Retinal vascular changes are a marker for cerebral vascular diseases
Moss, Heather E.
2016-01-01
The retinal circulation is a potential marker of cerebral vascular disease because it shares origin and drainage with the intracranial circulation and because it can be directly visualized using ophthalmoscopy. Cross sectional and cohort studies have demonstrated associations between chronic retinal and cerebral vascular disease, acute retinal and cerebral vascular disease and chronic retinal vascular disease and acute cerebral vascular disease. In particular, certain qualitative features of retinopathy, retinal artery occlusion and increased retinal vein caliber are associated with concurrent and future cerebrovascular events. These associations persist after accounting for confounding variables known to be disease-causing in both circulations, which supports the potential use of retinal vasculature findings to stratify individuals with regards to cerebral vascular disease risk. PMID:26008809
The Third, Intensive Care Bundle With Blood Pressure Reduction in Acute Cerebral Hemorrhage Trial
2018-04-24
Cerebral Hemorrhage; Stroke; Hypertension; Diabetes; Anticoagulant-induced Bleeding; Cerebral Vascular Disorder; Brain Disorder; Hemorrhage; Intracranial Hemorrhages; Cardiovascular Diseases; Central Nervous System Diseases
Cerebral Small Vessel Disease and Chronic Kidney Disease
2015-01-01
Chronic kidney disease, defined by a decreased glomerular filtration rate or albuminuria, is recognized as a major global health burden, mainly because it is an established risk factor for cardiovascular and cerebrovascular diseases. The magnitude of the effect of chronic kidney disease on incident stroke seems to be higher in persons of Asian ethnicity. Since the kidney and brain share unique susceptibilities to vascular injury due to similar anatomical and functional features of small artery diseases, kidney impairment can be predictive of the presence and severity of cerebral small vessel diseases. Chronic kidney disease has been reported to be associated with silent brain infarcts, cerebral white matter lesions, and cerebral microbleeds, independently of vascular risk factors. In addition, chronic kidney disease affects cognitive function, partly via the high prevalence of cerebral small vessel diseases. Retinal artery disease also has an independent relationship with chronic kidney disease and cognitive impairment. Stroke experts are no longer allowed to be ignorant of chronic kidney disease. Close liaison between neurologists and nephrologists can improve the management of cerebral small vessel diseases in kidney patients. PMID:25692105
Is Vasomotion in Cerebral Arteries Impaired in Alzheimer's Disease?
Di Marco, Luigi Yuri; Farkas, Eszter; Martin, Chris; Venneri, Annalena; Frangi, Alejandro F
2015-01-01
A substantial body of evidence supports the hypothesis of a vascular component in the pathogenesis of Alzheimer's disease (AD). Cerebral hypoperfusion and blood-brain barrier dysfunction have been indicated as key elements of this pathway. Cerebral amyloid angiopathy (CAA) is a cerebrovascular disorder, frequent in AD, characterized by the accumulation of amyloid-β (Aβ) peptide in cerebral blood vessel walls. CAA is associated with loss of vascular integrity, resulting in impaired regulation of cerebral circulation, and increased susceptibility to cerebral ischemia, microhemorrhages, and white matter damage. Vasomotion- the spontaneous rhythmic modulation of arterial diameter, typically observed in arteries/arterioles in various vascular beds including the brain- is thought to participate in tissue perfusion and oxygen delivery regulation. Vasomotion is impaired in adverse conditions such as hypoperfusion and hypoxia. The perivascular and glymphatic pathways of Aβ clearance are thought to be driven by the systolic pulse. Vasomotion produces diameter changes of comparable amplitude, however at lower rates, and could contribute to these mechanisms of Aβ clearance. In spite of potential clinical interest, studies addressing cerebral vasomotion in the context of AD/CAA are limited. This study reviews the current literature on vasomotion, and hypothesizes potential paths implicating impaired cerebral vasomotion in AD/CAA. Aβ and oxidative stress cause vascular tone dysregulation through direct effects on vascular cells, and indirect effects mediated by impaired neurovascular coupling. Vascular tone dysregulation is further aggravated by cholinergic deficit and results in depressed cerebrovascular reactivity and (possibly) impaired vasomotion, aggravating regional hypoperfusion and promoting further Aβ and oxidative stress accumulation.
Is Vasomotion in Cerebral Arteries Impaired in Alzheimer’s Disease?
Di Marco, Luigi Yuri; Farkas, Eszter; Martin, Chris; Venneri, Annalena; Frangi, Alejandro F.
2015-01-01
Abstract A substantial body of evidence supports the hypothesis of a vascular component in the pathogenesis of Alzheimer’s disease (AD). Cerebral hypoperfusion and blood-brain barrier dysfunction have been indicated as key elements of this pathway. Cerebral amyloid angiopathy (CAA) is a cerebrovascular disorder, frequent in AD, characterized by the accumulation of amyloid-β (Aβ) peptide in cerebral blood vessel walls. CAA is associated with loss of vascular integrity, resulting in impaired regulation of cerebral circulation, and increased susceptibility to cerebral ischemia, microhemorrhages, and white matter damage. Vasomotion— the spontaneous rhythmic modulation of arterial diameter, typically observed in arteries/arterioles in various vascular beds including the brain— is thought to participate in tissue perfusion and oxygen delivery regulation. Vasomotion is impaired in adverse conditions such as hypoperfusion and hypoxia. The perivascular and glymphatic pathways of Aβ clearance are thought to be driven by the systolic pulse. Vasomotion produces diameter changes of comparable amplitude, however at lower rates, and could contribute to these mechanisms of Aβ clearance. In spite of potential clinical interest, studies addressing cerebral vasomotion in the context of AD/CAA are limited. This study reviews the current literature on vasomotion, and hypothesizes potential paths implicating impaired cerebral vasomotion in AD/CAA. Aβ and oxidative stress cause vascular tone dysregulation through direct effects on vascular cells, and indirect effects mediated by impaired neurovascular coupling. Vascular tone dysregulation is further aggravated by cholinergic deficit and results in depressed cerebrovascular reactivity and (possibly) impaired vasomotion, aggravating regional hypoperfusion and promoting further Aβ and oxidative stress accumulation. PMID:25720414
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Duinen, S.G.; Castano, E.M.; Prelli, F.
1987-08-01
Hereditary cerebral hemorrhage with amyloidosis in Dutch patients is an autosomal dominant form of vascular amyloidosis restricted to the leptomeninges and cerebral cortex. Clinically the disease is characterized by cerebral hemorrhages leading to an early death. Immunohistochemical studies of five patients revealed that the vascular amyloid deposits reacted intensely with an antiserum raised against a synthetic peptide homologous to the Alzheimer disease-related ..beta..-protein. Silver stain-positive, senile plaque-like structures were also labeled by the antiserum, yet these lesions lacked the dense amyloid cores present in typical plaques of Alzheimer disease. No neurofibrillary tangles were present. Amyloid fibrils were purified from themore » leptomeningeal vessels of one patient who clinically had no signs of dementia. The protein had a molecular weight of approx. 4000 and its partial amino acid sequence to position 21 showed homology to the ..beta..-protein of Alzheimer disease and Down syndrome. These results suggest that hereditary cerebral hemorrhage with amyloidosis of Dutch origin is pathogenetically related to Alzheimer disease and support the concept that the initial amyloid deposition in this disorder occurs in the vessel walls before damaging the brain parenchyma. Thus, deposition of ..beta..-protein in brain tissue seems to be related to a spectrum of diseases involving vascular syndromes, progressive dementia, or both.« less
Xing, Fengmei; Dong, Yan; Tao, Jie; Gao, Xinying; Zhou, Jianhui; Chen, Shuohua; Ji, Chunpeng; Yao, Tao; Wu, Shouling
2014-08-01
To explore the impact of isolated diastolic hypertension (IDH) on new-onset cardio-cerebral vascular diseases (CVD). This cohort study involved 101 510 participants who were employees of the Kailuan Group-a state-run coal mining company, in 2006 and 2007. Among them, 6 780 subjects were diagnosed with IDH, 35 448 subjects were diagnosed with high-normal blood pressure and 19 460 subjects were diagnosed with normal tension. However, none of them had the history of either cardio-cerebral vascular disease or malignant cancer. Cardio-cerebral vascular events including cerebral infarction, cerebral hemorrhage, acute myocardial infarction were recorded every 6 months during the follow-up (47.1 ± 4.8) period. Multivariable Cox proportional hazards regression models were used to analyze the risk factors of first-ever CVD events. 1) There were 675 CVD events occurred during the follow-up period. The incidence rates of CVD events (1.7% vs. 0.9%), cerebral infarction (1.0% vs. 0.6%) and cerebral hemorrhage (0.4% vs. 0.1%) were significantly higher in IDH group than that in the normal tension group (all P < 0.05). 2) After adjustment for other established CVD risk factors, the hazards ratios became 1.67 (95% CI: 1.28-2.17) for total CVD events and 1.59 (95% CI: 1.12-2.27) for cerebral infarction and 2.67 (95% CI: 1.54-4.65) for cerebral hemorrhage in the IDH group. 3). In stratified analysis on age, after adjustment for other established CVD risk factors, the hazards ratio was 2.22 (95% CI: 1.41-3.50) for cerebral infarction in lower 60 years old group, while the it was 7.27 (95% CI: 2.58-20.42) for cerebral hemorrhage in groups older than 60 years of age. IDH was the independent risk factor for the total cardio-cerebral vascular events, on both cerebral infarction and cerebral hemorrhage. The predicted values of IDH for different CVD events were diverse on different age groups.
Ocular Fundus Photography as a Tool to Study Stroke and Dementia.
Cheung, Carol Y; Chen, Christopher; Wong, Tien Y
2015-10-01
Although cerebral small vessel disease has been linked to stroke and dementia, due to limitations of current neuroimaging technology, direct in vivo visualization of changes in the cerebral small vessels (e.g., cerebral arteriolar narrowing, tortuous microvessels, blood-brain barrier damage, capillary microaneurysms) is difficult to achieve. As the retina and the brain share similar embryological origin, anatomical features, and physiologic properties with the cerebral small vessels, the retinal vessels offer a unique and easily accessible "window" to study the correlates and consequences of cerebral small vessel diseases in vivo. The retinal microvasculature can be visualized, quantified and monitored noninvasively using ocular fundus photography. Recent clinic- and population-based studies have demonstrated a close link between retinal vascular changes seen on fundus photography and stroke and dementia, suggesting that ocular fundus photography may provide insights to the contribution of microvascular disease to stroke and dementia. In this review, we summarize current knowledge on retinal vascular changes, such as retinopathy and changes in retinal vascular measures with stroke and dementia as well as subclinical makers of cerebral small vessel disease, and discuss the possible clinical implications of these findings in neurology. Studying pathologic changes of retinal blood vessels may be useful for understanding the etiology of various cerebrovascular conditions; hence, ocular fundus photography can be potentially translated into clinical practice. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Axon-glial disruption: the link between vascular disease and Alzheimer's disease?
Horsburgh, Karen; Reimer, Michell M; Holland, Philip; Chen, Guiquan; Scullion, Gillian; Fowler, Jill H
2011-08-01
Vascular risk factors play a critical role in the development of cognitive decline and AD (Alzheimer's disease), during aging, and often result in chronic cerebral hypoperfusion. The neurobiological link between hypoperfusion and cognitive decline is not yet defined, but is proposed to involve damage to the brain's white matter. In a newly developed mouse model, hypoperfusion, in isolation, produces a slowly developing and diffuse damage to myelinated axons, which is widespread in the brain, and is associated with a selective impairment in working memory. Cerebral hypoperfusion, an early event in AD, has also been shown to be associated with white matter damage and notably an accumulation of amyloid. The present review highlights some of the published data linking white matter disruption to aging and AD as a result of vascular dysfunction. A model is proposed by which chronic cerebral hypoperfusion, as a result of vascular factors, results in both the generation and accumulation of amyloid and injury to white matter integrity, resulting in cognitive impairment. The generation of amyloid and accumulation in the vasculature may act to perpetuate further vascular dysfunction and accelerate white matter pathology, and as a consequence grey matter pathology and cognitive decline.
Endothelial dysfunction and amyloid-β-induced neurovascular alterations
Koizumi, Kenzo; Wang, Gang; Park, Laibaik
2015-01-01
Alzheimer's disease (AD) and cerebrovascular diseases share common vascular risk factors that have disastrous effects on cerebrovascular regulation. Endothelial cells, lining inner walls of cerebral blood vessels, form a dynamic interface between the blood and the brain and are critical for the maintenance of neurovascular homeostasis. Accordingly, injury in endothelial cells is regarded as one of the earliest symptoms of impaired vasoregulatory mechanisms. Extracellular buildup of amyloid-β (Aβ) is a central pathogenic factor in AD. Aβ exerts potent detrimental effects on cerebral blood vessels and impairs endothelial structure and function. Recent evidence implicates vascular oxidative stress and activation of the nonselective cationic channel transient receptor potential melastatin (TRPM)-2 on endothelial cells in the mechanisms of Aβ-induced neurovascular dysfunction. Thus, Aβ triggers opening of TRPM2 channels in endothelial cells leading to intracellular Ca2+ overload and vasomotor dysfunction. The cerebrovascular dysfunction may contribute to AD pathogenesis by reducing the cerebral blood supply, leading to increased susceptibility to vascular insufficiency, and by promoting Aβ accumulation. The recent realization that vascular factors contribute to AD pathobiology suggests new targets for the prevention and treatment of this devastating disease. PMID:26328781
Notch Signaling in Vascular Smooth Muscle Cells
Baeten, J.T.; Lilly, B.
2018-01-01
The Notch signaling pathway is a highly conserved pathway involved in cell fate determination in embryonic development and also functions in the regulation of physiological processes in several systems. It plays an especially important role in vascular development and physiology by influencing angiogenesis, vessel patterning, arterial/venous specification, and vascular smooth muscle biology. Aberrant or dysregulated Notch signaling is the cause of or a contributing factor to many vascular disorders, including inherited vascular diseases, such as cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, associated with degeneration of the smooth muscle layer in cerebral arteries. Like most signaling pathways, the Notch signaling axis is influenced by complex interactions with mediators of other signaling pathways. This complexity is also compounded by different members of the Notch family having both overlapping and unique functions. Thus, it is vital to fully understand the roles and interactions of each Notch family member in order to effectively and specifically target their exact contributions to vascular disease. In this chapter, we will review the Notch signaling pathway in vascular smooth muscle cells as it relates to vascular development and human disease. PMID:28212801
Determining Optimal Post-Stroke Exercise (DOSE)
2018-02-13
Cerebrovascular Accident; Stroke; Cerebral Infarction; Brain Infarction; Brain Ischemia; Cerebrovascular Disorders; Brain Diseases; Central Nervous System Diseases; Nervous System Diseases; Vascular Diseases
Fluoxetine Opens Window to Improve Motor Recovery After Stroke
2018-05-01
Stroke; Cerebrovascular Accident; Cerebral Infarction; Brain Infarction; Brain Ischemia; Cerebrovascular Disorders; Brain Diseases; Central Nervous System Diseases; Nervous System Diseases; Vascular Diseases
Cerebral Vascular Disease and Neurovascular Injury in Ischemic Stroke
Hu, Xiaoming; De Silva, T. Michael; Chen, Jun; Faraci, Frank M.
2017-01-01
The consequences of cerebrovascular disease are among the leading health issues worldwide. Large and small cerebral vessel disease can trigger stroke and contribute to the vascular component of other forms of neurological dysfunction and degeneration. Both forms of vascular disease are driven by diverse risk factors, with hypertension as the leading contributor. Despite the importance of neurovascular disease and subsequent injury following ischemic events, fundamental knowledge in these areas lag behind our current understanding of neuroprotection and vascular biology in general. The goal of this review is to address select key structural and functional changes in the vasculature that promote hypoperfusion and ischemia, while also affecting the extent of injury and effectiveness of therapy. In addition, as damage to the blood-brain barrier (BBB) is one of the major consequences of ischemia, we discuss cellular and molecular mechanisms underlying ischemia-induced changes in BBB integrity and function, including alterations in endothelial cells and the contribution of pericytes, immune cells, and matrix metalloproteinases. Identification of cell types, pathways, and molecules that control vascular changes before and after ischemia may result in novel approaches to slow the progression of cerebrovascular disease and lessen both the frequency and impact of ischemic events. PMID:28154097
Cerebral Vascular Disease and Neurovascular Injury in Ischemic Stroke.
Hu, Xiaoming; De Silva, T Michael; Chen, Jun; Faraci, Frank M
2017-02-03
The consequences of cerebrovascular disease are among the leading health issues worldwide. Large and small cerebral vessel disease can trigger stroke and contribute to the vascular component of other forms of neurological dysfunction and degeneration. Both forms of vascular disease are driven by diverse risk factors, with hypertension as the leading contributor. Despite the importance of neurovascular disease and subsequent injury after ischemic events, fundamental knowledge in these areas lag behind our current understanding of neuroprotection and vascular biology in general. The goal of this review is to address select key structural and functional changes in the vasculature that promote hypoperfusion and ischemia, while also affecting the extent of injury and effectiveness of therapy. In addition, as damage to the blood-brain barrier is one of the major consequences of ischemia, we discuss cellular and molecular mechanisms underlying ischemia-induced changes in blood-brain barrier integrity and function, including alterations in endothelial cells and the contribution of pericytes, immune cells, and matrix metalloproteinases. Identification of cell types, pathways, and molecules that control vascular changes before and after ischemia may result in novel approaches to slow the progression of cerebrovascular disease and lessen both the frequency and impact of ischemic events. © 2017 American Heart Association, Inc.
Extracellular matrix inflammation in vascular cognitive impairment and dementia.
Rosenberg, Gary A
2017-03-01
Vascular cognitive impairment and dementia (VCID) include a wide spectrum of chronic manifestations of vascular disease related to large vessel strokes and small vessel disease (SVD). Lacunar strokes and white matter (WM) injury are consequences of SVD. The main vascular risk factor for SVD is brain hypoperfusion from cerebral blood vessel narrowing due to chronic hypertension. The hypoperfusion leads to activation and degeneration of astrocytes with the resulting fibrosis of the extracellular matrix (ECM). Elasticity is lost in fibrotic cerebral vessels, reducing the response of stiffened blood vessels in times of increased metabolic need. Intermittent hypoxia/ischaemia activates a molecular injury cascade, producing an incomplete infarction that is most damaging to the deep WM, which is a watershed region for cerebral blood flow. Neuroinflammation caused by hypoxia activates microglia/macrophages to release proteases and free radicals that perpetuate the damage over time to molecules in the ECM and the neurovascular unit (NVU). Matrix metalloproteinases (MMPs) secreted in an attempt to remodel the blood vessel wall have the undesired consequences of opening the blood-brain barrier (BBB) and attacking myelinated fibres. This dual effect of the MMPs causes vasogenic oedema in WM and vascular demyelination, which are the hallmarks of the subcortical ischaemic vascular disease (SIVD), which is the SVD form of VCID also called Binswanger's disease (BD). Unravelling the complex pathophysiology of the WM injury-related inflammation in the small vessel form of VCID could lead to novel therapeutic strategies to reduce damage to the ECM, preventing the progressive damage to the WM. © 2017 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.
Deng, Jiao; Zhang, Junfeng; Feng, Chenzhuo; Xiong, Lize; Zuo, Zhiyi
2014-01-01
Aims About one-third of American adults and 20% of teenagers are obese. Obesity and its associated metabolic disturbances including hyperlipidaemia are risk factors for cardiovascular diseases including stroke. They can worsen neurological outcome after stroke. We determined whether obesity and hyperlipidaemia could induce cerebral vascular remodelling via matrix metalloproteases (MMP) and whether this remodelling affected neurological outcome after brain ischaemia. Methods and results Six-week-old male CD1, C57BL/6J, and MMP-9−/− mice were fed regular diet (RD) or high-fat diet (HFD) for 10 weeks. They were subjected to vascular casting or a 90 min middle cerebral arterial occlusion (MCAO). Mice on HFD were heavier and had higher blood glucose and lipid levels than those on RD. HFD-fed CD1 and C57BL/6J mice had an increased cerebral vascular tortuosity index and decreased inner diameters of the middle cerebral arterial root. HFD increased microvessel density in CD1 mouse cerebral cortex. After MCAO, CD1 and C57BL/6J mice on HFD had a bigger infarct volume, more severe brain oedema and blood–brain barrier damage, higher haemorrhagic transformation rate, greater haemorrhagic volume, and worse neurological function. HFD increased MMP-9 activity in the ischaemic and non-ischaemic brain tissues. Although HFD increased the body weights, blood glucose, and lipid levels in the MMP-9−/− mice on a C57BL/6J genetic background, the HFD-induced cerebral vascular remodelling and worsening of neurological outcome did not occur in these mice. Conclusion HFD induces cerebral vascular remodelling and worsens neurological outcome after transient focal brain ischaemia. MMP-9 activation plays a critical role in these HFD effects. PMID:24935427
P14.21 Can vascular risk factors influence number of brain metastases?
Berk, B.; Nagel, S.; Kortmann, R.; Hoffmann, K.; Gaudino, C.; Seidel, C.
2017-01-01
Abstract BACKGROUND: Up to 30-40% of patients with solid tumors develop cerebral metastases. Number of cerebral metastases is relevant for treatment and prognosis. However, factors that determine number of metastases are not well defined. Distribution of metastases is influenced by blood vessels and cerebral small vessel disease can reduce number of metastases. Aim of this pilot study was to analyze the influence of vascular risk factors (arterial hypertension, diabetes mellitus, smoking, hypercholesterolemia) and of peripheral arterial occlusive disease (PAOD) on number of brain metastases. METHODS: 200 patients with pre-therapeutic 3D-brain MRI and available clinical data were analyzed retrospectively. Number of metastases (NoM) was compared between patients with/without vascular risk factors (vasRF). Results: Patients with PAOD had significant less brain metastases than patients without PAOD (NoM=4.43 vs. 6.02, p=0.043), no other single vasRF conferred a significant effect on NoM. NoM differed significantly between different tumor entities. CONCLUSION: Presence of PAOD showed some effect on number of brain metastases implying that tumor-independent vascular factors can influence brain metastasation.
Taylor, Adele M.; MacGillivray, Thomas J.; Henderson, Ross D.; Ilzina, Lasma; Dhillon, Baljean; Starr, John M.; Deary, Ian J.
2015-01-01
Purpose Cerebral microvascular disease is associated with dementia. Differences in the topography of the retinal vascular network may be a marker for cerebrovascular disease. The association between cerebral microvascular state and non-pathological cognitive ageing is less clear, particularly because studies are rarely able to adjust for pre-morbid cognitive ability level. We measured retinal vascular fractal dimension (D f) as a potential marker of cerebral microvascular disease. We examined the extent to which it contributes to differences in non-pathological cognitive ability in old age, after adjusting for childhood mental ability. Methods Participants from the Lothian Birth Cohort 1936 Study (LBC1936) had cognitive ability assessments and retinal photographs taken of both eyes aged around 73 years (n = 648). IQ scores were available from childhood. Retinal vascular D f was calculated with monofractal and multifractal analysis, performed on custom-written software. Multiple regression models were applied to determine associations between retinal vascular D f and general cognitive ability (g), processing speed, and memory. Results Only three out of 24 comparisons (two eyes × four D f parameters × three cognitive measures) were found to be significant. This is little more than would be expected by chance. No single association was verified by an equivalent association in the contralateral eye. Conclusions The results show little evidence that fractal measures of retinal vascular differences are associated with non-pathological cognitive ageing. PMID:25816017
Karlsson, William K; Sørensen, Caspar G; Kruuse, Christina
2017-01-01
Endothelial dysfunction (ED), in particular cerebral ED, may be an essential biomarker for ischaemic cerebrovascular disease. However, there is no consensus on methods to best estimate cerebral ED. In this systematic review, we evaluate the use of l-arginine and N G -monomethyl-l-arginine (l-NMMA) for assessment of cerebral ED. A systematic search of PubMed, EMBASE and the Cochrane Library was done. We included studies investigating cerebrovascular response to l-arginine or l-NMMA in human subjects with vascular risk factors or ischaemic cerebrovascular disease. Seven studies (315 subjects) were eligible according to inclusion and exclusion criteria. Studies investigated the effect of age (n=2), type 2 diabetes mellitus (DM) (n=1), cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) (n=1), leukoaraiosis (n=1), and prior ischaemic stroke or transient ischaemic attack (TIA) (n=2) on cerebral ED. Most studies applied transcranial Doppler to quantify cerebral ED. Endothelium-dependent vasodilatation (EDV) induced by l-arginine was impaired in elderly and subjects with leukoaraiosis, but enhanced in CADASIL patients. Studies including subjects with prior ischaemic stroke or TIA reported both enhanced and impaired EDV to l-arginine. Responses to l-NMMA deviated between subjects with type 2 DM and the elderly. We found only few studies investigating cerebral endothelial responses to l-arginine and l-NMMA in subjects with vascular risk factors or ischaemic cerebrovascular disease. Inconsistencies in results were most likely due to variations in methods and included subject populations. In order to use cerebral ED as a prognostic marker, further studies are required to evaluate the association to cerebrovascular disease. © 2016 John Wiley & Sons Australia, Ltd.
Toda, Noboru; Okamura, Tomio
2016-08-01
Cerebral blood flow is mainly regulated by nitrergic (parasympathetic, postganglionic) nerves and nitric oxide (NO) liberated from endothelial cells in response to shear stress and stretch of vasculature, whereas sympathetic vasoconstrictor control is quite weak. On the other hand, peripheral vascular resistance and blood flow are mainly controlled by adrenergic vasoconstrictor nerves; endothelium-derived NO and nitrergic nerves play some roles as vasodilator factors. Cigarette smoking impairs NO synthesis in cerebral vascular endothelial cells and nitrergic nerves leading to interference with cerebral blood flow and glucose metabolism in the brain. Smoking-induced cerebral hypoperfusion is induced by impairment of synthesis and actions of NO via endothelial nitric oxide synthase (eNOS)/neuronal NOS (nNOS) inhibition and by increased production of oxygen radicals, resulting in decreased actions of NO on vascular smooth muscle. Nicotine acutely and chronically impairs the action of endothelial NO and also inhibits nitrergic nerve function in chronic use. Impaired cerebral blood supply promotes the synthesis of amyloid β that accelerates blood flow decrease. This vicious cycle is thought to be one of the important factors involving in Alzheimer's disease (AD). Quitting smoking is undoubtedly one of the important ways to prevent and delay the genesis or slow the progress of impaired cognitive function and AD. Copyright © 2016 The Authors. Production and hosting by Elsevier B.V. All rights reserved.
Duncombe, Jessica; Kitamura, Akihiro; Hase, Yoshiki; Ihara, Masafumi; Kalaria, Raj N; Horsburgh, Karen
2017-10-01
Increasing evidence suggests that vascular risk factors contribute to neurodegeneration, cognitive impairment and dementia. While there is considerable overlap between features of vascular cognitive impairment and dementia (VCID) and Alzheimer's disease (AD), it appears that cerebral hypoperfusion is the common underlying pathophysiological mechanism which is a major contributor to cognitive decline and degenerative processes leading to dementia. Sustained cerebral hypoperfusion is suggested to be the cause of white matter attenuation, a key feature common to both AD and dementia associated with cerebral small vessel disease (SVD). White matter changes increase the risk for stroke, dementia and disability. A major gap has been the lack of mechanistic insights into the evolution and progress of VCID. However, this gap is closing with the recent refinement of rodent models which replicate chronic cerebral hypoperfusion. In this review, we discuss the relevance and advantages of these models in elucidating the pathogenesis of VCID and explore the interplay between hypoperfusion and the deposition of amyloid β (Aβ) protein, as it relates to AD. We use examples of our recent investigations to illustrate the utility of the model in preclinical testing of candidate drugs and lifestyle factors. We propose that the use of such models is necessary for tackling the urgently needed translational gap from preclinical models to clinical treatments. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
Lin, Ai-Ling; Zheng, Wei; Halloran, Jonathan J; Burbank, Raquel R; Hussong, Stacy A; Hart, Matthew J; Javors, Martin; Shih, Yen-Yu Ian; Muir, Eric; Solano Fonseca, Rene; Strong, Randy; Richardson, Arlan G; Lechleiter, James D; Fox, Peter T; Galvan, Veronica
2013-01-01
Vascular pathology is a major feature of Alzheimer's disease (AD) and other dementias. We recently showed that chronic administration of the target-of-rapamycin (TOR) inhibitor rapamycin, which extends lifespan and delays aging, halts the progression of AD-like disease in transgenic human (h)APP mice modeling AD when administered before disease onset. Here we demonstrate that chronic reduction of TOR activity by rapamycin treatment started after disease onset restored cerebral blood flow (CBF) and brain vascular density, reduced cerebral amyloid angiopathy and microhemorrhages, decreased amyloid burden, and improved cognitive function in symptomatic hAPP (AD) mice. Like acetylcholine (ACh), a potent vasodilator, acute rapamycin treatment induced the phosphorylation of endothelial nitric oxide (NO) synthase (eNOS) and NO release in brain endothelium. Administration of the NOS inhibitor L-NG-Nitroarginine methyl ester reversed vasodilation as well as the protective effects of rapamycin on CBF and vasculature integrity, indicating that rapamycin preserves vascular density and CBF in AD mouse brains through NOS activation. Taken together, our data suggest that chronic reduction of TOR activity by rapamycin blocked the progression of AD-like cognitive and histopathological deficits by preserving brain vascular integrity and function. Drugs that inhibit the TOR pathway may have promise as a therapy for AD and possibly for vascular dementias. PMID:23801246
Cerebral Perfusion Enhancing Interventions: A New Strategy for the Prevention of Alzheimer Dementia.
de la Torre, Jack C
2016-09-01
Cardiovascular and cerebrovascular diseases are major risk factors in the development of cognitive impairment and Alzheimer's disease (AD). These cardio-cerebral disorders promote a variety of vascular risk factors which in the presence of advancing age are prone to markedly reduce cerebral perfusion and create a neuronal energy crisis. Long-term hypoperfusion of the brain evolves mainly from cardiac structural pathology and brain vascular insufficiency. Brain hypoperfusion in the elderly is strongly associated with the development of mild cognitive impairment (MCI) and both conditions are presumed to be precursors of Alzheimer dementia. A therapeutic target to prevent or treat MCI and consequently reduce the incidence of AD aims to elevate cerebral perfusion using novel pharmacological agents. As reviewed here, the experimental pharmaca include the use of Rho kinase inhibitors, neurometabolic energy boosters, sirtuins and vascular growth factors. In addition, a compelling new technique in laser medicine called photobiomodulation is reviewed. Photobiomodulation is based on the use of low level laser therapy to stimulate mitochondrial energy production non-invasively in nerve cells. The use of novel pharmaca and photobiomodulation may become important tools in the treatment or prevention of cognitive decline that can lead to dementia. © 2016 International Society of Neuropathology.
Ikonomovic, Milos D; Mi, Zhiping; Abrahamson, Eric E
2017-03-01
Traumatic brain injury (TBI), advanced age, and cerebral vascular disease are factors conferring increased risk for late onset Alzheimer's disease (AD). These conditions are also related pathologically through multiple interacting mechanisms. The hallmark pathology of AD consists of pathological aggregates of amyloid-β (Aβ) peptides and tau proteins. These molecules are also involved in neuropathology of several other chronic neurodegenerative diseases, and are under intense investigation in the aftermath of TBI as potential contributors to the risk for developing AD and chronic traumatic encephalopathy (CTE). The pathology of TBI is complex and dependent on injury severity, age-at-injury, and length of time between injury and neuropathological evaluation. In addition, the mechanisms influencing pathology and recovery after TBI likely involve genetic/epigenetic factors as well as additional disorders or comorbid states related to age and central and peripheral vascular health. In this regard, dysfunction of the aging neurovascular system could be an important link between TBI and chronic neurodegenerative diseases, either as a precipitating event or related to accumulation of AD-like pathology which is amplified in the context of aging. Thus with advanced age and vascular dysfunction, TBI can trigger self-propagating cycles of neuronal injury, pathological protein aggregation, and synaptic loss resulting in chronic neurodegenerative disease. In this review we discuss evidence supporting TBI and aging as dual, interacting risk factors for AD, and the role of Aβ and cerebral vascular dysfunction in this relationship. Evidence is discussed that Aβ is involved in cyto- and synapto-toxicity after severe TBI, and that its chronic effects are potentiated by aging and impaired cerebral vascular function. From a therapeutic perspective, we emphasize that in the fields of TBI- and aging-related neurodegeneration protective strategies should include preservation of neurovascular function. Published by Elsevier B.V.
Hereditary and non-hereditary microangiopathies in the young. An up-date.
Ringelstein, E Bernd; Kleffner, Ilka; Dittrich, Ralf; Kuhlenbäumer, Gregor; Ritter, Martin A
2010-12-15
In recent years, a considerable number of new sporadic or hereditary small artery diseases of the brain have been detected which preferably occur in younger age, below 45 years. Cerebral microangiopathies constitute an appreciable portion of all strokes. In middle aged patients, hereditary cerebral small vessel diseases have to be separated from sporadic degenerative cerebral microangiopathy which is mainly due to a high vascular risk load. Features of the following disorders and details how to differentiate them, are reviewed here, namely CADASIL, MELAS, AD-RVLC, HEMID, CARASIL, PADMAL, FABRY, COL4A1-related cerebral small vessel diseases and a Portuguese type of autosomal dominant cerebral small vessel disease (SVDB). The symptomatic overlap of the cerebral microangiopathies include also other distinctive non-hereditary diseases like posterior (reversible) encephalopathy and Susac's syndrome which are also described. Some of the microangiopathies described here are not only seen in the young but also in the elderly. The precise diagnosis has direct therapeutic implications in several of these entities. Cerebral microangiopathies cause recurring strokes and diffuse white matter lesions leading to a broad spectrum of gait disturbances and in most of these disorders cognitive impairment or even vascular dementia in the long term. Often, they also involve the eye, the inner ear or the kidney. Several typical imaging findings from illustrative cases are presented. The order in which these diseases are presented here is not dictated by an inner logic principle, because a genetically or pathophysiologically based classification system of all these entities does not exist yet. Some entities are well established and not unusual, whereas others have only been described in a few cases in total. Copyright © 2010 Elsevier B.V. All rights reserved.
Brancati, Francesco; Castori, Marco; Mingarelli, Rita; Dallapiccola, Bruno
2005-12-15
We report on a 2 9/12-year-old boy with disproportionate short stature, microcephaly, subtle craniofacial dysmorphisms, and generalized skeletal dysplasia, who developed a left hemiparesis. Brain neuroimaging disclosed a complex cerebral vascular anomaly (CVA) with stenosis of the right anterior cerebral artery and telangiectatic collateral vessels supplying the cerebral cortex, consistent with moyamoya disease. Based on clinical and skeletal features, a diagnosis of Majewski osteodysplastic primordial dwarfism type II (MOPD II) was established. Review of 16 published patients with CVA affected by either Seckel syndrome or MOPD II suggested that CVA is preferentially associated to the latter subtype affecting about 1/4 of the patients. 2005 Wiley-Liss, Inc.
Morning Glory Syndrome with Carotid and Middle Cerebral Artery Vasculopathy.
Nezzar, Hachemi; Mbekeani, Joyce N; Dalens, Helen
2015-12-01
To report a case of incidental asymptomatic atypical morning glory syndrome (MGS) with concomitant ipsilateral carotid and middle cerebral dysgenesis. A 6-year-old child was discovered to have incidental findings of MGS, with atypia. All visual functions were normal including vision and stereopsis. Neuroimaging revealed ipsilateral carotid and middle cerebral vascular narrowing without associated collateral vessels or cerebral ischemia commonly seen in Moyamoya disease. Subsequent annual examinations have been stable, without signs of progression. This case demonstrates disparity between structural aberrations and final visual and neurological function and reinforces the association between MGS and intracranial vascular disruption. Full ancillary ophthalmic and neuroimaging studies should be performed in all patients with MGS with interval reassessments, even when the patient is asymptomatic and functionally intact.
Protective effect of cilazapril on the cerebral circulation.
Véniant, M; Clozel, J P; Kuhn, H; Clozel, M
1992-01-01
The goal of an antihypertensive treatment is to prevent "end-organ" damage. Cerebral vascular complications are among the most important because they are life threatening and can occur even at an early stage of the disease. Recently, it has been shown that cilazapril can decrease the mortality of stroke-prone rats, suggesting a decrease in the incidence of strokes, which occur spontaneously in these animals. The present article reviews the different functional and morphological changes that may explain the cerebral protective effects of cilazapril, such as the normalization of cerebral vascular reserve, decrease in the media, increase in the external diameter, and normalization of the mechanics and endothelial function of cerebral arterioles. In addition, the inhibition by cilazapril of injury-induced proliferation of smooth muscle cells and the infiltration of the endothelium by macrophages could prevent the development of atherosclerosis.
Xu, Wei-Hai; Wang, Han; Wang, Bo; Niu, Fu-Sheng; Gao, Shan; Cui, Li-Ying
2009-01-15
The dynamic variance of cerebral blood flow velocity (CBFV), monitored by transcranial doppler (TCD), can reveal the integrated effects of cardio-cerebral vascular autoregulation. We investigated the characteristics of CBFV curve during active standing in multiple system atrophy (MSA), Parkinson's disease (PD) and healthy volunteers. The CBFV curve of middle cerebral arteries was recorded using TCD in 22 patients with probable MSA; 20 PD patients and 20 volunteers matched for age. All individuals started in a supine posture, followed by abrupt standing for 2 min before returning to supine. The features of CBFV curve were compared among the groups. In the healthy volunteers, the CBFV decreased following standing up but quickly rebounded and reached the same or greater level as the supine baseline. Afterwards, the CBFV decreased abruptly to a sustained level, lower than the supine baseline, forming a spike wave that appeared in CBFV curve. This spike wave was present in 5/22 of MSA, significantly less than PD patients (18/20) and volunteers (20/20) (P<0.001). The CBFV decrease after standing showed no significant difference between MSA than PD (9+/-7 vs. 6+/-3 cm/s, P=0.163). The different pattern of CBFV curves during active standing suggests MSA may possess cardio-cerebral vascular modulation different from PD. The clinical value of the CBFV curve in differentiating MSA from PD needs further investigation.
Evaluation of extracranial blood flow in Parkinson disease.
Haktanir, Alpay; Yaman, Mehmet; Acar, Murat; Gecici, Omer; Demirel, Reha; Albayrak, Ramazan; Demirkirkan, Kemal
2006-01-02
Decreased cerebral flow velocities in Parkinsonian patients were reported previously. Because of the limited data on vascular changes in Parkinson disease (PD), which may have a vascular etiology, we aimed to disclose any possible cerebral hemodynamic alteration in Parkinsonian patients. We prospectively evaluated 28 non-demented, idiopathic parkinsonian patients and 19 age and sex matched controls with Doppler sonography. Flow volumes, peak systolic flow velocities, and cross-sectional areas of vertebral and internal carotid arteries (ICA) were measured and compared between patients and controls. Correlation of patient age and disease duration with Doppler parameters was observed; and each Doppler parameter of patients within each Hoehn-Yahr scale was compared. There was no significant difference of measured parameters between groups. No correlation was found between disease duration and age with flow volume, cross-sectional area or peak systolic velocity. Hoehn-Yahr scale was not found having significant relation with Doppler parameters. Values of vertebral, internal carotid and cerebral blood flow volumes (CBF), peak systolic velocities, and cross-sectional areas were not significantly different between Parkinsonian patients and age and sex matched controls. Although regional blood flow decreases may be seen as reported previously, Parkinson disease is not associated with a flow volume or velocity alteration of extracranial cerebral arteries.
Diaz-Otero, Janice M; Fisher, Courtney; Downs, Kelsey; Moss, M Elizabeth; Jaffe, Iris Z; Jackson, William F; Dorrance, Anne M
2017-12-01
The brain is highly susceptible to injury caused by hypertension because the increased blood pressure causes artery remodeling that can limit cerebral perfusion. Mineralocorticoid receptor (MR) antagonism prevents hypertensive cerebral artery remodeling, but the vascular cell types involved have not been defined. In the periphery, the endothelial MR mediates hypertension-induced vascular injury, but cerebral and peripheral arteries are anatomically distinct; thus, these findings cannot be extrapolated to the brain. The parenchymal arterioles determine cerebrovascular resistance. Determining the effects of hypertension and MR signaling on these arterioles could lead to a better understanding of cerebral small vessel disease. We hypothesized that endothelial MR signaling mediates inward cerebral artery remodeling and reduced cerebral perfusion during angiotensin II (AngII) hypertension. The biomechanics of the parenchymal arterioles and posterior cerebral arteries were studied in male C57Bl/6 and endothelial cell-specific MR knockout mice and their appropriate controls using pressure myography. AngII increased plasma aldosterone and decreased cerebral perfusion in C57Bl/6 and MR-intact littermates. Endothelial cell MR deletion improved cerebral perfusion in AngII-treated mice. AngII hypertension resulted in inward hypotrophic remodeling; this was prevented by MR antagonism and endothelial MR deletion. Our studies suggest that endothelial cell MR mediates hypertensive remodeling in the cerebral microcirculation and large pial arteries. AngII-induced inward remodeling of cerebral arteries and arterioles was associated with a reduction in cerebral perfusion that could worsen the outcome of stroke or contribute to vascular dementia. © 2017 American Heart Association, Inc.
Zhao, Xudong; Wen, Liting; Dong, Min; Lu, Xiaojie
2016-12-15
Nrf2-ARE pathway reportedly plays a protective role in several central nervous system diseases. No study has explored the role of the Nrf2-ARE pathway in cerebral vasospasm(CVS) after subarachnoid hemorrhage(SAH). The purpose of the present study was to investigate the activation of the cerebral vascular Nrf2-ARE pathway and to determine the potential role of this pathway in the development of CVS following SAH. We investigated whether the administration of sulforaphane (SFN, a specific Nrf2 activator) modulated vascular caliber, Nrf2-ARE pathway activity, proinflammatory cytokine expression, and clinical behavior in a rat model of SAH. A two-hemorrhage protocol was used to generate an animal model of SAH in male Sprague-Dawley rats. Administration of SFN to these rats following SAH enhanced the activity of the Nrf2-ARE pathway and suppressed the release of proinflammatory cytokines. Vasospasm was markedly attenuated in the basilar arteries after SFN therapy. Additionally, SFN administration significantly ameliorated two behavioral functions disrupted by SAH. These results suggest that SFN has a therapeutic benefit in post-SAH, and this may be due to elevated Nrf2-ARE pathway activity and inhibition of cerebral vascular proinflammatory cytokine expression. Copyright © 2016. Published by Elsevier B.V.
Swanson, Phillip A.; Hart, Geoffrey T.; Russo, Matthew V.; Nayak, Debasis; Yazew, Takele; Peña, Mirna; Khan, Shahid M.; Pierce, Susan K.; McGavern, Dorian B.
2016-01-01
Cerebral malaria (CM) is a severe complication of Plasmodium falciparum infection that results in thousands of deaths each year, mostly in African children. The in vivo mechanisms underlying this fatal condition are not entirely understood. Using the animal model of experimental cerebral malaria (ECM), we sought mechanistic insights into the pathogenesis of CM. Fatal disease was associated with alterations in tight junction proteins, vascular breakdown in the meninges / parenchyma, edema, and ultimately neuronal cell death in the brainstem, which is consistent with cerebral herniation as a cause of death. At the peak of ECM, we revealed using intravital two-photon microscopy that myelomonocytic cells and parasite-specific CD8+ T cells associated primarily with the luminal surface of CNS blood vessels. Myelomonocytic cells participated in the removal of parasitized red blood cells (pRBCs) from cerebral blood vessels, but were not required for the disease. Interestingly, the majority of disease-inducing parasite-specific CD8+ T cells interacted with the lumen of brain vascular endothelial cells (ECs), where they were observed surveying, dividing, and arresting in a cognate peptide-MHC I dependent manner. These activities were critically dependent on IFN-γ, which was responsible for activating cerebrovascular ECs to upregulate adhesion and antigen-presenting molecules. Importantly, parasite-specific CD8+ T cell interactions with cerebral vessels were impaired in chimeric mice rendered unable to present EC antigens on MHC I, and these mice were in turn resistant to fatal brainstem pathology. Moreover, anti-adhesion molecule (LFA-1 / VLA-4) therapy prevented fatal disease by rapidly displacing luminal CD8+ T cells from cerebrovascular ECs without affecting extravascular T cells. These in vivo data demonstrate that parasite-specific CD8+ T cell-induced fatal vascular breakdown and subsequent neuronal death during ECM is associated with luminal, antigen-dependent interactions with cerebrovasculature. PMID:27907215
On the history of lacunes, etat criblé, and the white matter lesions of vascular dementia.
Román, Gustavo C
2002-01-01
The history of lesions associated with vascular dementia (17th to 19th century) is reviewed. Recognition of ischemic and hemorrhagic stroke types dates back to the 17th century; however, at that time a third type ('cerebral congestion') emerged as the most common form of apoplexy. This entity vanished as arterial hypertension became established with the introduction of the sphygmomanometer (1905). Before the 19th century, apoplexy was considered a uniformly fatal disease, although Willis first recognized post-stroke dementia in 1672. Dechambre (1838) first reported 'lacunes' in stroke survivors with small cerebral softenings. Durand-Fardel (1842) described interstitial atrophy of the brain (leukoaraiosis) and état criblé (cribriform state) reflecting chronic cerebral congestion. In 1894, Alzheimer and Binswanger identified 'arteriosclerotic brain atrophy,' a form of vascular dementia characterized by 'miliary apoplexies' (lacunes). Also in 1894, Binswanger described the disease that now bears his name. In 1901, Pierre Marie coined the name état lacunaire (lacunar state) for the clinical syndrome of elderly patients with multiple lacunes. Copyright 2002 S. Karger AG, Basel
Jahrling, Jordan B; Lin, Ai-Ling; DeRosa, Nicholas; Hussong, Stacy A; Van Skike, Candice E; Girotti, Milena; Javors, Martin; Zhao, Qingwei; Maslin, Leigh Ann; Asmis, Reto; Galvan, Veronica
2018-01-01
We recently showed that mTOR attenuation blocks progression and abrogates established cognitive deficits in Alzheimer's disease (AD) mouse models. These outcomes were associated with the restoration of cerebral blood flow (CBF) and brain vascular density (BVD) resulting from relief of mTOR inhibition of NO release. Recent reports suggested a role of mTOR in atherosclerosis. Because mTOR drives aging and vascular dysfunction is a universal feature of aging, we hypothesized that mTOR may contribute to brain vascular and cognitive dysfunction associated with atherosclerosis. We measured CBF, BVD, cognitive function, markers of inflammation, and parameters of cardiovascular disease in LDLR -/- mice fed maintenance or high-fat diet ± rapamycin. Cardiovascular pathologies were proportional to severity of brain vascular dysfunction. Aortic atheromas were reduced, CBF and BVD were restored, and cognitive dysfunction was attenuated potentially through reduction in systemic and brain inflammation following chronic mTOR attenuation. Our studies suggest that mTOR regulates vascular integrity and function and that mTOR attenuation may restore neurovascular function and cardiovascular health. Together with our previous studies in AD models, our data suggest mTOR-driven vascular damage may be a mechanism shared by age-associated neurological diseases. Therefore, mTOR attenuation may have promise for treatment of cognitive impairment in atherosclerosis.
Acute effect of coffee drinking on dynamic cerebral autoregulation.
Sasaki, Hiroyuki; Hirasawa, Ai; Washio, Takuro; Ogoh, Shigehiko
2016-05-01
Drinking coffee causes caffeine-induced physiological alterations such as increases in arterial blood pressure, sympathetic nerve activity, cerebral vasoconstriction, etc., and these physiological alterations may be associated with a reduced risk of cerebral vascular disease. However, the effect of coffee drinking on dynamic cerebral blood flow (CBF) regulation remains unclear. The aim of this study was to test our hypothesis that coffee drinking enhances dynamic cerebral autoregulation. Twelve healthy young subjects participated in the present study. After a 5 min baseline measurement in a semi-recumbent position on the hospital bed, each subject drank water (CON) as a placebo condition or coffee beverage (Coffee INT). Arterial blood pressure and middle cerebral artery blood velocity (MCAv) were measured continuously throughout the experiment. At 30 min after the intake of either water or coffee, dynamic cerebral autoregulation was examined using a thigh cuffs occlusion and release technique. Each condition was randomly performed on a different day. Under Coffee INT condition, mean arterial blood pressure was increased (P = 0.01) and mean MCAv was decreased (P = 0.01) from the baseline. The rate of regulation (RoR), as an index of dynamic cerebral autoregulation, during coffee condition was significantly higher than that during CON (P = 0.0009). The findings of the present study suggest that coffee drinking augments dynamic CBF regulation with cerebral vasoconstriction. This phenomenon may be associated with a reduction in the risk of cerebral vascular disease.
MTHFR and ACE Gene Polymorphisms and Risk of Vascular and Degenerative Dementias in the Elderly
ERIC Educational Resources Information Center
Pandey, Pratima; Pradhan, Sunil; Modi, Dinesh Raj; Mittal, Balraj
2009-01-01
Focal lacunar infarctions due to cerebral small vessel atherosclerosis or single/multiple large cortical infarcts lead to vascular dementia, and different genes and environmental factors have been implicated in causation or aggravation of the disease. Previous reports suggest that some of the risk factors may be common to both vascular as well as…
Neurosurgical Issues in Pregnancy.
Can, Anil; Du, Rose
2017-12-01
Although rare, intracranial hemorrhage due to rupture of cerebral vascular malformations or intracranial aneurysms during pregnancy is a potentially devastating and life-threatening disorder, posing a diagnostic and therapeutic challenge to a multidisciplinary team of neurosurgeons, neurologists, obstetricians, and anesthesiologists. Despite the significant risk of morbidity and mortality affecting both the mother and the unborn child, knowledge of the natural history, epidemiology, and appropriate management of cerebral vascular malformations and intracranial aneurysms in pregnant women is limited. Although emergent neurosurgical concerns usually outweigh obstetric considerations, and treatment of these disorders is generally similar in pregnant and nonpregnant women, any necessary and feasible modifications to protect the unborn child should be made. This article reviews the management of ruptured intracranial aneurysms and cerebral vascular malformations, including arteriovenous malformations, cavernous malformations, and moyamoya disease, in women during pregnancy, partus, and puerperium. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Cerebral Embolic Activity in a Patient during Acute Crisis of Takayasu's Arteritis
Nogueira, Ricardo de Carvalho; Bor-Seng-Shu, Edson; Marchiori, Paulo Eurípedes; Teixeira, Manoel Jacobsen
2012-01-01
Takayasu's arteritis is a disease that affects large vessels and may cause neurological symptoms either by stenoses/occlusions or embolisms from vessels with an inflammatory process. Transcranial Doppler (TCD) ultrasound can provide useful information for diagnosis and monitoring during the active phase of the disease. Cerebral embolic signals can be detected by TCD and have been considered a risk factor for vascular events. We report a patient in whom TCD ultrasound was used to monitor cerebral embolic signals during the active phase of the disease. This case report suggests that embolic activity in Takayasu's arteritis may represent disease activity, and its monitoring may be useful for evaluating the response to therapy. PMID:22379479
Interhemispheric Information Transfer: A New Diagnostic Method for Mild Traumatic Brain Injury
2011-10-01
brain tumors, meningitis, cerebral palsy, encephalitis, brain abscesses , vascular malformations, cerebrovascular disease, Alzheimer’s disease...disease including head trauma with loss of consciousness 2) Having a contraindication to MRI such as pregnancy, breast feeding, surgical clips
Tan, Xing-Lin; Xue, Yue-Qiang; Ma, Tao; Wang, Xiaofang; Li, Jing Jing; Lan, Lubin; Malik, Kafait U; McDonald, Michael P; Dopico, Alejandro M; Liao, Francesca-Fang
2015-06-24
Cerebral infarction due to thrombosis leads to the most common type of stroke and a likely cause of age-related cognitive decline and dementia. Endothelial nitric oxide synthase (eNOS) generates NO, which plays a crucial role in maintaining vascular function and exerting an antithrombotic action. Reduced eNOS expression and eNOS polymorphisms have been associated with stroke and Alzheimer's disease (AD), the most common type of dementia associated with neurovascular dysfunction. However, direct proof of such association is lacking. Since there are no reports of complete eNOS deficiency in humans, we used heterozygous eNOS(+/-) mice to mimic partial deficiency of eNOS, and determine its impact on cerebrovascular pathology and perfusion of cerebral vessels. Combining cerebral angiography with immunohistochemistry, we found thrombotic cerebral infarctions in eNOS(+/-) mice as early as 3-6 months of age but not in eNOS(+/+) mice at any age. Remarkably, vascular occlusions in eNOS(+/-) mice were found almost exclusively in three areas: temporoparietal and retrosplenial granular cortexes, and hippocampus this distribution precisely matching the hypoperfused areas identified in preclinical AD patients. Moreover, progressive cerebral amyloid angiopaphy (CAA), blood brain barrier (BBB) breakdown, and cognitive impairment were also detected in aged eNOS(+/-) mice. These data provide for the first time the evidence that partial eNOS deficiency results in spontaneous thrombotic cerebral infarctions that increase with age, leading to progressive CAA and cognitive impairments. We thus conclude that eNOS(+/-) mouse may represent an ideal model of ischemic stroke to address early and progressive damage in spontaneously-evolving chronic cerebral ischemia and thus, study vascular mechanisms contributing to vascular dementia and AD.
The pathology and pathophysiology of vascular dementia.
Kalaria, Raj N
2017-12-19
Vascular dementia (VaD) is widely recognised as the second most common type of dementia. Consensus and accurate diagnosis of clinically suspected VaD relies on wide-ranging clinical, neuropsychological and neuroimaging measures in life but more importantly pathological confirmation. Factors defining subtypes of VaD include the nature and extent of vascular pathologies, degree of involvement of extra and intracranial vessels and the anatomical location of tissue changes as well as time after the initial vascular event. Atherosclerotic and cardioembolic diseases combined appear the most common subtypes of vascular brain injury. In recent years, cerebral small vessel disease (SVD) has gained prominence worldwide as an important substrate of cognitive impairment. SVD is characterised by arteriolosclerosis, lacunar infarcts and cortical and subcortical microinfarcts and diffuse white matter changes, which involve myelin loss and axonal abnormalities. Global brain atrophy and focal degeneration of the cerebrum including medial temporal lobe atrophy are also features of VaD similar to Alzheimer's disease. Hereditary arteriopathies have provided insights into the mechanisms of dementia particularly how arteriolosclerosis, a major contributor of SVD promotes cognitive impairment. Recently developed and validated neuropathology guidelines indicated that the best predictors of vascular cognitive impairment were small or lacunar infarcts, microinfarcts, perivascular space dilation, myelin loss, arteriolosclerosis and leptomeningeal cerebral amyloid angiopathy. While these substrates do not suggest high specificity, VaD is likely defined by key neuronal and dendro-synaptic changes resulting in executive dysfunction and related cognitive deficits. Greater understanding of the molecular pathology is needed to clearly define microvascular disease and vascular substrates of dementia. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rebling, Johannes; Estrada, Héctor; Gottschalk, Sven; Sela, Gali; Zwack, Michael; Wissmeyer, Georg; Ntziachristos, Vasilis; Razansky, Daniel
2018-04-19
A critical link exists between pathological changes of cerebral vasculature and diseases affecting brain function. Microscopic techniques have played an indispensable role in the study of neurovascular anatomy and functions. Yet, investigations are often hindered by suboptimal trade-offs between the spatiotemporal resolution, field-of-view (FOV) and type of contrast offered by the existing optical microscopy techniques. We present a hybrid dual-wavelength optoacoustic (OA) biomicroscope capable of rapid transcranial visualization of large-scale cerebral vascular networks. The system offers 3-dimensional views of the morphology and oxygenation status of the cerebral vasculature with single capillary resolution and a FOV exceeding 6 × 8 mm 2 , thus covering the entire cortical vasculature in mice. The large-scale OA imaging capacity is complemented by simultaneously acquired pulse-echo ultrasound (US) biomicroscopy scans of the mouse skull. The new approach holds great potential to provide better insights into cerebrovascular function and facilitate efficient studies into neurological and vascular abnormalities of the brain. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The pathobiology of vascular dementia
Iadecola, Costantino
2013-01-01
Vascular cognitive impairment defines alterations in cognition, ranging from subtle deficits to full-blown dementia, attributable to cerebrovascular causes. Often coexisting with Alzheimer’s disease, mixed vascular and neurodegenerative dementia has emerged as the leading cause of age-related cognitive impairment. Central to the disease mechanism is the crucial role that cerebral blood vessels play in brain health, not only for the delivery of oxygen and nutrients, but also for the trophic signaling that links inextricably the well being of neurons and glia to that of cerebrovascular cells. This review will examine how vascular damage disrupts these vital homeostatic interactions, focusing on the hemispheric white matter, a region at heightened risk for vascular damage, and on the interplay between vascular factors and Alzheimer’s disease. Finally, preventative and therapeutic prospects will be examined, highlighting the importance of midlife vascular risk factor control in the prevention of late-life dementia. PMID:24267647
Kida, Hirotaka; Satoh, Masayuki; Ii, Yuichiro; Fukuyama, Hidenao; Maeda, Masayuki; Tomimoto, Hidekazu
2017-01-01
The patient was an 81-year-old man who had been treated for hypertension for several decades. In 2012, he developed gait disturbance and mild amnesia. One year later, his gait disturbance worsened, and he developed urinary incontinence. Conventional brain magnetic resonance imaging using T 2 -weighted images and fluid-attenuated inversion recovery showed multiple lacunar infarctions. These findings fulfilled the diagnostic criteria for subcortical ischaemic vascular dementia. However, susceptibility weighted imaging showed multiple lobar microbleeds in the bilateral occipitoparietal lobes, and double inversion recovery and 3-D fluid-attenuated inversion recovery images on 3-T magnetic resonance imaging revealed cortical microinfarctions in the left parietal-temporo-occipito region. Pittsburgh compound B-positron emission tomography revealed diffuse uptake in the cerebral cortex. Therefore, we diagnosed the patient with subcortical ischaemic vascular dementia associated with Alzheimer's disease. The use of the double inversion recovery and susceptibility weighted imaging on 3-T magnetic resonance imaging may be a supplemental strategy for diagnosing cerebral amyloid angiopathy, which is closely associated with Alzheimer's disease. © 2016 The Authors. Psychogeriatrics © 2016 Japanese Psychogeriatric Society.
Nagel, Sandra; Berk, Benjamin-Andreas; Kortmann, Rolf-Dieter; Hoffmann, Karl-Titus; Seidel, Clemens
2018-02-01
There is increasing evidence that cerebral microangiopathy reduces number of brain metastases. Aim of this study was to analyse if vascular risk factors (arterial hypertension, diabetes mellitus, smoking, and hypercholesterolemia) or the presence of peripheral arterial occlusive disease (PAOD) can have an impact on number or size of brain metastases. 200 patients with pre-therapeutic 3D-brain MRI and available clinical data were analyzed retrospectively. Mean number of metastases (NoM) and mean diameter of metastases (mDM) were compared between patients with/without vascular risk factors (vasRF). No general correlation of vascular risk factors with brain metastases was found in this monocentric analysis of a patient cohort with several tumor types. Arterial hypertension, diabetes mellitus, hypercholesterolemia and smoking did not show an effect in uni- and multivariate analysis. In patients with PAOD the number of BM was lower than without PAOD. This was the case independent from cerebral microangiopathy but did not persist in multivariate analysis. From this first screening approach vascular risk factors do not appear to strongly influence brain metastasation. However, larger prospective multi-centric studies with better characterized severity of vascular risk are needed to more accurately detect effects of individual factors. Copyright © 2018 Elsevier B.V. All rights reserved.
Jellish, W Scott
2006-11-01
Patients who have cerebrovascular disease and vascular insufficiency routinely have neurosurgical and nonneurosurgical procedures. Anesthetic priorities must provide a still bloodless operative field while maintaining cardiovascular stability and renal function. Patients who have symptoms or a history of cerebrovascular disease are at increased risk for stroke, cerebral hypoperfusion, and cerebral anoxia. Type of surgery and cardiovascular status are key concerns when considering neuroprotective strategies. Optimization of current condition is important for a good outcome; risks must be weighed against perceived benefits in protecting neurons. Anesthetic use and physiologic manipulations can reduce neurologic injury and assure safe and effective surgical care when cerebral hypoperfusion is a real and significant risk.
Hypertension-Induced Cerebral Small Vessel Disease Leading to Cognitive Impairment.
Liu, Yang; Dong, Yan-Hong; Lyu, Pei-Yuan; Chen, Wei-Hong; Li, Rui
2018-03-05
Alzheimer's disease and vascular dementia are responsible for more than 80% of dementia cases. These two conditions share common risk factors including hypertension. Cerebral small vessel disease (CSVD) is strongly associated with both hypertension and cognitive impairment. In this review, we identify the pathophysiological changes in CSVD that are caused by hypertension and further explore the relationship between CSVD and cognitive impairment. We searched and scanned the PubMed database for recently published literatures up to December 2017. We used the keywords of "hypertension", "cerebral small vessel disease", "white matter lesions", "enlarged perivascular spaces", "lacunar infarcts", "cerebral microbleeds", and "cognitive impairment" in the database of PubMed. Articles were obtained and reviewed to analyze the hypertension-induced pathophysiological changes that occur in CSVD and the correlation between CSVD and cognitive impairment. In recent years, studies have demonstrated that hypertension-related changes (e.g., small vascular lesions, inflammatory reactions, hypoperfusion, oxidative stress, damage to autoregulatory processes and the blood-brain barrier, and cerebral amyloid angiopathy) can occur over time in cerebral small vessels, potentially leading to lower cognitive function when blood pressure (BP) control is poor or lacking. Both isolated and co-occurrent CSVD can lead to cognitive deterioration, and this effect may be attributable to a dysfunction in either the cholinergic system or the functionality of cortical and subcortical tracts. We explore the currently available evidence about the hypertensive vasculopathy and inflammatory changes that occur in CSVD. Both are vital prognostic indicators of the development of cognitive impairment. Future studies should be performed to validate the relationship between BP levels and CSVD progression and between the numbers, volumes, and anatomical locations of CSVD and cognitive impairment.
Imaging of cerebrovascular pathology in animal models of Alzheimer's disease
Klohs, Jan; Rudin, Markus; Shimshek, Derya R.; Beckmann, Nicolau
2014-01-01
In Alzheimer's disease (AD), vascular pathology may interact with neurodegeneration and thus aggravate cognitive decline. As the relationship between these two processes is poorly understood, research has been increasingly focused on understanding the link between cerebrovascular alterations and AD. This has at last been spurred by the engineering of transgenic animals, which display pathological features of AD and develop cerebral amyloid angiopathy to various degrees. Transgenic models are versatile for investigating the role of amyloid deposition and vascular dysfunction, and for evaluating novel therapeutic concepts. In addition, research has benefited from the development of novel imaging techniques, which are capable of characterizing vascular pathology in vivo. They provide vascular structural read-outs and have the ability to assess the functional consequences of vascular dysfunction as well as to visualize and monitor the molecular processes underlying these pathological alterations. This article focusses on recent in vivo small animal imaging studies addressing vascular aspects related to AD. With the technical advances of imaging modalities such as magnetic resonance, nuclear and microscopic imaging, molecular, functional and structural information related to vascular pathology can now be visualized in vivo in small rodents. Imaging vascular and parenchymal amyloid-β (Aβ) deposition as well as Aβ transport pathways have been shown to be useful to characterize their dynamics and to elucidate their role in the development of cerebral amyloid angiopathy and AD. Structural and functional imaging read-outs have been employed to describe the deleterious affects of Aβ on vessel morphology, hemodynamics and vascular integrity. More recent imaging studies have also addressed how inflammatory processes partake in the pathogenesis of the disease. Moreover, imaging can be pivotal in the search for novel therapies targeting the vasculature. PMID:24659966
Cerebral malaria in children: using the retina to study the brain
Beare, Nicholas A. V.; Taylor, Terrie E.; Barrera, Valentina; White, Valerie A.; Hiscott, Paul; Molyneux, Malcolm E.; Dhillon, Baljean; Harding, Simon P.
2014-01-01
Cerebral malaria is a dangerous complication of Plasmodium falciparum infection, which takes a devastating toll on children in sub-Saharan Africa. Although autopsy studies have improved understanding of cerebral malaria pathology in fatal cases, information about in vivo neurovascular pathogenesis is scarce because brain tissue is inaccessible in life. Surrogate markers may provide insight into pathogenesis and thereby facilitate clinical studies with the ultimate aim of improving the treatment and prognosis of cerebral malaria. The retina is an attractive source of potential surrogate markers for paediatric cerebral malaria because, in this condition, the retina seems to sustain microvascular damage similar to that of the brain. In paediatric cerebral malaria a combination of retinal signs correlates, in fatal cases, with the severity of brain pathology, and has diagnostic and prognostic significance. Unlike the brain, the retina is accessible to high-resolution, non-invasive imaging. We aimed to determine the extent to which paediatric malarial retinopathy reflects cerebrovascular damage by reviewing the literature to compare retinal and cerebral manifestations of retinopathy-positive paediatric cerebral malaria. We then compared retina and brain in terms of anatomical and physiological features that could help to account for similarities and differences in vascular pathology. These comparisons address the question of whether it is biologically plausible to draw conclusions about unseen cerebral vascular pathogenesis from the visible retinal vasculature in retinopathy-positive paediatric cerebral malaria. Our work addresses an important cause of death and neurodisability in sub-Saharan Africa. We critically appraise evidence for associations between retina and brain neurovasculature in health and disease, and in the process we develop new hypotheses about why these vascular beds are susceptible to sequestration of parasitized erythrocytes. PMID:24578549
Noumbissi, Midrelle E; Galasso, Bianca; Stins, Monique F
2018-04-23
The vertebrate blood-brain barrier (BBB) is composed of cerebral microvascular endothelial cells (CEC). The BBB acts as a semi-permeable cellular interface that tightly regulates bidirectional molecular transport between blood and the brain parenchyma in order to maintain cerebral homeostasis. The CEC phenotype is regulated by a variety of factors, including cells in its immediate environment and within functional neurovascular units. The cellular composition of the brain parenchyma surrounding the CEC varies between different brain regions; this difference is clearly visible in grey versus white matter. In this review, we discuss evidence for the existence of brain vascular heterogeneity, focusing on differences between the vessels of the grey and white matter. The region-specific differences in the vasculature of the brain are reflective of specific functions of those particular brain areas. This BBB-endothelial heterogeneity may have implications for the course of pathogenesis of cerebrovascular diseases and neurological disorders involving vascular activation and dysfunction. This heterogeneity should be taken into account when developing BBB-neuro-disease models representative of specific brain areas.
NASA Astrophysics Data System (ADS)
Abdi, Mohsen; Pishbin, Esmail; Karimi, Alireza; Navidbakhsh, Mahdi
In this study, a novel fluidic concept was presented to resemble the cerebral microvascular in four types to assess its complexity by using centrifugal platform. The setup consisted of a microstructured disk with a round mixing chamber rotating on a macroscopic drive unit. The left and right internal carotid arteries (L.ICA and R.ICA) and basilar artery (BA) are two isolated vascular system supplying circle of Willis (CoW). The left and right middle cerebral arteries (L.MCA and R.MCA), left and right anterior cerebral arteries (L.ACA and R.ACA), and finally left and right posterior cerebral arteries (L.PCA and R.PCA) constitute efferent arteries of CoW. In this study, cerebral microvascular was investigated by microfluidics approach. The results revealed that a more complex mixing chamber provides normal pixel percentage distribution with respect to the other ones. The outcomes of this study may have implications not only for perception of the intracranial vascular hemodynamic in healthy circumstance, but also for diagnosing the diseases in the blood circulatory system of the human body.
Association factor analysis between osteoporosis with cerebral artery disease: The STROBE study.
Jin, Eun-Sun; Jeong, Je Hoon; Lee, Bora; Im, Soo Bin
2017-03-01
The purpose of this study was to determine the clinical association factors between osteoporosis and cerebral artery disease in Korean population. Two hundred nineteen postmenopausal women and men undergoing cerebral computed tomography angiography were enrolled in this study to evaluate the cerebral artery disease by cross-sectional study. Cerebral artery disease was diagnosed if there was narrowing of 50% higher diameter in one or more cerebral vessel artery or presence of vascular calcification. History of osteoporotic fracture was assessed using medical record, and radiographic data such as simple radiography, MRI, and bone scan. Bone mineral density was checked by dual-energy x-ray absorptiometry. We reviewed clinical characteristics in all patients and also performed subgroup analysis for total or extracranial/ intracranial cerebral artery disease group retrospectively. We performed statistical analysis by means of chi-square test or Fisher's exact test for categorical variables and Student's t-test or Wilcoxon's rank sum test for continuous variables. We also used univariate and multivariate logistic regression analyses were conducted to assess the factors associated with the prevalence of cerebral artery disease. A two-tailed p-value of less than 0.05 was considered as statistically significant. All statistical analyses were performed using R (version 3.1.3; The R Foundation for Statistical Computing, Vienna, Austria) and SPSS (version 14.0; SPSS, Inc, Chicago, Ill, USA). Of the 219 patients, 142 had cerebral artery disease. All vertebral fracture was observed in 29 (13.24%) patients. There was significant difference in hip fracture according to the presence or absence of cerebral artery disease. In logistic regression analysis, osteoporotic hip fracture was significantly associated with extracranial cerebral artery disease after adjusting for multiple risk factors. Females with osteoporotic hip fracture were associated with total calcified cerebral artery disease. Some clinical factors such as age, hypertension, and osteoporotic hip fracture, smoking history and anti-osteoporosis drug use were associated with cerebral artery disease.
Floris, Gianluca; Di Stefano, Francesca; Cherchi, Maria Valeria; Costa, Gianna; Marrosu, Francesco; Marrosu, Maria Giovanna
2015-01-01
Cerebral microbleeds (CMB) might reflect specific underlying vascular pathologies like cerebral amyloid angiopathy (CAA). In the present study we report the gradient-echo MRI pattern of two siblings with P284S PSEN1 mutation. T2* gradient-echo images of the two subjects demonstrated multiple microbleeds in lobar regions. The role and causes of CMB in sporadic Alzheimer's disease (AD) patients have not been clearly established and useful contributions could derive from familial AD studies. Furthermore, since CAA is a potential risk factor for developing adverse events in AD immunization trials, the identification in vivo of CAA through non-invasive MRI methods could be useful to monitoring side effects.
Banerjee, Gargi; Kim, Hee Jin; Fox, Zoe; Jäger, H Rolf; Wilson, Duncan; Charidimou, Andreas; Na, Han Kyu; Na, Duk L; Seo, Sang Won; Werring, David J
2017-04-01
Perivascular spaces that are visible on magnetic resonance imaging (MRI) are a neuroimaging marker of cerebral small vessel disease. Their location may relate to the type of underlying small vessel pathology: those in the white matter centrum semi-ovale have been associated with cerebral amyloid angiopathy, while those in the basal ganglia have been associated with deep perforating artery arteriolosclerosis. As cerebral amyloid angiopathy is an almost invariable pathological finding in Alzheimer's disease, we hypothesized that MRI-visible perivascular spaces in the centrum semi-ovale would be associated with a clinical diagnosis of Alzheimer's disease, whereas those in the basal ganglia would be associated with subcortical vascular cognitive impairment. We also hypothesized that MRI-visible perivascular spaces in the centrum semi-ovale would be associated with brain amyloid burden, as detected by amyloid positron emission tomography using 11C-Pittsburgh B compound (PiB-PET). Two hundred and twenty-six patients (Alzheimer's disease n = 110; subcortical vascular cognitive impairment n = 116) with standardized MRI and PiB-PET imaging were included. MRI-visible perivascular spaces were rated using a validated 4-point visual rating scale, and then categorized by severity ('none/mild', 'moderate' or 'frequent/severe'). Univariable and multivariable regression analyses were performed. Those with Alzheimer's disease-related cognitive impairment were younger, more likely to have a positive PiB-PET scan and carry at least one apolipoprotein E ɛ4 allele; those with subcortical vascular cognitive impairment were more likely to have hypertension, diabetes mellitus, hyperlipidaemia, prior stroke, lacunes, deep microbleeds, and carry the apolipoprotein E ɛ3 allele. In adjusted analyses, the severity of MRI-visible perivascular spaces in the centrum semi-ovale was independently associated with clinically diagnosed Alzheimer's disease (frequent/severe grade odds ratio 6.26, 95% confidence interval 1.66-23.58; P = 0.017, compared with none/mild grade), whereas the severity of MRI-visible perivascular spaces in the basal ganglia was associated with clinically diagnosed subcortical vascular cognitive impairment and negatively predicted Alzheimer's disease (frequent/severe grade odds ratio 0.03, 95% confidence interval 0.00-0.44; P = 0.009, compared with none/mild grade). MRI-visible perivascular space severity in either location did not predict PiB-PET. These findings provide further evidence that the anatomical distribution of MRI-visible perivascular spaces may reflect the underlying cerebral small vessel disease. Using MRI-visible perivascular space location and severity together with other imaging markers may improve the diagnostic value of neuroimaging in memory clinic populations, in particular in differentiating between clinically diagnosed Alzheimer's and subcortical vascular cognitive impairment. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Bochkarev, V K; Teleshova, E S; Siuniakov, S A; Davydova, D V; Neznamov, G G
2008-01-01
An effect of a new nootropic drug noopept on the dynamics of main EEG rhythms and narrow-band spectral EEG characteristics in patients with cerebral asthenic and cognitive disturbances caused by traumas or vascular brain diseases has been studied. Noopept caused the EEG changes characteristic of the action of nootropics: the increase of alpha- and beta-rhythms power and reduction of delta-rhythms power. The reaction of alpha-rhythm was provided mostly by the dynamics of its low and medium frequencies (6,7-10,2 Hz), the changes of beta-rhythm were augmented in frontal and attenuated in occipital areas. The analysis of frequency and spatial structure of EEG changes reveals that noopept exerts a nonspecific activation and anxyolytic effect. The differences in EEG changes depending on the brain pathology were found. The EEG indices of nootropic effect of the drug were most obvious in cerebral vascular diseases. The EEG changes in posttraumatic brain lesion were less typical.
Kustkova, H S
2012-01-01
In cerebrovascular diseases pefuzionnaya single photon emission computed tomography with lipophilic amines used for the diagnosis of functional disorders of cerebral blood flow. Quantitative calculations helps clarify the nature of vascular disease and clarify the adequacy and effectiveness of the treatment. In this modern program for SPECT ensure conduct not only as to the calculation of blood flow, but also make it possible to compute also the absolute values of cerebral blood flow.
Gao, Yong-Zhe; Zhang, Jun-Jian; Liu, Hui; Wu, Guang-Yao; Xiong, Li; Shu, Min
2013-02-01
Hemodynamic disturbance in cerebral blood flow (CBF) is common in both Alzheimer's disease (AD) and vascular dementia (VaD).The aim of this study is to investigate the different patterns of regional cerebral blood flow (rCBF) change and cerebrovascular reactivity (CVR) in these two types of dementia. Mean flow velocity (MFV) of middle cerebral artery and rCBF were measured by Transcranial Doppler ultrasound (TCD) and arterial spin-labeling (ASL) magnetic resonance, separately. CVR was evaluated by MFV or rCBF change in response to 5% CO2 inhalation. The ASL results showed that, rCBF was significantly lower in both the bilateral frontal and temporal lobes in AD group and lower in left frontal and temporal white matter in patients with VaD. CVR calculated by rCBF was impaired more severely in bilateral frontal cortices in AD. Conversely, TCD tests failed to demonstrate significant difference in MFV and CVR between the two groups. It is concluded that the different patterns detected by ASL in resting rCBF change and cerebrovascular reactivity in response to carbogen inhalation may serve as a potential marker to distinguish AD and VaD.
BOLD delay times using group delay in sickle cell disease
NASA Astrophysics Data System (ADS)
Coloigner, Julie; Vu, Chau; Bush, Adam; Borzage, Matt; Rajagopalan, Vidya; Lepore, Natasha; Wood, John
2016-03-01
Sickle cell disease (SCD) is an inherited blood disorder that effects red blood cells, which can lead to vasoocclusion, ischemia and infarct. This disease often results in neurological damage and strokes, leading to morbidity and mortality. Functional Magnetic Resonance Imaging (fMRI) is a non-invasive technique for measuring and mapping the brain activity. Blood Oxygenation Level-Dependent (BOLD) signals contain also information about the neurovascular coupling, vascular reactivity, oxygenation and blood propagation. Temporal relationship between BOLD fluctuations in different parts of the brain provides also a mean to investigate the blood delay information. We used the induced desaturation as a label to profile transit times through different brain areas, reflecting oxygen utilization of tissue. In this study, we aimed to compare blood flow propagation delay times between these patients and healthy subjects in areas vascularized by anterior, middle and posterior cerebral arteries. In a group comparison analysis with control subjects, BOLD changes in these areas were found to be almost simultaneous and shorter in the SCD patients, because of their increased brain blood flow. Secondly, the analysis of a patient with a stenosis on the anterior cerebral artery indicated that signal of the area vascularized by this artery lagged the MCA signal. These findings suggest that sickle cell disease causes blood propagation modifications, and that these changes could be used as a biomarker of vascular damage.
Zhang, Shucha; Bhadelia, Rafeeque A; Johnson, Elizabeth J; Lichtenstein, Alice H; Rogers, Gail T; Rosenberg, Irwin H; Smith, Caren E; Zeisel, Steven H
2017-01-01
Background: There is a potential role of choline in cardiovascular and cerebrovascular disease through its involvement in lipid and one-carbon metabolism. Objective: We evaluated the associations of plasma choline and choline-related compounds with cardiometabolic risk factors, history of cardiovascular disease, and cerebrovascular pathology. Design: A cross-sectional subset of the Nutrition, Aging, and Memory in Elders cohort who had undergone MRI of the brain (n = 296; mean ± SD age: 73 ± 8.1 y) was assessed. Plasma concentrations of free choline, betaine, and phosphatidylcholine were measured with the use of liquid-chromatography–stable-isotope dilution–multiple-reaction monitoring–mass spectrometry. A volumetric analysis of MRI was used to determine the cerebrovascular pathology (white-matter hyperintensities and small- and large-vessel infarcts). Multiple linear and logistic regression models were used to examine relations of plasma measures with cardiometabolic risk factors, history of cardiovascular disease, and radiologic evidence of cerebrovascular pathology. Results: Higher concentrations of plasma choline were associated with an unfavorable cardiometabolic risk-factor profile [lower high-density lipoprotein (HDL) cholesterol, higher total homocysteine, and higher body mass index (BMI)] and greater odds of large-vessel cerebral vascular disease or history of cardiovascular disease but lower odds of small-vessel cerebral vascular disease. Conversely, higher concentrations of plasma betaine were associated with a favorable cardiometabolic risk-factor profile [lower low-density lipoprotein (LDL) cholesterol and triglycerides] and lower odds of diabetes. Higher concentrations of plasma phosphatidylcholine were associated with characteristics of both a favorable cardiometabolic risk-factor profile (higher HDL cholesterol, lower BMI, lower C-reactive protein, lower waist circumference, and lower odds of hypertension and diabetes) and an unfavorable profile (higher LDL cholesterol and triglycerides). Conclusion: Choline and its metabolites have differential associations with cardiometabolic risk factors and subtypes of vascular disease, thereby suggesting differing roles in the pathogenesis of cardiovascular and cerebral large-vessel disease compared with that of small-vessel disease. PMID:28356272
Cerebral Microbleeds in Patients with Dementia with Lewy Bodies and Parkinson Disease Dementia.
Kim, S W; Chung, S J; Oh, Y-S; Yoon, J H; Sunwoo, M K; Hong, J Y; Kim, J-S; Lee, P H
2015-09-01
The burden of amyloid β is greater in patients with dementia with Lewy bodies than in those with Parkinson disease dementia, and an increased amyloid β load is closely related to a higher incidence of cerebral microbleeds. Here, we investigated the prevalence and topography of cerebral microbleeds in patients with dementia with Lewy bodies and those with Parkinson disease dementia to examine whether cerebral microbleeds are more prevalent in patients with dementia with Lewy bodies than in those with Parkinson disease dementia. The study population consisted of 42 patients with dementia with Lewy bodies, 88 patients with Parkinson disease dementia, and 35 controls who underwent brain MR imaging with gradient recalled-echo. Cerebral microbleeds were classified as deep, lobar, or infratentorial. The frequency of cerebral microbleeds was significantly greater in patients with dementia with Lewy bodies (45.2%) than in those with Parkinson disease dementia (26.1%) or in healthy controls (17.1%; P = .017). Lobar cerebral microbleeds were observed more frequently in the dementia with Lewy bodies group (40.5%) than in the Parkinson disease dementia (17%; P = .004) or healthy control (8.6%; P = .001) group, whereas the frequencies of deep and infratentorial cerebral microbleeds did not differ among the 3 groups. Logistic regression analyses revealed that, compared with the healthy control group, the dementia with Lewy bodies group was significantly associated with the presence of lobar cerebral microbleeds after adjusting for age, sex, nonlobar cerebral microbleeds, white matter hyperintensities, and other vascular risk factors (odds ratio, 4.39 [95% CI, 1.27-15.25]). However, compared with the healthy control group, the Parkinson disease dementia group was not significantly associated with lobar cerebral microbleeds. This study showed that patients with dementia with Lewy bodies had a greater burden of cerebral microbleeds and exhibited a lobar predominance of cerebral microbleeds than did patients with Parkinson disease dementia. © 2015 by American Journal of Neuroradiology.
Toth, Peter; Tarantini, Stefano; Csiszar, Anna
2017-01-01
Increasing evidence from epidemiological, clinical and experimental studies indicate that age-related cerebromicrovascular dysfunction and microcirculatory damage play critical roles in the pathogenesis of many types of dementia in the elderly, including Alzheimer’s disease. Understanding and targeting the age-related pathophysiological mechanisms that underlie vascular contributions to cognitive impairment and dementia (VCID) are expected to have a major role in preserving brain health in older individuals. Maintenance of cerebral perfusion, protecting the microcirculation from high pressure-induced damage and moment-to-moment adjustment of regional oxygen and nutrient supply to changes in demand are prerequisites for the prevention of cerebral ischemia and neuronal dysfunction. This overview discusses age-related alterations in three main regulatory paradigms involved in the regulation of cerebral blood flow (CBF): cerebral autoregulation/myogenic constriction, endothelium-dependent vasomotor function, and neurovascular coupling responses responsible for functional hyperemia. The pathophysiological consequences of cerebral microvascular dysregulation in aging are explored, including blood-brain barrier disruption, neuroinflammation, exacerbation of neurodegeneration, development of cerebral microhemorrhages, microvascular rarefaction, and ischemic neuronal dysfunction and damage. Due to the widespread attention that VCID has captured in recent years, the evidence for the causal role of cerebral microvascular dysregulation in cognitive decline is critically examined. PMID:27793855
Raz, Naftali; Daugherty, Ana M; Sethi, Sean K; Arshad, Muzamil; Haacke, E Mark
2017-08-01
Sufficient cerebral blood flow (CBF) and venous drainage are critical for normal brain function, and their alterations can affect brain aging. However, to date, most studies focused on arterial CBF (inflow) with little attention paid to the age differences in venous outflow. We measured extra-cerebral arterial and venous blood flow rates with phase-contrast MRI and assessed the influence of vascular risk factors and genetic polymorphisms (ACE insertion/deletion, COMT val158met, and APOEε4) in 73 adults (age 18-74 years). Advanced age, elevated vascular risk, ACE Deletion, and COMT met alleles were linked to lower in- and outflow, with no effects of APOE ε4 noted. Lower age-related CBF rate was unrelated to brain volume and was observed only in val homozygotes of COMTval158met. Thus, in a disease-free population, age differences in CBF may be notable only in persons with high vascular risk and carriers of genetic variants associated with vasoconstriction and lower dopamine availability. It remains to be established if treatments targeting alleviation of the mutable factors can improve the course of cerebrovascular aging in spite of the immutable genetic influence.
Digernes, Ingrid; Bjørnerud, Atle; Vatnehol, Svein Are S; Løvland, Grete; Courivaud, Frédéric; Vik-Mo, Einar; Meling, Torstein R; Emblem, Kyrre E
2017-06-01
Mapping the complex heterogeneity of vascular tissue in the brain is important for understanding cerebrovascular disease. In this translational study, we build on previous work using vessel architectural imaging (VAI) and present a theoretical framework for determining cerebral vascular function and heterogeneity from dynamic susceptibility contrast magnetic resonance imaging (MRI). Our tissue model covers realistic structural architectures for vessel branching and orientations, as well as a range of hemodynamic scenarios for blood flow, capillary transit times and oxygenation. In a typical image voxel, our findings show that the apparent MRI relaxation rates are independent of the mean vessel orientation and that the vortex area, a VAI-based parameter, is determined by the relative oxygen saturation level and the vessel branching of the tissue. Finally, in both simulated and patient data, we show that the relative distributions of the vortex area parameter as a function of capillary transit times show unique characteristics in normal-appearing white and gray matter tissue, whereas tumour-voxels in comparison display a heterogeneous distribution. Collectively, our study presents a comprehensive framework that may serve as a roadmap for in vivo and per-voxel determination of vascular status and heterogeneity in cerebral tissue.
Gallardo, M J; Cabello, J P; Pastor, C; Muñoz-Torrero, J J; Carrasco, S; Ibañez, R; Vaamonde, J
2014-05-01
Freezing of gait (FOG) is one of the most disabling and enigmatic symptoms in Parkinson's disease. Vascular lesions, observed in magnetic resonance imaging (MRI) scans, may produce or exacerbate this symptom. The study includes 22 patients with Parkinson's disease subjects, 12 with freezing of gait and 10 without. All patients underwent an MRI scan and any vascular lesions were analysed using the modified Fazekas scale. Patients with FOG scored higher on the modified Fazekas scale than the rest of the group. Although the two groups contained the same percentage of patients with vascular lesions (50% in both groups), lesion load was higher in the group of patients with FOG. Vascular lesions in the periventricular area and deep white matter seem to be the most involved in the development of FOG. Vascular lesions may contribute to the onset or worsening of FOG in patients with PD. This study suggests that cerebral vascular disease should be considered in patients with FOG. Copyright © 2012 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.
Vascular determinants of cholinergic deficits in Alzheimer disease and vascular dementia.
Román, Gustavo C; Kalaria, Raj N
2006-12-01
Alzheimer's disease (AD) and vascular dementia (VaD) are widely accepted as the most common forms of dementia. Cerebrovascular lesions frequently coexist with AD, creating an overlap in the clinical and pathological features of VaD and AD. This review assembles evidence for a role for cholinergic mechanisms in the pathogenesis of VaD, as has been established for AD. We first consider the anatomy and vascularization of the basal forebrain cholinergic neuronal system, emphasizing its susceptibility to the effects of arterial hypertension, sustained hypoperfusion, and ischemic cerebrovascular disease. The impact of aging and consequences of disruption of the cholinergic system in cognition and in control of cerebral blood flow are further discussed. We also summarize preclinical and clinical evidence supporting cholinergic deficits and the use of cholinesterase inhibitors in patients with VaD. We postulate that vascular pathology likely plays a common role in initiating cholinergic neuronal abnormalities in VaD and AD.
ERIC Educational Resources Information Center
Duering, Marco; Zieren, Nikola; Herve, Dominique; Jouvent, Eric; Reyes, Sonia; Peters, Nils; Pachai, Chahin; Opherk, Christian; Chabriat, Hugues; Dichgans, Martin
2011-01-01
Cerebral small vessel disease is the most common cause of vascular cognitive impairment. It typically manifests with lacunar infarcts and ischaemic white matter lesions. However, little is known about how these lesions relate to the cognitive symptoms. Previous studies have found a poor correlation between the burden of ischaemic lesions and…
Clinical efficacy of positron emission tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heiss, W.D.; Pawlick, G.; Herholz, K.
1987-01-01
The contents of this book are: Brain: Cerebral Vascular Disease; Brain: Movement Disorders; Brain: Epilepsy and Pediatric Neurology; Brain: Dementias; Brain: Schizophrenia; Heart: Angina Pectoris; Heart: Infarction; Lungs; Soft Tissue Tumors; and Brain Tumors.
Sada, Sujay; Reddy, Yugandhar; Rao, Sampath; Alladi, Suvarna; Kaul, Subash
2014-01-01
Middle cerebral artery (MCA) disease is the most common vascular lesion in stroke. Transcranial Doppler (TCD) is a non-invasive bedside screening method for assessing cerebral blood flow. To investigate the prevalence of MCA stenosis in asymptomatic but high-risk individuals for stroke. Prospective study between December 2011 and December 2013. Vascular risk factors considered included: hypertension (HTN), diabetes mellitus, smoking, alcohol consumption, coronary artery disease (CAD), peripheral vascular disease (PVD), hypercholesterolemia and obesity. TCD was performed with portable machine through the temporal windows by use of a standardized protocol. Of the 427 subjects, 374 were analyzed; males 264 (70.6%) and females 110 (29.4%). Mean age was 54.2 ± 7.6 years. The frequency of the risk factors was: HTN 287 (76.7%), diabetes 220 (58.8%), CAD 120 (32.1%), hypercholesterolemia 181 (48.4%), smoking 147 (39.3%), alcohol 99 (26.5%), obesity 198 (52.9%) and PVD 8 (2.1%). Of the 374 subjects, 27 (7.2%) had intracranial arterial stenosis and the rest had normal intracranial arteries. On univariate analysis, subjects with higher age, HTN, CAD, smoking and hypercholesterolemia had higher risk of having intracranial arterial stenosis (P < 0.05). Multivariate analysis showed HTN and CAD are independent risk factors for intracranial arterial stenosis. Overall prevalence of intracranial arterial stenosis is 7.2% in high-risk population sample from Hyderabad in South India. HTN and CAD are independent risk factors for the development of intracranial arterial stenosis.
Zeng, Yaping; Deyo, Donald; Parsley, Margaret A.; Hawkins, Bridget E.; Prough, Donald S.; DeWitt, Douglas S.
2018-01-01
Abstract To determine the effects of mild blast-induced traumatic brain injury (bTBI), several groups of rats were subjected to blast injury or sham injury in a compressed air-driven shock tube. The effects of bTBI on relative cerebral perfusion (laser Doppler flowmetry [LDF]), and mean arterial blood pressure (MAP) cerebral vascular resistance were measured for 2 h post-bTBI. Dilator responses to reduced intravascular pressure were measured in isolated middle cerebral arterial (MCA) segments, ex vivo, 30 and 60 min post-bTBI. Neuronal injury was assessed (Fluoro-Jade C [FJC]) 24 and 48 h post-bTBI. Neurological outcomes (beam balance and walking tests) and working memory (Morris water maze [MWM]) were assessed 2 weeks post-bTBI. Because impact TBI (i.e., non-blast TBI) is often associated with reduced cerebral perfusion and impaired cerebrovascular function in part because of the generation of reactive oxygen and nitrogen species such as peroxynitrite (ONOO−), the effects of the administration of the ONOO− scavenger, penicillamine methyl ester (PenME), on cerebral perfusion and cerebral vascular resistance were measured for 2 h post-bTBI. Mild bTBI resulted in reduced relative cerebral perfusion and MCA dilator responses to reduced intravascular pressure, increases in cerebral vascular resistance and in the numbers of FJC-positive cells in the brain, and significantly impaired working memory. PenME administration resulted in significant reductions in cerebral vascular resistance and a trend toward increased cerebral perfusion, suggesting that ONOO− may contribute to blast-induced cerebral vascular dysfunction. PMID:29160141
Behçet syndrome: the vascular cluster.
Yazıcı, Hasan; Seyahi, Emire
2016-11-17
Although skin-mucosa lesions are common in almost all patients with Behçet syndrome (BS), clinical properties may differ from one patient to another. Within BS, there are subsets with different organ involvement and hence probably different pathological pathways. These subsets can be described as a) solo skin-mucosa disease with no major organ involvement, b) eye disease, c) seronegative spondyloarthropathy-like disease (arthritis, enthesopathy, and folliculitis), d) Crohn-like disease, and finally the topic of this chapter: e) vascular disease. In the vascular disease subset, not surprisingly, several types of vascular involvement may be observed in the same individual. These subsets may make up the total clinical picture all at the same time or step by step with each relapse. Significant correlations exist between cerebral vascular thrombosis and pulmonary artery involvement, intracardiac thrombi and pulmonary artery involvement, Budd-Chiari syndrome, and inferior vena cava syndrome. Lower extremity vein thrombosis is often present in these associations and even precedes them. The recognition of these clusters is not only important in diagnosis and management but also in basic science, including genetic studies.
Differential diagnosis of bilateral parietal abnormalities in I-123 IMP SPECT imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuwabara, Y.; Ichiya, Y.; Otsuka, M.
1990-12-01
This report discusses the clinical significance of bilateral parietal abnormalities on I-123 IMP SPECT imaging in 158 patients with cerebral disorders. This pattern was seen in 15 out of 21 patients with Alzheimer's disease; it was also seen in 4 out of 5 patients with Parkinson's disease with dementia, in 3 out of 17 patients with vascular dementia, in 1 out of 36 patients with cerebral infarction without dementia, in 1 out of 2 patients with hypoglycemia, and in 1 out of 2 patients with CO intoxication. Detection of bilateral parietal abnormalities is a useful finding in the diagnosis ofmore » Alzheimer's disease, but one should keep in mind that other cerebral disorders may also show a similar pattern with I-123 IMP SPECT imaging.« less
Structure and vascular function of MEKK3–cerebral cavernous malformations 2 complex
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisher, Oriana S.; Deng, Hanqiang; Liu, Dou
Cerebral cavernous malformations 2 (CCM2) loss is associated with the familial form of CCM disease. The protein kinase MEKK3 (MAP3K3) is essential for embryonic angiogenesis in mice and interacts physically with CCM2, but how this interaction is mediated and its relevance to cerebral vasculature are unknown. Here we report that Mekk3 plays an intrinsic role in embryonic vascular development. Inducible endothelial Mekk3 knockout in neonatal mice is lethal due to multiple intracranial haemorrhages and brain blood vessels leakage. We discover direct interaction between CCM2 harmonin homology domain (HHD) and the N terminus of MEKK3, and determine a 2.35 Å cocrystalmore » structure. We find Mekk3 deficiency impairs neurovascular integrity, which is partially dependent on Rho–ROCK signalling, and that disruption of MEKK3:CCM2 interaction leads to similar neurovascular leakage. We conclude that CCM2:MEKK3-mediated regulation of Rho signalling is required for maintenance of neurovascular integrity, unravelling a mechanism by which CCM2 loss leads to disease.« less
[Intraoperative monitoring of oxygen tissue pressure: Applications in vascular neurosurgery].
Arikan, Fuat; Vilalta, Jordi; Torne, Ramon; Chocron, Ivette; Rodriguez-Tesouro, Ana; Sahuquillo, Juan
2014-01-01
Ischemic lesions related to surgical procedures are a major cause of postoperative morbidity in patients with cerebral vascular disease. There are different systems of neuromonitoring to detect intraoperative ischemic events, including intraoperative monitoring of oxygen tissue pressure (PtiO2). The aim of this article was to describe, through the discussion of 4 cases, the usefulness of intraoperative PtiO2 monitoring during vascular neurosurgery. In presenting these cases, we demonstrate that monitoring PtiO2 is a reliable way to detect early ischemic events during surgical procedures. Continuous monitoring of PtiO2 in an area at risk allows the surgeon to resolve the cause of the ischemic event before it evolves to an established cerebral infarction. Copyright © 2014 Sociedad Española de Neurocirugía. Published by Elsevier España. All rights reserved.
Marnane, Michael; Hsiung, Ging-Yuek R
2016-01-01
Alzheimer Disease (AD) is the most common primary cause of dementia with a burgeoning epidemic as life expectancy and general medical care improve worldwide. Recent data from pathologic studies has shown that the cooccurrence of other neurodegenerative and vascular pathologies is in fact the rule rather than the exception. In late onset AD, cerebral small vessel disease (SVD) is almost invariably co-existent to a greater or lesser extent and is known to promote cognitive deterioration. Previous observational studies and clinical trials have largely sought to divide dementia based on predominant neurodegenerative or vascular mechanisms. Given the high degree of overlap, findings from such studies may be difficult to interpret and apply to population cohorts. Additionally opportunities may be lost for uncovering novel interventions that target interactions between co-existent vascular and neurodegenerative pathologies. In the current review, we consider potential pathophysiologic mechanisms through which SVD may be associated with and promote AD pathology. In particular we explore shared environmental and genetic associations and how these may converge via neuroinflammatory pathways potentially providing novel therapeutic targets. SVD has heterogenous manifestations on cerebral imaging and at pathology. We discuss how studying SVD topography may enable us to better identify those at risk for more rapid cognitive decline and improve future clinical trial design.
Thomas, Binu P; Sheng, Min; Tseng, Benjamin Y; Tarumi, Takashi; Martin-Cook, Kristen; Womack, Kyle B; Cullum, Munro C; Levine, Benjamin D; Zhang, Rong; Lu, Hanzhang
2017-04-01
Amnestic mild cognitive impairment represents an early stage of Alzheimer's disease, and characterization of physiological alterations in mild cognitive impairment is an important step toward accurate diagnosis and intervention of this condition. To investigate the extent of neurodegeneration in patients with mild cognitive impairment, whole-brain cerebral metabolic rate of oxygen in absolute units of µmol O 2 /min/100 g was quantified in 44 amnestic mild cognitive impairment and 28 elderly controls using a novel, non-invasive magnetic resonance imaging method. We found a 12.9% reduction ( p = 0.004) in cerebral metabolic rate of oxygen in mild cognitive impairment, which was primarily attributed to a reduction in the oxygen extraction fraction, by 10% ( p = 0.016). Global cerebral blood flow was not found to be different between groups. Another aspect of vascular function, cerebrovascular reactivity, was measured by CO 2 -inhalation magnetic resonance imaging and was found to be equivalent between groups. Therefore, there seems to be a global, diffuse diminishment in neural function in mild cognitive impairment, while their vascular function did not show a significant reduction.
Aliev, Gjumrakch; Palacios, Hector H; Walrafen, Brianna; Lipsitt, Amanda E; Obrenovich, Mark E; Morales, Ludis
2009-10-01
Alzheimer's disease (AD) and cerebrovascular accidents are two leading causes of age-related dementia. Increasing evidence supports the idea that chronic hypoperfusion is primarily responsible for the pathogenesis that underlies both disease processes. In this regard, hypoperfusion appears to induce oxidative stress (OS), which is largely due to reactive oxygen species (ROS), and over time initiates mitochondrial failure which is known as an initiating factor of AD. Recent evidence indicates that chronic injury stimulus induces hypoperfusion seen in vulnerable brain regions. This reduced regional cerebral blood flow (CBF) then leads to energy failure within the vascular endothelium and associated brain parenchyma, manifested by damaged mitochondrial ultrastructure (the formation of large number of immature, electron-dense "hypoxic" mitochondria) and by overproduction of mitochondrial DNA (mtDNA) deletions. Additionally, these mitochondrial abnormalities co-exist with increased redox metal activity, lipid peroxidation, and RNA oxidation. Interestingly, vulnerable neurons and glial cells show mtDNA deletions and oxidative stress markers only in the regions that are closely associated with damaged vessels, and, moreover, brain vascular wall lesions linearly correlate with the degree of neuronal and glial cell damage. We summarize the large body of evidence which indicates that sporadic, late-onset AD results from a vascular etiology by briefly reviewing mitochondrial damage and vascular risk factors associated with the disease and then we discuss the cerebral microvascular changes reason for the energy failure that occurs in normal aging and, to a much greater extent, AD.
Review: Cerebral microvascular pathology in aging and neurodegeneration
Brown, William R.; Thore, Clara R.
2010-01-01
This review of age-related brain microvascular pathologies focuses on topics studied by this laboratory, including anatomy of the blood supply, tortuous vessels, venous collagenosis, capillary remnants, vascular density, and microembolic brain injury. Our studies feature thick sections, large blocks embedded in celloidin, and vascular staining by alkaline phosphatase (AP). This permits study of the vascular network in three dimensions, and the differentiation of afferent from efferent vessels. Current evidence suggests that there is decreased vascular density in aging, Alzheimer’s disease (AD), and leukoaraiosis (LA), and cerebrovascular dysfunction precedes and accompanies cognitive dysfunction and neurodegeneration. A decline in cerebrovascular angiogenesis may inhibit recovery from hypoxia-induced capillary loss. Cerebral blood flow (CBF) is inhibited by tortuous arterioles and deposition of excessive collagen in veins and venules. Misery perfusion due to capillary loss appears to occur before cell loss in LA, and CBF is also reduced in the normal-appearing white matter. Hypoperfusion occurs early in AD, inducing white matter lesions and correlating with dementia. In vascular dementia, cholinergic reductions are correlated with cognitive impairment, and cholinesterase inhibitors have some benefit. Most lipid microemboli from cardiac surgery pass through the brain in a few days, but some remain for weeks. They can cause what appears to be a type of vascular dementia years after surgery. Donepezil has shown some benefit. Emboli, such as clots, cholesterol crystals, and microspheres can be extruded through the walls of cerebral vessels, but there is no evidence yet that lipid emboli undergo such extravasation. PMID:20946471
Exercise, cognitive function, and aging
2015-01-01
Increasing the lifespan of a population is often a marker of a country's success. With the percentage of the population over 65 yr of age expanding, managing the health and independence of this population is an ongoing concern. Advancing age is associated with a decrease in cognitive function that ultimately affects quality of life. Understanding potential adverse effects of aging on brain blood flow and cognition may help to determine effective strategies to mitigate these effects on the population. Exercise may be one strategy to prevent or delay cognitive decline. This review describes how aging is associated with cardiovascular disease risks, vascular dysfunction, and increasing Alzheimer's disease pathology. It will also discuss the possible effects of aging on cerebral vascular physiology, cerebral perfusion, and brain atrophy rates. Clinically, these changes will present as reduced cognitive function, neurodegeneration, and the onset of dementia. Regular exercise has been shown to improve cognitive function, and we hypothesize that this occurs through beneficial adaptations in vascular physiology and improved neurovascular coupling. This review highlights the potential interactions and ideas of how the age-associated variables may affect cognition and may be moderated by regular exercise. PMID:26031719
A failure to communicate: patients with cerebral aneurysms and vascular neurosurgeons
King, J; Yonas, H; Horowitz, M; Kassam, A; Roberts, M
2005-01-01
Objective: To assess communication between vascular neurosurgeons and their patients with unruptured cerebral aneurysms about treatment options and expected outcomes. Methods: Vascular neurosurgeons and their patients with cerebral aneurysms were surveyed immediately following outpatient appointments in a neurosurgery clinic. Data collected included how well the patient understood their aneurysm treatment options, the risks of a poor outcome from various treatments, and the consensus "best" treatment. Patient and neurosurgeon responses were measured using Likert scales, multiple choice questions, and visual analogue scales. Agreement between patient and neurosurgeon was assessed with kappa scores. The Wilcoxon sign rank test was used to compare visual analogue scale responses. Results: Data for 44 patient–neurosurgeon pairs were collected. Only 61% of patient–neurosurgeon pairs agreed on the best treatment plan for the patient's aneurysm (κ = 0.51, moderate agreement). Among the neurosurgeons, agreement with their patients ranged from 82% (κ = 0.77, almost perfect agreement) to 52% (κ = 0.37, fair agreement). Patients estimated much higher risks of stroke or death from surgical clipping, endovascular embolisation, or no intervention compared with the estimates offered by their neurosurgeons (surgical clipping: patient 36% v neurosurgeon 13%, p<0.001; endovascular embolisation: patient 35% v neurosurgeon 19%, p = 0.040; and no intervention: patient 63% v neurosurgeon 25%, p<0.001). Conclusions: Following consultation with a vascular neurosurgeon, many patients with cerebral aneurysms have an inaccurate understanding of their aneurysm treatment plan and an exaggerated sense of the risks of aneurysmal disease and treatment. PMID:15774444
A failure to communicate: patients with cerebral aneurysms and vascular neurosurgeons.
King, J T; Yonas, H; Horowitz, M B; Kassam, A B; Roberts, M S
2005-04-01
To assess communication between vascular neurosurgeons and their patients with unruptured cerebral aneurysms about treatment options and expected outcomes. Vascular neurosurgeons and their patients with cerebral aneurysms were surveyed immediately following outpatient appointments in a neurosurgery clinic. Data collected included how well the patient understood their aneurysm treatment options, the risks of a poor outcome from various treatments, and the consensus "best" treatment. Patient and neurosurgeon responses were measured using Likert scales, multiple choice questions, and visual analogue scales. Agreement between patient and neurosurgeon was assessed with kappa scores. The Wilcoxon sign rank test was used to compare visual analogue scale responses. Data for 44 patient-neurosurgeon pairs were collected. Only 61% of patient-neurosurgeon pairs agreed on the best treatment plan for the patient's aneurysm (kappa = 0.51, moderate agreement). Among the neurosurgeons, agreement with their patients ranged from 82% (kappa = 0.77, almost perfect agreement) to 52% (kappa = 0.37, fair agreement). Patients estimated much higher risks of stroke or death from surgical clipping, endovascular embolisation, or no intervention compared with the estimates offered by their neurosurgeons (surgical clipping: patient 36% v neurosurgeon 13%, p<0.001; endovascular embolisation: patient 35% v neurosurgeon 19%, p = 0.040; and no patient 63% v neurosurgeon 25%, p<0.001). Following consultation with a vascular neurosurgeon, many patients with cerebral aneurysms have an inaccurate understanding of their aneurysm treatment plan and an exaggerated sense of the risks of aneurysmal disease and treatment.
Xu, Feng; Fu, Ziao; Dass, Sharmila; Kotarba, AnnMarie E.; Davis, Judianne; Smith, Steven O.; Van Nostrand, William E.
2016-01-01
Cerebrovascular accumulation of amyloid β-protein (Aβ), a condition known as cerebral amyloid angiopathy (CAA), is a common pathological feature of patients with Alzheimer's disease. Familial Aβ mutations, such as Dutch-E22Q and Iowa-D23N, can cause severe cerebrovascular accumulation of amyloid that serves as a potent driver of vascular cognitive impairment and dementia. The distinctive features of vascular amyloid that underlie its unique pathological properties remain unknown. Here, we use transgenic mouse models producing CAA mutants (Tg-SwDI) or overproducing human wild-type Aβ (Tg2576) to demonstrate that CAA-mutant vascular amyloid influences wild-type Aβ deposition in brain. We also show isolated microvascular amyloid seeds from Tg-SwDI mice drive assembly of human wild-type Aβ into distinct anti-parallel β-sheet fibrils. These findings indicate that cerebrovascular amyloid can serve as an effective scaffold to promote rapid assembly and strong deposition of Aβ into a unique structure that likely contributes to its distinctive pathology. PMID:27869115
Popa-Wagner, A; Pirici, D; Petcu, E B; Mogoanta, L; Buga, A-M; Rosen, C L; Leon, R; Huber, J
2010-08-01
Chronic hypertension and cerebral amyloid angiopathy (CAA) are the main pathologies which can induce the rupture of cerebral vessels and intracerebral hemorrhages, as a result of degenerative changes in the vascular wall. A lot of progress has been made in this direction since the successful creation of the first mouse model for the study of Alzheimer's disease (AD), as the spectrum of AD pathology includes a plethora of changes found in pure cerebrovascular diseases. We describe here some of these mouse models having important vascular changes that parallel human AD pathology, and more importantly, we show how these models have helped us understand more about the mechanisms that lead to CAA formation. An important cellular event associated with reduced structural and functional recovery after stroke in aged animals is the early formation of a scar in the infarcted region that impairs subsequent neural recovery and repair. We review recent evidence showing that the rapid formation of the glial scar following stroke in aged rats is associated with premature cellular proliferation that originates primarily from the walls of capillaries in the corpus callosum adjacent to the infarcted region. After stroke several vascular mechanisms are turned-on immediately to protect the brain from further damage and help subsequent neuroregeneration and functional recovery. Although does occur after stroke, vasculogenesis is overshadowed in its protective/restorative role by the angiogenesis and arteriogenesis. Understanding the basic mechanisms underlying functional recovery after cerebral stroke in aging subjects is likely to yield new insights into the treatment of brain injury in the clinic.
Bech, R A; Waldemar, G; Gjerris, F; Klinken, L; Juhler, M
1999-01-01
Normal Pressure Hydrocephalus (NPH) is a potentially treatable syndrome with abnormal cerebrospinal fluid dynamics. Meningeal fibrosis and/or obliteration of the subarachnoid space have been suggested as one of the patho-anatomical substrates. However, other types of adult onset dementia, predominantly Alzheimer's disease and Vascular Dementia, may mimic the clinical NPH characteristics. The purpose of the present study was to correlate cerebral parenchymal and leptomeningeal biopsy findings to the clinical outcome after CSF shunting in a prospective group of idiopathic NPH (INPH) patients. The study comprises 27 patients with INPH, diagnosed and shunted according to generally accepted clinical, imaging and hydrodynamic criteria. In all patients a frontal leptomeningeal and brain biopsy was obtained prior to the shunt insertion. Degenerative cerebral changes, most often Alzheimer (6 cases) or vascular changes (7 cases) were described in 14 out of 27 biopsies. Arachnoid fibrosis was found in 9 of the 18 biopsies containing arachnoid tissue. Overall, nine patients (33%) improved, of whom 6 presented Alzheimer or vascular changes in their biopsies. No correlation was found between clinical outcome and the presence or absence of degenerative cerebral changes and/or arachnoid fibrosis. However, a tendency towards higher improvement rates was noted in the subgroups presenting degenerative cerebral changes or arachnoid fibrosis. The results suggest that no constant morphological element exists in the syndrome of INPH. Various aetiologies may be involved in the pathogenesis and possibly in some cases co-existing: Patients may also improve by shunting despite the presence of degenerative cerebral parenchymal changes.
Home Telecare for Chronic Disease Management
2001-10-25
in USA. Mortality rate rose 32.9% from 1979 to 1991 and age adjusted death rates for COPD rose 71% from 1966 to 1986.Over the same two decades death ... rates from all causes declined by 22% and for heart and cerebral vascular disease declined by 45% and 58% respectively. Increases in morbidity and
Drobyshev, V A; Filippova, G N; Loseva, M I; Shpagina, L A; Shelepova, N V; Zhelezniak, M S
2000-01-01
Combination of EHF therapy + magnetotherapy + drugs results in faster and persistent hypotensive and analgetic effect compared to standard drug therapy, potentiates action of vascular drugs on cerebral and peripheral circulation, reduces dose of hypotensive drugs in patients with arterial hypertension and vibration disease.
Richard, Edo; Gouw, Alida A; Scheltens, Philip; van Gool, Willem A
2010-03-01
White matter lesions (WMLs) and cerebral infarcts are common findings in Alzheimer disease and may contribute to dementia severity. WMLs and lacunar infarcts may provide a potential target for intervention strategies. This study assessed whether multicomponent vascular care in patients with Alzheimer disease with cerebrovascular lesions slows progression of WMLs and prevents occurrence of new infarcts. A randomized controlled clinical trial, including 123 subjects, compared vascular care with standard care in patients with Alzheimer disease with cerebrovascular lesions on MRI. Progression of WMLs, lacunes, medial temporal lobe atrophy, and global cortical atrophy were semiquantitatively scored after 2-year follow-up. Sixty-five subjects (36 vascular care, 29 standard care) had a baseline and a follow-up MRI and in 58 subjects, a follow-up scan could not be obtained due to advanced dementia or death. Subjects in the vascular care group had less progression of WMLs as measured with the WML change score (1.4 versus 2.3, P=0.03). There was no difference in the number of new lacunes or change in global cortical atrophy or medial temporal lobe atrophy between the 2 groups. Vascular care in patients with Alzheimer disease with cerebrovascular lesions slows progression of WMLs. Treatment aimed at vascular risk factors in patients with early Alzheimer disease may be beneficial, possibly in an even earlier stage of the disease.
Biology of vascular malformations of the brain.
Leblanc, Gabrielle G; Golanov, Eugene; Awad, Issam A; Young, William L
2009-12-01
This review discusses recent research on the genetic, molecular, cellular, and developmental mechanisms underlying the etiology of vascular malformations of the brain (VMBs), including cerebral cavernous malformation, sporadic brain arteriovenous malformation, and the arteriovenous malformations of hereditary hemorrhagic telangiectasia. Summary of Review- The identification of gene mutations and genetic risk factors associated with cerebral cavernous malformation, hereditary hemorrhagic telangiectasia, and sporadic arteriovenous malformation has enabled the development of animal models for these diseases and provided new insights into their etiology. All of the genes associated with VMBs to date have known or plausible roles in angiogenesis and vascular remodeling. Recent work suggests that the angiogenic process most severely disrupted by VMB gene mutation is that of vascular stabilization, the process whereby vascular endothelial cells form capillary tubes, strengthen their intercellular junctions, and recruit smooth muscle cells to the vessel wall. In addition, there is now good evidence that in some cases, cerebral cavernous malformation lesion formation involves a genetic 2-hit mechanism in which a germline mutation in one copy of a cerebral cavernous malformation gene is followed by a somatic mutation in the other copy. There is also increasing evidence that environmental second hits can produce lesions when there is a mutation to a single allele of a VMB gene. Recent findings begin to explain how mutations in VMB genes render vessels vulnerable to rupture when challenged with other inauspicious genetic or environmental factors and have suggested candidate therapeutics. Understanding of the cellular mechanisms of VMB formation and progression in humans has lagged behind that in animal models. New knowledge of lesion biology will spur new translational work. Several well-established clinical and genetic database efforts are already in place, and further progress will be facilitated by collaborative expansion and standardization of these.
Reversible cerebral vasoconstriction syndrome: a comprehensive update.
Mehdi, Ali; Hajj-Ali, Rula A
2014-09-01
Reversible cerebral vasoconstriction syndrome (RCVS) is a clinico-radiological syndrome characterized by recurrent thunderclap headache, with or without neurologic symptoms, and reversible vasoconstriction of cerebral arteries. RCVS affects patients in various racial and ethnic groups and in all age groups, although most commonly in the fourth decade of life. Many conditions and exposures have been linked to RCVS, including vasoactive drugs and the peripartum period. Disturbance of the cerebral vascular tone is thought to contribute to the disease's pathophysiology. RCVS generally follows a monophasic course. Associated strokes and cerebral hemorrhages are not uncommon. In this review we will attempt to provide a comprehensive overview of RCVS, with emphasis on the controversies in the field and the newest findings in the reported literature.
NASA Astrophysics Data System (ADS)
Mustari, Afrina; Nakamura, Naoki; Nishidate, Izumi; Kawauchi, Satoko; Sato, Shunichi; Sato, Manabu; Kokobo, Yasuaki
2017-04-01
Nervous system relies on a continuous and adequate supply of blood flow, bringing the nutrients that it needs and removing the waste products of metabolism. Failure of these mechanisms is found in a number of devastating cerebral diseases, including stroke, vascular dementia, brain injury and trauma. Vasomotion which is the spontaneous low-frequency oscillation derived by the contraction and relaxation of arterioles and appears to be an intrinsic property of the cerebral vasculature, is important for monitoring the cerebral flow, tissue metabolism and health status of brain tissue. In the present study, we investigated a method to visualize the spontaneous low-frequency oscillation of cerebral blood volume based on the sequential RGB images of exposed brain.
Roe, Annie J; Zhang, Shucha; Bhadelia, Rafeeque A; Johnson, Elizabeth J; Lichtenstein, Alice H; Rogers, Gail T; Rosenberg, Irwin H; Smith, Caren E; Zeisel, Steven H; Scott, Tammy M
2017-06-01
Background: There is a potential role of choline in cardiovascular and cerebrovascular disease through its involvement in lipid and one-carbon metabolism. Objective: We evaluated the associations of plasma choline and choline-related compounds with cardiometabolic risk factors, history of cardiovascular disease, and cerebrovascular pathology. Design: A cross-sectional subset of the Nutrition, Aging, and Memory in Elders cohort who had undergone MRI of the brain ( n = 296; mean ± SD age: 73 ± 8.1 y) was assessed. Plasma concentrations of free choline, betaine, and phosphatidylcholine were measured with the use of liquid-chromatography-stable-isotope dilution-multiple-reaction monitoring-mass spectrometry. A volumetric analysis of MRI was used to determine the cerebrovascular pathology (white-matter hyperintensities and small- and large-vessel infarcts). Multiple linear and logistic regression models were used to examine relations of plasma measures with cardiometabolic risk factors, history of cardiovascular disease, and radiologic evidence of cerebrovascular pathology. Results: Higher concentrations of plasma choline were associated with an unfavorable cardiometabolic risk-factor profile [lower high-density lipoprotein (HDL) cholesterol, higher total homocysteine, and higher body mass index (BMI)] and greater odds of large-vessel cerebral vascular disease or history of cardiovascular disease but lower odds of small-vessel cerebral vascular disease. Conversely, higher concentrations of plasma betaine were associated with a favorable cardiometabolic risk-factor profile [lower low-density lipoprotein (LDL) cholesterol and triglycerides] and lower odds of diabetes. Higher concentrations of plasma phosphatidylcholine were associated with characteristics of both a favorable cardiometabolic risk-factor profile (higher HDL cholesterol, lower BMI, lower C-reactive protein, lower waist circumference, and lower odds of hypertension and diabetes) and an unfavorable profile (higher LDL cholesterol and triglycerides). Conclusion: Choline and its metabolites have differential associations with cardiometabolic risk factors and subtypes of vascular disease, thereby suggesting differing roles in the pathogenesis of cardiovascular and cerebral large-vessel disease compared with that of small-vessel disease. © 2017 American Society for Nutrition.
Cifuentes, Diana; Poittevin, Marine; Dere, Ekrem; Broquères-You, Dong; Bonnin, Philippe; Benessiano, Joëlle; Pocard, Marc; Mariani, Jean; Kubis, Nathalie; Merkulova-Rainon, Tatyana; Lévy, Bernard I
2015-01-01
Cerebrovascular impairment is frequent in patients with Alzheimer disease and is believed to influence clinical manifestation and severity of the disease. Cardiovascular risk factors, especially hypertension, have been associated with higher risk of developing Alzheimer disease. To investigate the mechanisms underlying the hypertension, Alzheimer disease cross talk, we established a mouse model of dual pathology by infusing hypertensive doses of angiotensin II into transgenic APPPS1 mice overexpressing mutated human amyloid precursor and presenilin 1 proteins. At 4.5 months, at the early stage of disease progression, only hypertensive APPPS1 mice presented impairment of temporal order memory performance in the episodic-like memory task. This cognitive deficit was associated with an increased number of cortical amyloid deposits (223±5 versus 207±5 plaques/mm(2); P<0.05) and a 2-fold increase in soluble amyloid levels in the brain and in plasma. Hypertensive APPPS1 mice presented several cerebrovascular alterations, including a 25% reduction in cerebral microvessel density and a 30% to 40% increase in cerebral vascular amyloid deposits, as well as a decrease in vascular endothelial growth factor A expression in the brain, compared with normotensive APPPS1 mice. Moreover, the brain levels of nitric oxide synthase 1 and 3 and the nitrite/nitrate levels were reduced in hypertensive APPPS1 mice (by 49%, 34%, and 33%, respectively, compared with wild-type mice; P<0.05). Our results indicate that hypertension accelerates the development of Alzheimer disease-related structural and functional alterations, partially through cerebral vasculature impairment and reduced nitric oxide production. © 2014 American Heart Association, Inc.
Li, Hongmei; Guo, Qinxi; Inoue, Taeko; Polito, Vinicia A; Tabuchi, Katsuhiko; Hammer, Robert E; Pautler, Robia G; Taffet, George E; Zheng, Hui
2014-08-09
Accumulation and deposition of β-amyloid peptides (Aβ) in the brain is a central event in the pathogenesis of Alzheimer's disease (AD). Besides the parenchymal pathology, Aβ is known to undergo active transport across the blood-brain barrier and cerebral amyloid angiopathy (CAA) is a prominent feature in the majority of AD. Although impaired cerebral blood flow (CBF) has been implicated in faulty Aβ transport and clearance, and cerebral hypoperfusion can exist in the pre-clinical phase of Alzheimer's disease (AD), it is still unclear whether it is one of the causal factors for AD pathogenesis, or an early consequence of a multi-factor condition that would lead to AD at late stage. To study the potential interaction between faulty CBF and amyloid accumulation in clinical-relevant situation, we generated a new amyloid precursor protein (APP) knock-in allele that expresses humanized Aβ and a Dutch mutation in addition to Swedish/London mutations and compared this line with an equivalent knock-in line but in the absence of the Dutch mutation, both crossed onto the PS1M146V knock-in background. Introduction of the Dutch mutation results in robust CAA and parenchymal Aβ pathology, age-dependent reduction of spatial learning and memory deficits, and CBF reduction as detected by fMRI. Direct manipulation of CBF by transverse aortic constriction surgery on the left common carotid artery caused differential changes in CBF in the anterior and middle region of the cortex, where it is reduced on the left side and increased on the right side. However these perturbations in CBF resulted in the same effect: both significantly exacerbate CAA and amyloid pathology. Our study reveals a direct and positive link between vascular and parenchymal Aβ; both can be modulated by CBF. The new APP knock-in mouse model recapitulates many symptoms of AD including progressive vascular and parenchymal Aβ pathology and behavioral deficits in the absence of APP overexpression.
Basuroy, Shyamali; Bhattacharya, Sujoy; Leffler, Charles W.; Parfenova, Helena
2009-01-01
Inflammatory brain disease may damage cerebral vascular endothelium leading to cerebral blood flow dysregulation. The proinflammatory cytokine TNF-α causes oxidative stress and apoptosis in cerebral microvascular endothelial cells (CMVEC) from newborn pigs. We investigated contribution of major cellular sources of reactive oxygen species to endothelial inflammatory response. Nitric oxide synthase and xanthine oxidase inhibitors (Nω-nitro-l-arginine and allopurinol) had no effect, while mitochondrial electron transport inhibitors (CCCP, 2-thenoyltrifluoroacetone, and rotenone) attenuated TNF-α-induced superoxide (O2•−) and apoptosis. NADPH oxidase inhibitors (diphenylene iodonium and apocynin) greatly reduced TNF-α-evoked O2•− generation and apoptosis. TNF-α rapidly increased NADPH oxidase activity in CMVEC. Nox4, the cell-specific catalytic subunit of NADPH oxidase, is highly expressed in CMVEC, contributes to basal O2•− production, and accounts for a burst of oxidative stress in response to TNF-α. Nox4 small interfering RNA, but not Nox2, knockdown prevented oxidative stress and apoptosis caused by TNF-α in CMVEC. Nox4 is colocalized with HO-2, the constitutive isoform of heme oxygenase (HO), which is critical for endothelial protection against TNF-α toxicity. The products of HO activity, bilirubin and carbon monoxide (CO, as a CO-releasing molecule, CORM-A1), inhibited Nox4-generated O2•− and apoptosis caused by TNF-α stimulation. We conclude that Nox4 is the primary source of inflammation- and TNF-α-induced oxidative stress leading to apoptosis in brain endothelial cells. The ability of CO and bilirubin to combat TNF-α-induced oxidative stress by inhibiting Nox4 activity and/or by O2•− scavenging, taken together with close intracellular compartmentalization of HO-2 and Nox4 in cerebral vascular endothelium, may contribute to HO-2 cytoprotection against inflammatory cerebrovascular disease. PMID:19118162
Kılıç, Esra; Utine, Eda; Unal, Sule; Haliloğlu, Göknur; Oğuz, Kader Karli; Cetin, Mualla; Boduroğlu, Koray; Alanay, Yasemin
2012-10-01
We report an infant diagnosed with Majewski osteodysplastic primordial dwarfism type II at age 8 months, who experienced cerebrovascular morbidities related to this entity. Molecular analysis identified c.2609+1 G>A, intron 14, homozygous splice site mutation in the pericentrin gene. At age 18 months, she developed recurrent strokes and hemiparesis. Brain magnetic resonance imaging and magnetic resonance angiography showed abnormal gyral pattern, cortical acute infarcts, bilateral stenosis of the internal carotid arteries and reduced flow on the cerebral arteries, consistent with moyamoya disease. In Majewski osteodysplastic primordial dwarfism type II, life expectancy is reduced because of high risk of stroke secondary to cerebral vascular anomalies (aneurysms, moyamoya disease). Periodic screening for vascular events is recommended in individuals with Majewski osteodysplastic primordial dwarfism type II every 12-18 months following diagnosis. Our patient was medically managed with low molecular weight heparin followed with aspirin prophylaxis, in addition to carbamazepine and physical rehabilitation. We report an infant with moyamoya disease and recurrent stroke presenting 10 months after diagnosis (at age 18 months), and discuss the outcome of nonsurgical medical management. The presented case is the second youngest case developing stroke and moyamoya disease.
Hypertrophy of the vasa vasorum: vascular response to the hungry brain.
Cho, Hyun-Ji; Roh, Hong Gee; Chun, Young Il; Moon, Chang Taek; Chung, Hyun Woo; Kim, Hahn Young
2012-05-01
The vasa vasorum is a network of microvessels that supplies nutrients to the vessel wall itself. In pathologic conditions, the vasa vasorum can develop as potential collateral channels. Previous research documents revascularization through hypertrophy of the vasa vasorum after occlusion of the carotid artery. However, the relationship between the cerebral vascular demands and the hypertrophy of the vasa vasorum has not been well delineated by functional studies. A 66-year-old man presented with left hemiparesis, dysarthria, and hemineglect. Magnetic resonance imaging revealed an acute infarction in the vascular territory of the right middle cerebral artery. Transfemoral cerebral angiography revealed occlusion of the right proximal internal carotid artery (ICA). Single-photon emission computed tomography study showed decreased vascular reserve in the right cerebral hemisphere. Right superficial temporal artery-middle cerebral artery bypass surgery was performed in an attempt to improve hemispheric perfusion. Follow-up angiography 1 year later showed revascularization of the distal ICA by the hypertrophied vasa vasorum. Follow-up single-photon emission computed tomography study showed persistent decreased vascular reserve. In cases of ICA occlusion, a 1-year or less hungry period for the cerebral vascular demand may activate potential collateral channels of the vasa vasorum. In addition to the metabolic demand of the occluded vessel wall itself, the vascular demands of the hypoperfused brain may be a trigger factor that leads to hypertrophy of the vasa vasorum as collateral channels.
Vascular cognitive impairment, dementia, aging and energy demand. A vicious cycle.
Popa-Wagner, A; Buga, Ana-Maria; Popescu, B; Muresanu, D
2015-08-01
To a great extent, cognitive health depends on cerebrovascular health and a deeper understanding of the subtle interactions between cerebrovascular function and cognition is needed to protect humans from one of the most devastating affliction, dementia. However, the underlying biological mechanisms are still not completely clear. Many studies demonstrated that the neurovascular unit is compromised in cerebrovascular diseases and also in other types of dementia. The hemodynamic neurovascular coupling ensures a strong increase of the cerebral blood flow (CBF) and an acute increase in neuronal glucose uptake upon increased neural activity. Dysfunction of cerebral autoregulation with increasing age along with age-related structural and functional alterations in cerebral blood vessels including accumulation of amyloid-beta (Aβ) in the media of cortical arterioles, neurovascular uncoupling due to astrocyte endfeet retraction, impairs the CBF and increases the neuronal degeneration and susceptibility to hypoxia and ischemia. A decreased cerebral glucose metabolism is an early event in Alzheimer's disease (AD) pathology and may precede the neuropathological Aβ deposition associated with AD. Aβ accumulation in turn leads to further decreases in the CBF closing the vicious cycle. Alzheimer, aging and diabetes are also influenced by insulin/insulin-like growth factor-1 signaling, and accumulated evidence indicates sporadic AD is associated with disturbed brain insulin metabolism. Understanding how vascular and metabolic factors interfere with progressive loss of functional neuronal networks becomes essential to develop efficient drugs to prevent cognitive decline in elderly.
Song, Peiji; Qin, Jing; Lun, Han; Qiao, Penggang; Xie, Anming; Li, Gongjie
2017-11-01
Because digital subtraction angiography (DSA) is not an ideal angiographic examination for moyamoya disease in the pediatric population, magnetic resonance angiography (MRA) provides a noninvasive contrast-free angiographic examination; whereas magnetic resonance imaging (MRI) provides superior spatial resolution and soft-tissue contrast for lesion assessment. Ninety patients with moyamoya disease were examined by MRI and DSA to assess the distribution of lesions and their diagnostic agreement between modalities. MRI examination revealed 439 lesions. Punctate lesions were the most abundant, followed by patchy lesions. These lesions generally covered a smaller area than the abnormal-vascular corresponding brain parenchyma. Steno-occlusive changes at bilateral anterior, medial, and posterior cerebral arteries were identified by MRA and DSA. MRI showed moderate agreement in identifying lesions after steno-occlusive changes in anterior and medial cerebral arteries, and good agreement in posterior cerebral arteries; 6% to 11% of cases were misdiagnosed by MRA.
Halani, Sheliza; Kwinta, Jonathan B.; Golestani, Ali M.; Khatamian, Yasha B.; Chen, J. Jean
2016-01-01
Cerebrovascular reactivity (CVR) is an important metric of cerebrovascular health. While the BOLD fMRI method in conjunction with carbon-dioxide (CO2) based vascular manipulation has been the most commonly used, the BOLD signal is not a direct measure of vascular changes, and the use of arterial-spin labeling (ASL) cerebral blood flow (CBF) imaging is increasingly advocated. Nonetheless, given the differing dependencies of BOLD and CBF on vascular baseline conditions and the diverse CO2 manipulation types currently used in the literature, knowledge of potential biases introduced by each technique is critical for the interpretation of CVR measurements. In this work, we use simultaneous BOLD-CBF acquisitions during both vasodilatory (hypercapnic) and vasoconstrictive (hypocapnic) stimuli to measure CVR. We further imposed different levels of baseline vascular tension by inducing hypercapnic and hypocapnic baselines, separately from normocapnia by 4 mm Hg. We saw significant and diverse dependencies on vascular stimulus and baseline condition in both BOLD and CBF CVR measurements: (i) BOLD-based CVR is more sensitive to basal vascular tension than CBF-based CVR; (ii) the use of a combination of vasodilatory and vasoconstrictive stimuli maximizes the sensitivity of CBF-based CVR to vascular tension changes; (iii) the BOLD and CBF vascular response delays are both significantly lengthened at predilated baseline. As vascular tension can often be altered by potential pathology, our findings are important considerations when interpreting CVR measurements in health and disease. PMID:25655446
Chiva-Blanch, Gemma; Suades, Rosa; Crespo, Javier; Peña, Esther; Padró, Teresa; Jiménez-Xarrié, Elena; Martí-Fàbregas, Joan; Badimon, Lina
2016-01-01
Ischemic stroke has shown to induce platelet and endothelial microparticle shedding, but whether stroke induces microparticle shedding from additional blood and vascular compartment cells is unclear. Neural precursor cells have been shown to replace dying neurons at sites of brain injury; however, if neural precursor cell activation is associated to microparticle shedding, and whether this activation is maintained at long term and associates to stroke type and severity remains unknown. We analyzed neural precursor cells and blood and vascular compartment cells microparticle shedding after an acute ischemic stroke. Forty-four patients were included in the study within the first 48h after the onset of stroke. The cerebral lesion size was evaluated at 3-7 days of the stroke. Circulating microparticles from neural precursor cells and blood and vascular compartment cells (platelets, endothelial cells, erythrocytes, leukocytes, lymphocytes, monocytes and smooth muscle cells) were analyzed by flow cytometry at the onset of stroke and at 7 and 90 days. Forty-four age-matched high cardiovascular risk subjects without documented vascular disease were used as controls. Compared to high cardiovascular risk controls, patients showed higher number of neural precursor cell- and all blood and vascular compartment cell-derived microparticles at the onset of stroke, and after 7 and 90 days. At 90 days, neural precursor cell-derived microparticles decreased and smooth muscle cell-derived microparticles increased compared to levels at the onset of stroke, but only in those patients with the highest stroke-induced cerebral lesions. Stroke increases blood and vascular compartment cell and neural precursor cell microparticle shedding, an effect that is chronically maintained up to 90 days after the ischemic event. These results show that stroke induces a generalized blood and vascular cell activation and the initiation of neuronal cell repair process after stroke. Larger cerebral lesions associate with deeper vessel injury affecting vascular smooth muscle cells.
Chiva-Blanch, Gemma; Suades, Rosa; Crespo, Javier; Peña, Esther; Padró, Teresa; Jiménez-Xarrié, Elena; Martí-Fàbregas, Joan; Badimon, Lina
2016-01-01
Purpose Ischemic stroke has shown to induce platelet and endothelial microparticle shedding, but whether stroke induces microparticle shedding from additional blood and vascular compartment cells is unclear. Neural precursor cells have been shown to replace dying neurons at sites of brain injury; however, if neural precursor cell activation is associated to microparticle shedding, and whether this activation is maintained at long term and associates to stroke type and severity remains unknown. We analyzed neural precursor cells and blood and vascular compartment cells microparticle shedding after an acute ischemic stroke. Methods Forty-four patients were included in the study within the first 48h after the onset of stroke. The cerebral lesion size was evaluated at 3–7 days of the stroke. Circulating microparticles from neural precursor cells and blood and vascular compartment cells (platelets, endothelial cells, erythrocytes, leukocytes, lymphocytes, monocytes and smooth muscle cells) were analyzed by flow cytometry at the onset of stroke and at 7 and 90 days. Forty-four age-matched high cardiovascular risk subjects without documented vascular disease were used as controls. Results Compared to high cardiovascular risk controls, patients showed higher number of neural precursor cell- and all blood and vascular compartment cell-derived microparticles at the onset of stroke, and after 7 and 90 days. At 90 days, neural precursor cell-derived microparticles decreased and smooth muscle cell-derived microparticles increased compared to levels at the onset of stroke, but only in those patients with the highest stroke-induced cerebral lesions. Conclusions Stroke increases blood and vascular compartment cell and neural precursor cell microparticle shedding, an effect that is chronically maintained up to 90 days after the ischemic event. These results show that stroke induces a generalized blood and vascular cell activation and the initiation of neuronal cell repair process after stroke. Larger cerebral lesions associate with deeper vessel injury affecting vascular smooth muscle cells. PMID:26815842
Neuroimaging of Cerebrovascular Disease in the Aging Brain
Gupta, Ajay; Nair, Sreejit; Schweitzer, Andrew D.; Kishore, Sirish; Johnson, Carl E.; Comunale, Joseph P.; Tsiouris, Apostolos J.; Sanelli, Pina C.
2012-01-01
Cerebrovascular disease remains a significant public health burden with its greatest impact on the elderly population. Advances in neuroimaging techniques allow detailed and sophisticated evaluation of many manifestations of cerebrovascular disease in the brain parenchyma as well as in the intracranial and extracranial vasculature. These tools continue to contribute to our understanding of the multifactorial processes that occur in the age-dependent development of cerebrovascular disease. Structural abnormalities related to vascular disease in the brain and vessels have been well characterized with CT and MRI based techniques. We review some of the pathophysiologic mechanisms in the aging brain and cerebral vasculature and the related structural abnormalities detectable on neuroimaging, including evaluation of age-related white matter changes, atherosclerosis of the cerebral vasculature, and cerebral infarction. In addition, newer neuroimaging techniques, such as diffusion tensor imaging, perfusion techniques, and assessment of cerebrovascular reserve, are also reviewed, as these techniques can detect physiologic alterations which complement the morphologic changes that cause cerebrovascular disease in the aging brain.Further investigation of these advanced imaging techniques has potential application to the understanding and diagnosis of cerebrovascular disease in the elderly. PMID:23185721
Vijay, Anantha; Santhanam, R; Katusic, Zvonimir S
2006-10-01
Genetic modification of cerebral vessels represents a promising and novel approach for prevention and/or treatment of various cerebral vascular disorders, including cerebral vasospasm. In this review, we focus on the current understanding of the use of gene transfer to the cerebral arteries for prevention and/or treatment of cerebral vasospasm following subarachnoid hemorrhage (SAH). We also discuss the recent developments in vascular therapeutics, involving the autologous use of progenitor cells for repair of damaged vessels, as well as a cell-based gene delivery approach for the prevention and treatment of cerebral vasospasm.
Moran, C; Tapp, R J; Hughes, A D; Magnussen, C G; Blizzard, L; Phan, T G; Beare, R; Witt, N; Venn, A; Münch, G; Amaratunge, B C; Srikanth, V
2016-01-01
It is uncertain whether small vessel disease underlies the relationship between Type 2 Diabetes Mellitus (T2DM) and brain atrophy. We aimed to study whether retinal vascular architecture, as a proxy for cerebral small vessel disease, may modify or mediate the associations of T2DM with brain volumes. In this cross-sectional study using Magnetic Resonance Imaging (MRI) scans and retinal photographs in 451 people with and without T2DM, we measured brain volumes, geometric measures of retinal vascular architecture, clinical retinopathy, and MRI cerebrovascular lesions. There were 270 people with (mean age 67.3 years) and 181 without T2DM (mean age 72.9 years). T2DM was associated with lower gray matter volume (p = 0.008). T2DM was associated with greater arteriolar diameter (p = 0.03) and optimality ratio (p = 0.04), but these associations were attenuated by adjustments for age and sex. Only optimality ratio was associated with lower gray matter volume (p = 0.03). The inclusion of retinal measures in regression models did not attenuate the association of T2DM with gray matter volume. The association of T2DM with lower gray matter volume was independent of retinal vascular architecture and clinical retinopathy. Retinal vascular measures or retinopathy may not be sufficiently sensitive to confirm a microvascular basis for T2DM-related brain atrophy.
Cerebral dominance for speech and handwriting of patients with cortical vascular malformations.
Sass, K J; Buchanan, C P; Westerveld, M; Spencer, D D
1994-10-01
Lateralization of speech dominance was established using amobarbital for 22 patients with vascular malformations lateralized to the left cerebral hemisphere. Patients' histories were negative for clinically evident neurological events (e.g., seizures or hemorrhage) prior to adulthood. The vascular lesions were categorized as high flow arteriovenous malformations (AVMs) (n = 4), low flow AVMs (n = 6), cavernous hemangiomas (n = 10), or venous angiomas (n = 2) by reviewing angiographic findings and surgical pathology for those patients whose lesions were excised. Three of the malformations encroached upon primary language areas. The frequency of right hemisphere speech dominance was not significantly elevated in comparison with the normal population, even though the incidence of nonright-handedness was. Ninety-five percent of the patients were left hemisphere dominant for speech: only one patient, with a parietal lobe cavernous hemangioma, was found to be right hemisphere dominant for speech. This malformation did not involve the primary language areas. These findings suggest that vascular malformations do not affect speech dominance as readily as other neurological diseases, but frequently affect manual dominance.
Citicoline: pharmacological and clinical review, 2006 update.
Secades, Julio J; Lorenzo, José Luis
2006-09-01
Cytidine 5'-diphosphocholine, CDP-choline, or citicoline is an essential intermediate in the biosynthetic pathway of structural phospholipids in cell membranes, particularly phosphatidylcholine. Following administration by both the oral and parenteral routes, citicoline releases its two main components, cytidine and choline. Absorption by the oral route is virtually complete, and bioavailability by the oral route is therefore approximately the same as by the intravenous route. Once absorbed, citicoline is widely distributed throughout the body, crosses the blood-brain barrier and reaches the central nervous system (CNS), where it is incorporated into the membrane and microsomal phospholipid fraction. Citicoline activates biosynthesis of structural phospholipids of neuronal membranes, increases brain metabolism, and acts upon the levels of different neurotransmitters. Thus, citicoline has been experimentally shown to increase norepinephrine and dopamine levels in the CNS. Owing to these pharmacological mechanisms, citicoline has a neuroprotective effect in hypoxic and ischemic conditions, decreasing the volume of ischemic lesion, and also improves learning and memory performance in animal models of brain aging. In addition, citicoline has been shown to restore the activity of mitochondrial ATPase and membrane Na+/K+ATPase, to inhibit activation of certain phospholipases, and to accelerate reabsorption of cerebral edema in various experimental models. Citicoline has also been shown to be able to inhibit mechanisms of apoptosis associated to cerebral ischemia and in certain neurodegeneration models, and to potentiate neuroplasticity mechanisms. Citicoline is a safe drug, as shown by the toxicological tests conducted, that has no significant systemic cholinergic effects and is a well tolerated product. These pharmacological characteristics and the action mechanisms of citicoline suggest that this product may be indicated for treatment of cerebral vascular disease, head trauma (HT) of varying severity, and cognitive disorders of different causes. In studies conducted in the treatment of patients with HT, citicoline was able to accelerate recovery from post-traumatic coma and neurological deficits, achieving an improved final functional outcome, and to shorten hospital stay in these patients. Citicoline also improved the mnesic and cognitive disorders seen after HT of minor severity that constitute the so-called post-concussional syndrome. In the treatment of patients with acute ischemic cerebral vascular disease, citicoline accelerates recovery of consciousness and motor deficit, achieves a better final outcome, and facilitates rehabilitation of these patients. The other major indication of citicoline is for treatment of senile cognitive impairment, either secondary to degenerative diseases (e.g. Alzheimer disease) or to chronic cerebral vascular disease. In patients with chronic cerebral ischemia, citicoline improves scores in cognitive rating scales, while in patients with senile dementia of the Alzheimer type it stops the course of disease, and neuroendocrine, neuroimmunomodulatory, and neurophysiological benefits have been reported. Citicoline has also been shown to be effective in Parkinson disease, drug addictions, and alcoholism, as well as in amblyopia and glaucoma. No serious side effects have occurred in any series of patients treated with citicoline, which attests to the safety of treatment with citicoline. (c) 2006 Prous Science. All rights reserved.
CDP-choline: pharmacological and clinical review.
Secades, J J; Frontera, G
1995-10-01
Cytidine 5'-diphosphocholine, CDP-choline or citicoline, is an essential intermediate in the biosynthetic pathway of the structural phospholipids of cell membranes, especially in that of phosphatidylcholine. Upon oral or parenteral administration, CDP-choline releases its two principle components, cytidine and choline. When administered orally, it is absorbed almost completely, and its bioavailability is approximately the same as when administered intravenously. Once absorbed, the cytidine and choline disperse widely throughout the organism, cross the blood-brain barrier and reach the central nervous system (CNS), where they are incorporated into the phospholipid fraction of the membrane and microsomes. CDP-choline activates the biosynthesis of structural phospholipids in the neuronal membranes, increases cerebral metabolism and acts on the levels of various neurotransmitters. Thus, it has been experimentally proven that CDP-choline increases noradrenaline and dopamine levels in the CNS. Due to these pharmacological activities, CDP-choline has a neuroprotective effect in situations of hypoxia and ischemia, as well as improved learning and memory performance in animal models of brain aging. Furthermore, it has been demonstrated that CDP-choline restores the activity of mitochondrial ATPase and of membranal Na+/K+ ATPase, inhibits the activation of phospholipase A2 and accelerates the reabsorption of cerebral edema in various experimental models. CDP-choline is a safe drug, as toxicological tests have shown; it has no serious effects on the cholinergic system and it is perfectly tolerated. These pharmacological characteristics, combined with CDP-choline's mechanisms of action, suggest that this drug may be suitable for the treatment of cerebral vascular disease, head trauma of varying severity and cognitive disorders of diverse etiology. In studies carried out on the treatment of patients with head trauma, CDP-choline accelerated the recovery from post-traumatic coma and the recuperation of walking ability, achieved a better final functional result and reduced the hospital stay of these patients, in addition to improving the cognitive and memory disturbances which are observed after a head trauma of lesser severity and which constitute the disorder known as postconcussion syndrome. In the treatment of patients with acute cerebral vascular disease of the ischemic type, CDP-choline accelerated the recovery of consciousness and motor deficit, attaining a better final result and facilitating the rehabilitation of these patients. The other important use for CDP-choline is in the treatment of senile cognitive impairment, which is secondary to degenerative diseases (e.g., Alzheimer's disease) and to chronic cerebral vascular disease. In patients with chronic cerebral ischemia, CDP-choline improves scores on cognitive evaluation scales, while in patients with senile dementia of the Alzheimer's type, it slows the disease's evolution. Beneficial neuroendocrine, neuroimmunomodulatory and neurophysiological effects have been described. CDP-choline has also been shown to be effective as co-therapy for Parkinson's disease. No serious side effects have been found in any of the groups of patients treated with CDP-choline, which demonstrates the safety of the treatment.
Study of the Dynamics of Transcephalic Cerebral Impedance Data during Cardio-Vascular Surgery
NASA Astrophysics Data System (ADS)
Atefi, S. R.; Seoane, F.; Lindecrantz, K.
2013-04-01
Postoperative neurological deficits are one of the risks associated with cardio vascular surgery, necessitating development of new techniques for cerebral monitoring. In this study an experimental observation regarding the dynamics of transcephalic Electrical Bioimpedance (EBI) in patients undergoing cardiac surgery with and without extracorporeal circulation (ECC) was conducted to investigate the potential use of electrical Bioimpedance for cerebral monitoring in cardio vascular surgery. Tetrapolar transcephalic EBI measurements at single frequency of 50 kHz were recorded prior to and during cardio vascular surgery. The obtained results show that the transcephalic impedance decreases in both groups of patients as operation starts, however slight differences in these two groups were also observed with the cerebral impedance reduction in patients having no ECC being less common and not as pronounced as in the ECC group. Changes in the cerebral impedance were in agreement with changes of haematocrit and temperature. The origin of EBI changes is still unexplained however these results encourage us to continue investigating the application of electrical bioimpedance cerebral monitoring clinically.
Cortical Cerebral Microinfarcts on 3 Tesla MRI in Patients with Vascular Cognitive Impairment.
Ferro, Doeschka A; van Veluw, Susanne J; Koek, Huiberdina L; Exalto, Lieza G; Biessels, Geert Jan
2017-01-01
Cerebral microinfarcts (CMIs) are small ischemic lesions that are a common neuropathological finding in patients with stroke or dementia. CMIs in the cortex can now be detected in vivo on 3 Tesla MRI. To determine the occurrence of CMIs and associated clinical features in patients with possible vascular cognitive impairment (VCI). 182 memory-clinic patients (mean age 71.4±10.6, 55% male) with vascular injury on brain MRI (i.e., possible VCI) underwent a standardized work-up including 3 Tesla MRI and cognitive assessment. A control group consisted of 70 cognitively normal subjects (mean age 70.6±4.7, 60% male). Cortical CMIs and other neuroimaging markers of vascular brain injury were rated according to established criteria. Occurrence of CMIs was higher (20%) in patients compared to controls (10%). Among patients, the presence of CMIs was associated with male sex, history of stroke, infarcts, and white matter hyperintensities. CMI presence was also associated with a diagnosis of vascular dementia and reduced performance in multiple cognitive domains. CMIs on 3 Tesla MRI are common in patients with possible VCI and co-occur with imaging markers of small and large vessel disease, likely reflecting a heterogeneous etiology. CMIs are associated with worse cognitive performance, independent of other markers of vascular brain injury.
Anatomic vascular phantom for the verification of MRA and XRA visualization and fusion
NASA Astrophysics Data System (ADS)
Mankovich, Nicholas J.; Lambert, Timothy; Zrimec, Tatjana; Hiller, John B.
1995-05-01
A project is underway to develop automated methods of fusing cerebral magnetic resonance angiography (MRA) and x-ray angiography (XRA) for creating accurate visualizations used in planning treatment of vascular disease. We have developed a vascular phantom suitable for testing segmentation and fusion algorithms with either derived images (psuedo-MRA/psuedo-XRA) or actual MRA or XRA image sequences. The initial unilateral arterial phantom design, based on normal human anatomy, contains 48 tapering vascular segments with lumen diameters from 2.5 millimeter to 0.25 millimeter. The initial phantom used rapid prototyping technology (stereolithography) with a 0.9 millimeter vessel wall fabricated in an ultraviolet-cured plastic. The model fabrication resulted in a hollow vessel model comprising the internal carotid artery, the ophthalmic artery, and the proximal segments of the anterior, middle, and posterior cerebral arteries. The complete model was fabricated but the model's lumen could not be cleared for vessels with less than 1 millimeter diameter. Measurements of selected vascular outer diameters as judged against the CAD specification showed an accuracy of 0.14 mm and precision (standard deviation) of 0.15 mm. The plastic vascular model produced provides a fixed geometric framework for the evaluation of imaging protocols and the development of algorithms for both segmentation and fusion.
Del Brutto, Oscar H; Mera, Robertino M; Del Brutto, Victor J; Zambrano, Mauricio; Lama, Julio
2015-04-01
Cerebral small vessel disease is probably one of the most common pathogenetic mechanisms underlying stroke in Latin America. However, the importance of silent markers of small vessel disease, including white matter hyperintensities of presumed vascular origin, has not been assessed so far. The study aims to evaluate prevalence and correlates of white matter hyperintensities in community-dwelling elders living in Atahualpa (rural Ecuador). Atahualpa residents aged ≥ 60 years were identified during a door-to-door survey and invited to undergo brain magnetic resonance imaging for identification and grading white matter hyperintensities and other markers of small vessel disease. Using multivariate logistic regression models, we evaluated whether white matter hyperintensities is associated with demographics, cardiovascular health status, stroke, cerebral microbleeds, and cortical atrophy, after adjusting for the other variables. Out of 258 enrolled persons (mean age, 70 ± 8 years; 59% women), 172 (67%) had white matter hyperintensities, which were moderate to severe in 63. Analyses showed significant associations of white matter hyperintensities presence and severity with age and cardiovascular health status, as well as with overt and silent strokes, and a trend for association with cerebral microbleeds and cortical atrophy. Prevalence and correlates of white matter hyperintensities in elders living in rural Ecuador is almost comparable with that reported from industrialized nations, reinforcing the concept that the burden of small vessel disease is on the rise in underserved Latin American populations. © 2014 World Stroke Organization.
Blood Platelets in the Progression of Alzheimer’s Disease
Gowert, Nina S.; Donner, Lili; Chatterjee, Madhumita; Eisele, Yvonne S.; Towhid, Seyda T.; Münzer, Patrick; Walker, Britta; Ogorek, Isabella; Borst, Oliver; Grandoch, Maria; Schaller, Martin; Fischer, Jens W.; Gawaz, Meinrad; Weggen, Sascha; Lang, Florian; Jucker, Mathias; Elvers, Margitta
2014-01-01
Alzheimer’s disease (AD) is characterized by neurotoxic amyloid-ß plaque formation in brain parenchyma and cerebral blood vessels known as cerebral amyloid angiopathy (CAA). Besides CAA, AD is strongly related to vascular diseases such as stroke and atherosclerosis. Cerebrovascular dysfunction occurs in AD patients leading to alterations in blood flow that might play an important role in AD pathology with neuronal loss and memory deficits. Platelets are the major players in hemostasis and thrombosis, but are also involved in neuroinflammatory diseases like AD. For many years, platelets were accepted as peripheral model to study the pathophysiology of AD because platelets display the enzymatic activities to generate amyloid-ß (Aß) peptides. In addition, platelets are considered to be a biomarker for early diagnosis of AD. Effects of Aß peptides on platelets and the impact of platelets in the progression of AD remained, however, ill-defined. The present study explored the cellular mechanisms triggered by Aß in platelets. Treatment of platelets with Aß led to platelet activation and enhanced generation of reactive oxygen species (ROS) and membrane scrambling, suggesting enhanced platelet apoptosis. More important, platelets modulate soluble Aß into fibrillar structures that were absorbed by apoptotic but not vital platelets. This together with enhanced platelet adhesion under flow ex vivo and in vivo and platelet accumulation at amyloid deposits of cerebral vessels of AD transgenic mice suggested that platelets are major contributors of CAA inducing platelet thrombus formation at vascular amyloid plaques leading to vessel occlusion critical for cerebrovascular events like stroke. PMID:24587388
Is Beta-Amyloid Accumulation a Cause or Consequence of Alzheimer’s Disease?
Wang, Shaoxun; Mims, Paige N.; Roman, Richard J.; Fan, Fan
2017-01-01
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that is characterized by the pathological hallmarks of extracellular beta-amyloid (Aβ) plaques and intraneuronal tau-containing neurofibrillary tangles in the brain. Intraneuronal accumulation of Aβ also plays a role to accelerate AD progression by promoting neurodegeneration. Additionally, AD is associated with the development of amyloid angiopathy (CAA), in which Aβ builds up on the walls of the cerebral arteries, which augments the development of cerebral vascular disease (CVD). Conversely, CVD promotes Aβ deposition and the development of AD by affecting the balance of Aβ production and clearance. However, it remains to be determined whether the accumulation of Aβ is a cause or consequence of AD. The interaction between AD and CVD is a topic of considerable current interest. Here, we discuss the role of CVD in Aβ accumulation and the development of AD to provide a new point of view that combination therapies that address the accompanying cerebral microvascular disease may potentiate the efficacy of emerging treatment for AD. PMID:28815226
Neural Vascular Mechanism for the Cerebral Blood Flow Autoregulation after Hemorrhagic Stroke.
Xiao, Ming; Li, Qiang; Feng, Hua; Zhang, Le; Chen, Yujie
2017-01-01
During the initial stages of hemorrhagic stroke, including intracerebral hemorrhage and subarachnoid hemorrhage, the reflex mechanisms are activated to protect cerebral perfusion, but secondary dysfunction of cerebral flow autoregulation will eventually reduce global cerebral blood flow and the delivery of metabolic substrates, leading to generalized cerebral ischemia, hypoxia, and ultimately, neuronal cell death. Cerebral blood flow is controlled by various regulatory mechanisms, including prevailing arterial pressure, intracranial pressure, arterial blood gases, neural activity, and metabolic demand. Evoked by the concept of vascular neural network, the unveiled neural vascular mechanism gains more and more attentions. Astrocyte, neuron, pericyte, endothelium, and so forth are formed as a communicate network to regulate with each other as well as the cerebral blood flow. However, the signaling molecules responsible for this communication between these new players and blood vessels are yet to be definitively confirmed. Recent evidence suggested the pivotal role of transcriptional mechanism, including but not limited to miRNA, lncRNA, exosome, and so forth, for the cerebral blood flow autoregulation. In the present review, we sought to summarize the hemodynamic changes and underline neural vascular mechanism for cerebral blood flow autoregulation in stroke-prone state and after hemorrhagic stroke and hopefully provide more systematic and innovative research interests for the pathophysiology and therapeutic strategies of hemorrhagic stroke.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yonas, H.; Steed, D.L.; Latchaw, R.E.
Operative intervention remains controversial for patients with transient nonhemispheric symptoms with occlusive disease of both the anterior and posterior cerebral circulations. In addition to the standard evaluation of these patients, we have used stable xenon-enhanced computed tomographic mapping of cerebral blood flow (Xe/CT CBF). This relatively new and potentially widely available CBF methodology, by measuring approximately 30,000 CBF values within each of three CT levels, provides a readily interpretable means of evaluating extremes of hemodynamic compromise within any or all vascular territories. In the past 30 months, Xe/CT CBF studies in 300 patients with occlusive vascular disease have identified ninemore » patients with global low flow and nonhemispheric symptoms (vertigo, lightheadedness, and/or blurred vision). Blood pressures determined by ocular pneumoplethysmography of Gee were markedly abnormal with reduced ocular/brachial ratios. Each patient had a combination of both segmental carotid and vertebrobasilar occlusive disease. Each patient had a flow-augmenting procedure performed on the anterior circulation in an attempt to improve global flow: carotid endarterectomy (two patients), subclavian-external carotid bypass (one patient), and superficial temporal artery-middle cerebral artery bypass (six patients). In each case disabling transient symptoms were relieved. There were no operative deaths, but one stroke occurred, probably as a result of a brief period of postoperative hypotension. Postoperative Xe/CT CBF studies show a long-term improved global CBF in all patients.« less
Wiesmann, Maximilian; Roelofs, Monica; van der Lugt, Robert; Heerschap, Arend; Kiliaan, Amanda J; Claassen, Jurgen Ahr
2017-07-01
Elevated angiotensin II causes hypertension and contributes to Alzheimer's disease by affecting cerebral blood flow. Angiotensin II receptor blockers may provide candidates to reduce (vascular) risk factors for Alzheimer's disease. We studied effects of two months of angiotensin II-induced hypertension on systolic blood pressure, and treatment with the angiotensin II receptor blockers, eprosartan mesylate, after one month of induced hypertension in wild-type C57bl/6j and AβPPswe/PS1ΔE9 (AβPP/PS1/Alzheimer's disease) mice. AβPP/PS1 showed higher systolic blood pressure than wild-type. Subsequent eprosartan mesylate treatment restored this elevated systolic blood pressure in all mice. Functional connectivity was decreased in angiotensin II-infused Alzheimer's disease and wild-type mice, and only 12 months of Alzheimer's disease mice showed impaired cerebral blood flow. Only angiotensin II-infused Alzheimer's disease mice exhibited decreased spatial learning in the Morris water maze. Altogether, angiotensin II-induced hypertension not only exacerbated Alzheimer's disease-like pathological changes such as impairment of cerebral blood flow, functional connectivity, and cognition only in Alzheimer's disease model mice, but it also induced decreased functional connectivity in wild-type mice. However, we could not detect hypertension-induced overexpression of Aβ nor increased neuroinflammation. Our findings suggest a link between midlife hypertension, decreased cerebral hemodynamics and connectivity in an Alzheimer's disease mouse model. Eprosartan mesylate treatment restored and beneficially affected cerebral blood flow and connectivity. This model could be used to investigate prevention/treatment strategies in early Alzheimer's disease.
Arikan, Fuat; Rubiera, Marta; Serena, Joaquín; Rodríguez-Hernández, Ana; Gándara, Darío; Lorenzo-Bosquet, Carles; Tomasello, Alejandro; Chocrón, Ivette; Quintana-Corvalan, Maximiliano; Sahuquillo, Juan
2018-03-14
Cerebral revascularization techniques are an indispensable tool in the current armamentarium of vascular neurosurgeons. We present revascularization surgery experience and results in both moyamoya disease and occlusive cerebral ischaemia. Patients with ischaemic occlusive disease and moyamoya disease who underwent microsurgical revascularization between October 2014 and September 2017 were analysed. In the study period, 23 patients with occlusive ischaemic disease underwent microsurgical revascularization. Three patients presented with serious postoperative complications (2 intraparenchymal haemorrhages in the immediate postoperative period and one thrombosis of the femoral artery). All patients, except one, achieved normalization of the cerebral hemodynamic reserve (CHR) in the SPECT study. Twenty patients had a good neurological result, with no ischaemic recurrence of the revascularized territory. Among patients with moyamoya, 20 had moyamoya disease and 5 had moyamoya syndrome with unilateral involvement. Five patients were treated at paediatric age. Haemorrhagic onset occurred in 2 patients. The CHR study showed hemodynamic compromise in all patients. Cerebral SPECT at one year showed resolution of the hemodynamic failure in all patients. There have been 4 postoperative complications (acute subdural hematoma, two subdural collections and one dehiscence of the surgical wound). No patient presented with neurological worsening at 6 and 12months of follow-up. Cerebral revascularization through end-to-side anastomosis between the superficial temporal artery and a cortical branch of the middle cerebral artery is an indisputable technique in the treatment of moyamoya disease and possibly in a subgroup of patients with symptomatic occlusive ischaemic cerebrovascular disease. Copyright © 2018 Sociedad Española de Neurocirugía. Publicado por Elsevier España, S.L.U. All rights reserved.
Zwanenburg, Jaco JM; Reinink, Rik; Wisse, Laura EM; Luijten, Peter R; Kappelle, L Jaap; Geerlings, Mirjam I; Biessels, Geert Jan
2016-01-01
Cerebral perivascular spaces (PVS) are small physiological structures around blood vessels in the brain. MRI visible PVS are associated with ageing and cerebral small vessel disease (SVD). 7 Tesla (7T) MRI improves PVS detection. We investigated the association of age, vascular risk factors, and imaging markers of SVD with PVS counts on 7 T MRI, in 50 persons aged ≥ 40. The average PVS count ± SD in the right hemisphere was 17 ± 6 in the basal ganglia and 71 ± 28 in the semioval centre. We observed no relation between age or vascular risk factors and PVS counts. The presence of microbleeds was related to more PVS in the basal ganglia (standardized beta 0.32; p = 0.04) and semioval centre (standardized beta 0.39; p = 0.01), and white matter hyperintensity volume to more PVS in the basal ganglia (standardized beta 0.41; p = 0.02). We conclude that PVS counts on 7T MRI are high and are related SVD markers, but not to age and vascular risk factors. This latter finding may indicate that due to the high sensitivity of 7T MRI, the correlation of PVS counts with age or vascular risk factors may be attenuated by the detection of “normal”, non-pathological PVS. PMID:27154503
Local estrogenic/androgenic balance in the cerebral vasculature
Krause, Diana N.; Duckles, Sue P.; Gonzales, Rayna J.
2011-01-01
Reproductive effects of sex steroids are well-known, however it is increasingly apparent that these hormones have important actions on non-reproductive tissues such as the vasculature. The latter effects can be relevant throughout the lifespan, not just limited to reproductive years, and are not necessarily restricted to one sex or the other. Our work has established that cerebral blood vessels are a non-reproductive target tissue for sex steroids. We have found that estrogen and androgens alter vascular tone, endothelial function, oxidative stress and inflammatory responses in cerebral vessels. Often the actions of estrogen and androgens oppose each other. Moreover, it is clear that cerebral vessels are directly targeted by sex steroids as they express specific receptors for these hormones. Interestingly, cerebral blood vessels also express enzymes that metabolize sex steroids. These findings suggest that local synthesis of 17β-estradiol and dihydrotestosterone can occur within the vessel wall. One of the enzymes present, aromatase, converts testosterone to 17β-estradiol, which would alter the local balance of androgenic and estrogenic influences. Thus cerebral vessels are affected by circulating sex hormones as well as locally synthesized sex steroids. The presence of vascular endocrine effector mechanisms has important implications for male-female differences in cerebrovascular function and disease. Moreover, the cerebral circulation is a target for gonadal hormones as well as anabolic steroids and therapeutic drugs used to manipulate sex steroid actions. The long-term consequences of these influences have yet to be determined. PMID:21535417
Zhu, Jun-De; Wang, Jun-Jie; Zhang, Xian-Hu; Yu, Yan; Kang, Zhao-Sheng
2018-04-01
Panax ginseng is a slow-growing perennial plant. Panax ginseng extract has numerous biological activities, including antitumor, anti-inflammatory and antistress activities. Panax ginseng extract also has a cognition-enhancing effect in rats with alcohol-induced memory impairment. In this study, we partially occluded the bilateral carotid arteries in the rat to induce chronic cerebral hypoperfusion, a well-known model of vascular dementia. The rats were then intragastrically administered 50 or 100 mg/kg Panax ginseng extract. Morris water maze and balance beam tests were used to evaluate memory deficits and motor function, respectively. Protein quantity was used to evaluate cholinergic neurons. Immunofluorescence staining was used to assess the number of glial fibrillary acidic protein-positive cells. Western blot assay was used to evaluate protein levels of vascular endothelial growth factor, basic fibroblast growth factor, Bcl-2 and Bax. Treatment with Panax ginseng extract for 8 weeks significantly improved behavioral function and increased neuronal density and VEGF and bFGF protein expression in the hippocampal CA3 area. Furthermore, Panax ginseng extract reduced the number of glial fibrillary acidic protein-immunoreactive cells, and it decreased apoptosis by upregulating Bcl-2 and downregulating Bax protein expression. The effect of Panax ginseng extract was dose-dependent and similar to that of nimodipine, a commonly used drug for the treatment of vascular dementia. These findings suggest that Panax ginseng extract is neuroprotective against vascular dementia induced by chronic cerebral hypoperfusion, and therefore might have therapeutic potential for preventing and treating the disease.
Sahin, Neslin; Solak, Aynur; Genc, Berhan; Akpinar, Mehmet Besir
2015-07-01
Virchow-Robin space (VRS) dilatation is related to many pathologic conditions, mostly associated with vascular abnormalities. White matter lesions (WMLs) are commonly seen on brain magnetic resonance imaging (MRI) with advancing age and generally considered as potential markers for vascular disease. To investigate if asymmetric dilatation of VRSs and WMLs are associated with unilateral internal carotid artery stenosis (ICAS) and to test the relationship between dilated VRSs and common vascular risk factors. Twenty-nine patients (18 men, 11 women; mean age, 68.62 years) with unilateral ICAS (≥70% carotid stenosis) undergoing carotid endarterectomy were identified for this Health Insurance Portability and Accountability Act (HIPAA) compliant prospective study and assessed with brain MRI. Two experienced radiologists scored VRSs and WMLs and evaluated old infarcts, chronic lacunar infarcts, and cerebral atrophy. Asymmetry of WML and VRS scores between two cerebral hemispheres was assessed and associations between VRS scores, WML scores, and explanatory variables (e.g. age, sex, vascular risk factors, and atrophy) were tested. In this study, WMLs and basal ganglia VRSs were significantly greater in the unilateral hemisphere with ICA stenosis than contralateral hemisphere. Basal ganglia VRSs were associated with WMLs and internal cerebral atrophy. No association between the severity of VRSs and vascular risk factors was found. ICA stenosis may contribute as a factor in the development of WMLs and dilatation of VRSs by causing chronic hypoperfusion. VRS dilatation may be an additional MRI marker of ICAS. © The Foundation Acta Radiologica 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Effects of cilazapril on the cerebral circulation in spontaneously hypertensive rats.
Clozel, J P; Kuhn, H; Hefti, F
1989-12-01
Chronic hypertension is associated with a lower cerebral vascular reserve due to thickening of the media of cerebral vessels. The goal of the present study was to determine if long-term inhibition of angiotensin converting enzyme with cilazapril, a new long-acting angiotensin converting enzyme inhibitor, could improve cerebral vascular reserve. For this purpose, two groups of 12 spontaneously hypertensive rats were compared. One group was treated with 10 mg/kg/day cilazapril from 14 weeks to 33 weeks of age and was compared with a group treated with placebo. A third group of 12 Wistar-Kyoto rats treated with placebo was used as reference. At the end of the treatment period, cerebral vascular reserve was evaluated by measuring cerebral blood flow (radioactive microspheres) at rest and during maximal vasodilation induced by seizures provoked by bicuculline. Then, the rats were perfusion-fixed, and morphometry of the cerebral vasculature was performed. Cerebral vascular reserve was severely impaired in the spontaneously hypertensive rats since their maximal cerebral blood flow was decreased by 52% compared with the Wistar-Kyoto rats. Cilazapril normalized cerebral blood flow reserve. This normalization was associated with a decreased thickness of the medial layer in the carotid artery, the middle cerebral artery, and in the pial arteries larger than 100 microns. Further studies are required to determine whether this decreased medial thickness is due to the normalization of blood pressure induced by cilazapril or to the reduction of trophic factors such as angiotensin II.
Is High Blood Pressure Self-Protection for the Brain?
Warnert, Esther A H; Rodrigues, Jonathan C L; Burchell, Amy E; Neumann, Sandra; Ratcliffe, Laura E K; Manghat, Nathan E; Harris, Ashley D; Adams, Zoe; Nightingale, Angus K; Wise, Richard G; Paton, Julian F R; Hart, Emma C
2016-12-09
Data from animal models of hypertension indicate that high blood pressure may develop as a vital mechanism to maintain adequate blood flow to the brain. We propose that congenital vascular variants of the posterior cerebral circulation and cerebral hypoperfusion could partially explain the pathogenesis of essential hypertension, which remains enigmatic in 95% of patients. To evaluate the role of the cerebral circulation in the pathophysiology of hypertension. We completed a series of retrospective and mechanistic case-control magnetic resonance imaging and physiological studies in normotensive and hypertensive humans (n=259). Interestingly, in humans with hypertension, we report a higher prevalence of congenital cerebrovascular variants; vertebral artery hypoplasia, and an incomplete posterior circle of Willis, which were coupled with increased cerebral vascular resistance, reduced cerebral blood flow, and a higher incidence of lacunar type infarcts. Causally, cerebral vascular resistance was elevated before the onset of hypertension and elevated sympathetic nerve activity (n=126). Interestingly, untreated hypertensive patients (n=20) had a cerebral blood flow similar to age-matched controls (n=28). However, participants receiving antihypertensive therapy (with blood pressure controlled below target levels) had reduced cerebral perfusion (n=19). Finally, elevated cerebral vascular resistance was a predictor of hypertension, suggesting that it may be a novel prognostic or diagnostic marker (n=126). Our data indicate that congenital cerebrovascular variants in the posterior circulation and the associated cerebral hypoperfusion may be a factor in triggering hypertension. Therefore, lowering blood pressure may worsen cerebral perfusion in susceptible individuals. © 2016 American Heart Association, Inc.
Liu, Lin; Huo, Ju; Zhao, Ying; Tian, Yu
2012-03-25
The present study investigated the disease trajectory of vascular cognitive impairment using the entropy of information in a neural network mathematical simulation based on the free radical and excitatory amino acids theories. Glutamate, malondialdehyde, and inducible nitric oxide synthase content was significantly elevated, but acetylcholine, catalase, superoxide dismutase, glutathione peroxidase and constitutive nitric oxide synthase content was significantly decreased in our vascular cognitive impairment model. The fitting curves for each factor were obtained using Matlab software. Nineteen, 30 and 49 days post ischemia were the main output time frames of the influence of these seven factors. Our results demonstrated that vascular cognitive impairment involves multiple factors. These factors include excitatory amino acid toxicity and nitric oxide toxicity. These toxicities disrupt the dynamic equilibrium of the production and removal of oxygen free radicals after cerebral ischemia, reducing the ability to clear oxygen free radicals and worsening brain injury.
Low Frequency Noise: A Major Risk Factor in Military Operation
2003-02-01
disease before signs of cortical atrophy; and cerebral atrophy and dilation of the perivascular Virchow-Robin spaces - also seen in dementia [ 12,13...Revista Portuguesa de Medicina Militar 1992: 40(1-4): 41-45. 17. GIMOGMA. Epilepsia sintomidtica de etiologia vascular, manifestaqao da sindrome das
Wan, Chih-Cheng; Chen, David Yen-Ting; Tseng, Ying-Chi; Yan, Feng-Xian; Lee, Kun-Yu; Chiang, Chen-Hua; Chen, Chi-Jen
2017-08-01
No reliable imaging sign predicting cerebral hyperperfusion after intracranial arterial stenting (IAS) had been described in the literature. This study evaluated the effect of fluid-attenuated inversion recovery vascular hyperintensities (FVHs), also called hyperintense vessel sign on T2-weighted fluid-attenuated inversion recovery (T2-FLAIR) MR images, in predicting significant increase in cerebral blood flow (CBF) defined by arterial spin labeling (ASL) after IAS. We reviewed ASL CBF images and T2-FLAIR MR images before (D0), 1 day after (D1), and 3 days after (D3) IAS of 16 patients. T1-weighted MR images were used as cerebral maps for calculating CBF. The changes in CBF values after IAS were calculated in and compared among stenting and nonstenting vascular territories. An increase more than 50% of CBF was considered as hyperperfusion. The effect of FVHs in predicting hyperperfusion was calculated. The D1 CBF value was significantly higher than the D0 CBF value in stenting vascular, contralateral anterior cerebral artery, contralateral middle cerebral artery, and contralateral posterior cerebral artery (PCA) territories (all P < .05). The D1 and D3 CBF values were significantly higher than the D0 CBF value in overall vascular (P < .001), overall nonstenting vascular (P < .001), and ipsilateral PCA (P < .05) territories. The rate of more than 50% increases in CBF was significantly higher in patients who exhibited asymmetric FVHs than in those who did not exhibit these findings. FVHs could be a critical predictor of a significant increase in CBF after IAS.
NASA Astrophysics Data System (ADS)
Xu, Jing; Wu, Jian; Feng, Daming; Cui, Zhiming
Serious types of vascular diseases such as carotid stenosis, aneurysm and vascular malformation may lead to brain stroke, which are the third leading cause of death and the number one cause of disability. In the clinical practice of diagnosis and treatment of cerebral vascular diseases, how to do effective detection and description of the vascular structure of two-dimensional angiography sequence image that is blood vessel skeleton extraction has been a difficult study for a long time. This paper mainly discussed two-dimensional image of blood vessel skeleton extraction based on the level set method, first do the preprocessing to the DSA image, namely uses anti-concentration diffusion model for the effective enhancement and uses improved Otsu local threshold segmentation technology based on regional division for the image binarization, then vascular skeleton extraction based on GMM (Group marching method) with fast sweeping theory was actualized. Experiments show that our approach not only improved the time complexity, but also make a good extraction results.
Vascular signaling abnormalities in Alzheimer disease.
Grammas, Paula; Sanchez, Alma; Tripathy, Debjani; Luo, Ester; Martinez, Joseph
2011-08-01
Our laboratory has documented that brain microvessels derived from patients with Alzheimer disease (AD) express or release a myriad of factors that have been implicated in vascular activation and angiogenesis. In addition, we have documented that signaling cascades associated with vascular activation and angiogenesis are upregulated in AD-derived brain microvessels. These results are consistent with emerging data suggesting that factors and processes characteristic of vascular activation and angiogenesis are found in the AD brain. Despite increases in proangiogenic factors and signals in the AD brain, however, evidence for increased vascularity in AD is lacking. Cerebral hypoperfusion/hypoxia, a potent stimulus for vascular activation and angiogenesis, triggers hypometabolic, cognitive, and degenerative changes in the brain. In our working model, hypoxia stimulates the angiogenic process; yet, there is no new vessel growth. Therefore, there are no feedback signals to shut off vascular activation, and endothelial cells become irreversibly activated. This activation results in release of a large number of proteases, inflammatory proteins, and other gene products with biologic activity that can injure or kill neurons. Pathologic activation of brain vasculature may contribute noxious mediators that lead to neuronal injury and disease processes in AD brains. This concept is supported by preliminary experiments in our laboratory, which show that pharmacologic blockade of vascular activation improves cognitive function in an animal model of AD. Thus, "vascular activation" could be a novel, unexplored therapeutic target in AD.
Gorelick, Philip B; Scuteri, Angelo; Black, Sandra E; Decarli, Charles; Greenberg, Steven M; Iadecola, Costantino; Launer, Lenore J; Laurent, Stephane; Lopez, Oscar L; Nyenhuis, David; Petersen, Ronald C; Schneider, Julie A; Tzourio, Christophe; Arnett, Donna K; Bennett, David A; Chui, Helena C; Higashida, Randall T; Lindquist, Ruth; Nilsson, Peter M; Roman, Gustavo C; Sellke, Frank W; Seshadri, Sudha
2011-09-01
This scientific statement provides an overview of the evidence on vascular contributions to cognitive impairment and dementia. Vascular contributions to cognitive impairment and dementia of later life are common. Definitions of vascular cognitive impairment (VCI), neuropathology, basic science and pathophysiological aspects, role of neuroimaging and vascular and other associated risk factors, and potential opportunities for prevention and treatment are reviewed. This statement serves as an overall guide for practitioners to gain a better understanding of VCI and dementia, prevention, and treatment. Writing group members were nominated by the writing group co-chairs on the basis of their previous work in relevant topic areas and were approved by the American Heart Association Stroke Council Scientific Statement Oversight Committee, the Council on Epidemiology and Prevention, and the Manuscript Oversight Committee. The writing group used systematic literature reviews (primarily covering publications from 1990 to May 1, 2010), previously published guidelines, personal files, and expert opinion to summarize existing evidence, indicate gaps in current knowledge, and, when appropriate, formulate recommendations using standard American Heart Association criteria. All members of the writing group had the opportunity to comment on the recommendations and approved the final version of this document. After peer review by the American Heart Association, as well as review by the Stroke Council leadership, Council on Epidemiology and Prevention Council, and Scientific Statements Oversight Committee, the statement was approved by the American Heart Association Science Advisory and Coordinating Committee. The construct of VCI has been introduced to capture the entire spectrum of cognitive disorders associated with all forms of cerebral vascular brain injury-not solely stroke-ranging from mild cognitive impairment through fully developed dementia. Dysfunction of the neurovascular unit and mechanisms regulating cerebral blood flow are likely to be important components of the pathophysiological processes underlying VCI. Cerebral amyloid angiopathy is emerging as an important marker of risk for Alzheimer disease, microinfarction, microhemorrhage and macrohemorrhage of the brain, and VCI. The neuropathology of cognitive impairment in later life is often a mixture of Alzheimer disease and microvascular brain damage, which may overlap and synergize to heighten the risk of cognitive impairment. In this regard, magnetic resonance imaging and other neuroimaging techniques play an important role in the definition and detection of VCI and provide evidence that subcortical forms of VCI with white matter hyperintensities and small deep infarcts are common. In many cases, risk markers for VCI are the same as traditional risk factors for stroke. These risks may include but are not limited to atrial fibrillation, hypertension, diabetes mellitus, and hypercholesterolemia. Furthermore, these same vascular risk factors may be risk markers for Alzheimer disease. Carotid intimal-medial thickness and arterial stiffness are emerging as markers of arterial aging and may serve as risk markers for VCI. Currently, no specific treatments for VCI have been approved by the US Food and Drug Administration. However, detection and control of the traditional risk factors for stroke and cardiovascular disease may be effective in the prevention of VCI, even in older people. Vascular contributions to cognitive impairment and dementia are important. Understanding of VCI has evolved substantially in recent years, based on preclinical, neuropathologic, neuroimaging, physiological, and epidemiological studies. Transdisciplinary, translational, and transactional approaches are recommended to further our understanding of this entity and to better characterize its neuropsychological profile. There is a need for prospective, quantitative, clinical-pathological-neuroimaging studies to improve knowledge of the pathological basis of neuroimaging change and the complex interplay between vascular and Alzheimer disease pathologies in the evolution of clinical VCI and Alzheimer disease. Long-term vascular risk marker interventional studies beginning as early as midlife may be required to prevent or postpone the onset of VCI and Alzheimer disease. Studies of intensive reduction of vascular risk factors in high-risk groups are another important avenue of research.
Vascular Contributions to Cognitive Impairment and Dementia
Gorelick, Philip B.; Scuteri, Angelo; Black, Sandra E.; DeCarli, Charles; Greenberg, Steven M.; Iadecola, Costantino; Launer, Lenore J.; Laurent, Stephane; Lopez, Oscar L.; Nyenhuis, David; Petersen, Ronald C.; Schneider, Julie A.; Tzourio, Christophe; Arnett, Donna K.; Bennett, David A.; Chui, Helena C.; Higashida, Randall T.; Lindquist, Ruth; Nilsson, Peter M.; Roman, Gustavo C.; Sellke, Frank W.; Seshadri, Sudha
2013-01-01
Background and Purpose This scientific statement provides an overview of the evidence on vascular contributions to cognitive impairment and dementia. Vascular contributions to cognitive impairment and dementia of later life are common. Definitions of vascular cognitive impairment (VCI), neuropathology, basic science and pathophysiological aspects, role of neuroimaging and vascular and other associated risk factors, and potential opportunities for prevention and treatment are reviewed. This statement serves as an overall guide for practitioners to gain a better understanding of VCI and dementia, prevention, and treatment. Methods Writing group members were nominated by the writing group co-chairs on the basis of their previous work in relevant topic areas and were approved by the American Heart Association Stroke Council Scientific Statement Oversight Committee, the Council on Epidemiology and Prevention, and the Manuscript Oversight Committee. The writing group used systematic literature reviews (primarily covering publications from 1990 to May 1, 2010), previously published guidelines, personal files, and expert opinion to summarize existing evidence, indicate gaps in current knowledge, and, when appropriate, formulate recommendations using standard American Heart Association criteria. All members of the writing group had the opportunity to comment on the recommendations and approved the final version of this document. After peer review by the American Heart Association, as well as review by the Stroke Council leadership, Council on Epidemiology and Prevention Council, and Scientific Statements Oversight Committee, the statement was approved by the American Heart Association Science Advisory and Coordinating Committee. Results The construct of VCI has been introduced to capture the entire spectrum of cognitive disorders associated with all forms of cerebral vascular brain injury—not solely stroke—ranging from mild cognitive impairment through fully developed dementia. Dysfunction of the neurovascular unit and mechanisms regulating cerebral blood flow are likely to be important components of the pathophysiological processes underlying VCI. Cerebral amyloid angiopathy is emerging as an important marker of risk for Alzheimer disease, microinfarction, microhemorrhage and macrohemorrhage of the brain, and VCI. The neuropathology of cognitive impairment in later life is often a mixture of Alzheimer disease and microvascular brain damage, which may overlap and synergize to heighten the risk of cognitive impairment. In this regard, magnetic resonance imaging and other neuroimaging techniques play an important role in the definition and detection of VCI and provide evidence that subcortical forms of VCI with white matter hyperintensities and small deep infarcts are common. In many cases, risk markers for VCI are the same as traditional risk factors for stroke. These risks may include but are not limited to atrial fibrillation, hypertension, diabetes mellitus, and hypercholesterolemia. Furthermore, these same vascular risk factors may be risk markers for Alzheimer disease. Carotid intimal-medial thickness and arterial stiffness are emerging as markers of arterial aging and may serve as risk markers for VCI. Currently, no specific treatments for VCI have been approved by the US Food and Drug Administration. However, detection and control of the traditional risk factors for stroke and cardiovascular disease may be effective in the prevention of VCI, even in older people. Conclusions Vascular contributions to cognitive impairment and dementia are important. Understanding of VCI has evolved substantially in recent years, based on preclinical, neuropathologic, neuroimaging, physiological, and epidemiological studies. Transdisciplinary, translational, and transactional approaches are recommended to further our understanding of this entity and to better characterize its neuropsychological profile. There is a need for prospective, quantitative, clinical-pathological-neuroimaging studies to improve knowledge of the pathological basis of neuroimaging change and the complex interplay between vascular and Alzheimer disease pathologies in the evolution of clinical VCI and Alzheimer disease. Long-term vascular risk marker interventional studies beginning as early as midlife may be required to prevent or postpone the onset of VCI and Alzheimer disease. Studies of intensive reduction of vascular risk factors in high-risk groups are another important avenue of research. PMID:21778438
Alata, Wael; Ye, Yue; St-Amour, Isabelle; Vandal, Milène; Calon, Frédéric
2015-01-01
Human apolipoprotein E (APOE) exists in three isoforms ɛ2, ɛ3, and ɛ4, of which APOE4 is the main genetic risk factor of Alzheimer's disease (AD). As cerebrovascular defects are associated with AD, we tested whether APOE genotype has an impact on the integrity and function of the blood–brain barrier (BBB) in human APOE-targeted replacement mice. Using the quantitative in situ brain perfusion technique, we first found lower (13.0% and 17.0%) brain transport coefficient (Clup) of [3H]-diazepam in APOE4 mice at 4 and 12 months, compared with APOE2 and APOE3 mice, reflecting a decrease in cerebral vascularization. Accordingly, results from immunohistofluorescence experiments revealed a structurally reduced cerebral vascularization (26% and 38%) and thinner basement membranes (30% and 35%) in 12-month-old APOE4 mice compared with APOE2 and APOE3 mice, suggesting vascular atrophy. In addition, APOE4 mice displayed a 29% reduction in [3H]-d-glucose transport through the BBB compared with APOE2 mice without significant changes in the expression of its transporter GLUT1 in brain capillaries. However, an increase of 41.3% of receptor for advanced glycation end products (RAGE) was found in brain capillaries of 12-month-old APOE4 mice. In conclusion, profound divergences were observed between APOE genotypes at the cerebrovascular interface, suggesting that APOE4-induced BBB anomalies may contribute to AD development. PMID:25335802
The Course and Outcome of Unilateral Intracranial Arteriopathy in 79 Children with Ischaemic Stroke
ERIC Educational Resources Information Center
Braun, K. P. J.; Bulder, M. M. M.; Chabrier, S.; Kirkham, F. J.; Uiterwaal, C. S. P.; Tardieu, M.; Sebire, G.
2009-01-01
Arteriopathies are the commonest cause of arterial ischaemic stroke (AIS) in children. Repeated vascular imaging in children with AIS demonstrated the existence of a "transient cerebral arteriopathy" (TCA), characterized by lenticulostriate infarction due to non-progressive unilateral arterial disease affecting the supraclinoid internal…
Combined Direct and Indirect Cerebral Revascularization Using Local and Flow-Through Flaps.
Azadgoli, Beina; Leland, Hyuma A; Wolfswinkel, Erik M; Bakhsheshian, Joshua; Russin, Jonathan J; Carey, Joseph N
2018-02-01
Extracranial-intracranial bypass is indicated in ischemic disease such as moyamoya, certain intracranial aneurysms, and other complex neurovascular diseases. In this article, we present our series of local and flow-through flaps for cerebral revascularization as an additional tool to provide direct and indirect revascularization and/or soft tissue coverage. A retrospective review of a prospectively maintained database was performed identifying nine patients. Ten direct arterial bypass procedures with nine indirect revascularization and/or soft tissue reconstruction were performed. Indications for arterial bypass included intracranial aneurysm ( n = 2) and moyamoya disease ( n = 8). Indications for soft tissue transfer included infected cranioplasty (one) and indirect cerebral revascularization (eight). Four flow-through flaps and five pedicled flaps were used including a flow-through radial forearm fasciocutaneous flap (one), flow-through radial forearm fascial flaps (three), and pedicled temporoparietal fascial (TPF) flaps with distal end anastomosis (five). The superficial temporal vessels (seven) and facial vessels (two) were used as the vascular inflow. Arterial bypass was established into the middle cerebral artery (six) and anterior communicating artery (three). There were no intraoperative complications. All flaps survived with no donor-site complications. In one case of flow-through TPF flap, the direct graft failed, but the indirect flap remained vascularized. Local and flow-through flaps can improve combined direct and indirect revascularization and provide soft tissue reconstruction. Minimal morbidity has been encountered in early outcomes though long-term results remain under investigation for these combined neurosurgery and plastic surgery procedures. The level of evidence is IV. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Xue, Songchao; Gong, Hui; Jiang, Tao; Luo, Weihua; Meng, Yuanzheng; Liu, Qian; Chen, Shangbin; Li, Anan
2014-01-01
The topology of the cerebral vasculature, which is the energy transport corridor of the brain, can be used to study cerebral circulatory pathways. Limited by the restrictions of the vascular markers and imaging methods, studies on cerebral vascular structure now mainly focus on either observation of the macro vessels in a whole brain or imaging of the micro vessels in a small region. Simultaneous vascular studies of arteries, veins and capillaries have not been achieved in the whole brain of mammals. Here, we have combined the improved gelatin-Indian ink vessel perfusion process with Micro-Optical Sectioning Tomography for imaging the vessel network of an entire mouse brain. With 17 days of work, an integral dataset for the entire cerebral vessels was acquired. The voxel resolution is 0.35×0.4×2.0 µm3 for the whole brain. Besides the observations of fine and complex vascular networks in the reconstructed slices and entire brain views, a representative continuous vascular tracking has been demonstrated in the deep thalamus. This study provided an effective method for studying the entire macro and micro vascular networks of mouse brain simultaneously. PMID:24498247
Freeman, Brandi D.; Martins, Yuri C.; Akide-Ndunge, Oscar B.; Bruno, Fernando P.; Wang, Hua; Tanowitz, Herbert B.; Spray, David C.; Desruisseaux, Mahalia S.
2016-01-01
Plasmodium falciparum infection causes a wide spectrum of diseases, including cerebral malaria, a potentially life-threatening encephalopathy. Vasculopathy is thought to contribute to cerebral malaria pathogenesis. The vasoactive compound endothelin-1, a key participant in many inflammatory processes, likely mediates vascular and cognitive dysfunctions in cerebral malaria. We previously demonstrated that C57BL6 mice infected with P. berghei ANKA, our fatal experimental cerebral malaria model, sustained memory loss. Herein, we demonstrate that an endothelin type A receptor (ETA) antagonist prevented experimental cerebral malaria-induced neurocognitive impairments and improved survival. ETA antagonism prevented blood-brain barrier disruption and cerebral vasoconstriction during experimental cerebral malaria, and reduced brain endothelial activation, diminishing brain microvascular congestion. Furthermore, exogenous endothelin-1 administration to P. berghei NK65-infected mice, a model generally regarded as a non-cerebral malaria negative control for P. berghei ANKA infection, led to experimental cerebral malaria-like memory deficits. Our data indicate that endothelin-1 is critical in the development of cerebrovascular and cognitive impairments with experimental cerebral malaria. This vasoactive peptide may thus serve as a potential target for adjunctive therapy in the management of cerebral malaria. PMID:27031954
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mankovich, N.J.; Lambert, T.; Zrimec, T.
A project is underway to develop automated methods of fusing cerebral magnetic resonance angiography (MRA) and x-ray angiography (XRA) for creating accurate visualizations used in planning treatment of vascular disease. The authors have developed a vascular phantom suitable for testing segmentation and fusion algorithms with either derived images (pseudo-MRA/pseudo-XRA) or actual MRA or XRA image sequences. The initial unilateral arterial phantom design, based on normal human anatomy, contains 48 tapering vascular segments with lumen diameters from 2.5 millimeter to 0.25 millimeter. The initial phantom used rapid prototyping technology (stereolithography) with a 0.9 millimeter vessel wall fabricated in an ultraviolet-cured plastic.more » The model fabrication resulted in a hollow vessel model comprising the internal carotid artery, the ophthalmic artery, and the proximal segments of the anterior, middle, and posterior cerebral arteries. The complete model was fabricated but the model`s lumen could not be cleared for vessels with less than 1 millimeter diameter. Measurements of selected vascular outer diameters as judged against the CAD specification showed an accuracy of 0.14 mm and precision (standard deviation) of 0.15 mm. The plastic vascular model produced provides a fixed geometric framework for the evaluation of imaging protocols and the development of algorithms for both segmentation and fusion.« less
Uchikawa, Hideki; Fujii, Katsunori; Fujita, Mayuko; Okunushi, Tomoko; Shimojo, Naoki
2017-09-01
Moyamoya syndrome is a progressive cerebrovascular disease that is characterized by stenosis of the terminal portion of the internal carotid artery and its main branches, in combination with an accompanying disease. We herein describe an 8-year-old boy exhibiting transient loss of consciousness, who had recurrent seizures in infancy with progressive brain calcification. On admission, he was alert but magnetic resonance angiography showed bilateral stenosis of the whole internal carotid artery and proliferation of vascular collaterals, and brain CT revealed calcification on bilateral putamen. Given that this fulfilled diagnostic criteria, we finally diagnosed him as having moyamoya syndrome, though the etiology was unclear. Interestingly, a whole vessel survey revealed vascular stenosis of abdominal aorta and renal arteries, in which the former has not been reported in moyamoya syndrome. We considered that brain calcification was gradually formed by decreased cerebral vascular flow from infancy, and stenosis of abdominal aorta was possibly extended from renal arteries. This is, moyamoya syndrome with brain calcification and stenosis of abdominal aorta, suggesting that morphological screening of whole vessels containing cerebral and abdominal arteries should be considered in cases of slowly progressive brain calcification. Copyright © 2017 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
A Pilot Study Evaluating Cerebral Vasculitis in Kawasaki's Disease.
Yeom, Jung Sook; Cho, Young Hye; Koo, Chung Mo; Jun, Jin Su; Park, Ji Sook; Park, Eun Sil; Seo, Ji-Hyun; Lim, Jae-Young; Woo, Hyang-Ok; Youn, Hee-Shang
2018-06-18
Cerebral vasculitis is thought to be a possible underlying mechanism of severe neurological complications of Kawasaki's disease (KD), such as cerebral infarct or aneurysm rupture. To evaluate the intracranial inflammatory response in patients with acute-stage KD, we measured the levels of cytokines (interleukin [IL]-6 and tumor necrosis factor [TNF]-α) and pentraxin-3 (PTX3) in the cerebrospinal fluid of patients with KD ( n = 7) and compared the levels to those of the age- and sex-matched febrile control patients (bacterial meningitis [ n = 5], enteroviral meningitis [ n = 10], nonspecific viral illness without central nervous system involvement [ n = 10]). PTX3 and TNF-α were rarely detected and only in trace concentration in KD, and the levels of IL-6 were not different from those of nonspecific viral illnesses. These mediators are not established biomarkers for cerebral vasculitis but might reflect vascular inflammation in various diseases including KD. Therefore, intracranial inflammation including vasculitis seems to be insignificant in our patients with KD. However, our results might be attributed to the fact that these patients lacked any clinical signs of cerebral or coronary vessel involvement. None of them underwent brain imaging. To clarify this issue, further studies involving patients with neurologic symptoms and proven involvement of cerebral vessels are needed. Georg Thieme Verlag KG Stuttgart · New York.
Small vessels, dementia and chronic diseases - molecular mechanisms and pathophysiology.
Horsburgh, Karen; Wardlaw, Joanna M; van Agtmael, Tom; Allan, Stuart M; Ashford, Mike L J; Bath, Philip M; Brown, Rosalind; Berwick, Jason; Cader, M Zameel; Carare, Roxana O; Davis, John B; Duncombe, Jessica; Farr, Tracy D; Fowler, Jill H; Goense, Jozien; Granata, Alessandra; Hall, Catherine N; Hainsworth, Atticus H; Harvey, Adam; Hawkes, Cheryl A; Joutel, Anne; Kalaria, Rajesh N; Kehoe, Patrick G; Lawrence, Catherine B; Lockhart, Andy; Love, Seth; Macleod, Malcolm R; Macrae, I Mhairi; Markus, Hugh S; McCabe, Chris; McColl, Barry W; Meakin, Paul J; Miller, Alyson; Nedergaard, Maiken; O'Sullivan, Michael; Quinn, Terry J; Rajani, Rikesh; Saksida, Lisa M; Smith, Colin; Smith, Kenneth J; Touyz, Rhian M; Trueman, Rebecca C; Wang, Tao; Williams, Anna; Williams, Steven C R; Work, Lorraine M
2018-04-30
Cerebral small vessel disease (SVD) is a major contributor to stroke, cognitive impairment and dementia with limited therapeutic interventions. There is a critical need to provide mechanistic insight and improve translation between pre-clinical research and the clinic. A 2-day workshop was held which brought together experts from several disciplines in cerebrovascular disease, dementia and cardiovascular biology, to highlight current advances in these fields, explore synergies and scope for development. These proceedings provide a summary of key talks at the workshop with a particular focus on animal models of cerebral vascular disease and dementia, mechanisms and approaches to improve translation. The outcomes of discussion groups on related themes to identify the gaps in knowledge and requirements to advance knowledge are summarized. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
Kim, Mi Ok; O'Rourke, Michael F; Adji, Audrey; Avolio, Alberto P
2016-01-01
In the time domain, pulsatile flow and pressure can be characterised as the ratio of the late systolic boost of flow or pressure to the pulse amplitude so as to estimate the hydraulic input to the brain. While vascular impedance has been widely used to represent the load presented to the heart by the systemic circulation, it has not been applied to the cerebral circulation.We set out to study the relationship between the pressure and the flow augmentation index (AIx) in the time domain and to determine cerebral vascular impedance using aortic blood pressure and cerebral blood flow waveforms in the frequency domain. Twenty-four young subjects (aged 21-39 years) were recruited; aortic pressure was derived using SphygmoCor from radial pressure. Flow waveforms were recorded from the middle cerebral artery. In three subjects, we performed the Valsalva manoeuvre to investigate their response to physiological intervention. There was a linear relationship between flow and pressure AIx, and cerebral impedance values were similar to those estimated for low resistance vascular beds. Substantial change in pressure and flow wave contour was observed during the Valsalva manoeuvre; however, the relationship in both the time and the frequency domains were unchanged. This confirms that aortic pressure and cerebral flow waveform can be used to study cerebral impedance.
NASA Astrophysics Data System (ADS)
Hyun Jo, Dong; Lee, Rimi; Hyoung Kim, Jin; Oh Jun, Hyoung; Geol Lee, Tae; Hun Kim, Jeong
2015-06-01
Vascular integrity is important in maintaining homeostasis of brain microenvironments. In various brain diseases including Alzheimer’s disease, stroke, and multiple sclerosis, increased paracellular permeability due to breakdown of blood-brain barrier is linked with initiation and progression of pathological conditions. We developed a capacitance sensor array to monitor dielectric responses of cerebral endothelial cell monolayer, which could be utilized to evaluate the integrity of brain microvasculature. Our system measured real-time capacitance values which demonstrated frequency- and time-dependent variations. With the measurement of capacitance at the frequency of 100 Hz, we could differentiate the effects of vascular endothelial growth factor (VEGF), a representative permeability-inducing factor, on endothelial cells and quantitatively analyse the normalized values. Interestingly, we showed differential capacitance values according to the status of endothelial cell monolayer, confluent or sparse, evidencing that the integrity of monolayer was associated with capacitance values. Another notable feature was that we could evaluate the expression of molecules in samples in our system with the reference of real-time capacitance values. We suggest that this dielectric spectroscopy system could be successfully implanted as a novel in vitro assay in the investigation of the roles of paracellular permeability in various brain diseases.
NASA Astrophysics Data System (ADS)
Ni, Ruiqing; Vaas, Markus; Rudin, Markus; Klohs, Jan
2018-02-01
Beta-amyloid (Aβ) deposition and vascular dysfunction are important contributors to the pathogenesis in Alzheimer's disease (AD). However, the spatio-temporal relationship between an altered oxygen metabolism and Aβ deposition in the brain remains elusive. Here we provide novel in-vivo estimates of brain Aβ load with Aβ-binding probe CRANAD-2 and measures of brain oxygen saturation by using multi-spectral optoacoustic imaging (MSOT) and perfusion imaging with magnetic resonance imaging (MRI) in arcAβ mouse models of AD. We demonstrated a decreased cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2) in the cortical region of the arcAβ mice compared to wildtype littermates at 24 months. In addition, we showed proof-of-concept for the detection of cerebral Aβ deposits in brain from arcAβ mice compared to wild-type littermates.
NASA Astrophysics Data System (ADS)
Chen, Yuanxin; Mancuso, James; Zhao, Zhen; Li, Xuping; Cheng, Jie; Roman, Gustavo; Wong, Stephen T. C.
2013-12-01
Decreased cerebral blood flow causes brain ischemia and plays an important role in the pathophysiology of many neurodegenerative diseases, including Alzheimer's disease and vascular dementia. In this study, we photomodulated astrocytes in the live animal by a combination of two-photon calcium uncaging in the astrocyte endfoot and in vivo imaging of neurovasculature and astrocytes by intravital two-photon microscopy after labeling with cell type specific fluorescent dyes. Our study demonstrates that photomodulation at the endfoot of a single astrocyte led to a 25% increase in the diameter of a neighboring arteriole, which is a crucial factor regulating cerebral microcirculation in downstream capillaries. Two-photon uncaging in the astrocyte soma or endfoot near veins does not show the same effect on microcirculation. These experimental results suggest that infrared photomodulation on astrocyte endfeet may be a strategy to increase cerebral local microcirculation and thus prevent brain ischemia.
Challenges of multimorbidity of the aging brain: a critical update.
Jellinger, Kurt A; Attems, Johannes
2015-04-01
A major problem in elderly patients is the high incidence of multiple pathologies, referred to as multimorbidity, in the aging brain. It has been increasingly recognized that co-occurrence of neurodegenerative proteinopathies and other pathologies including cerebrovascular disorders is a frequent event in the brains of both cognitively intact and impaired aged subjects. Although clinical and neuropathological diagnostic criteria of the major neurodegenerative diseases have been improved, major challenges arise from cerebral multimorbidity, and the thresholds to cause clinical overt dementia are ill defined. More than 80% of aged human brains show neurodegenerative non-Alzheimer type proteinopathies and other pathologies which, however, frequently have been missed clinically and are even difficult to identify at neuropathological examination. Autopsy studies differ in selection criteria and the applied evaluation methods. Therefore, irrespective of the clinical symptoms, the frequency of cerebral pathologies vary considerably: Alzheimer-related pathology is seen in 19-100%, with "pure" Alzheimer's disease (AD) in 17-72%, Lewy pathology in 6-39% (AD + Lewy disease 9-28%), vascular pathologies in 28-93% (10.7-78% "pure" vascular dementia), TDP-43 proteinopathy in 6-39%, hippocampal sclerosis in 8-1%, and mixed pathologies in 10-93%. These data clearly suggest that pathologically deposited proteins in neurodegenerating diseases mutually interact and are influenced by other factors, in particular cardiovascular and cerebrovascular ones, to promote cognitive decline and other clinical symptoms. It is obvious that cognitive and other neuropsychiatric impairment in the aged result from a multimorbid condition in the CNS rather than from a single disease and that the number of complex pathologies progresses with increasing age. These facts have implications for improvement of the clinical diagnosis and prognosis, the development of specific biomarkers, preventive strategies and better treatment of cerebral multimorbidity.
Low HDL and High LDL Serum Cholesterol Are Associated With Cerebral Amyloidosis
Reed, Bruce; Villeneuve, Sylvia; Mack, Wendy; DeCarli, Charles; Chui, Helena C.; Jagust, William
2014-01-01
Importance Because deposition of cerebral beta amyloid (Aβ) appears to be a key initiating event in Alzheimer’s disease, factors associated with increased deposition are of great interest. Whether or not elevated serum cholesterol acts as such a factor is unknown. Objective To investigate the relationship between serum cholesterol levels and cerebral Aβ during life, early in the AD process. Design Cross sectional analysis of potential associations between contemporaneously measured total serum cholesterol, HDL cholesterol, LDL cholesterol and cerebral Aβ, measured using PIB PET. Setting Multi-site, university medical center based study of vascular contributions to dementia. Participants 74 persons, mean age 78, recruited via direct outreach in stroke clinics and community senior facilities following a protocol designed to obtain a cohort enriched for cerebrovascular disease and elevated vascular risk. Three cases had mild dementia. All others were clinically normal (33 cases) or had mild cognitive impairment (38 cases). Results Cerebral Aβ was quantified using a global PIB index, which averages PIB retention in cortical areas prone to amyloidosis. Statistical models that controlled for age and the apoE ε4 allele showed independent associations between LDL cholesterol, HDL cholesterol and PIB index. Higher LDL and lower HDL were both associated with higher PIB index. No association was found between total cholesterol and PIB index. No association was found between statin use and PIB index, nor did controlling for cholesterol treatment in the statistical models alter the basic findings. Conclusions and Relevance Elevated cerebral Aβ was associated with cholesterol fractions in a pattern analogous to that found in coronary artery disease. This finding, in living, non-demented humans, is consistent with prior autopsy reports, with epidemiological findings, and with both animal and in vitro work suggesting an important role for cholesterol in Aβ processing. Because cholesterol levels are modifiable, understanding their link to amyloid deposition could potentially and eventually have impact in retarding the pathological cascade of AD. These findings suggest that understanding the mechanisms through which serum lipids modulate Aβ could offer new approaches to slowing Aβ deposition and thus to reducing the incidence of AD. PMID:24378418
The vascular neural network—a new paradigm in stroke pathophysiology
Zhang, John H.; Badaut, Jerome; Tang, Jiping; Obenaus, Andre; Hartman, Richard; Pearce, William J.
2013-01-01
The concept of the neurovascular unit as the key brain component affected by stroke is controversial, because current definitions of this entity neglect mechanisms that control perfusion and reperfusion of arteries and arterioles upstream of the cerebral microcirculation. Indeed, although definitions vary, many researchers consider the neurovascular unit to be restricted to endothelial cells, neurons and glia within millimetres of the cerebral capillary microcirculation. This Perspectives article highlights the roles of vascular smooth muscle, endothelial cells and perivascular innervation of cerebral arteries in the initiation and progression of, and recovery from, ischaemic stroke. The concept of the vascular neural network—which includes cerebral arteries, arterioles, and downstream neuronal and glial cell types and structures—is introduced as the fundamental component affected by stroke pathophysiology. The authors also propose that the vascular neural network should be considered the main target for future therapeutic intervention after cerebrovascular insult. PMID:23070610
Platelet Factor 4 Mediates Inflammation in Cerebral Malaria
Srivastava, Kalyan; Cockburn, Ian A.; Swaim, AnneMarie; Thompson, Laura E.; Tripathi, Abhai; Fletcher, Craig A.; Shirk, Erin M.; Sun, Henry; Kowalska, M. Anna; Fox-Talbot, Karen; Sullivan, David; Zavala, Fidel; Morrell, Craig N.
2008-01-01
Summary Cerebral malaria is a major complication of Plasmodium falciparum infection in children. The pathogenesis of cerebral malaria involves vascular inflammation, immune stimulation and obstruction of cerebral capillaries. Platelets have a prominent role in both immune responses and vascular obstruction. We now demonstrate that the platelet derived chemokine, platelet factor 4 (PF4)/CXCL4, promotes the development of experimental cerebral malaria. Plasmodium infected red blood cells (RBC) activated platelets independent of vascular effects, resulting in increased plasma PF4. PF4 or CXCR3 null mice had less ECM, decreased brain T-cell recruitment, and platelet depletion or aspirin treatment reduced the development of ECM. We conclude that Plasmodium infected RBC can activate platelets and platelet derived PF4 then contributes to immune activation and T-cell trafficking as part of the pathogenesis of ECM. PMID:18692777
[Physiotherapy methods in the rehabilitation of patients with cerebral vascular diseases].
Ezhov, V V
1996-01-01
The author has examined 650 patients aged 30-65 years with prestroke forms of cerebrovascular diseases. Basing on clinico-neurological, electrophysiological and biochemical data, five new variants of physiotherapy are proposed: transcerebral and segmental dalargin electrophoresis combined with magnetotherapy and manual therapy. Relevant practical recommendations are provided. The author's findings extend the knowledge of curative potential of physical methods and on their mechanism of action in cerebrovascular insufficiency.
Choices of Stent and Cerebral Protection in the Ongoing ACST-2 Trial: A Descriptive Study.
de Waard, D D; Halliday, A; de Borst, G J; Bulbulia, R; Huibers, A; Casana, R; Bonati, L H; Tolva, V
2017-05-01
Several plaque and lesion characteristics have been associated with an increased risk for procedural stroke during or shortly after carotid artery stenting (CAS). While technical advancements in stent design and cerebral protection devices (CPD) may help reduce the procedural stroke risk, and anatomy remains important, tailoring stenting procedures according to plaque and lesion characteristics might be a useful strategy in reducing stroke associated with CAS. In this descriptive report of the ongoing Asymptomatic Carotid Surgery Trial-2 (ACST-2), it was assessed whether choice for stent and use or type of CPD was influenced by plaque and lesion characteristics. Trial patients who underwent CAS between 2008 and 2015 were included in this study. Chi-square statistics were used to study the effects of plaque echolucency, ipsilateral preocclusive disease (90-99%), and contralateral high-grade stenosis (>50%) or occlusion of the carotid artery on interventionalists' choice for stent and CPD. Differences in treatment preference between specialties were also analysed. In this study, 831 patients from 88 ACST-2 centres were included. Almost all procedures were performed by either interventional radiologists (50%) or vascular surgeons (45%). Plaque echolucency, ipsilateral preocclusive disease (90-99%), and significant contralateral stenosis (>50%) or occlusion did not affect the choice of stent or either the use of cerebral protection and type of CPD employed (i.e., filter/flow reversal). Vascular surgeons used a CPD significantly more often than interventional radiologists (98.6% vs. 76.3%; p < .001), but this choice did not appear to be dependent on patient characteristics. In ACST-2, plaque characteristics and severity of stenosis did not primarily determine interventionalists' choice of stent or use or type of CPD, suggesting that other factors, such as vascular anatomy or personal and centre preference, may be more important. Stent and CPD use was highly heterogeneous among participating European centres. Copyright © 2017 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.
High fat diet-induced diabetes in mice exacerbates cognitive deficit due to chronic hypoperfusion
Zuloaga, Kristen L; Johnson, Lance A; Roese, Natalie E; Marzulla, Tessa; Zhang, Wenri; Nie, Xiao; Alkayed, Farah N; Hong, Christine; Grafe, Marjorie R; Pike, Martin M; Raber, Jacob
2015-01-01
Diabetes causes endothelial dysfunction and increases the risk of vascular cognitive impairment. However, it is unknown whether diabetes causes cognitive impairment due to reductions in cerebral blood flow or through independent effects on neuronal function and cognition. We addressed this using right unilateral common carotid artery occlusion to model vascular cognitive impairment and long-term high-fat diet to model type 2 diabetes in mice. Cognition was assessed using novel object recognition task, Morris water maze, and contextual and cued fear conditioning. Cerebral blood flow was assessed using arterial spin labeling magnetic resonance imaging. Vascular cognitive impairment mice showed cognitive deficit in the novel object recognition task, decreased cerebral blood flow in the right hemisphere, and increased glial activation in white matter and hippocampus. Mice fed a high-fat diet displayed deficits in the novel object recognition task, Morris water maze and fear conditioning tasks and neuronal loss, but no impairments in cerebral blood flow. Compared to vascular cognitive impairment mice fed a low fat diet, vascular cognitive impairment mice fed a high-fat diet exhibited reduced cued fear memory, increased deficit in the Morris water maze, neuronal loss, glial activation, and global decrease in cerebral blood flow. We conclude that high-fat diet and chronic hypoperfusion impair cognitive function by different mechanisms, although they share commons features, and that high-fat diet exacerbates vascular cognitive impairment pathology. PMID:26661233
Lange-Asschenfeldt, Christian; Kojda, Georg
2008-06-01
Exercise training promotes extensive cardiovascular changes and adaptive mechanisms in both the peripheral and cerebral vasculature, such as improved organ blood flow, induction of antioxidant pathways, and enhanced angiogenesis and vascular regeneration. Clinical studies have demonstrated a reduction of morbidity and mortality from cardiovascular disease among exercising individuals. However, evidence from recent large clinical trials also suggests a substantial reduction of dementia risk - particularly regarding Alzheimer's disease (AD) - with regular exercise. Enhanced neurogenesis and improved synaptic plasticity have been implicated in this beneficial effect. However, recent research has revealed that vascular and specifically endothelial dysfunction is essentially involved in the disease process and profoundly aggravates underlying neurodegeneration. Moreover, vascular risk factors (VRFs) are probably determinants of incidence and course of AD. In this review, we emphasize the interconnection between AD and VRFs and the impact of cerebrovascular and endothelial dysfunction on AD pathophysiology. Furthermore, we describe the molecular mechanisms of the beneficial effects of exercise on the vasculature such as activation of the vascular nitric oxide (NO)/endothelial NO synthase (eNOS) pathway, upregulation of antioxidant enzymes, and angiogenesis. Finally, recent prospective clinical studies dealing with the effect of exercise on the risk of incident AD are briefly reviewed. We conclude that, next to upholding neuronal plasticity, regular exercise may counteract AD pathophysiology by building a vascular reserve.
NASA Astrophysics Data System (ADS)
Reinhard, Matthias; Schumacher, F. Konrad; Rutsch, Sebastian; Oeinck, Maximilian; Timmer, Jens; Mader, Irina; Schelter, Björn; Weiller, Cornelius; Kaller, Christoph P.
2014-09-01
The exact spatial distribution of impaired cerebral autoregulation in carotid artery disease is unknown. In this pilot study, we present a new approach of multichannel near-infrared spectroscopy (mcNIRS) for noninvasive spatial mapping of dynamic autoregulation in carotid artery disease. In 15 patients with unilateral severe carotid artery stenosis or occlusion, cortical hemodynamics in the bilateral frontal cortex were assessed from changes in oxyhemoglobin concentration using 52-channel NIRS (spatial resolution ˜2 cm). Dynamic autoregulation was graded by the phase shift between respiratory-induced 0.1 Hz oscillations of blood pressure and oxyhemoglobin. Ten of 15 patients showed regular phase values in the expected (patho) physiological range. Five patients had clearly outlying irregular phase values mostly due to artifacts. In patients with a regular phase pattern, a significant side-to-side difference of dynamic autoregulation was observed for the cortical border zone area between the middle and anterior cerebral artery (p<0.05). In conclusion, dynamic cerebral autoregulation can be spatially assessed from slow hemodynamic oscillations with mcNIRS. In high-grade carotid artery disease, cortical dynamic autoregulation is affected mostly in the vascular border zone. Spatial mapping of dynamic autoregulation may serve as a powerful tool for identifying brain regions at specific risks for hemodynamic infarction.
Bauduceau, Bernard; Le Floch, Jean-Pierre; Halimi, Serge; Verny, Christiane; Doucet, Jean
2018-01-01
The GERODIAB study is a multicenter prospective observational study performed over 5 years in French patients aged 70 years or above with type 2 diabetes. This report deals with their cardiovascular complications and their relationship with survival. Consecutive patients ( n = 987, median age = 77 years) were included from 56 diabetes centers over 1 year. Individual characteristics, history and complications of diabetes, geriatric factors, and clinical and biological parameters were recorded. Survival was analyzed using the Kaplan-Meier method and proportional hazards regression models. The frequency of cardiovascular complications increased from 47% at inclusion to 67% at 5 years. The most frequent complications were coronary heart disease (increasing from 30% to 41%) and vascular disease of the lower limbs (25% to 35%) and of the cerebral vessels (15% to 26%). Heart failure was less common, but its frequency doubled during the follow-up (9% to 20%). It was strongly associated with poor survival ( P < 0.0001), as was vascular disease of the lower limbs ( P = 0.0004), whereas coronary heart disease ( P = 0.0056) and vascular disease of cerebral vessels ( P = 0.026) had mild associations. Amputation ( P < 0.0001) and foot wounds ( P < 0.0001) were strongly associated with survival. In multivariate models, heart failure was the strongest predictor of poor survival (hazard ratio [HR] 1.96 [95% CI 1.45-2.64]; P < 0.0001). It remained significant when other factors were considered simultaneously (HR 1.92 [95% CI 1.43-2.58]; P < 0.0001). Cardiovascular complications are associated with poor survival in elderly patients with type 2 diabetes, especially heart failure. © 2017 by the American Diabetes Association.
Plasma Amyloid-β Levels, Cerebral Small Vessel Disease, and Cognition: The Rotterdam Study.
Hilal, Saima; Akoudad, Saloua; van Duijn, Cornelia M; Niessen, Wiro J; Verbeek, Marcel M; Vanderstichele, Hugo; Stoops, Erik; Ikram, M Arfan; Vernooij, Meike W
2017-01-01
Plasma amyloid-β (Aβ) levels are increasingly studied as a potential, accessible marker of cognitive impairment and dementia. The most common plasma Aβ isoforms, i.e., Aβ1-40 and Aβ1-42 have been linked with risk of Alzheimer's disease. However, it remains under-explored whether plasma Aβ levels including novel Aβ1-38 relate to vascular brain disease and cognition in a preclinical-phase of dementiaObjective:To examine the association of plasma Aβ levels (i.e., Aβ1-38, Aβ1-40, and Aβ1-42) with markers of cerebral small vessel disease (SVD) and cognition in a large population-based setting. We analyzed plasma Aβ1 levels in 1201 subjects from two independent cohorts of the Rotterdam Study. Markers of SVD [lacunes, white matter hyperintensity (WMH) volume] were assessed on brain MRI (1.5T). Cognition was assessed by a detailed neuropsychological battery. In each cohort, the association of Aβ levels with SVD and cognition was performed using regression models. Estimates were then pooled across cohorts using inverse variance meta-analysis with fixed effects. Higher levels of plasma Aβ1-38, Aβ1-40, Aβ1-42, and Aβ1-40/ Aβ1-42 ratio were associated with increasing lacunar and microbleeds counts. Moreover, higher levels of Aβ1-40 and Aβ1-40/ Aβ1-42 were significantly associated with larger WMH volumes. With regard to cognition, a higher level of Aβ1-38 Aβ1-40 and Aβ1-40/ Aβ1-42 was related to worse performance on cognitive test specifically in memory domain. Higher plasma levels of Aβ levels are associated with subclinical markers of vascular disease and poorer memory. Plasma Aβ levels thus mark the presence of vascular brain pathology.
NASA Astrophysics Data System (ADS)
Nishidate, Izumi; Mustari, Afrina; Nakamura, Naoki; Kawauchi, Satoko; Sato, Shunichi; Sato, Manabu; Kokubo, Yasuaki
2017-02-01
The brain relies on a continuous and adequate supply of blood flow, bringing the nutrients that it needs and removing the waste products of metabolism. It is thus one of the most tightly regulated systems in the body, whereby a whole range of mechanisms act to maintain this supply, despite changes in blood pressure etc. Failure of these mechanisms is found in a number of devastating cerebral diseases, including stroke, vascular dementia and brain injury and trauma. Spontaneous contraction and relaxation of arterioles (and in some instances venules) termed vasomotion has been observed in an extensive variety of tissues and species. Vasomotion has a beneficial effect on tissue oxygenation and enhance blood flow. Although vasomotion is strictly a local phenomenon, the regulation of contractile activity of vascular smooth muscle cells is dependent on the complex interplay between vasodilator and vasoconstrictor stimuli from circulating hormones, neurotransmitters, endothelial derived factors, and blood pressure. Therefore, evaluation of the spontaneous oscillations in cerebral vasculatures might be a useful tool for assessing risk and investigating different treatment strategies in neurological disorders, such as traumatic brain injury, seizure, ischemia, and stroke. In the present study, we newly propose a method to visualize the spontaneous low-frequency oscillation of cerebral blood volume based on the sequential RGB images of exposed brain.
Zirak, Peyman; Delgado-Mederos, Raquel; Martí-Fàbregas, Joan; Durduran, Turgut
2010-01-01
Acetazolamide (ACZ) was used to stimulate the cerebral vasculature on ten healthy volunteers to assess the cerebral vasomotor reactivity (CVR). We have combined near infrared spectroscopy (NIRS), diffuse correlation spectroscopy (DCS) and transcranial Doppler (TCD) technologies to non-invasively assess CVR in real-time by measuring oxy- and deoxy-hemoglobin concentrations, using NIRS, local cerebral blood flow (CBF), using DCS, and blood flow velocity (CBFV) in the middle cerebral artery, using TCD. Robust and persistent increases in oxy-hemoglobin concentration, CBF and CBFV were observed. A significant agreement was found between macro-vascular (TCD) and micro-vascular (DCS) hemodynamics, between the NIRS and TCD data, and also within NIRS and DCS results. The relative cerebral metabolic rate of oxygen, rCMRO2, was also determined, and no significant change was observed. Our results showed that the combined diffuse optics-ultrasound technique is viable to follow (CVR) and rCMRO2 changes in adults, continuously, at the bed-side and in real time. PMID:21258561
Zirak, Peyman; Delgado-Mederos, Raquel; Martí-Fàbregas, Joan; Durduran, Turgut
2010-11-19
Acetazolamide (ACZ) was used to stimulate the cerebral vasculature on ten healthy volunteers to assess the cerebral vasomotor reactivity (CVR). We have combined near infrared spectroscopy (NIRS), diffuse correlation spectroscopy (DCS) and transcranial Doppler (TCD) technologies to non-invasively assess CVR in real-time by measuring oxy- and deoxy-hemoglobin concentrations, using NIRS, local cerebral blood flow (CBF), using DCS, and blood flow velocity (CBFV) in the middle cerebral artery, using TCD. Robust and persistent increases in oxy-hemoglobin concentration, CBF and CBFV were observed. A significant agreement was found between macro-vascular (TCD) and micro-vascular (DCS) hemodynamics, between the NIRS and TCD data, and also within NIRS and DCS results. The relative cerebral metabolic rate of oxygen, rCMRO(2), was also determined, and no significant change was observed. Our results showed that the combined diffuse optics-ultrasound technique is viable to follow (CVR) and rCMRO(2) changes in adults, continuously, at the bed-side and in real time.
Van Elderen, Saskia S G C; Zhang, Qian; Sigurdsson, Sigudur; Haight, Thaddeus J; Lopez, Oscar; Eiriksdottir, Gudny; Jonsson, Palmi; de Jong, Laura; Harris, Tamara B; Garcia, Melissa; Gudnason, Vilmundar; van Buchem, Mark A; Launer, Lenore J
2016-01-01
Total brain volume is an integrated measure of health and may be an independent indicator of mortality risk independent of any one clinical or subclinical disease state. We investigate the association of brain volume to total and cause-specific mortality in a large nondemented stroke-free community-based cohort. The analysis includes 3,543 men and women (born 1907-1935) participating in the Age, Gene, Environment Susceptibility-Reykjavik Study. Participants with a known brain-related high risk for mortality (cognitive impairment or stroke) were excluded from these analyses. Quantitative estimates of total brain volume, white matter, white matter lesions, total gray matter (GM; cortical GM and subcortical GM separately), and focal cerebral vascular disease were generated from brain magnetic resonance imaging. Brain atrophy was expressed as brain tissue volume divided by total intracranial volume, yielding a percentage. Mean follow-up duration was 7.2 (0-10) years, with 647 deaths. Cox regression was used to analyze the association of mortality to brain atrophy, adjusting for demographics, cardiovascular risk factors, and cerebral vascular disease. Reduced risk of mortality was significantly associated with higher total brain volume (hazard ratio, 95% confidence interval = 0.71, 0.65-0.78), white matter (0.85, 0.78-0.93), total GM (0.74, 0.68-0.81), and cortical GM (0.78, 0.70-0.87). Overall, the associations were similar for cardiovascular and noncardiovascular-related deaths. Independent of multiple risk factors and cerebral vascular damage, global brain volume predicts mortality in a large nondemented stroke-free community-dwelling older cohort. Total brain volume may be an integrated measure reflecting a range of health and with further investigation could be a useful clinical tool when assessing risk for mortality. Published by Oxford University Press on behalf of the Gerontological Society of America 2014.
VEGF inhibitors in the treatment of cerebral edema in patients with brain cancer
Gerstner, Elizabeth R.; Duda, Dan G.; di Tomaso, Emmanuelle; Ryg, Peter A.; Loeffler, Jay S.; Sorensen, A. Gregory; Ivy, Percy; Jain, Rakesh K.; Batchelor, Tracy T.
2016-01-01
Most brain tumors oversecrete vascular endothelial growth factor (VEGF), which leads to an abnormally permeable tumor vasculature. This hyperpermeability allows fluid to leak from the intravascular space into the brain parenchyma, which causes vasogenic cerebral edema and increased interstitial fluid pressure. Increased interstitial fluid pressure has an important role in treatment resistance by contributing to tumor hypoxia and preventing adequate tumor penetration of chemotherapy agents. In addition, edema and the corticosteroids needed to control cerebral edema cause significant morbidity and mortality. Agents that block the VEGF pathway are able to decrease vascular permeability and, thus, cerebral edema, by restoring the abnormal tumor vasculature to a more normal state. Decreasing cerebral edema minimizes the adverse effects of corticosteroids and could improve clinical outcomes. Anti-VEGF agents might also be useful in other cancer-related conditions that increase vascular permeability, such as malignant pleural effusions or ascites. PMID:19333229
Acute and chronic head-down tail suspension diminishes cerebral perfusion in rats
NASA Technical Reports Server (NTRS)
Wilkerson, M. Keith; Colleran, Patrick N.; Delp, Michael D.
2002-01-01
The purpose of this study was to test the hypothesis that regional brain blood flow and vascular resistance are altered by acute and chronic head-down tail suspension (HDT). Regional cerebral blood flow, arterial pressure, heart rate, and vascular resistance were measured in a group of control rats during normal standing and following 10 min of HDT and in two other groups of rats after 7 and 28 days of HDT. Heart rate was not different among conditions, whereas mean arterial pressure was elevated at 10 min of HDT relative to the other conditions. Total brain blood flow was reduced from that during standing by 48, 24, and 27% following 10 min and 7 and 28 days of HDT, respectively. Regional blood flows to all cerebral tissues and the eyes were reduced with 10 min of HDT and remained lower in the eye, olfactory bulbs, left and right cerebrum, thalamic region, and the midbrain with 7 and 28 days of HDT. Total brain vascular resistance was 116, 44, and 38% greater following 10 min and 7 and 28 days of HDT, respectively, relative to that during control standing. Vascular resistance was elevated in all cerebral regions with 10 min of HDT and remained higher than control levels in most brain regions. These results demonstrate that HDT results in chronic elevations in total and regional cerebral vascular resistance, and this may be the underlying stimulus for the HDT-induced smooth muscle hypertrophy of cerebral resistance arteries.
Lakhdar, Rim; Baffoun, Nader; Hammami, Nadia; Nagi, Sonia; Baccar, Kamel; Drissi, Syrine; Kaddour, Chokri
2012-03-01
Pregnancy and puerperium are considered a period of a high risk of stroke responsible in a part of the morbidity and mortality in women. Imaging is the pivotal tool to diagnostics and care. To investigate the clinical and imaging features cerebrovascular complications during pregnancy and in post partum period. We report a retrospective analysis of forty four patients (November 2002 - October 2010) admitted in the intensive car department of the national institute of neurology for cerebro-vascular complications during pregnancy and in post partum period. Cerebro-vascular imaging modalities included cerebral computed tomography (CCT) with and without contrast in 94% of cases, magnetic resonance imaging (MRI) in 30.6% of cases completed by venous angiography MRI in 27.2% of cases and angiography MRI of Willis polygon in 11.3% of cases and by cerebral angiography in 13.6% of cases. Posterior reversible encephalopathy syndrome (PRES) is diagnosed in 61.4 % of cases followed by meningo-cerebral haemorrhage (MCH) in 29.5% and finally cerebral venous thrombosis (CVT) and arterial ischemia in 4.5% of cases each one. The cerebro-vascular complications are revelled in 86.3 % of the cases during the postpartum and were associated with the eclampsia or preeclampsia in 90.9 % of the cases (n=40). CCT showed typical lesions of PRES in 23 patients. It confirms the presence of hematoma in the 13 patients with MCH and find hypodense lesion in one case with ischemic stroke. CCT show direct (delta sign) and indirect signs of CVT. MRI confirms the diagnostic of PRES, when done (11 of 12 cases) and show cortical sub cortical hyper signal on T2 and FLAIR and hypo signal on T1 sequences. MRI was normal in one case. It shows hemorrhagic lesion in the 2 cases of MCH, thrombosis in the cases of CVT and ischemic lesion in the cases of ischemic stroke. CCT and MRI done within 48 hours from admission were decisive for early diagnostic and for fast and adequate care. Early recognition of stroke in peri partum by cerebral imaging is of paramount importance for prompt diagnosis and treatment to improve maternal morbidity and mortality.
Cerebral misery perfusion due to carotid occlusive disease
Maddula, Mohana; Sprigg, Nikola; Bath, Philip M; Munshi, Sunil
2017-01-01
Purpose Cerebral misery perfusion (CMP) is a condition where cerebral autoregulatory capacity is exhausted, and cerebral blood supply in insufficient to meet metabolic demand. We present an educational review of this important condition, which has a range of clinical manifestations. Method A non-systematic review of published literature was undertaken on CMP and major cerebral artery occlusive disease, using Pubmed and Sciencedirect. Findings Patients with CMP may present with strokes in watershed territories, collapses and transient ischaemic attacks or episodic movements associated with an orthostatic component. While positron emission tomography is the gold standard investigation for misery perfusion, advanced MRI is being increasingly used as an alternative investigation modality. The presence of CMP increases the risk of strokes. In addition to the devastating effect of stroke, there is accumulating evidence of impaired cognition and quality of life with carotid occlusive disease (COD) and misery perfusion. The evidence for revascularisation in the setting of complete carotid occlusion is weak. Medical management constitutes careful blood pressure management while addressing other vascular risk factors. Discussion The evidence for the management of patients with COD and CMP is discussed, together with recommendations based on our local experience. In this review, we focus on misery perfusion due to COD. Conclusion Patients with CMP and COD may present with a wide-ranging clinical phenotype and therefore to many specialties. Early identification of patients with misery perfusion may allow appropriate management and focus on strategies to maintain or improve cerebral blood flow, while avoiding potentially harmful treatment. PMID:28959496
[Cerebral hemodynamics in patients with neurosensory hearing loss before and after magnetotherapy].
Morenko, V M; Enin, I P
2001-01-01
Magnetotherapy effects on cerebral hemodynamics were studied using rheoencephalography (REG). When the treatment results and changes in cerebral hemodynamics were compared it was evident that normalization or improvement of vascular status in vertebrobasilar and carotid territories registered at REG results in better hearing. This confirms the role of vascular factor in pathogenesis of neurosensory hypoacusis of different etiology and effectiveness of magnetotherapy in such patients.
Oláh, Csaba; Kardos, Zsófia; Sepsi, Mariann; Sas, Attila; Kostyál, László; Bhattoa, Harjit Pal; Hodosi, Katalin; Kerekes, György; Tamási, László; Valikovics, Attila; Bereczki, Dániel; Szekanecz, Zoltán
2017-09-26
Stroke has been associated with rheumatoid arthritis (RA). We assessed patients with RA and healthy control subjects by transcranial Doppler (TCD), carotid ultrasonography and brain magnetic resonance imaging (MRI). Altogether, 41 female patients with RA undergoing methotrexate (MTX) or biologic treatment and 60 age-matched control subjects underwent TCD assessment of the middle cerebral artery (MCA) and basilar artery. Pulsatility index (PI), resistivity (resistance) index (RI) and circulatory reserve capacity (CRC) were determined at rest (r) and after apnoea (a) and hyperventilation (h). The presence of carotid plaques and carotid intima-media thickness (cIMT) were also determined. Intracerebral vascular lesions were investigated by brain MRI. MCA PI and RI values at rest and after apnoea were significantly increased in the total and MTX-treated RA populations vs control subjects. MCA CRC was also impaired, and basilar artery PI was higher in RA. More patients with RA had carotid plaques and increased cIMT. Linear regression analysis revealed that left PI(r) and RI(r) correlated with disease duration and that left PI(r), RI(r), PI(a), PI(h) and basilar PI correlated with disease activity. Right CRC inversely correlated with 28-joint Disease Activity Score. Disease activity was an independent determinant of left PI(a) and right CRC. Compared with long-term MTX treatment alone, the use of biologics in combination with MTX was associated with less impaired cerebral circulation. Impaired cerebral circulation was also associated with measures of carotid atherosclerosis. To our knowledge, this is the first study to show increased distal MCA and basilar artery occlusion in RA as determined by TCD. Patients with RA also had CRC defects. We also confirmed increased carotid plaque formation and increased cIMT. Biologics may beneficially influence some parameters in the intracranial vessels.
Experimental and clinical study of EHF treatment of vascular-vestibular dysfunction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mal`tsev, A.E.; Abakarov, A.T.; Istomin, V.S.
1994-07-01
The authors present the results of a study of the effectiveness of EHF radiation on the cerebral hemodynamics, bioelectrical activity of the cerebral cortex, and functional state of the vestibular analyzer in chronic studies of cats using a model of vascular-vestibular dysfunction. The clinical part of the work reflects the results of studies of the functional state of cerebral blood circulation and the vestibular analyzer during the EHF treatment of angiovertebrogenic vestibular dysfunction in a background of initial manifestations of cerebral blood supply deficiency (angiodistonic variant).
Mark, Clarisse I; Mazerolle, Erin L; Chen, J Jean
2015-08-01
The blood oxygenation level-dependent (BOLD) phenomenon has profoundly revolutionized neuroscience, with applications ranging from normal brain development and aging, to brain disorders and diseases. While the BOLD effect represents an invaluable tool to map brain function, it does not measure neural activity directly; rather, it reflects changes in blood oxygenation resulting from the relative balance between cerebral oxygen metabolism (through neural activity) and oxygen supply (through cerebral blood flow and volume). As such, there are cases in which BOLD signals might be dissociated from neural activity, leading to misleading results. The emphasis of this review is to develop a critical perspective for interpreting BOLD results, through a comprehensive consideration of BOLD's metabolic and vascular underpinnings. We demonstrate that such an understanding is especially important under disease or resting conditions. We also describe state-of-the-art acquisition and analytical techniques to reveal physiological information on the mechanisms underlying measured BOLD signals. With these goals in mind, this review is structured to provide a fundamental understanding of: 1) the physiological and physical sources of the BOLD contrast; 2) the extraction of information regarding oxidative metabolism and cerebrovascular reactivity from the BOLD signal, critical to investigating neuropathology; and 3) the fundamental importance of metabolic and vascular mechanisms for interpreting resting-state BOLD measurements. © 2015 Wiley Periodicals, Inc.
The relationship to age and cerebral vascular accidents of fibrin and fibrinolytic activity
Hume, R.
1961-01-01
Three `normal' groups of people—young, middle-aged, and old—have been investigated with regard to the fibrin content and fibrinolytic activity of the blood. The fourth group consisted of middle-aged people who had previously sustained a cerebral vascular accident matched statistically for age with the middle-aged normals. It was concluded that fibrin increases with age but there is an interaction between age and sex, the female having a higher level in the young group and the male a higher level in the middle-aged group. There was no sex difference in the levels of fibrin in the old age group. Fibrinolytic activity increases with age and there is a positive correlation between fibrin and fibrinolytic activity but no age-sex interaction. Those with cerebral vascular accidents tended to have higher fibrin levels and lower fibrinolytic activity but the differences were not statistically significant. There did, however, appear to be an increase in antifibrinolytic activity in the cerebral vascular group. PMID:13716799
Saraswat, Deepika; Nehra, Sarita; Chaudhary, Kamal; CVS, Siva Prasad
2015-05-01
Vascular endothelial growth factor (VEGF) is an important cerebral angiogenic and permeability factor under hypoxia. There is a need to find effective molecules that may ameliorate hypoxia-induced cerebral oedema. In silico identification of novel candidate molecules that block VEGF-A site were identified and validated with a Ramachandran plot. The active site residues of VEGF-A were detected by Pocketfinder, CASTp, and DogSiteScorer. Based on in silico data, three VEGF-A blocker (VAB) candidate molecules (VAB1, VAB2, and VAB3) were checked for improvement in cellular viability and regulation of VEGF levels in N2a cells under hypoxia (0.5% O2 ). Additionally, the best candidate molecule's efficacy was assessed in male Sprague-Dawley rats for its ameliorative effect on cerebral oedema and vascular leakage under hypobaric hypoxia 7260 m. All experimental results were compared with the commercially available VEGF blocker sunitinib. Vascular endothelial growth factor-A blocker 1 was found most effective in increasing cellular viability and maintaining normal VEGF levels under hypoxia (0.5% oxygen) in N2a cells. Vascular endothelial growth factor-A blocker 1 effectively restored VEGF levels, decreased cerebral oedema, and reduced vascular leakage under hypobaric hypoxia when compared to sunitinib-treated rats. Vascular endothelial growth factor-A blocker 1 may be a promising candidate molecule for ameliorating hypobaric hypoxia-induced vasogenic oedema by regulating VEGF levels. © 2015 Wiley Publishing Asia Pty Ltd.
Bansal, Sumit; Borkar, Sachin A.; Mahapatra, Ashok K.
2017-01-01
Congenital cyanotic heart disease can lead to intra-cranial involvement. Authors report a very rare case of right intra-cerebral abscess diagnosed on computerized tomography (CT) scan and simultaneous presence of an aneurysm of the left internal carotid artery diagnosed on CT angiogram in a 15-year-old child with congenital cyanotic heart disease with recent onset left hemiparesis. Right cerebral abscess was tapped and left internal carotid aneurysm was planned to be followed up by giving antibiotics and serial angiograms, but he could not survive and died due to non-cranial cause. We conclude that cerebral angiography is necessary to diagnose cerebro-vascular complications, including infectious aneurysms, in cases presenting with unusual findings on neuroimaging study. Patient must undergo serial angiography while being on intravenous antibiotics. Intervention (either surgical or endovascular) should be considered if there are no signs of regression of size of aneurysm or in the presence of aneurysm rupture. We have not been able to find a similar case in the English literature. PMID:28484536
Bordet, Régis; Ihl, Ralf; Korczyn, Amos D; Lanza, Giuseppe; Jansa, Jelka; Hoerr, Robert; Guekht, Alla
2017-05-24
Vascular cognitive impairment (VCI) is a complex spectrum encompassing post-stroke cognitive impairment (PSCI) and small vessel disease-related cognitive impairment. Despite the growing health, social, and economic burden of VCI, to date, no specific treatment is available, prompting the introduction of the concept of a disease modifier. Within this clinical spectrum, VCI and PSCI remain advancing conditions as neurodegenerative diseases with progression of both vascular and degenerative lesions accounting for cognitive decline. Disease-modifying strategies should integrate both pharmacological and non-pharmacological multimodal approaches, with pleiotropic effects targeting (1) endothelial and brain-blood barrier dysfunction; (2) neuronal death and axonal loss; (3) cerebral plasticity and compensatory mechanisms; and (4) degenerative-related protein misfolding. Moreover, pharmacological and non-pharmacological treatment in PSCI or VCI requires valid study designs clearly stating the definition of basic methodological issues, such as the instruments that should be used to measure eventual changes, the biomarker-based stratification of participants to be investigated, and statistical tests, as well as the inclusion and exclusion criteria that should be applied. A consensus emerged to propose the development of a disease-modifying strategy in VCI and PSCI based on pleiotropic pharmacological and non-pharmacological approaches.
Eto, K; Yasutake, A; Kuwana, T; Korogi, Y; Akima, M; Shimozeki, T; Tokunaga, H; Kaneko, Y
2001-01-01
Neuropathological lesions found in chronic human Minamata disease tend to be localized in the calcarine cortex of occipital lobes, the pre- and postcentral lobuli, and the temporal gyri. The mechanism for the selective vulnerability is still not clear, though several hypotheses have been proposed. One hypothesis is vascular and postulates that the lesions are the result of ischemia secondary to compression of sulcal arteries from methylmercury-induced cerebral edema. To test this hypothesis, we studied common marmosets because the cerebrum of marmosets has 2 distinct deep sulci, the calcarine and Sylvian fissures. MRI analysis, mercury assays of tissue specimens, histologic and histochemical studies of the brain are reported and discussed. Brains sacrificed early after exposure to methylmercury showed high contents of methylmercury and edema of the cerebral white matter. These results may explain the selective cortical degeneration along the deep cerebral fissures or sulci.
Mouse models to study the effect of cardiovascular risk factors on brain structure and cognition
Bink, Diewertje I; Ritz, Katja; Aronica, Eleonora; van der Weerd, Louise; Daemen, Mat JAP
2013-01-01
Recent clinical data indicates that hemodynamic changes caused by cardiovascular diseases such as atherosclerosis, heart failure, and hypertension affect cognition. Yet, the underlying mechanisms of the resulting vascular cognitive impairment (VCI) are poorly understood. One reason for the lack of mechanistic insights in VCI is that research in dementia primarily focused on Alzheimer's disease models. To fill in this gap, we critically reviewed the published data and various models of VCI. Typical findings in VCI include reduced cerebral perfusion, blood–brain barrier alterations, white matter lesions, and cognitive deficits, which have also been reported in different cardiovascular mouse models. However, the tests performed are incomplete and differ between models, hampering a direct comparison between models and studies. Nevertheless, from the currently available data we conclude that a few existing surgical animal models show the key features of vascular cognitive decline, with the bilateral common carotid artery stenosis hypoperfusion mouse model as the most promising model. The transverse aortic constriction and myocardial infarction models may be good alternatives, but these models are as yet less characterized regarding the possible cerebral changes. Mixed models could be used to study the combined effects of different cardiovascular diseases on the deterioration of cognition during aging. PMID:23963364
The adaptation of the cerebral circulation to pregnancy: mechanisms and consequences
Cipolla, Marilyn J
2013-01-01
The adaptation of the cerebral circulation to pregnancy is unique from other vascular beds. Most notably, the growth and vasodilatory response to high levels of circulating growth factors and cytokines that promote substantial hemodynamic changes in other vascular beds is limited in the cerebral circulation. This is accomplished through several mechanisms, including downregulation of key receptors and transcription factors, and production of circulating factors that counteract the vasodilatory effects of vascular endothelial growth factor (VEGF) and placental growth factor. Pregnancy both prevents and reverses hypertensive inward remodeling of cerebral arteries, possibly through downregulation of the angiotensin type 1 receptor. The blood–brain barrier (BBB) importantly adapts to pregnancy by preventing the passage of seizure provoking serum into the brain and limiting the permeability effects of VEGF that is more highly expressed in cerebral vasculature during pregnancy. While the adaptation of the cerebral circulation to pregnancy provides for relatively normal cerebral blood flow and BBB properties in the face of substantial cardiovascular changes and high levels of circulating factors, under pathologic conditions, these adaptations appear to promote greater brain injury, including edema formation during acute hypertension, and greater sensitivity to bacterial endotoxin. PMID:23321787
Neuroimmunological Blood Brain Barrier Opening in Experimental Cerebral Malaria
Baer, Kerstin; Mikolajczak, Sebastian A.; Kappe, Stefan H. I.; Frevert, Ute
2012-01-01
Plasmodium falciparum malaria is responsible for nearly one million annual deaths worldwide. Because of the difficulty in monitoring the pathogenesis of cerebral malaria in humans, we conducted a study in various mouse models to better understand disease progression in experimental cerebral malaria (ECM). We compared the effect on the integrity of the blood brain barrier (BBB) and the histopathology of the brain of P. berghei ANKA, a known ECM model, P. berghei NK65, generally thought not to induce ECM, P. yoelii 17XL, originally reported to induce human cerebral malaria-like histopathology, and P. yoelii YM. As expected, P. berghei ANKA infection caused neurological signs, cerebral hemorrhages, and BBB dysfunction in CBA/CaJ and Swiss Webster mice, while Balb/c and A/J mice were resistant. Surprisingly, PbNK induced ECM in CBA/CaJ mice, while all other mice were resistant. P. yoelii 17XL and P. yoelii YM caused lethal hyperparasitemia in all mouse strains; histopathological alterations, BBB dysfunction, or neurological signs were not observed. Intravital imaging revealed that infected erythrocytes containing mature parasites passed slowly through capillaries making intimate contact with the endothelium, but did not arrest. Except for relatively rare microhemorrhages, mice with ECM presented no obvious histopathological alterations that would explain the widespread disruption of the BBB. Intravital imaging did reveal, however, that postcapillary venules, but not capillaries or arterioles, from mice with ECM, but not hyperparasitemia, exhibit platelet marginalization, extravascular fibrin deposition, CD14 expression, and extensive vascular leakage. Blockage of LFA-1 mediated cellular interactions prevented leukocyte adhesion, vascular leakage, neurological signs, and death from ECM. The endothelial barrier-stabilizing mediators imatinib and FTY720 inhibited vascular leakage and neurological signs and prolonged survival to ECM. Thus, it appears that neurological signs and coma in ECM are due to regulated opening of paracellular-junctional and transcellular-vesicular fluid transport pathways at the neuroimmunological BBB. PMID:23133375
Ecology of the aging human brain.
Sonnen, Joshua A; Santa Cruz, Karen; Hemmy, Laura S; Woltjer, Randall; Leverenz, James B; Montine, Kathleen S; Jack, Clifford R; Kaye, Jeffrey; Lim, Kelvin; Larson, Eric B; White, Lon; Montine, Thomas J
2011-08-01
Alzheimer disease, cerebral vascular brain injury, and isocortical Lewy body disease (LBD) are the major contributors to dementia in community- and population-based studies. To estimate the prevalence of clinically silent forms of these diseases in cognitively normal (CN) adults. Autopsy study. Community- and population based. A total of 1672 brain autopsies from the Adult Changes in Thought study, Honolulu-Asia Aging Study, Nun Study, and Oregon Brain Aging Study, of which 424 met the criteria for CN. Of these, 336 cases had a comprehensive neuropathologic examination of neuritic plaque density, Braak stage for neurofibrillary tangles, LB distribution, and number of cerebral microinfarcts. Forty-seven percent of CN cases had moderate or frequent neuritic plaque density; of these, 6% also had Braak stage V or VI for neurofibrillary tangles. Fifteen percent of CN cases had medullary LBD; 8% also had nigral and 4% isocortical LBD. The presence of any cerebral microinfarcts was identified in 33% and of high-level cerebral microinfarcts in 10% of CN individuals. Overall, the burden of lesions in each individual and their comorbidity varied widely within each study but were similar across studies. These data show an individually varying complex convergence of subclinical diseases in the brain of older CN adults. Appreciating this ecology should help guide future biomarker and neuroimaging studies and clinical trials that focus on community- and population-based cohorts.
Can brain impermeable BACE1 inhibitors serve as anti-CAA medicine?
Li, Jian-Ming; Huang, Li-Ling; Liu, Fei; Tang, Bei-Sha; Yan, Xiao-Xin
2017-08-25
Cerebral amyloid angiopathy (CAA) is characterized by the deposition of ß-amyloid peptides (Aß) in and surrounding the wall of microvasculature in the central nervous system, together with parenchymal amyloid plaques collectively referred to as cerebral amyloidosis, which occurs in the brain commonly among the elderly and more frequently in patients with Alzheimer's disease (AD). CAA is associated with vascular injury and may cause devastating neurological outcomes. No therapeutic approach is available for this lesion to date. ß-Secretase 1 (BACE1) is the enzyme initiating Aß production. Brain permeable BACE1 inhibitors targeting primarily at the parenchymal plaque pathology are currently evaluated in clinical trials. This article presents findings in support of a role of BACE1 elevation in the development of CAA, in addition to plaque pathogenesis. The rationale, feasibility, benefit and strategic issues for developing BACE1 inhibitors against CAA are discussed. Brain impermeable compounds are considered preferable as they might exhibit sufficient anti-CAA efficacy without causing significant neuronal/synaptic side effects. Early pharmacological intervention to the pathogenesis of CAA is expected to provide significant protection for cerebral vascular health and hence brain health. Brain impermeable BACE1 inhibitors should be optimized and tested as potential anti-CAA therapeutics.
AltitudeOmics: effect of ascent and acclimatization to 5260 m on regional cerebral oxygen delivery.
Subudhi, Andrew W; Fan, Jui-Lin; Evero, Oghenero; Bourdillon, Nicolas; Kayser, Bengt; Julian, Colleen G; Lovering, Andrew T; Roach, Robert C
2014-05-01
Cerebral hypoxaemia associated with rapid ascent to high altitude can be life threatening; yet, with proper acclimatization, cerebral function can be maintained well enough for humans to thrive. We investigated adjustments in global and regional cerebral oxygen delivery (DO2) as 21 healthy volunteers rapidly ascended and acclimatized to 5260 m. Ultrasound indices of cerebral blood flow in internal carotid and vertebral arteries were measured at sea level, upon arrival at 5260 m (ALT1; atmospheric pressure 409 mmHg) and after 16 days of acclimatization (ALT16). Cerebral DO2 was calculated as the product of arterial oxygen content and flow in each respective artery and summed to estimate global cerebral blood flow. Vascular resistances were calculated as the quotient of mean arterial pressure and respective flows. Global cerebral blood flow increased by ∼70% upon arrival at ALT1 (P < 0.001) and returned to sea-level values at ALT16 as a result of changes in cerebral vascular resistance. A reciprocal pattern in arterial oxygen content maintained global cerebral DO2 throughout acclimatization, although DO2 to the posterior cerebral circulation was increased by ∼25% at ALT1 (P = 0.032). We conclude that cerebral DO2 is well maintained upon acute exposure and acclimatization to hypoxia, particularly in the posterior and inferior regions of the brain associated with vital homeostatic functions. This tight regulation of cerebral DO2 was achieved through integrated adjustments in local vascular resistances to alter cerebral perfusion during both acute and chronic exposure to hypoxia. © 2013 The Authors. Experimental Physiology © 2013 The Physiological Society.
Lee, Seonjoo; Zimmerman, Molly E; Narkhede, Atul; Nasrabady, Sara E; Tosto, Giuseppe; Meier, Irene B; Benzinger, Tammie L S; Marcus, Daniel S; Fagan, Anne M; Fox, Nick C; Cairns, Nigel J; Holtzman, David M; Buckles, Virginia; Ghetti, Bernardino; McDade, Eric; Martins, Ralph N; Saykin, Andrew J; Masters, Colin L; Ringman, John M; Fӧrster, Stefan; Schofield, Peter R; Sperling, Reisa A; Johnson, Keith A; Chhatwal, Jasmeer P; Salloway, Stephen; Correia, Stephen; Jack, Clifford R; Weiner, Michael; Bateman, Randall J; Morris, John C; Mayeux, Richard; Brickman, Adam M
2018-01-01
White matter hyperintensity (WMH) volume on MRI is increased among presymptomatic individuals with autosomal dominant mutations for Alzheimer's disease (AD). One potential explanation is that WMH, conventionally considered a marker of cerebrovascular disease, are a reflection of cerebral amyloid angiopathy (CAA) and that increased WMH in this population is a manifestation of this vascular form of primary AD pathology. We examined whether the presence of cerebral microbleeds, a marker of CAA, mediates the relationship between WMH and estimated symptom onset in individuals with and without autosomal dominant mutations for AD. Participants (n = 175, mean age = 41.1 years) included 112 with an AD mutation and 63 first-degree non-carrier controls. We calculated the estimated years from expected symptom onset (EYO) and analyzed baseline MRI data for WMH volume and presence of cerebral microbleeds. Mixed effects regression and tests of mediation were used to examine microbleed and WMH differences between carriers and non-carriers and to test the whether the association between WMH and mutation status is dependent on the presence of microbleeds. Mutation carriers were more likely to have microbleeds than non-carriers (p<0.05) and individuals with microbleeds had higher WMH volume than those without (p<0.05). Total WMH volume was increased in mutation carriers compared with non-carriers, up to 20 years prior to EYO, after controlling for microbleed status, as we demonstrated previously. Formal testing of mediation demonstrated that 21% of the association between mutation status and WMH was mediated by presence of microbleeds (p = 0.03) but a significant direct effect of WMH remained (p = 0.02) after controlling for presence of microbleeds. Although there is some co-dependency between WMH and microbleeds, the observed increases in WMH among mutation carriers does not appear to be fully mediated by this marker of CAA. The findings highlight the possibility that WMH represent a core feature of AD independent of vascular forms of beta amyloid.
Skrobot, Olivia A; Attems, Johannes; Esiri, Margaret; Hortobágyi, Tibor; Ironside, James W; Kalaria, Rajesh N; King, Andrew; Lammie, George A; Mann, David; Neal, James; Ben-Shlomo, Yoav; Kehoe, Patrick G; Love, Seth
2016-11-01
There are no generally accepted protocols for post-mortem assessment in cases of suspected vascular cognitive impairment. Neuropathologists from seven UK centres have collaborated in the development of a set of vascular cognitive impairment neuropathology guidelines (VCING), representing a validated consensus approach to the post-mortem assessment and scoring of cerebrovascular disease in relation to vascular cognitive impairment. The development had three stages: (i) agreement on a sampling protocol and scoring criteria, through a series of Delphi method surveys; (ii) determination of inter-rater reliability for each type of pathology in each region sampled (Gwet's AC2 coefficient); and (iii) empirical testing and validation of the criteria, by blinded post-mortem assessment of brain tissue from 113 individuals (55 to 100 years) without significant neurodegenerative disease who had had formal cognitive assessments within 12 months of death. Fourteen different vessel and parenchymal pathologies were assessed in 13 brain regions. Almost perfect agreement (AC2 > 0.8) was found when the agreed criteria were used for assessment of leptomeningeal, cortical and capillary cerebral amyloid angiopathy, large infarcts, lacunar infarcts, microhaemorrhage, larger haemorrhage, fibrinoid necrosis, microaneurysms, perivascular space dilation, perivascular haemosiderin leakage, and myelin loss. There was more variability (but still reasonably good agreement) in assessment of the severity of arteriolosclerosis (0.45-0.91) and microinfarcts (0.52-0.84). Regression analyses were undertaken to identify the best predictors of cognitive impairment. Seven pathologies-leptomeningeal cerebral amyloid angiopathy, large infarcts, lacunar infarcts, microinfarcts, arteriolosclerosis, perivascular space dilation and myelin loss-predicted cognitive impairment. Multivariable logistic regression determined the best predictive models of cognitive impairment. The preferred model included moderate/severe occipital leptomeningeal cerebral amyloid angiopathy, moderate/severe arteriolosclerosis in occipital white matter, and at least one large infarct (area under the receiver operating characteristic curve 77%). The presence of 0, 1, 2 or 3 of these features resulted in predicted probabilities of vascular cognitive impairment of 16%, 43%, 73% or 95%, respectively. We have developed VCING criteria that are reproducible and clinically predictive. Assuming our model can be validated in an independent dataset, we believe that this will be helpful for neuropathologists in reporting a low, intermediate or high likelihood that cerebrovascular disease contributed to cognitive impairment.10.1093/brain/aww214_video_abstractaww214_video_abstract. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Effect of electromagnetic pulse exposure on brain micro vascular permeability in rats.
Ding, Gui-Rong; Li, Kang-Chu; Wang, Xiao-Wu; Zhou, Yong-Chun; Qiu, Lian-Bo; Tan, Juan; Xu, Sheng-Long; Guo, Guo-Zhen
2009-06-01
To observe the effect of electromagnetic pulse (EMP) exposure on cerebral micro vascular permeability in rats. The whole-body of male Sprague-Dawley rats were exposed or sham exposed to 200 pulses or 400 pulses (1 Hz) of EMP at 200 kV/m. At 0.5, 1, 3, 6, and 12 h after EMP exposure, the permeability of cerebral micro vascular was detected by transmission electron microscopy and immunohistochemistry using lanthanum nitrate and endogenous albumin as vascular tracers, respectively. The lanthanum nitrate tracer was limited to the micro vascular lumen with no lanthanum nitrate or albumin tracer extravasation in control rat brain. After EMP exposure, the lanthanum nitrate ions reached the tight junction, basal lamina and pericapillary tissue. Similarly, the albumin immunopositive staining was identified in pericapillary tissue. The changes in brain micro vascular permeability were transient, the leakage of micro vascular vessels appeared at 1 h, and reached its peak at 3 h, and nearly recovered at 12 h, after EMP exposure. In addition, the leakage of micro vascular was more obvious after exposure of EMP at 400 pulses than after exposure of EMP at 200 pulses. Exposure to 200 and 400 pulses (1 Hz) of EMP at 200 kV/m can increase cerebral micro vascular permeability in rats, which is recoverable.
[Etiologies of cerebral palsy and classical treatment possibilities].
Maurer, Ute
2002-01-01
Cerebral palsy is a non-progressive disorder of the developing brain with different etiologies in the pre-, peri- or postnatal period. The most important of these diseases is cystic periventricular leukomalacia (PVL), followed by intra- and periventricular hemorrhage, hypoxic-ischemic encephalopathy, vascular disorders, infections or brain malformations. The underlying cause is always a damage of the first motor neuron. Prevalence of cerebral palsy in Europe is 2-3 per 1000 live births with a broad spectrum in different birth weight groups. Our own data concerning only pre-term infants in the NICU with birth weight below 1500 g (VLBW) are between 10%-20%. Established classical treatment methods include physiotherapy (Bobath, Vojta, Hippotherapy), methods of speech and occupational therapists (Castillo-Morales, Sensory Integration) and other therapeutical concepts (Petö, Affolter, Frostig).
Patent Foramen Ovale in Patients with Cerebral Infarction: A Transesophageal Echocradigraphy Study
NASA Technical Reports Server (NTRS)
Petty, George W.; Khandheria, Bijoy K.; Chu, Chu-Pin; Sicks, JoRean D.; Whisnant, Jack P.
1997-01-01
Patent foramen ovale was detected in 37 patients (32%). Mean age was similar in those with (60 years) and those without (64 years) PFO. Patent foramen ovale was more frequent among men (39%) than women (20%, P=.03). Patients with PFO had a lower frequency of atrial fibrillation, diabetes me!litus, hypertension, and peripheral vascular disease compared with those without PFO. There was no difference in frequency of the following characteristics in patients with PFO compared with those without PFO: pulmonary embolus, chronic obstructive pulmonary disease, pulmonary hypertension, peripheral embolism, prior cerebral infarction, nosocomial cerebral infarction, Valsalva maneuver at the time of cerebral infarction, recent surgery, or hemorrhagic transformation of cerebral infarction. Patent foramen ovale was found in 22 (40%) of 55 patients with infarcts of uncertain cause and in 15 (25%) of 61 with infarcts of known cause (cardioembolic, 21%; large vessel atherostenosis, 25%; lacune, 40%) (P=.08). When the analysis was restricted to patients who underwent Valsalva maneuver, PFO with right to left or bidirectional shunt was found in 19 (50%) of 38 patients with infarcts of uncertain cause and in 6 (20%) of 30 with infarcts of known cause (P=.Ol). Conclusion: Although PFO was over-represented in patients with infarcts of uncertain cause in our and other studies, it has a high frequency among patients with cerebral infarction of all types. The relation between PFO and stroke requires further study.
Miras Parra, F J; Valverde Romera, M; Gómez Jiménez, F J; de la Higuera Torres-Puchol, J; Cantero Hinojosa, J; Sánchez Parera, R
1996-06-01
Intracerebral hemorrhages represent about 10% of the whole of vascular cerebral accidents. According to different authors, the incidence of cerebral amyloid angiopathy varies between 5-10% and up to 20-30% of all primary non-traumatic intracerebral hemorrhages. This incidence was analyzed in our environment. A retrospective study was carried out on 403 patients, 203 of them were analyzed between 1990-91 and the other 200 between 1992-3. Age, arterial tension, relapses and localization were taken as criteria for a diagnosis. For the statistical analysis, Student's T-test was used for quantitative variables, while square Chi with Yates' correction was used for qualitative variables. Ischemic cerebral accidents (90.5% of the total) are more frequent than hemorrhagic cerebral accidents, which represent 5.7%. 3.7% were not registered. Therefore, it was suspected cerebral amyloid angiopathy in 1.4% of all vascular cerebral accidents. This represents 26.1% of the total of hemorrhagic patients. Different variables from groups of hemorrhagic vascular cerebral accidents were compared to those caused by amyloid cerebral angiopathy and significant statistics were found with respect to localization in the cerebral hemispheres (p < 0.01). Neither age, nor arterial tension or relapses were significant. Amyloid cerebral angiopathy as a cause of hemorrhagic cerebrovascular accident is and entity to be considered in the diagnosis of these patients. By using clinical criteria and others of localization through complementary explorations, a diagnosis for guessing such a process can be determined.
Zhang, Nan; Gordon, Marc L; Goldberg, Terry E
2017-01-01
Arterial spin labeling (ASL) magnetic resonance imaging uses arterial blood water as an endogenous tracer to measure cerebral blood flow (CBF). In this review, based on ASL studies in the resting state, we discuss state-of-the-art technical and data processing improvements in ASL, and ASL CBF changes in normal aging, mild cognitive impairment (MCI), Alzheimer's disease (AD), and other types of dementia. We propose that vascular and AD risk factors should be considered when evaluating CBF changes in aging, and that other validated biomarkers should be used as inclusion criteria or covariates when evaluating CBF changes in MCI and AD. With improvements in hardware and experimental design, ASL is proving to be an increasingly promising tool for exploring pathogenetic mechanisms, early detection, monitoring disease progression and pharmacological response, and differential diagnosis of AD. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Cerebral Autoregulation in Hypertension and Ischemic Stroke: A Mini Review
Shekhar, Shashank; Liu, Ruen; Travis, Olivia K; Roman, Richard J; Fan, Fan
2017-01-01
Aging and chronic hypertension are associated with dysfunction in vascular smooth muscle, endothelial cells, and neurovascular coupling. These dysfunctions induce impaired myogenic response and cerebral autoregulation, which diminish the protection of cerebral arterioles to the cerebral microcirculation from elevated pressure in hypertension. Chronic hypertension promotes cerebral focal ischemia in response to reductions in blood pressure that are often seen in sedentary elderly patients on antihypertensive therapy. Cerebral autoregulatory dysfunction evokes Blood-Brain Barrier (BBB) leakage, allowing the circulating inflammatory factors to infiltrate the brain to activate glia. The impaired cerebral autoregulation-induced inflammatory and ischemic injury could cause neuronal cell death and synaptic dysfunction which promote cognitive deficits. In this brief review, we summarize the pathogenesis and signaling mechanisms of cerebral autoregulation in hypertension and ischemic stroke-induced cognitive deficits, and discuss our new targets including 20-Hydroxyeicosatetraenoic acid (20-HETE), Gamma-Adducin (Add3) and Matrix Metalloproteinase-9 (MMP-9) that may contribute to the altered cerebral vascular function. PMID:29333537
Presenilin 1 mutation decreases both calcium and contractile responses in cerebral arteries.
Toussay, Xavier; Morel, Jean-Luc; Biendon, Nathalie; Rotureau, Lolita; Legeron, François-Pierre; Boutonnet, Marie-Charlotte; Cho, Yoon H; Macrez, Nathalie
2017-10-01
Mutations or upregulation in presenilin 1 (PS1) gene are found in familial early-onset Alzheimer's disease or sporadic late-onset Alzheimer's disease, respectively. PS1 has been essentially studied in neurons and its mutation was shown to alter intracellular calcium (Ca 2+ ) signals. Here, we showed that PS1 is expressed in smooth muscle cells (SMCs) of mouse cerebral arteries, and we assessed the effects of the deletion of exon 9 of PS1 (PS1dE9) on Ca 2+ signals and contractile responses of vascular SMC. Agonist-induced contraction of cerebral vessels was significantly decreased in PS1dE9 both in vivo and ex vivo. Spontaneous activity of Ca 2+ sparks through ryanodine-sensitive channels (RyR) was unchanged, whereas the RyR-mediated Ca 2+ -release activated by caffeine was shorter in PS1dE9 SMC when compared with control. Moreover, PS1dE9 mutation decreased the caffeine-activated capacitive Ca 2+ entry, and inhibitors of SERCA pumps reversed the effects of PS1dE9 on Ca 2+ signals. PS1dE9 mutation also leads to the increased expression of SERCA3, phospholamban, and RyR3. These results show that PS1 plays a crucial role in the cerebrovascular system and the vascular reactivity is decreased through altered Ca 2+ signals in PS1dE9 mutant mice. Copyright © 2017 Elsevier Inc. All rights reserved.
Wang, Nan; Allali, Gilles; Kesavadas, Chandrasekharan; Noone, Mohan L; Pradeep, Vayyattu G; Blumen, Helena M; Verghese, Joe
2016-01-01
The contribution of cerebral small vessel disease to cognitive decline, especially in non-Caucasian populations, is not well established. We examined the relationship between cerebral small vessel disease and motoric cognitive risk syndrome (MCR), a recently described pre-dementia syndrome, in Indian seniors. 139 participants (mean age 66.6 ± 5.4 y, 33.1% female) participating in the Kerala-Einstein study in Southern India were examined in a cross-sectional study. The presence of cerebral small vessel disease (lacunar infarcts and cerebral microbleeds (CMB)) and white matter hyperintensities on MRI was ascertained by raters blinded to clinical information. MCR was defined by the presence of cognitive complaints and slow gait in older adults without dementia or mobility disability. Thirty-eight (27.3%) participants met MCR criteria. The overall prevalence of lacunar infarcts and CMB was 49.6% and 9.4% , respectively. Lacunar infarcts in the frontal lobe, but no other brain regions, were associated with MCR even after adjusting for vascular risk factors and presence of white matter hyperintensities (adjusted Odds Ratio (aOR): 4.67, 95% CI: 1.69-12.94). Frontal lacunar infarcts were associated with slow gait (aOR: 3.98, 95% CI: 1.46-10.79) and poor performance on memory test (β: -1.24, 95% CI: -2.42 to -0.05), but not with cognitive complaints or non-memory tests. No association of CMB was found with MCR, individual MCR criterion or cognitive tests. Frontal lacunar infarcts are associated with MCR in Indian seniors, perhaps, by contributing to slow gait and poor memory function.
Harsono, Mimily; Pourcyrous, Massroor; Jolly, Elliott J.; de Jongh Curry, Amy; Fedinec, Alexander L.; Liu, Jianxiong; Basuroy, Shyamali; Zhuang, Daming; Leffler, Charles W.
2016-01-01
Epileptic seizures in neonates cause cerebrovascular injury and impairment of cerebral blood flow (CBF) regulation. In the bicuculline model of seizures in newborn pigs, we tested the hypothesis that selective head cooling prevents deleterious effects of seizures on cerebral vascular functions. Preventive or therapeutic ictal head cooling was achieved by placing two head ice packs during the preictal and/or ictal states, respectively, for the ∼2-h period of seizures. Head cooling lowered the brain and core temperatures to 25.6 ± 0.3 and 33.5 ± 0.1°C, respectively. Head cooling had no anticonvulsant effects, as it did not affect the bicuculline-evoked electroencephalogram parameters, including amplitude, duration, spectral power, and spike frequency distribution. Acute and long-term cerebral vascular effects of seizures in the normothermic and head-cooled groups were tested during the immediate (2–4 h) and delayed (48 h) postictal periods. Seizure-induced cerebral vascular injury during the immediate postictal period was detected as terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive staining of cerebral arterioles and a surge of brain-derived circulating endothelial cells in peripheral blood in the normothermic group, but not in the head-cooled groups. During the delayed postictal period, endothelium-dependent cerebral vasodilator responses were greatly reduced in the normothermic group, indicating impaired CBF regulation. Preventive or therapeutic ictal head cooling mitigated the endothelial injury and greatly reduced loss of postictal cerebral vasodilator functions. Overall, head cooling during seizures is a clinically relevant approach to protecting the neonatal brain by preventing cerebrovascular injury and the loss of the endothelium-dependent control of CBF without reducing epileptiform activity. PMID:27591217
Planning-free cerebral blood flow territory mapping in patients with intracranial arterial stenosis
Arteaga, Daniel F; Strother, Megan K; Davis, L Taylor; Fusco, Matthew R; Faraco, Carlos C; Roach, Brent A; Scott, Allison O
2016-01-01
A noninvasive method for quantifying cerebral blood flow and simultaneously visualizing cerebral blood flow territories is vessel-encoded pseudocontinuous arterial spin labeling MRI. However, obstacles to acquiring such information include limited access to the methodology in clinical centers and limited work on how clinically acquired vessel-encoded pseudocontinuous arterial spin labeling data correlate with gold-standard methods. The purpose of this work is to develop and validate a semiautomated pipeline for the online quantification of cerebral blood flow maps and cerebral blood flow territories from planning-free vessel-encoded pseudocontinuous arterial spin labeling MRI with gold-standard digital subtraction angiography. Healthy controls (n = 10) and intracranial atherosclerotic disease patients (n = 34) underwent 3.0 T MRI imaging including vascular (MR angiography) and hemodynamic (cerebral blood flow-weighted arterial spin labeling) MRI. Patients additionally underwent catheter and/or CT angiography. Variations in cross-territorial filling were grouped according to diameters of circle of Willis vessels in controls. In patients, Cohen’s k-statistics were computed to quantify agreement in perfusion patterns between vessel-encoded pseudocontinuous arterial spin labeling and angiography. Cross-territorial filling patterns were consistent with circle of Willis anatomy. The intraobserver Cohen's k-statistics for cerebral blood flow territory and digital subtraction angiography perfusion agreement were 0.730 (95% CI = 0.593–0.867; reader one) and 0.708 (95% CI = 0.561–0.855; reader two). These results support the feasibility of a semiautomated pipeline for evaluating major neurovascular cerebral blood flow territories in patients with intracranial atherosclerotic disease. PMID:27389177
2011-01-01
Background Phase-contrast magnetic resonance imaging (PC-MRI) enables quantification of cerebrospinal fluid (CSF) flow and total cerebral blood (tCBF) flow and may be of value for the etiological diagnosis of neurodegenerative diseases. This investigation aimed to study CSF flow and intracerebral vascular flow in patients with Alzheimer's disease (AD) and patients with amnesic mild cognitive impairment (a-MCI) and to compare the results with patients with idiopathic normal pressure hydrocephalus (NPH) and with healthy elderly volunteers (HEV). Methods Ten a-MCI and 9 mild AD patients were identified in a comprehensive neurological and neuropsychological assessment. They underwent brain MRI; PC-MRI pulse sequence was performed with the following parameters: two views per segment; flip angle: 25° for vascular flow and 20° for CSF flow; field-of-view (FOV): 14 × 14 mm²; matrix: 256 × 128; slice thickness: 5 mm; with one excitation for exams on the 3 T machine, and 2 excitations for the 1.5 T machine exams. Velocity (encoding) sensitization was set to 80 cm/s for the vessels at the cervical level, 10 or 20 cm/s for the aqueduct and 5 cm/s for the cervical subarachnoid space (SAS). Dynamic flow images were analyzed with in-house processing software. The patients' results were compared with those obtained for HEVs (n = 12), and for NPH patients (n = 13), using multivariate analysis. Results Arterial tCBF and the calculated pulsatility index were significantly greater in a-MCI patients than in HEVs. In contrast, vascular parameters were lower in NPH patients. Cervical CSF flow analysis yielded similar values for all four populations. Aqueductal CSF stroke volumes (in μl per cardiac cycle) were similar in HEVs (34 ± 17) and AD patients (39 ± 18). In contrast, the aqueductal CSF was hyperdynamic in a-MCI patients (73 ± 33) and even more so in NPH patients (167 ± 89). Conclusion Our preliminary data show that a-MCI patients present with high systolic arterial peak flows, which are associated with higher mean total cerebral arterial flows. Aqueductal CSF oscillations are within normal range in AD and higher than normal in NPH. This study provides an original dynamic vision of cerebral neurodegenerative diseases, consistent with the vascular theory for AD, and supporting primary flow disturbances different from those observed in NPH. PMID:21349149
The Effect of Vascular Neuropathology on Late-life Cognition: Results from the SMART Project.
Kryscio, R J; Abner, E L; Nelson, P T; Bennett, D; Schneider, J; Yu, L; Hemmy, L S; Lim, K O; Masaki, K; Cairns, N; Xiong, C; Woltjer, R; Dodge, H H; Tyas, S; Fardo, D W; Lou, W; Wan, L; Schmitt, F A
2016-06-01
Cerebral vascular pathology may contribute to cognitive decline experienced by some elderly near death. Given evidence for mixed neuropathologies in advanced age, preventing or reducing cerebrovascular burden in late life may be beneficial. To correlate measures of cerebral vascular pathology with cognitive trajectories. Observational study. A cohort of 2,274 individuals who came to autopsy at a mean age of 89.3 years and 82 percent of whom had at least two cognitive assessments within the last six years of life was compiled from six centers conducting longitudinal studies. For each cognitive domain: immediate and delayed memory, language, and naming, three trajectories were examined: good, intermediate, and poor cognition. The probability of a participant belonging to each trajectory was associated with measures of cerebral vascular pathology after adjustment for demographics, APOE, and Alzheimer neuropathology. A large proportion of the cohort (72-94%) experienced good or intermediate cognition in the four domains examined. The presence of arteriolosclerosis and the presence of lacunar infarcts doubled the odds of belonging to the poor cognitive trajectory for language when compared to the good trajectory. The presence of lacunar infarcts increased the odds of an intermediate or poor trajectory for immediate and delayed recall while the presence of large artery infarcts increased the odds of poor trajectories for all four cognitive domains examined. Microinfarcts and cerebral amyloid angiopathy had little effect on the trajectories. Indicators of cerebral vascular pathology act differently on late life cognition.
The Effect of Vascular Neuropathology on Late-life Cognition: Results from the SMART Project
Kryscio, R.J.; Abner, E.L.; Nelson, P.T.; Bennett, D.; Schneider, J.; Yu, L.; Hemmy, L.S.; Lim, K.O.; Masaki, K.; Cairns, N.; Xiong, C.; Woltjer, R.; Dodge, H.H.; Tyas, S.; Fardo, D.W.; Lou, W.; Wan, L.; Schmitt, F.A.
2016-01-01
Background Cerebral vascular pathology may contribute to cognitive decline experienced by some elderly near death. Given evidence for mixed neuropathologies in advanced age, preventing or reducing cerebrovascular burden in late life may be beneficial. Objective To correlate measures of cerebral vascular pathology with cognitive trajectories. Setting Observational study. Participants A cohort of 2,274 individuals who came to autopsy at a mean age of 89.3 years and 82 percent of whom had at least two cognitive assessments within the last six years of life was compiled from six centers conducting longitudinal studies. Measurements For each cognitive domain: immediate and delayed memory, language, and naming, three trajectories were examined: good, intermediate, and poor cognition. The probability of a participant belonging to each trajectory was associated with measures of cerebral vascular pathology after adjustment for demographics, APOE, and Alzheimer neuropathology. Results A large proportion of the cohort (72-94%) experienced good or intermediate cognition in the four domains examined. The presence of arteriolosclerosis and the presence of lacunar infarcts doubled the odds of belonging to the poor cognitive trajectory for language when compared to the good trajectory. The presence of lacunar infarcts increased the odds of an intermediate or poor trajectory for immediate and delayed recall while the presence of large artery infarcts increased the odds of poor trajectories for all four cognitive domains examined. Microinfarcts and cerebral amyloid angiopathy had little effect on the trajectories. Conclusion Indicators of cerebral vascular pathology act differently on late life cognition. PMID:27709107
Acute Isolated Central Facial Palsy as Manifestation of Middle Cerebral Artery Ischemia.
Sands, Kara A; Shahripour, Reza Bavarsad; Kumar, Gyanendra; Barlinn, Kristian; Lyerly, Michael J; Haršány, Michal; Cure, Joel; Yakov, Yuri L; Alexandrov, Anne W; Alexandrov, Andrei V
2016-09-01
Isolated central facial palsy (I-CFP) is attributed to a lacunar syndrome affecting the corona radiata region or pons. We examined our acute stroke registry for patients presenting with I-CFP and localized their symptoms to a vascular lesion. Our database of consecutive patients with symptoms of acute cerebral ischemia admitted from January 2008 to December 2012 was reviewed for NIH Stroke Scale (NIHSS) scores and subcomponents. All patients with I-CFP ± dysarthria (total NIHSS ≤ 3) had contrast-enhanced MR-angiography and transcranial Doppler as standard of care. All ischemic lesions were localized by MRI within 72 hours from symptom onset. Of 2,202 patients with acute cerebral ischemia, 879 patients (35%) had NIHSS score ≤ 3 points (mean age 63 + 15 years, 46 % women). Nine patients (.4%) presented with I-CFP ± dysarthria. Of these, only 1 had a lesion in the corona radiata and patent MCA, 1 had a pontine lesion without proximal vessel occlusion (2/9, or 22%). Remaining 7 patients (78%) had flow-limiting thromboembolic mid-to-distal M1/proximal M2 MCA disease. Of these, 6 (86%) patients had a prominent early anterior temporal artery on MRA and nonlacunar ischemic lesions on MRI. Contrary to current teaching of lesion localization for an I-CFP, our study revealed the majority of acute patients presenting with this symptom had evidence of flow-limiting thromboembolic MCA disease rather than a lacunar lesion. Our findings underscore the essential role of comprehensive vascular imaging in patients presenting with I-CFP, which is commonly associated with acute flow-limiting thromboembolic MCA disease. Copyright © 2016 by the American Society of Neuroimaging.
Wang, Peijian; Li, Binghu; Cai, Guocai; Huang, Mingqing; Jiang, Licheng; Pu, Jing; Li, Lu; Wu, Qi; Zuo, Li; Wang, Qiulin; Zhou, Peng
2014-12-01
Increasing amounts of evidence implicate oxidative stress as having a pivotal role in age-related cerebrovascular dysfunction, which is an important risk factor for the development of cerebrovascular disease. Previous studies have shown that the activation of the expression of peroxisome proliferator-activated receptor gamma (PPAR-γ) in vascular endothelial cells results in an improvement of vascular function. Pioglitazone, a well-known PPAR-γ agonist, protects against oxidative stress in the rostral ventrolateral medulla by the upregulation of mitochondrial uncoupling protein 2 (UCP2). In this study, we sought to explore the effects and the underlying mechanisms of pioglitazone on age-related oxidative stress elevation and cerebrovascular dysfunction in aging rat cerebral arteries. A natural aging model was constructed and used in these experiments. One-month oral administration of pioglitazone (20 mg·kg·d) ameliorated the production of reactive oxygen species, promoted endothelial nitric oxide synthase phosphorylation and increased the nitric oxide available, thus improving endothelium-dependent relaxation in aging rat cerebral arteries. One-month pioglitazone administration also restored PPAR-γ expression and increased the levels of UCP2 in aging rat cerebral arteries. Using in vitro studies, we demonstrated that pioglitazone attenuated reactive oxygen species levels in aging human umbilical vein endothelial cells through PPAR-γ activation. Furthermore, we found that this occurs in an UCP2-dependent manner. Our study demonstrated that the activation of PPAR-γ by pioglitazone protected against oxidative stress damage in aging cerebral arteries by upregulating UCP2. PPAR-γ may be a new target in treating age-related cerebrovascular dysfunction.
Orthostatic hypotension, cerebral hypoperfusion, and visuospatial deficits in Lewy body disorders.
Robertson, Andrew D; Messner, Michelle A; Shirzadi, Zahra; Kleiner-Fisman, Galit; Lee, Joyce; Hopyan, Julia; Lang, Anthony E; Black, Sandra E; MacIntosh, Bradley J; Masellis, Mario
2016-01-01
Orthostatic hypotension and cognitive impairment are two non-motor attributes of Lewy body spectrum disorders that impact independence. This proof-of-concept study examined cerebral blood flow (perfusion) as a mediator of orthostatic hypotension and cognition. In fifteen patients with Lewy body disorders, we estimated regional perfusion using pseudo-continuous arterial spin labeling MRI, and quantified orthostatic hypotension from the change in systolic blood pressure between supine and standing positions. Executive, visuospatial, attention, memory, and language domains were characterized by neuropsychological tests. A matching sample of non-demented adults with cerebral small vessel disease was obtained to contrast perfusion patterns associated with comorbid vascular pathology. Compared to the vascular group, patients with Lewy body disorders exhibited lower perfusion to temporal and occipital lobes than to frontal and parietal lobes (q < 0.05). A greater orthostatic drop in systolic pressure was associated with lower occipito-parietal perfusion in these patients (uncorrected p < 0.005; cluster size ≥ 20 voxels). Although orthostatic hypotension and supine hypertension were strongly correlated (r = -0.79, p < 0.001), the patterns of association for each with perfusion were distinct. Specifically, supine hypertension was associated with high perfusion to anterior and middle cerebral arterial territories, as well as with low perfusion to posterior regions. Perfusion within orthostatic hypotension-defined regions was directly related to performance on visuospatial and attention tasks, independent of dementia severity (p < 0.05). These findings provide new insight that regional cerebral hypoperfusion is related to orthostatic hypotension, and may be involved in domain-specific cognitive deficits in Lewy body disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cerebral Vascular Injury in Traumatic Brain Injury.
Kenney, Kimbra; Amyot, Franck; Haber, Margalit; Pronger, Angela; Bogoslovsky, Tanya; Moore, Carol; Diaz-Arrastia, Ramon
2016-01-01
Traumatic cerebral vascular injury (TCVI) is a very frequent, if not universal, feature after traumatic brain injury (TBI). It is likely responsible, at least in part, for functional deficits and TBI-related chronic disability. Because there are multiple pharmacologic and non-pharmacologic therapies that promote vascular health, TCVI is an attractive target for therapeutic intervention after TBI. The cerebral microvasculature is a component of the neurovascular unit (NVU) coupling neuronal metabolism with local cerebral blood flow. The NVU participates in the pathogenesis of TBI, either directly from physical trauma or as part of the cascade of secondary injury that occurs after TBI. Pathologically, there is extensive cerebral microvascular injury in humans and experimental animal, identified with either conventional light microscopy or ultrastructural examination. It is seen in acute and chronic TBI, and even described in chronic traumatic encephalopathy (CTE). Non-invasive, physiologic measures of cerebral microvascular function show dysfunction after TBI in humans and experimental animal models of TBI. These include imaging sequences (MRI-ASL), Transcranial Doppler (TCD), and Near InfraRed Spectroscopy (NIRS). Understanding the pathophysiology of TCVI, a relatively under-studied component of TBI, has promise for the development of novel therapies for TBI. Published by Elsevier Inc.
Characterization of White Matter Injury in a Rat Model of Chronic Cerebral Hypoperfusion.
Choi, Bo-Ryoung; Kim, Dong-Hee; Back, Dong Bin; Kang, Chung Hwan; Moon, Won-Jin; Han, Jung-Soo; Choi, Dong-Hee; Kwon, Kyoung Ja; Shin, Chan Young; Kim, Bo-Ram; Lee, Jongmin; Han, Seol-Heui; Kim, Hahn Young
2016-02-01
Chronic cerebral hypoperfusion can lead to ischemic white matter injury resulting in vascular dementia. To characterize white matter injury in vascular dementia, we investigated disintegration of diverse white matter components using a rat model of chronic cerebral hypoperfusion. Chronic cerebral hypoperfusion was modeled in Wistar rats by permanent occlusion of the bilateral common carotid arteries. We performed cognitive behavioral tests, including the water maze task, odor discrimination task, and novel object test; histological investigation of neuroinflammation, oligodendrocytes, myelin basic protein, and nodal or paranodal proteins at the nodes of Ranvier; and serial diffusion tensor imaging. Cilostazol was administered to protect against white matter injury. Diverse cognitive impairments were induced by chronic cerebral hypoperfusion. Disintegration of white matter was characterized by neuroinflammation, loss of oligodendrocytes, attenuation of myelin density, structural derangement at the nodes of Ranvier, and disintegration of white matter tracts. Cilostazol protected against cognitive impairments and white matter disintegration. White matter injury induced by chronic cerebral hypoperfusion can be characterized by disintegration of diverse white matter components. Cilostazol might be a therapeutic strategy against white matter disintegration in patients with vascular dementia. © 2015 American Heart Association, Inc.
Dynamics of pulsatile flow in fractal models of vascular branching networks.
Bui, Anh; Sutalo, Ilija D; Manasseh, Richard; Liffman, Kurt
2009-07-01
Efficient regulation of blood flow is critically important to the normal function of many organs, especially the brain. To investigate the circulation of blood in complex, multi-branching vascular networks, a computer model consisting of a virtual fractal model of the vasculature and a mathematical model describing the transport of blood has been developed. Although limited by some constraints, in particular, the use of simplistic, uniformly distributed model for cerebral vasculature and the omission of anastomosis, the proposed computer model was found to provide insights into blood circulation in the cerebral vascular branching network plus the physiological and pathological factors which may affect its functionality. The numerical study conducted on a model of the middle cerebral artery region signified the important effects of vessel compliance, blood viscosity variation as a function of the blood hematocrit, and flow velocity profile on the distributions of flow and pressure in the vascular network.
Assessing Intracranial Vascular Compliance Using Dynamic Arterial Spin Labeling
Yan, Lirong; Liu, Collin Y.; Smith, Robert X.; Jog, Mayank; Langham, Michael; Krasileva, Kate; Chen, Yufen; Ringman, John M.; Wang, Danny J.J.
2015-01-01
Vascular compliance (VC) is an important marker for a number of cardiovascular diseases and dementia, which is typically assessed in central and peripheral arteries indirectly by quantifying pulse wave velocity (PWV), and/or pulse pressure waveform. To date, very few methods are available for the quantification of intracranial VC. In the present study, a novel MRI technique for in-vivo assessment of intracranial VC was introduced, where dynamic arterial spin labeling (ASL) scans were synchronized with the systolic and diastolic phases of the cardiac cycle. VC is defined as the ratio of change in arterial cerebral blood volume (ΔCBV) and change in arterial pressure (ΔBP). Intracranial VC was assessed in different vascular components using the proposed dynamic ASL method. Our results show that VC mainly occurs in large arteries, gradually decreases in small arteries and arterioles. The comparison of intracranial VC between young and elderly subjects shows that aging is accompanied by a reduction of intracranial VC, in good agreement with the literature. Furthermore, a positive association between intracranial VC and cerebral perfusion measured using pseudo-continuous ASL with 3D GRASE MRI was observed independent of aging effects, suggesting loss of VC is associated with a decline in perfusion. Finally, a significant positive correlation between intracranial and central (aortic arch) VC was observed using an ungated phase-contrast 1D projection PWV technique. The proposed dynamic ASL method offers a promising approach for assessing intracranial VC in a range of cardiovascular diseases and dementia. PMID:26364865
Rheoencephalography in Meniere's disease
NASA Technical Reports Server (NTRS)
Nikolayev, M. P.; Mertsalova, O. N.
1980-01-01
Rheoencephalography (REG) was used on 35 patients with Meniere's disease to determine tonus and perfusion of cerebral vessels. The analysis took account of age, duration of the disease and presence or absence of cervical osteochondrosis. Hypertensive symptoms in the vertebro-basilar system predominated in the under 45 age group, while for the over 45 patients and those suffering for more than 5 years, hypertensive symptoms were likewise noted in the internal carotid arterial system. Signs of angiospasm were revealed both for patients with cervical osteochondrosis and without it. Hypertensive signs were noted in 88.5% of patients with Meniere's disease and as a rule they were noted in the entire vertebro-basilar system without respect to the presence or absence of concurrent cervical osteochondrosis and uni- or bilateral affection of the labyrinth; in patients over 45 who had suffered more than 5 years this also applied to the internal carotid arterial system. Identification of the condition of cerebral circulation and the planning of more effective therapy that influences vascular tone is made possible by REG.
Johnson, V J; Kondziela, S; Gottschalk, F
1995-12-01
This retrospective study compares pre and post-amputation mobility and the influence of age and associated medical problems. Data from the charts of 120 male patients who underwent unilateral trans-tibial (below-knee) amputation at the Dallas Veteran's Administration Hospital between June, 1983 and October, 1991, were collected and analyzed. Mobility was assessed with a six level scale developed by Volpicelli et al. (1983). The presence of cardiac disease, pulmonary disease (COPD), peripheral vascular disease (PVD), diabetes mellitus, degenerative joint disease, blindness, cerebral vascular accident (CVA), and age are correlated with changes in mobility after amputation. Older patients had more medical problems and lower post-amputation scores Individual medical problems did not influence mobility scores, but the presence of COPD and PVD lowered pre-amputation mobility scores. Cardiac disease and diabetes mellitus influenced post-amputation mobility scores by lowering them, either together or individually. Regardless of age, however, patients with more medical problems were poor ambulators. The cause of amputation per se did not influence mobility scores.
Physical frailty in older persons is associated with Alzheimer disease pathology.
Buchman, Aron S; Schneider, Julie A; Leurgans, Sue; Bennett, David A
2008-08-12
We examined the extent to which physical frailty in older persons is associated with common age-related brain pathology, including cerebral infarcts, Lewy body pathology, and Alzheimer disease (AD) pathology. We studied brain autopsies from 165 deceased participants from the Rush Memory and Aging Project, a longitudinal clinical-pathologic study of aging. Physical frailty, based on four components, including grip strength, time to walk 8 feet, body composition, and fatigue, was assessed at annual clinical evaluations. Multiple regression analyses were used to examine the relation of postmortem neuropathologic findings to frailty proximate to death, controlling for age, sex, and education. The mean age at death was 88.1 years (SD = 5.7 years). The level of AD pathology was associated with frailty proximate to death ( = 0.252, SE = 0.077, p = 0.001), accounting for 4% of the variance of physical frailty. Neither cerebral infarcts ( = -0.121, SE = 0.115, p = 0.294) nor Lewy body disease pathology ( = 0.07, SE = 0.156, p = 0.678) was associated with frailty. These associations were unchanged after controlling for the time interval from last clinical evaluation to autopsy. The association of AD pathology with frailty did not differ by the presence of dementia, and this association was unchanged even after considering potential confounders, including physical activity; parkinsonian signs; pulmonary function; or history of chronic diseases, including vascular risk factors, vascular disease burden, falls, joint pain, or use of antipsychotic or antihypertensive medications. Physical frailty in old age is associated with Alzheimer disease pathology in older persons with and without dementia.
Molecular Magnetic Resonance Imaging of Endothelial Activation in the Central Nervous System
Gauberti, Maxime; Fournier, Antoine P.; Docagne, Fabian; Vivien, Denis; Martinez de Lizarrondo, Sara
2018-01-01
Endothelial cells of the central nervous system over-express surface proteins during neurological disorders, either as a cause, or a consequence, of the disease. Since the cerebral vasculature is easily accessible by large contrast-carrying particles, it constitutes a target of choice for molecular magnetic resonance imaging (MRI). In this review, we highlight the most recent advances in molecular MRI of brain endothelial activation and focus on the development of micro-sized particles of iron oxide (MPIO) targeting adhesion molecules including intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), P-Selectin and E-Selectin. We also discuss the perspectives and challenges for the clinical application of this technology in neurovascular disorders (ischemic stroke, intracranial hemorrhage, subarachnoid hemorrhage, diabetes mellitus), neuroinflammatory disorders (multiple sclerosis, brain infectious diseases, sepsis), neurodegenerative disorders (Alzheimer's disease, vascular dementia, aging) and brain cancers (primitive neoplasms, metastasis). PMID:29507614
Hachulla, E; Leys, D; Deleume, J F; Pruvo, J P; Devulder, B
1995-01-01
Antiphospholipid antibody is associated with a clinical syndrome of vascular thrombosis, thrombocytopenia, recurrent fetal loss and livedo reticularis, whether or not a clinical diagnosis of systemic lupus erythematosus (SLE) coexists. Central nervous system involvement in SLE is multifactorial, thrombotic events, antineuronal antibodies, hypertension, infection, side effects of drugs etc. Antiphospholipid antibodies may play a role in focal neurological manifestations in SLE. In the absence of SLE, different neurological symptoms are well associated with antiphospholipid antibodies including stroke, seizures, dementia, migraine, ocular ischemia, chorea, transverse myelopathy, cerebral phlebitis. Other association are more controversal like Guillain Barré syndrome, motor neuron disease, communicating hydrocephalus. In all patients with antiphospholipid antibodies with neurological involvement, cerebral MRI may be performed with an echocardiographic study because a possible association with Libman and Sacks endocarditis, valve dysfunction or cardiac thrombus source of cerebral ischemia.
Intravenous injection of beta-amyloid seeds promotes cerebral amyloid angiopathy (CAA).
Burwinkel, Michael; Lutzenberger, Manuel; Heppner, Frank L; Schulz-Schaeffer, Walter; Baier, Michael
2018-03-05
Seeding and spread of beta-amyloid (Aβ) pathologies have been considered to be based on prion-like mechanisms. However, limited transmissibility of Aβ seeding activity upon peripheral exposure would represent a key difference to prions, not only in terms of pathogenesis but also in terms of potential transmission of disease. We partially characterized the seeded Aβ amyloidosis after intracerebral injection of various brain homogenates in APP/PS1 mice. One particularly seed-laden homogenate was selected to investigate the development of Aβ pathologies after intravenous exposure. We report here that a single intravenous injection of an Alzheimer disease patient's-brain extract into APP/PS1 recipient mice led to cerebral amyloid angiopathy within 180 days post injection. Thus, vascular proteinopathies such as CAA are transmissible in mice via the intravenous route of peripheral exposure.
Smoking as a Crucial Independent Determinant of Stroke
Paul, Seana L; Thrift, Amanda G; Donnan, Geoffrey A
2004-01-01
Background Although smoking is known to be powerful risk factor for other vascular diseases, such as cardiac and peripheral vascular disease, only relatively recently has evidence for the role of smoking in the development of stroke been established. The reasons for this advance lie in the acknowledgement that stroke is a heterogeneous disease, in which its subtypes are associated with different risk factors. Furthermore, improvements in the stringency of epidemiological studies and the greater use of CT scanning have enabled the role of smoking in the development of stroke to be elucidated. Summary of review This is a qualitative examination of high quality epidemiological studies in which the role of smoking and passive smoking, as a risk factor for cerebral infarction, intracerebral haemorrhage and subarachnoid haemorrhage, is examined. In addition, the pathological mechanisms by which smoking or passive smoking may contribute to the development of stroke are reviewed. Conclusion Smoking is a crucial independent determinant of cerebral infarction and subarachnoid haemorrhage, however its role in intracerebral haemorrhage is unclear. Although studies are limited, there is evidence that exposure to passive smoking may also increase the risk of stroke. Smoking appears to be involved in the pathogenesis of stroke via direct injury to the vasculature and also by altering haemodynamic factors within the circulation. Importantly, smoking is modifiable risk factor for stroke. Therefore, the encouragement of smoking cessation may result in a substantial reduction in the incidence of this devastating disease.
Smoking as a Crucial Independent Determinant of Stroke
Paul, Seana L; Thrift, Amanda G; Donnan, Geoffrey A
2004-01-01
Background Although smoking is known to be powerful risk factor for other vascular diseases, such as cardiac and peripheral vascular disease, only relatively recently has evidence for the role of smoking in the development of stroke been established. The reasons for this advance lie in the acknowledgement that stroke is a heterogeneous disease, in which its subtypes are associated with different risk factors. Furthermore, improvements in the stringency of epidemiological studies and the greater use of CT scanning have enabled the role of smoking in the development of stroke to be elucidated. Summary of review This is a qualitative examination of high quality epidemiological studies in which the role of smoking and passive smoking, as a risk factor for cerebral infarction, intracerebral haemorrhage and subarachnoid haemorrhage, is examined. In addition, the pathological mechanisms by which smoking or passive smoking may contribute to the development of stroke are reviewed. Conclusion Smoking is a crucial independent determinant of cerebral infarction and subarachnoid haemorrhage, however its role in intracerebral haemorrhage is unclear. Although studies are limited, there is evidence that exposure to passive smoking may also increase the risk of stroke. Smoking appears to be involved in the pathogenesis of stroke via direct injury to the vasculature and also by altering haemodynamic factors within the circulation. Importantly, smoking is modifiable risk factor for stroke. Therefore, the encouragement of smoking cessation may result in a substantial reduction in the incidence of this devastating disease. PMID:19570273
Increased Notch3 Activity Mediates Pathological Changes in Structure of Cerebral Arteries.
Baron-Menguy, Celine; Domenga-Denier, Valérie; Ghezali, Lamia; Faraci, Frank M; Joutel, Anne
2017-01-01
CADASIL (Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy), the most frequent genetic cause of stroke and vascular dementia, is caused by highly stereotyped mutations in the NOTCH3 receptor, which is predominantly expressed in vascular smooth muscle. The well-established TgNotch3 R169C mouse model develops characteristic features of the human disease, with deposition of NOTCH3 and other proteins, including TIMP3 (tissue inhibitor of metalloproteinase 3), on brain vessels, as well as reduced maximal dilation, and attenuated myogenic tone of cerebral arteries, but without elevated blood pressure. Increased TIMP3 levels were recently shown to be a major determinant of altered myogenic tone. In this study, we investigated the contribution of TIMP3 and Notch3 signaling to the impairment of maximal vasodilator capacity caused by the archetypal R169C mutation. Maximally dilated cerebral arteries in TgNotch3 R169C mice exhibited a decrease in lumen diameter over a range of physiological pressures that occurred before myogenic tone deficits. This defect was not prevented by genetic reduction of TIMP3 in TgNotch3 R169C mice and was not observed in mice overexpressing TIMP3. Knock-in mice with the R169C mutation (Notch3 R170C/R170C ) exhibited similar reductions in arterial lumen, and both TgNotch3 R169C and Notch3 R170C/R170C mice showed increased cerebral artery expression of Notch3 target genes. Reduced maximal vasodilation was prevented by conditional reduction of Notch activity in smooth muscle of TgNotch3 R169C mice and mimicked by conditional activation of Notch3 in smooth muscle, an effect that was blood pressure-independent. We conclude that increased Notch3 activity mediates reduction in maximal dilator capacity of cerebral arteries in CADASIL and may contribute to reductions in cerebral blood flow. © 2016 American Heart Association, Inc.
[Results of percutaneous transluminal dilatation of cerebral vascular stenoses].
Kachel, R; Ritter, H; Grossmann, K; Glaser, F H
1986-03-01
The present paper is a review of 37 successful catheter dilatations of supra-aortic vascular stenoses. There were sixteen patients with a total of 21 stenoses of the internal carotid, vertebral artery or common carotid artery and sixteen patients with subclavian stenoses. Amongst the patients with stenoses of the cerebral vessels, there were ten with multiple lesions and six with a single stenosis. Three patients had successful dilatations of bilateral stenoses. The indications, technique, and complications of catheter dilatation of lesions of the cerebral vessels are described and discussed.
Endothelin-1-induced focal cerebral ischemia in the growth hormone/IGF-1 deficient Lewis Dwarf rat.
Yan, Han; Mitschelen, Matthew; Toth, Peter; Ashpole, Nicole M; Farley, Julie A; Hodges, Erik L; Warrington, Junie P; Han, Song; Fung, Kar-Ming; Csiszar, Anna; Ungvari, Zoltan; Sonntag, William E
2014-11-01
Aging is a major risk factor for cerebrovascular disease. Growth hormone (GH) and its anabolic mediator, insulin-like growth factor (IGF)-1, decrease with advancing age and this decline has been shown to promote vascular dysfunction. In addition, lower GH/IGF-1 levels are associated with higher stroke mortality in humans. These results suggest that decreased GH/IGF-1 level is an important factor in increased risk of cerebrovascular diseases. This study was designed to assess whether GH/IGF-1-deficiency influences the outcome of cerebral ischemia. We found that endothelin-1-induced middle cerebral artery occlusion resulted in a modest but nonsignificant decrease in cerebral infarct size in GH/IGF-1 deficient dw/dw rats compared with control heterozygous littermates and dw/dw rats with early-life GH treatment. Expression of endothelin receptors and endothelin-1-induced constriction of the middle cerebral arteries were similar in the three experimental groups. Interestingly, dw/dw rats exhibited reduced brain edema and less astrocytic infiltration compared with their heterozygous littermates and this effect was reversed by GH-treatment. Because reactive astrocytes are critical for the regulation of poststroke inflammatory processes, maintenance of the blood-brain barrier and neural repair, further studies are warranted to determine the long-term functional consequences of decreased astrocytic activation in GH/IGF-1 deficient animals after cerebral ischemia. Published by Oxford University Press on behalf of the Gerontological Society of America 2014.
Occipital Artery to Middle Cerebral Artery Bypass: Operative Nuances.
Kimura, Toshikazu; Morita, Akio
2017-12-01
Superficial temporal artery (STA)-middle cerebral artery (MCA) anastomosis is a common procedure for vascular neurosurgeons, and it is used in a variety of diseases. However, there are cases in which the STA is absent or is too hypoplastic to be used as a donor for revascularization. Occipital artery (OA)-MCA bypass may be a treatment option in these cases. We encountered 4 cases of symptomatic cerebral ischemia in which the STA was absent or unavailable. These cases were treated by revascularization from the OA to the periphery of the MCA. By meticulous dissection of the OA to the level of the superior temporal line, the OA could reach the periphery of the angular artery and be anastomosed to it in the usual fashion. The patency of the donor artery was confirmed by magnetic resonance angiography soon after the operation and 3 years later. OA-MCA bypass may be a surgical option for cerebral revascularization when the STA is not available. Copyright © 2017 Elsevier Inc. All rights reserved.
[Insomnia and cerebral hypoperfusion].
Káposzta, Zoltán; Rácz, Klára
2007-11-18
Insomnia is defined as difficulty with the initiation, maintenance, duration, or quality of sleep that results in the impairment of daytime functioning, despite adequate opportunity and circumstances for sleep. In most countries approximately every third inhabitant has insomnia. Insomnia can be classified as primary and secondary. The pathogenesis of primary insomnia is unknown, but available evidence suggests a state of hyperarousal. Insomnia secondary to other causes is more common than primary insomnia. Cerebral hypoperfusion can be the cause of insomnia in some cases. In such patients the cerebral blood flow should be improved using parenteral vascular therapy. If insomnia persists despite treatment, then therapy for primary insomnia should be instituted using benzodiazepine-receptor agonists such as Zolpidem, Zopiclone, or Zaleplon. In those cases Midazolam cannot be used for the treatment of insomnia due to its marked negative effect on cerebral blood flow. In Hungary there is a need to organize multidisciplinary Insomnia Clinics because insomnia is more than a disease, it is a public health problem in this century.
Brooks, Steven D; DeVallance, Evan; d'Audiffret, Alexandre C; Frisbee, Stephanie J; Tabone, Lawrence E; Shrader, Carl D; Frisbee, Jefferson C; Chantler, Paul D
2015-12-01
The metabolic syndrome (MetS) is highly prevalent in the North American population and is associated with increased risk for development of cerebrovascular disease. This study determined the structural and functional changes in the middle cerebral arteries (MCA) during the progression of MetS and the effects of chronic pharmacological interventions on mitigating vascular alterations in obese Zucker rats (OZR), a translationally relevant model of MetS. The reactivity and wall mechanics of ex vivo pressurized MCA from lean Zucker rats (LZR) and OZR were determined at 7-8, 12-13, and 16-17 wk of age under control conditions and following chronic treatment with pharmacological agents targeting specific systemic pathologies. With increasing age, control OZR demonstrated reduced nitric oxide bioavailability, impaired dilator (acetylcholine) reactivity, elevated myogenic properties, structural narrowing, and wall stiffening compared with LZR. Antihypertensive therapy (e.g., captopril or hydralazine) starting at 7-8 wk of age blunted the progression of arterial stiffening compared with OZR controls, while treatments that reduced inflammation and oxidative stress (e.g., atorvastatin, rosiglitazone, and captopril) improved NO bioavailability and vascular reactivity compared with OZR controls and had mixed effects on structural remodeling. These data identify specific functional and structural cerebral adaptations that limit cerebrovascular blood flow in MetS patients, contributing to increased risk of cognitive decline, cerebral hypoperfusion, and ischemic stroke; however, these pathological adaptations could potentially be blunted if treated early in the progression of MetS. Copyright © 2015 the American Physiological Society.
Aquaporins in Cardiovascular System.
Tie, Lu; Wang, Di; Shi, Yundi; Li, Xuejun
2017-01-01
Recent studies have shown that some aquaporins (AQPs ), including AQP1, AQP4, AQP7 and AQP9, are expressed in endothelial cells, vascular smooth muscle cells and heart of cardiovascular system. These AQPs are involved in the cardiovascular function and in pathological process of related diseases, such as cerebral ischemia , congestion heart failure , hypertension and angiogenesis. Therefore, it is important to understand the accurate association between AQPs and cardiovascular system, which may provide novel approaches to prevent and treat related diseases. Here we will discuss the expression and physiological function of AQPs in cardiovascular system and summarize recent researches on AQPs related cardiovascular diseases.
Nagai, Yasunori; Goto, Masanori; Toda, Hiroki; Nishida, Namiko; Yoshimoto, Naoya; Iwasaki, Koichi
2017-08-01
Indocyanine green videoangiography (ICG-VA) is an important intraoperative adjunct for saccular aneurysm surgery, but its efficacy in surgery for dissecting aneurysms has rarely been reported. The authors describe the usefulness of preclipping ICG-VA in a rare case of a ruptured dissecting aneurysm located at the precommunicating (A1) segment of the anterior cerebral artery. A 52-year-old woman, with no history of connective tissue diseases or vascular disorders, presented with sudden headache and convulsion. The CT scan showed that the patient had subarachnoid hemorrhage. Angiography showed a dissecting aneurysm in the left A1 segment of the anterior cerebral artery. Thus, the patient underwent trapping of the dissecting aneurysm. ICG-VA was used as an intraoperative adjunct before and after clipping. The preclipping ICG-VA showed the heterogeneously bright dissecting aneurysm and branching arteries even in the presence of hematoma. Preclipping ICG-VA may enhance the advantage of direct surgery for dissecting aneurysm by allowing visualization of the extent of the dissected vascular wall and the related branching arteries. ICG-VA can be an indispensable adjunct to minimize the compromise from the surgical treatment for intracranial dissecting aneurysms. Copyright © 2017 by the Congress of Neurological Surgeons
Smith, Eric E; Saposnik, Gustavo; Biessels, Geert Jan; Doubal, Fergus N; Fornage, Myriam; Gorelick, Philip B; Greenberg, Steven M; Higashida, Randall T; Kasner, Scott E; Seshadri, Sudha
2017-02-01
Two decades of epidemiological research shows that silent cerebrovascular disease is common and is associated with future risk for stroke and dementia. It is the most common incidental finding on brain scans. To summarize evidence on the diagnosis and management of silent cerebrovascular disease to prevent stroke, the Stroke Council of the American Heart Association convened a writing committee to evaluate existing evidence, to discuss clinical considerations, and to offer suggestions for future research on stroke prevention in patients with 3 cardinal manifestations of silent cerebrovascular disease: silent brain infarcts, magnetic resonance imaging white matter hyperintensities of presumed vascular origin, and cerebral microbleeds. The writing committee found strong evidence that silent cerebrovascular disease is a common problem of aging and that silent brain infarcts and white matter hyperintensities are associated with future symptomatic stroke risk independently of other vascular risk factors. In patients with cerebral microbleeds, there was evidence of a modestly increased risk of symptomatic intracranial hemorrhage in patients treated with thrombolysis for acute ischemic stroke but little prospective evidence on the risk of symptomatic hemorrhage in patients on anticoagulation. There were no randomized controlled trials targeted specifically to participants with silent cerebrovascular disease to prevent stroke. Primary stroke prevention is indicated in patients with silent brain infarcts, white matter hyperintensities, or microbleeds. Adoption of standard terms and definitions for silent cerebrovascular disease, as provided by prior American Heart Association/American Stroke Association statements and by a consensus group, may facilitate diagnosis and communication of findings from radiologists to clinicians. © 2016 American Heart Association, Inc.
Vascular basement membranes as pathways for the passage of fluid into and out of the brain.
Morris, Alan W J; Sharp, Matthew MacGregor; Albargothy, Nazira J; Fernandes, Rute; Hawkes, Cheryl A; Verma, Ajay; Weller, Roy O; Carare, Roxana O
2016-05-01
In the absence of conventional lymphatics, drainage of interstitial fluid and solutes from the brain parenchyma to cervical lymph nodes is along basement membranes in the walls of cerebral capillaries and tunica media of arteries. Perivascular pathways are also involved in the entry of CSF into the brain by the convective influx/glymphatic system. The objective of this study is to differentiate the cerebral vascular basement membrane pathways by which fluid passes out of the brain from the pathway by which CSF enters the brain. Experiment 1: 0.5 µl of soluble biotinylated or fluorescent Aβ, or 1 µl 15 nm gold nanoparticles was injected into the mouse hippocampus and their distributions determined at 5 min by transmission electron microscopy. Aβ was distributed within the extracellular spaces of the hippocampus and within basement membranes of capillaries and tunica media of arteries. Nanoparticles did not enter capillary basement membranes from the extracellular spaces. Experiment 2: 2 µl of 15 nm nanoparticles were injected into mouse CSF. Within 5 min, groups of nanoparticles were present in the pial-glial basement membrane on the outer aspect of cortical arteries between the investing layer of pia mater and the glia limitans. The results of this study and previous research suggest that cerebral vascular basement membranes form the pathways by which fluid passes into and out of the brain but that different basement membrane layers are involved. The significance of these findings for neuroimmunology, Alzheimer's disease, drug delivery to the brain and the concept of the Virchow-Robin space are discussed.
Strategy for Identifying Repurposed Drugs for the Treatment of Cerebral Cavernous Malformation
Gibson, Christopher C.; Zhu, Weiquan; Davis, Chadwick T.; Bowman-Kirigin, Jay A.; Chan, Aubrey C.; Ling, Jing; Walker, Ashley E.; Goitre, Luca; Monache, Simona Delle; Retta, Saverio Francesco; Shiu, Yan-Ting E.; Grossmann, Allie H.; Thomas, Kirk R.; Donato, Anthony J.; Lesniewski, Lisa A.; Whitehead, Kevin J.; Li, Dean Y.
2014-01-01
Background Cerebral cavernous malformation (CCM) is a hemorrhagic stroke disease affecting up to 0.5% of North Americans with no approved non-surgical treatment. A subset of patients have a hereditary form of the disease due primarily to loss-of-function mutations in KRIT1, CCM2, or PDCD10. We sought to identify known drugs that could be repurposed to treat CCM. Methods and Results We developed an unbiased screening platform based on both cellular and animal models of loss-of-function of CCM2. Our discovery strategy consisted of four steps: an automated immunofluorescence and machine-learning-based primary screen of structural phenotypes in human endothelial cells deficient in CCM2; a secondary screen of functional changes in endothelial stability in these same cells; a rapid in vivo tertiary screen of dermal microvascular leak in mice lacking endothelial Ccm2; and finally a quaternary screen of CCM lesion burden in these same mice. We screened 2,100 known drugs and bioactive compounds, and identified two candidates for further study, cholecalciferol (Vitamin D3) and tempol (a scavenger of superoxide). Each drug decreased lesion burden in a mouse model of CCM vascular disease by approximately 50%. Conclusions By identifying known drugs as potential therapeutics for CCM, we have decreased the time, cost, and risk of bringing treatments to patients. Each drug also prompts additional exploration of biomarkers of CCM disease. We further suggest that the structure-function screening platform presented here may be adapted and scaled to facilitate drug discovery for diverse loss-of-function genetic vascular disease. PMID:25486933
Multimodality Review of Amyloid-related Diseases of the Central Nervous System
Sipe, Adam L.; Benzinger, Tammie L. S.; McConathy, Jonathan; Connolly, Sarah; Schwetye, Katherine E.
2016-01-01
Amyloid-β (Aβ) is ubiquitous in the central nervous system (CNS), but pathologic accumulation of Aβ results in four distinct neurologic disorders that affect middle-aged and elderly adults, with diverse clinical presentations ranging from chronic debilitating dementia to acute life-threatening intracranial hemorrhage. The characteristic imaging patterns of Aβ-related CNS diseases reflect the pathophysiology of Aβ deposition in the CNS. Aβ is recognized as a key component in the neuronal damage that characterizes the pathophysiology of Alzheimer disease, the most common form of dementia. Targeted molecular imaging shows pathologic accumulation of Aβ and tau protein, and fluorine 18 fluorodeoxyglucose positron emission tomography and anatomic imaging allow differentiation of typical patterns of neuronal dysfunction and loss in patients with Alzheimer disease from those seen in patients with other types of dementia. Cerebral amyloid angiopathy (CAA) is an important cause of cognitive impairment and spontaneous intracerebral hemorrhage in the elderly. Hemorrhage and white matter injury seen at imaging reflect vascular damage caused by the accumulation of Aβ in vessel walls. The rare forms of inflammatory angiopathy attributed to Aβ, Aβ-related angiitis and CAA-related inflammation, cause debilitating neurologic symptoms that improve with corticosteroid therapy. Imaging shows marked subcortical and cortical inflammation due to perivascular inflammation, which is incited by vascular Aβ accumulation. In the rarest of the four disorders, cerebral amyloidoma, the macroscopic accumulation of Aβ mimics the imaging appearance of tumors. Knowledge of the imaging patterns and pathophysiology is essential for accurate diagnosis of Aβ-related diseases of the CNS. ©RSNA, 2016 PMID:27399239
Lutsey, Pamela L; Norby, Faye L; Gottesman, Rebecca F; Mosley, Thomas; MacLehose, Richard F; Punjabi, Naresh M; Shahar, Eyal; Jack, Clifford R; Alonso, Alvaro
2016-01-01
A growing body of literature has suggested that obstructive sleep apnea (OSA) and habitual short sleep duration are linked to poor cognitive function. Neuroimaging studies may provide insight into this relation. We tested the hypotheses that OSA and habitual short sleep duration, measured at ages 54-73 years, would be associated with adverse brain morphology at ages 67-89 years. Included in this analysis are 312 ARIC study participants who underwent in-home overnight polysomnography in 1996-1998 and brain MRI scans about 15 years later (2012-2013). Sleep apnea was quantified by the apnea-hypopnea index and categorized as moderate/severe (≥15.0 events/hour), mild (5.0-14.9 events/hour), or normal (<5.0 events/hour). Habitual sleep duration was categorized, in hours, as <7, 7 to <8, ≥8. MRI outcomes included number of infarcts (total, subcortical, and cortical) and white matter hyperintensity (WMH) and Alzheimer's disease signature region volumes. Multivariable adjusted logistic and linear regression models were used. All models incorporated inverse probability weighting, to adjust for potential selection bias. At the time of the sleep study participants were 61.7 (SD: 5.0) years old and 54% female; 19% had moderate/severe sleep apnea. MRI imaging took place 14.8 (SD: 1.0) years later, when participants were 76.5 (SD: 5.2) years old. In multivariable models which accounted for body mass index, neither OSA nor abnormal sleep duration were statistically significantly associated with odds of cerebral infarcts, WMH brain volumes or regional brain volumes. In this community-based sample, mid-life OSA and habitually short sleep duration were not associated with later-life cerebral markers of vascular dementia and Alzheimer's disease. However, selection bias may have influenced our results and the modest sample size led to relatively imprecise associations.
Lacunar infarction and small vessel disease: pathology and pathophysiology.
Caplan, Louis R
2015-01-01
Two major vascular pathologies underlie brain damage in patients with disease of small size penetrating brain arteries and arterioles; 1) thickening of the arterial media and 2) obstruction of the origins of penetrating arteries by parent artery intimal plaques. The media of these small vessels may be thickened by fibrinoid deposition and hypertrophy of smooth muscle and other connective tissue elements that accompanies degenerative changes in patients with hypertension and or diabetes or can contain foreign deposits as in amyloid angiopathy and genetically mediated conditions such as cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. These pathological changes lead to 2 different pathophysiologies: 1) brain ischemia in regions supplied by the affected arteries. The resultant lesions are deep small infarcts, most often involving the basal ganglia, pons, thalami and cerebral white matter. And 2) leakage of fluid causing edema and later gliosis in white matter tracts. The changes in the media and adventitia effect metalloproteinases and other substances within the matrix of the vessels and lead to abnormal blood/brain barriers in these small vessels. and chronic gliosis and atrophy of cerebral white matter.
Ischemic brain injury in cerebral amyloid angiopathy
van Veluw, Susanne J; Greenberg, Steven M
2016-01-01
Cerebral amyloid angiopathy (CAA) is a common form of cerebral small vessel disease and an important risk factor for intracerebral hemorrhage and cognitive impairment. While the majority of research has focused on the hemorrhagic manifestation of CAA, its ischemic manifestations appear to have substantial clinical relevance as well. Findings from imaging and pathologic studies indicate that ischemic lesions are common in CAA, including white-matter hyperintensities, microinfarcts, and microstructural tissue abnormalities as detected with diffusion tensor imaging. Furthermore, imaging markers of ischemic disease show a robust association with cognition, independent of age, hemorrhagic lesions, and traditional vascular risk factors. Widespread ischemic tissue injury may affect cognition by disrupting white-matter connectivity, thereby hampering communication between brain regions. Challenges are to identify imaging markers that are able to capture widespread microvascular lesion burden in vivo and to further unravel the etiology of ischemic tissue injury by linking structural magnetic resonance imaging (MRI) abnormalities to their underlying pathophysiology and histopathology. A better understanding of the underlying mechanisms of ischemic brain injury in CAA will be a key step toward new interventions to improve long-term cognitive outcomes for patients with CAA. PMID:25944592
Prabhakar, Puttachandra; Chandra, Sadanandavalli Retnaswami; Supriya, Manjunath; Issac, Thomas Gregor; Prasad, Chandrajit; Christopher, Rita
2015-12-15
Vitamin D plays vital roles in human health and recent studies have shown its beneficial effect on brain functioning. The present study was designed to evaluate the association of vitamin D with vascular dementia (VaD) due to cerebral small vessel disease (SVD) in Asian Indian population. 140 VaD patients aged ≥ 60 years with neuroimaging evidence of SVD, and 132 age and gender-matched controls, were investigated. Vitamin D status was estimated by measuring serum 25-hydroxy vitamin D. Logistic regression model revealed that deficient levels of vitamin D (<12 ng/ml) were associated with 2.2-fold increase in odds of VaD after adjustment with covariates. Hypertension was independently associated with 11.3-fold increased odds of VaD. In hypertensives with vitamin D deficiency and insufficiency (12-20 ng/ml), the odds were increased to 31.6-fold and 14.4-fold, respectively. However, in hypertensives with vitamin D sufficiency (>20 ng/ml), the odds of VaD were increased by 3.8-fold only. Pearson correlation showed that serum vitamin D was inversely associated with systolic and diastolic blood pressure (r=-0.401 and -0.411, p<0.01, respectively) in vitamin D-deficient subjects. Since the combined presence of hypertension and vitamin D deficiency increases the probability of developing VaD, screening for vitamin D status in addition to regular monitoring of blood pressure, could reduce the risk of VaD associated with cerebral SVD in the elderly Asian Indian subjects. Copyright © 2015 Elsevier B.V. All rights reserved.
De Araujo, A C P; Campos, R
2009-02-01
The aim of the present study was to analyse thirty chinchilla (Chinchilla lanigera) brains, injected with latex, and to systematize and describe the distribution and the vascularization territories of the middle cerebral artery. This long vessel, after it has originated from the terminal branch of the basilar artery, formed the following collateral branches: rostral, caudal and striated (perforating) central branches. After crossing the lateral rhinal sulcus, the middle cerebral artery emitted a sequence of rostral and caudal convex hemispheric cortical collateral branches on the convex surface of the cerebral hemisphere to the frontal, parietal, temporal and occipital lobes. Among the rostral convex hemispheric branches, a trunk was observed, which reached the frontal and parietal lobes and, in a few cases, the occipital lobe. The vascular territory of the chinchilla's middle cerebral artery included, in the cerebral hemisphere basis, the lateral cerebral fossa, the caudal third of the olfactory trigone, the rostral two-thirds of the piriform lobe, the lateral olfactory tract, and most of the convex surface of the cerebral hemisphere, except for a strip between the cerebral longitudinal fissure and the vallecula, which extended from the rostral to the caudal poles bordering the cerebral transverse fissure.
LRP1 in brain vascular smooth muscle cells mediates local clearance of Alzheimer's amyloid-β.
Kanekiyo, Takahisa; Liu, Chia-Chen; Shinohara, Mitsuru; Li, Jie; Bu, Guojun
2012-11-14
Impaired clearance of amyloid-β (Aβ) is a major pathogenic event for Alzheimer's disease (AD). Aβ depositions in brain parenchyma as senile plaques and along cerebrovasculature as cerebral amyloid angiopathy (CAA) are hallmarks of AD. A major pathway that mediates brain Aβ clearance is the cerebrovascular system where Aβ is eliminated through the blood-brain barrier (BBB) and/or degraded by cerebrovascular cells along the interstitial fluid drainage pathway. An Aβ clearance receptor, the low-density lipoprotein receptor-related protein 1 (LRP1), is abundantly expressed in cerebrovasculature, in particular in vascular smooth muscle cells. Previous studies have indicated a role of LRP1 in endothelial cells in transcytosing Aβ out of the brain across the BBB; however, whether this represents a significant pathway for brain Aβ clearance remains controversial. Here, we demonstrate that Aβ can be cleared locally in the cerebrovasculature by an LRP1-dependent endocytic pathway in smooth muscle cells. The uptake and degradation of both endogenous and exogenous Aβ were significantly reduced in LRP1-suppressed human brain vascular smooth muscle cells. Conditional deletion of Lrp1 in vascular smooth muscle cell in amyloid model APP/PS1 mice accelerated brain Aβ accumulation and exacerbated Aβ deposition as amyloid plaques and CAA without affecting Aβ production. Our results demonstrate that LRP1 is a major Aβ clearance receptor in cerebral vascular smooth muscle cell and a disturbance of this pathway contributes to Aβ accumulation. These studies establish critical functions of the cerebrovasculature system in Aβ metabolism and identify a new pathway involved in the pathogenesis of both AD and CAA.
2015-05-01
ORGANIZATION : Texas Tech University Health Sciences Center Lubbock, TX 79430 REPORT DATE: May 2015 TYPE OF REPORT: Annual...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Texas Tech University Health Sciences Center 3601...now available to treat the primary tumor and metastatic disease in peripheral organs . Unfortunately, current therapeutic options for brain metastases
Solovyeva, E Yu; Karneev, A N; Chekanov, A V; Baranova, O A; Choi, I V
Developing brain ischemia due to cerebral vascularization leads to disruption of brain metabolism. Chronic cerebral hypoperfusion leads to irreversible brain damage and plays an important role in the development of some types of dementia. Early use of antioxidants such as ethyl ether apovincamine acid (vinpocetine) and 2-ethyl-6-methyl-3-hydroxypyridine-succinate in the treatment of this pathology is seen as a real pathogenetically based method of correction of cerebral metabolism with cerebral vascular disorders, demonstrating the increase in cerebral blood flow and also neuroprotective effects. Clinical studies and studies on biological models show that the main mechanisms of action of vinpocetine and 2-ethyl-6-methyl-3-hydroxypyridine-succinate, although have a similar focus, but implementing neuroprotective and nootropic effects via various links in the pathogenesis of ischemic brain damage.
Cerebellar Hematoma Location: Implications for the Underlying Microangiopathy.
Pasi, Marco; Marini, Sandro; Morotti, Andrea; Boulouis, Gregoire; Xiong, Li; Charidimou, Andreas; Ayres, Alison M; Lee, Myung Joo; Biffi, Alessandro; Goldstein, Joshua N; Rosand, Jonathan; Gurol, M Edip; Greenberg, Steven M; Viswanathan, Anand
2018-01-01
Spontaneous cerebellar intracerebral hemorrhage (ICH) has been reported to be mainly associated with vascular changes secondary to hypertension. However, a subgroup of cerebellar ICH seems related to vascular amyloid deposition (cerebral amyloid angiopathy). We sought to determine whether location of hematoma in the cerebellum (deep and superficial regions) was suggestive of a particular hemorrhage-prone small-vessel disease pathology (cerebral amyloid angiopathy or hypertensive vasculopathy). Consecutive patients with cerebellar ICH from a single tertiary care medical center were recruited. Based on data from pathological reports, patients were divided according to the location of the primary cerebellar hematoma (deep versus superficial). Location of cerebral microbleeds (CMBs; strictly lobar, strictly deep, and mixed CMB) was evaluated on magnetic resonance imaging. One-hundred and eight patients (84%) had a deep cerebellar hematoma, and 20 (16%) a superficial cerebellar hematoma. Hypertension was more prevalent in deep than in patients with superficial cerebellar ICH (89% versus 65%, respectively; P <0.05). Among patients who underwent magnetic resonance imaging, those with superficial cerebellar ICH had higher prevalence of strictly lobar CMB (43%) and lower prevalence of strictly deep or mixed CMB (0%) compared with those with deep superficial cerebellar ICH (6%, 17%, and 38%, respectively). In a multivariable model, presence of strictly lobar CMB was associated with superficial cerebellar ICH (odds ratio, 3.8; 95% confidence interval, 1.5-8.5; P =0.004). Our study showed that superficial cerebellar ICH is related to the presence of strictly lobar CMB-a pathologically proven marker of cerebral amyloid angiopathy. Cerebellar hematoma location may thus help to identify those patients likely to have cerebral amyloid angiopathy pathology. © 2017 American Heart Association, Inc.
Hawkes, Cheryl A; Gatherer, Maureen; Sharp, Matthew M; Dorr, Adrienne; Yuen, Ho Ming; Kalaria, Rajesh; Weller, Roy O; Carare, Roxana O
2013-04-01
Development of cerebral amyloid angiopathy (CAA) and Alzheimer's disease (AD) is associated with failure of elimination of amyloid-β (Aβ) from the brain along perivascular basement membranes that form the pathways for drainage of interstitial fluid and solutes from the brain. In transgenic APP mouse models of AD, the severity of cerebral amyloid angiopathy is greater in the cerebral cortex and hippocampus, intermediate in the thalamus, and least in the striatum. In this study we test the hypothesis that age-related regional variation in (1) vascular basement membranes and (2) perivascular drainage of Aβ contribute to the different regional patterns of CAA in the mouse brain. Quantitative electron microscopy of the brains of 2-, 7-, and 23-month-old mice revealed significant age-related thickening of capillary basement membranes in cerebral cortex, hippocampus, and thalamus, but not in the striatum. Results from Western blotting and immunocytochemistry experiments showed a significant reduction in collagen IV in the cortex and hippocampus with age and a reduction in laminin and nidogen 2 in the cortex and striatum. Injection of soluble Aβ into the hippocampus or thalamus showed an age-related reduction in perivascular drainage from the hippocampus but not from the thalamus. The results of the study suggest that changes in vascular basement membranes and perivascular drainage with age differ between brain regions, in the mouse, in a manner that may help to explain the differential deposition of Aβ in the brain in AD and may facilitate development of improved therapeutic strategies to remove Aβ from the brain in AD. © 2013 The Authors Aging Cell © 2013 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.
Omental transplantation for neurodegenerative diseases.
Rafael, Hernando
2014-01-01
Up to date, almost all researchers consider that there is still no effective therapy for neurodegenerative diseases (NDDs) and therefore, these diseases are incurable. However, since May 1998, we know that a progressive ischemia in the medial temporal lobes and subcommissural regions can cause Alzheimer's disease; because, in contrast to this, its revascularization by means of omental tissue can cure or improve this disease. Likewise we observed that the aging process, Huntington's disease, Parkinson's disease, and Amyotrophic lateral sclerosis; all of them are of ischemic origin caused by cerebral atherosclerosis, associated with vascular anomalies and/or environmental chemicals. On the contrary, an omental transplantation on the affected zone can stop and improve these diseases. For these reasons, I believe that NDDs, are wrongly classified as neurodegenerative disorders.
Liu, Bian; Lau, Kui Kai; Li, Linxin; Lovelock, Caroline; Liu, Ming; Kuker, Wilhelm; Rothwell, Peter M
2018-04-01
It has been hypothesized that cerebral small vessel disease (SVD) and chronic renal impairment may be part of a multisystem small-vessel disorder, but their association may simply be as a result of shared risk factors (eg, hypertension) rather than to a systemic susceptibility to premature SVD. However, most previous studies were hospital based, most had inadequate adjustment for hypertension, many were confined to patients with lacunar stroke, and none stratified by age. In a population-based study of transient ischemic attack and ischemic stroke (OXVASC [Oxford Vascular Study]), we evaluated the magnetic resonance imaging markers of cerebral SVD, including lacunes, white matter hyperintensities, cerebral microbleeds, and enlarged perivascular space. We studied the age-specific associations of renal impairment (estimated glomerular filtration rate <60 mL/min per 1.73 m 2 ) and total SVD burden (total SVD score) adjusting for age, sex, vascular risk factors, and premorbid blood pressure (mean blood pressure during 15 years preevent). Of 1080 consecutive patients, 1028 (95.2%) had complete magnetic resonance imaging protocol and creatinine measured at baseline. Renal impairment was associated with total SVD score (odds ratio [OR], 2.16; 95% confidence interval [CI], 1.69-2.75; P <0.001), but only at age <60 years (<60 years: OR, 3.97; 95% CI, 1.69-9.32; P =0.002; 60-79 years: OR, 1.01; 95% CI, 0.72-1.41; P =0.963; ≥80 years: OR, 0.95; 95% CI, 0.59-1.54; P =0.832). The overall association of renal impairment and total SVD score was also attenuated after adjustment for age, sex, history of hypertension, diabetes mellitus, and premorbid average systolic blood pressure (adjusted OR, 0.76; 95% CI, 0.56-1.02; P =0.067), but the independent association of renal impairment and total SVD score at age <60 years was maintained (adjusted OR, 3.11; 95% CI, 1.21-7.98; P =0.018). Associations of renal impairment and SVD were consistent for each SVD marker at age <60 years but were strongest for cerebral microbleeds (OR, 5.84; 95% CI, 1.45-23.53; P =0.013) and moderate-severe periventricular white matter hyperintensities (OR, 6.28; 95% CI, 1.54-25.63; P =0.010). The association of renal impairment and cerebral SVD was attenuated with adjustment for shared risk factors at older ages, but remained at younger ages, consistent with a shared susceptibility to premature disease. © 2018 The Authors.
The Return of an Old Worm: Cerebral Paragonimiasis Presenting with Intracerebral Hemorrhage
Koh, Eun Jung; Kim, Seung-Ki; Wang, Kyu-Chang; Chai, Jong-Yil; Chong, Sangjoon; Park, Sung-Hye; Cheon, Jung-Eun
2012-01-01
Paragonimiasis is caused by ingesting crustaceans, which are the intermediate hosts of Paragonimus. The involvement of the brain was a common presentation in Korea decades ago, but it becomes much less frequent in domestic medical practices. We observed a rare case of cerebral paragonimiasis manifesting with intracerebral hemorrhage. A 10-yr-old girl presented with sudden-onset dysarthria, right facial palsy and clumsiness of the right hand. Brain imaging showed acute intracerebral hemorrhage in the left frontal area. An occult vascular malformation or small arteriovenous malformation compressed by the hematoma was initially suspected. The lesion progressed for over 2 months until a delayed surgery was undertaken. Pathologic examination was consistent with cerebral paragonimiasis. After chemotherapy with praziquantel, the patient was monitored without neurological deficits or seizure attacks for 6 months. This case alerts practicing clinicians to the domestic transmission of a forgotten parasitic disease due to environmental changes. PMID:23166429
Experimental Cerebral Malaria Pathogenesis—Hemodynamics at the Blood Brain Barrier
Nacer, Adéla; Movila, Alexandru; Sohet, Fabien; Girgis, Natasha M.; Gundra, Uma Mahesh; Loke, P'ng; Daneman, Richard; Frevert, Ute
2014-01-01
Cerebral malaria claims the lives of over 600,000 African children every year. To better understand the pathogenesis of this devastating disease, we compared the cellular dynamics in the cortical microvasculature between two infection models, Plasmodium berghei ANKA (PbA) infected CBA/CaJ mice, which develop experimental cerebral malaria (ECM), and P. yoelii 17XL (PyXL) infected mice, which succumb to malarial hyperparasitemia without neurological impairment. Using a combination of intravital imaging and flow cytometry, we show that significantly more CD8+ T cells, neutrophils, and macrophages are recruited to postcapillary venules during ECM compared to hyperparasitemia. ECM correlated with ICAM-1 upregulation on macrophages, while vascular endothelia upregulated ICAM-1 during ECM and hyperparasitemia. The arrest of large numbers of leukocytes in postcapillary and larger venules caused microrheological alterations that significantly restricted the venous blood flow. Treatment with FTY720, which inhibits vascular leakage, neurological signs, and death from ECM, prevented the recruitment of a subpopulation of CD45hi CD8+ T cells, ICAM-1+ macrophages, and neutrophils to postcapillary venules. FTY720 had no effect on the ECM-associated expression of the pattern recognition receptor CD14 in postcapillary venules suggesting that endothelial activation is insufficient to cause vascular pathology. Expression of the endothelial tight junction proteins claudin-5, occludin, and ZO-1 in the cerebral cortex and cerebellum of PbA-infected mice with ECM was unaltered compared to FTY720-treated PbA-infected mice or PyXL-infected mice with hyperparasitemia. Thus, blood brain barrier opening does not involve endothelial injury and is likely reversible, consistent with the rapid recovery of many patients with CM. We conclude that the ECM-associated recruitment of large numbers of activated leukocytes, in particular CD8+ T cells and ICAM+ macrophages, causes a severe restriction in the venous blood efflux from the brain, which exacerbates the vasogenic edema and increases the intracranial pressure. Thus, death from ECM could potentially occur as a consequence of intracranial hypertension. PMID:25474413
Cerebral oximetry in cardiac and major vascular surgery.
Fischer, G W; Silvay, G
2010-01-01
We describe the development and current applications of cerebral oximetry (based on near-infrared reflectance spectroscopy) that can be used during cardiac and major vascular surgery to determined brain tissue oxygen saturation. There are presently three cerebral oximetry devices with FDA approval in the United States to measure and monitor cerebral tissue oxygen saturation. 1. INVOS (Somanetics Corporation, Troy, MI - recently COVIDIEN, Boulder, CO); FORE-SIGHT (CAS Medical Systems, Inc. Branford, CT); EQUANOX (Nonin Medical Inc.Minnesota, MN). All devices are portable, non-invasive and easy to use in operating room and intensive care unit. The data provided in these communication may provided information for improvement of perioperative neuromonitoring techniques, and may be crucial in the design of future clinical trials.
Neigh, Gretchen N.; Nemeth, Christina L; Kelly, Sean D.; Hardy, Emily E.; Bourke, Chase; Stowe, Zachary N.; Owens, Michael J.
2016-01-01
Prenatal stress has been linked to deficits in neurological function including deficient social behavior, alterations in learning and memory, impaired stress regulation, and susceptibility to adult disease. In addition, prenatal environment is known to alter cardiovascular health; however, limited information is available regarding the cerebrovascular consequences of prenatal stress exposure. Vascular disturbances late in life may lead to cerebral hypoperfusion which is linked to a variety of neurodegenerative and psychiatric diseases. The known impact of cerebrovascular compromise on neuronal function and behavior highlights the importance of characterizing the impact of stress on not just neurons and glia, but also cerebrovasculature. Von Willebrand factor has previously been shown to be impacted by prenatal stress and is predictive of cerebrovascular health. Here we assess the impact of prenatal stress on von Willebrand factor and related angiogenic factors. Furthermore, we assess the potential protective effects of concurrent anti-depressant treatment during in utero stress exposure on the assessed cerebrovascular endpoints. Prenatal stress augmented expression of von Willebrand factor which was prevented by concurrent in utero escitalopram treatment. The functional implications of this increase in von Willebrand factor remain elusive, but the presented data demonstrate that although prenatal stress did not independently impact total vascularization, exposure to chronic stress in adulthood decreased blood vessel length. In addition, the current study demonstrates that production of reactive oxygen species in the hippocampus is decreased by prenatal exposure to escitalopram. Collectively, these findings demonstrate that the prenatal experience can cause complex changes in adult cerebral vascular structure and function. PMID:27422674
Lee, Seonjoo; Zimmerman, Molly E.; Narkhede, Atul; Nasrabady, Sara E.; Tosto, Giuseppe; Meier, Irene B.; Benzinger, Tammie L. S.; Marcus, Daniel S.; Fagan, Anne M.; Fox, Nick C.; Cairns, Nigel J.; Holtzman, David M.; Buckles, Virginia; Ghetti, Bernardino; McDade, Eric; Martins, Ralph N.; Saykin, Andrew J.; Masters, Colin L.; Ringman, John M.; Fӧrster, Stefan; Schofield, Peter R.; Sperling, Reisa A.; Johnson, Keith A.; Chhatwal, Jasmeer P.; Salloway, Stephen; Correia, Stephen; Jack, Clifford R.; Weiner, Michael; Bateman, Randall J.; Morris, John C.; Mayeux, Richard
2018-01-01
Introduction White matter hyperintensity (WMH) volume on MRI is increased among presymptomatic individuals with autosomal dominant mutations for Alzheimer’s disease (AD). One potential explanation is that WMH, conventionally considered a marker of cerebrovascular disease, are a reflection of cerebral amyloid angiopathy (CAA) and that increased WMH in this population is a manifestation of this vascular form of primary AD pathology. We examined whether the presence of cerebral microbleeds, a marker of CAA, mediates the relationship between WMH and estimated symptom onset in individuals with and without autosomal dominant mutations for AD. Participants and methods Participants (n = 175, mean age = 41.1 years) included 112 with an AD mutation and 63 first-degree non-carrier controls. We calculated the estimated years from expected symptom onset (EYO) and analyzed baseline MRI data for WMH volume and presence of cerebral microbleeds. Mixed effects regression and tests of mediation were used to examine microbleed and WMH differences between carriers and non-carriers and to test the whether the association between WMH and mutation status is dependent on the presence of microbleeds. Results Mutation carriers were more likely to have microbleeds than non-carriers (p<0.05) and individuals with microbleeds had higher WMH volume than those without (p<0.05). Total WMH volume was increased in mutation carriers compared with non-carriers, up to 20 years prior to EYO, after controlling for microbleed status, as we demonstrated previously. Formal testing of mediation demonstrated that 21% of the association between mutation status and WMH was mediated by presence of microbleeds (p = 0.03) but a significant direct effect of WMH remained (p = 0.02) after controlling for presence of microbleeds. Discussion Although there is some co-dependency between WMH and microbleeds, the observed increases in WMH among mutation carriers does not appear to be fully mediated by this marker of CAA. The findings highlight the possibility that WMH represent a core feature of AD independent of vascular forms of beta amyloid. PMID:29742105
Effects of Cerebral Ischemia in Mice Deficient in Neuronal Nitric Oxide Synthase
NASA Astrophysics Data System (ADS)
Huang, Zhihong; Huang, Paul L.; Panahian, Nariman; Dalkara, Turgay; Fishman, Mark C.; Moskowitz, Michael A.
1994-09-01
The proposal that nitric oxide (NO) or its reactant products mediate toxicity in brain remains controversial in part because of the use of nonselective agents that block NO formation in neuronal, glial, and vascular compartments. In mutant mice deficient in neuronal NO synthase (NOS) activity, infarct volumes decreased significantly 24 and 72 hours after middle cerebral artery occlusion, and the neurological deficits were less than those in normal mice. This result could not be accounted for by differences in blood flow or vascular anatomy. However, infarct size in the mutant became larger after endothelial NOS inhibition by nitro-L-arginine administration. Hence, neuronal NO production appears to exacerbate acute ischemic injury, whereas vascular NO protects after middle cerebral artery occlusion. The data emphasize the importance of developing selective inhibitors of the neuronal isoform.
NASA Technical Reports Server (NTRS)
Sliwka, U.; Krasney, J. A.; Simon, S. G.; Schmidt, P.
1996-01-01
Cerebral blood flow velocity (CBFv) was measured by insonating the middle cerebral arteries of 4 subjects using a 2 Mhz transcranial Doppler. Ambient CO2 was elevated to 0.7% for 23 days in the first study and to 1.2% for 23 days in the same subjects in the second study. By non-parametric testing CBFv was elevated significantly by +35% above pre-exposure levels during the first 1-3 days at both exposure levels after which CBFv progressively readjusted to pre-exposure levels. Despite similar CBFv responses, headache was only reported during the initial phase of exposure to 1.2% CO2. Vascular reactivity to CO2 assessed by rebreathing showed a similar pattern with the CBFv increases early in the exposures being greater than those elicited later. An increase in metabolic rate of the visual cortex was evoked by having the subjects open and close their eyes during a visual stimulus. Evoked CBFv responses measured in the posterior cerebral artery were also elevated in the first 1-3 days of both studies returning to pre-exposure levels as hypercapnia continued. Cerebral vascular autoregulation assessed by raising head pressure during 10 deg head-down tilt both during the low-level exposures and during rebreathing was unaltered. There were no changes in the retinal microcirculation during serial fundoscopy studies. The time-dependent changes in CO2 vascular reactivity might be due either to retention of bicarbonate in brain extracellular fluid or to progressive increases in ventilation, or both. Cerebral vascular autoregulation appears preserved during chronic exposure to these levels of ambient CO2.
Vasoreactivity in CADASIL: Comparison to structural MRI and neuropsychology.
Moreton, Fiona C; Cullen, Breda; Delles, Christian; Santosh, Celestine; Gonzalez, Rosario L; Dani, Krishna; Muir, Keith W
2018-06-01
Impaired cerebrovascular reactivity precedes histological and clinical evidence of CADASIL in animal models. We aimed to more fully characterise peripheral and cerebral vascular function and reactivity in a cohort of adult CADASIL patients, and explore the associations of these with conventional clinical, imaging and neuropsychological measures. A total of 22 adults with CADASIL gave informed consent to participate in an exploratory study of vascular function in CADASIL. Clinical assessment, comprehensive vascular assessment, MRI and neuropsychological testing were conducted. We measured cerebral vasoreactivity with transcranial Doppler and arterial spin labelling MRI with hypercapnia challenge. Number and volume of lacunes, subcortical hyperintensity volume, microbleeds and normalised brain volume were assessed on MRI. Analysis was exploratory and examined the associations between different markers. Cerebrovascular reactivity measured by ASL correlated with peripheral vasoreactivity measured by flow mediated dilatation. Subjects with ≥5 lacunes were older, with higher carotid intima-media thickness and had impaired cerebral and peripheral vasoreactivity. Subjects with depressive symptoms, disability or delayed processing speed also showed a trend to impaired vasoreactivity. Impaired vasoreactivity and vascular dysfunction may play a significant role in the pathophysiology of CADASIL, and vascular assessments may be useful biomarkers of severity in both longitudinal and clinical trials.
Yang, Dixon; Cabral, Digna; Gaspard, Emmanuel N; Lipton, Richard B; Rundek, Tatjana; Derby, Carol A
2016-09-01
We sought to describe the relationship between age, sex, and race/ethnicity with transcranial Doppler hemodynamic characteristics from major intracerebral arterial segments in a large elderly population with varying demographics. We analyzed 369 stroke-free participants aged 70 years and older from the Einstein Aging Study. Single-gate, nonimaging transcranial Doppler sonography, a noninvasive sonographic technique that assesses real-time cerebrovascular hemodynamics, was used to interrogate 9 cerebral arterial segments. Individual Doppler spectra and cerebral blood flow velocities were acquired, and the pulsatility index and resistive index were calculated by the device's automated waveform-tracking function. Multiple linear regression models were used to examine the independent associations of age, sex, and race/ethnicity with transcranial Doppler measures, adjusting for hypertension, history of myocardial infarction or revascularization, and history of diabetes. Among enrolled participants, 303 individuals had at least 1 vessel insonated (mean age [SD], 80 [6] years; 63% women; 58% white; and 32% black). With age, transcranial Doppler measures of mean blood flow velocity were significantly decreased in the basilar artery (P = .001) and posterior cerebral artery (right, P = .003; left, P = .02). Pulsatility indices increased in the left middle cerebral artery (P = .01) and left anterior cerebral artery (P = .03), and the resistive index was increased in the left middle cerebral artery (P = .007) with age. Women had higher pulsatility and resistive indices compared to men in several vessels. We report a decreased mean blood flow velocity and weakly increased arterial pulsatility and resistance with aging in a large elderly stroke-free population. These referential trends in cerebrovascular hemodynamics may carry important implications in vascular diseases associated with advanced age, increased risk of cerebrovascular disease, cognitive decline, and dementia.
Increased Notch3 Activity Mediates pathological Changes in Structure of Cerebral arteries
Baron-Menguy, Celine; Domenga-Denier, Valérie; Ghezali, Lamia; Faraci, Frank; Joutel, Anne
2016-01-01
CADASIL, the most frequent genetic cause of stroke and vascular dementia, is caused by highly stereotyped mutations in the NOTCH3 receptor, which is predominantly expressed in vascular smooth muscle. The well-established TgNotch3R169C mouse model develops characteristic features of the human disease, with deposition of NOTCH3 and other proteins, including TIMP3 (tissue inhibitor of metalloproteinase 3), on brain vessels as well as reduced maximal dilation, and attenuated myogenic tone of cerebral arteries, but without elevated blood pressure. Increased TIMP3 levels were recently shown to be a major determinant of altered myogenic tone. In this study, we investigated the contribution of TIMP3 and Notch3 signaling to the impairment of maximal vasodilator capacity caused by the archetypal R169C mutation. Maximally dilated cerebral arteries in TgNotch3R169C mice exhibited a decrease in lumen diameter over a range of physiological pressures that occurred prior to myogenic tone deficits. This defect was not prevented by genetic reduction of TIMP3 in TgNotch3R169C mice and was not observed in mice overexpressing TIMP3. Knock-in mice with the R169C mutation (Notch3R170C/R170C) exhibited similar reductions in arterial lumen, and both TgNotch3R169C and Notch3R170C/R170C mice showed increased cerebral artery expression of Notch3 target genes. Reduced maximal vasodilation was prevented by conditional reduction of Notch activity in smooth muscle of TgNotch3R169C mice and mimicked by conditional activation of Notch3 in smooth muscle, an effect that was blood pressure-independent. We conclude that increased Notch3 activity mediates reduction in maximal dilator capacity of cerebral arteries in CADASIL and may contribute to reductions in cerebral blood flow. PMID:27821617
Zeng, S; Zhou, J; Peng, Q; Tian, L; Xu, G; Zhao, Y; Wang, T; Zhou, Q
2015-06-01
To use three-dimensional (3D) power Doppler ultrasound to investigate cerebral blood flow perfusion in fetuses with congenital heart disease (CHD). The vascularization index (VI), flow index (FI) and vascularization flow index (VFI) in the total intracranial volume and the main arterial territories (middle cerebral artery (MCA), anterior cerebral artery (ACA) and posterior cerebral artery (PCA)) were evaluated prospectively and compared in 112 fetuses with CHD and 112 normal fetuses using 3D power Doppler. Correlations between the 3D power Doppler indices and neurodevelopment scores at 12 months of age were assessed in a subset of the CHD group, and values were compared with those of controls. Compared with the controls, the VI, FI and VFI of the total intracranial volume and the three main arteries were significantly higher in fetuses with hypoplastic left heart syndrome and left-sided obstructive lesions (P < 0.001), and the 3D power Doppler values in the ACA territory were significantly higher in fetuses with transposition of the great arteries (P < 0.01). The largest proportional increase in the blood flow perfusion indices in the fetuses with CHD relative to controls was observed in the ACA territory (P < 0.05). Among 41 cases with CHD that underwent testing, the mean Psychomotor Development Index (PDI) and Mental Development Index (MDI) scores were significantly lower than in 94 of the controls that were tested (P < 0.001). Among these CHD cases, total intracranial FI was positively correlated with PDI (r = 0.342, P = 0.029) and MDI (r = 0.339, P = 0.030), and ACA-VI and ACA-VFI were positively correlated with PDI (r = 0.377 and 0.389, P = 0.015 and 0.012, respectively) but were not correlated with MDI (r = 0.243 and 0.203, P = 0.126 and 0.204, respectively). Cerebral blood flow perfusion was increased relative to controls in most fetuses with CHD and was associated with neurodevelopment scores at 12 months. Prenatal 3D power Doppler ultrasound might help to identify cases of brain vasodilatation earlier and inform parental counseling. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd.
Volievica, Alma; Kulenovic, Amela; Lujinovic, Almira; Talovic, Elvira
2006-01-01
Cerebrovascular deseases , cerebral vessels deseases, represents one of the greatest problems of humankind. The reasons are not just the high incidence and relatively high prevalence of letal outcomes in the acute faze of the desease, but also high level of disfunctionality caused by this disease in numerous patients who survived cerebrovascular insult and haemorraghe The onset, course and outcome of cerebrovascular diseases depends among other things on the possibility o f colateral brain circulation establishment. Willis ring onthe base of the brain is the most important anastomosis between circulation in both carotid arteries and basilar artery. First precondition for Willis ring t o function as valvular mechanisam is its intact configuration. But, it is found in almost half of th e subjectsincluded in the study that certain anatomical abnormalities in the Willis ring structure exist. Presence of these abnormalities favors onset of vascular diseases since they unables colateral circulation establishment. Studies till now have shown that all components of Willis ring do not contribute equally in colateral function among obstructive diseases.
Cardiovascular studies in the rhesus monkey. [brain circulation during stress
NASA Technical Reports Server (NTRS)
Stone, H. L.; Sandler, H.
1977-01-01
Criteria are given for selecting the macaca mulatta as the analogue of the human in the study of cerebral circulation, particularly the control of the cerebral vascular bed during normal and stressful conditions. Topics discussed include surgical preparation of subject; responses to changes in arterial pressure, oxygen, and carbon dioxide; innervation of cerebral vessels; cerebral flow response to acceleration; and cerebral blood flow and cerebellar stimulation.
Craggs, Lucinda JL; Yamamoto, Yumi; Deramecourt, Vincent; Kalaria, Raj N
2014-01-01
Small vessel diseases (SVDs) of the brain are likely to become increasingly common in tandem with the rise in the aging population. In recent years, neuroimaging and pathological studies have informed on the pathogenesis of sporadic SVD and several single gene (monogenic) disorders predisposing to subcortical strokes and diffuse white matter disease. However, one of the limitations toward studying SVD lies in the lack of consistent assessment criteria and lesion burden for both clinical and pathological measures. Arteriolosclerosis and diffuse white matter changes are the hallmark features of both sporadic and hereditary SVDs. The pathogenesis of the arteriopathy is the key to understanding the differential progression of disease in various SVDs. Remarkably, quantification of microvascular abnormalities in sporadic and hereditary SVDs has shown that qualitatively the processes involved in arteriolar degeneration are largely similar in sporadic SVD compared with hereditary disorders such as cerebral autosomal arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Important significant regional differences in lesion location within the brain may enable one to distinguish SVDs, where frontal lobe involvement appears consistently with almost every SVD, but others bear specific pathologies in other lobes, such as the temporal pole in CADASIL and the pons in pontine autosomal dominant microangiopathy and leukoencephalopathy or PADMAL. Additionally, degenerative changes in the vascular smooth muscle cells, the cerebral endothelium and the basal lamina are often rapid and more aggressive in genetic disorders. Further quantification of other microvascular elements and even neuronal cells is needed to fully characterize SVD pathogenesis and to differentiate the usefulness of vascular interventions and treatments on the resulting pathology. PMID:25323665
Decano, Julius L.; Viereck, Jason C.; McKee, Ann C.; Hamilton, James A.; Ruiz-Opazo, Nelson; Herrera, Victoria L.M.
2009-01-01
Background Early-life risk factor exposure increases aortic atherosclerosis and blood pressure in humans and animal models, however, limited insight has been made into end-organ complications. Methods and Results We investigated the effects of early-life Na-exposure (0.23% vs 0.4%NaCl regular-rat chow) on vascular disease outcomes using the inbred, transgenic[hCETP]25 Dahl salt-sensitive hypertensive rat model of male-predominant coronary atherosclerosis, Tg25. Rather than the expected increased coronary heart disease, fetal 0.4%Na-exposure (≤2g-Na/2000cal/diet/day) induced adult-onset stroke in both sexes (ANOVA P<0.0001), with earlier stroke-onset in Tg25-females. Analysis of later onsets of 0.4%Na-exposure resulted in decreased stroke-risk and later stroke-onsets, despite longer 0.4%Na-exposure durations, indicating increasing risk with earlier onsets of 0.4%Na-exposure. Histological analysis of stroke+rat brains revealed cerebral cortical hemorrhagic infarctions, microhemorrhages, neuronal ischemia, microvascular injury. Ex-vivo MRI of stroke+ rat brains detected cerebral hemorrhages, microhemorrhages and ischemia with middle cerebral artery-distribution, and cerebellar non-involvement. Ultrasound micro-imaging detected carotid artery disease. Pre-stroke analysis detected neuronal ischemia, and decreased mass of isolated cerebral, but not cerebellar, microvessels. Conclusions Early-life Na-exposure exacerbated hypertension and unmasked stroke susceptibility with greater female vulnerability in hypertensive-hyperlipidemic Tg25-rats. The reproducible modeling in Tg25sp rats of carotid artery disease, cerebral hemorrhagic-infarctions, neuronal ischemia, microhemorrhages, and microvascular alterations suggests a pathogenic spectrum with causal interrelationships. This “mixed-stroke” spectrum could represent paradigms of ischemic-hemorrhagic transformation, and/or a microangiopathic basis for the association of ischemic-lesions, microhemorrhages, and strokes in humans. Altogether, the data reveal early-life Na-exposure as a significant modifier of hypertension and stroke disease-course, hence a potential modifiable prevention target deserving systematic study. PMID:19273719
Sharma, Vijay K; Tsivgoulis, Georgios; Ning, Chou; Teoh, Hock L; Bairaktaris, Chrisostomos; Chong, Vincent FH; Ong, Benjamin KC; Chan, Bernard PL; Sinha, Arvind K
2008-01-01
Background: The circle of Willis provides collateral pathways to perfuse the affected vascular territories in patients with severe stenoocclusive disease of major arteries. The collateral perfusion may become insufficient in certain physiological circumstances due to failed vasodilatory reserve and intracranial steal phenomenon, so-called ‘Reversed-Robinhood syndrome’. We evaluated cerebral hemodynamics and vasodilatory reserve in patients with symptomatic distal internal carotid (ICA) or middle cerebral artery (MCA) severe steno-occlusive disease. Methods: Diagnostic transcranial Doppler (TCD) and TCD-monitoring with voluntary breath-holding according to a standard scanning protocol were performed in patients with severe ICA or MCA steno-occlusive disease. The steal phenomenon was detected as transient, spontaneous, or vasodilatory stimuli-induced velocity reductions in affected arteries at the time of velocity increase in normal vessels. Patients with exhausted vasomotor reactivity and intracranial steal phenomenon during breath-holding were further evaluated by 99technetiumm-hexamethyl propylene amine oxime single photon emission computed tomography (HMPAO-SPECT) with acetazolamide challenge. Results: Sixteen patients (age 27–74 years, 11 men) fulfilled our TCD criteria for exhausted vasomotor reactivity and intracranial steal phenomenon during the standard vasomotor testing by breath holding. Acetazolamide-challenged HMPAO-SPECT demonstrated significant hypoperfusion in 12 patients in affected arterial territories, suggestive of failed vasodilatory reserve. A breath-holding index of ≤0.3 on TCD was associated with an abnormal HMPAO-SPECT with acetazolamide challenge. TCD findings of a breath holding index of ≤0.3 and intracranial steal during the procedure were determinants of a significant abnormality on HMPAO-SPECT with acetazolamide challenge. Conclusion: Multimodal evaluation of cerebral hemodynamics in symptomatic patients with severe steno-occlusive disease of the ICA or MCA is helpful in the identification and quantification of failed vasodilatory reserve. This approach may be useful in selecting patients for possible revascularization procedures. PMID:22518232
Neurovascular regulation in the ischemic brain.
Jackman, Katherine; Iadecola, Costantino
2015-01-10
The brain has high energetic requirements and is therefore highly dependent on adequate cerebral blood supply. To compensate for dangerous fluctuations in cerebral perfusion, the circulation of the brain has evolved intrinsic safeguarding measures. The vascular network of the brain incorporates a high degree of redundancy, allowing the redirection and redistribution of blood flow in the event of vascular occlusion. Furthermore, active responses such as cerebral autoregulation, which acts to maintain constant cerebral blood flow in response to changing blood pressure, and functional hyperemia, which couples blood supply with synaptic activity, allow the brain to maintain adequate cerebral perfusion in the face of varying supply or demand. In the presence of stroke risk factors, such as hypertension and diabetes, these protective processes are impaired and the susceptibility of the brain to ischemic injury is increased. One potential mechanism for the increased injury is that collateral flow arising from the normally perfused brain and supplying blood flow to the ischemic region is suppressed, resulting in more severe ischemia. Approaches to support collateral flow may ameliorate the outcome of focal cerebral ischemia by rescuing cerebral perfusion in potentially viable regions of the ischemic territory.
Depedrini, J S; Campos, R
2007-12-01
The present study has analysed 30 pampas fox brains (Pseudalopex gymnocercus), injected with latex, aiming to systematize and describe the distribution and vascularization territories of the middle cerebral artery. After being originated from the rostral branch of the internal carotid artery this vessel formed the following collateral branches: rostral choroidal artery, rostral and caudal central branches and cortical branches. Before crossing the lateral rhinal sulcus, the common trunk of the middle cerebral artery frequently bifurcated in a rostral and a caudal branch. In a smaller amount, the common trunk did not show any bifurcation, ramifying in arborescence. The vascular territory of the pampas fox middle cerebral artery included the lateral cerebral fossa, the lateral third of the olfactory trigone, the two rostral thirds of the piriform lobe, the lateral olfactory tract and most of the convex surface of the cerebral hemisphere, except for the more rostromedial areas of the frontal lobe bordering the endomarginal sulcus in the parietal and occipital lobes as well as the transverse fissure at the caudal pole of the cerebral hemisphere.
Omega-3 fatty acids: benefits for cardio-cerebro-vascular diseases.
Siegel, G; Ermilov, E
2012-12-01
Intracranial artery stenosis (ICAS) is a narrowing of an intracranial artery, which is a common etiology for ischemic stroke. In this commentary, we review key aspects of the discrimination between non-stroke controls and ischemic stroke patients on the background of phospholipid ω3-fatty acid (DHA, EPA) composition. The discussion is embedded in the presentation of general effects of long-chain ω3 polyunsaturated fatty acids (PUFAs) in cardio-cerebro-vascular diseases (CCVDs) and Alzheimer dementia (AD). ICAS is a common stroke subtype and has emerged as a major factor in recurrent stroke and vascular mortality. DHA and EPA are important fatty acids to distinguish between NCAS (no cerebral arteriosclerotic stenosis) and ICAS in stroke. The risk of ICAS is inversely correlated with the DHA content in phospholipids. Furthermore, a mechanistic explanation has been proposed for the beneficial effects of PUFAs in CCVDs and AD. Whereas the beneficial effects of EPA/DHA for cardiovascular diseases and stroke seem to be beyond question, preventive effects in patients with very mild cognitive dysfunction and beginning Alzheimer's disease undoubtedly need confirmation by larger clinical trials. A collaborative international basic science approach is warranted considering cautiously designed studies in order to avoid ethical problems. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Klakotskaia, Diana; Agca, Cansu; Richardson, Rachel A; Stopa, Edward G; Schachtman, Todd R; Agca, Yuksel
2018-01-01
Transgenic rat models of Alzheimer's disease were used to examine differences in memory and brain histology. Double transgenic female rats (APP+PS1) over-expressing human amyloid precursor protein (APP) and presenilin 1 (PS1) and single transgenic rats (APP21) over-expressing human APP were compared with wild type Fischer rats (WT). The Barnes maze assessed learning and memory and showed that both APP21 and APP+PS1 rats made significantly more errors than the WT rats during the acquisition phase, signifying slower learning. Additionally, the APP+PS1 rats made significantly more errors following a retention interval, indicating impaired memory compared to both the APP21 and WT rats. Immunohistochemistry using an antibody against amyloid-β (Aβ) showed extensive and mostly diffuse Aβ plaques in the hippocampus and dense plaques that contained tau in the cortex of the brains of the APP+PS1 rats. Furthermore, the APP+PS1 rats also showed vascular changes, including cerebral amyloid angiopathy with extensive Aβ deposits in cortical and leptomeningeal blood vessel walls and venous collagenosis. In addition to the Aβ accumulation observed in arterial, venous, and capillary walls, APP+PS1 rats also displayed enlarged blood vessels and perivascular space. Overall, the brain histopathology and behavioral assessment showed that the APP+PS1 rats demonstrated behavioral characteristics and vascular changes similar to those commonly observed in patients with Alzheimer's disease.
Rabelo, Ana Gb; Teixeira, Camila Vl; Magalhães, Thamires Nc; Carletti-Cassani, Ana Flávia Mk; Amato Filho, Augusto Cs; Joaquim, Helena Pg; Talib, Leda L; Forlenza, Orestes; Ribeiro, Patrícia Ao; Secolin, Rodrigo; Lopes-Cendes, Iscia; Cendes, Fernando; Balthazar, Marcio Lf
2017-10-01
Introduction The search for a reliable neuroimaging biomarker in Alzheimer's disease is a matter of intense research. The presence of cerebral microbleeds seems to be a potential biomarker. However, it is not clear if the presence of microbleeds has clinical usefulness to differentiate mild Alzheimer's disease and amnestic mild cognitive impairment from normal aging. We aimed to verify if microbleed prevalence differs among three groups: mild Alzheimer's disease, amnestic mild cognitive impairment due to Alzheimer's disease, and normal controls. Moreover, we studied whether microbleeds were associated with apolipoprotein E allele ɛ4 status, cerebrospinal fluid amyloid-beta, total and phosphorylated tau protein levels, vascular factors, and cognition. Methods Twenty-eight mild Alzheimer's disease patients, 34 with amnestic mild cognitive impairment and 36 cognitively normal elderly subjects underwent: magnetic resonance imaging with a susceptibility-weighted imaging sequence on a 3T scanner, apolipoprotein E genotyping and a full neuropsychological evaluation. Only amnestic mild cognitive impairment and mild Alzheimer's disease underwent cerebrospinal fluid analysis. We compared the groups and verified if microbleeds were predicted by all other variables. Results Mild Alzheimer's disease presented a higher prevalence of apolipoprotein E allele ɛ4 in relation to amnestic mild cognitive impairment and control group. No significant differences were found between groups when considering microbleed presence. Logistic regression tests failed to find any relationship between microbleeds and the variables. We performed three different regression models using different independent variables: Model 1 - amyloid-beta, phosphorylated tau protein, total tau, apolipoprotein E allele ɛ4 status, age, and sex; Model 2 - vascular risk factors, age, and sex; Model 3 - cognitive scores sex, age, and education. Conclusion Although microbleeds might be related to the Alzheimer's disease process, their presence is not a good candidate for a neuroimaging biomarker of the disease, especially in its early phases.
Murai, Yasuo; Mizunari, Takayuki; Takagi, Ryo; Amano, Yasuo; Mizumura, Sunao; Komaba, Yuichi; Okubo, Seiji; Kobayashi, Shiro; Teramoto, Akira
2013-07-01
Cerebral revascularization surgery (CRS) is increasingly recognized as an important component in the treatment of complex cerebral vascular disease and tumors. CRS requires that the incidence of perioperative neurological complications should be minimized, because CRS for ischemic disease is often not the goal of treatment, but rather a prophylactic surgery. CRS carries the risk of focal postoperative neurological deficits. Little has been established concerning mechanisms of post-CRS ischemia. We used 3.0-T diffusion-weighted magnetic resonance imaging (DWI) and magnetic resonance angiography (MRA) to analyze the incidence and mechanism of ischemic lesions. We studied the anterior circulation territory after 20 CRS procedures involving 33 vascular anastomosis procedures (13 double anastomoses and 7 single anastomoses) in 12 men and 8 women between June 2007 and October 2011. The operations included single or double superficial temporal artery-middle cerebral artery (STA-MCA) anastomosis to treat internal carotid artery/MCA occlusions or severe MCA stenosis. A combined STA-MCA anastomosis and indirect bypass were performed for moyamoya disease. Postoperative DWI and MRA were obtained in all patients between 24 and 96 h after surgery to detect thromboembolism, hypoperfusion, or procedural ischemic complications and vasospasms of the donor STA. Follow-up DWI and MRA were carried out 1.8±0.6 days after CRS (range, 1-4 days). Temporary occlusion time for anastomoses averaged 18.9 min (range, 16-32 min). Asymptomatic new hyperintensities occurred in the ipsilateral hemisphere of 2 patients on postoperative DWI (10% patients/6.0% anastomoses), and 1 moyamoya patient (5.0% patients/3.0% anastomoses) developed a symptomatic hyperintensity in the ipsilateral occipital lobe in response to the operation. Two abnormal small (<5 mm) cortical DWI lesions were caused by sacrifices of a small branch of the recipient MCA. This study is the first postoperative 3.0-T DWI study of CRS and related clinical events. The incidence of symptomatic postoperative DWI abnormalities was restricted to 1 moyamoya patient representing 5.0% of total patients and 3.0% anastomoses. Although some postoperative DWI abnormalities occurred, CRS was found to be safe with a low risk of symptomatic ischemia. Copyright © 2012 Elsevier B.V. All rights reserved.
Kyrtsos, Christina Rose; Baras, John S
2015-01-01
Alzheimer's disease (AD) is the most common cause of dementia in the elderly, affecting over 10% population over the age of 65 years. Clinically, AD is described by the symptom set of short term memory loss and cognitive decline, changes in mentation and behavior, and eventually long-term memory deficit as the disease progresses. On imaging studies, significant atrophy with subsequent increase in ventricular volume have been observed. Pathology on post-mortem brain specimens demonstrates the classic findings of increased beta amyloid (Aβ) deposition and the presence of neurofibrillary tangles (NFTs) within affected neurons. Neuroinflammation, dysregulation of blood-brain barrier transport and clearance, deposition of Aβ in cerebral blood vessels, vascular risk factors such as atherosclerosis and diabetes, and the presence of the apolipoprotein E4 allele have all been identified as playing possible roles in AD pathogenesis. Recent research has demonstrated the importance of the glymphatic system in the clearance of Aβ from the brain via the perivascular space surrounding cerebral blood vessels. Given the variety of hypotheses that have been proposed for AD pathogenesis, an interconnected, multilayer model offers a unique opportunity to combine these ideas into a single unifying model. Results of this model demonstrate the importance of vessel stiffness and heart rate in maintaining adequate clearance of Aβ from the brain.
Pulicherla, K K; Verma, Mahendra Kumar
2015-04-01
Cerebral tissues possess highly selective and dynamic protection known as blood brain barrier (BBB) that regulates brain homeostasis and provides protection against invading pathogens and various chemicals including drug molecules. Such natural protection strictly monitors entry of drug molecules often required for the management of several diseases and disorders including cerebral vascular and neurological disorders. However, in recent times, the ischemic cerebrovascular disease and clinical manifestation of acute arterial thrombosis are the most common causes of mortality and morbidity worldwide. The management of cerebral Ischemia requires immediate infusion of external thrombolytic into systemic circulation and must cross the blood brain barrier. The major challenge with available thrombolytic is their poor affinity towards the blood brain barrier and cerebral tissue subsequently. In the clinical practice, a high dose of thrombolytic often prescribed to deliver drugs across the blood brain barrier which results in drug dependent toxicity leading to damage of neuronal tissues. In recent times, more emphasis was given to utilize blood brain barrier transport mechanism to deliver drugs in neuronal tissue. The blood brain barrier expresses a series of receptor on membrane became an ideal target for selective drug delivery. In this review, the author has given more emphasis molecular biology of receptor on blood brain barrier and their potential as a carrier for drug molecules to cerebral tissues. Further, the use of nanoscale design and real-time monitoring for developed therapeutic to encounter drug dependent toxicity has been reviewed in this study.
Greving, J P; Kaasjager, H A H; Vernooij, J W P; Hovens, M M C; Wierdsma, J; Grandjean, H M H; van der Graaf, Y; de Wit, G A; Visseren, F L J
2015-01-01
Objective To assess the cost-effectiveness of an internet-based, nurse-led vascular risk factor management programme in addition to usual care compared with usual care alone in patients with a clinical manifestation of a vascular disease. Design Cost-effectiveness analysis alongside a randomised controlled trial (the Internet-based vascular Risk factor Intervention and Self-management (IRIS) study). Setting Multicentre trial in a secondary and tertiary healthcare setting. Participants 330 patients with a recent clinical manifestation of atherosclerosis in the coronary, cerebral, or peripheral arteries and with ≥2 treatable vascular risk factors not at goal. Intervention The intervention consisted of a personalised website with an overview and actual status of patients’ vascular risk factors, and mail communication with a nurse practitioner via the website for 12 months. The intervention combined self-management support, monitoring of disease control and pharmacotherapy. Main outcome measures Societal costs, quality-adjusted life-years (QALYs) and incremental cost-effectiveness. Results Patients experienced equal health benefits, that is, 0.86 vs 0.85 QALY (intervention vs usual care) at 1 year. Adjusting for baseline differences, the incremental QALY difference was −0.014 (95% CI −0.034 to 0.007). The intervention was associated with lower total costs (€4859 vs €5078, difference €219, 95% CI −€2301 to €1825). The probability that the intervention is cost-effective at a threshold value of €20 000/QALY, is 65%. At mean annual cost of €220 per patient, the intervention is relatively cheap. Conclusions An internet-based, nurse-led intervention in addition to usual care to improve vascular risk factors in patients with a clinical manifestation of a vascular disease does not result in a QALY gain at 1 year, but has a small effect on vascular risk factors and is associated with lower costs. Trial registration number NCT00785031. PMID:25995238
Neurological manifestations of Behçet's disease: Case report and literature review.
López Bravo, Alba; Parra Soto, Carlos; Bellosta Diago, Elena; Cecilio Irazola, Álvaro; Santos-Lasaosa, Sonia
2017-05-22
Neurological involvement in Behçet's disease is rare, especially at the onset. It can present in the form of parenchymal changes or as damage to the vascular structures in its nonparenchymal form. The coexistence of both kinds of manifestations in the same patient is exceptional. We report the case of a 32-year-old patient with a history of deep venous thrombosis, who was being treated for holocranial headache, apathy, and oral and genital ulcers. Brain magnetic resonance imaging showed hyperintense lesions in the basal ganglia and white matter, and the vascular study evidenced venous thrombosis of the left transverse sinus. After confirming the diagnosis of Behçet's disease with parenchymal and nonparenchymal cerebral involvement, immunosuppressive and corticosteroid therapy was started, resulting in the remission of the symptoms. Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Reumatología y Colegio Mexicano de Reumatología. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korogi, Yukunori; Takahashi, Mutsumasa; Mabuchi, Nobuhisa
1994-10-01
To assess the accuracy of three-dimensional, Fourier transform, time-of-flight magnetic resonance (MR) angiography in the detection of intracranial steno-occlusive diseases. One hundred thirty-one patients (62 male and 69 female patients, aged 6-77 years [mean, 53 years 8 months]) underwent MR and conventional angiography for evaluation of possible intracranial vascular disease. A total of 502 arteries were assessed. Eight projections and a collapsed image postprocessed by means of a maximum-intensity projection algorithm were reviewed by five observers in a blinded manner, with conventional angiography as the standard. A total of 32 steno-occlusive lesions were available for review. Receiver operating characteristic analysismore » from the pooled data revealed overall sensitivities of 85% and 88% and specificities of 96% and 97% for the internal carotid artery and the middle cerebral artery, respectively. MR angiography is useful as the primary diagnostic tool for evaluating suspected intracranial steno-occlusive disease. 22 refs., 7 figs., 5 tabs.« less
LRP1 in Brain Vascular Smooth Muscle Cells Mediates Local Clearance of Alzheimer's Amyloid-β
Kanekiyo, Takahisa; Liu, Chia-Chen; Shinohara, Mitsuru; Li, Jie; Bu, Guojun
2012-01-01
Impaired clearance of amyloid-β (Aβ) is a major pathogenic event for Alzheimer’s disease (AD). Aβ depositions in brain parenchyma as senile plaques and along cerebrovasculature as cerebral amyloid angiopathy (CAA) are hallmarks of AD. A major pathway that mediates brain Aβ clearance is the cerebrovascular system where Aβ is eliminated through the blood-brain barrier (BBB) and/or degraded by cerebrovascular cells along the interstitial fluid drainage pathway. An Aβ clearance receptor, the low-density lipoprotein receptor-related protein 1 (LRP1), is abundantly expressed in cerebrovasculature, in particular in vascular smooth muscle cells. Previous studies have indicated a role of LRP1 in endothelial cells in transcytosing Aβ out of the brain across the BBB; however, whether this represents a significant pathway for brain Aβ clearance remains controversial. Here, we demonstrate that Aβ can be cleared locally in the cerebrovasculature by an LRP1-dependent endocytic pathway in smooth muscle cells. The uptake and degradation of both endogenous and exogenous Aβ were significantly reduced in LRP1-suppressed human brain vascular smooth muscle cells. Conditional deletion of Lrp1 in vascular smooth muscle cell in amyloid model APP/PS1 mice accelerated brain Aβ accumulation and exacerbated Aβ deposition as amyloid plaques and CAA without affecting Aβ production. Our results demonstrate that LRP1 is a major Aβ clearance receptor in cerebral vascular smooth muscle cell and a disturbance of this pathway contributes to Aβ accumulation. These studies establish critical functions of the cerebrovasculature system in Aβ metabolism and identify a new pathway involved in the pathogenesis of both AD and CAA. PMID:23152628
Disruption of astrocyte-vascular coupling and the blood-brain barrier by invading glioma cells
Watkins, Stacey; Robel, Stefanie; Kimbrough, Ian F.; Robert, Stephanie M.; Ellis-Davies, Graham; Sontheimer, Harald
2014-01-01
Astrocytic endfeet cover the entire cerebral vasculature and serve as exchange sites for ions, metabolites, and energy substrates from the blood to the brain. They maintain endothelial tight junctions that form the blood-brain barrier (BBB) and release vasoactive molecules that regulate vascular tone. Malignant gliomas are highly invasive tumors that use the perivascular space for invasion and co-opt existing vessels as satellite tumors form. Here we use a clinically relevant mouse model of glioma and find that glioma cells, as they populate the perivascular space of pre-existing vessels, displace astrocytic endfeet from endothelial or vascular smooth muscle cells. This causes a focal breach in the BBB. Furthermore, astrocyte-mediated gliovascular coupling is lost, and glioma cells seize control over regulation of vascular tone through Ca2+-dependent release of K+. These findings have important clinical implications regarding blood flow in the tumor-associated brain and the ability to locally deliver chemotherapeutic drugs in disease. PMID:24943270
Reversibility of Retinal Microvascular Changes in Severe Falciparum Malaria
Maude, Richard J.; Kingston, Hugh W. F.; Joshi, Sonia; Mohanty, Sanjib; Mishra, Saroj K.; White, Nicholas J.; Dondorp, Arjen M.
2014-01-01
Malarial retinopathy allows detailed study of central nervous system vascular pathology in living patients with severe malaria. An adult with cerebral malaria is described who had prominent retinal whitening with corresponding retinal microvascular obstruction, vessel dilatation, increased vascular tortuosity, and blood retinal barrier leakage with decreased visual acuity, all of which resolved on recovery. Additional study of these features and their potential role in elucidating the pathogenesis of cerebral malaria is warranted. PMID:24935949
Canavese, Miriam; Spaccapelo, Roberta
2014-03-01
Cerebral malaria (CM) is the major lethal complication of Plasmodium falciparum infection. It is characterized by persistent coma along with symmetrical motor signs. Several clinical, histopathological, and laboratory studies have suggested that cytoadherence of parasitized erythrocytes, neural injury by malarial toxin, and excessive inflammatory cytokine production are possible pathogenic mechanisms. Although the detailed pathophysiology of CM remains unsolved, it is thought that the binding of parasitized erythrocytes to the cerebral endothelia of microvessels, leading to their occlusion and the consequent angiogenic dysregulation play a key role in the disease pathogenesis. Recent evidences showed that vascular endothelial growth factor (VEGF) and its receptor-related molecules are over-expressed in the brain tissues of CM patients, as well as increased levels of VEGF are detectable in biologic samples from malaria patients. Whether the modulation of VEGF is causative agent of CM mortality or a specific phenotype of patients with susceptibility to fatal CM needs further evaluation. Currently, there is no biological test available to confirm the diagnosis of CM and its complications. It is hoped that development of biomarkers to identify patients and potential risk for adverse outcomes would greatly enhance better intervention and clinical management to improve the outcomes. We review and discuss here what it is currently known in regard to the role of VEGF in CM as well as VEGF as a potential biomarker.
Effects of forskolin on cerebral blood flow: implications for a role of adenylate cyclase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wysham, D.G.; Brotherton, A.F.; Heistad, D.D.
1986-11-01
We have studied cerebral vascular effects of forskolin, a drug which stimulates adenylate cyclase and potentiates dilator effects of adenosine in other vascular beds. Our goals were to determine whether forskolin is a cerebral vasodilator and whether it potentiates cerebral vasodilator responses to adenosine. We measured cerebral blood flow with microspheres in anesthetized rabbits. Forskolin (10 micrograms/kg per min) increased blood flow (ml/min per 100 gm) from 39 +/- 5 (mean +/- S.E.) to 56 +/- 9 (p less than 0.05) in cerebrum, and increased flow to myocardium and kidney despite a decrease in mean arterial pressure. Forskolin did notmore » alter cerebral oxygen consumption, which indicates that the increase in cerebral blood flow is a direct vasodilator effect and is not secondary to increased metabolism. We also examined effects of forskolin on the response to infusion of adenosine. Cerebral blood flow was measured during infusion of 1-5 microM/min adenosine into one internal carotid artery, under control conditions and during infusion of forskolin at 3 micrograms/kg per min i.v. Adenosine alone increased ipsilateral cerebral blood flow from 32 +/- 3 to 45 +/- 5 (p less than 0.05). Responses to adenosine were not augmented during infusion of forskolin. We conclude that forskolin is a direct cerebral vasodilator and forskolin does not potentiate cerebral vasodilator responses to adenosine.« less
NASA Astrophysics Data System (ADS)
Hallacoglu, Bertan; Sassaroli, Angelo M.; Rosenberg, Irwin H.; Troen, Aron; Fantini, Sergio
2011-02-01
Structural abnormalities in brain microvasculature are commonly associated with Alzheimer's Disease and other dementias. However, the extent to which structural microvascular abnormalities cause functional impairments in brain circulation and thereby to cognitive impairment is unclear. Non-invasive, near-infrared spectroscopy (NIRS) methods can be used to determine the absolute hemoglobin concentration and saturation in brain tissue, from which additional parameters such as cerebral blood volume (a theoretical correlate of brain microvascular density) can be derived. Validating such NIRS parameters in animal models, and understanding their relationship to cognitive function is an important step in the ultimate application of these methods to humans. To this end we applied a non-invasive multidistance NIRS method to determine the absolute concentration and saturation of cerebral hemoglobin in rat, by separately measuring absorption and reduced scattering coefficients without relying on pre- or post-correction factors. We applied this method to study brain circulation in folate deficient rats, which express brain microvascular pathology1 and which we have shown to develop cognitive impairment.2 We found absolute brain hemoglobin concentration ([HbT]) and oxygen saturation (StO2) to be significantly lower in folate deficient rats (n=6) with respect to control rats (n=5) (for [HbT]: 73+/-10 μM vs. 95+/-14 μM for StO2: 55%+/-7% vs. 66% +/-4%), implicating microvascular pathology and diminished oxygen delivery as a mechanism of cognitive impairment. More generally, our study highlights how noninvasive, absolute NIRS measurements can provide unique insight into the pathophysiology of Vascular Cognitive Impairment. Applying this method to this and other rat models of cognitive impairment will help to validate physiologically meaningful NIRS parameters for the ultimate goal of studying cerebral microvascular disease and cognitive decline in humans.
Maliszewska-Cyna, Ewelina; Lynch, Madelaine; Oore, Jonathan Jordan; Nagy, Paul Michael; Aubert, Isabelle
2017-01-01
Alzheimer's disease (AD) is characterized by neuronal degeneration, vascular pathology and cognitive decline. Furthermore, deficits in cerebral glucose metabolism and insulin resistance are being increasingly recognized in AD. Many lifestyle-modifying approaches, including diet and exercise, have yielded promising results in modulating brain morphology and function for the prevention and early treatment of AD. This review focuses on the effects of physical exercise on rescuing cognition and limiting the progression of AD pathology. Specifically, the impact of exercise, in human and animal models of AD, on the stimulation and preservation of cognition, neurotransmission, neurogenesis, vasculature, glucose metabolism and insulin signaling is discussed. Studies have highlighted the potential of physical activity to improve overall brain health, which could delay or lessen AD-related cognitive deficits and pathology. Physical activity influences cognitive function, vascular health and brain metabolism, which taken together offers benefits for the aging population, including AD patients.
Omental transplantation for neurodegenerative diseases
Rafael, Hernando
2014-01-01
Up to date, almost all researchers consider that there is still no effective therapy for neurodegenerative diseases (NDDs) and therefore, these diseases are incurable. However, since May 1998, we know that a progressive ischemia in the medial temporal lobes and subcommissural regions can cause Alzheimer’s disease; because, in contrast to this, its revascularization by means of omental tissue can cure or improve this disease. Likewise we observed that the aging process, Huntington’s disease, Parkinson’s disease, and Amyotrophic lateral sclerosis; all of them are of ischemic origin caused by cerebral atherosclerosis, associated with vascular anomalies and/or environmental chemicals. On the contrary, an omental transplantation on the affected zone can stop and improve these diseases. For these reasons, I believe that NDDs, are wrongly classified as neurodegenerative disorders. PMID:25232510
Increased circulating leukocyte-derived microparticles in ischemic cerebrovascular disease.
He, Zhangping; Tang, Yanyan; Qin, Chao
2017-06-01
Circulating leukocyte-derived microparticles act as proinflammatory mediators that reflect vascular inflammation. In this study, we examined the hypothesis that the quantity of leukocyte-derived microparticles is increased in patients with ischemic cerebrovascular diseases, and investigated utility of various phenotypes of leukocyte-derived microparticles as specific biomarkers of vascular inflammation injury. Additionally we focused on identifying leukocyte-derived microparticles that may be correlated with stroke severity in acute ischemic stroke patients. The plasma concentration of leukocyte-derived microparticles obtained by a series of centrifugations of 76 consecutive patients with ischemic cerebrovascular diseases and 70 age-, sex-, and race-matched healthy controls were determined by flow cytometry. Significantly elevated numbers of leukocyte (CD45+), monocyte (CD14+), lymphocyte (CD4+), granulocyte (CD15+) derived microparticles were found in the plasma samples of patients ischemic cerebrovascular diseases, compared to healthy controls (p<0.05). Furthermore, the plasma levels of CD14+ microparticles were significantly correlated with stroke severity (r=0.355, p=0.019), cerebral vascular stenosis severity (r=0.255, p=0.025) and stroke subtype (r=0.242, p=0.036). No association with stroke was observed for other leukocyte-derived phenotypes. These results demonstrate that circulating leukocyte-derived microparticles amounts are increased in patients with ischemic cerebrovascular diseases, compared with healthy controls. As proinflammatory mediators, leukocyte-derived microparticles may contribute to vascular inflammatory and the inflammatory process in acute ischemic stroke. Levels of CD14+ microparticles may be a promising biomarker of ischemic severity and outcome of stroke in the clinic. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhang, Xuemei; Zhou, Yinglian; Li, Hulun; Wang, Rui; Yang, Dan; Li, Bing; Cao, Xiaofang; Fu, Jin
2018-01-01
Ischemic stroke is a major cause of disability and mortality worldwide, while effective restorative treatments are limited at present. Stem cell transplantation holds therapeutic potential for ischemic vascular diseases and may provide an opportunity for neural regeneration. Dental pulp stem cells (DPSCs) origin from neural crest and have neuro-ectodermal features including proliferation and multilineage differentiation potentials. The rat model of middle cerebral artery occlusion (MCAO) was used to evaluate whether intravenous administration of DPSCs can reduce infarct size and to estimate the migration and trans-differentiation into neuron-like cells in focal cerebral ischemia models. Brain tissues were collected at 4 weeks following cell transplantation and analyzed with immunofluorescence, immunohistochemistry and real-time polymerase chain reaction (RT-PCR) methods. Intravenously administration of rat-derived DPSCs were found to migrate into the boundary of ischemic areas and expressed neural specific markers, reducing infarct volume and cerebral edema. These results suggest that DPSCs treatment may serve as a potential therapy for clinical stroke patients in the future. © 2018 The Author(s). Published by S. Karger AG, Basel.
Qu, Jie; Zhou, Qiong; Du, Ying; Zhang, Wei; Bai, Miao; Zhang, Zhuo; Xi, Ye; Li, Zhuyi; Miao, Jianting
2014-08-01
Chronic cerebral hypoperfusion is a critical causative factor for the development of cognitive decline and dementia in the elderly, which involves many pathophysiological processes. Consequently, inhibition of several pathophysiological pathways is an attractive therapeutic strategy for this disorder. Rutin, a biologically active flavonoid, protects the brain against several insults through its antioxidant and anti-inflammatory properties, but its effect on cognitive deficits and brain damage caused by chronic cerebral hypoperfusion remains unknown. Here, we investigated the neuroprotective effect of rutin on cognitive impairments and the potential mechanisms underlying its action in rats with chronic cerebral hypoperfusion. We used Sprague-Dawley rats with permanent bilateral common carotid artery occlusion (BCCAO), a well-established model of chronic cerebral hypoperfusion. After rutin treatment for 12 weeks, the neuroprotective effect of rutin in rats was evaluated by behavioural tests, biochemical and histopathological analyses. BCCAO rats showed marked cognitive deficits, which were improved by rutin treatment. Moreover, BCCAO rats exhibited central cholinergic dysfunction, oxidative damage, inflammatory responses and neuronal damage in the cerebral cortex and hippocampus, compared with sham-operated rats. All these effects were significantly alleviated by treatment with rutin. Our results provide new insights into the pharmacological actions of rutin and suggest that rutin has multi-targeted therapeutical potential on cognitive deficits associated with conditions with chronic cerebral hypoperfusion such as vascular dementia and Alzheimer's disease. © 2014 The British Pharmacological Society.
Mak, Henry K F; Chan, Queenie; Zhang, Zhipeng; Petersen, Esben T; Qiu, Deqiang; Zhang, Linda; Yau, Kelvin K W; Chu, Leung-Wing; Golay, Xavier
2012-01-01
QUASAR arterial spin labeling (ASL) was used to investigate the role of vascular impairment in Alzheimer's disease (AD). We hypothesized that the hemodynamic parameters monitoring cerebrovascular integrity, i.e., cerebral blood flow (CBF), arterial blood volume (aBV), and arterial transit time (aTT), would be affected. 13 AD patients and 15 healthy control (HC) subjects underwent 3T MRI scanning. Two separate blood flow acquisitions were obtained with 1 slice overlap for whole brain coverage. CBF, aBV, and aTT maps were calculated using in-house software. Preprocessing and statistical analyses were performed on SPM5. Region-of-interest (ROI) studies of ten selected cerebral regions were also conducted. There were significant differences in mini mental status exam (MMSE) (AD: 16.3 ± 4.55, HC: 28.5 ± 2.00) and Alzheimer's disease assessment scale-cognitive subscale (ADAS-cog) scores (AD: 25.25 ± 9.64, HC: 5.51 ± 2.62) between the 2 groups (p < 0.001) but none in age (p = 0.068). CBF decreased significantly (p < 0.01) in AD compared to controls in the right middle cingulate, left cuneus, left inferior and middle frontal, right superior frontal, left inferior parietal, and right supramarginal gyri. ROI studies confirmed significant hemodynamic impairments in AD compared to HC (p < 0.05): CBF in middle and posterior cingulate, aBV in left superior temporal, right inferior parietal, and posterior cingulate, and aTT in left inferior frontal and middle cingulate gyri. CBF correlated positively while aTT correlated negatively to MMSE, and vice versa for ADAS-cog. Using QUASAR ASL, we found patterns of regional hemodynamic impairment typical of moderate AD, suggesting underlying vascular abnormality. As potential biomarkers, these hemodynamic parameters could differentiate patients from volunteers, and possibly indicate the conversion from healthy aging to mild cognitive impairment to AD.
Cerebral vascular reactivity on return from the International Space Station
NASA Astrophysics Data System (ADS)
Zuj, Kathryn; Greaves, Danielle; Shoemaker, Kevin; Blaber, Andrew; Hughson, Richard L.
Returning from spaceflight, astronauts experience a high incidence of orthostatic intolerance and syncope. Longer duration space flight may result in greater adaptations to microgravity which could increase the post-flight incidence of syncope. CCISS (Cardiovascular and Cerebovascular Control on return from the International Space Station) is an ongoing project designed to help determine adaptations that occur during spaceflight which may contribute to orthostatic intolerance. One component of this project involves looking at cerebral vascular responses before and after long duration spaceflight. As a known vasodilator, carbon dioxide (CO2) has been frequently used to assess changes in cerebral vascular reactivity. In this experiment, end tidal PCO2 was manipulated through changes in respired air. Two breaths of a 10% CO2 gas mixture were administered at 1-min intervals resulting in an increase in end tidal PCO2 . Throughout the testing, cerebral blood flow velocity (CBFV) was determined using transcranial Doppler ultrasound. The cerebral resistance index (RI) was calculated from the Doppler wave form using the equation; RI=(CBFVsystolic-CBFVdiastolic)/CBFVsystolic. Changes in this index have been shown to reflect changes in cerebral vascular resistance. Peak responses to the CO2 stimulus were determined and compared to baseline measures taken at the beginning of the testing. Cerebral blood flow velocity increased and RI decreased with the two breaths of CO2. Preliminary data show a 36.0% increase in CBFV and a 9.0% decrease in RI pre-flight. Post flight, the response to CO2 appears to change showing a potentially blunted decrease in resistance (6.8%) and a smaller increase in CBFV (22.8%). Long term spaceflight may result in cerebrovascular changes which could decrease the vasodilatory capacity of cerebral resistance vessels. Further investigations in the CCISS project will reveal the interactive role of CO2 and arterial blood pressure on maintenance of brain blood flow that is critical for crew health and safety on return from long-duration missions to ISS or future flights to the moon and Mars. Supported by Canadian Space Agency.
Li, Longxuan; Liu, Fudong; Welser-Alves, Jennifer V.; McCullough, Louise D.; Milner, Richard
2012-01-01
Following focal cerebral ischemia, blood vessels in the ischemic border, or penumbra, launch an angiogenic response. In light of the critical role for fibronectin in angiogenesis, and the observation that fibronectin and its integrin receptors are strongly upregulated on angiogenic vessels in the hypoxic CNS, the aim of this study was to establish whether angiogenic vessels in the ischemic CNS also show this response. Focal cerebral ischemia was established in C57/Bl6 mice by middle cerebral artery occlusion (MCA:O), and brain tissue analyzed seven days following re-perfusion, a time at which angiogenesis is ongoing. Within the ischemic core, immunofluorescent (IF) studies demonstrated vascular expression of MECA-32, a marker of leaky cerebral vessels, and vascular breakdown, defined by loss of staining for the endothelial marker, CD31, and the vascular adhesion molecules, laminin, dystroglycan and α6 integrin. Within the ischemic penumbra, dual-IF with CD31 and Ki67 revealed the presence of proliferating endothelial cells, indicating ongoing angiogenesis. Significantly, vessels in the ischemic penumbra showed strong upregulation of fibronectin and the fibronectin receptors, α5β1 and αvβ3 integrins. Taken together with our recent finding that the α5β1 integrin plays an important role in promoting cerebral angiogenesis in response to hypoxia, these results suggest that stimulation of the fibronectin-α5β1 integrin signalling pathway may provide a novel approach to amplifying the intrinsic angiogenic response to cerebral ischemia. PMID:22056225
Vascular Variations Associated with Intracranial Aneurysms.
Orakdogen, Metin; Emon, Selin Tural; Somay, Hakan; Engin, Taner; Is, Merih; Hakan, Tayfun
2017-01-01
To investigate the vascular variations in patients with intracranial aneurysm in circle of Willis. We used the data on 128 consecutive intracranial aneurysm cases. Cerebral angiography images were analyzed retrospectively. Arteries were grouped as anterior cerebral arterial system (ACS), posterior cerebral arterial system (PCS) and middle cerebral arterial system (MCS) for grouping vascular variations. Lateralization, being single/multiple, gender; and also any connection with accompanying aneurysms" number, localization, dimension, whether bleeding/incidental aneurysm has been inspected. Variations were demonstrated in 57.8% of the cases. The most common variation was A1 variation (34.4%). The rate of variations was 36.7%, 24.2% and 10.2% respectively in ACS, PCS and MCS. MCS variations were significantly higher in males. Anterior communicating artery (ACoA) aneurysm observance rates were significantly higher and posterior communicating artery (PCoA) aneurysm and middle cerebral artery (MCA) aneurysm observance rates were significantly lower when compared to "no ACS variation detected" cases. In "PCS variation detected" cases, PCoA aneurysm observance rates and coexistence of multiple variations were significantly higher. The rate of vascular variations in patients with aneurysms was 57.8%. Arterial hypoplasia and aplasia were the most common variations. ACS was the most common region that variations were located in; they were mostly detected on the right side. Coexistence of ACoA aneurysm was higher than PCoA and MCA aneurysms. In the PCS variations group, PCoA aneurysms were the most common aneurysms that accompanying the variation and multiple variations were more common than in the other two groups. The variations in MCS were most common in males.
Cudmore, Robert H; Dougherty, Sarah E; Linden, David J
2017-12-01
The cerebral vasculature provides blood flow throughout the brain, and local changes in blood flow are regulated to match the metabolic demands of the active brain regions. This neurovascular coupling is mediated by real-time changes in vessel diameter and depends on the underlying vascular network structure. Neurovascular structure is configured during development by genetic and activity-dependent factors. In adulthood, it can be altered by experiences such as prolonged hypoxia, sensory deprivation and seizure. Here, we have sought to determine whether exercise could alter cerebral vascular structure in the adult mouse. We performed repeated in vivo two-photon imaging in the motor cortex of adult transgenic mice expressing membrane-anchored green fluorescent protein in endothelial cells (tyrosine endothelial kinase 2 receptor (Tie2)-Cre:mTmG). This strategy allows for high-resolution imaging of the vessel walls throughout the lifespan. Vascular structure, as measured by capillary branch point number and position, segment diameter and length remained stable over a time scale of months as did pericyte number and position. Furthermore, we compared the vascular structure before, during, and after periods of voluntary wheel running and found no alterations in these same parameters. In both running and control mice, we observed a low rate of capillary segment subtraction. Interestingly, these rare subtraction events preferentially remove short vascular loops.
Radiation-induced cerebrovascular disease in children
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, T.L.; Bresnan, M.J.
1976-06-01
Radiation-induced internal carotid artery occlusion has not been well recognized previously as a cause of childhood cerebrovascular disease. A child who had received radiation as a neonate for a hemangioma involving the left orbit at the age of 6 years experienced a recurrent right-sided paresis, vascular headaches, and speech difficulties. Angiography showed a hypoplastic left carotid artery with occlusion of both the anterior and middle cerebral arteries. Collateral vessels bypassed the occluded-stenotic segments. Review of the literature showed two additional cases of large vessel occlusion in childhood associated with anastomatic telangiectatic vessel development following early radiation therapy of facial hemangioma.
Shams, S; Martola, J; Granberg, T; Li, X; Shams, M; Fereshtehnejad, S M; Cavallin, L; Aspelin, P; Kristoffersen-Wiberg, M; Wahlund, L O
2015-04-01
Cerebral microbleeds are thought to represent cerebral amyloid angiopathy when in lobar regions of the brain and hypertensive arteriopathy when in deep and infratentorial locations. By studying cerebral microbleeds, their topography, and risk factors, we aimed to gain an insight into the vascular and amyloid pathology of dementia diagnoses and increase the understanding of cerebral microbleeds in dementia. We analyzed 1504 patients (53% women; mean age, 63 ± 10 years; 10 different dementia diagnoses) in this study. All patients underwent MR imaging as part of the dementia investigation, and all their clinical parameters were recorded. Among the 1504 patients with dementia, 22% had cerebral microbleeds. Cerebral microbleed topography was predominantly lobar (P = .01) and occipital (P = .007) in Alzheimer disease. Patients with cerebral microbleeds were significantly older (P < .001), were more frequently male (P < .001), had lower cognitive scores (P = .006), and more often had hypertension (P < .001). Risk factors for cerebral microbleeds varied depending on the dementia diagnosis. Odds ratios for having cerebral microbleeds increased with the number of risk factors (hypertension, hyperlipidemia, diabetes, male sex, and age 65 and older) in the whole patient group and increased differently in the separate dementia diagnoses. Prevalence, topography, and risk factors of cerebral microbleeds vary depending on the dementia diagnosis and reflect the inherent pathology of different dementia diagnoses. Because cerebral microbleeds are seen as possible predictors of intracerebral hemorrhage, their increasing prevalence with an increasing number of risk factors, as shown in our study, may require taking the number of risk factors into account when deciding on anticoagulant therapy in dementia. © 2015 by American Journal of Neuroradiology.
The impact of age on cerebral perfusion, oxygenation and metabolism during exercise in humans
Braz, Igor D.
2015-01-01
Abstract Age is one of the most important risk factors for dementia and stroke. Examination of the cerebral circulatory responses to acute exercise in the elderly may help to pinpoint the mechanisms by which exercise training can reduce the risk of brain diseases, inform the optimization of exercise training programmes and assist with the identification of age‐related alterations in cerebral vascular function. During low‐to‐moderate intensity dynamic exercise, enhanced neuronal activity is accompanied by cerebral perfusion increases of ∼10–30%. Beyond ∼60–70% maximal oxygen uptake, cerebral metabolism remains elevated but perfusion in the anterior portion of the circulation returns towards baseline, substantively because of a hyperventilation‐mediated reduction in the partial pressure of arterial carbon dioxide (P aC O2) and cerebral vasoconstriction. Cerebral perfusion is lower in older individuals, both at rest and during incremental dynamic exercise. Nevertheless, the increase in the estimated cerebral metabolic rate for oxygen and the arterial–internal jugular venous differences for glucose and lactate are similar in young and older individuals exercising at the same relative exercise intensities. Correction for the age‐related reduction in P aC O2 during exercise by the provision of supplementary CO2 is suggested to remove ∼50% of the difference in cerebral perfusion between young and older individuals. A multitude of candidates could account for the remaining difference, including cerebral atrophy, and enhanced vasoconstrictor and blunted vasodilatory pathways. In summary, age‐related reductions in cerebral perfusion during exercise are partly associated with a lower P aC O2 in exercising older individuals; nevertheless the cerebral extraction of glucose, lactate and oxygen appear to be preserved. PMID:26435295
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandhu, Hardip, E-mail: sandhu.hardip@gmail.co; Xu, Cang Bao; Edvinsson, Lars
2010-11-15
Cigarette smoke exposure increases the risk of stroke. However, the underlying molecular mechanisms are poorly understood. Endothelin system plays key roles in the pathogenesis of stroke. The present study was designed to examine if lipid-soluble (dimethyl sulfoxide-soluble) cigarette smoke particles (DSP) induces upregulation of contractile endothelin type B (ET{sub B}) receptors in rat cerebral arteries and if activation of mitogen activated protein kinase (MAPK) and nuclear factor-kappaB (NF-{kappa}B) mediate the upregulation of contractile endothelin receptors in the cerebral arteries. Rat middle cerebral arteries were isolated and organ cultured in serum free medium for 24 h in the presence of DSPmore » with or without specific inhibitors: MEK specific (U0126), p38 specific (SB202190), JNK specific (SP600125), NF-{kappa}B specific (BMS-345541) or (IMD-0354), transcription inhibitor (actinomycin D), or translation blocker (cycloheximide). Contractile responses to the ET{sub B} receptor agonist sarafotoxin 6c were investigated by a sensitive myograph. The expression of the ET{sub B} receptors were studied at mRNA and protein levels using quantitative real time PCR and immunohistochemistry, respectively. Results show that organ culture per se induced transcriptional upregulation of contractile ET{sub B} receptors in the cerebral vascular smooth muscle cells. This upregulation was further increased at the translational level by addition of DSP to the organ culture, but this increase was not seen by addition of nicotine or water-soluble cigarette smoke particles to the organ culture. The increased upregulation of contractile ET{sub B} receptors by DSP was abrogated by U0126, SP600125, actinomycin D, and cycloheximide, suggesting that the underlying molecular mechanisms involved in this process include activation of MEK and JNK MAPK-mediated transcription and translation of new contractile ET{sub B} receptors. Thus, the MAPK-mediated upregulation of contractile ET{sub B} receptors in cerebral arteries might be a pharmacological target for the treatment of smoke-associated cerebral vascular disease like stroke.« less
Poggesi, Anna; Salvadori, Emilia; Pantoni, Leonardo; Pracucci, Giovanni; Cesari, Francesca; Chiti, Alberto; Ciolli, Laura; Cosottini, Mirco; Del Bene, Alessandra; De Stefano, Nicola; Diciotti, Stefano; Dotti, Maria Teresa; Ginestroni, Andrea; Giusti, Betti; Gori, Anna Maria; Nannucci, Serena; Orlandi, Giovanni; Pescini, Francesca; Valenti, Raffaella; Abbate, Rosanna; Federico, Antonio; Mascalchi, Mario; Murri, Luigi; Inzitari, Domenico
2012-01-01
Dementia is one of the most disabling conditions. Alzheimer's disease and vascular dementia (VaD) are the most frequent causes. Subcortical VaD is consequent to deep-brain small vessel disease (SVD) and is the most frequent form of VaD. Its pathological hallmarks are ischemic white matter changes and lacunar infarcts. Degenerative and vascular changes often coexist, but mechanisms of interaction are incompletely understood. The term mild cognitive impairment defines a transitional state between normal ageing and dementia. Pre-dementia stages of VaD are also acknowledged (vascular mild cognitive impairment, VMCI). Progression relates mostly to the subcortical VaD type, but determinants of such transition are unknown. Variability of phenotypic expression is not fully explained by severity grade of lesions, as depicted by conventional MRI that is not sensitive to microstructural and metabolic alterations. Advanced neuroimaging techniques seem able to achieve this. Beside hypoperfusion, blood-brain-barrier dysfunction has been also demonstrated in subcortical VaD. The aim of the Vascular Mild Cognitive Impairment Tuscany Study is to expand knowledge about determinants of transition from mild cognitive impairment to dementia in patients with cerebral SVD. This paper summarizes the main aims and methodological aspects of this multicenter, ongoing, observational study enrolling patients affected by VMCI with SVD. PMID:22550606
Spreading Depression, Spreading Depolarizations, and the Cerebral Vasculature
Ayata, Cenk; Lauritzen, Martin
2015-01-01
Spreading depression (SD) is a transient wave of near-complete neuronal and glial depolarization associated with massive transmembrane ionic and water shifts. It is evolutionarily conserved in the central nervous systems of a wide variety of species from locust to human. The depolarization spreads slowly at a rate of only millimeters per minute by way of grey matter contiguity, irrespective of functional or vascular divisions, and lasts up to a minute in otherwise normal tissue. As such, SD is a radically different breed of electrophysiological activity compared with everyday neural activity, such as action potentials and synaptic transmission. Seventy years after its discovery by Leão, the mechanisms of SD and its profound metabolic and hemodynamic effects are still debated. What we did learn of consequence, however, is that SD plays a central role in the pathophysiology of a number of diseases including migraine, ischemic stroke, intracranial hemorrhage, and traumatic brain injury. An intriguing overlap among them is that they are all neurovascular disorders. Therefore, the interplay between neurons and vascular elements is critical for our understanding of the impact of this homeostatic breakdown in patients. The challenges of translating experimental data into human pathophysiology notwithstanding, this review provides a detailed account of bidirectional interactions between brain parenchyma and the cerebral vasculature during SD and puts this in the context of neurovascular diseases. PMID:26133935
2017-10-01
AWARD NUMBER: W81XWH-16-1-0610 TITLE: Improving Cognitive Function in Veterans with Gulf War Illness by Improving Cerebral Vascular Function...From - To) 15 Sep 2016 - 14 Sep 2017 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Improving Cognitive Function in Veterans with Gulf War Illness by...investigate a relationship between cognitive impairment in Veterans with Gulf War Illness (GWI) and reduced vasodilatory function. One of the multiple
Ghaffari, Mahsa; Tangen, Kevin; Alaraj, Ali; Du, Xinjian; Charbel, Fady T; Linninger, Andreas A
2017-12-01
In this paper, we present a novel technique for automatic parametric mesh generation of subject-specific cerebral arterial trees. This technique generates high-quality and anatomically accurate computational meshes for fast blood flow simulations extending the scope of 3D vascular modeling to a large portion of cerebral arterial trees. For this purpose, a parametric meshing procedure was developed to automatically decompose the vascular skeleton, extract geometric features and generate hexahedral meshes using a body-fitted coordinate system that optimally follows the vascular network topology. To validate the anatomical accuracy of the reconstructed vasculature, we performed statistical analysis to quantify the alignment between parametric meshes and raw vascular images using receiver operating characteristic curve. Geometric accuracy evaluation showed an agreement with area under the curves value of 0.87 between the constructed mesh and raw MRA data sets. Parametric meshing yielded on-average, 36.6% and 21.7% orthogonal and equiangular skew quality improvement over the unstructured tetrahedral meshes. The parametric meshing and processing pipeline constitutes an automated technique to reconstruct and simulate blood flow throughout a large portion of the cerebral arterial tree down to the level of pial vessels. This study is the first step towards fast large-scale subject-specific hemodynamic analysis for clinical applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wang, Kuo-Wei; Chen, Han-Jung; Lu, Kang; Liliang, Po-Chou; Liang, Cheng-Loong; Tsai, Yu-Duan; Cho, Chung-Lung
2014-01-01
Traumatic brain injury (TBI) leads to important and deleterious inflammation, as evidenced by edema, cytokine production, induction of nitric oxide synthase, and leukocyte infiltration. After TBI, the activation of cerebral vascular endothelial cells plays a crucial role in the pathogenesis of inflammation. In this study, we hypothesized that the activation of cerebral vascular endothelial cells plays a crucial role in the pathogenesis of inflammation and outcome after TBI. It may represent a key cellular target for statin therapy. In our study, cortical contusions were induced, and the effect of continuous treatment of simvastatin on behavior and inflammation in adult rats following experimental TBI was evaluated. The treatment group received 15 mg/kg of simvastatin daily for 3 days. Neurological function was assessed with the grip test. The results showed that the non-treatment control group had a significantly greater increase in ICAM-1 expression from pre-injury to the post-injury 72 h time point as compared to the expression in treatment group. The treatment group had better neurological function as evidenced in a grip test performed from baseline to 72 h. The analysis of a western blot test and pathology also demonstrated reduced ICAM-1 expression and a smaller area of damage and tissue loss. Our findings suggest that simvastatin could attenuate the activation of cerebral vascular endothelial inflammatory response and decrease the loss of neurological function and brain tissue.
Correlation between cerebral hemodynamic and perfusion pressure changes in non-human primates
NASA Astrophysics Data System (ADS)
Ruesch, A.; Smith, M. A.; Wollstein, G.; Sigal, I. A.; Nelson, S.; Kainerstorfer, J. M.
2017-02-01
The mechanism that maintains a stable blood flow in the brain despite changes in cerebral perfusion pressure (CPP), and therefore guaranties a constant supply of oxygen and nutrients to the neurons, is known as cerebral auto-regulation (CA). In a certain range of CPP, blood flow is mediated by a vasomotor adjustment in vascular resistance through dilation of blood vessels. CA is known to be impaired in diseases like traumatic brain injury, Parkinson's disease, stroke, hydrocephalus and others. If CA is impaired, blood flow and pressure changes are coupled and thee oxygen supply might be unstable. Lassen's blood flow auto-regulation curve describes this mechanism, where a plateau of stable blood flow in a specific range of CPP corresponds to intact auto-regulation. Knowing the limits of this plateau and maintaining CPP within these limits can improve patient outcome. Since CPP is influenced by both intracranial pressure and arterial blood pressure, long term changes in either can lead to auto-regulation impairment. Non-invasive methods for monitoring blood flow auto-regulation are therefore needed. We propose too use Near infrared spectroscopy (NIRS) too fill this need. NIRS is an optical technique, which measures microvascular changes in cerebral hemoglobin concentration. We performed experiments on non-human primates during exsanguination to demonstrate that thee limits of blood flow auto-regulation can be accessed with NIRS.
Shams, Sara; Martola, Juha; Charidimou, Andreas; Larvie, Mykol; Granberg, Tobias; Shams, Mana; Kristoffersen-Wiberg, Maria; Wahlund, Lars-Olof
2017-09-22
Magnetic resonance imaging-visible perivascular spaces (PVS) are related to interstitial fluid clearance pathways (including amyloid-β) in the brain and are suggested to be a marker of cerebral small vessel disease. We investigated the role, topography, and possible implications of PVS in cognitive impairment. A total of 1504 patients undergoing memory clinic investigation and an associated brain magnetic resonance imaging scan were included in this cross-sectional study. Magnetic resonance images were assessed for markers of small vessel disease. Additionally, 1039 patients had cerebrospinal fluid analysis of amyloid-β 42, total tau (T-tau), and phosphorylated tau ( P -tau); 520 patients had apoE genotyping done. Results were analyzed with generalized linear models. A total of 289 (19%; 95% confidence interval, 17-21) had a high-grade PVS in the centrum semiovale (CSO) and 65 (4%; 95% confidence interval: 3%-5%) in the basal ganglia (BG). Centrum semiovale- and BG-PVS were both associated with high age ( P <0.001), hypertension ( P <0.001), probable cerebral amyloid angiopathy ( P <0.05), moderate-to-severe white matter hyperintensities ( P <0.001), cortical superficial siderosis ( P <0.001), cerebral microbleeds ( P <0.001), and PVS. centrum semiovale-PVS was separately associated with strictly lobar cerebral microbleeds ( P =0.057). BG-PVS was associated with strictly deep cerebral microbleeds ( P <0.001), lacunes ( P <0.001), and vascular dementia ( P =0.04). BG-PVS showed a tendency to be associated with high cerebrospinal fluid tau (B=0.002, P =0.04) in the whole cohort and in Alzheimer's disease (B=0.005; P =0.02). No other associations with cerebrospinal fluid or the apoE e4 allele was observed. Centrum semiovale-PVS and BG-PVS have different underlying etiology, being associated with cerebral amyloid angiopathy and hypertensive vasculopathy, respectively, although a significant overlap between these pathologies is likely to exist. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
Spray, S; Johansson, S E; Radziwon-Balicka, A; Haanes, K A; Warfvinge, K; Povlsen, G K; Kelly, P A T; Edvinsson, L
2017-08-01
Delayed cerebral hypoperfusion is a secondary complication found in the days after transient global cerebral ischaemia that worsens the ischaemic damage inflicted by the initial transient episode of global cerebral ischaemia. A recent study demonstrated increased cerebral vasoconstriction in the large arteries on the brain surface (pial arteries) after global cerebral ischaemia. However, smaller arterioles inside the brain (parenchymal arterioles) are equally important in the regulation of cerebral blood flow and yet their pathophysiology after global cerebral ischaemia is largely unknown. Therefore, we investigated whether increased contractility occurs in the intraparenchymal arterioles. Global cerebral ischaemia was induced in male Wistar rats by bilateral common carotid occlusion for 15 min combined with hypovolaemia. Regional cerebral blood flow was determined by quantitative autoradiography. Intraparenchymal arterioles were isolated and pressurized, and concentration-response curves to endothelin-1 with and without the endothelin B receptor-selective antagonist BQ788 was generated. Endothelin B receptor expression was investigated by quantitative flow cytometry and immunohistochemistry. We observed increased endothelin-1-mediated contractility of parenchymal arterioles correlating with reduced cerebral blood flow of the cortex, hippocampus and caudate nucleus 48 h after global cerebral ischaemia. The increased endothelin-1-mediated contractility was abolished by BQ788, and the vascular smooth muscle cell-specific expression of endothelin B receptors was significantly increased after global cerebral ischaemia. Increased endothelin-1-mediated contractility and expression of endothelin B receptors in the intraparenchymal vasculature contributes to the development of delayed cerebral hypoperfusion after global cerebral ischaemia in combination with vascular changes of the pial vasculature. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.
Stroke in Ehlers-Danlos Syndrome Kyphoscoliotic Type: Dissection or Vasculitis?
Quade, Annegret; Wiesmann, Martin; Weis, Joachim; Kurth, Ingo; Jalaie, Houman; Rohrbach, Marianne; Häusler, Martin
2017-09-01
Patients with the kyphoscoliotic type of Ehlers-Danlos syndrome have an increased risk of vascular complications such as aortic dissection and perforation. Cerebral ischemia has only rarely been documented. This 13-year-old girl with the kyphoscoliotic type of Ehlers-Danlos syndrome experienced a large right middle cerebral artery distribution infarction. Full intravenous heparinization was started in response to presumed arterial dissection. Magnetic resonance imaging studies including magnetic resonance angiography and digital subtraction angiography, however, did not confirm dissection but suggested with cerebral vasculitis extending from the intradural right internal carotid artery to the M2 branches of the middle cerebral artery. Combined steroid and cyclophosphamide therapy was associated with clinical improvement. Two months later she died from hemorrhagic shock caused by a two-sided spontaneous rupture of the aortic artery. Cerebral vasculitis should be included in the differential diagnosis of vascular complications in kyphoscoliotic type of Ehlers-Danlos syndrome. Copyright © 2017 Elsevier Inc. All rights reserved.
Cerebral collaterals and collateral therapeutics for acute ischemic stroke.
Winship, Ian R
2015-04-01
Cerebral collaterals are vascular redundancies in the cerebral circulation that can partially maintain blood flow to ischemic tissue when primary conduits are blocked. After occlusion of a cerebral artery, anastomoses connecting the distal segments of the MCA with distal branches of the ACA and PCA (known as leptomeningeal or pial collaterals) allow for partially maintained blood flow in the ischemic penumbra and delay or prevent cell death. However, collateral circulation varies dramatically between individuals, and collateral extent is significant predictor of stroke severity and recanalization rate. Collateral therapeutics attempt to harness these vascular redundancies by enhancing blood flow through pial collaterals to reduce ischemia and brain damage after cerebral arterial occlusion. While therapies to enhance collateral flow remain relatively nascent neuroprotective strategies, experimental therapies including inhaled NO, transient suprarenal aortic occlusion, and electrical stimulation of the parasympathetic sphenopalatine ganglion show promise as collateral therapeutics with the potential to improve treatment of acute ischemic stroke. © 2014 John Wiley & Sons Ltd.
Obusez, E C; Hui, F; Hajj-Ali, R A; Cerejo, R; Calabrese, L H; Hammad, T; Jones, S E
2014-08-01
High-resolution MR imaging is an emerging tool for evaluating intracranial artery disease. It has an advantage of defining vessel wall characteristics of intracranial vascular diseases. We investigated high-resolution MR imaging arterial wall characteristics of CNS vasculitis and reversible cerebral vasoconstriction syndrome to determine wall pattern changes during a follow-up period. We retrospectively reviewed 3T-high-resolution MR imaging vessel wall studies performed on 26 patients with a confirmed diagnosis of CNS vasculitis and reversible cerebral vasoconstriction syndrome during a follow-up period. Vessel wall imaging protocol included black-blood contrast-enhanced T1-weighted sequences with fat suppression and a saturation band, and time-of-flight MRA of the circle of Willis. Vessel wall characteristics including enhancement, wall thickening, and lumen narrowing were collected. Thirteen patients with CNS vasculitis and 13 patients with reversible cerebral vasoconstriction syndrome were included. In the CNS vasculitis group, 9 patients showed smooth, concentric wall enhancement and thickening; 3 patients had smooth, eccentric wall enhancement and thickening; and 1 patient was without wall enhancement and thickening. Six of 13 patients had follow-up imaging; 4 patients showed stable smooth, concentric enhancement and thickening; and 2 patients had resoluton of initial imaging findings. In the reversible cerebral vasoconstriction syndrome group, 10 patients showed diffuse, uniform wall thickening with negligible-to-mild enhancement. Nine patients had follow-up imaging, with 8 patients showing complete resolution of the initial findings. Postgadolinium 3T-high-resolution MR imaging appears to be a feasible tool in differentiating vessel wall patterns of CNS vasculitis and reversible cerebral vasoconstriction syndrome changes during a follow-up period. © 2014 by American Journal of Neuroradiology.
Castro, Pedro; Azevedo, Elsa; Rocha, Isabel; Sorond, Farzaneh; Serrador, Jorge M
2018-03-02
Chronic kidney disease increases stroke incidence and severity but the mechanisms behind this cerebro-renal interaction are mostly unexplored. Since both vascular beds share similar features, microvascular dysfunction could be the possible missing link. Therefore, we examined the relationship between renal function and cerebral autoregulation in the early hours post ischemia and its impact on outcome. We enrolled 46 ischemic strokes (middle cerebral artery). Dynamic cerebral autoregulation was assessed by transfer function (coherence, phase and gain) of spontaneous blood pressure oscillations to blood flow velocity within 6 h from symptom-onset. Estimated glomerular filtration rate (eGFR) was calculated. Hemorrhagic transformation (HT) and white matter lesions (WML) were collected from computed tomography performed at presentation and 24 h. Outcome was evaluated with modified Rankin Scale at 3 months. High gain (less effective autoregulation) was correlated with lower eGFR irrespective of infarct side (p < 0.05). Both lower eGFR and higher gain correlated with WML grade (p < 0.05). Lower eGFR and increased gain, alone and in combination, progressively reduced the odds of a good functional outcome [ipsilateral OR = 4.39 (CI95% 3.15-25.6), p = 0.019; contralateral OR = 8.15 (CI95% 4.15-15.6), p = 0.002] and increased risk of HT [ipsilateral OR = 3.48 (CI95% 0.60-24.0), p = 0.132; contralateral OR = 6.43 (CI95% 1.40-32.1), p = 0.034]. Lower renal function correlates with less effective dynamic cerebral autoregulation in acute ischemic stroke, both predicting a bad outcome. The evaluation of serum biomarkers of renal dysfunction could have interest in the future for assessing cerebral microvascular risk and relationship with stroke complications.
Liu, Bian; Lau, Kui Kai; Li, Linxin; Lovelock, Caroline; Liu, Ming; Kuker, Wilhelm
2018-01-01
Background and Purpose— It has been hypothesized that cerebral small vessel disease (SVD) and chronic renal impairment may be part of a multisystem small-vessel disorder, but their association may simply be as a result of shared risk factors (eg, hypertension) rather than to a systemic susceptibility to premature SVD. However, most previous studies were hospital based, most had inadequate adjustment for hypertension, many were confined to patients with lacunar stroke, and none stratified by age. Methods— In a population-based study of transient ischemic attack and ischemic stroke (OXVASC [Oxford Vascular Study]), we evaluated the magnetic resonance imaging markers of cerebral SVD, including lacunes, white matter hyperintensities, cerebral microbleeds, and enlarged perivascular space. We studied the age-specific associations of renal impairment (estimated glomerular filtration rate <60 mL/min per 1.73 m2) and total SVD burden (total SVD score) adjusting for age, sex, vascular risk factors, and premorbid blood pressure (mean blood pressure during 15 years preevent). Results— Of 1080 consecutive patients, 1028 (95.2%) had complete magnetic resonance imaging protocol and creatinine measured at baseline. Renal impairment was associated with total SVD score (odds ratio [OR], 2.16; 95% confidence interval [CI], 1.69–2.75; P<0.001), but only at age <60 years (<60 years: OR, 3.97; 95% CI, 1.69–9.32; P=0.002; 60–79 years: OR, 1.01; 95% CI, 0.72–1.41; P=0.963; ≥80 years: OR, 0.95; 95% CI, 0.59–1.54; P=0.832). The overall association of renal impairment and total SVD score was also attenuated after adjustment for age, sex, history of hypertension, diabetes mellitus, and premorbid average systolic blood pressure (adjusted OR, 0.76; 95% CI, 0.56–1.02; P=0.067), but the independent association of renal impairment and total SVD score at age <60 years was maintained (adjusted OR, 3.11; 95% CI, 1.21–7.98; P=0.018). Associations of renal impairment and SVD were consistent for each SVD marker at age <60 years but were strongest for cerebral microbleeds (OR, 5.84; 95% CI, 1.45–23.53; P=0.013) and moderate–severe periventricular white matter hyperintensities (OR, 6.28; 95% CI, 1.54–25.63; P=0.010). Conclusions— The association of renal impairment and cerebral SVD was attenuated with adjustment for shared risk factors at older ages, but remained at younger ages, consistent with a shared susceptibility to premature disease. PMID:29523652
Retta, Saverio Francesco; Glading, Angela J
2016-12-01
Cerebral Cavernous Malformation (CCM) is a vascular disease of proven genetic origin, which may arise sporadically or is inherited as an autosomal dominant condition with incomplete penetrance and highly variable expressivity. CCM lesions exhibit a range of different phenotypes, including wide inter-individual differences in lesion number, size, and susceptibility to intracerebral hemorrhage (ICH). Lesions may remain asymptomatic or result in pathological conditions of various type and severity at any age, with symptoms ranging from recurrent headaches to severe neurological deficits, seizures, and stroke. To date there are no direct therapeutic approaches for CCM disease besides the surgical removal of accessible lesions. Novel pharmacological strategies are particularly needed to limit disease progression and severity and prevent de novo formation of CCM lesions in susceptible individuals. Useful insights into innovative approaches for CCM disease prevention and treatment are emerging from a growing understanding of the biological functions of the three known CCM proteins, CCM1/KRIT1, CCM2 and CCM3/PDCD10. In particular, accumulating evidence indicates that these proteins play major roles in distinct signaling pathways, including those involved in cellular responses to oxidative stress, inflammation and angiogenesis, pointing to pathophysiological mechanisms whereby the function of CCM proteins may be relevant in preventing vascular dysfunctions triggered by these events. Indeed, emerging findings demonstrate that the pleiotropic roles of CCM proteins reflect their critical capacity to modulate the fine-tuned crosstalk between redox signaling and autophagy that govern cell homeostasis and stress responses, providing a novel mechanistic scenario that reconciles both the multiple signaling pathways linked to CCM proteins and the distinct therapeutic approaches proposed so far. In addition, recent studies in CCM patient cohorts suggest that genetic susceptibility factors related to differences in vascular sensitivity to oxidative stress and inflammation contribute to inter-individual differences in CCM disease susceptibility and severity. This review discusses recent progress into the understanding of the molecular basis and mechanisms of CCM disease pathogenesis, with specific emphasis on the potential contribution of altered cell responses to oxidative stress and inflammatory events occurring locally in the microvascular environment, and consequent implications for the development of novel, safe, and effective preventive and therapeutic strategies. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Sugimoto, Azusa; Futamura, Akinori; Kawamura, Mitsuru
2011-10-01
Progressive visual agnosia was discovered in the 20th century following the discovery of classical non-progressive visual agnosia. In contrast to the classical type, which is caused by cerebral vascular disease or traumatic injury, progressive visual agnosia is a symptom of neurological degeneration. The condition of progressive visual loss, including visual agnosia, and posterior cerebral atrophy was named posterior cortical atrophy (PCA) by Benson et al. (1988). Progressive visual agnosia is also observed in semantic dementia (SD) and other degenerative diseases, but there is a difference in the subtype of visual agnosia associated with these diseases. Lissauer (1890) classified visual agnosia into apperceptive and associative types, and it in most cases, PCA is associated with the apperceptive type. However, SD patients exhibit symptoms of associative visual agnosia before changing to those of semantic memory disorder. Insights into progressive visual agnosia have helped us understand the visual system and discover how we "perceive" the outer world neuronally, with regard to consciousness. Although PCA is a type of atypical dementia, its diagnosis is important to enable patients to live better lives with appropriate functional support.
Ragno, Michele; Sanguigni, Sandro; Manca, Antonio; Pianese, Luigi; Paci, Cristina; Berbellini, Alfonso; Cozzolino, Valeria; Gobbato, Roberto; Peluso, Silvio; De Michele, Giuseppe
2016-06-01
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), the most common hereditary cerebral small vessel disease, is caused by mutations in the NOTCH3 gene on chromosome 19. Clinical manifestations of CADASIL include recurrent transient ischemic attacks, strokes, cognitive defects, epilepsy, migraine and psychiatric symptoms. Parkinsonian features have variably been reported in CADASIL patients, but only a few patients showed a clear parkinsonian syndrome. We studied two patients, a pair of monozygotic twins, carrying the R1006C mutation of the NOTCH3 gene and affected by a parkinsonian syndrome. For the first time in CADASIL patients, we used transcranial sonography (TCS) to assess basal ganglia abnormalities. TCS showed a bilateral hyperechogenic pattern of substantia nigra in one twin, and a right hyperechogenic pattern in the other. In both patients, lenticular nuclei showed a bilateral hyperechogenic pattern, and the width of the third ventricle was slightly increased. The TCS pattern found in our CADASIL patients is characteristic neither for Parkinson's disease, nor for vascular parkinsonism and seems to be specific and related to the disease-specific pathological features.
Reversibility of retinal microvascular changes in severe falciparum malaria.
Maude, Richard J; Kingston, Hugh W F; Joshi, Sonia; Mohanty, Sanjib; Mishra, Saroj K; White, Nicholas J; Dondorp, Arjen M
2014-09-01
Malarial retinopathy allows detailed study of central nervous system vascular pathology in living patients with severe malaria. An adult with cerebral malaria is described who had prominent retinal whitening with corresponding retinal microvascular obstruction, vessel dilatation, increased vascular tortuosity, and blood retinal barrier leakage with decreased visual acuity, all of which resolved on recovery. Additional study of these features and their potential role in elucidating the pathogenesis of cerebral malaria is warranted. © The American Society of Tropical Medicine and Hygiene.
NASA Astrophysics Data System (ADS)
Lin, Xiaojie; Miao, Peng; Mu, Zhihao; Jiang, Zhen; Lu, Yifan; Guan, Yongjing; Chen, Xiaoyan; Xiao, Tiqiao; Wang, Yongting; Yang, Guo-Yuan
2015-02-01
The lenticulostriate artery plays a vital role in the onset and development of cerebral ischemia. However, current imaging techniques cannot assess the in vivo functioning of small arteries such as the lenticulostriate artery in the brain of rats. Here, we report a novel method to achieve a high resolution multi-functional imaging of the cerebrovascular system using synchrotron radiation angiography, which is based on spatio-temporal analysis of contrast density in the arterial cross section. This method provides a unique tool for studying the sub-cortical vascular elasticity after cerebral ischemia in rats. Using this technique, we demonstrated that the vascular elasticity of the lenticulostriate artery decreased from day 1 to day 7 after transient middle cerebral artery occlusion in rats and recovered from day 7 to day 28 compared to the controls (p < 0.001), which paralleled with brain edema formation and inversely correlated with blood flow velocity (p < 0.05). Our results demonstrated that the change of vascular elasticity was related to the levels of brain edema and the velocity of focal blood flow, suggesting that reducing brain edema is important for the improvement of the function of the lenticulostriate artery in the ischemic brain.
[Behavioural problems and personality change related to cerebral amyloid angiopathy].
Gahr, Maximilian; Connemann, Bernhard J; Schönfeldt-Lecuona, Carlos
2012-11-01
Cerebral amyloid angiopathy (CAA) belongs to the group of amyloidoses that are characterized by the deposition of insoluble and tissue-damaging amyloid proteins. Spontaneous intracerebral hemorrhage is the common clinical presentation of CAA resulting from the degenerative effect of beta amyloid on the cerebral vascular system. Though CAA is rather a neurological disease psychiatric symptoms can occur and even dominate the clinical picture. A case report is presented in order to illustrate the association between CAA and psychiatric symptoms. We report the case of a 54-year-old female patient with radiologic references to a probable CAA and mild cognitive impairment who developed behavioural difficulties and personality change that necessitated a psychiatric treatment. Psychiatric symptoms were most likely due to CAA. CAA can be associated with psychiatric symptoms and hence should be considered in the treatment of elderly patients with behavioural problems or personality changes. Diagnostic neuroimaging and examination of cerebrospinal fluid is recommended. © Georg Thieme Verlag KG Stuttgart · New York.
Kaundal, Madhu; Zameer, Saima; Najmi, Abul Kalam; Parvez, Suhel; Akhtar, Mohd
2018-08-05
Vascular dementia (VaD) is the second most common form of senile dementia, embraces memory deficits, neuroinflammation, executive function damage, mood and behavioral changes and abnormal cerebral blood flow. The purpose of the study was to explore the therapeutic potential of betulinic acid in bilateral common carotid artery occlusion (BCCAO) induced VaD in experimental rats. VaD was induced by BCCAO in rats and betulinic acid (10 and 15 mg/kg/day po) was administered 1 week after surgery. The cerebral blood pressure of the animal was recorded before and after the treatment using Laser Doppler flow meter. Object recognition task for non-spatial, Morris water maze for spatial and locomotor activity was performed to evaluate behavioral changes in rats. At the end of the study, animals were decapitated and hippocampus was separated to perform biochemical, neuroinflammatory and second messengers cAMP/cGMP analysis. Histology was done to study the brain pathophysiology. BCCAO surgery was able to significantly impaired memory in rats as observed behavioral and biochemical parameters. Moreover, BA demonstrated a neuroprotective effect in a dose-dependent manner. BA was able to re-establish cerebral blood flow, restore behavioral parameters and showed significant improvements in the as cAMP,cGMP and BDNF levels, restrain the oxidative stress and inflammatory parameters. In histopathology, betulinic acid treated groups showed a decrease in microgliosis and less pathological abnormalities comparable to diseased rat's brain. The observed effect might be attributed to the neuroprotective potential of betulinic acid and its ability to restore cognitive impairment and hippocampal neurochemistry in VaD. Copyright © 2018 Elsevier B.V. All rights reserved.
Dallaire-Théroux, Caroline; Callahan, Brandy L; Potvin, Olivier; Saikali, Stéphan; Duchesne, Simon
2017-01-01
The standard method of ascertaining Alzheimer's disease (AD) remains postmortem assessment of amyloid plaques and neurofibrillary degeneration. Vascular pathology, Lewy bodies, TDP-43, and hippocampal sclerosis are frequent comorbidities. There is therefore a need for biomarkers that can assess these etiologies and provide a diagnosis in vivo. We conducted a systematic review of published radiological-pathological correlation studies to determine the relationship between antemortem magnetic resonance imaging (MRI) and neuropathological findings in AD. We explored PubMed in June-July 2015 using "Alzheimer's disease" and combinations of radiological and pathological terms. After exclusion following screening and full-text assessment of the 552 extracted manuscripts, three others were added from their reference list. In the end, we report results based on 27 articles. Independently of normal age-related brain atrophy, AD pathology is associated with whole-brain and hippocampal atrophy and ventricular expansion as observed on T1-weighted images. Moreover, cerebral amyloid angiopathy and cortical microinfarcts are also related to brain volume loss in AD. Hippocampal sclerosis and TDP-43 are associated with hippocampal and medial temporal lobe atrophy, respectively. Brain volume loss correlates more strongly with tangles than with any other pathological finding. White matter hyperintensities observed on proton density, T2-weighted and FLAIR images are strongly related to vascular pathologies, but are also associated with other histological changes such as gliosis or demyelination. Cerebral atrophy and white matter changes in the living brain reflect underlying neuropathology and may be detectable using antemortem MRI. In vivo MRI may therefore be an avenue for AD pathological staging.
A quantitative brain map of experimental cerebral malaria pathology.
Strangward, Patrick; Haley, Michael J; Shaw, Tovah N; Schwartz, Jean-Marc; Greig, Rachel; Mironov, Aleksandr; de Souza, J Brian; Cruickshank, Sheena M; Craig, Alister G; Milner, Danny A; Allan, Stuart M; Couper, Kevin N
2017-03-01
The murine model of experimental cerebral malaria (ECM) has been utilised extensively in recent years to study the pathogenesis of human cerebral malaria (HCM). However, it has been proposed that the aetiologies of ECM and HCM are distinct, and, consequently, no useful mechanistic insights into the pathogenesis of HCM can be obtained from studying the ECM model. Therefore, in order to determine the similarities and differences in the pathology of ECM and HCM, we have performed the first spatial and quantitative histopathological assessment of the ECM syndrome. We demonstrate that the accumulation of parasitised red blood cells (pRBCs) in brain capillaries is a specific feature of ECM that is not observed during mild murine malaria infections. Critically, we show that individual pRBCs appear to occlude murine brain capillaries during ECM. As pRBC-mediated congestion of brain microvessels is a hallmark of HCM, this suggests that the impact of parasite accumulation on cerebral blood flow may ultimately be similar in mice and humans during ECM and HCM, respectively. Additionally, we demonstrate that cerebrovascular CD8+ T-cells appear to co-localise with accumulated pRBCs, an event that corresponds with development of widespread vascular leakage. As in HCM, we show that vascular leakage is not dependent on extensive vascular destruction. Instead, we show that vascular leakage is associated with alterations in transcellular and paracellular transport mechanisms. Finally, as in HCM, we observed axonal injury and demyelination in ECM adjacent to diverse vasculopathies. Collectively, our data therefore shows that, despite very different presentation, and apparently distinct mechanisms, of parasite accumulation, there appear to be a number of comparable features of cerebral pathology in mice and in humans during ECM and HCM, respectively. Thus, when used appropriately, the ECM model may be useful for studying specific pathological features of HCM.
A quantitative brain map of experimental cerebral malaria pathology
Schwartz, Jean-Marc; Greig, Rachel; Mironov, Aleksandr; de Souza, J. Brian; Cruickshank, Sheena M.; Craig, Alister G.; Milner, Danny A.; Allan, Stuart M.
2017-01-01
The murine model of experimental cerebral malaria (ECM) has been utilised extensively in recent years to study the pathogenesis of human cerebral malaria (HCM). However, it has been proposed that the aetiologies of ECM and HCM are distinct, and, consequently, no useful mechanistic insights into the pathogenesis of HCM can be obtained from studying the ECM model. Therefore, in order to determine the similarities and differences in the pathology of ECM and HCM, we have performed the first spatial and quantitative histopathological assessment of the ECM syndrome. We demonstrate that the accumulation of parasitised red blood cells (pRBCs) in brain capillaries is a specific feature of ECM that is not observed during mild murine malaria infections. Critically, we show that individual pRBCs appear to occlude murine brain capillaries during ECM. As pRBC-mediated congestion of brain microvessels is a hallmark of HCM, this suggests that the impact of parasite accumulation on cerebral blood flow may ultimately be similar in mice and humans during ECM and HCM, respectively. Additionally, we demonstrate that cerebrovascular CD8+ T-cells appear to co-localise with accumulated pRBCs, an event that corresponds with development of widespread vascular leakage. As in HCM, we show that vascular leakage is not dependent on extensive vascular destruction. Instead, we show that vascular leakage is associated with alterations in transcellular and paracellular transport mechanisms. Finally, as in HCM, we observed axonal injury and demyelination in ECM adjacent to diverse vasculopathies. Collectively, our data therefore shows that, despite very different presentation, and apparently distinct mechanisms, of parasite accumulation, there appear to be a number of comparable features of cerebral pathology in mice and in humans during ECM and HCM, respectively. Thus, when used appropriately, the ECM model may be useful for studying specific pathological features of HCM. PMID:28273147
Takahashi, Manami; Urushihata, Takuya; Takuwa, Hiroyuki; Sakata, Kazumi; Takado, Yuhei; Shimizu, Eiji; Suhara, Tetsuya; Higuchi, Makoto; Ito, Hiroshi
2017-01-01
Green fluorescence imaging (e.g., flavoprotein autofluorescence imaging, FAI) can be used to measure neuronal activity and oxygen metabolism in living brains without expressing fluorescence proteins. It is useful for understanding the mechanism of various brain functions and their abnormalities in age-related brain diseases. However, hemoglobin in cerebral blood vessels absorbs green fluorescence, hampering accurate assessments of brain function in animal models with cerebral blood vessel dysfunctions and subsequent cerebral blood flow (CBF) alterations. In the present study, we developed a new method to correct FAI signals for hemoglobin-dependent green fluorescence reductions by simultaneous measurements of green fluorescence and intrinsic optical signals. Intrinsic optical imaging enabled evaluations of light absorption and scatters by hemoglobin, which could then be applied to corrections of green fluorescence intensities. Using this method, enhanced flavoprotein autofluorescence by sensory stimuli was successfully detected in the brains of awake mice, despite increases of CBF, and hemoglobin interference. Moreover, flavoprotein autofluorescence could be properly quantified in a resting state and during sensory stimulation by a CO 2 inhalation challenge, which modified vascular responses without overtly affecting neuronal activities. The flavoprotein autofluorescence signal data obtained here were in good agreement with the previous findings from a condition with drug-induced blockade of cerebral vasodilation, justifying the current assaying methodology. Application of this technology to studies on animal models of brain diseases with possible changes of CBF, including age-related neurological disorders, would provide better understanding of the mechanisms of neurovascular coupling in pathological circumstances.
Betaine reverses the memory impairments in a chronic cerebral hypoperfusion rat model.
Nie, Chunjie; Nie, Huijuan; Zhao, Yin; Wu, Jianzhao; Zhang, Xiaojian
2016-02-26
Vascular dementia (VaD) is the second reason for the cognitive decline in aged people, but the effective therapy is still missing. The chronic cerebral hypoperfusion (CCH) had been widely found in VaD patients and is thought to be the key reason for cognitive impairment. Betaine is a natural product that had been implicated in many biological processes and had been used for the therapy of some neurodegenerative disease, such as Alzheimer's disease. In this study, we reported that betaine treatment could rescue the memory deficits induced by two-vessel occlusion (2-VO), a widely used CCH rat model. Betaine also restored the expression of PSD93, PSD95 and MAP2 to preserve the synaptic functions. Furthermore, betaine could reduce the oxidative stress by suppressing the MDA and ROS and enhancing the SOD and GSH. Overall, betaine treatment is able to rescue the memory deficits in CCH rats, which provide an experimental basis for the therapy of VaD. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Manias, Elizabeth; Kusljic, Snezana; Lam, Di-Luu
2015-12-01
To determine the prevalence and nature of potentially inappropriate medications (PIMs) and potential prescribing omissions (PPOs) in patients aged 65 years and over. A retrospective clinical audit was undertaken (N = 200) in an Australian metropolitan teaching hospital. The prevalence of at least one PIM was 51% (n = 101) whereas the prevalence of at least one PPO was 74% (n = 147). The most common PIM was prescribing aspirin to patients with no history of coronary, cerebral or peripheral arterial disease or occlusive arterial events. The most commonly detected PPO was the failure to prescribe statins to patients with a documented history of coronary, cerebral or peripheral vascular disease. Overall, 80 (24%) of the 335 PIMs identified were possibly associated with an adverse clinical outcome experienced by patients. Inappropriate prescribing continues to be a problem as shown by complexities associated with the risk-benefit trade-offs of managing medications in older patients. © 2014 AJA Inc.
Kyrtsos, Christina Rose; Baras, John S.
2015-01-01
Alzheimer’s disease (AD) is the most common cause of dementia in the elderly, affecting over 10% population over the age of 65 years. Clinically, AD is described by the symptom set of short term memory loss and cognitive decline, changes in mentation and behavior, and eventually long-term memory deficit as the disease progresses. On imaging studies, significant atrophy with subsequent increase in ventricular volume have been observed. Pathology on post-mortem brain specimens demonstrates the classic findings of increased beta amyloid (Aβ) deposition and the presence of neurofibrillary tangles (NFTs) within affected neurons. Neuroinflammation, dysregulation of blood-brain barrier transport and clearance, deposition of Aβ in cerebral blood vessels, vascular risk factors such as atherosclerosis and diabetes, and the presence of the apolipoprotein E4 allele have all been identified as playing possible roles in AD pathogenesis. Recent research has demonstrated the importance of the glymphatic system in the clearance of Aβ from the brain via the perivascular space surrounding cerebral blood vessels. Given the variety of hypotheses that have been proposed for AD pathogenesis, an interconnected, multilayer model offers a unique opportunity to combine these ideas into a single unifying model. Results of this model demonstrate the importance of vessel stiffness and heart rate in maintaining adequate clearance of Aβ from the brain. PMID:26448331
Themistocleous, Marios; Giakoumettis, Dimitrios; Mitsios, Andreas; Anagnostopoulos, Christos; Kalyvas, Aristoteles; Koutsarnakis, Christos
2016-01-01
Hereditary hemorrhagic telangiectasia is a rare autosomal dominant inherited disease that is usually complicated by visceral vascular malformations. Patients harboring such malformations are at increased risk of brain abscess formation, which despite advances in diagnostic and surgical methods remains a life threatening medical emergency with high mortality and morbidity rates. In the present report we describe a case of cerebral abscess due to silent pulmonary arteriovenous malformation (AVM) in a young patient previously undiagnosed for hereditary hemorrhagic telangiectasia syndrome (HHT).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalpana, S.; Dhananjay, S.; Anju, B.
2008-09-15
This study reports the efficacy of cobalt preconditioning in preventing hypobaric hypoxia induced vascular leakage (an indicator of cerebral edema) using male Sprague-Dawley rats as model system. Exposure of animals to hypobaric hypoxia led to a significant increase in vascular leakage, reactive oxygen species (ROS), nitric oxide (NO), and vascular endothelial growth factor (VEGF) levels. There was a marked increase in Nuclear Factor {kappa}B (NF{kappa}B) DNA binding activity and levels of pro-inflammatory cytokines such as Monocyte chemoattractant protein (MCP-1), Interferon-{gamma} (IFN-{gamma}), Interleukin-1 (IL-1), and Tumor Necrosis Factor-{alpha} (TNF-{alpha}) and cell adhesion molecules such as Vascular Cell Adhesion Molecule-1 (VCAM-1), andmore » P-selectin. Chemical preconditioning by cobalt for 7 days (12.5 mg Co/kg b.w., oral) significantly attenuated cerebral vascular leakage and the expression of inflammatory mediators induced by hypoxia. Administration of NF{kappa}B inhibitor, curcumin (50 mg/kg b.w.; i.p.) appreciably inhibited hypoxia induced vascular leakage indicating the involvement of NF{kappa}B in causing vascular leakage. Interestingly, cobalt when administered at 12.5 mg Co/kg b.w. (i.p.), 1 h before hypoxia could not prevent the vascular leakage indicating that cobalt per se did not have an effect on NF{kappa}B. The lower levels of NF{kappa}B observed in the brains of cobalt administered animals might be due to higher levels of antioxidant and anti-inflammatory proteins (hemeoxygenase-1 and metallothionein). To conclude cobalt preconditioning inhibited hypobaric hypoxia induced cerebral vascular leakage by lowering NF{kappa}B DNA binding activity and its regulated pro-inflammatory mediators. This is contemplated to be mediated by cobalt induced reduction in ROS/NO and increase in HO-1 and MT.« less
Exercise induces cerebral VEGF and angiogenesis via the lactate receptor HCAR1
Morland, Cecilie; Andersson, Krister A.; Haugen, Øyvind P.; Hadzic, Alena; Kleppa, Liv; Gille, Andreas; Rinholm, Johanne E.; Palibrk, Vuk; Diget, Elisabeth H.; Kennedy, Lauritz H.; Stølen, Tomas; Hennestad, Eivind; Moldestad, Olve; Cai, Yiqing; Puchades, Maja; Offermanns, Stefan; Vervaeke, Koen; Bjørås, Magnar; Wisløff, Ulrik; Storm-Mathisen, Jon; Bergersen, Linda H.
2017-01-01
Physical exercise can improve brain function and delay neurodegeneration; however, the initial signal from muscle to brain is unknown. Here we show that the lactate receptor (HCAR1) is highly enriched in pial fibroblast-like cells that line the vessels supplying blood to the brain, and in pericyte-like cells along intracerebral microvessels. Activation of HCAR1 enhances cerebral vascular endothelial growth factor A (VEGFA) and cerebral angiogenesis. High-intensity interval exercise (5 days weekly for 7 weeks), as well as L-lactate subcutaneous injection that leads to an increase in blood lactate levels similar to exercise, increases brain VEGFA protein and capillary density in wild-type mice, but not in knockout mice lacking HCAR1. In contrast, skeletal muscle shows no vascular HCAR1 expression and no HCAR1-dependent change in vascularization induced by exercise or lactate. Thus, we demonstrate that a substance released by exercising skeletal muscle induces supportive effects in brain through an identified receptor. PMID:28534495
Exercise induces cerebral VEGF and angiogenesis via the lactate receptor HCAR1.
Morland, Cecilie; Andersson, Krister A; Haugen, Øyvind P; Hadzic, Alena; Kleppa, Liv; Gille, Andreas; Rinholm, Johanne E; Palibrk, Vuk; Diget, Elisabeth H; Kennedy, Lauritz H; Stølen, Tomas; Hennestad, Eivind; Moldestad, Olve; Cai, Yiqing; Puchades, Maja; Offermanns, Stefan; Vervaeke, Koen; Bjørås, Magnar; Wisløff, Ulrik; Storm-Mathisen, Jon; Bergersen, Linda H
2017-05-23
Physical exercise can improve brain function and delay neurodegeneration; however, the initial signal from muscle to brain is unknown. Here we show that the lactate receptor (HCAR1) is highly enriched in pial fibroblast-like cells that line the vessels supplying blood to the brain, and in pericyte-like cells along intracerebral microvessels. Activation of HCAR1 enhances cerebral vascular endothelial growth factor A (VEGFA) and cerebral angiogenesis. High-intensity interval exercise (5 days weekly for 7 weeks), as well as L-lactate subcutaneous injection that leads to an increase in blood lactate levels similar to exercise, increases brain VEGFA protein and capillary density in wild-type mice, but not in knockout mice lacking HCAR1. In contrast, skeletal muscle shows no vascular HCAR1 expression and no HCAR1-dependent change in vascularization induced by exercise or lactate. Thus, we demonstrate that a substance released by exercising skeletal muscle induces supportive effects in brain through an identified receptor.
[Cardiovascular involvement in Behçet's disease].
Desbois, A-C; Wechsler, B; Cluzel, P; Helft, G; Boutin, D; Piette, J-C; Cacoub, P; Saadoun, D
2014-02-01
Vascular involvement is a common complication of Behçet's disease (BD) and affects up to 40% of BD patients. These complications worsen the prognosis of BD. The concept of vasculo-Behçet has been adopted for cases in which vascular complications dominate the clinical features. Vascular manifestations affect particularly young men, during the first years following onset of the disease. Venous complications are the most frequent vascular complications, affecting 14 to 40% of BD patients. Superficial and deep lower limb thrombosis is the most frequent venous complications but one third of venous thrombosis concern large vessels (such as cerebral venous thrombosis, pulmonary embolism, and inferior or superior vena cava, etc.). Budd-Chiari syndrome is the worst prognostic factor increasing mortality by 9 times. Arterial complications (2 to 17% of BD patients) include aneurysms and occlusions/stenosis. Main locations of arterial lesions are aortic (abdominal and thoracic), femoral, pulmonary and iliac arteries. Aneurysms are the most severe arterial complications, particularly pulmonary aneurysms associated with a high risk of massive bleeding. Cardiac complications (up to 6% of BD patients) include pericarditis, endocardial lesions (aortic regurgitation and less often mitral insufficiency), myocardial lesions (myocardial infarction, myocarditis and endomyocardial fibrosis) and intracardiac thrombosis (right ventricle and atrium). Coronary lesions complicated to myocardial infarction are the most severe cardiac complications. Treatment is based on corticosteroids and immunosuppressive drugs. The use of anticoagulation in venous thrombosis is still controversial. Copyright © 2014. Published by Elsevier SAS.
Identification of proteins in hyperglycemia and stroke animal models.
Sung, Jin-Hee; Shah, Fawad-Ali; Gim, Sang-Ah; Koh, Phil-Ok
2016-01-01
Stroke is a major cause of disability and death in adults. Diabetes mellitus is a metabolic disorder that strongly increases the risk of severe vascular diseases. This study compared changes in proteins of the cerebral cortex during ischemic brain injury between nondiabetic and diabetic animals. Adult male rats were injected with streptozotocin (40 mg/kg) via the intraperitoneal route to induce diabetes and underwent surgical middle cerebral artery occlusion (MCAO) 4 wk after streptozotocin treatment. Cerebral cortex tissues were collected 24 h after MCAO and cerebral cortex proteins were analyzed by two-dimensional gel electrophoresis and mass spectrometry. Several proteins were identified as differentially expressed between nondiabetic and diabetic animals. Among the identified proteins, we focused on the following metabolism-related enzymes: isocitrate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, adenosylhomocysteinase, pyruvate kinase, and glucose-6-phosphate isomerase (neuroleukin). Expression of these proteins was decreased in animals that underwent MCAO. Moreover, protein expression was reduced to a greater extent in diabetic animals than in nondiabetic animals. Reverse transcription-polymerase chain reaction analysis confirmed that the diabetic condition exacerbates the decrease in expression of metabolism-related proteins after MCAO. These results suggest that the diabetic condition may exacerbate brain damage during focal cerebral ischemia through the downregulation of metabolism-related proteins. Copyright © 2016 Elsevier Inc. All rights reserved.
Aβ-related angiitis: comparison with CAA without inflammation and primary CNS vasculitis.
Salvarani, Carlo; Hunder, Gene G; Morris, Jonathan M; Brown, Robert D; Christianson, Teresa; Giannini, Caterina
2013-10-29
To analyze the clinical findings, response to therapy, and outcomes of patients with cerebral vascular amyloid-β (Aβ) deposition with and without inflammatory vascular infiltration. We report 78 consecutive patients with cerebral vascular Aβ deposition examined at Mayo Clinic Rochester over 25 years (1987 through 2011). Specimens reviewed by a neuropathologist showed 40 with vascular Aβ peptide without inflammation (cerebral amyloid angiopathy [CAA]), 28 with granulomatous vasculitis (Aβ-related angiitis or ABRA), and 10 with perivascular CAA-related inflammation. We also matched findings in 118 consecutive patients with primary CNS vasculitis (PCNSV) without Aβ seen over 25 years (1983 through 2007). Compared to the 40 with CAA, the 28 with ABRA were younger at diagnosis (p = 0.05), had less altered cognition (p = 0.02), fewer neurologic deficits (p = 0.02), and fewer intracranial hemorrhages (<0.001), but increased gadolinium leptomeningeal enhancement (p = 0.01) at presentation, and less mortality and disability at last follow-up (p < 0.001). Compared with PCNSV, the 28 patients with ABRA were older at diagnosis (p < 0.001), had a higher frequency of altered cognition (p = 0.05), seizures/spells (p = 0.006), gadolinium leptomeningeal enhancement (p < 0.001), and intracerebral hemorrhage (p = 0.02), lower frequency of hemiparesis (p = 0.01), visual symptoms (p = 0.04), and MRI evidence of cerebral infarction (p = 0.003), but higher CSF protein levels (p = 0.03). Results of treatment and outcomes in ABRA and PCNSV were similar. ABRA appears to represent a distinct subset of PCNSV.
Cerebral blood velocity and other cardiovascular responses to 2 days of head-down tilt
NASA Technical Reports Server (NTRS)
Frey, Mary A. B.; Mader, Thomas H.; Bagian, James P.; Charles, John B.; Meehan, Richard T.
1993-01-01
Spaceflight induces a cephalad redistribution of fluid volume and blood flow within the human body, and space motion sickness, which is a problem during the first few days of space flight, could be related to these changes in fluid status and in blood flow of the cerebrum and vestibular system. To evaluate possible changes in cerebral blood flow during simulated weightlessness, we measured blood velocity in the middle cerebral artery (MCA) along with retinal vascular diameters, intraocular pressure, impedance cardiography, and sphygmomanometry on nine men (26.2 +/- 6.6 yr) morning and evening for 2 days during continuous 10 deg head-down tilt (HDT). When subjects went from seated to head-down bed rest, their heart rate and retinal diameters decreased, and intraocular pressures increased. After 48 h of HDT, blood flow velocity in the MCA was decreased and thoracic impedance was increased, indicating less fluid in the thorax. Percent changes in blood flow velocities in the MCA after 48 h of HDT were inversely correlated with percent changes in retinal vascular diameters. Blood flow velocities in the MCA were inversely correlated (intersubject) with arterial pressures and retinal vascular diameters. Heart rate, stroke volume, cardiac output, systolic arterial pressure, and at times pulse pressure and blood flow velocities in the MCA were greater in the evening. Total peripheral resistance was higher in the morning. Although cerebral blood velocity is reduced after subjects are head down for 2 days, the inverse relationship with retinal vessel diameters, which have control analogous to that of cerebral vessels, indicates cerebral blood flow is not reduced.
Lin, Ai-Ling; Jahrling, Jordan B; Zhang, Wei; DeRosa, Nicholas; Bakshi, Vikas; Romero, Peter; Galvan, Veronica; Richardson, Arlan
2017-01-01
Apolipoprotein E ɛ4 allele is a common susceptibility gene for late-onset Alzheimer's disease. Brain vascular and metabolic deficits can occur in cognitively normal apolipoprotein E ɛ4 carriers decades before the onset of Alzheimer's disease. The goal of this study was to determine whether early intervention using rapamycin could restore neurovascular and neurometabolic functions, and thus impede pathological progression of Alzheimer's disease-like symptoms in pre-symptomatic Apolipoprotein E ɛ4 transgenic mice. Using in vivo, multimodal neuroimaging, we found that apolipoprotein E ɛ4 mice treated with rapamycin had restored cerebral blood flow, blood-brain barrier integrity and glucose metabolism, compared to age- and gender-matched wild-type controls. The preserved vasculature and metabolism were associated with amelioration of incipient learning deficits. We also found that rapamycin restored the levels of the proinflammatory cyclophilin A in vasculature, which may contribute to the preservation of cerebrovascular function in the apolipoprotein E ɛ4 transgenics. Our results show that rapamycin improves functional outcomes in this mouse model and may have potential as an effective intervention to block progression of vascular, metabolic and early cognitive deficits in human Apolipoprotein E ɛ4 carriers. As rapamycin is FDA-approved and neuroimaging is readily used in humans, the results of the present study may provide the basis for future Alzheimer's disease intervention studies in human subjects. © The Author(s) 2015.
Liang, Yu-Zhi; Zeng, Zhi-Lei; Hua, Lin-Lin; Li, Jin-Feng; Wang, Yun-Liang; Bi, Xi-Zhuang
2016-06-01
To discuss the expression and significance of angiostatin, vascular endothelial growth factor and matrix metalloproteinase-9 in the brain tissue of diabetic rats with ischemia reperfusion. A total of 60 male Wistar rats were randomly divided into the normal group, sham group, diabetic cerebral infarction group and single cerebral infarction group according to the random number table, with 15 rats in each group. The high sucrose diet and intraperitoneal injection of streptozotocin were performed for the modeling of diabetic rats, while the thread-occlusion method was employed to build the model of cerebral ischemia reperfusion. The immunohistochemical staining was performed to detect the expression of angiostatin, vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP-9) in the brain tissue. The expression of angiostatin after the reperfusion in the brain tissue of rats in the single cerebral infarction group and diabetic cerebral infarction group was increased 6 h after the reperfusion, reached to the peak on 1 d and then decreased gradually. The expression of angiostatin in the diabetic cerebral infarction group 6 h, 1 d, 3 d and 7 d after the reperfusion was significantly higher than that in the single cerebral infarction group (P < 0.05). VEGF began to be increased 1 h after the reperfusion in the single cerebral infarction group and diabetic cerebral infarction group, reached to the peak at 6 h and then decreased gradually. The expression of VEGF in the diabetic cerebral infarction group at each time point after the reperfusion was significantly lower than that in the single cerebral infarction group (P < 0.05). MMP-9 began to be increased 1 h after the reperfusion in the single cerebral infarction group and diabetic cerebral infarction group, reached to the peak on 1 d and then decreased gradually. The expression of MMP-9 in the diabetic cerebral infarction group at each time point after the reperfusion was significantly higher than that in the single cerebral infarction group (P < 0.05). The high glucose environment in which the diabetic cerebral infarction is occurred is to induce the formation of MMP-9 at first and then activate and increase the expression of angiostatin. Afterwards, the expression of VEGF is inhibited, resulting in the poor angiogenesis after cerebral infarction, which thus makes the injury of brain tissue after cerebral infarction even worse than the non-diabetes mellitus. Copyright © 2016 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.
Macro-to-micro cortical vascular imaging underlies regional differences in ischemic brain
NASA Astrophysics Data System (ADS)
Dziennis, Suzan; Qin, Jia; Shi, Lei; Wang, Ruikang K.
2015-05-01
The ability to non-invasively monitor and quantify hemodynamic responses down to the capillary level is important for improved diagnosis, treatment and management of neurovascular disorders, including stroke. We developed an integrated multi-functional imaging system, in which synchronized dual wavelength laser speckle contrast imaging (DWLS) was used as a guiding tool for optical microangiography (OMAG) to test whether detailed vascular responses to experimental stroke in male mice can be evaluated with wide range sensitivity from arteries and veins down to the capillary level. DWLS enabled rapid identification of cerebral blood flow (CBF), prediction of infarct area and hemoglobin oxygenation over the whole mouse brain and was used to guide the OMAG system to hone in on depth information regarding blood volume, blood flow velocity and direction, vascular architecture, vessel diameter and capillary density pertaining to defined regions of CBF in response to ischemia. OMAG-DWLS is a novel imaging platform technology to simultaneously evaluate multiple vascular responses to ischemic injury, which can be useful in improving our understanding of vascular responses under pathologic and physiological conditions, and ultimately facilitating clinical diagnosis, monitoring and therapeutic interventions of neurovascular diseases.
Management of Major Vascular Injury: Open.
Tisherman, Samuel A
2016-06-01
Major blood vessels are in proximity to other vital structures in the neck and base of skull. Infections and tumors of the head and neck can invade vascular structures. Vascular injuries can lead to massive hemorrhage, cerebral ischemia, or stroke. Emergency and definitive management can be challenging. Copyright © 2016 Elsevier Inc. All rights reserved.
Neurovascular Regulation in the Ischemic Brain
Jackman, Katherine
2015-01-01
Abstract Significance: The brain has high energetic requirements and is therefore highly dependent on adequate cerebral blood supply. To compensate for dangerous fluctuations in cerebral perfusion, the circulation of the brain has evolved intrinsic safeguarding measures. Recent Advances and Critical Issues: The vascular network of the brain incorporates a high degree of redundancy, allowing the redirection and redistribution of blood flow in the event of vascular occlusion. Furthermore, active responses such as cerebral autoregulation, which acts to maintain constant cerebral blood flow in response to changing blood pressure, and functional hyperemia, which couples blood supply with synaptic activity, allow the brain to maintain adequate cerebral perfusion in the face of varying supply or demand. In the presence of stroke risk factors, such as hypertension and diabetes, these protective processes are impaired and the susceptibility of the brain to ischemic injury is increased. One potential mechanism for the increased injury is that collateral flow arising from the normally perfused brain and supplying blood flow to the ischemic region is suppressed, resulting in more severe ischemia. Future Directions: Approaches to support collateral flow may ameliorate the outcome of focal cerebral ischemia by rescuing cerebral perfusion in potentially viable regions of the ischemic territory. Antioxid. Redox Signal. 22, 149–160. PMID:24328757
Ultrasound-aided Multi-parametric Photoacoustic Microscopy of the Mouse Brain.
Ning, Bo; Sun, Naidi; Cao, Rui; Chen, Ruimin; Kirk Shung, K; Hossack, John A; Lee, Jin-Moo; Zhou, Qifa; Hu, Song
2015-12-21
High-resolution quantitative imaging of cerebral oxygen metabolism in mice is crucial for understanding brain functions and formulating new strategies to treat neurological disorders, but remains a challenge. Here, we report on our newly developed ultrasound-aided multi-parametric photoacoustic microscopy (PAM), which enables simultaneous quantification of the total concentration of hemoglobin (CHb), the oxygen saturation of hemoglobin (sO2), and cerebral blood flow (CBF) at the microscopic level and through the intact mouse skull. The three-dimensional skull and vascular anatomies delineated by the dual-contrast (i.e., ultrasonic and photoacoustic) system provide important guidance for dynamically focused contour scan and vessel orientation-dependent correction of CBF, respectively. Moreover, bi-directional raster scan allows determining the direction of blood flow in individual vessels. Capable of imaging all three hemodynamic parameters at the same spatiotemporal scale, our ultrasound-aided PAM fills a critical gap in preclinical neuroimaging and lays the foundation for high-resolution mapping of the cerebral metabolic rate of oxygen (CMRO2)-a quantitative index of cerebral oxygen metabolism. This technical innovation is expected to shed new light on the mechanism and treatment of a broad spectrum of neurological disorders, including Alzheimer's disease and ischemic stroke.
Unusual Association: Cerebral Arteriovenous Malformation and Chiari Type I Malformation.
Ogul, Hayri; Kantarci, Mecit
2017-06-01
Cerebral arteriovenous malformation (AVM) is a common type of cerebral vascular malformation. The imaging findings are enlarged vessels, thrombosed sinuses, and hemorrhage or gliosis on adjacent brain parenchyma. Magnetic resonance (MR) imaging can be used safely for diagnosis. Chiari type I malformation is characterized by a caudal descent of the cerebellar tonsil. Coincidence of cerebral AVM and Chiari type I malformation is very rare. In this paper, the authors report MR imaging findings of a patient with coincidence of cerebral AVM and Chiari type I malformation.
Greving, J P; Kaasjager, H A H; Vernooij, J W P; Hovens, M M C; Wierdsma, J; Grandjean, H M H; van der Graaf, Y; de Wit, G A; Visseren, F L J
2015-05-20
To assess the cost-effectiveness of an internet-based, nurse-led vascular risk factor management programme in addition to usual care compared with usual care alone in patients with a clinical manifestation of a vascular disease. Cost-effectiveness analysis alongside a randomised controlled trial (the Internet-based vascular Risk factor Intervention and Self-management (IRIS) study). Multicentre trial in a secondary and tertiary healthcare setting. 330 patients with a recent clinical manifestation of atherosclerosis in the coronary, cerebral, or peripheral arteries and with ≥2 treatable vascular risk factors not at goal. The intervention consisted of a personalised website with an overview and actual status of patients' vascular risk factors, and mail communication with a nurse practitioner via the website for 12 months. The intervention combined self-management support, monitoring of disease control and pharmacotherapy. Societal costs, quality-adjusted life-years (QALYs) and incremental cost-effectiveness. Patients experienced equal health benefits, that is, 0.86 vs 0.85 QALY (intervention vs usual care) at 1 year. Adjusting for baseline differences, the incremental QALY difference was -0.014 (95% CI -0.034 to 0.007). The intervention was associated with lower total costs (€4859 vs €5078, difference €219, 95% CI -€2301 to €1825). The probability that the intervention is cost-effective at a threshold value of €20,000/QALY, is 65%. At mean annual cost of €220 per patient, the intervention is relatively cheap. An internet-based, nurse-led intervention in addition to usual care to improve vascular risk factors in patients with a clinical manifestation of a vascular disease does not result in a QALY gain at 1 year, but has a small effect on vascular risk factors and is associated with lower costs. NCT00785031. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Berberine reduced blood pressure and improved vasodilation in diabetic rats.
Ma, Yu-Guang; Liang, Liang; Zhang, Yin-Bin; Wang, Bao-Feng; Bai, Yun-Gang; Dai, Zhi-Jun; Xie, Man-Jiang; Wang, Zhong-Wei
2017-10-01
Hyperglycemia and hypertension are considered to be the two leading risk factors for vascular disease in diabetic patients. However, few pharmacologic agents could provide a combinational therapy for controlling hyperglycemia and hypertension at the same time in diabetes. The objectives of this study are to investigate whether berberine treatment could directly reduce blood pressure and identify the molecular mechanism underlying the vascular protection of berberine in diabetic rats. Berberine was intragastrically administered with different dosages of 50, 100 and 200 mg/kg/day to diabetic rats for 8 weeks since the injection of streptozotocin. The endothelium-dependent/-independent relaxation in middle cerebral arteries was investigated. The activity of large-conductance Ca 2+ -activated K + channel (BK Ca ) was investigated by recording whole-cell currents, analyzing single-channel activities and assessing the expressions of α- and β1-subunit at protein or mRNA levels. Results of the study suggest that chronic administration of 100 mg/kg/day berberine not only lowered blood glucose but also reduced blood pressure and improved vasodilation in diabetic rats. Furthermore, berberine markedly increased the function and expression of BK Ca β1-subunit in cerebral vascular smooth muscle cells (VSMCs) isolated from diabetic rats or when exposed to hyperglycemia condition. The present study provided initial evidences that berberine reduced blood pressure and improved vasodilation in diabetic rats by activation of BK Ca channel in VSMCs, which suggested that berberine might provide a combinational therapy for controlling hyperglycemia and blood pressure in diabetes. Furthermore, our work indicated that activation of BK Ca channel might be the underlying mechanism responsible for the vascular protection of berberine in diabetes. © 2017 Society for Endocrinology.
Central and peripheral haemodynamic effects of non-steroidal anti-inflammatory drugs in man.
Wennmalm, A; Carlsson, I; Edlund, A; Eriksson, S; Kaijser, L; Nowak, J
1984-01-01
The haemodynamic effects of non-steroidal anti-inflammatory (NSAI) drugs can be attributed either to their common property of inhibiting the formation of prostaglandins (PG) in the cardiovascular system, or to direct actions on the tone and sensitivity of the resistance vessels in various regions. Indomethacin (IND) is the most frequently studied NSAI drug, in animals and in man. Its cardiovascular effects differ somewhat from those of other NSAI, due to the fact that, besides inhibiting PG formation, IND acts as a direct vasoconstrictor. The stimulatory effect of IND in vascular smooth muscle results in an increased systemic vascular resistance which, although partially compensated by a decreased cardiac output, gives rise to a moderate increase in systemic blood pressure. The vasoconstrictor effect of IND is of particular interest in patients with ischemic heart disease, since it lowers their already decreased coronary flow, and may thereby accentuate the risk of myocardial infarction. Administration of IND also leads to a decreased blood flow in the splanchnic region, the kidneys, and the brain. The cerebral blood flow is lowered by 25-35%; in addition, IND almost entirely erases the hyperemic flow response to hypercapnia. Of other NSAI drugs, at least aspirin and naproxen are completely devoid of such actions on the cerebral circulation. A common vascular effect of all NSAI drugs is a diminution of reactive hyperemia, the local hyperemia that develops in a tissue subjected to a short period of arterial occlusion. Part of this hyperemic response is dependent on an intact vascular PG formation and consequently it is inhibited when PG formation is blocked. In contrast, NSAI drugs do not affect the functional increase in the blood flow in working skeletal muscle.
[Management of cerebral small vessel disease for the diagnosis and treatment of dementia].
Ihara, Masafumi
2013-07-01
With the demographic shift in life expectancy inexorably increasing in developed countries, dementia is set to become one of the most important health problems worldwide. In recent years, cerebral small vessel disease (SVD) has received much attention as an important cause of dementia. The reason for this is twofold: firstly, arteriosclerosis (type 1 SVD) is the leading cause of vascular cognitive impairment, and secondly, cerebral amyloid angiopathy (CAA; type 2 SVD) is an almost invariable accompaniment of Alzheimer's disease. SVD is known to induce a variety of pathological changes; for example, type 1 SVD results in lacunar infarction, deep microbleeds, and white matter damage, while type 2 SVD leads to cortical microinfarcts, lobar microbleeds, and white matter damage. SVD is considered a spectrum of abnormalities, with the majority of patients experiencing symptoms from both type 1 and type 2 SVD as the disease progresses. The discouraging results of immunotherapy clinical trials for Alzheimer's disease have shifted the scientific attention from the classical neuron-centric approach towards a novel neurovascular approach. As arteries stiffen with age or with other co-morbid factors such as life-related diseases, amyloid β (Aβ) synthesis becomes upregulated, resulting in the deposition of insoluble Aβ not only in the parenchyma as senile plaques but also in the perivascular drainage pathways as CAA. Therefore, therapeutic strategies such as vasoactive drugs that enhance the patency of this Aβ drainage pathway may facilitate Aβ removal and help prevent cognitive decline in the elderly. Based on this emerging paradigm, clinical trials are warranted to investigate whether a neurovascular therapeutic approach can effectively halt cognitive decline and act as a preemptive medicine for patients at risk of dementia.
Endothelial cell-derived GABA signaling modulates neuronal migration and postnatal behavior
Li, Suyan; Kumar T, Peeyush; Joshee, Sampada; Kirschstein, Timo; Subburaju, Sivan; Khalili, Jahan S; Kloepper, Jonas; Du, Chuang; Elkhal, Abdallah; Szabó, Gábor; Jain, Rakesh K; Köhling, Rüdiger; Vasudevan, Anju
2018-01-01
The cerebral cortex is essential for integration and processing of information that is required for most behaviors. The exquisitely precise laminar organization of the cerebral cortex arises during embryonic development when neurons migrate successively from ventricular zones to coalesce into specific cortical layers. While radial glia act as guide rails for projection neuron migration, pre-formed vascular networks provide support and guidance cues for GABAergic interneuron migration. This study provides novel conceptual and mechanistic insights into this paradigm of vascular-neuronal interactions, revealing new mechanisms of GABA and its receptor-mediated signaling via embryonic forebrain endothelial cells. With the use of two new endothelial cell specific conditional mouse models of the GABA pathway (Gabrb3ΔTie2-Cre and VgatΔTie2-Cre), we show that partial or complete loss of GABA release from endothelial cells during embryogenesis results in vascular defects and impairs long-distance migration and positioning of cortical interneurons. The downstream effects of perturbed endothelial cell-derived GABA signaling are critical, leading to lasting changes to cortical circuits and persistent behavioral deficits. Furthermore, we illustrate new mechanisms of activation of GABA signaling in forebrain endothelial cells that promotes their migration, angiogenesis and acquisition of blood-brain barrier properties. Our findings uncover and elucidate a novel endothelial GABA signaling pathway in the CNS that is distinct from the classical neuronal GABA signaling pathway and shed new light on the etiology and pathophysiology of neuropsychiatric diseases, such as autism spectrum disorders, epilepsy, anxiety, depression and schizophrenia. PMID:29086765
Zhu, Weixin; Qiu, Weihong; Lu, Ailan
2017-12-01
Cerebral stroke is a kind of acute cerebrovascular disease with high incidence, morbidity and disability. Treatments against various types of cerebral stroke are limited at preventive measurements due to the lack of effective therapeutic method. The present study aimed to investigate the protective effect of cryptotanshinone (CPT) on cerebral stroke, and investigate the possible mechanism involved in order to develop a novel therapy against stoke. The phosphoinositide 3‑kinase membrane translocation of cerebral stroke rats pretreated with CPT at various concentrations were measured, as well as the phosphorylation of protein kinase B (AKT) and endothelial nitric oxide synthase (eNOS). Additionally, the expression level of B‑cell lymphoma 2 (Bcl‑2), Bcl‑2‑associated X protein (Bax) and vascular endothelial growth factor were also assessed using western blotting and reverse transcription‑quantitative polymerase chain reaction. Furthermore, biochemical tests were used to measure the activity of superoxide dismutase (SOD), malondialdehyde (MDA) and nitric oxide (NO) in both the cerebral cortex and peripheral blood. As a result, CPT‑pretreated rats presented declined phosphoinositide 3‑kinase (PI3K) and AKT expression levels, indicating that the PI3K/AKT signaling pathway was inhibited. Increased Bcl‑2 and NO levels in both the cerebral cortex and peripheral blood demonstrated the anti‑apoptosis and blood vessel protection effect of CPT. Furthermore, increased SOD activity and declined MDA levels demonstrated suppressed lipid peroxidation. In conclusion, CPT exhibited a protective effect against cerebral stroke through inhibition of the PI3K/AKT‑eNOS signaling pathway. These results suggested the potential of CPT as a promising agent in the treatment of cerebral stroke.
Donahue, Manus J; van Laar, Peter Jan; van Zijl, Peter C M; Stevens, Robert D; Hendrikse, Jeroen
2009-03-01
To assess the role of vascular space occupancy (VASO) magnetic resonance imaging (MRI), a noninvasive cerebral blood volume (CBV)-weighted technique, for evaluating CBV reactivity in patients with internal carotid artery (ICA) stenosis. VASO reactivity, defined as a signal change in response to hypercapnic stimulus (4-second exhale, 14-second breath-hold), was measured in the left and right ICA flow territories in patients (n=10) with varying degrees of unilateral and bilateral ICA stenosis and in healthy volunteers (n=10). Percent VASO reactivity was more negative (P<0.01) bilaterally in patients (ipsilateral: -3.6+/-1.5%; contralateral: -3.4+/-1.2%) compared with age-matched controls (left: -1.9+/-0.6%; right: -1.9+/-0.8%). Owing to the nature of the VASO contrast mechanism, this more negative VASO reactivity was attributed to autoregulatory CBV effects in patients. A postbreath-hold overshoot, which was absent in healthy volunteers, was observed unilaterally in a subset of patients. More negative VASO reactivity was observed in patients with ICA stenosis and may be a marker of autoregulatory effects. Furthermore, the postbreath-hold overshoot observed in patients is consistent with compensatory microvascular vasoconstriction and may be a marker of hemodynamic impairment. Based on the results of this feasibility study, VASO should be useful for identifying CBV adjustments in patients with steno-occlusive disease of the ICA. Copyright (c) 2009 Wiley-Liss, Inc.
Rac-1 as a new therapeutic target in cerebro- and cardio-vascular diseases.
Carrizzo, Albino; Forte, Maurizio; Lembo, Maria; Formisano, Luigi; Puca, Annibale A; Vecchione, Carmine
2014-01-01
Growing evidence indicates that overproduction of reactive oxygen species (ROS) plays a prominent role in the development of cardio- and cerebro-vascular diseases. Among the mechanisms identified to produce oxidative stress in the vascular wall, those mediated by membrane-bound NAD(P)H oxidases represent a major one. NAD(P)H oxidases are a family of enzymes that generate ROS both in phagocytic and non-phagocytic cell types. Vascular NAD(P)H oxidase contains the membrane-bound subunits Nox1, Nox2 (gp91phox), Nox4 and p22phox, the catalytic site of the oxidase, and the cytosolic components p47phox and p67phox. Rac1 (Ras-related C3 botulinum toxin substrate1) is a small GTPase essential for the assembly and activation of NADPH oxidase. Several molecular and cellular studies have reported the involvement of Rac1 in different cardiovascular pathologies, such as vascular smooth muscle proliferation, cardiomyocyte hypertrophy, endothelial cell shape change, atherosclerosis and endothelial dysfunction in hypertension. In addition, increased activation of NADPH oxidase by Rac1 has been reported in animals and humans after myocardial infarction and heart failure. The Rac1/NADPH pathway has also been found involved in different pathologies of the cerebral district, such as ischemic stroke, cognitive impairment, subaracnoid hemorrhage and neuronal oxidative damage typical of several neurodegenerative disorders. In addition, thrombotic events are an important step in the onset of cardio- and cerebrovascular diseases. Rac1 has been found involved also in platelet activation, inducing actin polymerization and lamellipodia formation, which are necessary steps for platelet aggregation. Taken together, the evidence candidates Rac1 as a new pharmacological target of cardiovascular and cerebrovascular diseases. Although the involvement of Rac1 in the beneficial pleiotropic effects of drugs such as statins is well known, and the onset of numerous side effects has raised concern for the management of some patient groups. Interestingly, a novel selective Rac1 inhibitor, NSC23766, has recently been introduced; its use has been reported mainly in the oncology field. Future studies are needed to extend its application to cardio- and cerebro-vascular diseases, and translate its use to humans.
Fei, Hong-Xin; Zhang, Ying-Bo; Liu, Ting; Zhang, Xiao-Jie; Wu, Shu-Liang
2018-01-01
Alzheimer's disease (AD) is the most common cause of dementia among elderly population. Deranged β-amyloid (Aβ) trafficking across the blood-brain barrier is known to be a critical element in the pathogenesis of AD. In the vascular endothelial cells of hippocampus, Aβ transport is mainly mediated by low-density lipoprotein-associated protein 1 (LRP1) and the receptor for advanced glycation end (RAGE) products; therefore, LRP1 and RAGE endothelial cells are potential therapeutic targets for AD. In this study, we explored the effects of Formononetin (FMN) on learning and memory improvement in APP/PS1 mice and the related mechanisms. We found that FMN significantly improved learning and memory ability by suppressing Aβ production from APP processing, RAGE-dependent inflammatory signaling and promoted LRP1-dependent cerebral Aβ clearance pathway. Moreover, FMN treatment alleviated ultrastructural changes in hippocampal vascular endothelial cells. In conclusion, we believe that FMN may be an efficacious and promising treatment for AD.
Wintermark, Pia; Lechpammer, Mirna; Kosaras, Bela; Jensen, Frances E; Warfield, Simon K
2015-10-01
This study aims to evaluate brain perfusion at term in very preterm newborns and newborns with congenital heart disease before their corrective surgery, and to search for histopathological indicators of whether the brain perfusion abnormalities of these newborns may be related to an activated angiogenesis. Using magnetic resonance imaging and arterial spin labeling, regional cerebral blood flow was measured at a term-equivalent age for three very preterm newborns (born at < 32 weeks), one newborn with congenital heart disease before his corrective surgery and three healthy newborns. In addition, a histopathological analysis was performed on a newborn with congenital heart disease. The very preterm newborns and the newborn with congenital heart disease included in this study all displayed an increased signal in their white matter on T2-weighted imaging. The cerebral blood flow of these newborns was increased in their white matter, compared with the healthy term newborns. The vascular endothelial growth factor was overexpressed in the injured white matter of the newborn with congenital heart disease. Brain perfusion may be increased at term in the white matter, in very preterm newborns, and newborns with congenital heart disease, and it correlates with white matter abnormalities on conventional imaging. Georg Thieme Verlag KG Stuttgart · New York.
Code of Federal Regulations, 2012 CFR
2012-04-01
...) Allegation of a stroke (cerebral vascular accident) more than 3 months in the past and continued marked difficulty in walking or using a hand or arm; (f) Allegation of cerebral palsy, muscular dystrophy or muscle...
Code of Federal Regulations, 2013 CFR
2013-04-01
...) Allegation of a stroke (cerebral vascular accident) more than 3 months in the past and continued marked difficulty in walking or using a hand or arm; (f) Allegation of cerebral palsy, muscular dystrophy or muscle...
Code of Federal Regulations, 2014 CFR
2014-04-01
...) Allegation of a stroke (cerebral vascular accident) more than 3 months in the past and continued marked difficulty in walking or using a hand or arm; (f) Allegation of cerebral palsy, muscular dystrophy or muscle...
Code of Federal Regulations, 2011 CFR
2011-04-01
...) Allegation of a stroke (cerebral vascular accident) more than 3 months in the past and continued marked difficulty in walking or using a hand or arm; (f) Allegation of cerebral palsy, muscular dystrophy or muscle...
Beyond Frangi: an improved multiscale vesselness filter
NASA Astrophysics Data System (ADS)
Jerman, Tim; Pernuš, Franjo; Likar, Boštjan; Špiclin, Žiga
2015-03-01
Vascular diseases are among the top three causes of death in the developed countries. Effective diagnosis of vascular pathologies from angiographic images is therefore very important and usually relies on segmentation and visualization of vascular structures. To enhance the vascular structures prior to their segmentation and visualization, and to suppress non-vascular structures and image noise, the filters enhancing vascular structures are used extensively. Even though several enhancement filters are widely used, the responses of these filters are typically not uniform between vessels of different radii and, compared to the response in the central part of vessels, their response is lower at vessels' edges and bifurcations, and vascular pathologies like aneurysm. In this paper, we propose a novel enhancement filter based on ratio of multiscale Hessian eigenvalues, which yields a close-to-uniform response in all vascular structures and accurately enhances the border between the vascular structures and the background. The proposed and four state-of-the-art enhancement filters were evaluated and compared on a 3D synthetic image containing tubular structures and a clinical dataset of 15 cerebral 3D digitally subtracted angiograms with manual expert segmentations. The evaluation was based on quantitative metrics of segmentation performance, computed as area under the precision-recall curve, signal-to-noise ratio of the vessel enhancement and the response uniformity within vascular structures. The proposed filter achieved the best scores in all three metrics and thus has a high potential to further improve the performance of existing or encourage the development of more advanced methods for segmentation and visualization of vascular structures.
Nettiksimmons, Jasmine; Beckett, Laurel; Schwarz, Christopher; Carmichael, Owen; Fletcher, Evan; DeCarli, Charles
2013-01-01
Previous work examining Alzheimer’s Disease Neuroimaging Initiative (ADNI) normal controls using cluster analysis identified a subgroup characterized by substantial brain atrophy and white matter hyperintensities (WMH). We hypothesized that these effects could be related to vascular damage. Fifty-three individuals in the suspected vascular cluster (Normal 2) were compared with 31 individuals from the cluster characterized as healthy/typical (Normal 1) on a variety of outcomes, including magnetic resonance imaging (MRI) and cerebrospinal fluid (CSF) biomarkers, vascular risk factors and outcomes, cognitive trajectory, and medications for vascular conditions. Normal 2 was significantly older but did not differ on ApoE4+ prevalence. Normal 2 differed significantly from Normal 1 on all MRI measures but not on Amyloid-Beta1-42 or total tau protein. Normal 2 had significantly higher body mass index (BMI), Hachinksi score, and creatinine levels, and took significantly more medications for vascular conditions. Normal 2 had marginally significantly higher triglycerides and blood glucose. Normal 2 had a worse cognitive trajectory on the Rey’s Auditory Verbal Learning Test (RAVLT) 30-min delay test and the Functional Activity Questionnaire (FAQ). Cerebral atrophy associated with multiple vascular risks is common among cognitively normal individuals, forming a distinct subgroup with significantly increased cognitive decline. Further studies are needed to determine the clinical impact of these findings. PMID:23527743
Garriga, Marina; Milà, Marta; Mir, Manzoor; Al-Baradie, Raid; Huertas, Sonia; Castejon, Cesar; Casas, Laura; Badenes, Dolors; Giménez, Nuria; Font, M. Angels; Gonzalez, Jose M.; Ysamat, Maria; Aguilar, Miguel; Slevin, Mark; Krupinski, Jerzy
2015-01-01
Alzheimer’s disease (AD) and vascular dementia (VaD) are the most common cause of dementia. Cerebral ischemia is a major risk factor for development of dementia. 123I-FP-CIT SPECT (DaTScan) is a complementary tool in the differential diagnoses of patients with incomplete or uncertain Parkinsonism. Additional application of DaTScan enables the categorization of Parkinsonian disease with dementia (PDD), and its differentiation from pure AD, and may further contribute to change the therapeutic decision. The aim of this study was to analyze the vascular contribution towards dementia and mild cognitive impairment (MCI). We evaluated the utility of DaTScan for the early diagnosis of dementia in patients with and without a clinical vascular component, and the association between neuropsychological function, vascular component and dopaminergic function on DaTScan. One-hundred and five patients with MCI or the initial phases of dementia were studied prospectively. We developed an initial assessment using neurologic examination, blood tests, cognitive function tests, structural neuroimaging and DaTScan. The vascular component was later quantified in two ways: clinically, according to the Framingham Risk Score (FRS) and by structural neuroimaging using Wahlund Scale Total Score (WSTS). Early diagnosis of dementia was associated with an abnormal DaTScan. A significant association was found between a high WSTS and an abnormal DaTScan (p < 0.01). Mixed AD was the group with the highest vascular component, followed by the VaD group, while MCI and pure AD showed similar WSTS. No significant associations were found between neuropsychological impairment and DaTScan independently of associated vascular component. DaTScan seems to be a good tool to discriminate, in a first clinical assessment, patients with MCI from those with established dementia. There was bigger general vascular affectation observable in MRI or CT in patients with abnormal dopaminergic uptake seen on DaTScan. PMID:26190980
Therapeutic antibody targeting of Notch3 signaling prevents mural cell loss in CADASIL
Machuca-Parra, Arturo I.; Bigger-Allen, Alexander A.; Sanchez, Angie V.; Saint-Geniez, Magali
2017-01-01
Cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a neurological syndrome characterized by small vessel disease (SVD), stroke, and vascular cognitive impairment and dementia caused by mutations in NOTCH3. No therapies are available for this condition. Loss of mural cells, which encompass pericytes and vascular smooth muscle cells, is a hallmark of CADASIL and other SVDs, including diabetic retinopathy, resulting in vascular instability. Here, we showed that Notch3 signaling is both necessary and sufficient to support mural cell coverage in arteries using genetic rescue in Notch3 knockout mice. Furthermore, we show that systemic administration of an agonist Notch3 antibody prevents mural cell loss and modifies plasma proteins associated with Notch3 activity, including endostatin/collagen 18α1 and Notch3 extracellular domain in mice with the C455R mutation, a CADASIL variant associated with Notch3 loss of function. These findings open opportunities for the treatment of CADASIL and other SVDs by modulating Notch3 signaling. PMID:28698285
PPARδ regulation of miR-15a in ischemia-induced cerebral vascular endothelial injury
Yin, K.J.; Deng, Z.; Hamblin, M.; Xiang, Y.; Huang, H.R.; Zhang, J.; Jiang, X. D.; Wang, Y.; Chen, Y. E.
2010-01-01
Cerebral endothelial cell (CEC) degeneration significantly contributes to blood-brain barrier (BBB) breakdown and neuronal loss after cerebral ischemia. Recently, emerging data suggest that peroxisome proliferator-activated receptor δ (PPARδ) activation has a potential neuroprotective role in ischemic stroke. Here we report for the first time that PPARδ is significantly reduced in oxygen-glucose deprivation (OGD)-induced mouse CEC death. Interestingly, PPARδ overexpression can suppress OGD-induced caspase-3 activity, Golgi fragmentation, and CEC death through an increase of bcl-2 protein levels without change of bcl-2 mRNA levels. To explore the molecular mechanisms, we have identified that upregulation of PPARδ can alleviate ODG-activated microRNA-15a (miR-15a) expression in CECs. Moreover, we have demonstrated that bcl-2 is a translationally-repressed target of miR-15a. Intriguingly, gain- or loss-of-miR-15a function can significantly reduce or increase OGD-induced CEC death, respectively. Furthermore, we have identified that miR-15a is a transcriptional target of PPARδ. Consistent with the in vitro findings, we found that intracerebroventricular infusion of a specific PPARδ agonist, GW 501516, significantly reduced ischemia-induced miR-15a expression, increased bcl-2 protein levels, and attenuated caspase-3 activity and subsequent DNA fragmentation in isolated cerebral microvessels, leading to decreased BBB disruption and reduced cerebral infarction in mice after transient focal cerebral ischemia. Taken together, these results suggest that PPARδ plays a vascular-protective role in ischemia-like insults via transcriptional repression of miR-15a, resulting in subsequent release of its posttranscriptional inhibition of bcl-2. Thus, regulation of PPARδ-mediated miR-15a inhibition of bcl-2 could provide a novel therapeutic strategy for the treatment of stroke-related vascular dysfunction. PMID:20445066
Sobotka, Kristina S.; Hooper, Stuart B.; Crossley, Kelly J.; Ong, Tracey; Schmölzer, Georg M.; Barton, Samantha K.; McDougall, Annie R. A.; Miller, Suzie L.; Tolcos, Mary; Klingenberg, Claus; Polglase, Graeme R.
2016-01-01
Background A sustained inflation (SI) rapidly restores cardiac function in asphyxic, bradycardic newborns but its effects on cerebral haemodynamics and brain injury are unknown. We determined the effect of different SI strategies on carotid blood flow (CaBF) and cerebral vascular integrity in asphyxiated near-term lambs. Methods Lambs were instrumented and delivered at 139 ± 2 d gestation and asphyxia was induced by delaying ventilation onset. Lambs were randomised to receive 5 consecutive 3 s SI (multiple SI; n = 6), a single 30 s SI (single SI; n = 6) or conventional ventilation (no SI; n = 6). Ventilation continued for 30 min in all lambs while CaBF and respiratory function parameters were recorded. Brains were assessed for gross histopathology and vascular leakage. Results CaBF increased more rapidly and to a greater extent during a single SI (p = 0.01), which then decreased below both other groups by 10 min, due to a higher cerebral oxygen delivery (p = 0.01). Blood brain barrier disruption was increased in single SI lambs as indicated by increased numbers of blood vessel profiles with plasma protein extravasation (p = 0.001) in the cerebral cortex. There were no differences in CaBF or cerebral oxygen delivery between the multiple SI and no SI lambs. Conclusions Ventilation with an initial single 30 s SI improves circulatory recovery, but is associated with greater disruption of blood brain barrier function, which may exacerbate brain injury suffered by asphyxiated newborns. This injury may occur as a direct result of the initial SI or to the higher tidal volumes delivered during subsequent ventilation. PMID:26765258
Li, Jie; Gao, Yonghong; Ren, Xiaomeng; Li, Yanda; Wu, Lijun; Yang, Xinyu; Wang, Jie; Shang, Hongcai; Xiong, Xingjiang; Xing, Yanwei
2017-01-01
Autophagy, a highly conserved starvation response mechanism with both defensive and protective effects in eukaryotic cells, is a lysosome-mediated degradation process for non-essential or damaged cellular constituents. It plays an important role in the cell survival, differentiation and development to maintain homeostasis. Autophagy is involved in cardiovascular diseases, cerebrovascular diseases, and neurodegenerative diseases, as well as tumours. Thus, modulating autophagy may provide potential therapeutic strategies. Recently, many active components of Chinese herbal medicines (CHM) have been found to modulate autophagy in myocardial cells, cerebral vascular cells, endothelial cells and tumour cells. This paper reviews the advances in studies on the active components of CHM that modulating autophagy in treating cardiovascular diseases and other chronic diseases over the past five years. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Lominadze, David; Tyagi, Neetu; Sen, Utpal; Ovechkin, Alexander; Tyagi, Suresh C.
2012-01-01
High levels of homocysteine (Hcy), known as hyperhomocysteinemia (HHcy), are associated with cerebrovascular diseases, such as vascualr dementia, stroke, and Alzheimer's disease. The -amino butyric acid (GABA) is a inhibitory neurotransmitter and a ligand of GABA-A receptor. By inhibiting excitatory response it may decrease complications associated with vascular dementia and stroke. Hcy specifically competes with the GABA-A receptors and acts as an excitotoxic neurotransmitter. Previously we have shown that Hcy increases levels of NADPH oxidase and reactive oxygen species (ROS), and decreases levels of thioredoxin and peroxiredoxin by antagonizing the GABA-A receptor. Hcy treatment leads to activation of matrix metalloproteinases (MMPs) in cerebral circualtion by inducing redox stress and ROS. The hypothesis is that Hcy induces MMPs and suppresses tissue inhibitors of metalloproteinase (TIMPs), in part, by inhibiting the GABA-A receptor. This leads to degradation of the matrix and disruption of the blood brain barrier. The brain cortex of transgenic mouse model of HHcy (cystathionine -synthase, CBS −/+) and GABA-A receptor null mice treated with and without muscimol (GABA-A receptor agonist) was analysed. The mRNA levels were measured by Q-RT-PCR. Levels of MMP-2, -9, -13, and TIMP-1, -2, -3, and -4 were evaluated by in situ labeling and PCR-gene arrays. Pial venular permeability to fluorescence-labeled albumin was assessed with intravital fluorescence microscopy. We found that Hcy increases metalloproteinase activity and decreases TIMP-4 by antagonizing the GABA-A receptor. The results demonstrate a novel mechanism in which brain microvascular permeability changes during HHcy and vascular dementias, and have therapeutic ramifications for microvascular disease in Alzheimer's patients. PMID:22886392
Matsunami, K; Satake, H; Konishi, T
1998-07-01
Sustained hyper-gravity acceleration, particularly along the long axis of the body of animals or man (Gz), produces significant mal-effects on subjects, and hence it has been well studied, The most common syndromes of Gz application were cardio-vascular de-conditioning, and black-out, red-out, and loss of consciousness, which finally lead subjects into death. However, in most previous studies, the duration of applied Gz was rather short. In the present experiments, we can use longer duration of 1000 seconds. In addition, recent technological innovation make it possible to record directly local cerebral blood flow at a target cortical area with a Laser Doppler flow meter. We used this innovated method to measure local cerebral blood flow of rats in relation to visual evoked potentials (VEPs) under hyper-Gz acceleration. Also we recorded cardio-vascular parameters like heart rate from ECG, systolic and diastolic blood pressure and correlated them with cerebral blood flow and VEPs.
A model of the instantaneous pressure-velocity relationships of the neonatal cerebral circulation.
Panerai, R B; Coughtrey, H; Rennie, J M; Evans, D H
1993-11-01
The instantaneous relationship between arterial blood pressure (BP) and cerebral blood flow velocity (CBFV), measured with Doppler ultrasound in the anterior cerebral artery, is represented by a vascular waterfall model comprising vascular resistance, compliance, and critical closing pressure. One min recordings obtained from 61 low birth weight newborns were fitted to the model using a least-squares procedures with correction for the time delay between the BP and CBFV signals. A sensitivity analysis was performed to study the effects of low-pass filtering (LPF), cutoff frequency, and noise on the estimated parameters of the model. Results indicate excellent fitting of the model (F-test, p < 0.0001) when the BP and CBFV signals are LPF at 7.5 Hz. Reconstructed CBFV waveforms using the BP signal and the model parameters have a mean correlation coefficient of 0.94 with the measured flow velocity tracing (N = 232 epochs). The model developed can be useful for interpreting clinical findings and as a framework for research into cerebral autoregulation.
Koch, Matthew J; Agarwalla, Pankaj K; Stapleton, Christopher J; Ogilvy, Christopher S; Loeffler, Jay S
2016-06-01
Cerebral arteriovenous malformations (AVM) are traditionally considered primary congenital lesions that result from embryological aberrations in vasculogenesis. Recent insights, however, suggest that these lesions may be secondary to a vascular insult such as ischemia or trauma. Herein, the authors present a rare case of a secondary cerebral AVM, occurring in a young girl who received prior cranial radiation therapy. At age 3years, she underwent surgical resection, chemotherapy, and photon radiation therapy for treatment of a fourth ventricular ependymoma. At age 19years, she developed new onset seizures and was found to have a left medial temporal lobe AVM. Her seizures were managed successfully with anti-epileptic medications and the AVM was treated with proton radiation therapy. This case highlights a rare but possible vascular sequela of radiation therapy and adds to the growing body of evidence that cerebral AVM may arise as secondary lesions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Summary of Research Adaptions of Visceral and Cerebral Resistance Arteries to Simulated Microgravity
NASA Technical Reports Server (NTRS)
Delp, Michael
2003-01-01
The proposed studies were designed address the effects of simulated microgravity on vascular smooth muscle and endothelial cell function in resistance arteries isolated from visceral tissues (spleen, mesentery and kidneys) and cerebrum. Alterations in vascular function induced by microgravity are particularly relevant to the problems of orthostatic intolerance and reduced exercise capacity experienced by astronauts upon re-entry into the earth's gravitational field. Decrements in contractile function or enhanced vasodilatory responsiveness of peripheral resistance arteries could lead to decreased peripheral resistance and orthostatic hypotension. Alternatively, augmentation of contractile function in cerebral resistance arteries could lead to increased cerebral vascular resistance and diminished perfusion of the brain. The Specific Aims and hypotheses were proposed in this grant. Following each of the Specific Aims, progress toward addressing that specific aim is presented. With the exception of Specific Aim VI (see aim for details), all aims have been experimentally addressed as proposed. The final six months of the granting period will be used for manuscript preparation; manuscripts in preparation will contain results from Specific Aims I-IV. Results from Specific Aims V and VI have been published.
Silva, Marisa; Vargas, Sofia; Coelho, Andreia; Dias, Alexandra; Ferreira, Teresa; Morais, Anabela; Maia, Raquel; Kjöllerström, Paula; Lavinha, João; Faustino, Paula
2016-01-01
Sickle cell anemia (SCA) is an autosomal recessive disease caused by the HBB:c.20A>T mutation that leads to hemoglobin S synthesis. The disease presents with high clinical heterogeneity characterized by chronic hemolysis, recurrent episodes of vaso-oclusion and infection. This work aimed to characterize by in silico studies some genetic modulators of severe hemolysis and stroke risk in children with SCA, and understand their consequences at the hemorheological level.Association studies were performed between hemolysis biomarkers as well as the degree of cerebral vasculopathy and the inheritance of several polymorphic regions in genes related with vascular cell adhesion and vascular tonus in pediatric SCA patients. In silico tools (e.g. MatInspector) were applied to investigate the main variant consequences.Variants in vascular adhesion molecule-1 (VCAM1) gene promoter and endothelial nitric oxide synthase (NOS3) gene were significantly associated with higher degree of hemolysis and stroke events. They potentially modify transcription factor binding sites (e.g. VCAM1 rs1409419_T allele may lead to an EVI1 gain) or disturb the corresponding protein structure/function. Our findings emphasize the relevance of genetic variation in modulating the disease severity due to their effect on gene expression or modification of protein biological activities related with sickled erythrocyte/endothelial interactions and consequent hemorheological abnormalities.
van Norden, Anouk Gw; de Laat, Karlijn F; Gons, Rob Ar; van Uden, Inge Wm; van Dijk, Ewoud J; van Oudheusden, Lucas Jb; Esselink, Rianne Aj; Bloem, Bastiaan R; van Engelen, Baziel Gm; Zwarts, Machiel J; Tendolkar, Indira; Olde-Rikkert, Marcel G; van der Vlugt, Maureen J; Zwiers, Marcel P; Norris, David G; de Leeuw, Frank-Erik
2011-02-28
Cerebral small vessel disease (SVD) is a frequent finding on CT and MRI scans of elderly people and is related to vascular risk factors and cognitive and motor impairment, ultimately leading to dementia or parkinsonism in some. In general, the relations are weak, and not all subjects with SVD become demented or get parkinsonism. This might be explained by the diversity of underlying pathology of both white matter lesions (WML) and the normal appearing white matter (NAWM). Both cannot be properly appreciated with conventional MRI. Diffusion tensor imaging (DTI) provides alternative information on microstructural white matter integrity. The association between SVD, its microstructural integrity, and incident dementia and parkinsonism has never been investigated. The RUN DMC study is a prospective cohort study on the risk factors and cognitive and motor consequences of brain changes among 503 non-demented elderly, aged between 50-85 years, with cerebral SVD. First follow up is being prepared for July 2011. Participants alive will be included and invited to the research centre to undergo a structured questionnaire on demographics and vascular risk factors, and a cognitive, and motor, assessment, followed by a MRI protocol including conventional MRI, DTI and resting state fMRI. The follow up of the RUN DMC study has the potential to further unravel the causes and possibly better predict the consequences of changes in white matter integrity in elderly with SVD by using relatively new imaging techniques. When proven, these changes might function as a surrogate endpoint for cognitive and motor function in future therapeutic trials. Our data could furthermore provide a better understanding of the pathophysiology of cognitive and motor disturbances in elderly with SVD. The execution and completion of the follow up of our study might ultimately unravel the role of SVD on the microstructural integrity of the white matter in the transition from "normal" aging to cognitive and motor decline and impairment and eventually to incident dementia and parkinsonism.
Rylova, A V; Beliaev, A Iu; Lubnin, A Iu
2013-01-01
Among anesthetic agents used in neurosurgery xenon appears to be the most advantageous. It preserves arterial blood pressure, assures rapid recovery and neuroprotection. But the data is lacking on xenon effect upon cerebral blood flow under anesthetic conditions. We measured flow velocity in middle cerebral artery in neurosurgical patients without intracranial hypertension during closed circuit xenon anesthesia comparing propofol and xenon effect in the same patients. In our study xenon didn't seem to induce clinically relevant changes in cerebral blood flow and preserved cerebral vascular reactivity thus proving its safety in patients without intracranial hypertension.
Update on Vascular Cognitive Impairment Associated with Subcortical Small-Vessel Disease
Wallin, Anders; Román, Gustavo C.; Esiri, Margaret; Kettunen, Petronella; Svensson, Johan; Paraskevas, George P.; Kapaki, Elisabeth
2018-01-01
Subcortical small-vessel disease (SSVD) is a disorder well characterized from the clinical, imaging, and neuropathological viewpoints. SSVD is considered the most prevalent ischemic brain disorder, increasing in frequency with age. Vascular risk factors include hypertension, diabetes, hyperlipidemia, elevated homocysteine, and obstructive sleep apnea. Ischemic white matter lesions are the hallmark of SSVD; other pathological lesions include arteriolosclerosis, dilatation of perivascular spaces, venous collagenosis, cerebral amyloid angiopathy, microbleeds, microinfarcts, lacunes, and large infarcts. The pathogenesis of SSVD is incompletely understood but includes endothelial changes and blood-brain barrier alterations involving metalloproteinases, vascular endothelial growth factors, angiotensin II, mindin/spondin, and the mammalian target of rapamycin pathway. Metabolic and genetic conditions may also play a role but hitherto there are few conclusive studies. Clinical diagnosis of SSVD includes early executive dysfunction manifested by impaired capacity to use complex information, to formulate strategies, and to exercise self-control. In comparison with Alzheimer’s disease (AD), patients with SSVD show less pronounced episodic memory deficits. Brain imaging has advanced substantially the diagnostic tools for SSVD. With the exception of cortical microinfarcts, all other lesions are well visualized with MRI. Diagnostic biomarkers that separate AD from SSVD include reduction of cerebrospinal fluid amyloid-β (Aβ)42 and of the ratio Aβ42/Aβ40 often with increased total tau levels. However, better markers of small-vessel function of intracerebral blood vessels are needed. The treatment of SSVD remains unsatisfactory other than control of vascular risk factors. There is an urgent need of finding targets to slow down and potentially halt the progression of this prevalent, but often unrecognized, disorder. PMID:29562536
Lyu, Ming; Cui, Ying; Zhao, Tiechan; Ning, Zhaochen; Ren, Jie; Jin, Xingpiao; Fan, Guanwei; Zhu, Yan
2018-01-01
Shuxuening injection (SXNI) is a widely prescribed herbal medicine of Ginkgo biloba extract (EGB) for cerebral and cardiovascular diseases in China. However, its curative effects on ischemic stroke and heart diseases and the underlying mechanisms remain unknown. Taking an integrated approach of RNA-seq and network pharmacology analysis, we compared transcriptome profiles of brain and heart ischemia reperfusion injury in C57BL/6J mice to identify common and differential target genes by SXNI. Models for myocardial ischemia reperfusion injury (MIRI) by ligating left anterior descending coronary artery (LAD) for 30 min ischemia and 24 h reperfusion and cerebral ischemia reperfusion injury (CIRI) by middle cerebral artery occlusion (MCAO) for 90 min ischemia and 24 h reperfusion were employed to identify the common mechanisms of SXNI on both cerebral and myocardial ischemia reperfusion. In the CIRI model, ischemic infarct volume was markedly decreased after pre-treatment with SXNI at 0.5, 2.5, and 12.5 mL/kg. In the MIRI model, pre-treatment with SXNI at 2.5 and 12.5 mL/kg improved cardiac function and coronary blood flow and decreased myocardial infarction area. Besides, SXNI at 2.5 mL/kg also markedly reduced the levels of LDH, AST, CK-MB, and CK in serum. RNA-seq analysis identified 329 differentially expressed genes (DEGs) in brain and 94 DEGs in heart after SXNI treatment in CIRI or MIRI models, respectively. Core analysis by Ingenuity Pathway Analysis (IPA) revealed that atherosclerosis signaling and inflammatory response were top-ranked in the target profiles for both CIRI and MIRI after pre-treatment with SXNI. Specifically, Tnfrsf12a was recognized as an important common target, and was regulated by SXNI in CIRI and MIRI. In conclusion, our study showed that SXNI effectively protects brain and heart from I/R injuries via a common Tnfrsf12a-mediated pathway involving atherosclerosis signaling and inflammatory response. It provides a novel knowledge of active ingredients of Ginkgo biloba on cardio-cerebral vascular diseases in future clinical application. PMID:29681850
Hu, Jing; Li, Ya-Ling; Li, Zi-Lin; Li, Hua; Zhou, Xuan-Xuan; Qiu, Peng-Cheng; Yang, Qian; Wang, Si-Wang
2012-01-01
One of the leading causes of death in the world is cerebrovascular disease. Numerous Chinese traditional medicines, such as Cortex Moutan (root bark of Paeonia suffruticosa Andrew) and Radix Salviae miltiorrhizae (root and rhizome of Salvia miltiorrhiza Bunge), protect against cerebrovascular diseases and exhibit anti-atherosclerotic effects. Traditional medicines have been routinely used for a long time in China. In addition, these two herbs are prescribed together in clinical practice. Therefore, the pharmacodynamic interactions between the active constituents of these two herbs, which are paeonol (Pae) and danshensu (DSS), should be particularly studied. The study of Pae and DSS can provide substantial foundations in understanding their mechanisms and empirical evidence to support clinical practice. This study investigated the effects and possible mechanisms of the pharmacodynamic interaction between Pae and DSS on cerebrovascular malfunctioning in diabetes. Experimental diabetes was induced in rats, which was then treated with Pae, DSS, and Pae + DSS for eight weeks. Afterward, cerebral arteries from all groups were isolated and equilibrated in an organ bath with Krebs buffer and ring tension. Effects of Pae, DSS, and Pae + DSS were observed on vessel relaxation with or without endothelium as well as on the basal tonus of vessels from normal and diabetic rats. Indexes about oxidative stress were also determined. We report that the cerebral arteries from diabetic rats show decreased vascular reactivity to acetylcholine (ACh) which was corrected in Pae, DSS, and Pae + DSS treated groups. Furthermore, phenylephrine (PE)-induced contraction response decreased in the treated groups. Phenylephrine and CaCl2-induced vasoconstrictions are partially inhibited in the three treated groups under Ca2+-free medium. Pre-incubated with tetraethylammonium, a non-selective K+ channel blocker, the antagonized relaxation responses increased in DSS and Pae + DSS treated diabetic groups compared with those in diabetic and Pae-treated diabetic groups. In addition, superoxide dismutase activity and thiobarbituric acid reactive substances content significantly changed in the presence of Pae + DSS. We therefore conclude that both Pae and DSS treatments prevent diabetes-induced vascular damage. Furthermore, Pae + DSS prove to be the most efficient treatment regimen. The combination of Pae and DSS produce significant protective effects through the reduction of oxidative stress and through intracellular Ca2+ regulatory mechanisms. PMID:23203081
Nitkunan, Arani; Barrick, Tom R; Charlton, Rebecca A; Clark, Chris A; Markus, Hugh S
2008-07-01
Cerebral small vessel disease is the most common cause of vascular dementia. Interest in using MRI parameters as surrogate markers of disease to assess therapies is increasing. In patients with symptomatic sporadic small vessel disease, we determined which MRI parameters best correlated with cognitive function on cross-sectional analysis and which changed over a period of 1 year. Thirty-five patients with lacunar stroke and leukoaraiosis were recruited. They underwent multimodal MRI (brain volume, fluid-attenuated inversion recovery lesion load, lacunar infarct number, fractional anisotropy, and mean diffusivity from diffusion tensor imaging) and neuropsychological testing. Twenty-seven agreed to reattend for repeat MRI and neuropsychology at 1 year. An executive function score correlated most strongly with diffusion tensor imaging (fractional anisotropy histogram, r=-0.640, P=0.004) and brain volume (r=0.501, P=0.034). Associations with diffusion tensor imaging were stronger than with all other MRI parameters. On multiple regression of all imaging parameters, a model that contained brain volume and fractional anisotropy, together with age, gender, and premorbid IQ, explained 74% of the variance of the executive function score (P=0.0001). Changes in mean diffusivity and fractional anisotropy were detectable over the 1-year follow-up; in contrast, no change in other MRI parameters was detectable over this time period. A multimodal MRI model explains a large proportion of the variation in executive function in cerebral small vessel disease. In particular, diffusion tensor imaging correlates best with executive function and is the most sensitive to change. This supports the use of MRI, in particular diffusion tensor imaging, as a surrogate marker in treatment trials.
Subclinical cerebrovascular disease inversely associates with learning ability
Glazer, Hilary; Dong, Chuanhui; Yoshita, Mitsuhiro; Rundek, Tatjana; Elkind, Mitchell S.V.; Sacco, Ralph L.; DeCarli, Charles; Stern, Yaakov
2015-01-01
Objective: Memory has been examined in subjects with imaging markers of cerebrovascular disease, but learning has been less well studied. We examined the relationship among subclinical cerebrovascular disease, cerebral volumes, and verbal learning in an ethnically and racially diverse community sample. Methods: A clinically stroke-free subset of Northern Manhattan Study participants underwent cognitive testing and brain MRI with quantification of white matter hyperintensity volume (WMHV) and total cerebral volume (TCV) using semiautomated segmentation. We used generalized linear regression and mixed models to examine the association between imaging findings and verbal learning. Results: There were 1,272 participants (61% women, mean age 70 ± 9 years). Participants with greater WMHV and smaller TCV remembered fewer total words on a list-learning task (β = −0.83 per SD change in WMHV, 95% confidence interval [CI] = −1.22 to −0.45, p < 0.0001; and β = 0.48 per SD change in TCV, 95% CI = 0.05 to 0.90, p = 0.03, respectively). Subclinical brain infarction (SBI) was not associated with total words learned (β = −0.04, 95% CI = −1.08 to 1.00, p = 0.94). Those with greater WMHV had increased odds of a flatter learning slope. After excluding participants with SBI, the association between total words learned and WMHV remained significant. All measurements were adjusted for age, education, race/ethnicity, medical insurance status, and the presence of SBI. Conclusions: White matter hyperintensities, a marker of cerebral small vessel disease, may have an impact on learning slope. This suggests that verbal learning performance can be incorporated into neuropsychological measures for vascular cognitive impairment and that cerebrovascular disease discovered on imaging affects the ability to learn new information. PMID:26002489
Neural systemic impairment from whole-body vibration.
Yan, Ji-Geng; Zhang, Lin-ling; Agresti, Michael; LoGiudice, John; Sanger, James R; Matloub, Hani S; Havlik, Robert
2015-05-01
Insidious brain microinjury from motor vehicle-induced whole-body vibration (WBV) has not yet been investigated. For a long time we have believed that WBV would cause cumulative brain microinjury and impair cerebral function, which suggests an important risk factor for motor vehicle accidents and secondary cerebral vascular diseases. Fifty-six Sprague-Dawley rats were divided into seven groups (n = 8): 1) 2-week normal control group, 2) 2-week sham control group (restrained in the tube without vibration), 3) 2-week vibration group (exposed to whole-body vibration at 30 Hz and 0.5g acceleration for 4 hr/day, 5 days/week, for 2 weeks), 4) 4-week sham control group, 5) 4-week vibration group, 6) 8-week sham control group, and 7) 8-week vibration group. At the end point, all rats were evaluated in behavior, physiological, and brain histopathological studies. The cerebral injury from WBV is a cumulative process starting with vasospasm squeezing of the endothelial cells, followed by constriction of the cerebral arteries. After the 4-week vibration, brain neuron apoptosis started. After the 8-week vibration, vacuoles increased further in the brain arteries. Brain capillary walls thickened, mean neuron size was obviously reduced, neuron necrosis became prominent, and wide-ranging chronic cerebral edema was seen. These pathological findings are strongly correlated with neural functional impairments. © 2014 Wiley Periodicals, Inc.
Mori, Takashi; Koyama, Naoki; Segawa, Tatsuya; Maeda, Masahiro; Maruyama, Nobuhiro; Kinoshita, Noriaki; Hou, Huayan; Tan, Jun; Town, Terrence
2014-01-01
Amyloid precursor protein (APP) proteolysis is required for production of amyloid-β (Aβ) peptides that comprise β-amyloid plaques in the brains of patients with Alzheimer disease (AD). Here, we tested whether the experimental agent methylene blue (MB), used for treatment of methemoglobinemia, might improve AD-like pathology and behavioral deficits. We orally administered MB to the aged transgenic PSAPP mouse model of cerebral amyloidosis and evaluated cognitive function and cerebral amyloid pathology. Beginning at 15 months of age, animals were gavaged with MB (3 mg/kg) or vehicle once daily for 3 months. MB treatment significantly prevented transgene-associated behavioral impairment, including hyperactivity, decreased object recognition, and defective spatial working and reference memory, but it did not alter nontransgenic mouse behavior. Moreover, brain parenchymal and cerebral vascular β-amyloid deposits as well as levels of various Aβ species, including oligomers, were mitigated in MB-treated PSAPP mice. These effects occurred with inhibition of amyloidogenic APP proteolysis. Specifically, β-carboxyl-terminal APP fragment and β-site APP cleaving enzyme 1 protein expression and activity were attenuated. Additionally, treatment of Chinese hamster ovary cells overexpressing human wild-type APP with MB significantly decreased Aβ production and amyloidogenic APP proteolysis. These results underscore the potential for oral MB treatment against AD-related cerebral amyloidosis by modulating the amyloidogenic pathway. PMID:25157105
NASA Astrophysics Data System (ADS)
Goswami, Nandu; Blaber, Andrew; Bareille, Marie-Pierre; Beck, Arnaud; Avan, Paul; Bruner, Michelle; Hinghofer-Szalkay, Helmut
2012-07-01
Orthostatic intolerance remains a problem upon return to Earth from the microgravity environment of spaceflight. A variety of conditions including hypovolemia, cerebral vasoconstriction, cerebral or peripheral vascular disease, or cardiac arrhythmias may result in syncope if the person remains upright. Current research indicates that there is a greater dependence on visual and somatosensory information at the beginning of space flight with a decreased otolith gain during prolonged space flight (Herault et al., 2002). The goal of the research is to further our understanding of the fundamental adaptive homeostatic mechanisms involved in gravity related changes in cardiovascular and postural function. Cardiovascular, cerebrovascular, and postural sensory motor control systems in male and female participants before, during, and after exposure to graded levels of hyper-G were investigated. Hypotheses: 1) Activation of skeletal muscle pump will be directly related to the degree of orthostatic stress. 2) Simultaneous measurement of heart rate, blood pressure and postural sway will predict cardio-postural stability. Blood pressure and heart rate (means and variability), postural sway, center of pressure (COP), baroreflex function, calf blood flow, middle cerebral artery blood flow, non-invasive intracranial pressure measurements, and two-breath CO2 were measured. Results from the study will be used to provide an integrated insight into mechanisms of cardio-postural control and cerebral autoregulation, which are important aspects of human health in flights to Moon, Mars and distant planets.
Coma in fatal adult human malaria is not caused by cerebral oedema
2011-01-01
Background The role of brain oedema in the pathophysiology of cerebral malaria is controversial. Coma associated with severe Plasmodium falciparum malaria is multifactorial, but associated with histological evidence of parasitized erythrocyte sequestration and resultant microvascular congestion in cerebral vessels. To determine whether these changes cause breakdown of the blood-brain barrier and resultant perivascular or parenchymal cerebral oedema, histology, immunohistochemistry and image analysis were used to define the prevalence of histological patterns of oedema and the expression of specific molecular pathways involved in water balance in the brain in adults with fatal falciparum malaria. Methods The brains of 20 adult Vietnamese patients who died of severe malaria were examined for evidence of disrupted vascular integrity. Immunohistochemistry and image analysis was performed on brainstem sections for activation of the vascular endothelial growth factor (VEGF) receptor 2 and expression of the aquaporin 4 (AQP4) water channel protein. Fibrinogen immunostaining was assessed as evidence of blood-brain barrier leakage and perivascular oedema formation. Correlations were performed with clinical, biochemical and neuropathological parameters of severe malaria infection. Results The presence of oedema, plasma protein leakage and evidence of VEGF signalling were heterogeneous in fatal falciparum malaria and did not correlate with pre-mortem coma. Differences in vascular integrity were observed between brain regions with the greatest prevalence of disruption in the brainstem, compared to the cortex or midbrain. There was a statistically non-significant trend towards higher AQP4 staining in the brainstem of cases that presented with coma (P = .02). Conclusions Histological evidence of cerebral oedema or immunohistochemical evidence of localised loss of vascular integrity did not correlate with the occurrence of pre-mortem coma in adults with fatal falciparum malaria. Enhanced expression of AQP4 water channels in the brainstem may, therefore, reflect a mix of both neuropathological or attempted neuroprotective responses to oedema formation. PMID:21923924
Coma in fatal adult human malaria is not caused by cerebral oedema.
Medana, Isabelle M; Day, Nicholas P J; Sachanonta, Navakanit; Mai, Nguyen T H; Dondorp, Arjen M; Pongponratn, Emsri; Hien, Tran T; White, Nicholas J; Turner, Gareth D H
2011-09-17
The role of brain oedema in the pathophysiology of cerebral malaria is controversial. Coma associated with severe Plasmodium falciparum malaria is multifactorial, but associated with histological evidence of parasitized erythrocyte sequestration and resultant microvascular congestion in cerebral vessels. To determine whether these changes cause breakdown of the blood-brain barrier and resultant perivascular or parenchymal cerebral oedema, histology, immunohistochemistry and image analysis were used to define the prevalence of histological patterns of oedema and the expression of specific molecular pathways involved in water balance in the brain in adults with fatal falciparum malaria. The brains of 20 adult Vietnamese patients who died of severe malaria were examined for evidence of disrupted vascular integrity. Immunohistochemistry and image analysis was performed on brainstem sections for activation of the vascular endothelial growth factor (VEGF) receptor 2 and expression of the aquaporin 4 (AQP4) water channel protein. Fibrinogen immunostaining was assessed as evidence of blood-brain barrier leakage and perivascular oedema formation. Correlations were performed with clinical, biochemical and neuropathological parameters of severe malaria infection. The presence of oedema, plasma protein leakage and evidence of VEGF signalling were heterogeneous in fatal falciparum malaria and did not correlate with pre-mortem coma. Differences in vascular integrity were observed between brain regions with the greatest prevalence of disruption in the brainstem, compared to the cortex or midbrain. There was a statistically non-significant trend towards higher AQP4 staining in the brainstem of cases that presented with coma (P = .02). Histological evidence of cerebral oedema or immunohistochemical evidence of localised loss of vascular integrity did not correlate with the occurrence of pre-mortem coma in adults with fatal falciparum malaria. Enhanced expression of AQP4 water channels in the brainstem may, therefore, reflect a mix of both neuropathological or attempted neuroprotective responses to oedema formation.
Casscells, S Ward; Granger, Elder; Kress, Amii M; Linton, Andrea; Madjid, Mohammad; Cottrell, Linda
2009-03-01
Influenza infection has been associated with increased risk of adverse cardiac and cerebral vascular outcomes. Oseltamivir, a treatment for influenza, has been shown to decrease the severity of an influenza episode, but few data exist regarding its potentially protective effect against recurrent vascular outcomes among influenza patients with a history of vascular disease. Electronic healthcare service and pharmacy records for 37,482 TRICARE beneficiaries, aged 18 and older, with a coded history of cardiovascular (CV) disease and a subsequent diagnosis of influenza from October 1, 2003, through September 30, 2007, were examined. Subjects were grouped according to whether they had filled a prescription for oseltamivir within 2 days of their influenza diagnosis. The incidence of recurrent CV events within 30 days after the influenza diagnosis among oseltavmivir-treated and untreated subjects was 8.5% and 21.2%, respectively (P<0.005). Subject age was a persistent and significant contributor to the likelihood of recurrent CV outcomes. After controlling for the differences in demographics among treated and untreated cohorts using a propensity-scored logistic regression model, a statistically significant protective effect was associated with oseltamivir treatment (odds ratio, 0.417; 95% CI, 0.349 to 0.498). Our findings suggests that oseltamivir treatment for influenza is associated with significant decrease in the risk of recurrent CV events in subjects with a history of CV disease. These findings merit confirmation in further prospective and controlled studies. Meanwhile, in patients with CV disease, strict adherence with current practice guidelines for prevention and treatment of influenza is recommended.
Majewski osteodysplastic primordial dwarfism type II (MOPD II): expanding the vascular phenotype.
Bober, Michael B; Khan, Nadia; Kaplan, Jennifer; Lewis, Kristi; Feinstein, Jeffrey A; Scott, Charles I; Steinberg, Gary K
2010-04-01
Majewski Osteodysplastic Primordial Dwarfism, Type II (MOPD II) is a rare, autosomal recessive disorder. Features include severe intrauterine growth retardation (IUGR), poor postnatal growth (adult stature approximately 100 cm), severe microcephaly, skeletal dysplasia, characteristic facial features, and normal or near normal intelligence. An Institutional Review Board (IRB) approved registry was created and currently follows 25 patients with a diagnosis of MOPD II. Based on previous studies, a neurovascular screening program was implemented and 13 (52%) of these patients have been found to have cerebral neurovascular abnormalities including moyamoya angiopathy and/or intracranial aneurysms. The typical moyamoya pathogenesis begins with vessel narrowing in the supraclinoid internal carotid artery, anterior cerebral (A1) or middle cerebral (M1) artery segments. The narrowing may predominate initially on one side, progresses to bilateral stenosis, with subsequent occlusion of the vessels and collateral formation. We present four patients who, on neurovascular screening, were found to have cerebrovascular changes. Two were asymptomatic, one presented with a severe headache and projectile vomiting related to a ruptured aneurysm, and one presented after an apparent decline in cognitive functioning. Analysis of the registry suggests screening for moyamoya disease be performed at the time of MOPD II diagnosis and at least every 12-18 months using MRA or computerized tomographic angiography (CTA). We believe this is imperative. If diagnosed early enough, re-vascularization and aneurysm treatment in skilled hands can be performed safely and prevent or minimize long-term sequelae in this population. Emergent evaluation is also needed when other neurologic or cardiac symptoms are present. (c) 2010 Wiley-Liss, Inc.
Golzan, S Mojtaba; Goozee, Kathryn; Georgevsky, Dana; Avolio, Alberto; Chatterjee, Pratishtha; Shen, Kaikai; Gupta, Vivek; Chung, Roger; Savage, Greg; Orr, Carolyn F; Martins, Ralph N; Graham, Stuart L
2017-03-01
Retinal imaging may serve as an alternative approach to monitor brain pathology in Alzheimer's disease (AD). In this study, we investigated the association between retinal vascular and structural changes and cerebral amyloid-β (Aβ) plaque load in an elderly cohort. We studied a total of 101 participants, including 73 elderly subjects (79 ± 5 years, 22 male) with no clinical diagnosis of AD but reporting some subjective memory change and an additional 28 subjects (70 ± 9 years, 16 male) with clinically established AD. Following a complete dilated ocular examination, the amplitude of retinal vascular pulsations and dynamic response, retinal nerve fibre layer thickness and retinal ganglion cell layer (RGCL) thickness were determined in all patients. Systemic blood pressure and carotid-to-femoral pulse wave velocity were measured. The elderly cohort also underwent magnetic resonance imaging and 18 F-florbetaben (FBB)-positron emission tomographic amyloid imaging to measure neocortical Aβ standardised uptake value ratio (SUVR), and this was used to characterise a 'preclinical' group (SUVR >1.4). The mean FBB neocortical SUVR was 1.35 ± 0.3. The amplitude of retinal venous pulsations correlated negatively with the neocortical Aβ scores (p < 0.001), whereas the amplitude of retinal arterial pulsations correlated positively with neocortical Aβ scores (p < 0.01). RGCL thickness was significantly lower in the clinical AD group (p < 0.05). The correlation between retinal vascular changes and Aβ plaque load supports the possibility of a vascular component to AD. Dynamic retinal vascular parameters may provide an additional inexpensive tool to aid in the preclinical assessment of AD.
Cerebral versus systemic hemodynamics during graded orthostatic stress in humans
NASA Technical Reports Server (NTRS)
Levine, B. D.; Giller, C. A.; Lane, L. D.; Buckey, J. C.; Blomqvist, C. G.
1994-01-01
BACKGROUND: Orthostatic syncope is usually attributed to cerebral hypoperfusion secondary to systemic hemodynamic collapse. Recent research in patients with neurocardiogenic syncope has suggested that cerebral vasoconstriction may occur during orthostatic hypotension, compromising cerebral autoregulation and possibly contributing to the loss of consciousness. However, the regulation of cerebral blood flow (CBF) in such patients may be quite different from that of healthy individuals, particularly when assessed during the rapidly changing hemodynamic conditions associated with neurocardiogenic syncope. To be able to interpret the pathophysiological significance of these observations, a clear understanding of the normal responses of the cerebral circulation to orthostatic stress must be obtained, particularly in the context of the known changes in systemic and regional distributions of blood flow and vascular resistance during orthostasis. Therefore, the specific aim of this study was to examine the changes that occur in the cerebral circulation during graded reductions in central blood volume in the absence of systemic hypotension in healthy humans. We hypothesized that cerebral vasoconstriction would occur and CBF would decrease due to activation of the sympathetic nervous system. We further hypothesized, however, that the magnitude of this change would be small compared with changes in systemic or skeletal muscle vascular resistance in healthy subjects with intact autoregulation and would be unlikely to cause syncope without concomitant hypotension. METHODS AND RESULTS: To test this hypothesis, we studied 13 healthy men (age, 27 +/- 7 years) during progressive lower body negative pressure (LBNP). We measured systemic flow (Qc is cardiac output; C2H2 rebreathing), regional forearm flow (FBF; venous occlusion plethysmography), and blood pressure (BP; Finapres) and calculated systemic (SVR) and forearm (FVR) vascular resistances. Changes in brain blood flow were estimated from changes in the blood flow velocity in the middle cerebral artery (VMCA) using transcranial Doppler. Pulsatility (systolic minus diastolic/mean velocity) normalized for systemic arterial pressure pulsatility was used as an index of distal cerebral vascular resistance. End-tidal PACO2 was closely monitored during LBNP. From rest to maximal LBNP before the onset of symptoms or systemic hypotension, Qc and FBF decreased by 29.9% and 34.4%, respectively. VMCA decreased less, by 15.5% consistent with a smaller decrease in CBF. Similarly, SVR and FVR increased by 62.8% and 69.8%, respectively, whereas pulsatility increased by 17.2%, suggestive of a mild degree of small-vessel cerebral vasoconstriction. Seven of 13 subjects had presyncope during LBNP, all associated with a sudden drop in BP (29 +/- 9%). By comparison, hyperventilation alone caused greater changes in VMCA (42 +/- 2%) and pulsatility but never caused presyncope. In a separate group of 3 subjects, superimposition of hyperventilation during highlevel LBNP caused a further decrease in VMCA (31 +/- 7%) but no change in BP or level of consciousness. CONCLUSIONS: We conclude that cerebral vasoconstriction occurs in healthy humans during graded reductions in central blood volume caused by LBNP. However, the magnitude of this response is small compared with changes in SVR or FVR during LBNP or other stimuli known to induce cerebral vasoconstriction (hypocapnia). We speculate that this degree of cerebral vasoconstriction is not by itself sufficient to cause syncope during orthostatic stress. However, it may exacerbate the decrease in CBF associated with hypotension if hemodynamic instability develops.
Ambient Temperature and Cerebrovascular Hemodynamics in the Elderly
Pan, Wen-Chi; Eliot, Melissa N.; Koutrakis, Petros; Coull, Brent A.; Sorond, Farzaneh A.; Wellenius, Gregory A.
2015-01-01
Background and Purpose Some prior studies have linked ambient temperature with risk of cerebrovascular events. If causal, the pathophysiologic mechanisms underlying this putative association remain unknown. Temperature-related changes in cerebral vascular function may play a role, but this hypothesis has not been previously evaluated. Methods We evaluated the association between ambient temperature and cerebral vascular function among 432 participants ≥65 years old from the MOBILIZE Boston Study with data on cerebrovascular blood flow, cerebrovascular resistance, and cerebrovascular reactivity in the middle cerebral artery. We used linear regression models to assess the association of mean ambient temperature in the previous 1 to 28 days with cerebrovascular hemodynamics adjusting for potential confounding factors. Results A 10°C increase in the 21-day moving average of ambient temperature was associated with a 10.1% (95% confidence interval [CI], 2.2%, 17.3%) lower blood flow velocity, a 9.0% (95% CI, 0.7%, 18.0%) higher cerebrovascular resistance, and a 15.3% (95%CI, 2.7%, 26.4%) lower cerebral vasoreactivity. Further adjustment for ozone and fine particulate matter (PM2.5) did not materially alter the results. However, we found statistically significant interactions between ambient temperature and PM2.5 such that the association between temperature and blood flow velocity was attenuated at higher levels of PM2.5. Conclusions In this elderly population, we found that ambient temperature was negatively associated with cerebral blood flow velocity and cerebrovascular vasoreactivity and positively associated with cerebrovascular resistance. Changes in vascular function may partly underlie the observed associations between ambient temperature and risk of cerebrovascular events. PMID:26258469
Ambient Temperature and Cerebrovascular Hemodynamics in the Elderly.
Pan, Wen-Chi; Eliot, Melissa N; Koutrakis, Petros; Coull, Brent A; Sorond, Farzaneh A; Wellenius, Gregory A
2015-01-01
Some prior studies have linked ambient temperature with risk of cerebrovascular events. If causal, the pathophysiologic mechanisms underlying this putative association remain unknown. Temperature-related changes in cerebral vascular function may play a role, but this hypothesis has not been previously evaluated. We evaluated the association between ambient temperature and cerebral vascular function among 432 participants ≥65 years old from the MOBILIZE Boston Study with data on cerebrovascular blood flow, cerebrovascular resistance, and cerebrovascular reactivity in the middle cerebral artery. We used linear regression models to assess the association of mean ambient temperature in the previous 1 to 28 days with cerebrovascular hemodynamics adjusting for potential confounding factors. A 10°C increase in the 21-day moving average of ambient temperature was associated with a 10.1% (95% confidence interval [CI], 2.2%, 17.3%) lower blood flow velocity, a 9.0% (95% CI, 0.7%, 18.0%) higher cerebrovascular resistance, and a 15.3% (95%CI, 2.7%, 26.4%) lower cerebral vasoreactivity. Further adjustment for ozone and fine particulate matter (PM2.5) did not materially alter the results. However, we found statistically significant interactions between ambient temperature and PM2.5 such that the association between temperature and blood flow velocity was attenuated at higher levels of PM2.5. In this elderly population, we found that ambient temperature was negatively associated with cerebral blood flow velocity and cerebrovascular vasoreactivity and positively associated with cerebrovascular resistance. Changes in vascular function may partly underlie the observed associations between ambient temperature and risk of cerebrovascular events.
Wang, Xifeng; Li, Gang; Shen, Wei
2018-01-01
Stroke is a leading cause of disability and death world-wide and there is currently a lack of effective treatments for acute stroke. D-Limonene is a common natural monocyclic monoterpene possessing various activities. The present study aimed to evaluate the therapeutic efficacy of D-limonene against ischemia-associated cerebral injury in hypertensive SHRsp rats. Although systolic blood pressure was not altered by ischemia, D-Limonene decreased the systolic blood pressure of SHRsp rats following stroke. Induction of stroke resulted in increased escape latency time, decreased time spent in the target quadrant in the probe trial, decreased capacity to distinguish between familiar objects and novel objects, and increased sensory neglect in the SHRsp rat, however these symptoms were significantly inhibited by D-limonene. D-limonene also decreased the cerebral infarct size in the SHRsp rats following stroke. D-Limonene markedly decreased the mRNA expression of interleukin-1β, monocyte chemoattractant protein-1 and cyclooxygenase-2 in SHRsp rats following stroke. The mRNA expression of vascular endothelial growth factor in the brain of SHRsp rats following stroke was significantly increased by D-Limonene. D-Limonene increased the activities of superoxide dismutase and catalase, decreased the malondialdehyde level, increased glutathione content and reduced the DHE-staining in SHRsp rats following stroke. Overall, inhibition of cerebral inflammation, vascular remodeling and antioxidant activities of D-Limonene may be involved in the protective effects against ischemia-induced damage in SHRsp rats. The present study identified D-Limonene as a potential therapeutic candidate for treatment of stroke-associated cerebral and vascular damage under conditions of hypertension.
NASA Astrophysics Data System (ADS)
Jia, Yali; Alkayed, Nabil; Wang, Ruikang K.
2009-07-01
Optical microanglography (OMAG) is a recently developed imaging modality capable of volumetric imaging of dynamic blood perfusion, down to capillary level resolution, with an imaging depth up to 2.00 mm beneath the tissue surface. We report the use of OMAG to monitor the cerebral blood flow (CBF) over the cortex of mouse brain upon traumatic brain injury (TBI), with the cranium left intact, for a period of two weeks on the same animal. We show the ability of OMAG to repeatedly image 3-D cerebral vasculatures during pre- and post-traumatic phases, and to visualize the changes of regulated CBF and the vascular plasticity after TBI. The results indicate the potential of OMAG to explore the mechanism involved in the rehabilitation of TBI.
King, Kevin S; Sheng, Min; Liu, Peiying; Maroules, Christopher D; Rubin, Craig D; Peshock, Ron M; McColl, Roderick W; Lu, Hanzhang
2018-06-01
Background and purpose Vascular risk factors have been associated with decreased cerebral blood flow (CBF) but this is etiologically nonspecific and may result from vascular insufficiency or a response to decreased brain metabolic activity. We apply new MRI techniques to measure oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen consumption (CMRO 2 ), hypothesizing that decreased CBF related to these vascular risk factors will be associated with increased OEF, confirming a primary vascular insufficiency. Methods 3T MRI was obtained on 70 community-based participants in this IRB-approved study with informed consent, with previous assessment of systolic blood pressure, hypertension medication, elevated serum triglycerides, low serum HDL, and diabetes mellitus. CBF was measured using phase contrast adjusted for brain volume (ml/100 g/min), OEF (%) was obtained from T2-Relaxation-Under-Spin-Tagging (TRUST), and CMRO 2 (μmol/100 g/min) was derived using the Fick principle. Stepwise linear regression identified optimal predictors of CBF with age, sex, and hematocrit included for adjustment. This predictive model was then evaluated against OEF and CMRO 2 . Results Hypertriglyceridemia was associated with low CBF and high OEF. High systolic blood pressure was associated with high CBF and low OEF, which was primarily attributable to those with pressures above 160 mmHg. Neither risk factor was associated with significant differences in cerebral metabolic rate. Conclusion Low CBF related to hypertriglyceridemia was accompanied by high OEF with no significant difference in CMRO 2 , confirming subclinical vascular insufficiency. High CBF related to high systolic blood pressure likely reflected limitations of autoregulation at higher blood pressures.
[Efficiency of rehabilitation of elderly and senile patients after an ischemic stroke].
Miakotnykh, V S; Borovkova, T A; Miakotnykh, K V; Lespukh, N I
2011-01-01
Productivity of a wide medical rehabilitation in 296 patients who have had an ischemic stroke was studied. In the period of rehabilitation treatment 186 patients of 70-84 years composed the basic group, 110 in the control group were of 33-60 years. Clinical, social, psychological indicators in dynamics were compared; results of variety of tool and laboratory researches were estimated. Possibility of high efficiency of medical rehabilitation in elderly and senile age is stated. This efficiency depends on expressiveness of impellent defect, the period of a stroke, somatic diseases and on depressive infringements. Positive shifts in character of bioelectric activity of a brain and also activation of non-vascular link of a cerebral metabolism in comparison with vascular one can serve as prognosis criteria of success of rehabilitation of the elderly.
Ardelt, Agnieszka A.; Carpenter, Randall S.; Lobo, Merryl R.; Zeng, Huadong; Solanki, Rajanikant B.; Zhang, An; Kulesza, Piotr; Pike, Martin M.
2012-01-01
We previously observed that 17β-estradiol (E2) augments ischemic borderzone vascular density 10 days after focal cerebral ischemia-reperfusion in rats. We now evaluated the effect of E2 on vascular remodeling, lesional characteristics, and motor recovery up to 30 days after injury. Peri-lesional vascular density in tissue sections from rats treated with 0.72 mg E2 pellets was higher compared to 0.18 mg E2 pellets or placebo (P) pellets: vascular density index, 1.9 ± 0.2 (0.72 mg E2) vs. 1.4 ± 0.2 (0.18 mg E2) vs. 1.5 ± 0.4 (P), p=0.01. This was consistent with perfusion magnetic resonance imaging (MRI) measurements of lesional relative cerebral blood flow (rCBF): 1.89 ± 0.32 (0.72 mg E2) vs. 1.32 ± 0.19 (P), p=0.04. Post-ischemic angiogenesis occurred in P-treated as well as E2-treated rats. There was no treatment-related effect on lesional size, but lesional tissue was better preserved in E2-treated rats: cystic component as a % of total lesion, 30 ± 12 (0.72 mg E2) vs. 29 ± 17 (0.18 mg E2) vs. 61 ± 29 (P), p=0.008. Three weeks after right middle cerebral artery territory injury, rats treated with 0.72 mg E2 pellets used the left forelimb more than P-treated or 0.18 mg E2-treated rats: limb use asymmetry score, 0.09 ± 0.43 (0.72 mg E2) vs. 0.54 ± 0.12 (0.18 mg E2) vs. 0.54 ± 0.40 (P), p=0.05. We conclude that treatment with 0.72 mg E2 pellets beginning one week prior to ischemia/reperfusion and continuing through the one-month recovery period results in augmentation of lesional vascularity and perfusion, as well as improved motor recovery. PMID:22572084
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartmann, A.; Tsuda, Y.
Regional cerebral blood flow (rCBF) in 90 patients with CBF decreased due to vascular diseases was studied by using the xenon 133 inhalation technique and a 32-detector setup. Whereas 30 patients received their standard basic therapy only and were regarded as controls, 30 others received 3 x 2 mg/day of an ergot alkaloid (co-dergocrine mesylate), and 30 others received 3 x 400 mg pentoxifylline (slow-release formulation)/day orally. Therapy was performed for eight weeks and CBF measured before start of treatment, after a four-week treatment period, and at the end of the study. CBF did not change significantly in the controlmore » group; both the pentoxifylline and the ergot alkaloid group presented with a significant increase in the CBF. This positive effect was significantly more pronounced in the pentoxifylline group and affected more ischemic than other brain tissues. In addition, symptoms like sleep disturbances, vertigo, and tinnitus improved significantly during the pentoxifylline observation period.« less
Cerebral small vessel disease: Capillary pathways to stroke and cognitive decline
Engedal, Thorbjørn S; Moreton, Fiona; Hansen, Mikkel B; Wardlaw, Joanna M; Dalkara, Turgay; Markus, Hugh S; Muir, Keith W
2015-01-01
Cerebral small vessel disease (SVD) gives rise to one in five strokes worldwide and constitutes a major source of cognitive decline in the elderly. SVD is known to occur in relation to hypertension, diabetes, smoking, radiation therapy and in a range of inherited and genetic disorders, autoimmune disorders, connective tissue disorders, and infections. Until recently, changes in capillary patency and blood viscosity have received little attention in the aetiopathogenesis of SVD and the high risk of subsequent stroke and cognitive decline. Capillary flow patterns were, however, recently shown to limit the extraction efficacy of oxygen in tissue and capillary dysfunction therefore proposed as a source of stroke-like symptoms and neurodegeneration, even in the absence of physical flow-limiting vascular pathology. In this review, we examine whether capillary flow disturbances may be a shared feature of conditions that represent risk factors for SVD. We then discuss aspects of capillary dysfunction that could be prevented or alleviated and therefore might be of general benefit to patients at risk of SVD, stroke or cognitive decline. PMID:26661176
Coulibaly, S; Diakité, S; Diall, I B; Menta, I; Sacko, A K; Diallo, B
2010-01-01
Our study of series, futurology, descriptive and analytical proceeded in the service of Cardiology B of the CHU of the Point G of the 1(er) July at 31 Décember 2007 and related to 57 in-patients. It aimed to release the factors of risks, to evaluate under treatment the evolution and to determine the prognostic elements of the cerebral vascular accidents. All the patients hospitalized in the service of Cardiology G for the period of study for cerebral vascular accident documented by a cerebral TDM was included in the series. The cerebral vascular accidents represented more of the quarter (25,22 %) of the admissions. The sample counted 29 women (50,9 %) and 28 men (49,1 %) with a sex ratio of 1,03 in favour of the women. The average age was 61,17 years ± 13,71 there. Arterial hypertension (59,6 %) was the first factor of risk and in the series the ischaemic AVC constituted approximately three quarters (70,2 %) of the organic types. It was especially male and the rather female hemorrhagic lesion. The hemorrhagic AVC was noted before 30 years and the ischaemic AVC beyond. The complications were with female prevalence and identical lethality in the two sexes. The hospital death rate in the study was considerable (10,5 %). The found prognostic elements did not have statistical significance.
Beretta, S; Pastori, C; Sala, G; Piazza, F; Ferrarese, C; Cattalini, A; de Curtis, M; Librizzi, L
2011-05-01
The acute effects of simvastatin lactone (lipophilic) and simvastatin acid (hydrophilic) on transient focal ischemia were assessed using the isolated guinea pig brain maintained in vitro by arterial perfusion. This new model of cerebral ischemia allows the assessment of the very early phase of the ischemic process, with the functional preservation of the vascular and neuronal compartments and the blood-brain barrier (bbb). The middle cerebral artery was transiently tied for 30 min followed by reperfusion for 60 min. Statins (nanomolar doses) were administered by intravascular continuous infusion starting 60 min before ischemia induction. Brain cortical activity and arterial vascular tone were continuously recorded. At the end of the experiment immunoreactivity for microtubule-associated protein 2 (MAP-2), expression of survival kinases (ERK and Akt) and total anti-oxidant capacity were assayed. Brains treated with simvastatin lactone showed i) reduced amplitude and delayed onset of ischemic depressions, ii) preservation of MAP-2 immunoreactivity, iii) activation of ERK signaling in the ischemic hemisphere and iv) increase in whole-brain anti-oxidant capacity. Treatment with the bbb-impermeable simvastatin acid was ineffective on the above-mentioned parameters. Vascular resistance recordings and Akt signaling were unchanged by any statin treatment. Our findings suggest that intravascular-delivered simvastatin exerts an acute lipophilicity-dependent protective effect in the early phase of cerebral ischemia. Copyright © 2011 Elsevier Ltd. All rights reserved.
fNIRS measurements in migraine
NASA Astrophysics Data System (ADS)
Akin, Ata; Emir, Uzay E.; Bilensoy, Didem; Erdogan, Gulin; Candansyar, Selcuk; Bolay, Hayrunnisa
2005-04-01
Migraine is a complex chronic neurovascular disorder in which the interictal changes in neuronal excitability and vascular reactivity in the cerebral cortex were detected. The extent and direction of the changes in cerebral blood flow that affect cerebral hemodynamics during attacks, however, are still a matter of debate. This may have been due to the logistic and technical problems posed by the different techniques to determine cerebral blood flow during migraine attacks and the different definitions of patient populations. In this study, we have investigated hypercapnia challenges by breath holding task on subjects with and without migraine by using functional near infrared spectroscopy (fNIRS). Measurements of the relative changes in concentration of deoxy-hemoglobin [Hb] and oxy-hemoglobin [HbO2] are performed on four healthy subjects during three breath holdings of 30 seconds (s.) interleaved with 90 s. of normal breathing. We have observed [Hb]increase during breath holding interval in subject without migraine whereas in subject with migraine [Hb] decreases during breath holding interval. The result of our study suggest that hypercapnia effect on cerebral hemodynamic of subject with migraine and without migraine could be due to different vascular reactivity to PCO2 (carbon dioxide partial pressure) in arteries.
Soares Franco, A; Monteiro, J; Ferreira, D; Fonseca, T P; Melo, T P; Ferro, J; Freitas, A; Nogueira, J M; Mota, E; da Costa, J N
1990-05-01
A prospective study was performed in 106 patients with acute stroke. The main purpose was the cardiac evaluation in the different types of cerebrovascular disease: Intracerebral hemorrhage (H), Cortical ischaemic events (C) and Subcortical ischaemic events (SC) and also to evaluate the interest of echocardiography in detecting occult cardiac sources of emboli. The study population included 54 men and 52 women with a mean age of 66.8 +/- 10.3 years. A thorough neurologic and cardiologic study with a computed tomography of the brain (TAC) and an echocardiogram (ECO) were performed in all patients. It was found 24 (23%) of H, 40 (38%) of C and 32 (30%) of SC. In the past history, heart diseases were more prevalent in C (p less than 0.04); previous stroke and systemic hypertension (HTA) were less prevalent in H (p less than 0.008) and in C (p less than 0.004), respectively. Atrial fibrillation (FA) was more frequent in ischaemic stroke (p less than 0.02) and within these in C (p less than 0.005). No more clinical and functional cardiac features or echocardiographic aspects had any difference in their prevalence in different types of stroke. Without clinical heart disease there were 19 (18%) cases but only in 10 were found in their echocardiograms a potentially embolic heart disease (PEHD) but 8 of them had questionable pathologic significance. C had more heart disease in their past history; FA is more frequent in C; it is difficult to diagnose a cerebral embolism with only a coexistent C and CPE, but if there is FA or a past history of heart disease in a C, the diagnosis of cerebral embolism is more probable; finally, echocardiography is of limited value to diagnose a PEHD in the elderly, however it makes possible to better evaluate most cardiac situations.
Gon, Yasufumi; Sakaguchi, Manabu; Oyama, Naoki; Mochizuki, Hideki
2017-02-01
Graves disease is rarely complicated with cerebrovascular steno-occlusive diseases. Previous studies have suggested several hypotheses for this occurrence, including excess thyroid hormone, which stimulates the sympathetic nervous system, which in turn causes an abnormal hemodynamic response with consequent atherosclerotic changes, and antithyroid antibodies cause local vascular inflammation in patients with Graves disease. However, radiological findings of vasculitis in patients with Graves disease and cerebral infarction remain less known. We report the case of a 30-year-old Japanese woman with acute cerebral infarction due to vasculitis associated with Graves disease. She was admitted to our hospital with a 4-day history of intermittent transient dysarthria and limb shaking of the left leg when standing. Three weeks before admission, she went to a local hospital because of general malaise and was diagnosed with Graves disease. Neurological examination revealed paralytic dysarthria, left central facial nerve palsy, and left hemiparesis (manual muscle testing, 4 of 5). Blood examinations showed hyperthyroidism (thyroid-stimulating hormone ≤.010 µU/mL; free T3 ≥25.0 pg/mL; free T4 ≥8.0 ng/dL) and elevation of antithyroid antibody levels (thyroid peroxidase antibody, 87 IU/mL). The vessel wall of the right internal carotid artery was markedly enhanced on contrast-enhanced three-dimensional T1-weighted magnetic resonance imaging, suggesting vasculitis. Magnetic resonance angiography revealed right internal carotid artery occlusion after the branching ophthalmic artery. Arterial stenosis due to vasculitis was considered the cause of hemodynamic ischemic stroke. Vessel wall imaging such as high-resolution contrast-enhanced T1-weighted imaging seems useful for assessing the underlying mechanism of stroke in patients with Graves disease. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Huang, Linqiang; Cao, Wei; Deng, Yiyu; Zhu, Gaofeng; Han, Yongli; Zeng, Hongke
2016-10-13
Cerebral oedema is closely related to the permeability of blood-brain barrier, vascular endothelial growth factor (VEGF) and its receptor vascular endothelial growth factor receptor 2 (VEGFR2) all of which are important blood-brain barrier (BBB) permeability regulatory factors. Zonula occludens 1 (ZO-1) and claudin-5 are also the key components of BBB. Hypertonic saline is widely used to alleviate cerebral oedema. This study aimed to explore the possible mechanisms underlying hypertonic saline that ameliorates cerebral oedema effectively. Middle cerebral artery occlusion (MCAO) model in Sprague-Dawley (SD) rats and of oxygen-glucose deprivation model in primary astrocytes were used in this study. The brain water content (BWC) was used to assess the effect of 10 % HS on cerebral oedema. The assessment of Evans blue (EB) extravasation was performed to evaluate the protective effect of 10 % HS on blood-brain barrier. The quantification of VEGF, VEGFR2, ZO-1 and claudin-5 was used to illustrate the mechanism of 10 % HS ameliorating cerebral oedema. BWC was analysed by wet-to-dry ratios in the ischemic hemisphere of SD rats; it was significantly decreased after 10 % HS treatment (P < 0.05). We also investigated the blood-brain barrier protective effect by 10 % HS which reduced EB extravasation effectively in the peri-ischemic brain tissue. In parallel to the above notably at 24 h following MCAO, mRNA and protein expression of VEGF and VEGFR2 in the peri-ischemic brain tissue was down-regulated after 10 % HS treatment (P < 0.05). Along with this, in vitro studies showed increased VEGF and VEGFR2 mRNA and protein expression in primary astrocytes under hypoxic condition (P < 0.05), but it was suppressed after HS treatment (P < 0.05). In addition, HS inhibited the down-regulation of ZO-1, claudin-5 effectively. The results suggest that 10 % HS could alleviate cerebral oedema possibly through reducing the ischemia induced BBB permeability as a consequence of inhibiting VEGF-VEGFR2-mediated down-regulation of ZO-1, claudin-5.
USDA-ARS?s Scientific Manuscript database
Cerebral ischemia is caused by an interruption of blood flow to the brain which generally leads to irreversible brain damage. Ischemic injury is associated with vascular leakage, inflammation, tissue injury, and cell death. Cellular changes associated with ischemia include impairment of metabolism, ...
[The magneto-, photo- and laser therapy of headaches in patients with vascular brain lesions].
Troshin, V D; Miasnikov, I G; Belousova, T E
1994-01-01
To manage vascular cephalalgia, a combined approach is proposed: segmentally oriented magnetic, photo- and photomagnetic therapy plus intravenous laser treatment. The effect was directly correlated with cerebral hemodynamic condition, damage to vegetative innervation segmental-peripheral link and physiotherapeutic factors.
Age and Vascular Burden Determinants of Cortical Hemodynamics Underlying Verbal Fluency.
Heinzel, Sebastian; Metzger, Florian G; Ehlis, Ann-Christine; Korell, Robert; Alboji, Ahmed; Haeussinger, Florian B; Wurster, Isabel; Brockmann, Kathrin; Suenkel, Ulrike; Eschweiler, Gerhard W; Maetzler, Walter; Berg, Daniela; Fallgatter, Andreas J
2015-01-01
Aging processes and several vascular burden factors have been shown to increase the risk of dementia including Alzheimer's disease. While pathological alterations in dementia precede diagnosis by many years, reorganization of brain processing might temporarily delay cognitive decline. We hypothesized that in healthy elderly individuals both age-related neural and vascular factors known to be related to the development of dementia impact functional cortical hemodynamics during increased cognitive demands. Vascular burden factors and cortical functional hemodynamics during verbal fluency were assessed in 1052 non-demented elderly individuals (51 to 83 years; cross-sectional data of the longitudinal TREND study) using functional near-infrared spectroscopy (fNIRS). The prediction of functional hemodynamic responses by age in multiple regressions and the impact of single and cumulative vascular burden factors including hypertension, diabetes, obesity, smoking and atherosclerosis were investigated. Replicating and extending previous findings we could show that increasing age predicted functional hemodynamics to be increased in right prefrontal and bilateral parietal cortex, and decreased in bilateral inferior frontal junction during phonological fluency. Cumulative vascular burden factors, with hypertension in particular, decreased left inferior frontal junction hemodynamic responses during phonological fluency. However, age and vascular burden factors showed no statistical interaction on functional hemodynamics. Based on these findings, one might hypothesize that increased fronto-parietal processing may represent age-related compensatory reorganization during increased cognitive demands. Vascular burden factors, such as hypertension, may contribute to regional cerebral hypoperfusion. These neural and vascular hemodynamic determinants should be investigated longitudinally and combined with other markers to advance the prediction of future cognitive decline and dementia.
Charlson comorbidity index as a predictor of periodontal disease in elderly participants
2018-01-01
Purpose This study investigated the validity of the Charlson comorbidity index (CCI) as a predictor of periodontal disease (PD) over a 12-year period. Methods Nationwide representative samples of 149,785 adults aged ≥60 years with PD (International Classification of Disease, 10th revision [ICD-10], K052–K056) were derived from the National Health Insurance Service-Elderly Cohort during 2002–2013. The degree of comorbidity was measured using the CCI (grade 0–6), including 17 diseases weighted on the basis of their association with mortality, and data were analyzed using multivariate Cox proportional-hazards regression in order to investigate the associations of comorbid diseases (CDs) with PD. Results The multivariate Cox regression analysis with adjustment for sociodemographic factors (sex, age, household income, insurance status, residence area, and health status) and CDs (acute myocardial infarction, congestive heart failure, peripheral vascular disease, cerebral vascular accident, dementia, pulmonary disease, connective tissue disorders, peptic ulcer, liver disease, diabetes, diabetes complications, paraplegia, renal disease, cancer, metastatic cancer, severe liver disease, and human immunodeficiency virus [HIV]) showed that the CCI in elderly comorbid participants was significantly and positively correlated with the presence of PD (grade 1: hazard ratio [HR], 1.11; P<0.001; grade ≥2: HR, 1.12, P<0.001). Conclusions We demonstrated that a higher CCI was a significant predictor of greater risk for PD in the South Korean elderly population. PMID:29770238
Vascular cognitive impairment, a cardiovascular complication.
Frances, Adiukwu; Sandra, Ofori; Lucy, Ugbomah
2016-06-22
Over the past two decades, the term vascular cognitive impairment (VCI) has been used to refer to a spectrum of cognitive decline characterized by executive dysfunction, associated with vascular pathology. With 30% of stroke survivors showing cognitive impairments, it is regarded as the most common cause of cognitive impairment. This is a narrative review of available literature citing sources from PubMed, MEDLINE and Google Scholar. VCI has a high prevalence both before and after a stroke and is associated with great economic and caregiver burden. Despite this, there is no standardized diagnostic criteria for VCI. Hypertension has been identified as a risk factor for VCI and causes changes in cerebral vessel structure and function predisposing to lacuna infarcts and small vessel haemorrhages in the frontostriatal loop leading to executive dysfunction and other cognitive impairments. Current trials have shown promising results in the use of antihypertensive medications in the management of VCI and prevention of disease progression to vascular dementia. Prevention of VCI is necessary in light of the looming dementia pandemic. All patients with cardiovascular risk factors would therefore benefit from cognitive screening with screening instruments sensitive to executive dysfunction as well as prompt and adequate control of hypertension.
Vascular cognitive impairment, a cardiovascular complication
Frances, Adiukwu; Sandra, Ofori; Lucy, Ugbomah
2016-01-01
Over the past two decades, the term vascular cognitive impairment (VCI) has been used to refer to a spectrum of cognitive decline characterized by executive dysfunction, associated with vascular pathology. With 30% of stroke survivors showing cognitive impairments, it is regarded as the most common cause of cognitive impairment. This is a narrative review of available literature citing sources from PubMed, MEDLINE and Google Scholar. VCI has a high prevalence both before and after a stroke and is associated with great economic and caregiver burden. Despite this, there is no standardized diagnostic criteria for VCI. Hypertension has been identified as a risk factor for VCI and causes changes in cerebral vessel structure and function predisposing to lacuna infarcts and small vessel haemorrhages in the frontostriatal loop leading to executive dysfunction and other cognitive impairments. Current trials have shown promising results in the use of antihypertensive medications in the management of VCI and prevention of disease progression to vascular dementia. Prevention of VCI is necessary in light of the looming dementia pandemic. All patients with cardiovascular risk factors would therefore benefit from cognitive screening with screening instruments sensitive to executive dysfunction as well as prompt and adequate control of hypertension. PMID:27354961
Nitric oxide-mediated blood flow regulation as affected by smoking and nicotine.
Toda, Noboru; Toda, Hiroshi
2010-12-15
Cigarette smoking is a major risk factor for atherosclerosis, cerebral and coronary vascular diseases, hypertension, and diabetes mellitus. Chronic smoking impairs endothelial function by decreasing the formation of nitric oxide and increasing the degradation of nitric oxide via generation of oxygen free radicals. Nitric oxide liberated from efferent nitrergic nerves is also involved in vasodilatation, increased regional blood flow, and hypotension that are impaired through nitric oxide sequestering by smoking-induced factors. Influence of smoking on nitric oxide-induced blood flow regulation is not necessarily the same in all organs and tissues. However, human studies are limited mainly to the forearm blood flow measurement that assesses endothelial function under basal and stimulated conditions and also determination of penile tumescence and erection in response to endothelial and neuronal nitric oxide. Therefore, information about blood flow regulation in other organs, such as the brain and placenta, has been provided mainly from studies on experimental animals. Nicotine, a major constituent of cigarette smoke, acutely dilates cerebral arteries and arterioles through nitric oxide liberated from nitrergic neurons, but chronically interferes with endothelial function in various vasculatures, both being noted in studies on experimental animals. Cigarette smoke constituents other than nicotine also have some vascular actions. Not only active but also passive smoking is undoubtedly harmful for both the smokers themselves and their neighbors, who should bear in mind that they can face serious diseases in the future, which may result in lengthy hospitalization, and a shortened lifespan. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lin, Wei-Ting; Chen, Ran-Chou; Lu, Wen-Wei; Liu, Shing-Hwa; Yang, Feng-Yi
2015-04-01
The protein expressions of neurotrophic factors can be enhanced by low-intensity pulsed ultrasound (LIPUS) stimulation in the brain. The purpose of this study was to demonstrate the protective effect of LIPUS stimulation against aluminum-induced cerebral damage in Alzheimer's disease rat model. LIPUS was administered 7 days before each aluminum chloride (AlCl3) administration, and concomitantly given with AlCl3 daily for a period of 6 weeks. Neurotrophic factors in hippocampus were measured by western blot analysis. Behavioral changes in the Morris water maze and elevated plus maze were examined in rats after administration of AlCl3. Various biochemical analyses were performed to evaluate the extent of brain damages. LIPUS is capable of prompting levels of brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), and vascular endothelial growth factor (VEGF) in rat brain. AlCl3 administration resulted in a significant increase in the aluminum concentration, acetylcholinesterase activity and beta-amyloid (Aβ) deposition in AlCl3 treated rats. LIPUS stimulation significantly attenuated aluminum concentration, acetylcholinesterase activity, Aβ deposition and karyopyknosis in AlCl3 treated rats. Furthermore, LIPUS significantly improved memory retention in AlCl3-induced memory impairment. These experimental results indicate that LIPUS has neuroprotective effects against AlCl3-induced cerebral damages and cognitive dysfunction.
Brain angiogenic gene-expression in congenital heart disease.
Sánchez, Olga; Ruiz-Romero, Aina; Domínguez, Carmen; Ferrer, Queralt; Ribera, Irene; Rodríguez-Sureda, Víctor; Alijotas, Jaume; Arévalo, Sílvia; Carreras, Elena; Cabero, Lluís; Llurba, Elisa
2017-12-05
To analyze potential differences in the expression of antiangiogenic and angiogenic factors and of genes associated with chronic hypoxia in cerebral tissue from euploid fetuses with congenital heart disease (CHD) and control fetuses. Cerebral tissue was obtained from 15 fetuses with CHD and 12 control fetuses undergoing termination of pregnancy. Expression profiles of the antiangiogenic soluble fms-like tyrosine kinase-1 (sFlt-1), the angiogenic vascular endothelial growth factor-A (VEGF-A) and placental growth factor (PlGF), and genes associated with chronic hypoxia were determined by real-time PCR in tissue from the frontal cortex and from basal ganglia-hypothalamus. sFlt-1 expression was 48% higher in the frontal cortex (p=0.0431) and 72% higher in the basal ganglia-hypothalamus (p=0.0369) of CHD fetuses than controls. VEGF-A expression was 60% higher in the basal ganglia-hypothalamus (p=0.0432) of CHD fetuses. The expression of hypoxia-inducible factor-2α (HIF-2α) in the basal ganglia-hypothalamus was 98% higher in CHD fetuses (p=0.0456). An overall dysregulation of angiogenesis with a net balance towards an antiangiogenic environment was observed in the cerebral tissue from fetuses with CHD, suggesting that these fetuses may have an intrinsic angiogenic impairment that could contribute to impaired brain perfusion and abnormal neurological development later in life. This article is protected by copyright. All rights reserved.
Agyare, Edward K.; Leonard, Sarah R.; Curran, Geoffry L.; Yu, Caroline C.; Lowe, Val J.; Paravastu, Anant K.; Poduslo, Joseph F.; Kandimalla, Karunya K.
2013-01-01
Amyloid-β (Aβ) deposition in the brain vasculature results in cerebral amyloid angiopathy (CAA), which occurs in about 80% of Alzheimer’s disease (AD) patients. While Aβ42 predominates parenchymal amyloid plaques in AD brain, Aβ40 is prevalent in the cerebrovascular amyloid. Dutch mutation of Aβ40 (E22Q) promotes aggressive cerebrovascular accumulation and leads to severe CAA in the mutation carriers; knowledge of how DutchAβ40 drives this process more efficiently than Aβ40 could reveal various pathophysiological events that promote CAA. In this study we have demonstrated that DutchAβ40 show preferential accumulation in the blood-brain-barrier (BBB) endothelial cells due to its inefficient blood-to-brain transcytosis. Consequently, DutchAβ40 establishes a permeation barrier in the BBB endothelium, prevents its own clearance from the brain and promotes the formation of amyloid deposits in the cerebral microvessels. The BBB endothelial accumulation of native Aβ40 is not robust enough to exercise such a significant impact on its brain clearance. Hence, the cerebrovascular accumulation of Aβ40 is slow and may require other co-pathologies to precipitate into CAA. In conclusion, the magnitude of Aβ accumulation in the BBB endothelial cells is a critical factor that promotes CAA; hence, clearing vascular endothelium of Aβ proteins may halt or even reverse CAA. PMID:23249146
Tarantini, Stefano; Tucsek, Zsuzsanna; Valcarcel-Ares, M Noa; Toth, Peter; Gautam, Tripti; Giles, Cory B; Ballabh, Praveen; Wei, Jeanne Y; Wren, Jonathan D; Ashpole, Nicole M; Sonntag, William E; Ungvari, Zoltan; Csiszar, Anna
2016-08-01
Strong epidemiological and experimental evidence indicate that both age and hypertension lead to significant functional and structural impairment of the cerebral microcirculation, predisposing to the development of vascular cognitive impairment (VCI) and Alzheimer's disease. Preclinical studies establish a causal link between cognitive decline and microvascular rarefaction in the hippocampus, an area of brain important for learning and memory. Age-related decline in circulating IGF-1 levels results in functional impairment of the cerebral microvessels; however, the mechanistic role of IGF-1 deficiency in impaired hippocampal microvascularization remains elusive. The present study was designed to characterize the additive/synergistic effects of IGF-1 deficiency and hypertension on microvascular density and expression of genes involved in angiogenesis and microvascular regression in the hippocampus. To achieve that goal, we induced hypertension in control and IGF-1 deficient mice (Igf1 f/f + TBG-Cre-AAV8) by chronic infusion of angiotensin II. We found that circulating IGF-1 deficiency is associated with decreased microvascular density and exacerbates hypertension-induced microvascular rarefaction both in the hippocampus and the neocortex. The anti-angiogenic hippocampal gene expression signature observed in hypertensive IGF-1 deficient mice in the present study provides important clues for subsequent studies to elucidate mechanisms by which hypertension may contribute to the pathogenesis and clinical manifestation of VCI. In conclusion, adult-onset, isolated endocrine IGF-1 deficiency exerts deleterious effects on the cerebral microcirculation, leading to a significant decline in cortical and hippocampal capillarity and exacerbating hypertension-induced cerebromicrovascular rarefaction. The morphological impairment of the cerebral microvasculature induced by IGF-1 deficiency and hypertension reported here, in combination with neurovascular uncoupling, increased blood-brain barrier disruption and neuroinflammation reported in previous studies likely contribute to the pathogenesis of vascular cognitive impairment in elderly hypertensive humans.
Senile dementia of the Binswanger type: a vascular form of dementia in the elderly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roman, G.C.
1987-10-02
Computed tomography and magnetic resonance imaging in the elderly have demonstrated the common occurrence of deep white-matter lesions in the aging brain. These radiologic lesions (leukoaraiosis) may represent an early marker of dementia. At autopsy, an ischemic periventricular leukoencephalopathy (Binswanger's disease) has been found in most cases. The clinical spectrum of Binswanger's disease appears to range from asymptomatic radiologic lesions to dementia with focal deficits, frontal signs, pseudobulbar palsy, gait difficulties, and urinary incontinence. The name senile dementia of the Binswanger type (SDBT) is proposed for this poorly recognized, vascular form of subcortical dementia. The SDBT probably results from corticalmore » disconnections most likely caused by hypoperfusion. In contrast, multi-infarct dementia is correlated with multiple large and small strokes that cause a loss of over 50 to 100 mL of brain volume. The periventricular white matter is a watershed area irrigated by long, penetrating medullary arteries. Risk factors for SDBT are small-artery diseases, such as hypertension and amyloid angiopathy, impaired autoregulation of cerebral blood flow in the elderly, and periventricular hypoperfusion due to cardiac failure, arrhythmias, and hypotension. The SDBT may be a potentially preventable and treatable form of dementia.« less
Mechanosensing Dynamics of Red blood Cells
NASA Astrophysics Data System (ADS)
Wan, Jiandi
2015-11-01
Mechanical stress-induced deformation of human red blood cells (RBCs) plays important physiopathological roles in oxygen delivery, blood rheology, transfusion, and malaria. Recent studies demonstrate that, in response to mechanical deformation, RBCs release adenosine-5'-triphosphate (ATP), suggesting the existence of mechanotransductive pathways in RBCs. Most importantly, the released ATP from RBCs regulates vascular tone and impaired release of ATP from RBCs has been linked to diseases such as type II diabetes and cystic fibrosis. To date, however, the mechanisms of mechanotransductive release of ATP from RBCs remain unclear. Given that RBCs experience shear stresses continuously during the circulation cycle and the released ATP plays a central role in vascular physiopathology, understanding the mechanotransductive release of ATP from RBCs will provide not only fundamental insights to the role of RBCs in vascular homeostasis but also novel therapeutic strategies for red cell dysfunction and vascular disease. This talk describes the main research in my group on integrating microfluidic-based approaches to study the mechanosensing dynamics of RBCs. Specifically, I will introduce a micro?uidic approach that can probe the dynamics of shear-induced ATP release from RBCs with millisecond resolution and provide quantitative understandings of the mechanosensitive ATP release processes in RBCs. Furthermore, I will also describe our recent findings about the roles of the Piezo1 channel, a newly discovered mechanosensitive cation channel in the mechanotransductive ATP release in RBCs. Last, possible functions of RBCs in the regulation of cerebral blood flow will be discussed.
Use of the 2.8 French Progreat microcatheter in diagnostic cerebral angiography.
Griauzde, Julius; Gemmete, Joseph J; Shastri, Ravi; Pandey, Aditya S; Chaudhary, Neeraj
2017-01-01
Tortuous vascular anatomy poses a significant challenge to performing diagnostic cerebral angiography. To report a new cerebral angiography technique for overcoming tortuous aortic and supra-aortic anatomy using a 2.8 French (F) Progreat microcatheter (0.028 inch (internal diameter) (Terumo; Somerset, New Jersey, USA) to obtain a diagnostic cerebral angiogram. A retrospective analysis of consecutive cases undergoing diagnostic cerebral angiography at our institution between 1 January 2013 and 30 November 2015 in which a 2.8F Progreat microcatheter was used. Clinical and operative notes were reviewed and correlated with imaging. Radiologic imaging, including CT, MRI, and digital subtraction angiography, was reviewed. Neurologic, systemic, and local complications were recorded on the basis of clinical follow-up results after each angiographic examination. Events that occurred within 24 h of the angiography were considered to be complications of the procedure. Initial attempts at catheterization of the target vessel with various 4F and 5F catheters were unsuccessful owing to tortuosity, atherosclerotic disease, or occlusion of the catheter in the target vessel. Microcatheterization of the target vessel was successful in 59/62 (95%) target vessels. A diagnostic cerebral angiogram with a power injection was obtained in 59 (100%) of the successfully catheterized vessels. In one case, angiography proceeded to aneurysm coiling after over-the-wire exchange. In two cases, angiography proceeded to mechanical thrombectomy after over-the-wire exchange. No procedural complications were seen. The 2.8F Progreat microcatheter can be used to obtain a diagnostic cerebral angiogram in patients with anatomic challenges limiting catheterization by standard techniques. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Zhu, Haibo; Zou, Libo; Tian, Jingwei; Lin, Fei; He, Jie; Hou, Jian
2014-03-01
Sodium formononetin-3'-sulphonate is a derivative of the plant isoflavone formononetin. The present study aimed to investigate the neuroprotective and angiogenesis effects of sodium formononetin-3'-sulphonate in vivo and in vitro. Treatment with sodium formononetin-3'-sulphonate (3, 7.5, 15, and 30 mg/kg, intravenous injection) could protect the brain from ischemia and reperfusion injury by improving neurological function, suppressing cell apoptosis, and increasing expression levels of vascular endothelial growth factor and platelet endothelial cell adhesion molecule 1 by middle cerebral artery occlusion. Treatment with sodium formononetin-3'-sulphonate (10 and 20 µg/mL) significantly increased cell migration, tube formation, and vascular endothelial growth factor and platelet endothelial cell adhesion molecule levels in human umbilical vein endothelial cells. Our results suggest that sodium formononetin-3'-sulphonate provides significant neuroprotective effects against cerebral ischemia and reperfusion injury in rats, and improves cerebrovascular angiogenesis in human umbilical vein endothelial cells. The protective mechanisms of sodium formononetin-3'-sulphonate may be attributed to the suppression of cell apoptosis and improved cerebrovascular angiogenesis by promoting vascular endothelial growth factor and platelet endothelial cell adhesion molecule expression. Georg Thieme Verlag KG Stuttgart · New York.
Moliavchikova, O V; Cherevashchenko, L A; Grinzaĭd, Iu M; Aĭvazov, V N; Zhuravlev, M E
2007-01-01
The authors propose combined therapy improving cerebral circulation in patients in an intermediate period of a mild craniocerebral trauma. The combination consists of radon baths and transcranial magnetotherapy which raise blood volume filling, relieve vascular resistance, improve venous outflow.
The effects of hypertension on the cerebral circulation
Pires, Paulo W.; Dams Ramos, Carla M.; Matin, Nusrat
2013-01-01
Maintenance of brain function depends on a constant blood supply. Deficits in cerebral blood flow are linked to cognitive decline, and they have detrimental effects on the outcome of ischemia. Hypertension causes alterations in cerebral artery structure and function that can impair blood flow, particularly during an ischemic insult or during periods of low arterial pressure. This review will focus on the historical discoveries, novel developments, and knowledge gaps in 1) hypertensive cerebral artery remodeling, 2) vascular function with emphasis on myogenic reactivity and endothelium-dependent dilation, and 3) blood-brain barrier function. Hypertensive artery remodeling results in reduction in the lumen diameter and an increase in the wall-to-lumen ratio in most cerebral arteries; this is linked to reduced blood flow postischemia and increased ischemic damage. Many factors that are increased in hypertension stimulate remodeling; these include the renin-angiotensin-aldosterone system and reactive oxygen species levels. Endothelial function, vital for endothelium-mediated dilation and regulation of myogenic reactivity, is impaired in hypertension. This is a consequence of alterations in vasodilator mechanisms involving nitric oxide, epoxyeicosatrienoic acids, and ion channels, including calcium-activated potassium channels and transient receptor potential vanilloid channel 4. Hypertension causes blood-brain barrier breakdown by mechanisms involving inflammation, oxidative stress, and vasoactive circulating molecules. This exposes neurons to cytotoxic molecules, leading to neuronal loss, cognitive decline, and impaired recovery from ischemia. As the population ages and the incidence of hypertension, stroke, and dementia increases, it is imperative that we gain a better understanding of the control of cerebral artery function in health and disease. PMID:23585139
Acute impact of drinking coffee on the cerebral and systemic vasculature.
Washio, Takuro; Sasaki, Hiroyuki; Ogoh, Shigehiko
2017-05-01
Previous studies have suggested that the risk of ischemic stroke increases immediately after drinking coffee. Indeed, drinking coffee, that is, caffeine, acutely increases arterial stiffness as well as blood pressure and peripheral vascular resistance. On the other hand, it has been reported that arterial stiffening is associated with elevation in the pulsatility index (PI) of cerebral blood flow (CBF), which increases the risk of brain disease. However, the effect of drinking coffee on the PI of the CBF and its interaction with arterial stiffness remain unknown. Against this background, we hypothesized that an acute increase in arterial stiffness induced by drinking coffee augments cerebral pulsatile stress. To test this hypothesis, in 10 healthy young men we examined the effects of drinking coffee on the PI of middle cerebral artery blood velocity (MCAv) and brachial-ankle pulse wave velocity (baPWV) as indices of cerebral pulsatile stress and arterial stiffness, respectively. Mean arterial blood pressure and baPWV were higher ( P < 0.01 and P = 0.02), whereas mean MCA V and mean cerebrovascular conductance index were lower upon drinking coffee ( P = 0.02 and P < 0.01) compared with a placebo (decaffeinated coffee). However, there was no difference in the PI of MCAv between drinking coffee and the placebo condition. These findings suggest that drinking coffee does not increase cerebral pulsatile stress acutely despite an elevation in arterial stiffness in the systemic circulation. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Liao, Lun-De; Lin, Chin-Teng; Shih, Yen-Yu I.; Lai, Hsin-Yi; Zhao, Wan-Ting; Duong, Timothy Q.; Chang, Jyh-Yeong; Chen, You-Yin
2012-01-01
Abstract. The specificity of the hemodynamic response function (HRF) is determined spatially by the vascular architecture and temporally by the evolution of hemodynamic changes. Here, we used functional photoacoustic microscopy (fPAM) to investigate single cerebral blood vessels of rats after left forepaw stimulation. In this system, we analyzed the spatiotemporal evolution of the HRFs of the total hemoglobin concentration (HbT), cerebral blood volume (CBV), and hemoglobin oxygen saturation (SO2). Changes in specific cerebral vessels corresponding to various electrical stimulation intensities and durations were bilaterally imaged with 36×65-μm2 spatial resolution. Stimulation intensities of 1, 2, 6, and 10 mA were applied for periods of 5 or 15 s. Our results show that the relative functional changes in HbT, CBV, and SO2 are highly dependent not only on the intensity of the stimulation, but also on its duration. Additionally, the duration of the stimulation has a strong influence on the spatiotemporal characteristics of the HRF as shorter stimuli elicit responses only in the local vasculature (smaller arterioles), whereas longer stimuli lead to greater vascular supply and drainage. This study suggests that the current fPAM system is reliable for studying relative cerebral hemodynamic changes, as well as for offering new insights into the dynamics of functional cerebral hemodynamic changes in small animals. PMID:22734740
Heterogeneity in Kv7 channel function in the cerebral and coronary circulation.
Lee, Sewon; Yang, Yan; Tanner, Miles A; Li, Min; Hill, Michael A
2015-02-01
Kv7 channels are considered important regulators of vascular smooth muscle contractility. The present study aimed to examine the hypotheses that (i) Kv7 channels are present in mouse cerebral and coronary arteries and regulate vascular reactivity and (ii) regional differences exist in the activity of these channels. PCR confirmed that basilar, Circle of Willis and LAD arteries express predominantly Kv7.1 and 7.4. Western blot analysis, however, showed greater Kv7.4 protein levels in the cerebral vessels. Relaxation to the Kv7 channel activator, retigabine (1-50 μM) was significantly greater in the basilar artery compared to the LAD artery. Similarly, the Kv7 channel inhibitor, linopirdine (10 μM) caused a stronger contraction of the basilar artery. Furthermore, pre-incubation with linopirdine reduced forskolin (cAMP activator)-induced vasorelaxation in basilar while not altering forskolin-induced vasorelaxation of the LAD, suggesting that Kv7 channels play a more prominent role in the cerebral than in the coronary circulation. Consistent with the vessel data, whole cell Kv7 currents in cerebral VSMCs were potentiated by retigabine and inhibited by linopirdine, while these responses were blunted in coronary VSMCs. This study provides evidence that mouse Kv7 channels may contribute differently to regulating the functional properties of cerebral and coronary arteries. Such heterogeneity has important implications for developing novel therapeutics for cardiovascular dysfunction. © 2014 John Wiley & Sons Ltd.
Heterogeneity in Kv7 channel function in the Cerebral and Coronary Circulation
Tanner, Miles A.; Li, Min; Hill, Michael A.
2014-01-01
Kv7 channels are considered important regulators of vascular smooth muscle contractility. The present study examined the hypotheses that 1. Kv7 channels are present in mouse cerebral and coronary arteries and regulate vascular reactivity, and 2. regional differences exist in the activity of these channels. PCR confirmed that basilar, Circle of Willis and left anterior descending (LAD) arteries express predominantly Kv7.1 and 7.4. Western blot analysis, however, showed greater Kv7.4 protein levels in the cerebral vessels. Relaxation to the Kv7 channel activator, retigabine (1-50μM) was significantly greater in basilar compared to LAD. Similarly, the Kv7 channel inhibitor, linopirdine (10μM) caused stronger contraction of the basilar artery. Furthermore, pre-incubation with linopirdine reduced forskolin (cAMP activator)-induced vasorelaxation in basilar while not altering forskolin-induced vasorelaxation of the LAD, suggesting that Kv7 channels play a more prominent role in the cerebral than coronary circulation. Consistent with the vessel data, whole cell Kv7 currents in cerebral VSMCs were potentiated by retigabine and inhibited by linopirdine, while these responses were blunted in coronary VSMCs. This study provides evidence that mouse Kv7 channels may contribute differently to regulating the functional properties of cerebral and coronary arteries. Such heterogeneity has important implications for developing novel therapeutics for cardiovascular dysfunction. PMID:25476662
Jeanne, Marion; Jorgensen, Jeff; Gould, Douglas B
2015-05-05
Collagen type IV alpha1 (COL4A1) and alpha2 (COL4A2) form heterotrimers critical for vascular basement membrane stability and function. Patients with COL4A1 or COL4A2 mutations suffer from diverse cerebrovascular diseases, including cerebral microbleeds, porencephaly, and fatal intracerebral hemorrhage (ICH). However, the pathogenic mechanisms remain unknown, and there is a lack of effective treatment. Using Col4a1 and Col4a2 mutant mouse models, we investigated the genetic complexity and cellular mechanisms underlying the disease. We found that Col4a1 mutations cause abnormal vascular development, which triggers small-vessel disease, recurrent hemorrhagic strokes, and age-related macroangiopathy. We showed that allelic heterogeneity, genetic context, and environmental factors such as intense exercise or anticoagulant medication modulated disease severity and contributed to phenotypic heterogeneity. We found that intracellular accumulation of mutant collagen in vascular endothelial cells and pericytes was a key triggering factor of ICH. Finally, we showed that treatment of mutant mice with a US Food and Drug Administration-approved chemical chaperone resulted in a decreased collagen intracellular accumulation and a significant reduction in ICH severity. Our data are the first to show therapeutic prevention in vivo of ICH resulting from Col4a1 mutation and imply that a mechanism-based therapy promoting protein folding might also prevent ICH in patients with COL4A1 and COL4A2 mutations. © 2015 American Heart Association, Inc.
Dieks, Jana-Katharina; Baumer, Alessandra; Wilichowski, Ekkehard; Rauch, Anita; Sigler, Matthias
2014-09-01
To date, the genetic basis of Dubowitz syndrome (short stature, microcephaly, facial abnormalities, eczema) is unknown and vascular complications are not known to be associated with this syndrome. In microcephalic osteodysplastic primordial dwarfism type II (MOPD II; disproportionate short statue, microcephaly, facial abnormalities), however, cerebral aneurysms and other vascular abnormalities are frequent complications. MOPD II is a genetic disorder caused by mutations in the pericentrin (PCNT) gene (21q22). We report on a patient who came to our attention as a 22-year-old with subarachnoid bleeding due to a ruptured cranial aneurysm. Until then, the patient was thought and published to have Dubowitz syndrome; previously, he was treated with coronary bypass surgery for extensive coronary angiopathy. Consecutive genetic testing revealed MOPD II. After clinical stabilization, the patient was discharged to a specialized rehabilitation center where he died due to re-rupture of a cranial aneurysm. In patients with short stature-especially when clinical features are accompanied by vascular complications-MOPD II should be considered as a differential diagnosis leading to consecutive genetic testing. After detection of mutations in the PCNT gene, a full vascular status including cerebral imaging and cardiac evaluation needs to be determined in order to analyze vascular abnormalities and initiate prophylactic treatment.
López-Olóriz, Jorge; López-Cancio, Elena; Arenillas, Juan F; Hernández, María; Jiménez, Marta; Dorado, Laura; Barrios, Maite; Soriano-Raya, Juan José; Miralbell, Júlia; Cáceres, Cynthia; Forés, Rosa; Pera, Guillem; Dávalos, Antoni; Mataró, Maria
2013-10-01
Carotid atherosclerosis has emerged as a relevant contributor to cognitive impairment and dementia whereas the role of intracranial stenosis and vascular resistance in cognition remains unknown. This study aims to assess the association of asymptomatic cervicocerebral atherosclerosis and intracranial vascular resistance with cognitive performance in a large dementia-free population. The Barcelona-AsIA (Asymptomatic Intracranial Atherosclerosis) Neuropsychology Study included 747 Caucasian subjects older than 50 with a moderate-high vascular risk (assessed by REGICOR score) and without history of neither symptomatic vascular disease nor dementia. Extracranial and transcranial color-coded duplex ultrasound examination was performed to assess carotid intima-media thickness (IMT), presence of carotid plaques (ECAD group), intracranial stenosis (ICAD group), and middle cerebral artery pulsatility index (MCA-PI) as a measure of intracranial vascular resistance. Neuropsychological assessment included tests in three cognitive domains: visuospatial skills and speed, verbal memory and verbal fluency. In univariate analyses, carotid IMT, ECAD and MCA-PI were associated with lower performance in almost all cognitive domains, and ICAD was associated with poor performance in some visuospatial and verbal cognitive tests. After adjustment for age, sex, vascular risk score, years of education and depressive symptoms, ECAD remained associated with poor performance in the three cognitive domains and elevated MCA-PI with worse performance in visuospatial skills and speed. Carotid plaques and increased intracranial vascular resistance are independently associated with low cognitive functioning in Caucasian stroke and dementia-free subjects. We failed to find an independent association of intracranial large vessel stenosis with cognitive performance. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Brain Protection and Cognitive Function: Cocoa Flavonoids as Nutraceuticals.
Grassi, Davide; Ferri, Claudio; Desideri, Giovambattista
2016-01-01
Cognitive decline and dementia are major public health social problems, suggesting the specific need to provide research into risk factors for cognitive decline as priority topic. Increasing evidence supports the hypothesis that oxidative stress and neuroinflammation might play a crucial role in the pathophysiology of cognitive decline. Further, cognitive dysfunction and dementia in Alzheimer's disease as well as in vascular dementia seem to be also the consequence of cerebral blood flow decrease and deregulation, also suggesting a putative pathophysiological convergence of mechanisms between atherosclerosis and Alzheimer's disease. In keeping with this, a growing interest has been addressed to flavonoids as potential nutraceuticals with neuroprotective effects. Of interest, cocoa beans have been described as a fundamental source of anti-oxidant flavonoids with the flavan-3-ols and their derivatives being present in high concentrations. Therefore, recent studies specifically focused on the favorable effects of flavonoid-rich cocoa and chocolate on cerebrovascular risk factors and cognitive function. Aim of this review is to summarize new findings concerning the cocoa effects on cognitive function, particularly focusing on some putative mechanisms of vascular and antioxidant action involved in preventing dementia.
APP mRNA splicing is upregulated in the brain of biglycan transgenic mice.
Bjelik, Annamária; Pákáski, Magdolna; Bereczki, Erika; Gonda, Szilvia; Juhász, Anna; Rimanóczy, Agnes; Zana, Marianna; Janka, Zoltán; Sántha, Miklós; Kálmán, János
2007-01-01
Many of the risk factors for cerebrovascular disease and atherosclerosis also increase the risk of Alzheimer's disease, characterized by the cerebral deposition of beta-amyloid plaques resulting from the abnormal processing of the transmembrane amyloid precursor protein (APP). The initiating event of cholesterol-induced atherosclerosis is the retention and accumulation of atherogenic apolipoprotein B (apoB) together with low-density lipoproteins in the vascular intima. Biglycan, a member of the small leucine-rich protein family, was suspected of contributing to this process. The individual and combined overexpressions of biglycan and apoB-100 were therefore examined on the cortical APP mRNA levels of transgenic mice by means of semiquantitative PCR. As compared with the control littermates, transgenic biglycan mice had significantly increased cortical APP695 (122%) and APP770 (157%) mRNA levels, while the double transgenic (apoB(+/-)xbiglycan(+/-)) mice did not exhibit any changes. These results provide the first experimental evidence that the atherogenic risk factor biglycan alters APP splicing and may participate in the pathogenesis of both Alzheimer and vascular dementias.
Cerebral Proliferative Angiopathy (CPA): Imaging Findings and Response to Therapy.
Lopci, Egesta; Olivari, Laura; Bello, Lorenzo; Navarria, Pierina; Chiti, Arturo
2016-12-01
We report the case of a 55-year-old woman with cerebral proliferative angiopathy (CPA). Her medical history included brain surgery for small vascular lesions and suspicion of cerebral malignancy. C methionine PET (C-METH PET) demonstrated a diffusely increased uptake on the right hemisphere. Contrast-enhanced MRI documented a massive lesion with a diffuse "nidus" appearance, involving the right cerebral hemisphere (sparing the inferior frontal gyrus and the anterior frontal lobe), the brainstem, and the middle cerebellar peduncle. Pathology confirmed the diagnosis of CPA and, after radiation treatment, the patient presented with clinical and radiological response.
He, Yun; Zhang, Haifeng; Yu, Luyang; Gunel, Murat; Boggon, Titus J; Chen, Hong; Min, Wang
2010-04-06
Cerebral cavernous malformations (CCMs) are human vascular malformations caused by mutations in three genes of unknown function: CCM1, CCM2, and CCM3. CCM3, also known as PDCD10 (programmed cell death 10), was initially identified as a messenger RNA whose abundance was induced by apoptotic stimuli in vitro. However, the in vivo function of CCM3 has not been determined. Here, we describe mice with a deletion of the CCM3 gene either ubiquitously or specifically in the vascular endothelium, smooth muscle cells, or neurons. Mice with global or endothelial cell-specific deletion of CCM3 exhibited defects in embryonic angiogenesis and died at an early embryonic stage. CCM3 deletion reduced vascular endothelial growth factor receptor 2 (VEGFR2) signaling in embryos and endothelial cells. In response to VEGF stimulation, CCM3 was recruited to and stabilized VEGFR2, and the carboxyl-terminal domain of CCM3 was required for the stabilization of VEGFR2. Indeed, the CCM3 mutants found in human patients lacking the carboxyl-terminal domain were labile and were unable to stabilize and activate VEGFR2. These results demonstrate that CCM3 promotes VEGFR2 signaling during vascular development.
Bashir, Qasim; Ishfaq, Asim; Baig, Ammad Anwar
2018-02-01
Digital subtraction angiography (DSA) remains the gold standard imaging modality for cerebrovascular disorders. In contrast to developed countries, the safety of the procedure is not extensively reported from the developing countries. Herein, we present a retrospective analysis of the basic technique, indications, and outcomes in 286 patients undergoing diagnostic cerebral and spinal angiography in a developing country, Pakistan. A retrospective review of patient demographics, procedural technique and complication rates of 286 consecutive patients undergoing the diagnostic cerebral/spinal angiography procedure at one institution from May 2013 to December 2015 was performed. Neurological, systemic, or local complications occurring within and after 24 h of the procedure were recorded. Mean age reported for all patients was 49.7 years. Of all the 286 cases, 175 were male (61.2%) and the rest female (111, 38.8%). Cerebral DSA was performed in 279 cases (97.6%), with 7 cases of spinal DSA (2.4%). Subarachnoid hemorrhage was the most common indication for DSA accounting for 88 cases (30.8%), closely followed by stroke (26.6%) and arteriosclerotic vascular disease (23.1%). No intra- or post-procedural neurological complications of any severity were seen in any of the 286 cases. One case of asymptomatic aortic dissection was reported (0.3%) in the entire cohort of patient population. Diagnostic cerebral/spinal digital subtraction angiography was found to be safe in Pakistan, with complication rates at par with and comparable to those reported in the developed world.
Bang, Genie M; Kirmani, Salman; Patton, Alice; Pulido, Jose S; Brodsky, Michael C
2013-02-01
Primordial dwarfism refers to severely impaired growth beginning early in fetal life. There are many genetic causes of primordial dwarfism, including disorders classified as microcephalic osteodysplastic primordial dwarfism. Microcephalic osteodysplastic primordial dwarfism type II is an autosomal-recessive disease characterized by small stature, bone and dental anomalies, and characteristic facies. Affected patients have a high risk of stroke secondary to progressive cerebral vascular anomalies, which often are classified as moyamoya disease. We present the case of a boy with features suggestive of MOPD II with unilateral moyamoya cerebrovascular changes and correlative moyamoya collaterals involving the iris of the ipsilateral eye. Copyright © 2013 American Association for Pediatric Ophthalmology and Strabismus. Published by Mosby, Inc. All rights reserved.
Small white matter lesion detection in cerebral small vessel disease
NASA Astrophysics Data System (ADS)
Ghafoorian, Mohsen; Karssemeijer, Nico; van Uden, Inge; de Leeuw, Frank E.; Heskes, Tom; Marchiori, Elena; Platel, Bram
2015-03-01
Cerebral small vessel disease (SVD) is a common finding on magnetic resonance images of elderly people. White matter lesions (WML) are important markers for not only the small vessel disease, but also neuro-degenerative diseases including multiple sclerosis, Alzheimer's disease and vascular dementia. Volumetric measurements such as the "total lesion load", have been studied and related to these diseases. With respect to SVD we conjecture that small lesions are important, as they have been observed to grow over time and they form the majority of lesions in number. To study these small lesions they need to be annotated, which is a complex and time-consuming task. Existing (semi) automatic methods have been aimed at volumetric measurements and large lesions, and are not suitable for the detection of small lesions. In this research we established a supervised voxel classification CAD system, optimized and trained to exclusively detect small WMLs. To achieve this, several preprocessing steps were taken, which included a robust standardization of subject intensities to reduce inter-subject intensity variability as much as possible. A number of features that were found to be well identifying small lesions were calculated including multimodal intensities, tissue probabilities, several features for accurate location description, a number of second order derivative features as well as multi-scale annular filter for blobness detection. Only small lesions were used to learn the target concept via Adaboost using random forests as its basic classifiers. Finally the results were evaluated using Free-response receiver operating characteristic.
Therapeutic antibody targeting of Notch3 signaling prevents mural cell loss in CADASIL.
Machuca-Parra, Arturo I; Bigger-Allen, Alexander A; Sanchez, Angie V; Boutabla, Anissa; Cardona-Vélez, Jonathan; Amarnani, Dhanesh; Saint-Geniez, Magali; Siebel, Christian W; Kim, Leo A; D'Amore, Patricia A; Arboleda-Velasquez, Joseph F
2017-08-07
Cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a neurological syndrome characterized by small vessel disease (SVD), stroke, and vascular cognitive impairment and dementia caused by mutations in NOTCH3 No therapies are available for this condition. Loss of mural cells, which encompass pericytes and vascular smooth muscle cells, is a hallmark of CADASIL and other SVDs, including diabetic retinopathy, resulting in vascular instability. Here, we showed that Notch3 signaling is both necessary and sufficient to support mural cell coverage in arteries using genetic rescue in Notch3 knockout mice. Furthermore, we show that systemic administration of an agonist Notch3 antibody prevents mural cell loss and modifies plasma proteins associated with Notch3 activity, including endostatin/collagen 18α1 and Notch3 extracellular domain in mice with the C455R mutation, a CADASIL variant associated with Notch3 loss of function. These findings open opportunities for the treatment of CADASIL and other SVDs by modulating Notch3 signaling. © 2017 Machuca-Parra et al.
NASA Astrophysics Data System (ADS)
Akulov, A.; Cherevko, A.; Parshin, D.; Tur, D.; Yankova, G.
2017-08-01
The blood realizes the transport of substances, which are necessary for livelihoods, throughout the body. The assumption about the relationship some disease and structure of vasculature (in particular of brain) is natural. In the paper we consider models of Willis’ circle for two groups of laboratory mice - one control group and another with diabetes. Vascular net obtained as a result of preprocessing MRI data. The purpose of the work is to determine the effect of type 1 diabetes on the properties of the laboratory mice vasculature.
Martins, Yuri C; Freeman, Brandi D; Akide Ndunge, Oscar B; Weiss, Louis M; Tanowitz, Herbert B; Desruisseaux, Mahalia S
2016-11-01
Plasmodium berghei ANKA infection of C57BL/6 mice is a widely used model of experimental cerebral malaria (ECM). By contrast, the nonneurotropic P. berghei NK65 (PbN) causes severe malarial disease in C57BL/6 mice but does not cause ECM. Previous studies suggest that endothelin-1 (ET-1) contributes to the pathogenesis of ECM. In this study, we characterize the role of ET-1 on ECM vascular dysfunction. Mice infected with 10 6 PbN-parasitized red blood cells were treated with either ET-1 or saline from 2 to 8 days postinfection (dpi). Plasmodium berghei ANKA-infected mice served as the positive control. ET-1-treated PbN-infected mice exhibited neurological signs, hypothermia, and behavioral alterations characteristic of ECM, dying 4 to 8 dpi. Parasitemia was not affected by ET-1 treatment. Saline-treated PbN-infected mice did not display ECM, surviving until 12 dpi. ET-1-treated PbN-infected mice displayed leukocyte adhesion to the vascular endothelia and petechial hemorrhages throughout the brain at 6 dpi. Intravital microscopic images demonstrated significant brain arteriolar vessel constriction, decreased functional capillary density, and increased blood-brain barrier permeability. These alterations were not present in either ET-1-treated uninfected or saline-treated PbN-infected mice. In summary, ET-1 treatment of PbN-infected mice induced an ECM-like syndrome, causing brain vasoconstriction, adherence of activated leukocytes in the cerebral microvasculature, and blood-brain barrier leakage, indicating that ET-1 is involved in the genesis of brain microvascular alterations that are the hallmark of ECM. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Zhang, Shishuang; Zhi, Yongle; Li, Fei; Huang, Shan; Gao, Huabin; Han, Zhaoli; Ge, Xintong; Li, Dai; Chen, Fanglian; Kong, Xiaodong; Lei, Ping
2018-04-15
To date, the pathogenesis of Alzheimer's disease (AD) remains unclear. It is well-known that excessive deposition of Aβ in the brain is a crucial part of the pathogenesis of AD. In recent years, the AD neurovascular unit hypothesis has attracted much attention. Impairment of the blood-brain barrier (BBB) leads to abnormal amyloid-β (Aβ) transport, and chronic cerebral hypoperfusion causes Aβ deposition throughout the onset and progression of AD. Endothelial progenitor cells (EPCs) are the universal cells for repairing blood vessels. Our previous studies have shown that a reduced number of EPCs in the peripheral blood results in cerebral vascular repair disorder, cerebral hypoperfusion and neurodegeneration, which might be related to the cognitive dysfunction of AD patients. This study was designed to confirm whether EPCs transplantation could repair the blood-brain barrier, stimulate angiogenesis and reduce Aβ deposition in AD. The expression of ZO-1, Occludin and Claudin-5 was up-regulated in APP/PS1 transgenic mice after hippocampal transplantation of EPCs. Consistent with previous studies, EPC transplants also increased the microvessel density. We observed that Aβ senile plaque deposition was decreased and hippocampal cell apoptosis was reduced after EPCs transplantation. The Morris water maze test showed that spatial learning and memory functions were significantly improved in mice transplanted with EPCs. Consequently, EPCs could up-regulate the expression of tight junction proteins, repair BBB tight junction function, stimulate angiogenesis, promote Aβ clearance, and decrease neuronal loss, ultimately improve cognitive function. Taken together, these data demonstrate EPCs may play an important role in the therapeutic implications for vascular dysfunction in AD. Copyright © 2018 Elsevier B.V. All rights reserved.
Microvasculature of the cerebral cortex: a vascular corrosion cast and immunocytochemical study.
Scala, Gaetano
2014-04-01
In mammals, the cerebral cortex microvasculature (CCM) of the neopallium plays important roles in the physiological and pathological processes of the brain. The aim of the present work is to analyze the CCM by use of the SEM-vascular corrosion cast technique, and to examine the immunocytochemical characteristics of the CCM in adult domestic ruminants (cattle, buffalo, and sheep) by using the SEM-immunogold technique. The CCM originated from the very small, finger-like terminal branches of the macrovasculature of the brain. The superficial cortical arterioles were more numerous than the deep straight arterioles which proceeded toward the white matter. The surface casts of the arterioles and capillaries of the cerebral cortex showed ring-shaped formations in the arterioles and at the origin of the capillaries. All capillaries down-stream from these ring-shaped formations were flaccid. Casts of the capillaries showed wrinkles due to the presence of endothelial folds, which is characteristic of varying blood pressure. Formations having intense anti-GIFAP immunoreactivity were frequently evident along the course of the blood capillaries in the cerebral cortex. These formations were probably astrocytes that might regulate the cerebral microcirculation based on physiological and pathological stimuli, such as neuronal activation. Copyright © 2014 Wiley Periodicals, Inc.
Functional stability of cerebral circulatory system
NASA Technical Reports Server (NTRS)
Moskalenko, Y. Y.
1980-01-01
The functional stability of the cerebral circulation system seems to be based on the active mechanisms and on those stemming from specific of the biophysical structure of the system under study. This latter parameter has some relevant criteria for its quantitative estimation. The data obtained suggest that the essential part of the mechanism for active responses of cerebral vessels which maintains the functional stability of this portion of the vascular system, consists of a neurogenic component involving central nervous structures localized, for instance, in the medulla oblongata.
1988-06-01
Hoff IT: Sodium 5-(3’-pyridinyl- methyl)benzoilzran-2-carboxylate (U-63557A) potentiates pro- tective effect of intravenrous eicosapentaenoic acid on...PAF.3- Hydroxy acids and PAP are pro- on the vascular endothelium.2 Although we were unable duced by platelets during aggregation and are potent to...Pickard JD: Role of prostaglandins and arachidonic acid derivatives in the coupling of cerebral blood flow to cerebral metabolism. J Cereb Blood Flow
Deak, Ferenc; Freeman, Willard M.; Ungvari, Zoltan; Csiszar, Anna
2016-01-01
As the population of the Western world is aging, there is increasing awareness of age-related impairments in cognitive function and a rising interest in finding novel approaches to preserve cerebral health. A special collection of articles in The Journals of Gerontology: Biological Sciences and Medical Sciences brings together information of different aspects of brain aging, from latest developments in the field of neurodegenerative disorders to cerebral microvascular mechanisms of cognitive decline. It is emphasized that although the cellular changes that occur within aging neurons have been widely studied, more research is required as new signaling pathways are discovered that can potentially protect cells. New avenues for research targeting cellular senescence, epigenetics, and endocrine mechanisms of brain aging are also discussed. Based on the current literature it is clear that understanding brain aging and reducing risk for neurological disease with age requires searching for mechanisms and treatment options beyond the age-related changes in neuronal function. Thus, comprehensive approaches need to be developed that address the multiple, interrelated mechanisms of brain aging. Attention is brought to the importance of maintenance of cerebromicrovascular health, restoring neuroendocrine balance, and the pressing need for funding more innovative research into the interactions of neuronal, neuroendocrine, inflammatory and microvascular mechanisms of cognitive impairment, and Alzheimer’s disease. PMID:26590911
Fox, Kim; Bousser, Marie-Germaine; Amarenco, Pierre; Chamorro, Angel; Fisher, Marc; Ford, Ian; Hennerici, Michael G; Mattle, Heinrich P; Rothwell, Peter M
2013-10-09
Elevated resting heart rate is known to be detrimental to morbidity and mortality in cardiovascular disease, though its effect in patients with ischemic stroke is unclear. We analyzed the effect of baseline resting heart rate on myocardial infarction (MI) in patients with a recent noncardioembolic cerebral ischemic event participating in PERFORM. We compared fatal or nonfatal MI using adjusted Cox proportional hazards models for PERFORM patients with baseline heart rate <70 bpm (n=8178) or ≥70 bpm (n=10,802). In addition, heart rate was analyzed as a continuous variable. Other cerebrovascular and cardiovascular outcomes were also explored. Heart rate ≥70 bpm was associated with increased relative risk for fatal or nonfatal MI (HR 1.32, 95% CI 1.03-1.69, P=0.029). For every 5-bpm increase in heart rate, there was an increase in relative risk for fatal and nonfatal MI (11.3%, P=0.0002). Heart rate ≥70 bpm was also associated with increased relative risk for a composite of fatal or nonfatal ischemic stroke, fatal or nonfatal MI, or other vascular death (excluding hemorrhagic death) (P<0001); vascular death (P<0001); all-cause mortality (P<0001); and fatal or nonfatal stroke (P=0.04). For every 5-bpm increase in heart rate, there were increases in relative risk for fatal or nonfatal ischemic stroke, fatal or nonfatal MI, or other vascular death (4.7%, P<0.0001), vascular death (11.0%, P<0.0001), all-cause mortality (8.0%, P<0.0001), and fatal and nonfatal stroke (2.4%, P=0.057). Elevated heart rate ≥70 bpm places patients with a noncardioembolic cerebral ischemic event at increased risk for MI. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Ma, Yu-Guang; Zhang, Yin-Bin; Bai, Yun-Gang; Dai, Zhi-Jun; Liang, Liang; Liu, Mei; Xie, Man-Jiang; Guan, Hai-Tao
2016-04-12
Vascular dysfunction is a distinctive phenotype in diabetes mellitus. Current treatments mostly focus on the tight glycemic control and few of these treatments have been designed to directly recover the vascular dysfunction in diabetes. As a classical natural medicine, berberine has been explored as a possible therapy for DM. In addition, it is reported that berberine has an extra-protective effect in diabetic vascular dysfunction. However, little is known whether the berberine treatment could ameliorate the smooth muscle contractility independent of a functional endothelium under hyperglycemia. Furthermore, it remains unknown whether berberine affects the arterial contractility by regulating the intracellular Ca(2+) handling in vascular smooth cells (VSMCs) under hyperglycemia. Sprague-Dawley rats were used to establish the diabetic model with a high-fat diet plus injections of streptozotocin (STZ). Berberine (50, 100, and 200 mg/kg/day) were intragastrically administered to control and diabetic rats for 8 weeks since the injection of STZ. The intracellular Ca(2+) handling of isolated cerebral VSMCs was investigated by recording the whole-cell L-type Ca(2+) channel (CaL) currents, assessing the protein expressions of CaL channel, and measuring the intracellular Ca(2+) in response to caffeine. Our results showed that chronic administration of 100 mg/kg/day berberine not only reduced glucose levels, but also inhibited the augmented contractile function of cerebral artery to KCl and 5-hydroxytryptamine (5-HT) in diabetic rats. Furthermore, chronic administration of 100 mg/kg/day berberine significantly inhibited the CaL channel current densities, reduced the α1C-subunit expressions of CaL channel, decreased the resting intracellular Ca(2+) ([Ca(2+)]i) level, and suppressed the Ca(2+) releases from RyRs in cerebral VSMCs isolated from diabetic rats. Correspondingly, acute application of 10 μM berberine could directly inhibit the hyperglycemia-induced CaL currents and suppress the hyperglycemia-induced Ca(2+) releases from RyRs in cerebral VSMCs isolated from normal control rats. Our study indicated that berberine alleviated the cerebral arterial contractility in the rat model of streptozotocin-induced diabetes via regulating the intracellular Ca(2+) handling of smooth muscle cells.
Zeestraten, Eva Anna; Benjamin, Philip; Lambert, Christian; Lawrence, Andrew John; Williams, Owen Alan; Morris, Robin Guy; Barrick, Thomas Richard; Markus, Hugh Stephen
2016-01-01
Cerebral small vessel disease (SVD) is the major cause of vascular cognitive impairment, resulting in significant disability and reduced quality of life. Cognitive tests have been shown to be insensitive to change in longitudinal studies and, therefore, sensitive surrogate markers are needed to monitor disease progression and assess treatment effects in clinical trials. Diffusion tensor imaging (DTI) is thought to offer great potential in this regard. Sensitivity of the various parameters that can be derived from DTI is however unknown. We aimed to evaluate the differential sensitivity of DTI markers to detect SVD progression, and to estimate sample sizes required to assess therapeutic interventions aimed at halting decline based on DTI data. We investigated 99 patients with symptomatic SVD, defined as clinical lacunar syndrome with MRI confirmation of a corresponding infarct as well as confluent white matter hyperintensities over a 3 year follow-up period. We evaluated change in DTI histogram parameters using linear mixed effect models and calculated sample size estimates. Over a three-year follow-up period we observed a decline in fractional anisotropy and increase in diffusivity in white matter tissue and most parameters changed significantly. Mean diffusivity peak height was the most sensitive marker for SVD progression as it had the smallest sample size estimate. This suggests disease progression can be monitored sensitively using DTI histogram analysis and confirms DTI's potential as surrogate marker for SVD.
Simultaneous cerebrovascular and cardiovascular responses during presyncope
NASA Technical Reports Server (NTRS)
Bondar, R. L.; Kassam, M. S.; Stein, F.; Dunphy, P. T.; Fortney, S.; Riedesel, M. L.
1995-01-01
BACKGROUND AND PURPOSE: Presyncope, characterized by symptoms and signs indicative of imminent syncope, can be aborted in many situations before loss of consciousness occurs. The plasticity of cerebral autoregulation in healthy humans and its behavior during this syncopal prodrome are unclear, although systemic hemodynamic instability has been suggested as a key factor in the precipitation of syncope. Using lower body negative pressure (LBNP) to simulate central hypovolemia, we previously observed falling mean flow velocities (MFVs) with maintained mean arterial blood pressure (MABP). These findings, and recent reports suggesting increased vascular tone within the cerebral vasculature at presyncope, cannot be explained by the classic static cerebral autoregulation curve; neither can they be totally explained by a recent suggestion of a rightward shift in this curve. METHODS: Four male and five female healthy volunteers were exposed to presyncopal LBNP to evaluate their cerebrovascular and cardiovascular responses by use of continuous acquisition of MFV from the right middle cerebral artery with transcranial Doppler sonography, MABP (Finapres), and heart rate (ECG). RESULTS: At presyncope, MFV dropped on average by 27.3 +/- 14% of its baseline value (P < .05), while MABP remained at 2.0 +/- 27% above its baseline level. Estimated cerebrovascular resistance increased during LBNP. The percentage change from baseline to presyncope in MFV and MABP revealed consistent decreases in MFV before MABP. CONCLUSIONS: Increased estimated cerebrovascular resistance, falling MFV, and constant MABP are evidence of an increase in cerebral vascular tone with falling flow, suggesting a downward shift in the cerebral autoregulation curve. Cerebral vessels may have a differential sensitivity to sympathetic drive or more than one type of sympathetic innervation. Future work to induce dynamic changes in MABP during LBNP may help in assessing the plasticity of the cerebral autoregulation mechanism.
Tetrahedral and polyhedral mesh evaluation for cerebral hemodynamic simulation--a comparison.
Spiegel, Martin; Redel, Thomas; Zhang, Y; Struffert, Tobias; Hornegger, Joachim; Grossman, Robert G; Doerfler, Arnd; Karmonik, Christof
2009-01-01
Computational fluid dynamic (CFD) based on patient-specific medical imaging data has found widespread use for visualizing and quantifying hemodynamics in cerebrovascular disease such as cerebral aneurysms or stenotic vessels. This paper focuses on optimizing mesh parameters for CFD simulation of cerebral aneurysms. Valid blood flow simulations strongly depend on the mesh quality. Meshes with a coarse spatial resolution may lead to an inaccurate flow pattern. Meshes with a large number of elements will result in unnecessarily high computation time which is undesirable should CFD be used for planning in the interventional setting. Most CFD simulations reported for these vascular pathologies have used tetrahedral meshes. We illustrate the use of polyhedral volume elements in comparison to tetrahedral meshing on two different geometries, a sidewall aneurysm of the internal carotid artery and a basilar bifurcation aneurysm. The spatial mesh resolution ranges between 5,119 and 228,118 volume elements. The evaluation of the different meshes was based on the wall shear stress previously identified as a one possible parameter for assessing aneurysm growth. Polyhedral meshes showed better accuracy, lower memory demand, shorter computational speed and faster convergence behavior (on average 369 iterations less).
Cerebral microbleeds, cognitive impairment, and MRI in patients with diabetes mellitus.
Zhou, Hong; Yang, Juan; Xie, Peihan; Dong, Yulan; You, Yong; Liu, Jincai
2017-07-01
Cerebral microbleeds (CMBs), a typical imaging manifestation marker of sporadic cerebral small vessel disease, play a critical role in vascular cognitive impairment, which is often accompanied by diabetes mellitus (DM). Hence, CMBs may, in part, be responsible for the occurrence and development of cognitive impairment in patients with diabetes. Novel magnetic resonance imaging (MRI) sequences, such as susceptibility-weighted imaging and T2*-weighted gradient-echo, have the capability of noninvasively revealing CMBs in the brain. Moreover, a correlation between CMBs and cognitive impairment in patients with diabetes has been suggested in applications of functional MRI (fMRI). Since pathological changes in the brain occur prior to observable decline in cognitive function, neuroimaging may help predict the progression of cognitive impairment in diabetic patients. In this article, we review the detection of CMBs using MRI in diabetic patients exhibiting cognitive impairment. Future studies should emphasize the development and establishment of a novel MRI protocol, including fMRI, for diabetic patients with cognitive impairment to detect CMBs. A reliable MRI protocol would also be helpful in understanding the pathological mechanisms of cognitive impairment in this important patient population. Copyright © 2017. Published by Elsevier B.V.
Rohlwink, Ursula K; Kilborn, Tracy; Wieselthaler, Nicky; Banderker, Ebrahim; Zwane, Eugene; Figaji, Anthony A.
2016-01-01
Background Pediatric tuberculous meningitis leads to high rates of mortality and morbidity. Prompt diagnosis and initiation of treatment are challenging; imaging findings play a key role in establishing the presumptive diagnosis. General brain imaging findings are well reported; however, specific data on cerebral vascular and spinal involvement in children are sparse. Methods This prospective cohort study examined admission and follow up computed tomography brain scans and magnetic resonance imaging scans of the brain, cerebral vessels (magnetic resonance angiogram) and spine at 3 weeks in children treated for tuberculous meningitis with hydrocephalus (inclusion criteria). Exclusion criteria were no hydrocephalus on admission, treatment of hydrocephalus or commencement of anti-TB treatment before study enrolment. Imaging findings were examined in association with outcome at 6 months. Results Forty-four patients (median age 3.3 [0.3-13.1] years) with definite (54%) or probable tuberculous meningitis were enrolled. Good clinical outcome was reported in 72%; the mortality rate was 16%. Infarcts were reported in 66% of patients and were predictive of poor outcome. Magnetic resonance angiogram abnormalities were reported in 55% of patients. Delayed tuberculomas developed in 11% of patients (after starting treatment). Spinal pathology was more common than expected, occurring in 76% of patients. Exudate in the spinal canal increased the difficulty of lumbar puncture and correlated with high cerebrospinal fluid protein content. Conclusion Tuberculous meningitis involves extensive pathology in the central nervous system. Severe infarction was predictive of poor outcome although this was not the case for angiographic abnormalities. Spinal disease occurs commonly and has important implications for diagnosis and treatment. Comprehensive imaging of the brain, spine and cerebral vessels adds insight into disease pathophysiology. PMID:27213261
Rohlwink, Ursula K; Kilborn, Tracy; Wieselthaler, Nicky; Banderker, Ebrahim; Zwane, Eugene; Figaji, Anthony A
2016-10-01
Pediatric tuberculous meningitis (TBM) leads to high rates of mortality and morbidity. Prompt diagnosis and initiation of treatment are challenging; imaging findings play a key role in establishing the presumptive diagnosis. General brain imaging findings are well reported; however, specific data on cerebral vascular and spinal involvement in children are sparse. This prospective cohort study examined admission and followed up computed tomography brain scans and magnetic resonance imaging scans of the brain, cerebral vessels (magnetic resonance angiogram) and spine at 3 weeks in children treated for TBM with hydrocephalus (HCP; inclusion criteria). Exclusion criteria were no HCP on admission, treatment of HCP or commencement of antituberculosis treatment before study enrollment. Imaging findings were examined in association with outcome at 6 months. Forty-four patients (median age 3.3 [0.3-13.1] years) with definite (54%) or probable TBM were enrolled. Good clinical outcome was reported in 72%; the mortality rate was 16%. Infarcts were reported in 66% of patients and were predictive of poor outcome. Magnetic resonance angiogram abnormalities were reported in 55% of patients. Delayed tuberculomas developed in 11% of patients (after starting treatment). Spinal pathology was more common than expected, occurring in 76% of patients. Exudate in the spinal canal increased the difficulty of lumbar puncture and correlated with high cerebrospinal fluid protein content. TBM involves extensive pathology in the central nervous system. Severe infarction was predictive of poor outcome although this was not the case for angiographic abnormalities. Spinal disease occurs commonly and has important implications for diagnosis and treatment. Comprehensive imaging of the brain, spine and cerebral vessels adds insight into disease pathophysiology.
Joutel, Anne; Monet, Marie; Domenga, Valérie; Riant, Florence; Tournier-Lasserve, Elisabeth
2004-01-01
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is an inherited vascular dementia characterized by the degeneration of smooth-muscle cells in small cerebral arteries. CADASIL is caused by mutations in NOTCH3, one of the four mammalian homologs to the Drosophila melanogaster NOTCH gene. Disease-associated mutations are distributed throughout the 34 epidermal growth factor–like repeats (EGFRs) that compose the extracellular domain of the Notch3 receptor and result in a loss or a gain of a cysteine residue in one of these EGFRs. In human adults, Notch3 expression is highly restricted to vascular smooth-muscle cells. In patients with CADASIL, there is an abnormal accumulation of Notch3 in the vessel. Molecular pathways linking NOTCH3 mutations to degeneration of vascular smooth-muscle cells are as yet poorly understood. In this study, we investigated the effect of CADASIL mutations on Notch3 activity. We studied five naturally occurring mutations: R90C and C212S, located in the previously identified mutational hotspot EGFR2–5; C428S, shown in this study to be located in the ligand-binding domain EGFR10–11; and C542Y and R1006C, located in EGFR13 and EGFR26, respectively. All five mutant proteins were correctly processed. The C428S and C542Y mutant receptors exhibited a significant reduction in Jagged1-induced transcriptional activity of a RBP/JK responsive luciferase reporter, relative to wild-type Notch3. Impaired signaling activity of these two mutants arose through different mechanisms; the C428S mutant lost its Jagged1-binding ability, whereas C542Y retained it but exhibited an impaired presentation to the cell surface. In contrast, the R90C, C212S, and R1006C mutants retained the ability to bind Jagged1 and were associated with apparently normal levels of signaling activity. We conclude that mutations in Notch3 differently affect Jagged1 binding and Notch3 signaling via the RBP/JK pathway. PMID:14714274
How does the motor relearning program improve neurological function of brain ischemia monkeys?☆
Yin, Yong; Gu, Zhen; Pan, Lei; Gan, Lu; Qin, Dongdong; Yang, Bo; Guo, Jin; Hu, Xintian; Wang, Tinghua; Feng, Zhongtang
2013-01-01
The motor relearning program can significantly improve various functional disturbance induced by ischemic cerebrovascular diseases. However, its mechanism of action remains poorly understood. In injured brain tissues, glial fibrillary acidic protein and neurofilament protein changes can reflect the condition of injured neurons and astrocytes, while vascular endothelial growth factor and basic fibroblast growth factor changes can indicate angiogenesis. In the present study, we induced ischemic brain injury in the rhesus macaque by electrocoagulation of the M1 segment of the right middle cerebral artery. The motor relearning program was conducted for 60 days from the third day after model establishment. Immunohistochemistry and single-photon emission CT showed that the numbers of glial fibrillary acidic protein-, neurofilament protein-, vascular endothelial growth factor- and basic fibroblast growth factor-positive cells were significantly increased in the infarcted side compared with the contralateral hemisphere following the motor relearning program. Moreover, cerebral blood flow in the infarcted side was significantly improved. The clinical rating scale for stroke was used to assess neurological function changes in the rhesus macaque following the motor relearning program. Results showed that motor function was improved, and problems with consciousness, self-care ability and balance function were significantly ameliorated. These findings indicate that the motor relearning program significantly promoted neuronal regeneration, repair and angiogenesis in the surroundings of the infarcted hemisphere, and improve neurological function in the rhesus macaque following brain ischemia. PMID:25206440
Dynamic cone beam CT angiography of carotid and cerebral arteries using canine model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai Weixing; Zhao Binghui; Conover, David
2012-01-15
Purpose: This research is designed to develop and evaluate a flat-panel detector-based dynamic cone beam CT system for dynamic angiography imaging, which is able to provide both dynamic functional information and dynamic anatomic information from one multirevolution cone beam CT scan. Methods: A dynamic cone beam CT scan acquired projections over four revolutions within a time window of 40 s after contrast agent injection through a femoral vein to cover the entire wash-in and wash-out phases. A dynamic cone beam CT reconstruction algorithm was utilized and a novel recovery method was developed to correct the time-enhancement curve of contrast flow.more » From the same data set, both projection-based subtraction and reconstruction-based subtraction approaches were utilized and compared to remove the background tissues and visualize the 3D vascular structure to provide the dynamic anatomic information. Results: Through computer simulations, the new recovery algorithm for dynamic time-enhancement curves was optimized and showed excellent accuracy to recover the actual contrast flow. Canine model experiments also indicated that the recovered time-enhancement curves from dynamic cone beam CT imaging agreed well with that of an IV-digital subtraction angiography (DSA) study. The dynamic vascular structures reconstructed using both projection-based subtraction and reconstruction-based subtraction were almost identical as the differences between them were comparable to the background noise level. At the enhancement peak, all the major carotid and cerebral arteries and the Circle of Willis could be clearly observed. Conclusions: The proposed dynamic cone beam CT approach can accurately recover the actual contrast flow, and dynamic anatomic imaging can be obtained with high isotropic 3D resolution. This approach is promising for diagnosis and treatment planning of vascular diseases and strokes.« less
CADASIL mutant NOTCH3(R90C) decreases the viability of HS683 oligodendrocytes via apoptosis.
Tang, Mibo; Shi, Changhe; Song, Bo; Yang, Jing; Yang, Ting; Mao, Chengyuan; Li, Yusheng; Liu, Xinjing; Zhang, Shuyu; Wang, Hui; Luo, Haiyang; Xu, Yuming
2017-07-01
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is the most common hereditary cerebral small vessel disease caused by mutations in NOTCH3. Prevailing models suggest that demyelination occurs secondary to vascular pathology. However, in zebrafish, NOTCH3 is also expressed in mature oligodendrocytes. Thus, we hypothesized that in addition to vascular defects, mutant NOTCH3 may alter glial function in individuals with CADASIL. The aim of this study was to characterize the direct effects of a mutant NOTCH3 protein in HS683 oligodendrocytes. HS683 oligodendrocytes transfected with wild-type NOTCH3, mutant NOTCH3(R90C), and empty control vector were used to study the impact of the NOTCH3(R90C) mutant on its protein hydrolytic processing, cell viability, apoptosis, autophagy, oxidative stress, and the related upstream events using immunoblotting, immunofluorescence, RT-PCR, and flow cytometry. We determined that HS683 oligodendrocytes transfected with mutant NOTCH3(R90C), which is the hotspot mutation site-associated with CADASIL, exhibited aberrant NOTCH3 proteolytic processing. Compared to cells overexpressing wild-type NOTCH3, cells overexpressing NOTCH3(R90C) were less viable and had a higher rate of apoptosis. Immunoblotting revealed that cells transfected with NOTCH3(R90C) had higher levels of intrinsic mitochondrial apoptosis, extrinsic death receptor path-related apoptosis, and autophagy compared with cells transfected with wild-type NOTCH3. This study suggests that in patients with CADASIL, early defects in glia influenced by NOTCH3(R90C) may directly contribute to white matter pathology in addition to secondary vascular defects. This study provides a potential therapeutic target for the future treatment of CADASIL.
Arvanitakis, Zoe; Capuano, Ana W; Leurgans, Sue E; Bennett, David A; Schneider, Julie A
2016-08-01
Few data on the pathology of cerebral vessel disease, dementia, and cognition are available. We examined the association of cerebral atherosclerosis and arteriolosclerosis neuropathology with probable and possible Alzheimer's disease dementia and cognitive function. This cross-sectional study included men and women aged 65 years or older who had yearly clinical assessments and had agreed to brain autopsy at the time of death, as part of one of two cohort studies of ageing (The Religious Orders Study and the Rush Memory and Aging Project). Individuals without dementia or with Alzheimer's disease dementia, and with complete neuropathological data, are included in our analyses. We used neuropsychological data proximate to death to create summary measures of global cognition and cognitive domains. Clinical data recorded between 1994 and 2015 were used to determine presence of Alzheimer's disease dementia. Systematic neuropathological assessments documented the severity of cerebral large vessel (atherosclerosis) and small vessel (arteriolosclerosis) disease. By use of regression analyses adjusted for demographics, gross and microscopic infarcts, and Alzheimer's disease pathology, we examined associations of vessel disease severity (mild, moderate, and severe) with odds of probable and possible Alzheimer's disease dementia and cognitive function. Study enrolment began in January, 1994, and two cohort studies are ongoing. 1143 individuals were included in our analyses (median age at death 88·8 years; 478 [42%] with Alzheimer's disease dementia). Moderate-to-severe atherosclerosis was present in 445 (39%) individuals, and arteriolosclerosis in 401 (35%) individuals. Each level increase in the severity of atherosclerosis or arteriolosclerosis was associated with significantly higher odds of Alzheimer's disease dementia (odds ratio [OR] for atherosclerosis 1·33, 95% CI 1·11-1·58; OR for arteriolosclerosis 1·20, 1·04-1·40). Atherosclerosis was associated with lower scores for global cognition (estimate -0·10 [SE 0·04], p=0·0096) and four cognitive domains (episodic memory -0·10 [0·04], p=0·017; semantic memory -0·11 [0·05], p=0·018; perceptual speed -0·14 [0·04], p=0·00080; and visuospatial abilities -0·13 [0·04], p=0·0080), but not working memory (-0·05 [0·04], p=0·21). Arteriolosclerosis was associated with lower scores for global cognition (estimate -0·10 [0·03], p=0·0015) and four domains (episodic memory -0·12 [0·04], p=0·00090; semantic memory -0·10 [0·04], p=0·013; working memory -0·07 [0·03], p=0·045; perceptual speed -0·12 [0·04], p=0·0012), and a non-significant association was noted for visuospatial abilities (-0·07 [0·03], p=0·052). Findings were unchanged in analyses controlling for the presence of APOE ε4 allele or vascular risk factors. Cerebral atherosclerosis and arteriolosclerosis are associated with Alzheimer's disease dementia, and are also associated with low scores in most cognitive domains. Cerebral vessel pathology might be an under-recognised risk factor for Alzheimer's disease dementia. US National Institutes of Health. Copyright © 2016 Elsevier Ltd. All rights reserved.
AbetaPP/APLP2 family of Kunitz serine proteinase inhibitors regulate cerebral thrombosis.
Xu, Feng; Previti, Mary Lou; Nieman, Marvin T; Davis, Judianne; Schmaier, Alvin H; Van Nostrand, William E
2009-04-29
The amyloid beta-protein precursor (AbetaPP) is best recognized as the precursor to the Abeta peptide that accumulates in the brains of patients with Alzheimer's disease, but less is known about its physiological functions. Isoforms of AbetaPP that contain a Kunitz-type serine proteinase inhibitor (KPI) domain are expressed in brain and, outside the CNS, in circulating blood platelets. Recently, we showed that KPI-containing forms of AbetaPP regulates cerebral thrombosis in vivo (Xu et al., 2005, 2007). Amyloid precursor like protein-2 (APLP2), a closely related homolog to AbetaPP, also possesses a highly conserved KPI domain. Virtually nothing is known of its function. Here, we show that APLP2 also regulates cerebral thrombosis risk. Recombinant purified KPI domains of AbetaPP and APLP2 both inhibit the plasma clotting in vitro. In a carotid artery thrombosis model, both AbetaPP(-/-) and APLP2(-/-) mice exhibit similar significantly shorter times to vessel occlusion compared with wild-type mice indicating a prothrombotic phenotype. Similarly, in an experimental model of intracerebral hemorrhage, both AbetaPP(-/-) and APLP2(-/-) mice produce significantly smaller hematomas with reduced brain hemoglobin content compared with wild-type mice. Together, these results indicate that AbetaPP and APLP2 share overlapping anticoagulant functions with regard to regulating thrombosis after cerebral vascular injury.
Errando, C L; Navarro, L; Vila, M; Pallardó, M A
2012-02-01
CADASIL (cerebral arteriopathy, autosomal dominant, with subcortical infarcts and leu-koencephalopathy) is an infrequent inherited disease that could have anesthetic implica-tions. However these have rarely been reported. We present a male patient previously diagnosed with CADASIL, who had suffered an ischemic vascular cerebral accident with a MRI compatible with leukoencephalopathy, and who was dependent for daily activities, and sustained dementia, mood alterations, apathy, and urine incontinence. He had famil-ial antecedents of psychiatric symptoms and ischemic stroke events in several relatives including his father, two brothers and one sister. He was scheduled for arthrodesis of the left knee because of multiple infectious complications of prosthetic knee surgery. He was under clopidogrel treatment which was withdrawn seven days before surgery. The pro-cedure was performed under combined spinal-epidural anesthesia, intraoperative seda-tion with midazolam, and postoperative multimodal analgesia including epidural patient controlled analgesia. The perioperative management was uneventful and we outline the adequacy of managing these patients under regional anesthesia and analgesia, as these permit to maintain hemodynamic stability leading to adequate cerebral perfusion, key to avoid an increase in the effects of the chronic arteriopathy patients with CADASIL sustain. Copyright © 2012 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Published by Elsevier España. All rights reserved.
Cerebral vessels segmentation for light-sheet microscopy image using convolutional neural networks
NASA Astrophysics Data System (ADS)
Hu, Chaoen; Hui, Hui; Wang, Shuo; Dong, Di; Liu, Xia; Yang, Xin; Tian, Jie
2017-03-01
Cerebral vessel segmentation is an important step in image analysis for brain function and brain disease studies. To extract all the cerebrovascular patterns, including arteries and capillaries, some filter-based methods are used to segment vessels. However, the design of accurate and robust vessel segmentation algorithms is still challenging, due to the variety and complexity of images, especially in cerebral blood vessel segmentation. In this work, we addressed a problem of automatic and robust segmentation of cerebral micro-vessels structures in cerebrovascular images acquired by light-sheet microscope for mouse. To segment micro-vessels in large-scale image data, we proposed a convolutional neural networks (CNNs) architecture trained by 1.58 million pixels with manual label. Three convolutional layers and one fully connected layer were used in the CNNs model. We extracted a patch of size 32x32 pixels in each acquired brain vessel image as training data set to feed into CNNs for classification. This network was trained to output the probability that the center pixel of input patch belongs to vessel structures. To build the CNNs architecture, a series of mouse brain vascular images acquired from a commercial light sheet fluorescence microscopy (LSFM) system were used for training the model. The experimental results demonstrated that our approach is a promising method for effectively segmenting micro-vessels structures in cerebrovascular images with vessel-dense, nonuniform gray-level and long-scale contrast regions.
Cardio-Metabolic Benefits of Plant-Based Diets
Levin, Susan; Barnard, Neal
2017-01-01
Cardio-metabolic disease, namely ischemic heart disease, stroke, obesity, and type 2 diabetes, represent substantial health and economic burdens. Almost one half of cardio-metabolic deaths in the U.S. might be prevented through proper nutrition. Plant-based (vegetarian and vegan) diets are an effective strategy for improving nutrient intake. At the same time, they are associated with decreased all-cause mortality and decreased risk of obesity, type 2 diabetes, and coronary heart disease. Evidence suggests that plant-based diets may reduce the risk of coronary heart disease events by an estimated 40% and the risk of cerebral vascular disease events by 29%. These diets also reduce the risk of developing metabolic syndrome and type 2 diabetes by about one half. Properly planned vegetarian diets are healthful, effective for weight and glycemic control, and provide metabolic and cardiovascular benefits, including reversing atherosclerosis and decreasing blood lipids and blood pressure. The use of plant-based diets as a means of prevention and treatment of cardio-metabolic disease should be promoted through dietary guidelines and recommendations. PMID:28792455
Cardio-Metabolic Benefits of Plant-Based Diets.
Kahleova, Hana; Levin, Susan; Barnard, Neal
2017-08-09
Cardio-metabolic disease, namely ischemic heart disease, stroke, obesity, and type 2 diabetes, represent substantial health and economic burdens. Almost one half of cardio-metabolic deaths in the U.S. might be prevented through proper nutrition. Plant-based (vegetarian and vegan) diets are an effective strategy for improving nutrient intake. At the same time, they are associated with decreased all-cause mortality and decreased risk of obesity, type 2 diabetes, and coronary heart disease. Evidence suggests that plant-based diets may reduce the risk of coronary heart disease events by an estimated 40% and the risk of cerebral vascular disease events by 29%. These diets also reduce the risk of developing metabolic syndrome and type 2 diabetes by about one half. Properly planned vegetarian diets are healthful, effective for weight and glycemic control, and provide metabolic and cardiovascular benefits, including reversing atherosclerosis and decreasing blood lipids and blood pressure. The use of plant-based diets as a means of prevention and treatment of cardio-metabolic disease should be promoted through dietary guidelines and recommendations.
Understanding the role of the perivascular space in cerebral small vessel disease.
Brown, Rosalind; Benveniste, Helene; Black, Sandra E; Charpak, Serge; Dichgans, Martin; Joutel, Anne; Nedergaard, Maiken; Smith, Kenneth J; Zlokovic, Berislav V; Wardlaw, Joanna M
2018-05-02
Small vessel diseases are a group of disorders that result from pathological alteration of the small blood vessels in the brain, including the small arteries, capillaries and veins. Of the 35-36 million people that are estimated to suffer from dementia worldwide, up to 65% have an SVD component. Furthermore, SVD causes 20-25% of strokes, worsens outcome after stroke and is a leading cause of disability, cognitive impairment and poor mobility. Yet the underlying cause(s) of SVD are not fully understood.Magnetic resonance imaging (MRI) has confirmed enlarged perivascular spaces (PVS) as a hallmark feature of SVD. In healthy tissue, these spaces are proposed to form part of a complex brain fluid drainage system which supports interstitial fluid exchange and may also facilitate clearance of waste products from the brain. The pathophysiological signature of PVS, and what this infers about their function and interaction with cerebral microcirculation, plus subsequent downstream effects on lesion development in the brain has not been established. Here we discuss the potential of enlarged PVS to be a unique biomarker for SVD and related brain disorders with a vascular component. We propose that widening of PVS suggests presence of peri-vascular cell debris and other waste products that forms part of a vicious cycle involving impaired cerebrovascular reactivity (CVR), blood-brain barrier (BBB) dysfunction, perivascular inflammation and ultimately impaired clearance of waste proteins from the interstitial fluid (ISF) space, leading to accumulation of toxins, hypoxia and tissue damage.Here, we outline current knowledge, questions and hypotheses regarding understanding the brain fluid dynamics underpinning dementia and stroke through the common denominator of SVD.
A close look at brain dynamics: cells and vessels seen by in vivo two-photon microscopy.
Fumagalli, Stefano; Ortolano, Fabrizio; De Simoni, Maria-Grazia
2014-10-01
The cerebral vasculature has a unique role in providing a constant supply of oxygen and nutrients to ensure normal brain functions. Blood vessels that feed the brain are far from being simply channels for passive transportation of fluids. They form complex structures made up of different cell types. These structures regulate blood supply, local concentrations of O2 and CO2, transport of small molecules, trafficking of plasma cells and fine cerebral functions in normal and diseased brains. Until few years ago, analysis of these functions has been typically based on post mortem techniques, whose interpretation is limited by the need for tissue processing at specific times. For a reliable and effective picture of the dynamic processes in the central nervous system, real-time information in vivo is required. There are now few in vivo systems, among which two-photon microscopy (2-PM) is a truly innovative tool for studying the brain. 2-PM has been used to dissect specific aspects of vascular and immune cell dynamics in the context of neurological diseases, providing exciting results that could not have been obtained with conventional methods. This review summarizes the latest findings on vascular and immune system action in the brain, with particular focus on the dynamic responses after ischemic brain injury. 2-PM has helped define the hierarchical architecture of the brain vasculature, the dynamic interaction between the vasculature and immune cells recruited to lesion sites, the effects of blood flow on neuronal and microglial activity and the ability of cells of the neurovascular unit to regulate blood flow. Copyright © 2014 Elsevier Ltd. All rights reserved.
Crystal Structure of CCM3, a Cerebral Cavernous Malformation Protein Critical for Vascular Integrity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, X.; Zhang, R; Zhang, H
CCM3 mutations are associated with cerebral cavernous malformation (CCM), a disease affecting 0.1-0.5% of the human population. CCM3 (PDCD10, TFAR15) is thought to form a CCM complex with CCM1 and CCM2; however, the molecular basis for these interactions is not known. We have determined the 2.5 {angstrom} crystal structure of CCM3. This structure shows an all {alpha}-helical protein containing two domains, an N-terminal dimerization domain with a fold not previously observed, and a C-terminal focal adhesion targeting (FAT)-homology domain. We show that CCM3 binds CCM2 via this FAT-homology domain and that mutation of a highly conserved FAK-like hydrophobic pocket (HP1)more » abrogates CCM3-CCM2 interaction. This CCM3 FAT-homology domain also interacts with paxillin LD motifs using the same surface, and partial CCM3 co-localization with paxillin in cells is lost on HP1 mutation. Disease-related CCM3 truncations affect the FAT-homology domain suggesting a role for the FAT-homology domain in the etiology of CCM.« less
Rescue Therapy for Refractory Vasospasm after Subarachnoid Hemorrhage
Durrant, Julia C.; Hinson, Holly E.
2014-01-01
Vasospasm and delayed cerebral ischemia remain to be the common causes of increased morbidity and mortality after aneurysmal subarachnoid hemorrhage. The majority of clinical vasospasm responds to hemodynamic augmentation and direct vascular intervention; however, a percentage of patients continue to have symptoms and neurological decline. Despite suboptimal evidence, clinicians have several options in treating refractory vasospasm in aneurysmal subarachnoid hemorrhage (aSAH), including cerebral blood flow enhancement, intra-arterial manipulations, and intra-arterial and intrathecal infusions. This review addresses standard treatments as well as emerging novel therapies aimed at improving cerebral perfusion and ameliorating the neurologic deterioration associated with vasospasm and delayed cerebral ischemia. PMID:25501582
Blast-induced phenotypic switching in cerebral vasospasm
Alford, Patrick W.; Dabiri, Borna E.; Goss, Josue A.; Hemphill, Matthew A.; Brigham, Mark D.; Parker, Kevin Kit
2011-01-01
Vasospasm of the cerebrovasculature is a common manifestation of blast-induced traumatic brain injury (bTBI) reported among combat casualties in the conflicts in Afghanistan and Iraq. Cerebral vasospasm occurs more frequently, and with earlier onset, in bTBI patients than in patients with other TBI injury modes, such as blunt force trauma. Though vasospasm is usually associated with the presence of subarachnoid hemorrhage (SAH), SAH is not required for vasospasm in bTBI, which suggests that the unique mechanics of blast injury could potentiate vasospasm onset, accounting for the increased incidence. Here, using theoretical and in vitro models, we show that a single rapid mechanical insult can induce vascular hypercontractility and remodeling, indicative of vasospasm initiation. We employed high-velocity stretching of engineered arterial lamellae to simulate the mechanical forces of a blast pulse on the vasculature. An hour after a simulated blast, injured tissues displayed altered intracellular calcium dynamics leading to hypersensitivity to contractile stimulus with endothelin-1. One day after simulated blast, tissues exhibited blast force dependent prolonged hypercontraction and vascular smooth muscle phenotype switching, indicative of remodeling. These results suggest that an acute, blast-like injury is sufficient to induce a hypercontraction-induced genetic switch that potentiates vascular remodeling, and cerebral vasospasm, in bTBI patients. PMID:21765001
Vascular Inward Rectifier K+ Channels as External K+ Sensors in the Control of Cerebral Blood Flow
LONGDEN, THOMAS A.; NELSON, MARK T.
2015-01-01
For decades it has been known that external potassium (K+) ions are rapid and potent vasodilators that increase cerebral blood flow (CBF). Recent studies have implicated the local release of K+ from astrocytic endfeet—which encase the entirety of the parenchymal vasculature—in the dynamic regulation of local CBF during neurovascular coupling (NVC). It has been proposed that the activation of strong inward rectifier K+ (KIR) channels in the vascular wall by external K+ is a central component of these hyperemic responses; however, a number of significant gaps in our knowledge remain. Here, we explore the concept that vascular KIR channels are the major extracellular K+ sensors in the control of CBF. We propose that K+ is an ideal mediator of NVC, and discuss KIR channels as effectors that produce rapid hyperpolarization and robust vasodilation of cerebral arterioles. We provide evidence that KIR channels, of the KIR2 subtype in particular, are present in both the endothelial and smooth muscle cells of parenchymal arterioles and propose that this dual positioning of KIR2 channels increases the robustness of the vasodilation to external K+, enables the endothelium to be actively engaged in neurovascular coupling, and permits electrical signaling through the endothelial syncytium to promote upstream vasodilation to modulate CBF. PMID:25641345
Bernier, Michel; Wahl, Devin; Ali, Ahmed; Allard, Joanne; Faulkner, Shakeela; Wnorowski, Artur; Sanghvi, Mitesh; Moaddel, Ruin; Alfaras, Irene; Mattison, Julie A.; Tarantini, Stefano; Tucsek, Zsuzsanna; Ungvari, Zoltan; Csiszar, Anna; Pearson, Kevin J.; de Cabo, Rafael
2016-01-01
Previous studies have shown positive effects of long-term resveratrol (RSV) supplementation in preventing pancreatic beta cell dysfunction, arterial stiffening and metabolic decline induced by high-fat/high-sugar (HFS) diet in nonhuman primates. Here, the analysis was extended to examine whether RSV may reduce dietary stress toxicity in the cerebral cortex of the same cohort of treated animals. Middle-aged male rhesus monkeys were fed for 2 years with HFS alone or combined with RSV, after which whole-genome microarray analysis of cerebral cortex tissue was carried out along with ELISA, immunofluorescence, and biochemical analyses to examine markers of vascular health and inflammation in the cerebral cortices. A number of genes and pathways that were differentially modulated in these dietary interventions indicated an exacerbation of neuroinflammation (e.g., oxidative stress markers, apoptosis, NF-κB activation) in HFS-fed animals and protection by RSV treatment. The decreased expression of mitochondrial aldehyde dehydrogenase 2, dysregulation in endothelial nitric oxide synthase, and reduced capillary density induced by HFS stress were rescued by RSV supplementation. Our results suggest that long-term RSV treatment confers neuroprotection against cerebral vascular dysfunction during nutrient stress. PMID:27070252
Bernier, Michel; Wahl, Devin; Ali, Ahmed; Allard, Joanne; Faulkner, Shakeela; Wnorowski, Artur; Sanghvi, Mitesh; Moaddel, Ruin; Alfaras, Irene; Mattison, Julie A; Tarantini, Stefano; Tucsek, Zsuzsanna; Ungvari, Zoltan; Csiszar, Anna; Pearson, Kevin J; de Cabo, Rafael
2016-05-01
Previous studies have shown positive effects of long-term resveratrol (RSV) supplementation in preventing pancreatic beta cell dysfunction, arterial stiffening and metabolic decline induced by high-fat/high-sugar (HFS) diet in nonhuman primates. Here, the analysis was extended to examine whether RSV may reduce dietary stress toxicity in the cerebral cortex of the same cohort of treated animals. Middle-aged male rhesus monkeys were fed for 2 years with HFS alone or combined with RSV, after which whole-genome microarray analysis of cerebral cortex tissue was carried out along with ELISA, immunofluorescence, and biochemical analyses to examine markers of vascular health and inflammation in the cerebral cortices. A number of genes and pathways that were differentially modulated in these dietary interventions indicated an exacerbation of neuroinflammation (e.g., oxidative stress markers, apoptosis, NF-κB activation) in HFS-fed animals and protection by RSV treatment. The decreased expression of mitochondrial aldehyde dehydrogenase 2, dysregulation in endothelial nitric oxide synthase, and reduced capillary density induced by HFS stress were rescued by RSV supplementation. Our results suggest that long-term RSV treatment confers neuroprotection against cerebral vascular dysfunction during nutrient stress.
Jiang, Michael Qize; Zhao, Ying-Ying; Cao, Wenyuan; Wei, Zheng Zachory; Gu, Xiaohuan; Wei, Ling; Yu, Shan Ping
2017-07-01
Focal cerebral ischemia results in an ischemic core surrounded by the peri-infarct region (penumbra). Most research attention has been focused on penumbra while the pattern of cell fates inside the ischemic core is poorly defined. In the present investigation, we tested the hypothesis that, inside the ischemic core, some neuronal and vascular cells could survive the initial ischemic insult while regenerative niches might exist many days after stroke in the adult brain. Adult mice were subjected to focal cerebral ischemia induced by permanent occlusion of distal branches of the middle cerebral artery (MCA) plus transient ligations of bilateral common carotid artery (CCA). The ischemic insult uniformly reduced the local cerebral blood flow (LCBF) by 90%. Massive cell death occurred due to multiple mechanisms and a significant infarction was cultivated in the ischemic cortex 24 h later. Nevertheless, normal or even higher levels of brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) persistently remained in the core tissue, some NeuN-positive and Glut-1/College IV-positive cells with intact ultrastructural features resided in the core 7-14 days post stroke. BrdU-positive but TUNEL-negative neuronal and endothelial cells were detected in the core where extensive extracellular matrix infrastructure developed. Meanwhile, GFAP-positive astrocytes accumulated in the penumbra and Iba-1-positive microglial/macrophages invaded the core several days after stroke. The long term survival of neuronal and vascular cells inside the ischemic core was also seen after a severe ischemic stroke induced by permanent embolic occlusion of the MCA. We demonstrate that a therapeutic intervention of pharmacological hypothermia could save neurons/endothelial cells inside the core. These data suggest that the ischemic core is an actively regulated brain region with residual and newly formed viable neuronal and vascular cells acutely and chronically after at least some types of ischemic strokes. © 2016 International Society of Neuropathology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Y He; H Zhang; L Yu
2011-12-31
Cerebral cavernous malformations (CCMs) are human vascular malformations caused by mutations in three genes of unknown function: CCM1, CCM2, and CCM3. CCM3, also known as PDCD10 (programmed cell death 10), was initially identified as a messenger RNA whose abundance was induced by apoptotic stimuli in vitro. However, the in vivo function of CCM3 has not been determined. Here, we describe mice with a deletion of the CCM3 gene either ubiquitously or specifically in the vascular endothelium, smooth muscle cells, or neurons. Mice with global or endothelial cell-specific deletion of CCM3 exhibited defects in embryonic angiogenesis and died at an earlymore » embryonic stage. CCM3 deletion reduced vascular endothelial growth factor receptor 2 (VEGFR2) signaling in embryos and endothelial cells. In response to VEGF stimulation, CCM3 was recruited to and stabilized VEGFR2, and the carboxyl-terminal domain of CCM3 was required for the stabilization of VEGFR2. Indeed, the CCM3 mutants found in human patients lacking the carboxyl-terminal domain were labile and were unable to stabilize and activate VEGFR2. These results demonstrate that CCM3 promotes VEGFR2 signaling during vascular development.« less
Functional genomics indicate that schizophrenia may be an adult vascular-ischemic disorder
Moises, H W; Wollschläger, D; Binder, H
2015-01-01
In search for the elusive schizophrenia pathway, candidate genes for the disorder from a discovery sample were localized within the energy-delivering and ischemia protection pathway. To test the adult vascular-ischemic (AVIH) and the competing neurodevelopmental hypothesis (NDH), functional genomic analyses of practically all available schizophrenia-associated genes from candidate gene, genome-wide association and postmortem expression studies were performed. Our results indicate a significant overrepresentation of genes involved in vascular function (P<0.001), vasoregulation (that is, perivascular (P<0.001) and shear stress (P<0.01), cerebral ischemia (P<0.001), neurodevelopment (P<0.001) and postischemic repair (P<0.001) among schizophrenia-associated genes from genetic association studies. These findings support both the NDH and the AVIH. The genes from postmortem studies showed an upregulation of vascular-ischemic genes (P=0.020) combined with downregulated synaptic (P=0.005) genes, and ND/repair (P=0.003) genes. Evidence for the AVIH and the NDH is critically discussed. We conclude that schizophrenia is probably a mild adult vascular-ischemic and postischemic repair disorder. Adult postischemic repair involves ND genes for adult neurogenesis, synaptic plasticity, glutamate and increased long-term potentiation of excitatory neurotransmission (i-LTP). Schizophrenia might be caused by the cerebral analog of microvascular angina. PMID:26261884
Functional genomics indicate that schizophrenia may be an adult vascular-ischemic disorder.
Moises, H W; Wollschläger, D; Binder, H
2015-08-11
In search for the elusive schizophrenia pathway, candidate genes for the disorder from a discovery sample were localized within the energy-delivering and ischemia protection pathway. To test the adult vascular-ischemic (AVIH) and the competing neurodevelopmental hypothesis (NDH), functional genomic analyses of practically all available schizophrenia-associated genes from candidate gene, genome-wide association and postmortem expression studies were performed. Our results indicate a significant overrepresentation of genes involved in vascular function (P < 0.001), vasoregulation (that is, perivascular (P < 0.001) and shear stress (P < 0.01), cerebral ischemia (P < 0.001), neurodevelopment (P < 0.001) and postischemic repair (P < 0.001) among schizophrenia-associated genes from genetic association studies. These findings support both the NDH and the AVIH. The genes from postmortem studies showed an upregulation of vascular-ischemic genes (P = 0.020) combined with downregulated synaptic (P = 0.005) genes, and ND/repair (P = 0.003) genes. Evidence for the AVIH and the NDH is critically discussed. We conclude that schizophrenia is probably a mild adult vascular-ischemic and postischemic repair disorder. Adult postischemic repair involves ND genes for adult neurogenesis, synaptic plasticity, glutamate and increased long-term potentiation of excitatory neurotransmission (i-LTP). Schizophrenia might be caused by the cerebral analog of microvascular angina.
Comprehensive Overview of Contemporary Management Strategies for Cerebral Aneurysms.
Manhas, Amitoz; Nimjee, Shahid M; Agrawal, Abhishek; Zhang, Jonathan; Diaz, Orlando; Zomorodi, Ali R; Smith, Tony; Powers, Ciarán J; Sauvageau, Eric; Klucznik, Richard P; Ferrell, Andrew; Golshani, Kiarash; Stieg, Philip E; Britz, Gavin W
2015-10-01
Aneurysmal subarachnoid hemorrhage (SAH) remains an important health issue in the United States. Despite recent improvements in the diagnosis and treatment of cerebral aneurysms, the mortality rate following aneurysm rupture. In those patients who survive, up to 50% are left severely disabled. The goal of preventing the hemorrhage or re-hemorrhage can only be achieved by successfully excluding the aneurysm from the circulation. This article is a comprehensive review by contemporary vascular neurosurgeons and interventional neuroradiolgists on the modern management of cerebral aneurysms. Copyright © 2015 Elsevier Inc. All rights reserved.
Signal quality of endovascular electroencephalography
NASA Astrophysics Data System (ADS)
He, Bryan D.; Ebrahimi, Mosalam; Palafox, Leon; Srinivasan, Lakshminarayan
2016-02-01
Objective, Approach. A growing number of prototypes for diagnosing and treating neurological and psychiatric diseases are predicated on access to high-quality brain signals, which typically requires surgically opening the skull. Where endovascular navigation previously transformed the treatment of cerebral vascular malformations, we now show that it can provide access to brain signals with substantially higher signal quality than scalp recordings. Main results. While endovascular signals were known to be larger in amplitude than scalp signals, our analysis in rabbits borrows a standard technique from communication theory to show endovascular signals also have up to 100× better signal-to-noise ratio. Significance. With a viable minimally-invasive path to high-quality brain signals, patients with brain diseases could one day receive potent electroceuticals through the bloodstream, in the course of a brief outpatient procedure.
Bevacizumab for the Treatment of Gammaknife Radiosurgery-Induced Brain Radiation Necrosis.
Ma, Yifang; Zheng, Chutian; Feng, Yiping; Xu, Qingsheng
2017-09-01
Radiation necrosis is one of the complications of Gammaknife radiosurgery. The traditional treatment of radiation necrosis carries a high risk of failure, Bevacizumab is an antiangiogenic monoclonal antibody against vascular endothelial growth factor, a known mediator of cerebral edema. It can be used to successfully treat brain radiation necrosis. Two patients with a history of small cell lung cancer presented with metastatic disease to the brain. They underwent Gammaknife radiosurgery to brain metastases. Several months later, magnetic resonance imaging showed radiation necrosis with significant surrounding edema. The patients had a poor response to treatment with dexamethasone. They were eventually treated with bevacizumab (5 mg/kg every 2 weeks, 7.5 mg/kg every 3 weeks, respectively), and the treatment resulted in significant clinical and radiographic improvement. Bevacizumab can be successfully used to treat radiation necrosis induced by Gammaknife radiosurgery in patients with cerebral metastases. It is of particular benefit in patients with poor reaction to corticosteroids and other medications.
Srinivasan, Vivek J.; Mandeville, Emiri T.; Can, Anil; Blasi, Francesco; Climov, Mihail; Daneshmand, Ali; Lee, Jeong Hyun; Yu, Esther; Radhakrishnan, Harsha; Lo, Eng H.; Sakadžić, Sava; Eikermann-Haerter, Katharina; Ayata, Cenk
2013-01-01
Progress in experimental stroke and translational medicine could be accelerated by high-resolution in vivo imaging of disease progression in the mouse cortex. Here, we introduce optical microscopic methods that monitor brain injury progression using intrinsic optical scattering properties of cortical tissue. A multi-parametric Optical Coherence Tomography (OCT) platform for longitudinal imaging of ischemic stroke in mice, through thinned-skull, reinforced cranial window surgical preparations, is described. In the acute stages, the spatiotemporal interplay between hemodynamics and cell viability, a key determinant of pathogenesis, was imaged. In acute stroke, microscopic biomarkers for eventual infarction, including capillary non-perfusion, cerebral blood flow deficiency, altered cellular scattering, and impaired autoregulation of cerebral blood flow, were quantified and correlated with histology. Additionally, longitudinal microscopy revealed remodeling and flow recovery after one week of chronic stroke. Intrinsic scattering properties serve as reporters of acute cellular and vascular injury and recovery in experimental stroke. Multi-parametric OCT represents a robust in vivo imaging platform to comprehensively investigate these properties. PMID:23940761
Prasad, Kalpana; Wiryasaputra, Lynn; Ng, Amanda; Kandiah, Nagaendran
2011-01-01
The contribution of vascular pathology to the rate of progression from mild cognitive impairment (MCI) to Alzheimer's disease (AD) remains unclear. To ascertain the relative roles of cerebral white matter disease and medial temporal atrophy (MTA) in predicting progression from MCI to AD. MCI patients with baseline MRI and ≥18 months of longitudinal follow-up were evaluated. DSM-IV-TR criteria were used to diagnose conversion to dementia. MTA and white matter hyperintensity (WMH) were quantified using the Scheltens scale and modified Fazekas scale. Of a total of 171 MCI patients, 79 patients with baseline MRI and longitudinal follow-up were studied. Twenty-three MCI patients who progressed to dementia (MCI-P) were identified corresponding to a 19.4% annual risk of conversion. In MCI-P patients, the mean Mini-Mental State Examination and Montreal Cognitive Assessment decline was 1.3 and 2.9 points, respectively. MTA, periventricular WMH and deep subcortical WMH were significantly greater in the MCI-P cohort. WMH was found to predict MCI-P with an odds ratio of 7.69 (p = 0.03). MTA and deep subcortical WMH independently predict conversion from MCI to AD. Optimization of vascular risk factors among patients with MCI can potentially reduce the conversion from MCI to AD. Copyright © 2011 S. Karger AG, Basel.
Mimenza-Alvarado, Alberto; Aguilar-Navarro, Sara G; Yeverino-Castro, Sara; Mendoza-Franco, César; Ávila-Funes, José Alberto; Román, Gustavo C
2018-01-01
Cerebral small-vessel disease (SVD) represents the most frequent type of vascular brain lesions, often coexisting with Alzheimer disease (AD). By quantifying white matter hyperintensities (WMH) and hippocampal and parietal atrophy, we aimed to describe the prevalence and severity of SVD among older adults with normal cognition (NC), mild cognitive impairment (MCI), and probable AD and to describe associated risk factors. This study included 105 older adults evaluated with magnetic resonance imaging and clinical and neuropsychological tests. We used the Fazekas scale (FS) for quantification of WMH, the Scheltens scale (SS) for hippocampal atrophy, and the Koedam scale (KS) for parietal atrophy. Logistic regression models were performed to determine the association between FS, SS, and KS scores and the presence of NC, MCI, or probable AD. Compared to NC subjects, SVD was more prevalent in MCI and probable AD subjects. After adjusting for confounding factors, logistic regression showed a positive association between higher scores on the FS and probable AD (OR = 7.6, 95% CI 2.7-20, p < 0.001). With the use of the SS and KS (OR = 4.5, 95% CI 3.5-58, p = 0.003 and OR = 8.9, 95% CI 1-72, p = 0.04, respectively), the risk also remained significant for probable AD. These results suggest an association between severity of vascular brain lesions and neurodegeneration.
Hulette, Christine M.; Ervin, John F.; Edmonds, Yvette; Antoine, Samantha; Stewart, Nicolas; Szymanski, Mari H.; Hayden, Kathleen M; Pieper, Carl F.; Burke, James R.; Welsh-Bohmer, Kathleen A.
2009-01-01
We previously found that vascular smooth muscle actin (SMA) is reduced in the brains of patients with late stage Alzheimer disease (AD) compared to brains of non-demented, neuropathologically normal subjects. To assess the pathogenetic significance and disease specificity of this finding, we studied 3 additional patient groups: non-demented subjects without significant AD type pathology (“Normal”, n = 20); non-demented subjects with frequent senile plaques at autopsy (“Preclinical AD”, n = 20); and subjects with frontotemporal dementia, (“FTD”, n = 10). The groups were matched for gender and age with those previously reported; SMA immunohistochemistry and image analysis were performed as previously described. Surprisingly, SMA expression in arachnoid, cerebral cortex and white matter arterioles was greater in the Preclinical AD group than in the Normal and FTD groups. The plaques were not associated with amyloid angiopathy or other vascular disease in this group. SMA expression in the brains of the Normal group was intermediate between the Preclinical AD and FTD groups. All 3 groups exhibited much greater SMA expression than in our previous report. The presence of frequent plaques and increased arteriolar SMA expression in the brains of non-demented subjects suggest that increased SMA expression might represent a physiologic response to neurodegeneration that could prevent or delay overt expression dementia in AD. PMID:19287310
[New World of Vascular-Function Developed with CAVI, PWV and ABI].
Shirai, Kohji
2014-09-01
Arteriosclerotic diseases are becoming a serious problem all over the world. However, the evaluation of arteriosclerosis quantitatively and non-invasively has been very difficult. Pulse-wave velocities have been used globally. Their significance was mostly established, but the problem is that PWV depends on the blood pressure at the time of measurement. The cardio-ankle vascular index (CAVI) was recently presented and produced from the stiffness parameter beta theory and Bramwell-Hill's equation. CAVI was independent from the blood pressure at the time of measurement. CAVI showed high values in arteriosclerotic diseases, such as coronary stenosis, cervical arteriosclerosis, cerebral infarction, and chronic kidney diseases. Furthermore, CAVI reflected so-called risk factors such as hypertension, diabetes mellitus, dyslipidemia, and smoking. Also, controlling most of those risk factors improved CAVI. A low ankle-brachial blood pressure index (ABI) (< 0.9) reflected stenosis of the femoral artery. ABI (0.9-0.99) has been reported to be a predictor of coronary artery diseases. A combination of those indices might be useful in practical medicine. Furthermore, it is known that arterial stiffness reflects the Windkessel function. The positive correlation between CAVI and the left ventricular function indicated that the heart-arterial relationship could be evaluated using CAVI. Therefore, a new study field involving a collaborating system between heart muscle and arteries could be developed using CAVI.
Lester, Steven J.; Eleid, Mackram F.; Khandheria, Bijoy K.; Hurst, R. Todd
2009-01-01
OBJECTIVE: To determine the ability of carotid intima-media thickness (CIMT) and coronary artery calcium score (CACS) to detect subclinical atherosclerosis in a young to middle-aged, low-risk, primary-prevention population. PATIENTS AND METHODS: Patients aged 36 to 59 years who underwent determination of CIMT and CACS at our institution between May 1, 2004, and April 1, 2008, were included in the study. Those with diabetes mellitus or a history of coronary, peripheral, or cerebral vascular disease were excluded. Other information, such as Framingham risk score (FRS), was obtained by a review of clinical and laboratory data. RESULTS: Of 118 patients, 89 (75%) had a CACS of zero and 94 (80%) were men; mean ± SD age was 48.9±5.7 years. The mean FRS of this group was 4.0; 86 patients (97%) were considered at low risk (<1% annualized rate) of cardiovascular events. Evidence of carotid atherosclerosis was found in 42 (47%; 95% confidence interval, 37%-58%) of these 89 patients; carotid plaque was found in 30 (34%); and CIMT above the 75th percentile was found in 12 (13%) of age-, sex-, and race-matched control patients. Of the 40 patients with low-risk CIMT (below the 50th percentile), 4 (10%) had a CACS at or above the 50th percentile. CONCLUSION: Subclinical vascular disease can be detected by CIMT evaluation in young to middle-aged patients with a low FRS and a CACS of zero. These findings have important implications for vascular disease screening and the implementation of primary-prevention strategies. PMID:19252109
Li, Jia; Zhang, Gencheng; Holtby, Helen; Guerguerian, Anne-Marie; Cai, Sally; Humpl, Tilman; Caldarone, Christopher A; Redington, Andrew N; Van Arsdell, Glen S
2008-01-01
Ischemic brain injury is an important morbidity in neonates after the Norwood procedure. Its relationship to systemic hemodynamic oxygen transport is poorly understood. Sixteen neonates undergoing the Norwood procedure were studied. Continuous cerebral oxygen saturation was measured by near-infrared spectroscopy. Continuous oxygen consumption was measured by respiratory mass spectrometry. Pulmonary and systemic blood flow, systemic vascular resistance, oxygen delivery, and oxygen extraction ratio were derived with measurements of arterial, and superior vena cava and pulmonary venous gases and pressures at 2- to 4-hour intervals during the first 72 hours in the intensive care unit. Mean cerebral oxygen saturation was 66% +/- 12% before the operation, reduced to 51% +/- 13% on arrival in the intensive care unit, and remained low during the first 8 hours; it increased to 56% +/- 9% at 72 hours, still significantly lower than the preoperative level (P < .05). Postoperatively, cerebral oxygen saturation was closely and positively correlated with systemic arterial pressure, arterial oxygen saturation, and arterial oxygen tension and negatively with oxygen extraction ratio (P < .0001 for all). Cerebral oxygen saturation was moderately and positively correlated with systemic blood flow and oxygen delivery (P < .0001 for both). It was weakly and positively correlated with pulmonary blood flow (P = .001) and hemoglobin (P = .02) and negatively correlated with systemic vascular resistance (P = .003). It was not correlated with oxygen consumption (P > .05). Cerebral oxygen saturation decreased significantly in neonates during the early postoperative period after the Norwood procedure and was significantly influenced by systemic hemodynamic and metabolic events. As such, hemodynamic interventions to modify systemic oxygen transport may provide further opportunities to reduce the risk of cerebral ischemia and improve neurodevelopmental outcomes.
Baumbach, Andreas; Mullen, Michael; Brickman, Adam M; Aggarwal, Suneil K; Pietras, Cody G; Forrest, John K; Hildick-Smith, David; Meller, Stephanie M; Gambone, Louise; den Heijer, Peter; Margolis, Pauliina; Voros, Szilard; Lansky, Alexandra J
2015-05-01
This study aimed to evaluate the safety and performance of the TriGuard™ Embolic Deflection Device (EDD), a nitinol mesh filter positioned in the aortic arch across all three major cerebral artery take-offs to deflect emboli away from the cerebral circulation, in patients undergoing transcatheter aortic valve replacement (TAVR). The prospective, multicentre DEFLECT I study (NCT01448421) enrolled 37 consecutive subjects undergoing TAVR with the TriGuard EDD. Subjects underwent clinical and cognitive follow-up to 30 days; cerebral diffusion-weighted magnetic resonance imaging (DW-MRI) was performed pre-procedure and at 4±2 days post procedure. The device performed as intended with successful cerebral coverage in 80% (28/35) of cases. The primary safety endpoint (in-hospital EDD device- or EDD procedure-related cardiovascular mortality, major stroke disability, life-threatening bleeding, distal embolisation, major vascular complications, or need for acute cardiac surgery) occurred in 8.1% of subjects (VARC-defined two life-threatening bleeds and one vascular complication). The presence of new cerebral ischaemic lesions on post-procedure DW-MRI (n=28) was similar to historical controls (82% vs. 76%, p=NS). However, an exploratory analysis found that per-patient total lesion volume was 34% lower than reported historical data (0.2 vs. 0.3 cm3), and 89% lower in patients with complete (n=17) versus incomplete (n=10) cerebral vessel coverage (0.05 vs. 0.45 cm3, p=0.016). Use of the first-generation TriGuard EDD during TAVR is safe, and device performance was successful in 80% of cases during the highest embolic-risk portions of the TAVR procedure. The potential of the TriGuard EDD to reduce total cerebral ischaemic burden merits further randomised investigation.
A fast MEMS scanning photoacoustic microscopy system and its application in glioma study
NASA Astrophysics Data System (ADS)
Bi, Renzhe; Balasundaram, Ghayathri; Jeon, Seungwan; Pu, Yang; Tay, Hui Chien; Kim, Chulhong; Olivo, Malini
2018-02-01
We present a water-proof Microelectromechanical systems (MEMS) based scanning optical resolution Photoacoustic Microscopy (OR-PAM) system and its application in glioma tumor mouse model study. The presented OR-PAM system has high optical resolution ( 3 μm) and high scanning speed (up to 50 kHz A-scan rate), which is ideal for cerebral vascular imaging. In this study, the mice with glioma tumor are treated with vascular disrupting agent (VDA). OR-PAM system is utilized to image the cerebral with the whole skull intact before and after the injection of VDA. By image registration, the response of every single blood vessel can be traced. This will provide us deeper understanding of the drug effect.
Optical fiber spectroscopy measures perfusion of the brain in a murine Alzheimer's disease model
NASA Astrophysics Data System (ADS)
Ahn, Hyung Jin; Strickland, Sidney; Krueger, James; Gareau, Daniel
2014-02-01
Optical fiber spectroscopy is a versatile tool for measuring diffuse reflectance and extracting absorption information that can noninvasively quantify the presence of chromophores such as oxyhemoglobin and deoxy-hemoglobin in tissues. Cerebrovascular abnormalities were widely recognized in Alzheimer's disease (AD) patients. We analyzed blood volume fraction and level of oxygenated hemoglobin in Tg6799 mice, which are transgenic mice expressing five different familial Alzheimer disease-associated mutations in the human amyloid precursor protein and presenilin-1 genes. Diffuse reflectance spectra were iteratively fit as weighted sums of oxy- and deoxy-hemoglobin. Our observations showed slightly hypoxic conditions and significantly increased blood volume in the Alzheimer's mice versus wild type. These results suggest that hyperperfusion of our AD mice may be a compensating mechanism for impaired cerebral vascular function and somehow relevant with early stage of AD patients. Ongoing work focuses on developing a cannula fixture that allows measurement in awake, behaving animals.
Alurkar, Anand; Karanam, Lakshmi Sudha Prasanna; Shah, Shripal; Mare, Pandurang
2016-10-01
Familial Hypercholesterolaemia (FH) is a monogenic autosomal dominant disorder affecting 1 in 500 individuals. We report a case of 32-year-old female with FH, previously not on any treatment, who presented with recurrent bilateral Middle Cerebral Artery (MCA) territory strokes and dyspnoea on exertion due to severe panvascualar disease involving descending aorta, innominate, subclavian, common carotid, internal carotid and coronary vessels. Her complete clinical work up was done and was started on lipid lowering drug treatment and low calorie diet. She underwent simultaneous bilateral carotid stenting followed by coronary artery bypass surgery at a later date. In the present scenario we want to emphasize the importance of early detection and treatment of individuals with FH, failing of which results in premature and accelerated atherosclerosis causing multisystemic vascular disease with significant morbidity and mortality. Screening of first degree relatives is important owing to the autosomal dominant inheritance pattern of the FH.
Alurkar, Anand; Shah, Shripal; Mare, Pandurang
2016-01-01
Familial Hypercholesterolaemia (FH) is a monogenic autosomal dominant disorder affecting 1 in 500 individuals. We report a case of 32-year-old female with FH, previously not on any treatment, who presented with recurrent bilateral Middle Cerebral Artery (MCA) territory strokes and dyspnoea on exertion due to severe panvascualar disease involving descending aorta, innominate, subclavian, common carotid, internal carotid and coronary vessels. Her complete clinical work up was done and was started on lipid lowering drug treatment and low calorie diet. She underwent simultaneous bilateral carotid stenting followed by coronary artery bypass surgery at a later date. In the present scenario we want to emphasize the importance of early detection and treatment of individuals with FH, failing of which results in premature and accelerated atherosclerosis causing multisystemic vascular disease with significant morbidity and mortality. Screening of first degree relatives is important owing to the autosomal dominant inheritance pattern of the FH. PMID:27891422
Bruner, Emiliano; Mantini, Simone; Perna, Agostino; Maffei, Carlotta; Manzi, Giorgio
2005-01-01
The middle meningeal vascular network leaves its traces on the endocranial surface because of the tight relationship between neurocranial development and brain growth. Analysing the endocast of fossil specimens, it is therefore possible to describe the morphology of these structures, leading inferences on the cerebral physiology and metabolism in extinct human groups. In this paper, general features of the meningeal vascular traces are described for specimens included in the Homo erectus, Homo neanderthalensis, and Homo sapiens hypodigms. The complexity of the arterial network is quantified by its fractal dimension, calculated through the box-counting method. Modern humans show significant differences from the other two taxa because of the anterior vascular dominance and the larger fractal dimension. Neither the fractal dimension nor the anterior development are merely associated with cranial size increase. Considering the differences between Neanderthals and modern humans, these results may be interpreted in terms of phylogeny, cerebral functions, or cranial structural network.
Paraskevas, George P; Bougea, Anastasia; Synetou, Margarita; Vassilopoulou, Sophia; Anagnostou, Evangelos; Voumvourakis, Konstantinos; Iliopoulos, Alexios; Spengos, Konstantinos
2014-01-01
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is an inherited small vessel disease caused by mutations of the NOTCH3 gene, which result in degeneration of vascular smooth muscle cells, arteriolar stenosis, and impaired cerebral blood flow. For clinicians this is the commonest hereditary adult-onset condition causing stroke and vascular dementia at middle age. Atypical phenotypes have been recognized, and the disease is probably underdiagnosed in the wider stroke population. Coexistence of autoimmunity is atypical and has been described only in occasional patients. Three members of a Greek family from the island of Lesvos of North East Greece were evaluated. The patients come from a four-generation family in which there were at least seven members with clinical data suggestive of CADASIL. We describe here the clinical, imaging and biochemical findings in this family with R169C mutation at exon 4 and presenting additional clinical and biochemical findings suggestive of autoimmune disorder. DNA was extracted from whole blood using standard procedures for sequencing. Three affected members of this family carried the R169C. In a phenotypic analysis of affected individuals from four generations with CADASIL, the disease was characterized by migraine attacks, recurrent subcortical infarcts, and cognitive decline with typical anterior temporal lobe white matter lesions. At least 3 mutation carriers from two generations had increased antinuclear antibody (ANA) titers and various combinations of rash, joint pains, photosensitivity, and renal involvement. This is a rare description of the coexistence of autoimmunity in CADASIL patients with possible worsening clinical effects. The study extends the spectrum of atypical presentation of CADASIL. The coexistence of autoimmunity does not necessarily exclude CADASIL, but may cause an additional diagnostic and therapeutic challenge. This autoimmune disorder may have increased the severity of the disease and, additionally, may be related to the pathogenetic mechanisms of CADASIL. It is possible that the NOTCH3 mutation alone is not enough to trigger autoimmunity since, in the case of our family, the R169C mutation has already been described in other families with no evidence of coexistent autoimmunity. Other genetic or environmental factors or interactions and/or common pathways between the vascular and immune systems are probably co-operating. Further, prospective studies are needed to clarify the prevalence and types of autoimmune disorders present in CADASIL families. © 2014 S. Karger AG, Basel.
Marowsky, Anne; Haenel, Karen; Bockamp, Ernesto; Heck, Rosario; Rutishauser, Sibylle; Mule, Nandkishor; Kindler, Diana; Rudin, Markus; Arand, Michael
2016-12-01
Microsomal epoxide hydrolase (mEH) is a detoxifying enzyme for xenobiotic compounds. Enzymatic activity of mEH can be greatly increased by a point mutation, leading to an E404D amino acid exchange in its catalytic triad. Surprisingly, this variant is not found in any vertebrate species, despite the obvious advantage of accelerated detoxification. We hypothesized that this evolutionary avoidance is due to the fact that the mEH plays a dualistic role in detoxification and control of endogenous vascular signaling molecules. To test this, we generated mEH E404D mice and assessed them for detoxification capacity and vascular dynamics. In liver microsomes from these mice, turnover of the xenobiotic compound phenanthrene-9,10-oxide was four times faster compared to WT liver microsomes, confirming accelerated detoxification. mEH E404D animals also showed faster metabolization of a specific class of endogenous eicosanoids, arachidonic acid-derived epoxyeicosatrienoic acids (EETs) to dihydroxyeicosatrienoic acids (DHETs). Significantly higher DHETs/EETs ratios were found in mEH E404D liver, urine, plasma, brain and cerebral endothelial cells compared to WT controls, suggesting a broad impact of the mEH mutant on endogenous EETs metabolism. Because EETs are strong vasodilators in cerebral vasculature, hemodynamics were assessed in mEH E404D and WT cerebral cortex and hippocampus using cerebral blood volume (CBV)-based functional magnetic resonance imaging (fMRI). Basal CBV 0 levels were similar between mEH E404D and control mice in both brain areas. But vascular reactivity and vasodilation in response to the vasodilatory drug acetazolamide were reduced in mEH E404D forebrain compared to WT controls by factor 3 and 2.6, respectively. These results demonstrate a critical role for mEH E404D in vasodynamics and suggest that deregulation of endogenous signaling pathways is the undesirable gain of function associated with the E404D variant.
Fabrication of cerebral aneurysm simulator with a desktop 3D printer
NASA Astrophysics Data System (ADS)
Liu, Yu; Gao, Qing; Du, Song; Chen, Zichen; Fu, Jianzhong; Chen, Bing; Liu, Zhenjie; He, Yong
2017-05-01
Now, more and more patients are suffering cerebral aneurysm. However, long training time limits the rapid growth of cerebrovascular neurosurgeons. Here we developed a novel cerebral aneurysm simulator which can be better represented the dynamic bulging process of cerebral aneurysm The proposed simulator features the integration of a hollow elastic vascular model, a skull model and a brain model, which can be affordably fabricated at the clinic (Fab@Clinic), under $25.00 each with the help of a low-cost desktop 3D printer. Moreover, the clinical blood flow and pulsation pressure similar to the human can be well simulated, which can be used to train the neurosurgical residents how to clip aneurysms more effectively.
Cerebroprotective functions of HO-2.
Parfenova, Helena; Leffler, Charles W
2008-01-01
The constitutive isoform of heme oxygenase, HO-2, is highly expressed in the brain and in cerebral vessels. HO-2 functions in the brain have been evaluated using pharmacological inhibitors of the enzyme and HO-2 gene deletion in in vivo animal models and in cultured cells (neurons, astrocytes, cerebral vascular endothelial cells). Rapid activation of HO-2 via post-translational modifications without upregulation of HO-2 expression or HO-1 induction coincides with the increase in cerebral blood flow aimed at maintaining brain homeostasis and neuronal survival during seizures, hypoxia, and hypotension. Pharmacological inhibition or gene deletion of brain HO-2 exacerbates oxidative stress induced by seizures, glutamate, and inflammatory cytokines, and causes cerebral vascular injury. Carbon monoxide (CO) and bilirubin, the end products of HO-catalyzed heme degradation, have distinct cytoprotective functions. CO, by binding to a heme prosthetic group, regulates the key components of cell signaling, including BK(Ca) channels, guanylyl cyclase, NADPH oxidase, and the mitochondria respiratory chain. Cerebral vasodilator effects of CO are mediated via activation of BK(Ca) channels and guanylyl cyclase. CO, by inhibiting the major components of endogenous oxidant-generating machinery, NADPH oxidase and the cytochrome C oxidase of the mitochondrial respiratory chain, blocks formation of reactive oxygen species. Bilirubin, via redox cycling with biliverdin, is a potent oxidant scavenger that removes preformed oxidants. Overall, HO-2 has dual housekeeping cerebroprotective functions by maintaining autoregulation of cerebral blood flow aimed at improving neuronal survival in a changing environment, and by providing an effective defense mechanism that blocks oxidant formation and prevents cell death caused by oxidative stress.
ERIC Educational Resources Information Center
Mayer, Jamie F.; Bishop, Lilli A.; Murray, Laura L.
2012-01-01
Purpose: Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, better known as CADASIL, is a rare, genetic form of early-onset vascular dementia. The purpose of this study was to use a modified version of Attention Process Training--II (APT-II; Sohlberg, Johnson, Paule, Raskin, & Mateer, 2001) with an…
Takeda, R; Matsubara, T; Miyamori, I; Hatakeyama, H; Morise, T
1995-05-01
The incidence of vascular complications in 224 patients with aldosterone-producing adenoma (APA) which was proven on adrenal surgery, was compared to that in 224 sex- and age-matched patients with essential hypertension (EHT). The incidence of cerebral hemorrhage was significantly higher (p < 0.05) in the patients with APA when compared to the EHT group. On the other hand, the incidence of myocardial infarction and/or congestive heart failure in the APA group was lower, although this difference did not reach statistical significance. Diastolic blood pressure in the APA group was significantly higher (p < 0.001) in the EHT group. However, a significant difference in diastolic blood pressure was not detected between the APA groups with and without vascular complications, whereas in the EHT group diastolic blood pressure was significantly higher (p < 0.001) in cases with vascular complications as compared to those without complications. As a possible factor contributing to the higher incidence of cerebral hemorrhage in the APA group, proteinuria was suggested. It was recommended that patients with primary aldosteronism should undergo operation when localization of the APA is established.
Fan, Fan; Ge, Ying; Lv, Wenshan; Elliott, Matthew R.; Muroya, Yoshikazu; Hirata, Takashi; Booz, George W.; Roman, Richard J.
2016-01-01
Cytochrome P450s enzymes catalyze the metabolism of arachidonic acid to epoxyeicosatrienoic acids (EETs), dihydroxyeicosatetraenoic acid and hydroxyeicosatetraeonic acid (HETEs). 20-HETE is a vasoconstrictor that depolarizes vascular smooth muscle cells by blocking K+ channels. EETs serve as endothelial derived hyperpolarizing factors. Inhibition of the formation of 20-HETE impairs the myogenic response and autoregulation of renal and cerebral blood flow. Changes in the formation of EETs and 20-HETE have been reported in hypertension and drugs that target these pathways alter blood pressure in animal models. Sequence variants in CYP4A11 and CYP4F2 that produce 20-HETE, UDP-glucuronosyl transferase involved in the biotransformation of 20-HETE and soluble epoxide hydrolase that inactivates EETs are associated with hypertension in human studies. 20-HETE contributes to the regulation of vascular hypertrophy, restenosis, angiogenesis and inflammation. It also promotes endothelial dysfunction and contributes to cerebral vasospasm and ischemia-reperfusion injury in the brain, kidney and heart. This review will focus on the role of 20-HETE in vascular dysfunction, inflammation, ischemic and hemorrhagic stroke and cardiac and renal ischemia reperfusion injury. PMID:27100515
Comparative Pathology of Aging Great Apes: Bonobos, Chimpanzees, Gorillas, and Orangutans.
Lowenstine, L J; McManamon, R; Terio, K A
2016-03-01
The great apes (chimpanzees, bonobos, gorillas, and orangutans) are our closest relatives. Despite the many similarities, there are significant differences in aging among apes, including the human ape. Common to all are dental attrition, periodontitis, tooth loss, osteopenia, and arthritis, although gout is uniquely human and spondyloarthropathy is more prevalent in apes than humans. Humans are more prone to frailty, sarcopenia, osteoporosis, longevity past reproductive senescence, loss of brain volume, and Alzheimer dementia. Cerebral vascular disease occurs in both humans and apes. Cardiovascular disease mortality increases in aging humans and apes, but coronary atherosclerosis is the most significant type in humans. In captive apes, idiopathic myocardial fibrosis and cardiomyopathy predominate, with arteriosclerosis of intramural coronary arteries. Similar cardiac lesions are occasionally seen in wild apes. Vascular changes in heart and kidneys and aortic dissections in gorillas and bonobos suggest that hypertension may be involved in pathogenesis. Chronic kidney disease is common in elderly humans and some aging apes and is linked with cardiovascular disease in orangutans. Neoplasms common to aging humans and apes include uterine leiomyomas in chimpanzees, but other tumors of elderly humans, such as breast, prostate, lung, and colorectal cancers, are uncommon in apes. Among the apes, chimpanzees have been best studied in laboratory settings, and more comparative research is needed into the pathology of geriatric zoo-housed and wild apes. Increasing longevity of humans and apes makes understanding aging processes and diseases imperative for optimizing quality of life in all the ape species. © The Author(s) 2015.
Response of local vascular volumes to lower body negative pressure stress
NASA Technical Reports Server (NTRS)
Wolthuis, R. A.; Leblanc, A.; Carpentier, W. A.; Bergman, S. A., Jr.
1975-01-01
The present study involved an intravenous injection of radioactive iodinated serum albumin, equilibration of this isotope within the vascular space, and the continuous measurement of isotope activity over selected anatomical areas before, during and following multiple human LBNP tests. Both rate and magnitude of vascular pooling were distinctly different within each of five selected lower body anatomical areas. In the upper body, all areas except the abdomen showed depletions from their resting vascular volumes during LBNP. The presence of uniquely different pooling patterns in the lower body, the apparent stability of abdominal vascular volumes, and a possible decrease in cerebral blood volume during LBNP represent the major findings of this study.
Non operative management of cerebral abscess
NASA Astrophysics Data System (ADS)
Batubara, C. A.
2018-03-01
Cerebral abscess is a focal intracerebral infection that begins as a localized area of cerebritis and develops into a collection of pus surrounded by a well-vascularized capsule. Patients typically present with varying combinations of aheadache, progressive neurologic deficits, seizures, and evidence of infection. Computed Tomography and Magnetic Resonance Imagingare the most important diagnostic tools in diagnosing cerebral abscess. The treatment of cerebral abscess has been a challenge. Small cerebralabscesses (< 2.5 cm) have been treated empirically with antibiotics. Elevation of intracranial pressure and threatening herniation can be managed by the use of intravenous mannitol (or hypertonic saline) and dexamethasone. Acute seizures should be terminated with the administration of intravenous benzodiazepines or by intravenous fosphenytoin. Anticonvulsants prophylaxis must be initiated immediately and continued at least one year due to high risk in the cerebral abscesses. Easier detection of underlying conditions, monitoring of the therapeutic progress, and recognition of complications have probably contributed to the improved prognosis.
Poittevin, Marine; Bonnin, Philippe; Pimpie, Cynthia; Rivière, Léa; Sebrié, Catherine; Dohan, Anthony; Pocard, Marc; Charriaut-Marlangue, Christiane; Kubis, Nathalie
2015-03-01
Diabetes increases the risk of stroke by three, increases related mortality, and delays recovery. We aimed to characterize functional and structural alterations in cerebral microvasculature before and after experimental cerebral ischemia in a mouse model of type 1 diabetes. We hypothesized that preexisting brain microvascular disease in patients with diabetes might partly explain increased stroke severity and impact on outcome. Diabetes was induced in 4-week-old C57Bl/6J mice by intraperitoneal injections of streptozotocin (60 mg/kg). After 8 weeks of diabetes, the vasoreactivity of the neurovascular network to CO2 was abolished and was not reversed by nitric oxide (NO) donor administration; endothelial NO synthase (eNOS) and neuronal NO synthase (nNOS) mRNA, phospho-eNOS protein, nNOS, and phospho-nNOS protein were significantly decreased; angiogenic and vessel maturation factors (vascular endothelial growth factor a [VEGFa], angiopoietin 1 (Ang1), Ang2, transforming growth factor-β [TGF-β], and platelet-derived growth factor-β [PDGF-β]) and blood-brain barrier (BBB) occludin and zona occludens 1 (ZO-1) expression were significantly decreased; and microvessel density was increased without changes in ultrastructural imaging. After permanent focal cerebral ischemia induction, infarct volume and neurological deficit were significantly increased at D1 and D7, and neuronal death (TUNEL+ / NeuN+ cells) and BBB permeability (extravasation of Evans blue) at D1. At D7, CD31+ / Ki67+ double-immunolabeled cells and VEGFa and Ang2 expression were significantly increased, indicating delayed angiogenesis. We show that cerebral microangiopathy thus partly explains stroke severity in diabetes. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
Starosolski, Zbigniew; Villamizar, Carlos A.; Rendon, David; Paldino, Michael J.; Milewicz, Dianna M.; Ghaghada, Ketan B.; Annapragada, Ananth V.
2015-01-01
Abnormalities in the cerebrovascular system play a central role in many neurologic diseases. The on-going expansion of rodent models of human cerebrovascular diseases and the need to use these models to understand disease progression and treatment has amplified the need for reproducible non-invasive imaging methods for high-resolution visualization of the complete cerebral vasculature. In this study, we present methods for in vivo high-resolution (19 μm isotropic) computed tomography imaging of complete mouse brain vasculature. This technique enabled 3D visualization of large cerebrovascular networks, including the Circle of Willis. Blood vessels as small as 40 μm were clearly delineated. ACTA2 mutations in humans cause cerebrovascular defects, including abnormally straightened arteries and a moyamoya-like arteriopathy characterized by bilateral narrowing of the internal carotid artery and stenosis of many large arteries. In vivo imaging studies performed in a mouse model of Acta2 mutations demonstrated the utility of this method for studying vascular morphometric changes that are practically impossible to identify using current histological methods. Specifically, the technique demonstrated changes in the width of the Circle of Willis, straightening of cerebral arteries and arterial stenoses. We believe the use of imaging methods described here will contribute substantially to the study of rodent cerebrovasculature. PMID:25985192
Risk factors and global cognitive status related to brain arteriolosclerosis in elderly individuals
Ighodaro, Eseosa T; Abner, Erin L; Fardo, David W; Lin, Ai-Ling; Katsumata, Yuriko; Schmitt, Frederick A; Kryscio, Richard J; Jicha, Gregory A; Neltner, Janna H; Monsell, Sarah E; Kukull, Walter A; Moser, Debra K; Appiah, Frank; Bachstetter, Adam D; Van Eldik, Linda J
2016-01-01
Risk factors and cognitive sequelae of brain arteriolosclerosis pathology are not fully understood. To address this, we used multimodal data from the National Alzheimer's Coordinating Center and Alzheimer's Disease Neuroimaging Initiative data sets. Previous studies showed evidence of distinct neurodegenerative disease outcomes and clinical-pathological correlations in the “oldest-old” compared to younger cohorts. Therefore, using the National Alzheimer's Coordinating Center data set, we analyzed clinical and neuropathological data from two groups according to ages at death: < 80 years (n = 1008) and ≥80 years (n = 1382). In both age groups, severe brain arteriolosclerosis was associated with worse performances on global cognition tests. Hypertension (but not diabetes) was a brain arteriolosclerosis risk factor in the younger group. In the ≥ 80 years age at death group, an ABCC9 gene variant (rs704180), previously associated with aging-related hippocampal sclerosis, was also associated with brain arteriolosclerosis. A post-hoc arterial spin labeling neuroimaging experiment indicated that ABCC9 genotype is associated with cerebral blood flow impairment; in a convenience sample from Alzheimer's Disease Neuroimaging Initiative (n = 15, homozygous individuals), non-risk genotype carriers showed higher global cerebral blood flow compared to risk genotype carriers. We conclude that brain arteriolosclerosis is associated with altered cognitive status and a novel vascular genetic risk factor. PMID:26738751
Kamat, Pradip K; Kyles, Philip; Kalani, Anuradha; Tyagi, Neetu
2016-05-01
Elevated plasma total homocysteine (Hcy) level is associated with an increased risk of Alzheimer's disease (AD). During transsulfuration pathways, Hcy is metabolized into hydrogen sulfide (H2S), which is a synaptic modulator, as well as a neuro-protective agent. However, the role of hydrogen sulfide, as well as N-methyl-D-aspartate receptor (NMDAR) activation, in hyperhomocysteinemia (HHcy) induced blood-brain barrier (BBB) disruption and synaptic dysfunction, leading to AD pathology is not clear. Therefore, we hypothesized that the inhibition of neuronal NMDA-R by H2S and MK801 mitigate the Hcy-induced BBB disruption and synapse dysfunction, in part by decreasing neuronal matrix degradation. Hcy intracerebral (IC) treatment significantly impaired cerebral blood flow (CBF), and cerebral circulation and memory function. Hcy treatment also decreases the expression of cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE) in the brain along with increased expression of NMDA-R (NR1) and synaptosomal Ca(2+) indicating excitotoxicity. Additionally, we found that Hcy treatment increased protein and mRNA expression of intracellular adhesion molecule 1 (ICAM-1), matrix metalloproteinase (MMP)-2, and MMP-9 and also increased MMP-2 and MMP-9 activity in the brain. The increased expression of ICAM-1, glial fibrillary acidic protein (GFAP), and the decreased expression of vascular endothelial (VE)-cadherin and claudin-5 indicates BBB disruption and vascular inflammation. Moreover, we also found decreased expression of microtubule-associated protein 2 (MAP-2), postsynaptic density protein 95 (PSD-95), synapse-associated protein 97 (SAP-97), synaptosomal-associated protein 25 (SNAP-25), synaptophysin, and brain-derived neurotrophic factor (BDNF) showing synapse dysfunction in the hippocampus. Furthermore, NaHS and MK801 treatment ameliorates BBB disruption, CBF, and synapse functions in the mice brain. These results demonstrate a neuro-protective effect of H2S over Hcy-induced cerebrovascular pathology through the NMDA receptor. Our present study clearly signifies the therapeutic ramifications of H2S for cerebrovascular diseases such as Alzheimer's disease. Graphical Abstract ᅟ.
Zeestraten, Eva Anna; Benjamin, Philip; Lambert, Christian; Lawrence, Andrew John; Williams, Owen Alan; Morris, Robin Guy; Barrick, Thomas Richard; Markus, Hugh Stephen
2016-01-01
Cerebral small vessel disease (SVD) is the major cause of vascular cognitive impairment, resulting in significant disability and reduced quality of life. Cognitive tests have been shown to be insensitive to change in longitudinal studies and, therefore, sensitive surrogate markers are needed to monitor disease progression and assess treatment effects in clinical trials. Diffusion tensor imaging (DTI) is thought to offer great potential in this regard. Sensitivity of the various parameters that can be derived from DTI is however unknown. We aimed to evaluate the differential sensitivity of DTI markers to detect SVD progression, and to estimate sample sizes required to assess therapeutic interventions aimed at halting decline based on DTI data. We investigated 99 patients with symptomatic SVD, defined as clinical lacunar syndrome with MRI confirmation of a corresponding infarct as well as confluent white matter hyperintensities over a 3 year follow-up period. We evaluated change in DTI histogram parameters using linear mixed effect models and calculated sample size estimates. Over a three-year follow-up period we observed a decline in fractional anisotropy and increase in diffusivity in white matter tissue and most parameters changed significantly. Mean diffusivity peak height was the most sensitive marker for SVD progression as it had the smallest sample size estimate. This suggests disease progression can be monitored sensitively using DTI histogram analysis and confirms DTI’s potential as surrogate marker for SVD. PMID:26808982
Rojas, Santiago; Brugulat-Serrat, Anna; Bargalló, Nuria; Minguillón, Carolina; Tucholka, Alan; Falcon, Carles; Carvalho, Andreia; Morán, Sebastian; Esteller, Manel; Gramunt, Nina; Fauria, Karine; Camí, Jordi; Molinuevo, José L; Gispert, Juan D
2018-02-01
Cerebral white matter hyperintensities are believed the consequence of small vessel disease and are associated with risk and progression of Alzheimer's disease. The ɛ4 allele of the APOE gene is the major factor accountable for Alzheimer's disease heritability. However, the relationship between white matter hyperintensities and APOE genotype in healthy subjects remains controversial. We investigated the association between APOE-ɛ4 and vascular risk factors with white matter hyperintensities, and explored their interactions, in a cohort of cognitively healthy adults (45-75 years). White matter hyperintensities were assessed with the Fazekas Scale from magnetic resonance images (575 participants: 74 APOE-ɛ4 homozygotes, 220 heterozygotes and 281 noncarriers) and classified into normal (Fazekas < 2) and pathological (≥2). Stepwise logistic regression was used to study the association between pathological Fazekas and APOE genotype after correcting for cardiovascular and sociodemographic factors. APOE-ɛ4 homozygotes, but not heterozygotes, bear a significantly higher risk (OR 3.432; 95% CI [1.297-9.082]; p = 0.013) of displaying pathological white matter hyperintensities. As expected, aging, hypertension and cardiovascular and dementia risk scales were also positively associated to pathological white matter hyperintensities, but these did not modulate the effect of APOE-ɛ4/ɛ4. In subjects at genetic risk of developing Alzheimer's disease, the control of modifiable risk factors of white matter hyperintensities is of particular relevance to reduce or delay dementia's onset.
Girard, Romuald; Zeineddine, Hussein A; Orsbon, Courtney; Tan, Huan; Moore, Thomas; Hobson, Nick; Shenkar, Robert; Lightle, Rhonda; Shi, Changbin; Fam, Maged D; Cao, Ying; Shen, Le; Neander, April I; Rorrer, Autumn; Gallione, Carol; Tang, Alan T; Kahn, Mark L; Marchuk, Douglas A; Luo, Zhe-Xi; Awad, Issam A
2016-09-15
Cerebral cavernous malformations (CCMs) are hemorrhagic brain lesions, where murine models allow major mechanistic discoveries, ushering genetic manipulations and preclinical assessment of therapies. Histology for lesion counting and morphometry is essential yet tedious and time consuming. We herein describe the application and validations of X-ray micro-computed tomography (micro-CT), a non-destructive technique allowing three-dimensional CCM lesion count and volumetric measurements, in transgenic murine brains. We hereby describe a new contrast soaking technique not previously applied to murine models of CCM disease. Volumetric segmentation and image processing paradigm allowed for histologic correlations and quantitative validations not previously reported with the micro-CT technique in brain vascular disease. Twenty-two hyper-dense areas on micro-CT images, identified as CCM lesions, were matched by histology. The inter-rater reliability analysis showed strong consistency in the CCM lesion identification and staging (K=0.89, p<0.0001) between the two techniques. Micro-CT revealed a 29% greater CCM lesion detection efficiency, and 80% improved time efficiency. Serial integrated lesional area by histology showed a strong positive correlation with micro-CT estimated volume (r(2)=0.84, p<0.0001). Micro-CT allows high throughput assessment of lesion count and volume in pre-clinical murine models of CCM. This approach complements histology with improved accuracy and efficiency, and can be applied for lesion burden assessment in other brain diseases. Copyright © 2016 Elsevier B.V. All rights reserved.
Mixed vascular nevus syndrome: a report of four new cases and a literature review.
Ruggieri, Martino; Polizzi, Agata; Strano, Serena; Schepis, Carmelo; Morano, Massimiliano; Belfiore, Giuseppe; Palmucci, Stefano; Foti, Pietro Valerio; Pirrone, Concetta; Sofia, Vito; David, Emanuele; Salpietro, Vincenzo; Mankad, Kshitij; Milone, Pietro
2016-10-01
Mixed vascular nevus (or nevus vascularis mixtus) represents an admixture of cutaneous vascular malformations of the telangiectatic type and angiospastic spots of nevus anemicus. It can occur as an purely cutaneous trait or as a hallmark of a neurocutaneous phenotype (mixed vascular nevus syndrome) characterised by the combination of: (I) paired vascular (telangiectatic and anemic) twin nevi and brain abnormalities of the Dyke-Davidoff-Masson type (i.e., crossed cerebral/cerebellar hemiatrophy with hypoplasia of the ipsilateral cerebral vessels and homolateral hypertrophy of the skull and sinuses (hyperpneumatisation) with contralateral hemispheric hypertrophy); or (II) paired vascular twin nevi and brain malformations of the Dyke-Davidoff-Masson type in association with systemic abnormalities consisting in facial asymmetry, skeletal anomalies (i.e., Legg-Calvé-Perthes-like disease) and disorders of autoimmunity (i.e., diabetes, thyroiditis). In 2014, Happle proposed to name the syndrome with the eponym Ruggieri-Leech syndrome. Review of the existing literature on nevus vascularis mixtus and information on our personal experience on new cases and follow-up of previously reported cases by some of us. The existing literature revealed 4 previous studies including 33 cases with an inferred purely cutaneous trait and 3 cases with a combination of paired vascular twin nevi and brain malformation of the Dyke-Davidoff-Masson type. Our personal experience includes 4 unpublished patients (1 female and 3 males; currently aged 2 to 34 years) seen and followed-up at our Institutions in Italy who had: paired vascular nevi involving either the face (n=2) or the face and parts of the body (n=2); facial asymmetry (n=4); mild to moderate facial dysmorphic features (n=2); developmental delay (n=3); seizures/stroke-like episodes and associated hemiplegia (n=4); muscular hypotrophy (n=2); mild to moderate hemispheric atrophy (n=4); skull osseous hypertrophy (n=4); hyperpneumatisation of the sinuses (n=2); hypoplastic brain vessels (n=4); colpocephaly and malformation of cortical development (n=2). Follow-up data on our previous 2 cases revealed that the vascular abnormalities in the skin and nervous system were stable over years without neurological progression or deterioration. Pathogenically, this complex phenotype suggests that embryonic pairing and somatic recombination of recessive (didymotic) alleles controlling the balance between constriction (i.e., nevus anemicus) and dilatation (i.e., nevus telangiectaticus) of blood vessels could be the primary event causing the phenomena of cutaneous and brain vascular twin spotting and the paired phenomena of skull hyperpneumatisation vs . hypertrophy and brain megalencephaly/colpocephaly vs . cortical dysplasia. This association is likely more frequent than previously thought and should be investigated by means of: (I) brain and spinal cord imaging (combination of CT and MRI studies); (II) skeletal X-ray studies (when dictated by clinical findings); (III) systemic ultrasound studies; (IV) neurophysiologic studies (EEG); (V) psychomotor testing; (VI) and laboratory investigation (including immune-mediated dysfunction).
Mixed vascular nevus syndrome: a report of four new cases and a literature review
Polizzi, Agata; Strano, Serena; Schepis, Carmelo; Morano, Massimiliano; Belfiore, Giuseppe; Palmucci, Stefano; Foti, Pietro Valerio; Pirrone, Concetta; Sofia, Vito; David, Emanuele; Salpietro, Vincenzo; Mankad, Kshitij; Milone, Pietro
2016-01-01
Background Mixed vascular nevus (or nevus vascularis mixtus) represents an admixture of cutaneous vascular malformations of the telangiectatic type and angiospastic spots of nevus anemicus. It can occur as an purely cutaneous trait or as a hallmark of a neurocutaneous phenotype (mixed vascular nevus syndrome) characterised by the combination of: (I) paired vascular (telangiectatic and anemic) twin nevi and brain abnormalities of the Dyke-Davidoff-Masson type (i.e., crossed cerebral/cerebellar hemiatrophy with hypoplasia of the ipsilateral cerebral vessels and homolateral hypertrophy of the skull and sinuses (hyperpneumatisation) with contralateral hemispheric hypertrophy); or (II) paired vascular twin nevi and brain malformations of the Dyke-Davidoff-Masson type in association with systemic abnormalities consisting in facial asymmetry, skeletal anomalies (i.e., Legg-Calvé-Perthes-like disease) and disorders of autoimmunity (i.e., diabetes, thyroiditis). In 2014, Happle proposed to name the syndrome with the eponym Ruggieri-Leech syndrome. Methods Review of the existing literature on nevus vascularis mixtus and information on our personal experience on new cases and follow-up of previously reported cases by some of us. Results The existing literature revealed 4 previous studies including 33 cases with an inferred purely cutaneous trait and 3 cases with a combination of paired vascular twin nevi and brain malformation of the Dyke-Davidoff-Masson type. Our personal experience includes 4 unpublished patients (1 female and 3 males; currently aged 2 to 34 years) seen and followed-up at our Institutions in Italy who had: paired vascular nevi involving either the face (n=2) or the face and parts of the body (n=2); facial asymmetry (n=4); mild to moderate facial dysmorphic features (n=2); developmental delay (n=3); seizures/stroke-like episodes and associated hemiplegia (n=4); muscular hypotrophy (n=2); mild to moderate hemispheric atrophy (n=4); skull osseous hypertrophy (n=4); hyperpneumatisation of the sinuses (n=2); hypoplastic brain vessels (n=4); colpocephaly and malformation of cortical development (n=2). Follow-up data on our previous 2 cases revealed that the vascular abnormalities in the skin and nervous system were stable over years without neurological progression or deterioration. Conclusions Pathogenically, this complex phenotype suggests that embryonic pairing and somatic recombination of recessive (didymotic) alleles controlling the balance between constriction (i.e., nevus anemicus) and dilatation (i.e., nevus telangiectaticus) of blood vessels could be the primary event causing the phenomena of cutaneous and brain vascular twin spotting and the paired phenomena of skull hyperpneumatisation vs. hypertrophy and brain megalencephaly/colpocephaly vs. cortical dysplasia. This association is likely more frequent than previously thought and should be investigated by means of: (I) brain and spinal cord imaging (combination of CT and MRI studies); (II) skeletal X-ray studies (when dictated by clinical findings); (III) systemic ultrasound studies; (IV) neurophysiologic studies (EEG); (V) psychomotor testing; (VI) and laboratory investigation (including immune-mediated dysfunction). PMID:27942471
Cocho, D; Monell, J; Planells, G; Ricciardi, A C; Pons, J; Boltes, A; Espinosa, J; Ayats, M; Garcia, N; Otermin, P
2016-01-01
The 90-day risk of cerebral infarction in patients with transient ischaemic attack (TIA) is estimated at between 8% and 20%. There is little consensus as to which diagnostic strategy is most effective. This study evaluates the benefits of early transthoracic echocardiography (TTE) with carotid and transcranial Doppler ultrasound in patients with TIA. Prospective study of patients with TIA in an emergency department setting. Demographic data, vascular risk factors, and ABCD(2) score were analysed. TIA aetiology was classified according to TOAST criteria. All patients underwent early vascular studies (<72hours), including TTE, carotid ultrasound, and transcranial Doppler. Primary endpoints were recurrence of stroke or TIA, myocardial infarction (MI), or vascular death during the first year. We evaluated 92 patients enrolled over 24 months. Mean age was 68.3±13 years and 61% were male. The mean ABCD(2) score was 3 points (≥5 in 30%). The distribution of TIA subtypes was as follows: 12% large-artery atherosclerosis; 30% cardioembolism; 10% small-vessel occlusion; 40% undetermined cause; and 8% rare causes. Findings from the early TTE led to a change in treatment strategy in 6 patients (6.5%) who displayed normal physical examination and ECG findings. At one year of follow-up, 3 patients had experienced stroke (3.2%) and 1 patient experienced MI (1%); no vascular deaths were identified. In our TIA patients, early vascular study and detecting patients with silent cardiomyopathy may have contributed to the low rate of vascular disease recurrence. Copyright © 2014 Sociedad Española de Neurología. Published by Elsevier España, S.L.U. All rights reserved.
Cai, Yujun; Knight, Walter E; Guo, Shujie; Li, Jian-Dong; Knight, Peter A; Yan, Chen
2012-11-01
Abnormal vascular smooth muscle cell (SMC) activation is associated with various vascular disorders such as atherosclerosis, in-stent restenosis, vein graft disease, and transplantation-associated vasculopathy. Vinpocetine, a derivative of the alkaloid vincamine, has long been used as a cerebral blood flow enhancer for treating cognitive impairment. However, its role in pathological vascular remodeling remains unexplored. Herein, we show that systemic administration of vinpocetine significantly reduced neointimal formation in carotid arteries after ligation injury. Vinpocetine also markedly decreased spontaneous remodeling of human saphenous vein explants in ex vivo culture. In cultured SMCs, vinpocetine dose-dependently suppressed cell proliferation and caused G1-phase cell cycle arrest, which is associated with a decrease in cyclin D1 and an increase in p27Kip1 levels. In addition, vinpocetine dose-dependently inhibited platelet-derived growth factor (PDGF)-stimulated SMC migration as determined by the two-dimensional migration assays and three-dimensional aortic medial explant invasive assay. Moreover, vinpocetine significantly reduced PDGF-induced type I collagen and fibronectin expression. It is noteworthy that PDGF-stimulated phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2), but not protein kinase B, was specifically inhibited by vinpocetine. Vinpocetine powerfully attenuated intracellular reactive oxidative species (ROS) production, which largely mediates the inhibitory effects of vinpocetine on ERK1/2 activation and SMC growth. Taken together, our results reveal a novel function of vinpocetine in attenuating neointimal hyperplasia and pathological vascular remodeling, at least partially through suppressing ROS production and ERK1/2 activation in SMCs. Given the safety profile of vinpocetine, this study provides insight into the therapeutic potential of vinpocetine in proliferative vascular disorders.
Cai, Yujun; Knight, Walter E.; Guo, Shujie; Li, Jian-Dong; Knight, Peter A.
2012-01-01
Abnormal vascular smooth muscle cell (SMC) activation is associated with various vascular disorders such as atherosclerosis, in-stent restenosis, vein graft disease, and transplantation-associated vasculopathy. Vinpocetine, a derivative of the alkaloid vincamine, has long been used as a cerebral blood flow enhancer for treating cognitive impairment. However, its role in pathological vascular remodeling remains unexplored. Herein, we show that systemic administration of vinpocetine significantly reduced neointimal formation in carotid arteries after ligation injury. Vinpocetine also markedly decreased spontaneous remodeling of human saphenous vein explants in ex vivo culture. In cultured SMCs, vinpocetine dose-dependently suppressed cell proliferation and caused G1-phase cell cycle arrest, which is associated with a decrease in cyclin D1 and an increase in p27Kip1 levels. In addition, vinpocetine dose-dependently inhibited platelet-derived growth factor (PDGF)-stimulated SMC migration as determined by the two-dimensional migration assays and three-dimensional aortic medial explant invasive assay. Moreover, vinpocetine significantly reduced PDGF-induced type I collagen and fibronectin expression. It is noteworthy that PDGF-stimulated phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2), but not protein kinase B, was specifically inhibited by vinpocetine. Vinpocetine powerfully attenuated intracellular reactive oxidative species (ROS) production, which largely mediates the inhibitory effects of vinpocetine on ERK1/2 activation and SMC growth. Taken together, our results reveal a novel function of vinpocetine in attenuating neointimal hyperplasia and pathological vascular remodeling, at least partially through suppressing ROS production and ERK1/2 activation in SMCs. Given the safety profile of vinpocetine, this study provides insight into the therapeutic potential of vinpocetine in proliferative vascular disorders. PMID:22915768
Lennmyr, F; Ericsson, A; Gerwins, P; Ahlström, H; Terént, A
2003-11-01
Focal cerebral ischemia activates intracellular signaling pathways including the mitogen-activated protein kinase p38, which may be involved in the process of ischemic brain injury. In this study, the effect of pretreatment with the p38-inhibitor SB203580 on infarct size and blood-brain barrier (BBB) breakdown was investigated with magnetic resonance imaging (MRI). Rats were given SB203580 (n = 6) or vehicle (n = 6) in the right lateral ventricle prior to transient (90 min) middle cerebral artery occlusion (MCAO) on the left side. The rats were examined with serial MRI during MCAO, at reperfusion and after 1 and 4 days. The mean infarct size on T2-weighted images after 1 day was significantly higher in the SB203580-treated group than in controls (300 +/- 95 mm3 vs 126 +/- 75 mm3; P < 0.01). Vascular gadolinium leakage, indicating BBB breakdown, was significantly larger in the SB203580-treated group than in controls after 1 day (median leakage score 18.5; range 15-21 vs 6.5; 4-17; P < 0.05) and 4 days (11; 6-15 vs 3.5; 1-9; P < 0.05), although no significant difference was seen initially. Pretreatment with SB203580 may aggravate ischemic brain injury and cerebral vascular leakage in the present model of transient ischemia.
Placental Ischemia Impairs Middle Cerebral Artery Myogenic Responses in the Pregnant Rat
Ryan, Michael J.; Gilbert, Emily L.; Glover, Porter H.; George, Eric M.; Masterson, C. Warren; McLemore, Gerald R.; LaMarca, Babbette; Granger, Joey P.; Drummond, Heather A.
2011-01-01
One potential mechanism contributing to the increased risk for encephalopathies in women with preeclampsia is altered cerebral vascular autoregulation resulting from impaired myogenic tone. Whether placental ischemia, a commonly proposed initiator of preeclampsia, alters cerebral vascular function is unknown. This study tested the hypothesis that placental ischemia in pregnant rats (induced by reducing uterine perfusion pressure, RUPP) leads to impaired myogenic responses in middle cerebral arteries (MCA). Mean arterial pressure (in mmHg) was increased by RUPP (135±3) compared with normal pregnant rats (NP, 103±2) and non-pregnant controls (Ctrl, 116±1). MCA from rats sacrificed on gestation day 19 were assessed in a pressure ateriograph under active (+ Ca2+) and passive (0 Ca2+) conditions while luminal pressure was varied between 25 and 150 mmHg. The slope of the relationship between tone and pressure in the MCA was 0.08±0.01 in CTRL rats and was similar in NP rats (0.05±0.01). In the RUPP model of placental ischemia, this relationship was markedly reduced (slope = 0.01±0.00, p<0.05). Endothelial dependent and independent dilation was not different between groups nor was there evidence of vascular remodeling assessed by the wall:lumen ratio and calculated wall stress. The impaired myogenic response associated with brain edema measured by % water content (RUPP p<0.05 vs. CTRL and NP). This study demonstrates that placental ischemia in pregnant rats leads to impaired myogenic tone in the MCA and that the RUPP model is a potentially important tool to examine mechanisms leading to encephalopathy during preeclamptic pregnancies. PMID:22068864
AβPP/APLP2 Family of Kunitz Serine Proteinase Inhibitors Regulate Cerebral Thrombosis
Xu, Feng; Previti, Mary Lou; Nieman, Marvin T.; Davis, Judianne; Schmaier, Alvin H.; Van Nostrand, William E.
2009-01-01
The amyloid β-protein precursor (AβPP) is best recognized as the precursor to the Aβ peptide that accumulates in the brains of patients with Alzheimer’s disease, but less is known about its physiological functions. Isoforms of AβPP that contain a Kunitz-type serine proteinase inhibitor (KPI) domain are expressed in brain and, outside the CNS, in circulating blood platelets. Recently, we showed that KPI-containing forms of AβPP regulates cerebral thrombosis in vivo (Xu et al., 2005 Proc. Natl. Acad. Sci. USA 102:18135–18140; Xu et al. 2007 Stroke 38:2598–2601). Amyloid precursor like protein-2 (APLP2), a closely related homolog to AβPP, also possesses a highly conserved KPI domain. Virtually nothing is known of its function. Here we show that APLP2 also regulates cerebral thrombosis risk. Recombinant purified KPI domains of AβPP and APLP2 both inhibit the plasma clotting in vitro. In a carotid artery thrombosis model both AβPP−/− and APLP2−/− mice exhibit similar significantly shorter times to vessel occlusion compared with wild-type mice indicating a pro-thrombotic phenotype. Similarly, in an experimental model of intracerebral hemorrhage both AβPP−/− and APLP2−/− mice produce significantly smaller hematomas with reduced brain hemoglobin content compared with wild-type mice. Together, these results indicate that AβPP and APLP2 share overlapping anticoagulant functions with regard to regulating thrombosis after cerebral vascular injury. PMID:19403832
Murai, Yasuo; Nakagawa, Syunsuke; Matano, Fumihiro; Shirokane, Kazutaka; Teramoto, Akira; Morita, Akio
2016-10-01
The intraoperative confirmation of blood flow direction is necessary in cerebral vascular surgery. Using indocyanine green video angiography (ICG-VAG) with the FLOW 800 system, we examined the transit time of the blood vessel of interest and semiquantitatively evaluated the delay time (T1/2max) from indocyanine green (ICG) injection into the donor artery in reconstructive surgery and the middle cerebral artery (MCA) in aneurysmal surgery. The direction of cerebral blood flow (CBF), which can often be confirmed by ICG-VAG, may be more difficult to determine with faster blood flow. Here, we report our findings regarding the feasibility of detecting CBF direction using the FLOW 800 system. Twenty patients undergoing superficial temporal artery (STA) to MCA anastomosis for carotid occlusive disease and 13 patients with a small MCA aneurysm clipping were evaluated using the T1/2max, semiquantitative method with the FLOW 800 system. In STA-MCA anastomosis cases, the regions of interest (ROIs) included: the proximal donor STA and a region more than 10 mm on the distal side of the donor STA near the anastomosis site. In MCA aneurysms, the ROIs included the proximal M1 and distal M2 sides of the MCA aneurysm. T1/2max was significantly shorter for the proximal sites compared to the distal sites for all subjects (ps < 0.01). T1/2max was shorter for all subjects in the proximal sites. The direction of CBF can be determined using the FLOW 800 system.
[Tropical causes of epilepsy].
Carod-Artal, F J
Eighty-five percent of all epileptics live in tropical regions. Prenatal risk factors, traumatic brain injuries and different parasitic infestations of the central nervous system (CNS) are the reasons behind the high prevalence of epilepsy. This work reviews the main parasitic infestations causing epilepsy in the tropics. Neurocysticercosis is the main cause of focal epilepsy in early adulthood in endemic areas (30-50%). All the phases of cysticerci (viable, transitional and calcified) are associated with epileptic seizures. Anti-cysticercus treatment helps get rid of cysticerci faster and reduces the risk of recurrence of seizures in patients with viable cysts. Symptomatic epilepsy can be the first manifestation of neuroschistosomiasis in patients without any systemic symptoms. The pseudotumoral form can trigger seizures secondary to the presence of granulomas and oedemas in the cerebral cortex. The eggs of Schistosoma japonicum are smaller, reach the CNS more easily and trigger epileptic seizures more frequently. Toxocariasis and sparganosis are other parasitic infestations that can give rise to symptomatic seizures. The risk factors for suffering chronic epilepsy after cerebral malaria are a positive familial history of epilepsy and a history of episodes of fever and cerebral malaria that began with coma or which progressed with multiple, prolonged epileptic seizures. About 20% of patients with cerebral infarction secondary to Chagas disease present late vascular epilepsy as a complication. Very few studies have been conducted to examine the prognosis, risk of recurrence and modification of the natural course of seizures associated with tropical parasitic infestations, except for the case of neurocysticercosis.
Magnetic Particle Imaging for Real-Time Perfusion Imaging in Acute Stroke.
Ludewig, Peter; Gdaniec, Nadine; Sedlacik, Jan; Forkert, Nils D; Szwargulski, Patryk; Graeser, Matthias; Adam, Gerhard; Kaul, Michael G; Krishnan, Kannan M; Ferguson, R Matthew; Khandhar, Amit P; Walczak, Piotr; Fiehler, Jens; Thomalla, Götz; Gerloff, Christian; Knopp, Tobias; Magnus, Tim
2017-10-24
The fast and accurate assessment of cerebral perfusion is fundamental for the diagnosis and successful treatment of stroke patients. Magnetic particle imaging (MPI) is a new radiation-free tomographic imaging method with a superior temporal resolution, compared to other conventional imaging methods. In addition, MPI scanners can be built as prehospital mobile devices, which require less complex infrastructure than computed tomography (CT) and magnetic resonance imaging (MRI). With these advantages, MPI could accelerate the stroke diagnosis and treatment, thereby improving outcomes. Our objective was to investigate the capabilities of MPI to detect perfusion deficits in a murine model of ischemic stroke. Cerebral ischemia was induced by inserting of a microfilament in the internal carotid artery in C57BL/6 mice, thereby blocking the blood flow into the medial cerebral artery. After the injection of a contrast agent (superparamagnetic iron oxide nanoparticles) specifically tailored for MPI, cerebral perfusion and vascular anatomy were assessed by the MPI scanner within seconds. To validate and compare our MPI data, we performed perfusion imaging with a small animal MRI scanner. MPI detected the perfusion deficits in the ischemic brain, which were comparable to those with MRI but in real-time. For the first time, we showed that MPI could be used as a diagnostic tool for relevant diseases in vivo, such as an ischemic stroke. Due to its shorter image acquisition times and increased temporal resolution compared to that of MRI or CT, we expect that MPI offers the potential to improve stroke imaging and treatment.
Numerical predictions of hemodynamics following surgeries in cerebral aneurysms
NASA Astrophysics Data System (ADS)
Rayz, Vitaliy; Lawton, Michael; Boussel, Loic; Leach, Joseph; Acevedo, Gabriel; Halbach, Van; Saloner, David
2014-11-01
Large cerebral aneurysms present a danger of rupture or brain compression. In some cases, clinicians may attempt to change the pathological hemodynamics in order to inhibit disease progression. This can be achieved by changing the vascular geometry with an open surgery or by deploying a stent-like flow diverter device. Patient-specific CFD models can help evaluate treatment options by predicting flow regions that are likely to become occupied by thrombus (clot) following the procedure. In this study, alternative flow scenarios were modeled for several patients who underwent surgical treatment. Patient-specific geometries and flow boundary conditions were obtained from magnetic resonance angiography and velocimetry data. The Navier-Stokes equations were solved with a finite volume solver Fluent. A porous media approach was used to model flow-diverter devices. The advection-diffusion equation was solved in order to simulate contrast agent transport and the results were used to evaluate flow residence time changes. Thrombus layering was predicted in regions characterized by reduced velocities and shear stresses as well as increased flow residence time. The simulations indicated surgical options that could result in occlusion of vital arteries with thrombus. Numerical results were compared to experimental and clinical MRI data. The results demonstrate that image-based CFD models may help improve the outcome of surgeries in cerebral aneurysms. acknowledge R01HL115267.
Intracranial hypertension: classification and patterns of evolution
Iencean, SM
2008-01-01
Intracranial hypertension (ICH) was systematized in four categories according to its aetiology and pathogenic mechanisms: parenchymatous ICH with an intrinsic cerebral cause; vascular ICH, which has its aetiology in disorders of cerebral blood circulation; ICH caused by disorders of cerebro–spinal fluid dynamics and idiopathic ICH. The increase of intracranial pressure is the first to happen and then intracranial hypertension develops from this initial effect becoming symptomatic; it then acquires its individuality, surpassing the initial disease. The intracranial hypertension syndrome corresponds to the stage at which the increased intracranial pressure can be compensated and the acute form of intracranial hypertension is equivalent to a decompensated ICH syndrome. The decompensation of intracranial hypertension is a condition of instability and appears when the normal intrinsic ratio of intracranial pressure – time fluctuation is changed. The essential conditions for decompensation of intracranial hypertension are: the speed of intracranial pressure increase over normal values, the highest value of abnormal intracranial pressure and the duration of high ICP values. Medical objectives are preventing ICP from exceeding 20 mm Hg and maintaining a normal cerebral blood flow. The emergency therapy is the same for the acute form but each of the four forms of ICH has a specific therapy, according to the pathogenic mechanism and if possible to aetiology. PMID:20108456
Verghese, Renjan; Paul, Divyan
2015-01-01
Absent circle of Willis (COW) has been described in cases of severe forms of cerebral developmental anomalies such as alobar prosencephaly. However, there are no reports of absent COW in patients with a milder form of cerebral abnormality such as colpocephaly. We report a unique case of an adult with colpocephaly and absent COW and discuss their association from a developmental perspective. PMID:26443299
Rutten-Jacobs, Loes C A; Tozer, Daniel J; Duering, Marco; Malik, Rainer; Dichgans, Martin; Markus, Hugh S; Traylor, Matthew
2018-06-01
Structural integrity of the white matter is a marker of cerebral small vessel disease, which is the major cause of vascular dementia and a quarter of all strokes. Genetic studies provide a way to obtain novel insights in the disease mechanism underlying cerebral small vessel disease. The aim was to identify common variants associated with microstructural integrity of the white matter and to elucidate the relationships of white matter structural integrity with stroke, major depressive disorder, and Alzheimer disease. This genome-wide association analysis included 8448 individuals from UK Biobank-a population-based cohort study that recruited individuals from across the United Kingdom between 2006 and 2010, aged 40 to 69 years. Microstructural integrity was measured as fractional anisotropy- (FA) and mean diffusivity (MD)-derived parameters on diffusion tensor images. White matter hyperintensity volumes (WMHV) were assessed on T2-weighted fluid-attenuated inversion recovery images. We identified 1 novel locus at genome-wide significance ( VCAN [versican]: rs13164785; P =3.7×10 -18 for MD and rs67827860; P =1.3×10 -14 for FA). LD score regression showed a significant genome-wide correlation between FA, MD, and WMHV (FA-WMHV rG 0.39 [SE, 0.15]; MD-WMHV rG 0.56 [SE, 0.19]). In polygenic risk score analysis, FA, MD, and WMHV were significantly associated with lacunar stroke, MD with major depressive disorder, and WMHV with Alzheimer disease. Genetic variants within the VCAN gene may play a role in the mechanisms underlying microstructural integrity of the white matter in the brain measured as FA and MD. Mechanisms underlying white matter alterations are shared with cerebrovascular disease, and inherited differences in white matter microstructure impact on Alzheimer disease and major depressive disorder. © 2018 The Authors.
Scleroderma en coup de sabre with recurrent episodes of brain hemorrhage.
Takahashi, Takehiro; Asano, Yoshihide; Oka, Tomonori; Miyagaki, Tomomitsu; Tamaki, Zenshiro; Nonaka, Senshu; Sato, Shinichi
2016-02-01
We report a 39-year-old man referred to our facility with linear sclerotic lesions along the several Blaschko's lines of the scalp. A year before the referral, he had had an episode of brain hemorrhage, although there was no evidence of vascular malformation or any other risk factors of brain hemorrhage for his young age. On the diagnosis of scleroderma en coup de sabre, prednisolone intake was initiated, and the skin lesions were well controlled. However, in the course of our follow up, he had another episode of brain hemorrhage, again without any evidence of cerebral vascular abnormalities. Organic intracranial abnormalities in this disease are well-documented, but there have been few reports on comorbid recurrent brain hemorrhages. We herein discuss the possible relationship of the skin lesions with the brain hemorrhages in our case, taking notice of the implication of developmental abnormalities behind these apparently independent phenomena inside and outside the cranium. © 2015 Japanese Dermatological Association.
Fluid Mechanics of the Vascular Basement Membrane in the Brain
NASA Astrophysics Data System (ADS)
Coloma, Mikhail; Hui, Jonathan; Chiarot, Paul; Huang, Peter; Carare, Roxana; McLeod, Kenneth; Schaffer, David
2013-11-01
Beta-amyloid is a normal product of brain metabolic function and is found within the interstitial fluid of the brain. Failure of the clearance of beta-amyloid from the aging brain leads to its accumulation within the walls of arteries and to Alzheimer's disease. The vascular basement membrane (VBM) within the walls of cerebral arteries surrounds the spirally arranged smooth muscle cells and represents an essential pathway for removal of beta-amyloid from the brain. This process fails with the stiffening of arterial walls associated with aging. In this study we hypothesize that the deformation of the VBM associated with arterial pulsations drives the interstitial fluid to drain in the direction opposite of the arterial blood flow. This hypothesis is theoretically investigated by modeling the VBM as a thin, coaxial, fluid-filled porous medium surrounding a periodically deforming cylindrical tube. Flow and boundary conditions required to achieve such a backward clearance are derived through a control volume analysis of mass, momentum, and energy.
[Clinical and medicine characteristics of patients with Parkinson's syndrome].
Liu, Huan; Xie, Yan-Ming; Yi, Dan-Hui; Wang, Yong-Yan
2014-09-01
This study analyze the characteristics and clinical medicine in 17 hospitals all over China, based on hospital information system diagnostic information database, including 4 497 cases of hospitalized patients with Parkinson's syndrome. Results indicate, the most common comorbidities are infarction, hypertension, coronary heart disease, diabetes and lung infections, including cerebral infarction, the combined incidence of hypertension in men reached 33.46% and 30.05%, respectively, it is slightly lower in the females. Men with coronary heart disease are more than women, women with diabetes and bone disease are more than men. Combined incidence of the disease increases with age, vascular factors occupy an important position. The most common combined diseases in patients with 90 years of age or older are coronary heart disease, lung infection, and often accompanied by metabolic disorders and nutritional emergency, critical care. Constipation, depression, anxiety, sleep disorders, cognitive impairment are common non-motor symptoms. The drug categories associated with Parkinson's core symptoms treatment are about 20% to 30% of clinical medicine, the others are associated with the treatment of combined disease, clinical medicine and disease spectrum consistent. Blood circulation topped Chinese agents applied frequency, reaching 44.52%; laxative drugs accounted for 11.66%; detoxification agent representing 9.46%. The first twenty Chinese medicine of the applying frequency reached 56.07% of the total utilization, including 12 kinds of traditional Chinese medicine injections, accounting for 60%. Therefore, in the diagnosis and treatment of Parkinsons syndrome, the treatment of comorbidities is very important, more attentions should be paid to vascular factors of the disease, Chinese medicine should be more concerned to improve the non-motor symptoms, give full play to the pharmaceutical multi-target, the overall regulation of advantages, integrative medicine, and improve the quality of life of patients.
Beketov, A I; Korneliuk, I K
1981-01-01
Hydrogen clearance was used in experiments on anesthetized cats to demonstrate that intravenous infusions of noradrenaline induced an increase in cerebral blood supply and reduction of renal blood flow both in anesthetized animals and in the presence of hypotension. In these conditions, angiotensin II lowered the cerebral and renal blood flow. Hypotension enhanced the reactions of the cerebral and renal blood flow to the action of vasopressor agents. The intensity of the reactions was consistent with the degree of vascular autocontrol preservation in the brain and kidneys.