti, D; Vaida, F; Liang, C L.; Leontiev, O; Perthen, J E.; Buxton, R B.; Benson, D; Smith, D M.; Little, S J.; Richman, D D.; Moore, D J.; Ellis, R J.

    2009-01-01

    Objective: HIV enters the brain soon after infection causing neuronal damage and microglial/astrocyte dysfunction leading to neuropsychological impairment. We examined the impact of HIV on resting cerebral blood flow (rCBF) within the lenticular nuclei (LN) and visual cortex (VC). Methods: This cross-sectional study used arterial spin labeling MRI (ASL-MRI) to measure rCBF within 33 HIV+ and 26 HIV− subjects. Nonparametric Wilcoxon rank sum test assessed rCBF differences due to HIV serostatus. Classification and regression tree (CART) analysis determined optimal rCBF cutoffs for differentiating HIV serostatus. The effects of neuropsychological impairment and infection duration on rCBF were evaluated. Results: rCBF within the LN and VC were significantly reduced for HIV+ compared to HIV− subjects. A 2-tiered CART approach using either LN rCBF ≤50.09 mL/100 mL/min or LN rCBF >50.09 mL/100 mL/min but VC rCBF ≤37.05 mL/100 mL/min yielded an 88% (29/33) sensitivity and an 88% (23/26) specificity for differentiating by HIV serostatus. HIV+ subjects, including neuropsychologically unimpaired, had reduced rCBF within the LN (p = 0.02) and VC (p = 0.001) compared to HIV− controls. A temporal progression of brain involvement occurred with LN rCBF significantly reduced for both acute/early (<1 year of seroconversion) and chronic HIV-infected subjects, whereas rCBF in the VC was diminished for only chronic HIV-infected subjects. Conclusion: Resting cerebral blood flow (rCBF) using arterial spin labeling MRI has the potential to be a noninvasive neuroimaging biomarker for assessing HIV in the brain. rCBF reductions that occur soon after seroconversion possibly reflect neuronal or vascular injury among HIV+ individuals not yet expressing neuropsychological impairment. GLOSSARY AEH = acute/early HIV infection; ANOVA = analysis of variance; ASL-MRI = arterial spin labeling MRI; CART = classification and regression tree; CBF = cerebral blood flow; CH = chronic HIV

  12. Oligodendrogenesis after cerebral ischemia

    PubMed Central

    Zhang, Ruilan; Chopp, Michael; Zhang, Zheng Gang

    2013-01-01

    Neural stem cells in the subventricular zone (SVZ) of the lateral ventricle of adult rodent brain generate oligodendrocyte progenitor cells (OPCs) that disperse throughout the corpus callosum and striatum where some of OPCs differentiate into mature oligodendrocytes. Studies in animal models of stroke demonstrate that cerebral ischemia induces oligodendrogenesis during brain repair processes. This article will review evidence of stroke-induced proliferation and differentiation of OPCs that are either resident in white matter or are derived from SVZ neural progenitor cells and of therapies that amplify endogenous oligodendrogenesis in ischemic brain. PMID:24194700

  13. Cerebral Disorders of Calves.

    PubMed

    Dore, Vincent; Smith, Geof

    2017-03-01

    Neurologic diseases of the cerebrum are relatively common in cattle. In calves, the primary cerebral disorders are polioencephalomalacia, meningitis, and sodium toxicity. Because diagnostic testing is not always readily available, the practitioner must often decide on a course of treatment based on knowledge of the likely disease, as well as his or her own clinical experience. This is particularly true with neurologic diseases in which the prognosis is often poor and euthanasia may be the most humane outcome. This article reviews the most common diseases affecting the cerebrum of calves with a focus on pathophysiology, diagnosis, and treatment.

  14. Diabetic patients have abnormal cerebral autoregulation during cardiopulmonary bypass

    SciTech Connect

    Croughwell, N.; Lyth, M.; Quill, T.J.; Newman, M.; Greeley, W.J.; Smith, L.R.; Reves, J.G. )

    1990-11-01

    We tested the hypothesis that insulin-dependent diabetic patients with coronary artery bypass graft surgery experience altered coupling of cerebral blood flow and oxygen consumption. In a study of 23 patients (11 diabetics and 12 age-matched controls), cerebral blood flow was measured using 133Xe clearance during nonpulsatile, alpha-stat blood gas managed cardiopulmonary bypass at the conditions of hypothermia and normothermia. In diabetic patients, the cerebral blood flow at 26.6 +/- 2.42 degrees C was 25.3 +/- 14.34 ml/100 g/min and at 36.9 +/- 0.58 degrees C it was 27.3 +/- 7.40 ml/100 g/min (p = NS). The control patients increased cerebral blood flow from 20.7 +/- 6.78 ml/100 g/min at 28.4 +/- 2.81 degrees C to 37.6 +/- 8.81 ml/100 g/min at 36.5 +/- 0.45 degrees C (p less than or equal to 0.005). The oxygen consumption was calculated from jugular bulb effluent and increased from hypothermic values of 0.52 +/- 0.20 ml/100 g/min in diabetics to 1.26 +/- 0.28 ml/100 g/min (p = 0.001) at normothermia and rose from 0.60 +/- 0.27 to 1.49 +/- 0.35 ml/100 g/min (p = 0.0005) in the controls. Thus, despite temperature-mediated changes in oxygen consumption, diabetic patients did not increase cerebral blood flow as metabolism increased. Arteriovenous oxygen saturation gradients and oxygen extraction across the brain were calculated from arterial and jugular bulb blood samples. The increase in arteriovenous oxygen difference between temperature conditions in diabetic patients and controls was significantly different (p = 0.01). These data reveal that diabetic patients lose cerebral autoregulation during cardiopulmonary bypass and compensate for an imbalance in adequate oxygen delivery by increasing oxygen extraction.

  15. Cerebral cartography and connectomics

    PubMed Central

    Sporns, Olaf

    2015-01-01

    Cerebral cartography and connectomics pursue similar goals in attempting to create maps that can inform our understanding of the structural and functional organization of the cortex. Connectome maps explicitly aim at representing the brain as a complex network, a collection of nodes and their interconnecting edges. This article reflects on some of the challenges that currently arise in the intersection of cerebral cartography and connectomics. Principal challenges concern the temporal dynamics of functional brain connectivity, the definition of areal parcellations and their hierarchical organization into large-scale networks, the extension of whole-brain connectivity to cellular-scale networks, and the mapping of structure/function relations in empirical recordings and computational models. Successfully addressing these challenges will require extensions of methods and tools from network science to the mapping and analysis of human brain connectivity data. The emerging view that the brain is more than a collection of areas, but is fundamentally operating as a complex networked system, will continue to drive the creation of ever more detailed and multi-modal network maps as tools for on-going exploration and discovery in human connectomics. PMID:25823870

  16. Cerebral hyperperfusion syndrome.

    PubMed

    van Mook, Walther N K A; Rennenberg, Roger J M W; Schurink, Geert Willem; van Oostenbrugge, Robert Jan; Mess, Werner H; Hofman, Paul A M; de Leeuw, Peter W

    2005-12-01

    Cerebral hyperperfusion syndrome (CHS) after carotid endarterectomy is characterised by ipsilateral headache, hypertension, seizures, and focal neurological deficits. If not treated properly it can result in severe brain oedema, intracerebral or subarachnoid haemorrhage, and death. Knowledge of CHS among physicians is limited. Most studies report incidences of CHS of 0-3% after carotid endarterectomy. CHS is most common in patients with increases of more than 100% in perfusion compared with baseline after carotid endarterectomy and is rare in patients with increases in perfusion less than 100% compared with baseline. The most important risk factors in CHS are diminished cerebrovascular reserve, postoperative hypertension, and hyperperfusion lasting more than several hours after carotid endarterectomy. Impaired autoregulation as a result of endothelial dysfunction mediated by generation of free oxygen radicals is implicated in the pathogenesis of CHS. Treatment strategies are directed towards regulation of blood pressure and limitation of rises in cerebral perfusion. Complete recovery happens in mild cases, but disability and death can occur in more severe cases. More information about CHS and early institution of adequate treatment are of paramount importance in order to prevent these potentially severe complications.

  17. Cerebral cartography and connectomics.

    PubMed

    Sporns, Olaf

    2015-05-19

    Cerebral cartography and connectomics pursue similar goals in attempting to create maps that can inform our understanding of the structural and functional organization of the cortex. Connectome maps explicitly aim at representing the brain as a complex network, a collection of nodes and their interconnecting edges. This article reflects on some of the challenges that currently arise in the intersection of cerebral cartography and connectomics. Principal challenges concern the temporal dynamics of functional brain connectivity, the definition of areal parcellations and their hierarchical organization into large-scale networks, the extension of whole-brain connectivity to cellular-scale networks, and the mapping of structure/function relations in empirical recordings and computational models. Successfully addressing these challenges will require extensions of methods and tools from network science to the mapping and analysis of human brain connectivity data. The emerging view that the brain is more than a collection of areas, but is fundamentally operating as a complex networked system, will continue to drive the creation of ever more detailed and multi-modal network maps as tools for on-going exploration and discovery in human connectomics.

  18. Monitoring of cerebral autoregulation.

    PubMed

    Czosnyka, Marek; Miller, Chad

    2014-12-01

    Pressure autoregulation is an important hemodynamic mechanism that protects the brain against inappropriate fluctuations in cerebral blood flow in the face of changing cerebral perfusion pressure (CPP). Static autoregulation represents how far cerebrovascular resistance changes when CPP varies, and dynamic autoregulation represents how fast these changes happen. Both have been monitored in the setting of neurocritical care to aid prognostication and contribute to individualizing CPP targets in patients. Failure of autoregulation is associated with a worse outcome in various acute neurological diseases. Several studies have used transcranial Doppler ultrasound, intracranial pressure (ICP with vascular reactivity as surrogate measure of autoregulation), and near-infrared spectroscopy to continuously monitor the impact of spontaneous fluctuations in CPP on cerebrovascular physiology and to calculate derived variables of autoregulatory efficiency. Many patients who undergo such monitoring demonstrate a range of CPP in which autoregulatory efficiency is optimal. Management of patients at or near this optimal level of CPP is associated with better outcomes in traumatic brain injury. Many of these studies have utilized the concept of the pressure reactivity index, a correlation coefficient between ICP and mean arterial pressure. While further studies are needed, these data suggest that monitoring of autoregulation could aid prognostication and may help identify optimal CPP levels in individual patients.

  19. Cerebral sinus venous thrombosis

    PubMed Central

    Alvis-Miranda, Hernando Raphael; Milena Castellar-Leones, Sandra; Alcala-Cerra, Gabriel; Rafael Moscote-Salazar, Luis

    2013-01-01

    Cerebral sinus venous thrombosis (CSVT) is a rare phenomenon that can be seen with some frequency in young patients. CSVT is a multifactorial condition with gender-related specific causes, with a wide clinical presentation, the leading causes differ between developed and developing countries, converting CSVT in a condition characterized by a highly variable clinical spectra, difficult diagnosis, variable etiologies and prognosis that requires fine medical skills and a high suspicious index. Patients who presents with CSVT should underwent to CT-scan venography (CVT) and to the proper inquiry of the generating cause. This disease can affect the cerebral venous drainage and related anatomical structure. The symptoms may appear in relation to increased intracranial pressure imitating a pseudotumorcerebri. Prognosis depends on the early detection. Correcting the cause, generally the complications can be prevented. Mortality trends have diminished, and with the new technologies, surely it will continue. This work aims to review current knowledge about CSVT including its pathogenesis, etiology, clinical manifestations, diagnosis, and treatment. PMID:24347950

  20. [Noradrenaline and cerebral aging].

    PubMed

    Jouvet, M; Albarede, J L; Lubin, S; Meyrignac, C

    1991-01-01

    The central functions of norepinephrine (NE) are a recent discovery: regulation of alertness and of the wakefulness-sleep cycle, maintenance of attention, memory and learning, cerebral plasticity and neuro-protection. The anatomical, histological, biochemical and physiological properties of the central noradrenergic system: extreme capacity for ramification and arborization; slow conduction, non-myelinized axons with extrasynaptic varicosities producing and releasing NE; frequency of co-transmission phenomena, and; neuromodulation with fiber effect responsible for improvement in the signal over background noise ratio and selection of significant stimuli form a true interface between the outside world and the central nervous system, notably for the neocortex in the context of the cognitive treatment of information. This central noradrenergic system is involved in the neurophysiology and the clinical features of cerebral aging (ideation-motor and cognitive function slowing down, loss of behavioral adjustment), neuro-degenerative disorders (SDAT, Parkinson's disease), certain aspects of depression and less obvious conditions (head injuries, sequelae of cerebrovascular accidents, sub-cortical dementia). The recent development of medications improving alertness (adrafinil, modafinil) with a pure central action and specifically noradrenergic, may contribute to an improvement in these multifactorial disorders.

  1. Glycemic Effects of Rebaudioside A and Erythritol in People with Glucose Intolerance

    PubMed Central

    Shin, Dong Hee; Lee, Ji Hye; Kang, Myung Shin; Kim, Tae Hoon; Jeong, Su Jin; Kim, Sang Soo

    2016-01-01

    Background Rebaudioside A and erythritol are nonnutritive sweeteners. There have been several studies of their glycemic effects, but the outcomes remain controversial. The purpose of this study was to evaluate the glycemic effects of rebaudioside A and erythritol as a sweetener in people with glucose intolerance. Methods This trial evaluated the glycemic effect after 2 weeks of consumption of rebaudioside A and erythritol as sweeteners in a pre-diabetic population. The patients were evaluated for fructosamine, fasting plasma glucose, C-peptide, insulin, and 2-hour plasma glucose before and after consumption of sweetener. The primary outcome was a change in fructosamine levels from the baseline to the end of treatment. Secondary outcomes were the changes in levels of fasting plasma glucose and 2-hour plasma glucose. Results From the baseline to the end of experiment, the changes in fructosamine levels after consumption of rebaudioside A and erythritol, did not differ significantly (244.00±19.57 vs. 241.68±23.39 µmol/L, P=0.366). The change in levels from the baseline to end of the study for rebaudioside A and erythritol were fasting plasma glucose (102.56±10.72 vs. 101.32±9.20 mg/dL), 2-hour plasma glucose (154.92±54.53 vs. 141.92±42.22 mg/dL), insulin (7.56±4.29 vs. 7.20±5.12 IU/mL), and C-peptide (2.92±1.61 vs. 2.73±1.31 ng/mL), respectively, and also did not differ significantly (P>0.05 for all). Conclusion Our study suggests that consumption of rebaudioside A and erythritol does not alter the glucose homeostasis in people with glucose intolerance. PMID:27352150

  2. Local cerebral metabolic effects of L-dopa therapy in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in monkeys

    SciTech Connect

    Porrino, L.J.; Burns, R.S.; Crane, A.M.; Palombo, E.; Kopin, I.J.; Sokoloff, L.

    1987-08-01

    The quantitative 2-deoxy(/sup 14/C) glucose autoradiographic method was used to map the distribution of alterations in local cerebral glucose utilization that accompanies clinically effective chronic L-dopa therapy of rhesus monkeys made parkinsonian by the administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). This pattern of changes was compared to the effects of a similar treatment regimen in normal monkeys. L-Dopa was administered orally to normal and parkinsonian monkeys 3 times daily for 60-120 days prior to measurement of local cerebral glucose utilization. In parkinsonian monkeys treated with L-dopa, signs and symptoms of parkinsonism were controlled or suppressed, and widespread increases in glucose utilization were seen throughout the brain. Cerebral metabolic activity was increased both in areas rich in dopaminergic receptors, such as the caudate and putamen, and in nondopaminergic areas involved in motor functions. In many structures the rates of glucose utilization in L-dopa-treated parkinsonian monkeys were increased to levels that far exceeded rates measured in normal monkeys. In sharp contrast, similar treatment with L-dopa in normal monkeys had little if any effect on local cerebral glucose utilization. L-Dopa, then, appears to have an action in animals with selective lesions of the substantia nigra pars compacta produced by MPTP that is distinctly different from its effects in the normal monkey.

  3. [Fructose Consumption and the Metabolic Syndrome: Association or Causality?].

    PubMed

    Gerber, Philipp A

    2016-06-22

    Fructose consumption has increased significantly during the past decades – in particular by using added sugar in food and beverages, either sugars containing free fructose, but also sugars containing fructose in bound form (e. g. sucrose). The metabolism of fructose exhibits distinct differences compared to the metabolism of glucose. Association studies performed in the past years suggest an association of fructose consumption and adverse effects on metabolism. Intervention studies, conducted in part with healthy individuals, could prove such effects and deliver explanations of the mechanisms leading to these adverse effects. A reduction of consumption of added fructose should be recommended, but there is no evidence to support a restriction of fruit consumption (as a natural source of fructose).

  4. Posterior Cingulate Glucose Metabolism, Hippocampal Glucose Metabolism, and Hippocampal Volume in Cognitively Normal, Late-Middle-Aged Persons at 3 Levels of Genetic Risk for Alzheimer Disease

    PubMed Central

    Protas, Hillary D.; Chen, Kewei; Langbaum, Jessica B. S.; Fleisher, Adam S.; Alexander, Gene E.; Lee, Wendy; Bandy, Daniel; de Leon, Mony J.; Mosconi, Lisa; Buckley, Shannon; Truran-Sacrey, Diana; Schuff, Norbert; Weiner, Michael W.; Caselli, Richard J.; Reiman, Eric M.

    2013-01-01

    Objective To characterize and compare measurements of the posterior cingulate glucose metabolism, the hippocampal glucose metabolism, and hippocampal volume so as to distinguish cognitively normal, late-middle-aged persons with 2, 1, or 0 copies of the apolipoprotein E (APOE) ε4 allele, reflecting 3 levels of risk for late-onset Alzheimer disease. Design Cross-sectional comparison of measurements of cerebral glucose metabolism using 18F-fluorodeoxy-glucose positron emission tomography and measurements of brain volume using magnetic resonance imaging in cognitively normal ε4 homozygotes, ε4 heterozygotes, and noncarriers. Setting Academic medical center. Participants A total of 31 ε4 homozygotes, 42 ε4 heterozygotes, and 76 noncarriers, 49 to 67 years old, matched for sex, age, and educational level. Main Outcome Measures The measurements of posterior cingulate and hippocampal glucose metabolism were characterized using automated region-of-interest algorithms and normalized for whole-brain measurements. The hippocampal volume measurements were characterized using a semiautomated algorithm and normalized for total intracranial volume. Results Although there were no significant differences among the 3 groups of participants in their clinical ratings, neuropsychological test scores, hippocampal volumes (P=.60), or hippocampal glucose metabolism measurements (P = .12), there were significant group differences in their posterior cingulate glucose metabolism measurements (P=.001). The APOE ε4 gene dose was significantly associated with posterior cingulate glucose metabolism (r=0.29, P=.0003), and this association was significantly greater than those with hippocampal volume or hippocampal glucose metabolism (P<.05, determined by use of pairwise Fisher z tests). Conclusions Although our findings may depend in part on the analysis algorithms used, they suggest that a reduction in posterior cingulate glucose metabolism precedes a reduction in hippocampal volume or

  5. Multiplex growth rate phenotyping of synthetic mutants in selection to engineer glucose and xylose co-utilization in Escherichia coli.

    PubMed

    Groot, Joost; Cepress-Mclean, Sidney C; Robbins-Pianka, Adam; Knight, Rob; Gill, Ryan T

    2017-04-01

    Engineering the simultaneous consumption of glucose and xylose sugars is critical to enable the sustainable production of biofuels from lignocellulosic biomass. In most major industrial microorganisms glucose completely inhibits the uptake of xylose, limiting efficient sugar mixture conversion. In E. coli removal of the major glucose transporter PTS allows for glucose and xylose co-consumption but only after prolonged adaptation, which is an effective process but hard to control and prone to co-evolving undesired traits. Here we synthetically engineer mutants to target sugar co-consumption properties; we subject a PTS(-) mutant to a short adaptive step and subsequently either delete or overexpress key genes previously suggested to affect sugar consumption. Screening the co-consumption properties of these mutants individually is very laborious. We show we can evaluate sugar co-consumption properties in parallel by culturing the mutants in selection and applying a novel approach that computes mutant growth rates in selection using chromosomal barcode counts obtained from Next-Generation Sequencing. We validate this multiplex growth rate phenotyping approach with individual mutant pure cultures, identify new instances of mutants cross-feeding on metabolic byproducts, and, importantly, find that the rates of glucose and xylose co-consumption can be tuned by altering glucokinase expression in our PTS(-) background. Biotechnol. Bioeng. 2017;114: 885-893. © 2016 Wiley Periodicals, Inc.

  6. Assessment of regional glucose metabolism in aging brain and dementia with positron-emission tomography

    SciTech Connect

    Reivich, M.; Alavi, A.; Ferris, S.; Christman, D.; Fowler, J.; MacGregor, R.; Farkas, T.; Greenberg, J.; Dann, R.; Wolf, A.

    1981-01-01

    This paper explores the alterations in regional glucose metabolism that occur in elderly subjects and those with senile dementia compared to normal young volunteers. Results showed a tendency for the frontal regions to have a lower metabolic rate in patients with dementia although this did not reach the level of significance when compared to the elderly control subjects. The changes in glucose metabolism were symmetrical in both the left and right hemispheres. There was a lack of correlation between the mean cortical metabolic rates for glucose and the global mental function in the patients with senile dementia. This is at variance with most of the regional cerebral blood flow data that has been collected. This may be partly related to the use of substrates other than glucose by the brain in elderly and demented subjects. (PSB)

  7. Cerebral blood flow and metabolism during cardiopulmonary bypass with special reference to effects of hypotension induced by prostacyclin

    SciTech Connect

    Feddersen, K.; Aren, C.; Nilsson, N.J.; Radegran, K.

    1986-04-01

    Cerebral blood flow and metabolism of oxygen, glucose, and lactate were studied in 43 patients undergoing aortocoronary bypass. Twenty-five patients received prostacyclin infusion, 50 ng per kilogram of body weight per minute, during cardiopulmonary bypass (CPB), and 18 patients served as a control group. Regional cerebral blood flow (CBF) was studied by intraarterially injected xenon 133 and a single scintillation detector. Oxygen tension, carbon dioxide tension, oxygen saturation, glucose, and lactate were measured in arterial and cerebral venous blood. Mean arterial blood pressure decreased during hypothermia and prostacyclin infusion to less than 30 mm Hg. The regional CBF was, on average, 22 (standard deviation (SD) 4) ml/100 gm/min before CPB. It increased in the control group during hypothermia to 34 (SD 12) ml/100 gm/min, but decreased in the prostacyclin group to 15 (SD 5) ml/100 gm/min. It increased during rewarming in the prostacyclin group. After CPB, regional CBF was about 40 ml/100 gm/min in both groups. The cerebral arteriovenous oxygen pressure difference decreased more in the control group than in the prostacyclin group during hypothermia. The cerebral metabolic rate of oxygen decreased in both groups from approximately 2 ml/100 gm/min to about 1 ml/100 gm/min during hypothermia, increased again during rewarming, and after CPB was at the levels measured before bypass in both groups. There was no difference between the groups in regard to glucose and lactate metabolism.

  8. Nut consumption and age-related disease.

    PubMed

    Grosso, G; Estruch, R

    2016-02-01

    Current knowledge on the effects of nut consumption on human health has rapidly increased in recent years and it now appears that nuts may play a role in the prevention of chronic age-related diseases. Frequent nut consumption has been associated with better metabolic status, decreased body weight as well as lower body weight gain over time and thus reduce the risk of obesity. The effect of nuts on glucose metabolism, blood lipids, and blood pressure is still controversial. However, significant decreased cardiovascular risk has been reported in a number of observational and clinical intervention studies. Thus, findings from cohort studies show that increased nut consumption is associated with a reduced risk of cardiovascular disease and mortality (especially that due to cardiovascular-related causes). Similarly, nut consumption has been also associated with reduced risk of certain cancers, such as colorectal, endometrial, and pancreatic neoplasms. Evidence regarding nut consumption and neurological or psychiatric disorders is scarce, but a number of studies suggest significant protective effects against depression, mild cognitive disorders and Alzheimer's disease. The underlying mechanisms appear to include antioxidant and anti-inflammatory actions, particularly related to their mono- and polyunsaturated fatty acids (MUFA and PUFA, as well as vitamin and polyphenol content). MUFA have been demonstrated to improve pancreatic beta-cell function and regulation of postprandial glycemia and insulin sensitivity. PUFA may act on the central nervous system protecting neuronal and cell-signaling function and maintenance. The fiber and mineral content of nuts may also confer health benefits. Nuts therefore show promise as useful adjuvants to prevent, delay or ameliorate a number of chronic conditions in older people. Their association with decreased mortality suggests a potential in reducing disease burden, including cardiovascular disease, cancer, and cognitive impairments.

  9. Estimation of food consumption

    SciTech Connect

    Callaway, J.M. Jr.

    1992-04-01

    The research reported in this document was conducted as a part of the Hanford Environmental Dose Reconstruction (HEDR) Project. The objective of the HEDR Project is to estimate the radiation doses that people could have received from operations at the Hanford Site. Information required to estimate these doses includes estimates of the amounts of potentially contaminated foods that individuals in the region consumed during the study period. In that general framework, the objective of the Food Consumption Task was to develop a capability to provide information about the parameters of the distribution(s) of daily food consumption for representative groups in the population for selected years during the study period. This report describes the methods and data used to estimate food consumption and presents the results developed for Phase I of the HEDR Project.

  10. Reducing theatre energy consumption.

    PubMed

    Pierce, Tom; Morris, Gemma; Parker, Beena

    2014-03-01

    As little has been written to describe the electrical energy required to deliver anaesthesia, we undertook to measure the total electrical energy consumption for a day's clinical anaesthesia. Daily energy consumption related to anaesthesia was measured with commercially available 'plug-in' power and energy meters, and additional in-use energy estimates were based on direct observation made in theatre and from measuring the power consumption of anaesthetic gas scavenging system (AGSS) pumps. Total energy use for anaesthesia per day was 28 kWh, and cost the modest sum of around pound 2.24 per day. Disproportionately large amounts of energy were required to run the anaesthetic gas scavenging pumps and the overhead radiant heaters. Energy saving can be safely obtained by switching off AGSS out of hours, and placing radiant heaters on timing or thermostatic controls.

  11. Glucose repression in Saccharomyces cerevisiae

    PubMed Central

    Kayikci, Ömur; Nielsen, Jens

    2015-01-01

    Glucose is the primary source of energy for the budding yeast Saccharomyces cerevisiae. Although yeast cells can utilize a wide range of carbon sources, presence of glucose suppresses molecular activities involved in the use of alternate carbon sources as well as it represses respiration and gluconeogenesis. This dominant effect of glucose on yeast carbon metabolism is coordinated by several signaling and metabolic interactions that mainly regulate transcriptional activity but are also effective at post-transcriptional and post-translational levels. This review describes effects of glucose repression on yeast carbon metabolism with a focus on roles of the Snf3/Rgt2 glucose-sensing pathway and Snf1 signal transduction in establishment and relief of glucose repression. PMID:26205245

  12. Simultaneous utilization of glucose and gluconate in Penicillium chrysogenum during overflow metabolism.

    PubMed

    Schmitz, Katja; Peter, Vivien; Meinert, Sabine; Kornfeld, Georg; Hardiman, Timo; Wiechert, Wolfgang; Noack, Stephan

    2013-12-01

    The filamentous fungus Penicillium chrysogenum is one of the most important production organism for β-lactam antibiotics, especially penicillin. A specific feature of P. chrysogenum is the formation of gluconate as the primary overflow metabolite under non-limiting growth on glucose. Gluconate can be formed extracellularly by the enzyme glucose oxidase (GOD) that shows high activities under glucose excess conditions. Currently, it is assumed that under these conditions glucose is the preferred carbon substrate for P. chrysogenum and gluconate consumption first starts after glucose becomes limiting. Here, we specifically address this hypothesis by combining batch cultivation experiments on defined glucose media, time-dependent GOD activity measurements, and (13)C-tracer studies. Our data prove that both substrates are metabolized simultaneously independent from the actual glucose concentration and therefore suggest that no distinct mechanism of carbon catabolite repression exists for gluconate in P. chrysogenum. Moreover, gluconate consumption does not interfere with penicillin V production by repression of the penicillin genes. Finally, by following a model-driven approach the specific uptake rates for glucose and gluconate were quantified and found to be significantly higher for gluconate. In summary, our results show that P. chrysogenum metabolizes gluconate directly and at high rates making it an interesting alternative carbon source for production purposes.

  13. Carob pulp preparation rich in insoluble dietary fibre and polyphenols increases plasma glucose and serum insulin responses in combination with a glucose load in humans.

    PubMed

    Gruendel, Sindy; Otto, Baerbel; Garcia, Ada L; Wagner, Karen; Mueller, Corinna; Weickert, Martin O; Heldwein, Walter; Koebnick, Corinna

    2007-07-01

    Dietary fibre consumption is associated with improved glucose homeostasis. In contrast, dietary polyphenols have been suggested to exert both beneficial and detrimental effects on glucose and insulin metabolism. Recently, we reported that a polyphenol-rich insoluble dietary fibre preparation from carob pulp (carob fibre) resulted in lower postprandial acylated ghrelin levels after a liquid meal challenge test compared with a control meal without supplementation. The effects may, however, differ when a different food matrix is used. Thus, we investigated the effects of carob fibre on glucose, insulin and ghrelin responses in healthy humans in combination with a glucose load. In a randomized single-blind cross-over study involving twenty healthy subjects (aged 22-62 years), plasma glucose, total and acylated ghrelin, and serum insulin were repeatedly assessed before and after the ingestion of 200 ml water with 50 g glucose and 0, 5, 10 or 20 g carob fibre over a period of 180 min. The intake of 5 and 10 g carob fibre increased the plasma glucose by 47 % and 64 % (P < 0.001), and serum insulin by 19.9 and 24.8 % (P < 0.001), compared with the control. Plasma acylated ghrelin concentrations did not change significantly after the consumption of carob-enriched glucose solution. Total ghrelin decreased only after 10 g carob fibre (P < 0.001) compared with control. In conclusion, we showed that polyphenol-rich carob fibre, administered within a water-glucose solution, increases postprandial glucose and insulin responses, suggesting a deterioration in glycaemic control.

  14. Amtrak fuel consumption study

    SciTech Connect

    Hitz, J.

    1981-02-01

    This report documents a study of fuel consumption on National Railroad Passenger Corporation (Amtrak) trains and is part of an effort to determine effective ways of conserving fuel on the Amtrak system. The study was performed by the Transportation Systems Center (TSC). A series of 26 test runs were conducted on Amtrak trains operating between Boston, Massachusetts, and New Haven, Connecticut, to measure fuel consumption, trip time and other fuel-use-related parameters. The test data were analyzed and compared with results of the TSC Train Performance Simulator replicating the same operations.

  15. Optoelectronic Apparatus Measures Glucose Noninvasively

    NASA Technical Reports Server (NTRS)

    Ansari, Rafat R.; Rovati, Luigi L.

    2003-01-01

    An optoelectronic apparatus has been invented as a noninvasive means of measuring the concentration of glucose in the human body. The apparatus performs polarimetric and interferometric measurements of the human eye to acquire data from which the concentration of glucose in the aqueous humor can be computed. Because of the importance of the concentration of glucose in human health, there could be a large potential market for instruments based on this apparatus.

  16. GSM mobile phone radiation suppresses brain glucose metabolism

    PubMed Central

    Kwon, Myoung Soo; Vorobyev, Victor; Kännälä, Sami; Laine, Matti; Rinne, Juha O; Toivonen, Tommi; Johansson, Jarkko; Teräs, Mika; Lindholm, Harri; Alanko, Tommi; Hämäläinen, Heikki

    2011-01-01

    We investigated the effects of mobile phone radiation on cerebral glucose metabolism using high-resolution positron emission tomography (PET) with the 18F-deoxyglucose (FDG) tracer. A long half-life (109 minutes) of the 18F isotope allowed a long, natural exposure condition outside the PET scanner. Thirteen young right-handed male subjects were exposed to a pulse-modulated 902.4 MHz Global System for Mobile Communications signal for 33 minutes, while performing a simple visual vigilance task. Temperature was also measured in the head region (forehead, eyes, cheeks, ear canals) during exposure. 18F-deoxyglucose PET images acquired after the exposure showed that relative cerebral metabolic rate of glucose was significantly reduced in the temporoparietal junction and anterior temporal lobe of the right hemisphere ipsilateral to the exposure. Temperature rise was also observed on the exposed side of the head, but the magnitude was very small. The exposure did not affect task performance (reaction time, error rate). Our results show that short-term mobile phone exposure can locally suppress brain energy metabolism in humans. PMID:21915135

  17. Cerebral Arterial Fenestrations

    PubMed Central

    Cooke, Daniel L; Stout, Charles E; Kim, Warren T; Kansagra, Akash P; Yu, John Paul; Gu, Amy; Jewell, Nicholas P; Hetts, Steven W; Higashida, Randall T; Dowd, Christopher F; Halbach, Van V

    2014-01-01

    Summary Arterial fenestrations are an anatomic variant with indeterminate significance. Given the controversy surrounding fenestrations we sought their prevalence within our practice along with their association with other cerebrovascular anomalies. We retrospectively reviewed 10,927 patients undergoing digital subtraction angiography between 1992 and 2011. Dictated reports were searched for the terms “fenestration” or “fenestrated” with images reviewed for relevance, yielding 228 unique cases. A Medline database search from February 1964 to January 2013 generated 304 citations, 127 cases of which were selected for analysis. Cerebral arterial fenestrations were identified in 228 patients (2.1%). At least one aneurysm was noted in 60.5% of patients, with an aneurysm arising from the fenestration in 19.6% of patients. Aneurysmal subarachnoid hemorrhage or non-aneurysmal subarachnoid hemorrhage were present in 60.1% and 15.8%, respectively. For the subset of patients with an aneurysm arising directly from a fenestration relative to those patients with an aneurysm not immediately associated with a fenestration, the prevalence of aneurysmal subarachnoid hemorrhage was 66.7% vs. 58.6% (p = 0.58). Fenestrations were more often within the posterior circulation (73.2%) than the anterior circulation (24.6%), though there was no difference in the prevalence of aneurysms within these groups (61.1% vs. 60.7%, p = 1.0). Cerebral arterial fenestrations are an anatomic variant more often manifesting at the anterior communicating arterial complex and basilar artery and with no definite pathological relationship with aneurysms. PMID:24976087

  18. Neuroprotective effect of penehyclidine hydrochloride on focal cerebral ischemia-reperfusion injury★

    PubMed Central

    Yu, Cuicui; Wang, Junke

    2013-01-01

    Penehyclidine hydrochloride can promote microcirculation and reduce vascular permeability. However, the role of penehyclidine hydrochloride in cerebral ischemia-reperfusion injury remains unclear. In this study, in vivo middle cerebral artery occlusion models were established in experimental rats, and penehyclidine hydrochloride pretreatment was given via intravenous injection prior to model establishment. Tetrazolium chloride, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end labeling and immunohistochemical staining showed that, penehyclidine hydrochloride pretreatment markedly attenuated neuronal histopathological changes in the cortex, hippocampus and striatum, reduced infarction size, increased the expression level of Bcl-2, decreased the expression level of caspase-3, and inhibited neuronal apoptosis in rats with cerebral ischemia-reperfusion injury. Xanthine oxidase and thiobarbituric acid chromogenic results showed that penehyclidine hydrochloride upregulated the activity of superoxide dismutase and downregulated the concentration of malondialdehyde in the ischemic cerebral cortex and hippocampus, as well as reduced the concentration of extracellular excitatory amino acids in rats with cerebral ischemia-reperfusion injury. In addition, penehyclidine hydrochloride inhibited the expression level of the NR1 subunit in hippocampal nerve cells in vitro following oxygen-glucose deprivation, as detected by PCR. Experimental findings indicate that penehyclidine hydrochloride attenuates neuronal apoptosis and oxidative stress injury after focal cerebral ischemia-reperfusion, thus exerting a neuroprotective effect. PMID:25206707

  19. Increased glucose utilization and cell growth of Corynebacterium glutamicum by modifying the glucose-specific phosphotransferase system (PTS(Glc)) genes.

    PubMed

    Xu, Jianzhong; Zhang, Junlan; Liu, Dongdong; Zhang, Weiguo

    2016-12-01

    The phosphoenolpyruvate:glucose phosphotransferase system (PTS(Glc)) is the major pathway of glucose uptake in Corynebacterium glutamicum. This study investigated glucose consumption rate, cell growth, and metabolite changes resulting from modification of PTS(Glc). The classical l-lysine producer C. glutamicum XQ-8 exhibited low glucose consumption, cell growth, and l-lysine production rates, whereas these parameters were significantly increased during cultivating on glucose plus maltose, through inactivation of SugR, or by overexpression of PTS(Glc) genes. XQ-8sugR::cat/pDXW-8-ptsI exhibited the highest increase in glucose consumption, growth rate, and l-lysine production, followed by XQ-8sugR::cat/pDXW-8-ptsG. However, overexpression of ptsH had little effect on the above-mentioned factors. Although co-overexpression of ptsGHI led to the highest glucose consumption, growth rate, and final l-lysine production; the l-lysine production rate was lower than that of XQ-8sugR::cat/pDXW-8-ptsIH. In fed-batch fermentation, XQ-8sugR::cat/pDXW-8-ptsIH had a higher growth rate of 0.54 h(-1) to a dry cell mass of 66 g·L(-1) after 16 h, and had a higher l-lysine production rate of 159.2 g·L(-1) after 36 h. These results indicate that modification of the sugar transport systems improves amino acid production, especially for mutants obtained by repeated physical and (or) chemical mutagenesis. However, modification of these systems needs to be performed on a case-by-case basis.

  20. Glucose Transporters at the Blood-Brain Barrier: Function, Regulation and Gateways for Drug Delivery.

    PubMed

    Patching, Simon G

    2017-03-01

    Glucose transporters (GLUTs) at the blood-brain barrier maintain the continuous high glucose and energy demands of the brain. They also act as therapeutic targets and provide routes of entry for drug delivery to the brain and central nervous system for treatment of neurological and neurovascular conditions and brain tumours. This article first describes the distribution, function and regulation of glucose transporters at the blood-brain barrier, the major ones being the sodium-independent facilitative transporters GLUT1 and GLUT3. Other GLUTs and sodium-dependent transporters (SGLTs) have also been identified at lower levels and under various physiological conditions. It then considers the effects on glucose transporter expression and distribution of hypoglycemia and hyperglycemia associated with diabetes and oxygen/glucose deprivation associated with cerebral ischemia. A reduction in glucose transporters at the blood-brain barrier that occurs before the onset of the main pathophysiological changes and symptoms of Alzheimer's disease is a potential causative effect in the vascular hypothesis of the disease. Mutations in glucose transporters, notably those identified in GLUT1 deficiency syndrome, and some recreational drug compounds also alter the expression and/or activity of glucose transporters at the blood-brain barrier. Approaches for drug delivery across the blood-brain barrier include the pro-drug strategy whereby drug molecules are conjugated to glucose transporter substrates or encapsulated in nano-enabled delivery systems (e.g. liposomes, micelles, nanoparticles) that are functionalised to target glucose transporters. Finally, the continuous development of blood-brain barrier in vitro models is important for studying glucose transporter function, effects of disease conditions and interactions with drugs and xenobiotics.

  1. Thalamic, brainstem, and cerebellar glucose metabolism in the hemiplegic monkey

    SciTech Connect

    Shimoyama, I.; Dauth, G.W.; Gilman, S.; Frey, K.A.; Penney, J.B. Jr.

    1988-12-01

    Unilateral ablation of cerebral cortical areas 4 and 6 of Brodmann in the macaque monkey results in a contralateral hemiplegia that resolves partially with time. During the phase of dense hemiplegia, local cerebral metabolic rate for glucose (1CMRG1c) is decreased significantly in most of the thalamic nuclei ipsilateral to the ablation, and there are slight contralateral decreases. The lCMRGlc is reduced bilaterally in most of the brainstem nuclei and bilaterally in the deep cerebellar nuclei, but only in the contralateral cerebellar cortex. During the phase of partial motor recovery, lCMRGlc is incompletely restored in many of the thalamic nuclei ipsilateral to the ablation and completely restored in the contralateral nuclei. In the brainstem and deep cerebellar nuclei, poor to moderate recovery occurs bilaterally. Moderate recovery occurs in the contralateral cerebellar cortex. The findings demonstrate that a unilateral cerebral cortical lesion strongly affects lCMRGlc in the thalamus ipsilaterally and in the cerebellar cortex contralaterally, but in the brainstem bilaterally. Partial recovery of lCMRGlc accompanies the progressive motor recovery. The structures affected include those with direct, and also those with indirect, connections to the areas ablated.

  2. Molecular and industrial aspects of glucose isomerase.

    PubMed Central

    Bhosale, S H; Rao, M B; Deshpande, V V

    1996-01-01

    Glucose isomerase (GI) (D-xylose ketol-isomerase; EC. 5.3.1.5) catalyzes the reversible isomerization of D-glucose and D-xylose to D-fructose and D-xylulose, respectively. The enzyme has the largest market in the food industry because of its application in the production of high-fructose corn syrup (HFCS). HFCS, an equilibrium mixture of glucose and fructose, is 1.3 times sweeter than sucrose and serves as a sweetener for use by diabetics. Interconversion of xylose to xylulose by GI serves a nutritional requirement in saprophytic bacteria and has a potential application in the bioconversion of hemicellulose to ethanol. The enzyme is widely distributed in prokaryotes. Intensive research efforts are directed toward improving its suitability for industrial application. Development of microbial strains capable of utilizing xylan-containing raw materials for growth or screening for constitutive mutants of GI is expected to lead to discontinuation of the use of xylose as an inducer for the production of the enzyme. Elimination of Co2+ from the fermentation medium is desirable for avoiding health problems arising from human consumption of HFCS. Immobilization of GI provides an efficient means for its easy recovery and reuse and lowers the cost of its use. X-ray crystallographic and genetic engineering studies support a hydride shift mechanism for the action of GI. Cloning of GI in homologous as well as heterologous hosts has been carried out, with the prime aim of overproducing the enzyme and deciphering the genetic organization of individual genes (xylA, xylB, and xylR) in the xyl operon of different microorganisms. The organization of xylA and xylB seems to be highly conserved in all bacteria. The two genes are transcribed from the same strand in Escherichia coli and Bacillus and Lactobacillus species, whereas they are transcribed divergently on different strands in Streptomyces species. A comparison of the xylA sequences from several bacterial sources revealed the

  3. Rat splanchnic net oxygen consumption, energy implications.

    PubMed Central

    Casado, J; Fernández-López, J A; Esteve, M; Rafecas, I; Argilés, J M; Alemany, M

    1990-01-01

    1. The blood flow, PO2, pH and PCO2 have been estimated in portal and suprahepatic veins as well as in hepatic artery of fed and overnight starved rats given an oral glucose load. From these data the net intestinal, hepatic and splanchnic balances for oxygen and bicarbonate were calculated. The oxygen consumption of the intact animal has also been measured under comparable conditions. 2. The direct utilization of oxygen balances as energy equivalents when establishing the contribution of energy metabolism of liver and intestine to the overall energy expenses of the rat, has been found to be incorrect, since it incorporates the intrinsic error of interorgan proton transfer through bicarbonate. Liver and intestine produced high net bicarbonate balances in all situations tested, implying the elimination (by means of oxidative pathways, i.e. consuming additional oxygen) of high amounts of H+ generated with bicarbonate. The equivalence in energy output of the oxygen balances was then corrected for bicarbonate production to 11-54% lower values. 3. Intestine and liver consume a high proportion of available oxygen, about one-half in basal (fed or starved) conditions and about one-third after gavage, the intestine consumption being about 15% in all situations tested and the liver decreasing its oxygen consumption with gavage. PMID:2129230

  4. Flow of glucose carbon into cholesterol and phospholipids in various regions of the adult rat brain: enhanced incorporation into hypothalamic phospholipids

    SciTech Connect

    Barkai, A.I.

    1981-01-01

    The contribution of glucose carbon to the biosynthesis of cholesterol and phospholipids in distinct brain regions was studied quantitatively in the adult male rat. Rates of flow of glucose carbon into the lipids in vivo were calculated from two measurements: the curve representing the decrease in plasma /sup 14/C-glucose with time and the specific activity of the cerebral lipid 180 minutes after a rapid intravenous injection of a tracer dose of D-U /sup 14/C-glucose. The following brain regions were studied: cerebral cortex, hypothalamus, medulla, and corpus callosum and cerebellum. The values for carbon flow into phospholipids were significantly higher in the hypothalamus than in the whole brain, whereas small, but insignificant, regional differences were found for carbon flow into cholesterol. The conversion of U-/sup 14/C-glucose to individual phospholipids of both hypothalamus and cerebral cortex was further investigated in vitro in order to establish whether the higher rate of carbon flow into hypothalamic phospholipids resulted from enhanced synthesis of a particular phospholipid. In agreement with the results obtained in vivo, the rate of incorporation of /sup 14/C into total phospholipids was 60% higher in hypothalamic tissue. The results indicate that the higher rate of carbon flow into hypothalamic phospholipids might be attributed to enhanced incorporation of glucose carbon to phosphatidyl-choline and phosphatidyl-ethanolamine following a faster conversion of glucose to glycerol in this brain region.

  5. Cerebral hydatid disease in Britain

    PubMed Central

    Anderson, Milne; Bickerstaff, Edwin R.; Hamilton, J. G.

    1975-01-01

    Two cases of cerebral hydatid disease are described. This condition, acquired by Britons in Britain, is extremely rare as only two similar cases have been reported before. Details of clinical presentation, investigation and treatment are described. Images PMID:1206419

  6. Cerebral emboli of paradoxical origin.

    PubMed

    Jones, H R; Caplan, L R; Come, P C; Swinton, N W; Breslin, D J

    1983-03-01

    A diagnosis of paradoxical cerebral embolus (PCE) was made in five patients aged 31 to 62 years who sustained eight cerebral ischemic events. No patient had evidence of primary carotid system or left heart disease. A probe-patent foramen ovale was the presumed mechanism in four patients, and an unsuspected congenital atrial septal defect was found in the fifth patient. Clinically apparent pulmonary emboli or venous thrombosis preceded the cerebral event in only one instance. Review of the literature reveals a high mortality with PCE. However, careful clinical search for this lesion may be rewarding: four of our five patients survived. One should consider PCE in any patient with cerebral embolus in whom there is no demonstrable left-sided circulatory source. This principle applies particularly if there is concomitant venous thrombosis, pulmonary embolism, or enhanced potential for venous thrombosis due to, for example, morbid obesity, use of hormonal birth control pills, prolonged bed rest (especially postoperatively), or systemic carcinoma.

  7. Cerebral ganglioglioma. A Golgi study.

    PubMed

    Ferrer, I; Ribalta, T; Digon, E; Acebes, J

    1983-01-01

    The morphological characteristics of neurons revealed by Golgi's method are reported in a case of cerebral ganglioglioma. Spindle-shaped (leptodendritic) neurons and radiated type I neurons form the bulk of this tumour. According to Ramon-Moliner (1968) isodendritic neurons (both leptodendritic and radiate type I) are philogenetically primitive cells and differ greatly from those observed in most of the deep cerebral nuclei of the mammalian's brain.

  8. Resource Allocation in Cerebral Specialization.

    DTIC Science & Technology

    1980-01-01

    of this multiple-resources view. EXTENSION OF THE THEORY TO THE TWO CEREBRAL HEMISPHERES Since the anatomical division of the brain invites...performance differences between the hemispheres (e.g., right-handed males with no familial history of left- handedness who use a normal rather than an...G. Beaumont (Eds.), Hemisphere function in the human rain.. New York: Halstead Press, 1974. Kinsbourne, M. The cerebral basis of lateral asymmetries

  9. Glucose homeostasis can be differentially modulated by varying individual components of a western diet.

    PubMed

    Forbes, Josephine M; Cowan, Samantha P; Andrikopoulos, Sofianos; Morley, Amy L; Ward, Leigh C; Walker, Karen Z; Cooper, Mark E; Coughlan, Melinda T

    2013-07-01

    Chronic overconsumption of a Western diet has been identified as a major risk factor for diabetes, yet precisely how each individual component contributes to defects in glucose homeostasis independent of consumption of other macronutrients remains unclear. Eight-week-old male Sprague Dawley rats were randomized to feeding with one of six semi-pure diets: control, processed (high advanced glycation end products/AGE), high protein, high dextrose (glucose polymer), high in saturated fat (plant origin), or high in saturated fat (animal origin). After chronic feeding for 24 weeks, body composition was determined by bioelectrical impedance spectroscopy and glucose homeostasis was assessed. When compared to the control and high AGE diets, excess consumption of the diet high in saturated fat (animal source) increased body weight and adiposity, and decreased insulin sensitivity, as defined by HOMA IR, impaired skeletal muscle insulin signaling and insulin hypersecretion in the context of increased circulating glucagon-like peptide (GLP-1). Compared to the control diet, chronic consumption of the high AGE, protein or dextrose diet increased fasting plasma glucose, decreased fasting plasma insulin and insulin secretion. These diets also reduced circulating GLP-1 concentrations. These data suggest that individual components of a western diet have differential effects in modulating glucose homeostasis and adiposity. These data provide clear evidence of a link between over-consumption of a western diet and the development of diabetes.

  10. Cerebral Blood Flow Links Insulin Resistance and Baroreflex Sensitivity

    PubMed Central

    Ryan, John P.; Sheu, Lei K.; Verstynen, Timothy D.; Onyewuenyi, Ikechukwu C.; Gianaros, Peter J.

    2013-01-01

    Insulin resistance confers risk for diabetes mellitus and associates with a reduced capacity of the arterial baroreflex to regulate blood pressure. Importantly, several brain regions that comprise the central autonomic network, which controls the baroreflex, are also sensitive to the neuromodulatory effects of insulin. However, it is unknown whether peripheral insulin resistance relates to activity within central autonomic network regions, which may in turn relate to reduced baroreflex regulation. Accordingly, we tested whether resting cerebral blood flow within central autonomic regions statistically mediated the relationship between insulin resistance and an indirect indicator of baroreflex regulation; namely, baroreflex sensitivity. Subjects were 92 community-dwelling adults free of confounding medical illnesses (48 men, 30-50 years old) who completed protocols to assess fasting insulin and glucose levels, resting baroreflex sensitivity, and resting cerebral blood flow. Baroreflex sensitivity was quantified by measuring the magnitude of spontaneous and sequential associations between beat-by-beat systolic blood pressure and heart rate changes. Individuals with greater insulin resistance, as measured by the homeostatic model assessment, exhibited reduced baroreflex sensitivity (b = -0.16, p < .05). Moreover, the relationship between insulin resistance and baroreflex sensitivity was statistically mediated by cerebral blood flow in central autonomic regions, including the insula and cingulate cortex (mediation coefficients < -0.06, p-values < .01). Activity within the central autonomic network may link insulin resistance to reduced baroreflex sensitivity. Our observations may help to characterize the neural pathways by which insulin resistance, and possibly diabetes mellitus, relates to adverse cardiovascular outcomes. PMID:24358272

  11. Cerebral blood flow links insulin resistance and baroreflex sensitivity.

    PubMed

    Ryan, John P; Sheu, Lei K; Verstynen, Timothy D; Onyewuenyi, Ikechukwu C; Gianaros, Peter J

    2013-01-01

    Insulin resistance confers risk for diabetes mellitus and associates with a reduced capacity of the arterial baroreflex to regulate blood pressure. Importantly, several brain regions that comprise the central autonomic network, which controls the baroreflex, are also sensitive to the neuromodulatory effects of insulin. However, it is unknown whether peripheral insulin resistance relates to activity within central autonomic network regions, which may in turn relate to reduced baroreflex regulation. Accordingly, we tested whether resting cerebral blood flow within central autonomic regions statistically mediated the relationship between insulin resistance and an indirect indicator of baroreflex regulation; namely, baroreflex sensitivity. Subjects were 92 community-dwelling adults free of confounding medical illnesses (48 men, 30-50 years old) who completed protocols to assess fasting insulin and glucose levels, resting baroreflex sensitivity, and resting cerebral blood flow. Baroreflex sensitivity was quantified by measuring the magnitude of spontaneous and sequential associations between beat-by-beat systolic blood pressure and heart rate changes. Individuals with greater insulin resistance, as measured by the homeostatic model assessment, exhibited reduced baroreflex sensitivity (b = -0.16, p < .05). Moreover, the relationship between insulin resistance and baroreflex sensitivity was statistically mediated by cerebral blood flow in central autonomic regions, including the insula and cingulate cortex (mediation coefficients < -0.06, p-values < .01). Activity within the central autonomic network may link insulin resistance to reduced baroreflex sensitivity. Our observations may help to characterize the neural pathways by which insulin resistance, and possibly diabetes mellitus, relates to adverse cardiovascular outcomes.

  12. Hydrogen peroxide produced by glucose oxidase affects the performance of laccase cathodes in glucose/oxygen fuel cells: FAD-dependent glucose dehydrogenase as a replacement.

    PubMed

    Milton, Ross D; Giroud, Fabien; Thumser, Alfred E; Minteer, Shelley D; Slade, Robert C T

    2013-11-28

    Hydrogen peroxide production by glucose oxidase (GOx) and its negative effect on laccase performance have been studied. Simultaneously, FAD-dependent glucose dehydrogenase (FAD-GDH), an O2-insensitive enzyme, has been evaluated as a substitute. Experiments focused on determining the effect of the side reaction of GOx between its natural electron acceptor O2 (consumed) and hydrogen peroxide (produced) in the electrolyte. Firstly, oxygen consumption was investigated by both GOx and FAD-GDH in the presence of substrate. Relatively high electrocatalytic currents were obtained with both enzymes. O2 consumption was observed with immobilized GOx only, whilst O2 concentration remained stable for the FAD-GDH. Dissolved oxygen depletion effects on laccase electrode performances were investigated with both an oxidizing and a reducing electrode immersed in a single compartment. In the presence of glucose, dramatic decreases in cathodic currents were recorded when laccase electrodes were combined with a GOx-based electrode only. Furthermore, it appeared that the major loss of performance of the cathode was due to the increase of H2O2 concentration in the bulk solution induced laccase inhibition. 24 h stability experiments suggest that the use of O2-insensitive FAD-GDH as to obviate in situ peroxide production by GOx is effective. Open-circuit potentials of 0.66 ± 0.03 V and power densities of 122.2 ± 5.8 μW cm(-2) were observed for FAD-GDH/laccase biofuel cells.

  13. Toward an Injectable Continuous Osmotic Glucose Sensor

    PubMed Central

    Johannessen, Erik; Krushinitskaya, Olga; Sokolov, Andrey; Philipp, Häfliger; Hoogerwerf, Arno; Hinderling, Christian; Kautio, Kari; Lenkkeri, Jaakko; Strömmer, Esko; Kondratyev, Vasily; Tønnessen, Tor Inge; Mollnes, Tom Eirik; Jakobsen, Henrik; Zimmer, Even; Akselsen, Bengt

    2010-01-01

    Background The growing pandemic of diabetes mellitus places a stringent social and economic burden on the society. A tight glycemic control circumvents the detrimental effects, but the prerogative is the development of new more effective tools capable of longterm tracking of blood glucose (BG) in vivo. Such discontinuous sensor technologies will benefit from an unprecedented marked potential as well as reducing the current life expectancy gap of eight years as part of a therapeutic regime. Method A sensor technology based on osmotic pressure incorporates a reversible competitive affinity assay performing glucose-specific recognition. An absolute change in particles generates a pressure that is proportional to the glucose concentration. An integrated pressure transducer and components developed from the silicon micro- and nanofabrication industry translate this pressure into BG data. Results An in vitro model based on a 3.6 × 8.7 mm large pill-shaped implant is equipped with a nanoporous membrane holding 4–6 nm large pores. The affinity assay offers a dynamic range of 36–720 mg/dl with a resolution of ±16 mg/dl. An integrated 1 × 1 mm2 large control chip samples the sensor signals for data processing and transmission back to the reader at a total power consumption of 76 µW. Conclusions Current studies have demonstrated the design, layout, and performance of a prototype osmotic sensor in vitro using an affinity assay solution for up to four weeks. The small physical size conforms to an injectable device, forming the basis of a conceptual monitor that offers a tight glycemic control of BG. PMID:20663452

  14. Therapeutic implications of melatonin in cerebral edema.

    PubMed

    Rathnasamy, Gurugirijha; Ling, Eng-Ang; Kaur, Charanjit

    2014-12-01

    Cerebral edema/brain edema refers to the accumulation of fluid in the brain and is one of the fatal conditions that require immediate medical attention. Cerebral edema develops as a consequence of cerebral trauma, cerebral infarction, hemorrhages, abscess, tumor, hypoxia, and other toxic or metabolic factors. Based on the causative factors cerebral edema is differentiated into cytotoxic cerebral edema, vasogenic cerebral edema, osmotic and interstitial cerebral edema. Treatment of cerebral edema depends on timely diagnosis and medical assistance. Pragmatic treatment strategies such as antihypertensive medications, nonsteroidal anti-inflammatory drugs, barbiturates, steroids, glutamate and N-methyl-D-aspartate receptor antagonists and trometamol are used in clinical practice. Although the above mentioned treatment approaches are being used, owing to the complexity of the mechanisms involved in cerebral edema, a single therapeutic strategy which could ameliorate cerebral edema is yet to be identified. However, recent experimental studies have suggested that melatonin, a neurohormone produced by the pineal gland, could be an effective alternative for treating cerebral edema. In animal models of stroke, melatonin was not only shown to reduce cerebral edema but also preserved the blood brain barrier. Melatonin's beneficial effects were attributed to its properties, such as being a potent anti-oxidant, and its ability to cross the blood brain barrier within minutes after its administration. This review summarizes the beneficial effects of melatonin when used for treating cerebral edema.

  15. Glucose Addiction in Cancer Therapy: Advances and Drawbacks.

    PubMed

    Granja, Sara; Pinheiro, Céline; Reis, Rui Manuel; Martinho, Olga; Baltazar, Fátima

    2015-01-01

    While normal differentiated cells primarily use mitochondrial respiration to generate the required energy for cellular processes, most cancer cells rely on glycolysis, even in sufficient oxygen conditions. This phenomenon is known as the "Warburg effect" or aerobic glycolysis and the metabolic reprogramming of cancer cells towards this altered energy metabolism is currently recognized as one of the "hallmarks of cancer". Aerobic glycolysis underlies the rapid growth of tumor cells, with high rates of glucose consumption and lactic acid production, leading to cellular acidosis. Metabolic reprogramming renders cancer cells dependent on specific metabolic enzymes or pathways that could be exploited in cancer therapy. The development of treatments that target tumor glucose metabolism is receiving renewed attention, with several drugs targeting metabolic pathways currently in clinical trials. The search for suitable targets, however, is limited by the high plasticity of the metabolic network that can induce compensatory routes. Deregulated glucose metabolism is a prominent feature associated with resistance to classical chemotherapy or oncogene-targeted therapies, strengthening the clinical potential of combining these therapies with glycolysis inhibitors. The aim of this review is to compare the advances of different therapeutic strategies targeting the glucose "addiction" of tumor cells, highlighting their potential as effective weapons against cancer. We further discuss recent evidence for the involvement of glucose metabolism as a compensatory response to the use of drugs that target different signaling pathways, where the combination with glycolysis inhibitors could prove extraordinarily useful.

  16. Optical fibre biosensors using enzymatic transducers to monitor glucose

    NASA Astrophysics Data System (ADS)

    Scully, P. J.; Betancor, L.; Bolyo, J.; Dzyadevych, S.; Guisan, J. M.; Fernández-Lafuente, R.; Jaffrezic-Renault, N.; Kuncová, G.; Matejec, V.; O'Kennedy, B.; Podrazky, O.; Rose, K.; Sasek, L.; Young, J. S.

    2007-10-01

    The construction and performance of a novel enzyme based optical sensor for in situ continuous monitoring of glucose in biotechnological production processes is presented. Sensitive optical coatings are formed from inorganic-organic hybrid polymers (ORMOCER®sORMOCER®: Trademark of Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. in Germany.) combined with a flurophore (ruthenium complex) and an enzyme, and applied to lenses, declad polymer optical fibre (POF) and polymer clad silica fibre (PCS). The enzyme, glucose oxidase, catalyzes oxidization of glucose to gluconic acid by depleting oxygen. Oxygen consumption is determined by measuring the fluorescence lifetime of metal organic ruthenium complexes which are quenched by oxygen. The coatings developed were designed to adhere to glass and polymer surfaces, to be compatible with enzymes and ruthenium complexes, and were demonstrated both as double- and single-layer structures. The sensor response to gaseous oxygen, dissolved oxygen and dissolved glucose was measured via fluorescence lifetime changes. A best detection limit of 0.5% (vol) has been determined for gaseous O2 with selected ORMOCER® sensing layers. Glucose concentrations were measured to a detection limit of 0.1 mmol L-1 over a range up to 30 mmol L-1. The sensor was usable for 30 days in a bioreactor. The opto-electronic instrumentation and performance in laboratory bioreactors and in an industrial reactor are evaluated.

  17. Alginate cryogel based glucose biosensor

    NASA Astrophysics Data System (ADS)

    Fatoni, Amin; Windy Dwiasi, Dian; Hermawan, Dadan

    2016-02-01

    Cryogel is macroporous structure provides a large surface area for biomolecule immobilization. In this work, an alginate cryogel based biosensor was developed to detect glucose. The cryogel was prepared using alginate cross-linked by calcium chloride under sub-zero temperature. This porous structure was growth in a 100 μL micropipette tip with a glucose oxidase enzyme entrapped inside the cryogel. The glucose detection was based on the colour change of redox indicator, potassium permanganate, by the hydrogen peroxide resulted from the conversion of glucose. The result showed a porous structure of alginate cryogel with pores diameter of 20-50 μm. The developed glucose biosensor was showed a linear response in the glucose detection from 1.0 to 5.0 mM with a regression of y = 0.01x+0.02 and R2 of 0.994. Furthermore, the glucose biosensor was showed a high operational stability up to 10 times of uninterrupted glucose detections.

  18. Antihypertensive drugs and glucose metabolism

    PubMed Central

    Rizos, Christos V; Elisaf, Moses S

    2014-01-01

    Hypertension plays a major role in the development and progression of micro- and macrovascular disease. Moreover, increased blood pressure often coexists with additional cardiovascular risk factors such as insulin resistance. As a result the need for a comprehensive management of hypertensive patients is critical. However, the various antihypertensive drug categories have different effects on glucose metabolism. Indeed, angiotensin receptor blockers as well as angiotensin converting enzyme inhibitors have been associated with beneficial effects on glucose homeostasis. Calcium channel blockers (CCBs) have an overall neutral effect on glucose metabolism. However, some members of the CCBs class such as azelnidipine and manidipine have been shown to have advantageous effects on glucose homeostasis. On the other hand, diuretics and β-blockers have an overall disadvantageous effect on glucose metabolism. Of note, carvedilol as well as nebivolol seem to differentiate themselves from the rest of the β-blockers class, being more attractive options regarding their effect on glucose homeostasis. The adverse effects of some blood pressure lowering drugs on glucose metabolism may, to an extent, compromise their cardiovascular protective role. As a result the effects on glucose homeostasis of the various blood pressure lowering drugs should be taken into account when selecting an antihypertensive treatment, especially in patients which are at high risk for developing diabetes. PMID:25068013

  19. PUMA is invovled in ischemia/reperfusion-induced apoptosis of mouse cerebral astrocytes.

    PubMed

    Chen, H; Tian, M; Jin, L; Jia, H; Jin, Y

    2015-01-22

    PUMA (p53-upregulated modulator of apoptosis), a BH3-only member of the Bcl-2 protein family, is required for p53-dependent and p53-independent forms of apoptosis. PUMA has been invovled in the onset and progress of several diseases, including cancer, acquired immunodeficiency syndrome, and ischemic brain disease. Although many studies have shown that ischemia and reperfusion (I/R) can induce the apoptosis of astrocytes, the role of PUMA in I/R-mediated apoptosis of cerebral astrocyte apoptosis remains unclear. To mimic in vivo I/R conditions, primary mouse cerebral astrocytes were incubated in a combinational cultural condition of oxygen, glucose, and serum deprivation (OSGD) for 1 h followed by reperfusion (OSGD/R). Cell death determination assays and cell viability assays indicated that OSGD and OSGD/R induce the apoptosis of primary cerebral astrocytes. The expression of PUMA was significantly elevated in primary cerebral astrocytes during OSGD/R. Moreover, targeted down-regulation of PUMA by siRNA transfection significantly decreased the OSGD/R-induced apoptosis of primary cerebral astrocytes. We also found that OSGD and OSGD/R triggered the release of cytochrome c in astrocytes, indicating the dependence on a mitochondrial apoptotic pathway. Reactive oxygen species (ROS) was extremely generated during OSGD and OSGD/R, and the elimination of ROS by treated with N-acetyl-L-cysteine (NAC) remarkably inhibited the expression of PUMA and the apoptosis of primary cerebral astrocytes. The activation of Caspase 3 and Caspase 9 was extremely elevated in primary cerebral astrocytes during OSGD. In addition, we found that knockdown of PUMA led to the depressed expression of Bax, cleaved caspase-9 and caspase-3 during OSGD/R. These results indicate that PUMA is invovled in the apoptosis of cerebral astrocytes upon I/R injury.

  20. Glycopyrrolate abolishes the exercise-induced increase in cerebral perfusion in humans.

    PubMed

    Seifert, Thomas; Fisher, James P; Young, Colin N; Hartwich, Doreen; Ogoh, Shigehiko; Raven, Peter B; Fadel, Paul J; Secher, Niels H

    2010-10-01

    Brain blood vessels contain muscarinic receptors that are important for cerebral blood flow (CBF) regulation, but whether a cholinergic receptor mechanism is involved in the exercise-induced increase in cerebral perfusion or affects cerebral metabolism remains unknown. We evaluated CBF and cerebral metabolism (from arterial and internal jugular venous O(2), glucose and lactate differences), as well as the middle cerebral artery mean blood velocity (MCA V(mean); transcranial Doppler ultrasound) during a sustained static handgrip contraction at 40% of maximal voluntary contraction (n = 9) and the MCA V(mean) during ergometer cycling (n = 8). Separate, randomized and counterbalanced trials were performed in control (no drug) conditions and following muscarinic cholinergic receptor blockade by glycopyrrolate. Glycopyrrolate increased resting heart rate from approximately 60 to approximately 110 beats min(-1) (P < 0.01) and cardiac output by approximately 40% (P < 0.05), but did not affect mean arterial pressure. The central cardiovascular responses to exercise with glycopyrrolate were similar to the control responses, except that cardiac output did not increase during static handgrip with glycopyrrolate. Glycopyrrolate did not significantly affect cerebral metabolism during static handgrip, but a parallel increase in MCA V(mean) (approximately 16%; P < 0.01) and CBF (approximately 12%; P < 0.01) during static handgrip, as well as the increase in MCA V(mean) during cycling (approximately 15%; P < 0.01), were abolished by glycopyrrolate (P < 0.05). Thus, during both cycling and static handgrip, a cholinergic receptor mechanism is important for the exercise-induced increase in cerebral perfusion without affecting the cerebral metabolic rate for oxygen.

  1. Glucose tolerance test - non-pregnant

    MedlinePlus

    Oral glucose tolerance test - non-pregnant; OGTT - non-pregnant; Diabetes - glucose tolerance test; Diabetic - glucose tolerance test ... The most common glucose tolerance test is the oral glucose ... the test begins, a sample of blood will be taken. You will then ...

  2. Therapeutic insulin and hepatic glucose-6-phosphatase activity in preterm infants

    PubMed Central

    Burchell, A; McGeechan, A; Hume, R

    2000-01-01

    BACKGROUND—Hepatic glucose-6-phosphatase activity is low at birth, and in term infants rises rapidly to adult levels. In contrast, in most preterm infants, it remains low postnatally making them vulnerable to repeated hypoglycaemic episodes, resultant cerebral damage, or risk of sudden and unexpected death.
AIMS—To investigate the clinical features of preterm infants with low glucose-6-phosphatase enzyme activity to determine the influencing factors.
METHODS—Clinical data from 36 preterm infants were correlated by stepwise multiple regression analysis with Vmax of hepatic glucose-6-phosphatase as the dependent variable.
RESULTS—The most significant correlation was with the administration of insulin (units/kg/h postnatal life) with lesser effects of respiratory distress syndrome and dopamine administration. The Vmax changes reflected changes in the level of expression of the glucose-6-phosphatase protein.
CONCLUSION—In a variety of animal models, hepatic glucose-6-phosphatase levels have been shown to decrease in response to insulin, which also decreases transcription of the glucose-6-phosphatase gene. The association of insulin administration with high levels of hepatic glucose-6-phosphatase activity and protein expression was therefore most unexpected. Results from model systems, or adults, must be extrapolated to the metabolism of preterm infants with caution.

 PMID:10794792

  3. Ambivalent role of gallated catechins in glucose tolerance in humans: a novel insight into non-absorbable gallated catechin-derived inhibitors of glucose absorption.

    PubMed

    Park, J H; Jin, J Y; Baek, W K; Park, S H; Sung, H Y; Kim, Y K; Lee, J; Song, D K

    2009-12-01

    Prolonged postprandial hyperglycemia is a detrimental factor for type 2 diabetes and obesity. The benefit of green tea extract (GTE) consumption still requires confirmation. We report the effects of circulating green tea catechins on blood glucose and insulin levels. Oral glucose loading 1 h after GTE ingestion in humans led to higher blood glucose and insulin levels than in control subjects. Gallated catechins were required for these effects, although within the intestinal lumen they have been known to decrease glucose and cholesterol absorption. Treatment with epigallocatechin-3-gallate hindered 2-deoxyglucose uptake into liver, fat, pancreatic beta-cell, and skeletal muscle cell lines. The glucose intolerance was ameliorated by gallated catechin-deficient GTE or GTE mixed with polyethylene glycol, which was used as an inhibitor of intestinal absorption of gallated catechins. These findings may suggest that the gallated catechin when it is in the circulation elevates blood glucose level by blocking normal glucose uptake into the tissues, resulting in secondary hyperinsulinemia, whereas it decreases glucose entry into the circulation when they are inside the intestinal lumen. These findings encourage the development of non-absorbable derivatives of gallated catechins for preventative treatment of type 2 diabetes and obesity, which would specifically induce only the positive luminal effect.

  4. Monitoring Cerebral Oxygenation in Neonates: An Update

    PubMed Central

    Dix, Laura Marie Louise; van Bel, Frank; Lemmers, Petra Maria Anna

    2017-01-01

    Cerebral oxygenation is not always reflected by systemic arterial oxygenation. Therefore, regional cerebral oxygen saturation (rScO2) monitoring with near-infrared spectroscopy (NIRS) is of added value in neonatal intensive care. rScO2 represents oxygen supply to the brain, while cerebral fractional tissue oxygen extraction, which is the ratio between rScO2 and systemic arterial oxygen saturation, reflects cerebral oxygen utilization. The balance between oxygen supply and utilization provides insight in neonatal cerebral (patho-)physiology. This review highlights the potential and limitations of cerebral oxygenation monitoring with NIRS in the neonatal intensive care unit. PMID:28352624

  5. Encephaloduroarteriosynangiosis for cerebral proliferative angiopathy with cerebral ischemia.

    PubMed

    Kono, Kenichi; Terada, Tomoaki

    2014-12-01

    Cerebral proliferative angiopathy (CPA) is a rare clinical entity. This disorder is characterized by diffuse vascular abnormalities with intermingled normal brain parenchyma, and is differentiated from classic arteriovenous malformations. The management of CPA in patients presenting with nonhemorrhagic neurological deficits due to cerebral ischemia is challenging and controversial. The authors report a case of adult CPA with cerebral ischemia in which neurological deficits were improved after encephaloduroarteriosynangiosis (EDAS). A 28-year-old man presented with epilepsy. Magnetic resonance imaging and angiography showed a diffuse vascular network (CPA) in the right hemisphere. Antiepileptic medications were administered. Four years after the initial onset of epilepsy, the patient's left-hand grip strength gradually decreased over the course of 1 year. The MRI studies showed no infarcts, but technetium-99m-labeled ethyl cysteinate dimer ((99m)Tc-ECD) SPECT studies obtained with acetazolamide challenge demonstrated hypoperfusion and severely impaired cerebrovascular reactivity over the affected hemisphere. This suggested that the patient's neurological deficits were associated with cerebral ischemia. The authors performed EDAS for cerebral ischemia, and the patient's hand grip strength gradually improved after the operation. Follow-up angiography studies obtained 7 months after the operation showed profound neovascularization through the superficial temporal artery and the middle meningeal artery. A SPECT study showed slight improvement of hypoperfusion at the focal region around the right motor area, indicating clinical improvement from the operation. The authors conclude that EDAS may be a treatment option for CPA-related hypoperfusion.

  6. Frigate Fuel Consumption Indicator

    DTIC Science & Technology

    2010-09-20

    Report DRDC-RDDC-2014- C50 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is...estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the...number. 1 . REPORT DATE 20 SEP 2010 2. REPORT TYPE 3. DATES COVERED 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE Frigate Fuel Consumption

  7. Argon does not affect cerebral circulation or metabolism in male humans

    PubMed Central

    Kazmaier, Stephan; Hoeks, Sanne Elisabeth; Stolker, Robert Jan; Coburn, Marc; Weyland, Andreas

    2017-01-01

    Objective Accumulating data have recently underlined argon´s neuroprotective potential. However, to the best of our knowledge, no data are available on the cerebrovascular effects of argon (Ar) in humans. We hypothesized that argon inhalation does not affect mean blood flow velocity of the middle cerebral artery (Vmca), cerebral flow index (FI), zero flow pressure (ZFP), effective cerebral perfusion pressure (CPPe), resistance area product (RAP) and the arterio-jugular venous content differences of oxygen (AJVDO2), glucose (AJVDG), and lactate (AJVDL) in anesthetized patients. Materials and methods In a secondary analysis of an earlier controlled cross-over trial we compared parameters of the cerebral circulation under 15 minutes exposure to 70%Ar/30%O2 versus 70%N2/30%O2 in 29 male patients under fentanyl-midazolam anaesthesia before coronary surgery. Vmca was measured by transcranial Doppler sonography. ZFP and RAP were estimated by linear regression analysis of pressure-flow velocity relationships of the middle cerebral artery. CPPe was calculated as the difference between mean arterial pressure and ZFP. AJVDO2, AJVDG and AJVDL were calculated as the differences in contents between arterial and jugular-venous blood of oxygen, glucose, and lactate. Statistical analysis was done by t-tests and ANOVA. Results Mechanical ventilation with 70% Ar did not cause any significant changes in mean arterial pressure, Vmca, FI, ZFP, CPPe, RAP, AJVDO2, AJVDG, and AJVDL. Discussion Short-term inhalation of 70% Ar does not affect global cerebral circulation or metabolism in male humans under general anaesthesia. PMID:28207907

  8. Endogenous Nutritive Support after Traumatic Brain Injury: Peripheral Lactate Production for Glucose Supply via Gluconeogenesis

    PubMed Central

    Martin, Neil A.; McArthur, David L.; Hovda, David A.; Vespa, Paul; Johnson, Matthew L.; Horning, Michael A.; Brooks, George A.

    2015-01-01

    Abstract We evaluated the hypothesis that nutritive needs of injured brains are supported by large and coordinated increases in lactate shuttling throughout the body. To that end, we used dual isotope tracer ([6,6-2H2]glucose, i.e., D2-glucose, and [3-13C]lactate) techniques involving central venous tracer infusion along with cerebral (arterial [art] and jugular bulb [JB]) blood sampling. Patients with traumatic brain injury (TBI) who had nonpenetrating head injuries (n=12, all male) were entered into the study after consent of patients' legal representatives. Written and informed consent was obtained from healthy controls (n=6, including one female). As in previous investigations, the cerebral metabolic rate (CMR) for glucose was suppressed after TBI. Near normal arterial glucose and lactate levels in patients studied 5.7±2.2 days (range of days 2–10) post-injury, however, belied a 71% increase in systemic lactate production, compared with control, that was largely cleared by greater (hepatic+renal) glucose production. After TBI, gluconeogenesis from lactate clearance accounted for 67.1% of glucose rate of appearance (Ra), which was compared with 15.2% in healthy controls. We conclude that elevations in blood glucose concentration after TBI result from a massive mobilization of lactate from corporeal glycogen reserves. This previously unrecognized mobilization of lactate subserves hepatic and renal gluconeogenesis. As such, a lactate shuttle mechanism indirectly makes substrate available for the body and its essential organs, including the brain, after trauma. In addition, when elevations in arterial lactate concentration occur after TBI, lactate shuttling may provide substrate directly to vital organs of the body, including the injured brain. PMID:25279664

  9. Effect of Modified Atmosphere Composition on the Metabolism of Glucose by Brochothrix thermosphacta

    PubMed Central

    Pin, Carmen; García de Fernando, Gonzalo D.; Ordóñez, Juan A.

    2002-01-01

    The influence of atmosphere composition on the metabolism of Brochothrix thermosphacta was studied by analyzing the consumption of glucose and the production of ethanol, acetic and lactic acids, acetaldehyde, and diacetyl-acetoin under atmospheres containing different combinations of carbon dioxide and oxygen. When glucose was metabolized under oxygen-free atmospheres, lactic acid was one of the main end products, while under atmospheres rich in oxygen mainly acetoin-diacetyl was produced. The proportions of the total consumed glucose used for the production of acetoin (aerobic metabolism) and lactic acid (anaerobic metabolism) were used to decide whether aerobic or anaerobic metabolism predominated at a given atmosphere composition. The boundary conditions between dominantly anaerobic and aerobic metabolisms were determined by logistic regression. The metabolism of glucose by B. thermosphacta was influenced not only by the oxygen content of the atmosphere but also by the carbon dioxide content. At high CO2 percentages, glucose metabolism remained anaerobic under greater oxygen contents. PMID:12200298

  10. Effect of modified atmosphere composition on the metabolism of glucose by Brochothrix thermosphacta.

    PubMed

    Pin, Carmen; García de Fernando, Gonzalo D; Ordóñez, Juan A

    2002-09-01

    The influence of atmosphere composition on the metabolism of Brochothrix thermosphacta was studied by analyzing the consumption of glucose and the production of ethanol, acetic and lactic acids, acetaldehyde, and diacetyl-acetoin under atmospheres containing different combinations of carbon dioxide and oxygen. When glucose was metabolized under oxygen-free atmospheres, lactic acid was one of the main end products, while under atmospheres rich in oxygen mainly acetoin-diacetyl was produced. The proportions of the total consumed glucose used for the production of acetoin (aerobic metabolism) and lactic acid (anaerobic metabolism) were used to decide whether aerobic or anaerobic metabolism predominated at a given atmosphere composition. The boundary conditions between dominantly anaerobic and aerobic metabolisms were determined by logistic regression. The metabolism of glucose by B. thermosphacta was influenced not only by the oxygen content of the atmosphere but also by the carbon dioxide content. At high CO(2) percentages, glucose metabolism remained anaerobic under greater oxygen contents.

  11. [Plasma osmolarity and cerebral volume].

    PubMed

    Boulard, G

    2001-02-01

    Under normal physiological conditions, the osmolarity of extracellular fluids (ECFs) and natremia are controlled by two regulatory mechanisms modulating the water balance and sodium outflow from information collected by the osmoreceptors and baroreceptors, respectively. As well, under normal physiological conditions, water and electrolytes of brain ECFs are secreted by the endothelial cells of brain capillaries. Furthermore, isotonicity is present on both sides of the blood-brain barrier. In the event of systemic osmolarity disorders, water transport subject to osmosis laws occurs at the level of the blood-brain barrier. In the case of plasmatic hyperosmolarity cerebral dehydration is observed, while cerebral edema occurs in the contrary case. However, plasmatic osmolarity disorders have less effect on the cerebral volume when their introduction is slow. Experimentation in acute conditions shows that measured variations of the cerebral water content are lower than calculated variations, thus suggesting the existence of an adaptive mechanism, that is, the cerebral osmoregulation which limits the variation of the volume of brain cells by modulating their osmoactive molecule content. These osmoactive molecules are, on the one hand, the electrolytes, which are early and rapidly mobilized, and, on the other hand, the organic osmoles (amino acids, etc.), whose secretion is slower and delayed. This phenomenon should be taken into account in the treatment of osmolarity disorders. Thus, the related-risk of treatment for natremia disorders is therapeutic reversal of the osmotic gradient at the level of the blood-brain barrier. This reversal, which corresponds to a second osmotic stress, requires the implementation of a new procedure of cerebral osmoregulation in the opposite direction of the preceding one. As successive osmotic stresses decrease the effectiveness of brain osmoregulation, the risk for cerebral dehydration and pontine myelinolysis increases when the treatment

  12. Growth and enzymatic responses of phytopathogenic fungi to glucose in culture media and soil

    PubMed Central

    Costa, Beatriz de Oliveira; Nahas, Ely

    2012-01-01

    The effect of inoculation of Aspergillus flavus , Fusarium verticillioides , and Penicillium sp. in Dystrophic Red Latosol (DRL) and Eutroferric Red Latosol (ERL) soils with or without glucose on the total carbohydrate content and the dehydrogenase and amylase activities was studied. The fungal growth and spore production in culture medium with and without glucose were also evaluated. A completely randomized design with factorial arrangement was used. The addition of glucose in the culture medium increased the growth rate of A. flavus and Penicillium sp. but not of F. verticillioides . The number of spores increased 1.2 for F. verticillioides and 8.2 times for A. flavus in the medium with glucose, but was reduced 3.5 times for Penicillium sp. The total carbohydrates contents reduced significantly according to first and second degree equations. The consumption of total carbohydrates by A. flavus and Penicillium sp. was higher than the control or soil inoculated with F. verticillioides . The addition of glucose to soils benefited the use of carbohydrates, probably due to the stimulation of fungal growth. Dehydrogenase activity increased between 1.5 to 1.8 times ( p <0.05) in soils with glucose and inoculated with the fungi (except F. verticillioides ), in relation to soil without glucose. Amylase activity increased 1.3 to 1.5 times due to the addition of glucose in the soil. Increased amylase activity was observed in the DRL soil with glucose and inoculated with A. flavus and Penicillium sp. when compared to control. PMID:24031836

  13. Glucose regulates enzymatic sources of mitochondrial NADPH in skeletal muscle cells; a novel role for glucose-6-phosphate dehydrogenase.

    PubMed

    Mailloux, Ryan J; Harper, Mary-Ellen

    2010-07-01

    Reduced nicotinamide adenine dinucleotide (NADPH) is a functionally important metabolite required to support numerous cellular processes. However, despite the identification of numerous NADPH-producing enzymes, the mechanisms underlying how the organellar pools of NADPH are maintained remain elusive. Here, we have identified glucose-6-phosphate dehydrogenase (G6PDH) as an important source of NADPH in mitochondria. Activity analysis, submitochondrial fractionation, fluorescence microscopy, and protease sensitivity assays revealed that G6PDH is localized to the mitochondrial matrix. 6-ANAM, a specific G6PDH inhibitor, depleted mitochondrial NADPH pools and increased oxidative stress revealing the importance of G6PDH in NADPH maintenance. We also show that glucose availability and differences in metabolic state modulate the enzymatic sources of NADPH in mitochondria. Indeed, cells cultured in high glucose (HG) not only adopted a glycolytic phenotype but also relied heavily on matrix-associated G6PDH as a source of NADPH. In contrast, cells exposed to low-glucose (LG) concentrations, which displayed increased oxygen consumption, mitochondrial metabolic efficiency, and decreased glycolysis, relied predominantly on isocitrate dehydrogenase (ICDH) as the principal NADPH-producing enzyme in the mitochondria. Culturing glycolytic cells in LG for 48 h decreased G6PDH and increased ICDH protein levels in the mitochondria, further pointing to the regulatory role of glucose. 2-Deoxyglucose treatment also prevented the increase of mitochondrial G6PDH in response to HG. The role of glucose in regulating enzymatic sources of mitochondrial NADPH pool maintenance was confirmed using human myotubes from obese adults with a history of type 2 diabetes mellitus (post-T2DM). Myotubes from post-T2DM participants failed to increase mitochondrial G6PDH in response to HG in contrast to mitochondria in myotubes from control participants (non-T2DM). Hence, we not only identified a matrix

  14. Berberine improves glucose metabolism through induction of glycolysis.

    PubMed

    Yin, Jun; Gao, Zhanguo; Liu, Dong; Liu, Zhijun; Ye, Jianping

    2008-01-01

    Berberine, a botanical alkaloid used to control blood glucose in type 2 diabetes in China, has recently been reported to activate AMPK. However, it is not clear how AMPK is activated by berberine. In this study, activity and action mechanism of berberine were investigated in vivo and in vitro. In dietary obese rats, berberine increased insulin sensitivity after 5-wk administration. Fasting insulin and HOMA-IR were decreased by 46 and 48%, respectively, in the rats. In cell lines including 3T3-L1 adipocytes, L6 myotubes, C2C12 myotubes, and H4IIE hepatocytes, berberine was found to increase glucose consumption, 2-deoxyglucose uptake, and to a less degree 3-O-methylglucose (3-OMG) uptake independently of insulin. The insulin-induced glucose uptake was enhanced by berberine in the absence of change in IRS-1 (Ser307/312), Akt, p70 S6, and ERK phosphorylation. AMPK phosphorylation was increased by berberine at 0.5 h, and the increase remained for > or =16 h. Aerobic and anaerobic respiration were determined to understand the mechanism of berberine action. The long-lasting phosphorylation of AMPK was associated with persistent elevation in AMP/ATP ratio and reduction in oxygen consumption. An increase in glycolysis was observed with a rise in lactic acid production. Berberine exhibited no cytotoxicity, and it protected plasma membrane in L6 myotubes in the cell culture. These results suggest that berberine enhances glucose metabolism by stimulation of glycolysis, which is related to inhibition of glucose oxidation in mitochondria. Berberine-induced AMPK activation is likely a consequence of mitochondria inhibition that increases the AMP/ATP ratio.

  15. Cerebral blood flow response to hypoglycemia is altered in patients with type 1 diabetes and impaired awareness of hypoglycemia.

    PubMed

    Wiegers, Evita C; Becker, Kirsten M; Rooijackers, Hanne M; von Samson-Himmelstjerna, Federico C; Tack, Cees J; Heerschap, Arend; de Galan, Bastiaan E; van der Graaf, Marinette

    2016-01-01

    It is unclear whether cerebral blood flow responses to hypoglycemia are altered in people with type 1 diabetes and impaired awareness of hypoglycemia. The aim of this study was to investigate the effect of hypoglycemia on both global and regional cerebral blood flow in type 1 diabetes patients with impaired awareness of hypoglycemia, type 1 diabetes patients with normal awareness of hypoglycemia and healthy controls ( n = 7 per group). The subjects underwent a hyperinsulinemic euglycemic-hypoglycemic glucose clamp in a 3 T MR system. Global and regional changes in cerebral blood flow were determined by arterial spin labeling magnetic resonance imaging, at the end of both glycemic phases. Hypoglycemia generated typical symptoms in patients with type 1 diabetes and normal awareness of hypoglycemia and healthy controls, but not in patients with impaired awareness of hypoglycemia. Conversely, hypoglycemia increased global cerebral blood flow in patients with impaired awareness of hypoglycemia, which was not observed in the other two groups. Regionally, hypoglycemia caused a redistribution of cerebral blood flow towards the thalamus of both patients with normal awareness of hypoglycemia and healthy controls, consistent with activation of brain regions associated with the autonomic response to hypoglycemia. No such redistribution was found in the patients with impaired awareness of hypoglycemia. An increase in global cerebral blood flow may enhance nutrient supply to the brain, hence suppressing symptomatic awareness of hypoglycemia. Altogether these results suggest that changes in cerebral blood flow during hypoglycemia contribute to impaired awareness of hypoglycemia.

  16. Oat β-glucan depresses SGLT1- and GLUT2-mediated glucose transport in intestinal epithelial cells (IEC-6).

    PubMed

    Abbasi, Nazanin N; Purslow, Peter P; Tosh, Susan M; Bakovic, Marica

    2016-06-01

    Oat β-glucan consumption is linked to reduced risk factors associated with diabetes and obesity by lowering glycemic response and serum level of low-density lipoproteins. The purpose of this study was to identify the mechanism of action of oat β-glucan at the interface between the gut wall and the lumen responsible for attenuating glucose levels. We proposed that viscous oat β-glucan acts as a physical barrier to glucose uptake in normally absorptive gut epithelial cells IEC-6 by affecting the expression of intestinal glucose transporters. Concentration and time-dependent changes in glucose uptake were established by using a nonmetabolizable glucose analog 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-d-glucose. The effectiveness of nutrient transport in IEC-6 cells was shown by significant differences in glucose uptake and corresponding transporter expression. The expressions of glucose transporters sodium-glucose-linked transport protein 1 (SGLT1) and glucose transporter 2 (GLUT2) increased with time (0-60 minutes) and glucose levels (5-25 mmol/L). The suppression of glucose uptake and SGLT1 and GLUT2 expression by increasing concentrations (4-8 mg/mL) of oat β-glucan demonstrated a direct effect of the physical properties of oat β-glucan on glucose transport. These results affirmed oat β-glucan as a dietary agent for minimizing postprandial glucose and showed that modulating the activity of the key intestinal glucose transporters with oat β-glucan could be an effective way of lowering blood glucose levels in patients with diabetes.

  17. The glucose-6-phosphatase system.

    PubMed Central

    van Schaftingen, Emile; Gerin, Isabelle

    2002-01-01

    Glucose-6-phosphatase (G6Pase), an enzyme found mainly in the liver and the kidneys, plays the important role of providing glucose during starvation. Unlike most phosphatases acting on water-soluble compounds, it is a membrane-bound enzyme, being associated with the endoplasmic reticulum. In 1975, W. Arion and co-workers proposed a model according to which G6Pase was thought to be a rather unspecific phosphatase, with its catalytic site oriented towards the lumen of the endoplasmic reticulum [Arion, Wallin, Lange and Ballas (1975) Mol. Cell. Biochem. 6, 75--83]. Substrate would be provided to this enzyme by a translocase that is specific for glucose 6-phosphate, thereby accounting for the specificity of the phosphatase for glucose 6-phosphate in intact microsomes. Distinct transporters would allow inorganic phosphate and glucose to leave the vesicles. At variance with this substrate-transport model, other models propose that conformational changes play an important role in the properties of G6Pase. The last 10 years have witnessed important progress in our knowledge of the glucose 6-phosphate hydrolysis system. The genes encoding G6Pase and the glucose 6-phosphate translocase have been cloned and shown to be mutated in glycogen storage disease type Ia and type Ib respectively. The gene encoding a G6Pase-related protein, expressed specifically in pancreatic islets, has also been cloned. Specific potent inhibitors of G6Pase and of the glucose 6-phosphate translocase have been synthesized or isolated from micro-organisms. These as well as other findings support the model initially proposed by Arion. Much progress has also been made with regard to the regulation of the expression of G6Pase by insulin, glucocorticoids, cAMP and glucose. PMID:11879177

  18. Conversion of glucose to sorbose

    DOEpatents

    Davis, Mark E.; Gounder, Rajamani

    2016-02-09

    The present invention is directed to methods for preparing sorbose from glucose, said method comprising: (a) contacting the glucose with a silica-containing structure comprising a zeolite having a topology of a 12 membered-ring or larger, an ordered mesoporous silica material, or an amorphous silica, said structure containing Lewis acidic Ti.sup.4+ or Zr.sup.4+ or both Ti.sup.4+ and Zr.sup.4+ framework centers, said contacting conducted under reaction conditions sufficient to isomerize the glucose to sorbose. The sorbose may be (b) separated or isolated; or (c) converted to ascorbic acid.

  19. Methylenedioxypyrovalerone (MDPV) mimics cocaine in its physiological and behavioral effects but induces distinct changes in NAc glucose

    PubMed Central

    Wakabayashi, Ken T.; Ren, Suelynn E.; Kiyatkin, Eugene A.

    2015-01-01

    Methylenedioxypyrovalerone (MDPV) is generally considered to be a more potent cocaine-like psychostimulant, as it shares a similar pharmacological profile with cocaine and induces similar physiological and locomotor responses. Recently, we showed that intravenous cocaine induces rapid rise in nucleus accumbens (NAc) glucose and established its relation to neural activation triggered by the peripheral drug actions. This study was conducted to find out whether MDPV, at a behaviorally equivalent dose, shares a similar pattern of NAc glucose dynamics. Using enzyme-based glucose sensors coupled with amperometery in freely moving rats, we found that MDPV tonically decreases NAc glucose levels, a response that is opposite to what we previously observed with cocaine. By analyzing Skin-Muscle temperature differentials, a valid measure of skin vascular tone, we found that MDPV induces vasoconstriction; a similar effect at the level of cerebral vessels could be responsible for the MDPV-induced decrease in NAc glucose. While cocaine also induced comparable, if not slightly stronger peripheral vasoconstriction, this effect was overpowered by local neural activity-induced vasodilation, resulting in rapid surge in NAc glucose. These results imply that cocaine-users may be more susceptible to addiction than MDPV-users due to the presence of an interoceptive signal (i.e., sensory cue), which may result in earlier and more direct reward detection. Additionally, while health complications arising from acute cocaine use are typically cardiovascular related, MDPV may be more dangerous to the brain due to uncompensated cerebral vasoconstriction. PMID:26441499

  20. Glucose-responsive hydrogel electrode for biocompatible glucose transistor.

    PubMed

    Kajisa, Taira; Sakata, Toshiya

    2017-01-01

    In this paper, we propose a highly sensitive and biocompatible glucose sensor using a semiconductor-based field effect transistor (FET) with a functionalized hydrogel. The principle of the FET device contributes to the easy detection of ionic charges with high sensitivity, and the hydrogel coated on the electrode enables the specific detection of glucose with biocompatibility. The copolymerized hydrogel on the Au gate electrode of the FET device is optimized by controlling the mixture ratio of biocompatible 2-hydroxyethylmethacrylate (HEMA) as the main monomer and vinylphenylboronic acid (VPBA) as a glucose-responsive monomer. The gate surface potential of the hydrogel FETs shifts in the negative direction with increasing glucose concentration from 10 μM to 40 mM, which results from the increase in the negative charges on the basis of the diol-binding of PBA derivatives with glucose molecules in the hydrogel. Moreover, the hydrogel coated on the gate suppresses the signal noise caused by the nonspecific adsorption of proteins such as albumin. The hydrogel FET can serve as a highly sensitive and biocompatible glucose sensor in in vivo or ex vivo applications such as eye contact lenses and sheets adhering to the skin.

  1. Glucose-responsive hydrogel electrode for biocompatible glucose transistor

    PubMed Central

    Kajisa, Taira; Sakata, Toshiya

    2017-01-01

    Abstract In this paper, we propose a highly sensitive and biocompatible glucose sensor using a semiconductor-based field effect transistor (FET) with a functionalized hydrogel. The principle of the FET device contributes to the easy detection of ionic charges with high sensitivity, and the hydrogel coated on the electrode enables the specific detection of glucose with biocompatibility. The copolymerized hydrogel on the Au gate electrode of the FET device is optimized by controlling the mixture ratio of biocompatible 2-hydroxyethylmethacrylate (HEMA) as the main monomer and vinylphenylboronic acid (VPBA) as a glucose-responsive monomer. The gate surface potential of the hydrogel FETs shifts in the negative direction with increasing glucose concentration from 10 μM to 40 mM, which results from the increase in the negative charges on the basis of the diol-binding of PBA derivatives with glucose molecules in the hydrogel. Moreover, the hydrogel coated on the gate suppresses the signal noise caused by the nonspecific adsorption of proteins such as albumin. The hydrogel FET can serve as a highly sensitive and biocompatible glucose sensor in in vivo or ex vivo applications such as eye contact lenses and sheets adhering to the skin. PMID:28179956

  2. Involvement of pregnane X receptor in the impaired glucose utilization induced by atorvastatin in hepatocytes.

    PubMed

    Ling, Zhaoli; Shu, Nan; Xu, Ping; Wang, Fan; Zhong, Zeyu; Sun, Binbin; Li, Feng; Zhang, Mian; Zhao, Kaijing; Tang, Xiange; Wang, Zhongjian; Zhu, Liang; Liu, Li; Liu, Xiaodong

    2016-01-15

    Accumulating evidences demonstrated that statins impaired glucose utilization. This study was aimed to investigate whether PXR was involved in the atorvastatin-impaired glucose utilization. Rifampicin/PCN served as PXR activator control. Glucose utilization, glucose uptake, protein levels of GLUT2, GCK, PDK2, PEPCK1 and G6Pase in HepG2 cells were measured. PXR inhibitors, PXR overexpression and PXR siRNA were applied to verify the role of PXR in atorvastatin-impaired glucose utilization in cells. Hypercholesterolemia rats induced by high fat diet feeding, orally received atorvastatin (5 and 10 mg/kg), pravastatin (10 mg/kg) for 14 days, or intraperitoneally received PCN (35 mg/kg) for 4 days. Results showed that glucose utilization was markedly inhibited by atorvastatin, simvastatin, pitavastatin, lovastatin and rifampicin. Neither rosuvastatin nor pravastatin showed the similar effect. Atorvastatin and pravastatin were selected for the following study. Atorvastatin and rifampicin significantly inhibited glucose uptake and down-regulated GLUT2 and GCK expressions. Similarly, overexpressed PXR significantly down-regulated GLUT2 and GCK expressions and impaired glucose utilization. Ketoconazole and resveratrol attenuated the impaired glucose utilization by atorvastatin and rifampicin in both parental and overexpressed PXR cells. PXR knockdown significantly up-regulated GLUT2 and GCK proteins and abolished the decreased glucose consumption and uptake by atorvastatin and rifampicin. Animal experiments showed that atorvastatin and PCN significantly elicited postprandial hyperglycemia, leading to increase in glucose AUC. Expressions of GLUT2 and GCK in rat livers were markedly down-regulated by atorvastatin and PCN. In conclusion, atorvastatin impaired glucose utilization in hepatocytes via repressing GLUT2 and GCK expressions, which may be partly due to PXR activation.

  3. Bone quality and strength are greater in growing male rats fed fructose compared with glucose.

    PubMed

    Bass, Erica F; Baile, Clifton A; Lewis, Richard D; Giraudo, Silvia Q

    2013-12-01

    Optimization of peak bone mass during adolescence is important for osteoporosis prevention. Studies in rodents and humans have demonstrated the harmful effects of sugar intake on bone health. With the high levels of sucrose in the diets of adolescents, it is necessary to understand the influence of glucose and fructose on growing bones. This study compared the effects of dietary glucose and fructose on bone formation, microarchitecture, and strength. Because of the different metabolic effects of glucose and fructose, we hypothesized that their individual effects on bone would be different. Eighteen male Sprague-Dawley rats (age, 60 days) were randomly assigned to high-fructose (n = 9; 40% fructose, 10% glucose) or high-glucose diet (n = 9; 50% glucose) for 12 weeks. Bone measurements included histology and histomorphometry of trabecular bone in the distal femur and a 3-point bending test of the whole tibia. Whole liver mass and postprandial serum glucose, insulin, and triglycerides were used to assess differences in energy metabolism between the diets. There were no differences in food intake, body weight, or visceral adiposity between groups, but fructose consumption led to heavier livers (P = .001) and elevated serum triglycerides (P = .00). The distal femurs of fructose-fed rats had greater bone volume (bone volume/total volume; P = .03), lower bone surface (bone surface/bone volume; P = .02), and thicker trabeculae (trabecular thickness; P = .01). The tibias of the fructose-fed rats also withstood a greater maximum flexure load (P = .032). These results indicate that consumption of the high-fructose diet resulted in stronger bones with enhanced microarchitecture than consumption of the high-glucose diet.

  4. Neuroevolutional Approach to Cerebral Palsy and Speech.

    ERIC Educational Resources Information Center

    Mysak, Edward D.

    Intended for cerebral palsy specialists, the book emphasizes the contribution that a neuroevolutional approach to therapy can make to habilitation goals of the child with cerebral palsy and applies the basic principles of the Bobath approach to therapy. The first section discusses cerebral palsy as a reflection of disturbed neuro-ontogenisis and…

  5. Cerebral vasculitis associated with cocaine abuse

    SciTech Connect

    Kaye, B.R.; Fainstat, M.

    1987-10-16

    A case of cerebral vasculitis in a previously healthy 22-year-old man with a history of cocaine abuse is described. Cerebral angiograms showed evidence of vasculitis. A search for possible causes other than cocaine produced no results. The authors include cocaine with methamphetamines, heroin, and ephedrine as illicit drugs that can cause cerebral vasculitis.

  6. Behaviour Problems Amongst Children With Cerebral Palsy.

    ERIC Educational Resources Information Center

    Oswin, Maureen

    Based on 6 years of work with cerebral palsied children, the thesis considers types and causes of cerebral palsy, the life pattern of the child with cerebral palsy from early years to adolescence, and the effect of the handicapped child on his parents and family. Literature on behavior disorders is reviewed, and kinds of behavior problems are…

  7. Effects of hyperglycemia and effects of ketosis on cerebral perfusion, cerebral water distribution, and cerebral metabolism.

    PubMed

    Glaser, Nicole; Ngo, Catherine; Anderson, Steven; Yuen, Natalie; Trifu, Alexandra; O'Donnell, Martha

    2012-07-01

    Diabetic ketoacidosis (DKA) may cause brain injuries in children. The mechanisms responsible are difficult to elucidate because DKA involves multiple metabolic derangements. We aimed to determine the independent effects of hyperglycemia and ketosis on cerebral metabolism, blood flow, and water distribution. We used magnetic resonance spectroscopy to measure ratios of cerebral metabolites (ATP to inorganic phosphate [Pi], phosphocreatine [PCr] to Pi, N-acetyl aspartate [NAA] to creatine [Cr], and lactate to Cr) and diffusion-weighted imaging and perfusion-weighted imaging to assess cerebral water distribution (apparent diffusion coefficient [ADC] values) and cerebral blood flow (CBF) in three groups of juvenile rats (hyperglycemic, ketotic, and normal control). ATP-to-Pi ratio was reduced in both hyperglycemic and ketotic rats in comparison with controls. PCr-to-Pi ratio was reduced in the ketotic group, and there was a trend toward reduction in the hyperglycemic group. No significant differences were observed in NAA-to-Cr or lactate-to-Cr ratio. Cortical ADC was reduced in both groups (indicating brain cell swelling). Cortical CBF was also reduced in both groups. We conclude that both hyperglycemia and ketosis independently cause reductions in cerebral high-energy phosphates, CBF, and cortical ADC values. These effects may play a role in the pathophysiology of DKA-related brain injury.

  8. Sex influences the effect of a lifelong increase in serotonin transporter function on cerebral metabolism.

    PubMed

    Dawson, Neil; Ferrington, Linda; Olverman, Henry J; Harmar, Anthony J; Kelly, Paul A T

    2009-08-01

    Polymorphic variation in the human serotonin transporter (SERT; 5-HTT) gene resulting in a lifelong increase in SERT expression is associated with reduced anxiety and a reduced risk of affective disorder. Evidence also suggests that sex influences the effect of this polymorphism on affective functioning. Here we use novel transgenic mice overexpressing human SERT (hSERT OVR) to investigate the possible influence of sex on the alterations in SERT protein expression and cerebral function that occur in response to increased SERT gene transcription. SERT binding levels were significantly increased in the brain of hSERT OVR mice in a region-dependent manner. The increased SERT binding in hSERT OVR mice was more pronounced in female than in male mice. Cerebral metabolism, as reflected by a quantitative index of local cerebral glucose utilization (iLCMRglu), was significantly decreased in many brain regions in hSERT OVR female as compared with wild-type female mice, whereas there was no evidence for a significant effect in any region in males. The ability of hSERT overexpression to modify cerebral metabolism was significantly greater in females than in males. This effect was particularly pronounced in the medial striatum, globus pallidus, somatosensory cortex, mamillary body, and ventrolateral thalamus. Overall, these findings demonstrate that the influence of a lifelong increase in SERT gene transcription on cerebral function is greater in females than in males and may relate, in part, to the influence of sex on genetically driven increases in SERT protein expression.

  9. E2-25K SUMOylation inhibits proteasome for cell death during cerebral ischemia/reperfusion

    PubMed Central

    Jeong, Eun Il; Chung, Hae Won; Lee, Won Jea; Kim, Seo-Hyun; Kim, Hyunjoo; Choi, Seon-Guk; Jung, Yong-Keun

    2016-01-01

    Cerebral ischemia/reperfusion (I/R) causes brain damage accompanied by ubiquitin accumulation and impairment of proteasome activity. In this study, we report that E2-25K, an E2-conjugating enzyme, is SUMOylated during oxidative stress and regulates cerebral I/R-induced damage. Knockdown of E2-25K expression protects against oxygen/glucose deprivation and reoxygenation (OGD/R)-induced neuronal cell death, whereas ectopic expression of E2-25K stimulates it. Compared with the control mice, cerebral infarction lesions and behavioral/neurological disorders are ameliorated in E2-25K knockout mice during middle cerebral artery occlusion and reperfusion. In particular, E2-25K is SUMOylated at Lys14 under oxidative stress, OGD/R and I/R to prompt cell death. Further, E2-25K downregulates the proteasome subunit S5a to impair proteasome complex and thus restrain proteasome activity under oxidative stress. This proteasome inhibitory activity of E2-25K is dependent on its SUMOylation. These results suggest that E2-25K has a crucial role in oxidative stress and cerebral I/R-induced damage through inhibiting proteasome via its SUMOylation. PMID:28032866

  10. Cerebral Palsy: A Dental Update

    PubMed Central

    Sehrawat, Nidhi; Bansal, Kalpana; Chopra, Radhika

    2014-01-01

    ABSTRACT Special and medically compromised patients present a unique population that challenges the dentist’s skill and knowledge. Providing oral care to people with cerebral palsy (CP) requires adaptation of the skills we use everyday. In fact, most people with mild or moderate forms of CP can be treated successfully in the general practice setting. This article is to review various dental considerations and management of a CP patient. How to cite this article: Sehrawat N, Marwaha M, Bansal K, Chopra R. Cerebral Palsy: A Dental Update. Int J Clin Pediatr Dent 2014;7(2):109-118. PMID:25356010

  11. Confirmation and elimination of xylose metabolism bottlenecks in glucose phosphoenolpyruvate-dependent phosphotransferase system-deficient Clostridium acetobutylicum for simultaneous utilization of glucose, xylose, and arabinose.

    PubMed

    Xiao, Han; Gu, Yang; Ning, Yuanyuan; Yang, Yunliu; Mitchell, Wilfrid J; Jiang, Weihong; Yang, Sheng

    2011-11-01

    Efficient cofermentation of D-glucose, D-xylose, and L-arabinose, three major sugars present in lignocellulose, is a fundamental requirement for cost-effective utilization of lignocellulosic biomass. The Gram-positive anaerobic bacterium Clostridium acetobutylicum, known for its excellent capability of producing ABE (acetone, butanol, and ethanol) solvent, is limited in using lignocellulose because of inefficient pentose consumption when fermenting sugar mixtures. To overcome this substrate utilization defect, a predicted glcG gene, encoding enzyme II of the D-glucose phosphoenolpyruvate-dependent phosphotransferase system (PTS), was first disrupted in the ABE-producing model strain Clostridium acetobutylicum ATCC 824, resulting in greatly improved D-xylose and L-arabinose consumption in the presence of D-glucose. Interestingly, despite the loss of GlcG, the resulting mutant strain 824glcG fermented D-glucose as efficiently as did the parent strain. This could be attributed to residual glucose PTS activity, although an increased activity of glucose kinase suggested that non-PTS glucose uptake might also be elevated as a result of glcG disruption. Furthermore, the inherent rate-limiting steps of the D-xylose metabolic pathway were observed prior to the pentose phosphate pathway (PPP) in strain ATCC 824 and then overcome by co-overexpression of the D-xylose proton-symporter (cac1345), D-xylose isomerase (cac2610), and xylulokinase (cac2612). As a result, an engineered strain (824glcG-TBA), obtained by integrating glcG disruption and genetic overexpression of the xylose pathway, was able to efficiently coferment mixtures of D-glucose, D-xylose, and L-arabinose, reaching a 24% higher ABE solvent titer (16.06 g/liter) and a 5% higher yield (0.28 g/g) compared to those of the wild-type strain. This strain will be a promising platform host toward commercial exploitation of lignocellulose to produce solvents and biofuels.

  12. Population growth and consumption.

    PubMed

    Chalkley, K

    1997-04-01

    The relationship between population growth, resource consumption, and environmental degradation is complex. The rise in "greenhouse gases" that will cause climatic change is clearly due to human activity, and pollutants are often concentrated in densely populated areas. However, even an area with a negative population growth, such as Russia, can experience severe environmental degradation due to poor management. Consumption patterns have the most effect on ozone depletion, while population growth threatens biodiversity of and within species through the destruction of ecosystems. Migration joins population growth and social factors, such as land inequality, as major causes of deforestation, and global demand for water is expected to increase faster than the rate of population growth. Coastal development and over-fishing threaten to deplete the oceans, while soil quality is threatened by inappropriate land use. Estimates of the earth's carrying capacity range from less than 3 billion to more than 44 billion people, indicating how difficult it is to assess this figure. Development efforts throughout the world may lead to human gains that will ultimately be negated by environmental losses. These factors have led to growing support for environmentally sustainable development.

  13. Patterns of chocolate consumption.

    PubMed

    Seligson, F H; Krummel, D A; Apgar, J L

    1994-12-01

    Although consumed in some form since at least 460 AD, cacao (Theobroma cacao) was not used in confectionery until the 19th century when the cocoa press was invented. Per capita consumption of chocolate confectionery in the United States is moderate (approximately 4.6-4.8 kg/y) compared with that of many northern European countries (approximately 7-10 kg/y). Eleven percent of the US population reported consuming chocolate candy on > or = 1 of the 3 d of recorded food intake in the US Department of Agriculture Nationwide Food Consumption Survey 1987-1988; < 1.0% consumed chocolate every day. The Western region of the United States contained the highest proportion of chocolate consumers. More whites than other racial groups were consumers. Chocolate was consumed by more people in the winter than in other seasons and more was consumed at snacks than at meals. The mean amount of chocolate consumed was approximately 30-90 g/d, depending on sex and age group. Chocolate candy was only a minor contributor (0.7-3.4%) to the overall dietary intake of total energy, fat, saturated fatty acids, and stearic acid.

  14. Combined administration of hyperbaric oxygen and hydroxocobalamin improves cerebral metabolism after acute cyanide poisoning in rats.

    PubMed

    Hansen, M B; Olsen, N V; Hyldegaard, O

    2013-11-01

    Hyperbaric oxygen therapy (HBOT) or intravenous hydroxocobalamin (OHCob) both abolish cyanide (CN)-induced surges in interstitial brain lactate and glucose concentrations. HBOT has been shown to induce a delayed increase in whole blood CN concentrations, whereas OHCob may act as an intravascular CN scavenger. Additionally, HBOT may prevent respiratory distress and restore blood pressure during CN intoxication, an effect not seen with OHCob administration. In this report, we evaluated the combined effects of HBOT and OHCob on interstitial lactate, glucose, and glycerol concentrations as well as lactate-to-pyruvate ratio in rat brain by means of microdialysis during acute CN poisoning. Anesthetized rats were allocated to three groups: 1) vehicle (1.2 ml isotonic NaCl intra-arterially); 2) potassium CN (5.4 mg/kg intra-arterially); 3) potassium CN, OHCob (100 mg/kg intra-arterially) and subsequent HBOT (284 kPa in 90 min). OHCob and HBOT significantly attenuated the acute surges in interstitial cerebral lactate, glucose, and glycerol concentrations compared with the intoxicated rats given no treatment. Furthermore, the combined treatment resulted in consistent low lactate, glucose, and glycerol concentrations, as well as in low lactate-to-pyruvate ratios compared with CN intoxicated controls. In rats receiving OHCob and HBOT, respiration improved and cyanosis disappeared, with subsequent stabilization of mean arterial blood pressure. The present findings indicate that a combined administration of OHCob and HBOT has a beneficial and persistent effect on the cerebral metabolism during CN intoxication.

  15. Orienteering performance and ingestion of glucose and glucose polymers.

    PubMed

    Kujala, U M; Heinonen, O J; Kvist, M; Kärkkäinen, O P; Marniemi, J; Niittymäki, K; Havas, E

    1989-06-01

    The benefit of glucose polymer ingestion in addition to 2.5 per cent glucose before and during a prolonged orienteering competition was studied. The final time in the competition in the group ingesting 2.5 per cent glucose (group G, n = 10) was 113 min 37 s +/- 8 min 11 s, and in the group which had additionally ingested glucose polymer (group G + GP, n = 8) 107 min 18s +/- 4 min 41 s (NS). One fifth (21 per cent) of the time difference between the two groups was due to difference in orienteering errors. Group G + GP orienteered the last third of the competition faster than group G (p less than 0.05). The time ratio between the last third of the competition and the first third of the competition was lower in group G + GP than in group G (p less than 0.05). After the competition, there was statistically insignificant tendency to higher serum glucose and lower serum free fatty acid concentrations in group G + GP, and serum insulin concentration was higher in group G + GP than in group G (p less than 0.05). Three subjects reported that they exhausted during the competition. These same three subjects had the lowest serum glucose concentrations after the competition (2.9 mmol.1(-1), 2.9 mmol.1(-1), 3.5 mmol.1(-1] and all of them were from group G. It is concluded that glucose polymer syrup ingestion is beneficial for prolonged psychophysical performance.

  16. Fructose Alters Intermediary Metabolism of Glucose in Human Adipocytes and Diverts Glucose to Serine Oxidation in the One-Carbon Cycle Energy Producing Pathway.

    PubMed

    Varma, Vijayalakshmi; Boros, László G; Nolen, Greg T; Chang, Ching-Wei; Wabitsch, Martin; Beger, Richard D; Kaput, Jim

    2015-06-16

    Increased consumption of sugar and fructose as sweeteners has resulted in the utilization of fructose as an alternative metabolic fuel that may compete with glucose and alter its metabolism. To explore this, human Simpson-Golabi-Behmel Syndrome (SGBS) preadipocytes were differentiated to adipocytes in the presence of 0, 1, 2.5, 5 or 10 mM of fructose added to a medium containing 5 mM of glucose representing the normal blood glucose concentration. Targeted tracer [1,2-13C2]-d-glucose fate association approach was employed to examine the influence of fructose on the intermediary metabolism of glucose. Increasing concentrations of fructose robustly increased the oxidation of [1,2-13C2]-d-glucose to 13CO2 (p < 0.000001). However, glucose-derived 13CO2 negatively correlated with 13C labeled glutamate, 13C palmitate, and M+1 labeled lactate. These are strong markers of limited tricarboxylic acid (TCA) cycle, fatty acid synthesis, pentose cycle fluxes, substrate turnover and NAD+/NADP+ or ATP production from glucose via complete oxidation, indicating diminished mitochondrial energy metabolism. Contrarily, a positive correlation was observed between glucose-derived 13CO2 formed and 13C oleate and doses of fructose which indicate the elongation and desaturation of palmitate to oleate for storage. Collectively, these results suggest that fructose preferentially drives glucose through serine oxidation glycine cleavage (SOGC pathway) one-carbon cycle for NAD+/NADP+ production that is utilized in fructose-induced lipogenesis and storage in adipocytes.

  17. High yield single stage conversion of glucose to hydrogen by photofermentation with continuous cultures of Rhodobacter capsulatus JP91.

    PubMed

    Abo-Hashesh, Mona; Desaunay, Nicolas; Hallenbeck, Patrick C

    2013-01-01

    Photofermentative hydrogen (H(2)) production from glucose with the photosynthetic bacterium Rhodobacter capsulatus JP91 (hup(-)) was examined using a photobioreactor operated in continuous mode. Stable and high hydrogen yields on glucose were obtained at three different retention times (HRTs; 24, 48 and 72 h). The H(2) production rates, varying between 0.57 and 0.81 mmol/h, and optical densities (OD(600 nm)) were similar for the different HRTs examined. However, the rate of glucose consumption was influenced by HRT being greater at HRT 24h than HRTs 48 and 72 h. The highest hydrogen yield, 9.0 ± 1.2 mol H(2)/mol glucose, was obtained at 48 h HRT. These results show that single stage photofermentative hydrogen production from glucose using photobioreactors operated in continuous culture mode gives high, nearly stoichiometric yields of hydrogen from glucose, and thus is considerably more promising than either two stage photofermentation or co-culture approaches.

  18. Role of hypotension in decreasing cerebral blood flow in porcine endotoxemia

    SciTech Connect

    Miller, C.F.; Breslow, M.J.; Shapiro, R.M.; Traystman, R.J. )

    1987-10-01

    The role of reduced arterial blood pressure (MAP) in decreasing cerebral blood flow (CBF) during endotoxemia was studied in pentobarbital-anesthetized pigs. Microspheres were used to measure regional CBF changes during MAP manipulations in animals with and without endotoxin. Endotoxin decreased MAP to 50 mmHg and decreased blood flow to the cortex and cerebellum without affecting cerebral cortical oxygen consumption (CMRo{sub 2}). Elevating MAP from 50 to 70 mmHg during endotoxemia with norepinephrine did not change cortical blood flow or CMRo{sub 2} but increased cerebellar blood flow. Brain stem blood flow was not affected by endotoxin or norepinephrine. When MAP was decreased to 50 mmHg by hemorrhage without endotoxin, no change in blood flow to cortex, cerebellum, or brain stem was observed from base-line levels. These results suggest that decreased MAP below a lower limit for cerebral autoregulation does not account for the decreased CBF observed after endotoxin.

  19. Soda consumption during ad libitum food intake predicts weight change.

    PubMed

    Bundrick, Sarah C; Thearle, Marie S; Venti, Colleen A; Krakoff, Jonathan; Votruba, Susanne B

    2014-03-01

    Soda consumption may contribute to weight gain over time. Objective data were used to determine whether soda consumption predicts weight gain or changes in glucose regulation over time. Subjects without diabetes (128 men, 75 women; mean age 34.3±8.9 years; mean body mass index 32.5±7.4; mean percentage body fat 31.6%±8.6%) self-selected their food from an ad libitum vending machine system for 3 days. Mean daily energy intake was calculated from food weight. Energy consumed from soda was recorded as were food choices that were low in fat (<20% of calories from fat) or high in simple sugars (>30%). Food choices were expressed as percentage of daily energy intake. A subset of 85 subjects had measurement of follow-up weights and oral glucose tolerance (57 men, 28 women; mean follow-up time=2.5±2.1 years, range 6 months to 9.9 years). Energy consumed from soda was negatively related to age (r=-0.27, P=0.0001) and choosing low-fat foods (r=-0.35, P<0.0001), but positively associated with choosing solid foods high in simple sugars (r=0.45, P<0.0001) and overall average daily energy intake (r=0.46, P<0.0001). Energy intake from food alone did not differ between individuals who did and did not consume beverage calories (P=0.11). Total daily energy intake had no relationship with change in weight (P=0.29) or change in glucose regulation (P=0.38) over time. However, energy consumed from soda correlated with change in weight (r=0.21, P=0.04). This relationship was unchanged after adjusting for follow-up time and initial weight. Soda consumption is a marker for excess energy consumption and is associated with weight gain.

  20. Soda Consumption During Ad Libitum Food Intake Predicts Weight Change

    PubMed Central

    Bundrick, Sarah C.; Thearle, Marie S.; Venti, Colleen A.; Krakoff, Jonathan; Votruba, Susanne B.

    2013-01-01

    Soda consumption may contribute to weight gain over time. Objective data were used to determine whether soda consumption predicts weight gain or changes in glucose regulation over time. Subjects without diabetes (128 men, 75 women; mean age 34.3±8.9 years; mean body mass index [BMI] 32.5±7.4; mean percentage body fat 31.6%±8.6%) self-selected their food from an ad libitum vending machine system for 3 days. Mean daily energy intake was calculated from food weight. Energy consumed from soda was recorded as were food choices that were low in fat (<20%) or high in simple sugars (>30%). Food choices were expressed as percentage of daily energy intake. A subset of 85 subjects had measurement of follow-up weights and oral glucose tolerance (57 men, 28 women; mean follow-up time=2.5±2.1 years, range 6 months to 9.9 years). Energy consumed from soda was negatively related to age (r=–0.27, P=0.0001), and choosing low-fat foods (r=−0.35, P<0.0001), but positively associated with choosing solid foods high in simple sugars (r=0.45, P<0.0001) and overall average daily energy intake (r=0.46, P<0.0001). Energy intake from food alone did not differ between individuals who did and did not consume beverage calories (P=0.11). Total daily energy intake had no relationship with change in weight (P=0.29) or change in glucose regulation (P=0.38) over time. However, energy consumed from soda correlated with change in weight (r=0.21, P=0.04). This relationship was unchanged after adjusting for follow-up time and initial weight. Soda consumption is a marker for excess energy consumption and is associated with weight gain. PMID:24321742

  1. Immune system and glucose metabolism interaction in schizophrenia: a chicken-egg dilemma.

    PubMed

    Steiner, Johann; Bernstein, Hans-Gert; Schiltz, Kolja; Müller, Ulf J; Westphal, Sabine; Drexhage, Hemmo A; Bogerts, Bernhard

    2014-01-03

    Impaired glucose metabolism and the development of metabolic syndrome contribute to a reduction in the average life expectancy of individuals with schizophrenia. It is unclear whether this association simply reflects an unhealthy lifestyle or whether weight gain and impaired glucose tolerance in patients with schizophrenia are directly attributable to the side effects of atypical antipsychotic medications or disease-inherent derangements. In addition, numerous previous studies have highlighted alterations in the immune system of patients with schizophrenia. Increased concentrations of interleukin (IL)-1, IL-6, and transforming growth factor-beta (TGF-β) appear to be state markers, whereas IL-12, interferon-gamma (IFN-γ), tumor necrosis factor-alpha (TNF-α), and soluble IL-2 receptor (sIL-2R) appear to be trait markers of schizophrenia. Moreover, the mononuclear phagocyte system (MPS) and microglial activation are involved in the early course of the disease. This review illustrates a "chicken-egg dilemma", as it is currently unclear whether impaired cerebral glucose utilization leads to secondary disturbances in peripheral glucose metabolism, an increased risk of cardiovascular complications, and accompanying pro-inflammatory changes in patients with schizophrenia or whether immune mechanisms may be involved in the initial pathogenesis of schizophrenia, which leads to disturbances in glucose metabolism such as metabolic syndrome. Alternatively, shared underlying factors may be responsible for the co-occurrence of immune system and glucose metabolism disturbances in schizophrenia.

  2. Safety evaluation of glucose oxidase from Penicillium chrysogenum.

    PubMed

    Konishi, Tetsuya; Aoshima, Takuya; Mizuhashi, Fukutaro; Choi, Sharon S H; Roberts, Ashley

    2013-06-01

    Glucose oxidase (β-d-glucose:oxygen 1-oxidoreductase; EC 1.1.2.3.4) is used in the food and beverage industry as a preservative and stabilizer and is commonly derived from the fungus Aspergillus niger. Although the safety of glucose oxidase preparations from A. niger is well-established, the use of preparations derived from other fungal species is of interest; however, an assessment of their safety is warranted. Here, we report on the safety of a glucose oxidase preparation derived from the fungus Penicillium chrysogenum (designated as PGO) for commercial use in food processing, as well as an ingredient in food. In a repeated dose 90-day oral toxicity study conducted in rats, PGO was without compound-related adverse effects at doses of up to 15,600U/kg body weight/day, equivalent to 193mg total organic solids/kg body weight/day. In addition, PGO was non-genotoxic in a series of genotoxicity tests, including a bacterial reverse mutation test, an in vitro mammalian chromosomal aberration test, and a combined in vivo mammalian erythrocyte micronucleus test and comet assay. The results of these studies support the safe use of PGO in food for human consumption.

  3. Meal Detection and Carbohydrate Estimation Using Continuous Glucose Sensor Data.

    PubMed

    Samadi, Sediqeh; Turksoy, Kamuran; Hajizadeh, Iman; Feng, Jianyuan; Sevil, Mert; Cinar, Ali

    2017-03-03

    A meal detection and meal size estimation algorithm is developed for use in artificial pancreas (AP) control systems for people with type 1 diabetes. The algorithm detects the consumption of a meal and estimates its carbohydrate (CHO) amount to determine the appropriate dose of insulin bolus for a meal. It can be used in AP systems without manual meal announcements, or as a safety feature for people who may forget entering meal information manually. Using qualitative representation of the filtered continuous glucose monitor signal, a time period labeled as meal flag is identified. At every sampling time during this time period, a fuzzy system estimates the amount of CHO. Meal size estimator uses both glucose sensor and insulin data. Meal insulin bolus is based on estimated CHO. The algorithm does not change the basal insulin rate. 30 in silico subjects of the UVa/Padova simulator are used to illustrate the performance of the algorithm. For the evaluation data set, the sensitivity and false positives detection rates are 91.3%, 9.3%, respectively, the absolute error in CHO estimation is 23.1%, the mean blood glucose level is 142 mg/dl, and glucose concentration stays in target range (70 to 180 mg/dl) for 76.8% of simulation duration on average.

  4. Effects of ethanol ingestion on maternal and fetal glucose homeostasis

    SciTech Connect

    Singh, S.P.; Snyder, A.K.; Singh, S.K.

    1984-08-01

    Carbohydrate metabolism has been studied in the offspring of rats fed liqiud diet containing ethanol during gestation (EF group). Weight-matched control dams were given liquid diet either by the pair-fed technique (PF group) or ad libitum (AF group). EF and PF dams showed reduced food consumption and attenuated gain in body weight during the gestation period compared with the AF group. Blood glucose, liver glycogen, and plasma insulin levels were significantly reduced in EF and PF dams. Ethanol ingestion resulted in a significant decrease in litter survival and fetal body weight. At term, EF pups on average showed a 30% decrease in blood glucose levels and 40% decrease in plasma insulin levels compared with AF pups. One hour after birth, EF pups exhibited a marked increase in blood sugar level compared with either control group. Fetal hyperinsulinemia disappeared shortly after delivery in control pups, as expected; however, in EF pups, the fall in plasma insulin level was gradual. Fetal and neonatal plasma glucagon levels were not altered by ethanol exposure in utero. Blood glucose levels remained significantly low at 2 days of age in EF pups, but reached near control values at 4 days of age. Plasma insulin and glucagon were nearly equal in EF and control pups at 2 and 4 days of age. These results show aberrations in blood glucose, plasma insulin, and liver glycogen levels in offspring exposed to ethanol in utero.

  5. Caffeine induced changes in cerebral circulation

    SciTech Connect

    Mathew, R.J.; Wilson, W.H.

    1985-09-01

    While the caffeine induced cerebral vasoconstriction is well documented, the effects of oral ingestion of the drug in a dose range comparable to the quantities in which it is usually consumed and the intensity and duration of the associated reduction in cerebral circulation are unknown. Cerebral blood flow was measured via the TTXenon inhalation technique before and thirty and ninety minutes after the oral administration of 250 mg of caffeine or a placebo, under double-blind conditions. Caffeine ingestion was found to be associated with significant reductions in cerebral perfusion thirty and ninety minutes later. The placebo group showed no differences between the three sets of cerebral blood flow values.

  6. Glucose substitution prolongs maintenance of energy homeostasis and lifespan of telomere dysfunctional mice

    PubMed Central

    Missios, Pavlos; Zhou, Yuan; Guachalla, Luis Miguel; von Figura, Guido; Wegner, Andre; Chakkarappan, Sundaram Reddy; Binz, Tina; Gompf, Anne; Hartleben, Götz; Burkhalter, Martin D.; Wulff, Veronika; Günes, Cagatay; Sattler, Rui Wang; Song, Zhangfa; Illig, Thomas; Klaus, Susanne; Böhm, Bernhard O.; Wenz, Tina; Hiller, Karsten; Rudolph, K. Lenhard

    2014-01-01

    DNA damage and telomere dysfunction shorten organismal lifespan. Here we show that oral glucose administration at advanced age increases health and lifespan of telomere dysfunctional mice. The study reveals that energy consumption increases in telomere dysfunctional cells resulting in enhanced glucose metabolism both in glycolysis and in the tricarboxylic acid cycle at organismal level. In ageing telomere dysfunctional mice, normal diet provides insufficient amounts of glucose thus leading to impaired energy homeostasis, catabolism, suppression of IGF-1/mTOR signalling, suppression of mitochondrial biogenesis and tissue atrophy. A glucose-enriched diet reverts these defects by activating glycolysis, mitochondrial biogenesis and oxidative glucose metabolism. The beneficial effects of glucose substitution on mitochondrial function and glucose metabolism are blocked by mTOR inhibition but mimicked by IGF-1 application. Together, these results provide the first experimental evidence that telomere dysfunction enhances the requirement of glucose substitution for the maintenance of energy homeostasis and IGF-1/mTOR-dependent mitochondrial biogenesis in ageing tissues. PMID:25233189

  7. Metabolome response to glucose in the β-cell line INS-1 832/13.

    PubMed

    Lorenz, Matthew A; El Azzouny, Mahmoud A; Kennedy, Robert T; Burant, Charles F

    2013-04-12

    Glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells is triggered by metabolism of the sugar to increase ATP/ADP ratio that blocks the KATP channel leading to membrane depolarization and insulin exocytosis. Other metabolic pathways believed to augment insulin secretion have yet to be fully elucidated. To study metabolic changes during GSIS, liquid chromatography with mass spectrometry was used to determine levels of 87 metabolites temporally following a change in glucose from 3 to 10 mM glucose and in response to increasing concentrations of glucose in the INS-1 832/13 β-cell line. U-[(13)C]Glucose was used to probe flux in specific metabolic pathways. Results include a rapid increase in ATP/ADP, anaplerotic tricarboxylic acid cycle flux, and increases in the malonyl CoA pathway, support prevailing theories of GSIS. Novel findings include that aspartate used for anaplerosis does not derive from the glucose fuel added to stimulate insulin secretion, glucose flux into glycerol-3-phosphate, and esterification of long chain CoAs resulting in rapid consumption of long chain CoAs and de novo generation of phosphatidic acid and diacylglycerol. Further, novel metabolites with potential roles in GSIS such as 5-aminoimidazole-4-carboxamide ribotide (ZMP), GDP-mannose, and farnesyl pyrophosphate were found to be rapidly altered following glucose exposure.

  8. Continuous glucose monitoring, oral glucose tolerance, and insulin - glucose parameters in adolescents with simple obesity.

    PubMed

    El Awwa, A; Soliman, A; Al-Ali, M; Yassin, M; De Sanctis, V

    2012-09-01

    In obese adolescents pancreatic beta-cells may not be able to cope with insulin resistance leading to hyperglycemia and type2 diabetes (T2DM To assess oral glucose tolerance, 72-h continuous blood glucose concentrations (CGM) and calculate homeostatic model assessment (HOMA), and the quantitative insulin sensitivity check index (QUICKI) in 13 adolescents with simple obesity (BMI SDS=4 ± 1.06). OGTT performed in 13 obese adolescents (13.47 ± 3 years) revealed 3 cases (23%) with impaired fasting glucose (IFG: fasting glucose >5.6 mmol/L), 4 cases (30%) with impaired glucose tolerance (IGT: 2h blood glucose >7.8 <11.1 mmol/L), and none with diabetes. Using the continuous glucose monitoring system ( CGMS), IFG was detected in 4 cases, the maximum serum blood glucose (BG : 2h or more after meal) was >7.8 and <11.1 mmol/L (IGT) in 9 children (69%) and >11.1 mmol/L (diabetes) in one case (7.6%). Five cases had a minimum BG recorded of <2.7 mmol/L (hypoglycemia). No glycemic abnormality was detected using HbA1C (5.7 ± 0.3%). 11/13 patients had HOMA values >2.6 and QUICKI values <0.35 denoting insulin resistance. Beta cell mass percent (B %) = 200 ± 94.8% and insulin sensitivity values (IS)=50.4 ± 45.5% denoted insulin resistance with hyper-insulinaemia and preserved beta cell mass. In obese adolescents, CGMS is superior to OGTT and HbA1C in detecting glycemic abnormalities, which appears to be secondary to insulin resistance.

  9. Blueberries’ Impact on Insulin Resistance and Glucose Intolerance

    PubMed Central

    Stull, April J.

    2016-01-01

    Blueberries are a rich source of polyphenols, which include anthocyanin bioactive compounds. Epidemiological evidence indicates that incorporating blueberries into the diet may lower the risk of developing type 2 diabetes (T2DM). These findings are supported by pre-clinical and clinical studies that have shown improvements in insulin resistance (i.e., increased insulin sensitivity) after obese and insulin-resistant rodents or humans consumed blueberries. Insulin resistance was assessed by homeostatic model assessment-estimated insulin resistance (HOMA-IR), insulin tolerance tests, and hyperinsulinemic-euglycemic clamps. Additionally, the improvements in glucose tolerance after blueberry consumption were assessed by glucose tolerance tests. However, firm conclusions regarding the anti-diabetic effect of blueberries cannot be drawn due to the small number of existing clinical studies. Although the current evidence is promising, more long-term, randomized, and placebo-controlled trials are needed to establish the role of blueberries in preventing or delaying T2DM. PMID:27916833

  10. Cerebral ventricular volume during hyponatraemia.

    PubMed Central

    Decaux, G; Szyper, M; Grivegnée, A

    1983-01-01

    In order to determine if the neurologic manifestations in chronic hyponatraemia result partly from brain oedema, we measured the cerebral ventricular volume before and after correction of hyponatraemia in eight patients with central nervous system manifestations. Only the three patients with seizures showed a clear change in the ventricular size and probably had brain oedema. PMID:6101182

  11. Investigating cerebral oedema using poroelasticity.

    PubMed

    Vardakis, John C; Chou, Dean; Tully, Brett J; Hung, Chang C; Lee, Tsong H; Tsui, Po-Hsiang; Ventikos, Yiannis

    2016-01-01

    Cerebral oedema can be classified as the tangible swelling produced by expansion of the interstitial fluid volume. Hydrocephalus can be succinctly described as the abnormal accumulation of cerebrospinal fluid (CSF) within the brain which ultimately leads to oedema within specific sites of parenchymal tissue. Using hydrocephalus as a test bed, one is able to account for the necessary mechanisms involved in the interaction between oedema formation and cerebral fluid production, transport and drainage. The current state of knowledge about integrative cerebral dynamics and transport phenomena indicates that poroelastic theory may provide a suitable framework to better understand various diseases. In this work, Multiple-Network Poroelastic Theory (MPET) is used to develop a novel spatio-temporal model of fluid regulation and tissue displacement within the various scales of the cerebral environment. The model is applied through two formats, a one-dimensional finite difference - Computational Fluid Dynamics (CFD) coupling framework, as well as a two-dimensional Finite Element Method (FEM) formulation. These are used to investigate the role of endoscopic fourth ventriculostomy in alleviating oedema formation due to fourth ventricle outlet obstruction (1D coupled model) in addition to observing the capability of the FEM template in capturing important characteristics allied to oedema formation, like for instance in the periventricular region (2D model).

  12. Graft selection in cerebral revascularization.

    PubMed

    Baaj, Ali A; Agazzi, Siviero; van Loveren, Harry

    2009-05-01

    Cerebral revascularization constitutes an important treatment modality in the management of complex aneurysms, carotid occlusion, tumor, and moyamoya disease. Graft selection is a critical step in the planning of revascularization surgery, and depends on an understanding of graft and regional hemodynamics, accessibility, and patency rates. The goal of this review is to highlight some of these properties.

  13. Neuropathology of Acquired Cerebral Trauma.

    ERIC Educational Resources Information Center

    Bigler, Erin D.

    1987-01-01

    To help educators understand the cognitive and behavioral sequelae of cerebral injury, the neuropathology of traumatic brain injury and the main neuropathological features resulting from trauma-related brain damage are reviewed. A glossary with definitions of 37 neurological terms is appended. (Author/DB)

  14. Anxiety and Lateral Cerebral Function

    ERIC Educational Resources Information Center

    Tucker, Don M.; And Others

    1978-01-01

    Examines the effect of stressful and nonstressful experimental situations upon the processing capacity of each cerebral hemisphere, through observing the differential performance tasks presented to right and left visual half-fields (VHFs). Also examines attentional bias and lateral eye movements. (Author/RK)

  15. Sirt1 in cerebral ischemia

    PubMed Central

    Koronowski, Kevin B.; Perez-Pinzon, Miguel A.

    2015-01-01

    Cerebral ischemia is among the leading causes of death worldwide. It is characterized by a lack of blood flow to the brain that results in cell death and damage, ultimately causing motor, sensory, and cognitive impairments. Today, clinical treatment of cerebral ischemia, mostly stroke and cardiac arrest, is limited and new neuroprotective therapies are desperately needed. The Sirtuin family of oxidized nicotinamide adenine dinucleotide (NAD+)-dependent deacylases has been shown to govern several processes within the central nervous system as well as to possess neuroprotective properties in a variety of pathological conditions such as Alzheimer’s Disease, Parkinson’s Disease, and Huntington’s Disease, among others. Recently, Sirt1 in particular has been identified as a mediator of cerebral ischemia, with potential as a possible therapeutic target. To gather studies relevant to this topic, we used PubMed and previous reviews to locate, select, and resynthesize the lines of evidence presented here. In this review, we will first describe some functions of Sirt1 in the brain, mainly neurodevelopment, learning and memory, and metabolic regulation. Second, we will discuss the experimental evidence that has implicated Sirt1 as a key protein in the regulation of cerebral ischemia as well as a potential target for the induction of ischemic tolerance. PMID:26819971

  16. Confusional state and cerebral infarcts.

    PubMed Central

    García-Albea, E.

    1989-01-01

    Thirteen patients with confusional state and cerebral infarction were studied. Seven patients had optic pathway alterations. On computed tomographic scan, 2 patients had multiple infarctions and 10 had single infarctions, predominantly located in the temporo-occipital associative cortex. One patient had a normal scan. Reduction of 'selective attention', 'release' hallucinations, amnesic syndrome and secondary individual adjustment could explain the confusional state. PMID:2608563

  17. Cerebral gigantism with West syndrome.

    PubMed

    Ray, Munni; Malhi, P; Bhalla, A K; Singhi, P D

    2003-07-01

    A case of cerebral gigantism (Sotos syndrome) with West syndrome in a one-year-old male child is reported. The case had a large stature, typical facies and neurodevelopmental delay along with infantile spasms, which were refractory to treatment with valproate and clonazepam.

  18. Regulation of cerebral autoregulation by carbon dioxide.

    PubMed

    Meng, Lingzhong; Gelb, Adrian W

    2015-01-01

    Cerebral autoregulation describes a mechanism that maintains cerebral blood flow stable despite fluctuating perfusion pressure. Multiple nonperfusion pressure processes also regulate cerebral perfusion. These mechanisms are integrated. The effect of the interplay between carbon dioxide and perfusion pressure on cerebral circulation has not been specifically reviewed. On the basis of the published data and speculation on the aspects that are without supportive data, the authors offer a conceptualization delineating the regulation of cerebral autoregulation by carbon dioxide. The authors conclude that hypercapnia causes the plateau to progressively ascend, a rightward shift of the lower limit, and a leftward shift of the upper limit. Conversely, hypocapnia results in the plateau shifting to lower cerebral blood flows, unremarkable change of the lower limit, and unclear change of the upper limit. It is emphasized that a sound understanding of both the limitations and the dynamic and integrated nature of cerebral autoregulation fosters a safer clinical practice.

  19. Determinants of insulin-stimulated glucose disposal in middle-aged, premenopausal women.

    PubMed

    Toth, M J; Sites, C K; Cefalu, W T; Matthews, D E; Poehlman, E T

    2001-07-01

    Controversy exists regarding the relative importance of adiposity, physical fitness, and physical activity in the regulation of insulin-stimulated glucose disposal. To address this issue, we measured insulin-stimulated glucose disposal [mg. kg fat-free mass (FFM)(-1). min(-1); oxidative and nonoxidative components] in 45 nondiabetic, nonobese, premenopausal women (mean +/- SD; 47 +/- 3 yr) by use of hyperinsulinemic euglycemic clamp (40 mU. m(-2). min(-1)) and [6,6-2H2]glucose dilution techniques. We also measured body composition, abdominal fat distribution, thigh muscle fat content, maximal oxygen consumption (VO2 max), and physical activity energy expenditure ((2)H(2)(18)O kinetics) as possible correlates of glucose disposal. VO2 max was the strongest correlate of glucose disposal (r = 0.63, P < 0.01), whereas whole body and abdominal adiposity showed modest associations (range of r values from -0.32 to -0.46, P < 0.05 to P < 0.01). A similar pattern of correlations was observed for nonoxidative glucose disposal. None of the variables measured correlated with oxidative glucose disposal. The relationship of VO2 max to glucose disposal persisted after statistical control for FFM, percent body fat, and intra-abdominal fat (r = 0.40, P < 0.01). In contrast, correlations of total and regional adiposity measures to insulin sensitivity were no longer significant after statistical adjustment for VO2 max. VO2 max was the only variable to enter stepwise regression models as a significant predictor of total and nonoxidative glucose disposal. Our results highlight the importance of VO2 max as a determinant of glucose disposal and suggest that it may be a stronger determinant of variation in glucose disposal than total and regional adiposity in nonobese, nondiabetic, premenopausal women.

  20. Effect of ground cinnamon on postprandial blood glucose concentration in normal-weight and obese adults.

    PubMed

    Magistrelli, Ashley; Chezem, Jo Carol

    2012-11-01

    In healthy normal-weight adults, cinnamon reduces blood glucose concentration and enhances insulin sensitivity. Insulin resistance, resulting in increased fasting and postprandial blood glucose and insulin levels, is commonly observed in obese individuals. The objective of the study was to compare declines in postprandial glycemic response in normal-weight and obese subjects with ingestion of 6 g ground cinnamon. In a crossover study, subjects consumed 50 g available carbohydrate in instant farina cereal, served plain or with 6 g ground cinnamon. Blood glucose concentration, the main outcome measure, was assessed at minutes 0, 15, 30, 45, 60, 90, and 120. Repeated-measures analysis of variance evaluated the effects of body mass index (BMI) group, dietary condition, and time on blood glucose. Paired t-test assessed blood glucose at individual time points and glucose area under the curve (AUC) between dietary conditions. Thirty subjects between the ages of 18 and 30 years, 15 with BMIs between 18.5 and 24.9 and 15 with BMIs of 30.0 or more, completed the study. There was no significant difference in blood glucose between the two BMI groups at any time point. However, in a combined analysis of all subjects, the addition of cinnamon to the cereal significantly reduced 120-minute glucose AUC (P=0.008) and blood glucose at 15 (P=0.001), 30 (P<0.001), 45 (P<0.001), and 60 (P=0.001) minutes. At 120 minutes, blood glucose was significantly higher with cinnamon consumption (P<0.001). These results suggest cinnamon may be effective in moderating postprandial glucose response in normal weight and obese adults.

  1. Meal related glucose monitoring is a method of diagnosing glucose intolerance in pregnancies with high probability of gestational diabetes but normal glucose tolerance by oral glucose tolerance test.

    PubMed

    John, Mathew; Gopinath, Deepa

    2013-06-01

    Gestational diabetes mellitus diagnosed by classical oral glucose tolerance test can result in fetal complications like macrosomia and polyhydramnios. Guidelines exist on management of patients diagnose by abnormal oral glucose tolerance test with diet modification followed by insulin. Even patients with abnormal oral glucose tolerance test maintaining apparently normal blood sugars with diet are advised insulin if there is accelerated fetal growth. But patients with normal oral glucose tolerance test can present with macrosomia and polyhydramnios. These patients are labelled as not having gestational diabetes mellitus and are followed up with repeat oral glucose tolerance test. We hypothesise that these patients may have an altered placental threshold to glucose or abnormal sensitivity of fetal tissues to glucose. Meal related glucose monitoring in these patients can identify minor abnormalities in glucose disturbance and should be treated to targets similar to physiological levels of glucose in non pregnant adults.

  2. Cdh1 inhibits reactive astrocyte proliferation after oxygen-glucose deprivation and reperfusion.

    PubMed

    Qiu, Jin; Zhang, Chuanhan; Lv, Youyou; Zhang, Yue; Zhu, Chang; Wang, Xueren; Yao, Wenlong

    2013-08-01

    Anaphase-promoting complex (APC) and its co-activator Cdh1 are required for cell cycle regulation in proliferating cells. Recent studies have defined diverse functions of APC-Cdh1 in nervous system development and injury. Our previous studies have demonstrated the activity of APC-Cdh1 is down-regulated in hippocampus after global cerebral ischemia. But the detailed mechanisms of APC-Cdh1 in ischemic nervous injury are unclear. It is known that astrocyte proliferation is an important pathophysiological process following cerebral ischemia. However, the role of APC-Cdh1 in reactive astrocyte proliferation is not determined yet. In the present study, we cultured primary cerebral astrocytes and set up in vitro oxygen-glucose deprivation and reperfusion model. Our results showed that the expression of Cdh1 was decreased while Skp2 (the downstream substrate of APC-Cdh1) was increased in astrocytes after 1h oxygen-glucose deprivation and reperfusion. The down-regulation of APC-Cdh1 was coupled with reactive astrocyte proliferation. By constructing Cdh1 expressing lentivirus system, we also found exogenous Cdh1 can down-regulate Skp2 and inhibit reactive astrocyte proliferation induced by oxygen-glucose deprivation and reperfusion. Moreover, Western blot showed that other downstream proteins of APC-Cdh1, PFK-1 and SnoN, were decreased in the inhibition of reactive astrocyte proliferation with Cdh1 expressing lentivirus treatment. These results suggest that Cdh1 plays an important role in the regulation of reactive astrocyte proliferation induced by oxygen-glucose deprivation and reperfusion.

  3. Glucose metabolism and cardiac hypertrophy

    PubMed Central

    Kolwicz, Stephen C.; Tian, Rong

    2011-01-01

    The most notable change in the metabolic profile of hypertrophied hearts is an increased reliance on glucose with an overall reduced oxidative metabolism, i.e. a reappearance of the foetal metabolic pattern. In animal models, this change is attributed to the down-regulation of the transcriptional cascades promoting gene expression for fatty acid oxidation and mitochondrial oxidative phosphorylation in adult hearts. Impaired myocardial energetics in cardiac hypertrophy also triggers AMP-activated protein kinase (AMPK), leading to increased glucose uptake and glycolysis. Aside from increased reliance on glucose as an energy source, changes in other glucose metabolism pathways, e.g. the pentose phosphate pathway, the glucosamine biosynthesis pathway, and anaplerosis, are also noted in the hypertrophied hearts. Studies using transgenic mouse models and pharmacological compounds to mimic or counter the switch of substrate preference in cardiac hypertrophy have demonstrated that increased glucose metabolism in adult heart is not harmful and can be beneficial when it provides sufficient fuel for oxidative metabolism. However, improvement in the oxidative capacity and efficiency rather than the selection of the substrate is likely the ultimate goal for metabolic therapies. PMID:21502371

  4. DMH1 increases glucose metabolism through activating Akt in L6 rat skeletal muscle cells.

    PubMed

    Xie, Xin; Xu, Xiao-Ming; Li, Na; Zhang, Yong-Hui; Zhao, Yu; Ma, Chun-Yan; Dong, De-Li

    2014-01-01

    DMH1(4-[6-(4-Isopropoxyphenyl)pyrazolo [1,5-a]pyrimidin-3-yl] quinoline) is a compound C analogue with the structural modifications at the 3- and 6-positions in pyrazolo[1,5-a]pyrimidine backbone. Compound C was reported to inhibit both AMPK and Akt. Our preliminary work found that DMH1 activated Akt. Since Akt was involved in glucose metabolism, we aimed to identify the effects of DMH1 on glucose metabolism in L6 rat muscle cells and the potential mechanism. Results showed that DMH1 increased lactic acid release and glucose consumption in L6 rat muscle cells in a dose-dependent manner. DMH1 activated Akt in L6 cells. Akt inhibitor inhibited DMH1-induced Akt activation and DMH1-induced increases of glucose uptake and consumption. DMH1 had no cytotoxicity in L6 cells, but inhibited mitochondrial function and reduced ATP production. DMH1 showed no effect on AMPK, but in the presence of Akt inhibitor, DMH1 significantly activated AMPK. Compound C inhibited DMH1-induced Akt activation in L6 cells. Compound C inhibited DMH1-induced increase of glucose uptake, consumption and lactic acid release in L6 cells. DMH1 inhibited PP2A activity, and PP2A activator forskolin reversed DMH1-induced Akt activation. We concluded that DMH1 increased glucose metabolism through activating Akt and DMH1 activated Akt through inhibiting PP2A activity in L6 rat muscle cells. In view of the analogue structure of DMH1 and compound C and the contrasting effects of DMH1 and compound C on Akt, the present study provides a novel leading chemical structure targeting Akt with potential use for regulating glucose metabolism.

  5. The fluctuation of blood glucose, insulin and glucagon concentrations before and after insulin therapy in type 1 diabetes

    NASA Astrophysics Data System (ADS)

    Arif, Idam; Nasir, Zulfa

    2015-09-01

    A dynamical-systems model of plasma glucose, insulin and glucagon concentrations has been developed to investigate the effects of insulin therapy on blood glucose, insulin and glucagon regulations in type 1 diabetic patients. Simulation results show that the normal regulation of blood glucose concentration depends on insulin and glucagon concentrations. On type 1 diabetic case, the role of insulin on regulating blood glucose is not optimal because of the destruction of β cells in pancreas. These β cells destructions cause hyperglycemic episode affecting the whole body metabolism. To get over this, type 1 diabetic patients need insulin therapy to control the blood glucose level. This research has been done by using rapid acting insulin (lispro), long-acting insulin (glargine) and the combination between them to know the effects of insulin therapy on blood glucose, insulin and glucagon concentrations. Simulation results show that these different types of insulin have different effects on blood glucose concentration. Insulin therapy using lispro shows better blood glucose control after consumption of meals. Glargin gives better blood glucose control between meals and during sleep. Combination between lispro and glargine shows better glycemic control for whole day blood glucose level.

  6. Health implications of fructose consumption: A review of recent data.

    PubMed

    Rizkalla, Salwa W

    2010-11-04

    This paper reviews evidence in the context of current research linking dietary fructose to health risk markers.Fructose intake has recently received considerable media attention, most of which has been negative. The assertion has been that dietary fructose is less satiating and more lipogenic than other sugars. However, no fully relevant data have been presented to account for a direct link between dietary fructose intake and health risk markers such as obesity, triglyceride accumulation and insulin resistance in humans. First: a re-evaluation of published epidemiological studies concerning the consumption of dietary fructose or mainly high fructose corn syrup shows that most of such studies have been cross-sectional or based on passive inaccurate surveillance, especially in children and adolescents, and thus have not established direct causal links. Second: research evidence of the short or acute term satiating power or increasing food intake after fructose consumption as compared to that resulting from normal patterns of sugar consumption, such as sucrose, remains inconclusive. Third: the results of longer-term intervention studies depend mainly on the type of sugar used for comparison. Typically aspartame, glucose, or sucrose is used and no negative effects are found when sucrose is used as a control group.Negative conclusions have been drawn from studies in rodents or in humans attempting to elucidate the mechanisms and biological pathways underlying fructose consumption by using unrealistically high fructose amounts.The issue of dietary fructose and health is linked to the quantity consumed, which is the same issue for any macro- or micro nutrients. It has been considered that moderate fructose consumption of ≤50g/day or ~10% of energy has no deleterious effect on lipid and glucose control and of ≤100g/day does not influence body weight. No fully relevant data account for a direct link between moderate dietary fructose intake and health risk markers.

  7. Oxygen consumption of human heart cells in monolayer culture.

    PubMed

    Sekine, Kaori; Kagawa, Yuki; Maeyama, Erina; Ota, Hiroki; Haraguchi, Yuji; Matsuura, Katsuhisa; Shimizu, Tatsuya

    2014-09-26

    Tissue engineering in cardiovascular regenerative therapy requires the development of an efficient oxygen supply system for cell cultures. However, there are few studies which have examined human cardiomyocytes in terms of oxygen consumption and metabolism in culture. We developed an oxygen measurement system equipped with an oxygen microelectrode sensor and estimated the oxygen consumption rates (OCRs) by using the oxygen concentration profiles in culture medium. The heart is largely made up of cardiomyocytes, cardiac fibroblasts, and cardiac endothelial cells. Therefore, we measured the oxygen consumption of human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs), cardiac fibroblasts, human cardiac microvascular endothelial cell and aortic smooth muscle cells. Then we made correlations with their metabolisms. In hiPSC-CMs, the value of the OCR was 0.71±0.38pmol/h/cell, whereas the glucose consumption rate and lactate production rate were 0.77±0.32pmol/h/cell and 1.61±0.70pmol/h/cell, respectively. These values differed significantly from those of the other cells in human heart. The metabolism of the cells that constitute human heart showed the molar ratio of lactate production to glucose consumption (L/G ratio) that ranged between 1.97 and 2.2. Although the energy metabolism in adult heart in vivo is reported to be aerobic, our data demonstrated a dominance of anaerobic glycolysis in an in vitro environment. With our measuring system, we clearly showed the differences in the metabolism of cells between in vivo and in vitro monolayer culture. Our results regarding cell OCRs and metabolism may be useful for future tissue engineering of human heart.

  8. Dehydration accelerates reductions in cerebral blood flow during prolonged exercise in the heat without compromising brain metabolism.

    PubMed

    Trangmar, Steven J; Chiesa, Scott T; Llodio, Iñaki; Garcia, Benjamin; Kalsi, Kameljit K; Secher, Niels H; González-Alonso, José

    2015-11-01

    Dehydration hastens the decline in cerebral blood flow (CBF) during incremental exercise, whereas the cerebral metabolic rate for O2 (CMRO2 ) is preserved. It remains unknown whether CMRO2 is also maintained during prolonged exercise in the heat and whether an eventual decline in CBF is coupled to fatigue. Two studies were undertaken. In study 1, 10 male cyclists cycled in the heat for ∼2 h with (control) and without fluid replacement (dehydration) while internal and external carotid artery blood flow and core and blood temperature were obtained. Arterial and internal jugular venous blood samples were assessed with dehydration to evaluate CMRO2 . In study 2, in 8 male subjects, middle cerebral artery blood velocity was measured during prolonged exercise to exhaustion in both dehydrated and euhydrated states. After a rise at the onset of exercise, internal carotid artery flow declined to baseline with progressive dehydration (P < 0.05). However, cerebral metabolism remained stable through enhanced O2 and glucose extraction (P < 0.05). External carotid artery flow increased for 1 h but declined before exhaustion. Fluid ingestion maintained cerebral and extracranial perfusion throughout nonfatiguing exercise. During exhaustive exercise, however, euhydration delayed but did not prevent the decline in cerebral perfusion. In conclusion, during prolonged exercise in the heat, dehydration accelerates the decline in CBF without affecting CMRO2 and also restricts extracranial perfusion. Thus, fatigue is related to a reduction in CBF and extracranial perfusion rather than CMRO2 .

  9. SPECT study of regional cerebral blood flow in Alzheimer disease

    SciTech Connect

    Bonte, F.J.; Ross, E.D.; Chehabi, H.H.; Devous, M.D. Sr.

    1986-07-01

    A common cause of dementia in late midlife and old age is Alzheimer disease (AD), which affects more than one in 20 individuals over the age of 65. Past studies of regional cerebral blood flow (rCBF) in patients with AD here suggested blood flow abnormalities, but findings have differed. We have studied 37 patients diagnosed as having AD with inhalation and washout of /sup 133/Xe and single-photon emission computed tomography (SPECT), obtaining evidence of abnormal rCBF patterns in 19. Flow reductions were most common in the temporoparietal regions and were occasionally found in the frontal areas. Investigators using positron-emission tomography (PET) have identified similar findings with respect to rCBF and regional oxygen, glucose, and protein metabolism. The SPECT determination of rCBF, which gives information similar to that provided by PET, may assume importance in the diagnosis of AD and in the differential diagnosis of the dementias.

  10. Selective cerebral perfusion for cerebral protection: what we do know

    PubMed Central

    Tang, Gilbert H. L.

    2013-01-01

    Selective antegrade cerebral perfusion (SACP) for aortic arch surgery has evolved considerably since it was first reported. Various pressure rates have been investigated through animal models, as has the effect of warmer perfusate temperatures and hematocrit. Clinical research into pH management, the role of unilateral and bilateral perfusion, and core temperatures have further refined the procedure. We recommend the following protocol for SACP: perfusion pressure between 40-60 mmHg, flow rates between 6-10 mL/kg/min, and perfusate temperature of 20-28 °C; core cooling to 18-30 °C contingent on duration of arrest; alpha-stat pH management; hematocrit between 25-30%; near infrared spectroscopy to monitor cerebral perfusion; and bilateral perfusion when prolonged durations of SACP is anticipated. PMID:23977601

  11. Glucose oxidation positively regulates glucose uptake and improves cardiac function recovery after myocardial reperfusion.

    PubMed

    Li, Tingting; Xu, Jie; Qin, Xinghua; Hou, Zuoxu; Guo, Yongzheng; Liu, Zhenhua; Wu, Jianjiang; Zheng, Hong; Zhang, Xing; Gao, Feng

    2017-03-21

    Myocardial reperfusion decreases glucose oxidation and uncouples glucose oxidation from glycolysis. Therapies that increase glucose oxidation lessen myocardial ischemia/reperfusion injury. However, the regulation of glucose uptake during reperfusion remains poorly understood. Here we found that glucose uptake was remarkably diminished in myocardium following reperfusion in Sprague-Dawley rats as detected by 18F-labeled and fluorescent-labeled glucose analogs, even though GLUT1 was upregulated by 3 folds and GLUT4 translocation remained unchanged compared with those of sham rats. The decreased glucose uptake was accompanied by suppressed glucose oxidation. Interestingly, stimulating glucose oxidation by inhibition of pyruvate dehydrogenase kinase 4 (PDK4), a rate-limiting enzyme for glucose oxidation, increased glucose uptake and alleviated ischemia/reperfusion injury. In vitro data in neonatal myocytes showed that PDK4 overexpression decreased glucose uptake, while its knockdown increased glucose uptake, suggesting a role of PDK4 in regulating glucose uptake. Moreover, inhibition of PDK4 increased myocardial glucose uptake with concomitant enhancement of cardiac insulin sensitivity following myocardial ischemia/reperfusion. These results showed that the suppressed glucose oxidation mediated by PDK4 contributes to the reduced glucose uptake in myocardium following reperfusion, and enhancement of glucose uptake exerts cardioprotection. The findings suggest that stimulating glucose oxidation via PDK4 could be an efficient approach to improve recovery from myocardial ischemia/reperfusion injury.

  12. Deletion of Cyclophilin D Impairs β-Oxidation and Promotes Glucose Metabolism

    PubMed Central

    Tavecchio, Michele; Lisanti, Sofia; Bennett, Michael J.; Languino, Lucia R.; Altieri, Dario C.

    2015-01-01

    Cyclophilin D (CypD) is a mitochondrial matrix protein implicated in cell death, but a potential role in bioenergetics is not understood. Here, we show that loss or depletion of CypD in cell lines and mice induces defects in mitochondrial bioenergetics due to impaired fatty acid β-oxidation. In turn, CypD loss triggers a global compensatory shift towards glycolysis, with transcriptional upregulation of effectors of glucose metabolism, increased glucose consumption and higher ATP production. In vivo, the glycolytic shift secondary to CypD deletion is associated with expansion of insulin-producing β-cells, mild hyperinsulinemia, improved glucose tolerance, and resistance to high fat diet-induced liver damage and weight gain. Therefore, CypD is a novel regulator of mitochondrial bioenergetics, and unexpectedly controls glucose homeostasis, in vivo. PMID:26515038

  13. There is no sweet escape from social pain: glucose does not attenuate the effects of ostracism.

    PubMed

    Miller, Holly C; Bourrasseau, Camille; Williams, Kipling D; Molet, Mikaël

    2014-01-30

    Ostracism causes social pain and is known to activate regions of the brain that are involved in the representation of physical pain. Previous research has observed that acetominophen (a common pain reliever) can reduce the pain of exclusion. The taste and consumption of glucose can also relieve physical pain, and the purpose of the current study was to examine whether it might also reduce the negative emotional effects of ostracism. In an appropriately powered experiment, participants were given 25g of glucose or a sucralose placebo before being ostracized while playing Cyberball. Strong effects of ostracism were observed, however, there was no effect of glucose on immediate or delayed self-reported needs or mood. These results are discussed in reference to the possibility that social pain is unlike physical pain since the latter is affected by glucose, which is believed to lessen pain by increasing endogenous opioid activity.

  14. Comparative use of glucose and fructose in cultured fibroblasts from patients with hereditary fructose intolerance.

    PubMed

    Lemonnier, F; Delhotal-Landes, B; Couturier, M; Decimo, D; Odiévre, M; Gautier, M; Lemonnier, A

    1987-01-01

    The utilization of fructose and glucose by fibroblast cultures obtained from patients with hereditary fructose intolerance (HFI) was studied in comparison with fibroblast controls. The cell growth, the time course of D-glucose or D-fructose uptake and the consumption of fructose were similar for both HFI and control cells. Some results showed significant differences between these two cell types: HFI cells consumed less glucose, produced less lactate and contained less glycogen than control cells. Furthermore, significantly less [U-14C]D-glucose and [U-14C]D-fructose was incorporated into lipids in HFI cells than in control cells. The mechanisms responsible for these differences observed between the two cell types are not known.

  15. Heritable transmission of stress resistance by high dietary glucose in Caenorhabditis elegans.

    PubMed

    Tauffenberger, Arnaud; Parker, J Alex

    2014-05-01

    Glucose is a major energy source and is a key regulator of metabolism but excessive dietary glucose is linked to several disorders including type 2 diabetes, obesity and cardiac dysfunction. Dietary intake greatly influences organismal survival but whether the effects of nutritional status are transmitted to the offspring is an unresolved question. Here we show that exposing Caenorhabditis elegans to high glucose concentrations in the parental generation leads to opposing negative effects on fecundity, while having protective effects against cellular stress in the descendent progeny. The transgenerational inheritance of glucose-mediated phenotypes is dependent on the insulin/IGF-like signalling pathway and components of the histone H3 lysine 4 trimethylase complex are essential for transmission of inherited phenotypes. Thus dietary over-consumption phenotypes are heritable with profound effects on the health and survival of descendants.

  16. Glucose, glycolysis and lymphocyte responses.

    PubMed

    Donnelly, Raymond P; Finlay, David K

    2015-12-01

    Activated lymphocytes engage in robust growth and rapid proliferation. To achieve this, they tend to adopt a form of glucose metabolism termed aerobic glycolysis. This type of metabolism allows for the use of large amounts of glucose to generate energy, but also to support biosynthetic processes. This review article will discuss how aerobic glycolysis supports the biosynthetic demands of activated T cells, B cells and Natural Killer cells, and the emerging concept that glycolysis is integrally linked to the differentiation and function of these lymphocyte populations.

  17. Genetics of cerebral small vessel disease.

    PubMed

    Choi, Jay Chol

    2015-01-01

    Cerebral small vessel disease (SVD) is an important cause of stroke and cognitive impairment among the elderly and is a more frequent cause of stroke in Asia than in the US or Europe. Although traditional risk factors such as hypertension or diabetes mellitus are important in the development of cerebral SVD, the exact pathogenesis is still uncertain. Both, twin and family history studies suggest heritability of sporadic cerebral SVD, while the candidate gene study and the genome-wide association study (GWAS) are mainly used in genetic research. Robust associations between the candidate genes and occurrence of various features of sporadic cerebral SVD, such as lacunar infarction, intracerebral hemorrhage, or white matter hyperintensities, have not yet been elucidated. GWAS, a relatively new technique, overcomes several shortcomings of previous genetic techniques, enabling the detection of several important genetic loci associated with cerebral SVD. In addition to the more common, sporadic cerebral SVD, several single-gene disorders causing cerebral SVD have been identified. The number of reported cases is increasing as the clinical features become clear and diagnostic examinations are more readily available. These include cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy, COL4A1-related cerebral SVD, autosomal dominant retinal vasculopathy with cerebral leukodystrophy, and Fabry disease. These rare single-gene disorders are expected to play a crucial role in our understanding of cerebral SVD pathogenesis by providing animal models for the identification of cellular, molecular, and biochemical changes underlying cerebral small vessel damage.

  18. Genetics of Cerebral Small Vessel Disease

    PubMed Central

    2015-01-01

    Cerebral small vessel disease (SVD) is an important cause of stroke and cognitive impairment among the elderly and is a more frequent cause of stroke in Asia than in the US or Europe. Although traditional risk factors such as hypertension or diabetes mellitus are important in the development of cerebral SVD, the exact pathogenesis is still uncertain. Both, twin and family history studies suggest heritability of sporadic cerebral SVD, while the candidate gene study and the genome-wide association study (GWAS) are mainly used in genetic research. Robust associations between the candidate genes and occurrence of various features of sporadic cerebral SVD, such as lacunar infarction, intracerebral hemorrhage, or white matter hyperintensities, have not yet been elucidated. GWAS, a relatively new technique, overcomes several shortcomings of previous genetic techniques, enabling the detection of several important genetic loci associated with cerebral SVD. In addition to the more common, sporadic cerebral SVD, several single-gene disorders causing cerebral SVD have been identified. The number of reported cases is increasing as the clinical features become clear and diagnostic examinations are more readily available. These include cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy, COL4A1-related cerebral SVD, autosomal dominant retinal vasculopathy with cerebral leukodystrophy, and Fabry disease. These rare single-gene disorders are expected to play a crucial role in our understanding of cerebral SVD pathogenesis by providing animal models for the identification of cellular, molecular, and biochemical changes underlying cerebral small vessel damage. PMID:25692103

  19. Association between fried food consumption and hypertension in Korean adults.

    PubMed

    Kang, Yunjin; Kim, Jihye

    2016-01-14

    The present study explored the relationships between fried food consumption and metabolic risk factors and hypertension in Korean adults. The study was based on the fifth Korean National Health and Nutrition Examination Survey between 2010 and 2011. A total of 9221 Korean adults aged ≥19 years were studied. Fried food consumption was assessed using a validated FFQ. Metabolic risk factors such as waist circumference, fasting plasma glucose (FPG), TAG, HDL-cholesterol and systolic and diastolic blood pressure (SBP and DBP) were measured. Hypertension was defined as SBP≥140 mmHg, DBP≥90 mmHg or current use of antihypertensive medication. Adjusted OR for elevated blood pressure significantly increased in men (OR 1·62; 95% CI 1·11, 2·37; P(trend)=0·0447) and women (OR 2·20; 95% CI 1·21, 4·00; P(trend)=0·0403) with a greater than twice a week consumption of fried food compared with those who rarely consumed fried food. However, fried food consumption was not associated with other metabolic risk factors (abdominal obesity, high FPG, hypertriacylglycerolaemia, low HDL-cholesterol and the metabolic syndrome). The adjusted OR for hypertension increased by 2·4-fold in women (OR 2·37; 95% CI 1·19, 4·72; P(trend)=0·0272) with a greater than twice a week fried food consumption compared with those who rarely consumed it. No significant association was found between fried food consumption and hypertension in men. This study suggests that frequent fried food consumption is associated with hypertension in Korean women. Further studies are needed to investigate the effect of different types of fried foods on hypertension.

  20. Twenty-seven Years of Cerebral Pyruvate Recycling.

    PubMed

    Cerdán, Sebastián

    2017-01-18

    Cerebral pyruvate recycling is a metabolic pathway deriving carbon skeletons and reducing equivalents from mitochondrial oxaloacetate and malate, to the synthesis of mitochondrial and cytosolic pyruvate, lactate and alanine. The pathway allows both, to provide the tricarboxylic acid cycle with pyruvate molecules produced from alternative substrates to glucose and, to generate reducing equivalents necessary for the operation of NADPH requiring processes. At the cellular level, pyruvate recycling involves the activity of malic enzyme, or the combined activities of phosphoenolpyruvate carboxykinase and pyruvate kinase, as well as of those transporters of the inner mitochondrial membrane exchanging the corresponding intermediates. Its cellular localization between the neuronal or astrocytic compartments of the in vivo brain has been controversial, with evidences favoring either a primarily neuronal or glial localizations, more recently accepted to occur in both environments. This review provides a brief history on the detection and characterization of the pathway, its relations with the early developments of cerebral high resolution (13)C NMR, and its potential neuroprotective functions under hypoglycemic conditions or ischemic redox stress.

  1. PET measurements of cerebral metabolism corrected for CSF contributions

    SciTech Connect

    Chawluk, J.; Alavi, A.; Dann, R.; Kushner, M.J.; Hurtig, H.; Zimmerman, R.A.; Reivich, M.

    1984-01-01

    Thirty-three subjects have been studied with PET and anatomic imaging (proton-NMR and/or CT) in order to determine the effect of cerebral atrophy on calculations of metabolic rates. Subgroups of neurologic disease investigated include stroke, brain tumor, epilepsy, psychosis, and dementia. Anatomic images were digitized through a Vidicon camera and analyzed volumetrically. Relative areas for ventricles, sulci, and brain tissue were calculated. Preliminary analysis suggests that ventricular volumes as determined by NMR and CT are similar, while sulcal volumes are larger on NMR scans. Metabolic rates (18F-FDG) were calculated before and after correction for CSF spaces, with initial focus upon dementia and normal aging. Correction for atrophy led to a greater increase (%) in global metabolic rates in demented individuals (18.2 +- 5.3) compared to elderly controls (8.3 +- 3.0,p < .05). A trend towards significantly lower glucose metabolism in demented subjects before CSF correction was not seen following correction for atrophy. These data suggest that volumetric analysis of NMR images may more accurately reflect the degree of cerebral atrophy, since NMR does not suffer from beam hardening artifact due to bone-parenchyma juxtapositions. Furthermore, appropriate correction for CSF spaces should be employed if current resolution PET scanners are to accurately measure residual brain tissue metabolism in various pathological states.

  2. Fluorescent nano-PEBBLE sensors designed for intracellular glucose imaging.

    PubMed

    Xu, Hao; Aylott, Jonathan W; Kopelman, Raoul

    2002-11-01

    Polyacrylamide-based, ratiometric, spherical, optical nanosensors, or polyacrylamide PEBBLEs (Probes Encapsulated By Biologically Localized Embedding), have been fabricated, aimed at real-time glucose imaging in intact biological systems, i.e. living cells. These nanosensors are prepared using a microemulsion polymerization process, and their average size is about 45 nm in diameter. The sensors incorporate glucose oxidase (GOx), an oxygen sensitive fluorescent indicator (Ru[dpp(SO3Na)2]3)Cl2, and an oxygen insensitive fluorescent dye, Oregon Green 488-dextran or Texas Red-dextran, as a reference for the purpose of ratiometric intensity measurements. The enzymatic oxidation of glucose to gluconic acid results in the local depletion of oxygen, which is measured by the oxygen sensitive ruthenium dye. The small size and inert matrix of these sensors allows them to be inserted into living cells with minimal physical and chemical perturbations to their biological functions. The PEBBLE matrix protects the enzyme and fluorescent dyes from interference by proteins in cells, enabling reliable in vivo chemical analysis. Conversely, the matrix also significantly reduces the toxicity of the indicator and reference dyes to the cells, so that a larger variety of dyes can be used in optimal fashion. Furthermore, the PEBBLE matrix enables the synergistic approach in which there is a steady state of local oxygen consumption, and this cannot be achieved by separately introducing free enzyme and dyes into a cell. The work presented here describes the production and characterization of glucose sensitive PEBBLEs, and their potential for intracellular glucose measurements. The sensor response is determined in terms of the linear range, ratiometric operation, response time, sensor stability, reversibility and immunity to interferences.

  3. [8-hydroxy-dihydroberberine ameliorated insulin resistance induced by high FFA and high glucose in 3T3-L1 adipocytes].

    PubMed

    Xu, Li-jun; Lu, Fu-er; Yi, Ping; Wang, Zeng-si; Wei, Shi-chao; Chen, Guang; Dong, Hui; Zou, Xin

    2009-11-01

    The purpose of the study is to investigate the effect of 8-hydroxy-dihydroberberine on insulin resistance induced by high free fatty acid (FFA) and high glucose in 3T3-L1 adipocytes and its possible molecular mechanism. Palmic acid or glucose in combination with insulin was used to induce insulin resistance in 3T3-L1 adipocytes. 8-Hydroxy-dihydroberberine and berberine were added to the cultured medium separately, which were considered as treated group and positive control group. The rate of glucose uptake was determined by 2-deoxy-[3H]-D-glucose method. The amount of glucose consumption in the medium was measured by glucose oxidase method. Cell growth and proliferation of 3T3-L1 adipocytes were detected with Cell Counting Kit-8 (CCK-8) assay. After incubated with palmic acid for 24 hours or glucose with insulin for 18 hours, the rate of glucose transport in 3T3-L1 adipocytes was inhibited by 67% and 58%, respectively. The amount of glucose consumption in 3T3-L1 adipose cells was decreased by 41% after cells were incubated with palmic acid for 24 h. However, the above changes were reversed by pretreatment with 8-hydroxy-dihydroberberine for 24 and 48 h. Significant difference existed between groups. Insulin resistance in 3T3-L1 adipocytes, which is induced by high FFA and high glucose, could be ameliorated by 8-hydroxy-dihydroberberine.

  4. Amelioration of oxygen and glucose deprivation-induced neuronal death by chloroform fraction of bay leaves (Laurus nobilis).

    PubMed

    Cho, Eun-Young; Lee, Sung-Jin; Nam, Kung-Woo; Shin, Jongheon; Oh, Ki-bong; Kim, Kyeong Ho; Mar, Woongchon

    2010-01-01

    The purpose of this study was to determine whether the Laurus nobilis chloroform fraction (LNCF) protects against cerebral ischemia neuronal damage. Human neuroblastoma SH-SY5Y cells and brain slices from rats were subjected to oxygen and glucose deprivation (OGD), followed by reoxgenation with and without LNCF. The viabilities of SH-SY5Y cells and brain slices from the rats were 58.5±4.9% and 79.7±5.9% in the group subjected to OGD, and 80.4±0.4% and 97.2±1.9% at 4 µg/ml of LNCF, respectively. LNCF also significantly inhibited death-associated protein kinase (DAPK) dephosphorylation. Pretreatment with LNCF at 4 mg/kg significantly decreased infarct size by 79% of vehicle control in the middle cerebral artery occlusion (MCAO) in vivo model. LNCF is a neuroprotective drug candidate against cerebral ischemia neuronal damage.

  5. Changes in Cerebral Blood Flow during an Alteration in Glycemic State in a Large Non-human Primate (Papio hamadryas sp.)

    PubMed Central

    Kochunov, Peter; Wey, Hsiao-Ying; Fox, Peter T.; Lancaster, Jack L.; Davis, Michael D.; Wang, Danny J. J.; Lin, Ai-Ling; Bastarrachea, Raul A.; Andrade, Marcia C. R.; Mattern, Vicki; Frost, Patrice; Higgins, Paul B.; Comuzzie, Anthony G.; Voruganti, Venkata S.

    2017-01-01

    Changes in cerebral blood flow (CBF) during a hyperglycemic challenge were mapped, using perfusion-weighted MRI, in a group of non-human primates. Seven female baboons were fasted for 16 h prior to 1-h imaging experiment, performed under general anesthesia, that consisted of a 20-min baseline, followed by a bolus infusion of glucose (500 mg/kg). CBF maps were collected every 7 s and blood glucose and insulin levels were sampled at regular intervals. Blood glucose levels rose from 51.3 ± 10.9 to 203.9 ± 38.9 mg/dL and declined to 133.4 ± 22.0 mg/dL, at the end of the experiment. Regional CBF changes consisted of four clusters: cerebral cortex, thalamus, hypothalamus, and mesencephalon. Increases in the hypothalamic blood flow occurred concurrently with the regulatory response to systemic glucose change, whereas CBF declined for other clusters. The return to baseline of hypothalamic blood flow was observed while CBF was still increasing in other brain regions. The spatial pattern of extra-hypothalamic CBF changes was correlated with the patterns of several cerebral networks including the default mode network. These findings suggest that hypothalamic blood flow response to systemic glucose levels can potentially be explained by regulatory activity. The response of extra-hypothalamic clusters followed a different time course and its spatial pattern resembled that of the default-mode network. PMID:28261040

  6. Changes in Cerebral Blood Flow during an Alteration in Glycemic State in a Large Non-human Primate (Papio hamadryas sp.).

    PubMed

    Kochunov, Peter; Wey, Hsiao-Ying; Fox, Peter T; Lancaster, Jack L; Davis, Michael D; Wang, Danny J J; Lin, Ai-Ling; Bastarrachea, Raul A; Andrade, Marcia C R; Mattern, Vicki; Frost, Patrice; Higgins, Paul B; Comuzzie, Anthony G; Voruganti, Venkata S

    2017-01-01

    Changes in cerebral blood flow (CBF) during a hyperglycemic challenge were mapped, using perfusion-weighted MRI, in a group of non-human primates. Seven female baboons were fasted for 16 h prior to 1-h imaging experiment, performed under general anesthesia, that consisted of a 20-min baseline, followed by a bolus infusion of glucose (500 mg/kg). CBF maps were collected every 7 s and blood glucose and insulin levels were sampled at regular intervals. Blood glucose levels rose from 51.3 ± 10.9 to 203.9 ± 38.9 mg/dL and declined to 133.4 ± 22.0 mg/dL, at the end of the experiment. Regional CBF changes consisted of four clusters: cerebral cortex, thalamus, hypothalamus, and mesencephalon. Increases in the hypothalamic blood flow occurred concurrently with the regulatory response to systemic glucose change, whereas CBF declined for other clusters. The return to baseline of hypothalamic blood flow was observed while CBF was still increasing in other brain regions. The spatial pattern of extra-hypothalamic CBF changes was correlated with the patterns of several cerebral networks including the default mode network. These findings suggest that hypothalamic blood flow response to systemic glucose levels can potentially be explained by regulatory activity. The response of extra-hypothalamic clusters followed a different time course and its spatial pattern resembled that of the default-mode network.