Science.gov

Sample records for cerebral glucose consumption

  1. Cerebral glucose consumption following verbal auditory stimulation.

    PubMed

    Kushner, M J; Schwartz, R; Alavi, A; Dann, R; Rosen, M; Silver, F; Reivich, M

    1987-04-14

    We studied the effect of auditory stimulation upon cerebral glucose metabolism in young normals. The stimulus consisted of a non-English discourse which was presented monaurally to 10 normal blindfolded subjects (5 left ear, 5 right); the opposite ear was plugged. Six subjects studied blindfolded and with ears plugged served as controls. Sixteen discrete homologous cortical and subcortical regions of interest were examined. Regional glucose consumption and side-to-side differences in glucose metabolism were analyzed. Monaural stimulation produced significant increases in temporal metabolism contralateral to the side of stimulation. Significant asymmetries in metabolism were found at the temporoparietal junction, inferior parietal region, insula and corpus collosum. The left frontal speech areas remained unaffected. These findings demonstrate that in man the primary auditory pathways retain a contralateral organization. Further, cerebral activation induced by non-meaningful verbal stimulation is widespread within the left temporal and parietal regions but does not impact upon the frontal speech cortices.

  2. Age and sex differences in cerebral glucose consumption measured by pet using (18-F) fluorodeoxyglucose (FDG)

    SciTech Connect

    Duara, R.; Barker, W.; Chang, J.; Apicella, A.; Finn, R.; Gilson, A.

    1985-05-01

    Resting cerebral glucose metabolic rates (CMRglc) were measured in 23 subjects by PET using FDG. Subjects were divided into several groups (mean age +- S.D.) 5 young males (YM) (27 +- 6); 6 young females (YF)(33 +9); 5 elderly males (EM)(73 +- 5); 7 elderly females (EF)(69 +- 7). Additionally, from these groups 4 YM, 3YF, 5EM and 4EF were studied again within 6 weeks under identical conditions. CMRglc in the YF group again was significantly hider than YM (p 0.05). No obvious relationships of CMRglc to the phase of the menstrual cycle was found in this small group. There was a trend (p=0.06) toward a higher CMRglc in YF than EF. These results support the findings of higher CBF in YF versus YM. The differences between the results of Kuhl et al (J. Cereb. and a reduction of CMRglc with age was found in a mixed group of males and females (58and female), and where no age effect was found the males, are also resolved by these findings. The authors suggest that the apparent age effect, in females in this study, is principally a hormonal one.

  3. Ketones suppress brain glucose consumption.

    PubMed

    LaManna, Joseph C; Salem, Nicolas; Puchowicz, Michelle; Erokwu, Bernadette; Koppaka, Smruta; Flask, Chris; Lee, Zhenghong

    2009-01-01

    The brain is dependent on glucose as a primary energy substrate, but is capable of utilizing ketones such as beta-hydroxybutyrate (beta HB) and acetoacetate (AcAc), as occurs with fasting, prolonged starvation or chronic feeding of a high fat/low carbohydrate diet (ketogenic diet). In this study, the local cerebral metabolic rate of glucose consumption (CMRglu; microM/min/100g) was calculated in the cortex and cerebellum of control and ketotic rats using Patlak analysis. Rats were imaged on a rodent PET scanner and MRI was performed on a 7-Tesla Bruker scanner for registration with the PET images. Plasma glucose and beta HB concentrations were measured and 90-minute dynamic PET scans were started simultaneously with bolus injection of 2-Deoxy-2[18F]Fluoro-D-Glucose (FDG). The blood radioactivity concentration was automatically sampled from the tail vein for 3 min following injection and manual periodic blood samples were taken. The calculated local CMRGlu decreased with increasing plasma BHB concentration in the cerebellum (CMRGlu = -4.07*[BHB] + 61.4, r2 = 0.3) and in the frontal cortex (CMRGlu = -3.93*[BHB] + 42.7, r2 = 0.5). These data indicate that, under conditions of ketosis, glucose consumption is decreased in the cortex and cerebellum by about 10% per each mM of plasma ketone bodies.

  4. Cerebral glucose metabolism in the course of subacute sclerosing panencephalitis

    SciTech Connect

    Huber, M.; Herholz, K.; Pawlik, G.; Szelies, B.; Juergens, R.H.; Heiss, W.D.

    1989-01-01

    Regional cerebral glucose metabolism was studied in a 15-year-old boy with subacute sclerosing panencephalitis before and after therapy with human interferon beta, using positron emission tomography of fluorine 18-2-fluoro-2-deoxyglucose. At first examination, metabolism was symmetrically decreased in the thalamus, cerebellum, and all cortical areas except prerolandic motor cortex, but increased in lentiform nucleus. A computed tomographic scan was normal. Six months later, bilateral focal necrosis centered in the previously hypermetabolic putamen was demonstrated by computed tomography and magnetic resonance imaging. The caudate nucleus and the superoposterior part of the putamen were spared, still showing increased metabolism. Corresponding with some clinical improvement, cortical glucose consumption rates had returned to a normal level.

  5. Disturbance of oxidative metabolism of glucose in recent human cerebral infarcts

    SciTech Connect

    Wise, R.J.; Rhodes, C.G.; Gibbs, J.M.; Hatazawa, J.; Palmer, T.; Frackowiak, R.S.; Jones, T.

    1983-12-01

    Eight patients with recent cerebral hemispheric infarction were studied with positron emission tomography and the oxygen-15 steady-state inhalation and (18F)deoxyglucose techniques to obtain values of regional cerebral blood flow, oxygen consumption, and glucose metabolism. The Sokoloff equation, used to calculate glucose metabolism, was simplified to exclude the exponential terms containing the rate constants. A value of the lumped constant quoted for normal brain (0.42) was used for infarcted regions and contralateral hemisphere. Mean regional cerebral blood flow, oxygen consumption, and glucose metabolism were all significantly depressed within the infarcts compared with the mirror regions in the contralateral cerebral hemisphere. The mean fractional extraction of oxygen was low, indicating an adequate supply of oxygen for residual oxidative metabolism. Regional oxygen consumption and glucose metabolism were significantly correlated within the infarcts, but with a relationship of 2 moles of oxygen per mole of glucose--one-third that in the contralateral hemisphere and in normal brain. Although these results suggest that the metabolizing tissue of a recent cerebral infarct utilizes aerobic glycolysis, caution about the validity of this pathophysiological observation is dictated by limitations in current positron emission tomographic tracer methodology.

  6. Patterns of human local cerebral glucose metabolism during epileptic seizures

    SciTech Connect

    Engel, J. Jr.; Kuhl, D.E.; Phelps, M.E.

    1982-10-01

    Ictal patterns of local cerebral metabolic rate have been studied in epileptic patients by positron computed tomography with /sup 18/F-labeled 2-fluoro-2-deoxy-D-glucose. Partial seizures were associated with activation of anatomic structures unique to each patient studied. Ictal increases and decreases in local cerebral metabolism were observed. Scans performed during generalized convulsions induced by electroshock demonstrated a diffuse ictal increase and postictal decrease in cerebral metabolism. Petit mal absences were associated with a diffuse increase in cerebral metabolic rate. The ictal fluorodeoxyglucose patterns obtained from patients do not resemble autoradiographic patterns obtained from common experimental animal models of epilepsy.

  7. A critical period of brain development: studies of cerebral glucose utilization with PET.

    PubMed

    Chugani, H T

    1998-01-01

    Studies with positron emission tomography indicate that the human brain undergoes a period of postnatal maturation that is much more protracted than previously suspected. In the newborn, the highest degree of glucose metabolism (representative of functional activity) is in primary sensory and motor cortex, cingulate cortex, thalamus, brain stem, cerebellar vermis, and hippocampal region. At 2 to 3 months of age, glucose utilization increases in the parietal, temporal, and primary visual cortex; basal ganglia; and cerebellar hemispheres. Between 6 and 12 months, glucose utilization increases in frontal cortex. These metabolic changes correspond to the emergence of various behaviors during the first year of life. The measurement of absolute rates of glucose utilization during development indicates that the cerebral cortex undergoes a dynamic course of metabolic maturation that persists until ages 16-18 years. Initially, there is a rise in the rates of glucose utilization from birth until about age 4 years, at which time the child's cerebral cortex uses over twice as much glucose as that of adults. From age 4 to 10 years, these very high rates of glucose consumption are maintained, and only after then is there a gradual decline of glucose metabolic rates to reach adult values by age 16-18 years. Correlations between glucose utilization rates and synaptogenesis are discussed, and the argument is made that these findings have important implications with respect to human brain plasticity following injury as well as to "critical periods" of maximal learning capacity.

  8. Blunted brain energy consumption relates to insula atrophy and impaired glucose tolerance in obesity.

    PubMed

    Jauch-Chara, Kamila; Binkofski, Ferdinand; Loebig, Michaela; Reetz, Kathrin; Jahn, Gianna; Melchert, Uwe H; Schweiger, Ulrich; Oltmanns, Kerstin M

    2015-06-01

    Brain energy consumption induced by electrical stimulation increases systemic glucose tolerance in normal-weight men. In obesity, fundamental reductions in brain energy levels, gray matter density, and cortical metabolism, as well as chronically impaired glucose tolerance, suggest that disturbed neuroenergetic regulation may be involved in the development of overweight and obesity. Here, we induced neuronal excitation by anodal transcranial direct current stimulation versus sham, examined cerebral energy consumption with (31)P magnetic resonance spectroscopy, and determined systemic glucose uptake by euglycemic-hyperinsulinemic glucose clamp in 15 normal-weight and 15 obese participants. We demonstrate blunted brain energy consumption and impaired systemic glucose uptake in obese compared with normal-weight volunteers, indicating neuroenergetic dysregulation in obese humans. Broadening our understanding of reduced multifocal gray matter volumes in obesity, our findings show that reduced appetite- and taste-processing area morphometry is associated with decreased brain energy levels. Specifically, gray matter volumes of the insula relate to brain energy content in obese participants. Overall, our results imply that a diminished cerebral energy supply may underlie the decline in brain areas assigned to food intake regulation and therefore the development of obesity. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  9. Nonoxidative Glucose Consumption during Focal Physiologic Neural Activity

    NASA Astrophysics Data System (ADS)

    Fox, Peter T.; Raichle, Marcus E.; Mintun, Mark A.; Dence, Carmen

    1988-07-01

    Brain glucose uptake, oxygen metabolism, and blood flow in humans were measured with positron emission tomography, and a resting-state molar ratio of oxygen to glucose consumption of 4.1:1 was obtained. Physiological neural activity, however, increased glucose uptake and blood flow much more (51 and 50 percent, respectively) than oxygen consumption (5 percent) and produced a molar ratio for the increases of 0.4:1. Transient increases in neural activity cause a tissue uptake of glucose in excess of that consumed by oxidative metabolism, acutely consume much less energy than previously believed, and regulate local blood flow for purposes other than oxidative metabolism.

  10. Global cerebral glucose utilization is independent of brain size: a PET Study

    SciTech Connect

    Hatazawa, J.; Brooks, R.A.; Di Chiro, G.; Campbell, G.

    1987-07-01

    Cerebral glucose metabolic rates were measured in 80 normal volunteers by studying the uptake of (/sup 18/F)deoxyglucose with positron emission tomography (PET), using three PET scanners. A brain size index was determined from the PET images using either length-width or area measurements of the brain at a standard level. There was a significant negative correlation between glucose metabolism per unit volume and brain size that was well described by an inverse functional relationship, implying that the total glucose consumption of the brain is approximately constant. Analyses of men versus women revealed no sex differences in total brain glucose consumption, although there were differences in brain size and in glucose metabolism per unit volume. Similarly there was no significant correlation of total brain glucose consumption with age. The variation with brain size accounted for 46% of the logarithmic intersubject metabolic variance. When comparing global metabolic rates in different subjects, multiplying the rates by a brain size index has the dual advantage of correcting for differences related to brain size and correcting for differences in cerebrospinal fluid volume.

  11. Local cerebral glucose utilization during status epilepticus in newborn primates

    SciTech Connect

    Fujikawa, D.G.; Dwyer, B.E.; Lake, R.R.; Wasterlain, C.G.

    1989-06-01

    The effect of bicuculline-induced status epilepticus (SE) on local cerebral metabolic rates for glucose (LCMRglc) was studied in 2-wk-old ketamine-anesthetized marmoset monkeys, using the 2-(/sup 14/C)-deoxy-D-glucose autoradiographical technique. To estimate LCMRglc in cerebral cortex and thalamus during SE, the lumped constant (LC) for 2-deoxy-D-glucose (2-DG) and the rate constants for 2-DG and glucose were calculated for these regions. The control LC was 0.43 in frontoparietal cortex, 0.51 in temporal cortex, and 0.50 in thalamus; it increased to 1.07 in frontoparietal cortex, 1.13 in temporal cortex, and 1.25 in thalamus after 30 min of seizures. With control LC values, LCMRglc in frontoparietal cortex, temporal cortex, and dorsomedial thalamus appeared to increase four to sixfold. With seizure LC values, LCMRglc increased 1.5- to 2-fold and only in cortex. During 45-min seizures, LCMRglc in cortex and thalamus probably increases 4- to 6-fold initially and later falls to the 1.5- to 2-fold level as tissue glucose concentrations decrease. Together with our previous results demonstrating depletion of high-energy phosphates and glucose in these regions, the data suggest that energy demands exceed glucose supply. The long-term effects of these metabolic changes on the developing brain remain to be determined.

  12. Exenatide Regulates Cerebral Glucose Metabolism in Brain Areas Associated With Glucose Homeostasis and Reward System.

    PubMed

    Daniele, Giuseppe; Iozzo, Patricia; Molina-Carrion, Marjorie; Lancaster, Jack; Ciociaro, Demetrio; Cersosimo, Eugenio; Tripathy, Devjit; Triplitt, Curtis; Fox, Peter; Musi, Nicolas; DeFronzo, Ralph; Gastaldelli, Amalia

    2015-10-01

    Glucagon-like peptide 1 receptors (GLP-1Rs) have been found in the brain, but whether GLP-1R agonists (GLP-1RAs) influence brain glucose metabolism is currently unknown. The study aim was to evaluate the effects of a single injection of the GLP-1RA exenatide on cerebral and peripheral glucose metabolism in response to a glucose load. In 15 male subjects with HbA1c of 5.7 ± 0.1%, fasting glucose of 114 ± 3 mg/dL, and 2-h glucose of 177 ± 11 mg/dL, exenatide (5 μg) or placebo was injected in double-blind, randomized fashion subcutaneously 30 min before an oral glucose tolerance test (OGTT). The cerebral glucose metabolic rate (CMRglu) was measured by positron emission tomography after an injection of [(18)F]2-fluoro-2-deoxy-d-glucose before the OGTT, and the rate of glucose absorption (RaO) and disposal was assessed using stable isotope tracers. Exenatide reduced RaO0-60 min (4.6 ± 1.4 vs. 13.1 ± 1.7 μmol/min ⋅ kg) and decreased the rise in mean glucose0-60 min (107 ± 6 vs. 138 ± 8 mg/dL) and insulin0-60 min (17.3 ± 3.1 vs. 24.7 ± 3.8 mU/L). Exenatide increased CMRglu in areas of the brain related to glucose homeostasis, appetite, and food reward, despite lower plasma insulin concentrations, but reduced glucose uptake in the hypothalamus. Decreased RaO0-60 min after exenatide was inversely correlated to CMRglu. In conclusion, these results demonstrate, for the first time in man, a major effect of a GLP-1RA on regulation of brain glucose metabolism in the absorptive state.

  13. Association of curry consumption with blood lipids and glucose levels

    PubMed Central

    2016-01-01

    BACKGROUND/OBJECTIVES Curcumin, an active ingredient in turmeric, is highly consumed in South Asia. However, curry that contains turmeric as its main spice might be the major source of curcumin in most other countries. Although curcumin consumption is not as high in these countries as South Asia, the regular consumption of curcumin may provide a significant health-beneficial effect. This study evaluated whether the moderate consumption of curry can affect blood glucose and lipid levels that become dysregulated with age. SUBJECTS/METHODS This study used data obtained from the Korea National Health and Nutrition Examination Survey, conducted from 2012 to 2013, to assess curry consumption frequency as well as blood glucose and blood lipid levels. The levels of blood glucose and lipids were subdivided by age, sex, and body mass index, and compared according to the curry consumption level. The estimates in each subgroup were further adjusted for potential confounding factors, including the diagnosis of diseases, physical activity, and smoking. RESULTS After adjusting for the above confounding factors, the blood glucose and triglyceride levels were significantly lower in the moderate curry consumption group compared to the low curry consumption group, both in older (> 45) male and younger (30 to 44) female overweight individuals who have high blood glucose and triglyceride levels. CONCLUSIONS These results suggest that curcumin consumption, in an ordinary diet, can have health-beneficial effects, including being helpful in maintaining blood glucose and triglyceride levels that become dysregulated with age. The results should be further confirmed in future studies. PMID:27087906

  14. Regional cerebral glucose metabolism in patients with alcoholic Korsakoff's syndrome

    SciTech Connect

    Kessler, R.M.; Parker, E.S.; Clark, C.M.; Martin, P.R.; George, D.T.; Weingartner, H.; Sokoloff, L.; Ebert, M.H.; Mishkin, M.

    1985-05-01

    Seven alcoholic male subjects diagnosed as having Korsakoff's syndrome and eight age-matched male normal volunteers were studied with /sup 18/F 2-fluoro-2-deoxy-D-glucose (2/sup 18/FDG). All subjects were examined at rest with eyes covered in a quiet, darkened room. Serial plasma samples were obtained following injection of 4 to 5 mCi of 2/sup 18/FDG. Tomographic slices spaced at 10mm axial increments were obtained (in-plane resolution = 1.75 cm, axial resolution = 1.78 cm). Four planes were selected from each subject, and a total of 46 regions of interest were sampled and glucose metabolic rates for each region calculated. The mean glucose metalbolic rate for the 46 regions in the Korsakoff subjects was significantly lower than that in the normal controls (5.17 +- .43 versus 6.6 +- 1.31). A Q-component analysis, which examined each subject's regional rates relative to his mean rate, revealed two distinct patterns in the Korsakoff group. Glucose metabolism was significantly reduced in 37 of the 46 regions sampled. Reduced cerebral glucose metabolism in a nondemented group of subjects has not previously been reported. The reduction in cortical metabolism may be the result of damage to sub-cortical projecting systems. The differing patterns of cerebral metabolism in Korsakoff's syndrome suggests subgroups with differing neuropathology. Regions implicated in memory function, medial temporal, thalamic and medial prefrontal were among the regions reduced in metabolism.

  15. Altered Brain Glucose Consumption in Cogan's Syndrome

    PubMed Central

    Ruffini, Livia; Ghirardini, Stella; Scarlattei, Maura; Baldari, Giorgio; Cidda, Carla; Gandolfi, Stefano A.; Orsoni, Jelka G.

    2016-01-01

    Purpose. Prospective, controlled cohort study to investigate possible alterations in brain glucose metabolism (CMRglc) in patients with Cogan's syndrome (CS). Patients and Methods. Functional mapping of the CMRglc was obtained by quantitative molecular imaging positron emission tomography, combined with computed tomography (FDG-PET/CT). The patients were divided into three clinical groups: typical CS; atypical CS (ACS); autoimmune inner ear disease (AIED). The unmatched control group (CG) consisted of subjects requiring FDG-PET/CT for an extracranial pathology. Statistical mapping searched areas of significant glucose hypometabolism in all the affected patients (DG) and in each clinical subgroup. The results were compared with those of the CG. Results. 44 patients were enrolled (DG) and assigned to the three study groups: 8 patients to the CS group; 21 patients to the ACS group; and 15 to the AIED group. Sixteen subjects formed the CG group. Areas of significant brain glucose hypometabolism were identified in all the study groups, with the largest number and extension in the DG and CS. Conclusions. This study revealed areas of significantly altered CMRglc in patients with CS (any subform) without neurologic complains and normal conventional neuroimaging. Our results suggest that FDG-PET/CT may represent a very useful tool for the global assessment of patients with Cogan's syndrome. PMID:28050276

  16. Effects of rapamycin on cerebral oxygen supply and consumption during reperfusion after cerebral ischemia.

    PubMed

    Chi, O Z; Barsoum, S; Vega-Cotto, N M; Jacinto, E; Liu, X; Mellender, S J; Weiss, H R

    2016-03-01

    Activation of the mammalian target of rapamycin (mTOR) leads to cell growth and survival. We tested the hypothesis that inhibition of mTOR would increase infarct size and decrease microregional O2 supply/consumption balance after cerebral ischemia-reperfusion. This was tested in isoflurane-anesthetized rats with middle cerebral artery blockade for 1h and reperfusion for 2h with and without rapamycin (20mg/kg once daily for two days prior to ischemia). Regional cerebral blood flow was determined using a C(14)-iodoantipyrine autoradiographic technique. Regional small-vessel arterial and venous oxygen saturations were determined microspectrophotometrically. The control ischemic-reperfused cortex had a similar blood flow and O2 consumption to the contralateral cortex. However, microregional O2 supply/consumption balance was significantly reduced in the ischemic-reperfused cortex. Rapamycin significantly increased cerebral O2 consumption and further reduced O2 supply/consumption balance in the reperfused area. This was associated with an increased cortical infarct size (13.5±0.8% control vs. 21.5±0.9% rapamycin). We also found that ischemia-reperfusion increased AKT and S6K1 phosphorylation, while rapamycin decreased this phosphorylation in both the control and ischemic-reperfused cortex. This suggests that mTOR is important for not only cell survival, but also for the control of oxygen balance after cerebral ischemia-reperfusion.

  17. EFFECTS OF RAPAMYCIN ON CEREBRAL OXYGEN SUPPLY AND CONSUMPTION DURING REPERFUSION AFTER CEREBRAL ISCHEMIA

    PubMed Central

    CHI, O. Z.; BARSOUM, S.; VEGA-COTTO, N. M.; JACINTO, E.; LIU, X.; MELLENDER, S. J.; WEISS, H. R.

    2016-01-01

    Abstract—Activation of the mammalian target of rapamycin (mTOR) leads to cell growth and survival. We tested the hypothesis that inhibition of mTOR would increase infarct size and decrease microregional O2 supply/consumption balance after cerebral ischemia–reperfusion. This was tested in isoflurane-anesthetized rats with middle cerebral artery blockade for 1 h and reperfusion for 2 h with and without rapamycin (20 mg/kg once daily for two days prior to ischemia). Regional cerebral blood flow was determined using a C14-iodoantipyrine autoradiographic technique. Regional small-vessel arterial and venous oxygen saturations were determined microspectrophotometrically. The control ischemic-reperfused cortex had a similar blood flow and O2 consumption to the contralateral cortex. However, microregional O2 supply/consumption balance was significantly reduced in the ischemic-reperfused cortex. Rapamycin significantly increased cerebral O2 consumption and further reduced O2 supply/consumption balance in the reperfused area. This was associated with an increased cortical infarct size (13.5 ± 0.8% control vs. 21.5 ± 0.9% rapamycin). We also found that ischemia–reperfusion increased AKT and S6K1 phosphorylation, while rapamycin decreased this phosphorylation in both the control and ischemic-reperfused cortex. This suggests that mTOR is important for not only cell survival, but also for the control of oxygen balance after cerebral ischemia–reperfusion. PMID:26742793

  18. The Effects of Capillary Transit Time Heterogeneity (CTH) on the Cerebral Uptake of Glucose and Glucose Analogs: Application to FDG and Comparison to Oxygen Uptake

    PubMed Central

    Angleys, Hugo; Jespersen, Sune N.; Østergaard, Leif

    2016-01-01

    Glucose is the brain's principal source of ATP, but the extent to which cerebral glucose consumption (CMRglc) is coupled with its oxygen consumption (CMRO2) remains unclear. Measurements of the brain's oxygen-glucose index OGI = CMRO2/CMRglc suggest that its oxygen uptake largely suffices for oxidative phosphorylation. Nevertheless, during functional activation and in some disease states, brain tissue seemingly produces lactate although cerebral blood flow (CBF) delivers sufficient oxygen, so-called aerobic glycolysis. OGI measurements, in turn, are method-dependent in that estimates based on glucose analog uptake depend on the so-called lumped constant (LC) to arrive at CMRglc. Capillary transit time heterogeneity (CTH), which is believed to change during functional activation and in some disease states, affects the extraction efficacy of oxygen from blood. We developed a three-compartment model of glucose extraction to examine whether CTH also affects glucose extraction into brain tissue. We then combined this model with our previous model of oxygen extraction to examine whether differential glucose and oxygen extraction might favor non-oxidative glucose metabolism under certain conditions. Our model predicts that glucose uptake is largely unaffected by changes in its plasma concentration, while changes in CBF and CTH affect glucose and oxygen uptake to different extents. Accordingly, functional hyperemia facilitates glucose uptake more than oxygen uptake, favoring aerobic glycolysis during enhanced energy demands. Applying our model to glucose analogs, we observe that LC depends on physiological state, with a risk of overestimating relative increases in CMRglc during functional activation by as much as 50%. PMID:27790110

  19. Cerebral glucose utilization during stage 2 sleep in man.

    PubMed

    Maquet, P; Dive, D; Salmon, E; Sadzot, B; Franco, G; Poirrier, R; Franck, G

    1992-01-31

    Using [18F]fluorodeoxyglucose method and positron emission tomography, we performed paired determinations of the cerebral glucose utilization at one week intervals during sleep and wakefulness, in 12 young normal subjects. During 6 of 28 sleep runs, a stable stage 2 SWS was observed that fulfilled the steady-state conditions of the model. The cerebral glucose utilization during stage 2 SWS was lower than during wakefulness, but the variation did not significantly differ from zero (mean variation: -11.5 +/- 25.57%, P = 0.28). The analysis of 89 regions of interest showed that glucose metabolism differed significantly from that observed at wake in 6 brain regions, among them both thalamic nuclei. We conclude that the brain energy metabolism is not homogeneous throughout all the stages of non-REMS but decreases from stage 2 SWS to deep SWS; we suggest that a low thalamic glucose metabolism is a metabolic feature common to both stage 2 and deep SWS, reflecting the inhibitory processes observed in the thalamus during these stages of sleep. Stage 2 SWS might protect the stability of sleep by insulating the subject from the environment and might be a prerequisite to the full development of other phases of sleep, especially deep SWS.

  20. Brain energy consumption induced by electrical stimulation promotes systemic glucose uptake.

    PubMed

    Binkofski, Ferdinand; Loebig, Michaela; Jauch-Chara, Kamila; Bergmann, Sigrid; Melchert, Uwe H; Scholand-Engler, Harald G; Schweiger, Ulrich; Pellerin, Luc; Oltmanns, Kerstin M

    2011-10-01

    Controlled transcranial stimulation of the brain is part of clinical treatment strategies in neuropsychiatric diseases such as depression, stroke, or Parkinson's disease. Manipulating brain activity by transcranial stimulation, however, inevitably influences other control centers of various neuronal and neurohormonal feedback loops and therefore may concomitantly affect systemic metabolic regulation. Because hypothalamic adenosine triphosphate-sensitive potassium channels, which function as local energy sensors, are centrally involved in the regulation of glucose homeostasis, we tested whether transcranial direct current stimulation (tDCS) causes an excitation-induced transient neuronal energy depletion and thus influences systemic glucose homeostasis and related neuroendocrine mediators. In a crossover design testing 15 healthy male volunteers, we increased neuronal excitation by anodal tDCS versus sham and examined cerebral energy consumption with ³¹phosphorus magnetic resonance spectroscopy. Systemic glucose uptake was determined by euglycemic-hyperinsulinemic glucose clamp, and neurohormonal measurements comprised the parameters of the stress systems. We found that anodic tDCS-induced neuronal excitation causes an energetic depletion, as quantified by ³¹phosphorus magnetic resonance spectroscopy. Moreover, tDCS-induced cerebral energy consumption promotes systemic glucose tolerance in a standardized euglycemic-hyperinsulinemic glucose clamp procedure and reduces neurohormonal stress axes activity. Our data demonstrate that transcranial brain stimulation not only evokes alterations in local neuronal processes but also clearly influences downstream metabolic systems regulated by the brain. The beneficial effects of tDCS on metabolic features may thus qualify brain stimulation as a promising nonpharmacologic therapy option for drug-induced or comorbid metabolic disturbances in various neuropsychiatric diseases. Copyright © 2011 Society of Biological

  1. Cerebral metabolism of glucose in benign hereditary chorea

    SciTech Connect

    Suchowersky, O.; Hayden, M.R.; Martin, W.R.; Stoessl, A.J.; Hildebrand, A.M.; Pate, B.D.

    1986-01-01

    Benign hereditary chorea (BHC) is an autosomal dominant disorder characterized by chorea of early onset with little or no progression. There is marked clinical variability in this disease with some subjects having onset in infancy and others with onset in early adulthood. In contrast to Huntington's disease (HD), there is no dementia. Computed tomography is normal in all subjects with no evidence of caudate nucleus atrophy. We present the results of positron emission tomography using YF-2-fluorodeoxyglucose on three patients with this disorder from two families. Cerebral glucose metabolism in one patient was decreased in the caudate nucleus, as previously reported in HD. The other two persons from a second family showed a relative decrease in metabolic rates of glucose in the caudate when compared with the thalamus. It appears that caudate hypometabolism is not specific for HD. These findings suggest that the caudate nucleus may play a significant role in the pathophysiology of some persons with BHC.

  2. Cerebral glucose metabolism in Wernicke's, Broca's, and conduction aphasia

    SciTech Connect

    Metter, E.J.; Kempler, D.; Jackson, C.; Hanson, W.R.; Mazziotta, J.C.; Phelps, M.E.

    1989-01-01

    Cerebral glucose metabolism was evaluated in patients with either Wernicke's (N = 7), Broca's (N = 11), or conduction (N = 10) aphasia using /sup 18/F-2-fluoro-2-deoxy-D-glucose with positron emission tomography. The three aphasic syndromes differed in the degree of left-to-right frontal metabolic asymmetry, with Broca's aphasia showing severe asymmetry and Wernicke's aphasia mild-to-moderate metabolic asymmetry, while patients with conduction aphasia were metabolically symmetric. On the other hand, the three syndromes showed the same degree of metabolic decline in the left temporal region. The parietal region appeared to separate conduction aphasia from both Broca's and Wernicke's aphasias. Common aphasic features in the three syndromes appear to be due to common changes in the temporal region, while unique features were associated with frontal and parietal metabolic differences.

  3. Cerebral Oxygen Delivery and Consumption During Evoked Neural Activity

    PubMed Central

    Vazquez, Alberto L.; Masamoto, Kazuto; Fukuda, Mitsuhiro; Kim, Seong-Gi

    2010-01-01

    Increases in neural activity evoke increases in the delivery and consumption of oxygen. Beyond observations of cerebral tissue and blood oxygen, the role and properties of cerebral oxygen delivery and consumption during changes in brain function are not well understood. This work overviews the current knowledge of functional oxygen delivery and consumption and introduces recent and preliminary findings to explore the mechanisms by which oxygen is delivered to tissue as well as the temporal dynamics of oxygen metabolism. Vascular oxygen tension measurements have shown that a relatively large amount of oxygen exits pial arterioles prior to capillaries. Additionally, increases in cerebral blood flow (CBF) induced by evoked neural activation are accompanied by arterial vasodilation and also by increases in arteriolar oxygenation. This increase contributes not only to the down-stream delivery of oxygen to tissue, but also to delivery of additional oxygen to extra-vascular spaces surrounding the arterioles. On the other hand, the changes in tissue oxygen tension due to functional increases in oxygen consumption have been investigated using a method to suppress the evoked CBF response. The functional decreases in tissue oxygen tension induced by increases in oxygen consumption are slow to evoked changes in CBF under control conditions. Preliminary findings obtained using flavoprotein autofluorescence imaging suggest cellular oxidative metabolism changes at a faster rate than the average changes in tissue oxygen. These issues are important in the determination of the dynamic changes in tissue oxygen metabolism from hemoglobin-based imaging techniques such as blood oxygenation-level dependent functional magnetic resonance imaging (fMRI). PMID:20616881

  4. Arachidonic acid stimulates glucose uptake in cerebral cortical astrocytes.

    PubMed Central

    Yu, N; Martin, J L; Stella, N; Magistretti, P J

    1993-01-01

    Arachidonic acid (AA) has recently been shown to influence various cellular functions in the central nervous system. Here we report that AA increases, in a time- and concentration-dependent manner, 2-deoxy-D-[1-3H]glucose ([3H]2DG) uptake in primary cultures of astrocytes prepared from the cerebral cortex of neonatal mice. This effect is mimicked by an unsaturated fatty acid such as linolenic acid, while palmitic and arachidic acids, two saturated fatty acids, are inactive. Pharmacological agents that increase the endogenous levels of AA by stimulating AA release (melittin) or by inhibiting its reacylation (thimerosal) also promote [3H]2DG uptake by astrocytes. We also report that norepinephrine (NE) stimulates the release of [3H]AA from membrane phospholipids, with an EC50 of 3 microM; this effect is accompanied, with a temporal delay of approximately 4 min, by the stimulation of [3H]2DG uptake, for which the EC50 of NE is 1 microM. Since the cerebral cortex, the brain region from which astrocytes used in this study were prepared, receives a massive noradrenergic innervation, originating from the locus coeruleus, the effects of NE reported here further stress the notion that certain neurotransmitters may play a role in the regulation of energy metabolism in the cerebral cortex and point at astrocytes as the likely targets of such metabolic effects. PMID:8483920

  5. Cerebral non-oxidative carbohydrate consumption in humans driven by adrenaline.

    PubMed

    Seifert, Thomas S; Brassard, Patrice; Jørgensen, Thomas B; Hamada, Ahmad J; Rasmussen, Peter; Quistorff, Bjørn; Secher, Niels H; Nielsen, Henning B

    2009-01-15

    During brain activation, the decrease in the ratio between cerebral oxygen and carbohydrate uptake (6 O(2)/(glucose + (1)/(2) lactate); the oxygen-carbohydrate index, OCI) is attenuated by the non-selective beta-adrenergic receptor antagonist propranolol, whereas OCI remains unaffected by the beta(1)-adrenergic receptor antagonist metroprolol. These observations suggest involvement of a beta(2)-adrenergic mechanism in non-oxidative metabolism for the brain. Therefore, we evaluated the effect of adrenaline (0.08 microg kg(-1) min(-1) i.v. for 15 min) and noradrenaline (0.5, 0.1 and 0.15 microg kg(-1) min(-1) i.v. for 20 min) on the arterial to internal jugular venous concentration differences (a-v diff) of O(2), glucose and lactate in healthy humans. Adrenaline (n = 10) increased the arterial concentrations of O(2), glucose and lactate (P < 0.05) and also increased the a-v diff for glucose from 0.6 +/- 0.1 to 0.8 +/- 0.2 mM (mean +/- s.d.; P < 0.05). The a-v diff for lactate shifted from a net cerebral release to an uptake and OCI was lowered from 5.1 +/- 1.5 to 3.6 +/- 0.4 (P < 0.05) indicating an 8-fold increase in the rate of non-oxidative carbohydrate uptake during adrenaline infusion (P < 0.01). Conversely, noradrenaline (n = 8) did not affect the OCI despite an increase in the a-v diff for glucose (P < 0.05). These results support that non-oxidative carbohydrate consumption for the brain is driven by a beta(2)-adrenergic mechanism, giving neurons an abundant provision of energy when plasma adrenaline increases.

  6. Cerebral energy metabolism, glucose transport and blood flow: changes with maturation and adaptation to hypoglycaemia.

    PubMed

    Nehlig, A

    1997-02-01

    Brain maturation is characterized by a peak of cerebral energy metabolism and blood flow occurring between 3 and 8 years of age in humans and around 14-17 days of postnatal life in rats. This high activity coincides with the period of active brain growth. The human brain is dependent on glucose alone during that period, whereas rat brain uses both glucose and ketone bodies to cover its energetic and biosynthetic needs. The maturation of the density of glucose transporter sites-GLUT1 located at the blood-brain barrier and GLUT3 at the neuronal membrane-parallels the development of cerebral glucose utilization. During moderate acute hypoglycaemia, there are no changes in cerebral functional activity; cerebral glucose utilization decreases and blood flow increases only when hypoglycaemia is severe (lower than 2 mumol/ml). During chronic hypoglycaemia, the brain adapts to the low circulating levels of glucose: the number of glucose transporter sites is increased, and cerebral glucose utilization and function are maintained at normal levels while cerebral blood flow is more moderately increased than during acute hypoglycaemia. Neuronal damage consecutive to severe and prolonged hypoglycaemia occurs mainly in the cerebral cortex, hippocampus and caudate-putamen as a result of active release of excitatory amino acids.

  7. Serotonin modulation of cerebral glucose metabolism: sex and age effects.

    PubMed

    Munro, Cynthia A; Workman, Clifford I; Kramer, Elisse; Hermann, Carol; Ma, Yilong; Dhawan, Vijay; Chaly, Thomas; Eidelberg, David; Smith, Gwenn S

    2012-11-01

    The serotonin system is implicated in a variety of psychiatric disorders whose clinical presentation and response to treatment differ between males and females, as well as with aging. However, human neurobiological studies are limited. Sex differences in the cerebral metabolic response to an increase in serotonin concentrations were measured, as well as the effect of aging, in men compared to women. Thirty-three normal healthy individuals (14 men/19 women, age range 20-79 years) underwent two resting positron emission tomography studies with the radiotracer [18F]-2-deoxy-2-fluoro-D-glucose ([(18)F]-FDG) after placebo and selective serotonin reuptake inhibitor (SSRI, citalopram) infusions on two separate days. Results indicated that women demonstrated widespread areas of increased cortical glucose metabolism with fewer areas of decrease in metabolism in response to citalopram. Men, in contrast, demonstrated several regions of decreased cortical metabolism, but no regions of increased metabolism. Age was associated with greater increases in women and greater decreases in men in most brain regions. These results support prior studies indicating that serotonin function differs in men and women across the lifespan. Future studies aimed at characterizing the influences of age and sex on the serotonin system in patients with psychiatric disorders are needed to elucidate the relationship between sex and age differences in brain chemistry and associated differences in symptom presentation and treatment response. Copyright © 2012 Wiley Periodicals, Inc.

  8. SEROTONIN MODULATION OF CEREBRAL GLUCOSE METABOLISM: SEX AND AGE EFFECTS

    PubMed Central

    Munro, Cynthia A.; Workman, Clifford; Kramer, Elisse; Hermann, Carol; Ma, Yilong; Dhawan, Vijay; Chaly, Thomas; Eidelberg, David; Smith, Gwenn S.

    2012-01-01

    The serotonin system is implicated in a variety of psychiatric disorders whose clinical presentation and response to treatment differ between males and females, as well as with aging. However, human neurobiological studies are limited. Sex differences in the cerebral metabolic response to an increase in serotonin concentrations were measured, as well as the effect of aging, in men compared to women. Thirty-three normal healthy individuals (14 men/19 women, age range 20–79 years) underwent two resting positron emission tomography (PET) studies with the radiotracer [18F]-2-deoxy-2-fluoro-D-glucose ([18F]-FDG) after placebo and selective serotonin reuptake inhibitor (SSRI, citalopram) infusions on two separate days. Results indicated that women demonstrated widespread areas of increased cortical glucose metabolism with fewer areas of decrease in metabolism in response to citalopram. Men, in contrast, demonstrated several regions of decreased cortical metabolism, but no regions of increased metabolism. Age was associated with greater increases in women and greater decreases in men in most brain regions. These results support prior studies indicating that serotonin function differs in men and women across the lifespan. Future studies aimed at characterizing the influences of age and sex on the serotonin system in patients with psychiatric disorders are needed to elucidate the relationship between sex and age differences in brain chemistry and associated differences in symptom presentation and treatment response. PMID:22836227

  9. Dietary glucose regulates yeast consumption in adult Drosophila males

    PubMed Central

    Lebreton, Sébastien; Witzgall, Peter; Olsson, Marie; Becher, Paul G.

    2014-01-01

    The adjustment of feeding behavior in response to hunger and satiety contributes to homeostatic regulation in animals. The fruit fly Drosophila melanogaster feeds on yeasts growing on overripe fruit, providing nutrients required for adult survival, reproduction and larval growth. Here, we present data on how the nutritional value of food affects subsequent yeast consumption in Drosophila adult males. After a period of starvation, flies showed intensive yeast consumption. In comparison, flies stopped feeding after having access to a nutritive cornmeal diet. Interestingly, dietary glucose was equally efficient as the complex cornmeal diet. In contrast, flies fed with sucralose, a non-metabolizable sweetener, behaved as if they were starved. The adipokinetic hormone and insulin-like peptides regulate metabolic processes in insects. We did not find any effect of the adipokinetic hormone pathway on this modulation. Instead, the insulin pathway was involved in these changes. Flies lacking the insulin receptor (InR) did not respond to nutrient deprivation by increasing yeast consumption. Together these results show the importance of insulin in the regulation of yeast consumption in response to starvation in adult D. melanogaster males. PMID:25566097

  10. Reduction of cerebral glucose utilization by the HIV envelope glycoprotein Gp-120

    SciTech Connect

    Kimes, A.S.; London, E.D.; Szabo, G.; Raymon, L.; Tabakoff, B. )

    1991-05-01

    Gp-120 is a glycoprotein constituent of the human immunodeficiency virus (HIV) envelope. The effects of gp-120 on cerebral glucose utilization in rats were studied by the quantitative 2-deoxy-D-(1-14C) glucose method. Intracerebroventricular injection of gp-120 significantly reduced glucose utilization in the lateral habenula and the suprachiasmatic nucleus and decreased the global cerebral metabolic rate for glucose. The findings suggest that gp-120 and closely related peptides can alter neuronal function, thereby contributing to the sequelae of HIV infection.

  11. Cannabis dependence: Effects of cannabis consumption on inter-regional cerebral metabolic relationships in an Indian population.

    PubMed

    Parkar, Shubhangi R; Ramanathan, Seethalakshmi; Nair, Narendra; Batra, Shefali A; Adarkar, Shilpa A; Pandit, Anirudh G; Kund, Purushottam; Baghel, Nawab Singh

    2010-07-01

    The effects of cannabis consumption on neurophysiological function have been a matter of considerable debate. With the legalization of medical marijuana, understanding the consequences of cannabis dependence has become extremely important. We attempted to understand the influence of cannabis on cerebral glucose metabolism in certain predetermined regions of interest (ROIs). Furthermore, we also explored inter-regional metabolic relationships between ROIs forming the "addiction" and "cognitive dysmetria" circuit. 2-fluoro, 2-deoxy-glucose positron emission tomography (FDG PET) scans were carried out in 16 male patients (age: 25.3±10.38 years) with cannabis dependence, 8-12 hours after the last cannabis consumption. Resting glucose uptake in 14 pre-determined ROIs was compared with glucose uptake in 16 non-drug using volunteers (age: 29.2±8.39 years). The two groups differed in their lateral and medial temporal glucose uptakes by approximately 16-24%. The relationships between inter-regional glucose uptakes in the two circuits were compared using the Chow Test. Significant differences in inter-regional correlations in the medial temporo-frontal and parieto-thalamic were noted between the two groups. The altered metabolic relationships among various brain regions can have potentially important implications for understanding cannabis dependence and cannabis-induced psychopathology.

  12. Effects of Fructose vs Glucose on Regional Cerebral Blood Flow in Brain Regions Involved With Appetite and Reward Pathways

    PubMed Central

    Page, Kathleen A.; Chan, Owen; Arora, Jagriti; Belfort-DeAguiar, Renata; Dzuira, James; Roehmholdt, Brian; Cline, Gary W.; Naik, Sarita; Sinha, Rajita; Constable, R. Todd; Sherwin, Robert S.

    2014-01-01

    Importance Increases in fructose consumption have paralleled the increasing prevalence of obesity, and high-fructose diets are thought to promote weight gain and insulin resistance. Fructose ingestion produces smaller increases in circulating satiety hormones compared with glucose ingestion, and central administration of fructose provokes feeding in rodents, whereas centrally administered glucose promotes satiety. Objective To study neurophysiological factors that might underlie associations between fructose consumption and weight gain. Design, Setting, and Participants Twenty healthy adult volunteers underwent 2 magnetic resonance imaging sessions at Yale University in conjunction with fructose or glucose drink ingestion in a blinded, random-order, crossover design. Main Outcome Measures Relative changes in hypothalamic regional cerebral blood flow (CBF) after glucose or fructose ingestion. Secondary outcomes included whole-brain analyses to explore regional CBF changes, functional connectivity analysis to investigate correlations between the hypothalamus and other brain region responses, and hormone responses to fructose and glucose ingestion. Results There was a significantly greater reduction in hypothalamic CBF after glucose vs fructose ingestion (–5.45 vs 2.84 mL/g per minute, respectively; mean difference, 8.3 mL/g per minute [95% CI of mean difference, 1.87-14.70]; P=.01). Glucose ingestion (compared with baseline) increased functional connectivity between the hypothalamus and the thalamus and striatum. Fructose increased connectivity between the hypothalamus and thalamus but not the striatum. Regional CBF within the hypothalamus, thalamus, insula, anterior cingulate, and striatum (appetite and reward regions) was reduced after glucose ingestion compared with baseline (P<.05 significance threshold, family-wise error [FWE] whole-brain corrected). In contrast, fructose reduced regional CBF in the thalamus, hippocampus, posterior cingulate cortex, fusiform

  13. Effects of fructose vs glucose on regional cerebral blood flow in brain regions involved with appetite and reward pathways.

    PubMed

    Page, Kathleen A; Chan, Owen; Arora, Jagriti; Belfort-Deaguiar, Renata; Dzuira, James; Roehmholdt, Brian; Cline, Gary W; Naik, Sarita; Sinha, Rajita; Constable, R Todd; Sherwin, Robert S

    2013-01-02

    Increases in fructose consumption have paralleled the increasing prevalence of obesity, and high-fructose diets are thought to promote weight gain and insulin resistance. Fructose ingestion produces smaller increases in circulating satiety hormones compared with glucose ingestion, and central administration of fructose provokes feeding in rodents, whereas centrally administered glucose promotes satiety. To study neurophysiological factors that might underlie associations between fructose consumption and weight gain. Twenty healthy adult volunteers underwent 2 magnetic resonance imaging sessions at Yale University in conjunction with fructose or glucose drink ingestion in a blinded, random-order, crossover design. Relative changes in hypothalamic regional cerebral blood flow (CBF) after glucose or fructose ingestion. Secondary outcomes included whole-brain analyses to explore regional CBF changes, functional connectivity analysis to investigate correlations between the hypothalamus and other brain region responses, and hormone responses to fructose and glucose ingestion. There was a significantly greater reduction in hypothalamic CBF after glucose vs fructose ingestion (-5.45 vs 2.84 mL/g per minute, respectively; mean difference, 8.3 mL/g per minute [95% CI of mean difference, 1.87-14.70]; P = .01). Glucose ingestion (compared with baseline) increased functional connectivity between the hypothalamus and the thalamus and striatum. Fructose increased connectivity between the hypothalamus and thalamus but not the striatum. Regional CBF within the hypothalamus, thalamus, insula, anterior cingulate, and striatum (appetite and reward regions) was reduced after glucose ingestion compared with baseline (P < .05 significance threshold, family-wise error [FWE] whole-brain corrected). In contrast, fructose reduced regional CBF in the thalamus, hippocampus, posterior cingulate cortex, fusiform, and visual cortex (P < .05 significance threshold, FWE whole-brain corrected). In

  14. Brain-derived neurotrophic factor inhibits glucose intolerance after cerebral ischemia.

    PubMed

    Shu, Xiaoliang; Zhang, Yongsheng; Xu, Han; Kang, Kai; Cai, Donglian

    2013-09-05

    Brain-derived neurotrophic factor is associated with the insulin signaling pathway and glucose tabolism. We hypothesized that expression of brain-derived neurotrophic factor and its receptor may be involved in glucose intolerance following ischemic stress. To verify this hypothesis, this study aimed to observe the changes in brain-derived neurotrophic factor and tyrosine kinase B receptor expression in glucose metabolism-associated regions following cerebral ischemic stress in mice. At day 1 after middle cerebral artery occlusion, the expression levels of brain-derived neurotrophic factor were significantly decreased in the ischemic cortex, hypothalamus, liver, skeletal muscle, and pancreas. The expression levels of tyrosine kinase B receptor were decreased in the hypothalamus and liver, and increased in the skeletal muscle and pancreas, but remained unchanged in the cortex. Intrahypothalamic administration of brain-derived neurotrophic factor (40 ng) suppressed the decrease in insulin receptor and tyrosine-phosphorylated insulin receptor expression in the liver and skeletal muscle, and inhibited the overexpression of gluconeogenesis-associated phosphoenolpyruvate carboxykinase and glucose-6-phosphatase in the liver of cerebral ischemic mice. However, serum insulin levels remained unchanged. Our experimental findings indicate that brain-derived neurotrophic factor can promote glucose metabolism, reduce gluconeogenesis, and decrease blood glucose levels after cerebral ischemic stress. The low expression of brain-derived neurotrophic factor following cerebral ischemia may be involved in the development of glucose intolerance.

  15. Brain-derived neurotrophic factor inhibits glucose intolerance after cerebral ischemia

    PubMed Central

    Shu, Xiaoliang; Zhang, Yongsheng; Xu, Han; Kang, Kai; Cai, Donglian

    2013-01-01

    Brain-derived neurotrophic factor is associated with the insulin signaling pathway and glucose tabolism. We hypothesized that expression of brain-derived neurotrophic factor and its receptor may be involved in glucose intolerance following ischemic stress. To verify this hypothesis, this study aimed to observe the changes in brain-derived neurotrophic factor and tyrosine kinase B receptor expression in glucose metabolism-associated regions following cerebral ischemic stress in mice. At day 1 after middle cerebral artery occlusion, the expression levels of brain-derived neurotrophic factor were significantly decreased in the ischemic cortex, hypothalamus, liver, skeletal muscle, and pancreas. The expression levels of tyrosine kinase B receptor were decreased in the hypothalamus and liver, and increased in the skeletal muscle and pancreas, but remained unchanged in the cortex. Intrahypothalamic administration of brain-derived neurotrophic factor (40 ng) suppressed the decrease in insulin receptor and tyrosine-phosphorylated insulin receptor expression in the liver and skeletal muscle, and inhibited the overexpression of gluconeogenesis-associated phosphoenolpyruvate carboxykinase and glucose-6-phosphatase in the liver of cerebral ischemic mice. However, serum insulin levels remained unchanged. Our experimental findings indicate that brain-derived neurotrophic factor can promote glucose metabolism, reduce gluconeogenesis, and decrease blood glucose levels after cerebral ischemic stress. The low expression of brain-derived neurotrophic factor following cerebral ischemia may be involved in the development of glucose intolerance. PMID:25206547

  16. Cerebral glucose metabolism in type I alpha-N-acetylgalactosaminidase deficiency: an infantile neuroaxonal dystrophy.

    PubMed

    Rudolf, J; Grond, M; Schindler, D; Heiss, W D; Desnick, R J

    1999-08-01

    Cerebral glucose metabolism was investigated in a 4.8-year-old boy with alpha-N-acetylgalactosaminidase deficiency using 2-[18F]fluoro-2-deoxy-D-glucose and positron emission tomography (PET). In comparison to normal values for age, the overall cerebral glucose metabolism was reduced and the regional cerebral glucose metabolism was decreased in proportion to the degree of atrophy. In the supratentorial cortical regions, the hypometabolism was asymmetric. However, the level of regional cerebral glucose metabolism in all cortical regions excluded a persistent vegetative state. In the lentiform nucleus and the head of the caudate, comparatively increased regional cerebral glucose metabolism was documented, similar to findings in neurodegenerative disorders with active epilepsy. In contrast, the infratentorial structures (cerebellar hemispheres, brain stem, mesencephalon, and hypothalamus), which are predominantly affected by the atrophic process, showed distinct and symmetric hypometabolism. Thus, the 2-[18F]-fluoro-2-deoxy-D-glucose PET scans provided additional insight into and correlation of the functional and structural disturbances in type I alpha-N-acetylgalactosaminidase deficiency, in addition to documenting the hypometabolism due to brain atrophy.

  17. Age differences in intercorrelations between regional cerebral metabolic rates for glucose

    SciTech Connect

    Horwitz, B.; Duara, R.; Rapoport, S.I.

    1986-01-01

    Patterns of cerebral metabolic intercorrelations were compared in the resting state in 15 healthy young men (ages 20 to 32 years) and 15 healthy elderly men (ages 64 to 83 years). Controlling for whole-brain glucose metabolism, partial correlation coefficients were determined between pairs of regional cerebral metabolic rates for glucose determined by positron emission tomography using (18F)fluorodeoxyglucose and obtained in 59 brain regions. Compared with the young men, the elderly men had fewer statistically significant correlations, with the most notable reductions observed between the parietal lobe regions, and between the parietal and frontal lobe regions. These results suggest that cerebral functional interactions are reduced in healthy elderly men.

  18. Sodium influx through cerebral sodium-glucose transporter type 1 exacerbates the development of cerebral ischemic neuronal damage.

    PubMed

    Yamazaki, Yui; Harada, Shinichi; Wada, Tetsuyuki; Hagiwara, Teruki; Yoshida, Shigeru; Tokuyama, Shogo

    2017-03-15

    We recently reported that cerebral sodium-glucose transporter type 1 (SGLT-1) plays a role in exacerbation of cerebral ischemia. However, the mechanism by which cerebral SGLT-1 acts remains unclear. Here we demonstrated that sodium influx through cerebral SGLT-1 exacerbates cerebral ischemic neuronal damage. SGLT-specific sodium ion influx was induced using α-methyl-D-glucopyranoside (α-MG). Intracellular sodium concentrations in primary cortical neurons were estimated using sodium-binding benzofuran isophthalate fluorescence. SGLT-1 knockdown in primary cortical neurons and mice was achieved using SGLT-1 siRNA. The survival rates of primary cultured cortical neurons were assessed using biochemical assays 1 day after treatment. Middle cerebral artery occlusion (MCAO) was used to generate a focal cerebral ischemic model in SGLT-1 knockdown mice. The change in fasting blood glucose levels, infarction development, and behavioral abnormalities were assessed 1 day after MCAO. Treatment with 200mM α-MG induced a continuous increase in the intracellular sodium concentration, and this increase was normalized after α-MG removal. Neuronal SGLT-1 knockdown had no effect on 100µM H2O2-induced neuronal cell death; however, the knockdown prevented the neuronal cell death induced by 17.5mM glucose and the co-treatment of 100µM H2O2/8.75mM glucose. Neuronal SGLT-1 knockdown also suppressed the cell death induced by α-MG alone and the co-treatment of 100µM H2O2/0.01mM α-MG. Our in vivo results showed that the exacerbation of cerebral ischemic neuronal damage induced by the intracerebroventricular administration of 5.0µg α-MG/mouse was ameliorated in cerebral SGLT-1 knockdown mice. Thus, sodium influx through cerebral SGLT-1 may exacerbate cerebral ischemia-induced neuronal damage. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Heterogeneous cerebral glucose metabolism in normal pressure hydrocephalus.

    PubMed Central

    Tedeschi, E; Hasselbalch, S G; Waldemar, G; Juhler, M; Høgh, P; Holm, S; Garde, L; Knudsen, L L; Klinken, L; Gjerris, F

    1995-01-01

    The regional cerebral metabolic rate for glucose (rCMRglu) has never been investigated in large consecutive groups of patients with normal pressure hydrocephalus (NPH), a potentially treatable form of dementia with an unpredictable outcome after shunt surgery. Using PET and 18F-2-fluorodeoxyglucose, rCMRglu was studied in 18 patients who fulfilled hydrodynamic criteria for NPH and in whom a biopsy of the frontal cortex was obtained. When compared with an age matched group of 11 healthy subjects, the patients with NPH showed a significant rCMRglu reduction in all cortical and subcortical regions of interest. Individual metabolic patterns, however, disclosed a large topographical heterogeneity. Furthermore, histopathological examination identified Alzheimer's disease or cerebrovascular disease in six cases, and no parenchymal disease or non-specific degenerative processes in the remaining 12. After separating the patients according to the histological diagnosis, the rCMRglu patterns were still heterogeneous, the abnormalities ranging from focal to diffuse in both subgroups. After shunt operation, 11 patients did not improve or worsened clinically. Six patients improved; of those, two had Alzheimer changes and two cerebrovascular changes in their biopsy. The metabolic pattern of these six patients did not differ from the rest of the NPH group. The results indicate that the NPH syndrome may be non-specifically associated with different degenerative disorders. The metabolic heterogeneity, together with the heterogeneous histopathological findings, indicate the necessity of reevaluating the pathogenesis of the NPH syndrome, and may account for the high variability in the success rate of shunt surgery series. Images PMID:7500099

  20. Cerebral glucose utilization and blood flow in Huntington's Disease (HD)

    SciTech Connect

    Phelps, M.E.; Mazziotta, J.C.; Wapenski, J.; Riege, W.; Baxter, L.R.

    1985-05-01

    Previous studies in the authors' Laboratory have been carried out on 13 patients symptomatic of HD (SHD) and 15 asymptomatic at-risk for HD (ARHD) with a ECAT II and identification of changes in caudate metabolism using an index technique. The authors report now studies of additional 28 subjects (11 SHD, 17 ARHD) studied drug free and compared to age/sex matched controls using the higher resolution NeuroECAT, FDG for glucose utilization (LCMRGlc) and 0-15 water for cerebral blood flow (CBF). Patients had neurological, psychiatric-tests, x-ray CT and were video taped to determine type, timing and amount of choreathetic movements during study. In SHD (disease duration 4.9 +- 2.7 yrs), significant decreases (30%) in LCMRGlc were found in striatum (SHD=19.3 +- 7.7, controls = 29.9 +- 5.8 ..mu.. moles/min/100g) despite no to moderate caudate atrophy on x-ray CT. Hemisphere and cortical CMRGlc were not significantly decreased. There was a significant correlation between disease duration and ratio of caudate to putamen (Cd/Put). Pattern of LCMRGlc and CBF matched in SHD. The caudate to hemisphere LCMRGlc ratio was not different between ARHD and controls except variance was about 4 times greater for ARHD (ARHD=1.21 +- 0.15, controls = 1.28 +- 0.04) indicating presence of subpopulations in ARHD group. Four ARHD subjects had a ratio of 1 Std. Dev. from mean of SHD (no normals had values in this range). The 2 ARHD subjects with lowest caudate LCMRGlc had Cd/Put ratios > 2 Std. Dev. from controls. Results show 1) LCMRGlc abnormalities in all SHD patients and subpopulations in ARHD, 2) metabolic alterations appear to begin in caudate and spread to putamen and that a Cd/Put value of 0.7 should be found at start of symptoms, and 3) cortex and thalamus are relatively spared in ARHD and early SHD.

  1. Glucose and fatty acid metabolism in normal and diabetic rabbit cerebral microvessels

    SciTech Connect

    Hingorani, V.; Brecher, P.

    1987-05-01

    Rabbit cerebral microvessels were used to study fatty acid metabolism and its utilization relative to glucose. Microvessels were incubated with either (6-/sup 14/C)glucose or (1-/sup 14/C)oleic acid and the incorporation of radioactivity into /sup 14/CO/sub 2/, lactate, triglyceride, cholesterol ester, and phospholipid was determined. The inclusion of 5.5 mM glucose in the incubation mixture reduced oleate oxidation by 50% and increased esterification into both phospholipid and triglyceride. Glucose oxidation to CO/sub 2/ was reduced by oleate addition, whereas lactate production was unaffected. 2'-Tetradecylglycidic acid, an inhibitor of carnitine acyltransferase I, blocked oleic acid oxidation in the presence and absence of glucose. It did not effect fatty acid esterification when glucose was absent and eliminated the inhibition of oleate on glucose oxidation. Glucose oxidation to /sup 14/CO/sub 2/ was markedly suppressed in microvessels from alloxan-treated diabetic rabbits but lactate formation was unchanged. Fatty acid oxidation to CO/sub 2/ and incorporation into triglyceride, phospholipid, and cholesterol ester remained unchanged in the diabetic state. The experiments show that both fatty acid and glucose can be used as a fuel source by the cerebral microvessels, and the interactions found between fatty acid and glucose metabolism are similar to the fatty acid-glucose cycle, described previously.

  2. ALDH2 polymorphism is associated with fasting blood glucose through alcohol consumption in Japanese men

    PubMed Central

    Yin, Guang; Naito, Mariko; Wakai, Kenji; Morita, Emi; Kawai, Sayo; Hamajima, Nobuyuki; Suzuki, Sadao; Kita, Yoshikuni; Takezaki, Toshiro; Tanaka, Keitaro; Morita, Makiko; Uemura, Hirokazu; Ozaki, Etsuko; Hosono, Satoyo; Mikami, Haruo; Kubo, Michiaki; Tanaka, Hideo

    2016-01-01

    ABSTRACT Associations between alcohol consumption and type 2 diabetes risk are inconsistent in epidemiologic studies. This study investigated the associations of ADH1B and ALDH2 polymorphisms with fasting blood glucose levels, and the impact of the associations of alcohol consumption with fasting blood glucose levels in Japanese individuals. This cross-sectional study included 907 men and 912 women, aged 35–69 years. The subjects were selected from among the Japan Multi-institutional Collaborative Cohort study across six areas of Japan. The ADH1B and ALDH2 polymorphisms were genotyped by Invader Assays. The ALDH2 Glu504Lys genotypes were associated with different levels of fasting blood glucose in men (P = 0.04). Mean fasting glucose level was positively associated with alcohol consumption in men with the ALDH2 504 Lys allele (Ptrend = 0.02), but not in men with the ALDH2 504Glu/Glu genotype (Ptrend = 0.45), resulting in no statistically significant interaction (P = 0.38). Alcohol consumption was associated with elevated fasting blood glucose levels compared with non-consumers in men (Ptrend = 0.002). The ADH1B Arg48His polymorphism was not associated with FBG levels overall or after stratification for alcohol consumption. These findings suggest that the ALDH2 polymorphism is associated with different levels of fasting blood glucose through alcohol consumption in Japanese men. The interaction of ALDH2 polymorphisms in the association between alcohol consumption and fasting blood glucose warrants further investigation. PMID:27303105

  3. The effects of oxiracetam (CT-848) on local cerebral glucose utilization after focal cerebral ischemia in rats.

    PubMed

    Hokonohara, T; Sako, K; Shinoda, Y; Tomabechi, M; Yonemasu, Y

    1992-02-01

    The effects of oxiracetam on the reduction of brain metabolism induced by focal cerebral ischemia were investigated by measuring local cerebral glucose utilization (LCGU) in rats 24 hr after left middle cerebral artery occlusion. Focal cerebral ischemia reduced LCGU in the entire ipsilateral cortex, the greatest reduction being in the lateral parts of the frontoparietal cortex. LCGU was slightly reduced in the contralateral cortex; this reduction was considered to be caused by diaschisis. Oxiracetam was administered intraperitoneally for 3 days prior to middle cerebral artery occlusion. In the ipsilateral cortex, LCGU reduction was minimized in the ischemic center areas by oxiracetam at a dose of 400 mg/kg and in more extensive areas, by a dose of 800 mg/kg. Moreover, oxiracetam at a dose of 800 mg/kg enhanced metabolism impaired by diaschisis in the caudal areas of the contralateral cortex. These findings suggest that oxiracetam minimizes the reduction of brain function induced by ischemia and may therefore be useful in the treatment of cerebrovascular disease.

  4. Brain Size and Cerebral Glucose Metabolic Rate in Nonspecific Retardation and Down Syndrome.

    ERIC Educational Resources Information Center

    Haier, Richard J.; And Others

    1995-01-01

    Brain size and cerebral glucose metabolic rate were determined for 10 individuals with mild mental retardation (MR), 7 individuals with Down syndrome (DS), and 10 matched controls. MR and DS groups both had brain volumes of about 80% compared to controls, with variance greatest within the MR group. (SLD)

  5. Brain Size and Cerebral Glucose Metabolic Rate in Nonspecific Retardation and Down Syndrome.

    ERIC Educational Resources Information Center

    Haier, Richard J.; And Others

    1995-01-01

    Brain size and cerebral glucose metabolic rate were determined for 10 individuals with mild mental retardation (MR), 7 individuals with Down syndrome (DS), and 10 matched controls. MR and DS groups both had brain volumes of about 80% compared to controls, with variance greatest within the MR group. (SLD)

  6. Regional brain blood flow and cerebral hemispheric oxygen consumption during acute hypoxaemia in the llama fetus

    PubMed Central

    Llanos, Aníbal J; Riquelme, Raquel A; Sanhueza, Emilia M; Herrera, Emilio; Cabello, Gertrudis; Giussani, Dino A; Parer, Julian T

    2002-01-01

    Unlike fetal animals of lowland species, the llama fetus does not increase its cerebral blood flow during an episode of acute hypoxaemia. This study tested the hypothesis that the fetal llama brain maintains cerebral hemispheric O2 consumption by increasing cerebral O2 extraction rather than decreasing cerebral oxygen utilisation during acute hypoxaemia. Six llama fetuses were surgically instrumented under general anaesthesia at 217 days of gestation (term ca 350 days) with vascular and amniotic catheters in order to carry out cardiorespiratory studies. Following a control period of 1 h, the llama fetuses underwent 3 × 20 min episodes of progressive hypoxaemia, induced by maternal inhalational hypoxia. During basal conditions and during each of the 20 min of hypoxaemia, fetal cerebral blood flow was measured with radioactive microspheres, cerebral oxygen extraction was calculated, and fetal cerebral hemispheric O2 consumption was determined by the modified Fick principle. During hypoxaemia, fetal arterial O2 tension and fetal pH decreased progressively from 24 ± 1 to 20 ± 1 Torr and from 7.36 ± 0.01 to 7.33 ± 0.01, respectively, during the first 20 min episode, to 16 ± 1 Torr and 7.25 ± 0.05 during the second 20 min episode and to 14 ± 1 Torr and 7.21 ± 0.04 during the final 20 min episode. Fetal arterial partial pressure of CO2 (Pa,CO2, 42 ± 2 Torr) remained unaltered from baseline throughout the experiment. Fetal cerebral hemispheric blood flow and cerebral hemispheric oxygen extraction were unaltered from baseline during progressive hypoxaemia. In contrast, a progressive fall in fetal cerebral hemispheric oxygen consumption occurred during the hypoxaemic challenge. In conclusion, these data do not support the hypothesis that the fetal llama brain maintains cerebral hemispheric O2 consumption by increasing cerebral hemispheric O2 extraction. Rather, the data show that in the llama fetus, a reduction in cerebral hemispheric metabolism occurs during acute

  7. Mapping cerebral glutamate 13C turnover and oxygen consumption by in vivo NMR.

    PubMed

    Hyder, Fahmeed; Brown, Peter; Nixon, Terennce W; Behar, Kevin L

    2003-01-01

    Regional rates of 13C incorporation from glucose to glutamate were detected in anesthetized rat brain in vivo at 7T with high temporal and spatial resolution using NMR method ICED PEPSI (in vivo carbon edited detection with proton echo planar spectroscopic imaging). Time courses of regional glutamate 13C turnover were fitted by a metabolic model to obtain regional tri-carboxylic acid (TCA) cycle flux and cerebral metabolic rate of oxygen consumption (CMRO2) in each voxel (8 microL) of rat cortex. CMRO2 maps obtained for rats under either alpha-chloralose or morphine anesthesia revealed average cortical values of 1.5 +/- 0.2 (n = 3) and 3.2 +/- 0.3 (n = 4) mumol/g/min, respectively. These values of CMRO2 are in good agreement with previous cortical measurements with coarser spatial resolution. The heterogeneity within each map, which depicted predominantly gray and white matter differences, was significantly greater under morphine (higher cortical activity) than under-alpha-chloralose (lower cortical activity) anesthesia. The regional variations in the basal awake state, which are expected to be even greater, should be considered to avoid partial-volume artifacts in functional activation studies of awake subjects.

  8. Factor analysis of regional cerebral glucose metabolic rates in healthy men.

    PubMed

    Szabo, Z; Camargo, E E; Sostre, S; Shafique, I; Sadzot, B; Links, J M; Dannals, R F; Wagner, H N

    1992-01-01

    Cerebral glucose utilization measured with fluorine-18-fluoro-2-deoxy-D-glucose is characterized by considerable variability both among different persons and for the same person examined on different occasions. The goal of this study was to explore whether some regions of the brain were more variable than others with respect to glucose utilization and whether there was a pattern in their covariance. The global and regional cerebral utilization of glucose was measured in 12 healthy young volunteers on 3 or 4 occasions. In all, 24 regions were examined. The interrelation of the glucose utilization rates of the brain regions was investigated by factor analysis of the metabolic rates. Some 70% of the total variance was attributable to only 1 factor, while 80% of the total variance could be attributed to 2 factors. Regions making up the first factor were the frontal and temporal cortex, cingulate gyrus, caudate nucleus, thalamus and putamen. These regions are functionally related to the limbic system. Regions of the second factor were the parietal cortex, occipital cortex and cerebellum, regions more clearly related to sensory and motor functions. The 2-factor pattern was highly reproducible, being found with different algorithms for factor extraction and rotation. Under resting conditions, the variance of cerebral metabolism seems to be primarily related to regions which are closely involved with the limbic system. Cortical regions involved primarily in motor and sensory functions have less influence on the variance.

  9. Neuroenergetic Response to Prolonged Cerebral Glucose Depletion after Severe Brain Injury and the Role of Lactate.

    PubMed

    Patet, Camille; Quintard, Hervé; Suys, Tamarah; Bloch, Jocelyne; Daniel, Roy T; Pellerin, Luc; Magistretti, Pierre J; Oddo, Mauro

    2015-10-15

    Lactate may represent a supplemental fuel for the brain. We examined cerebral lactate metabolism during prolonged brain glucose depletion (GD) in acute brain injury (ABI) patients monitored with cerebral microdialysis (CMD). Sixty episodes of GD (defined as spontaneous decreases of CMD glucose from normal to low [<1.0 mmol/L] for at least 2 h) were identified among 26 patients. During GD, we found a significant increase of CMD lactate (from 4 ± 2.3 to 5.4 ± 2.9 mmol/L), pyruvate (126.9 ± 65.1 to 172.3 ± 74.1 μmol/L), and lactate/pyruvate ratio (LPR; 27 ± 6 to 35 ± 9; all, p < 0.005), while brain oxygen and blood lactate remained normal. Dynamics of lactate and glucose supply during GD were further studied by analyzing the relationships between blood and CMD samples. There was a strong correlation between blood and brain lactate when LPR was normal (r = 0.56; p < 0.0001), while an inverse correlation (r = -0.11; p = 0.04) was observed at elevated LPR >25. The correlation between blood and brain glucose also decreased from r = 0.62 to r = 0.45. These findings in ABI patients suggest increased cerebral lactate delivery in the absence of brain hypoxia when glucose availability is limited and support the concept that lactate acts as alternative fuel.

  10. Program for PET image alignment: Effects on calculated differences in cerebral metabolic rates for glucose

    SciTech Connect

    Phillips, R.L.; London, E.D.; Links, J.M.; Cascella, N.G. )

    1990-12-01

    A program was developed to align positron emission tomography images from multiple studies on the same subject. The program allowed alignment of two images with a fineness of one-tenth the width of a pixel. The indications and effects of misalignment were assessed in eight subjects from a placebo-controlled double-blind crossover study on the effects of cocaine on regional cerebral metabolic rates for glucose. Visual examination of a difference image provided a sensitive and accurate tool for assessing image alignment. Image alignment within 2.8 mm was essential to reduce variability of measured cerebral metabolic rates for glucose. Misalignment by this amount introduced errors on the order of 20% in the computed metabolic rate for glucose. These errors propagate to the difference between metabolic rates for a subject measured in basal versus perturbed states.

  11. Cerebral glucose metabolism in neurofibromatosis type 1 assessed with [18F]-2-fluoro-2-deoxy-D-glucose and PET.

    PubMed Central

    Balestri, P; Lucignani, G; Fois, A; Magliani, L; Calistri, L; Grana, C; Di Bartolo, R M; Perani, D; Fazio, F

    1994-01-01

    Cerebral PET with [18F]-2-fluoro-2-deoxy-D-glucose has been performed in four patients with neurofibromatosis type 1 (NF1) to assess the relation between cerebral metabolic activity, MRI, and the presence of neurological symptoms, including seizures, as well as mental and language retardation. Widespread hypometabolism occurred in three of the patients. The lesions on MRI, which were localised in the subcortical white matter and grey structures, had normal rates of glucose metabolism. This finding suggests that the abnormalities seen on MRI are not due to defective blood supply, localised oedema, or grey matter heterotopic foci as previously hypothesised. The presence of the hypometabolic areas seems to be inconsistently related to the occurrence of seizures and is not proportional to the degree of mental impairment. This study provides evidence of a widespread cerebral hypometabolism that is not related to the presence of MRI abnormalities; conversely normal metabolism was present in the areas with an abnormal MRI signal. Images PMID:7798976

  12. Induction of microcin B17 formation in Escherichia coli ZK650 by limitation of oxygen and glucose is independent of glucose consumption rate

    NASA Technical Reports Server (NTRS)

    Gao, Q.; Fang, A.; Demain, A. L.

    2001-01-01

    We examined the consumption of glucose from the media in which Escherichia coli ZK650 was grown. This organism, which produces the polypeptide antibiotic microcin B17 best under conditions of limiting supplies of glucose and air, was grown with a low level of glucose (0.5 mg/ml) as well as a high level (5.0 mg/ml) under both high and low aeration. Glucose consumption rates were virtually identical under both high and low aeration. Thus, glucose consumption rate is not a regulating factor in microcin B17 formation.

  13. Induction of microcin B17 formation in Escherichia coli ZK650 by limitation of oxygen and glucose is independent of glucose consumption rate

    NASA Technical Reports Server (NTRS)

    Gao, Q.; Fang, A.; Demain, A. L.

    2001-01-01

    We examined the consumption of glucose from the media in which Escherichia coli ZK650 was grown. This organism, which produces the polypeptide antibiotic microcin B17 best under conditions of limiting supplies of glucose and air, was grown with a low level of glucose (0.5 mg/ml) as well as a high level (5.0 mg/ml) under both high and low aeration. Glucose consumption rates were virtually identical under both high and low aeration. Thus, glucose consumption rate is not a regulating factor in microcin B17 formation.

  14. p-Synephrine stimulates glucose consumption via AMPK in L6 skeletal muscle cells.

    PubMed

    Hong, Na-Young; Cui, Zhi-Gang; Kang, Hee-Kyoung; Lee, Dae-Ho; Lee, Young-Ki; Park, Deok-Bae

    2012-02-24

    Interest in p-synephrine, the primary protoalkaloid in the extract of bitter orange and other citrus species, has increased due to its various pharmacological effects and related adverse effects. The lipolytic activity of p-synephrine has been repeatedly revealed by in vitro and in vivo studies and p-synephrine is currently marketed as a dietary supplement for weight loss. The present study investigated the effect of p-synephrine on glucose consumption and its action mechanism in L6 skeletal muscle cells. Treatment of L6 skeletal muscle cells with p-synephrine (0-100μM) did not affect cell viability and increased basal glucose consumption up to 50% over the control in a dose-dependent manner. The basal- or insulin-stimulated lactic acid production as well as glucose consumption was significantly increased by the addition of p-synephrine. p-Synephrine stimulated the phosphorylation of AMPK but not of Akt. p-Synephrine-induced glucose consumption was sensitive to the inhibition of AMPK but not to the inhibition of PI3 kinase. p-Synephrine also stimulated the translocation of Glut4 from the cytoplasm to the plasma membrane; this stimulation was suppressed by the inhibition of AMPK, but not of PI3 kinase. Taken together, p-synephrine can stimulate glucose consumption (Glut4-dependent glucose uptake) by stimulating AMPK activity, regardless of insulin-stimulated PI3 kinase-Akt activity in L6 skeletal muscle cells.

  15. Low Cerebral Glucose Metabolism: A Potential Predictor for the Severity of Vascular Parkinsonism and Parkinson's Disease.

    PubMed

    Xu, Yunqi; Wei, Xiaobo; Liu, Xu; Liao, Jinchi; Lin, Jiaping; Zhu, Cansheng; Meng, Xiaochun; Xie, Dongsi; Chao, Dongman; Fenoy, Albert J; Cheng, Muhua; Tang, Beisha; Zhang, Zhuohua; Xia, Ying; Wang, Qing

    2015-11-01

    This study explored the association between cerebral metabolic rates of glucose (CMRGlc) and the severity of Vascular Parkinsonism (VP) and Parkinson's disease (PD). A cross-sectional study was performed to compare CMRGlc in normal subjects vs. VP and PD patients. Twelve normal subjects, 22 VP, and 11 PD patients were evaluated with the H&Y and MMSE, and underwent 18F-FDG measurements. Pearson's correlations were used to identify potential associations between the severity of VP/PD and CMRGlc. A pronounced reduction of CMRGlc in the frontal lobe and caudate putamen was detected in patients with VP and PD when compared with normal subjects. The VP patients displayed a slight CMRGlc decrease in the caudate putamen and frontal lobe in comparison with PD patients. These decreases in CMRGlc in the frontal lobe and caudate putamen were significantly correlated with the VP patients' H&Y, UPDRS II, UPDRS III, MMSE, cardiovascular, and attention/memory scores. Similarly, significant correlations were observed in patients with PD. This is the first clinical study finding strong evidence for an association between low cerebral glucose metabolism and the severity of VP and PD. Our findings suggest that these changes in glucose metabolism in the frontal lobe and caudate putamen may underlie the pathophysiological mechanisms of VP and PD. As the scramble to find imaging biomarkers or predictors of the disease intensifies, a better understanding of the roles of cerebral glucose metabolism may give us insight into the pathogenesis of VP and PD.

  16. [Study of regional cerebral glucose metabolism, in man, while awake or asleep, by positron emission tomography].

    PubMed

    Franck, G; Salmon, E; Poirrier, R; Sadzot, B; Franco, G

    1987-03-01

    Measurements of regional cerebral glucose uptake by the 18F-fluorodeoxyglucose technique (18FDG) and positron emission tomography (PET) along with polygraph recordings were made serially during relaxed wakefulness and different stages of nocturnal sleep in two right-handed normal volunteers. During stage III-IV sleep, values declined diffusely in both hemispheric regions (-31%), thalamus (-33%), cerebellum (-33%) and brain stem (-25%). During paradoxical sleep regional values increased diffusely compared with slow wave sleep. Compared to wakefulness, regional metabolic values seemed to increase but the results were more variable from one volunteer to the other. These preliminary data indicate important regional alterations in cerebral metabolism between sleep states.

  17. Similarities of cerebral glucose metabolism in Alzheimer's and Parkinsonian dementia

    SciTech Connect

    Kuhl, D.E.; Metter, E.J.; Benson, D.F.; Ashford, J.W.; Riege, W.H.; Fujikawa, D.G.; Markham, C.H.; Maltese, A.

    1985-05-01

    In the dementia of probable Alzheimer's Disease (AD), there is a decrease in the metabolic ratio of parietal cortex/caudate-thalamus which relates measures in the most and in the least severely affected locations. Since some demented patients with Parkinson's Disease (PDD) are known to share pathological and neurochemical features with AD patients, the authors evaluated if the distribution of cerebral hypometabolism in PDD and AD were the same. Local cerebral metabolic rates were determined using the FDG method and positron tomography in subjects with AD (N=23), and PDD (N=7), multiple infarct dementia (MID)(N=6), and controls (N=10). In MID, the mean par/caudthal ratio was normal (0.79 +- 0.9, N=6). In AD and PDD patients, this ratio correlated negatively with both the severity (r=-0.624, rho=0.001) and duration (r=-0.657, rho=0.001) of dementia. The ratio was markedly decreased in subjects with mild to severe dementia (0.46 +- 0.09, N=21) and with dementia duration greater than two years (0.44 +- 0.08, N=18), but the ratio was also significantly decreased in patients with less advanced disease, i.e., when dementia was only questionable (0.64 +- 0.14, N=9) (t=2.27, rho<0.037) and when duration was two years or less (0.62 +- 0.13, N=12)(t=2.88, rho<0.009). This similarity of hypometabolism in AD and PDD is additional evidence that a common mechanism may operate in both disorders. The par/caud-thal metabolic ratio may be an index useful in the differential diagnosis of early dementia.

  18. Adaptive use of a personal glucose meter (PGM) for acute biotoxicity assessment based on the glucose consumption of microbes.

    PubMed

    Fang, Deyu; Gao, Guanyue; Yu, Yuan; Shen, Jie; Zhi, Jinfang

    2016-05-10

    In this study, a new method for acute biotoxicity assessment was proposed by measuring the glucose consumption of microbes with a personal glucose meter (PGM). To obtain an ideal biotoxicity assessment performance, an appropriate microbe was selected first, and then the relevant parameters, such as temperature and microbial concentration were optimized. Under the optimized parameters, the acute biotoxicity of four environmental pollutants (As(3+), Ni(2+), 4-chlorophenol, and 2,4-dichlorophenol), three wastewater samples and three soil samples were evaluated. This technology breakthrough will help us develop a low cost, easy to use water-environmental early-warning kit.

  19. Sugarcoated isolation: evidence that social avoidance is linked to higher basal glucose levels and higher consumption of glucose

    PubMed Central

    Ein-Dor, Tsachi; Coan, James A.; Reizer, Abira; Gross, Elizabeth B.; Dahan, Dana; Wegener, Meredyth A.; Carel, Rafael; Cloninger, Claude R.; Zohar, Ada H.

    2015-01-01

    Objective: The human brain adjusts its level of effort in coping with various life stressors as a partial function of perceived access to social resources. We examined whether people who avoid social ties maintain a higher fasting basal level of glucose in their bloodstream and consume more sugar-rich food, reflecting strategies to draw more on personal resources when threatened. Methods: In Study 1 (N = 60), we obtained fasting blood glucose and adult attachment orientations data. In Study 2 (N = 285), we collected measures of fasting blood glucose and adult attachment orientations from older adults of mixed gender, using a measure of attachment style different from Study 1. In Study 3 (N = 108), we examined the link between trait-like attachment avoidance, manipulation of an asocial state, and consumption of sugar-rich food. In Study 4 (N = 115), we examined whether manipulating the social network will moderate the effect of attachment avoidance on consumption of sugar-rich food. Results: In Study 1, fasting blood glucose levels corresponded with higher attachment avoidance scores after statistically adjusting for time of assessment and interpersonal anxiety. For Study 2, fasting blood glucose continued to correspond with higher adult attachment avoidance even after statistically adjusting for interpersonal anxiety, stress indices, age, gender, social support and body mass. In Study 3, people high in attachment avoidance consume more sugar-rich food, especially when reminded of asocial tendencies. Study 4 indicated that after facing a stressful task in the presence of others, avoidant people gather more sugar-rich food than more socially oriented people. Conclusion: Results are consistent with the suggestion that socially avoidant individuals upwardly adjust their basal glucose levels and consume more glucose-rich food with the expectation of increased personal effort because of limited access to social resources. Further investigation of this link is warranted

  20. Cerebral glucose metabolic differences in patients with panic disorder

    SciTech Connect

    Nordahl, T.E.; Semple, W.E.; Gross, M.; Mellman, T.A.; Stein, M.B.; Goyer, P.; King, A.C.; Uhde, T.W.; Cohen, R.M. )

    1990-08-01

    Regional glucose metabolic rates were measured in patients with panic disorder during the performance of auditory discrimination. Those regions examined by Reiman and colleagues in their blood flow study of panic disorder were examined with a higher resolution positron emission tomography (PET) scanner and with the tracer (F-18)-2-fluoro-2-deoxyglucose (FDG). In contrast to the blood flow findings of Reiman et al., we did not find global gray metabolic differences between patients with panic disorder and normal controls. Consistent with the findings of Reiman et al., we found hippocampal region asymmetry. We also found metabolic decreases in the left inferior parietal lobule and in the anterior cingulate (trend), as well as an increase in the metabolic rate of the medial orbital frontal cortex (trend) of panic disorder patients. It is unclear whether the continuous performance task (CPT) enhanced or diminished findings that would have been noted in a study performed without task.

  1. Differential Responses of Plasma Adropin Concentrations To Dietary Glucose or Fructose Consumption In Humans.

    PubMed

    Butler, Andrew A; St-Onge, Marie-Pierre; Siebert, Emily A; Medici, Valentina; Stanhope, Kimber L; Havel, Peter J

    2015-10-05

    Adropin is a peptide hormone encoded by the Energy Homeostasis Associated (ENHO) gene whose physiological role in humans remains incompletely defined. Here we investigated the impact of dietary interventions that affect systemic glucose and lipid metabolism on plasma adropin concentrations in humans. Consumption of glucose or fructose as 25% of daily energy requirements (E) differentially affected plasma adropin concentrations (P < 0.005) irrespective of duration, sex or age. Glucose consumption reduced plasma adropin from 3.55 ± 0.26 to 3.28 ± 0.23 ng/ml (N = 42). Fructose consumption increased plasma adropin from 3.63 ± 0.29 to 3.93 ± 0.34 ng/ml (N = 45). Consumption of high fructose corn syrup (HFCS) as 25% E had no effect (3.43 ± 0.32 versus 3.39 ± 0.24 ng/ml, N = 26). Overall, the effect of glucose, HFCS and fructose on circulating adropin concentrations were similar to those observed on postprandial plasma triglyceride concentrations. Furthermore, increases in plasma adropin levels with fructose intake were most robust in individuals exhibiting hypertriglyceridemia. Individuals with low plasma adropin concentrations also exhibited rapid increases in plasma levels following consumption of breakfasts supplemented with lipids. These are the first results linking plasma adropin levels with dietary sugar intake in humans, with the impact of fructose consumption linked to systemic triglyceride metabolism. In addition, dietary fat intake may also increase circulating adropin concentrations.

  2. Regional Cerebral Glucose Metabolism in Novelty Seeking and Antisocial Personality: A Positron Emission Tomography Study

    PubMed Central

    Park, So Hyeon; Park, Hyun Soo

    2016-01-01

    Novelty seeking (NS) and antisocial personality (ASP) are commonly exhibited by those who suffer from addictions, such as substance abuse. NS has been suggested to be a fundamental aspect of ASP. To investigate the neurobiological substrate of NS and ASP, we tested the relationship between regional cerebral glucose metabolism and the level of NS, determining the differences between individuals with and without ASP. Seventy-two healthy adults (43 males, mean age±SD=38.8±16.6 years, range=20~70 years; 29 females, 44.2±20.1 years, range=19~72 years) underwent resting-state brain positron emission tomography (PET) 40 minutes after 18F-fluorodeoxyglucose (FDG) injection. Within 10 days of the FDG PET study, participants completed Cloninger's 240-item Temperament and Character Inventory (TCI) to determine NS scores. Participants with and without ASP were grouped according to their TCI profiles. Statistical parametric mapping analysis was performed using the FDG PET and TCI profile data. NS scores positively correlated with metabolism in the left anterior cingulate gyrus and the insula on both sides of the brain and negatively correlated with metabolism in the right pallidum and putamen. Participants with ASP showed differences in cerebral glucose metabolism across various cortical and subcortical regions, mainly in the frontal and prefrontal areas. These data demonstrate altered regional cerebral glucose metabolism in individuals with NS and ASP and inform our understanding of the neurobiological substrates of problematic behaviors and personality disorders. PMID:27574485

  3. Regional Cerebral Glucose Metabolism in Novelty Seeking and Antisocial Personality: A Positron Emission Tomography Study.

    PubMed

    Park, So Hyeon; Park, Hyun Soo; Kim, Sang Eun

    2016-08-01

    Novelty seeking (NS) and antisocial personality (ASP) are commonly exhibited by those who suffer from addictions, such as substance abuse. NS has been suggested to be a fundamental aspect of ASP. To investigate the neurobiological substrate of NS and ASP, we tested the relationship between regional cerebral glucose metabolism and the level of NS, determining the differences between individuals with and without ASP. Seventy-two healthy adults (43 males, mean age±SD=38.8±16.6 years, range=20~70 years; 29 females, 44.2±20.1 years, range=19~72 years) underwent resting-state brain positron emission tomography (PET) 40 minutes after (18)F-fluorodeoxyglucose (FDG) injection. Within 10 days of the FDG PET study, participants completed Cloninger's 240-item Temperament and Character Inventory (TCI) to determine NS scores. Participants with and without ASP were grouped according to their TCI profiles. Statistical parametric mapping analysis was performed using the FDG PET and TCI profile data. NS scores positively correlated with metabolism in the left anterior cingulate gyrus and the insula on both sides of the brain and negatively correlated with metabolism in the right pallidum and putamen. Participants with ASP showed differences in cerebral glucose metabolism across various cortical and subcortical regions, mainly in the frontal and prefrontal areas. These data demonstrate altered regional cerebral glucose metabolism in individuals with NS and ASP and inform our understanding of the neurobiological substrates of problematic behaviors and personality disorders.

  4. Correlations between magnetic resonance spectroscopy alterations and cerebral ammonia and glucose metabolism in cirrhotic patients with and without hepatic encephalopathy

    PubMed Central

    Weissenborn, Karin; Ahl, Björn; Fischer‐Wasels, Daniela; van den Hoff, Joerg; Hecker, Hartmut; Burchert, Wolfgang; Köstler, Herbert

    2007-01-01

    Background Hepatic encephalopathy is considered to be mainly caused by increased ammonia metabolism of the brain. If this hypothesis is true, cerebral glucose utilisation, which is considered to represent brain function, should be closely related to cerebral ammonia metabolism. The aim of the present study was to analyse whether cerebral ammonia and glucose metabolism in cirrhotic patients with early grades of hepatic encephalopathy are as closely related as could be expected from current hypotheses on hepatic encephalopathy. Methods 13N‐ammonia and 18F‐fluorodesoxyglucose positron emission tomography, magnetic resonance imaging and magnetic resonance spectroscopy (MRS) were performed in 21 cirrhotic patients with grade 0–1 hepatic encephalopathy. Quantitative values of cerebral ammonia uptake and retention rate and glucose utilisation were derived for several regions of interest and were correlated with the MRS data of the basal ganglia, white matter and frontal cortex. Results A significant correlation between plasma ammonia levels and cerebral ammonia metabolism, respectively, and MRS alterations could be shown only for white matter. In contrast, MRS alterations in all three regions studied were significantly correlated with the glucose utilisation of several brain regions. Cerebral ammonia and glucose metabolism were not correlated. Conclusion Increase of cerebral ammonia metabolism is an important but not exclusive causal factor for the development of hepatic encephalopathy. PMID:17660226

  5. Fatal hypoglycemia in malignant pheochromocytoma: direct glucose consumption as suggested by (18)F-2-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography imaging.

    PubMed

    Habra, Mouhammed Amir; Núñez, Rodolfo; Chuang, Hubert; Ayala-Ramirez, Montserrat; Rich, Thereasa; Kyle, Karen; Jimenez, Camilo

    2010-02-01

    We present a patient with metastatic pheochromocytoma, who developed progressive and fatal hypoglycemia most likely secondary to direct tumor glucose consumption that did not respond to high-dose glucose infusion, corticosteroids, or glucagon therapy. The pattern of glucose uptake on (18)F-2-fluoro-2-deoxy-D-glucose positron emission tomography, with preferential tumor glucose uptake in association with a marked reduction in normal uptake in the heart, muscles, and brain, is highly suggestive of direct consumption of glucose by the tumor rather than insulin-like growth factor-2 mediated hypoglycemia. In patients with large-volume metastatic malignancies, direct tumor glucose consumption should be considered in the differential diagnosis of hypoglycemia. Nuclear medicine imaging techniques can illustrate the pathophysiology of hypoglycemia in such cases.

  6. Brain metabolism in autism. Resting cerebral glucose utilization rates as measured with positron emission tomography

    SciTech Connect

    Rumsey, J.M.; Duara, R.; Grady, C.; Rapoport, J.L.; Margolin, R.A.; Rapoport, S.I.; Cutler, N.R.

    1985-05-01

    The cerebral metabolic rate for glucose was studied in ten men (mean age = 26 years) with well-documented histories of infantile autism and in 15 age-matched normal male controls using positron emission tomography and (F-18) 2-fluoro-2-deoxy-D-glucose. Positron emission tomography was completed during rest, with reduced visual and auditory stimulation. While the autistic group as a whole showed significantly elevated glucose utilization in widespread regions of the brain, there was considerable overlap between the two groups. No brain region showed a reduced metabolic rate in the autistic group. Significantly more autistic, as compared with control, subjects showed extreme relative metabolic rates (ratios of regional metabolic rates to whole brain rates and asymmetries) in one or more brain regions.

  7. Cerebral glucose metabolism in childhood-onset obsessive-compulsive disorder

    SciTech Connect

    Swedo, S.E.; Schapiro, M.B.; Grady, C.L.; Cheslow, D.L.; Leonard, H.L.; Kumar, A.; Friedland, R.; Rapoport, S.I.; Rapoport, J.L.

    1989-06-01

    The cerebral metabolic rate for glucose was studied in 18 adults with childhood-onset obsessive-compulsive disorder (OCD) and in age- and sex-matched controls using positron emission tomography and fludeoxyglucose F 18. Both groups were scanned during rest, with reduced auditory and visual stimulation. The group with OCD showed an increased glucose metabolism in the left orbital frontal, right sensorimotor, and bilateral prefrontal and anterior cingulate regions as compared with controls. Ratios of regional activity to mean cortical gray matter metabolism were increased for the right prefrontal and left anterior cingulate regions in the group with OCD as a whole. Correlations between glucose metabolism and clinical assessment measures showed a significant relationship between metabolic activity and both state and trait measurements of OCD and anxiety as well as the response to clomipramine hydrochloride therapy. These results are consistent with the suggestion that OCD may result from a functional disturbance in the frontal-limbic-basal ganglia system.

  8. Changes in cerebral glucose metabolism after an expedition to high altitudes.

    PubMed

    Merz, Tobias M; Treyer, Valerie; Hefti, Urs; Spengler, Christina M; Schwarz, Urs; Buck, Alfred; Maggiorini, Marco

    2006-01-01

    The possibility of persistent cerebral impairment due to exposure to extreme altitude and resulting hypoxic conditions is of great concern to both high altitude mountaineers and researchers. The aim of the present study was to investigate the effect of prolonged exposure to hypoxia on cerebral glucose metabolism, which probably precedes structural and functional impairment. Positron emission tomography (PET) employing [18F]-2-deoxy-2-fluoro-D-glucose (FDG) was performed, and the normobaric hypoxic ventilatory response (HVR) was assessed in 11 mountaineers before (pre) and after (post) climbing Mount Shisha Pangma (8048 m). During the climb, acute mountain sickness (AMS) symptoms were recorded and heart rate and oxygen saturation (SaO2) were measured daily. Neuropsychological evaluations were conducted at different heights. The difference FDGpost- FDGpre was analyzed voxel by voxel using statistical parametric mapping (SPM) and volumes of interest (VOI). SPM revealed two areas of increased cerebral FDG uptake after the expedition, one localized in the left cerebellum (+9.4%) and one in the white matter lateral of the left thalamus (+8.3%). The VOI analysis revealed increased postexpeditional metabolism in an area of the right cerebellum (+11%) and of the thalamus bilaterally (+3.7% on the left, +4.6% on the right). FDG-PET alterations did not correlate with changes in SaO2, HVR, or AMS scores. All neuropsychological test results during the climb were unremarkable. We conclude that a prolonged stay at an extreme altitude leads to regional specific changes in the cerebral glucose metabolism without any signs of neuropsychological impairment during the climb.

  9. Coffee consumption and incidence of impaired fasting glucose, impaired glucose tolerance, and type 2 diabetes: the Hoorn Study.

    PubMed

    van Dam, R M; Dekker, J M; Nijpels, G; Stehouwer, C D A; Bouter, L M; Heine, R J

    2004-12-01

    Coffee contains several substances that may affect glucose metabolism. The aim of this study was to evaluate the relationship between habitual coffee consumption and the incidence of IFG, IGT and type 2 diabetes. We used cross-sectional and prospective data from the population-based Hoorn Study, which included Dutch men and women aged 50-74 years. An OGTT was performed at baseline and after a mean follow-up period of 6.4 years. Associations were adjusted for potential confounders including BMI, cigarette smoking, physical activity, alcohol consumption and dietary factors. At baseline, a 5 cup per day higher coffee consumption was significantly associated with lower fasting insulin concentrations (-5.6%, 95% CI -9.3 to -1.6%) and 2-h glucose concentrations (-8.8%, 95% CI -11.8 to -5.6%), but was not associated with lower fasting glucose concentrations (-0.8%, 95% CI -2.1 to 0.6%). In the prospective analyses, the odds ratio (OR) for IGT was 0.59 (95% CI 0.36-0.97) for 3-4 cups per day, 0.46 (95% CI 0.26-0.81) for 5-6 cups per day, and 0.37 (95% CI 0.16-0.84) for 7 or more cups per day, as compared with the corresponding values for the consumption of 2 or fewer cups of coffee per day (p=0.001 for trend). Higher coffee consumption also tended to be associated with a lower incidence of type 2 diabetes (OR 0.69, CI 0.31-1.51 for >/=7 vs /=7 vs consumption can reduce the risk of IGT, and affects post-load rather than fasting glucose metabolism.

  10. Controlled glucose consumption in yeast using a transistor-like device

    NASA Astrophysics Data System (ADS)

    Song, Yang; Wang, Jiapeng; Yau, Siu-Tung

    2014-06-01

    From the point of view of systems biology, insight into controlling the functioning of biological systems is conducive to the understanding of their complexness. The development of novel devices, instrumentation and approaches facilitates this endeavor. Here, we show a transistor-like device that can be used to control the kinetics of the consumption of glucose at a yeast-immobilised electrode. The gating voltage of the device applied at an insulated gating electrode was used to control both the rate of glucose consumption and the rate of the production of ATP and ethanol, the end-products of normal glucose metabolism. Further, a correlation between the glucose consumption and the production of ethanol controlled by the gating voltage was observed using two different forms of the device. The results suggest the relevance of glucose metabolism in our work and demonstrate the electrostatic nature of the device. An attempt to explain the effect of the gating voltage on the kinetics is made in terms of transfer of electrons from NADH to enzymes in the electron transport chain. This novel technique is applicable to general cells and the reported results show a possible role for electrostatic means in controlling processes in cells.

  11. Early Detection of Cerebral Glucose Uptake Changes in the 5XFAD Mouse

    PubMed Central

    I.R, Macdonald; D.R, DeBay; G.A, Reid; T.P, O’Leary; C.T, Jollymore; G, Mawko; S, Burrell; E, Martin; C.V, Bowen; R.E, Brown; S, Darvesh

    2014-01-01

    Brain glucose hypometabolism has been observed in Alzheimer’s disease (AD) patients, and is detected with 18F radiolabelled glucose, using positron emission tomography. A pathological hallmark of AD is deposition of brain β-amyloid plaques that may influence cerebral glucose metabolism. The five times familial AD (5XFAD) mouse is a model of brain amyloidosis exhibiting AD-like phenotypes. This study examines brain β-amyloid plaque deposition and 18FDG uptake, to search for an early biomarker distinguishing 5XFAD from wild-type mice. Thus, brain 18FDG uptake and plaque deposition was studied in these mice at age 2, 5 and 13 months. The 5XFAD mice demonstrated significantly reduced brain 18FDG uptake at 13 months relative to wild-type controls but not in younger mice, despite substantial β-amyloid plaque deposition. However, by comparing the ratio of uptake values for glucose in different regions in the same brain, 5XFAD mice could be distinguished from controls at age 2 months. This method of measuring altered glucose metabolism may represent an early biomarker for the progression of amyloid deposition in the brain. We conclude that brain 18FDG uptake can be a sensitive biomarker for early detection of abnormal metabolism in the 5XFAD mouse when alternative relative uptake values are utilized. PMID:24801216

  12. Patterns of cerebral glucose utilization in depression, multiple infarct dementia, and Alzheimer's disease

    SciTech Connect

    Kuhl, D.E.; Metter, E.J.; Riege, W.H.

    1983-01-01

    Patterns of local cerebral glucose utilization were determined in moderately to severely disabled patients with depression (n=7), multiple infarct dementia (n=6), and Alzheimer's disease (n=6), and in normal controls (n=6), using positron emission tomography with the /sup 18/F-fluorodeoxyglucose method. Average global metabolic rate was decreased 30% in patients with Alzheimer's disease, but overlap among the other groups reduced the discriminant value of this measure. In depressed patients, the cerebral metabolic pattern was normal, except for evidence of hypometabolic zone in the posterior-inferior frontal cortex which was of marginal statistical significance. In multiple infarct dementia, focal metabolic defects were scattered throughout the brain and exceeded the extent of infarction. In Alzheimer's disease, metabolism was markedly reduced in cortex, especially parietal cortex, but relatively preserved in caudate, thalamus, anterior cingulate gyrus, pre and post central gyrus, and calcarine occipital cortex, a pattern duplicating the degree and location of pathological and neurochemical alterations characteristic of this disorder.

  13. Effect of acute and repeated restraint stress on glucose oxidation to CO2 in hippocampal and cerebral cortex slices.

    PubMed

    Torres, I L; Gamaro, G D; Silveira-Cucco, S N; Michalowski, M B; Corrêa, J B; Perry, M L; Dalmaz, C

    2001-01-01

    It has been suggested that glucocorticoids released during stress might impair neuronal function by decreasing glucose uptake by hippocampal neurons. Previous work has demonstrated that glucose uptake is reduced in hippocampal and cerebral cortex slices 24 h after exposure to acute stress, while no effect was observed after repeated stress. Here, we report the effect of acute and repeated restraint stress on glucose oxidation to CO2 in hippocampal and cerebral cortex slices and on plasma glucose and corticosterone levels. Male adult Wistar rats were exposed to restraint 1 h/day for 50 days in the chronic model. In the acute model there was a single exposure. Immediately or 24 h after stress, the animals were sacrificed and the hippocampus and cerebral cortex were dissected, sliced, and incubated with Krebs buffer, pH 7.4, containing 5 mM glucose and 0.2 microCi D-[U-14C] glucose. CO2 production from glucose was estimated. Trunk blood was also collected, and both corticosterone and glucose were measured. The results showed that corticosterone levels after exposure to acute restraint were increased, but the increase was smaller when the animals were submitted to repeated stress. Blood glucose levels increased after both acute and repeated stress. However, glucose utilization, measured as CO2 production in hippocampal and cerebral cortex slices, was the same in stressed and control groups under conditions of both acute and chronic stress. We conclude that, although stress may induce a decrease in glucose uptake, this effect is not sufficient to affect the energy metabolism of these cells.

  14. Differential Responses of Plasma Adropin Concentrations To Dietary Glucose or Fructose Consumption In Humans

    PubMed Central

    Butler, Andrew A.; St-Onge, Marie-Pierre; Siebert, Emily A.; Medici, Valentina; Stanhope, Kimber L.; Havel, Peter J.

    2015-01-01

    Adropin is a peptide hormone encoded by the Energy Homeostasis Associated (ENHO) gene whose physiological role in humans remains incompletely defined. Here we investigated the impact of dietary interventions that affect systemic glucose and lipid metabolism on plasma adropin concentrations in humans. Consumption of glucose or fructose as 25% of daily energy requirements (E) differentially affected plasma adropin concentrations (P < 0.005) irrespective of duration, sex or age. Glucose consumption reduced plasma adropin from 3.55 ± 0.26 to 3.28 ± 0.23 ng/ml (N = 42). Fructose consumption increased plasma adropin from 3.63 ± 0.29 to 3.93 ± 0.34 ng/ml (N = 45). Consumption of high fructose corn syrup (HFCS) as 25% E had no effect (3.43 ± 0.32 versus 3.39 ± 0.24 ng/ml, N = 26). Overall, the effect of glucose, HFCS and fructose on circulating adropin concentrations were similar to those observed on postprandial plasma triglyceride concentrations. Furthermore, increases in plasma adropin levels with fructose intake were most robust in individuals exhibiting hypertriglyceridemia. Individuals with low plasma adropin concentrations also exhibited rapid increases in plasma levels following consumption of breakfasts supplemented with lipids. These are the first results linking plasma adropin levels with dietary sugar intake in humans, with the impact of fructose consumption linked to systemic triglyceride metabolism. In addition, dietary fat intake may also increase circulating adropin concentrations. PMID:26435060

  15. Metabolic responses to prolonged consumption of glucose- and fructose-sweetened beverages are not associated with postprandial or 24-h glucose and insulin excursions123

    PubMed Central

    Stanhope, Kimber L; Griffen, Steven C; Bremer, Andrew A; Vink, Roel G; Schaefer, Ernst J; Nakajima, Katsuyuki; Schwarz, Jean-Marc; Beysen, Carine; Berglund, Lars; Keim, Nancy L; Havel, Peter J

    2011-01-01

    Background: Consumption of sugar-sweetened beverages has been shown to be associated with dyslipidemia, insulin resistance, fatty liver, diabetes, and cardiovascular disease. It has been proposed that adverse metabolic effects of chronic consumption of sugar-sweetened beverages are a consequence of increased circulating glucose and insulin excursions, ie, dietary glycemic index (GI). Objective: We determined whether the greater adverse effects of fructose than of glucose consumption were associated with glucose and insulin exposures. Design: The subjects were studied in a metabolic facility and consumed energy-balanced diets containing 55% of energy as complex carbohydrate for 2 wk (GI = 64). The subjects then consumed 25% of energy requirements as fructose- or glucose-sweetened beverages along with their usual ad libitum diets for 8 wk at home and then as part of energy-balanced diets for 2 wk at the metabolic facility (fructose GI = 38, glucose GI = 83). The 24-h glucose and insulin profiles and fasting plasma glycated albumin and fructosamine concentrations were measured 0, 2, 8, and 10 wk after beverage consumption. Results: Consumption of fructose-sweetened beverages lowered glucose and insulin postmeal peaks and the 23-h area under the curve compared with the baseline diet and with the consumption of glucose-sweetened beverages (all P < 0.001, effect of sugar). Plasma glycated albumin concentrations were lower 10 wk after fructose than after glucose consumption (P < 0.01, effect of sugar), whereas fructosamine concentrations did not differ between groups. Conclusion: The results suggest that the specific effects of fructose, but not of glucose and insulin excursions, contribute to the adverse effects of consuming sugar-sweetened beverages on lipids and insulin sensitivity. This study is registered at clinicaltrials.gov as NCT01165853. PMID:21613559

  16. Metabolic responses to prolonged consumption of glucose- and fructose-sweetened beverages are not associated with postprandial or 24-h glucose and insulin excursions.

    PubMed

    Stanhope, Kimber L; Griffen, Steven C; Bremer, Andrew A; Vink, Roel G; Schaefer, Ernst J; Nakajima, Katsuyuki; Schwarz, Jean-Marc; Beysen, Carine; Berglund, Lars; Keim, Nancy L; Havel, Peter J

    2011-07-01

    Consumption of sugar-sweetened beverages has been shown to be associated with dyslipidemia, insulin resistance, fatty liver, diabetes, and cardiovascular disease. It has been proposed that adverse metabolic effects of chronic consumption of sugar-sweetened beverages are a consequence of increased circulating glucose and insulin excursions, ie, dietary glycemic index (GI). We determined whether the greater adverse effects of fructose than of glucose consumption were associated with glucose and insulin exposures. The subjects were studied in a metabolic facility and consumed energy-balanced diets containing 55% of energy as complex carbohydrate for 2 wk (GI = 64). The subjects then consumed 25% of energy requirements as fructose- or glucose-sweetened beverages along with their usual ad libitum diets for 8 wk at home and then as part of energy-balanced diets for 2 wk at the metabolic facility (fructose GI = 38, glucose GI = 83). The 24-h glucose and insulin profiles and fasting plasma glycated albumin and fructosamine concentrations were measured 0, 2, 8, and 10 wk after beverage consumption. Consumption of fructose-sweetened beverages lowered glucose and insulin postmeal peaks and the 23-h area under the curve compared with the baseline diet and with the consumption of glucose-sweetened beverages (all P < 0.001, effect of sugar). Plasma glycated albumin concentrations were lower 10 wk after fructose than after glucose consumption (P < 0.01, effect of sugar), whereas fructosamine concentrations did not differ between groups. The results suggest that the specific effects of fructose, but not of glucose and insulin excursions, contribute to the adverse effects of consuming sugar-sweetened beverages on lipids and insulin sensitivity. This study is registered at clinicaltrials.gov as NCT01165853.

  17. Regional cerebral glucose metabolic rate in human sleep assessed by positron emission tomography

    SciTech Connect

    Buchsbaum, M.S.; Wu, J.; Hazlett, E.; Sicotte, N.; Bunney, W.E. Jr. ); Gillin, J.C. )

    1989-01-01

    The cerebral metabolic rate of glucose was measured during nighttime sleep in 36 normal volunteers using positron emission tomography and fluorine-18-labeled 2-deoxyglucose (FDG). In comparison to waking controls, subjects given FDG during non-rapid eye movement (NREM) sleep showed about a 23% reduction in metabolic rate across the entire brain. This decrease was greater for the frontal than temporal or occipital lobes, and greater for basal ganglia and thalamus than cortex. Subjects in rapid eye movement (REM) sleep tended to have higher cortical metabolic rates than walking subjects. The cingulate gyrus was the only cortical structure to show a significant increase in glucose metabolic rate in REM sleep in comparison to waking. The basal ganglia were relatively more active on the right in REM sleep and symmetrical in NREM sleep.

  18. Targeting glucose consumption and autophagy in myeloma with the novel nucleoside analogue 8-aminoadenosine.

    PubMed

    Shanmugam, Mala; McBrayer, Samuel K; Qian, Jun; Raikoff, Kiril; Avram, Michael J; Singhal, Seema; Gandhi, Varsha; Schumacker, Paul T; Krett, Nancy L; Rosen, Steven T

    2009-09-25

    Multiple myeloma, an incurable plasma cell malignancy, is characterized by altered cellular metabolism and resistance to apoptosis. Recent connections between glucose metabolism and resistance to apoptosis provide a compelling rationale for targeting metabolic changes in cancer. In this study, we have examined the ability of the purine analogue 8-aminoadenosine to acutely reduce glucose consumption by regulating localization and expression of key glucose transporters. Myeloma cells counteracted the metabolic stress by activating autophagy. Co-treatment with inhibitors of autophagy results in marked enhancement of cell death. Glucose consumption by drug-resistant myeloma cells was unaffected by 8-aminoadenosine, and accordingly, no activation of autophagy was observed. However, these cells can be sensitized to 8-aminoadenosine under glucose-limiting conditions. The prosurvival autophagic response of myeloma to nutrient deprivation or to nucleoside analogue treatment has not been described previously. This study establishes the potential of metabolic targeting as a broader means to kill and sensitize myeloma and identifies a compound that can achieve this goal.

  19. Coffee consumption attenuates insulin resistance and glucose intolerance in rats fed on high-sucrose diet.

    PubMed

    Morakinyo, A O; Adekunbi, D A; Dada, K A; Adegoke, O A

    2013-12-20

    Several epidemiological evidences indicate that consumption of coffee is associated with a lower risk of type 2 diabetes mellitus (T2DM) however; there is dearth of experimental data to support these observations. Given that associations do not necessarily infer causality, the present study was designed to investigate the effect of coffee consumption on glucose regulation, T2DM and the probable mechanisms of action, using an animal model. The effect of coffee (2-fold dilution) by oral gavage on normal and high sucrose-solution (HSS) fed (30 % w/v) rats was evaluated. The results showed that consumption of coffee significantly increase glucose tolerance and insulin sensitivity (p<0.05) along with significant improvement in SOD and GSH activities. In addition, lipid indices such as TG and LDL as well as the lipid peroxidation marker (MDA) were markedly reduced (p<0.05) in rats fed with coffee compared with that of the HSS fed rats. These findings suggest that coffee consumption improves insulin sensitivity, glucose tolerance in HSS-fed rat possibly via inhibition of oxidative stress.

  20. Determination of patterns of regional cerebral glucose metabolism in normal aging and dementia

    SciTech Connect

    Alavi, A.; Chawluk, J.; Hurtig, H.; Dann, R.; Rosen, M.; Kushner, M.; Silver, F.; Reivich, M.

    1985-05-01

    Regional cerebral metabolic rates for glucose (rCMRGlc) were measured using 18F-FDG and positron emission tomography (PET) in 14 patients with probable Alzheimer's disease (AD) (age=64), 9 elderly controls (age=61), and 9 young controls (age=28). PET studies were performed without sensory stimulation or deprivation. Metabolic rates in individual brain regions were determined using an atlas overlay. Relative metabolic rates (rCMRGl c/global CMRGlc) were determined for all subjects. Comparison of young and elderly controls demonstrated significant decreases in frontal metabolism (rho<0.005) and right inferior parietal (IP) metabolism (rho<0.02) with normal aging. Patients with mild-moderate AD (NMAD) (n=8) when compared to age-matched controls, showed further reduction in right IP metabolism (rho<0.02). SAD patients also demonstrated metabolic decrements in left hemisphere language areas (rho<0.01). This latter finding is consistent with language disturbance observed late in the course of the disease. Out data reveal progressive changes in patterns of cerebral glucose utilization with aging and demential with reflect salient clinical features of these processes.

  1. Effects of gamma-aminobutyric acid agonist and antagonist drugs on local cerebral glucose utilization

    SciTech Connect

    Palacios, J.M.; Kuhar, M.J.; Rapoport, S.I.; London, E.D.

    1982-07-01

    The (/sup 14/C)2-deoxy-D-glucose method of Sokoloff et al. was used to study local cerebral glucose utilization (LCGU) in rats treated with gamma-aminobutyric acid (GABA) agonist (muscimol and 4,5,6,7-tetrahydroisoxazolo(5,4-C)pyridin-3-ol, THIP) and antagonist (bicuculline) drugs. It was of interest to determine if the pattern of LCGU responses to GABA agonists and antagonists administered systemically in vivo would reflect the known distributions of markers for central GABAergic synapses. The patterns of LCGU responses to muscimol and THIP generally were similar. Most brain regions showed dose-dependent decreases in LCGU; others showed no effects; but the red nucleus showed an increase. The GABA antagonist bicuculline produced convulsions and variable LCGU responses, depending on the time of administration. Bicuculline also partially antagonized the depressant effects of muscimol of LCGU. The magnitudes and distribution of in vivo cerebral metabolic responses to specific GABA agonists were not correlated simply with markers for GABAergic synapses. This lack of correlation indicates that additional factors, such as neural circuitry, regulate the LCGU responses to GABAergic drugs.

  2. Effects of oxotremorine on local glucose utilization in the rat cerebral cortex

    SciTech Connect

    Dam, M.; Wamsley, J.K.; Rapoport, S.I.; London, E.D.

    1982-08-01

    The (/sup 14/C)2-deoxy-D-glucose technique was used to examine the effects of central muscarinic stimulation on local cerebral glucose utilization (LCGU) in the cerebral cortex of the unanesthetized rat. Systemic administration of the muscarinic agonist oxotremorine (OXO, 0.1 to 1.0 mg/kg, i.p.) increased LCGU in the neocortex, mesocortex, and paleocortex. In the neocortex, OXO was more potent in elevating LCGU of the auditory, frontal, and sensorimotor regions compared with the visual cortex. Within these neocortical regions, OXO effects were greatest in cortical layers IV and V. OXO effects were more dramatic in the neocortex than in the meso- or paleocortex, and no significant effect occurred in the perirhinal and pyriform cortices. OXO-induced LCGU increases were not influenced by methylatropine (1 mg/kg, s.c.) but were antagonized completely by scopolamine (2.5 mg/kg, i.p.). Scopolamine reduced LCGU in layer IV of the auditory cortex and in the retrosplenial cortex. The distribution and magnitude of the cortical LCGU response to OXO apparently were related to the distributions of cholinergic neurochemical markers, especially high affinity muscarinic binding sites.

  3. Regional cerebral glucose metabolism after pridopidine (ACR16) treatment in patients with Huntington disease.

    PubMed

    Esmaeilzadeh, Mouna; Kullingsjö, Johan; Ullman, Henrik; Varrone, Andrea; Tedroff, Joakim

    2011-01-01

    Huntington disease is a hereditary neurodegenerative disorder resulting in loss of motor, cognitive, and behavioral functions and is characterized by a distinctive pattern of cerebral metabolic abnormalities. Pridopidine (ACR16) belongs to a novel class of central nervous system compounds in development for the treatment of Huntington disease. The objective of the study was to investigate the metabolic changes in patients with Huntington disease before and after pridopidine treatment. [(18)F]Fluorodeoxyglucose positron emission tomographic imaging was used to measure the regional cerebral metabolic rate of glucose at baseline and after 14 days of open-label pridopidine treatment in 8 patients with Huntington disease. Clinical assessments were performed using the Unified Huntington's Disease Rating Scale. Statistical parametric mapping analysis showed increased metabolic activity in several brain regions such as the precuneus and the mediodorsal thalamic nucleus after treatment. In addition, after pridopidine treatment, the correlation between the clinical status and the cerebral metabolic activity was strengthened. Our findings suggest that pridopidine induces metabolic changes in brain regions implicated as important for mediating compensatory mechanisms in Huntington disease. In addition, the finding of a strong relationship between clinical severity and metabolic activity after treatment also suggests that pridopidine treatment targets a Huntington disease-related metabolic activity pattern.

  4. [Effect of needling at waiguan (SJ5) on brain glucose metabolism in patients with cerebral infarction].

    PubMed

    Liu, En-Tao; Wang, Shu-Xia; Huang, Yong; Lai, Xin-Sheng; Tang, Chun-Zhi; Cui, Shao-Yang

    2013-10-01

    To observe changes of brain glucose metabolism by needling at Waiguan (SJ5) in cerebral infraction (CI) patients using 18F-fluorodeoxyglucose (FDG) positron-emission computer tomography (PET/CT), thus exploring its effect and mechanisms. A total of 21 patients with CI were recruited in this study. The location of lesion was limited to the left basal ganglia by CT or MRI scan. All patients were randomly assigned to three groups. i.e., the acupoint group (Group A), the non-acupoint group (Group B), the blank control group (Group C), 7 in each group. Patients in Group A were needled at right Waiguan (SJ5). Those in Group B were needled at non-acupoint [10 mm beside Waiguan (SJ5)], whereas those in Group C did not receive any treatment. All patients underwent PET/CT head scan. All data were statistically analyzed using SPSS 13.0 Software and SPM8 Software. Compared with Group C, glucose metabolism increased in bilateral superior temporal gyrus (BA38), right superior frontal gyrus (BA9), left cingulate gyrus (BA24), left culmen and pyramid of cerebellum, and right cerebellar tonsil of cerebellum in Group A. Compared with Group C, glucose metabolism increased in bilateral superior frontal gyrus (BA6, BA9, BA10), bilateral middle frontal gyrus (BA6, BA10), left middle frontal gyrus (BA4), bilateral uncus of limbic lobe (BA36, BA38), left cingulate gyrus (BA24, BA31), left posterior cingulate gyrus (BA30), left precuneus (BA7), left inferior parietal lobule (BA4), and left lingual gyrus of occipital lobe (BA18) in Group B. Compared with Group B, glucose metabolism increased in bilateral superior temporal gyrus (BA22, BA38), right inferior frontal gyrus (BA47), left culmen and cerebellar tonsil of cerebellum in Group A. Activated encephalic regions of needling at Waiguan (SJ5) were mainly dominated in the healthy side, bilateral superior temporal gyrus, and right inferior frontal gyrus. Activated encephalic regions of cerebellum were located at the left cerebellar

  5. Metabolic responses to prolonged consumption of glucose- and fructose-sweetened beverages are not associated with postprandial or 24-hour glucose and insulin excursions

    USDA-ARS?s Scientific Manuscript database

    It has been proposed that the adverse metabolic effects of chronic consumption of sugar-sweetened beverages which contain both glucose and fructose are a consequence of increased circulating glucose and insulin excursions, i.e dietary glycemic index (GI). Objective: We determined if the greater adv...

  6. Chronic levodopa treatment alters basal and dopamine agonist-stimulated cerebral glucose utilization

    SciTech Connect

    Engber, T.M.; Susel, Z.; Kuo, S.; Chase, T.N. )

    1990-12-01

    The effect of chronic levodopa administration on the functional activity of the basal ganglia and its output regions was evaluated by means of the 2-deoxyglucose (2-DG) autoradiographic technique in rats with a unilateral 6-hydroxydopamine lesion of the nigrostriatal pathway. The rates of local cerebral glucose utilization were studied under basal conditions as well as in response to challenge with a selective D1 or D2 dopamine-receptor agonist. Levodopa (100 mg/kg/d, i.p.) was administered for 19 d either continuously via infusion with an osmotic pump or intermittently by twice-daily injections. Following a 3-d washout, glucose utilization was found to be decreased by both levodopa regimens in the nucleus accumbens; intermittent levodopa also decreased glucose utilization in the entopeduncular nucleus, subthalamic nucleus, ventrolateral thalamus, ventromedial thalamus, ventroposterolateral thalamus, and lateral habenula. In control (lesioned and treated chronically with saline) rats, the D1 agonist SKF 38393 (5 mg/kg, i.v.) increased 2-DG uptake in the substantia nigra pars reticulata and entopeduncular nucleus ipsilateral to the lesion by 84% and 56%, respectively. Both continuous and intermittent levodopa blunted the SKF 38393-induced elevation in glucose metabolism in the substantia nigra pars reticulata, while intermittent levodopa also attenuated the increase in the entopeduncular nucleus. The D2 agonist quinpirole (0.4 mg/kg, i.v.) did not increase glucose utilization in any brain region in control animals; following intermittent levodopa treatment, however, quinpirole increased 2-DG uptake by 64% in the subthalamic nucleus and by 39% in the deep layers of the superior colliculus on the ipsilateral side.

  7. Changes in cerebral glucose metabolism during early abstinence from chronic methamphetamine abuse.

    PubMed

    Berman, S M; Voytek, B; Mandelkern, M A; Hassid, B D; Isaacson, A; Monterosso, J; Miotto, K; Ling, W; London, E D

    2008-09-01

    Changes in brain function during the initial weeks of abstinence from chronic methamphetamine abuse may substantially affect clinical outcome, but are not well understood. We used positron emission tomography with [F-18]fluorodeoxyglucose (FDG) to quantify regional cerebral glucose metabolism, an index of brain function, during performance of a vigilance task. A total of 10 methamphetamine-dependent subjects were tested after 5-9 days of abstinence, and after 4 additional weeks of supervised abstinence. A total of 12 healthy control subjects were tested at corresponding times. Global glucose metabolism increased between tests (P=0.01), more in methamphetamine-dependent (10.9%, P=0.02) than control subjects (1.9%, NS). Glucose metabolism did not change in subcortical regions of methamphetamine-dependent subjects, but increased in neocortex, with maximal increase (>20%) in parietal regions. Changes in reaction time and self-reports of negative affect varied more in methamphetamine-dependent than in control subjects, and correlated both with the increase in parietal glucose metabolism, and decrease in relative activity (after scaling to the global mean) in some regions. A robust relationship between change in self-reports of depressive symptoms and relative activity in the ventral striatum may have great relevance to treatment success because of the role of this region in drug abuse-related behaviors. Shifts in cortical-subcortical metabolic balance either reflect new processes that occur during early abstinence, or the unmasking of effects of chronic methamphetamine abuse that are obscured by suppression of cortical glucose metabolism that continues for at least 5-9 days after cessation of methamphetamine self-administration.

  8. Berberine promotes glucose consumption independently of AMP-activated protein kinase activation.

    PubMed

    Xu, Miao; Xiao, Yuanyuan; Yin, Jun; Hou, Wolin; Yu, Xueying; Shen, Li; Liu, Fang; Wei, Li; Jia, Weiping

    2014-01-01

    Berberine is a plant alkaloid with anti-diabetic action. Activation of AMP-activated protein kinase (AMPK) pathway has been proposed as mechanism for berberine's action. This study aimed to examine whether AMPK activation was necessary for berberine's glucose-lowering effect. We found that in HepG2 hepatocytes and C2C12 myotubes, berberine significantly increased glucose consumption and lactate release in a dose-dependent manner. AMPK and acetyl coenzyme A synthetase (ACC) phosphorylation were stimulated by 20 µmol/L berberine. Nevertheless, berberine was still effective on stimulating glucose utilization and lactate production, when the AMPK activation was blocked by (1) inhibition of AMPK activity by Compound C, (2) suppression of AMPKα expression by siRNA, and (3) blockade of AMPK pathway by adenoviruses containing dominant-negative forms of AMPKα1/α2. To test the effect of berberine on oxygen consumption, extracellular flux analysis was performed in Seahorse XF24 analyzer. The activity of respiratory chain complex I was almost fully blocked in C2C12 myotubes by berberine. Metformin, as a positive control, showed similar effects as berberine. These results suggest that berberine and metformin promote glucose metabolism by stimulating glycolysis, which probably results from inhibition of mitochondrial respiratory chain complex I, independent of AMPK activation.

  9. Berberine Promotes Glucose Consumption Independently of AMP-Activated Protein Kinase Activation

    PubMed Central

    Xiao, Yuanyuan; Hou, Wolin; Yu, Xueying; Shen, Li; Liu, Fang; Wei, Li; Jia, Weiping

    2014-01-01

    Berberine is a plant alkaloid with anti-diabetic action. Activation of AMP-activated protein kinase (AMPK) pathway has been proposed as mechanism for berberine’s action. This study aimed to examine whether AMPK activation was necessary for berberine’s glucose-lowering effect. We found that in HepG2 hepatocytes and C2C12 myotubes, berberine significantly increased glucose consumption and lactate release in a dose-dependent manner. AMPK and acetyl coenzyme A synthetase (ACC) phosphorylation were stimulated by 20 µmol/L berberine. Nevertheless, berberine was still effective on stimulating glucose utilization and lactate production, when the AMPK activation was blocked by (1) inhibition of AMPK activity by Compound C, (2) suppression of AMPKα expression by siRNA, and (3) blockade of AMPK pathway by adenoviruses containing dominant-negative forms of AMPKα1/α2. To test the effect of berberine on oxygen consumption, extracellular flux analysis was performed in Seahorse XF24 analyzer. The activity of respiratory chain complex I was almost fully blocked in C2C12 myotubes by berberine. Metformin, as a positive control, showed similar effects as berberine. These results suggest that berberine and metformin promote glucose metabolism by stimulating glycolysis, which probably results from inhibition of mitochondrial respiratory chain complex I, independent of AMPK activation. PMID:25072399

  10. Effects of nitrous oxide on oxygen consumption by isolated cerebral cortex mitochondria

    SciTech Connect

    Becker, G.L.; Pelligrino, D.A.; Miletich, D.J.; Albrecht, R.F.

    1986-04-01

    The influence of N2O on O2 consumption by mitochondria isolated from the cerebral cortex of goats was examined in incubations preequilibrated with N2O-O2 or N2-O2. Rates of O2 consumption were measured polarographically in a closed system while adenosine triphosphate (ATP) formation was maximal (after addition of excess adenosine diphosphate (ADP), state 3 respiration) and then when it was at zero (after addition of excess oligomycin, state 4 respiration). Compared with 90% N2, 90% N2O produced no change in the rate of state 3 respiration; but an observed 9% decrease in the state 4 rate and an 11% increase in the state 3: state 4 ratio were statistically significant (P less than 0.05). These differences were not seen with N2 and N2O at 70% rather than at 90%, or when succinate rather than pyruvate-malate was used as the respiratory substrate. We conclude the following: Unlike other inhalation anesthetics, N2O at comparable anesthetic concentrations does not inhibit mitochondrial electron transport or ATP formation coupled to it (oxidative phosphorylation). N2O does inhibit one or more other processes, as yet unidentified, which are energetically coupled to electron transport. The increased cerebral O2 consumption that accompanies N2O anesthesia cannot be attributed to a direct effect of N2O on mitochondrial respiration.

  11. Overuse of paracetamol caffeine aspirin powders affects cerebral glucose metabolism in chronic migraine patients.

    PubMed

    Di, W; Shi, X; Zhu, Y; Tao, Y; Qi, W; Luo, N; Xiao, Z; Yi, C; Miao, J; Zhang, A; Zhang, X; Fang, Y

    2013-04-01

    Overuse of analgesic plays a prominent role in migraine chronification. Paracetamol caffeine aspirin (PCA) powders are commonly used in Chinese migraineurs. This study investigated the effects of the specific combination analgesic on cerebral glucose metabolism in chronic migraine (CM). 18F-FDG-PET was used to measure regional metabolism in all subjects. Brain metabolisms of CM patients with analgesic overuse (AO-CM; n=10), no analgesic overuse (NAO-CM; n=10), and no regimen (NR-CM; n=10) and 17 age- and gender-matched normal controls (NC) were compared using statistical parametric mapping. Then, all patients underwent brain MRI analysis within 7 days after PET scans, as well as MMSE and MoCA scale for cognitive function tests. Glucose metabolic changes in CM patients taking different dosage of analgesic during headache-free periods and clear distinctions in several brain regions were observed. Patients with AO-CM exhibited significant metabolic reductions in thalamus, as well as increased metabolism in middle temporal gyrus and insula relative to NR-CM and NAO-CM. However, in these regions, no difference was observed in AO-CM except for increased metabolism in the right insula relative to NC group. Overusing PCA powders affects regional brain glucose metabolism in CM. Increased metabolism in the right insula may be associated with recurrently overusing of PCA powders. © 2012 The Author(s) European Journal of Neurology © 2012 EFNS.

  12. Gender difference in relationship between anxiety-related personality traits and cerebral brain glucose metabolism.

    PubMed

    Hakamata, Yuko; Iwase, Mikio; Iwata, Hiroshi; Kobayashi, Toshiki; Tamaki, Tsuneo; Nishio, Masami; Matsuda, Hiroshi; Ozaki, Norio; Inada, Toshiya

    2009-09-30

    Recent functional neuroimaging studies have suggested that specific brain regions might be associated with the formation of anxiety-related personality traits, which are well known to be influenced by gender. Such anxiety-related personality traits are one of the representative predisposing factors for mood and anxiety disorders, whose incidence is also known to be much influenced by gender. However, little is known about the gender differences in brain function related to anxiety-related personality traits. The aim of the present study was to examine gender-related differences in the pattern of the relationships between an anxiety-related personality trait and cerebral brain glucose metabolism. Regional brain glucose metabolism was measured using [(18)F]fluorodeoxyglucose positron emission tomography in 102 healthy subjects (65 males and 37 females). An anxiety-related trait was assessed using the Temperament and Character Inventory dimension Harm Avoidance (HA). HA was negatively correlated with glucose metabolism in the anterior portion of the ventromedial prefrontal cortex (vmPFC) in females but not in males. The anterior vmPFC may be a possible neural target for the prevention or therapy of emotional disorders, especially in females.

  13. Consumption of a glucose diet enhances the sensitivity of pancreatic islets from adrenalectomized genetically obese (ob/ob) mice to glucose-induced insulin secretion.

    PubMed

    Mistry, A M; Chen, N G; Lee, Y S; Romsos, D R

    1995-03-01

    Consumption of a glucose diet for 4 d markedly elevates plasma insulin concentrations in adrenalectomized ob/ob mice. The present study examined regulation of insulin secretion from perifused pancreatic islets of female adrenalectomized genetically obese (ob/ob) and lean mice fed a glucose diet for 4 d. These mice were fed a high carbohydrate commercial diet for 21 d, or the high carbohydrate commercial diet for 17 d and a purified high glucose diet for the last 4 d of the 21-d feeding period. Adrenalectomy equalized plasma insulin concentrations, pancreatic islet size, rates of insulin secretion in response to 20 mmol/L glucose and insulin mRNA relative abundance in ob/ob and lean mice fed the commercial diet, but the threshold for glucose-induced insulin secretion determined by a linear glucose gradient remained lower in islets from adrenalectomized ob/ob mice than in those from lean mice (3.8 +/- 0.1 vs. 4.9 +/- 0.2 mmol/L glucose), and addition of acetylcholine to the perifusate lowered the threshold to only 2.0 +/- 0.1 mmol/L glucose in islets from ob/ob mice vs. 3.3 +/- 0.1 mmol/L glucose in lean mice. Switching from the commercial diet to the glucose diet for 4 d increased plasma insulin concentrations -10-fold in islets from adrenalectomized ob/ob mice without affecting islet size, 20 mmol/L glucose-induced insulin secretion or insulin mRNA abundance. Consumption of the glucose diet did, however, markedly lower the threshold for glucose-induced insulin secretion in islets from adrenalectomized ob/ob mice to approximate the abnormally low glucose thresholds in intact ob/ob mice.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Fish oil consumption prevents glucose intolerance and hypercorticosteronemy in footshock-stressed rats

    PubMed Central

    2011-01-01

    Background Environmental stress plays an important role in the development of glucose intolerance influencing lipid and glucose metabolism through sympathetic nervous system, cytokines and hormones such as glucocorticoids, catecholamines and glucagon. Otherwise, fish oil prevents glucose intolerance and insulin resistance. Although the mechanisms involved are not fully understood, it is known that sympathetic and HPA responses are blunted and catecholamines and glucocorticoids concentrations can be modulated by fish consumption. The aim of the present study was to evaluate whether fish oil, on a normal lipidic diet: 1) could prevent the effect of footshock-stress on the development of glucose intolerance; 2) modified adiponectin receptor and serum concentration; and 3) also modified TNF-α, IL-6 and interleukin-10 (IL-10) levels in adipose tissue and liver. The study was performed in thirty day-old male Wistar randomly assigned into four groups: no stressed (C) and stressed (CS) rats fed with control diet, and no stressed (F) and stressed (FS) rats fed with a fish oil rich diet. The stress was performed as a three daily footshock stress sessions. Results Body weight, carcass fat and protein content were not different among groups. FS presented a reduction on the relative weight of RET. Basal serum glucose levels were higher in CS and FS but 15 min after glucose load just CS remained with higher levels than other groups. Serum corticosterone concentration was increased in CS, this effect was inhibited in FS. However, 15 min after footshock-stress, corticosterone levels were similar among groups. IL-6 was increased in EPI of CS but fish oil consumption prevented IL-6 increase in FS. Similar levels of TNF-α and IL-10 in RET, EPI, and liver were observed among groups. Adipo R1 protein concentration was not different among groups. Footshock-stress did not modify AdipoR2 concentration, but fish oil diet increases AdipoR2 protein concentration. Conclusions Footshock

  15. Cerebral glucose utilization during sleep-wake cycle in man determined by positron emission tomography and [18F]2-fluoro-2-deoxy-D-glucose method.

    PubMed

    Maquet, P; Dive, D; Salmon, E; Sadzot, B; Franco, G; Poirrier, R; von Frenckell, R; Franck, G

    1990-04-09

    Using the [18F]fluorodeoxyglucose method and positron emission tomography, we studied cerebral glucose utilization during sleep and wakefulness in 11 young normal subjects. Each of them was studied at least thrice: during wakefulness, slow wave sleep (SWS) and rapid eye movement sleep (REMS), at 1 week intervals. Four stage 3-4 SWS and 4 REMS fulfilled the steady state conditions of the model. The control population consisted of 9 normal age-matched subjects studied twice during wakefulness at, at least, 1 week intervals. Under these conditions, the average difference between the first and the second cerebral glucose metabolic rates (CMRGlu was: -7.91 +/- 15.46%, which does not differ significantly from zero (P = 0.13). During SWS, a significant decrease in CMRGlu was observed as compared to wakefulness (mean difference: -43.80 +/- 14.10%, P less than 0.01). All brain regions were equally affected but thalamic nuclei had significantly lower glucose utilization than the average cortex. During REMS, the CMRGlu were as high as during wakefulness (mean difference: 4.30 +/- 7.40%, P = 0.35). The metabolic pattern during REMS appeared more heterogeneous than at wake. An activation of left temporal and occipital areas is suggested. It is hypothetized that energy requirements for maintaining membrane polarity are reduced during SWS because of a decreased rate of synaptic events. During REMS, cerebral glucose utilization is similar to that of wakefulness, presumably because of reactivated neurotransmission and increased need for ion gradients maintenance.

  16. Reversal of cerebral glucose hypometabolism on positron emission tomography with electroconvulsive therapy in an elderly patient with a psychotic episode.

    PubMed

    Hassamal, Sameer; Jolles, Paul; Pandurangi, Ananda

    2016-11-01

    AB, a 74-year-old Caucasian woman, was admitted for acute onset of psychosis, anxiety, and cognitive impairment. Pharmacotherapy was unsuccessful and the patient was referred for electroconvulsive therapy (ECT). Pre-ECT, (18) F-fluorodeoxyglucose-positron emission tomography (PET)/computed tomography showed extensive frontal, parietal, and temporal cortical hypometabolism suggestive of a neurodegenerative disease. After eight ECT sessions, the psychotic and anxiety symptoms as well as the cognitive impairment resolved. The rapid improvement in symptoms was more suggestive of a psychotic episode rather than dementia. Two days after the ECT course, (18) F-fluorodeoxyglucose-PET/computed tomography showed improvements in cerebral cortical hypometabolism, especially in the left parietal cortex, left temporal/occipital cortex. and bifrontal regions. At a follow-up visit 2 months after the ECT course, the psychotic episode was still in remission, and (18) F-fluorodeoxyglucose-PET/computed tomography continued to show improved cerebral cortical hypometabolism in these areas. This case illustrated the effect of ECT in reversing cerebral glucose hypometabolism on PET. The improvement in cerebral glucose hypometabolism may represent the neurophysiological mechanism of ECT in the treatment of a psychotic episode. Improved cerebral glucose hypometabolism was present 2 months post-ECT, which suggests that ECT caused sustained functional neural changes. © 2016 The Authors. Psychogeriatrics © 2016 Japanese Psychogeriatric Society.

  17. Cerebral glucose metabolism after portacaval shunting in the rat. Patterns of metabolism and implications for the pathogenesis of hepatic encephalopathy.

    PubMed Central

    Lockwood, A H; Ginsberg, M D; Rhoades, H M; Gutierrez, M T

    1986-01-01

    The regional cerebral metabolic rate for glucose was measured in normal and portacaval shunted rats and the effects of unilateral carotid infusions of "threshold" amounts of ammonia were assessed. 8 wk after shunting the glucose metabolic rate was increased in all 20 brain regions sampled. Effects on subcortical and phylogenetically older regions of the brain were most pronounced with a 74% increase observed in the reticular formation at the collicular level. Increases in the cerebral cortex ranged from 12 to 18%. Unilateral infusions of ammonia did not affect behavior but altered the electroencephalogram and selectively increased the glucose metabolic rate in the thalamus, hypothalamus, and substantia nigra in half of the animals, a pattern similar to that seen after a portacaval shunt, suggesting hyperammonemia as the cause of postshunt increases in glucose metabolism. Visual inspection of autoradiograms, computed correlation coefficients relating interregional metabolism, and principal component analysis suggest that normal cerebral metabolic and functional interrelationships are altered by shunting. Ammonia stimulation of the hypothalamic satiety centers may suppress appetite and lead to cachexia. Reductions in the ammonia detoxification capacity of skeletal muscle may increase the probability of developing future episodes of hyperammonemia, perpetuating the process. Direct effects of ammonia on specific brain centers such as the dorsomedial hypothalamus and reticular activating system may combine with global disruptions of cerebral metabolic-functional relationships to produce the protean manifestations of portal-systemic encephalopathy. Images PMID:3722388

  18. Reduced cerebral glucose metabolism and increased brain capillary permeability following high-dose methotrexate chemotherapy: a positron emission tomographic study

    SciTech Connect

    Phillips, P.C.; Dhawan, V.; Strother, S.C.; Sidtis, J.J.; Evans, A.C.; Allen, J.C.; Rottenberg, D.A.

    1987-01-01

    Regional glucose metabolic rate constants and blood-to-brain transport of rubidium were estimated using positron emission tomography in an adolescent patient with a brain tumor, before and after chemotherapy with intravenous high-dose methotrexate. Widespread depression of cerebral glucose metabolism was apparent 24 hours after drug administration, which may reflect reduced glucose phosphorylation, and the influx rate constant for /sup 82/Rb was increased, indicating a drug-induced alteration in blood-brain barrier function. Associated changes in neuropsychological performance, electroencephalogram, and plasma amino acid concentration were identified in the absence of evidence of systemic methotrexate toxicity, suggesting primary methotrexate neurotoxicity.

  19. Stability of regional cerebral glucose metabolism in the normal brain measured by positron emission tomography

    SciTech Connect

    Tyler, J.L.; Strother, S.C.; Zatorre, R.J.; Alivisatos, B.; Worsley, K.J.; Diksic, M.; Yamamoto, Y.L.

    1988-05-01

    Cerebral glucose utilization (LCMRGI) was measured using the (/sup 18/F)fluorodeoxyglucose method with PET in two groups of ten healthy young volunteers, each scanned in a resting state under different methodological conditions. In addition, five subjects had a second scan within 48 hr. Mean hemispheric values averaged 45.8 +/- 3.3 mumol/100 g/min in the right cerebral hemisphere and 47.0 +/- 3.7 mumol/100 g/min in the left hemisphere. A four-way analysis of variance (group, sex, region, hemisphere) was carried out on the results using three different methods of data manipulation: (a) the raw values of glucose utilization, (b) LCMRGI values normalized by the mean hemispheric gray matter LCMRGI value, and (c) log transformed LCMRGI values. For all analysis techniques, significantly higher LCMRGI values were consistently seen in the left mid and posterior temporal area and caudate nucleus relative to the right, and in the right occipital region relative to the left. The coefficient of variation of intrasubject regional differences (9.9%) was significantly smaller than the coefficient of variation for regions between subjects (16.5%). No differences were noted between the sexes and no effect of repeat procedures was seen in subjects having multiple scans. In addition, inter-regional LCMRGI correlations were examined both in values from the 20 normal subjects, as well as in a set of hypothetical abnormal values. Results were compared with those reported from other PET centers; despite certain methodological differences, the intersubject and inter-regional variation of LCMRGI is fairly constant.

  20. Insulin regulates glucose consumption and lactate production through reactive oxygen species and pyruvate kinase M2.

    PubMed

    Li, Qi; Liu, Xue; Yin, Yu; Zheng, Ji-Tai; Jiang, Cheng-Fei; Wang, Jing; Shen, Hua; Li, Chong-Yong; Wang, Min; Liu, Ling-Zhi; Jiang, Bing-Hua

    2014-01-01

    Although insulin is known to regulate glucose metabolism and closely associate with liver cancer, the molecular mechanisms still remain to be elucidated. In this study, we attempt to understand the mechanism of insulin in promotion of liver cancer metabolism. We found that insulin increased pyruvate kinase M2 (PKM2) expression through reactive oxygen species (ROS) for regulating glucose consumption and lactate production, key process of glycolysis in hepatocellular carcinoma HepG2 and Bel7402 cells. Interestingly, insulin-induced ROS was found responsible for the suppression of miR-145 and miR-128, and forced expression of either miR-145 or miR-128 was sufficient to abolish insulin-induced PKM2 expression. Furthermore, the knockdown of PKM2 expression also inhibited cancer cell growth and insulin-induced glucose consumption and lactate production, suggesting that PKM2 is a functional downstream effecter of insulin. Taken together, this study would provide a new insight into the mechanism of insulin-induced glycolysis.

  1. PET imaging of cerebral perfusion and oxygen consumption in acute ischemic stroke: Relation to outcome

    SciTech Connect

    Marchal, G.; Serrati, C.; Rioux, P.; Petit-Taboue, M.C.; Viader, F.; Sayette, V. de la; Doze, F. le; Lonchon, P; Derlon, J.M.; Orgogozo, J.M.; Baron, J.C.

    1993-04-10

    The authors used positron emission tomography (PET) to assess the relation between combined imaging of cerebral blood flow and oxygen consumption 5-18 h after first middle cerebral artery (MCA) stroke and neurological outcome at 2 months. All 18 patients could be classified into three visually defined PET patterns of perfusion and oxygen consumption changes. Pattern 1 suggested extensive irreversible damage and was consistently associated with poor outcome. Pattern 2 suggested continuing ischemia and was associated with variable outcome. Pattern 3 with hyperperfusion and little or no metabolic alteration, was associated with excellent recovery, which suggests that early reperfusion is beneficial. This relation between PET and outcome was highly significant. The results suggest that within 5-18 h of stroke onset, PET is a good predictor of outcome in patterns 1 and 3, for which therapy seems limited. The absence of predictive value for pattern 2 suggests that it is due to a reversible ischemic state that is possibly amenable to therapy. These findings may have important implications for acute MCA stroke management and for patients' selection for therapeutic trials.

  2. Cerebral Blood Flow and Glucose Metabolism Measured With Positron Emission Tomography Are Decreased in Human Type 1 Diabetes

    PubMed Central

    van Golen, Larissa W.; Huisman, Marc C.; Ijzerman, Richard G.; Hoetjes, Nikie J.; Schwarte, Lothar A.; Lammertsma, Adriaan A.; Diamant, Michaela

    2013-01-01

    Subclinical systemic microvascular dysfunction exists in asymptomatic patients with type 1 diabetes. We hypothesized that microangiopathy, resulting from long-standing systemic hyperglycemia and hyperinsulinemia, may be generalized to the brain, resulting in changes in cerebral blood flow (CBF) and metabolism in these patients. We performed dynamic [15O]H2O and [18F]-fluoro-2-deoxy-d-glucose brain positron emission tomography scans to measure CBF and cerebral glucose metabolism (CMRglu), respectively, in 30 type 1 diabetic patients and 12 age-matched healthy controls after an overnight fast. Regions of interest were automatically delineated on coregistered magnetic resonance images and full kinetic analysis was performed. Plasma glucose and insulin levels were higher in patients versus controls. Total gray matter CBF was 9%, whereas CMRglu was 21% lower in type 1 diabetic subjects versus control subjects. We conclude that at real-life fasting glucose and insulin levels, type 1 diabetes is associated with decreased resting cerebral glucose metabolism, which is only partially explained by the decreased CBF. These findings suggest that mechanisms other than generalized microangiopathy account for the altered CMRglu observed in well-controlled type 1 diabetes. PMID:23530004

  3. Somatosensory evoked changes in cerebral oxygen consumption measured non-invasively in premature neonates

    PubMed Central

    Roche-Labarbe, Nadege; Fenoglio, Angela; Radakrishnan, Harsha; Kocienski-Filip, Marcia; Carp, Stefan A.; Dubb, Jay; Boas, David A.; Grant, P. Ellen; Franceschini, Maria Angela

    2013-01-01

    The hemodynamic functional response is used as a reliable marker of neuronal activity in countless studies of brain function and cognition. In newborns and infants, however, conflicting results have appeared in the literature concerning the typical response, and there is little information on brain metabolism and functional activation. Measurement of all hemodynamic components and oxygen metabolism is critical for understanding neurovascular coupling in the developing brain. To this end, we combined multiple near infrared spectroscopy techniques to measure oxy- and deoxy-hemoglobin concentrations, cerebral blood volume (CBV), and relative cerebral blood flow (CBF) in the somatosensory cortex of 6 preterm neonates during passive tactile stimulation of the hand. By combining these measures we estimated relative changes in the cerebral metabolic rate of oxygen consumption (rCMRO2). CBF starts increasing immediately after stimulus onset, and returns to baseline before blood volume. This is consistent with the model of pre-capillary arteriole active dilation driving the CBF response, with a subsequent CBV increase influenced by capillaries and veins dilating passively to accommodate the extra blood. rCMRO2 estimated using the steady-state formulation shows a biphasic pattern: an increase immediately after stimulus onset, followed by a post-stimulus undershoot due to blood flow returning faster to baseline than oxygenation. However, assuming a longer mean transit time from the arterial to the venous compartment, due to the immature vascular system of premature infants, reduces the post-stimulus undershoot and increases the flow/consumption ratio to values closer to adult values reported in the literature. We are the first to report changes in local rCBF and rCMRO2 during functional activation in preterm infants. The ability to measure these variables in addition to hemoglobin concentration changes is critical for understanding neurovascular coupling in the developing

  4. Positron computed tomography studies of cerebral glucose metabolism in man: theory and application in nuclear medicine.

    PubMed

    Phelps, M E

    1981-01-01

    The capability of positron computed tomography (PCT) to delineate the substructures of the brain and its facility for accurately measuring the local tissue radioactivity concentration allow the application of tracer kinetic models for the study of local cerebral function in man. This principle and an adaptation of the 14C-deoxyglucose (DG) model of Sokoloff et al. with 18F-2-fluoro-deoxy-D-glucose (FDG) is being used at UCLA. Brookhaven National Laboratory, University of Pennsylvania, NIH, and the Massachusetts General Hospital to determine the local cerebral glucose metabolic rate (LCMRGIc) in normal man at rest and during sensory activation and the changes that occur in patients with a variety of cerebral disorders. Kinetic studies with PCT have been employed to measure the rate constants of the model in different gray and white matter structures of the brain in both normal and ischemic states. The precision of the method in normals has been shown to be about +/- 5% for 1.5-2.0 sq cm regions of the brain. Studies in normals have yielded values for hemispheric CMRGIc that are in agreement with measurement using the Kety-Schmidt technique and LCMRGIc values in agreement with values in monkeys using DG autoradiography. Studies in volunteers subjected to visual and auditory stimulation are demonstrating the potential of this technique for investigating the human brain's response to different stimuli. STudies in patients with stroke show excellent correlation between the degree, extent, and particular structures involved and the clinical symptoms. The method consistently detected hypometabolism in cortical, thalamic, and striatal tissues that were dysfunctional due to deactivation or damage but which appeared normal on x-ray CT. Studies in patients with partial epilepsy have shown hypometabolic zones that highly correlated anatomically with interictal EEG spike foci and were associated with normal x-ray CT studies in 77% of the patients studied. The studies on

  5. Cerebral hemodynamic changes and pain perception during venipuncture: is glucose really effective?

    PubMed

    Beken, Serdar; Hirfanoğlu, Ibrahim Murat; Gücüyener, Kıvılcım; Ergenekon, Ebru; Turan, Ozden; Unal, Sezin; Altuntaş, Nilgün; Kazancı, Ebru; Kulalı, Ferit; Turkyılmaz, Canan; Atalay, Yıldız

    2014-05-01

    Newborns are exposed to a considerable number of painful stimuli. This study is aimed to investigate the effects of 30% glucose solution and nonnutritive sucking on pain perception during venipuncture. Twenty-five term infants were randomized as receiving 30% dextrose (group 1) or sterile water (group 2). Neonatal Infant Pain Scale scores, skin conductance algesimeter recordings, and near-infrared spectroscopy measurements were recorded during the procedure. Neonatal Infant Pain Scale and skin conductance algesimeter results were decreased in both groups from that during venipuncture to after the procedure. Group 1 had lower Neonatal Infant Pain Scale scores compared with group 2 after venipuncture, different from the skin conductance algesimeter, where no difference was observed between groups. In group 1, cerebral blood volume increased after venipuncture. Glucose does not attenuate the Neonatal Infant Pain Scale score and skin conductance algesimeter index during venipuncture, but it leads to a lower Neonatal Infant Pain Scale score after venipuncture unlike the skin conductance algesimeter index, which was not lowered.

  6. Effect of glucose concentration on the rate of fructose consumption in native strains isolated from the fermentation of Agave duranguensis.

    PubMed

    Díaz-Campillo, M; Urtíz, N; Soto, O; Barrio, E; Rutiaga, M; Páez, J

    2012-12-01

    Studies on hexose consumption by Saccharomyces cerevisiae show that glucose is consumed faster than fructose when both are present (9:1 fructose to glucose) in the medium during the fermentation of Agave. The objective of this work was to select strains of S. cerevisiae that consume fructose equal to or faster than glucose at high fructose concentrations by analyzing the influence of different glucose concentrations on the fructose consumption rate. The optimal growth conditions were determined by a kinetics assay using high performance liquid chromatography (HPLC) using 50 g of glucose and 50 g of fructose per liter of synthetic medium containing peptone and yeast extract. Using the same substrate concentrations, strain ITD-00185 was shown to have a higher reaction rate for fructose over glucose. At 75 g of fructose and 25 g of glucose per liter, strain ITD-00185 had a productivity of 1.02 gL(-1) h(-1) after 40 h and a fructose rate constant of 0.071 h(-1). It was observed that glucose concentration positively influences fructose consumption when present in a 3:1 ratio of fructose to glucose. Therefore, adapted strains at high fructose concentrations could be used as an alternative to traditional fermentation processes.

  7. Brain hyperthermia alters local cerebral glucose utilization: a comparison of hyperthermic agents.

    PubMed

    Mickley, G A; Cobb, B L; Farrell, S T

    1997-01-01

    Microwaves have been proposed to alter neural functioning through both thermal and non-thermal mechanisms. We attempted to determine if local cerebral glucose utilization (LCGU) depends on the type of hyperthermic agent employed. We exposed the heads of rats to two different hyperthermic agents (5.6 GHz microwave exposure or exposure to hot/moist air) to create a 2 degree C rise in midbrain temperature. Other rats were sham exposed and remained normothermic. The 2-Deoxy-D-glucose (2DG) autoradiographic method was then used to determine LCGU during a 45-min period of stable hyperthermia. Hyperthermia (created by either hyperthermic agent) caused a general rise in brain glucose utilization. Hot-air exposed rats showed significantly higher LCGUs than microwaved rats in portions of the motor cortex, hypothalamus, lateral lemniscus and the substantia nigra (reticulata). Microwave exposure did not produce significantly higher levels of LCGU (compared to hot-air exposed hyperthermic controls) in any of the 47 brain areas sampled. A time analysis of lateral hypothalamic (LH) temperature during these different heating procedures revealed that microwave exposure produced a more-rapid rise in temperature than did not/moist air. Thus, we wondered if the nuclei-specific differences in LCGU could be explained by localized differences in rate of brain heating during the two hyperthermic treatments. In a second study we carefully matched both the rate of lateral hypothalamic temperature rise and the peak temperatures achieved by our two hyperthermic methods and again measured LH LCGUs. We found that this precise matching eliminated the difference in hypothalamic LCGU previously observed following microwave or hot-air exposure. These data suggest that hyperthermia causes a general rise in brain metabolism and that (as long as steady state and rate of local brain temperature increase are well matched) microwave and hot-air induced hyperthermia produce similar changes in LCGU.

  8. Impaired fasting blood glucose is associated to cognitive impairment and cerebral atrophy in middle-aged non-human primates

    PubMed Central

    Djelti, Fathia; Dhenain, Marc; Terrien, Jérémy; Picq, Jean-Luc; Hardy, Isabelle; Champeval, Delphine; Perret, Martine; Schenker, Esther; Epelbaum, Jacques; Aujard, Fabienne

    2017-01-01

    Age-associated cognitive impairment is a major health and social issue because of increasing aged population. Cognitive decline is not homogeneous in humans and the determinants leading to differences between subjects are not fully understood. In middle-aged healthy humans, fasting blood glucose levels in the upper normal range are associated with memory impairment and cerebral atrophy. Due to a close evolutional similarity to Man, non-human primates may be useful to investigate the relationships between glucose homeostasis, cognitive deficits and structural brain alterations. In the grey mouse lemur, Microcebus murinus, spatial memory deficits have been associated with age and cerebral atrophy but the origin of these alterations have not been clearly identified. Herein, we showed that, on 28 female grey mouse lemurs (age range 2.4-6.1 years-old), age correlated with impaired fasting blood glucose (rs=0.37) but not with impaired glucose tolerance or insulin resistance. In middle-aged animals (4.1-6.1 years-old), fasting blood glucose was inversely and closely linked with spatial memory performance (rs=0.56) and hippocampus (rs=−0.62) or septum (rs=−0.55) volumes. These findings corroborate observations in humans and further support the grey mouse lemur as a natural model to unravel mechanisms which link impaired glucose homeostasis, brain atrophy and cognitive processes. PMID:28039490

  9. Statistical image analysis of cerebral glucose metabolism in patients with cognitive impairment following diffuse traumatic brain injury.

    PubMed

    Kato, Takayuki; Nakayama, Noriyuki; Yasokawa, Yuto; Okumura, Ayumi; Shinoda, Jun; Iwama, Toru

    2007-06-01

    The aim of this study was to explore the regional cerebral glucose metabolism (rCM) in patients with chronic stage traumatic brain injury (TBI) compared with normal controls. We also investigated the relationship between regional cerebral glucose metabolism and cognitive function. We performed 2-[(18)F]fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) study using statistical parametric mapping (SPM) analysis in 36 diffuse axonal injury (DAI) patients (mean age +/- SD, 36.3 +/- 9.8 years). At 6 months or more after head injury, all patients underwent FDG-PET study and neuropsychological batteries to assess cognitive function. Thirty healthy, gender-matched control subjects who were comparable in age were also studied. Between the TBI patients and normal controls, group comparisons showed regional metabolic decreases in the bilateral frontal lobes, temporal lobes, thalamus, as well as the right cerebellum in the TBI group. Only full-scale Intelligence Quotient (IQ) (mean +/- SD, 78.5 +/- 11.9) correlated positively with rCM in the right cingulate gyrus and the bilateral medial frontal gyrus. In other examinations, the correlation was not provided. DAI may induce functional disconnection and decreased neuronal activity, and finally lead to diffuse glucose hypometabolism. Low full-scale IQ scores may be related to significantly different underlying cognitive impairment. In supporting cognitive function following TBI, which showed diffuse cerebral metabolic reduction compared with normal controls, medial prefrontal cortex and anterior cingulate cortex may be an important component.

  10. Significant decrease of broth viscosity and glucose consumption in erythromycin fermentation by dynamic regulation of ammonium sulfate and phosphate.

    PubMed

    Chen, Yong; Wang, Zejian; Chu, Ju; Zhuang, Yingping; Zhang, Siliang; Yu, Xiaoguang

    2013-04-01

    In this study, the effects of nitrogen sources on broth viscosity and glucose consumption in erythromycin fermentation were investigated. By controlling ammonium sulfate concentration, broth viscosity and glucose consumption were decreased by 18.2% and 61.6%, respectively, whereas erythromycin biosynthesis was little affected. Furthermore, erythromycin A production was increased by 8.7% still with characteristics of low broth viscosity and glucose consumption through the rational regulations of phosphate salt, soybean meal and ammonium sulfate. It was found that ammonium sulfate could effectively control proteinase activity, which was correlated with the utilization of soybean meal as well as cell growth. The pollets formation contributed much to the decrease of broth viscosity. The accumulation of extracellular propionate and succinate under the new regulation strategy indicated that higher propanol consumption might increase the concentration of methylmalonyl-CoA and propionyl-CoA and thus could increase the flux leading to erythromycin A. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. The Impact of Opium Consumption on Blood Glucose, Serum Lipids and Blood Pressure, and Related Mechanisms

    PubMed Central

    Najafipour, Hamid; Beik, Ahmad

    2016-01-01

    Aim: Substance abuse has become a universal crisis in our modern age. Among illegal substances, opium and its derivatives have been ranked second in terms of usage after cannabis in the world. In many Asian regions, the use of opium enjoys a high social acceptance; hence, some common people and even medical practitioners believe that opium lowers blood glucose and pressure and treat dyslipidemia. How much this belief is scientifically justified? Method: The results of available studies on both humans and animals searched in different search engines up to mid-2016 were integrated (78 articles). Upon the findings we try to offer a more transparent picture of the effects of opium on the mentioned factors along with the probable underlying mechanisms of its action. Results: Taken together, a variety of evidences suggest that the consumption of opium has no scientific justification for amendment of these biochemical variables. The mechanisms proposed so far for the action of opium in the three above disorders are summarized at the end of the article. Short term effects seems to be mostly mediated through central nervous system (neural and hormonal mechanisms), but long term effects are often due to the structural and functional alterations in some body organs. Conclusion: Although opium may temporarily reduce blood pressure, but it increases blood glucose and most of blood lipids. Moreover its long term use has negative impacts and thus it aggravates diabetes, dyslipidemia and hypertension. Accordingly, it is necessary to inform societies about the potential disadvantages of unauthorized opium consumption. PMID:27790151

  12. The Impact of Opium Consumption on Blood Glucose, Serum Lipids and Blood Pressure, and Related Mechanisms.

    PubMed

    Najafipour, Hamid; Beik, Ahmad

    2016-01-01

    Aim: Substance abuse has become a universal crisis in our modern age. Among illegal substances, opium and its derivatives have been ranked second in terms of usage after cannabis in the world. In many Asian regions, the use of opium enjoys a high social acceptance; hence, some common people and even medical practitioners believe that opium lowers blood glucose and pressure and treat dyslipidemia. How much this belief is scientifically justified? Method: The results of available studies on both humans and animals searched in different search engines up to mid-2016 were integrated (78 articles). Upon the findings we try to offer a more transparent picture of the effects of opium on the mentioned factors along with the probable underlying mechanisms of its action. Results: Taken together, a variety of evidences suggest that the consumption of opium has no scientific justification for amendment of these biochemical variables. The mechanisms proposed so far for the action of opium in the three above disorders are summarized at the end of the article. Short term effects seems to be mostly mediated through central nervous system (neural and hormonal mechanisms), but long term effects are often due to the structural and functional alterations in some body organs. Conclusion: Although opium may temporarily reduce blood pressure, but it increases blood glucose and most of blood lipids. Moreover its long term use has negative impacts and thus it aggravates diabetes, dyslipidemia and hypertension. Accordingly, it is necessary to inform societies about the potential disadvantages of unauthorized opium consumption.

  13. Schisandra polysaccharide increased glucose consumption by up-regulating the expression of GLUT-4.

    PubMed

    Jin, Dun; Zhao, Ting; Feng, Wei-Wei; Mao, Guang-Hua; Zou, Ye; Wang, Wei; Li, Qian; Chen, Yao; Wang, Xin-Tong; Yang, Liu-Qing; Wu, Xiang-Yang

    2016-06-01

    In our previous study, a polysaccharide was extracted from Schisandra Chinensis (Trucz.) Baill and found with anti-diabetic effects. The aim of this study was to investigate the anti-diabetic effects of the low weight molecular polysaccharide (SCPP11) purified from crude Schisandra polysaccharide and illustrate the underlying mechanism in buffalo rat liver cells. The insulin resistance model of BRL cells was established by incubating with insulin solution for 24h. The effects of SCPP11 on regulating related protein and mRNA expression in an insulin and AMPK signal pathway were investigated by western blot and RT-PCR analysis. SCPP11 showed no cytotoxicity to BRL cells and could improve the glucose consumption in BRL cells. SCPP11 increased the protein expression of Akt, p-AMPK and GLUT-4 in BRL cells. Moreover, SCPP11 could enhance the mRNA expression levels of IRS-1, PI3K, Akt, GLUT-4, AMPKα and PPAR-γ in BRL cells at the same time. In conclusion, SCPP11 possessed effects in improving glucose consumption by up-regulating the expression of GLUT-4 which might occur via insulin and AMPK signal pathway and could be a potential functional food to prevent and mitigate the insulin resistance condition.

  14. High consumption of pulses is associated with lower risk of abnormal glucose metabolism in women in Mauritius

    PubMed Central

    Wennberg, M.; Söderberg, S.; Uusitalo, U.; Tuomilehto, J.; Shaw, J. E.; Zimmet, P. Z.; Kowlessur, S.; Pauvaday, V.; Magliano, D. J.

    2014-01-01

    Aims To investigate if consumption of pulses was associated with a reduced risk of developing abnormal glucose metabolism, increases in body weight and increases in waist circumference in a multi-ethnic cohort in Mauritius. Methods Population-based surveys were performed in Mauritius in 1992 and in 1998. Pulse consumption was estimated from a food frequency questionnaire in 1992 and outcomes were measured in 1998. At both time points, anthropometry was undertaken and an oral glucose tolerance test was performed. Results Mauritian women with the highest consumption of pulses (highest tertile) had a reduced risk of developing abnormal glucose metabolism [odds ratio 0.52; 95% CI 0.27, 0.99) compared with those with the lowest consumption, and also after multivariable adjustments. In women, a high consumption of pulses was associated with a smaller increase in BMI. Conclusions High consumption of pulses was associated with a reduced risk of abnormal glucose metabolism and a smaller increase in BMI in Mauritian women. Promotion of pulse consumption could be an important dietary intervention for the prevention of Type 2 diabetes and obesity in Mauritius and should be examined in other populations and in clinical trials. PMID:25346062

  15. Development and application of a self-referencing glucose microsensor for the measurement of glucose consumption by pancreatic beta-cells.

    PubMed

    Jung, S K; Trimarchi, J R; Sanger, R H; Smith, P J

    2001-08-01

    Glucose gradients generated by an artificial source and beta-cells were measured using an enzyme-based glucose microsensor, 8-microm tip diameter, as a self-referencing electrode. The technique is based on a difference measurement between two locations in a gradient and thus allows us to obtain real-time flux values with minimal impact of sensor drift or noise. Flux values were derived by incorporation of the measured differential current into Fick's first equation. In an artificial glucose gradient, a flux detection limit of 8.2 +/- 0.4 pmol.cm(-2).s(-1) (mean +/- SEM, n = 7) with a sensor sensitivity of 7.0 +/- 0.4 pA/ mM (mean +/- SEM, n = 16) was demonstrated. Under biological conditions, the glucose sensor showed no oxygen dependence with 5 mM glucose in the bulk medium. The addition of catalase to the bulk medium was shown to ameliorate surface-dependent flux distortion close to specimens, suggesting an underlying local accumulation of hydrogen peroxide. Glucose flux from beta-cell clusters, measured in the presence of 5 mM glucose, was 61.7 +/- 9.5 fmol.nL(-1).s(-1) (mean +/- SEM, n = 9) and could be pharmacologically modulated. Glucose consumption in response to FCCP (1 microM) transiently increased, subsequently decreasing to below basal by 93 +/- 16 and 56 +/- 6%, respectively (mean +/- SEM, n = 5). Consumption was decreased after the application of 10 microM rotenone by 74 +/- 5% (mean +/- SEM, n = 4). These results demonstrate that an enzyme-based amperometric microsensor can be applied in the self-referencing mode. Further, in obtaining glucose flux measurements from small clusters of cells, these are the first recordings of the real-time dynamic of glucose movements in a biological microenvironment.

  16. Impacts of small arteriovenous malformations (AVM) on regional cerebral blood flow and glucose metabolism

    SciTech Connect

    Liu, R.S.; Yeh, S.H.; Chu, L.S.

    1994-05-01

    This study assessed the effects of small AVMs (<3 cm) on the regional cerebral blood flow (rCBF) by Tc-99m HMPAO SPECT and on the glucose metabolism (rCGlcM) by [F-18]-FDG PET. Seven AVM patients (pts) were studied. All AVMs were confirmed by cerebral angiography and CT/MR scans. Tc-99m HMPAO SPECT and [F-18]-PDG PET images were interpreted visually to detect the changes of rCBF and rCGlcM. All pts except one brain stem AVM had defects in the regions of nidi on HMPAO and FDG images. FDG PET disclosed low rCGlcM in surrounding areas of AVMs in 6 pts, while HMPAO SPECT detected only 4 cases. One AVM had increased rCBF surrounding the nidus despite of decreased rCGlcM in the same region. Five pts had abnormal rCGlcM over ipsilateral remote cortex but only one had corresponding abnormal rCBF. Contralateral cortical hypofunction was noted in 3 pts by FDG PET but none by HMPAO SPECT. Cross cerebellar diaschisis was found in 2 AVMs by FDG PET and only one by HMPAO SPECT. All regions with abnormal HMPAO uptake did not look as discernibly as seen on the FDG PET scan. CT/MR scans detected the nidi of AVMs of all pts and old hemorrhage in one pt. In conclusion, either HMPAO SPECT or FDG PET is sensitive to detect the functional abnormalities in the region of nidus of small AVM and the surrounding brain tissue. FDG PET is better than HMPAO SPECT to detect functional changes in the remote cortex and diaschisis.

  17. Performance effects and metabolic consequences of caffeine and caffeinated energy drink consumption on glucose disposal.

    PubMed

    Shearer, Jane; Graham, Terry E

    2014-10-01

    This review documents two opposing effects of caffeine and caffeine-containing energy drinks, i.e., their positive effects on athletic performance and their negative impacts on glucose tolerance in the sedentary state. Analysis of studies examining caffeine administration prior to performance-based exercise showed caffeine improved completion time by 3.6%. Similar analyses following consumption of caffeine-containing energy drinks yielded positive, but more varied, benefits, which were likely due to the diverse nature of the studies performed, the highly variable composition of the beverages consumed, and the range of caffeine doses administered. Conversely, analyses of studies administering caffeine prior to either an oral glucose tolerance test or insulin clamp showed a decline in whole-body glucose disposal of ~30%. The consequences of this resistance are unknown, but there may be implications for the development of a number of chronic diseases. Both caffeine-induced performance enhancement and insulin resistance converge with the primary actions of caffeine on skeletal muscle.

  18. Effect of Low-Dose Alcohol Consumption on Inflammation Following Transient Focal Cerebral Ischemia in Rats.

    PubMed

    McCarter, Kimberly D; Li, Chun; Jiang, Zheng; Lu, Wei; Smith, Hillary C; Xu, Guodong; Mayhan, William G; Sun, Hong

    2017-10-02

    Increasing evidence suggest that low-dose alcohol consumption (LAC) reduces the incidence and improves the functional outcome of ischemic stroke. We determined the influence of LAC on post-ischemic inflammation. Male Sprague-Dawley rats were divided into 3 groups, an ethanol (13.5% alcohol) group, a red wine (Castle Rock Pinot Noir, 13.5% alcohol) group, and a control group. The amount of alcohol given to red wine and ethanol groups was 1.4 g/kg/day. After 8 weeks, the animals were subjected to a 2-hour middle cerebral artery occlusion (MCAO) and sacrificed at 24 hours of reperfusion. Cerebral ischemia/reperfusion (I/R) injury, expression of adhesion molecules and pro- and anti-inflammatory cytokines/chemokines, microglial activation and neutrophil infiltration were evaluated. The total infarct volume and neurological deficits were significantly reduced in red wine- and ethanol-fed rats compared to control rats. Both red wine and ethanol suppressed post-ischemic expression of adhesion molecules and microglial activation. In addition, both red wine and ethanol upregulated expression of tissue inhibitor of metalloproteinases 1 (TIMP-1), downregulated expression of proinflammatory cytokines/chemokines, and significantly alleviated post-ischemic expression of inflammatory mediators. Furthermore, red wine significantly reduced post-ischemic neutrophil infiltration. Our findings suggest that LAC may protect the brain against its I/R injury by suppressing post-ischemic inflammation.

  19. Linear coupling between cerebral blood flow and oxygen consumption in activated human cortex

    PubMed Central

    Hoge, Richard D.; Atkinson, Jeff; Gill, Brad; Crelier, Gérard R.; Marrett, Sean; Pike, G. Bruce

    1999-01-01

    The aim of this study was to test the hypothesis that, within a specific cortical unit, fractional changes in cerebral blood flow (CBF) and cerebral metabolic rate of oxygen consumption (CMRO2) are coupled through an invariant relationship during physiological stimulation. This aim was achieved by simultaneously measuring relative changes in these quantities in human primary visual cortex (V1) during graded stimulation with patterns designed to selectively activate different populations of V1 neurons. Primary visual cortex was delineated individually in each subject by using phase-encoded retinotopic mapping. Flow-sensitive alternating inversion recovery MRI, in conjunction with blood oxygenation-sensitive MRI and hypercapnic calibration, was used to monitor CBF and CMRO2. The stimuli used included (i) diffuse isoluminant chromatic displays; (ii) high spatial-frequency achromatic luminance gratings; and (iii) radial checkerboard patterns containing both color and luminance contrast modulated at different temporal rates. Perfusion responses to each pattern were graded by varying luminance and/or color modulation amplitudes. For all stimulus types, fractional changes in blood flow and oxygen uptake were found to be linearly coupled in a consistent ratio of approximately 2:1. The most potent stimulus produced CBF and CMRO2 increases of 48 ± 5% and 25 ± 4%, respectively, with no evidence of a plateau for oxygen consumption. Estimation of aerobic ATP yields from the observed CMRO2 increases and comparison with the maximum possible anaerobic ATP contribution indicate that elevated energy demands during brain activation are met largely through oxidative metabolism. PMID:10430955

  20. Intragastric administration of allyl isothiocyanate reduces hyperglycemia in intraperitoneal glucose tolerance test (IPGTT) by enhancing blood glucose consumption in mice.

    PubMed

    Mori, Noriyuki; Kurata, Manami; Yamazaki, Hanae; Hosokawa, Hiroshi; Nadamoto, Tomonori; Inoue, Kazuo; Fushiki, Tohru

    2013-01-01

    We investigated the effects of allyl isothiocyanate (AITC) on the blood glucose levels of mice using an intraperitoneal glucose tolerance test. The intragastric administration of 25 mg/kg body weight AITC reduced the increase in blood glucose level after 2 g/kg body weight glucose was given intraperitoneally, compared with that of control mice. To elucidate the mechanism responsible for the reduction, respiratory gas analysis employing (13)C-labeled glucose was performed. The intragastrically administering AITC increased (13)CO2 emission, compared to vehicle, after intraperitoneal administration of (13)C-labeled glucose. This indicated that AITC increased the utilization of exogenously administered glucose, which was excessive glucose in the blood. To examine whether transient receptor potential (TRP) channels mediated this reduction in the blood glucose levels, we used TRPA1 and TRPV1 knockout (KO) mice. Intragastrically administering AITC reduced the increase in the blood glucose level in TRPA1 KO mice but not in TRPV1 KO mice. These findings suggest that dietary AITC might reduce the increases in blood glucose levels by increasing the utilization of excessive glucose in the blood by activating TRPV1.

  1. The Effects of Moderate Whole Grain Consumption on Fasting Glucose and Lipids, Gastrointestinal Symptoms, and Microbiota

    PubMed Central

    Cooper, Danielle N.; Kable, Mary E.; Marco, Maria L.; De Leon, Angela; Rust, Bret; Baker, Julita E.; Horn, William; Burnett, Dustin; Keim, Nancy L.

    2017-01-01

    This study was designed to determine if providing wheat, corn, and rice as whole (WG) or refined grains (RG) under free-living conditions will change parameters of health over a six-week intervention in healthy, habitual non-WG consumers. Measurements of body composition, fecal microbiota, fasting blood glucose, total cholesterol, high density lipoprotein (HDL), low density lipoprotein (LDL), and triglycerides were made at baseline and post intervention. Subjects were given adequate servings of either WG or RG products based on their caloric need and asked to keep records of grain consumption, bowel movements, and GI symptoms weekly. After six weeks, subjects repeated baseline testing. Significant decreases in total, LDL, and non-HDL cholesterol were seen after the WG treatments but were not observed in the RG treatment. During Week 6, bowel movement frequency increased with increased WG consumption. No significant differences in microbiota were seen between baseline and post intervention, although, abundance of order Erysipelotrichales increased in RG subjects who ate more than 50% of the RG market basket products. Increasing consumption of WGs can alter parameters of health, but more research is needed to better elucidate the relationship between the amount consumed and the health-related outcome. PMID:28230784

  2. The Effects of Moderate Whole Grain Consumption on Fasting Glucose and Lipids, Gastrointestinal Symptoms, and Microbiota.

    PubMed

    Cooper, Danielle N; Kable, Mary E; Marco, Maria L; De Leon, Angela; Rust, Bret; Baker, Julita E; Horn, William; Burnett, Dustin; Keim, Nancy L

    2017-02-21

    This study was designed to determine if providing wheat, corn, and rice as whole (WG) or refined grains (RG) under free-living conditions will change parameters of health over a six-week intervention in healthy, habitual non-WG consumers. Measurements of body composition, fecal microbiota, fasting blood glucose, total cholesterol, high density lipoprotein (HDL), low density lipoprotein (LDL), and triglycerides were made at baseline and post intervention. Subjects were given adequate servings of either WG or RG products based on their caloric need and asked to keep records of grain consumption, bowel movements, and GI symptoms weekly. After six weeks, subjects repeated baseline testing. Significant decreases in total, LDL, and non-HDL cholesterol were seen after the WG treatments but were not observed in the RG treatment. During Week 6, bowel movement frequency increased with increased WG consumption. No significant differences in microbiota were seen between baseline and post intervention, although, abundance of order Erysipelotrichales increased in RG subjects who ate more than 50% of the RG market basket products. Increasing consumption of WGs can alter parameters of health, but more research is needed to better elucidate the relationship between the amount consumed and the health-related outcome.

  3. Triheptanoin for glucose transporter type I deficiency (G1D): modulation of human ictogenesis, cerebral metabolic rate, and cognitive indices by a food supplement.

    PubMed

    Pascual, Juan M; Liu, Peiying; Mao, Deng; Kelly, Dorothy I; Hernandez, Ana; Sheng, Min; Good, Levi B; Ma, Qian; Marin-Valencia, Isaac; Zhang, Xuchen; Park, Jason Y; Hynan, Linda S; Stavinoha, Peter; Roe, Charles R; Lu, Hanzhang

    2014-10-01

    Disorders of brain metabolism are multiform in their mechanisms and manifestations, many of which remain insufficiently understood and are thus similarly treated. Glucose transporter type I deficiency (G1D) is commonly associated with seizures and with electrographic spike-waves. The G1D syndrome has long been attributed to energy (ie, adenosine triphosphate synthetic) failure such as that consequent to tricarboxylic acid (TCA) cycle intermediate depletion. Indeed, glucose and other substrates generate TCAs via anaplerosis. However, TCAs are preserved in murine G1D, rendering energy-failure inferences premature and suggesting a different hypothesis, also grounded on our work, that consumption of alternate TCA precursors is stimulated and may be detrimental. Second, common ketogenic diets lead to a therapeutically counterintuitive reduction in blood glucose available to the G1D brain and prove ineffective in one-third of patients. To identify the most helpful outcomes for treatment evaluation and to uphold (rather than diminish) blood glucose concentration and stimulate the TCA cycle, including anaplerosis, in G1D using the medium-chain, food-grade triglyceride triheptanoin. Unsponsored, open-label cases series conducted in an academic setting. Fourteen children and adults with G1D who were not receiving a ketogenic diet were selected on a first-come, first-enrolled basis. Supplementation of the regular diet with food-grade triheptanoin. First, we show that, regardless of electroencephalographic spike-waves, most seizures are rarely visible, such that perceptions by patients or others are inadequate for treatment evaluation. Thus, we used quantitative electroencephalographic, neuropsychological, blood analytical, and magnetic resonance imaging cerebral metabolic rate measurements. One participant (7%) did not manifest spike-waves; however, spike-waves promptly decreased by 70% (P = .001) in the other participants after consumption of triheptanoin. In addition, the

  4. In vivo dynamic turnover of cerebral 13C isotopomers from [U- 13C]glucose

    NASA Astrophysics Data System (ADS)

    Xu, Su; Shen, Jun

    2006-10-01

    An INEPT-based 13C MRS method and a cost-effective and widely available 11.7 Tesla 89-mm bore vertical magnet were used to detect dynamic 13C isotopomer turnover from intravenously infused [U- 13C]glucose in a 211 μL voxel located in the adult rat brain. The INEPT-based 1H → 13C polarization transfer method is mostly adiabatic and therefore minimizes signal loss due to B 1 inhomogeneity of the surface coils used. High quality and reproducible data were acquired as a result of combined use of outer volume suppression, ISIS, and the single-shot three-dimensional localization scheme built in the INEPT pulse sequence. Isotopomer patterns of both glutamate C4 at 34.00 ppm and glutamine C4 at 31.38 ppm are dominated first by a doublet originated from labeling at C4 and C5 but not at C3 (with 1JC4C5 = 51 Hz) and then by a quartet originated from labeling at C3, C4, and C5 (with 1JC3C4 = 35 Hz). A lag in the transition of glutamine C4 pattern from doublet-dominance to quartet dominance as compared to glutamate C4 was observed, which provides an independent verification of the precursor-product relationship between neuronal glutamate and glial glutamine and a significant intercompartmental cerebral glutamate-glutamine cycle between neurons and glial cells.

  5. Regional cerebral glucose metabolism during sevoflurane anaesthesia in healthy subjects studied with positron emission tomography.

    PubMed

    Schlünzen, L; Juul, N; Hansen, K V; Gjedde, A; Cold, G E

    2010-05-01

    The precise mechanism by which sevoflurane exerts its effects in the human brain remains unknown. In the present study, we quantified the effects of sevoflurane on regional cerebral glucose metabolism (rGMR) in the human brain measured with positron emission tomography. Eight volunteers underwent two dynamic 18F-fluorodeoxyglucose positron emission tomography (PET) scans. One scan assessed conscious-baseline metabolism and the other scan assessed metabolism during 1 minimum alveolar concentration (MAC) sevoflurane anaesthesia. Cardiovascular and respiratory parameters were monitored and bispectral index responses were registered. Statistical parametric maps and conventional regions of interest analysis were used to determine rGMR differences. All subjects were unconsciousness at 1.0 MAC sevoflurane. Cardiovascular and respiratory parameters were constant over time. In the awake state, rGMR ranged from 0.24 to 0.35 mumol/g/min in the selected regions. Compared with the conscious state, total GMR decreased 56% in sevoflurane anaesthesia. In white and grey matter, GMR was averaged 42% and 58% of normal, respectively. Sevoflurane reduced the absolute rGMR in all selected areas by 48-71% of the baseline (P< or = 0.01), with the most significant reductions in the lingual gyrus (71%), occipital lobe in general (68%) and thalamus (63%). No increases in rGMR were observed. Sevoflurane caused a global whole-brain metabolic reduction of GMR in all regions of the human brain, with the most marked metabolic suppression in the lingual gyrus, thalamus and occipital lobe.

  6. Local cerebral glucose utilization in the neocortical areas of the rat brain.

    PubMed

    Wree, A; Zilles, K; Schleicher, A

    1990-01-01

    The neocortex of the rat brain can be subdivided into regions of different local cerebral glucose utilization (LCGU). However, only a few neocortical areas can be delineated by differences in mean LCGUs between neighbouring areas. These area borders correspond exactly with cytoarchitectonically defined borders found in adjacent Nissl-stained preparations. On the other hand, nearly all of the architectonically defined area borders are also recognizable in the LCGU pictures, if differences in laminar distribution patterns of LCGU are taken into account. Furthermore, interareal differences in mean LCGU mainly reflect changes in layer IV, whereas layers II-III and V-VI show nearly identical LCGU values in all neocortical areas of the rat brain. The primary sensory areas exhibit the highest LCGU in layer IV, while the primary motor cortex shows a high LCGU in layer V. As the cytoarchitectonically defined pattern of the cortex is generally corroborated by the regional and laminar LCGU distribution, anatomical, metabolic and functional aspects of cortical architecture are associated.

  7. Regional Cerebral Glucose Metabolism and its Association with Phenotype and Cognitive Functioning in Patients with Autism

    PubMed Central

    Anil Kumar, B. N.; Malhotra, Savita; Bhattacharya, Anish; Grover, Sandeep; Batra, Y. K.

    2017-01-01

    Introduction: In spite of three decades of neuroimaging, we are unable to find consistent and coherent anatomical or pathophysiological basis for autism as changes are subtle and there are no studies from India. Aim: To study the regional cerebral glucose metabolism in children with autism using positron emission tomography (PET) scan and to study the behavior and cognitive functioning among them. Materials and Methods: Ten subjects (8–19 years) meeting Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition criteria for autism were evaluated on Childhood Autism Rating Scale (CARS), trail making test (TMT) A and B, Wisconsin card sorting test, Raven's progressive matrices, and PET scan. A control group of 15 matched subjects without any brain pathology or neurological disorder was similarly studied. Results: Four out of the ten patients with autism had abnormal PET scan findings, and in contrast, none of the patients in the control group had abnormal PET scan. Of the four patients with abnormality in the PET scan, two patients had findings suggestive of hypometabolism in cerebellum bilaterally; one patient showed bilateral hypometabolism in anterior temporal cortices and cerebellum, and the fourth patient had hypermetabolism in the bilateral frontal cortices and medial occipital cortices. Subjects with autism performed poorly on neuropsychological testing. Patients with abnormal PET scan findings had significantly higher scores on the “body use” domain of CARS indicating more stereotypy. Conclusion: Findings of this study support the view of altered brain functioning in subjects with autism. PMID:28615758

  8. Impairment of tight junctions and glucose transport in endothelial cells of human cerebral cavernous malformations.

    PubMed

    Schneider, Hannah; Errede, Mariella; Ulrich, Nils H; Virgintino, Daniela; Frei, Karl; Bertalanffy, Helmut

    2011-06-01

    Cerebral cavernous malformations (CCMs) often cause hemorrhages that can result in severe clinical manifestations, including hemiparesis and seizures. The underlying mechanisms of the aggressive behavior of CCMs are undetermined to date, but alterations of vascular matrix components may be involved. We compared the localization of the tight junction proteins (TJPs) in 12 CCM specimens and the expression of glucose transporter 1 (GLUT-1), which is sensitive to alterations in TJP levels, in 5 CCM specimens with those in 5 control temporal lobectomy specimens without CCM by immunofluorescence microscopy. The TJPs occludin, claudin-5, and zonula occludens ZO-1 were downregulated at intercellular contact sites and partly redistributed within the surrounding tissue in the CCM samples; there was also a marked reduction of GLUT-1 immunoreactivity compared with that in control specimens. Corresponding analysis using quantitative real-time reverse transcription polymerase chain reaction on 8 CCM and 8 control specimens revealed significant downregulation of mRNA expression of occludin, claudin-5, ZO-1, and GLUT-1. The altered expression and localization of the TJPs at interendothelial contact sites accompanied by a reduction of GLUT-1 expression in dilated CCM microvessels likely affect vascular matrix stability and may contribute to hemorrhages of CCMs.

  9. Cerebral glucose metabolic patterns in Alzheimer's disease. Effect of gender and age at dementia onset

    SciTech Connect

    Small, G.W.; Kuhl, D.E.; Riege, W.H.; Fujikawa, D.G.; Ashford, J.W.; Metter, E.J.; Mazziotta, J.C.

    1989-06-01

    No previous study of Alzheimer's disease has, to our knowledge, assessed the effect of both age at dementia onset and gender on cerebral glucose metabolic patterns. To this end, we used positron emission tomography (fludeoxyglucose F 18 method) to study 24 patients with clinical diagnoses of probable Alzheimer's disease. Comparisons of the 13 patients with early-onset dementia (less than 65 years of age) with the 11 patients with late-onset dementia (greater than 65 years of age) revealed significantly lower left parietal metabolic ratios (left posterior parietal region divided by the hemispheric average) in the early-onset group. The metabolic ratio of posterior parietal cortex divided by the relatively disease-stable average of caudate and thalamus also separated patients with early-onset dementia from those with late-onset dementia, but not men from women. Further comparisons between sexes showed that, in all brain regions studied, the 9 postmenopausal women had higher nonweighted mean metabolic rates than the 15 men from the same age group, with hemispheric sex differences of 9% on the right and 7% on the left. These results demonstrate decreased parietal ratios in early-onset dementia of Alzheimer's disease, independent of a gender effect.

  10. Brazilein inhibits neuronal inflammation induced by cerebral ischemia and oxygen-glucose deprivation through targeting NOD2 expression.

    PubMed

    Yan, Xiao-Jin; Chai, Yu-Shuang; Yuan, Zhi-Yi; Wang, Xin-Pei; Jiang, Jing-Fei; Lei, Fan; Xing, Dong-Ming; DU, Li-Jun

    2016-05-01

    Brazilein is reported to have immunosuppressive effect on cardiovascular and cerebral-vascular diseases. The essential roles of innate immunity in cerebral ischemia are increasingly identified, but no studies concerning the influence of brazilein on the innate immunity receptors have been reported. The present study was designed to investigate the regulation of NOD2 (Nucleotide-binding oligomerization domain-containing protein 2) by brazilein for its protection of neuron in cerebral ischemia in vivo and oxygen-glucose deprivation in vitro. The results showed that brazilein could reverse the elevated expression of NOD2 and TNFα (tumor necrosis factor alpha) elicited by cerebral ischemia and reperfusion. This reduction could also be detected in normal mice and C17.2 cells, indicating that this suppressive effect of brazilein was correlated with NOD2. The results from GFP reporter plasmid assay suggested brazilein inhibited NOD2 gene transcription. In conclusion, brazilein could attenuate NOD2 and TNFα expression in cerebral ischemia and NOD2 may be one possible target of brazilein for its immune suppressive effect in neuro-inflammation.

  11. Indian culinary plants enhance glucose-induced insulin secretion and glucose consumption in INS-1 β-cells and 3T3-L1 adipocytes.

    PubMed

    Kaur, Lovedeep; Han, Kyoung-Sik; Bains, Kiran; Singh, Harjinder

    2011-12-01

    Six Indian plants, commonly used as culinary plants, herbs or spices (kikar; jamun; neem; harad; fenugreek; bitter gourd), were screened and compared for their antidiabetic potential in vitro. Aqueous plant extracts were prepared and assessed for their effect on the insulin secretion activity of rat pancreatic INS-1 β-cells and glucose consumption in mouse 3T3-L1 adipocytes in order to study their specific mechanisms of action. The effect of the plant extract concentration (25-1000μg/ml) on insulin release and glucose consumption was also studied. All the extracts had a significant stimulatory effect on the insulin secretion of INS-1 cells. In the presence of kikar extract (100μg/ml), an increase of 228% in insulin release was recorded compared to the control (5.6mM glucose) whereas that was 270% and 367% in the presence of kikar and jamun extracts (500μg/ml), respectively. 3T3-L1 cells treated with jamun extract (100μg/ml) exhibited the highest increase in glucose consumption by the cells (94%, compared with the control) followed by harad (53%) and fenugreek (50%) extracts. A significant inhibitory effect of the fenugreek, kikar and jamun extracts on glucose diffusion across a dialysis membrane suggested that these extracts could partly act by decreasing glucose absorption in the small intestine. The results showed that a combination of these plants in diet could help in the management of both type 1 and type 2 diabetes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Acupuncture regulates the glucose metabolism in cerebral functional regions in chronic stage ischemic stroke patients---a PET-CT cerebral functional imaging study

    PubMed Central

    2012-01-01

    Background Acupuncture has been applied to aid in the recovery of post-stroke patients, but its mechanism is unclear. This study aims to analyze the relationship between acupuncture and glucose metabolism in cerebral functional regions in post-stroke patients using 18 FDG PET-CT techniques. Forty-three ischemic stroke patients were randomly divided into 5 groups: the Waiguan (TE5) needling group, the TE5 sham needling group, the sham point needling group, the sham point sham needling group and the non-needling group. Cerebral functional images of all patients were then acquired using PET-CT scans and processed by SPM2 software. Results Compared with the non-needling group, sham needling at TE5 and needling/sham needling at the sham point did not activate cerebral areas. However, needling at TE5 resulted in the activation of Brodmann Area (BA) 30. Needling/sham needling at TE5 and needling at the sham point did not deactivate any cerebral areas, whereas sham needling at the sham point led to deactivation in BA6. Compared with sham needling at TE5, needling at TE5 activated BA13, 19 and 47 and did not deactivate any areas. Compared with needling at the sham point, needling at TE5 had no associated activation but a deactivating effect on BA9. Conclusion Needling at TE5 had a regulating effect on cerebral functional areas shown by PET-CT, and this may relate to its impact on the recovery of post-stroke patients. PMID:22738270

  13. Vasodilation induced by oxygen/glucose deprivation is attenuated in cerebral arteries of SUR2 null mice

    PubMed Central

    Adebiyi, Adebowale; McNally, Elizabeth M.

    2011-01-01

    Physiological functions of arterial smooth muscle cell ATP-sensitive K+ (KATP) channels, which are composed of inwardly rectifying K+ channel 6.1 and sulfonylurea receptor (SUR)-2 subunits, during metabolic inhibition are unresolved. In the present study, we used a genetic model to investigate the physiological functions of SUR2-containing KATP channels in mediating vasodilation to hypoxia, oxygen and glucose deprivation (OGD) or metabolic inhibition, and functional recovery following these insults. Data indicate that SUR2B is the only SUR isoform expressed in murine cerebral artery smooth muscle cells. Pressurized SUR2 wild-type (SUR2wt) and SUR2 null (SUR2nl) mouse cerebral arteries developed similar levels of myogenic tone and dilated similarly to hypoxia (<10 mmHg Po2). In contrast, vasodilation induced by pinacidil, a KATP channel opener, was ∼71% smaller in SUR2nl arteries. Human cerebral arteries also expressed SUR2B, developed myogenic tone, and dilated in response to hypoxia and pinacidil. OGD, oligomycin B (a mitochondrial ATP synthase blocker), and CCCP (a mitochondrial uncoupler) all induced vasodilations that were ∼39–61% smaller in SUR2nl than in SUR2wt arteries. The restoration of oxygen and glucose following OGD or removal of oligomycin B and CCCP resulted in partial recovery of tone in both SUR2wt and SUR2nl cerebral arteries. However, SURnl arteries regained ∼60–82% more tone than did SUR2wt arteries. These data indicate that SUR2-containing KATP channels are functional molecular targets for OGD, but not hypoxic, vasodilation in cerebral arteries. In addition, OGD activation of SUR2-containing KATP channels may contribute to postischemic loss of myogenic tone. PMID:21784985

  14. Restoration of Normal Cerebral Oxygen Consumption with Rapamycin Treatment in a Rat Model of Autism–Tuberous Sclerosis

    PubMed Central

    Chi, Oak Z.; Wu, Chang-Chih; Liu, Xia; Rah, Kang H.; Jacinto, Estela

    2016-01-01

    Tuberous sclerosis (TSC) is associated with autism spectrum disorders and has been linked to metabolic dysfunction and unrestrained signaling of the mammalian target of rapamycin (mTOR). Inhibition of mTOR by rapamycin can mitigate some of the phenotypic abnormalities associated with TSC and autism, but whether this is due to the mTOR-related function in energy metabolism remains to be elucidated. In young Eker rats, an animal model of TSC and autism, which harbors a germ line heterozygous Tsc2 mutation, we previously reported that cerebral oxygen consumption was pronouncedly elevated. Young (4 weeks) male control Long–Evans and Eker rats were divided into control and rapamycin-treated (20 mg/kg once daily for 2 days) animals. Cerebral regional blood flow (14C-iodoantipyrine) and O2 consumption (cryomicrospectrophotometry) were determined in isoflurane-anesthetized rats. We found significantly increased basal O2 consumption in the cortex (8.7 ± 1.5 ml O2/min/100 g Eker vs. 2.7 ± 0.2 control), hippocampus, pons and cerebellum. Regional cerebral blood flow and cerebral O2 extractions were also elevated in all brain regions. Rapamycin had no significant effect on O2 consumption in any brain region of the control rats, but significantly reduced consumption in the cortex (4.1 ± 0.3) and all other examined regions of the Eker rats. Phosphorylation of mTOR and S6K1 was similar in the two groups and equally reduced by rapamycin. Thus, a rapamycin-sensitive, mTOR-dependent but S6K1-independent, signal led to enhanced oxidative metabolism in the Eker brain. We found decreased Akt phosphorylation in Eker but not Long–Evans rat brains, suggesting that this may be related to the increased cerebral O2 consumption in the Eker rat. Our findings suggest that rapamycin targeting of Akt to restore normal cerebral metabolism could have therapeutic potential in tuberous sclerosis and autism. PMID:26048361

  15. Restoration of Normal Cerebral Oxygen Consumption with Rapamycin Treatment in a Rat Model of Autism-Tuberous Sclerosis.

    PubMed

    Chi, Oak Z; Wu, Chang-Chih; Liu, Xia; Rah, Kang H; Jacinto, Estela; Weiss, Harvey R

    2015-09-01

    Tuberous sclerosis (TSC) is associated with autism spectrum disorders and has been linked to metabolic dysfunction and unrestrained signaling of the mammalian target of rapamycin (mTOR). Inhibition of mTOR by rapamycin can mitigate some of the phenotypic abnormalities associated with TSC and autism, but whether this is due to the mTOR-related function in energy metabolism remains to be elucidated. In young Eker rats, an animal model of TSC and autism, which harbors a germ line heterozygous Tsc2 mutation, we previously reported that cerebral oxygen consumption was pronouncedly elevated. Young (4 weeks) male control Long-Evans and Eker rats were divided into control and rapamycin-treated (20 mg/kg once daily for 2 days) animals. Cerebral regional blood flow ((14)C-iodoantipyrine) and O2 consumption (cryomicrospectrophotometry) were determined in isoflurane-anesthetized rats. We found significantly increased basal O2 consumption in the cortex (8.7 ± 1.5 ml O2/min/100 g Eker vs. 2.7 ± 0.2 control), hippocampus, pons and cerebellum. Regional cerebral blood flow and cerebral O2 extractions were also elevated in all brain regions. Rapamycin had no significant effect on O2 consumption in any brain region of the control rats, but significantly reduced consumption in the cortex (4.1 ± 0.3) and all other examined regions of the Eker rats. Phosphorylation of mTOR and S6K1 was similar in the two groups and equally reduced by rapamycin. Thus, a rapamycin-sensitive, mTOR-dependent but S6K1-independent, signal led to enhanced oxidative metabolism in the Eker brain. We found decreased Akt phosphorylation in Eker but not Long-Evans rat brains, suggesting that this may be related to the increased cerebral O2 consumption in the Eker rat. Our findings suggest that rapamycin targeting of Akt to restore normal cerebral metabolism could have therapeutic potential in tuberous sclerosis and autism.

  16. Associations of Green Tea and Rock Tea Consumption with Risk of Impaired Fasting Glucose and Impaired Glucose Tolerance in Chinese Men and Women

    PubMed Central

    Huang, Huibin; Guo, Qiuxuan; Qiu, Changsheng; Huang, Baoying; Fu, Xianguo; Yao, Jin; Liang, Jixing; Li, Liantao; Chen, Ling; Tang, Kaka; Lin, Lixiang; Lu, Jieli; Bi, Yufang; Ning, Guang; Wen, Junping; Lin, Caijing; Chen, Gang

    2013-01-01

    Objective To explore the associations of green tea and rock tea consumption with risk of impaired fasting glucose (IFG) and impaired glucose tolerance (IGT). Methods A multistage, stratified, cluster, random-sampling method was used to select a representative sample from Fujian Province in China. In total, 4808 subjects without cardiovascular disease, hypertension, cancer, or pancreatic, liver, kidney, or gastrointestinal diseases were enrolled in the study. A standard questionnaire was used to gather data on tea (green, rock, and black) consumption and other relevant factors. The assessment of impaired glucose regulation (IGR) was using 75-g oral glucose tolerance test (OGTT), the diagnostic criteria of normal glucose tolerance was according to American Diabetes Association. Results Green tea consumption was associated with a lower risk of IFG, while rock tea consumption was associated with a lower risk of IGT. The adjusted odds ratios for IFG for green tea consumption of <1, 1–15, 16–30, and >30 cups per week were 1.0 (reference), 0.42 (95% confidence intervals (CI) 0.27–0.65), 0.23 (95% CI, 0.12–0.46), and 0.41 (95% CI, 0.17–0.93), respectively. The adjusted odds ratios for IGT for rock tea consumption of <1, 1–15, 16–30, and >30 cups per week were 1.0 (reference), 0.69 (95% CI, 0.48–0.98), 0.59 (95% CI, 0.39–0.90), and 0.64 (95% CI, 0.43–0.97), respectively. A U-shaped association was observed, subjects who consumed 16–30 cups of green or rock tea per week having the lowest odds ratios for IFG or IGT. Conclusions Consumption of green or rock tea may protect against the development of type 2 diabetes mellitus in Chinese men and women, particularly in those who drink 16–30 cups per week. PMID:24260170

  17. Low Cerebral Glucose Metabolism: A Potential Predictor for the Severity of Vascular Parkinsonism and Parkinson’s Disease

    PubMed Central

    Xu, Yunqi; Wei, Xiaobo; Liu, Xu; Liao, Jinchi; Lin, Jiaping; Zhu, Cansheng; Meng, Xiaochun; Xie, Dongsi; Chao, Dongman; Fenoy, Albert J; Cheng, Muhua; Tang, Beisha; Zhang, Zhuohua; Xia, Ying; Wang, Qing

    2015-01-01

    This study explored the association between cerebral metabolic rates of glucose (CMRGlc) and the severity of Vascular Parkinsonism (VP) and Parkinson’s disease (PD). A cross-sectional study was performed to compare CMRGlc in normal subjects vs. VP and PD patients. Twelve normal subjects, 22 VP, and 11 PD patients were evaluated with the H&Y and MMSE, and underwent 18F-FDG measurements. Pearson’s correlations were used to identify potential associations between the severity of VP/PD and CMRGlc. A pronounced reduction of CMRGlc in the frontal lobe and caudate putamen was detected in patients with VP and PD when compared with normal subjects. The VP patients displayed a slight CMRGlc decrease in the caudate putamen and frontal lobe in comparison with PD patients. These decreases in CMRGlc in the frontal lobe and caudate putamen were significantly correlated with the VP patients’ H&Y, UPDRS II, UPDRS III, MMSE, cardiovascular, and attention/memory scores. Similarly, significant correlations were observed in patients with PD. This is the first clinical study finding strong evidence for an association between low cerebral glucose metabolism and the severity of VP and PD. Our findings suggest that these changes in glucose metabolism in the frontal lobe and caudate putamen may underlie the pathophysiological mechanisms of VP and PD. As the scramble to find imaging biomarkers or predictors of the disease intensifies, a better understanding of the roles of cerebral glucose metabolism may give us insight into the pathogenesis of VP and PD. PMID:26618044

  18. Differences in the glucose and fructose consumption profiles in diverse Saccharomyces wine species and their hybrids during grape juice fermentation.

    PubMed

    Tronchoni, Jordi; Gamero, Amparo; Arroyo-López, Francisco Noé; Barrio, Eladio; Querol, Amparo

    2009-09-15

    Yeasts with a high fructose consumption capability are very important for winemakers to solve problems associated with sluggish or stuck fermentations causing undesirable sweetness in wines. In the present study, we analyze the kinetics of glucose and fructose consumption during wine fermentations performed at low (12 degrees C) and high (28 degrees C) temperatures by twelve different yeast strains belonging to the species Saccharomyces cerevisiae, S. bayanus var. uvarum, S. kudriavzevii as well as interspecific Saccharomyces hybrids. Different mathematical equations (sigmoid, exponential and linear decay functions) were used to fit, by means of linear and nonlinear regressions, the sugar degradation along the fermentative process. Temperature had an important influence on glucose and fructose consumption, and clearly different degradation profiles were observed at 12 and 28 degrees C. From the obtained equations, times to consume half and total of the initial glucose and fructose concentrations present in the must were calculated, allowing a quantitative comparison among yeasts in order to select the fastest fermentative yeast according to the fermentation temperature. In general, all yeasts assayed showed a slightly higher preference for glucose than fructose at both temperatures, confirming the glucophilic character of Saccharomyces wine yeasts. However, at low temperatures, some Saccharomyces yeasts showed a fructophilic character at the beginning of fermentation. This kind of studies can be very useful for the wine industry to select yeast strains with different glucose/fructose preferences.

  19. Mechanical work and energy consumption in children with cerebral palsy after single-event multilevel surgery.

    PubMed

    Marconi, Valeria; Hachez, Hélèn; Renders, Anne; Docquier, Pierre-Louis; Detrembleur, Chrisitine

    2014-09-01

    Multilevel surgery is commonly performed to improve walking in children with cerebral palsy (CP). Classical gait analysis (kinetics, kinematics) demonstrated positive outcomes after this intervention, however it doesn't give global indication about gait's features. The assessment of energy cost and mechanical work of locomotion can provide an overall description of walking functionality. Therefore, we propose to describe the effects of multilevel surgery in children with CP, considering energetics, mechanical work, kinetic and kinematic of walking. We measured external, internal, total work, energy cost, recovery, efficiency, kinetic and kinematic of walking in 10 children with CP (4 girls, 6 boys; 13 years ± 2) before and 1 year after multilevel surgery. Kinetic and kinematic results are partially comparable to previous findings, energy cost of walking is significantly reduced (p < 0.05); external, internal, total work, recovery, efficiency are not significantly different (p = 0.129; p = 0.147; p = 0.795; p = 0.119; p = 0.21). The improvement of the walking's energy consumption is not accompanied by a corresponding improvement of mechanical work. Therefore it is conceivable that the improvement of walking economy depend on a reduced effort of the muscle to maintain the posture, rather then to an improvement of the mechanism of energy recovery typical of human locomotion. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Maternal plasma glucose levels and Doppler flow velocity waveforms in cerebral arteries of growth-retarded fetuses.

    PubMed

    Degani, S; Levinsky, R; Rabia, R; Shapiro, I; Sharf, M

    1994-01-01

    Doppler flow studies of the intracranial internal carotid artery and middle cerebral artery performed in 17 women at 30-36 weeks of gestation, referred for evaluation of small for gestational age fetuses, resulted in abnormally low pulsatility index values (below 2 SD). These patients were investigated when fasting and 1 h after a 100-gram glucose load. Increase of 20 ml/dl or more was followed by elevation of the mean pulsatility index in the internal carotid artery from 1.03 +/- 0.09 to 1.44 +/- 0.22 (p < 0.001), and in the middle cerebral artery from 1.12 +/- 0.16 to 1.83 +/- 0.24 (p < 0.001). Pulsatility index values returned to normal (within 2 SD for gestational age) in 15 of the subjects investigated after glucose load. These findings suggest the importance of standard fasting state or determination of maternal plasma glucose levels in patients undergoing Doppler flow evaluation of growth-retarded fetuses.

  1. Ameliorating effect of hypothalamic brain-derived neurotrophic factor against impaired glucose metabolism after cerebral ischemic stress in mice.

    PubMed

    Harada, Shinichi; Fujita-Hamabe, Wakako; Tokuyama, Shogo

    2012-01-01

    Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, has potent neuroprotective effects against brain injury. We recently reported that glucose intolerance/hyperglycemia could be induced by ischemic stress (i.e., post-ischemic glucose intolerance) following ischemic neuronal damage. Therefore, the aim of this study was to determine the effects of BDNF on the development of post-ischemic glucose intolerance and ischemic neuronal damage. Male ddY mice were subjected to middle cerebral artery occlusion (MCAO) for 2 h. On day 1, the expression levels of BDNF were significantly decreased in the cortex, hypothalamus, liver, skeletal muscle, and pancreas. The expression levels of tyrosine kinase B receptor, a BDNF receptor, decreased in the hypothalamus and liver and increased in the skeletal muscle and pancreas, but remained unchanged in the cortex. Intrahypothalamic administration of BDNF (50 ng/mouse) suppressed the development of post-ischemic glucose intolerance on day 1 and neuronal damage on day 3 after MCAO. In the liver and skeletal muscle, the expression levels of insulin receptors decreased, while gluconeogenic enzyme levels increased on day 1 after MCAO. These changes completely recovered to normal levels in the presence of BDNF. These results indicate that regulation of post-ischemic glucose intolerance by BDNF may suppress ischemic neuronal damage.

  2. Association of Insulin Resistance With Cerebral Glucose Uptake in Late Middle-Aged Adults at Risk for Alzheimer Disease.

    PubMed

    Willette, Auriel A; Bendlin, Barbara B; Starks, Erika J; Birdsill, Alex C; Johnson, Sterling C; Christian, Bradley T; Okonkwo, Ozioma C; La Rue, Asenath; Hermann, Bruce P; Koscik, Rebecca L; Jonaitis, Erin M; Sager, Mark A; Asthana, Sanjay

    2015-09-01

    to worse performance on the immediate memory (β = 0.317; t148 = 4.08; P < .001) and delayed memory (β = 0.305; t148 = 3.895; P < .001) factor scores. Our results show that insulin resistance, a prevalent and increasingly common condition in developed countries, is associated with significantly lower regional cerebral glucose metabolism, which in turn may predict worse memory performance. Midlife may be a critical period for initiating treatments to lower peripheral insulin resistance to maintain neural metabolism and cognitive function.

  3. Consumption of honey, sucrose, and high fructose corn syrup produce similar metabolic effects in glucose tolerant and glucose intolerant individuals

    USDA-ARS?s Scientific Manuscript database

    Background: Current public health recommendations call for reduction of added sugars; however, controversy exits over whether all nutritive sweeteners produce similar metabolic effects. Objective: To compare effects of chronic consumption of three nutritive sweeteners (honey, sucrose and high fructo...

  4. Cerebral metabolic rates for glucose in mood disorders. Studies with positron emission tomography and fluorodeoxyglucose F 18

    SciTech Connect

    Baxter, L.R. Jr.; Phelps, M.E.; Mazziotta, J.C.; Schwartz, J.M.; Gerner, R.H.; Selin, C.E.; Sumida, R.M.

    1985-05-01

    Cerebral metabolic rates for glucose were examined in patients with unipolar depression (N = 11), bipolar depression (N = 5), mania (N = 5), bipolar mixed states (N = 3), and in normal controls (N = 9) using positron emission tomography and fluorodeoxyglucose F 18. All subjects were studied supine under ambient room conditions with eyes open. Bipolar depressed and mixed patients had supratentorial whole brain glucose metabolic rates that were significantly lower than those of the other comparison groups. The whole brain metabolic rates for patients with bipolar depression increased going from depression or a mixed state to a euthymic or manic state. Patients with unipolar depression showed a significantly lower ratio of the metabolic rate of the caudate nucleus, divided by that of the hemisphere as a whole, when compared with normal controls and patients with bipolar depression.

  5. Cerebral blood flow decreases with time whereas cerebral oxygen consumption remains stable during hypothermic cardiopulmonary bypass in humans

    SciTech Connect

    Prough, D.S.; Rogers, A.T.; Stump, D.A.; Roy, R.C.; Cordell, A.R.; Phipps, J.; Taylor, C.L. )

    1991-02-01

    Recent investigations demonstrate that cerebral blood flow (CBF) progressively declines during hypothermic, nonpulsatile cardiopulmonary bypass (CPB). If CBF declines because of brain cooling, the cerebral metabolic rate for oxygen (CMRO2) should decline in parallel with the reduction in CBF. Therefore we studied the response of CBF, the cerebral arteriovenous oxygen content difference (A-VDcereO2) and CMRO2 as a function of the duration of CPB in humans. To do this, we compared the cerebrovascular response to changes in the PaCO2. Because sequential CBF measurements using xenon 133 (133Xe) clearance must be separated by 15-25 min, we hypothesized that a time-dependent decline in CBF would accentuate the CBF reduction caused by a decrease in PaCO2, but would blunt the CBF increase associated with a rise in PaCO2. We measured CBF in 25 patients and calculated the cerebral arteriovenous oxygen content difference using radial arterial and jugular venous bulb blood samples. Patients were randomly assigned to management within either a lower (32-48 mm Hg) or higher (50-71 mm Hg) range of PaCO2 uncorrected for temperature. Each patient underwent two randomly ordered sets of measurements, one at a lower PaCO2 and the other at a higher PaCO2 within the respective ranges. Cerebrovascular responsiveness to changes in PaCO2 was calculated as specific reactivity (SR), the change in CBF divided by the change in PaCO2, expressed in mL.100 g-1.min-1.mm Hg-1.

  6. Triheptanoin for glucose transporter type I deficiency (G1D): Modulation of human ictogenesis, cerebral metabolic rate and cognitive indices by a food supplement

    PubMed Central

    Pascual, Juan M.; Liu, Peiying; Mao, Deng; Kelly, Dorothy; Hernandez, Ana; Sheng, Min; Good, Levi B.; Ma, Qian; Marin-Valencia, Isaac; Zhang, Xuchen; Park, Jason Y.; Hynan, Linda S.; Stavinoha, Peter; Roe, Charles R.; Lu, Hanzhang

    2015-01-01

    Objective G1D is commonly associated with electrographic spike-wave and - less-noticeably – with absence seizures. The G1D syndrome has long been attributed to energy (i.e., ATP-synthetic) failure, as have experimental, toxic-rodent epilepsies to impaired brain metabolism and tricarboxylic acid (TCA) cycle intermediate depletion. Indeed, a (seldom-acknowledged) function of glucose and other substrates is the generation of brain TCAs via carbon-donor reactions collectively named anaplerosis. However, TCAs are preserved in murine G1D. This renders inferences about energy failure premature and suggests a different hypothesis, also grounded on our findings, that consumption of alternate TCA precursors is stimulated, potentially detracting from other functions. Second, common ketogenic diets can ameliorate G1D seizures, but lead to a therapeutically-counterintuitive reduction in blood glucose available to the brain, and they can prove ineffective in 1/3 of cases. While developing G1D treatments, all of this motivated us to: a) uphold (rather than attenuate) the residual brain glucose flux that all G1D patients possess; and b) stimulate the TCA cycle, including anaplerosis. Therefore, we tested the medium-chain triglyceride triheptanoin, a widely-used medical food supplement that can fulfill both of these metabolic roles. The rationale is that ketone bodies derived from ketogenic diets are not anaplerotic, in contrast with triheptanoin metabolites, as we have shown in the G1D mouse brain. Design We supplemented the regular diet of a case series of G1D patients with food-grade triheptanoin. First we confirmed that, despite their frequent electroencephalographic (EEG) presence as spike-waves, most seizures are rarely visible, such that perceptions by patients or others are inadequate for treatment evaluation. Thus, we used EEG, quantitative neuropsychological, blood analytical, and MRI cerebral metabolic rate measurements as main outcomes. Setting Academic and

  7. An engineered cryptic Hxt11 sugar transporter facilitates glucose-xylose co-consumption in Saccharomyces cerevisiae.

    PubMed

    Shin, Hyun Yong; Nijland, Jeroen G; de Waal, Paul P; de Jong, René M; Klaassen, Paul; Driessen, Arnold J M

    2015-01-01

    The yeast Saccharomyces cerevisiae is unable to ferment pentose sugars like d-xylose. Through the introduction of the respective metabolic pathway, S. cerevisiae is able to ferment xylose but first utilizes d-glucose before the d-xylose can be transported and metabolized. Low affinity d-xylose uptake occurs through the endogenous hexose (Hxt) transporters. For a more robust sugar fermentation, co-consumption of d-glucose and d-xylose is desired as d-xylose fermentation is in particular prone to inhibition by compounds present in pretreated lignocellulosic feedstocks. Evolutionary engineering of a d-xylose-fermenting S. cerevisiae strain lacking the major transporter HXT1-7 and GAL2 genes yielded a derivative that shows improved growth on xylose because of the expression of a normally cryptic HXT11 gene. Hxt11 also supported improved growth on d-xylose by the wild-type strain. Further selection for glucose-insensitive growth on d-xylose employing a quadruple hexokinase deletion yielded mutations at N366 of Hxt11 that reversed the transporter specificity for d-glucose into d-xylose while maintaining high d-xylose transport rates. The Hxt11 mutant enabled the efficient co-fermentation of xylose and glucose at industrially relevant sugar concentrations when expressed in a strain lacking the HXT1-7 and GAL2 genes. Hxt11 is a cryptic sugar transporter of S. cerevisiae that previously has not been associated with effective d-xylose transport. Mutagenesis of Hxt11 yielded transporters that show a better affinity for d-xylose as compared to d-glucose while maintaining high transport rates. d-glucose and d-xylose co-consumption is due to a redistribution of the sugar transport flux while maintaining the total sugar conversion rate into ethanol. This method provides a single transporter solution for effective fermentation on lignocellulosic feedstocks.

  8. Coexistence of translocated cytochrome c and nitrated protein in neurons of the rat cerebral cortex after oxygen and glucose deprivation.

    PubMed

    Alonso, D; Encinas, J M; Uttenthal, L O; Boscá, L; Serrano, J; Fernández, A P; Castro-Blanco, S; Santacana, M; Bentura, M L; Richart, A; Fernández-Vizarra, P; Rodrigo, J

    2002-01-01

    Changes in the distribution of immunoreactive cytochrome c and protein nitration were studied in the rat cerebral cortex after oxygen and glucose deprivation by bright field, confocal and electron microscopy. In control cerebral cortex, nitrotyrosine immunoreactivity indicating protein nitration was found mostly in the neuronal nuclear region, with only a small amount distributed in the cytosol, whereas cytochrome c immunoreactivity was found at the inner membrane and in the intermembrane space of the mitochondria. During the recovery phase after oxygen and glucose deprivation, cytochrome c immunoreactivity was released from the intermembrane space of swollen mitochondria into the surrounding cytosol. The cytosol now also displayed nitrotyrosine immunoreactivity, which had diminished in the nuclear region. Both immunoreactivities were dispersed throughout the soma and processes of the cortical neurons. These changes were largely prevented by the administration of cyclosporin A, which inhibits both the mitochondrial permeability transition and the neuronal isoform of nitric oxide synthase while blocking the induction of the inducible isoform. Ischemia/reperfusion injury increases the production of nitric oxide, reactive oxygen species and intracellular factors that damage the mitochondria and liberate apoptotic factors. We suggest that translocation of cytochrome c from the mitochondria to the cytosol, which has been shown to precede the mitochondrial permeability transition, could result from peroxynitrite-mediated nitration. This phenomenon is attenuated by cyclosporin A administration, suggesting a neuroprotective role for this agent.

  9. Effects of RS-8359 on reduced local cerebral glucose utilization in the rat subjected to transient forebrain ischemia.

    PubMed

    Kozuka, M; Kobayashi, K; Iwata, N

    1994-04-01

    Changes in local cerebral glucose utilization (LCGU) of the postischemic rat brain were investigated using the rat four-vessel occlusion model. Following 20 or 30 min of ischemia, LCGUs of the cerebral cortices, striatum and hippocampus were decreased at 1 and 3 days postischemia, but were recovered at 7 days postischemia. Effects of repeated administration of RS-8359, (+-)-4-(4-cyanoanilino)-7-hydroxycyclopenta(3,2-e)pyrimidin e, (30 mg/kg x 2/day, p.o., 4 days) were examined at 3 days postischemia following 20 min of ischemia. Compared with the sham-operated group, the LCGUs of 22 out of 34 structures examined in the ischemic-control group were significantly reduced. In the RS-8359-treated group, however, significant reduction was observed in only 9 structures. Compared with the ischemic-control group, RS-8359 significantly ameliorated the reduction of LCGU in 12 structures. These results suggest that RS-8359 has beneficial effects on reduced glucose metabolism in the postischemic brain.

  10. Anti-CD3 antibody treatment induces hypoglycemia and super tolerance to glucose challenge in mice through enhancing glucose consumption by activated lymphocytes.

    PubMed

    Xia, Chang-Qing; Chernatynskaya, Anna V; Looney, Benjamin; Wan, Suigui; Clare-Salzler, Michael J

    2014-01-01

    Anti-CD3 antibody has been employed for various immune-mediated disorders. However, whether anti-CD3 administration leads to rapid metabolic alternation has not been well investigated. In the current study, we studied how anti-CD3 treatment affected blood glucose levels in mice. We found that anti-CD3 treatment induced immediate reduction of blood glucose after administration. Furthermore, a single dose of anti-CD3 treatment corrected hyperglycemia in all nonobese diabetic mice with recently diagnosed diabetes. This glucose-lowering effect was not attributable to major T cell produced cytokines. Of interest, when tested in a normal strain of mice (C57BL/6), the serum levels of C-peptide in anti-CD3 treated animals were significantly lower than control mice. Paradoxically, anti-CD3 treated animals were highly tolerant to exogenous glucose challenge. Additionally, we found that anti-CD3 treatment significantly induced activation of T and B cells in vitro and in vivo. Further studies demonstrated that anti-CD3 treatment lowered the glucose levels in T cell culture media and increased the intracellular transportation of 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2 deoxyglucose (2-NBDG) particularly in activated T and B cells. In addition, injection of anti-CD3 antibodies induced enhanced levels of Glut1 expression in spleen cells. This study suggests that anti-CD3 therapy-induced hypoglycemia likely results from increased glucose transportation and consumption by the activated lymphocytes.

  11. Effect of calcium-regulating hormones and calcium channel modulators on glucose consumption by muscle and adipose tissues in vivo and in vitro.

    PubMed

    Butakova, S S; Nozdrachev, A D

    2009-08-01

    We studied the effects of calcitonin, parathyrin, and Ca(2+) channel antagonist isoptin and agonist Bay-K-8644 on glucose consumption by muscle (diaphragm) and adipose (epididymal) tissues and insulin-stimulated glucose consumption in vivo and in vitro. Calcitonin and parathyrin did not alter glucose consumption; parathyrin did not affect, while calcitonin completely abolished the stimulating effect of insulin in vivo and in vitro. Isoptin significantly increased glucose consumption in vivo and in vitro, while Bay-K-8644 in vitro had no effect glucose consumption. Isoptin did not affect, while Bay-K-8644 significantly reduced the stimulating effect of insulin on glucose consumption by the muscle and adipose tissues. Isoptin did not affect the stimulating effect of insulin against the background of parathyrin administration and completely blocked the inhibitory effect of calcitonin on insulin-stimulated glucose consumption by the muscle and adipose tissues in vivo and in vitro, while Bay-K-8644 potentiated this effect of calcitonin in vitro.

  12. Glucose metabolism is accelerated by exposure to t-butylhydroperoxide during NADH consumption in human erythrocytes.

    PubMed

    Ogasawara, Yuki; Funakoshi, Masayo; Ishii, Kazuyuki

    2008-01-01

    Several mechanisms have been proposed to underlie the events that occur during oxidative damage in red blood cells (RBCs) exposed to reactive oxygen species. This work explores what happens when metabolites related to redox regulation in human RBCs are oxidized to form alkoxyl radical and peroxyl radical as a result of exposure to tert-buthylhydroperoxide (BHP). During exposure to BHP, the glutathione level and the ratio of NADPH to total nicotinamide adenine dinucleotide phosphate (NADPH plus NADP(+)) were significantly decreased. Although alteration in the concentration of monosaccharides metabolized in the pentose phosphate pathway (PPP) was not observed, exposing RBCs to BHP caused the formation of methemoglobin (metHb) and a significant decrease in NADH. Moreover, we detected a significant increase in one of the peaks during BHP exposure by using HPLC with dansyl hydrazine as a prelabel reagent. A complete enzymatic conversion procedure was used to identify the peak as pyruvate based on comparison with standards. These results suggest that the rapid recovery in the level of glutathione and the formation of metHb by BHP require NADPH and NADH consumption. Subsequently, glucose metabolism accelerates to reproduce NADPH and NADH, which results in pyruvate accumulation. Our findings indicate that the level of pyruvate markedly increases upon exposure to a radical-generating oxidant capable of forming metHb. Methemoglobin reductase requires NADH as a co-factor, and oxidized form (NHADP(+)) is reduced via the glycolytic reaction catalyzed by glyceraldehyde 3-phosphate dehydrogenase. Thus, the overall acceleration of glycolysis induced by BHP is strongly dependent on the NADH reproducing pathway. In addition, the decrease in NADH enhances the increase in pyruvate by inhibiting the conversion of pyruvate to lactate in the presence of lactate dehydrogenase.

  13. A combination of physical activity and computerized brain training improves verbal memory and increases cerebral glucose metabolism in the elderly.

    PubMed

    Shah, T; Verdile, G; Sohrabi, H; Campbell, A; Putland, E; Cheetham, C; Dhaliwal, S; Weinborn, M; Maruff, P; Darby, D; Martins, R N

    2014-12-02

    Physical exercise interventions and cognitive training programs have individually been reported to improve cognition in the healthy elderly population; however, the clinical significance of using a combined approach is currently lacking. This study evaluated whether physical activity (PA), computerized cognitive training and/or a combination of both could improve cognition. In this nonrandomized study, 224 healthy community-dwelling older adults (60-85 years) were assigned to 16 weeks home-based PA (n=64), computerized cognitive stimulation (n=62), a combination of both (combined, n=51) or a control group (n=47). Cognition was assessed using the Rey Auditory Verbal Learning Test, Controlled Oral Word Association Test and the CogState computerized battery at baseline, 8 and 16 weeks post intervention. Physical fitness assessments were performed at all time points. A subset (total n=45) of participants underwent [(18)F] fluorodeoxyglucose positron emission tomography scans at 16 weeks (post-intervention). One hundred and ninety-one participants completed the study and the data of 172 participants were included in the final analysis. Compared with the control group, the combined group showed improved verbal episodic memory and significantly higher brain glucose metabolism in the left sensorimotor cortex after controlling for age, sex, premorbid IQ, apolipoprotein E (APOE) status and history of head injury. The higher cerebral glucose metabolism in this brain region was positively associated with improved verbal memory seen in the combined group only. Our study provides evidence that a specific combination of physical and mental exercises for 16 weeks can improve cognition and increase cerebral glucose metabolism in cognitively intact healthy older adults.

  14. A combination of physical activity and computerized brain training improves verbal memory and increases cerebral glucose metabolism in the elderly

    PubMed Central

    Shah, T; Verdile, G; Sohrabi, H; Campbell, A; Putland, E; Cheetham, C; Dhaliwal, S; Weinborn, M; Maruff, P; Darby, D; Martins, R N

    2014-01-01

    Physical exercise interventions and cognitive training programs have individually been reported to improve cognition in the healthy elderly population; however, the clinical significance of using a combined approach is currently lacking. This study evaluated whether physical activity (PA), computerized cognitive training and/or a combination of both could improve cognition. In this nonrandomized study, 224 healthy community-dwelling older adults (60–85 years) were assigned to 16 weeks home-based PA (n=64), computerized cognitive stimulation (n=62), a combination of both (combined, n=51) or a control group (n=47). Cognition was assessed using the Rey Auditory Verbal Learning Test, Controlled Oral Word Association Test and the CogState computerized battery at baseline, 8 and 16 weeks post intervention. Physical fitness assessments were performed at all time points. A subset (total n=45) of participants underwent [18F] fluorodeoxyglucose positron emission tomography scans at 16 weeks (post-intervention). One hundred and ninety-one participants completed the study and the data of 172 participants were included in the final analysis. Compared with the control group, the combined group showed improved verbal episodic memory and significantly higher brain glucose metabolism in the left sensorimotor cortex after controlling for age, sex, premorbid IQ, apolipoprotein E (APOE) status and history of head injury. The higher cerebral glucose metabolism in this brain region was positively associated with improved verbal memory seen in the combined group only. Our study provides evidence that a specific combination of physical and mental exercises for 16 weeks can improve cognition and increase cerebral glucose metabolism in cognitively intact healthy older adults. PMID:25463973

  15. Multimodal Neuroprotection Induced by PACAP38 in Oxygen–Glucose Deprivation and Middle Cerebral Artery Occlusion Stroke Models

    PubMed Central

    Cohen, Gadi; Arien-Zakay, Hadar; Chen, Jieli; Zhang, Chunling; Chopp, Michael; Jiang, Hao

    2014-01-01

    Pituitary adenylate cyclase activating peptide (PACAP), a potent neuropeptide which crosses the blood–brain barrier, is known to provide neuroprotection in rat stroke models of middle cerebral artery occlusion (MCAO) by mechanism(s) which deserve clarification. We confirmed that following i.v. injection of 30 ng/kg of PACAP38 in rats exposed to 2 h of MCAO focal cerebral ischemia and 48 h reoxygenation, 50 % neuroprotection was measured by reduced caspase-3 activity and volume of cerebral infarction. Similar neuroprotective effects were measured upon PACAP38 treatment of oxygen–glucose deprivation and reoxygenation of brain cortical neurons. The neuroprotection was temporally associated with increased expression of brain-derived neurotrophic factor, phosphorylation of its receptor—tropomyosin-related kinase receptor type B (trkB), activation of phosphoinositide 3-kinase and Akt, and reduction of extracellular signal-regulated kinases 1/2 phosphorylation. PACAP38 increased expression of neuronal markers beta-tubulin III, microtubule-associated protein-2, and growth-associated protein-43. PACAP38 induced stimulation of Rac and suppression of Rho GTPase activities. PACAP38 down-regulated the nerve growth factor receptor (p75NTR) and associated Nogo-(Neurite outgrowth-A) receptor. Collectively, these in vitro and in vivo results propose that PACAP exhibits neuroprotective effects in cerebral ischemia by three mechanisms: a direct one, mediated by PACAP receptors, and two indirect, induced by neurotrophin release, activation of the trkB receptors and attenuation of neuronal growth inhibitory signaling molecules p75NTR and Nogo receptor. PMID:22678884

  16. Multimodal neuroprotection induced by PACAP38 in oxygen-glucose deprivation and middle cerebral artery occlusion stroke models.

    PubMed

    Lazarovici, Philip; Cohen, Gadi; Arien-Zakay, Hadar; Chen, Jieli; Zhang, Chunling; Chopp, Michael; Jiang, Hao

    2012-11-01

    Pituitary adenylate cyclase activating peptide (PACAP), a potent neuropeptide which crosses the blood-brain barrier, is known to provide neuroprotection in rat stroke models of middle cerebral artery occlusion (MCAO) by mechanism(s) which deserve clarification. We confirmed that following i.v. injection of 30 ng/kg of PACAP38 in rats exposed to 2 h of MCAO focal cerebral ischemia and 48 h reoxygenation, 50 % neuroprotection was measured by reduced caspase-3 activity and volume of cerebral infarction. Similar neuroprotective effects were measured upon PACAP38 treatment of oxygen-glucose deprivation and reoxygenation of brain cortical neurons. The neuroprotection was temporally associated with increased expression of brain-derived neurotrophic factor, phosphorylation of its receptor-tropomyosin-related kinase receptor type B (trkB), activation of phosphoinositide 3-kinase and Akt, and reduction of extracellular signal-regulated kinases 1/2 phosphorylation. PACAP38 increased expression of neuronal markers beta-tubulin III, microtubule-associated protein-2, and growth-associated protein-43. PACAP38 induced stimulation of Rac and suppression of Rho GTPase activities. PACAP38 downregulated the nerve growth factor receptor (p75(NTR)) and associated Nogo-(Neurite outgrowth-A) receptor. Collectively, these in vitro and in vivo results propose that PACAP exhibits neuroprotective effects in cerebral ischemia by three mechanisms: a direct one, mediated by PACAP receptors, and two indirect, induced by neurotrophin release, activation of the trkB receptors and attenuation of neuronal growth inhibitory signaling molecules p75(NTR) and Nogo receptor.

  17. High consumption of fructose rather than glucose promotes a diet-induced obese phenotype in Drosophila melanogaster.

    PubMed

    Rovenko, Bohdana M; Perkhulyn, Natalia V; Gospodaryov, Dmytro V; Sanz, Alberto; Lushchak, Oleh V; Lushchak, Volodymyr I

    2015-02-01

    During the last 20 years, there has been a considerable scientific debate about the possible mechanisms of induction of metabolic disorders by reducing monosaccharides such as glucose or fructose. In this study, we report the metabolic rearrangement in response to consumption of these monosaccharides at concentrations ranging from 0.25% to 20% in a Drosophila model. Flies raised on high-glucose diet displayed delay in pupation and increased developmental mortality compared with fructose consumers. Both monosaccharides at high concentrations promoted an obese-like phenotype indicated by increased fly body mass, levels of uric acid, and circulating and stored carbohydrates and lipids; and decreased percentage of water in the body. However, flies raised on fructose showed lower levels of circulating glucose and higher concentrations of stored carbohydrates, lipids, and uric acid. The preferential induction of obesity caused by fructose in Drosophila was associated with increased food consumption and reduced mRNA levels of DILP2 and DILP5 in the brain of adult flies. Our data show that glucose and fructose differently affect carbohydrate and lipid metabolism in Drosophila in part by modulation of insulin/insulin-like growth factor signaling. Some reported similarities with effects observed in mammals make Drosophila as a useful model to study carbohydrate influence on metabolism and development of metabolic disorders.

  18. Association of coffee consumption and CYP1A2 polymorphism with risk of impaired fasting glucose in hypertensive patients.

    PubMed

    Palatini, Paolo; Benetti, Elisabetta; Mos, Lucio; Garavelli, Guido; Mazzer, Adriano; Cozzio, Susanna; Fania, Claudio; Casiglia, Edoardo

    2015-03-01

    Whether and how coffee use influences glucose metabolism is still a matter for debate. We investigated whether baseline coffee consumption is longitudinally associated with risk of impaired fasting glucose in a cohort of 18-to-45 year old subjects screened for stage 1 hypertension and whether CYP1A2 polymorphism modulates this association. A total of 1,180 nondiabetic patients attending 17 hospital centers were included. Seventy-four percent of our subjects drank coffee. Among the coffee drinkers, 87% drank 1-3 cups/day (moderate drinkers), and 13% drank over 3 cups/day (heavy drinkers). Genotyping of CYP1A2 SNP was performed by real time PCR in 639 subjects. At the end of a median follow-up of 6.1 years, impaired fasting glucose was found in 24.0% of the subjects. In a multivariable Cox regression coffee use was a predictor of impaired fasting glucose at study end, with a hazard ratio (HR) of 1.3 (95% CI 0.97-1.8) in moderate coffee drinkers and of 2.3 (1.5-3.5) in heavy drinkers compared to abstainers. Among the subjects stratified by CYP1A2 genotype, heavy coffee drinkers carriers of the slow *1F allele (59%) had a higher adjusted risk of impaired fasting glucose (HR 2.8, 95% CI 1.3-5.9) compared to abstainers whereas this association was of borderline statistical significance among the homozygous for the A allele (HR 1.7, 95% CI 0.8-3.8). These data show that coffee consumption increases the risk of impaired fasting glucose in hypertension particularly among carriers of the slow CYP1A2 *1F allele.

  19. Regional brain blood flow and cerebral cortical O2 consumption during sevoflurane anesthesia in healthy isocapnic swine.

    PubMed

    Manohar, M

    1986-01-01

    Regional distribution of brain blood flow was examined in seven previously catheterized healthy isocapnic swine while awake (control), and during 1.0 and 1.5 minimum alveolar concentration (MAC--2.66 and 3.99% end-tidal, respectively) sevoflurane anesthesia using radionuclide-labeled 15-micron diameter microspheres that were injected into the left atrium. In six additional pigs, the superior sagittal sinus was also catheterized so that cerebral cortical O2 consumption could be ascertained during these conditions. Control values of blood flow in the cerebral cortical gray matter, white matter, and caudate nuclei were 117 +/- 9, 38 +/- 2 and 105 +/- 8 ml X min-1 X 100 g-1, respectively. At 1.0 MAC sevoflurane, blood flow in these regions decreased to 66, 76, and 75% of respective control values, and these values were not different from those recorded at 1.5 MAC anesthesia. Cerebral cortical O2 consumption decreased by 50 and 52% at 1.0 and 1.5 MAC sevoflurane anesthesia, but the hemoglobin-O2 saturation in the cerebral cortical venous drainage (57 +/- 3% and 69 +/- 3% at 1.0 and 1.5 MAC) consistently exceeded control value (42 +/- 1%), suggesting that cortical O2 supply during both levels of sevoflurane anesthesia remained adequate. In cerebellum, blood flow decreased from 86 +/- 5 (control) to 68 +/- 4 ml X min-1 X 100 g-1 with 1.0 MAC sevoflurane, but returned toward control value at 1.5 MAC anesthesia. The thalamohypothalamic perfusion decreased to 59 and 75% of the control value with 1.0 and 1.5 MAC sevoflurane anesthesia.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Cerebral metabolic rate for glucose during the first six months of life: an FDG positron emission tomography study.

    PubMed Central

    Kinnala, A.; Suhonen-Polvi, H.; Aärimaa, T.; Kero, P.; Korvenranta, H.; Ruotsalainen, U.; Bergman, J.; Haaparanta, M.; Solin, O.; Nuutila, P.; Wegelius, U.

    1996-01-01

    AIM: To measure the local cerebral metabolic rate for glucose (LCMRGlc) in neonatal brains during maturation using positron emission tomography (PET) and 2-[18F]fluoro-2-deoxy-D-glucose (FDG). METHODS: Twenty infants were studied using PET during the neonatal period. The postconceptional age ranged from 32.7 to 60.3 weeks. All infants had normal neurodevelopment and were normoglycaemic. The development of the infants was carefully evaluated (follow up 12-36 months) clinically, and by using a method based on Gesell Amatruda's developmental diagnosis. LCMRGlc was quantitated using PET derived from FDG kinetics and calculated in the whole brain and for regional brain structures. RESULTS: LCMRGlc for various cortical brain regions and the basal ganglia was low at birth (from 4 to 16 mumol/100 g/minute). In infants 2 months of age and younger LCMRGlc was highest in the sensorimotor cortex, thalamus, and brain stem. By 5 months, LCMRGlc had increased in the frontal, parietal, temporal, occipital and cerebellar cortical regions. In general, the whole brain LCMRGlc correlated with postconceptional age (r = 0.90; P < 0.001). The change in the glucose metabolic pattern observed in the neonatal brain reflects the functional maturation of these brain regions. CONCLUSION: These findings show that LCMRGlc in infants increases with maturation. Accordingly, when LCMRGlc is measured during infancy, the postconceptional age has to be taken into account when interpretating the results. Images Figure 1 PMID:8777676

  1. Increased interictal cerebral glucose metabolism in a cortical-subcortical network in drug naive patients with cryptogenic temporal lobe epilepsy.

    PubMed Central

    Franceschi, M; Lucignani, G; Del Sole, A; Grana, C; Bressi, S; Minicucci, F; Messa, C; Canevini, M P; Fazio, F

    1995-01-01

    Positron emission tomography with [18F]-2-fluoro-2-deoxy-D-glucose ([18F]FDG) has been used to assess the pattern of cerebral metabolism in different types of epilepsies. However, PET with [18F]FDG has never been used to evaluate drug naive patients with cryptogenic temporal lobe epilepsy, in whom the mechanism of origin and diffusion of the epileptic discharge may differ from that underlying other epilepsies. In a group of patients with cryptogenic temporal lobe epilepsy, never treated with antiepileptic drugs, evidence has been found of significant interictal glucose hypermetabolism in a bilateral neural network including the temporal lobes, thalami, basal ganglia, and cingular cortices. The metabolism in these areas and frontal lateral cortex enables the correct classification of all patients with temporal lobe epilepsy and controls by discriminant function analysis. Other cortical areas--namely, frontal basal and lateral, temporal mesial, and cerebellar cortices--had bilateral increases of glucose metabolism ranging from 10 to 15% of normal controls, although lacking stringent statistical significance. This metabolic pattern could represent a pathophysiological state of hyperactivity predisposing to epileptic discharge generation or diffusion, or else a network of inhibitory circuits activated to prevent the diffusion of the epileptic discharge. PMID:7561924

  2. Elevated Oxygen Consumption Rate in Response to Acute Low- Glucose Stress: Metformin Restores Rate to Normal Level

    PubMed Central

    Williams, Emmanuel D.; Rogers, Steven C.; Zhang, Xiaomin; Azhar, Gohar; Wei, Jeanne Y.

    2015-01-01

    Cardiovascular Disease (CVD) continues to be the leading cause of mortality among all age demographics in the United States, with the highest occurrence in populations aged 65 and older. Glucose levels, particularly hyperglycemia, are associated with the premature onset of age-related diseases including CVD. A major challenge in the treatment of elderly patients with chronically elevated blood glucose is the frequency of hypoglycemic episodes. Molecular mechanisms of hypoglycemia remain unclear, but are associated with premature onset of age-related-diseases. Here we report a mitochondrial metabolic profile assessing short-term (up to six hours) and longer-term (12–24 hours) durations of low-glucose stress. We observed that the antidiabetic biguanide and mitochondrial complex I inhibitor, metformin, can lower and restore the elevated oxygen consumption rate during shorter-term glucose stress to levels similar to that of cells cultured in normal glucose. This effect appears, in part, to involve activation of the 5′ AMP-activated protein kinase (AMPK). PMID:26256471

  3. Time course of radiolabeled 2-deoxy-D-glucose 6-phosphate turnover in cerebral cortex of goats

    SciTech Connect

    Pelligrino, D.A.; Miletich, D.J.; Albrecht, R.F.

    1987-02-01

    The vivo dephosphorylation rate of 2-deoxy-D-glucose 6-phosphate (DGP) in the cerebral cortex of goats injected intravenously with radiolabeled 2-deoxy-D-glucose (DG) was investigated. Serial rapidly frozen samples of parietal cortical gray tissue were obtained at regular intervals over time periods from 45 min to 3 h in awake goats or in paralyzed and artificially ventilated goats maintained under 70% N/sub 2/O or pentobarbital sodium anesthesia. The samples were analyzed for glucose content and separate DG and DGP activities. The rate parameters for phosphorylation (k/sup *//sub 4/) and dephosphorylation (k/sup *//sub 4/) were estimated in each animal. The glucose phosphorylation rate (PR) was calculated over the intervals 3-5 (or 6), 3-10, 3-20, 3-30, and 3-45 min, assuming k/sup *//sub 4/ = O. As the evaluation period was extended beyond 10 min, the calculated PR became increasingly less when compared with that calculated over the 3- to 5- (or 6) min interval (PR/sub i/). Furthermore, as metabolic activity decreased, the magnitude of the error increased such that at 45 min pentobarbital-anesthetize goats underestimated the PR/sub i/ by 46.5% compared with only 23.1 in N/sub 2/O-anesthetized goats. This was also reflected in the >twofold higher k/sup *//sub 4//k/sup *//sub 3/ ratio in the pentobarbital vs. N/sub 2/O-anesthetized group. It is concluded that when using the DG method in the goat, DGP dephosphorylation cannot be ignored when employing >10-min evaluation periods.

  4. Sleep-Wake Differences in Relative Regional Cerebral Metabolic Rate for Glucose among Patients with Insomnia Compared with Good Sleepers

    PubMed Central

    Kay, Daniel B.; Karim, Helmet T.; Soehner, Adriane M.; Hasler, Brant P.; Wilckens, Kristine A.; James, Jeffrey A.; Aizenstein, Howard J.; Price, Julie C.; Rosario, Bedda L.; Kupfer, David J.; Germain, Anne; Hall, Martica H.; Franzen, Peter L.; Nofzinger, Eric A.; Buysse, Daniel J.

    2016-01-01

    Study Objectives: The neurobiological mechanisms of insomnia may involve altered patterns of activation across sleep-wake states in brain regions associated with cognition, self-referential processes, affect, and sleep-wake promotion. The objective of this study was to compare relative regional cerebral metabolic rate for glucose (rCMRglc) in these brain regions across wake and nonrapid eye movement (NREM) sleep states in patients with primary insomnia (PI) and good sleeper controls (GS). Methods: Participants included 44 PI and 40 GS matched for age (mean = 37 y old, range 21–60), sex, and race. We conducted [18F]fluoro-2-deoxy-d-glucose positron emission tomography scans in PI and GS during both morning wakefulness and NREM sleep at night. Repeated measures analysis of variance was used to test for group (PI vs. GS) by state (wake vs. NREM sleep) interactions in relative rCMRglc. Results: Significant group-by-state interactions in relative rCMRglc were found in the precuneus/posterior cingulate cortex, left middle frontal gyrus, left inferior/superior parietal lobules, left lingual/fusiform/occipital gyri, and right lingual gyrus. All clusters were significant at Pcorrected < 0.05. Conclusions: Insomnia was characterized by regional alterations in relative glucose metabolism across NREM sleep and wakefulness. Significant group-by-state interactions in relative rCMRglc suggest that insomnia is associated with impaired disengagement of brain regions involved in cognition (left frontoparietal), self-referential processes (precuneus/posterior cingulate), and affect (left middle frontal, fusiform/lingual gyri) during NREM sleep, or alternatively, to impaired engagement of these regions during wakefulness. Citation: Kay DB, Karim HT, Soehner AM, Hasler BP, Wilckens KA, James JA, Aizenstein HJ, Price JC, Rosario BL, Kupfer DJ, Germain A, Hall MH, Franzen PL, Nofzinger EA, Buysse DJ. Sleep-wake differences in relative regional cerebral metabolic rate for glucose among

  5. Characterization of the interaction between local cerebral metabolic rate for glucose and acid-base index in ischemic rat brain employing a double-isotope methodology

    SciTech Connect

    Peek, K.E.H.

    1988-01-01

    The association between increases in cerebral glucose metabolism and the development of acidosis is largely inferential, based on reports linking hyperglycemia with poor neurological outcome, lactate accumulation, and the severity of acidosis. We measured local cerebral metabolic rate for glucose (lCMRglc) and an index of brain pH-the acid-base index (ABI)-concurrently and characterized their interaction in a model of focal cerebral ischemia in rats in a double-label autoradiographic study, using ({sup 14}C)2-deoxyglucose and ({sup 14}C)dimethyloxazolidinedione. Computer-assisted digitization and analysis permitted the simultaneous quantification of the two variables on a pixel-by-pixel basis in the same brain slices.

  6. Knockdown of glucose-6-phosphate dehydrogenase (G6PD) following cerebral ischemic reperfusion: the pros and cons.

    PubMed

    Zhao, Gang; Zhao, Yanxin; Wang, Xingyu; Xu, Ying

    2012-07-01

    NADPH derived from glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the pentose phosphate pathway, has been implicated not only to promote reduced glutathione (GSH) but also enhance oxidative stress in specific cellular conditions. In this study, the effects of G6PD antisense oligodeoxynucleotides (AS-ODNs) was examined on the CA1 pyramidal neurons following transient cerebral ischemia. Specifically knockdown of G6PD protein expression in hippocampus CA1 subregion at early reperfusion period (1-24 h) with a strategy to pre-treated G6PD AS-ODNs significantly reduced G6PD activity and NADPH level, an effect correlated with attenuation of NADPH oxidase activation and superoxide anion production. Concomitantly, pre-treatment of G6PD AS-ODNs markedly reduced oxidative DNA damage and the delayed neuronal cell death in rat hippocampal CA1 region induced by global cerebral ischemia. By contrast, knockdown of G6PD protein at late reperfusion period (48-96 h) increased oxidative DNA damage and exacerbated the ischemia-induced neuronal cell death in hippocampal CA1 region, an effect associated with reduced NADPH level and GSH/GSSG ratio. These findings indicate that G6PD not only plays a role in oxidative neuronal damage but also a neuroprotective role during different ischemic reperfusion period. Therefore, G6PD mediated oxidative response and redox regulation in the hippocampal CA1 act as the two sides of the same coin and may represent two potential applications of G6PD during different stage of cerebral ischemic reperfusion. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Decrease in cerebral metabolic rate of glucose after high-dose methotrexate in childhood acute lymphocytic leukemia

    SciTech Connect

    Komatsu, K.; Takada, G.; Uemura, K.; Shishido, F.; Kanno, I. )

    1990-09-01

    We measured changes in the regional cerebral metabolic rate of glucose (rCMRGlu) using {sup 18}F-fluorodeoxyglucose and positron emission tomography for the assessment of neurotoxicity in childhood acute lymphocytic leukemia treated with high-dose methotrexate (HD-MTX) therapy. We studied 8 children with acute lymphocytic leukemia (mean age: 9.6 years) treated with HD-MTX (200 mg/kg or 2,000 mg/M2) therapy. CMRGlu after HD-MTX therapy was most reduced (40%) in the patient who had central nervous system leukemia and was treated with the largest total doses of both intrathecal MTX (IT-MTX) and HD-MTX. CMRGlu in the whole brain after HD-MTX therapy was reduced by an average of 21% (P less than 0.05). The reductions of CMRGlu in 8 patients were correlated with total doses of both IT-MTX (r = 0.717; P less than 0.05) and systemic HD-MTX (r = 0.784; P less than 0.05). CMRGlu of the cerebral cortex, especially the frontal and occipital cortex, was reduced more noticeably than that of the basal ganglia and white matter. We suggest that the measurement of changes in rCMRGlu after HD-MTX therapy is useful for detecting accumulated MTX neurotoxicity.

  8. Time-dependent homeostasis between glucose uptake and consumption in astrocytes exposed to CoCl₂ treatment.

    PubMed

    Wang, Peng; Li, Ling; Zhang, Zhenxiang; Kan, Quancheng; Chen, Suyan; Gao, Feng

    2016-03-01

    Hypoxia has been implicated in the pathology of the central nervous system during stroke. It also has a significant effect on the regulation of glucose transporters (GLUTs), and homeostasis between glucose uptake and consumption. CoCl2 is a hypoxia‑mimetic agent, and thus stabilizes the hypoxia‑inducible factor 1α (HIF‑1α) subunit and regulates GLUT genes. GLUT‑1 and GLUT‑3 are the most common isoforms of the GLUT family present in the brain, with the former primarily expressed in astrocytes and the latter in neurons under physiological conditions. However, it remains controversial whether GLUT‑3 is expressed in astrocytes. Additionally, it is unclear whether the regulation of GLUT‑1 and GLUT‑3, and glucose homeostasis, are affected by CoCl2 treatment in a time‑dependent manner. In the present study, mRNA and protein levels of GLUT‑1, GLUT‑3 and HIF‑1α in astrocytes were examined by reverse transcription‑quantitative polymerase chain reaction and western blot analysis, respectively. The intracellular glucose concentration, glycogen storage, ATP content, pyruvate concentration, lactate dehydrogenase (LDH) release activity and cell viability in astrocytes were also investigated. The observations of the current study confirmed that both protein and mRNA levels of GLUT‑1 and GLUT‑3 were elevated in a time‑dependent manner induced by CoCl2 treatment, followed by accumulation of HIF‑1α. Furthermore, in the early period of CoCl2 treatment (≤8 h at 100 µM), LDH release, ATP content, glycogen storage and cell viability remained unchanged, whereas intracellular pyruvate concentration increased and glucose concentration was reduced. However, in the later period of CoCl2 treatment (>8 h at 100 µM), LDH release and intracellular pyruvate concentration increased, while intracellular glucose concentration, ATP content and glycogen storage were reduced. This may be due to disruption of homeostasis and reduced cell viability. In conclusion

  9. Effects of anesthesia and recovery from ketamine racemate and enantiomers on regional cerebral glucose metabolism in rats.

    PubMed

    Freo, Ulderico; Ori, Carlo

    2004-05-01

    Unlike most anesthetics, ketamine racemate (S, R (+/-)-ketamine) induces heterogenous changes in cerebral metabolism. S, R (+/-)-ketamine is an equimolar mixture of two enantiomers, S (+)-ketamine and R (-)-ketamine, which differ in affinity for neuroreceptors and pharmacologic activities. This study investigated comparatively the effects of ketamine racemate and enantiomers on cerebral metabolism. Regional cerebral metabolic rates for glucose (rCMRglc) were determined with the quantitative, autoradiographic [C]2-deoxy-d-glucose technique in 40 brain regions of Fischer-344 rats. rCMRglc were measured in three groups of rats during equimolar anesthesia, 10 min after intraperitoneal injection of 170 mg/kg S, R (+/-)-ketamine, S (+)-ketamine, or R (-)-ketamine; in three groups of rats during recovery from equivalent anesthesia, 20 min after intravenous injection of 20, 12.5, and 30 mg/kg S, R (+/-)-ketamine, S (+)-ketamine, or R (-)-ketamine; and in two groups of saline-injected control rats. S, R (+/-)-ketamine and S (+)-ketamine induced a sustained anesthesia; deep rCMRglc decreases in 22 and 14 cortical, thalamic, cerebellar, and brainstem regions; and rCMRglc increases in two limbic regions (average decreases, 23 and 15%). R (-)-ketamine determined a shorter anesthesia, lesser rCMRglc decreases in 11 brain areas, and marked rCMRglc increases in 14 basal ganglia and limbic regions (average decrease, 4%). S, R (+/-)-ketamine, S (+)-ketamine, and R (-)-ketamine all produced postanesthetic behavioral activation; widespread rCMRglc increases in 28, 16, and 20 cortical, thalamic, basal ganglia, limbic, and brainstem regions; and rCMRglc decreases in few auditory and limbic regions (average increases, 35, 13, and 20%). S, R (+/-)-ketamine and S (+)-ketamine anesthesia but not R (-)-ketamine anesthesia induced widespread rCMRglc reductions that were unreported but are typical of gaseous and intravenous general anesthetics. Postanesthetic recovery led to divergent, sharp

  10. Intelligence and Changes in Regional Cerebral Glucose Metabolic Rate Following Learning.

    ERIC Educational Resources Information Center

    Haier, Richard J.; And Others

    1992-01-01

    A study of eight normal right-handed men demonstrates widespread significant decreases in brain glucose metabolic rate (GMR) following learning a complex computer task, a computer game. Correlations between magnitude of GMR change and intelligence scores are also demonstrated. (SLD)

  11. Intelligence and Changes in Regional Cerebral Glucose Metabolic Rate Following Learning.

    ERIC Educational Resources Information Center

    Haier, Richard J.; And Others

    1992-01-01

    A study of eight normal right-handed men demonstrates widespread significant decreases in brain glucose metabolic rate (GMR) following learning a complex computer task, a computer game. Correlations between magnitude of GMR change and intelligence scores are also demonstrated. (SLD)

  12. Pair bond formation leads to a sustained increase in global cerebral glucose metabolism in monogamous male titi monkeys (Callicebus cupreus).

    PubMed

    Maninger, Nicole; Hinde, Katie; Mendoza, Sally P; Mason, William A; Larke, Rebecca H; Ragen, Benjamin J; Jarcho, Michael R; Cherry, Simon R; Rowland, Douglas J; Ferrer, Emilio; Bales, Karen L

    2017-04-21

    Social bonds, especially attachment relationships, are crucial to our health and happiness. However, what we know about the neural substrates of these bonds is almost exclusively limited to rodent models and correlational experiments in humans. Here, we used socially monogamous non-human primates, titi monkeys (Callicebus cupreus) to experimentally examine changes in regional and global cerebral glucose metabolism (GCGM) during the formation and maintenance of pair bonds. Baseline positron emission tomography (PET) scans were taken of thirteen unpaired male titi monkeys. Seven males were then experimentally paired with females, scanned and compared, after one week, to six age-matched control males. Five of the six control males were then also paired and scanned after one week. Scans were repeated on all males after four months of pairing. PET scans were coregistered with structural magnetic resonance imaging (MRI), and region of interest (ROI) analysis was carried out. A primary finding was that paired males showed a significant increase in [(18)F]-fluorodeoxyglucose (FDG) uptake in whole brain following one week of pairing, which is maintained out to four months. Dopaminergic, "motivational" areas and those involved in social behavior showed the greatest change in glucose uptake. In contrast, control areas changed only marginally more than GCGM. These findings confirm the large effects of social bonds on GCGM. They also suggest that more studies should examine how social manipulations affect whole-brain FDG uptake, as opposed to assuming that it does not change across condition.

  13. Decreased cholinergic function in the cerebral cortex of hypoxic neonatal rats: role of glucose, oxygen and epinephrine resuscitation.

    PubMed

    Anju, T R; Smijin, S; Chinthu, R; Paulose, C S

    2012-01-15

    Molecular processes regulating cholinergic functions play an important role in the control of respiration under hypoxia. Cholinergic alterations and its further complications in learning and memory due to hypoxic insult in neonatal rats and the effect of glucose, oxygen and epinephrine resuscitation was evaluated in the present study. Receptor binding and gene expression studies were done in the cerebral cortex to analyze the changes in total muscarinic receptors, muscarinic M1, M2, M3 receptors and the enzymes involved in acetylcholine metabolism - choline acetyltransferase and acetylcholine esterase. Neonatal hypoxia decreased total muscarinic receptors with reduced muscarinic M1, M2 and M3 receptor genes. The reduction in acetylcholine metabolism is indicated by the down regulated choline acetyltransferase and up regulated acetylcholine esterase expression. These cholinergic disturbances were reversed to near control in glucose resuscitated hypoxic neonates. The adverse effects of immediate oxygenation and epinephrine administration are also reported. This has immense clinical significance in establishing a proper resuscitation for the management of neonatal hypoxia.

  14. Altered regional cerebral glucose metabolism in internet game overusers: a 18F-fluorodeoxyglucose positron emission tomography study.

    PubMed

    Park, Hyun Soo; Kim, Sang Hee; Bang, Seong Ae; Yoon, Eun Jin; Cho, Sang Soo; Kim, Sang Eun

    2010-03-01

    Internet game overuse is an emerging disorder and features diminished impulse control and poor reward-processing. In an attempt to understand the neurobiological bases of Internet game overuse, we investigated the differences in regional cerebral glucose metabolism at resting state between young individuals with Internet game overuse and those with normal use using 18F-fluorodeoxyglucose positron emission tomography study. Twenty right-handed male participants (9 normal users: 24.7+/-2.4 years of age, 11 overusers: 23.5+/-2.9 years of age) participated. A trait measure of impulsivity was also completed after scanning. Internet game overusers showed greater impulsiveness than the normal users and there was a positive correlation between the severity of Internet game overuse and impulsiveness. Imaging data showed that the overusers had increased glucose metabolism in the right middle orbitofrontal gyrus, left caudate nucleus, and right insula, and decreased metabolism in the bilateral postcentral gyrus, left precentral gyrus, and bilateral occipital regions compared to normal users. Internet game overuse may be associated with abnormal neurobiological mechanisms in the orbitofrontal cortex, striatum, and sensory regions, which are implicated in impulse control, reward processing, and somatic representation of previous experiences. Our results support the idea that Internet game overuse shares psychological and neural mechanisms with other types of impulse control disorders and substance/non-substance-related addiction.

  15. PCP-induced alterations in cerebral glucose utilization in rat brain: blockade by metaphit, a PCP-receptor-acylating agent

    SciTech Connect

    Tamminga, C.A.; Tanimoto, K.; Kuo, S.; Chase, T.N.; Contreras, P.C.; Rice, K.C.; Jackson, A.E.; O'Donohue, T.L.

    1987-01-01

    The effects of phencyclidine (PCP) on regional cerebral glucose utilization was determined by using quantitative autoradiography with (/sup 14/C)-2-deoxyglucose. PCP increased brain metabolism in selected areas of cortex, particularly limbic, and in the basal ganglia and thalamus, whereas the drug decreased metabolism in areas related to audition. These results are consistent with the known physiology of central PCP neurons and may help to suggest brain areas involved in PCP-mediated actions. Moreover, based on the behavioral similarities between PCP psychosis and an acute schizophrenic episode, these data may be relevant to the understanding of schizophrenia. The PCP-receptor-acylating agent, metaphit, blocked most of these PCP actions. In addition, metaphit by itself was found to diminish glucose utilization rather uniformly throughout brain. These results indicate an antagonist effect of metaphit on the PCP system and suggest a widespread action of metaphit, putatively at a PCP-related site, possibly in connection with the N-methyl-D-aspartate (NMDA) receptor.

  16. Quantitative assessment of the effects of beta-glucan consumption on serum lipid profile and glucose level in hypercholesterolemic subjects.

    PubMed

    Zhu, X; Sun, X; Wang, M; Zhang, C; Cao, Y; Mo, G; Liang, J; Zhu, S

    2015-08-01

    A growing body of evidence suggests that beta-glucan derived from oats or barley can reduce cardiovascular disease risk through reductions in serum lipids. However, the effects of beta-glucan on lipid changes in hypercholesterolemic patient groups are inconsistent. The objective of this study was to identify and quantify the effect of beta-glucan, a marker of water-soluble fiber, on various lipid parameters and glucose level in hypercholesterolemic subjects. We performed a comprehensive literature search to identify the relevant randomized controlled trials (RCTs) that investigated the effects of beta-glucan consumption in hypercholesterolemic subjects. Mean differences (MDs) and 95% confidence intervals (CIs) were calculated for net changes in lipid concentrations by using fixed-effects or random-effects models according to heterogeneity. Publication bias, sensitivity analysis and subgroup analyses were also performed. Seventeen eligible RCTs with 916 subjects were included in the meta-analysis. The pooled result showed that beta-glucan consumption in hypercholesterolemic population significantly lowered the total cholesterol (TC) (MD, -0.26 mmol/L; 95% CI, -0.33 to -0.18; P < 0.00001) and low-density lipoprotein (LDL)-cholesterol concentration (MD, -0.21 mmol/L; 95% CI, -0.27 to -0.14; P < 0.00001). However, there were no significant differences in high-density lipoprotein (HDL)-cholesterol, triglycerides (TG) and glucose. No adverse effects were reported among the eligible trials. Our meta-analysis showed that beta-glucan consumption significantly decreased TC and LDL-cholesterol concentrations but did not affect TG, HDL-cholesterol, and glucose concentrations in hypercholesterolemic subjects. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Consumption of dairy foods in relation to impaired glucose metabolism and type 2 diabetes mellitus: the Maastricht Study.

    PubMed

    Eussen, Simone J P M; van Dongen, Martien C J M; Wijckmans, Nicole; den Biggelaar, Louise; Oude Elferink, Stefanie J W H; Singh-Povel, Cécile M; Schram, Miranda T; Sep, Simone J S; van der Kallen, Carla J; Koster, Annemarie; Schaper, Nicolaas; Henry, Ronald M A; Stehouwer, Coen D A; Dagnelie, Pieter C

    2016-04-01

    Observational studies suggest an inverse association between total dairy product intake and diabetes risk. However, there is a lack of information on the relationship of specific dairy products with impaired glucose metabolism (IGM) and type 2 diabetes mellitus (T2DM). Individuals aged 40-75 years were recruited for the Maastricht Study. All the participants filled out a 253-food item FFQ, covering fifty specific dairy items that captured differences between full-fat, semi-skimmed and skimmed products, as well as fermented and non-fermented products. Glucose metabolism status was assessed by an oral glucose tolerance test, and participants were informed on their glucose metabolism status after returning the FFQ. Data of 2391 individuals were available to estimate OR (95 % CI) for IGM (n 470) and newly diagnosed (ND) T2DM (n 125), with adjustment for age, sex, BMI, physical activity, smoking status, education, energy intake and intakes of vegetables, fruits, meat and fish. For IGM, fully adjusted analyses revealed inverse associations, with OR comparing the highest with the lowest tertile of intake of 0·73 (95 % CI 0·55, 0·96) for skimmed products and 0·74 (95 % CI 0·54, 0·99) for fermented products. These dairy products were not associated with ND T2DM. In contrast, full-fat products were positively associated with ND T2DM (OR 2·01; 95 % CI 1·16, 3·47), whereas total dairy product intake was inversely associated with ND T2DM (OR 0·50; 95 % CI 0·26, 0·93). In conclusion, individuals with a high consumption of skimmed and fermented products had lower odds of having IGM, and individuals with a high consumption of total dairy products had lower odds of having ND T2DM. High intake of full-fat products was not related to IGM but was positively related to ND T2DM.

  18. Regional cerebral incorporation of plasma (/sup 14/C)palmitate, and cerebral glucose utilization, in water-deprived Long-Evans and Brattleboro rats

    SciTech Connect

    Noronha, J.G.; Larson, D.M.; Rapoport, S.I.

    1989-03-01

    Regional rates of incorporation into brain of intravenously administered (/sup 14/C)palmitate and regional cerebral metabolic rates for glucose (rCMRglc) were measured in water-provided (WP) and water-deprived (WD) homozygous (DI) and heterozygous (HZ) Brattleboro rats, a mutant strain unable to synthesize vasopressin, and in the parent Long-Evans (LE) strain. Following 15 h or 4 days of water deprivation, rCMRglc was elevated threefold in the pituitary neural lobe of LE-WD and DI-WD as compared with LE-WP rats, and in the paraventricular nucleus of LE-WD, and the supraoptic nucleus of DI-WD rats. However, incorporation of (/sup 14/C)palmitate into these regions was not specifically altered. The results indicate that water deprivation for up to 4 days increases rCMRglc in some brain regions involved with vasopressin, but does not alter (/sup 14/C)palmitate incorporation into these regions. Incorporation of plasma (/sup 14/C)palmitate is independent of unlabeled plasma palmitate at brain regions which have an intact blood-brain barrier, but at nonbarrier regions falls according to saturation kinetics as cold plasma concentration rises, with a mean half-saturation constant (Km) equal to 0.136 mumol.ml-1.

  19. Sleep-Wake Differences in Relative Regional Cerebral Metabolic Rate for Glucose among Patients with Insomnia Compared with Good Sleepers.

    PubMed

    Kay, Daniel B; Karim, Helmet T; Soehner, Adriane M; Hasler, Brant P; Wilckens, Kristine A; James, Jeffrey A; Aizenstein, Howard J; Price, Julie C; Rosario, Bedda L; Kupfer, David J; Germain, Anne; Hall, Martica H; Franzen, Peter L; Nofzinger, Eric A; Buysse, Daniel J

    2016-10-01

    The neurobiological mechanisms of insomnia may involve altered patterns of activation across sleep-wake states in brain regions associated with cognition, self-referential processes, affect, and sleep-wake promotion. The objective of this study was to compare relative regional cerebral metabolic rate for glucose (rCMRglc) in these brain regions across wake and nonrapid eye movement (NREM) sleep states in patients with primary insomnia (PI) and good sleeper controls (GS). Participants included 44 PI and 40 GS matched for age (mean = 37 y old, range 21-60), sex, and race. We conducted [(18)F]fluoro-2-deoxy-D-glucose positron emission tomography scans in PI and GS during both morning wakefulness and NREM sleep at night. Repeated measures analysis of variance was used to test for group (PI vs. GS) by state (wake vs. NREM sleep) interactions in relative rCMRglc. Significant group-by-state interactions in relative rCMRglc were found in the precuneus/posterior cingulate cortex, left middle frontal gyrus, left inferior/superior parietal lobules, left lingual/fusiform/occipital gyri, and right lingual gyrus. All clusters were significant at Pcorrected < 0.05. Insomnia was characterized by regional alterations in relative glucose metabolism across NREM sleep and wakefulness. Significant group-by-state interactions in relative rCMRglc suggest that insomnia is associated with impaired disengagement of brain regions involved in cognition (left frontoparietal), self-referential processes (precuneus/posterior cingulate), and affect (left middle frontal, fusiform/lingual gyri) during NREM sleep, or alternatively, to impaired engagement of these regions during wakefulness.

  20. The effects of wild blueberry consumption on plasma markers and gene expression related to glucose metabolism in the obese Zucker rat.

    PubMed

    Vendrame, Stefano; Zhao, Alice; Merrow, Thomas; Klimis-Zacas, Dorothy

    2015-06-01

    Impaired fasting blood glucose is one of the landmark signs of metabolic syndrome, together with hyperinsulinemia, dyslipidemia, hypertension, and a chronic proinflammatory, pro-oxidative, and prothrombotic environment. This study investigates the effect of wild blueberry (WB) consumption on blood glucose levels and other parameters involved in glucose metabolism in the obese Zucker rat (OZR), an experimental model of metabolic syndrome. Sixteen OZRs and 16 lean littermate controls (lean Zucker rat [LZR]) were fed an 8% enriched WB diet or a control (C) diet for 8 weeks. Plasma concentrations of glucose, insulin, glycated hemoglobin GHbA1c, resistin, and retinol-binding protein 4 (RBP4) were measured. Expression of the resistin, RBP4, and glucose transporter GLUT4 genes was also determined both in the liver and the abdominal adipose tissue (AAT). Plasma glycated hemoglobin HbA1c, RBP4, and resistin concentrations were significantly lower in OZRs following the WB diet (-20%, -22%, and -27%, respectively, compared to C diet, P<.05). Following WB consumption, resistin expression was significantly downregulated in the liver of both OZRs and LZRs (-28% and -61%, respectively, P<.05), while RBP4 expression was significantly downregulated in the AAT of both OZRs and LZRs (-87% and -43%, respectively, P<.05). All other markers were not significantly affected following WB consumption. In conclusion, WB consumption normalizes some markers related to glucose metabolism in the OZR model of metabolic syndrome, but has no effect on fasting blood glucose or insulin concentrations.

  1. Altered cerebral glucose metabolism in an animal model of diabetes insipidus: a micro-PET study.

    PubMed

    Idbaih, Ahmed; Burlet, Arlette; Adle-Biassette, Homa; Boisgard, Raphaël; Coulon, Christine; Paris, Sophie; Marie, Yannick; Donadieu, Jean; Hoang-Xuan, Khê; Ribeiro, Maria-Joao

    2007-07-16

    The Brattleboro rat is an animal model of genetically induced central diabetes insipidus. These rats show cognitive and behavioral disorders, but no neurodegenerative disease has been observed. We studied brain glucose uptake, a marker of neuronal activity, in 6 Brattleboro rats, in comparison with 6 matched Long-Evans (LE) control rats. A group of 3 Brattleboro rats and 3 Long-Evans rats was studied in vivo and another group of animals was studied ex vivo. In vivo studies were performed using fluorodeoxyglucose labeled with fluorine 18 ((18)F-FDG) and a dedicated small-animal PET device. At 30 min and 60 min p.i., (18)F-FDG uptake was significantly higher in the frontal cortex, striatum, thalamus and cerebellum of Brattleboro rats than in LE rats when measured by PET in vivo (p<0.05), but only a trend towards higher values was found ex vivo. Our results show for the first time that brain glucose metabolism is modified in Brattleboro rats. This altered brain glucose metabolism in Brattleboro rats may be related to the observed cognitive and behavioral disorders. Functional analyses of brain metabolism are promising to investigate cognitive behavioral disturbances observed in Brattleboro rats and their link to diabetes insipidus.

  2. Physiologically relevant online electrochemical method for continuous and simultaneous monitoring of striatum glucose and lactate following global cerebral ischemia/reperfusion.

    PubMed

    Lin, Yuqing; Zhu, Ningning; Yu, Ping; Su, Lei; Mao, Lanqun

    2009-03-15

    This study demonstrates a new electroanalytical method with a high physiological relevance for simultaneous online monitoring of glucose and lactate in the striatum of the rat brain following global cerebral ischemia/reperfusion. The online analytical method is based on the efficient integration of in vivo microdialysis sampling with an online selective electrochemical detection with the electrochemical biosensors with dehydrogenases, i.e., glucose and lactate dehydrogenases, as recognition elements. The dehydrogenase-based electrochemical biosensors are developed onto the dual split-disk plastic carbon film (SPCF) electrodes with methylene green (MG) adsorbed onto single-walled carbon nanotubes (SWNTs) as the electrocatalyst for the oxidation of dihydronicotiamide adenine dinucleotide (NADH) at a low potential of 0.0 V (vs Ag/AgCl). Artificial cerebrospinal fluid (aCSF) containing NAD(+) is externally perfused from a second pump and online mixed with the brain microdialysates to minimize the variation of pH that occurred following the cerebral ischemia/reperfusion and to supply NAD(+) cofactor and O(2) for the enzymatic reactions of dehydrogenases and ascorbate oxidase, respectively. As a result, the developed online electroanalytical method exhibits a high selectivity against the electrochemically active species endogenously existing in the cerebral systems and a high tolerance against the variation of pH and O(2) following cerebral ischemia/reperfusion. This property, along with the good linearity and a high stability toward glucose and lactate as well as little cross-talk between two biosensors, substantially makes this method possible for the continuous, simultaneous, and online monitoring of glucose and lactate in the rat brain following global cerebral ischemia/reperfusion. This study establishes a new and effective platform for the investigation of the energy metabolism in physiological and pathological processes.

  3. Engineered Kluyveromyces marxianus for pyruvate production at elevated temperature with simultaneous consumption of xylose and glucose.

    PubMed

    Zhang, Biao; Zhu, Yelin; Zhang, Jia; Wang, Dongmei; Sun, Lianhong; Hong, Jiong

    2017-01-01

    Xylose and glucose from lignocellulose are sustainable sources for production of pyruvate, which is the starting material for the synthesis of many drugs and agrochemicals. In this study, the pyruvate decarboxylase gene (KmPDC1) and glycerol-3-phosphate dehydrogenase gene (KmGPD1) of Kluyveromyces marxianus YZJ051 were disrupted to prevent ethanol and glycerol accumulation. The deficient growth of PDC disruption was rescued by overexpressing mutant KmMTH1-ΔT. Then pentose phosphate pathway and xylitol dehydrogenase SsXYL2-ARS genes were overexpressed to obtain strain YZB053 which produced pyruvate with xylose other than glucose. It produced 24.62g/L pyruvate from 80g/L xylose with productivity of 0.51g/L/h at 42°C. Then, xylose-specific transporter ScGAL2-N376F was overexpressed to obtain strain YZB058, which simultaneously consumed 40g/L glucose and 20g/L xylose and produced 29.21g/L pyruvate with productivity of 0.81g/L/h at 42°C. Therefore, a platform for pyruvate production from glucose and xylose at elevated temperature was developed.

  4. Stereo-specific glucose consumption may be used to distinguish between chemical and biological reactivity on Mars: a preliminary test on Earth.

    PubMed

    Sun, Henry J; Saccomanno, Vienna; Hedlund, Brian; McKay, Christopher P

    2009-06-01

    Two alternative hypotheses explain the degradation of organics in the Viking Labeled Release experiment on Mars. Either martian soil contains live indigenous microorganisms or it is sterile but chemically reactive. These two possibilities could be distinguished by the use of pure preparations of glucose isomers. In the laboratory, selected eukaryotes, bacteria, and archaea consumed only D-glucose, not L-glucose, while permanganate oxidized both isomers. On Mars, selective consumption of either D- or L-glucose would constitute evidence for biological activity.

  5. Chronic consumption of a high-fat/high-fructose diet renders the liver incapable of net hepatic glucose uptake.

    PubMed

    Coate, Katie Colbert; Scott, Melanie; Farmer, Ben; Moore, Mary Courtney; Smith, Marta; Roop, Joshua; Neal, Doss W; Williams, Phil; Cherrington, Alan D

    2010-12-01

    The objective of this study was to assess the response of a large animal model to high dietary fat and fructose (HFFD). Three different metabolic assessments were performed during 13 wk of feeding an HFFD (n = 10) or chow control (CTR, n = 4) diet: oral glucose tolerance tests (OGTTs; baseline, 4 and 8 wk), hyperinsulinemic-euglycemic clamps (HIEGs; baseline and 10 wk) and hyperinsulinemic-hyperglycemic clamps (HIHGs, 13 wk). The ΔAUC for glucose during the OGTTs more than doubled after 4 and 8 wk of HFFD feeding, and the average glucose infusion rate required to maintain euglycemia during the HIEG clamps decreased by ≈30% after 10 wk of HFFD feeding. These changes did not occur in the CTR group. The HIHG clamps included experimental periods 1 (P1, 0-90 min) and 2 (P2, 90-180 min). During P1, somatostatin, basal intraportal glucagon, 4 × basal intraportal insulin, and peripheral glucose (to double the hepatic glucose load) were infused; during P2, glucose was also infused intraportally (4.0 mg·kg(-1)·min(-1)). Net hepatic glucose uptake during P1 and P2 was -0.4 ± 0.1 [output] and 0.2 ± 0.8 mg·kg(-1)·min(-1) in the HFFD group, respectively, and 1.8 ± 0.8 and 3.5 ± 1.0 mg·kg(-1)·min(-1) in the CTR group, respectively (P < 0.05 vs. HFFD during P1 and P2). Glycogen synthesis through the direct pathway was 0.5 ± 0.2 and 1.5 ± 0.4 mg·kg(-1)·min(-1) in the HFFD and CTR groups, respectively (P < 0.05 vs. HFFD). In conclusion, chronic consumption of an HFFD diminished the sensitivity of the liver to hormonal and glycemic cues and resulted in a marked impairment in NHGU and glycogen synthesis.

  6. Fructose consumption during pregnancy and lactation induces fatty liver and glucose intolerance in rats.

    PubMed

    Zou, Mi; Arentson, Emily J; Teegarden, Dorothy; Koser, Stephanie L; Onyskow, Laurie; Donkin, Shawn S

    2012-08-01

    Nutritional insults during pregnancy and lactation are health risks for mother and offspring. Both fructose (FR) and low-protein (LP) diets are linked to hepatic steatosis and insulin resistance in nonpregnant animals. We hypothesized that dietary FR or LP intake during pregnancy may exacerbate the already compromised glucose homeostasis to induce gestational diabetes and fatty liver. Therefore, we investigated and compared the effects of LP or FR intake on hepatic steatosis and insulin resistance in unmated controls (CTs) and pregnant and lactating rats. Sprague-Dawley rats were fed a CT, or a 63% FR, or an 8% LP diet. Glucose tolerance test at day 17 of the study revealed greater (P < .05) blood glucose at 10 (75.6 mg/dL vs 64.0 ± 4.8 mg/dL) minutes and 20 (72.4 mg/dL vs 58.6 ± 4.0 mg/dL) minutes after glucose dose and greater area under the curve (4302.3 mg∙dL(-1)∙min(-1) vs 3763.4 ± 263.6 mg∙dL(-1)∙min(-1)) for FR-fed dams compared with CT-fed dams. The rats were euthanized at 21 days postpartum. Both the FR- and LP-fed dams had enlarged (P < .05) livers (9.3%, 7.1% body weight vs 4.8% ± 0.2% body weight) and elevated (P < .05) liver triacylglycerol (216.0, 130.0 mg/g vs 19.9 ± 12.6 mg/g liver weight) compared with CT-fed dams. Fructose induced fatty liver and glucose intolerance in pregnant and lactating rats, but not unmated CT rats. The data demonstrate a unique physiological status response to diet resulting in the development of gestational diabetes coupled with hepatic steatosis in FR-fed dams, which is more severe than an LP diet.

  7. [Efectiveness of long-term consumption of nuts, seeds and seeds' oil on glucose and lipid levels; systematic review].

    PubMed

    De Lira-García, C; Bacardí-Gascón, M; Jiménez-Cruz, A

    2012-01-01

    The aim of this study was to determine the effectiveness of long-term consumption of nuts, seeds and vegetable oil (NSO) on weight, glucose, and lipid levels. We searched English articles published in Pubmed and Ebsco up to May 2011. Studies were included if they were randomized clinical trials, and had an intervention period of 24 or more weeks. Search terms include: "diabetes mellitus", "Nuts", "Diet Mediterranean", "Seeds", "Oils", "Canola oil", "Olive oil","Walnut", "Almond", "Pistachio", "Paleolithic diet", "High monounsaturated diet", "High polyunsaturated diet", "Soya" and "Sunflower". Thirteen studies met the inclusion criteria; eight studies had a 24 weeks intervention period, one had 42 weeks, one had 48 weeks, and for the other three the intervention lasted 52 or more weeks. At 24 weeks a consistent increase of HDL levels and inconsistent improvement of weight, BMI, waist to hip index, A1C, total cholesterol, LDL: HDL, LDL, triglycerides, and diastolic blood pressure was observed. Four studies with an intervention ≥ 48 weeks showed no statistical difference, and in one study a reduction of weight, BMI, waist hip index, glucose, insulin, total cholesterol, HDL: cholesterol, triglycerides, and blood pressure was observed. No evidence of long-term improvement of NSO on weight, glucose or lipids in the adult population was found.

  8. Acute effects of pistachio consumption on glucose and insulin, satiety hormones and endothelial function in the metabolic syndrome.

    PubMed

    Kendall, C W C; West, S G; Augustin, L S; Esfahani, A; Vidgen, E; Bashyam, B; Sauder, K A; Campbell, J; Chiavaroli, L; Jenkins, A L; Jenkins, D J

    2014-03-01

    Nut consumption has been found to decrease risk of coronary heart disease and diabetes and to promote healthy body weights possibly related to their favorable macronutrient profile. We therefore assessed the effect of pistachios on postprandial glucose and insulin levels, gut hormones related to satiety and endothelial function. In this randomized crossover study, 20 subjects with metabolic syndrome consumed five study meals over 5-10 weeks. The meals differed in fat type and quantity, but were matched according to available carbohydrates (CHOs). Three meals had 50 g available CHO: white bread (WB50g), white bread, butter and cheese (WB+B+Ch) and white bread and pistachios (WB+P). Two meals had 12 g available CHO: white bread (WB12g) and pistachios (P). Within each group of available CHO meals, postprandial glucose levels were the highest following the white bread-only meals, and glucose response was significantly attenuated when butter and cheese or pistachios were consumed (P<0.05). Postprandial insulin levels were highest after the WB+B+Ch meal (P<0.05), but did not differ between the white bread-only and pistachio meals. Both endothelial function (reactive hyperemia index) and arterial stiffness (augmentation index) significantly increased after the white bread-only meals compared with the WB+B+Ch meal (all P<0.05). Insulin secretagogue levels were higher when butter and cheese or pistachios were consumed than when white bread only was consumed (P<0.05). Compared with white bread, pistachio consumption reduced postprandial glycemia, increased glucagon-like-peptide levels and may have insulin-sparing properties. These effects could be beneficial for individuals with diabetes and metabolic syndrome.

  9. Effects of subanesthetic doses of ketamine on regional cerebral blood flow, oxygen consumption, and blood volume in humans.

    PubMed

    Långsjö, Jaakko W; Kaisti, Kaike K; Aalto, Sargo; Hinkka, Susanna; Aantaa, Riku; Oikonen, Vesa; Sipilä, Hannu; Kurki, Timo; Silvanto, Martti; Scheinin, Harry

    2003-09-01

    ketamine has been previously shown to increase cerebral glucose metabolism. Only a minor increase in rCBV was detected. Interestingly, the most profound changes in rCBF were observed in structures related to pain processing.

  10. Blast Overpressure Waves Induce Transient Anxiety and Regional Changes in Cerebral Glucose Metabolism and Delayed Hyperarousal in Rats

    PubMed Central

    Awwad, Hibah O.; Gonzalez, Larry P.; Tompkins, Paul; Lerner, Megan; Brackett, Daniel J.; Awasthi, Vibhudutta; Standifer, Kelly M.

    2015-01-01

    Physiological alterations, anxiety, and cognitive disorders are strongly associated with blast-induced traumatic brain injury (blast TBI), and are common symptoms in service personnel exposed to blasts. Since 2006, 25,000–30,000 new TBI cases are diagnosed annually in U.S. Service members; increasing evidence confirms that primary blast exposure causes diffuse axonal injury and is often accompanied by altered behavioral outcomes. Behavioral and acute metabolic effects resulting from blast to the head in the absence of thoracic contributions from the periphery were examined, following a single blast wave directed to the head of male Sprague-Dawley rats protected by a lead shield over the torso. An 80 psi head blast produced cognitive deficits that were detected in working memory. Blast TBI rats displayed increased anxiety as determined by elevated plus maze at day 9 post-blast compared to sham rats; blast TBI rats spent significantly more time than the sham controls in the closed arms (p < 0.05; n = 8–11). Interestingly, anxiety symptoms were absent at days 22 and 48 post-blast. Instead, blast TBI rats displayed increased rearing behavior at day 48 post-blast compared to sham rats. Blast TBI rats also exhibited suppressed acoustic startle responses, but similar pre-pulse inhibition at day 15 post-blast compared to sham rats. Acute physiological alterations in cerebral glucose metabolism were determined by positron emission tomography 1 and 9 days post-blast using 18F-fluorodeoxyglucose (18F-FDG). Global glucose uptake in blast TBI rat brains increased at day 1 post-blast (p < 0.05; n = 4–6) and returned to sham levels by day 9. Our results indicate a transient increase in cerebral metabolism following a blast injury. Markers for reactive astrogliosis and neuronal damage were noted by immunoblotting motor cortex tissue from day 10 post-blast in blast TBI rats compared to sham controls (p < 0.05; n = 5–6). PMID:26136722

  11. Blast Overpressure Waves Induce Transient Anxiety and Regional Changes in Cerebral Glucose Metabolism and Delayed Hyperarousal in Rats.

    PubMed

    Awwad, Hibah O; Gonzalez, Larry P; Tompkins, Paul; Lerner, Megan; Brackett, Daniel J; Awasthi, Vibhudutta; Standifer, Kelly M

    2015-01-01

    Physiological alterations, anxiety, and cognitive disorders are strongly associated with blast-induced traumatic brain injury (blast TBI), and are common symptoms in service personnel exposed to blasts. Since 2006, 25,000-30,000 new TBI cases are diagnosed annually in U.S. Service members; increasing evidence confirms that primary blast exposure causes diffuse axonal injury and is often accompanied by altered behavioral outcomes. Behavioral and acute metabolic effects resulting from blast to the head in the absence of thoracic contributions from the periphery were examined, following a single blast wave directed to the head of male Sprague-Dawley rats protected by a lead shield over the torso. An 80 psi head blast produced cognitive deficits that were detected in working memory. Blast TBI rats displayed increased anxiety as determined by elevated plus maze at day 9 post-blast compared to sham rats; blast TBI rats spent significantly more time than the sham controls in the closed arms (p < 0.05; n = 8-11). Interestingly, anxiety symptoms were absent at days 22 and 48 post-blast. Instead, blast TBI rats displayed increased rearing behavior at day 48 post-blast compared to sham rats. Blast TBI rats also exhibited suppressed acoustic startle responses, but similar pre-pulse inhibition at day 15 post-blast compared to sham rats. Acute physiological alterations in cerebral glucose metabolism were determined by positron emission tomography 1 and 9 days post-blast using (18)F-fluorodeoxyglucose ((18)F-FDG). Global glucose uptake in blast TBI rat brains increased at day 1 post-blast (p < 0.05; n = 4-6) and returned to sham levels by day 9. Our results indicate a transient increase in cerebral metabolism following a blast injury. Markers for reactive astrogliosis and neuronal damage were noted by immunoblotting motor cortex tissue from day 10 post-blast in blast TBI rats compared to sham controls (p < 0.05; n = 5-6).

  12. Mapping of change in cerebral glucose utilization using fluorine-18 fluorodeoxyglucose double injection and the constrained weighted-integration method

    SciTech Connect

    Murase, K. |; Kuwabara, Hiroto; Yasuhara, Yoshifumi; Evans, A.C.; Gjedde, A.

    1996-12-01

    The authors developed a method for mapping the change in cerebral glucose utilization at two different physiological states using [{sup 18}F]fluorodeoxyglucose (FDG) double injection and the constrained weighted-integration method. They studied young normal subjects without (baseline-baseline group, n = 5) and with (baseline-stimulation group, n = 5) vibrotactile stimulation of the fingertips of the right hand. Dynamic scans were performed using positron emission tomography (PET) following an initial dose (the first session, 0--30 min) and an additional dose (the second session, 30--60 min). The parametric images of the net clearance of FDG from blood to brain (K*), unidirectional blood-to-brain clearance (K*{sub 1}) and cerebral metabolic rate of glucose (CMR{sub glc}) of the two sessions were generated. The averaged subtraction (second minus first session) and t-statistic images were generated, which were rendered into Talairach`s sterotaxic coordinates and merged with the averaged magnetic resonance imaging (MRI) image. In the baseline-baseline group, regional K*, K*{sub 1}, and CMR{sub glc} in the first and second sessions were strongly correlated (r{sup 2} = 0.953, 0.935, and 0.951, respectively, n = 340). In the baseline-stimulation group, significant increases in these estimates were obtained in the contralateral primary somatosensory cortex (SI) (from 3.43 {+-} 0.78 to 4.02 {+-} 1.01 ml/100 g/min for K*, 7.85 {+-} 1.88 to 9.09 {+-} 1.71 ml/100 g/min for K*{sub 1}, and 28.0 {+-} 5.9 to 32.3 {+-} 5.5 {micro}mol/100 g/min for CMR{sub glc}), while there were no significant changes in the ipsilateral SI (from 3.45 {+-} 0.84 to 3.39 {+-} 0.72 ml/100 g/min for K*, 8.17 {+-} 2.33 to 8.37 {+-} 1.75 ml/100 g/min for K*{sub 1}, and 29.5 {+-} 8.1 to 29.1 {+-} 8.2 {micro}mol/100 g/min for CMR{sub glc}). Significant increases in K* and CMR{sub glc} in the contralateral SI were clearly demonstrated in the t-statistic image.

  13. Regional cerebral glucose metabolism is normal in young adults with Down syndrome

    SciTech Connect

    Schapiro, M.B.; Grady, C.L.; Kumar, A.; Herscovitch, P.; Haxby, J.V.; Moore, A.M.; White, B.; Friedland, R.P.; Rapoport, S.I. )

    1990-03-01

    Regional CMRglc (rCMRglc) values were measured with ({sup 18}F)2-fluoro-2-deoxy-D-glucose ({sup 18}FDG) and positron emission tomography (PET), using a Scanditronix PC-1024-7B scanner, in 14 healthy, noninstitutionalized subjects with trisomy 21 (Down syndrome; DS) (mean age 30.0 years, range 25-38 years) and in 13 sex-matched, healthy volunteers (mean age 29.5 years, range 22-38 years). In the DS group, mean mental age on the Peabody Picture Vocabulary Test was 7.8 years and dementia was not present. Resting rCMRglc was determined with eyes covered and ears occluded in a quiet, darkened room. Global gray CMRglc equaled 8.76 +/- 0.76 mg/100 g/min (mean +/- SD) in the DS group as compared with 8.74 +/- 1.19 mg/100 g/min in the control group (p greater than 0.05). Gray matter regional measurements also did not differ between groups. The ratio of rCMRglc to global CMRglc, calculated to reduce the variance associated with absolute rCMRglc, and right/left ratios did not show any consistent differences. These results show that healthy young DS adults do not have alterations in regional or global brain glucose metabolism, as measured with 18FDG and PET, prior to an age at which the neuropathological changes in Alzheimer disease are reported to occur.

  14. The effect of moderate glycemic energy bar consumption on blood glucose and mood in dancers.

    PubMed

    Brown, Derrick; Wyon, Matthew

    2014-03-01

    Ingesting quality carbohydrates has been shown to be essential for dancers. Given that most dance classes take place in the morning, it has been recommended that dancers eat a well-balanced breakfast containing carbohydrates, fats, and protein as a means of fuelling this activity. The aim of this study was to determine the effect of a moderate glycemic index energy (MGI) bar or a fasting condition on dancers' blood glucose levels and perceived pleasure-displeasure response during the first dance class of the day. In a randomized counterbalanced design, 10 female preprofessional dance students took their regular scheduled contemporary dance class, on four separate occasions. On each occasion, they consumed either a commercially prepared carbohydrate (CHO)-dense energy bar (47.3 g CHO) or water (FAST). Plasma glucose responses and pleasure-displeasure affect were measured before and at two time points during the class. Dancers who consumed the MGI bar had significantly greater peak blood glucose levels at all time points than those who fasted (p<0.05). Regarding affective state measures, participants who had breakfast had significantly greater pleasure scores than those who only ingested water(p<0.05). In conclusion, results suggest that CHO with an MGI value positively impacts blood glucose concentrations during a dance class. Further, we conclude that skipping breakfast can have an unfavorable effect on the pleasure-displeasure state of dancers. These findings highlight the impact of breakfast on how one feels, as well as the physiological and metabolic benefits of CHO as an exogenous energy source in dancers.

  15. The change in cerebral glucose metabolism after electroacupuncture: a possible marker to predict the therapeutic effect of deep brain stimulation for refractory anorexia nervosa.

    PubMed

    Liu, Tao-Tao; Hong, Qing-Xiong; Xiang, Hong-Bing

    2015-01-01

    Some reports have demonstrated that deep brain stimulation (DBS) is a promising treatment for patients who suffer from intractable anorexia nervosa. However, the nature of DBS may not be viewed as a standard clinical treatment option for anorexia nervosa because of the unpredictable outcome before DBS. Just like DBS in the brain, electroacupuncture at acupoints is also efficient in treating refractory anorexia nervosa. Some neuroimaging studies using functional magnetic resonance imaging, single-photon emission computed tomography (SPECT), and positron emission tomography (PET) had revealed that both DBS and electroacupuncture at acupoints with electrical stimulation are related to the changes in cerebral glucose metabolism. Therefore, we hypothesize that the changes in cerebral glucose metabolism after electroacupuncture might be useful to predict the therapeutic effect of deep brain stimulation for refractory anorexia nervosa.

  16. Altered cerebral blood flow and glucose metabolism in patients with liver disease and minimal encephalopathy

    SciTech Connect

    Lockwood, A.H.; Yap, E.W.; Rhoades, H.M.; Wong, W.H. )

    1991-03-01

    We measured CBF and the CMRglc in normal controls and in patients with severe liver disease and evidence for minimal hepatic encephalopathy using positron emission tomography. Regions were defined in frontal, temporal, parietal, and visual cortex; the thalamus; the caudate; the cerebellum; and the white matter along with a whole-slice value obtained at the level of the thalamus. There was no difference in whole-slice CBF and CMRglc values. Individual regional values were normalized to the whole-slice value and subjected to a two-way repeated measures analysis of variance. When normalized CBF and CMRglc values for regions were compared between groups, significant differences were demonstrated (F = 5.650, p = 0.00014 and F = 4.58, p = 0.0073, respectively). These pattern differences were due to higher CBF and CMRglc in the cerebellum, thalamus, and caudate in patients and lower values in the cortex. Standardized coefficients extracted from a discriminant function analysis permitted correct group assignment for 95.5% of the CBF studies and for 92.9% of the CMRglc studies. The similarity of the altered pattern of cerebral metabolism and flow in our patients to that seen in rats subjected to portacaval shunts or ammonia infusions suggests that this toxin may alter flow and metabolism and that this, in turn, causes the clinical expression of encephalopathy.

  17. Oral glucose before venepuncture relieves neonates of pain, but stress is still evidenced by increase in oxygen consumption, energy expenditure, and heart rate.

    PubMed

    Bauer, Karl; Ketteler, Jörg; Hellwig, Magdalena; Laurenz, Maren; Versmold, Hans

    2004-04-01

    Oral glucose was recommended as pain therapy during venepuncture in neonates. It is unclear whether this intervention reduces excess oxygen consumption (o(2)), energy loss, or cardiovascular destabilization associated with venepuncture, and whether <2 mL glucose solution is effective. We tested the hypothesis that oral glucose solution attenuates the increases in neonatal oxygen consumption, energy expenditure (EE), and heart rate associated with venepuncture for two different volumes of glucose solution (2 and 0.4 mL). In this prospective, randomized, controlled, double-blind trial, 58 neonates (gestational age, 31-42 wk; postnatal age, 1-7 d) were randomized to 2 mL glucose 30%, 0.4 mL glucose 30%, or 2 mL water by mouth before venepuncture. The videotaped behavioral pain reactions were scored with the Premature Infant Pain Profile. Cry duration, o(2), EE (indirect calorimetry), and heart rate were measured. The 2 mL glucose solution reduced pain score and crying after venepuncture compared with controls [median pain score, 5.5 (interquartile range, 4-9) versus 11 (7-12), p = 0.01; median duration of first cry, 0 s (0-43 s) versus 13 s (2-47 s), p < 0.05, respectively]. The 0.4 mL glucose solution had no effect. The 2 mL glucose solution did not attenuate the o(2) increase during venepuncture (1.5 +/- 0.2 mL/kg min (water) versus 1.7 +/- 0.5 (0.4 mL glucose) versus 1.1 +/- 0.2 (2 mL glucose) (mean +/- SEM) nor EE nor heart rate. We conclude that oral administration of 2 mL glucose 30% before venepuncture reduced pain expression and crying, but did not prevent the rise in o(2), EE, or heart rate. Alternative therapies against the stress of nonpainful handling during venepuncture should be explored.

  18. Effects of consumption of main and side dishes with white rice on postprandial glucose, insulin, glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 responses in healthy Japanese men.

    PubMed

    Kameyama, Noriko; Maruyama, Chizuko; Matsui, Sadako; Araki, Risa; Yamada, Yuichiro; Maruyama, Taro

    2014-05-01

    The co-ingestion of protein, fat and fibre with carbohydrate reportedly affects postprandial glucose, insulin and incretin (glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1)) responses. However, the effects of combination dishes with carbohydrate-rich foods at typically eaten amounts remain unclear. The objective of the present study was to evaluate the effects of consuming recommended amounts of side dishes with boiled white rice in the same meal on postprandial plasma glucose, insulin and incretin hormone responses. A total of nine healthy male volunteers consumed four different meals in a random order on separate days. The test meals were as follows: S, white rice; SM, addition of protein-rich main dishes to the S meal; SMF, addition of a fat-rich food item to the SM meal; SMFV, addition of vegetables to the SMF meal. Plasma glucose, GIP and GLP-1 and serum insulin concentrations were determined during a 3 h period after consumption of these meals. Postprandial glucose responses were lower after SMFV meal consumption than after consumption of the other meals. The incremental AUC for GIP (0-180 min) were largest after consumption of the SMF and SMFV meals, followed by that after SM meal consumption, and was smallest after S meal consumption (P< 0·05). Furthermore, we found GIP concentrations to be dose dependently increased by the fat content of meals of ordinary size, despite the amount of additional fat being small. In conclusion, the combination of recommended amounts of main and vegetable side dishes with boiled white rice is beneficial for lowering postprandial glucose concentrations, with an increased incretin response, when compared with white rice alone.

  19. Regionally selective alterations in local cerebral glucose utilization evoked by charybdotoxin, a blocker of central voltage-activated K+-channels.

    PubMed

    Cochran, S M; Harvey, A L; Pratt, J A

    2001-11-01

    The quantitative [14C]-2-deoxyglucose autoradiographic technique was employed to investigate the effect of charybdotoxin, a blocker of certain voltage-activated K+ channels, on functional activity, as reflected by changes in local rates of cerebral glucose utilization in rat brain. Intracerebroventricular administration of charybdotoxin, at doses below those producing seizure activity, produced a heterogeneous effect on glucose utilization throughout the brain. Out of the 75 brain regions investigated, 24 displayed alterations in glucose utilization. The majority of these changes were observed with the intermediate dose of charybdotoxin administered (12.5 pmol), with the lower (6.25 pmol) and higher (25 pmol) doses of charybdotoxin producing a much more restricted pattern of change in glucose utilization. In brain regions which displayed alterations in glucose at all doses of charybdotoxin administered, no dose dependency in terms of the magnitude of change was observed. The 21 brain regions which displayed altered functional activity after administration of 12.5 pmol charybdotoxin were predominantly limited to the hippocampus, limbic and motor structures. In particular, glucose utilization was altered within three pathways implicated within learning and memory processes, the septohippocampal pathway, Schaffer collaterals within the hippocampus and the Papez circuit. The nigrostriatal pathway also displayed altered local cerebral glucose utilization. These data indicate that charybdotoxin produces alterations in functional activity within selected pathways in the brain. Furthermore the results raise the possibility that manipulation of particular subtypes of Kv1 channels in the hippocampus and related structures may be a means of altering cognitive processes without causing global changes in neural activity throughout the brain.

  20. Diglycosyl diselenides alter redox homeostasis and glucose consumption of infective African trypanosomes.

    PubMed

    Franco, Jaime; Sardi, Florencia; Szilágyi, László; Kövér, Katalin E; Fehér, Krisztina; Comini, Marcelo A

    2017-08-12

    With the aim to develop compounds able to target multiple metabolic pathways and, thus, to lower the chances of drug resistance, we investigated the anti-trypanosomal activity and selectivity of a series of symmetric diglycosyl diselenides and disulfides. Of 18 compounds tested the fully acetylated forms of di-β-D-glucopyranosyl and di-β-D-galactopyranosyl diselenides (13 and 15, respectively) displayed strong growth inhibition against the bloodstream stage of African trypanosomes (EC50 0.54 μM for 13 and 1.49 μM for 15) although with rather low selectivity (SI < 10 assayed with murine macrophages). Nonacetylated versions of the same sugar diselenides proved to be, however, much less efficient or completely inactive to suppress trypanosome growth. Significantly, the galactosyl (15), and to a minor extent the glucosyl (13), derivative inhibited glucose catabolism but not its uptake. Both compounds induced redox unbalance in the pathogen. In vitro NMR analysis indicated that diglycosyl diselenides react with glutathione, under physiological conditions, via formation of selenenylsulfide bonds. Our results suggest that non-specific cellular targets as well as actors of the glucose and the redox metabolism of the parasite may be affected. These molecules are therefore promising leads for the development of novel multitarget antitrypanosomal agents. Copyright © 2017. Published by Elsevier Ltd.

  1. Comparison of cerebral regional glucose metabolic relationships in resting and auditory stimulated states

    SciTech Connect

    Metter, E.J.; Riege, W.H.; Mazziotta, J.C.; Phelps, M.E.; Kuhl, D.E.

    1984-01-01

    FDG positron computed tomography has demonstrated strong correlations between high frontal and occipital glucose metabolism in normal resting subjects, which varied by age and were lost in Huntington's and Parkinson's Diseases. The studies raised the question whether the findings may be explained by anatomic and not metabolic factors. An approach to the issue was to examine subjects scanned under two states, where functional and not anatomic features would account for relationship differences. Seventeen subjects were identified who had scans under resting and auditory stimulated states. Measurements were taken from 12 brain regions and were expressed as percentage of mean metabolism. A principal components analysis of the resting state demonstrated 3 components (73% of variance), while the stimulated states showed 4 (79% of variance). The first resting factor related frontal, right posterior inferior frontal and superior temporal regions, while in the stimulated, the frontal associated with the occipital. The second resting factor related both angular gyri and posterior temporal, while the third related left posterior inferior frontal, superior temporal and right occipital. With stimulation both factors were replaced by three others. The change in the first factor and its presence in other subject groups points to a functional relationship between the regions. Comparison to previous studies suggest the frontal-occipital association may involve aspects of attention. The variability in other factors was similar to loose correlations noted in normal studies and may reflect the differential response to several tasks.

  2. Bioassay-based isolation and identification of phenolics from sweet cherry that promote active glucose consumption by HepG2 cells.

    PubMed

    Cao, Jinping; Li, Xin; Liu, Yunxi; Leng, Feng; Li, Xian; Sun, Chongde; Chen, Kunsong

    2015-02-01

    A variety of phenolics had been found to be functional in promoting cellular glucose consumption that is important for blood glucose regulation. Sweet cherry (Prunus avium) is rich in such kinds of phenolics, including hydrocinnamic acids, anthocyanins, flavonols, and flavan-3-ols. Furthermore, a sweet cherry phenolics-rich extract (PRE) was found to be effective in promoting HepG2 glucose consumption. Seventeen components were preliminarily identified by HPLC-ESI-MS, including 9 hydrocinnamic acids, 4 anthocyanins, 3 flavonols, and 1 flavan-3-ol. To investigate the cellular glucose consumption-promotion activity of different phneolics subclasses, the phenolics were further fractionated into an anthocyanin-rich fraction (ARF), hydrocinnamic acid-rich fraction (HRF), and flavonol-rich fraction (FRF) through liquid-liquid extraction and mix-mode cation-exchange solid-phase extraction. The 3 fractions promoted HepG2 glucose consumption to different levels, with the promotion effects of HRF and FRF stronger than that of the ARF. The results provide guidance on the use of sweet cherry as a functional fruit. © 2015 Institute of Food Technologists®

  3. Compared to sucrose, previous consumption of fructose and glucose monosaccharides reduces survival and fitness of female mice.

    PubMed

    Ruff, James S; Hugentobler, Sara A; Suchy, Amanda K; Sosa, Mirtha M; Tanner, Ruth E; Hite, Megumi E; Morrison, Linda C; Gieng, Sin H; Shigenaga, Mark K; Potts, Wayne K

    2015-03-01

    Intake of added sugar has been shown to correlate with many human metabolic diseases, and rodent models have characterized numerous aspects of the resulting disease phenotypes. However, there is a controversy about whether differential health effects occur because of the consumption of either of the two common types of added sugar-high-fructose corn syrup (fructose and glucose monosaccharides; F/G) or table sugar (sucrose, a fructose and glucose disaccharide). We tested the equivalence of sucrose- vs. F/G-containing diets on mouse (Mus musculus) longevity, reproductive success, and social dominance. We fed wild-derived mice, outbred mice descended from wild-caught ancestors, a diet in which 25% of the calories came from either an equal ratio of F/G or an isocaloric amount of sucrose (both diets had 63% of total calories as carbohydrates). Exposure lasted 40 wk, starting at weaning (21 d of age), and then mice (104 females and 56 males) were released into organismal performances assays-seminatural enclosures where mice competed for territories, resources, and mates for 32 wk. Within enclosures all mice consumed the F/G diet. Females initially fed the F/G diet experienced a mortality rate 1.9 times the rate (P = 0.012) and produced 26.4% fewer offspring than females initially fed sucrose (P = 0.001). This reproductive deficiency was present before mortality differences, suggesting the F/G diet was causing physiologic performance deficits prior to mortality. No differential patterns in survival, reproduction, or social dominance were observed in males, indicating a sex-specific outcome of exposure. This study provides experimental evidence that the consumption of human-relevant levels of F/G is more deleterious than an isocaloric amount of sucrose for key organism-level health measures in female mice. © 2015 American Society for Nutrition.

  4. Compared to Sucrose, Previous Consumption of Fructose and Glucose Monosaccharides Reduces Survival and Fitness of Female Mice123

    PubMed Central

    Ruff, James S; Hugentobler, Sara A; Suchy, Amanda K; Sosa, Mirtha M; Tanner, Ruth E; Hite, Megumi E; Morrison, Linda C; Gieng, Sin H; Shigenaga, Mark K; Potts, Wayne K

    2015-01-01

    Background: Intake of added sugar has been shown to correlate with many human metabolic diseases, and rodent models have characterized numerous aspects of the resulting disease phenotypes. However, there is a controversy about whether differential health effects occur because of the consumption of either of the two common types of added sugar—high-fructose corn syrup (fructose and glucose monosaccharides; F/G) or table sugar (sucrose, a fructose and glucose disaccharide). Objectives: We tested the equivalence of sucrose- vs. F/G-containing diets on mouse (Mus musculus) longevity, reproductive success, and social dominance. Methods: We fed wild-derived mice, outbred mice descended from wild-caught ancestors, a diet in which 25% of the calories came from either an equal ratio of F/G or an isocaloric amount of sucrose (both diets had 63% of total calories as carbohydrates). Exposure lasted 40 wk, starting at weaning (21 d of age), and then mice (104 females and 56 males) were released into organismal performances assays—seminatural enclosures where mice competed for territories, resources, and mates for 32 wk. Within enclosures all mice consumed the F/G diet. Results: Females initially fed the F/G diet experienced a mortality rate 1.9 times the rate (P = 0.012) and produced 26.4% fewer offspring than females initially fed sucrose (P = 0.001). This reproductive deficiency was present before mortality differences, suggesting the F/G diet was causing physiologic performance deficits prior to mortality. No differential patterns in survival, reproduction, or social dominance were observed in males, indicating a sex-specific outcome of exposure. Conclusion: This study provides experimental evidence that the consumption of human-relevant levels of F/G is more deleterious than an isocaloric amount of sucrose for key organism-level health measures in female mice. PMID:25733457

  5. Feasibility of mapping the tissue mass corrected bioscale of cerebral metabolic rate of oxygen consumption using 17-oxygen and 23-sodium MR imaging in a human brain at 9.4 T.

    PubMed

    Atkinson, Ian C; Thulborn, Keith R

    2010-06-01

    The reduction of molecular oxygen to water is the final step of oxidative phosphorylation that couples adenosine triphosphate production to the reoxidation of reducing equivalents formed during the oxidation of glucose to carbon dioxide. This coupling makes the cerebral metabolic rate of oxygen consumption (CMRO(2)) an excellent reflection of the metabolic health of the brain. A multi-nuclear magnetic resonance (MR) imaging based method for CMRO(2) mapping is proposed. Oxygen consumption is determined by applying a new three-phase metabolic model for water generation and clearance to the changing 17-oxygen ((17)O) labeled water MR signal measured using quantitative (17)O MR imaging during inhalation of (17)O-enriched oxygen gas. These CMRO(2) data are corrected for the regional brain tissue mass computed from quantitative 23-sodium MR imaging of endogenous tissue sodium ions to derive quantitative results of oxygen consumption in micromoles O(2)/g tissue/minute that agree with literature results reported from positron emission tomography. The proposed technique is demonstrated in the human brain using a 9.4 T MR scanner optimized for human brain imaging. Published by Elsevier Inc.

  6. Unique discrepancy between cerebral blood flow and glucose metabolism in hemimegalencephaly.

    PubMed

    Uematsu, Mitsugu; Haginoya, Kazuhiro; Togashi, Noriko; Hino-Fukuyo, Naomi; Nakayama, Tojo; Kikuchi, Atsuo; Abe, Yu; Wakusawa, Keisuke; Matsumoto, Yoko; Kakisaka, Yosuke; Kobayashi, Tomoko; Hirose, Mieko; Yokoyama, Hiroyuki; Iinuma, Kazuie; Iwasaki, Masaki; Nakasato, Nobukazu; Kaneta, Tomohiro; Akasaka, Manami; Kamei, Atsushi; Tsuchiya, Shigeru

    2010-12-01

    Hemimegalencephaly (HME) presents as severe refractory seizures and requires early surgical treatment to prevent progression to catastrophic epilepsy. Single-photon emission computed tomography (SPECT) and positron emission tomography (PET) are useful imaging techniques for the presurgical evaluation of patients with intractable epilepsy. However, the results in HME are variable and no study has compared SPECT and PET performed at around the same time. We performed SPECT and PET for nine patients with HME, which was defined as a whole or part of affected hemisphere enlargement (three males, six females; age range 0.5-20 years). The ictal and interictal states were determined based on the presence or absence of clinical seizures during all PET examinations and majority of SPECT examinations. The perfusion pattern in the malformed hemisphere was increased or equal, despite the reduced glucose metabolism in six out of nine patients. Five of the six patients who underwent early surgical treatment showed this kind of perfusion/metabolism discrepancy. Importantly, even the non-affected hemisphere in early infantile cases already lacked the normal hypoperfusion and hypometabolism patterns of immature frontal lobes, which was most prominent in case with poor surgical prognosis. In all six surgical patients, epileptic seizures appeared before 4 months of age. By contrast, none of the non-surgical patients had seizures before 4 months of age. In conclusion, although the number of patients examined is small and the result is still preliminary, the perfusion/metabolism discrepancy found in this study may show potential characteristic aspect of HME and further study with simultaneous EEG recording will make clear if this finding can be useful indicator for early surgical treatment in HME. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Pilot study of positron emission tomography (PET) brain glucose metabolism to assess the efficacy of tongue and body acupuncture in cerebral palsy.

    PubMed

    Wong, Virginia C N; Sun, Jie-Guang; Yeung, David W C

    2006-06-01

    We aimed to assess the efficacy of tongue and body acupuncture with clinical function and brain glucose metabolism in children with a severe type of cerebral palsy. Four children were recruited. The motor function belonged to grade 5 of the Gross Motor Function Measure (i.e., completely nonambulatory). Daily tongue and body acupuncture was applied for 5 days a week for 8 weeks. The Functional Independence Scale for Children (WeeFIM), Clinical Global Impression Scale (CGIS), and positron emission tomography of the brain with [18F]fluorodeoxyglucose (FDG) were performed at baseline and after acupuncture. None of the children had any significant change in the Functional Independence Scale for Children score, despite the fact that all mothers scored 3 on the Clinical Global Impression Scale (i.e., 25% in improvement) in overall function. The brain glucose metabolism, however, showed a >10% increase in the frontal, parietal, temporal, and occipital cortices and cerebellum. Thus, a short course of tongue and body acupuncture was shown to increase brain glucose metabolism, despite lacking any clinical functional improvement seen during the eight-week course, possibly owing to the severity of the motor dysfunction and the short duration of treatment. The objective increase in brain glucose metabolism might serve as a surrogate marker for assessing the subclinical efficacy of an alternative treatment before any objective clinical improvement is evident. A larger-scale study for different degrees of severity of cerebral palsy and an impairment model should be undertaken to correlate clinical with neurometabolic change.

  8. Inhibition of miR-143 during ischemia cerebral injury protects neurones through recovery of the hexokinase 2-mediated glucose uptake.

    PubMed

    Zeng, Xianzhu; Liu, Na; Zhang, Jing; Wang, Lei; Zhang, Zhecheng; Zhu, Ju; Li, Qian; Wang, Yuwen

    2017-08-31

    Ischemic stroke, a major cause of death, is caused by occlusion of a blood vessel, resulting in significant reduction in regional cerebral blood flow. MiRNAs are a family of short noncoding RNAs (18-22 nts) and bind the 3'-UTR of their target genes to suppress the gene expression post-transcriptionally. In the present study, we report that miR-143 is down-regulated in rat neurones but highly expressed in astrocytes. In vivo middle cerebral artery occlusion (MCAO) and ex vivo oxygen-glucose deprivation (OGD) results showed that miR-143 was significantly induced by ischemia injury. Meanwhile, we observed suppression of glucose uptake and lactate product of rat brain and primary neurones after MCAO or OGD. The glycolysis enzymes hexokinase 2 (HK2), PKM2, and LDHA were inhibited by MCAO or OGD at protein and mRNA levels. In addition, overexpression of miR-143 significantly inhibited HK2 expression, glucose uptake, and lactate product. We report that HK2 is a direct target of miR-143. Importantly, restoration of HK2 in miR-143 overexpressing rat neurones recovered glucose uptake and lactate product. Our results demonstrated inhibition of miR-143 during OGD could protect rat neuronal cells from ischemic brain injury (IBI). In summary, the present study reveals a miRNA-mediated neuron protection during IBI, providing a new strategy for the development of therapeutic agents against IBI. © 2017 The Author(s).

  9. Imaging the time-integrated cerebral metabolic activity with subcellular resolution through nanometer-scale detection of biosynthetic products deriving from (13)C-glucose.

    PubMed

    Takado, Yuhei; Knott, Graham; Humbel, Bruno M; Masoodi, Mojgan; Escrig, Stéphane; Meibom, Anders; Comment, Arnaud

    2015-11-01

    Glucose is the primary source of energy for the brain but also an important source of building blocks for proteins, lipids, and nucleic acids. Little is known about the use of glucose for biosynthesis in tissues at the cellular level. We demonstrate that local cerebral metabolic activity can be mapped in mouse brain tissue by quantitatively imaging the biosynthetic products deriving from [U-(13)C]glucose metabolism using a combination of in situ electron microscopy and secondary ion mass-spectroscopy (NanoSIMS). Images of the (13)C-label incorporated into cerebral ultrastructure with ca. 100 nm resolution allowed us to determine the timescale on which the metabolic products of glucose are incorporated into different cells, their sub-compartments and organelles. These were mapped in astrocytes and neurons in the different layers of the motor cortex. We see evidence for high metabolic activity in neurons via the nucleus (13)C enrichment. We observe that in all the major cell compartments, such as e.g. nucleus and Golgi apparatus, neurons incorporate substantially higher concentrations of (13)C-label than astrocytes.

  10. Multiplexed MRI methods for rapid estimation of global cerebral metabolic rate of oxygen consumption.

    PubMed

    Lee, Hyunyeol; Langham, Michael C; Rodriguez-Soto, Ana E; Wehrli, Felix W

    2017-04-01

    The global cerebral metabolic rate of oxygen (CMRO2), which reflects metabolic activity of the brain under various physiologic conditions, can be quantified using a method, referred to as 'OxFlow', which simultaneously measures hemoglobin oxygen saturation in a draining vein (Yv) and total cerebral blood flow (tCBF). Conventional OxFlow (Conv-OxFlow) entails four interleaves incorporated in a single pulse sequence - two for phase-contrast based measurement of tCBF in the supplying arteries of the neck, and two to measure the intra- to extravascular phase difference in the superior sagittal sinus to derive Yv [Jain et al., JCBFM 2010]. However, this approach limits achievable temporal resolution thus precluding capture of rapid changes of brain metabolic states such as the response to apneic stimuli. Here, we developed a time-efficient, multiplexed OxFlow method and evaluated its potential for measuring dynamic alterations in global CMRO2 during a breath-hold challenge. Two different implementations of multiplexed OxFlow were investigated: 1) simultaneous-echo-refocusing based OxFlow (SER-OxFlow) and 2) simultaneous-multi-slice imaging-based dual-band OxFlow (DB-OxFlow). The two sequences were implemented on 3T scanners (Siemens TIM Trio and Prisma) and their performance was evaluated in comparison to Conv-OxFlow in ten healthy subjects for baseline CMRO2 quantification. Comparison of measured parameters (Yv, tCBF, CMRO2) revealed no significant bias of SER-OxFlow and DB-OxFlow, with respect to the reference Conv-OxFlow while improving temporal resolution two-fold (12.5 versus 25s). Further acceleration shortened scan time to 8 and 6s for SER and DB-OxFlow, respectively, for time-resolved CMRO2 measurement. The two sequences were able of capturing smooth transitions of Yv, tCBF, and CMRO2 over the time course consisting of 30s of normal breathing, 30s of volitional apnea, and 90s of recovery. While both SER- and DB-OxFlow techniques provide significantly improved

  11. High temporal resolution MRI quantification of global cerebral metabolic rate of oxygen consumption in response to apneic challenge.

    PubMed

    Rodgers, Zachary B; Jain, Varsha; Englund, Erin K; Langham, Michael C; Wehrli, Felix W

    2013-10-01

    We present a technique for quantifying global cerebral metabolic rate of oxygen consumption (CMRO2) in absolute physiologic units at 3-second temporal resolution and apply the technique to quantify the dynamic CMRO2 response to volitional apnea. Temporal resolution of 3 seconds was achieved via a combination of view sharing and superior sagittal sinus-based estimation of total cerebral blood flow (tCBF) rather than tCBF measurement in the neck arteries. These modifications were first validated in three healthy adults and demonstrated to produce minimal errors in image-derived blood flow and venous oxygen saturation (SvO2) values. The technique was then applied in 10 healthy adults during an apnea paradigm of three repeated 30-second breath-holds. Subject-averaged baseline tCBF, arteriovenous oxygen difference (AVO2D), and CMRO2 were 48.6 ± 7.0 mL/100 g per minute, 29.4 ± 3.4 %HbO2, and 125.1 ± 11.4 μmol/100 g per minute, respectively. Subject-averaged maximum changes in tCBF and AVO2D were 43.5 ± 9.4% and -32.1 ± 5.7%, respectively, resulting in a small (6.0 ± 3.5%) but statistically significant (P=0.00044, two-tailed t-test) increase in average end-apneic CMRO2. This method could be used to investigate neurometabolic-hemodynamic relationships in normal physiology, to better define the biophysical origins of the BOLD signal, and to quantify neurometabolic responsiveness in diseases of altered neurovascular reactivity.

  12. Gadd45b prevents autophagy and apoptosis against rat cerebral neuron oxygen-glucose deprivation/reperfusion injury.

    PubMed

    He, Guoqian; Xu, Wenming; Tong, Linyan; Li, Shuaishuai; Su, Shiceng; Tan, Xiaodan; Li, Changqing

    2016-04-01

    Autophagic (type II) cell death has been suggested to play pathogenetic roles in cerebral ischemia. Growth arrest and DNA damage response 45b (Gadd45b) has been shown to protect against rat brain ischemia injury through inhibiting apoptosis. However, the relationship between Gadd45b and autophagy in cerebral ischemia/reperfusion (I/R) injury remains uncertain. The aim of this study is to investigate the effect of Gadd45b on autophagy. We adopt the oxygen-glucose deprivation and reperfusion (OGD/R) model of rat primary cortex neurons, and lentivirus interference used to silence Gadd45b expression. Cell viability and injury assay were performed using CCK-8 and LDH kit. Autophagy activation was monitored by expression of ATG5, LC3, Beclin-1, ATG7 and ATG3. Neuron apoptosis was monitored by expression of Bcl-2, Bax, cleaved caspase3, p53 and TUNEL assay. Neuron neurites were assayed by double immunofluorescent labeling with Tuj1 and LC3B. Here, we demonstrated that the expression of Gadd45b was strongly up-regulated at 24 h after 3 h OGD treatment. ShRNA-Gadd45b increased the expression of autophagy related proteins, aggravated OGD/R-induced neuron cell apoptosis and neurites injury. ShRNA-Gadd45b co-treatment with autophagy inhibitor 3-methyladenine (3-MA) or Wortmannin partly inhibited the ratio of LC3II/LC3I, and slightly ameliorated neuron cell apoptosis under OGD/R. Furthermore, shRNA-Gadd45b inhibited the p-p38 level involved in autophagy, but increased the p-JNK level involved in apoptosis. ShRNA-Gadd45b co-treatment with p38 inhibitor obviously induced autophagy. ShRNA-Gadd45b co-treatment with JNK inhibitor alleviated neuron cell apoptosis. In conclusion, our data suggested that Gadd45b inhibited autophagy and apoptosis under OGD/R. Gadd45b may be a common regulatory protein to control autophagy and apoptosis.

  13. High glucose-induced mitochondrial respiration and reactive oxygen species in mouse cerebral pericytes is reversed by pharmacological inhibition of mitochondrial carbonic anhydrases: Implications for cerebral microvascular disease in diabetes.

    PubMed

    Shah, Gul N; Morofuji, Yoichi; Banks, William A; Price, Tulin O

    2013-10-18

    Hyperglycemia-induced oxidative stress leads to diabetes-associated damage to the microvasculature of the brain. Pericytes in close proximity to endothelial cells in the brain microvessels are vital to the integrity of the blood-brain barrier and are especially susceptible to oxidative stress. According to our recently published results, streptozotocin-diabetic mouse brain exhibits oxidative stress and loose pericytes by twelve weeks of diabetes, and cerebral pericytes cultured in high glucose media suffer intracellular oxidative stress and apoptosis. Oxidative stress in diabetes is hypothesized to be caused by reactive oxygen species (ROS) produced during hyperglycemia-induced enhanced oxidative metabolism of glucose (respiration). To test this hypothesis, we investigated the effect of high glucose on respiration rate and ROS production in mouse cerebral pericytes. Previously, we showed that pharmacological inhibition of mitochondrial carbonic anhydrases protects the brain from oxidative stress and pericyte loss. The high glucose-induced intracellular oxidative stress and apoptosis of pericytes in culture were also reversed by inhibition of mitochondrial carbonic anhydrases. Therefore, we extended our current study to determine the effect of these inhibitors on high glucose-induced increases in pericyte respiration and ROS. We now report that both the respiration and ROS are significantly increased in pericytes challenged with high glucose. Furthermore, inhibition of mitochondrial carbonic anhydrases significantly slowed down both the rate of respiration and ROS production. These data provide new evidence that pharmacological inhibitors of mitochondrial carbonic anhydrases, already in clinical use, may prove beneficial in protecting the brain from oxidative stress caused by ROS produced as a consequence of hyperglycemia-induced enhanced respiration.

  14. High Glucose-Induced Mitochondrial Respiration and Reactive Oxygen Species in Mouse Cerebral Pericytes is Reversed by Pharmacological Inhibition of Mitochondrial Carbonic Anhydrases: Implications for Cerebral Microvascular Disease in Diabetes

    PubMed Central

    Shah, Gul N.; Morofuji, Yoichi; Banks, William A.; Price, Tulin O.

    2013-01-01

    Hyperglycemia-induced oxidative stress leads to diabetes-associated damage to the microvasculature of the brain. Pericytes in close proximity to endothelial cells in the brain microvessels are vital to the integrity of the blood-brain barrier and are especially susceptible to oxidative stress. According to our recently published results, streptozotocin-diabetic mouse brain exhibits oxidative stress and loose pericytes by twelve weeks of diabetes, and cerebral pericytes cultured in high glucose media suffer intracellular oxidative stress and apoptosis. Oxidative stress in diabetes is hypothesized to be caused by reactive oxygen species (ROS) produced during hyperglycemia-induced enhanced oxidative metabolism of glucose (respiration). To test this hypothesis, we investigated the effect of high glucose on respiration rate and ROS production in mouse cerebral pericytes. Previously, we showed that pharmacological inhibition of mitochondrial carbonic anhydrases protects the brain from oxidative stress and pericyte loss. The high glucose-induced intracellular oxidative stress and apoptosis of pericytes in culture were also reversed by inhibition of mitochondrial carbonic anhydrases. Therefore, we extended our current study to determine the effect of these inhibitors on high glucose-induced increases in pericyte respiration and ROS. We now report that both the respiration and ROS are significantly increased in pericytes challenged with high glucose. Furthermore, inhibition of mitochondrial carbonic anhydrases significantly slowed down both the rate of respiration and ROS production. These data provide new evidence that pharmacological inhibitors of mitochondrial carbonic anhydrases, already in clinical use, may prove beneficial in protecting the brain from oxidative stress caused by ROS produced as a consequence of hyperglycemia-induced enhanced respiration. PMID:24076121

  15. Sugar-Sweetened Beverage Consumption Is Associated with Metabolic Syndrome in Iranian Adults: Tehran Lipid and Glucose Study.

    PubMed

    Ejtahed, Hanieh Sadat; Bahadoran, Zahra; Mirmiran, Parvin; Azizi, Fereidoun

    2015-09-01

    Metabolic syndrome (MetS), a cluster of multiple metabolic abnormalities, is one of the major public health challenges worldwide. The current study was conducted to evaluate the association between sugar-sweetened beverage (SSB) consumption and MetS and its components in Iranian adults. This cross-sectional study was conducted among 5,852 men and women, aged 19 to 70 years, who participated in the fourth phase (2009 to 2011) of the Tehran Lipid and Glucose Study. Demographics, anthropometrics, biochemical measurements, and blood pressure (BP) were assessed and MetS was defined by National Cholesterol Education Program Adult Treatment Panel III definition. Frequency and quantity of SSB intakes including carbonated drinks and synthetic fruit juices were collected using a validated semiquantitative food frequency questionnaire. Mean age of participants (43%, men) was 40.6±12.9 years. Significant positive associations between SSBs and waist circumference, triglyceride level, systolic and diastolic BP in the third and fourth quartile of SSBs were observed, after adjustment for all potential confounding variables. The odds of MetS in the third and fourth quartiles compared to the first quartile category of SSBs was 1.21 (95% confidence interval [CI], 1.01 to 1.45) and 1.30 (95% CI, 1.06 to 1.58), respectively (P for trend=0.03). The odds of MetS, abdominal obesity, low high density lipoprotein cholesterol and elevated BP had increasing trends across increasing of SSB consumption (P for trend <0.05). Higher intake of SSBs was associated with the higher odds of MetS in adults. It is suggested that reducing consumption of SSBs could be a practical approach to prevent metabolic abnormalities.

  16. Differential effects of ibogaine on local cerebral glucose utilization in drug-naive and morphine-dependent rats.

    PubMed

    Levant, Beth; Pazdernik, Thomas L

    2004-04-02

    Ibogaine, a hallucinogenic indole alkaloid, has been proposed as a treatment for addiction to opioids and other drugs of abuse. The mechanism for its putative anti-addictive effects is unknown. In this study, the effects of ibogaine on local cerebral glucose utilization (LCGU) were determined in freely moving, drug-naive, or morphine-dependent adult, male, Sprague-Dawley rats using the [(14)C]2-deoxyglucose (2-DG) method. Morphine-dependent rats were treated with increasing doses of morphine (5-25 mg/kg, s.c., b.i.d.) and then maintained at 25 mg/kg (b.i.d.) for 4-7 days. For the 2-DG procedure, rats were injected with saline or ibogaine (40 mg/kg, i.p.). 2-DG was administered 1 h after administration of ibogaine. The rate of LCGU was determined by quantitative autoradiography in 46 brain regions. In drug-naive animals, ibogaine produced significant increases in LCGU in the parietal, cingulate, and occipital cortices and cerebellum compared to controls consistent with its activity as a hallucinogen and a tremorogen. Morphine-dependent rats had only minor alterations in LCGU at the time assessed in this experiment. However, in morphine-dependent animals, ibogaine produced a global decrease in LCGU that was greatest in brain regions such as the lateral and medial preoptic areas, nucleus of the diagonal band, nucleus accumbens shell, inferior colliculus, locus coeruleus, and flocculus compared to morphine-dependent animals treated with saline. These findings indicate that ibogaine produces distinctly different effects on LCGU in drug-naive and morphine-dependent rats. This suggests that different mechanisms may underlie ibogaine's hallucinogenic and anti-addictive effects.

  17. Cerebral glucose metabolic response to combined total sleep deprivation and antidepressant treatment in geriatric depression: a randomized, placebo-controlled study.

    PubMed

    Smith, Gwenn S; Reynolds, Charles F; Houck, Patricia R; Dew, Mary Amanda; Ginsberg, Joshua; Ma, Yilong; Mulsant, Benoit H; Pollock, Bruce G

    2009-01-30

    A randomized, placebo-controlled study was performed to evaluate whether the onset of the glucose metabolic effects of a selective serotonin reuptake inhibitor (paroxetine) would be accelerated by total sleep deprivation (TSD). Patients were randomly assigned to one of three groups: TSD and paroxetine treatment, TSD and 2 weeks of placebo followed by paroxetine treatment, or 2 weeks of paroxetine treatment. Sixteen elderly depressed patients who met DSM-IV criteria for major depressive disorder and nine age-matched comparison subjects underwent positron emission tomography (PET) studies of cerebral glucose metabolism at baseline, post-TSD (or a normal night's sleep for the paroxetine- only group), post-recovery sleep and 2 weeks post-paroxetine or placebo treatment (patients only). TSD was not consistently associated with a decrease in depressive symptoms between groups nor with decreases in cerebral metabolism in cortical regions that have been associated with rapid and sustained clinical improvement (e.g. anterior cingulate gyrus). The observation of a synergistic antidepressant effect of combined TSD and paroxetine treatment that was observed in a previous "open label" pilot study was not observed in the present randomized study, consistent with lack of a cerebral metabolic effect in brains regions previously shown to be associated with improvement of depressive symptoms.

  18. The Cerebral Glucose Metabolic Response to Combined Total Sleep Deprivation and Antidepressant Treatment in Geriatric Depression: A Randomized, Placebo Controlled Study

    PubMed Central

    Smith, Gwenn S.; Reynolds, Charles F.; Houck, Patricia R.; Dew, Mary Amanda; Ginsberg, Joshua; Ma, Yilong; Mulsant, Benoit H.; Pollock, Bruce G.

    2009-01-01

    A randomized, placebo controlled study was performed to evaluate whether the onset of the glucose metabolic effects of a selective serotonin reuptake inhibitor (paroxetine) would be accelerated by total sleep deprivation (TSD). Patients were randomly assigned to one of three groups: TSD and paroxetine treatment, TSD and two weeks of placebo followed by paroxetine treatment, or two weeks of paroxetine treatment. Sixteen elderly depressed patients who met DSM-IV criteria for major depressive disorder and nine age-matched comparison subjects underwent Positron Emission Tomography (PET) studies of cerebral glucose metabolism at baseline, post-TSD (or a normal night’s sleep for the paroxetine only group), post-recovery sleep and two weeks post-paroxetine or placebo treatment (patients only). TSD was not consistently associated with a decrease in depressive symptoms between groups nor with decreases in cerebral metabolism in cortical regions that have been associated with rapid and sustained clinical improvement (e.g. anterior cingulate gyrus). The observation of a synergistic antidepressant effect of combined TSD and paroxetine treatment that was observed in a previous “open label”, pilot study was not observed in the present randomized study, consistent with lack of a cerebral metabolic effect in brains regions previously shown to be associated with improvement of depressive symptoms. PMID:19087899

  19. Coffee and tea consumption in relation to inflammation and basal glucose metabolism in a multi-ethnic Asian population: a cross-sectional study.

    PubMed

    Rebello, Salome A; Chen, Cynthia H; Naidoo, Nasheen; Xu, Wang; Lee, Jeannette; Chia, Kee Seng; Tai, E Shyong; van Dam, Rob M

    2011-06-02

    Higher coffee consumption has been associated with a lower risk of type 2 diabetes in cohort studies, but the physiological pathways through which coffee affects glucose metabolism are not fully understood. The aim of this study was to evaluate the associations between habitual coffee and tea consumption and glucose metabolism in a multi-ethnic Asian population and possible mediation by inflammation. We cross-sectionally examined the association between coffee, green tea, black tea and Oolong tea consumption and glycemic (fasting plasma glucose, HOMA-IR, HOMA-beta, plasma HbA1c) and inflammatory (plasma adiponectin and C-reactive protein) markers in a multi-ethnic Asian population (N = 4139). After adjusting for multiple confounders, we observed inverse associations between coffee and HOMA-IR (percent difference: - 8.8% for ≥ 3 cups/day versus rarely or never; Ptrend = 0.007), but no significant associations between coffee and inflammatory markers. Tea consumption was not associated with glycemic markers, but green tea was inversely associated with plasma C-reactive protein concentrations (percent difference: - 12.2% for ≥ 1 cup/day versus < 1 cup/week; Ptrend = 0.042). These data provide additional evidence for a beneficial effect of habitual caffeinated coffee consumption on insulin sensitivity, and suggest that this effect is unlikely to be mediated by anti-inflammatory mechanisms.

  20. Coffee and tea consumption in relation to inflammation and basal glucose metabolism in a multi-ethnic Asian population: a cross-sectional study

    PubMed Central

    2011-01-01

    Background Higher coffee consumption has been associated with a lower risk of type 2 diabetes in cohort studies, but the physiological pathways through which coffee affects glucose metabolism are not fully understood. The aim of this study was to evaluate the associations between habitual coffee and tea consumption and glucose metabolism in a multi-ethnic Asian population and possible mediation by inflammation. Methods We cross-sectionally examined the association between coffee, green tea, black tea and Oolong tea consumption and glycemic (fasting plasma glucose, HOMA-IR, HOMA-beta, plasma HbA1c) and inflammatory (plasma adiponectin and C-reactive protein) markers in a multi-ethnic Asian population (N = 4139). Results After adjusting for multiple confounders, we observed inverse associations between coffee and HOMA-IR (percent difference: - 8.8% for ≥ 3 cups/day versus rarely or never; Ptrend = 0.007), but no significant associations between coffee and inflammatory markers. Tea consumption was not associated with glycemic markers, but green tea was inversely associated with plasma C-reactive protein concentrations (percent difference: - 12.2% for ≥ 1 cup/day versus < 1 cup/week; Ptrend = 0.042). Conclusions These data provide additional evidence for a beneficial effect of habitual caffeinated coffee consumption on insulin sensitivity, and suggest that this effect is unlikely to be mediated by anti-inflammatory mechanisms. PMID:21631956

  1. Consumption of nitrate containing vegetables and the risk of chronic kidney disease: Tehran Lipid and Glucose Study.

    PubMed

    Mirmiran, Parvin; Bahadoran, Zahra; Golzarand, Mahdieh; Asghari, Golaleh; Azizi, Fereidoun

    2016-07-01

    There is growing evidence regarding the potential properties of nitrate-rich foods in development of chronic diseases. In this study, we investigated the association of nitrate-containing vegetables (NCVs) and the risk of chronic kidney disease (CKD). We evaluated 1546 eligible adult participants of the Tehran Lipid and Glucose Study (TLGS), at baseline (2006-2008) and again after 3 years (2009-2011). Dietary intake was collected using the validated semi-quantitative food frequency questionnaire. Nitrate-containing vegetables and its categories including high-, medium-, and low-nitrate vegetables were defined. Estimated glomerular filtration rate (eGFR) and CKD were defined. Association between NCVs and CKD in the cross-sectional phase and the predictability of NCVs consumption in CKD occurrence were assessed using multivariable logistic regression models with adjustment for potential confounders. Mean dietary intake of energy-adjusted NCVs was 298.0 ± 177.3 g/day. Highest compared to the lowest tertile of NCVs was accompanied with a significantly lower mean eGFR (76.6 vs. 83.3, mL/min/1.73 m(2), p < 0.001) and a higher prevalence of CKD (21.7 vs. 9.9%, p < 0.001). At baseline, higher intake of high-NCVs was associated with a 48% higher chance of having CKD (OR = 1.48, 95% CI = 1.05-2.13). After 3 years of follow-up, there was no significant association between consumption of total NCVs and its categories with the occurrence of CKD. Considering the lack of association between high-NCVs intakes and the risk of CKD in prospective analysis, additional research is recommended to clarify possible effect of nitrate intakes from vegetables on kidney function.

  2. Legume consumption and its association with fasting glucose, insulin resistance and type 2 diabetes in the Indian Migration Study.

    PubMed

    Dhillon, Preet K; Bowen, Liza; Kinra, Sanjay; Bharathi, Ankalmadugu Venkatsubbareddy; Agrawal, Sutapa; Prabhakaran, Dorairaj; Reddy, Kolli Srinath; Ebrahim, Shah

    2016-11-01

    Legume consumption is associated with lower fasting glucose (FG) and insulin levels in nutrition trials and lower CVD mortality in large-scale epidemiological studies. In India, legumes are widely consumed in various preparations, yet no epidemiological study has evaluated the association of legumes with FG levels, insulin resistance and diabetes risk. The present study aimed to fill this gap. Fasting blood samples, in-person interviews to obtain information on demographic/socio-economic factors, physical activity, alcohol and tobacco use, and anthropometric measurements were collected. Dietary intakes were assessed by an interviewer-administered, validated, semi-quantitative FFQ. Lucknow, Nagpur, Hyderabad and Bangalore, India. Men and women (n 6367) aged 15-76 years - urban residents, urban migrants and their rural siblings. In multivariate random-effects models adjusted for age, BMI, total energy intake, macronutrients, physical activity and rural/migration status, daily legume consumption was not associated with FG (P-for-trend=0·78), insulin resistance (homeostasis model assessment score; P-for-trend=0·73) or the prevalence of type 2 diabetes mellitus (P-for-trend=0·41). Stratified analyses by vegetarian diet and migration status did not change the findings. Inverse associations between legumes and FG emerged for participants with lower BMI and higher carbohydrate, protein, fat and sugar intakes. Although legumes are essential in traditional Indian diets, as well as in prudent and Mediterranean diets in the West, we did not find an association between legumes and markers of glycaemic control, insulin resistance or diabetes, except for subgroups based on BMI and macronutrient intake. The ubiquitous presence and complexity of legume preparations in Indian diets may contribute to these findings.

  3. Effects of oxygen and glucose deprivation on the expression and distribution of neuronal and inducible nitric oxide synthases and on protein nitration in rat cerebral cortex.

    PubMed

    Alonso, David; Serrano, Julia; Rodríguez, Ignacio; Ruíz-Cabello, Jesús; Fernández, Ana Patricia; Encinas, Juan Manuel; Castro-Blanco, Susana; Bentura, María Luisa; Santacana, María; Richart, Ana; Fernández-Vizarra, Paula; Uttenthal, Lars Otto; Rodrigo, José

    2002-02-04

    Changes in the nitric oxide (NO) system of the rat cerebral cortex were investigated by immunohistochemistry, immunoblotting, NO synthase (NOS) activity assay, and magnetic resonance imaging (MRI) in an experimental model of global cerebral ischemia and reperfusion. Brains were perfused transcardially with an oxygenated plasma substitute and subjected to 30 minutes of oxygen and glucose deprivation, followed by reperfusion for up to 12 hours with oxygenated medium containing glucose. A sham group was perfused without oxygen or glucose deprivation, and a further group was treated with the NOS inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME) before and during perfusion. Global ischemia led to cerebrocortical injury as shown by diffusion MRI. This was accompanied by increasing morphologic changes in the large type I interneurons expressing neuronal NOS (nNOS) and the appearance of nNOS immunoreactivity in small type II neurons. The nNOS-immunoreactive band and calcium-dependent NOS activity showed an initial increase, followed by a fall after 6 hours of reperfusion. Inducible NOS immunoreactivity appeared in neurons, especially pyramidal cells of layers IV-V, after 4 hours of reperfusion, with corresponding changes on immunoblotting and in calcium-independent NOS activity. Immunoreactive protein nitrotyrosine, present in the nuclear area of neurons in nonperfused controls and sham-perfused animals, showed changes in intensity and distribution, appearing in the neuronal processes during the reperfusion period. Prior and concurrent L-NAME administration blocked the changes on diffusion MRI and attenuated the morphologic changes, suggesting that NO and consequent peroxynitrite formation during ischemia-reperfusion contributes to cerebral injury.

  4. Twenty-four-hour endocrine and metabolic profiles following consumption of high-fructose corn syrup-, sucrose-, fructose-, and glucose-sweetened beverages with meals.

    PubMed

    Stanhope, Kimber L; Griffen, Steven C; Bair, Brandi R; Swarbrick, Michael M; Keim, Nancy L; Havel, Peter J

    2008-05-01

    We have reported that, compared with glucose-sweetened beverages, consuming fructose-sweetened beverages with meals results in lower 24-h circulating glucose, insulin, and leptin concentrations and elevated triacylglycerol (TG). However, pure fructose and glucose are not commonly used as sweeteners. High-fructose corn syrup (HFCS) has replaced sucrose as the predominant sweetener in beverages in the United States. We compared the metabolic/endocrine effects of HFCS with sucrose and, in a subset of subjects, with pure fructose and glucose. Thirty-four men and women consumed 3 isocaloric meals with either sucrose- or HFCS-sweetened beverages, and blood samples were collected over 24 h. Eight of the male subjects were also studied when fructose- or glucose-sweetened beverages were consumed. In 34 subjects, 24-h glucose, insulin, leptin, ghrelin, and TG profiles were similar between days that sucrose or HFCS was consumed. Postprandial TG excursions after HFCS or sucrose were larger in men than in women. In the men in whom the effects of 4 sweeteners were compared, the 24-h glucose and insulin responses induced by HFCS and sucrose were intermediate between the lower responses during consumption of fructose and the higher responses during glucose. Unexpectedly, postprandial TG profiles after HFCS or sucrose were not intermediate but comparably high as after pure fructose. Sucrose and HFCS do not have substantially different short-term endocrine/metabolic effects. In male subjects, short-term consumption of sucrose and HFCS resulted in postprandial TG responses comparable to those induced by fructose.

  5. Twenty-four Hour Endocrine and Metabolic Profiles Following Consumption of High Fructose Corn Syrup-, Sucrose- Fructose-, and Glucose-Sweetened Beverages with Meals

    PubMed Central

    Stanhope, Kimber L.; Griffen, Steven C.; Bair, Brandi R.; Swarbrick, Michael M.; Keim, Nancy L.; Havel, Peter J.

    2011-01-01

    Background We have reported that compared with glucose-sweetened beverages, consuming fructose-sweetened beverages with meals results in lower 24-h circulating glucose, insulin and leptin concentrations, and elevated triacylglycerol (TG). However, pure fructose and glucose are not commonly used as sweeteners. High fructose corn syrup (HFCS) has replaced sucrose as the predominant sweetener in beverages in the U.S. Objective We compared the metabolic/endocrine effects of HFCS with sucrose, and in a subset of subjects with pure fructose and glucose. Design 34 men and women consumed 3 isocaloric meals with either sucrose- or HFCS-sweetened beverages, and blood samples were collected over 24 hours. Eight of the male subjects were also studied when fructose- or glucose-sweetened beverages were consumed. Results In 34 subjects, 24-h glucose, insulin, leptin, ghrelin and TG profiles were similar between days that sucrose or HFCS were consumed. Postprandial TG excursions after HFCS or sucrose were larger in men than women. In the men in whom the effects of 4 sweeteners were compared, the 24-h glucose and insulin responses induced by HFCS and sucrose were intermediate between the lower responses during consumption of fructose and the higher responses during glucose. Unexpectedly, postprandial TG profiles after HFCS or sucrose were not intermediate, but comparably high as after pure fructose. Conclusions Sucrose and HFCS do not have substantially different short-term endocrine/metabolic effects. In male subjects, short-term consumption of sucrose and HFCS resulted in postprandial TG responses comparable to those induced by fructose. PMID:18469239

  6. Quantification of cerebral glucose metabolic rate in mice using 18F-FDG and small-animal PET.

    PubMed

    Yu, Amy S; Lin, Hong-Dun; Huang, Sung-Cheng; Phelps, Michael E; Wu, Hsiao-Ming

    2009-06-01

    The aim of this study was to evaluate various methods for estimating the metabolic rate of glucose utilization in the mouse brain (cMR(glc)) using small-animal PET and reliable blood curves derived by a microfluidic blood sampler. Typical values of (18)F-FDG rate constants of normal mouse cerebral cortex were estimated and used for cMR(glc) calculations. The feasibility of using the image-derived liver time-activity curve as a surrogate input function in various quantification methods was also evaluated. Thirteen normoglycemic C57BL/6 mice were studied. Eighteen blood samples were taken from the femoral artery by the microfluidic blood sampler. Tissue time-activity curves were derived from PET images. cMR(glc) values were calculated using 2 different input functions (one derived from the blood samples [IF(blood)] and the other from the liver time-activity curve [IF(liver)]) in various quantification methods, which included the 3-compartment (18)F-FDG model (from which the (18)F-FDG rate constants were derived), the Patlak analysis, and operational equations. The estimated cMR(glc) value based on IF(blood) and the 3-compartment model served as a standard for comparisons with the cMR(glc) values calculated by the other methods. The values of K(1), k(2), k(3), k(4), and K(FDG) estimated by IF(blood) and the 3-compartment model were 0.22 +/- 0.05 mL/min/g, 0.48 +/- 0.09 min(-1), 0.06 +/- 0.02 min(-1), 0.025 +/- 0.010 min(-1), and 0.024 +/- 0.007 mL/min/g, respectively. The standard cMR(glc) value was, therefore, 40.6 +/- 13.3 micromol/100 g/min (lumped constant = 0.6). No significant difference between the standard cMR(glc) and the cMR(glc) estimated by the operational equation that includes k(4) was observed. The standard cMR(glc) was also found to have strong correlations (r > 0.8) with the cMR(glc) value estimated by the use of IF(liver) in the 3-compartment model and with those estimated by the Patlak analysis (using either IF(blood) or IF(liver)). The (18)F

  7. Cerebral (18)FluoroDeoxy-Glucose Positron Emission Tomography in paediatric anti N-methyl-D-aspartate receptor encephalitis: A case series.

    PubMed

    Lagarde, Stanislas; Lepine, Anne; Caietta, Emilie; Pelletier, Florence; Boucraut, José; Chabrol, Brigitte; Milh, Mathieu; Guedj, Eric

    2016-05-01

    Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is a frequent and severe cause of encephalitis in children with potential efficient treatment (immunotherapy). Suggestive clinical features are behavioural troubles, seizures and movement disorders. Prompt diagnosis and treatment initiation are needed to guarantee favourable outcome. Nevertheless, diagnosis may be challenging because of the classical ancillary test (magnetic resonance imaging (MRI), electroencephalogram, standard cerebro-spinal fluid analysis) have limited sensitivity. Currently, immunological analyses are needed for the diagnostic confirmation. In adult patients, some studies suggested a potential role of cerebral (18)FluoroDeoxy-Glucose Positron Emission Tomography (FDG-PET) in the evaluation of anti-NMDAR encephalitis. Nevertheless, almost no data exist in paediatric population. We report retrospectively clinical, ancillary tests and cerebral FDG-PET data in 6 young patients (median age=10.5 years, 4 girls) with immunologically confirmed anti-NMDAR encephalitis. Our patients presented classical clinical features of anti-NMDAR encephalitis with severe course (notably four patients had normal MRI). Our series shows the feasibility and the good sensitivity of cerebral FDG-PET (6/6 patients with brain metabolism alteration) in paediatric population. We report some particular features in this population: extensive, symmetric cortical hypometabolism especially in posterior areas; asymmetric anterior focus of hypermetabolism; and basal ganglia hypermetabolism. We found also a good correlation between the clinical severity and the cerebral metabolism changes. Moreover, serial cerebral FDG-PET showed parallel brain metabolism and clinical improvement. Our study reveals the existence of specific patterns of brain metabolism alteration in anti-NMDAR encephalitis in paediatric population. Copyright © 2015 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  8. Consumption of a high β-glucan barley flour improves glucose control and fatty liver and increases muscle acylcarnitines in the Zucker diabetic fatty rat.

    PubMed

    Brockman, David A; Chen, Xiaoli; Gallaher, Daniel D

    2013-10-01

    The soluble fiber β-glucan, a natural component of barley, has been shown to lower the postprandial glucose response and is thought to improve insulin resistance. This study examined the effect of chronic consumption of the high β-glucan barley flour on glucose control, liver lipids and markers of muscle fatty acid oxidation in the Zucker diabetic fatty (ZDF) rat. Two groups of ZDF rats were fed diets containing either 6% β-glucan in the form of barley flour or cellulose as a control for 6 weeks. A group of Zucker lean rats served as a negative control. The barley flour group had an increased small intestinal contents viscosity compared to the obese control group. After 6 weeks, the barley flour group had reduced glycated hemoglobin, lower relative kidney weights and a reduced area under the curve during a glucose tolerance test, indicating improved glucose control. Fasting plasma adiponectin levels increased in the barley flour group and were not different than the lean control group. ZDF rats on the barley flour diet had lower relative epididymal fat pad weights than the obese control and a greater food efficiency ratio. The barley flour group also had reduced liver weights and a decreased concentration of liver lipids. The barley flour group had significantly higher concentrations of muscle acylcarnitines, a metabolite generated during fatty acid oxidation. These results show that chronic consumption of β-glucans can improve glucose control and decrease fatty liver in a model of diabetes with obesity.

  9. Consumption of meat is associated with higher fasting glucose and insulin concentrations regardless of glucose and insulin genetic risk scores: a meta-analysis of 50,345 Caucasians.

    PubMed

    Fretts, Amanda M; Follis, Jack L; Nettleton, Jennifer A; Lemaitre, Rozenn N; Ngwa, Julius S; Wojczynski, Mary K; Kalafati, Ioanna Panagiota; Varga, Tibor V; Frazier-Wood, Alexis C; Houston, Denise K; Lahti, Jari; Ericson, Ulrika; van den Hooven, Edith H; Mikkilä, Vera; Kiefte-de Jong, Jessica C; Mozaffarian, Dariush; Rice, Kenneth; Renström, Frida; North, Kari E; McKeown, Nicola M; Feitosa, Mary F; Kanoni, Stavroula; Smith, Caren E; Garcia, Melissa E; Tiainen, Anna-Maija; Sonestedt, Emily; Manichaikul, Ani; van Rooij, Frank J A; Dimitriou, Maria; Raitakari, Olli; Pankow, James S; Djoussé, Luc; Province, Michael A; Hu, Frank B; Lai, Chao-Qiang; Keller, Margaux F; Perälä, Mia-Maria; Rotter, Jerome I; Hofman, Albert; Graff, Misa; Kähönen, Mika; Mukamal, Kenneth; Johansson, Ingegerd; Ordovas, Jose M; Liu, Yongmei; Männistö, Satu; Uitterlinden, André G; Deloukas, Panos; Seppälä, Ilkka; Psaty, Bruce M; Cupples, L Adrienne; Borecki, Ingrid B; Franks, Paul W; Arnett, Donna K; Nalls, Mike A; Eriksson, Johan G; Orho-Melander, Marju; Franco, Oscar H; Lehtimäki, Terho; Dedoussis, George V; Meigs, James B; Siscovick, David S

    2015-11-01

    insulin resistance. The association of higher fasting glucose and insulin concentrations with meat consumption was not modified by an index of glucose- and insulin-related single-nucleotide polymorphisms. Six of the participating studies are registered at clinicaltrials.gov as NCT0000513 (Atherosclerosis Risk in Communities), NCT00149435 (Cardiovascular Health Study), NCT00005136 (Family Heart Study), NCT00005121 (Framingham Heart Study), NCT00083369 (Genetics of Lipid Lowering Drugs and Diet Network), and NCT00005487 (Multi-Ethnic Study of Atherosclerosis). © 2015 American Society for Nutrition.

  10. Consumption of meat is associated with higher fasting glucose and insulin concentrations regardless of glucose and insulin genetic risk scores: a meta-analysis of 50,345 Caucasians12

    PubMed Central

    Fretts, Amanda M; Follis, Jack L; Nettleton, Jennifer A; Lemaitre, Rozenn N; Ngwa, Julius S; Wojczynski, Mary K; Kalafati, Ioanna Panagiota; Varga, Tibor V; Frazier-Wood, Alexis C; Houston, Denise K; Lahti, Jari; Ericson, Ulrika; van den Hooven, Edith H; Mikkilä, Vera; Kiefte-de Jong, Jessica C; Mozaffarian, Dariush; Rice, Kenneth; Renström, Frida; North, Kari E; McKeown, Nicola M; Feitosa, Mary F; Kanoni, Stavroula; Smith, Caren E; Garcia, Melissa E; Tiainen, Anna-Maija; Sonestedt, Emily; Manichaikul, Ani; van Rooij, Frank JA; Dimitriou, Maria; Raitakari, Olli; Pankow, James S; Djoussé, Luc; Province, Michael A; Hu, Frank B; Lai, Chao-Qiang; Keller, Margaux F; Perälä, Mia-Maria; Rotter, Jerome I; Hofman, Albert; Graff, Misa; Kähönen, Mika; Mukamal, Kenneth; Johansson, Ingegerd; Ordovas, Jose M; Liu, Yongmei; Männistö, Satu; Uitterlinden, André G; Deloukas, Panos; Seppälä, Ilkka; Psaty, Bruce M; Cupples, L Adrienne; Borecki, Ingrid B; Franks, Paul W; Arnett, Donna K; Nalls, Mike A; Eriksson, Johan G; Orho-Melander, Marju; Franco, Oscar H; Lehtimäki, Terho; Dedoussis, George V; Meigs, James B; Siscovick, David S

    2015-01-01

    loci known to influence fasting glucose or insulin resistance. Conclusion: The association of higher fasting glucose and insulin concentrations with meat consumption was not modified by an index of glucose- and insulin-related single-nucleotide polymorphisms. Six of the participating studies are registered at clinicaltrials.gov as NCT0000513 (Atherosclerosis Risk in Communities), NCT00149435 (Cardiovascular Health Study), NCT00005136 (Family Heart Study), NCT00005121 (Framingham Heart Study), NCT00083369 (Genetics of Lipid Lowering Drugs and Diet Network), and NCT00005487 (Multi-Ethnic Study of Atherosclerosis). PMID:26354543

  11. Coffee Consumption, Newly Diagnosed Diabetes, and Other Alterations in Glucose Homeostasis: A Cross-Sectional Analysis of the Longitudinal Study of Adult Health (ELSA-Brasil)

    PubMed Central

    Yarmolinsky, James; Mueller, Noel T.; Duncan, Bruce B.; Bisi Molina, Maria del Carmen; Goulart, Alessandra C.; Schmidt, Maria Inês

    2015-01-01

    Introduction Observational studies have reported fairly consistent inverse associations between coffee consumption and risk of type 2 diabetes, but this association has been little investigated with regard to lesser degrees of hyperglycemia and other alterations in glucose homeostasis. Additionally, the association between coffee consumption and diabetes has been rarely investigated in South American populations. We examined the cross-sectional relationships of coffee intake with newly diagnosed diabetes and measures of glucose homeostasis, insulin sensitivity, and insulin secretion, in a large Brazilian cohort of middle-aged and elderly individuals. Methods We used baseline data from 12,586 participants of the Longitudinal Study of Adult Health (ELSA-Brasil). Logistic regression analyses were performed to examine associations between coffee consumption and newly diagnosed diabetes. Analysis of covariance was used to assess coffee intake in relation to two-hour glucose from an oral glucose tolerance test, fasting glucose, glycated hemoglobin, fasting and –2-hour postload insulin and measures of insulin sensitivity. Results We found an inverse association between coffee consumption and newly diagnosed diabetes, after adjusting for multiple covariates [23% and 26% lower odds of diabetes for those consuming coffee 2–3 and >3 times per day, respectively, compared to those reporting never or almost never consuming coffee, (p = .02)]. An inverse association was also found for 2-hour postload glucose [Never/almost never: 7.57 mmol/L, ≤1 time/day: 7.48 mmol/L, 2-3 times/day: 7.22 mmol/L, >3 times/day: 7.12 mol/L, p<0.0001] but not with fasting glucose concentrations (p = 0.07). Coffee was additionally associated with 2-hour postload insulin [Never/almost never: 287.2 pmol/L, ≤1 time/day: 280.1 pmol/L, 2–3 times/day: 275.3 pmol/L, >3 times/day: 262.2 pmol/L, p = 0.0005) but not with fasting insulin concentrations (p = .58). Conclusion Our present study provides

  12. Coffee Consumption, Newly Diagnosed Diabetes, and Other Alterations in Glucose Homeostasis: A Cross-Sectional Analysis of the Longitudinal Study of Adult Health (ELSA-Brasil).

    PubMed

    Yarmolinsky, James; Mueller, Noel T; Duncan, Bruce B; Bisi Molina, Maria Del Carmen; Goulart, Alessandra C; Schmidt, Maria Inês

    2015-01-01

    Observational studies have reported fairly consistent inverse associations between coffee consumption and risk of type 2 diabetes, but this association has been little investigated with regard to lesser degrees of hyperglycemia and other alterations in glucose homeostasis. Additionally, the association between coffee consumption and diabetes has been rarely investigated in South American populations. We examined the cross-sectional relationships of coffee intake with newly diagnosed diabetes and measures of glucose homeostasis, insulin sensitivity, and insulin secretion, in a large Brazilian cohort of middle-aged and elderly individuals. We used baseline data from 12,586 participants of the Longitudinal Study of Adult Health (ELSA-Brasil). Logistic regression analyses were performed to examine associations between coffee consumption and newly diagnosed diabetes. Analysis of covariance was used to assess coffee intake in relation to two-hour glucose from an oral glucose tolerance test, fasting glucose, glycated hemoglobin, fasting and -2-hour postload insulin and measures of insulin sensitivity. We found an inverse association between coffee consumption and newly diagnosed diabetes, after adjusting for multiple covariates [23% and 26% lower odds of diabetes for those consuming coffee 2-3 and >3 times per day, respectively, compared to those reporting never or almost never consuming coffee, (p = .02)]. An inverse association was also found for 2-hour postload glucose [Never/almost never: 7.57 mmol/L, ≤1 time/day: 7.48 mmol/L, 2-3 times/day: 7.22 mmol/L, >3 times/day: 7.12 mol/L, p<0.0001] but not with fasting glucose concentrations (p = 0.07). Coffee was additionally associated with 2-hour postload insulin [Never/almost never: 287.2 pmol/L, ≤1 time/day: 280.1 pmol/L, 2-3 times/day: 275.3 pmol/L, >3 times/day: 262.2 pmol/L, p = 0.0005) but not with fasting insulin concentrations (p = .58). Our present study provides further evidence of a protective effect of

  13. Vinegar Consumption Increases Insulin-Stimulated Glucose Uptake by the Forearm Muscle in Humans with Type 2 Diabetes

    PubMed Central

    Mitrou, Panayota; Maratou, Eirini; Lambadiari, Vaia; Dimitriadis, Panayiotis; Spanoudi, Filio; Raptis, Sotirios A.; Dimitriadis, George

    2015-01-01

    Background and Aims. Vinegar has been shown to have a glucose-lowering effect in patients with glucose abnormalities. However, the mechanisms of this effect are still obscure. The aim of this randomised, crossover study was to investigate the effect of vinegar on glucose metabolism in muscle which is the most important tissue for insulin-stimulated glucose disposal. Materials and Methods. Eleven subjects with DM2 consumed vinegar or placebo (at random order on two separate days, a week apart), before a mixed meal. Plasma glucose, insulin, triglycerides, nonesterified fatty acids (NEFA), and glycerol were measured preprandially and at 30–60 min for 300 min postprandially from the radial artery and from a forearm vein. Muscle blood flow was measured with strain-gauge plethysmography. Glucose uptake was calculated as the arteriovenous difference of glucose multiplied by blood flow. Results. Vinegar compared to placebo (1) increased forearm glucose uptake (p = 0.0357), (2) decreased plasma glucose (p = 0.0279), insulin (p = 0.0457), and triglycerides (p = 0.0439), and (3) did not change NEFA and glycerol. Conclusions. In DM2 vinegar reduces postprandial hyperglycaemia, hyperinsulinaemia, and hypertriglyceridaemia without affecting lipolysis. Vinegar's effect on carbohydrate metabolism may be partly accounted for by an increase in glucose uptake, demonstrating an improvement in insulin action in skeletal muscle. This trial is registered with Clinicaltrials.gov NCT02309424. PMID:26064976

  14. Cerebral blood flow response to functional activation

    PubMed Central

    Paulson, Olaf B; Hasselbalch, Steen G; Rostrup, Egill; Knudsen, Gitte Moos; Pelligrino, Dale

    2010-01-01

    Cerebral blood flow (CBF) and cerebral metabolic rate are normally coupled, that is an increase in metabolic demand will lead to an increase in flow. However, during functional activation, CBF and glucose metabolism remain coupled as they increase in proportion, whereas oxygen metabolism only increases to a minor degree—the so-called uncoupling of CBF and oxidative metabolism. Several studies have dealt with these issues, and theories have been forwarded regarding the underlying mechanisms. Some reports have speculated about the existence of a potentially deficient oxygen supply to the tissue most distant from the capillaries, whereas other studies point to a shift toward a higher degree of non-oxidative glucose consumption during activation. In this review, we argue that the key mechanism responsible for the regional CBF (rCBF) increase during functional activation is a tight coupling between rCBF and glucose metabolism. We assert that uncoupling of rCBF and oxidative metabolism is a consequence of a less pronounced increase in oxygen consumption. On the basis of earlier studies, we take into consideration the functional recruitment of capillaries and attempt to accommodate the cerebral tissue's increased demand for glucose supply during neural activation with recent evidence supporting a key function for astrocytes in rCBF regulation. PMID:19738630

  15. Uncoupling Protein 2 (UCP2) Function in the Brain as Revealed by the Cerebral Metabolism of (1-(13)C)-Glucose.

    PubMed

    Contreras, Laura; Rial, Eduardo; Cerdan, Sebastian; Satrustegui, Jorgina

    2017-01-01

    The mitochondrial aspartate/glutamate transporter Aralar/AGC1/Slc25a12 is critically involved in brain aspartate synthesis, and AGC1 deficiency results in a drastic fall of brain aspartate levels in humans and mice. It has recently been described that the uncoupling protein UCP2 transports four carbon metabolites including aspartate. Since UCP2 is expressed in several brain cell types and AGC1 is mainly neuronal, we set to test whether UCP2 could be a mitochondrial aspartate carrier in the brain glial compartment. The study of the cerebral metabolism of (1-(13)C)-glucose in vivo in wild type and UCP2-knockout mice showed no differences in C3 or C2 labeling of aspartate, suggesting that UCP2 does not function as a mitochondrial aspartate carrier in brain. However, surprisingly, a clear decrease (of about 30-35 %) in the fractional enrichment of glutamate, glutamine and GABA was observed in the brains of UCP2-KO mice which was not associated with differences in either glucose or lactate enrichments. The results suggest that the dilution in the labeling of glutamate and its downstream metabolites could originate from the uptake of an unlabeled substrate that could not leave the matrix via UCP2 becoming trapped in the matrix. Understanding the nature of the unlabeled substrate and its precursor(s) as alternative substrates to glucose is of interest in the context of neurological diseases associated with UCP2.

  16. Changes in metabolism of cerebral glucose after stereotactic leukotomy for refractory obsessive-compulsive disorder: a case report.

    PubMed Central

    Biver, F; Goldman, S; François, A; De La Porte, C; Luxen, A; Gribomont, B; Lotstra, F

    1995-01-01

    Brain glucose metabolism was investigated with PET and [18F]fluorodeoxyglucose, before and after a bifrontal stereotactic leukotomy in a 37 year old woman with refractory obsessive-compulsive disorder. A bilateral decrease in glucose metabolism was found in the orbital frontal cortex after psychosurgery. Glucose metabolism was decreased to a lesser degree in Brodmann's area 25, in the thalamus, and in the caudate nucleus. Clinical improvement in obsessive-compulsive disorder after stereotactic tractotomy seems to be associated with metabolic changes in the brain, in particular, in the orbital part of the frontal lobe. Images PMID:7738568

  17. Pulsed addition of HMF and furfural to batch-grown xylose-utilizing Saccharomyces cerevisiae results in different physiological responses in glucose and xylose consumption phase

    PubMed Central

    2013-01-01

    Background Pretreatment of lignocellulosic biomass generates a number of undesired degradation products that can inhibit microbial metabolism. Two of these compounds, the furan aldehydes 5-hydroxymethylfurfural (HMF) and 2-furaldehyde (furfural), have been shown to be an impediment for viable ethanol production. In the present study, HMF and furfural were pulse-added during either the glucose or the xylose consumption phase in order to dissect the effects of these inhibitors on energy state, redox metabolism, and gene expression of xylose-consuming Saccharomyces cerevisiae. Results Pulsed addition of 3.9 g L-1 HMF and 1.2 g L-1 furfural during either the glucose or the xylose consumption phase resulted in distinct physiological responses. Addition of furan aldehydes in the glucose consumption phase was followed by a decrease in the specific growth rate and the glycerol yield, whereas the acetate yield increased 7.3-fold, suggesting that NAD(P)H for furan aldehyde conversion was generated by acetate synthesis. No change in the intracellular levels of NAD(P)H was observed 1 hour after pulsing, whereas the intracellular concentration of ATP increased by 58%. An investigation of the response at transcriptional level revealed changes known to be correlated with perturbations in the specific growth rate, such as protein and nucleotide biosynthesis. Addition of furan aldehydes during the xylose consumption phase brought about an increase in the glycerol and acetate yields, whereas the xylitol yield was severely reduced. The intracellular concentrations of NADH and NADPH decreased by 58 and 85%, respectively, hence suggesting that HMF and furfural drained the cells of reducing power. The intracellular concentration of ATP was reduced by 42% 1 hour after pulsing of inhibitors, suggesting that energy-requiring repair or maintenance processes were activated. Transcriptome profiling showed that NADPH-requiring processes such as amino acid biosynthesis and sulfate and

  18. Consumption of added sugars from liquid but not solid sources predicts impaired glucose homeostasis and insulin resistance among youth at risk of obesity.

    PubMed

    Wang, Jiawei; Light, Kelly; Henderson, Mélanie; O'Loughlin, Jennifer; Mathieu, Marie-Eve; Paradis, Gilles; Gray-Donald, Katherine

    2014-01-01

    Little is known about longitudinal associations between added sugar consumption (solid and liquid sources) and glucose-insulin homeostasis among youth. Caucasian children (8-10 y) with at least one obese biological parent were recruited in the QUébec Adipose and Lifestyle InvesTigation in Youth (QUALITY) cohort (n = 630) and followed-up 2 y later (n = 564). Added sugars were assessed by 3 24-h dietary recalls at baseline. Two-year changes were examined in multivariate linear regression models, adjusting for baseline level, age, sex, Tanner stage, energy intake, fat mass (dual-energy X-ray absorptiometry), and physical activity (7 d accelerometer). Added sugar intake in either liquid or solid sources was not related to changes in adiposity measures (fat mass, body mass index, or waist circumference). However, a higher consumption (10 g/d) of added sugars from liquid sources was associated with 0.04 mmol/L higher fasting glucose, 2.3 pmol/L higher fasting insulin, 0.1 unit higher homeostasis model assessment of insulin resistance (HOMA-IR), and 0.4 unit lower Matsuda-insulin sensitivity index (Matsuda-ISI) in all participants (P < 0.01). No associations were observed with consumption of added sugars from solid sources. Overweight/obese children at baseline had greater increases in adiposity indicators, fasting insulin, and HOMA-IR and decreases in Matsuda-ISI during those 2 y than normal-weight children. Consumption of added sugars from liquid or solid sources was not associated with changes in adiposity, but liquid added sugars were a risk factor for the development of impaired glucose homeostasis and insulin resistance over 2 y among youth at risk of obesity.

  19. [Glucose homeostasis in children. I. Regulation of blood glucose].

    PubMed

    Otto Buczkowska, E; Szirer, G; Jarosz-Chobot, P

    2001-01-01

    The amount of glucose in the circulation depends on its absorption from the intestine, uptake by and release from the liver and uptake by peripheral tissues. Insulin and glucagon together control the metabolities required by peripheral tissues and both are involved in maintaining glucose homeostasis. Insulin is considered to be an anabolic hormone in that it promotes the synthesis of protein, lipid and glycogen. The key target tissues for insulin are liver, muscles and adipose tissue. Glucagon acts largely to increase catabolic processes. Between meals or during fast, the most tightly regulated process is the release of glucose from the liver. During fasting glucose is produced from glycogen and is formed by enzymes on the gluconeogenic pathway. Fetal metabolism is directed to ensure anabolism with formation of glycogen, fat and protein. Glucogen is stored in the liver and serves as the immediate source of new glucose during first few hours after birth. Glucose is the most important substrate for brain metabolism. Due to the large size of neonatal brain in relation to body weight cerebral glucose consumption is particularly high. Postnatal hormonal changes have a central role in regulating glucose mobilization through glycogenolysis and gluconeogenesis. The initial glucagon surge is the key adaptive change which triggers the switch to glucose production. The control of insulin and glucagon secretion is of fundamental importance during first hours after birth. Children have a decreased tolerance to starvation when compared with adults, they are more prone to develop hypoglycaemia after short fasting. The faster rate in the fall of blood glucose and gluconeogenic substrates and rapid rate of ketogenesis are characteristic features of fasting adaptation in children.

  20. Consumption of sericin reduces serum lipids, ameliorates glucose tolerance and elevates serum adiponectin in rats fed a high-fat diet.

    PubMed

    Okazaki, Yukako; Kakehi, Shoko; Xu, Yonghui; Tsujimoto, Kazuhisa; Sasaki, Masahiro; Ogawa, Hiroshi; Kato, Norihisa

    2010-01-01

    The effect was examined of dietary sericin on the lipid and carbohydrate metabolism in rats fed with a high-fat diet. The rats were fed with a 20% beef tallow diet with or without sericin at the level of 4% for 5 weeks. The final body weight and white adipose tissue weight were unaffected by dietary manipulation. The consumption of sericin significantly reduced the serum levels of triglyceride, cholesterol, phospholipids and free fatty acids. Serum very-low-density lipoprotein (VLDL)-triglyceride, VLDL-cholesterol, low-density lipoprotein (LDL)-cholesterol and LDL-phospholipids were also significantly reduced by the sericin intake. Liver triglyceride and the activities of glucose 6-phosphate dehydrogenase and malic enzyme, the lipogenic enzymes, were also reduced by the sericin intake. Dietary sericin caused a marked elevation in serum adiponectin. The consumption of sericin suppressed the increases in plasma glucose and insulin levels after an intraperitoneal glucose injection. These results imply the usefulness of sericin for improving the lipid and carbohydrate metabolism in rats fed on a high-fat diet.

  1. Reduced fetal cerebral oxygen consumption is associated with smaller brain size in fetuses with congenital heart disease.

    PubMed

    Sun, Liqun; Macgowan, Christopher K; Sled, John G; Yoo, Shi-Joon; Manlhiot, Cedric; Porayette, Prashob; Grosse-Wortmann, Lars; Jaeggi, Edgar; McCrindle, Brian W; Kingdom, John; Hickey, Edward; Miller, Steven; Seed, Mike

    2015-04-14

    Fetal hypoxia has been implicated in the abnormal brain development seen in newborns with congenital heart disease (CHD). New magnetic resonance imaging technology now offers the potential to investigate the relationship between fetal hemodynamics and brain dysmaturation. We measured fetal brain size, oxygen saturation, and blood flow in the major vessels of the fetal circulation in 30 late-gestation fetuses with CHD and 30 normal controls using phase-contrast magnetic resonance imaging and T2 mapping. Fetal hemodynamic parameters were calculated from a combination of magnetic resonance imaging flow and oximetry data and fetal hemoglobin concentrations estimated from population averages. In fetuses with CHD, reductions in umbilical vein oxygen content (P<0.001) and failure of the normal streaming of oxygenated blood from the placenta to the ascending aorta were associated with a mean reduction in ascending aortic saturation of 10% (P<0.001), whereas cerebral blood flow and cerebral oxygen extraction were no different from those in controls. This accounted for the mean 15% reduction in cerebral oxygen delivery (P=0.08) and 32% reduction cerebral Vo2 in CHD fetuses (P<0.001), which were associated with a 13% reduction in fetal brain volume (P<0.001). Fetal brain size correlated with ascending aortic oxygen saturation and cerebral Vo2 (r=0.37, P=0.004). This study supports a direct link between reduced cerebral oxygenation and impaired brain growth in fetuses with CHD and raises the possibility that in utero brain development could be improved with maternal oxygen therapy. © 2015 American Heart Association, Inc.

  2. Uncoupling of cerebral glucose supply and utilization after hexane-2,5-dione intoxication in the rat.

    PubMed

    Planas, A M; Cunningham, V J

    1987-03-01

    Chronic administration of hexane-2,5-dione (2,5-HD) to rats causes an accumulation of neurofilaments within axons that may lead to their degeneration. This occurs in both the CNS and PNS. It has been suggested that one of the effects of 2,5-HD is an impairment of glucose utilization arising from an inhibition of specific glycolytic enzymes. This hypothesis is based principally on evidence obtained in vitro. In the present study, glucose utilization, glucose transport across the blood-brain barrier, and blood flow have been measured in vivo in brain regions of control rats and in three groups of rats treated with 2,5-HD as (a) a single intragastric dose (500 mg/kg of body weight), (b) high chronic doses of 500 mg/kg of body weight for 15 days, or (c) low chronic doses of 250 mg/kg of body weight for 21 days. Group b showed overt signs of neuropathy, whereas groups a and c did not. The results indicate two independent effects of 2,5-HD in the CNS: a dose-dependent inhibition of glucose utilization and an effect on glucose supply and transport across the blood-brain barrier, which is apparent only after chronic treatment.

  3. Consumption of red meat and whole-grain bread in relation to biomarkers of obesity, inflammation, glucose metabolism and oxidative stress.

    PubMed

    Montonen, Jukka; Boeing, Heiner; Fritsche, Andreas; Schleicher, Erwin; Joost, Hans-Georg; Schulze, Matthias B; Steffen, Annika; Pischon, Tobias

    2013-02-01

    To examine the association of red meat and whole-grain bread consumption with plasma levels of biomarkers related to glucose metabolism, oxidative stress, inflammation and obesity. Our cross-sectional study was based on 2,198 men and women who were selected as a sub-cohort for an investigation of biological predictors of diabetes and cardiovascular diseases from the European Prospective Investigation into Cancer and Nutrition-Potsdam study. Circulating levels of glycated hemoglobin, adiponectin, hs-CRP, gamma-glutamyltransferase, alanine-aminotransferase, fetuin-A, HDL-cholesterol and triglycerides were measured from random blood samples. Diet and lifestyle data were assessed by questionnaires, and anthropometric data were measured. After multivariable adjustment, higher consumption of whole-grain bread was significantly (P trend <0.05) associated with lower levels of GGT, ALT and hs-CRP, whereas higher consumption of red meat was significantly associated with higher levels of GGT and hs-CRP when adjusted for potential confounding factors related to lifestyle and diet. Further adjustment for body mass index and waist circumference attenuated the association between red meat and hs-CRP (P = 0.19). The results of this study suggest that high consumption of whole-grain bread is related to lower levels of GGT, ALT and hs-CRP, whereas high consumption of red meat is associated with higher circulating levels of GGT and hs-CRP.

  4. A novel dual-glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide receptor agonist is neuroprotective in transient focal cerebral ischemia in the rat.

    PubMed

    Han, Ling; Hölscher, Christian; Xue, Guo-Fang; Li, Guanglai; Li, Dongfang

    2016-01-06

    Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) receptor agonists have been shown to be neuroprotective in previous studies in animal models of Alzheimer's or Parkinson's disease. Recently, novel dual-GLP-1/GIP receptor agonists that activate both receptors (DA) were developed to treat diabetes. We tested the protective effects of a novel potent DA against middle cerebral artery occlusion injury in rats and compared it with a potent GLP-1 analog, Val(8)-GLP-1(glu-PAL). Animals were evaluated for neurologic deficit score, infarct volume, and immunohistochemical analyses of the brain at several time points after ischemia. The Val(8)-GLP-1(glu-PAL)-treated and DA-treated groups showed significantly reduced scores of neurological dysfunction, cerebral infarction size, and percentage of TUNEL-positive apoptotic neurons. Furthermore, the expression of the apoptosis marker Bax, the inflammation marker iNOS, and the survival marker Bcl-2 was significantly increased. The DA-treated group was better protected against neurodegeneration than the Val(8)-GLP-1(glu-PAL) group, and the scores of neurological dysfunction, cerebral infarction size, and expression of Bcl-2 were higher, whereas the percentage of TUNEL-positive neurons and the levels of Bax and iNOS were lower in the DA group. DA treatment reduced the infarct volume and improved the functional deficit. It also suppressed the inflammatory response and cell apoptosis after reperfusion. In conclusion, the novel GIP and GLP-1 dual-receptor agonist is more neuroprotective than a GLP-1 receptor agonist in key biomarkers of neuronal degeneration.

  5. Magnetic resonance angiography-defined intracranial vasculopathy is associated with silent cerebral infarcts and glucose-6-phosphate dehydrogenase mutation in children with sickle cell anaemia.

    PubMed

    Thangarajh, Mathula; Yang, Genyan; Fuchs, Dana; Ponisio, Maria R; McKinstry, Robert C; Jaju, Alok; Noetzel, Michael J; Casella, James F; Barron-Casella, Emily; Hooper, W Craig; Boulet, Sheree L; Bean, Christopher J; Pyle, Meredith E; Payne, Amanda B; Driggers, Jennifer; Trau, Heidi A; Vendt, Bruce A; Rodeghier, Mark; DeBaun, Michael R

    2012-11-01

    Silent cerebral infarct (SCI) is the most commonly recognized cause of neurological injury in sickle cell anaemia (SCA). We tested the hypothesis that magnetic resonance angiography (MRA)-defined vasculopathy is associated with SCI. Furthermore, we examined genetic variations in glucose-6-phosphate dehydrogenase (G6PD) and HBA (α-globin) genes to determine their association with intracranial vasculopathy in children with SCA. Magnetic resonance imaging (MRI) of the brain and MRA of the cerebral vasculature were available in 516 paediatric patients with SCA, enrolled in the Silent Infarct Transfusion (SIT) Trial. All patients were screened for G6PD mutations and HBA deletions. SCI were present in 41·5% (214 of 516) of SIT Trial children. The frequency of intracranial vasculopathy with and without SCI was 15·9% and 6·3%, respectively (P < 0·001). Using a multivariable logistic regression model, only the presence of a SCI was associated with increased odds of vasculopathy (P = 0·0007, odds ratio (OR) 2·84; 95% Confidence Interval (CI) = 1·55-5·21). Among male children with SCA, G6PD status was associated with vasculopathy (P = 0·04, OR 2·78; 95% CI = 1·04-7·42), while no significant association was noted for HBA deletions. Intracranial vasculopathy was observed in a minority of children with SCA, and when present, was associated with G6PD status in males and SCI.

  6. Neurotrophin-3 promotes cell death induced in cerebral ischemia, oxygen-glucose deprivation, and oxidative stress: possible involvement of oxygen free radicals.

    PubMed

    Bates, Brian; Hirt, Lorenz; Thomas, Sunu S; Akbarian, Schahram; Le, Dean; Amin-Hanjani, Sepideh; Whalen, Michael; Jaenisch, Rudolf; Moskowitz, Michael A

    2002-02-01

    To explore the role of neurotrophin-3 (NT-3) during cerebral ischemia, NT-3-deficient brains were subjected to transient focal ischemia. Conditional mutant brains produced undetectable amounts of NT-3 mRNA, whereas the expression of the neurotrophin, BDNF, the NT-3 receptor, TrkC, and the nonselective, low-affinity neurotrophin receptor p75NTR, were comparable to wild-type. Baseline absolute blood flow, vascular and neuroanatomical features, as well as physiological measurements were also indistinguishable from wild-type. Interestingly, the absence of NT-3 led to a significantly decreased infarct volume 23 h after middle cerebral artery occlusion. Consistent with this, the addition of NT-3 to primary cortical cell cultures exacerbated neuronal death caused by oxygen-glucose deprivation. Coincubation with the oxygen free radical chelator, trolox, diminished potentiation of neuronal death. NT-3 also enhanced neuronal cell death and the production of reactive oxygen species caused by oxidative damage inducing agents. We conclude that endogenous NT-3 enhanced neuronal injury during acute stroke, possible by increasing oxygen-radical mediated cell death.

  7. Consumption of Honey, Sucrose, and High-Fructose Corn Syrup Produces Similar Metabolic Effects in Glucose-Tolerant and -Intolerant Individuals.

    PubMed

    Raatz, Susan K; Johnson, LuAnn K; Picklo, Matthew J

    2015-10-01

    Public health recommendations call for a reduction in added sugars; however, controversy exists over whether all nutritive sweeteners produce similar metabolic effects. The objective was to compare the effects of the chronic consumption of 3 nutritive sweeteners [honey, sucrose, and high-fructose corn syrup containing 55% fructose (HFCS55)] on circulating glucose, insulin, lipids, and inflammatory markers; body weight; and blood pressure in individuals with normal glucose tolerance (GT) and those with impaired glucose tolerance (IGT). In a crossover design, participants consumed daily, in random order, 50 g carbohydrate from assigned sweeteners for 2 wk with a 2- to 4-wk washout period between treatments. Participants included 28 GT and 27 IGT volunteers with a mean age of 38.9 ± 3.6 y and 52.1 ± 2.7 y, respectively, and a body mass index (in kg/m(2)) of 26 ± 0.8 and 31.5 ± 1.0, respectively. Body weight, blood pressure (BP), serum inflammatory markers, lipids, fasting glucose and insulin, and oral-glucose-tolerance tests (OGTTs) were completed pre- and post-treatment. The OGTT incremental areas under the curve (iAUCs) for glucose and insulin were determined and homeostasis model assessment of insulin resistance (HOMA-IR) scores were calculated. Body weight and serum glucose, insulin, inflammatory markers, and total and LDL-cholesterol concentrations were significantly higher in the IGT group than in the GT group at baseline. Glucose, insulin, HOMA-IR, and the OGTT iAUC for glucose or insulin did not differ by treatment, but all responses were significantly higher in the IGT group compared with the GT group. Body weight was unchanged by treatment. Systolic BP was unchanged, whereas diastolic BP was significantly lower in response to sugar intake across all treatments. An increase in high-sensitivity C-reactive protein (hsCRP) was observed in the IGT group in response to all sugars. No treatment effect was observed for interleukin 6. HDL cholesterol did not

  8. Postprandial glucose and insulin levels in type 2 diabetes mellitus patients after consumption of ready-to-eat mixed meals.

    PubMed

    Manios, Yannis; Moschonis, George; Mavrogianni, Christina; Tsoutsoulopoulou, Konstantina; Kogkas, Stergios; Lambrinou, Christina-Paulina; Efstathopoulou, Eirini

    2017-04-01

    To compare the effects of three ready-to-eat mixed meals, with a high fiber content and low glycemic index, on postprandial glycemic and insulinemic response in patients with Type 2 diabetes mellitus (T2DM). The current study followed a prospective, three-way, cross-over design. Twenty-four patients with T2DM consumed three ready-to-eat mixed meals, i.e., "wild greens pie" (meal 1), "chicken burgers with boiled vegetables" (meal 2) and "vegetable moussaka" (meal 3) and an oral glucose load, all providing 50 g of carbohydrates. Venous blood was collected at 0, 30, 60, 90 and 120 min postprandial. Statistical analyses included repeated measures analysis of variance and calculations of the area under the glucose and insulin curves (AUC) for each one of the test meals and the oral glucose load. Patients consuming each one of the three mixed meals showed better postprandial glycemic responses compared to the oral glucose load (P < 0.001). Furthermore, patients consuming meal 3 showed a better insulinemic response compared to the oral glucose load and meal 1, after 60 and 120 min postprandial, respectively (P < 0.05). In addition, the increase observed in HOMA-IR values from T0 to T120 was significantly lower for meal 3, compared to the oral glucose load (P < 0.001). The three ready-to-eat mixed meals examined in the present study were found to elicit significantly lower glycemic responses compared to the oral glucose load in diabetic patients. The mixed meals examined in the present study could be proposed as effective, palatable and practical solutions for diabetics for glucose control.

  9. Fast food consumption and the risk of metabolic syndrome after 3-years of follow-up: Tehran Lipid and Glucose Study.

    PubMed

    Bahadoran, Z; Mirmiran, P; Hosseini-Esfahani, F; Azizi, F

    2013-12-01

    There are growing concern globally regarding fast food consumption and its related cardiometabolic outcomes. In this study we investigated whether fast food consumption could affect the occurrence of metabolic syndrome (MetS) after 3-years of follow-up in adults. This longitudinal study was conducted in the framework of Tehran Lipid and Glucose Study on 1476 adults, aged 19-70 y. The usual intakes of participants were measured using a validated semi-quantitative food frequency questionnaire at baseline. Biochemical and anthropometric measurements were assessed at baseline (2006-2008) and 3 years later (2009-2011). Multiple logistic regression models were used to estimate the occurrence of the MetS in each quartile of fast food consumption. The mean age of participants was 37.8±12.3 y, and mean BMI was 26.0±4.5 kg/m(2) at baseline. Participants in the highest quartile of fast food consumption were younger (33.7 vs 43.4 years, P<0.01). Higher consumption of fast food was accompanied with more increase in serum triglyceride levels and triglyceride to HDL-C ratio after the 3-year follow-up. After adjustment for all potential confounding variables, the risk of metabolic syndrome, in the highest quartile of fast foods compared with the lowest, was 1.85 (95% CI=1.17-2.95). The effects of fast food consumption on the occurrence of MetS were more pronounced in younger adults (<30 years), and participants who had greater wait to hip ratio, consumed less phytochemical-rich foods or had low-fiber diet (P<0.05). We demonstrated that higher consumption of fast foods had undesirable effects on metabolic syndrome after 3-years of follow-up in Iranian adults.

  10. Adaptive metabolic response to 4 weeks of sugar-sweetened beverage consumption in healthy, lightly active individuals and chronic high glucose availability in primary human myotubes.

    PubMed

    Sartor, Francesco; Jackson, Matthew J; Squillace, Cesare; Shepherd, Anthony; Moore, Jonathan P; Ayer, Donald E; Kubis, Hans-Peter

    2013-04-01

    Chronic sugar-sweetened beverage (SSB) consumption is associated with obesity and type 2 diabetes mellitus (T2DM). Hyperglycaemia contributes to metabolic alterations observed in T2DM, such as reduced oxidative capacity and elevated glycolytic and lipogenic enzyme expressions in skeletal muscle tissue. We aimed to investigate the metabolic alterations induced by SSB supplementation in healthy individuals and to compare these with the effects of chronic hyperglycaemia on primary muscle cell cultures. Lightly active, healthy, lean subjects (n = 11) with sporadic soft drink consumption underwent a 4-week SSB supplementation (140 ± 15 g/day, ~2 g glucose/kg body weight/day, glucose syrup). Before and after the intervention, body composition, respiratory exchange ratio (RER), insulin sensitivity, muscle metabolic gene and protein expression were assessed. Adaptive responses to hyperglycaemia (7 days, 15 mM) were tested in primary human myotubes. SSB supplementation increased fat mass (+1.0 kg, P < 0.05), fasting RER (+0.12, P < 0.05), fasting glucose (+0.3 mmol/L, P < 0.05) and muscle GAPDH mRNA expressions (+0.94 AU, P < 0.05). PGC1α mRNA was reduced (-0.20 AU, P < 0.05). Trends were found for insulin resistance (+0.16 mU/L, P = 0.09), and MondoA protein levels (+1.58 AU, P = 0.08). Primary myotubes showed elevations in GAPDH, ACC, MondoA and TXNIP protein expressions (P < 0.05). Four weeks of SSB supplementation in healthy individuals shifted substrate metabolism towards carbohydrates, increasing glycolytic and lipogenic gene expression and reducing mitochondrial markers. Glucose-sensing protein MondoA might contribute to this shift, although further in vivo evidence is needed to corroborate this.

  11. Adaptive metabolic response to 4 weeks of sugar-sweetened beverage consumption in healthy, lightly active individuals and chronic high glucose availability in primary human myotubes

    PubMed Central

    Sartor, Francesco; Jackson, Matthew J.; Squillace, Cesare; Shepherd, Anthony; Moore, Jonathan P.; Ayer, Donald E.

    2015-01-01

    Purpose Chronic sugar-sweetened beverage (SSB) consumption is associated with obesity and type 2 diabetes mellitus (T2DM). Hyperglycaemia contributes to metabolic alterations observed in T2DM, such as reduced oxidative capacity and elevated glycolytic and lipogenic enzyme expressions in skeletal muscle tissue. We aimed to investigate the metabolic alterations induced by SSB supplementation in healthy individuals and to compare these with the effects of chronic hyperglycaemia on primary muscle cell cultures. Methods Lightly active, healthy, lean subjects (n = 11) with sporadic soft drink consumption underwent a 4-week SSB supplementation (140 ± 15 g/day, ∼2 g glucose/kg body weight/day, glucose syrup). Before and after the intervention, body composition, respiratory exchange ratio (RER), insulin sensitivity, muscle metabolic gene and protein expression were assessed. Adaptive responses to hyperglycaemia (7 days, 15 mM) were tested in primary human myotubes. Results SSB supplementation increased fat mass (+1.0 kg, P < 0.05), fasting RER (+0.12, P < 0.05), fasting glucose (+0.3 mmol/L, P < 0.05) and muscle GAPDH mRNA expressions (+0.94 AU, P < 0.05). PGC1a mRNA was reduced (−0.20 AU, P < 0.05). Trends were found for insulin resistance (+0.16 mU/L, P = 0.09), and MondoA protein levels (+1.58 AU, P = 0.08). Primary myotubes showed elevations in GAPDH, ACC, MondoA and TXNIP protein expressions (P < 0.05). Conclusion Four weeks of SSB supplementation in healthy individuals shifted substrate metabolism towards carbohydrates, increasing glycolytic and lipogenic gene expression and reducing mitochondrial markers. Glucose-sensing protein MondoA might contribute to this shift, although further in vivo evidence is needed to corroborate this. PMID:22733000

  12. No effect of acute beetroot juice ingestion on oxygen consumption, glucose kinetics, or skeletal muscle metabolism during submaximal exercise in males.

    PubMed

    Betteridge, Scott; Bescós, Raúl; Martorell, Miquel; Pons, Antoni; Garnham, Andrew P; Stathis, Christos C; McConell, Glenn K

    2016-02-15

    Beetroot juice, which is rich in nitrate (NO3 (-)), has been shown in some studies to decrease oxygen consumption (V̇o2) for a given exercise workload, i.e., increasing efficiency and exercise tolerance. Few studies have examined the effect of beetroot juice or nitrate supplementation on exercise metabolism. Eight healthy recreationally active males participated in three trials involving ingestion of either beetroot juice (Beet; ∼8 mmol NO3 (-)), Placebo (nitrate-depleted Beet), or Beet + mouthwash (Beet+MW), all of which were performed in a randomized single-blind crossover design. Two-and-a-half hours later, participants cycled for 60 min on an ergometer at 65% of V̇o2 peak. [6,6-(2)H]glucose was infused to determine glucose kinetics, blood samples obtained throughout exercise, and skeletal muscle biopsies that were obtained pre- and postexercise. Plasma nitrite [NO2 (-)] increased significantly (∼130%) with Beet, and this was attenuated in MW+Beet. Beet and Beet+MW had no significant effect on oxygen consumption, blood glucose, blood lactate, plasma nonesterified fatty acids, or plasma insulin during exercise. Beet and Beet+MW also had no significant effect on the increase in glucose disposal during exercise. In addition, Beet and Beet+MW had no significant effect on the decrease in muscle glycogen and phosphocreatine and the increase in muscle creatine, lactate, and phosphorylated acetyl CoA carboxylase during exercise. In conclusion, at the dose used, acute ingestion of beetroot juice had little effect on skeletal muscle metabolism during exercise.

  13. Effect of post-exercise caffeine and green coffee bean extract consumption on blood glucose and insulin concentrations.

    PubMed

    Beam, Jason R; Gibson, Ann L; Kerksick, Chad M; Conn, Carole A; White, Ailish C; Mermier, Christine M

    2015-02-01

    The aim of this study was to investigate the effects of ingesting caffeine and green coffee bean extract on blood glucose and insulin concentrations during a post-exercise oral glucose tolerance test. Ten male cyclists (age: 26 ± 5 y; height: 179.9 ± 5.4 cm; weight: 77.6 ± 13.3 kg; body mass index: 24 ± 4.3 kg/m(2); VO2 peak: 55.9 ± 8.4 mL·kg·min(-1)) participated in this study. In a randomized order, each participant completed three 30-min bouts of cycling at 60% of peak power output. Immediately after exercise, each participant consumed 75 g of dextrose with either 5 mg/kg body weight of caffeine, 10 mg/kg of green coffee bean extract (5 mg/kg chlorogenic acid), or placebo. Venous blood samples were collected immediately before and after exercise during completion of the oral glucose tolerance test. No significant time × treatment effects for blood glucose and insulin were found. Two-h glucose and insulin area under the curve values, respectively, for the caffeine (658 ± 74 mmol/L and 30,005 ± 13,304 pmol/L), green coffee bean extract (637 ± 100 mmol/L and 31,965 ± 23,586 pmol/L), and placebo (661 ± 77 mmol/L and 27,020 ± 12,339 pmol/L) trials were not significantly different (P > 0.05). Caffeine and green coffee bean extract did not significantly alter postexercise blood glucose and insulin concentrations when compared with a placebo. More human research is needed to determine the impact of these combined nutritional treatments and exercise on changes in blood glucose and insulin. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Is the metabolic syndrome inversely associates with butter, non-hydrogenated- and hydrogenated-vegetable oils consumption: Tehran lipid and glucose study.

    PubMed

    Hosseinpour-Niazi, Somayeh; Mirmiran, Parvin; Hosseini-Esfahani, Firoozeh; Azizi, Fereidoun

    2016-02-01

    The aim of this study was to investigate the association between hydrogenated- (HVOs) and non-hydrogenated vegetable oils (non-HVOs) and butter and the metabolic syndrome (MetS) after 3-years of follow-up in adults. This study was conducted between 2006-2008 and 2009-2011 within the framework of the Tehran Lipid and Glucose Study, on 1582 adults, aged 19-84 years. Intakes of HVOs, non-HVOs and butter were assessed by a validated semi-quantitative food frequency questionnaire. Based on the consumption of food rich in fat including HVOs, non-HVOs and butter, participants were categorized to consumers and non-consumers. Of 1582 participants during a 3-year follow-up, 15.2% developed MetS. Non-consumption of butter was associated with lower MetS risk compared with its consumption. Among consumers of food rich in fat, intake of HVOs and butter were associated with an increased risk of MetS; ORs in the final multivariate model were 2.70 (95% CI: 1.52-4.78) for HVOs and 2.03 (95% CI: 1.20-3.41) for butter, in the highest, compared to the lowest category of dietary intakes. Intake of non-HVOs was not associated with risk of MetS. Consumption of HVOs and butter were positively associated with an increase risk of MetS. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Purification and Characterization of Aporphine Alkaloids from Leaves of Nelumbo nucifera Gaertn and Their Effects on Glucose Consumption in 3T3-L1 Adipocytes

    PubMed Central

    Ma, Chengjun; Wang, Jinjun; Chu, Hongmei; Zhang, Xiaoxiao; Wang, Zhenhua; Wang, Honglun; Li, Gang

    2014-01-01

    Aporphine alkaloids from the leaves of Nelumbo nucifera Gaertn are substances of great interest because of their important pharmacological activities, particularly anti-diabetic, anti-obesity, anti-hyperlipidemic, anti-oxidant, and anti-HIV’s activities. In order to produce large amounts of pure alkaloid for research purposes, a novel method using high-speed counter-current chromatography (HSCCC) was developed. Without any initial cleanup steps, four main aporphine alkaloids, including 2-hydroxy-1-methoxyaporphine, pronuciferine, nuciferine and roemerine were successfully purified from the crude extract by HSCCC in one step. The separation was performed with a simple two-phase solvent system composed of n-hexane-ethyl acetate-methanol-acetonitrile-water (5:3:3:2.5:5, v/v/v/v/v). In each operation, 100 mg crude extracts was separated and yielded 6.3 mg of 2-hydroxy-1-methoxyaporphine (95.1% purity), 1.1 mg of pronuciferine (96.8% purity), 8.5 mg of nuciferine (98.9% purity), and 2.7 mg of roemerine (97.4%) respectively. The chemical structure of four aporphine alkaloids are identified by means of electrospray ionization MS (ESI-MS) and nuclear magnetic resonance (NMR) analysis. Moreover, the effects of four separated aporphine alkaloids on insulin-stimulated glucose consumption were examined in 3T3-L1 adipocytes. The results showed that 2-hydroxy-1-methoxyaporphine and pronuciferine increased the glucose consumption significantly as rosiglitazone did. PMID:24577311

  16. Caffeinated coffee consumption impairs blood glucose homeostasis in response to high and low glycemic index meals in healthy men.

    PubMed

    Moisey, Lesley L; Kacker, Sita; Bickerton, Andrea C; Robinson, Lindsay E; Graham, Terry E

    2008-05-01

    The ingestion of caffeine (5 mg/kg body weight) and a 75-g oral glucose load has been shown to elicit an acute insulin-insensitive environment in healthy and obese individuals and in those with type 2 diabetes. In this study we investigated whether a similar impairment in blood glucose management exists when coffee and foods typical of a Western diet were used in a similar protocol. Ten healthy men underwent 4 trials in a randomized order. They ingested caffeinated (5 mg/kg) coffee (CC) or the same volume of decaffeinated coffee (DC) followed 1 h later by either a high or low glycemic index (GI) cereal (providing 75 g of carbohydrate) mixed meal tolerance test. CC with the high GI meal resulted in 147%, 29%, and 40% greater areas under the curve for glucose (P < 0.001), insulin (NS), and C-peptide (P < 0.001), respectively, compared with the values for DC. Similarly, with the low GI treatment, CC elicited 216%, 44%, and 36% greater areas under the curve for glucose (P < 0.001), insulin (P < 0.01), and C-peptide (P < 0.01), respectively. Insulin sensitivity was significantly reduced (40%) with the high GI treatment after CC was ingested compared with DC; with the low GI treatment, CC ingestion resulted in a 29% decrease in insulin sensitivity, although this difference was not significant. The ingestion of CC with either a high or low GI meal significantly impairs acute blood glucose management and insulin sensitivity compared with ingestion of DC. Future investigations are warranted to determine whether CC is a risk factor for insulin resistance.

  17. A mixture of apple pomace and rosemary extract improves fructose consumption-induced insulin resistance in rats: modulation of sarcolemmal CD36 and glucose transporter-4

    PubMed Central

    Ma, Peng; Yao, Ling; Lin, Xuemei; Gu, Tieguang; Rong, Xianglu; Batey, Robert; Yamahara, Johji; Wang, Jianwei; Li, Yuhao

    2016-01-01

    Apple pomace is a by-product of the processing of apple for juice, cider or wine preparation. Rosemary is a herb commonly used as spice and flavoring agent in food processing. Evidence suggests that both apple pomace and rosemary have rich bioactive molecules with numerous metabolic effects. To provide more information for using apple pomace and rosemary as functional foods for management of metabolism-associated disorders, the present study investigated the insulin-sensitizing effect of a mixture of apple pomace and rosemary extract (AR). The results showed that treatment with AR (500 mg/kg, daily, by gavage) for 5 weeks attenuated chronic liquid fructose consumption-induced increases in fasting plasma insulin concentration, the homeostasis model assessment of insulin resistance index and the adipose tissue insulin resistance index in rats. Mechanistically, AR suppressed fructose-induced acceleration of the clearance of plasma non-esterified fatty acids during oral glucose tolerance test, and decreased excessive triglyceride accumulation and the increased Oil Red O staining area in the gastrocnemius. Furthermore, AR restored fructose-induced overexpression of sarcolemmal CD36 that is known to contribute to etiology of insulin resistance by facilitating fatty acid uptake, and downregulation of sarcolemmal glucose transporter (GLUT)-4 that is the insulin-responsive glucose transporter. Thus, these results demonstrate that AR improves fructose-induced insulin resistance in rats via modulation of sarcolemmal CD36 and GLUT-4. PMID:27725859

  18. A mixture of apple pomace and rosemary extract improves fructose consumption-induced insulin resistance in rats: modulation of sarcolemmal CD36 and glucose transporter-4.

    PubMed

    Ma, Peng; Yao, Ling; Lin, Xuemei; Gu, Tieguang; Rong, Xianglu; Batey, Robert; Yamahara, Johji; Wang, Jianwei; Li, Yuhao

    2016-01-01

    Apple pomace is a by-product of the processing of apple for juice, cider or wine preparation. Rosemary is a herb commonly used as spice and flavoring agent in food processing. Evidence suggests that both apple pomace and rosemary have rich bioactive molecules with numerous metabolic effects. To provide more information for using apple pomace and rosemary as functional foods for management of metabolism-associated disorders, the present study investigated the insulin-sensitizing effect of a mixture of apple pomace and rosemary extract (AR). The results showed that treatment with AR (500 mg/kg, daily, by gavage) for 5 weeks attenuated chronic liquid fructose consumption-induced increases in fasting plasma insulin concentration, the homeostasis model assessment of insulin resistance index and the adipose tissue insulin resistance index in rats. Mechanistically, AR suppressed fructose-induced acceleration of the clearance of plasma non-esterified fatty acids during oral glucose tolerance test, and decreased excessive triglyceride accumulation and the increased Oil Red O staining area in the gastrocnemius. Furthermore, AR restored fructose-induced overexpression of sarcolemmal CD36 that is known to contribute to etiology of insulin resistance by facilitating fatty acid uptake, and downregulation of sarcolemmal glucose transporter (GLUT)-4 that is the insulin-responsive glucose transporter. Thus, these results demonstrate that AR improves fructose-induced insulin resistance in rats via modulation of sarcolemmal CD36 and GLUT-4.

  19. Effects of Acute Caffeinated Coffee Consumption on Energy Utilization Related to Glucose and Lipid Oxidation from Short Submaximal Treadmill Exercise in Sedentary Men

    PubMed Central

    Leelarungrayub, Donrawee; Sallepan, Maliwan; Charoenwattana, Sukanya

    2011-01-01

    Objective: Aim of this study was to evaluate the short term effect of coffee drinking on energy utilization in sedentary men. Methods: This study was performed in healthy sedentary men, who were randomized into three groups, control (n = 6), decaffeinated (n = 10), and caffeine (n = 10). The caffeine dose in coffee was rechecked and calculated for individual volunteers at 5 mg/kg. Baseline before drinking, complete blood count (CBC), glucose, antioxidant capacity, lipid peroxide, and caffeine in blood was evaluated. After drinking coffee for 1 hr, the submaximal exercise test with a modified Bruce protocol was carried out, and the VO2 and RER were analyzed individually at 80% maximal heart rate, then the blood was repeat evaluated. Results: Three groups showed a nonsignificant difference in CBC results and physical characteristics. The caffeine group showed significant changes in all parameters; higher VO2 levels, (P = 0.037) and lower RER (P = 0.047), when compared to the baseline. Furthermore, the glucose level after exercise test increased significantly (P = 0.033) as well as lipid peroxide levels (P = 0.005), whereas antioxidant capacity did not change significantly (P = 0.759), when compared to the before exercise testing. In addition, the blood caffeine level also increased only in the caffeine group (P = 0.008). Conclusion: Short consumption of caffeinated coffee (5 mg/kg of caffeine), improves energy utilization and relates to glucose derivation and lipid oxidation. PMID:23946663

  20. Comparison of a glucose consumption based method with the CLSI M38-A method for testing antifungal susceptibility of Trichophyton rubrum and Trichophyton mentagrophytes.

    PubMed

    Zhang, Jing; Chen, Jian; Huang, Huai-Qiu; Xi, Li-Yan; Lai, Wei; Xue, Ru-Zeng; Zhang, Xiao-Hui; Chen, Rong-Zhang

    2010-07-01

    The prevalence of dermatophytoses and the development of new antifungal agents has focused interest on susceptibility tests of dermatophytes. The method used universally for susceptibility tests of dermatophytes was published as document (M38-A) in 2002 by the Clinical and Laboratory Standards Institute (CLSI), dealing with the standardization of susceptibility tests in filamentous fungi, though not including dermatophytes especially. However, it is not a very practical method for the clinical laboratory in routine susceptibility testing. In this test, we developed a novel rapid susceptibility assay-glucose consumption method (GCM) for dermatophytes. In this study, we investigated the antifungal susceptibilities of dermatophytes to itraconazole (ITC), voriconazole (VOC), econazole nitrate (ECN) and terbinafine (TBF) by glucose consumption method (GCM), in comparison to the Clinical and Laboratory Standards Institute (CLSI) M38-A method. Twenty-eight dermatophyte isolates, including Trichophyton rubrum (T. rubrum) (n = 14) and Trichophyton mentagrophytes (T. mentagrophytes) (n = 14), were tested. In the GCM, the minimum inhibitory concentrations (MICs) were determined spectrophotometrically at 490 nm after addition of enzyme substrate color mix. For the CLSI method, the MICs were determined visually. Comparison revealed best agreement for TBF against T. mentagrophytes and T. rubrum, since MIC range, MIC50, and MIC90 were identical from two methods. However, for ITC and VOC, GCM showed wider MIC ranges and higher MICs than CLSI methods in most isolates. For ECN against T. rubrum, high MICs were tested by GCM (0.125-16 microg/ml) but not M38-A method (0.5-1 microg/ml). The overall agreements for all isolates between the two methods within one dilution and two dilutions for ITC, VOC, ECN and TBF was 53.6% and 75.0%, 57.1% and 75.0%, 82.1% and 89.3%, and 85.7 and 85.7%, respectively. Measurement of glucose uptake can predict the susceptibility of T. rubrum and T

  1. INSULIN RESISTANCE IS ASSOCIATED WITH ALZHEIMER-LIKE REDUCTIONS IN REGIONAL CEREBRAL GLUCOSE METABOLISM FOR COGNITIVELY NORMAL ADULTS WITH PRE-DIABETES OR EARLY TYPE 2 DIABETES

    PubMed Central

    Baker, Laura D.; Cross, Donna; Minoshima, Satoshi; Belongia, Dana; Watson, G. Stennis; Craft, Suzanne

    2010-01-01

    Background Insulin resistance is a causal factor in pre-diabetes and type 2 diabetes (T2D), and also increases the risk of developing Alzheimer’s disease (AD). Reductions in cerebral glucose metabolic rate (CMRglu) as measured by fluorodeoxyglucose positron emission tomography (FDG PET) in parietotemporal, frontal, and cingulate cortex are also associated with increased AD risk, and can be observed years before dementia onset. Objectives We examined whether greater insulin resistance as indexed by the homeostasis model assessment (HOMA-IR) would be associated with reduced resting CMRglu in areas known to be vulnerable in AD in a sample of cognitively normal adults with newly diagnosed pre-diabetes or T2D (P-D/T2D). We also determined whether P-D/T2D adults have abnormal patterns of CMRglu during a memory encoding task. Design Randomized crossover design of resting and activation [F-18] FDG-PET. Setting University Imaging Center and VA Clinical Research Unit. Participants Participants included 23 older adults (mean age±SEM=74.4±1.4) with no prior diagnosis of or treatment for diabetes, but who met American Diabetes Association glycemic criteria for pre-diabetes (n=11) or diabetes (n=12) based on fasting or 2-h oral glucose tolerance test (OGTT) glucose values, and 6 adults (mean age±SEM=74.3±2.8) with normal fasting glucose and glucose tolerance. No participant met Petersen criteria for mild cognitive impairment (MCI). Intervention Fasting participants rested with eyes open in a dimly lit room and underwent resting and cognitive activation [F-18]FDG PET imaging on separate days, in randomized order, at 9 am. Following a 30-min transmission scan, subjects received an intravenous injection of 5 mCi [F-18]FDG, and the emission scan commenced 40 min post-injection. In the activation condition, a 35-min memory encoding task was initiated at the time of tracer injection. Subjects were instructed to remember a repeating list of 20 words that were randomly presented

  2. Associations of Sleep Apnea, NRG1 Polymorphisms, Alcohol Consumption, and Cerebral White Matter Hyperintensities: Analysis with Genome-Wide Association Data

    PubMed Central

    Baik, Inkyung; Seo, Hyung Suk; Yoon, Daewui; Kim, Seong Hwan; Shin, Chol

    2015-01-01

    Study Objective: There are few studies on gene-environment interactions with obstructive sleep apnea (OSA). Our study aimed to explore genetic polymorphisms associated with OSA using genome-wide association (GWA) data and evaluate the effects of relevant polymorphisms on the association between risk factors, including obesity and alcohol consumption, and OSA. We also investigated on these associations in relation to cerebral white matter hyperintensities (WMH) on magnetic resonance images. Design: A cross-sectional design. Setting: A polysomnography study embedded in a population-based cohort from the Korean Genome Epidemiology Study was conducted in 2011–2013. Participants: 1,763 participants aged 48–78 years. Results: 251 individuals were identified to have OSA with an apnea-hypopnea index ≥ 15. A common polymorphism of neuregulin-1 gene (NRG1), rs10097555, was selected as the most suggestive locus associated with OSA (P value < 10−5) based on the results of GWA analysis in a matched case-control subsample (n = 470). Among 1,763 participants, we found that the presence of the NRG1 polymorphism is inversely associated with OSA (P value < 0.01) even after taking into account potential risk factors; the multivariate odds ratio (95% confidence interval) for the mutant alleles was 0.57 (0.39–0.82) compared with the wild-type. We observed that this association is modified by alcohol consumption (P < 0.05), not by obesity. We also observed that WMH are positively associated with OSA independent of the NRG1 polymorphism and alcohol consumption (P < 0.05). Conclusions: These findings suggest that the neuregulin-1 gene (NRG1) may be involved in the etiological mechanisms of obstructive sleep apnea (OSA) and that carriers of a particular NRG1 mutation may be less likely to have OSA if they do not drink alcoholic beverages. Citation: Baik I, Seo HS, Yoon D, Kim SH, Shin C. Associations of sleep apnea, NRG1 polymorphisms, alcohol consumption, and cerebral white

  3. Sugar-sweetened product consumption alters glucose homeostasis compared with dairy product consumption in men and women at risk of type 2 diabetes mellitus.

    PubMed

    Maki, Kevin C; Nieman, Kristin M; Schild, Arianne L; Kaden, Valerie N; Lawless, Andrea L; Kelley, Kathleen M; Rains, Tia M

    2015-03-01

    Dietary patterns characterized by high intakes of fruits and vegetables, whole grains, low-fat dairy products, and low glycemic load have been associated with lower type 2 diabetes mellitus (T2DM) risk. In contrast, dietary patterns that include high intakes of refined grains, processed meats, and high amounts of added sugars have been associated with increased T2DM risk. This randomized, 2-period crossover trial compared the effects of dairy and sugar-sweetened product (SSP) consumption on insulin sensitivity and pancreatic β-cell function in men and women at risk of the development of T2DM who habitually consume sugar-sweetened beverages. In a randomized, controlled crossover trial, participants consumed dairy products (474 mL/d 2% milk and 170 g/d low-fat yogurt) and SSPs (710 mL/d nondiet soda and 108 g/d nondairy pudding), each for 6 wk, with a 2-wk washout between treatments. A liquid meal tolerance test (LMTT) was administered at baseline and the end of each period. Participants were 50% female with a mean age and body mass index of 53.8 y and 32.2 kg/m(2), respectively. Changes from baseline were significantly different between dairy product and SSP conditions for median homeostasis model assessment 2-insulin sensitivity (HOMA2-%S) (1.3 vs. -21.3%, respectively, P = 0.009; baseline = 118%), mean LMTT disposition index (-0.03 vs. -0.36, respectively, P = 0.011; baseline = 2.59), mean HDL cholesterol (0.8 vs. -4.2%, respectively, P = 0.015; baseline = 44.3 mg/dL), and mean serum 25-hydroxyvitamin D [25(OH)D] (11.7 vs. -3.3, respectively, P = 0.022; baseline = 24.5 μg/L). Changes from baseline in LMTT Matsuda insulin sensitivity index (-0.10 vs. -0.49, respectively; baseline = 4.16) and mean HOMA2-β-cell function (-2.0 vs. 5.3%, respectively; baseline = 72.6%) did not differ significantly between treatments. These results suggest that SSP consumption is associated with less favorable values for HOMA2-%S, LMTT disposition index, HDL cholesterol, and serum 25

  4. The A1 receptor agonist R-Pia reduces the imbalance between cerebral glucose metabolism and blood flow during status epilepticus: could this mechanism be involved with neuroprotection?

    PubMed

    Silva, Iara Ribeiro; Nehlig, Astrid; Rosim, Fernanda Elisa; Vignoli, Thiago; Persike, Daniele Suzete; Ferrandon, Arielle; Sinigaglia-Coimbra, Rita; Fernandes, Maria José da Silva

    2011-01-01

    It is well known that the uncoupling between local cerebral glucose utilization (LCGU) and local cerebral blood flow (LCBF), i.e. decrease in LCBF rates with high LCGU, is frequently associated with seizure-induced neuronal damage. This study was performed to assess if the neuroprotective effect of the adenosinergic A(1) receptor agonist R-N-phenylisopropyladenosine (R-Pia) injected prior to pilocarpine is able to reduce the uncoupling between LCGU and LCBF during status epilepticus (SE). Four groups of rats were studied: Saline, Pilo, R-Pia+Saline and R-Pia+Pilo. For LCGU and LCBF studies, rats were subjected to autoradiography using [(14)C]-2-deoxyglucose and [(14)C]-iodoantypirine, respectively. Radioligands were injected 4 h after SE onset. Neuronal loss was evaluated by Fluorojade-B (FJB) at two time points after SE onset (24 h and 7 days). The results showed a significant increase in LCGU in almost all brain regions studied in the Pilo and R-Pia+Pilo groups compared to controls. However, in R-Pia pretreated rats, the uncoupling between LCGU and LCBF was moderated in a limited number of structures as substantia nigra pars reticulata and hippocampal formation rather in favor of hyperperfusion. Significant increases in LCBF were observed in the entorhinal cortex, thalamic nuclei, mammillary body, red nucleus, zona incerta, pontine nucleus and visual cortex. The neuroprotective effect of R-Pia assessed by FJB showed a lower density of degenerating cells in the hippocampal formation, piriform cortex and basolateral amygdala. In conclusion our data shows that the neuroprotective effect of R-Pia was accompanied by a compensatory metabolic input in brain areas involved with seizures generation. Published by Elsevier Inc.

  5. Alterations in Purkinje cell GABAA receptor pharmacology following oxygen and glucose deprivation and cerebral ischemia reveal novel contribution of β1-subunit-containing receptors

    PubMed Central

    Kelley, Melissa H.; Ortiz, Justin; Shimizu, Kaori; Grewal, Himmat; Quillinan, Nidia; Herson, Paco S.

    2013-01-01

    Cerebellar Purkinje cells (PCs) are particularly sensitive to cerebral ischemia, and decreased GABAA receptor function following injury is thought to contribute to PC sensitivity to ischemia-induced excitotoxicity. Here we examined the functional properties of the GABAA receptors that are spared following ischemia in cultured Purkinje cells from rat and in vivo ischemia in mouse. Using subunit-specific positive modulators of GABAA receptors, we observed that oxygen and glucose deprivation (OGD) and cardiac arrest-induced cerebral ischemia cause a decrease in sensitivity to the β2/3-subunit-preferring compound, etomidate. However, sensitivity to propofol, a β-subunit-acting compound that modulates β1–3-subunits, was not affected by OGD. The α/γ-subunit-act-ing compounds, diazepam and zolpidem, were also unaffected by OGD. We performed single-cell reverse transcription–polymerase chain reaction on isolated PCs from acutely dissociated cerebellar tissue and observed that PCs expressed the β1-subunit, contrary to previous reports examining GABAA receptor subunit expression in PCs. GABAA receptor β1-subunit protein was also detected in cultured PCs by western blot and by immunohistochemistry in the adult mouse cerebellum and levels remained unaffected by ischemia. High concentrations of loreclezole (30 µm) inhibited PC GABA-mediated currents, as previously demonstrated with β1-subunit-containing GABAA receptors expressed in heterologous systems. From our data we conclude that PCs express the β1-subunit and that there is a greater contribution of β1-subunit-containing GABAA receptors following OGD. PMID:23176253

  6. Regional cerebral glucose metabolism differentiates danger- and non-danger-based traumas in post-traumatic stress disorder

    PubMed Central

    Litz, Brett T.; Resick, Patricia A.; Woolsey, Mary D.; Dondanville, Katherine A.; Young-McCaughan, Stacey; Borah, Adam M.; Borah, Elisa V.; Peterson, Alan L.; Fox, Peter T.

    2016-01-01

    Post-traumatic stress disorder (PTSD) is presumably the result of life threats and conditioned fear. However, the neurobiology of fear fails to explain the impact of traumas that do not entail threats. Neuronal function, assessed as glucose metabolism with 18fluoro-deoxyglucose positron emission tomography, was contrasted in active duty, treatment-seeking US Army Soldiers with PTSD endorsing either danger- (n = 19) or non-danger-based (n = 26) traumas, and was compared with soldiers without PTSD (Combat Controls, n = 26) and Civilian Controls (n = 24). Prior meta-analyses of regions associated with fear or trauma script imagery in PTSD were used to compare glucose metabolism across groups. Danger-based traumas were associated with higher metabolism in the right amygdala than the control groups, while non-danger-based traumas associated with heightened precuneus metabolism relative to the danger group. In the danger group, PTSD severity was associated with higher metabolism in precuneus and dorsal anterior cingulate and lower metabolism in left amygdala (R2 = 0.61). In the non-danger group, PTSD symptom severity was associated with higher precuneus metabolism and lower right amygdala metabolism (R2 = 0.64). These findings suggest a biological basis to consider subtyping PTSD according to the nature of the traumatic context. PMID:26373348

  7. Intestinal Fluid and Glucose Transport in Wistar Rats following Chronic Consumption of Fresh or Oxidised Palm Oil Diet

    PubMed Central

    Obembe, Agona O.; Owu, Daniel U.; Okwari, Obem O.; Antai, Atim B.; Osim, Eme E.

    2011-01-01

    Chronic ingestion of thermoxidized palm oil causes functional derangement of various tissues. This study was therefore carried out to determine the effect of chronic ingestion of thermoxidized and fresh palm oil diets on intestinal fluid and glucose absorption in rats using the everted sac technique. Thirty Wistar rats were divided into three groups of 10 rats per group. The first group was the control and was fed on normal rat chow while the second (FPO) and third groups (TPO) were fed diet containing either fresh or thermoxidized palm oil (15% wt/wt) for 14 weeks. Villus height and crypt depth were measured. The gut fluid uptake and gut glucose uptake were significantly (P < .001) lower in the TPO group than those in the FPO and control groups, respectively. The villus height in the TPO was significantly (P < .01) lower than that in FPO and control. The villus depth in TPO was significantly (P < .05) higher than that in FPO and control groups, respectively. These results suggest that ingestion of thermoxidized palm oil and not fresh palm oil may lead to distortion in villus morphology with a concomitant malabsorption of fluid and glucose in rats due to its harmful free radicals. PMID:21991537

  8. Improved cerebral energetics and ketone body metabolism in db/db mice.

    PubMed

    Andersen, Jens V; Christensen, Sofie K; Nissen, Jakob D; Waagepetersen, Helle S

    2017-03-01

    It is becoming evident that type 2 diabetes mellitus is affecting brain energy metabolism. The importance of alternative substrates for the brain in type 2 diabetes mellitus is poorly understood. The aim of this study was to investigate whether ketone bodies are relevant candidates to compensate for cerebral glucose hypometabolism and unravel the functionality of cerebral mitochondria in type 2 diabetes mellitus. Acutely isolated cerebral cortical and hippocampal slices of db/db mice were incubated in media containing [U-(13)C]glucose, [1,2-(13)C]acetate or [U-(13)C]β-hydroxybutyrate and tissue extracts were analysed by mass spectrometry. Oxygen consumption and ATP synthesis of brain mitochondria of db/db mice were assessed by Seahorse XFe96 and luciferin-luciferase assay, respectively. Glucose hypometabolism was observed for both cerebral cortical and hippocampal slices of db/db mice. Significant increased metabolism of [1,2-(13)C]acetate and [U-(13)C]β-hydroxybutyrate was observed for hippocampal slices of db/db mice. Furthermore, brain mitochondria of db/db mice exhibited elevated oxygen consumption and ATP synthesis rate. This study provides evidence of several changes in brain energy metabolism in type 2 diabetes mellitus. The increased hippocampal ketone body utilization and improved mitochondrial function in db/db mice, may act as adaptive mechanisms in order to maintain cerebral energetics during hampered glucose metabolism.

  9. Cerebral circulatory and metabolic effects of 5-hydroxytryptamine in anesthetized baboons.

    PubMed Central

    Harper, M A; MacKenzie, E T

    1977-01-01

    1. The cerebral circulatory effects of the intracarotid administration of 5-hydroxytryptamine were examined in anaesthetized baboons. Cerebral blood flow was measured by the intracarotid 133Xe technique, cerebral O2 consumption and glucose uptake were measured as indices of brain metabolism and electrocortical activity was continuously monitored. 2. Despite a marked reduction in the calibre of the internal carotid artery (assessed angiographically), the intracarotid infusion of 5-hydroxytryptamine 0-1 microgram/kg. min did not effect any significant changes in cerebral blood flow, O2 consumption or glucose uptake. 3. Following transient osmotic disruption of the blood-brain barrier with the intracarotid infusion of hypertonic urea, the same dose of 5-hydroxytryptamine effected a marked reduction in cerebral blood flow from 51 +/- 2 to 36 +/- 2 ml./100 g. min (mean +/- S.E.; P less than 0-01). Both indices of cerebral metabolism were reduced significantly and the e.e.g. showed a more pronounced suppression-burst pattern. 4. We postulate that the cerebral circulatory responses to 5-hydroxytryptamine are dependent upon the integrity of the blood-brain barrier and the predominant effect of the intravascular administration of 5-hydroxytryptamine is on cortical activity or metabolism, rather than on cerebrovascular smooth muscle. Images Plate 1 PMID:411921

  10. Diazepam and Jacobson's progressive relaxation show similar attenuating short-term effects on stress-related brain glucose consumption.

    PubMed

    Pifarré, P; Simó, M; Gispert, J-D; Plaza, P; Fernández, A; Pujol, J

    2015-02-01

    A non-pharmacological method to reduce anxiety is "progressive relaxation" (PR). The aim of the method is to reduce mental stress and associated mental processes by means of progressive suppression of muscle tension. The study was addressed to evaluate changes in brain glucose metabolism induced by PR in patients under a stressing state generated by a diagnostic medical intervention. The effect of PR was compared to a dose of sublingual diazepam, with the prediction that both interventions would be associated with a reduction in brain metabolism. Eighty-four oncological patients were assessed with 18F-fluorodeoxyglucose-positron emission tomography. Maps of brain glucose distribution from 28 patients receiving PR were compared with maps from 28 patients receiving sublingual diazepam and with 28 patients with no treatment intervention. Compared to reference control subjects, the PR and diazepam groups showed a statistically significant, bilateral and generalized cortical hypometabolism. Regions showing the most prominent changes were the prefrontal cortex and anterior cingulate cortex. No significant differences were identified in the direct comparison between relaxation technique and sublingual diazepam. Our findings suggest that relaxation induced by a physical/psychological procedure can be as effective as a reference anxiolytic in reducing brain activity during a stressful state.

  11. PTEN dephosphorylates AKT to prevent the expression of GLUT1 on plasmamembrane and to limit glucose consumption in cancer cells.

    PubMed

    Phadngam, Suratchanee; Castiglioni, Andrea; Ferraresi, Alessandra; Morani, Federica; Follo, Carlo; Isidoro, Ciro

    2016-12-20

    GLUT1 is the facilitative transporter playing the major role in the internalization of glucose. Basally, GLUT1 resides on vesicles located in a para-golgian area, and is translocated onto the plasmamembrane upon activation of the PI3KC1-AKT pathway. In proliferating cancer cells, which demand a high quantity of glucose for their metabolism, GLUT1 is permanently expressed on the plasmamembrane. This is associated with the abnormal activation of the PI3KC1-AKT pathway, consequent to the mutational activation of PI3KC1 and/or the loss of PTEN. The latter, in fact, could antagonize the phosphorylation of AKT by limiting the availability of Phosphatidylinositol (3,4,5)-trisphosphate. Here, we asked whether PTEN could control the plasmamembrane expression of GLUT1 also through its protein-phosphatase activity on AKT. Experiments of co-immunoprecipitation and in vitro de-phosphorylation assay with homogenates of cells transgenically expressing the wild type or knocked-down mutants (lipid-phosphatase, protein-phosphatase, or both) isoforms demonstrated that indeed PTEN physically interacts with AKT and drives its dephosphorylation, and so limiting the expression of GLUT1 at the plasmamembrane. We also show that growth factors limit the ability of PTEN to dephosphorylate AKT. Our data emphasize the fact that PTEN acts in two distinct steps of the PI3k/AKT pathway to control the expression of GLUT1 at the plasmamembrane and, further, add AKT to the list of the protein substrates of PTEN.

  12. Beneficial effects of cinnamon proanthocyanidins on the formation of specific advanced glycation endproducts and methylglyoxal-induced impairment on glucose consumption.

    PubMed

    Peng, Xiaofang; Ma, Jinyu; Chao, Jianfei; Sun, Zheng; Chang, Raymond Chuen-Chung; Tse, Iris; Li, Edmund T S; Chen, Feng; Wang, Mingfu

    2010-06-09

    Advanced glycation endproducts (AGEs) are a group of complex and heterogeneous compounds formed from nonenzymatic reactions. The accumulation of AGEs in vivo has been implicated as a major pathogenic process in diabetic complications and other health disorders, such as atherosclerosis and Alzheimer's disease, and normal aging. In this study, we investigate the inhibitory effects of cinnamon bark proanthocyanidins, catechin, epicatechin, and procyanidin B2 on the formation of specific AGE representatives including pentosidine, N(epsilon)-(carboxymethyl)lysine (CML), and methylglyoxal (MGO) derived AGEs. These compounds displayed obvious inhibitory effects on these specific AGEs, which are largely attributed to both their antioxidant activities and carbonyl scavenging capacities. Meanwhile, in terms of their potent MGO scavenging capacities, effects of these proanthocyanidins on insulin signaling pathways interfered by MGO were evaluated in 3T3-L1 adipocytes. According to the results, proanthocyanidins exerted protective effects on glucose consumption impaired by MGO in 3T3-L1 fat cells.

  13. Acute consumption of organic and conventional tropical grape juices (Vitis labrusca L.) increases antioxidants in plasma and erythrocytes, but not glucose and uric acid levels, in healthy individuals.

    PubMed

    Toaldo, Isabela Maia; Cruz, Fernanda Alves; da Silva, Edson Luiz; Bordignon-Luiz, Marilde T

    2016-08-01

    Bioactive polyphenols in grapes are influenced by grape variety and cultivation conditions. The Vitis labrusca L. varieties are cultivated in tropical regions and used for grape juice production. We hypothesized that polyphenols from tropical grape juices would beneficially affect redox homeostasis in humans. Therefore, the effects of acute consumption of organic and conventional grape juices from V labrusca L. on antioxidants biomarkers were investigated in healthy individuals. In a controlled, randomized, crossover, intervention trial, 24 individuals were assigned to drink 400 mL of conventional juice, organic juice, or water. Each intervention was followed by a 14-day washout period. Blood samples were obtained before and 1 hour after acute intake and analyzed for erythrocyte reduced glutathione, serum total antioxidant capacity, antioxidant enzymes in erythrocytes, and glucose and uric acid in serum. The ingestion of both grape juices resulted in elevated levels of reduced glutathione (P< .001) and serum total antioxidant capacity (P< .05) and increased activity of catalase (P< .001), superoxide dismutase (P< .001), and glutathione peroxidase (P< .05) compared with the control intervention, with no significant differences between grape juices (P< .05). The intake of juices did not affect significantly the concentrations of glucose or uric acid. Grape juice polyphenols were associated with increased antioxidants, and the chemical differences between organic and conventional juices were not predictive of the observed responses. The results suggest a bioactive potential of V labrusca L. juices to improve redox homeostasis, which is involved in defense against oxidative stress in humans.

  14. Objective 3D surface evaluation of intracranial electrophysiologic correlates of cerebral glucose metabolic abnormalities in children with focal epilepsy.

    PubMed

    Jeong, Jeong-Won; Asano, Eishi; Kumar Pilli, Vinod; Nakai, Yasuo; Chugani, Harry T; Juhász, Csaba

    2017-03-21

    To determine the spatial relationship between 2-deoxy-2[(18) F]fluoro-D-glucose (FDG) metabolic and intracranial electrophysiological abnormalities in children undergoing two-stage epilepsy surgery, statistical parametric mapping (SPM) was used to correlate hypo- and hypermetabolic cortical regions with ictal and interictal electrocorticography (ECoG) changes mapped onto the brain surface. Preoperative FDG-PET scans of 37 children with intractable epilepsy (31 with non-localizing MRI) were compared with age-matched pseudo-normal pediatric control PET data. Hypo-/hypermetabolic maps were transformed to 3D-MRI brain surface to compare the locations of metabolic changes with electrode coordinates of the ECoG-defined seizure onset zone (SOZ) and interictal spiking. While hypometabolic clusters showed a good agreement with the SOZ on the lobar level (sensitivity/specificity = 0.74/0.64), detailed surface-distance analysis demonstrated that large portions of ECoG-defined SOZ and interictal spiking area were located at least 3 cm beyond hypometabolic regions with the same statistical threshold (sensitivity/specificity = 0.18-0.25/0.94-0.90 for overlap 3-cm distance); for a lower threshold, sensitivity for SOZ at 3 cm increased to 0.39 with a modest compromise of specificity. Performance of FDG-PET SPM was slightly better in children with smaller as compared with widespread SOZ. The results demonstrate that SPM utilizing age-matched pseudocontrols can reliably detect the lobe of seizure onset. However, the spatial mismatch between metabolic and EEG epileptiform abnormalities indicates that a more complete SOZ detection could be achieved by extending intracranial electrode coverage at least 3 cm beyond the metabolic abnormality. Considering that the extent of feasible electrode coverage is limited, localization information from other modalities is particularly important to optimize grid coverage in cases of large hypometabolic cortex. Hum Brain Mapp, 2017. © 2017

  15. The Combination of Elevated Triglycerides and Abnormal Fasting Glucose Increases Risk of Cerebral Infarction in Patients With Mild to Moderate Hypercholesterolemia: A Post Hoc Analysis of the MEGA Study.

    PubMed

    Nakagami, Tomoko; Nishimura, Rimei; Sone, Hirohito; Tajima, Naoko

    2015-03-01

    While triglycerides (TGs) and diabetes increase the risk of cardiovascular disease (CVD), their combined effects have not been quantified. We explored the combined effect of elevated TGs and glucose on CVD in a post hoc analysis of the large-scale Management of Elevated Cholesterol in the Primary Prevention Group of Adult Japanese (MEGA) Study. In the MEGA Study, 8214 patients with mild to moderate hypercholesterolemia were randomly allocated to the diet alone group or diet plus pravastatin group and followed for 5 years. Of those, 7832 patients included in the intention-to-treat analysis were stratified into 4 groups: abnormal fasting glucose (AFG) plus high TGs, high TGs alone, AFG alone, and normal fasting glucose plus normal TGs (reference). Cox proportional hazard models were used to compare the incidence of and mortality from CVD in the 4 groups. Incidence of CVD and coronary heart disease was significantly higher in the groups with AFG alone (hazard ratio [HR], 2.02 and 3.38; P < .01, respectively) and AFG plus high TGs (HR, 2.87 and 3.87; P < .01, respectively) than the reference group. A similar relation was found in models adjusting for high-density lipoprotein cholesterol (HDL-C). Although the incidence of cerebral infarction was significantly higher only in the group with AFG plus high TGs (HR, 2.16; P = .01), it was marginally significantly higher than the reference group after adjustment for HDL-C (HR, 1.86; P = .06). Diet plus pravastatin treatment reduced the risk of cerebral infarction by 66% in the group with AFG plus high TGs (P = .03). Our findings contribute to the formulation of the hypothesis that patients with hypercholesterolemia having AFG plus high TGs have an increased risk of cerebral infarction. These are compatible with the result from the main study that patients with hypercholesterolemia randomized to diet plus pravastatin had a reduced risk of cerebral infarction. © The Author(s) 2014.

  16. Chronic consumption of Annona muricata juice triggers and aggravates cerebral tau phosphorylation in wild-type and MAPT transgenic mice.

    PubMed

    Rottscholl, Robert; Haegele, Marlen; Jainsch, Britta; Xu, Hong; Respondek, Gesine; Höllerhage, Matthias; Rösler, Thomas W; Bony, Emilie; Le Ven, Jessica; Guérineau, Vincent; Schmitz-Afonso, Isabelle; Champy, Pierre; Oertel, Wolfgang H; Yamada, Elizabeth S; Höglinger, Günter U

    2016-11-01

    In the pathogenesis of tauopathies, genetic and environmental factors have been identified. While familial clustering led to the identification of mutations in MAPT encoding the microtubule-associated protein tau, the high incidence of a sporadic tauopathy endemic in Guadeloupe was linked to the plant-derived mitochondrial complex I inhibitor annonacin. The interaction of both factors was studied in the present work in a realistic paradigm over a period of 12 months. Mice over-expressing either human wild-type tau or R406W mutant tau as well as non-transgenic mice received either regular drinking water or commercially available tropical fruit juice made of soursop (Annona muricata L.) as dietary source of neurotoxins. HPLC-MS analysis of this juice identified several Annonaceous acetogenins, mainly annonacin (16.2 mg/L), and 41 isoquinoline alkaloids (18.0 mg/L, mainly asimilobine and reticuline). After 12 month of juice consumption, several brain regions showed an increased number of neurons with phosphorylated tau in the somatodendritic compartment of R406W mice and, to a much lesser extent, of non-transgenic mice and mice over-expressing human wild-type tau. Moreover, juice drinking was associated with a reduction in synaptophysin immunoreactivity, as well as an increase in 3-nitrotyrosine (3NT) reactivity in all three genotypes. The increase in 3NT suggests that Annona muricata juice promotes the generation of reactive nitrogen species. This study provides first experimental evidence that long-lasting oral ingestion of a widely consumed environmental factor can induce somatodendritic accumulation of hyperphosphorylated tau in mice expressing rodent or human wild-type tau, and can accelerate tau pathology in R406W-MAPT transgenic mice. © 2016 International Society for Neurochemistry.

  17. Nymphaea nouchali Burm. f. hydroalcoholic seed extract increases glucose consumption in 3T3-L1 adipocytes through activation of peroxisome proliferator-activated receptor gamma and insulin sensitization.

    PubMed

    Parimala, Mabel; Debjani, M; Vasanthi, Hannah Rachel; Shoba, Francis Gricilda

    2015-01-01

    Nymphaea nouchali Burm. f. (Family - Nymphaeaceae) is a well-known medicinal plant used in the Indian ayurvedic system of medicine for treating diabetes. The seeds especially have been prescribed for diabetes. The hydroalcoholic extract of N. nouchali seeds has been demonstrated to possess anti-hyperglycemic effects in diabetic rats, but the functional mechanism remains unknown. The nuclear receptor, peroxisome proliferator-activated receptor gamma (PPARγ) is noted to play an important role in glucose and lipid homeostasis. This study was hence focused in evaluating the effect of the extract on PPARγ activation, adipocyte differentiation, and glucose consumption in 3T3-L1 cells. Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), followed by adipogenesis assay using Oil Red O technique. Glucose consumption of preadipocytes and adipocytes in the presence of the extract was also determined. Real-time polymerase chain reaction was performed to identify the expression of genes involved in glucose consumption in the adipocytes. MTT assay confirmed the extract to be nontoxic, and Oil Red O staining confirmed enhanced adipocyte differentiation of 3T3-L1 cells in a dose-dependent manner. The extract also increased the expression of PPARγ target gene, which in turn enhanced the expression of GLUT-4. The data, therefore, suggests that N. nouchali seed extract promotes adipocyte differentiation and glucose consumption by inducing PPARγ activation, which in turn increases mRNA GLUT-4 expression and subsequently enhances insulin-responsiveness in insulin target tissues.

  18. Nymphaea nouchali Burm. f. hydroalcoholic seed extract increases glucose consumption in 3T3-L1 adipocytes through activation of peroxisome proliferator-activated receptor gamma and insulin sensitization

    PubMed Central

    Parimala, Mabel; Debjani, M.; Vasanthi, Hannah Rachel; Shoba, Francis Gricilda

    2015-01-01

    Nymphaea nouchali Burm. f. (Family – Nymphaeaceae) is a well-known medicinal plant used in the Indian ayurvedic system of medicine for treating diabetes. The seeds especially have been prescribed for diabetes. The hydroalcoholic extract of N. nouchali seeds has been demonstrated to possess anti-hyperglycemic effects in diabetic rats, but the functional mechanism remains unknown. The nuclear receptor, peroxisome proliferator-activated receptor gamma (PPARγ) is noted to play an important role in glucose and lipid homeostasis. This study was hence focused in evaluating the effect of the extract on PPARγ activation, adipocyte differentiation, and glucose consumption in 3T3-L1 cells. Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), followed by adipogenesis assay using Oil Red O technique. Glucose consumption of preadipocytes and adipocytes in the presence of the extract was also determined. Real-time polymerase chain reaction was performed to identify the expression of genes involved in glucose consumption in the adipocytes. MTT assay confirmed the extract to be nontoxic, and Oil Red O staining confirmed enhanced adipocyte differentiation of 3T3-L1 cells in a dose-dependent manner. The extract also increased the expression of PPARγ target gene, which in turn enhanced the expression of GLUT-4. The data, therefore, suggests that N. nouchali seed extract promotes adipocyte differentiation and glucose consumption by inducing PPARγ activation, which in turn increases mRNA GLUT-4 expression and subsequently enhances insulin-responsiveness in insulin target tissues. PMID:26605160

  19. Consumption of fructose- but not glucose-sweetened beverages for 10 weeks increases circulating concentrations of uric acid, retinol binding protein-4, and gamma-glutamyl transferase activity in overweight/obese humans

    PubMed Central

    2012-01-01

    Background Prospective studies in humans examining the effects of fructose consumption on biological markers associated with the development of metabolic syndrome are lacking. Therefore we investigated the relative effects of 10 wks of fructose or glucose consumption on plasma uric acid and RBP-4 concentrations, as well as liver enzyme (AST, ALT, and GGT) activities in men and women. Methods As part of a parallel arm study, older (age 40–72), overweight and obese male and female subjects (BMI 25–35 kg/m2) consumed glucose- or fructose-sweetened beverages providing 25% of energy requirements for 10 wks. Fasting and 24-h blood collections were performed at baseline and following 10 wks of intervention and plasma concentrations of uric acid, RBP-4 and liver enzyme activities were measured. Results Consumption of fructose, but not glucose, led to significant increases of 24-h uric acid profiles (P < 0.0001) and RBP-4 concentrations (P = 0.012), as well as plasma GGT activity (P = 0.04). Fasting plasma uric acid concentrations increased in both groups; however, the response was significantly greater in subjects consuming fructose (P = 0.002 for effect of sugar). Within the fructose group male subjects exhibited larger increases of RBP-4 levels than women (P = 0.024). Conclusions These findings suggest that consumption of fructose at 25% of energy requirements for 10 wks, compared with isocaloric consumption of glucose, may contribute to the development of components of the metabolic syndrome by increasing circulating uric acid, GGT activity, suggesting alteration of hepatic function, and the production of RBP-4. PMID:22828276

  20. Twenty-four Hour Endocrine and Metabolic Profiles Following Consumption of High Fructose Corn Syrup-, Sucrose- Fructose-, and Glucose-Sweetened Beverages with Meals

    USDA-ARS?s Scientific Manuscript database

    We have reported that compared with glucose-sweetened beverages, consuming fructose-sweetened beverages with meals results in lower 24-h circulating glucose, insulin and leptin concentrations, and elevated triacylglycerol (TG). However, pure fructose and glucose are not commonly used as sweeteners. ...

  1. Using simple models to describe the kinetics of growth, glucose consumption, and monoclonal antibody formation in naive and infliximab producer CHO cells.

    PubMed

    López-Meza, Julián; Araíz-Hernández, Diana; Carrillo-Cocom, Leydi Maribel; López-Pacheco, Felipe; Rocha-Pizaña, María Del Refugio; Alvarez, Mario Moisés

    2016-08-01

    Despite their practical and commercial relevance, there are few reports on the kinetics of growth and production of Chinese hamster ovary (CHO) cells-the most frequently used host for the industrial production of therapeutic proteins. We characterize the kinetics of cell growth, substrate consumption, and product formation in naive and monoclonal antibody (mAb) producing recombinant CHO cells. Culture experiments were performed in 125 mL shake flasks on commercial culture medium (CD Opti CHO™ Invitrogen, Carlsbad, CA, USA) diluted to different glucose concentrations (1.2-4.8 g/L). The time evolution of cell, glucose, lactic acid concentration and monoclonal antibody concentrations was monitored on a daily basis for mAb-producing cultures and their naive counterparts. The time series were differentiated to calculate the corresponding kinetic rates (rx = d[X]/dt; rs = d[S]/dt; rp = d[mAb]/dt). Results showed that these cell lines could be modeled by Monod-like kinetics if a threshold substrate concentration value of [S]t = 0.58 g/L (for recombinant cells) and [S]t = 0.96 g/L (for naïve cells), below which growth is not observed, was considered. A set of values for μmax, and Ks was determined for naive and recombinant cell cultures cultured at 33 and 37 °C. The yield coefficient (Yx/s) was observed to be a function of substrate concentration, with values in the range of 0.27-1.08 × 10(7) cell/mL and 0.72-2.79 × 10(6) cells/mL for naive and recombinant cultures, respectively. The kinetics of mAb production can be described by a Luedeking-Piret model (d[mAb]/dt = αd[X]/dt + β[X]) with values of α = 7.65 × 10(-7) µg/cell and β = 7.68 × 10(-8) µg/cell/h for cultures conducted in batch-agitated flasks and batch and instrumented bioreactors operated in batch and fed-batch mode.

  2. Short-term consumption of sucralose, a nonnutritive sweetener, is similar to water with regard to select markers of hunger signaling and short-term glucose homeostasis in women.

    PubMed

    Brown, Andrew W; Bohan Brown, Michelle M; Onken, Kristine L; Beitz, Donald C

    2011-12-01

    Nonnutritive sweeteners have been used to lower the energy density of foods with the intention of affecting weight loss or weight maintenance. However, some epidemiological and animal evidence indicates an association between weight gain or insulin resistance and artificial sweetener consumption. In the present study, we hypothesized that the nonnutritive sweetener sucralose, a trichlorinated sucrose molecule, would elicit responses similar to water but different from sucrose and sucrose combined with sucralose on subjective and hormonal indications of hunger and short-term glucose homeostasis. Eight female volunteers (body mass index, 22.16 ± 1.71 kg/m(2); age, 21.75 ± 2.25 years) consumed sucrose and/or sucralose in water in a factorial design. Blood samples were taken at fasting and 30 and 60 minutes after treatment followed by a standardized breakfast across treatments, and blood samples were taken 30, 60, 90, and 120 minutes after breakfast. Plasma was analyzed for glucose, insulin, glucagon, triacylglycerols (TAG), and acylated ghrelin. Perceptions of hunger and other subjective measurements were assessed before each blood sample. No differences were detected in subjective responses, circulating triacylglycerol, or glucagon concentrations among treatments over time. Significant differences were observed in insulin, glucose, and acylated ghrelin concentrations over time only between sucrose-containing treatments and non-sucrose-containing treatments regardless of sucralose consumption. Therefore, sucralose may be a relatively inert nonnutritive sweetener with regard to hunger signaling and short-term glucose homeostasis. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Consumption of meat is associated with higher fasting glucose and insulin concentrations regardless of glucose and insulin genetic risk scores: a meta-analysis of 50,345 Caucasians

    USDA-ARS?s Scientific Manuscript database

    Recent studies suggest that meat intake is associated with diabetes-related phenotypes. However, whether the associations of meat intake and glucose and insulin homeostasis are modified by genes related to glucose and insulin is unknown. We investigated the associations of meat intake and the intera...

  4. Consumption of meat is associated with higher fasting glucose and insulin concentrations regardless of glucose and insulin genetic risk scores: a meta-analysis of 50,345 Caucasians

    USDA-ARS?s Scientific Manuscript database

    BACKGROUND: Recent studies suggest that meat intake is associated with diabetes-related phenotypes. However, whether the associations of meat intake and glucose and insulin homeostasis are modified by genes related to glucose and insulin is unknown. OBJECTIVE: We investigated the associations of mea...

  5. Berberine treatment attenuates the palmitate-mediated inhibition of glucose uptake and consumption through increased 1,2,3-triacyl-sn-glycerol synthesis and accumulation in H9c2 cardiomyocytes.

    PubMed

    Chang, Wenguang; Chen, Li; Hatch, Grant M

    2016-04-01

    Dysfunction of lipid metabolism and accumulation of 1,2-diacyl-sn-glycerol (DAG) may be a key factor in the development of insulin resistance in type 2 diabetes. Berberine (BBR) is an isoquinoline alkaloid extract that has shown promise as a hypoglycemic agent in the management of diabetes in animal and human studies. However, its mechanism of action is not well understood. To determine the effect of BBR on lipid synthesis and its relationship to insulin resistance in H9c2 cardiomyocytes, we measured neutral lipid and phospholipid synthesis and their relationship to glucose uptake. Compared with controls, BBR treatment stimulated 2-[1,2-(3)H(N)]deoxy-D-glucose uptake and consumption in palmitate-mediated insulin resistant H9c2 cells. The mechanism was though an increase in protein kinase B (AKT) activity and GLUT-4 glucose transporter expression. DAG accumulated in palmitate-mediated insulin resistant H9c2 cells and treatment with BBR reduced this DAG accumulation and increased accumulation of 1,2,3-triacyl-sn-glycerol (TAG) compared to controls. Treatment of palmitate-mediated insulin resistant H9c2 cells with BBR increased [1,3-(3)H]glycerol and [1-(14)C]glucose incorporation into TAG and reduced their incorporation into DAG compared to control. In addition, BBR treatment of these cells increased [1-(14)C]palmitic acid incorporation into TAG and decreased its incorporation into DAG compared to controls. BBR treatment did not alter phosphatidylcholine or phosphatidylethanolamine synthesis. The mechanism for the BBR-mediated decreased precursor incorporation into DAG and increased incorporation into TAG in palmitate-incubated cells was an increase in DAG acyltransferase-2 activity and its expression and a decrease in TAG hydrolysis. Thus, BBR treatment attenuates palmitate-induced reduction in glucose uptake and consumption, in part, through reduction in cellular DAG levels and accumulation of TAG in H9c2 cells.

  6. Metabolic Profiling Reveals Differences in Plasma Concentrations of Arabinose and Xylose after Consumption of Fiber-Rich Pasta and Wheat Bread with Differential Rates of Systemic Appearance of Exogenous Glucose in Healthy Men.

    PubMed

    Pantophlet, Andre J; Wopereis, Suzan; Eelderink, Coby; Vonk, Roel J; Stroeve, Johanna H; Bijlsma, Sabina; van Stee, Leo; Bobeldijk, Ivana; Priebe, Marion G

    2017-02-01

    The consumption of products rich in cereal fiber and with a low glycemic index is implicated in a lower risk of metabolic diseases. Previously, we showed that the consumption of fiber-rich pasta compared with bread resulted in a lower rate of appearance of exogenous glucose and a lower glucose clearance rate quantified with a dual-isotope technique, which was in accordance with a lower insulin and glucose-dependent insulinotropic polypeptide response. To gain more insight into the acute metabolic consequences of the consumption of products resulting in differential glucose kinetics, postprandial metabolic profiles were determined. In a crossover study, 9 healthy men [mean ± SEM age: 21 ± 0.5 y; mean ± SEM body mass index (kg/m(2)): 22 ± 0.5] consumed wheat bread (132 g) and fresh pasta (119 g uncooked) enriched with wheat bran (10%) meals. A total of 134 different metabolites in postprandial plasma samples (at -5, 30, 60, 90, 120, and 180 min) were quantified by using a gas chromatography-mass spectrometry-based metabolomics approach (secondary outcomes). Two-factor ANOVA and advanced multivariate statistical analysis (partial least squares) were applied to detect differences between both food products. Forty-two different postprandial metabolite profiles were identified, primarily representing pathways related to protein and energy metabolism, which were on average 8% and 7% lower after the men consumed pasta rather than bread, whereas concentrations of arabinose and xylose were 58% and 53% higher, respectively. Arabinose and xylose are derived from arabinoxylans, which are important components of wheat bran. The higher bioavailability of arabinose and xylose after pasta intake coincided with a lower rate of appearance of glucose and amino acids. We speculate that this higher bioavailability is due to higher degradation of arabinoxylans by small intestinal microbiota, facilitated by the higher viscosity of arabinoxylans after pasta intake than after bread

  7. The effect of nopal (Opuntia ficus indica) on postprandial blood glucose, incretins, and antioxidant activity in Mexican patients with type 2 diabetes after consumption of two different composition breakfasts.

    PubMed

    López-Romero, Patricia; Pichardo-Ontiveros, Edgar; Avila-Nava, Azalia; Vázquez-Manjarrez, Natalia; Tovar, Armando R; Pedraza-Chaverri, José; Torres, Nimbe

    2014-11-01

    Nopal is a plant used in traditional Mexican medicine to treat diabetes. However, there is insufficient scientific evidence to demonstrate whether nopal can regulate postprandial glucose. The purpose for conducting this study was to evaluate the glycemic index, insulinemic index, glucose-dependent insulinotropic peptide (GIP) index, and the glucagon-like peptide 1 (GLP-1) index, and the effect of nopal on patients with type 2 diabetes after consumption of a high-carbohydrate breakfast (HCB) or high-soy-protein breakfast (HSPB) on the postprandial response of glucose, insulin, GIP, GLP-1, and antioxidant activity. In study 1, the glycemic index, insulinemic index, GIP index, and GLP-1 index were calculated for seven healthy participants who consumed 50 g of available carbohydrates from glucose or dehydrated nopal. In study 2, 14 patients with type 2 diabetes consumed nopal in HCB or HSPB with or without 300 g steamed nopal. The glycemic index of nopal was 32.5±4, insulinemic index was 36.1±6, GIP index was 6.5±3.0, and GLP-1 index was 25.9±18. For those patients with type 2 diabetes who consumed the HCB+nopal, there was significantly lower area under the curve for glucose (287±30) than for those who consumed the HCB only (443±49), and lower incremental area under the curve for insulin (5,952±833 vs 7,313±1,090), and those patients with type 2 diabetes who consumed the HSPB avoided postprandial blood glucose peaks. Consumption of the HSPB+nopal significantly reduced the postprandial peaks of GIP concentration at 30 and 45 minutes and increased the antioxidant activity after 2 hours measured by the 2,2-diphenyl-1-picrilhidracyl method. These findings suggest that nopal could reduce postprandial blood glucose, serum insulin, and plasma GIP peaks, as well as increase antioxidant activity in healthy people and patients with type 2 diabetes. Copyright © 2014 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  8. Cerebral ischemic post-conditioning induces autophagy inhibition and a HMGB1 secretion attenuation feedback loop to protect against ischemia reperfusion injury in an oxygen glucose deprivation cellular model

    PubMed Central

    Wang, Jue; Han, Dong; Sun, Miao; Feng, Juan

    2016-01-01

    Cerebral ischemic postconditioning (IPOC) has been demonstrated to be neuroprotective against cerebral ischemia reperfusion injury. The present study aimed to determine whether IPOC could inhibit autophagy and high mobility group box 1 (HMGB1) release in a PC12 cell oxygen glucose deprivation/reperfusion (OGD/R) model. An 8 h OGD and 24 h reperfusion cellular model was developed to mimic cerebral ischemia reperfusion injury, with 3 cycles of 10 min OGD/5 min reperfusion treatment to imitate IPOC. Cell viability was determined to demonstrate the efficiency of OGD/R, IPOC and autophagy activator, rapamycin (RAP), treatment. Transmission electron microscopy was performed to observe the formation of autophagosomes, and immunofluorescence, western blot and co-immunoprecipitation were used to examine the expression of autophagy-associated proteins and HMGB1. Enzyme-linked immunosorbent assay analysis was conducted to examine the level of HMGB1 in cell supernatants. Additionally, PC12 cells were treated with RAP to examine the effect of autophagy on HMGB1 release, and the effect of recombinant human HMGB1 and Beclin1 small interfering RNA on autophagy was investigated. The present study confirmed that IPOC inhibited autophagy and HMGB1 secretion, autophagy inhibition induced a decrease in HMGB1 secretion, and HMGB1 secretion attenuation caused autophagy inhibition in return, as demonstrated by immunofluorescence and western blot analyses. Autophagy inhibition and HMGB1 secretion attenuation were, therefore, demonstrated to form a feedback loop under IPOC. These mechanisms illustrated the protective effects of IPOC and may accelerate the clinical use of IPOC. PMID:27666823

  9. Cerebral ischemic post‑conditioning induces autophagy inhibition and a HMGB1 secretion attenuation feedback loop to protect against ischemia reperfusion injury in an oxygen glucose deprivation cellular model.

    PubMed

    Wang, Jue; Han, Dong; Sun, Miao; Feng, Juan

    2016-11-01

    Cerebral ischemic postconditioning (IPOC) has been demonstrated to be neuroprotective against cerebral ischemia reperfusion injury. The present study aimed to determine whether IPOC could inhibit autophagy and high mobility group box 1 (HMGB1) release in a PC12 cell oxygen glucose deprivation/reperfusion (OGD/R) model. An 8 h OGD and 24 h reperfusion cellular model was developed to mimic cerebral ischemia reperfusion injury, with 3 cycles of 10 min OGD/5 min reperfusion treatment to imitate IPOC. Cell viability was determined to demonstrate the efficiency of OGD/R, IPOC and autophagy activator, rapamycin (RAP), treatment. Transmission electron microscopy was performed to observe the formation of autophagosomes, and immunofluorescence, western blot and co‑immunoprecipitation were used to examine the expression of autophagy‑associated proteins and HMGB1. Enzyme‑linked immunosorbent assay analysis was conducted to examine the level of HMGB1 in cell supernatants. Additionally, PC12 cells were treated with RAP to examine the effect of autophagy on HMGB1 release, and the effect of recombinant human HMGB1 and Beclin1 small interfering RNA on autophagy was investigated. The present study confirmed that IPOC inhibited autophagy and HMGB1 secretion, autophagy inhibition induced a decrease in HMGB1 secretion, and HMGB1 secretion attenuation caused autophagy inhibition in return, as demonstrated by immunofluorescence and western blot analyses. Autophagy inhibition and HMGB1 secretion attenuation were, therefore, demonstrated to form a feedback loop under IPOC. These mechanisms illustrated the protective effects of IPOC and may accelerate the clinical use of IPOC.

  10. Cooking enhances beneficial effects of pea seed coat consumption on glucose tolerance, incretin, and pancreatic hormones in high-fat-diet-fed rats.

    PubMed

    Hashemi, Zohre; Yang, Kaiyuan; Yang, Han; Jin, Alena; Ozga, Jocelyn; Chan, Catherine B

    2015-04-01

    Pulses, including dried peas, are nutrient- and fibre-rich foods that improve glucose control in diabetic subjects compared with other fibre sources. We hypothesized feeding cooked pea seed coats to insulin-resistant rats would improve glucose tolerance by modifying gut responses to glucose and reducing stress on pancreatic islets. Glucose intolerance induced in male Sprague-Dawley rats with high-fat diet (HFD; 10% cellulose as fibre) was followed by 3 weeks of HFD with fibre (10%) provided by cellulose, raw-pea seed coat (RP), or cooked-pea seed coat (CP). A fourth group consumed low-fat diet with 10% cellulose. Oral and intraperitoneal glucose tolerance tests (oGTT, ipGTT) were done. CP rats had 30% and 50% lower glucose and insulin responses in oGTT, respectively, compared with the HFD group (P < 0.05) but ipGTT was not different. Plasma islet and incretin hormone concentrations were measured. α- and β-cell areas in the pancreas and density of K- and L-cells in jejunum and ileum were quantified. Jejunal expression of hexose transporters was measured. CP feeding increased fasting glucagon-like peptide 1 and glucose-stimulated gastric inhibitory polypeptide responses (P < 0.05), but K- and L-cells densities were comparable to HFD, as was abundance of SGLT1 and GLUT2 mRNA. No significant difference in β-cell area between diet groups was observed. α-cell area was significantly smaller in CP compared with RP rats (P < 0.05). Overall, our results demonstrate that CP feeding can reverse adverse effects of HFD on glucose homeostasis and is associated with enhanced incretin secretion and reduced α-cell abundance.

  11. Coupling of cerebral blood flow and oxygen consumption during hypothermia in newborn piglets as measured by time-resolved near-infrared spectroscopy: a pilot study

    PubMed Central

    Bakhsheshi, Mohammad Fazel; Diop, Mamadou; Morrison, Laura B.; St. Lawrence, Keith; Lee, Ting-Yim

    2015-01-01

    Abstract. Hypothermia (HT) is a potent neuroprotective therapy that is now widely used in following neurological emergencies, such as neonatal asphyxia. An important mechanism of HT-induced neuroprotection is attributed to the associated reduction in the cerebral metabolic rate of oxygen (CMRO2). Since cerebral circulation and metabolism are tightly regulated, reduction in CMRO2 typically results in decreased cerebral blood flow (CBF); it is only under oxidative stress, e.g., hypoxia-ischemia, that oxygen extraction fraction (OEF) deviates from its basal value, which can lead to cerebral dysfunction. As such, it is critical to measure these key physiological parameters during therapeutic HT. This report investigates a noninvasive method of measuring the coupling of CMRO2 and CBF under HT and different anesthetic combinations of propofol/nitrous-oxide (N2O) that may be used in clinical practice. Both CBF and CMRO2 decreased with decreasing temperature, but the OEF remained unchanged, which indicates a tight coupling of flow and metabolism under different anesthetics and over the mild HT temperature range (38°C to 33°C). PMID:26835481

  12. Cerebral Blood Flow and Metabolism in the Wernicke-Korsakoff Syndrome*

    PubMed Central

    Shimojyo, Sadatomo; Scheinberg, Peritz; Reinmuth, Oscar

    1967-01-01

    Cerebral blood flow and metabolism were measured by the iodoantipyrine-4-131I method in nine patients and by the nitrous oxide method in three patients with the Wernicke-Korsakoff syndrome. Cerebral blood flow and cerebral oxygen and glucose consumption were strikingly reduced from the normal, whereas cerebral vascular resistance was increased. Total cerebral metabolism and blood flow may be greatly reduced even though the cerebral metabolic defect is confined to circumscribed anatomical areas. Profound reduction in brain metabolism is not necessarily reflected in alterations of consciousness or awareness as has been previously suggested, or in electroencephalographic abnormalities. This appears to provide cogent support for the neurophysiological principle that disturbance of consciousness is a function of the location of the lesion, not the over-all degree of metabolic defect. The absence of improvement of cerebral metabolic functions in two patients who were restudied after an additional 2 to 3 weeks of treatment confirms the clinical impression of incomplete recovery in many such patients. PMID:6025486

  13. Syndrome-specific patterns of regional cerebral glucose metabolism in posterior cortical atrophy in comparison to dementia with Lewy bodies and Alzheimer's disease--a [F-18]-FDG pet study.

    PubMed

    Spehl, Timo S; Hellwig, Sabine; Amtage, Florian; Weiller, Cornelius; Bormann, Tobias; Weber, Wolfgang A; Hüll, Michael; Meyer, Philipp T; Frings, Lars

    2015-01-01

    Posterior cortical atrophy (PCA) is a rare neurodegenerative syndrome with visuospatial deficits. PET studies have identified hypometabolism of the occipital cortex in PCA. There is, however, a huge overlap in clinical presentation and involvement of the occipital cortex between PCA, dementia with Lewy bodies (DLB), and Alzheimer's disease (AD). Syndrome-specific patterns of metabolism have not yet been demonstrated that allow for a reliable differentiation with [F-18]-FDG-PET. A total of 33 dementia patients (PCA n = 6, DLB n = 12, AD n = 15) who underwent [F-18]-FDG-PET imaging and a neuropsychological examination were retrospectively analyzed. Group comparisons of regional cerebral glucose metabolism were calculated with statistical parametric mapping. Extracted clusters were used to evaluate discrimination accuracy by logistic regression. PCA patients showed a syndrome-specific area of hypometabolism in the right lateral temporooccipital cortex. DLB patients showed specific hypometabolism predominantly in the left occipital cortex. Logistic regression based on these two regions correctly separated patients with a sensitivity/specificity of 83/93% for PCA, 75/86% for DLB and 67/78% for AD. Overall accuracy was 73%. [F-18]-FDG-PET could reveal syndrome-specific patterns of glucose metabolism in PCA and DLB. Accurate group discrimination in the differential diagnosis of dementia with visuospatial impairment is feasible. Copyright © 2014 by the American Society of Neuroimaging.

  14. Effects of a mindfulness-based intervention on mindful eating, sweets consumption, and fasting glucose levels in obese adults: data from the SHINE randomized controlled trial

    PubMed Central

    Epel, Elissa S.; Kristeller, Jean; Moran, Patricia J.; Dallman, Mary; Lustig, Robert H.; Acree, Michael; Bacchetti, Peter; Laraia, Barbara A.; Hecht, Frederick M.; Daubenmier, Jennifer

    2016-01-01

    We evaluated changes in mindful eating as a potential mechanism underlying the effects of a mindfulness-based intervention for weight loss on eating of sweet foods and fasting glucose levels. We randomized 194 obese individuals (M age = 47.0 ± 12.7 years; BMI = 35.5 ± 3.6; 78 % women) to a 5.5-month diet-exercise program with or without mindfulness training. The mindfulness group, relative to the active control group, evidenced increases in mindful eating and maintenance of fasting glucose from baseline to 12-month assessment. Increases in mindful eating were associated with decreased eating of sweets and fasting glucose levels among mindfulness group participants, but this association was not statistically significant among active control group participants. Twelve-month increases in mindful eating partially mediated the effect of intervention arm on changes in fasting glucose levels from baseline to 12-month assessment. Increases in mindful eating may contribute to the effects of mindfulness-based weight loss interventions on eating of sweets and fasting glucose levels. PMID:26563148

  15. Effects of a mindfulness-based intervention on mindful eating, sweets consumption, and fasting glucose levels in obese adults: data from the SHINE randomized controlled trial.

    PubMed

    Mason, Ashley E; Epel, Elissa S; Kristeller, Jean; Moran, Patricia J; Dallman, Mary; Lustig, Robert H; Acree, Michael; Bacchetti, Peter; Laraia, Barbara A; Hecht, Frederick M; Daubenmier, Jennifer

    2016-04-01

    We evaluated changes in mindful eating as a potential mechanism underlying the effects of a mindfulness-based intervention for weight loss on eating of sweet foods and fasting glucose levels. We randomized 194 obese individuals (M age = 47.0 ± 12.7 years; BMI = 35.5 ± 3.6; 78% women) to a 5.5-month diet-exercise program with or without mindfulness training. The mindfulness group, relative to the active control group, evidenced increases in mindful eating and maintenance of fasting glucose from baseline to 12-month assessment. Increases in mindful eating were associated with decreased eating of sweets and fasting glucose levels among mindfulness group participants, but this association was not statistically significant among active control group participants. Twelve-month increases in mindful eating partially mediated the effect of intervention arm on changes in fasting glucose levels from baseline to 12-month assessment. Increases in mindful eating may contribute to the effects of mindfulness-based weight loss interventions on eating of sweets and fasting glucose levels.

  16. Quantitative assessment of cerebral glucose metabolic rates after blood-brain barrier disruption induced by focused ultrasound using FDG-MicroPET.

    PubMed

    Yang, Feng-Yi; Chang, Wen-Yuan; Chen, Jyh-Cheng; Lee, Lin-Chien; Hung, Yi-Shun

    2014-04-15

    The goal of this study was to evaluate the pharmacokinetics of (18)F-2-fluoro-2-deoxy-d-glucose ((18)F-FDG) and the expression of glucose transporter 1 (GLUT1) protein after blood-brain barrier (BBB) disruption of normal rat brains by focused ultrasound (FUS). After delivery of an intravenous bolus of ~37 MBq (1 mCi) (18)F-FDG, dynamic positron emission tomography scans were performed on rats with normal brains and those whose BBBs had been disrupted by FUS. Arterial blood sampling was collected throughout the scanning procedure. A 2-tissue compartmental model was used to estimate (18)F-FDG kinetic parameters in brain tissues. The rate constants Ki, K1, and k3 were assumed to characterize the uptake, transport, and hexokinase activity, respectively, of (18)F-FDG. The uptake of (18)F-FDG in brains significantly decreased immediately after the blood-brain barrier was disrupted. At the same time, the derived values of Ki, K1, and k3 for the sonicated brains were significantly lower than those for the control brains. In agreement with the reduction in glucose, Western blot analyses confirmed that focused ultrasound exposure significantly reduced the expression of GLUT1 protein in the brains. Furthermore, the effect of focused ultrasound on glucose uptake was transient and reversible 24h after sonication. Our results indicate that focused ultrasound may inhibit GLUT1 expression to decrease the glucose uptake in brain tissue during the period of BBB disruption. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Comparison of clinical types of Wilson's disease and glucose metabolism in extrapyramidal motor brain regions.

    PubMed

    Hermann, W; Barthel, H; Hesse, S; Grahmann, F; Kühn, H-J; Wagner, A; Villmann, T

    2002-07-01

    In Wilson's disease a disturbed glucose metabolism especially in striatal and cerebellar areas has been reported. This is correlated with the severity of extrapyramidal motor symptoms (EPS). These findings are only based on a small number of patients. Up to now it is unknown whether EPS are caused by various patterns of disturbed basal ganglia glucose metabolism. We investigated 37 patients and 9 normal volunteers to characterize the disturbed glucose metabolism in Wilson's disease more precisely. The glucose metabolism was determined in 5 cerebellar and cerebral areas (putamen, caput nuclei caudati, cerebellum, midbrain and thalamic area) by using (18)F-Fluorodesoxyglucose-Positron-Emission-Tomography ( [(18)F]FDG-PET). The database was evaluated by a cluster analysis. Additionally, the severity extrapyramidal motor symptoms were judged by a clinical score system. Three characteristic patterns of glucose metabolism in basal ganglia were obtained. Two of them may be assigned to patients with neurological symptoms whereas the third cluster corresponds to most patients without EPS or normal volunteers. The clusters can be identified by characteristic consumption rates in this 5 brain areas. The severity of EPS can not clearly be assigned to one of the clusters with disturbed glucose metabolism. However, the most severe cases are characterized by the lowest consumption in the striatal area. When there is marked improvement of EPS impaired glucose consumption reveals a persistent brain lesion. Finally, the neurological symptoms in Wilson's disease are caused by (at least) two different patterns of disturbed glucose metabolism in basal ganglia and cerebellum. The severity of EPS seems to be determined by a disturbed consumption in the striatal area.

  18. Effects of combined xenon and hypothermia on cerebral blood flow and oxygen consumption in newborn piglets measured with a time-resolved near-infrared technique

    NASA Astrophysics Data System (ADS)

    Fazel Bakhsheshi, Mohammad; Hadway, Jennifer; Morrison, Laura B.; Diop, Mamadou; St. Lawrence, Keith; Lee, Ting-Yim

    2013-02-01

    Mild hypothermia (HT), in which the brain is cooled to 32-33°C, has been shown to be neuroprotective for neurological emergencies such as head trauma and neonatal asphyxia. Xenon (Xe), a scarce and expensive anesthetic gas, has also shown great promise as a neuroprotectant, particularly when combined with HT. The purpose of the present study was to investigate the combined effect of Xe and HT on the cerebral metabolic rate of oxygen (CMRO2) and cerebral blood flow (CBF). A closed circuit re-breathing system was used to deliver the Xe in order to make the treatment efficient and economical. A bolus-tracking method using indocyanine green (ICG) as a flow tracer with time-resolved near-infrared (TR-NIR) technique was used to measure CBF and CMRO2 in newborn piglets.

  19. Regulation of cerebral metabolism during cortical spreading depression

    PubMed Central

    Feuerstein, Delphine; Gramer, Markus; Takagaki, Masatoshi; Gabel, Paula; Kumagai, Tetsuya; Graf, Rudolf

    2015-01-01

    We analyzed the metabolic response to cortical spreading depression that drastically increases local energy demand to restore ion homeostasis. During single and multiple cortical spreading depressions in the rat cortex, we simultaneously monitored extracellular levels of glucose and lactate using rapid sampling microdialysis and glucose influx using 18 F-fluorodeoxyglucose positron emission tomography while tracking cortical spreading depression using laser speckle imaging. Combining the acquired data with steady-state requirements we developed a mass-conserving compartment model including neurons and glia that was consistent with the observed data. In summary, our findings are: (1) Early breakdown of glial glycogen provides a major source of energy during increased energy demand and leaves 80% of blood-borne glucose to neurons. (2) Lactate is used solely by neurons and only if extracellular lactate levels are >80% above normal. (3) Although the ratio of oxygen and glucose consumption transiently reaches levels <3, the major part (>90%) of the overall energy supply is from oxidative metabolism. (4) During cortical spreading depression, brain release of lactate exceeds its consumption suggesting that lactate is only a circumstantial energy substrate. Our findings provide a general scenario for the metabolic response to increased cerebral energy demand. PMID:26661217

  20. Modelling and simulation of the chondrocyte cell growth, glucose consumption and lactate production within a porous tissue scaffold inside a perfusion bioreactor.

    PubMed

    Hossain, Md Shakhawath; Bergstrom, D J; Chen, X B

    2015-03-01

    Mathematical and numerical modelling of the tissue culture process in a perfusion bioreactor is able to provide insight into the fluid flow, nutrients and wastes transport, dynamics of the pH value, and the cell growth rate. Knowing the complicated interdependence of these processes is essential for optimizing the culture process for cell growth. This paper presents a resolved scale numerical simulation, which allows one not only to characterize the supply of glucose inside a porous tissue scaffold in a perfusion bioreactor, but also to assess the overall culture condition and predict the cell growth rate. The simulation uses a simplified scaffold that consists of a repeatable unit composed of multiple strands. The simulation results explore some problematic regions inside the simplified scaffold where the concentration of glucose becomes lower than the critical value for the chondrocyte cell viability and the cell growth rate becomes significantly reduced.

  1. Consumption of caffeinated coffee and a high carbohydrate meal affects postprandial metabolism of a subsequent oral glucose tolerance test in young, healthy males.

    PubMed

    Moisey, Lesley L; Robinson, Lindsay E; Graham, Terry E

    2010-03-01

    Caffeine and caffeinated coffee (CC) elicit acute insulin insensitivity when ingested before a carbohydrate load. The effects of CC on glucose tolerance and insulin sensitivity when co-ingested with a high carbohydrate meal and on postprandial metabolism of a subsequent (second) carbohydrate load have not been studied. In a randomised, crossover design, ten healthy males ingested either CC (5 mg caffeine/kg body weight), decaffeinated coffee (DC) or water (W; equal volume) co-ingested with a high glycaemic index cereal followed 3 h later by a 75 g oral glucose tolerance test. After the initial meal, insulin area under the curve (AUC) and insulin sensitivity index did not differ between treatments, although glucose AUC for CC (107 (sem 18) mmol/l x 3 h) and DC (74 (sem 15) mmol/l x 3 h) was greater than W ( - 0.2 (sem 29) mmol/l x 3 h, P < 0.05). After the second carbohydrate load, insulin AUC for CC was 49 % and 57 % greater (P < 0.01) than for DC and W, respectively. Despite the greater insulin response, glucose AUC for CC (217 (sem 24) mmol/l x 2 h) was greater than both DC (126 (sem 11) mmol/l x 2 h, P = 0.01) and W (55 (sem 34) mmol/l x 2 h, P < 0.001). Insulin sensitivity index after the second meal was lower after CC (8.2 (sem 0.9)) compared with both DC (12.4 (sem 1.2), P < 0.01) and W (13.4 (sem 1.4), P < 0.001). Co-ingestion of CC with one meal resulted in insulin insensitivity during the postprandial phase of a second meal in the absence of further CC ingestion. Thus, CC may play a role in daily glycaemic management.

  2. Effect on Insulin, Glucose and Lipids in Overweight/Obese Australian Adults of 12 Months Consumption of Two Different Fibre Supplements in a Randomised Trial

    PubMed Central

    Pal, Sebely; Ho, Suleen; Gahler, Roland J.; Wood, Simon

    2017-01-01

    Higher fibre intakes are associated with risk reduction for chronic diseases. This study investigated the effects of supplementation with PolyGlycopleX® (PGX), a complexed polysaccharide, on insulin, glucose and lipids in overweight and obese individuals. In this double-blind 12 months study, participants were randomised into three groups: control (rice flour); PGX or psyllium (PSY). Participants followed their usual lifestyle and diet but consumed 5 g of their supplement before meals. Insulin was significantly lower in the PGX and PSY groups compared to control at 3 and 6 months and in the PSY group compared to control at 12 months. Serum glucose was significantly lower in the PGX group at 3 months compared to control. Total cholesterol was significantly lower in the PGX and PSY groups compared to control at 3 and 6 months. High density lipoprotein (HDL) cholesterol was significantly increased in the PGX group compared to control at 12 months. low density lipoprotein (LDL) cholesterol was significantly lower in the PGX group at 3 and 6 months compared to control and in the PSY group at 3 months compared to control. A simple strategy of fibre supplementation may offer an effective solution to glucose, insulin and lipid management without the need for other nutrient modification. PMID:28146065

  3. Subarachnoid hemorrhage in the rat: cerebral blood flow and glucose metabolism after selective lesions of the catecholamine systems in the brainstem

    SciTech Connect

    Delgado, T.J.; Diemer, N.H.; Svendgaard, N.A.

    1986-10-01

    A double-isotope autoradiographic technique was used to evaluate CBF and glucose metabolism 2 days after a subarachnoid hemorrhage (SAH) in rats with lesions in the lower brainstem. Lesioning in the mesencephalon of the ascending catecholamine pathways from locus ceruleus and from the A1 and A2 nuclei, or lesioning in the medulla oblongata of the ascending fibers from A1 and A2, prevents the development of the global changes in flow and metabolism seen in normal animals post SAH. Also the focal low-flow areas with markedly elevated deoxyglucose uptake, which can develop in normal animals 2 days post SAH, were not seen in the lesioned animals after the SAH. The findings indicate that the A1 and A2 nuclei, which project to the hypothalamus-pituitary, are essential for the flow and metabolic changes after an SAH. The lesions per se did not change baseline flow and metabolism as compared with sham-lesioned animals.

  4. Effects of high-fructose corn syrup and sucrose consumption on circulating glucose, insulin, leptin, and ghrelin and on appetite in normal-weight women.

    PubMed

    Melanson, Kathleen J; Zukley, Linda; Lowndes, Joshua; Nguyen, Von; Angelopoulos, Theodore J; Rippe, James M

    2007-02-01

    Fructose has been implicated in obesity, partly due to lack of insulin-mediated leptin stimulation and ghrelin suppression. Most work has examined effects of pure fructose, rather than high-fructose corn syrup (HFCS), the most commonly consumed form of fructose. This study examined effects of beverages sweetened with HFCS or sucrose (Suc), when consumed with mixed meals, on blood glucose, insulin, leptin, ghrelin, and appetite. Thirty lean women were studied on two randomized 2-d visits during which HFCS- and Suc-sweetened beverages were consumed as 30% of energy on isocaloric diets during day 1 while blood was sampled. On day 2, food was eaten ad libitum. Subjects rated appetite at designated times throughout visits. No significant differences between the two sweeteners were seen in fasting plasma glucose, insulin, leptin, and ghrelin (P > 0.05). The within-day variation in all four items was not different between the two visits (P > 0.05). Net areas under the curve were similar for glucose, insulin, and leptin (P > 0.05). There were no differences in energy or macronutrient intake on day 2. The only appetite variable that differed between sweeteners was desire to eat, which had a higher area under the curve the day after Suc compared with HFCS. These short-term results suggest that, when fructose is consumed in the form of HFCS, the measured metabolic responses do not differ from Suc in lean women. Further research is required to examine appetite responses and to determine if these findings hold true for obese individuals, males, or longer periods.

  5. Global and regional cerebral metabolic rate of 2-[18F]fluoro-2-deoxy-D-glucose in the presence of ofloxacin, a gamma-aminobutyric acid a receptor antagonist.

    PubMed

    Camargo, E E; Sostre, S; Sadzot, B; Shafique, I; Szabo, Z; Links, J M; Dannals, R F; Wagner, H N

    1991-04-01

    We investigated the effects of ofloxacin, a new antibacterial quinolone gamma-aminobutyric acid A receptor antagonist, on the global and regional cerebral metabolic rates of glucose (cMRgl). Twelve healthy normal male volunteers (mean age, 26.7 years) were studied in a double-blind, placebo-controlled protocol of 11 days' duration. Results of a total of 42 positron emission tomography studies were obtained for these subjects: 12 base line, 18 during placebo, and 12 during ofloxacin administration. The conditions under which repeat positron emission tomography studies of the same subject were performed were reproduced as closely as possible. cMRgl was measured in 24 brain regions. The global cMRgl for base line, placebo, and ofloxacin were 8.82 +/- 1.17, 8.24 +/- 1.17, and 8.79 +/- 1.18 mg/min/100 g, respectively (mean +/- 1 standard deviation). The mean global differences between base line and placebo and between ofloxacin and placebo were 5.1 and 6.6%, respectively. Analysis of variance of both the global and the regional cMRgl showed no statistical difference between base-line, placebo, and ofloxacin studies. Variations in cMRgl found in this study were not related to the presence of ofloxacin. Results of our study demonstrate that ofloxacin does not increase or decrease cMRgl beyond the limits of variability of the study.

  6. Differential expression in glioblastoma multiforme and cerebral hemangioblastoma of cytoplasmic proteins that bind two different domains within the 3'-untranslated region of the human glucose transporter 1 (GLUT1) messenger RNA.

    PubMed Central

    Tsukamoto, H; Boado, R J; Pardridge, W M

    1996-01-01

    The glucose transporter 1 (GLUT1) protein is underexpressed in human glioblastoma multiforme and is overexpressed in human cerebral hemangioblastoma. To gain in-sight into possible posttranscriptional mechanisms regulating the expression of the GLUT1 protein in human brain tumors, cytosolic proteins were prepared from these two tumors and used in RNase T1 protection assays that employed [32P]human GLUT1 synthetic RNA prepared from transcription plasmids. Gel shift mobility assays and ultra-violet light cross-linking studies demonstrated the formation of specific RNA/protein complexes that migrated with a mol mass of 120, 44, and 41 kD. RNase T1 mapping and oligodeoxynucleotide competition studies showed that the 120 kD complex was comprised of an RNA fragment that localized to nucleotides 2186-2203 of the GLUT1 mRNA. The 44 kD complex contained an adenosine-uridine-rich RNA fragment that localized to nucleotides 1885-1906 of the human GLUT1 mRNA, and the formation of this complex was inhibited by synthetic RNA enriched in adenosine-uridine sequences. The 44 kD complex was selectively downregulated in hemangioblastoma as compared to glioblastoma multiforme. These studies demonstrate that human brain tumors have differential regulation of cytosolic proteins that specifically interact with two different domains in the 3'-untranslated region of the GLUT1 mRNA, which may serve to mediate the posttranscriptional regulation of GLUT1 gene expression in these tumors. PMID:8675694

  7. Glucose Tests

    MedlinePlus

    ... AACC products and services. Advertising & Sponsorship: Policy | Opportunities Glucose Tests Share this page: Was this page helpful? ... the meaning of other test results. Fasting Blood Glucose Glucose Level Indication From 70 to 99 mg/ ...

  8. Cerebral Aneurysms

    MedlinePlus

    ... cerebral aneurysm may be required to restore deteriorating respiration and reduce abnormally high pressure within the brain. ... cerebral aneurysm may be required to restore deteriorating respiration and reduce abnormally high pressure within the brain. ...

  9. Cerebral Palsy

    MedlinePlus

    ... ol (Spanish) Recommend on Facebook Tweet Share Compartir Cerebral palsy (CP) is a group of disorders that affect ... resource—it highlights the ADDM Network’s data on cerebral palsy in a way that is useful for stakeholders ...

  10. Cerebral Palsy

    MedlinePlus

    Cerebral palsy is a group of disorders that affect a person's ability to move and to maintain balance ... do not get worse over time. People with cerebral palsy may have difficulty walking. They may also have ...

  11. Ablation of TRPM5 in Mice Results in Reduced Body Weight Gain and Improved Glucose Tolerance and Protects from Excessive Consumption of Sweet Palatable Food when Fed High Caloric Diets

    PubMed Central

    Larsson, Marie H.; Håkansson, Pernilla; Jansen, Frank P.; Magnell, Kerstin; Brodin, Peter

    2015-01-01

    The calcium activated cation channel transient receptor potential channel type M5 (TRPM5) is part of the downstream machinery of the taste receptors and have been shown to play a central role in taste signalling. In addition it is also found in other types of chemosensory cells in various parts of the body as well as in pancreatic β-cells. The aim of this study was to investigate the effects of TRPM5 gene ablation on body weight, insulin sensitivity and other metabolic parameters in long-term high caloric diet induced obesity. Trpm5-/- mice gained significantly less body weight and fat mass on both palatable carbohydrate and fat rich cafeteria diet and 60% high fat diet (HFD) and developed less insulin resistance compared to wild type mice. A main finding was the clearly improved glucose tolerance in Trpm5-/- mice compared to wild type mice on cafeteria diet, which was independent of body weight. In addition, it was shown that Trpm5-/- mice consumed the same amount of calories when fed a HFD only or a HFD in combination with a palatable chocolate ball, which is in contrast to wild type mice that increased their caloric intake when fed the combination, mainly due to excessive consumption of the chocolate ball. Thus the palatable sugar containing diet induced overeating was prevented in Trpm5-/- mice. This indicates that sweet taste induced overeating may be a cause for the increased energy intake and glucose intolerance development seen for wild type mice on a sugar and high fat rich cafeteria diet compared to when on a high fat diet. This study point to an important role for the taste signalling system and TRPM5 in diet induced glucose intolerance. PMID:26397098

  12. Ablation of TRPM5 in Mice Results in Reduced Body Weight Gain and Improved Glucose Tolerance and Protects from Excessive Consumption of Sweet Palatable Food when Fed High Caloric Diets.

    PubMed

    Larsson, Marie H; Håkansson, Pernilla; Jansen, Frank P; Magnell, Kerstin; Brodin, Peter

    2015-01-01

    The calcium activated cation channel transient receptor potential channel type M5 (TRPM5) is part of the downstream machinery of the taste receptors and have been shown to play a central role in taste signalling. In addition it is also found in other types of chemosensory cells in various parts of the body as well as in pancreatic β-cells. The aim of this study was to investigate the effects of TRPM5 gene ablation on body weight, insulin sensitivity and other metabolic parameters in long-term high caloric diet induced obesity. Trpm5-/- mice gained significantly less body weight and fat mass on both palatable carbohydrate and fat rich cafeteria diet and 60% high fat diet (HFD) and developed less insulin resistance compared to wild type mice. A main finding was the clearly improved glucose tolerance in Trpm5-/- mice compared to wild type mice on cafeteria diet, which was independent of body weight. In addition, it was shown that Trpm5-/- mice consumed the same amount of calories when fed a HFD only or a HFD in combination with a palatable chocolate ball, which is in contrast to wild type mice that increased their caloric intake when fed the combination, mainly due to excessive consumption of the chocolate ball. Thus the palatable sugar containing diet induced overeating was prevented in Trpm5-/- mice. This indicates that sweet taste induced overeating may be a cause for the increased energy intake and glucose intolerance development seen for wild type mice on a sugar and high fat rich cafeteria diet compared to when on a high fat diet. This study point to an important role for the taste signalling system and TRPM5 in diet induced glucose intolerance.

  13. Excessive fluoride consumption increases haematological alteration in subjects with iron deficiency, thalassaemia, and glucose-6-phosphate dehydrogenase (G-6-PD) deficiency.

    PubMed

    Pornprasert, Sakorn; Wanachantararak, Phenphichar; Kantawong, Fahsai; Chamnanprai, Supoj; Kongpan, Chatpat; Pienthai, Nattasit; Yanola, Jintana; Duangmano, Suwit; Prasannarong, Mujalin

    2016-06-18

    Excessive fluoride consumption leads to accelerated red blood cell death and anaemia. Whether that increases the haematological alteration in subjects with haematological disorders (iron deficiency, thalassaemia, and G-6-PD deficiency) is still unclear. The fluoride in serum and urine and haematological parameters of students at Mae Tuen School (fluoride endemic area) were analysed and compared to those of students at Baan Yang Poa and Baan Mai Schools (control areas). Iron deficiency, thalassaemia, and G-6-PD deficiency were also diagnosed in these students. The students at Mae Tuen School had significantly (P < 0.001) higher levels of mean fluoride in the serum and urine than those in control areas. In both control and fluoride endemic areas, students with haematological disorders had significantly lower levels of Hb, Hct, MCV, MCH, and MCHC than those without haematological disorders. Moreover, the lowest levels of Hb, MCH, and MCHC were observed in the students with haematological disorders who live in the fluoride endemic area. Thus, the excessive fluoride consumption increased haematological alteration in subjects with iron deficiency, thalassaemia, and G-6-PD deficiency and that may increase the risk of anaemia in these subjects.

  14. Dickkopf 3 (Dkk3) Improves Amyloid-β Pathology, Cognitive Dysfunction, and Cerebral Glucose Metabolism in a Transgenic Mouse Model of Alzheimer's Disease.

    PubMed

    Zhang, Li; Sun, Caixian; Jin, Yaxi; Gao, Kai; Shi, Xudong; Qiu, Wenying; Ma, Chao; Zhang, Lianfeng

    2017-09-08

    Dysfunctional Wnt signaling is associated with Alzheimer's disease (AD), and activation of the Wnt signaling pathway inhibits AD development. Dickkopf 3 (Dkk3) is a modulator of the Wnt signaling pathway and is physiologically expressed in the brain. The role of Dkk3 in the pathogenesis of AD has not been evaluated. In the present study, we determined that Dkk3 expression was significantly decreased in brain tissue from AD patients and the AD transgenic mouse model APPswe/PS1dE9 (AD mice). Transgenic mice with brain tissue-specific Dkk3 expression were generated or crossed with AD mice to study the effects of Dkk3 on AD. In AD mice, transgenic expression of Dkk3 improved abnormalities in learning, memory, and locomotor activity, reduced the accumulation of amyloid-β, and ameliorated glucose uptake deficits. Furthermore, we determined that Dkk3 downregulated GSK-3β, a central negative regulator in canonical Wnt signaling, and upregulated PKCβ1, a factor implicated in noncanonical Wnt signaling. This indicates that increased activation of GSK-3β and the inhibition of PKCβ1 in AD patients may be responsible for the dysfunctional Wnt signaling in AD. In summary, our data suggest that Dkk3 is an agonist of Wnt signaling, and the ability of transgenic expression of Dkk3 to compensate for the decrease in Dkk3 expression in AD mice, reverse dysfunctional Wnt signaling, and partially inhibit the pathological development of AD suggests that Dkk3 could serve as a therapeutic target for the treatment of AD.

  15. Effects of selective head cooling on cerebral blood flow and metabolism in newborn piglets after hypoxia-ischemia.

    PubMed

    Cheng, Guoqiang; Sun, Jinqiao; Wang, Laishuan; Shao, Xiaomei; Zhou, Wenhao

    2011-02-01

    the effect of selective head cooling on cerebral blood flow (CBF) and cerebral metabolism rate (CMR) was investigated in newborn piglets. seven days old newborn piglets were randomly assigned to one of the following three groups: Selective head cooling in normal piglets (n=4), selective head cooling after HI (n=6) and normal temperature after HI (n=6). CBF was measured with color microspheres. Cerebral oxygenation metabolism rate (CMRO(2)), Cerebral glucose consumption (CMR(Glu)) and Cerebral lactate production (CMR(lac)) were calculated. in normal piglets, CBF, CMRO(2) and CMR(glu) were significantly decreased at both 35°C (P<0.05) and 32°C (P<0.01), while CMR(lac) did not change. Compared to baseline, CBF and CMRO(2) were significantly reduced (P<0.05), while CMR(glu) and CMR(lac) were significantly increased (P<0.01), AVDO(2) was decreased (P<0.05), while AVD(glu) and AVD(lac) were significantly increased (P<0.01 respectively) in HI piglets with normal temperature respectively. Compared to normal temperature after HI, selective head cooling after HI significantly reduced CMR(glu) and CMR(lac), and AVDO(2), AVD(glu), AVD(lac) were improved at 35°C. selective head cooling not only reduced energy consumption, but also improve brain oxygen metabolism in newborn after HI. 2010 Elsevier Ltd. All rights reserved.

  16. Cranberry juice consumption lowers markers of cardiometabolic risk, including blood pressure and circulating C-reactive protein, triglyceride, and glucose concentrations in adults.

    PubMed

    Novotny, Janet A; Baer, David J; Khoo, Christina; Gebauer, Sarah K; Charron, Craig S

    2015-06-01

    Cardiometabolic risk is the risk of cardiovascular disease (CVD), diabetes, or stroke, which are leading causes of mortality and morbidity worldwide. The objective of this study was to determine the potential of low-calorie cranberry juice (LCCJ) to lower cardiometabolic risk. A double-blind, placebo-controlled, parallel-arm study was conducted with controlled diets. Thirty women and 26 men (mean baseline characteristics: 50 y; weight, 79 kg; body mass index, 28 kg/m(2)) completed an 8-wk intervention with LCCJ or a flavor/color/energy-matched placebo beverage. Twice daily volunteers consumed 240 mL of LCCJ or the placebo beverage, containing 173 or 62 mg of phenolic compounds and 6.5 or 7.5 g of total sugar per 240-mL serving, respectively. Fasting serum triglycerides (TGs) were lower after consuming LCCJ and demonstrated a treatment × baseline interaction such that the participants with higher baseline TG concentrations were more likely to experience a larger treatment effect (1.15 ± 0.04 mmol/L vs. 1.25 ± 0.04 mmol/L, respectively; P = 0.027). Serum C-reactive protein (CRP) was lower for individuals consuming LCCJ than for individuals consuming the placebo beverage [ln transformed values of 0.522 ± 0.115 ln(mg/L) vs. 0.997 ± 0.120 ln(mg/L), P = 0.0054, respectively, and equivalent to 1.69 mg/L vs. 2.71 mg/L back-transformed]. LCCJ lowered diastolic blood pressure (BP) compared with the placebo beverage (69.2 ± 0.8 mm Hg for LCCJ vs. 71.6 ± 0.8 mm Hg for placebo; P = 0.048). Fasting plasma glucose was lower (P = 0.03) in the LCCJ group (5.32 ± 0.03 mmol/L) than in the placebo group (5.42 ± 0.03 mmol/L), and LCCJ had a beneficial effect on homeostasis model assessment of insulin resistance for participants with high baseline values (P = 0.035). LCCJ can improve several risk factors of CVD in adults, including circulating TGs, CRP, and glucose, insulin resistance, and diastolic BP. This trial was registered at clinicaltrials.gov as NCT01295684. © 2015

  17. Deletion of TRPC6 Attenuates NMDA Receptor-Mediated Ca2+ Entry and Ca2+-Induced Neurotoxicity Following Cerebral Ischemia and Oxygen-Glucose Deprivation

    PubMed Central

    Chen, Jin; Li, Zhaozhong; Hatcher, Jeffery T.; Chen, Qing-Hui; Chen, Li; Wurster, Robert D.; Chan, Sic L.; Cheng, Zixi

    2017-01-01

    Transient receptor potential canonical 6 (TRPC6) channels are permeable to Na+ and Ca2+ and are widely expressed in the brain. In this study, the role of TRPC6 was investigated following ischemia/reperfusion (I/R) and oxygen-glucose deprivation (OGD). We found that TRPC6 expression was increased in wild-type (WT) mice cortical neurons following I/R and in primary neurons with OGD, and that deletion of TRPC6 reduced the I/R-induced brain infarct in mice and the OGD- /neurotoxin-induced neuronal death. Using live-cell imaging to examine intracellular Ca2+ levels ([Ca2+]i), we found that OGD induced a significant higher increase in glutamate-evoked Ca2+ influx compared to untreated control and such an increase was reduced by TRPC6 deletion. Enhancement of TRPC6 expression using AdCMV-TRPC6-GFP infection in WT neurons increased [Ca2+]i in response to glutamate application compared to AdCMV-GFP control. Inhibition of N-methyl-d-aspartic acid receptor (NMDAR) with MK801 decreased TRPC6-dependent increase of [Ca2+]i in TRPC6 infected cells, indicating that such a Ca2+ influx was NMDAR dependent. Furthermore, TRPC6-dependent Ca2+ influx was blunted by blockade of Na+ entry in TRPC6 infected cells. Finally, OGD-enhanced Ca2+ influx was reduced, but not completely blocked, in the presence of voltage-dependent Na+ channel blocker tetrodotoxin (TTX) and dl-α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) blocker CNQX. Altogether, we concluded that I/R-induced brain damage was, in part, due to upregulation of TRPC6 in cortical neurons. We postulate that overexpression of TRPC6 following I/R may induce neuronal death partially through TRPC6-dependent Na+ entry which activated NMDAR, thus leading to a damaging Ca2+ overload. These findings may provide a potential target for future intervention in stroke-induced brain damage. PMID:28400714

  18. Egg consumption as part of an energy-restricted high-protein diet improves blood lipid and blood glucose profiles in individuals with type 2 diabetes.

    PubMed

    Pearce, Karma L; Clifton, Peter M; Noakes, Manny

    2011-02-01

    The role of dietary cholesterol in people with diabetes has been little studied. We investigated the effect of a hypoenergetic high-protein high-cholesterol (HPHchol) diet compared to a similar amount of animal protein (high-protein low-cholesterol, HPLchol) on plasma lipids, glycaemic control and cardiovascular risk markers in individuals with type 2 diabetes. A total of sixty-five participants with type 2 diabetes or impaired glucose tolerance (age 54·4 (sd 8·2) years; BMI 34·1 (sd 4·8) kg/m2; LDL-cholesterol (LDL-C) 2·67 (sd 0·10) mmol/l) were randomised to either HPHchol or HPLchol. Both hypoenergetic dietary interventions (6-7 MJ; 1·4-1·7 Mcal) and total carbohydrate:protein:fat ratio of 40:30:30 % were similar but differed in cholesterol content (HPHchol, 590 mg cholesterol; HPLchol, 213 mg cholesterol). HPHchol participants consumed two eggs per d, whereas HPHchol participants replaced the eggs with 100 g of lean animal protein. After 12 weeks, weight loss was 6·0 (sd 0·4) kg (P < 0·001). LDL-C and homocysteine remained unchanged. All the subjects reduced total cholesterol ( - 0·3 (sd 0·1) mmol/l, P < 0·001), TAG ( - 0·4 (sd 0·1) mmol/l, P < 0·001), non-HDL-cholesterol (HDL-C, - 0·4 (sd 0·1) mmol/l, P < 0·001), apo-B ( - 0·04 (sd 0·02) mmol/l, P < 0·01), HbA1c ( - 0·6 (sd 0·1) %, P < 0·001), fasting blood glucose ( - 0·5 (sd 0·2) mmol/l, P < 0·01), fasting insulin ( - 1·7 (sd 0·7) mIU/l, P < 0·01), systolic blood pressure ( - 7·6 (sd 1·7) mmHg, P < 0·001) and diastolic blood pressure ( - 4·6 (sd 1·0) mmHg; P < 0·001). Significance was not altered by diet, sex, medication or amount of weight loss. HDL-C increased on HPHchol (+0·02 (sd 0·02) mmol/l) and decreased on HPLchol ( - 0·07 (sd 0·03) mmol/l, P < 0·05). Plasma folate and lutein increased more on HPHchol (P < 0·05). These results suggest that a high-protein energy-restricted diet high in

  19. Regionally selective and dose-dependent effects of the ampakines Org 26576 and Org 24448 on local cerebral glucose utilisation in the mouse as assessed by 14C-2-deoxyglucose autoradiography.

    PubMed

    Jordan, Graeme R; McCulloch, James; Shahid, Mohammed; Hill, David R; Henry, Brian; Horsburgh, Karen

    2005-08-01

    AMPA receptor potentiating drugs (e.g. ampakines) enhance glutamatergic neurotransmission, and may have potential therapeutic consequences in CNS disorders. The neuroanatomical basis of action for these compounds is at present unclear. This study aimed to identify the effects of two novel ampakines, Org 26576 and Org 24448, on local cerebral glucose use (LCGU) in the mouse. C57BL/6J mice received Org 26576 (0.1, 1, 10 mg/kg i.p.) or Org 24448 (3, 10, 30 mg/kg i.p.) or vehicle and LCGU was assessed using 14C-2-deoxyglucose autoradiography. Both compounds produced dose-dependent increases in LCGU with specific regional activation at low doses. Org 26576 (1 mg/kg) produced significant increases in 9 of the 43 areas examined, including the anteroventral and laterodorsal thalamus, cingulate cortex, dentate gyrus and CA3 subfield of the hippocampus. Org 24448 (3 mg/kg) produced significant increases in LCGU in 4 of the 43 regions examined, including the dorsal raphe nucleus, medial lateral habenula, CA1 subfield of the hippocampus and median forebrain bundle. Furthermore, the increases in LCGU observed with both Org 26576 (10 mg/kg) and Org 24448 (10 mg/kg) were blocked by pre-treatment with the AMPA receptor antagonist NBQX (10 mg/kg). These data demonstrate that both Org 26576 and Org 24448 produce dose-dependent AMPA receptor mediated increases in LCGU and provide an anatomical basis suggestive that these drugs may be of use in the treatment of conditions such as depression or schizophrenia.

  20. [Contribution of the kidney to glucose homeostasis].

    PubMed

    Segura, Julián; Ruilope, Luis Miguel

    2013-09-01

    The kidney is involved in glucose homeostasis through three major mechanisms: renal gluconeogenesis, renal glucose consumption, and glucose reabsorption in the proximal tubule. Glucose reabsorption is one of the most important physiological functions of the kidney, allowing full recovery of filtered glucose, elimination of glucose from the urine, and prevention of calorie loss. Approximately 90% of the glucose is reabsorbed in the S1 segment of the proximal tubule, where glucose transporter-2 (GLUT2) and sodium-glucose transporter-2 (SGLT2) are located, while the remaining 10% is reabsorbed in the S3 segment by SGLT1 and GLUT1 transporters. In patients with hyperglycemia, the kidney continues to reabsorb glucose, thus maintaining hyperglycemia. Most of the renal glucose reabsorption is mediated by SGLT2. Several experimental and clinical studies suggest that pharmacological blockade of this transporter might be beneficial in the management of hyperglycemia in patients with type 2 diabetes.

  1. Consumption of whole grains and legumes modulates the genetic effect of the APOA5 -1131C variant on changes in triglyceride and apolipoprotein A-V concentrations in patients with impaired fasting glucose or newly diagnosed type 2 diabetes

    PubMed Central

    2014-01-01

    Background The apolipoprotein A5 gene (APOA5) -1131 T > C polymorphism is associated with mild hypertriglyceridemia in type 2 diabetic subjects, and interacts with dietary fat in the determination of triglyceride concentrations. We examined whether a substitution of whole grains and legumes for refined rice in a high carbohydrate diet (about 65% of energy derived from carbohydrate) may modify the effect of this variant on changes in apolipoprotein A-V (apoA-V) and triglyceride concentrations. Methods We genotyped the APOA5 -1131 T > C in individuals with impaired fasting glucose (IFG) or newly diagnosed type 2 diabetes, who were randomly assigned to either a group ingesting whole grain and legume meals daily or a control group for 12 weeks. Results After dietary intervention, we observed significant interactions between the APOA5 -1131 T > C polymorphism and carbohydrate sources (whole grains and legumes versus refined rice) in the determination of mean percent changes in triglyceride and apoA-V (P interactions <0.001 and =0.038, respectively). In the refined rice group (n = 93), the carriers of the risk C allele (n = 50) showed a greater increase in the mean percent changes of triglyceride and apoA-V than noncarriers after adjusting for HOMA-IR (P = 0.004 and 0.021, respectively). The whole grain and legume group (n = 92), however, showed a decrease in fasting glucose, HOMA-IR, and triglyceride, and an increase in apoA-V, irrespective of genotype. Conclusions The data showed that the magnitude of the genetic effect of the APOA5 -1131C variant on triglyceride and apoA-V levels was modulated when substituting consumption of whole grains and legumes for refined rice as a carbohydrate source in IFG or diabetic subjects. Trial registration ClinicalTrials.gov: NCT01784952. PMID:24690159

  2. Consumption of whole grains and legumes modulates the genetic effect of the APOA5 -1131C variant on changes in triglyceride and apolipoprotein A-V concentrations in patients with impaired fasting glucose or newly diagnosed type 2 diabetes.

    PubMed

    Kang, Ryungwoo; Kim, Minjoo; Chae, Jey Sook; Lee, Sang-Hyun; Lee, Jong Ho

    2014-04-01

    The apolipoprotein A5 gene (APOA5) -1131 T > C polymorphism is associated with mild hypertriglyceridemia in type 2 diabetic subjects, and interacts with dietary fat in the determination of triglyceride concentrations. We examined whether a substitution of whole grains and legumes for refined rice in a high carbohydrate diet (about 65% of energy derived from carbohydrate) may modify the effect of this variant on changes in apolipoprotein A-V (apoA-V) and triglyceride concentrations. We genotyped the APOA5 -1131 T > C in individuals with impaired fasting glucose (IFG) or newly diagnosed type 2 diabetes, who were randomly assigned to either a group ingesting whole grain and legume meals daily or a control group for 12 weeks. After dietary intervention, we observed significant interactions between the APOA5 -1131 T > C polymorphism and carbohydrate sources (whole grains and legumes versus refined rice) in the determination of mean percent changes in triglyceride and apoA-V (P interactions <0.001 and =0.038, respectively). In the refined rice group (n = 93), the carriers of the risk C allele (n = 50) showed a greater increase in the mean percent changes of triglyceride and apoA-V than noncarriers after adjusting for HOMA-IR (P = 0.004 and 0.021, respectively). The whole grain and legume group (n = 92), however, showed a decrease in fasting glucose, HOMA-IR, and triglyceride, and an increase in apoA-V, irrespective of genotype. The data showed that the magnitude of the genetic effect of the APOA5 -1131C variant on triglyceride and apoA-V levels was modulated when substituting consumption of whole grains and legumes for refined rice as a carbohydrate source in IFG or diabetic subjects. ClinicalTrials.gov: NCT01784952.

  3. Glucose Variability

    PubMed Central

    Le Floch, Jean-Pierre; Kessler, Laurence

    2016-01-01

    Background: Glucose variability has been suspected to be a major factor of diabetic complications. Several indices have been proposed for measuring glucose variability, but their interest remains discussed. Our aim was to compare different indices. Methods: Glucose variability was studied in 150 insulin-treated diabetic patients (46% men, 42% type 1 diabetes, age 52 ± 11 years) using a continuous glucose monitoring system (668 ± 564 glucose values; mean glucose value 173 ± 38 mg/dL). Results from the mean, the median, different indices (SD, MAGE, MAG, glucose fluctuation index (GFI), and percentages of low [<60 mg/dL] and high [>180 mg/dL] glucose values), and ratios (CV = SD/m, MAGE/m, MAG/m, and GCF = GFI/m) were compared using Pearson linear correlations and a multivariate principal component analysis (PCA). Results: CV, MAGE/m (ns), GCF and GFI (P < .05), MAG and MAG/m (P < .01) were not strongly correlated with the mean. The percentage of high glucose values was mainly correlated with indices. The percentage of low glucose values was mainly correlated with ratios. PCA showed 3 main axes; the first was associated with descriptive data (mean, SD, CV, MAGE, MAGE/m, and percentage of high glucose values); the second with ratios MAG/m and GCF and with the percentage of low glucose values; and the third with MAG, GFI, and the percentage of high glucose values. Conclusions: Indices and ratios provide complementary pieces of information associated with high and low glucose values, respectively. The pairs MAG+MAG/m and GFI+GCF appear to be the most reliable markers of glucose variability in diabetic patients. PMID:26880391

  4. Cerebral malaria

    PubMed Central

    Rénia, Laurent; Wu Howland, Shanshan; Claser, Carla; Charlotte Gruner, Anne; Suwanarusk, Rossarin; Hui Teo, Teck; Russell, Bruce; Ng, Lisa

    2012-01-01

    Cerebral malaria is the most severe pathology caused by the malaria parasite, Plasmodium falciparum. The pathogenic mechanisms leading to cerebral malaria are still poorly defined as studies have been hampered by limited accessibility to human tissues. Nevertheless, histopathology of post-mortem human tissues and mouse models of cerebral malaria have indicated involvement of the blood-brain barrier in cerebral malaria. In contrast to viruses and bacteria, malaria parasites do not infiltrate and infect the brain parenchyma. Instead, rupture of the blood-brain barrier occurs and may lead to hemorrhages resulting in neurological alterations. Here, we review the most recent findings from human studies and mouse models on the interactions of malaria parasites and the blood-brain barrier, shedding light on the pathogenesis of cerebral malaria, which may provide directions for possible interventions. PMID:22460644

  5. Rosemary tea consumption results to anxiolytic- and anti-depressant-like behavior of adult male mice and inhibits all cerebral area and liver cholinesterase activity; phytochemical investigation and in silico studies.

    PubMed

    Ferlemi, Anastasia-Varvara; Katsikoudi, Antigoni; Kontogianni, Vassiliki G; Kellici, Tahsin F; Iatrou, Grigoris; Lamari, Fotini N; Tzakos, Andreas G; Margarity, Marigoula

    2015-07-25

    Our aim was to investigate the possible effects of regular drinking of Rosmarinus officinalis L. leaf infusion on behavior and on AChE activity of mice. Rosemary tea (2% w/w) phytochemical profile was investigated through LC/DAD/ESI-MS(n). Adult male mice were randomly divided into two groups: "Rosemary-treated" that received orally the rosemary tea for 4weeks and "control" that received drinking water. The effects of regular drinking of rosemary tea on behavioral parameters were assessed by passive avoidance, elevated plus maze and forced swimming tests. Moreover, its effects on cerebral and liver cholinesterase (ChE) isoforms activity were examined colorimetricaly. Phytochemical analysis revealed the presence of diterpenes, flavonoids and hydroxycinnamic derivatives in rosemary tea; the major compounds were quantitatively determined. Its consumption rigorously affected anxiety/fear and depression-like behavior of mice, though memory/learning was unaffected. ChE isoforms activity was significantly decreased in brain and liver of "rosemary treated" mice. In order to explain the tissue ChE inhibition, principal component analysis, pharmacophore alignment and molecular docking were used to explore a possible relationship between main identified compounds of rosemary tea, i.e. rosmarinic acid, luteolin-7-O-glucuronide, caffeic acid and known AChE inhibitors. Results revealed potential common pharmacophores of the phenolic components with the inhibitors. Our findings suggest that rosemary tea administration exerts anxiolytic and antidepressant effects on mice and inhibits ChE activity; its main phytochemicals may function in a similar way as inhibitors.

  6. Comparison of the long-term effects of high-fat v. low-fat diet consumption on cardiometabolic risk factors in subjects with abnormal glucose metabolism: a systematic review and meta-analysis.

    PubMed

    Schwingshackl, Lukas; Hoffmann, Georg

    2014-06-28

    The aim of the present systematic review and meta-analysis was to examine the long-term effects (≥ 12 months) of high-fat (HF) v. low-fat (LF) diet consumption on the indicators of glycaemic control as well as cardiovascular risk factors in pre-diabetic and diabetic individuals. Literature search was carried out using the electronic databases MEDLINE, Embase and the Cochrane Trial Register until November 2013. Study-specific weighted mean differences (MD) were pooled using a random-effects model of the Cochrane software package Review Manager 5.1 and Stata 12.0 was used for meta-regressions. A total of fourteen trials met the inclusion criteria and a maximum of 1753 subjects were included in the meta-analysis. HF regimens were found to result in a significant decrease in TAG levels (MD -0·19 mmol/l, 95 % CI -0·23, -0·14, P< 0·001; I² = 0 %, P= 0·58) and diastolic blood pressure (MD -1·30 mmHg, 95 % CI -1·73, -0·87, P< 0·001; I² = 0 %, P= 0·60) and a significant increase in HDL-cholesterol levels (MD 0·05 mmol/l, 95 % CI 0·01, 0·08, P= 0·01; I² = 57 %, P= 0·01). In addition, MD in the reductions of fasting glucose levels (-0·41 mmol/l, 95 % CI -0·74, -0·08, P= 0·01; I² = 56 %, P= 0·02) were significantly high in patients with type 2 diabetes adhering to a HF diet. HF and LF diets might not be of equal value in the management of either pre-diabetes or type 2 diabetes, leading to emphasis being placed on the recommendations of HF diets.

  7. Cerebral Paragonimiasis.

    PubMed

    Miyazaki, I

    1975-01-01

    The first case of cerebral paragonimiasis was reported by Otani in Japan in 1887. This was nine years after Kerbert's discovery of the fluke in the lungs of Bengal tigers and seven years after a human pulmonary infection by the fluke was demonstrated by Baelz and Manson. The first case was a 26-year-old man who had been suffering from cough and hemosputum for one year. The patient developed convulsive seizures with subsequent coma and died. The postmortem examination showed cystic lesions in the right frontal and occipital lobes. An adult fluke was found in the occipital lesion and another was seen in a gross specimen of normal brain tissue around the affected occipital lobe. Two years after Otani's discovery, at autopsy a 29-year-old man with a history of Jacksonian seizure was reported as having cerebral paragonimiasis. Some time later, however, it was confirmed that the case was actually cerebral schistosomiasis japonica. Subsequently, cases of cerebral paragonimiasis were reported. However, the majority of these cases were not confirmed histologically. It was pointed out that some of these early cases were probably not Paragonimus infection. After World War II, reviews as well as case reports were published. Recently, investigations have been reported from Korea, with a clinicla study on 62 cases of cerebral paragonimiasis seen at the Neurology Department of the National Medical Center, Seoul, between 1958 and 1964. In 1971 Higashi described a statistical study on 105 cases of cerebral paragonimiasis that had been treated surgically in Japan.

  8. Cerebral Gluconeogenesis and Diseases

    PubMed Central

    Yip, James; Geng, Xiaokun; Shen, Jiamei; Ding, Yuchuan

    2017-01-01

    The gluconeogenesis pathway, which has been known to normally present in the liver, kidney, intestine, or muscle, has four irreversible steps catalyzed by the enzymes: pyruvate carboxylase, phosphoenolpyruvate carboxykinase, fructose 1,6-bisphosphatase, and glucose 6-phosphatase. Studies have also demonstrated evidence that gluconeogenesis exists in brain astrocytes but no convincing data have yet been found in neurons. Astrocytes exhibit significant 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 activity, a key mechanism for regulating glycolysis and gluconeogenesis. Astrocytes are unique in that they use glycolysis to produce lactate, which is then shuttled into neurons and used as gluconeogenic precursors for reduction. This gluconeogenesis pathway found in astrocytes is becoming more recognized as an important alternative glucose source for neurons, specifically in ischemic stroke and brain tumor. Further studies are needed to discover how the gluconeogenesis pathway is controlled in the brain, which may lead to the development of therapeutic targets to control energy levels and cellular survival in ischemic stroke patients, or inhibit gluconeogenesis in brain tumors to promote malignant cell death and tumor regression. While there are extensive studies on the mechanisms of cerebral glycolysis in ischemic stroke and brain tumors, studies on cerebral gluconeogenesis are limited. Here, we review studies done to date regarding gluconeogenesis to evaluate whether this metabolic pathway is beneficial or detrimental to the brain under these pathological conditions. PMID:28101056

  9. Cerebral Palsy (For Parents)

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old Cerebral Palsy KidsHealth > For Parents > Cerebral Palsy A A A ... kids who are living with the condition. About Cerebral Palsy Cerebral palsy is one of the most common ...

  10. Cerebral palsy - resources

    MedlinePlus

    Resources - cerebral palsy ... The following organizations are good resources for information on cerebral palsy : National Institute of Neurological Disorders and Stroke -- www.ninds.nih.gov/disorders/cerebral_palsy/cerebral_palsy. ...

  11. Cerebral Palsy (For Teens)

    MedlinePlus

    ... Right Sport for You Healthy School Lunch Planner Cerebral Palsy KidsHealth > For Teens > Cerebral Palsy Print A A ... do just what everyone else does. What Is Cerebral Palsy? Cerebral palsy (CP) is a disorder of the ...

  12. Cerebral palsy.

    PubMed

    Colver, Allan; Fairhurst, Charles; Pharoah, Peter O D

    2014-04-05

    The syndrome of cerebral palsy encompasses a large group of childhood movement and posture disorders. Severity, patterns of motor involvement, and associated impairments such as those of communication, intellectual ability, and epilepsy vary widely. Overall prevalence has remained stable in the past 40 years at 2-3·5 cases per 1000 livebirths, despite changes in antenatal and perinatal care. The few studies available from developing countries suggest prevalence of comparable magnitude. Cerebral palsy is a lifelong disorder; approaches to intervention, whether at an individual or environmental level, should recognise that quality of life and social participation throughout life are what individuals with cerebral palsy seek, not improved physical function for its own sake. In the past few years, the cerebral palsy community has learned that the evidence of benefit for the numerous drugs, surgery, and therapies used over previous decades is weak. Improved understanding of the role of multiple gestation in pathogenesis, of gene environment interaction, and how to influence brain plasticity could yield significant advances in treatment of the disorder. Reduction in the prevalence of post-neonatal cerebral palsy, especially in developing countries, should be possible through improved nutrition, infection control, and accident prevention. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Changes in cerebral [(18)F]-FDG uptake induced by acute alcohol administration in a rat model of alcoholism.

    PubMed

    Gispert, Juan D; Figueiras, Francisca P; Vengeliene, Valentina; Herance, José R; Rojas, Santiago; Spanagel, Rainer

    2017-06-01

    Several [(18)F]-FDG positron emission tomography (PET) studies in alcoholics have consistently reported decreases in overall brain glucose metabolism at rest and following acute alcohol administration. However, changes in cerebral glucose utilization associated with the transition to addiction are not well understood and require longitudinal translational imaging studies in animal models of alcoholism. Here, we studied brain glucose uptake in alcohol drinking rats in order to provide convergent evidence to what has previously been reported in human studies. Brain glucose metabolism was measured by [(18)F]-FDG microPET imaging in different male Wistar rat groups: short-term drinking (three months), long-term drinking (twelve months) and alcohol-naïve. Global and regional cerebral glucose uptake was measured at rest and following acute alcohol administration. We showed that alcohol significantly reduced the whole-brain glucose metabolism. This effect was most pronounced in the parietal cortex and cerebellum. Alcohol-induced decreases in brain [(18)F]-FDG uptake was most apparent in alcohol-naïve rats, less intense in short-term drinkers and absent in long-term drinkers. The latter finding indicates the occurrence of tolerance to the intoxicating effects of alcohol in long-term drinking individuals. In contrast, some regions, like the ventral striatum and entorhinal cortex, showed enhanced metabolic activity, an effect that did not undergo tolerance during long-term alcohol consumption. Our findings are comparable to those described in human studies using the same methodology. We conclude that [(18)F]-FDG PET studies in rat models of alcoholism provide good translation and can be used for future longitudinal studies investigating alterations in brain function during different stages of the addiction cycle. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Non-invasive optical measurement of cerebral metabolism and hemodynamics in infants.

    PubMed

    Lin, Pei-Yi; Roche-Labarbe, Nadege; Dehaes, Mathieu; Carp, Stefan; Fenoglio, Angela; Barbieri, Beniamino; Hagan, Katherine; Grant, P Ellen; Franceschini, Maria Angela

    2013-03-14

    Perinatal brain injury remains a significant cause of infant mortality and morbidity, but there is not yet an effective bedside tool that can accurately screen for brain injury, monitor injury evolution, or assess response to therapy. The energy used by neurons is derived largely from tissue oxidative metabolism, and neural hyperactivity and cell death are reflected by corresponding changes in cerebral oxygen metabolism (CMRO₂). Thus, measures of CMRO₂ are reflective of neuronal viability and provide critical diagnostic information, making CMRO₂ an ideal target for bedside measurement of brain health. Brain-imaging techniques such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT) yield measures of cerebral glucose and oxygen metabolism, but these techniques require the administration of radionucleotides, so they are used in only the most acute cases. Continuous-wave near-infrared spectroscopy (CWNIRS) provides non-invasive and non-ionizing radiation measures of hemoglobin oxygen saturation (SO₂) as a surrogate for cerebral oxygen consumption. However, SO₂ is less than ideal as a surrogate for cerebral oxygen metabolism as it is influenced by both oxygen delivery and consumption. Furthermore, measurements of SO₂ are not sensitive enough to detect brain injury hours after the insult, because oxygen consumption and delivery reach equilibrium after acute transients. We investigated the possibility of using more sophisticated NIRS optical methods to quantify cerebral oxygen metabolism at the bedside in healthy and brain-injured newborns. More specifically, we combined the frequency-domain NIRS (FDNIRS) measure of SO2 with the diffuse correlation spectroscopy (DCS) measure of blood flow index (CBFi) to yield an index of CMRO₂ (CMRO₂i). With the combined FDNIRS/DCS system we are able to quantify cerebral metabolism and hemodynamics. This represents an improvement over CWNIRS for detecting brain health, brain

  15. Cerebral Malaria.

    PubMed

    Marsden, P D; Bruce-Chwatt, L J

    1975-01-01

    Cerebral malaria is an acute diffuse encephalopathy associated only with Plasmodium falciparum. It is probably a consequence of the rapid proliferation of the parasites in the body of man in relation to red cell invasion, and results in stagnation of blood flow in cerebralcapillaries with thromobotic occlusion of large numbers of cerebral capillaries. The subsequent cerebral pathology is cerebral infarction with haemorrhage and cerebral oedema. The wide prevalence of P. falciparum in highly endemic areas results in daily challenges to patients from several infected mosquitoes. It is thus important to understand the characteristics of P. falciparum, since this is one of the most important protozoan parasites of man and severe infection from it constitutes one of the few real clinical emergencies in tropical medicine. One of the more important aspects of the practice of medicine in the tropics is to establish a good understanding of the pattern of medical practice in that area. This applies to malaria as well as to other diseases. The neophyte might be somewhat surprised to learn, for example that an experienced colleague who lives in a holoendemic malarious area such as West Africa, sees no cerebral malaria. But the explanation is simple when the doctor concerned has a practice which involves treating adults only. Cerebral malaria is rare in adults, because in highly endemic areas, by the age of 1 year most of the infants in a group under study have already experienced their first falciparum infection. By the time they reach adult life, they have a solid immunity against severe falciparum infections. In fact, "clinical malaria" could occur in such a group under only two circumstances: 1) in pregnancy, a patent infection with P. falciparum might develop, probably due to an IgG drain across the placenta to the foetus;2) in an individual who has constantly taken antimalarials and who may have an immunity at such a low level that when antimalarial therapy is interrupted

  16. Ketosis proportionately spares glucose utilization in brain.

    PubMed

    Zhang, Yifan; Kuang, Youzhi; Xu, Kui; Harris, Donald; Lee, Zhenghong; LaManna, Joseph; Puchowicz, Michelle A

    2013-08-01

    The brain is dependent on glucose as a primary energy substrate, but is capable of utilizing ketones such as β-hydroxybutyrate and acetoacetate, as occurs with fasting, starvation, or chronic feeding of a ketogenic diet. The relationship between changes in cerebral metabolic rates of glucose (CMRglc) and degree or duration of ketosis remains uncertain. To investigate if CMRglc decreases with chronic ketosis, 2-[(18)F]fluoro-2-deoxy-D-glucose in combination with positron emission tomography, was applied in anesthetized young adult rats fed 3 weeks of either standard or ketogenic diets. Cerebral metabolic rates of glucose (μmol/min per 100 g) was determined in the cerebral cortex and cerebellum using Gjedde-Patlak analysis. The average CMRglc significantly decreased in the cerebral cortex (23.0±4.9 versus 32.9±4.7) and cerebellum (29.3±8.6 versus 41.2±6.4) with increased plasma ketone bodies in the ketotic rats compared with standard diet group. The reduction of CMRglc in both brain regions correlates linearly by ∼9% for each 1 mmol/L increase of total plasma ketone bodies (0.3 to 6.3 mmol/L). Together with our meta-analysis, these data revealed that the degree and duration of ketosis has a major role in determining the corresponding change in CMRglc with ketosis.

  17. Cerebral Tissue Oxygenation during Immediate Neonatal Transition and Resuscitation

    PubMed Central

    Pichler, Gerhard; Schmölzer, Georg M.; Urlesberger, Berndt

    2017-01-01

    This article provides a review of cerebral tissue oxygenation during immediate transition after birth in human neonates. Recommended routine monitoring, especially if resuscitation is needed, during this period includes arterial oxygen saturation and heart rate measured by pulse oximetry and electrocardiogram. However, there is increasing interest to monitor in addition with near-infrared spectroscopy (NIRS) the oxygenation of the brain. There is a different pattern of increase between cerebral tissue oxygenation and arterial oxygen saturation during the immediate transition, with cerebral tissue oxygenation reaching a plateau faster than arterial oxygen saturation. Differences can be explained, since cerebral tissue oxygenation is not only affected by arterial oxygen saturation but also by cerebral blood flow, hemoglobin content, and cerebral oxygen consumption. Normal values have already been established for different devices, gestational ages, and modes of delivery in neonates without any medical support. Cerebral hypoxia during immediate transition might cause brain damage. In preterm neonates with cerebral hemorrhage evolving in the first week after birth, the cerebral tissue oxygenation is already lower in the first minutes after birth compared to preterm neonates without cerebral hemorrhage. Using cerebral NIRS in combination with intervention guidelines has been shown to reduce the burden of cerebral hypoxia in preterm neonates. Cerebral tissue oxygenation during immediate transition seems to have an impact on outcome, whereby NIRS monitoring is feasible and has the advantage of continuous, non-invasive recording. The impact of NIRS monitoring and interventions on short- and long-term outcomes still need to be evaluated. PMID:28280719

  18. Cerebral Tissue Oxygenation during Immediate Neonatal Transition and Resuscitation.

    PubMed

    Pichler, Gerhard; Schmölzer, Georg M; Urlesberger, Berndt

    2017-01-01

    This article provides a review of cerebral tissue oxygenation during immediate transition after birth in human neonates. Recommended routine monitoring, especially if resuscitation is needed, during this period includes arterial oxygen saturation and heart rate measured by pulse oximetry and electrocardiogram. However, there is increasing interest to monitor in addition with near-infrared spectroscopy (NIRS) the oxygenation of the brain. There is a different pattern of increase between cerebral tissue oxygenation and arterial oxygen saturation during the immediate transition, with cerebral tissue oxygenation reaching a plateau faster than arterial oxygen saturation. Differences can be explained, since cerebral tissue oxygenation is not only affected by arterial oxygen saturation but also by cerebral blood flow, hemoglobin content, and cerebral oxygen consumption. Normal values have already been established for different devices, gestational ages, and modes of delivery in neonates without any medical support. Cerebral hypoxia during immediate transition might cause brain damage. In preterm neonates with cerebral hemorrhage evolving in the first week after birth, the cerebral tissue oxygenation is already lower in the first minutes after birth compared to preterm neonates without cerebral hemorrhage. Using cerebral NIRS in combination with intervention guidelines has been shown to reduce the burden of cerebral hypoxia in preterm neonates. Cerebral tissue oxygenation during immediate transition seems to have an impact on outcome, whereby NIRS monitoring is feasible and has the advantage of continuous, non-invasive recording. The impact of NIRS monitoring and interventions on short- and long-term outcomes still need to be evaluated.

  19. Effects of consuming fructose- or glucose-sweetened beverages for 10 weeks on lipids, insulin sensitivity and adiposity

    USDA-ARS?s Scientific Manuscript database

    Animal studies have documented that, compared with glucose, dietary fructose promotes dyslipidemia and insulin resistance. Experimental evidence that fructose consumption in humans promotes dyslipidemia and insulin resistance compared with glucose consumption has been equivocal. We tested the hypoth...

  20. Simultaneous measurement of glucose transport and utilization in the human brain

    PubMed Central

    Shestov, Alexander A.; Emir, Uzay E.; Kumar, Anjali; Henry, Pierre-Gilles; Seaquist, Elizabeth R.

    2011-01-01

    Glucose is the primary fuel for brain function, and determining the kinetics of cerebral glucose transport and utilization is critical for quantifying cerebral energy metabolism. The kinetic parameters of cerebral glucose transport, KMt and Vmaxt, in humans have so far been obtained by measuring steady-state brain glucose levels by proton (1H) NMR as a function of plasma glucose levels and fitting steady-state models to these data. Extraction of the kinetic parameters for cerebral glucose transport necessitated assuming a constant cerebral metabolic rate of glucose (CMRglc) obtained from other tracer studies, such as 13C NMR. Here we present new methodology to simultaneously obtain kinetic parameters for glucose transport and utilization in the human brain by fitting both dynamic and steady-state 1H NMR data with a reversible, non-steady-state Michaelis-Menten model. Dynamic data were obtained by measuring brain and plasma glucose time courses during glucose infusions to raise and maintain plasma concentration at ∼17 mmol/l for ∼2 h in five healthy volunteers. Steady-state brain vs. plasma glucose concentrations were taken from literature and the steady-state portions of data from the five volunteers. In addition to providing simultaneous measurements of glucose transport and utilization and obviating assumptions for constant CMRglc, this methodology does not necessitate infusions of expensive or radioactive tracers. Using this new methodology, we found that the maximum transport capacity for glucose through the blood-brain barrier was nearly twofold higher than maximum cerebral glucose utilization. The glucose transport and utilization parameters were consistent with previously published values for human brain. PMID:21791622

  1. Cerebral malaria

    PubMed Central

    Newton, C.; Hien, T. T.; White, N.

    2000-01-01

    Cerebral malaria may be the most common non-traumatic encephalopathy in the world. The pathogenesis is heterogenous and the neurological complications are often part of a multisystem dysfunction. The clinical presentation and pathophysiology differs between adults and children. Recent studies have elucidated the molecular mechanisms of pathogenesis and raised possible interventions. Antimalarial drugs, however, remain the only intervention that unequivocally affects outcome, although increasing resistance to the established antimalarial drugs is of grave concern. Artemisinin derivatives have made an impact on treatment, but other drugs may be required. With appropriate antimalarial drugs, the prognosis of cerebral malaria often depends on the management of other complications—for example, renal failure and acidosis. Neurological sequelae are increasingly recognised, but further research on the pathogenesis of coma and neurological damage is required to develop other ancillary treatments.

 PMID:10990500

  2. Cerebral energy metabolism following fluid-percussion brain injury in cats.

    PubMed

    Unterberg, A W; Andersen, B J; Clarke, G D; Marmarou, A

    1988-04-01

    Clinical and experimental evidence suggests that head injury can cause alterations of cerebral energy metabolism. However, the etiology of this metabolic perturbation is not known. The objective of this study was to determine the effect of fluid-percussion trauma on cerebral energy metabolism. Seven ventilated, chloralose-anesthetized cats were subjected to a 3.2-atm fluid-percussion brain injury. Before and for 8 hours after trauma, continuous phosphorus-3 1 magnetic resonance spectrography was obtained to noninvasively monitor tissue pH, phosphocreatine (PCr), and inorganic phosphate (Pi) levels. Measurement of cerebral blood flow (CBF) by the radioactive microsphere technique and calculation of oxygen and glucose consumption (CMRO2 and CMRG1) were also performed before trauma as well as 30 minutes and 1, 2, 4, and 8 hours after trauma. The data showed a moderate decrease in tissue pH from 7.04 to 6.89 at 30 minutes following trauma with return to control levels by 3 hours posttrauma. During the 8-hour observation period, CBF, CMRO2, and CMRG1 remained at control levels. Tissue PCr and Pi levels were also unchanged. Fluid-percussion trauma at the 3.2-atm level in ventilated cats causes a moderate and transient decrease in tissue pH that returns to control levels after trauma. No other metabolic changes are seen later than 30 minutes posttrauma. This indicates that a mild metabolic disturbance occurs after trauma in the ventilated animal and quickly returns to normal.

  3. Cerebral Palsy (For Parents)

    MedlinePlus

    ... 10 Tips for Parents Healthy Habits for TV, Video Games, and the Internet Cerebral ... cerebral Cerebral palsy (CP) is a disorder that affects muscle tone, movement, and motor skills (the ability to move in a coordinated and ...

  4. Maternal consumption of high-prebiotic fibre or -protein diets during pregnancy and lactation differentially influences satiety hormones and expression of genes involved in glucose and lipid metabolism in offspring in rats.

    PubMed

    Maurer, Alannah D; Reimer, Raylene A

    2011-02-01

    Risk of developing the metabolic syndrome may be influenced by nutritional environment early in life. We examined the effects of high-fibre (HF) and high-protein (HP) diets consumed during pregnancy and lactation on satiety hormones and expression of genes involved in glucose and lipid metabolism in offspring. Wistar dams were fed a control (C), HF or HP diets during pregnancy and lactation. At parturition, litters were culled to ten pups. At 21 d, all pups were weaned onto C diet. At 7, 14, 21, 28 and 35 d after birth, blood was analysed for satiety hormones and tissues for mRNA expression in offspring. No differences were observed in litter size or birth weight. At 21 d, offspring of HF dams had greater adjusted intestinal mass and lower liver weight than those of C but not of HP dams. Plasma glucose at 28 d and amylin at 7, 14 and 28 d were lower in HF v. C and HP offspring. Glucagon-like peptide-1 was higher in HP offspring than in HF offspring at 7 d but was higher in HF v. C offspring at 21 d. Offspring of HF dams had higher glucose transporter (GLUT2 and Na+-dependent glucose/galactose transporter) mRNA expression at 21 d v. C and HP offspring. In brown adipose tissue, HF and HP up-regulated uncoupling protein-1 and PPAR-γ coactivator. HP was associated with increased resistin and IL-6 mRNA expression. The present study demonstrates that maternal diet composition differentially regulates circulating satiety hormones and genes involved in glucose transport and energy metabolism in offspring. These early changes could have long-term consequences for obesity risk.

  5. [Cerebral palsy].

    PubMed

    Malagón Valdez, Jorge

    2007-01-01

    The term cerebral palsy (CP), is used for a great number of clinical neurological syndromes. The syndromes are characterized by having a common cause, motor defects. It is important, because they can cause a brain damage by presenting motor defects and some associated deficiencies, such as mental deficiency, epilepsy, language and visual defects and pseudobulbar paralysis, with the non-evolving fact. Some authors prefer using terms such as "non-evolving encephalopathies". In the treatment the utility of prevention programs of early stimulation and special rehabilitation methods, and treatment of associated deficiencies such as epilepsy, mental deficiency, language, audition and visual problems, and the attention deficit improve the prognosis in an important way. The prognosis depends on the severity of the disease and the associated manifestations.

  6. FRET-based glucose monitoring for bioprocessing

    NASA Astrophysics Data System (ADS)

    Bartolome, Amelita; Smalls-Mantey, Lauren; Lin, Debora; Rao, Govind; Tolosa, Leah

    2006-02-01

    The glucose-mediated conformational changes in the glucose binding protein (GBP) have been exploited in the development of fluorescence based glucose sensors. The fluorescence response is generated by a polarity sensitive dye attached to a specific site. Such fluorescent sensors respond to submicromolar glucose at diffusion-controlled rates mimicking the wild type. However, such sensors have been limited to in vitro glucose sensing because of the preliminary dye-labeling step. In the study described here, the dye-labeling step is omitted by genetically encoding the GBP with two green fluorescent mutants namely, the green fluorescent protein (GFP) and the yellow fluorescent protein (YFP) in the N- and C-terminal ends, respectively. These two GFP mutants comprise a fluorescence resonance energy transfer (FRET) donor and acceptor pair. Thus, when glucose binds with GBP, the conformational changes affect the FRET efficiency yielding a dose-dependent response. A potential application for this FRET-based glucose biosensor is online glucose sensing in bioprocessing and cell culture. This was demonstrated by the measurement of glucose consumption in yeast fermentation. Further development of this system should yield in vivo measurement of glucose in bioprocesses.

  7. Cerebral metabolism following traumatic brain injury: new discoveries with implications for treatment.

    PubMed

    Brooks, George A; Martin, Neil A

    2014-01-01

    Because it is the product of glycolysis and main substrate for mitochondrial respiration, lactate is the central metabolic intermediate in cerebral energy substrate delivery. Our recent studies on healthy controls and patients following traumatic brain injury (TBI) using [6,6-(2)H2]glucose and [3-(13)C]lactate, along with cerebral blood flow (CBF) and arterial-venous (jugular bulb) difference measurements for oxygen, metabolite levels, isotopic enrichments and (13)CO2 show a massive and previously unrecognized mobilization of lactate from corporeal (muscle, skin, and other) glycogen reserves in TBI patients who were studied 5.7 ± 2.2 days after injury at which time brain oxygen consumption and glucose uptake (CMRO2 and CMRgluc, respectively) were depressed. By tracking the incorporation of the (13)C from lactate tracer we found that gluconeogenesis (GNG) from lactate accounted for 67.1 ± 6.9%, of whole-body glucose appearance rate (Ra) in TBI, which was compared to 15.2 ± 2.8% (mean ± SD, respectively) in healthy, well-nourished controls. Standard of care treatment of TBI patients in state-of-the-art facilities by talented and dedicated heath care professionals reveals presence of a catabolic Body Energy State (BES). Results are interpreted to mean that additional nutritive support is required to fuel the body and brain following TBI. Use of a diagnostic to monitor BES to provide health care professionals with actionable data in providing nutritive formulations to fuel the body and brain and achieve exquisite glycemic control are discussed. In particular, the advantages of using inorganic and organic lactate salts, esters and other compounds are examined. To date, several investigations on brain-injured patients with intact hepatic and renal functions show that compared to dextrose + insulin treatment, exogenous lactate infusion results in normal glycemia.

  8. Lean consumption.

    PubMed

    Womack, James P; Jones, Daniel T

    2005-03-01

    During the past 20 years, the real price of most consumer goods has fallen worldwide, the variety of goods and the range of sales channels offering them have continued to grow, and product quality has steadily improved. So why is consumption often so frustrating? It doesn't have to be--and shouldn't be--the authors say. They argue that it's time to apply lean thinking to the processes of consumption--to give consumers the full value they want from goods and services with the greatest efficiency and the least pain. Companies may think they save time and money by off-loading work to the consumer but, in fact, the opposite is true. By streamlining their systems for providing goods and services, and by making it easier for customers to buy and use those products and services, a growing number of companies are actually lowering costs while saving everyone time. In the process, these businesses are learning more about their customers, strengthening consumer loyalty, and attracting new customers who are defecting from less user-friendly competitors. The challenge lies with the retailers, service providers, manufacturers, and suppliers that are not used to looking at total cost from the standpoint of the consumer and even less accustomed to working with customers to optimize the consumption process. Lean consumption requires a fundamental shift in the way companies think about the relationship between provision and consumption, and the role their customers play in these processes. It also requires consumers to change the nature of their relationships with the companies they patronize. Lean production has clearly triumphed over similar obstacles in recent years to become the dominant global manufacturing model. Lean consumption, its logical companion, can't be far behind.

  9. Correspondence of continuous interstitial glucose measurement against arterialised and capillary glucose following an oral glucose tolerance test in healthy volunteers.

    PubMed

    Dye, Louise; Mansfield, Michael; Lasikiewicz, Nicola; Mahawish, Lena; Schnell, Rainer; Talbot, Duncan; Chauhan, Hitesh; Croden, Fiona; Lawton, Clare

    2010-01-01

    The aim of the present study was to validate the Glucoday continuous interstitial ambulatory glucose-monitoring device (AGD) against plasma glucose measured from arterialised venous (AV) and glucose from capillary whole blood (finger prick, FP) in non-diabetic subjects in response to an oral glucose tolerance test. Fifteen healthy overweight men (age 30-49 years, BMI 26-31 kg/m2) participated. Glucose levels were measured before, during and after consumption of an oral 75 g glucose load using twelve FP samples and forty-four 1 ml AV blood samples during 180 min. Interstitial glucose was measured via the AGD. Three venous samples for fasting insulin were taken to estimate insulin resistance. Profiles of AGD, AV and FP glucose were generated for each participant. Glucose values for each minute of the measurement period were interpolated using a locally weighted scatterplot smoother. Data were compared using Bland-Altman plots that showed good correspondence between all pairs of measurements. Concordance between the three methods was 0.8771 (Kendall's W, n 15, P < 0.001). Concordance was greater between AV and FP (W = 0.9696) than AGD and AV (W = 0.8770) or AGD and FP (W = 0.8764). Analysis of time to peak glucose indicated that AGD measures lagged approximately 15 min behind FP and AV measures. Percent body fat was significantly correlated with time to peak glucose levels for each measure, while BMI and estimated insulin resistance (homeostatic model assessment, HOMA) were not. In conclusion, AGD shows good correspondence with FP and AV glucose measures in response to a glucose load with a 15 min time lag. Taking this into account, AGD has potential application in nutrition and behaviour studies.

  10. Neuroscience of glucose homeostasis.

    PubMed

    La Fleur, S E; Fliers, E; Kalsbeek, A

    2014-01-01

    Plasma glucose concentrations are homeostatically regulated and maintained within strict boundaries. Several mechanisms are in place to increase glucose output when glucose levels in the circulation drop as a result of glucose utilization, or to decrease glucose output and increase tissue glucose uptake to prevent hyperglycemia. Although the term homeostasis mostly refers to stable levels, the blood glucose concentrations fluctuate over the day/night cycle, with the highest concentrations occurring just prior to the activity period in anticipation of increased caloric need. In this chapter we describe how the brain, particularly the hypothalamus, is involved in both the daily rhythm of plasma glucose concentrations and acute glucose challenges.

  11. Experience-dependent escalation of glucose drinking and the development of glucose preference over fructose - association with glucose entry into the brain.

    PubMed

    Wakabayashi, Ken T; Spekterman, Laurence; Kiyatkin, Eugene A

    2016-06-01

    Glucose, a primary metabolic substrate for cellular activity, must be delivered to the brain for normal neural functions. Glucose is also a unique reinforcer; in addition to its rewarding sensory properties and metabolic effects, which all natural sugars have, glucose crosses the blood-brain barrier and acts on glucoreceptors expressed on multiple brain cells. To clarify the role of this direct glucose action in the brain, we compared the neural and behavioural effects of glucose with those induced by fructose, a sweeter yet metabolically equivalent sugar. First, by using enzyme-based biosensors in freely moving rats, we confirmed that glucose rapidly increased in the nucleus accumbens in a dose-dependent manner after its intravenous delivery. In contrast, fructose induced a minimal response only after a large-dose injection. Second, we showed that naive rats during unrestricted access consumed larger volumes of glucose than fructose solution; the difference appeared with a definite latency during the initial exposure and strongly increased during subsequent tests. When rats with equal sugar experience were presented with either glucose or fructose in alternating order, the consumption of both substances was initially equal, but only the consumption of glucose increased during subsequent sessions. Finally, rats with equal glucose-fructose experience developed a strong preference for glucose over fructose during a two-bottle choice procedure; the effect appeared with a definite latency during the initial test and greatly amplified during subsequent tests. Our results suggest that direct entry of glucose in the brain and its subsequent effects on brain cells could be critical for the experience-dependent escalation of glucose consumption and the development of glucose preference over fructose.

  12. Effects of Chronic Consumption of Sugar-Enriched Diets on Brain Metabolism and Insulin Sensitivity in Adult Yucatan Minipigs

    PubMed Central

    Ochoa, Melissa; Malbert, Charles-Henri; Meurice, Paul; Val-Laillet, David

    2016-01-01

    Excessive sugar intake might increase the risk to develop eating disorders via an altered reward circuitry, but it remains unknown whether different sugar sources induce different neural effects and whether these effects are dependent from body weight. Therefore, we compared the effects of three high-fat and isocaloric diets varying only in their carbohydrate sources on brain activity of reward-related regions, and assessed whether brain activity is dependent on insulin sensitivity. Twenty-four minipigs underwent 18FDG PET brain imaging following 7-month intake of high-fat diets of which 20% in dry matter weight (36.3% of metabolisable energy) was provided by starch, glucose or fructose (n = 8 per diet). Animals were then subjected to a euglycemic hyperinsulinemic clamp to determine peripheral insulin sensitivity. After a 7-month diet treatment, all groups had substantial increases in body weight (from 36.02±0.85 to 63.33±0.81 kg; P<0.0001), regardless of the diet. All groups presented similar insulin sensitivity index (ISI = 1.39±0.10 mL·min-1·μUI·kg). Compared to starch, chronic exposure to fructose and glucose induced bilateral brain activations, i.e. increased basal cerebral glucose metabolism, in several reward-related brain regions including the anterior and dorsolateral prefrontal cortex, the orbitofrontal cortex, the anterior cingulate cortex, the caudate and putamen. The lack of differences in insulin sensitivity index and body weight suggests that the observed differences in basal brain glucose metabolism are not related to differences in peripheral insulin sensitivity and weight gain. The differences in basal brain metabolism in reward-related brain areas suggest the onset of cerebral functional alterations induced by chronic consumption of dietary sugars. Further studies should explore the underlying mechanisms, such as the availability of intestinal and brain sugar transporter, or the appearance of addictive-like behavioral correlates of these

  13. Low Blood Glucose (Hypoglycemia)

    MedlinePlus

    ... Dental Problems Diabetes & Sexual & Urologic Problems Low Blood Glucose (Hypoglycemia) What is hypoglycemia? Hypoglycemia, also called low ... actions can also help prevent hypoglycemia: Check blood glucose levels Knowing your blood glucose level can help ...

  14. United Cerebral Palsy

    MedlinePlus

    ... stay up to date with everything UCP! Affiliate Network UCP affiliates provide services and support on a ... with Cerebral Palsy and other disabilities and their networks. Individuals with cerebral palsy and other disabilities deserve ...

  15. Cerebral Palsy (For Kids)

    MedlinePlus

    ... Emergency Room? What Happens in the Operating Room? Cerebral Palsy KidsHealth > For Kids > Cerebral Palsy A A A ... the things that kids do every day. What's CP? Some kids with CP use wheelchairs and others ...

  16. Imaging of a clinically relevant stroke model: glucose hypermetabolism revisited.

    PubMed

    Arnberg, Fabian; Grafström, Jonas; Lundberg, Johan; Nikkhou-Aski, Sahar; Little, Philip; Damberg, Peter; Mitsios, Nicholas; Mulder, Jan; Lu, Li; Söderman, Michael; Stone-Elander, Sharon; Holmin, Staffan

    2015-03-01

    Ischemic stroke has been shown to cause hypermetabolism of glucose in the ischemic penumbra. Experimental and clinical data indicate that infarct-related systemic hyperglycemia is a potential therapeutic target in acute stroke. However, clinical studies aiming for glucose control in acute stroke have neither improved functional outcome nor reduced mortality. Thus, further studies on glucose metabolism in the ischemic brain are warranted. We used a rat model of stroke that preserves collateral flow. The animals were analyzed by [2-(18)F]-2-fluoro-2-deoxy-d-glucose positron emission tomography or magnetic resonance imaging during 90-minute occlusion of the middle cerebral artery and during 60 minutes after reperfusion. Results were correlated to magnetic resonance imaging of cerebral blood flow, diffusion of water, lactate formation, and histological data on cell death and blood-brain barrier breakdown. We detected an increased [2-(18)F]-2-fluoro-2-deoxy-d-glucose uptake within ischemic regions succumbing to infarction and in the peri-infarct region. Magnetic resonance imaging revealed impairment of blood flow to ischemic levels in the infarct and a reduction of cerebral blood flow in the peri-infarct region. Magnetic resonance spectroscopy revealed lactate in the ischemic region and absence of lactate in the peri-infarct region. Immunohistochemical analyses revealed apoptosis and blood-brain barrier breakdown within the infarct. The increased uptake of [2-(18)F]-2-fluoro-2-deoxy-d-glucose in cerebral ischemia most likely reflects hypermetabolism of glucose meeting increased energy needs of ischemic and hypoperfused brain tissue, and it occurs under both anaerobic and aerobic conditions measured by local lactate production. Infarct-related systemic hyperglycemia could serve to facilitate glucose supply to the ischemic brain. Glycemic control by insulin treatment could negatively influence this mechanism. © 2015 American Heart Association, Inc.

  17. Red meat consumption and risk of stroke in Swedish women.

    PubMed

    Larsson, Susanna C; Virtamo, Jarmo; Wolk, Alicja

    2011-02-01

    High red meat consumption has been associated with increased risk of some cancers and may also be a risk factor for cardiovascular diseases. However, epidemiological studies of red meat consumption in relation to risk of stroke are very limited. Our objective was to examine the association between red meat consumption and stroke incidence in the Swedish Mammography Cohort. We prospectively followed 34 670 women without cardiovascular disease and cancer at baseline. Participants completed a self-administered questionnaire on diet and other risk factors for cardiovascular diseases in 1997. Cox proportional hazards models were used to estimate multivariable-adjusted relative risks (RR) and 95% CI. During a mean follow-up of 10.4 years, we ascertained 1680 incident cases of stroke, comprising 1310 cerebral infarction, 154 intracerebral hemorrhage, 79 subarachnoid hemorrhage, and 137 unspecified stroke. Total red meat and processed meat consumption was associated with a statistically significant increased risk of cerebral infarction, but not of total stroke, intracerebral hemorrhage, or subarachnoid hemorrhage. The multivariable RR of cerebral infarction for the highest versus the lowest quintile of consumption were 1.22 (95% CI, 1.01-1.46) for red meat and 1.24 (95% CI, 1.04-1.49) for processed meat. Fresh (unprocessed) meat consumption was not associated with total stroke or with any stroke subtype. Findings from this study suggest that red and processed meat consumption may increase the risk of cerebral infarction in women.

  18. Cerebral Palsy (For Kids)

    MedlinePlus

    ... CPR: A Real Lifesaver Kids Talk About: Coaches Cerebral Palsy KidsHealth > For Kids > Cerebral Palsy Print A A A What's in this article? ... the first word you spoke? For kids with cerebral palsy, called CP for short, taking a first step ...

  19. Aging and Cerebral Palsy.

    ERIC Educational Resources Information Center

    Networker, 1993

    1993-01-01

    This special edition of "The Networker" contains several articles focusing on aging and cerebral palsy (CP). "Aging and Cerebral Palsy: Pathways to Successful Aging" (Jenny C. Overeynder) reports on the National Invitational Colloquium on Aging and Cerebral Palsy held in April 1993. "Observations from an Observer" (Kathleen K. Barrett) describes…

  20. Glucose and oxygen metabolism after penetrating ballistic-like brain injury

    PubMed Central

    Gajavelli, Shyam; Kentaro, Shimoda; Diaz, Julio; Yokobori, Shoji; Spurlock, Markus; Diaz, Daniel; Jackson, Clayton; Wick, Alexandra; Zhao, Weizhao; Leung, Lai Y; Shear, Deborah; Tortella, Frank; Bullock, M Ross

    2015-01-01

    Traumatic brain injury (TBI) is a major cause of death and disability in all age groups. Among TBI, penetrating traumatic brain injuries (PTBI) have the worst prognosis and represent the leading cause of TBI-related morbidity and death. However, there are no specific drugs/interventions due to unclear pathophysiology. To gain insights we looked at cerebral metabolism in a PTBI rat model: penetrating ballistic-like brain injury (PBBI). Early after injury, regional cerebral oxygen tension and consumption significantly decreased in the ipsilateral cortex in the PBBI group compared with the control group. At the same time point, glucose uptake was significantly reduced globally in the PBBI group compared with the control group. Examination of Fluorojade B-stained brain sections at 24 hours after PBBI revealed an incomplete overlap of metabolic impairment and neurodegeneration. As expected, the injury core had the most severe metabolic impairment and highest neurodegeneration. However, in the peri-lesional area, despite similar metabolic impairment, there was lesser neurodegeneration. Given our findings, the data suggest the presence of two distinct zones of primary injury, of which only one recovers. We anticipate the peri-lesional area encompassing the PBBI ischemic penumbra, could be salvaged by acute therapies. PMID:25669903

  1. Seasonal variations in plasma glucose and insulin concentrations after glucose loading in the edible dormouse (Glis glis L.).

    PubMed

    Castex, C; Donnio, R; Sutter, B C

    1979-01-01

    Glucose tolerance tests made in the Edible dormouse showed annual variations in B cell secretory capacity, associated with glucose tolerance changes. 1. During autumn and winter, the B cell is sensitive to glucose, and insulin regulates the high peripheral consumption of this hexose. 2. At the beginning of spring, insulin secretion decreases and glucose tolerance is impaired. In June, the B cell response si low or absent and a poor tolerance to glucose still persists. 3. The variations in B cell activity can be related to changing energy requirements during the year.

  2. Blood Test: Glucose

    MedlinePlus

    ... Your 1- to 2-Year-Old Blood Test: Glucose KidsHealth > For Parents > Blood Test: Glucose A A A What's in this article? What ... de sangre: glucosa What It Is A blood glucose test measures the amount of glucose (the main ...

  3. Blood Test: Glucose

    MedlinePlus

    ... TV, Video Games, and the Internet Blood Test: Glucose KidsHealth > For Parents > Blood Test: Glucose Print A A A What's in this article? ... de sangre: glucosa What It Is A blood glucose test measures the amount of glucose (the main ...

  4. CSF glucose test

    MedlinePlus

    Glucose test - CSF; Cerebrospinal fluid glucose test ... The glucose level in the CSF should be 50 to 80 mg/100 mL (or greater than 2/3 ... Abnormal results include higher and lower glucose levels. Abnormal ... or fungus) Inflammation of the central nervous system Tumor

  5. Diet-induced ketosis does not cause cerebral acidosis.

    PubMed

    Al-Mudallal, A S; LaManna, J C; Lust, W D; Harik, S I

    1996-03-01

    Ketosis is beneficial for seizure control, possibly through induction of cerebral acidosis. However, cerebral intracellular pH has not previously been measured in ketotic humans and the animal data are sparse. We describe a high-fat diet, avidly consumed by rats, that induced consistent and moderate ketosis. Adult male rats were fed either the high-fat ketogenic diet, a high-carbohydrate diet with the same protein content as the ketogenic diet, or regular laboratory chow. Five to 6 weeks later, the rats were anesthetized, paralyzed, and injected with neutral red; their brains were frozen in situ. Intracellular pH of the cerebral cortex and cerebral glucose, lactate, ATP, phosphocreatine, and gama-aminobutyric acid (GABA) levels were measured. Rats fed the ketogenic diet had > 10-fold increase in their plasma ketones, but we noted no significant differences in cerebral pH or in cerebral metabolites and GABA levels among the three groups. Therefore, the antiepileptic effect of the ketogenic diet probably is not mediated by cerebral acidosis or changes in total cerebral GABA levels.

  6. Cerebral metabolic adaptation and ketone metabolism after brain injury.

    PubMed

    Prins, Mayumi L

    2008-01-01

    The developing central nervous system has the capacity to metabolize ketone bodies. It was once accepted that on weaning, the 'post-weaned/adult' brain was limited solely to glucose metabolism. However, increasing evidence from conditions of inadequate glucose availability or increased energy demands has shown that the adult brain is not static in its fuel options. The objective of this review is to summarize the body of literature specifically regarding cerebral ketone metabolism at different ages, under conditions of starvation and after various pathologic conditions. The evidence presented supports the following findings: (1) there is an inverse relationship between age and the brain's capacity for ketone metabolism that continues well after weaning; (2) neuroprotective potentials of ketone administration have been shown for neurodegenerative conditions, epilepsy, hypoxia/ischemia, and traumatic brain injury; and (3) there is an age-related therapeutic potential for ketone as an alternative substrate. The concept of cerebral metabolic adaptation under various physiologic and pathologic conditions is not new, but it has taken the contribution of numerous studies over many years to break the previously accepted dogma of cerebral metabolism. Our emerging understanding of cerebral metabolism is far more complex than could have been imagined. It is clear that in addition to glucose, other substrates must be considered along with fuel interactions, metabolic challenges, and cerebral maturation.

  7. Cerebral metabolic adaptation and ketone metabolism after brain injury

    PubMed Central

    Prins, Mayumi L

    2010-01-01

    The developing central nervous system has the capacity to metabolize ketone bodies. It was once accepted that on weaning, the ‘post-weaned/adult’ brain was limited solely to glucose metabolism. However, increasing evidence from conditions of inadequate glucose availability or increased energy demands has shown that the adult brain is not static in its fuel options. The objective of this review is to summarize the body of literature specifically regarding cerebral ketone metabolism at different ages, under conditions of starvation and after various pathologic conditions. The evidence presented supports the following findings: (1) there is an inverse relationship between age and the brain’s capacity for ketone metabolism that continues well after weaning; (2) neuroprotective potentials of ketone administration have been shown for neurodegenerative conditions, epilepsy, hypoxia/ischemia, and traumatic brain injury; and (3) there is an age-related therapeutic potential for ketone as an alternative substrate. The concept of cerebral metabolic adaptation under various physiologic and pathologic conditions is not new, but it has taken the contribution of numerous studies over many years to break the previously accepted dogma of cerebral metabolism. Our emerging understanding of cerebral metabolism is far more complex than could have been imagined. It is clear that in addition to glucose, other substrates must be considered along with fuel interactions, metabolic challenges, and cerebral maturation. PMID:17684514

  8. Insulin Signaling in the Control of Glucose and Lipid Homeostasis.

    PubMed

    Saltiel, Alan R

    2016-01-01

    A continuous supply of glucose is necessary to ensure proper function and survival of all organs. Plasma glucose levels are thus maintained in a narrow range around 5 mM, which is considered the physiological set point. Glucose homeostasis is controlled primarily by the liver, fat, and skeletal muscle. Following a meal, most glucose disposals occur in the skeletal muscle, whereas fasting plasma glucose levels are determined primarily by glucose output from the liver. The balance between the utilization and production of glucose is primarily maintained at equilibrium by two opposing hormones, insulin and glucagon. In response to an elevation in plasma glucose and amino acids (after consumption of a meal), insulin is released from the beta cells of the islets of Langerhans in the pancreas. When plasma glucose falls (during fasting or exercise), glucagon is secreted by α cells, which surround the beta cells in the pancreas. Both cell types are extremely sensitive to glucose concentrations, can regulate hormone synthesis, and are released in response to small changes in plasma glucose levels. At the same time, insulin serves as the major physiological anabolic agent, promoting the synthesis and storage of glucose, lipids, and proteins and inhibiting their degradation and release back into the circulation. This chapter will focus mainly on signal transduction mechanisms by which insulin exerts its plethora of effects in liver, muscle, and fat cells, focusing on those pathways that are crucial in the control of glucose and lipid homeostasis.

  9. Lifestyle, glucose regulation and the cognitive effects of glucose load in middle-aged adults.

    PubMed

    Riby, Leigh M; McLaughlin, Jennifer; Riby, Deborah M; Graham, Cheryl

    2008-11-01

    Interventions aimed at improving glucose regulatory mechanisms have been suggested as a possible source of cognitive enhancement in the elderly. In particular, previous research has identified episodic memory as a target for facilitation after either moderate increases in glycaemia (after a glucose drink) or after improvements in glucose regulation. The present study aimed to extend this research by examining the joint effects of glucose ingestion and glucose regulation on cognition. In addition, risk factors associated with the development of poor glucose regulation in middle-aged adults were considered. In a repeated measures design, thirty-three middle-aged adults (aged 35-55 years) performed a battery of memory and non-memory tasks after either 25 g or 50 g glucose or a sweetness matched placebo drink. To assess the impact of individual differences in glucose regulation, blood glucose measurements were taken on four occasions during testing. A lifestyle and diet questionnaire was also administered. Consistent with previous research, episodic memory ability benefited from glucose ingestion when task demands were high. Blood glucose concentration was also found to predict performance across a number of cognitive domains. Interestingly, the risk factors associated with poor glucose regulation were linked to dietary impacts traditionally associated with poor health, e.g. the consumption of high-sugar sweets and drinks. The research replicates earlier work suggesting that task demands are critical to the glucose facilitation effect. Importantly, the data demonstrate clear associations between elevated glycaemia and relatively poor cognitive performance, which may be partly due to the effect of dietary and lifestyle factors.

  10. Cerebral hypometabolism in progressive supranuclear palsy studied with positron emission tomography

    SciTech Connect

    Foster, N.L.; Gilman, S.; Berent, S.; Morin, E.M.; Brown, M.B.; Koeppe, R.A.

    1988-09-01

    Progressive supranuclear palsy (PSP) is characterized by supranuclear palsy of gaze, axial dystonia, bradykinesia, rigidity, and a progressive dementia. Pathological changes in this disorder are generally restricted to subcortical structures, yet the type and range of cognitive deficits suggest the involvement of many cerebral regions. We examined the extent of functional impairment to cerebral cortical and subcortical structures as measured by the level of glucose metabolic activity at rest. Fourteen patients with PSP were compared to 21 normal volunteers of similar age using 18F-2-fluoro-2-deoxy-D-glucose and positron emission tomography. Glucose metabolism was reduced in the caudate nucleus, putamen, thalamus, pons, and cerebral cortex, but not in the cerebellum in the patients with PSP as compared to the normal subjects. Analysis of individual brain regions revealed significant declines in cerebral glucose utilization in most regions throughout the cerebral cortex, particularly those in the superior half of the frontal lobe. Declines in the most affected regions of cerebral cortex were greater than those in any single subcortical structure. Although using conventional neuropathological techniques the cerebral cortex appears to be unaffected in PSP, significant and pervasive functional impairments in both cortical and subcortical structures are present. These observations help to account for the constellation of cognitive symptoms in individual patients with PSP and the difficulty encountered in identifying a characteristic psychometric profile for this group of patients.

  11. Medium- and long-term effects of repeated bicuculline-induced seizures in developing rats on local cerebral energy metabolism.

    PubMed

    Doriat, J F; Koziel, V; Humbert, A C; Daval, J L

    1998-07-27

    To assess long-term metabolic consequences of recurrent ictal events arising during development, seizures were repeatedly generated in rats at different stages of cerebral maturation. Seizures were induced by i.p. injections of bicuculline for three consecutive days, starting from postnatal day 5 (P5), when the brain is very immature, or from P15, a period at which the brain is more structurally organized. Local cerebral metabolic rates for glucose were measured in 74 structures at P15, P25 and in adults (P60), by the autoradiographic method using 2-D-[14C]deoxyglucose. Repeated seizures in P5 to P7 pups led to a reduction (16-34%) of glucose consumption at P15, mainly significant in sensory, motor and functionally non-specific areas as well as in cerebellar nuclei. Selective decreases in metabolic activity were still recorded in adults, mostly in auditory system (20%) and cerebellar nuclei (27%). Seizures generated from P15 to P17 led to an overall mortality rate of 62% (versus 22% at P5 to P7). Surviving animals exhibited reduced metabolic rates for glucose (by 7-27%) at P25, significant in 23 structures, and depicting pronounced changes in limbic, hypothalamic, sensory and white matter areas, whereas brain functional activity finally returned to basal values at P60. Therefore, while younger rats seemed to better tolerate repeated bicuculline-induced seizures than older animals, the reverse was true for long-term metabolic effects, and the more immature the brain when seizures arise, the more persistent the functional consequences.

  12. Reduced cerebral oxygen-carbohydrate index during endotracheal intubation in vascular surgical patients.

    PubMed

    Fabricius-Bjerre, Andreas; Overgaard, Anders; Winther-Olesen, Marie; Lönn, Lars; Secher, Niels H; Nielsen, Henning B

    2015-09-01

    Brain activation reduces balance between cerebral consumption of oxygen versus carbohydrate as expressed by the so-called cerebral oxygen-carbohydrate-index (OCI). We evaluated whether preparation for surgery, anaesthesia including tracheal intubation and surgery affect OCI. In patients undergoing aortic surgery, arterial to internal jugular venous (a-v) concentration differences for oxygen versus lactate and glucose were determined from before anaesthesia to when the patient left the recovery room. Intravenous anaesthesia was supplemented with thoracic epidural anaesthesia for open aortic surgery (n = 5) and infiltration with bupivacaine for endovascular procedures (n = 14). The a-v difference for O2 decreased throughout anaesthesia and in the recovery room (1.6 ± 1.9 versus 3.2 ± 0.8 mmol l(-1), mean ± SD), and while a-v glucose decreased during surgery and into the recovery (0.4 ± 0.2 versus 0.7 ± 0.2 mmol l(-1) , P<0.05), a-v lactate did not change significantly (0.03 ± 0.16 versus -0.03 ± 0.09 mmol l(-1)). Thus, OCI decreased from 5.2 ± 1.8 before induction of anaesthesia to 3.2 ± 1.0 following tracheal intubation (P<0.05) because of the decrease in a-v O2 with a recovery for OCI to 4.6 ± 1.4 during surgery and to 5.6 ± 1.7 in the recovery room. In conclusion, preparation for surgery and tracheal intubation decrease OCI that recovers during surgery under the influence of sensory blockade. © 2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  13. Astrocytic Insulin Signaling Couples Brain Glucose Uptake with Nutrient Availability.

    PubMed

    García-Cáceres, Cristina; Quarta, Carmelo; Varela, Luis; Gao, Yuanqing; Gruber, Tim; Legutko, Beata; Jastroch, Martin; Johansson, Pia; Ninkovic, Jovica; Yi, Chun-Xia; Le Thuc, Ophelia; Szigeti-Buck, Klara; Cai, Weikang; Meyer, Carola W; Pfluger, Paul T; Fernandez, Ana M; Luquet, Serge; Woods, Stephen C; Torres-Alemán, Ignacio; Kahn, C Ronald; Götz, Magdalena; Horvath, Tamas L; Tschöp, Matthias H

    2016-08-11

    We report that astrocytic insulin signaling co-regulates hypothalamic glucose sensing and systemic glucose metabolism. Postnatal ablation of insulin receptors (IRs) in glial fibrillary acidic protein (GFAP)-expressing cells affects hypothalamic astrocyte morphology, mitochondrial function, and circuit connectivity. Accordingly, astrocytic IR ablation reduces glucose-induced activation of hypothalamic pro-opio-melanocortin (POMC) neurons and impairs physiological responses to changes in glucose availability. Hypothalamus-specific knockout of astrocytic IRs, as well as postnatal ablation by targeting glutamate aspartate transporter (GLAST)-expressing cells, replicates such alterations. A normal response to altering directly CNS glucose levels in mice lacking astrocytic IRs indicates a role in glucose transport across the blood-brain barrier (BBB). This was confirmed in vivo in GFAP-IR KO mice by using positron emission tomography and glucose monitoring in cerebral spinal fluid. We conclude that insulin signaling in hypothalamic astrocytes co-controls CNS glucose sensing and systemic glucose metabolism via regulation of glucose uptake across the BBB.

  14. Astrocytic glucose-6-phosphatase and the permeability of brain microsomes to glucose 6-phosphate.

    PubMed Central

    Forsyth, R J; Bartlett, K; Burchell, A; Scott, H M; Eyre, J A

    1993-01-01

    Cells from primary rat astrocyte cultures express a 36.5 kDa protein that cross-reacts with polyclonal antibodies to the catalytic subunit of rat hepatic glucose-6-phosphatase on Western blotting. Glucose-6-phosphate-hydrolysing activity of the order of 10 nmol/min per mg of total cellular protein can be demonstrated in cell homogenates. This activity shows latency, and is localized to the microsomal fraction. Kinetic analysis shows a Km of 15 mM and a Vmax. of 30 nmol/min per mg of microsomal protein in disrupted microsomes. Approx. 40% of the total phosphohydrolase activity is specific glucose-6-phosphatase, as judged by sensitivity to exposure to pH 5 at 37 degrees C. Previous reports that the brain microsomal glucose-6-phosphatase system does not distinguish glucose 6-phosphate and mannose 6-phosphate are confirmed in astrocyte microsomes. However, we demonstrate significant phosphomannose isomerase activity in brain microsomes, allowing for ready interconversion between mannose 6-phosphate and glucose 6-phosphate (Vmax. 15 nmol/min per mg of microsomal protein; apparent Km < 1 mM; pH optimum 5-6 for the two-step conversion). This finding invalidates the past inference from the failure of brain microsomes to distinguish mannose 6-phosphate and glucose 6-phosphate that the cerebral glucose-6-phosphatase system lacks a 'glucose 6-phosphate translocase' [Fishman and Karnovsky (1986) J. Neurochem. 46, 371-378]. Furthermore, light-scattering experiments confirm that a proportion of whole brain microsomes is readily permeable to glucose 6-phosphate. Images Figure 1 PMID:8395816

  15. Hourly analysis of cerebrospinal fluid glucose shows large diurnal fluctuations.

    PubMed

    Verbeek, Marcel M; Leen, Wilhelmina G; Willemsen, Michèl A; Slats, Diane; Claassen, Jurgen A

    2016-05-01

    Cerebrospinal fluid analysis is important in the diagnostics of many neurological disorders. Since the influence of food intake on the cerebrospinal fluid glucose concentration and the cerebrospinal fluid/plasma glucose ratio is largely unknown, we studied fluctuations in these parameters in healthy adult volunteers during a period of 36 h. Our observations show large physiological fluctuations of cerebrospinal fluid glucose and the cerebrospinal fluid/plasma glucose ratio, and their relation to food intake. These findings provide novel insights into the physiology of cerebral processes dependent on glucose levels such as energy formation (e.g. glycolysis), enzymatic reactions (e.g. glycosylation), and non-enzymatic reactions (e.g. advanced endproduct glycation). © The Author(s) 2016.

  16. Identification of Glucose Transporters in Aspergillus nidulans

    PubMed Central

    dos Reis, Thaila Fernanda; Menino, João Filipe; Bom, Vinícius Leite Pedro; Brown, Neil Andrew; Colabardini, Ana Cristina; Savoldi, Marcela; Goldman, Maria Helena S.; Rodrigues, Fernando; Goldman, Gustavo Henrique

    2013-01-01

    To characterize the mechanisms involved in glucose transport, in the filamentous fungus Aspergillus nidulans, we have identified four glucose transporter encoding genes hxtB-E. We evaluated the ability of hxtB-E to functionally complement the Saccharomyces cerevisiae EBY.VW4000 strain that is unable to grow on glucose, fructose, mannose or galactose as single carbon source. In S. cerevisiae HxtB-E were targeted to the plasma membrane. The expression of HxtB, HxtC and HxtE was able to restore growth on glucose, fructose, mannose or galactose, indicating that these transporters accept multiple sugars as a substrate through an energy dependent process. A tenfold excess of unlabeled maltose, galactose, fructose, and mannose were able to inhibit glucose uptake to different levels (50 to 80 %) in these s. cerevisiae complemented strains. Moreover, experiments with cyanide-m-chlorophenylhydrazone (CCCP), strongly suggest that hxtB, -C, and –E mediate glucose transport via active proton symport. The A. nidulans ΔhxtB, ΔhxtC or ΔhxtE null mutants showed ~2.5-fold reduction in the affinity for glucose, while ΔhxtB and -C also showed a 2-fold reduction in the capacity for glucose uptake. The ΔhxtD mutant had a 7.8-fold reduction in affinity, but a 3-fold increase in the capacity for glucose uptake. However, only the ΔhxtB mutant strain showed a detectable decreased rate of glucose consumption at low concentrations and an increased resistance to 2-deoxyglucose. PMID:24282591

  17. [Reversible cerebral vasoconstriction syndrome].

    PubMed

    Laakso, Elina; Pekkola, Johanna; Soinne, Lauri; Putaala, Jukka

    2014-01-01

    Reversible cerebral vasoconstriction syndrome (RCVS) is increasingly recognized. The condition is characterized by multifocal vasoconstriction lesions in cerebral arteries. Headache is the central symptom, with an acute onset and paroxysmal occurrence. Some of the patients develop intracranial hemorrhage, ischemic disturbance of the cerebral circulation, hypertensive encephalopathy (PRES) or epileptic seizures as complications. The disease is most common in middle-aged women. Most patients have an underlying predisposing factor, most commonly vasoactive medications, drugs or puerperium. There is no evidence-based practice.

  18. The human brain produces fructose from glucose

    PubMed Central

    Hwang, Janice J.; Jiang, Lihong; Hamza, Muhammad; Dai, Feng; Cline, Gary; Rothman, Douglas L.; Mason, Graeme; Sherwin, Robert S.

    2017-01-01

    Fructose has been implicated in the pathogenesis of obesity and type 2 diabetes. In contrast to glucose, CNS delivery of fructose in rodents promotes feeding behavior. However, because circulating plasma fructose levels are exceedingly low, it remains unclear to what extent fructose crosses the blood-brain barrier to exert CNS effects. To determine whether fructose can be endogenously generated from glucose via the polyol pathway (glucose → sorbitol → fructose) in human brain, 8 healthy subjects (4 women/4 men; age, 28.8 ± 6.2 years; BMI, 23.4 ± 2.6; HbA1C, 4.9% ± 0.2%) underwent 1H magnetic resonance spectroscopy scanning to measure intracerebral glucose and fructose levels during a 4-hour hyperglycemic clamp (plasma glucose, 220 mg/dl). Using mixed-effects regression model analysis, intracerebral glucose rose significantly over time and differed from baseline at 20 to 230 minutes. Intracerebral fructose levels also rose over time, differing from baseline at 30 to 230 minutes. The changes in intracerebral fructose were related to changes in intracerebral glucose but not to plasma fructose levels. Our findings suggest that the polyol pathway contributes to endogenous CNS production of fructose and that the effects of fructose in the CNS may extend beyond its direct dietary consumption. PMID:28239653

  19. Cerebral energy metabolism and microdialysis in neurocritical care.

    PubMed

    Nordström, Carl-Henrik

    2010-04-01

    It is of obvious clinical importance to monitor cerebral metabolism--in particular, cerebral energy metabolism and indicators of cellular damage-online at the bedside. The technique of cerebral microdialysis provides the opportunity for continuous monitoring of metabolic changes in the tissue before they are reflected in peripheral blood chemistry or in systemic physiological parameters. The basic idea of microdialysis is to mimic the function of a blood capillary by positioning a thin dialysis tube in the tissue and to be used to analyze the chemical composition of the interstitial fluid. The biochemical variables used during routine monitoring were chosen to cover important aspects of cerebral energy metabolism (glucose, pyruvate and lactate), to indicate excessive interstitial levels of excitatory transmitter substance (glutamate) and to give indications of degradation of cellular membranes (glycerol). Furthermore, pharmokinetic studies can be conducted using microdialysis. This article discusses technical and physiological aspects of microdialysis, and its clinical applications in brain injury.

  20. Statins and cerebral hemodynamics

    PubMed Central

    Giannopoulos, Sotirios; Katsanos, Aristeidis H; Tsivgoulis, Georgios; Marshall, Randolph S

    2012-01-01

    HMG-CoA reductase inhibitors (statins) are associated with improved stroke outcome. This observation has been attributed in part to the palliative effect of statins on cerebral hemodynamics and cerebral autoregulation (CA), which are mediated mainly through the upregulation of endothelium nitric oxide synthase (eNOS). Several animal studies indicate that statin pretreatment enhances cerebral blood flow after ischemic stroke, although this finding is not further supported in clinical settings. Cerebral vasomotor reactivity, however, is significantly improved after long-term statin administration in most patients with severe small vessel disease, aneurysmal subarachnoid hemorrhage, or impaired baseline CA. PMID:22929438

  1. Enzymatic Glucose Sensor Compensation for Variations in Ambient Oxygen Concentration

    PubMed Central

    Collier, Bradley B.; McShane, Michael J.

    2014-01-01

    Due to the increasing prevalence of diabetes, research toward painless glucose sensing continues. Oxygen sensitive phosphors with glucose oxidase (GOx) can be used to determine glucose levels indirectly by monitoring oxygen consumption. This is an attractive combination because of its speed and specificity. Packaging these molecules together in “smart materials” for implantation will enable non-invasive glucose monitoring. As glucose levels increase, oxygen levels decrease; consequently, the luminescence intensity and lifetime of the phosphor increase. Although the response of the sensor is dependent on glucose concentration, the ambient oxygen concentration also plays a key role. This could lead to inaccurate glucose readings and increase the risk of hyper- or hypoglycemia. To mitigate this risk, the dependence of hydrogel glucose sensor response on oxygen levels was investigated and compensation methods explored. Sensors were calibrated at different oxygen concentrations using a single generic logistic equation, such that trends in oxygen-dependence were determined as varying parameters in the equation. Each parameter was found to be a function of oxygen concentration, such that the correct glucose calibration equation can be calculated if the oxygen level is known. Accuracy of compensation will be determined by developing an overall calibration, using both glucose and oxygen sensors in parallel, correcting for oxygen fluctuations in real time by intentionally varying oxygen, and calculating the error in actual and predicted glucose levels. While this method was developed for compensation of enzymatic glucose sensors, in principle it can also be implemented with other kinds of sensors utilizing oxidases. PMID:26257458

  2. Glycolysis-induced discordance between glucose metabolic rates measured with radiolabeled fluorodeoxyglucose and glucose

    SciTech Connect

    Ackermann, R.F.; Lear, J.L. )

    1989-12-01

    We have developed an autoradiographic method for estimating the oxidative and glycolytic components of local CMRglc (LCMRglc), using sequentially administered ({sup 18}F)fluorodeoxyglucose (FDG) and ({sup 14}C)-6-glucose (GLC). FDG-6-phosphate accumulation is proportional to the rate of glucose phosphorylation, which occurs before the divergence of glycolytic (GMg) and oxidative (GMo) glucose metabolism and is therefore related to total cerebral glucose metabolism GMt: GMg + GMo = GMt. With oxidative metabolism, the {sup 14}C label of GLC is temporarily retained in Krebs cycle-related substrate pools. We hypothesize that with glycolytic metabolism, however, a significant fraction of the {sup 14}C label is lost from the brain via lactate production and efflux from the brain. Thus, cerebral GLC metabolite concentration may be more closely related to GMo than to GMt. If true, the glycolytic metabolic rate will be related to the difference between FDG- and GLC-derived LCMRglc. Thus far, we have studied normal awake rats, rats with limbic activation induced by kainic acid (KA), and rats visually stimulated with 16-Hz flashes. In KA-treated rats, significant discordance between FDG and GLC accumulation, which we attribute to glycolysis, occurred only in activated limbic structures. In visually stimulated rats, significant discordance occurred only in the optic tectum.

  3. Sex-specific effects of dehydroepiandrosterone (DHEA) on glucose metabolism in the CNS.

    PubMed

    Vieira-Marques, Claudia; Arbo, Bruno Dutra; Cozer, Aline Gonçalves; Hoefel, Ana Lúcia; Cecconello, Ana Lúcia; Zanini, Priscila; Niches, Gabriela; Kucharski, Luiz Carlos; Ribeiro, Maria Flávia M

    2017-07-01

    DHEA is a neuroactive steroid, due to its modulatory actions on the central nervous system (CNS). DHEA is able to regulate neurogenesis, neurotransmitter receptors and neuronal excitability, function, survival and metabolism. The levels of DHEA decrease gradually with advancing age, and this decline has been associated with age related neuronal dysfunction and degeneration, suggesting a neuroprotective effect of endogenous DHEA. There are significant sex differences in the pathophysiology, epidemiology and clinical manifestations of many neurological diseases. The aim of this study was to determine whether DHEA can alter glucose metabolism in different structures of the CNS from male and female rats, and if this effect is sex-specific. The results showed that DHEA decreased glucose uptake in some structures (cerebral cortex and olfactory bulb) in males, but did not affect glucose uptake in females. When compared, glucose uptake in males was higher than females. DHEA enhanced the glucose oxidation in both males (cerebral cortex, olfactory bulb, hippocampus and hypothalamus) and females (cerebral cortex and olfactory bulb), in a sex-dependent manner. In males, DHEA did not affect synthesis of glycogen, however, glycogen content was increased in the cerebral cortex and olfactory bulb. DHEA modulates glucose metabolism in a tissue-, dose- and sex-dependent manner to increase glucose oxidation, which could explain the previously described neuroprotective role of this hormone in some neurodegenerative diseases. Copyright © 2016. Published by Elsevier Ltd.

  4. Quantification of extra-cerebral and cerebral hemoglobin concentrations during physical exercise using time-domain near infrared spectroscopy.

    PubMed

    Auger, Héloïse; Bherer, Louis; Boucher, Étienne; Hoge, Richard; Lesage, Frédéric; Dehaes, Mathieu

    2016-10-01

    Fitness is known to have beneficial effects on brain anatomy and function. However, the understanding of mechanisms underlying immediate and long-term neurophysiological changes due to exercise is currently incomplete due to the lack of tools to investigate brain function during physical activity. In this study, we used time-domain near infrared spectroscopy (TD-NIRS) to quantify and discriminate extra-cerebral and cerebral hemoglobin concentrations and oxygen saturation (SO2) in young adults at rest and during incremental intensity exercise. In extra-cerebral tissue, an increase in deoxy-hemoglobin (HbR) and a decrease in SO2 were observed while only cerebral HbR increased at high intensity exercise. Results in extra-cerebral tissue are consistent with thermoregulatory mechanisms to dissipate excess heat through skin blood flow, while cerebral changes are in agreement with cerebral blood flow (CBF) redistribution mechanisms to meet oxygen demand in activated regions during exercise. No significant difference was observed in oxy- (HbO2) and total hemoglobin (HbT). In addition HbO2, HbR and HbT increased with subject's peak power output (equivalent to the maximum oxygen volume consumption; VO2 peak) supporting previous observations of increased total mass of red blood cells in trained individuals. Our results also revealed known gender differences with higher hemoglobin in men. Our approach in quantifying both extra-cerebral and cerebral absolute hemoglobin during exercise may help to better interpret past and future continuous-wave NIRS studies that are prone to extra-cerebral contamination and allow a better understanding of acute cerebral changes due to physical exercise.

  5. Quantification of extra-cerebral and cerebral hemoglobin concentrations during physical exercise using time-domain near infrared spectroscopy

    PubMed Central

    Auger, Héloïse; Bherer, Louis; Boucher, Étienne; Hoge, Richard; Lesage, Frédéric; Dehaes, Mathieu

    2016-01-01

    Fitness is known to have beneficial effects on brain anatomy and function. However, the understanding of mechanisms underlying immediate and long-term neurophysiological changes due to exercise is currently incomplete due to the lack of tools to investigate brain function during physical activity. In this study, we used time-domain near infrared spectroscopy (TD-NIRS) to quantify and discriminate extra-cerebral and cerebral hemoglobin concentrations and oxygen saturation (SO2) in young adults at rest and during incremental intensity exercise. In extra-cerebral tissue, an increase in deoxy-hemoglobin (HbR) and a decrease in SO2 were observed while only cerebral HbR increased at high intensity exercise. Results in extra-cerebral tissue are consistent with thermoregulatory mechanisms to dissipate excess heat through skin blood flow, while cerebral changes are in agreement with cerebral blood flow (CBF) redistribution mechanisms to meet oxygen demand in activated regions during exercise. No significant difference was observed in oxy- (HbO2) and total hemoglobin (HbT). In addition HbO2, HbR and HbT increased with subject’s peak power output (equivalent to the maximum oxygen volume consumption; VO2 peak) supporting previous observations of increased total mass of red blood cells in trained individuals. Our results also revealed known gender differences with higher hemoglobin in men. Our approach in quantifying both extra-cerebral and cerebral absolute hemoglobin during exercise may help to better interpret past and future continuous-wave NIRS studies that are prone to extra-cerebral contamination and allow a better understanding of acute cerebral changes due to physical exercise. PMID:27867696

  6. Effects of celiac superior mesenteric ganglionectomy on glucose homeostasis and hormonal changes during oral glucose tolerance testing in rats.

    PubMed

    Kumakura, Atsushi; Shikuma, Junpei; Ogihara, Norikazu; Eiki, Jun-ichi; Kanazawa, Masao; Notoya, Yōko; Kikuchi, Masatoshi; Odawara, Masato

    2013-01-01

    The liver plays an important role in maintaining glucose homeostasis in the body. In the prandial state, some of the glucose which is absorbed by the gastrointestinal tract is converted into glycogen and stored in the liver. In contrast, the liver produces glucose by glycogenolysis and gluconeogenesis while fasting. Thus, the liver contributes to maintaining blood glucose level within normoglycemic range. Glycogenesis and glycogenolysis are regulated by various mechanisms including hormones, the sympathetic and parasympathetic nervous systems and the hepatic glucose content. In this study, we examined a rat model in which the celiac superior mesenteric ganglion (CSMG) was resected. We attempted to elucidate how the celiac sympathetic nervous system is involved in regulating glucose homeostasis by assessing the effects of CSMG resection on glucose excursion during an oral glucose tolerance test, and by examining hepatic glycogen content and hepatic glycogen phosphorylase (GP) activity. On the oral glucose tolerance test, CSMG-resected rats demonstrated improved glucose tolerance and significantly increased GP activity compared with sham-operated rats, whereas there were no significant differences in insulin, glucagon or catecholamine levels between the 2 groups. These results suggest that the celiac sympathetic nervous system is involved in regulating the rate of glycogen consumption through GP activity. In conclusion, the examined rat model showed that the celiac sympathetic nervous system regulates hepatic glucose metabolism in conjunction with vagal nerve innervations and is a critical component in the maintenance of blood glucose homeostasis.

  7. Your Glucose Meter

    MedlinePlus

    ... Audience For Women Women's Health Topics Your Glucose Meter Share Tweet Linkedin Pin it More sharing options ... Testing Your Blood Sugar and Caring for Your Meter Glucose meters test and record how much sugar ( ...

  8. Glucose test (image)

    MedlinePlus

    ... person with diabetes constantly manages their blood's sugar (glucose) levels. After a blood sample is taken and tested, it is determined whether the glucose levels are low or high. Following your health ...

  9. Glucose-6-phosphate dehydrogenase

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003671.htm Glucose-6-phosphate dehydrogenase test To use the sharing features on this page, please enable JavaScript. Glucose-6-phosphate dehydrogenase (G6PD) is a protein that ...

  10. Cerebral Asymmetries and Reading Acquisition

    ERIC Educational Resources Information Center

    Pirozzolo, Francis J.

    1978-01-01

    Reviewed are historical developments regarding the concepts of cerebral localization, and analyzed are implications of current research on the role of the cerebral hemispheres in reading disorders. (CL)

  11. Diminished brain glucose metabolism is a significant determinant for falling rates of systemic glucose utilization during sleep in normal humans.

    PubMed Central

    Boyle, P J; Scott, J C; Krentz, A J; Nagy, R J; Comstock, E; Hoffman, C

    1994-01-01

    Systemic glucose utilization declines during sleep in man. We tested the hypothesis that this decline in utilization is largely accounted for by reduced brain glucose metabolism. 10 normal subjects underwent internal jugular and radial artery cannulation to determine cerebral blood flow by N2O equilibrium technique and to quantitate cross-brain glucose and oxygen differences before and every 3 h during sleep. Sleep stage was graded by continuous electroencephalogram, and systemic glucose turnover was estimated by isotope dilution. Brain glucose metabolism fell from 33.6 +/- 2.2 mumol/100 g per min (mean +/- SE) before sleep (2300 h) to a mean nadir of 24.3 +/- 1.1 mumol/100 g per min at 0300 h during sleep (P = 0.001). Corresponding rates of systemic glucose utilization fell from 13.2 +/- 0.8 to 11.0 +/- 0.5 mumol/kg per min (P = 0.003). Diminished brain glucose metabolism was the product of a reduced arteriovenous glucose difference, 0.643 +/- 0.024 to 0.546 +/- 0.020 mmol/liter (P = 0.002), and cerebral blood flow, 50.3 +/- 2.8 to 44.6 +/- 1.4 cc/100 g per min (P = 0.021). Brain oxygen metabolism fell commensurately from 153.4 +/- 11.8 to 128.0 +/- 8.4 mumol/100 g per min (P = 0.045). The observed reduction in brain metabolism occurred independent of stage of central nervous system electrical activity (electroencephalographic data), and was more closely linked to duration of sleep. We conclude that a decline in brain glucose metabolism is a significant determinant of falling rates of systemic glucose utilization during sleep. Images PMID:8113391

  12. Kinetics of growth and ethanol formation from a mix of glucose/xylose substrate by Kluyveromyces marxianus UFV-3.

    PubMed

    dos Santos, Valdilene Canazart; Bragança, Caio Roberto Soares; Passos, Frederico José Vieira; Passos, Flávia Maria Lopes

    2013-01-01

    The fermentation of both glucose and xylose is important to maximize ethanol yield from renewable biomass feedstocks. In this article, we analyze growth, sugar consumption, and ethanol formation by the yeast Kluyveromyces marxianus UFV-3 using various glucose and xylose concentrations and also under conditions of reduced respiratory activity. In almost all the conditions analyzed, glucose repressed xylose assimilation and xylose consumption began after glucose had been exhausted. A remarkable difference was observed when mixtures of 5 g L(-1) glucose/20 g L(-1) xylose and 20 g L(-1) glucose/20 g L(-1) xylose were used. In the former, the xylose consumption began immediately after the glucose depletion. Indeed, there was no striking diauxic phase, as observed in the latter condition, in which there was an interval of 30 h between glucose depletion and the beginning of xylose consumption. Ethanol production was always higher in a mixture of glucose and xylose than in glucose alone. The highest ethanol concentration (8.65 g L(-1)) and cell mass concentration (4.42 g L(-1)) were achieved after 8 and 74 h, respectively, in a mixture of 20 g L(-1) glucose/20 g L(-1) xylose. When inhibitors of respiration were added to the medium, glucose repression of xylose consumption was alleviated completely and K. marxianus was able to consume xylose and glucose simultaneously.

  13. Cerebral Palsy Gait, Clinical Importance

    PubMed Central

    TUGUI, Raluca Dana; ANTONESCU, Dinu

    2013-01-01

    ABSTRACT Cerebral palsy refers to a lesion on an immature brain, that determines permanent neurological disorders. Knowing the exact cause of the disease does not alter the treatment management. The etiology is 2-2.5/1000 births and the rate is constant in the last 40-50 years because advances in medical technologies have permitted the survival of smaller and premature new born children. Gait analysis has four directions: kinematics (represents body movements analysis without calculating the forces), kinetics (represents body moments and forces), energy consumption (measured by oximetry), and neuromuscular activity (measured by EMG). Gait analysis can observe specific deviations in a patient, allowing us to be more accurate in motor diagnoses and treatment solutions: surgery intervention, botulinum toxin injection, use of orthosis, physical kinetic therapy, oral medications, baclofen pump. PMID:24790675

  14. Enhanced hypothalamic glucose sensing in obesity: alteration of redox signaling.

    PubMed

    Colombani, Anne-Laure; Carneiro, Lionel; Benani, Alexandre; Galinier, Anne; Jaillard, Tristan; Duparc, Thibaut; Offer, Géraldine; Lorsignol, Anne; Magnan, Christophe; Casteilla, Louis; Pénicaud, Luc; Leloup, Corinne

    2009-10-01

    Recent data demonstrated that glucose sensing in different tissues is initiated by an intracellular redox signaling pathway in physiological conditions. However, the relevance of such a mechanism in metabolic disease is not known. The aim of the present study was to determine whether brain glucose hypersensitivity present in obese Zücker rats is related to an alteration in redox signaling. Brain glucose sensing alteration was investigated in vivo through the evaluation of electrical activity in arcuate nucleus, changes in reactive oxygen species levels, and hypothalamic glucose-induced insulin secretion. In basal conditions, modifications of redox state and mitochondrial functions were assessed through oxidized glutathione, glutathione peroxidase, manganese superoxide dismutase, aconitase activities, and mitochondrial respiration. Hypothalamic hypersensitivity to glucose was characterized by enhanced electrical activity of the arcuate nucleus and increased insulin secretion at a low glucose concentration, which does not produce such an effect in normal rats. It was associated with 1) increased reactive oxygen species levels in response to this low glucose load, 2) constitutive oxidized environment coupled with lower antioxidant enzyme activity at both the cellular and mitochondrial level, and 3) overexpression of several mitochondrial subunits of the respiratory chain coupled with a global dysfunction in mitochondrial activity. Moreover, pharmacological restoration of the glutathione hypothalamic redox state by reduced glutathione infusion in the third ventricle fully reversed the cerebral hypersensitivity to glucose. The data demonstrated that obese Zücker rats' impaired hypothalamic regulation in terms of glucose sensing is linked to an abnormal redox signaling, which originates from mitochondria dysfunction.

  15. All about Blood Glucose

    MedlinePlus

    Toolkit No. 15 All About Blood Glucose Keeping your blood glucose (sugar)in your target range can prevent or delay the health problems ... Diabetes Association, Inc. 1/15 Toolkit No.15: All About Blood Glucose continued team about when and ...

  16. STUDIES IN CEREBRAL METABOLISM

    PubMed Central

    Gordan, Gilbert S.; Adams, John E.; Bentinck, Richard C.; Eisenberg, Eugene; Harper, Harold; Hobson, Quentin J. G.

    1953-01-01

    In numerous clinical observations, it has been noted that steroid hormones have effects upon the central nervous system. Earlier interpretations of this relationship were largely speculative until newer methods permitted quantitation of actions of hormones and hormonal deficiencies on cerebral metabolism. The present studies indicate that certain steroids which affect behavior also influence cerebral metabolism. PMID:13019600

  17. Reversible cerebral vasoconstriction syndrome.

    PubMed

    Lee, R; Ramadan, H; Bamford, J

    2013-01-01

    Reversible cerebral vasoconstriction syndrome (RCVS) is an underdiagnosed condition which usually presents as severe headache with or without neurological deficit. We report the case of a 55-year-old woman who presented with headache and multifocal intracerebral haemorrhage. We review the literature regarding the presentation, pathophysiology and management of RCVS and discuss how to differentiate it from cerebral vasculitis.

  18. Cerebral Palsy (CP) Quiz

    MedlinePlus

    ... SSI file Error processing SSI file Pop Quiz: Cerebral Palsy Language: English Español (Spanish) Recommend on Facebook Tweet ... Sandy is the parent of a child with cerebral palsy and the Board President of Gio’s Garden , a ...

  19. Ambulatory glucose profile: Flash glucose monitoring.

    PubMed

    Kalra, Sanjay; Gupta, Yashdeep

    2015-12-01

    Ambulatory glucose profile (AGP) is a novel way of assessing glycaemic levels on a 24 hour basis, through a minimally invasive method, known as flash glucose monitoring. This review describes the unique features of AGP, differentiates it from existing methods of glucose monitoring, and explains how it helps pursue the glycaemic pentad. The review suggests pragmatic usage of this technology, including pre-test, intra-test, and post-test counselling, and lists specific clinical scenarios where the investigation seems to be of immense benefit.

  20. Cerebral ketone metabolism during development and injury.

    PubMed

    Prins, Mayumi L

    2012-07-01

    Cerebral metabolism of ketones is a normal part of the process of brain development. While the mature brain relies on glucose as a primary fuel source, metabolism of ketone bodies remains an alternative energy source under conditions of starvation. The neuroprotective properties of brain ketone metabolism make this alternative substrate a viable therapeutic option for various pathologies. Since the ability to revert to utilizing ketones as an alternative substrate is greatest in the younger post-weaned brain, this particular therapeutic approach remains an untapped resource particularly for pediatric pathological conditions. Published by Elsevier B.V.

  1. Cerebral Ketone Metabolism During Development and Injury

    PubMed Central

    Prins, Mayumi L.

    2011-01-01

    Cerebral metabolism of ketones is a normal part of the process of brain development. While the mature brain relies on glucose as a primary fuel source, metabolism of ketone bodies remains an alternative energy source under conditions of starvation. The neuroprotective properties of brain ketone metabolism make this alternative substrate a viable therapeutic option for various pathologies. Since the ability to revert to utilizing ketones as an alternative substrate is greatest in the younger post-weaned brain, this particular therapeutic approach remains an untapped resource particularly for pediatric pathological conditions. PMID:22104087

  2. Aspartame intake is associated with greater glucose intolerance in individuals with obesity.

    PubMed

    Kuk, Jennifer L; Brown, Ruth E

    2016-07-01

    This study examined whether sucrose, fructose, aspartame, and saccharin influences the association between obesity and glucose tolerance in 2856 adults from the NHANES III survey. Aspartame intake significantly influenced the association between body mass index (BMI) and glucose tolerance (interaction: P = 0.004), wherein only those reporting aspartame intake had a steeper positive association between BMI and glucose tolerance than those reporting no aspartame intake. Therefore, consumption of aspartame is associated with greater obesity-related impairments in glucose tolerance.

  3. Local cerebral glucose metabolism (LCMRGlc) in mood disorders

    SciTech Connect

    Phelps, M.E.; Baxter, L.R.; Mazziotta, J.C.; Schwartz, J.M.; Gerner, R.H.

    1985-05-01

    PET studies (LCMRGlc units of ..mu.. moles/min/100g and errors in std. dev.) were performed in patients with unipolar depression (n=11), bipolar depression (n=8), hypomania (n=8) and bipolar mixed states (n=3) in drug free states as well as during spontaneous or drug induced changes in mood, and age/sex matched normals (n=9). The major findings were: bipolar depressed patients had lower (P<0.001) supratentorial CMRGlc (16.7 +- 3.7) than normals (23.6 +- 1.9), hypomanic bipolars (24.7 + 44.6) or unipolars (24.5 +- 3.0). Bipolar mixed (16.4 +- 4.8) were not different from bipolar depressed but were different from all other states (P<0.02). Bipolar depressed and mixed showed increased (30%) supratentorial CMRGlc (P<0.05) with elevated mood (euthymic or hypomanic). Three rapid cycling bipolar patients (2 studies depressed and 1 hypomanic) also showed consistent increases (35%) in supratentorial CMRGlc from depressed to elevated mood state. Unipolar depressed patients had a low LCMRGlc ratio of caudate to hemispheric (c/Hem) (1.18 +- 0.09) compared to bipolar depression (1.30 +- 0.13) or normals (1.32 +- 0.07). Four unipolar patients studied after drug induced recovery showed corresponding return of Cd/Hem ratio to normal. Results of these studies show; delineation of bipolar depressed from unpolar depressed and normals. Separation of mixed biopolar from unipolar and correspondence of the former with bipolar rather than unipolar depression (controversial characterization by other diagnostic criteria), separation of unipolar from normal and bipolar by reduced LCMRGlc of caudate, and direct correspondence of changes in mood state with changes in LCMRGlc independent of whether changes in mood were drug induced or spontaneous.

  4. SUPPLY AND DEMAND IN CEREBRAL ENERGY METABOLISM: THE ROLE OF NUTRIENT TRANSPORTERS

    PubMed Central

    Simpson, Ian A.; Carruthers, Anthony; Vannucci, Susan J.

    2007-01-01

    Glucose is the obligate energetic fuel for the mammalian brain and most studies of cerebral energy metabolism assume that the vast majority of cerebral glucose utilization fuels neuronal activity via oxidative metabolism, both in the basal and activated state. Glucose transporter proteins (GLUTs) deliver glucose from the circulation to the brain: GLUT1 in the microvascular endothelial cells of the blood brain barrier (BBB) and glia; GLUT3 in neurons. Lactate, the glycolytic product of glucose metabolism, is transported into and out of neural cells by the monocarboxylate transporters: MCT1 in the BBB and astrocytes and MCT2 in neurons. The proposal of the astrocyte-neuron lactate shuttle hypothesis (Pellerin and Magistretti, 1994) suggested that astrocytes play the primary role in cerebral glucose utilization and generate lactate for neuronal energetics, especially during activation. Since the identification of the GLUTs and MCTs in brain, much has been learned about their transport properties, i.e. capacity and affinity for substrate, which must be considered in any model of cerebral glucose uptake and utilization. Using concentrations and kinetic parameters of GLUT1 and GLUT3 in BBB endothelial cells, astrocytes and neurons, along with the corresponding kinetic properties of the monocarboxylate transporters, we have successfully modeled brain glucose and lactate levels as well as lactate transients in response to neuronal stimulation. Simulations based on these parameters suggest that glucose readily diffuses through the basal lamina and interstitium to neurons, which are primarily responsible for glucose uptake, metabolism, and the generation of the lactate transients observed upon neuronal activation. PMID:17579656

  5. Hyperosmolar sodium chloride is toxic to cultured neurons and causes reduction of glucose metabolism and ATP levels, an increase in glutamate uptake, and a reduction in cytosolic calcium.

    PubMed

    Morland, Cecilie; Pettersen, Mi Nguyen; Hassel, Bjørnar

    2016-05-01

    Elevation of serum sodium, hypernatremia, which may occur during dehydration or treatment with sodium chloride, may cause brain dysfunction and damage, but toxic mechanisms are poorly understood. We found that exposure to excess NaCl, 10-100mmol/L, for 20h caused cell death in cultured cerebellar granule cells (neurons). Toxicity was due to Na(+), since substituting excess Na(+) with choline reduced cell death to control levels, whereas gluconate instead of excess Cl(-) did not. Prior to cell death from hyperosmolar NaCl, glucose consumption and lactate formation were reduced, and intracellular aspartate levels were elevated, consistent with reduced glycolysis or glucose uptake. Concomitantly, the level of ATP became reduced. Pyruvate, 10mmol/L, reduced NaCl-induced cell death. The extracellular levels of glutamate, taurine, and GABA were concentration-dependently reduced by excess NaCl; high-affinity glutamate uptake increased. High extracellular [Na(+)] caused reduction in intracellular free [Ca(2+)], but a similar effect was seen with mannitol, which was not neurotoxic. We suggest that inhibition of glucose metabolism with ensuing loss of ATP is a neurotoxic mechanism of hyperosmolar sodium, whereas increased uptake of extracellular neuroactive amino acids and reduced intracellular [Ca(2+)] may, if they occur in vivo, contribute to the cerebral dysfunction and delirium described in hypernatremia.

  6. Changes in Glucose and Glutamine Lymphocyte Metabolisms Induced by Type I Interferon α

    PubMed Central

    Navarro, Francisco; Bacurau, Aline V. N.; Vanzelli, Andréa; Meneguello-Coutinho, Marcela; Uchida, Marco C.; Moraes, Milton R.; Almeida, Sandro S.; Wasinski, Frederick; Barros, Carlos C.; Würtele, Martin; Araújo, Ronaldo C.; Costa Rosa, Luís F. B.; Bacurau, Reury F. P.

    2010-01-01

    In lymphocytes (LY), the well-documented antiproliferative effects of IFN-α are associated with inhibition of protein synthesis, decreased amino acid incorporation, and cell cycle arrest. However, the effects of this cytokine on the metabolism of glucose and glutamine in these cells have not been well investigated. Thus, mesenteric and spleen LY of male Wistar rats were cultured in the presence or absence of IFN-α, and the changes on glucose and glutamine metabolisms were investigated. The reduced proliferation of mesenteric LY was accompanied by a reduction in glucose total consumption (35%), aerobic glucose metabolism (55%), maximal activity of glucose-6-phosphate dehydrogenase (49%), citrate synthase activity (34%), total glutamine consumption (30%), aerobic glutamine consumption (20.3%) and glutaminase activity (56%). In LY isolated from spleen, IFNα also reduced the proliferation and impaired metabolism. These data demonstrate that in LY, the antiproliferative effects of IFNα are associated with a reduction in glucose and glutamine metabolisms. PMID:21234393

  7. Exogenous amino acids suppress glucose oxidation and potentiate hepatic glucose production in late gestation fetal sheep.

    PubMed

    Brown, Laura D; Kohn, Jaden R; Rozance, Paul J; Hay, William W; Wesolowski, Stephanie R

    2017-05-01

    Acute amino acid (AA) infusion increases AA oxidation rates in normal late gestation fetal sheep. Because the fetal oxygen consumption rate does not change with increased AA oxidation, we hypothesized that AA infusion would suppress glucose oxidation pathways and that the additional carbon supply from AA would activate hepatic glucose production. To test this, late gestation fetal sheep were infused intravenously for 3 h with saline or exogenous AA (AA). Glucose tracer metabolic studies were performed and skeletal muscle and liver tissues samples were collected. AA infusion increased fetal arterial plasma branched chain AA, cortisol, and glucagon concentrations. Fetal glucose utilization rates were similar between basal and AA periods, yet the fraction of glucose oxidized and the glucose oxidation rate were decreased by 40% in the AA period. AA infusion increased expression of PDK4, an inhibitor of glucose oxidation, nearly twofold in muscle and liver. In liver, AA infusion tended to increase PCK1 gluconeogenic gene and PCK1 correlated with plasma cortisol concentrations. AA infusion also increased liver mRNA expression of the lactate transporter gene (MCT1), protein expression of GLUT2 and LDHA, and phosphorylation of AMPK, 4EBP1, and S6 proteins. In isolated fetal hepatocytes, AA supplementation increased glucose production and PCK1, LDHA, and MCT1 gene expression. These results demonstrate that AA infusion into fetal sheep competitively suppresses glucose oxidation and potentiates hepatic glucose production. These metabolic patterns support flexibility in fetal metabolism in response to increased nutrient substrate supply while maintaining a relatively stable rate of oxidative metabolism. Copyright © 2017 the American Physiological Society.

  8. Increased cerebellar PET glucose metabolism corresponds to ataxia in Wernicke-Korsakoff syndrome.

    PubMed

    Fellgiebel, Andreas; Siessmeier, Thomas; Winterer, Georg; Lüddens, Hartmut; Mann, Klaus; Schmidt, Lutz G; Bartenstein, Peter

    2004-01-01

    To investigate a possible relationship between cerebellar glucose metabolism and recovery from ataxia in the first months of acute Wernicke-Korsakoff syndrome. Two cases of alcoholic Wernicke-Korsakoff syndrome were followed up with the clinical status and cerebral glucose metabolism over a 4- and 9-month period. Initially both patients showed severe ataxia and elevated cerebellar glucose metabolism that decreased corresponding to the restitution of stance and gait. Increased cerebellar glucose metabolism at the onset of the illness may reflect the reorganization process of disturbed motor skills and may indicate cerebellar plasticity.

  9. Effect of gender on glucose utilization rates in healthy humans: A positron emission tomography study

    SciTech Connect

    Miura, S.A.; Schapiro, M.B.; Grady, C.L.; Kumar, A.; Salerno, J.A.; Kozachuk, W.E.; Wagner, E.; Rapoport, S.I.; Horwitz, B. )

    1990-12-01

    Positron emission tomography (PET) was used with 18fluorodeoxyglucose to see if gender differences in resting cerebral glucose utilization could be detected. Thirty-two healthy subjects (15 women and 17 men; age range: 21-38 yr) were examined using a high-resolution PET scanner to determine the regional cerebral metabolic rate for glucose (CMRglc) in 65 gray matter regions of interest. Whole brain CMRglc did not differ significantly between the two genders, nor did any of the regional CMRglc values. Only 1 of 65 ratios of regional-to-whole brain CMRglc differed significantly between men and women, which is consistent with chance. These results indicate that there are no differences in resting regional cerebral glucose utilization between young men and women.

  10. Delphinol® standardized maqui berry extract reduces postprandial blood glucose increase in individuals with impaired glucose regulation by novel mechanism of sodium glucose cotransporter inhibition.

    PubMed

    Hidalgo, J; Flores, C; Hidalgo, M A; Perez, M; Yañez, A; Quiñones, L; Caceres, D D; Burgos, R A

    2014-06-01

    The impetus of our study was to investigate the effects of a nutritional supplement Delphinol®, an extract of maqui berries (Aristotelia chilensis) standardised to ≥25% delphinidins and ≥35% total anthocyanins, on postprandial blood glucose and insulin levels and identify the physiologic mechanism involved. Postprandial blood glucose and insulin were investigated in double-blind, placebo-controlled, cross-over fashion in ten volunteers with moderate glucose intolerance. Longer term effects on blood sugar levels were investigated in streptozotocin-diabetic rats over a four months period. Effects of maqui berry delphinidins on sodium-glucose symport were examined in rodent jejenum of the small intestine. Delphinol® intake prior to rice consumption statistical significantly lowered post prandial blood glucose and insulin as compared to placebo. We identified an inhibition of Na+-dependant glucose transport by delphinidin, the principal polyphenol to which Delphinol® is standardised. In a diabetic rat model the daily oral application of Delphinol® over a period of four months significantly lowered fasting blood glucose levels and reached values indistinguishable from healthy non-diabetic rats. Our results suggest a potential use of Delphinol® for naturally controlling post-prandial blood glucose owed to inhibition of sodium glucose co-transporter in small intestine.

  11. Cerebral autoregulation and flow/metabolism coupling during cardiopulmonary bypass: the influence of PaCO/sub 2/

    SciTech Connect

    Murkin, J.M.; Farrar, J.K.; Tweed, W.A.; McKenzie, F.N.; Guiraudon, G.

    1987-09-01

    Measurement of /sup 133/Xe clearance and effluent cerebral venous blood sampling were used in 38 patients to determine the effects of cardiopulmonary bypass, and of maintaining temperature corrected or noncorrected PaCO/sub 2/ at 40 mm Hg on regulation of cerebral blood flow (CBF) and flow/metabolism coupling. After induction of anesthesia with diazepam and fentanyl, mean CBF was 25 ml X 100 g-1 X min-1 and cerebral oxygen consumption, 1.67 ml X 100 g-1 X min-1. Cerebral oxygen consumption during nonpulsatile cardiopulmonary bypass at 26 degrees C was reduced to 0.42 ml X 100 g-1 X min-1 in both groups. CBF was reduced to 14-15 ml X 100 g-1 X min-1 in the non-temperature-corrected group (n = 21), was independent of cerebral perfusion pressure over the range of 20-100 mm Hg, but correlated with cerebral oxygen consumption. In the temperature-corrected group (n = 17), CBF varied from 22 to 32 ml X 100 g-1 X min-1, and flow/metabolism coupling was not maintained (i.e., CBF and cerebral oxygen consumption varied independently). However, variation in CBF correlated significantly with cerebral perfusion pressure over the pressure range of 15-95 mm Hg. This study demonstrates a profound reduction in cerebral oxygen consumption during hypothermic nonpulsatile cardiopulmonary bypass. When a non-temperature-corrected PaCO/sub 2/ of approximately 40 mm Hg was maintained, CBF was lower, and analysis of pooled data suggested that CBF regulation was better preserved, i.e., CBF was independent of pressure changes and dependent upon cerebral oxygen consumption.

  12. Cerebral Cavernous Malformations (CCM)

    MedlinePlus

    ... Contact Registry Interest Form Contact Us | Login Disorder Definitions Learn More > Disorder Definitions Cerebral Cavernous Malformations (CCM) ... until it is too late to salvage vision. Routine screening is very important, even if there are ...

  13. Cerebral Aneurysms Fact Sheet

    MedlinePlus

    ... Caregiver Education » Fact Sheets Cerebral Aneurysms Fact Sheet Table of Contents (click to jump to sections) What ... Information Page NINDS Epilepsy Information Page NINDS Familial Periodic Paralyses Information Page NINDS Farber's Disease Information Page ...

  14. Acquired Cerebral Trauma: Epilogue.

    ERIC Educational Resources Information Center

    Bigler, Erin D., Ed.

    1988-01-01

    The article summarizes a series of articles concerning acquired cerebral trauma. Reviewed are technological advances, treatment, assessment, potential innovative therapies, long-term outcome, family impact of chronic brain injury, and prevention. (DB)

  15. Cerebral amyloid angiopathy

    MedlinePlus

    ... 911) if you have sudden loss of movement , sensation, vision, or speech. Alternative Names Amyloidosis - cerebral; CAA; Congophilic angiopathy Images Amyloidosis on the fingers Arteries of the brain References Kase CS, Shoamanesh A. Intracerebral hemorrhage. In: Daroff ...

  16. The impact of age on cerebral perfusion, oxygenation and metabolism during exercise in humans.

    PubMed

    Braz, Igor D; Fisher, James P

    2016-08-15

    Age is one of the most important risk factors for dementia and stroke. Examination of the cerebral circulatory responses to acute exercise in the elderly may help to pinpoint the mechanisms by which exercise training can reduce the risk of brain diseases, inform the optimization of exercise training programmes and assist with the identification of age-related alterations in cerebral vascular function. During low-to-moderate intensity dynamic exercise, enhanced neuronal activity is accompanied by cerebral perfusion increases of ∼10-30%. Beyond ∼60-70% maximal oxygen uptake, cerebral metabolism remains elevated but perfusion in the anterior portion of the circulation returns towards baseline, substantively because of a hyperventilation-mediated reduction in the partial pressure of arterial carbon dioxide (P aC O2) and cerebral vasoconstriction. Cerebral perfusion is lower in older individuals, both at rest and during incremental dynamic exercise. Nevertheless, the increase in the estimated cerebral metabolic rate for oxygen and the arterial-internal jugular venous differences for glucose and lactate are similar in young and older individuals exercising at the same relative exercise intensities. Correction for the age-related reduction in P aC O2 during exercise by the provision of supplementary CO2 is suggested to remove ∼50% of the difference in cerebral perfusion between young and older individuals. A multitude of candidates could account for the remaining difference, including cerebral atrophy, and enhanced vasoconstrictor and blunted vasodilatory pathways. In summary, age-related reductions in cerebral perfusion during exercise are partly associated with a lower P aC O2 in exercising older individuals; nevertheless the cerebral extraction of glucose, lactate and oxygen appear to be preserved. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  17. GLUT2, glucose sensing and glucose homeostasis.

    PubMed

    Thorens, Bernard

    2015-02-01

    The glucose transporter isoform GLUT2 is expressed in liver, intestine, kidney and pancreatic islet beta cells, as well as in the central nervous system, in neurons, astrocytes and tanycytes. Physiological studies of genetically modified mice have revealed a role for GLUT2 in several regulatory mechanisms. In pancreatic beta cells, GLUT2 is required for glucose-stimulated insulin secretion. In hepatocytes, suppression of GLUT2 expression revealed the existence of an unsuspected glucose output pathway that may depend on a membrane traffic-dependent mechanism. GLUT2 expression is nevertheless required for the physiological control of glucose-sensitive genes, and its inactivation in the liver leads to impaired glucose-stimulated insulin secretion, revealing a liver-beta cell axis, which is likely to be dependent on bile acids controlling beta cell secretion capacity. In the nervous system, GLUT2-dependent glucose sensing controls feeding, thermoregulation and pancreatic islet cell mass and function, as well as sympathetic and parasympathetic activities. Electrophysiological and optogenetic techniques established that Glut2 (also known as Slc2a2)-expressing neurons of the nucleus tractus solitarius can be activated by hypoglycaemia to stimulate glucagon secretion. In humans, inactivating mutations in GLUT2 cause Fanconi-Bickel syndrome, which is characterised by hepatomegaly and kidney disease; defects in insulin secretion are rare in adult patients, but GLUT2 mutations cause transient neonatal diabetes. Genome-wide association studies have reported that GLUT2 variants increase the risks of fasting hyperglycaemia, transition to type 2 diabetes, hypercholesterolaemia and cardiovascular diseases. Individuals with a missense mutation in GLUT2 show preference for sugar-containing foods. We will discuss how studies in mice help interpret the role of GLUT2 in human physiology.

  18. Approaching to DM2 through sodium-glucose cotransporter-2: does it make sense?

    PubMed

    Segura, Julián

    2016-11-01

    The kidney is involved in glucose homeostasis through three main mechanisms: renal gluconeogenesis, renal glucose consumption and glucose reabsorption in the proximal tubule. Glucose reabsorption is one of the most relevant physiological functions of the kidney, through which filtered glucose is fully recovered, urine is free of glucose, and calorie loss is prevented. Approximately 90% of the glucose is reabsorbed in the S1 segment of the proximal tubule, where GLUT2 and SGLT2 transporters are located, while the remaining 10% is reabsorbed in the S3 segment by SGLT1 and GLUT1 transporters. In patients with hyperglycaemia, the kidney continues reabsorbing glucose, and hyperglycaemia is maintained. Most renal glucose reabsorption is mediated by the SGLT2 transporter. Several experimental and clinical studies suggest that pharmacological blockade of this transporter might be beneficial in the management of hyperglycemia in patients with type 2 diabetes. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  19. Nanomedicine in cerebral palsy

    PubMed Central

    Balakrishnan, Bindu; Nance, Elizabeth; Johnston, Michael V; Kannan, Rangaramanujam; Kannan, Sujatha

    2013-01-01

    Cerebral palsy is a chronic childhood disorder that can have diverse etiologies. Injury to the developing brain that occurs either in utero or soon after birth can result in the motor, sensory, and cognitive deficits seen in cerebral palsy. Although the etiologies for cerebral palsy are variable, neuroinflammation plays a key role in the pathophysiology of the brain injury irrespective of the etiology. Currently, there is no effective cure for cerebral palsy. Nanomedicine offers a new frontier in the development of therapies for prevention and treatment of brain injury resulting in cerebral palsy. Nanomaterials such as dendrimers provide opportunities for the targeted delivery of multiple drugs that can mitigate several pathways involved in injury and can be delivered specifically to the cells that are responsible for neuroinflammation and injury. These materials also offer the opportunity to deliver agents that would promote repair and regeneration in the brain, resulting not only in attenuation of injury, but also enabling normal growth. In this review, the current advances in nanotechnology for treatment of brain injury are discussed with specific relevance to cerebral palsy. Future directions that would facilitate clinical translation in neonates and children are also addressed. PMID:24204146

  20. Nanomedicine in cerebral palsy.

    PubMed

    Balakrishnan, Bindu; Nance, Elizabeth; Johnston, Michael V; Kannan, Rangaramanujam; Kannan, Sujatha

    2013-01-01

    Cerebral palsy is a chronic childhood disorder that can have diverse etiologies. Injury to the developing brain that occurs either in utero or soon after birth can result in the motor, sensory, and cognitive deficits seen in cerebral palsy. Although the etiologies for cerebral palsy are variable, neuroinflammation plays a key role in the pathophysiology of the brain injury irrespective of the etiology. Currently, there is no effective cure for cerebral palsy. Nanomedicine offers a new frontier in the development of therapies for prevention and treatment of brain injury resulting in cerebral palsy. Nanomaterials such as dendrimers provide opportunities for the targeted delivery of multiple drugs that can mitigate several pathways involved in injury and can be delivered specifically to the cells that are responsible for neuroinflammation and injury. These materials also offer the opportunity to deliver agents that would promote repair and regeneration in the brain, resulting not only in attenuation of injury, but also enabling normal growth. In this review, the current advances in nanotechnology for treatment of brain injury are discussed with specific relevance to cerebral palsy. Future directions that would facilitate clinical translation in neonates and children are also addressed.

  1. The glucose oxidase-peroxidase assay for glucose

    USDA-ARS?s Scientific Manuscript database

    The glucose oxidase-peroxidase assay for glucose has served as a very specific, sensitive, and repeatable assay for detection of glucose in biological samples. It has been used successfully for analysis of glucose in samples from blood and urine, to analysis of glucose released from starch or glycog...

  2. Glucose-specific signaling effects on delay discounting in intertemporal choice.

    PubMed

    Wang, X T Xiao-Tian; Huangfu, Gang

    2017-02-01

    We propose that decisions related to resource management (e.g., intertemporal choice between a smaller-and-sooner reward and a larger-and-later reward) are sensitive to and regulated by fluctuating blood glucose levels. Circulating glucose affects intertemporal choice by means of signaling body energy condition instead of serving as a replenishing resource for effortful cognitive processing. We intend to dissociate calorie-supplying functions from glucose-unique anticipatory effects on behavioral resource management, measured by delay discounting in making intertemporal choices. Regarding the anticipatory functions of the glucose-insulin system in regulating the degree of delay discounting, we tested three predictions: First, we predict that the signaling effects of circulating glucose on delay discounting do not need to be dose-dependent as long as glucose fluctuation indicates a directional trend in body energy budget. Second, such effects of glucose fluctuation on delay discounting are phagic (appetite related) instead of dipsian (thirst related). Third, this glucose-insulin signaling system requires glucose as the specific input, thus is insensitive to other forms of sugar that are not insulin regulated. In Study 1, fasting participants were randomly assigned to one of five groups: water consumption, zero-consumption, and three glucose consumption (18g, 36g, and 72g cane sugar/250ml water) groups. The participants competed two sets of intertemporal choice questions with varying delay discounting rates before and after a beverage intervention. The results showed that the rate of delay discounting was negatively correlated to blood glucose levels. The effects of circulating glucose on delay discounting closely followed the changes in blood glucose levels showing a plateau on both dose-response curves (i.e., the sugar dose-blood glucose level curve and the sugar does-delay discounting curve). Secondly, the effects of circulating glucose on delay discounting were

  3. Effects of forskolin on cerebral blood flow: implications for a role of adenylate cyclase

    SciTech Connect

    Wysham, D.G.; Brotherton, A.F.; Heistad, D.D.

    1986-11-01

    We have studied cerebral vascular effects of forskolin, a drug which stimulates adenylate cyclase and potentiates dilator effects of adenosine in other vascular beds. Our goals were to determine whether forskolin is a cerebral vasodilator and whether it potentiates cerebral vasodilator responses to adenosine. We measured cerebral blood flow with microspheres in anesthetized rabbits. Forskolin (10 micrograms/kg per min) increased blood flow (ml/min per 100 gm) from 39 +/- 5 (mean +/- S.E.) to 56 +/- 9 (p less than 0.05) in cerebrum, and increased flow to myocardium and kidney despite a decrease in mean arterial pressure. Forskolin did not alter cerebral oxygen consumption, which indicates that the increase in cerebral blood flow is a direct vasodilator effect and is not secondary to increased metabolism. We also examined effects of forskolin on the response to infusion of adenosine. Cerebral blood flow was measured during infusion of 1-5 microM/min adenosine into one internal carotid artery, under control conditions and during infusion of forskolin at 3 micrograms/kg per min i.v. Adenosine alone increased ipsilateral cerebral blood flow from 32 +/- 3 to 45 +/- 5 (p less than 0.05). Responses to adenosine were not augmented during infusion of forskolin. We conclude that forskolin is a direct cerebral vasodilator and forskolin does not potentiate cerebral vasodilator responses to adenosine.

  4. Seinpin knockout exacerbates cerebral ischemia/reperfusion damage in mice.

    PubMed

    Chen, Yong; Wei, Lili; Tian, Jing; Wang, Yu-Hui; Liu, George; Wang, Chun

    2016-05-27

    Seipin, which regulates adipocyte differentiation and lipolysis, inducing severe lipodystrophy and metabolic syndromes, is also highly expressed in the nervous system and affects some neurological diseases. However, the impacts of seipin in stroke remain unclear. In this study, we subjected seipin knockout mice to cerebral ischemia/reperfusion injury and found that seipin knockout mice exhibited exacerbated neurological disorder and enlarged infarct size, companied by blood-brain barrier (BBB) damages. Furthermore, we showed that seipin knockout aggravated endoplasmic reticulum (ER) stress and significantly increased glucose levels, decreased leptin and adiponectin levels in mouse plasma. Our findings reveal that seipin knockout exacerbates cerebral I/R-induced damages by increasing BBB permeability, amplifying ER stress and increasing glucose levels, as well as decreasing leptin and adiponectin levels, indicating that seipin may be a potential therapeutic target for stroke. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Glucose utilization in the inferior cerebellar vermis and ocular myoclonus.

    PubMed

    Yakushiji, Y; Otsubo, R; Hayashi, T; Fukuchi, K; Yamada, N; Hasegawa, Y; Minematsu, K

    2006-07-11

    In a patient with symptomatic ocular myoclonus, the authors observed the regional cerebral metabolic rate of glucose use (rCMRGlu) before and after successful treatment with clonazepam. Even after the symptoms resolved, the rCMRGlu in the hypertrophic olive increased persistently, whereas that in the inferior cerebellar vermis contralateral to the hypertrophic olive decreased. The inferior cerebellar vermis, belonging to the vestibulocerebellar system, may be associated with the generation of symptomatic ocular myoclonus.

  6. Effect of short-term maternal fasting in the third trimester on uterine, umbilical, and fetal middle cerebral artery Doppler indices.

    PubMed

    Abd-El-Aal, Diaa-Eldeen M; Shahin, Ahmed Y; Hamed, Hossam O

    2009-10-01

    To assess the effect of short-term maternal fasting on uterine, umbilical, and middle cerebral artery Doppler indices, and on maternal serum glucose levels and fetal behavior. Maternal serum glucose levels, fetal biophysical profiles, and uterine, umbilical, and middle cerebral artery Doppler indices were assessed in 110 healthy women in the third trimester of pregnancy after fasting for 10-12 hours and 2 hours after a balanced meal. Maternal serum glucose levels, nonstress test results, fetal breathing movements, and biophysical profile improved after a meal compared with after fasting for 10-12 hours. Uterine, umbilical, and middle cerebral artery Doppler indices were not significantly different after fasting and after a meal. Short-term maternal fasting during the third trimester of pregnancy has no effect on uterine, umbilical, or fetal cerebral artery Doppler indices, and has a transient but significant effect on maternal serum glucose levels and fetal behavior.

  7. Glucose: detection and analysis

    USDA-ARS?s Scientific Manuscript database

    Glucose is an aldosic monosaccharide that is centrally entrenched in the processes of photosynthesis and respiration, serving as an energy reserve and metabolic fuel in most organisms. As both a monomer and as part of more complex structures such as polysaccharides and glucosides, glucose also pla...

  8. Capillary blood glucose monitoring.

    PubMed

    Wallymahmed, M

    This article, the first in a series of articles relating to clinical skills in nursing, outlines the procedure of capillary blood glucose monitoring. This is a convenient way of monitoring blood glucose patterns and can be a useful aid in guiding treatment changes in patients with type 1 and type 2 diabetes, especially during periods of illness or frequent hypoglycaemia.

  9. In vivo metabolic response of glucose to dichloroacetate in humans.

    PubMed

    Brown, J A; Gore, D C

    1996-03-01

    Hyperglycemia is common in severely ill patients and is related principally to an increase in glucose production. Dichloroacetate (DCA), which is known to increase the rate of pyruvate oxidation, has been shown to lower plasma glucose concentrations in normal fasting subjects and in diabetics and thus may be efficacious in treating stress induced hyperglycemia. However, the mechanism by which DCA lowers the plasma glucose concentration in humans has not been elucidated. To examine the human in vivo metabolic alterations induced by DCA, six fasting volunteers were infused with 6,6-D2-glucose and indirect calorimetry was performed prior to and following DCA administration. Glucose, lactate, and alanine net balance across the leg were also quantitated. Following DCA administration, plasma glucose concentrations decreased by 9% due to a proportional decrease in the rate of glucose production (P < 0.05). DCA had no affect on glucose clearance or leg net balance; however, the rate of glucose oxidation increased by 24% from baseline (P < 0.05). This increase in glucose oxidation without a compensatory change in peripheral glucose consumption suggests an improved efficiency in peripheral glucose utilization induced by DCA. Plasma concentrations of lactate and alanine were also lowered by DCA (56% for lactate, 66% for alanine, P < 0.05) without a significant alteration in leg net balance. These results suggest that DCA may decrease gluconeogenesis by limiting the availability of the precursor substrates lactate and alanine. Thus dichloroacetate may be an appropriate alternative to insulin in correcting mild elevations in plasma glucose concentrations. Furthermore, DCA may be especially effective in severely ill patients where hyperglycemia is largely due to increases in gluconeogenesis.

  10. Complementary acupuncture treatment increases cerebral metabolism in patients with Parkinson's disease.

    PubMed

    Huang, Yong; Jiang, Xuemei; Zhuo, Ying; Tang, Anwu; Wik, Gustav

    2009-01-01

    We used positron emission tomography (PET) and the 18-flourodeoxyglucose tracer to study cerebral effects of complementary acupuncture in Parkinson's disease. Five patients received scalp-acupuncture and Madopa, while the other five had Madopa only. PET scans before and after 5 weeks of complementary acupuncture treatment show increased glucose metabolisms in parietal, temporal, occipital lobes, the thalamus, and the cerebellum in the light-diseased hemisphere, and in parietal and occipital lobes of the severe-diseased hemisphere. No changes were observed in the Madopa-only group. Acupuncture in combination with Madopa may improve cerebral glucose metabolism in Parkinson's disease.

  11. Reversible white matter lesions during ketogenic diet therapy in glucose transporter 1 deficiency syndrome.

    PubMed

    Shiohama, Tadashi; Fujii, Katsunori; Takahashi, Satoru; Nakamura, Fumito; Kohno, Yoichi

    2013-12-01

    Glucose transporter type 1 deficiency syndrome is caused by brain energy failure resulting from a disturbance in glucose transport. We describe a 4-year-old boy with classical type glucose transporter type 1 deficiency syndrome with a heterozygous splice acceptor site mutation (c.517-2A>G) in the SLCA2A1 gene. We initiated a ketogenic diet at 4 months of age. However, even though his condition was good during ketogenic diet therapy, multiple cerebral white matter and right cerebellum lesions appeared at 9 months of age. The lesions in the cerebral white matter subsequently disappeared, indicating that white matter lesions during diet therapy may be reversible and independent of the ketogenic diet. This is the first report of reversible white matter lesions during ketogenic diet therapy in glucose transporter type 1 deficiency syndrome. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Effects of tetrahydrocannabinol on glucose uptake in the rat brain.

    PubMed

    Miederer, I; Uebbing, K; Röhrich, J; Maus, S; Bausbacher, N; Krauter, K; Weyer-Elberich, V; Lutz, B; Schreckenberger, M; Urban, R

    2017-02-20

    Δ(9)-Tetrahydrocannabinol (THC) is the psychoactive component of the plant Cannabis sativa and acts as a partial agonist at cannabinoid type 1 and type 2 receptors in the brain. The goal of this study was to assess the effect of THC on the cerebral glucose uptake in the rat brain. 21 male Sprague Dawley rats (12-13 w) were examined and received five different doses of THC ranging from 0.01 to 1 mg/kg. For data acquisition a Focus 120 small animal PET scanner was used and 24.1-28.0 MBq of [(18)F]-fluoro-2-deoxy-d-glucose were injected. The data were acquired for 70 min and arterial blood samples were collected throughout the scan. THC, THC-OH and THC-COOH were determined at 55 min p.i. Nine volumes of interest were defined, and the cerebral glucose uptake was calculated for each brain region. Low blood THC levels of < 1 ng/ml (injected dose: ≤ 0.01 mg/kg) corresponded to an increased glucose uptake (6-30 %), particularly in the hypothalamus (p = 0.007), while blood THC levels > 10 ng/ml (injected dose: ≥ 0.05 mg/kg) coincided with a decreased glucose uptake (-2 to -22 %), especially in the cerebellar cortex (p = 0.008). The effective concentration in this region was estimated 2.4 ng/ml. This glucose PET study showed that stimulation of CB1 receptors by THC affects the glucose uptake in the rat brain, whereby the effect of THC is regionally different and dependent on dose - an effect that may be of relevance in behavioural studies.

  13. Metabolic Pattern of the Acute Phase of Subarachnoid Hemorrhage in a Novel Porcine Model: Studies with Cerebral Microdialysis with High Temporal Resolution

    PubMed Central

    Nyberg, Christoffer; Karlsson, Torbjörn; Hillered, Lars; Engström, Elisabeth Ronne

    2014-01-01

    Background Aneurysmal subarachnoid hemorrhage (SAH) may produce cerebral ischemia and systemic responses including stress. To study immediate cerebral and systemic changes in response to aneurysm rupture, animal models are needed. Objective To study early cerebral energy changes in an animal model. Methods Experimental SAH was induced in 11 pigs by autologous blood injection to the anterior skull base, with simultaneous control of intracranial and cerebral perfusion pressures. Intracerebral microdialysis was used to monitor concentrations of glucose, pyruvate and lactate. Results In nine of the pigs, a pattern of transient ischemia was produced, with a dramatic reduction of cerebral perfusion pressure soon after blood injection, associated with a quick glucose and pyruvate decrease. This was followed by a lactate increase and a delayed pyruvate increase, producing a marked but short elevation of the lactate/pyruvate ratio. Glucose, pyruvate, lactate and lactate/pyruvate ratio thereafter returned toward baseline. The two remaining pigs had a more severe metabolic reaction with glucose and pyruvate rapidly decreasing to undetectable levels while lactate increased and remained elevated, suggesting persisting ischemia. Conclusion The animal model simulates the conditions of SAH not only by deposition of blood in the basal cisterns, but also creating the transient global ischemic impact of aneurysmal SAH. The metabolic cerebral changes suggest immediate transient substrate failure followed by hypermetabolism of glucose upon reperfusion. The model has features that resemble spontaneous bleeding, and is suitable for future research of the early cerebral and systemic responses to SAH that are difficult to study in humans. PMID:24940881

  14. Glucose screening tests during pregnancy

    MedlinePlus

    Oral glucose tolerance test - pregnancy; OGTT - pregnancy; Glucose challenge test - pregnancy; Gestational diabetes - glucose screening ... screening test between 24 and 28 weeks of pregnancy. The test may be done earlier if you ...

  15. Effects of two doses of glucose and a caffeine–glucose combination on cognitive performance and mood during multi-tasking

    PubMed Central

    Scholey, Andrew; Savage, Karen; O'Neill, Barry V; Owen, Lauren; Stough, Con; Priestley, Caroline; Wetherell, Mark

    2014-01-01

    Background This study assessed the effects of two doses of glucose and a caffeine–glucose combination on mood and performance of an ecologically valid, computerised multi-tasking platform. Materials and methods Following a double-blind, placebo-controlled, randomised, parallel-groups design, 150 healthy adults (mean age 34.78 years) consumed drinks containing placebo, 25 g glucose, 60 g glucose or 60 g glucose with 40 mg caffeine. They completed a multi-tasking framework at baseline and then 30 min following drink consumption with mood assessments immediately before and after the multi-tasking framework. Blood glucose and salivary caffeine were co-monitored. Results The caffeine–glucose group had significantly better total multi-tasking scores than the placebo or 60 g glucose groups and were significantly faster at mental arithmetic tasks than either glucose drink group. There were no significant treatment effects on mood. Caffeine and glucose levels confirmed compliance with overnight abstinence/fasting, respectively, and followed the predicted post-drink patterns. Conclusion These data suggest that co-administration of glucose and caffeine allows greater allocation of attentional resources than placebo or glucose alone. At present, we cannot rule out the possibility that the effects are due to caffeine alone Future studies should aim at disentangling caffeine and glucose effects. PMID:25196040

  16. Effects of two doses of glucose and a caffeine-glucose combination on cognitive performance and mood during multi-tasking.

    PubMed

    Scholey, Andrew; Savage, Karen; O'Neill, Barry V; Owen, Lauren; Stough, Con; Priestley, Caroline; Wetherell, Mark

    2014-09-01

    This study assessed the effects of two doses of glucose and a caffeine-glucose combination on mood and performance of an ecologically valid, computerised multi-tasking platform. Following a double-blind, placebo-controlled, randomised, parallel-groups design, 150 healthy adults (mean age 34.78 years) consumed drinks containing placebo, 25 g glucose, 60 g glucose or 60 g glucose with 40 mg caffeine. They completed a multi-tasking framework at baseline and then 30 min following drink consumption with mood assessments immediately before and after the multi-tasking framework. Blood glucose and salivary caffeine were co-monitored. The caffeine-glucose group had significantly better total multi-tasking scores than the placebo or 60 g glucose groups and were significantly faster at mental arithmetic tasks than either glucose drink group. There were no significant treatment effects on mood. Caffeine and glucose levels confirmed compliance with overnight abstinence/fasting, respectively, and followed the predicted post-drink patterns. These data suggest that co-administration of glucose and caffeine allows greater allocation of attentional resources than placebo or glucose alone. At present, we cannot rule out the possibility that the effects are due to caffeine alone Future studies should aim at disentangling caffeine and glucose effects. © 2014 The Authors. Human Psychopharmacology: Clinical and Experimental published by John Wiley & Sons, Ltd.

  17. Glucose modulation of spreading depression susceptibility

    PubMed Central

    Hoffmann, Ulrike; Sukhotinsky, Inna; Eikermann-Haerter, Katharina; Ayata, Cenk

    2013-01-01

    Spreading depression of Leão is an intense spreading depolarization (SD) wave associated with massive transmembrane ionic, water, and neurotransmitter shifts. Spreading depolarization underlies migraine aura, and occurs in brain injury, making it a potential therapeutic target. While susceptibility to SD can be modulated pharmacologically, much less is known about modulation by systemic physiological factors, such as the glycemic state. In this study, we systematically examined modulation of SD susceptibility by blood glucose in anesthetized rats under full physiological monitoring. Hyperglycemia and hypoglycemia were induced by insulin or dextrose infusion (blood glucose ∼40 and 400 mg/dL, respectively). Spreading depolarizations were evoked by direct cortical electrical stimulation to determine the intensity threshold, or by continuous topical KCl application to determine SD frequency. Hyperglycemia elevated the electrical SD threshold and reduced the frequency of KCl-induced SDs, without significantly affecting other SD properties. In contrast, hypoglycemia significantly prolonged individual and cumulative SD durations, but did not alter the electrical SD threshold, or SD frequency, amplitude or propagation speed. These data show that increased cerebral glucose availability makes the tissue resistant to SD. PMID:22968322

  18. [Cerebral ischemia and histamine].

    PubMed

    Adachi, Naoto

    2002-10-01

    Cerebral ischemia induces excess release of glutamate and an increase in the intracellular Ca2+ concentration, which provoke catastrophic enzymatic processes leading to irreversible neuronal injury. Histamine plays the role of neurotransmitter in the central nervous system, and histaminergic fibers are widely distributed in the brain. In cerebral ischemia, release of histamine from nerve endings has been shown to be enhanced by facilitation of its activity. An inhibition of the histaminergic activity in ischemia aggravates the histologic outcome. In contrast, intracerebroventricular administration of histamine improves the aggravation, whereas blockade of histamine H2 receptors aggravates ischemic injury. Furthermore, H2 blockade enhances ischemic release of glutamate and dopamine. These findings suggest that central histamine provides beneficial effects against ischemic neuronal damage by suppressing release of excitatory neurotransmitters. However, histaminergic H2 action facilitates the permeability of the blood-brain barrier and shows deleterious effects on cerebral edema.

  19. Hypernatraemia in cerebral disorders

    PubMed Central

    Taylor, W. H.

    1962-01-01

    Six patients are described in whom cerebral damage was associated with raised plasma sodium and chloride concentrations and with extremely low urinary outputs of sodium and chloride. The patients were not clinically dehydrated and direct determinations showed that the blood and plasma volumes, the endogenous creatinine clearance, and the urinary output of antidiuretic hormone were normal. For these and other reasons it is concluded that the metabolic picture results not from diminished circulatory volume, water deficiency, sodium deficiency, undetected diabetes insipidus or osmotic diuresis, but from the cerebral damage itself. In these and other cited cases, the cerebral damage was localized chiefly in the frontal lobes, hypothalamus or lower brain-stem, thus suggesting a descending pathway, the relationship of which to the pineal area controlling aldosterone secretion requires clarification. Images PMID:13920001

  20. Duplicated middle cerebral artery.

    PubMed

    Perez, Jesus; Machado, Calixto; Scherle, Claudio; Hierro, Daniel

    2009-01-01

    Duplicated middle cerebral artery (DMCA) is an anomalous vessel arising from the internal carotid artery. The incidence DMCA is relatively law, and an association between this anomaly and cerebral aneurysms has been documented. There is a controversy whether DMCA may have perforating arteries. This is an important fact to consider in aneurysm surgery. We report the case of a 34-year-old black woman who suffered a subarachnoid hemorrhage and the angiography a left DMCA, and an aneurysm in an inferior branch of the main MCA. The DMCA and the MCA had perforating arteries. The aneurysm was clipped without complications. The observation of perforating arteries in our patient confirms that the DMCA may have perforating arteries. This is very important to be considered in cerebral aneurysms surgery. Moreover, the DMCA may potentially serve as a collateral blood supply to the MCA territory in cases of MCA occlusion.

  1. Pyruvate dehydrogenase activity in the rat cerebral cortex following cerebral ischemia.

    PubMed

    Cardell, M; Koide, T; Wieloch, T

    1989-06-01

    The effect of cerebral ischemia on the activity of pyruvate dehydrogenase (PDH) enzyme complex (PDHC) was investigated in homogenates of frozen rat cerebral cortex following 15 min of bilateral common carotid occlusion ischemia and following 15 min, 60 min, and 6 h of recirculation after 15 min of ischemia. In frozen cortical tissue from the same animals, the levels of labile phosphate compounds, glucose, glycogen, lactate, and pyruvate was determined. In cortex from control animals, the rate of [1(-14)C]pyruvate decarboxylation was 9.6 +/- 0.5 nmol CO2/(min-mg protein) or 40% of the total PDHC activity. This fraction increased to 89% at the end of 15 min of ischemia. At 15 min of recirculation following 15 min of ischemia, the PDHC activity decreased to 50% of control levels and was depressed for up to 6 h post ischemia. This decrease in activity was not due to a decrease in total PDHC activity. Apart from a reduction in ATP levels, the acute changes in the levels of energy metabolites were essentially normalized at 6 h of recovery. Dichloroacetate (DCA), an inhibitor of PDH kinase, given to rats at 250 mg/kg i.p. four times over 2 h, significantly decreased blood glucose levels from 7.4 +/- 0.6 to 5.1 +/- 0.3 mmol/L and fully activated PDHC. In animals in which the plasma glucose level was maintained at control levels of 8.3 +/- 0.5 mumol/g by intravenous infusion of glucose, the active portion of PDHC increased to 95 +/- 4%. In contrast, the depressed PDHC activity at 15 min following ischemia was not affected by the DCA treatment.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Simultaneous Voltammetric Measurements of Glucose and Dopamine Demonstrate the Coupling of Glucose Availability with Increased Metabolic Demand in the Rat Striatum.

    PubMed

    Smith, Samantha K; Lee, Christie A; Dausch, Matthew E; Horman, Brian M; Patisaul, Heather B; McCarty, Gregory S; Sombers, Leslie A

    2017-02-15

    Cerebral blood flow ensures delivery of nutrients, such as glucose, to brain sites with increased metabolic demand. However, little is known about rapid glucose dynamics at discrete locations during neuronal activation in vivo. Acute exposure to many substances of abuse elicits dopamine release and neuronal activation in the striatum; however, the concomitant changes in striatal glucose remain largely unknown. Recent developments have combined fast-scan cyclic voltammetry with glucose oxidase enzyme modified carbon-fiber microelectrodes to enable the measurement of glucose dynamics with subsecond temporal resolution in the mammalian brain. This work evaluates several waveforms to enable the first simultaneous detection of endogenous glucose and dopamine at single recording sites. These molecules, one electroactive and one nonelectroactive, were found to fluctuate in the dorsal striatum in response to electrical stimulation of the midbrain and systemic infusion of cocaine/raclopride. The data reveal the second-by-second dynamics of these species in a striatal microenvironment, and directly demonstrate the coupling of glucose availability with increased metabolic demand. This work provides a foundation that will enable detailed investigation of local mechanisms that regulate the coupling of cerebral blood flow with metabolic demand under normal conditions, and in animal studies of drug abuse and addiction.

  3. Cerebral venous sinus thrombosis with cerebral hemorrhage during early pregnancy

    PubMed Central

    Nie, Quanmin; Guo, Pin; Ge, Jianwei; Qiu, Yongming

    2015-01-01

    Cerebral venous sinus thrombosis (CVST) rarely induces cerebral hemorrhage, and CVST with cerebral hemorrhage during early pregnancy is extremely rare. Upon literature review, we are able to find only one case of CVST with cerebral hemorrhage in early pregnancy. In this paper, we report another case of a 27-year-old patient who developed CVST with cerebral hemorrhage in her fifth week of pregnancy. Although the optimal treatment for this infrequent condition remains controversial, we adopted anticoagulation as the first choice of treatment and obtained favorable results. PMID:25630781

  4. Monitor blood glucose - slideshow

    MedlinePlus

    ... Series—Monitoring blood glucose: Using a self-test meter To use the sharing features on this page, ... 5 out of 5 Overview Set up the meter according to the specific directions that come with ...

  5. Hyperglycemia (High Blood Glucose)

    MedlinePlus

    ... Doctors, Nurses & More Oral Health & Hygiene Women A1C Insulin Pregnancy 8 Tips for Caregivers Health Insurance Health ... glucose happens when the body has too little insulin or when the body can't use insulin ...

  6. Glucose urine test

    MedlinePlus

    Urine sugar test; Urine glucose test; Glucosuria test; Glycosuria test ... After you provide a urine sample, it is tested right away. The health care provider uses a dipstick made with a color-sensitive pad. The ...

  7. Continuous Glucose Monitoring

    MedlinePlus

    ... to download data from the devices to a computer for tracking and analysis of patterns and trends, ... use CGM systems can download data to a computer to see patterns and trends in their glucose ...

  8. Glucose: Detection and analysis.

    PubMed

    Galant, A L; Kaufman, R C; Wilson, J D

    2015-12-01

    Glucose is an aldosic monosaccharide that is centrally entrenched in the processes of photosynthesis and respiration, serving as an energy reserve and metabolic fuel in most organisms. As both a monomer and as part of more complex structures such as polysaccharides and glucosides, glucose also plays a major role in modern food products, particularly where flavor and or structure are concerned. Over the years, many diverse methods for detecting and quantifying glucose have been developed; this review presents an overview of the most widely employed and historically significant, including copper iodometry, HPLC, GC, CZE, and enzyme based systems such as glucose meters. The relative strengths and limitations of each method are evaluated, and examples of their recent application in the realm of food chemistry are discussed.

  9. Vascular Glucose Sensor Symposium

    PubMed Central

    Joseph, Jeffrey I; Torjman, Marc C.; Strasma, Paul J.

    2015-01-01

    Hyperglycemia, hypoglycemia, and glycemic variability have been associated with increased morbidity, mortality, length of stay, and cost in a variety of critical care and non–critical care patient populations in the hospital. The results from prospective randomized clinical trials designed to determine the risks and benefits of intensive insulin therapy and tight glycemic control have been confusing; and at times conflicting. The limitations of point-of-care blood glucose (BG) monitoring in the hospital highlight the great clinical need for an automated real-time continuous glucose monitoring system (CGMS) that can accurately measure the concentration of glucose every few minutes. Automation and standardization of the glucose measurement process have the potential to significantly improve BG control, clinical outcome, safety and cost. PMID:26078254

  10. Recombinant glucose uptake system

    DOEpatents

    Ingrahm, Lonnie O.; Snoep, Jacob L.; Arfman, Nico

    1997-01-01

    Recombinant organisms are disclosed that contain a pathway for glucose uptake other than the pathway normally utilized by the host cell. In particular, the host cell is one in which glucose transport into the cell normally is coupled to PEP production. This host cell is transformed so that it uses an alternative pathway for glucose transport that is not coupled to PEP production. In a preferred embodiment, the host cell is a bacterium other than Z. mobilis that has been transformed to contain the glf and glk genes of Z. mobilis. By uncoupling glucose transport into the cell from PEP utilization, more PEP is produced for synthesis of products of commercial importance from a given quantity of biomass supplied to the host cells.

  11. Neurobrucellosis and cerebral venous sinus thrombosis: a case report.

    PubMed

    Ibrahimagić, Omer Ć; Smajlović, Dževdet; Dostović, Zikrija; Iljazović, Amra; Kojić, Biljana; Zonić, Lejla

    2017-10-01

    To present a case of co-occurrence of neurobrucellosis and cerebral venous sinus thrombosis. Case report.  We presented 49-year-old Caucasian domicile female-farmer with a history of headache, weakness, and vomiting for a period of three months. Also, she had significant papilledema. We diagnosed rare co-morbidity of neurobrucellosis (confirmed after ELISA-test in serum samples and CSF analysis of pleocytosis/increase in protein/decrease in glucose level) in the setting of cerebral venous thrombosis developed in left sigmoid/left transverse sinus (confirmed after MRV of brain). Favorable outcome was achieved by applying protracted polymicrobial antibiotic therapy and heparin. It may be challenging to diagnose neurobrucellosis, especially in patients with atypical presentation and abortive clinical forms. The co-morbidity of neurobrucellosis and cerebral venous sinus thrombosis is uncommon. However, it p