Sample records for cerebral vascular diseases

  1. Retinal vascular changes are a marker for cerebral vascular diseases

    PubMed Central

    Moss, Heather E.

    2016-01-01

    The retinal circulation is a potential marker of cerebral vascular disease because it shares origin and drainage with the intracranial circulation and because it can be directly visualized using ophthalmoscopy. Cross sectional and cohort studies have demonstrated associations between chronic retinal and cerebral vascular disease, acute retinal and cerebral vascular disease and chronic retinal vascular disease and acute cerebral vascular disease. In particular, certain qualitative features of retinopathy, retinal artery occlusion and increased retinal vein caliber are associated with concurrent and future cerebrovascular events. These associations persist after accounting for confounding variables known to be disease-causing in both circulations, which supports the potential use of retinal vasculature findings to stratify individuals with regards to cerebral vascular disease risk. PMID:26008809

  2. Cerebral Vascular Disease and Neurovascular Injury in Ischemic Stroke

    PubMed Central

    Hu, Xiaoming; De Silva, T. Michael; Chen, Jun; Faraci, Frank M.

    2017-01-01

    The consequences of cerebrovascular disease are among the leading health issues worldwide. Large and small cerebral vessel disease can trigger stroke and contribute to the vascular component of other forms of neurological dysfunction and degeneration. Both forms of vascular disease are driven by diverse risk factors, with hypertension as the leading contributor. Despite the importance of neurovascular disease and subsequent injury following ischemic events, fundamental knowledge in these areas lag behind our current understanding of neuroprotection and vascular biology in general. The goal of this review is to address select key structural and functional changes in the vasculature that promote hypoperfusion and ischemia, while also affecting the extent of injury and effectiveness of therapy. In addition, as damage to the blood-brain barrier (BBB) is one of the major consequences of ischemia, we discuss cellular and molecular mechanisms underlying ischemia-induced changes in BBB integrity and function, including alterations in endothelial cells and the contribution of pericytes, immune cells, and matrix metalloproteinases. Identification of cell types, pathways, and molecules that control vascular changes before and after ischemia may result in novel approaches to slow the progression of cerebrovascular disease and lessen both the frequency and impact of ischemic events. PMID:28154097

  3. Cerebral Vascular Disease and Neurovascular Injury in Ischemic Stroke.

    PubMed

    Hu, Xiaoming; De Silva, T Michael; Chen, Jun; Faraci, Frank M

    2017-02-03

    The consequences of cerebrovascular disease are among the leading health issues worldwide. Large and small cerebral vessel disease can trigger stroke and contribute to the vascular component of other forms of neurological dysfunction and degeneration. Both forms of vascular disease are driven by diverse risk factors, with hypertension as the leading contributor. Despite the importance of neurovascular disease and subsequent injury after ischemic events, fundamental knowledge in these areas lag behind our current understanding of neuroprotection and vascular biology in general. The goal of this review is to address select key structural and functional changes in the vasculature that promote hypoperfusion and ischemia, while also affecting the extent of injury and effectiveness of therapy. In addition, as damage to the blood-brain barrier is one of the major consequences of ischemia, we discuss cellular and molecular mechanisms underlying ischemia-induced changes in blood-brain barrier integrity and function, including alterations in endothelial cells and the contribution of pericytes, immune cells, and matrix metalloproteinases. Identification of cell types, pathways, and molecules that control vascular changes before and after ischemia may result in novel approaches to slow the progression of cerebrovascular disease and lessen both the frequency and impact of ischemic events. © 2017 American Heart Association, Inc.

  4. Cerebral Small Vessel Disease and Chronic Kidney Disease

    PubMed Central

    2015-01-01

    Chronic kidney disease, defined by a decreased glomerular filtration rate or albuminuria, is recognized as a major global health burden, mainly because it is an established risk factor for cardiovascular and cerebrovascular diseases. The magnitude of the effect of chronic kidney disease on incident stroke seems to be higher in persons of Asian ethnicity. Since the kidney and brain share unique susceptibilities to vascular injury due to similar anatomical and functional features of small artery diseases, kidney impairment can be predictive of the presence and severity of cerebral small vessel diseases. Chronic kidney disease has been reported to be associated with silent brain infarcts, cerebral white matter lesions, and cerebral microbleeds, independently of vascular risk factors. In addition, chronic kidney disease affects cognitive function, partly via the high prevalence of cerebral small vessel diseases. Retinal artery disease also has an independent relationship with chronic kidney disease and cognitive impairment. Stroke experts are no longer allowed to be ignorant of chronic kidney disease. Close liaison between neurologists and nephrologists can improve the management of cerebral small vessel diseases in kidney patients. PMID:25692105

  5. Disparate cardio-cerebral vascular modulation during standing in multiple system atrophy and Parkinson disease.

    PubMed

    Xu, Wei-Hai; Wang, Han; Wang, Bo; Niu, Fu-Sheng; Gao, Shan; Cui, Li-Ying

    2009-01-15

    The dynamic variance of cerebral blood flow velocity (CBFV), monitored by transcranial doppler (TCD), can reveal the integrated effects of cardio-cerebral vascular autoregulation. We investigated the characteristics of CBFV curve during active standing in multiple system atrophy (MSA), Parkinson's disease (PD) and healthy volunteers. The CBFV curve of middle cerebral arteries was recorded using TCD in 22 patients with probable MSA; 20 PD patients and 20 volunteers matched for age. All individuals started in a supine posture, followed by abrupt standing for 2 min before returning to supine. The features of CBFV curve were compared among the groups. In the healthy volunteers, the CBFV decreased following standing up but quickly rebounded and reached the same or greater level as the supine baseline. Afterwards, the CBFV decreased abruptly to a sustained level, lower than the supine baseline, forming a spike wave that appeared in CBFV curve. This spike wave was present in 5/22 of MSA, significantly less than PD patients (18/20) and volunteers (20/20) (P<0.001). The CBFV decrease after standing showed no significant difference between MSA than PD (9+/-7 vs. 6+/-3 cm/s, P=0.163). The different pattern of CBFV curves during active standing suggests MSA may possess cardio-cerebral vascular modulation different from PD. The clinical value of the CBFV curve in differentiating MSA from PD needs further investigation.

  6. Is Vasomotion in Cerebral Arteries Impaired in Alzheimer's Disease?

    PubMed

    Di Marco, Luigi Yuri; Farkas, Eszter; Martin, Chris; Venneri, Annalena; Frangi, Alejandro F

    2015-01-01

    A substantial body of evidence supports the hypothesis of a vascular component in the pathogenesis of Alzheimer's disease (AD). Cerebral hypoperfusion and blood-brain barrier dysfunction have been indicated as key elements of this pathway. Cerebral amyloid angiopathy (CAA) is a cerebrovascular disorder, frequent in AD, characterized by the accumulation of amyloid-β (Aβ) peptide in cerebral blood vessel walls. CAA is associated with loss of vascular integrity, resulting in impaired regulation of cerebral circulation, and increased susceptibility to cerebral ischemia, microhemorrhages, and white matter damage. Vasomotion- the spontaneous rhythmic modulation of arterial diameter, typically observed in arteries/arterioles in various vascular beds including the brain- is thought to participate in tissue perfusion and oxygen delivery regulation. Vasomotion is impaired in adverse conditions such as hypoperfusion and hypoxia. The perivascular and glymphatic pathways of Aβ clearance are thought to be driven by the systolic pulse. Vasomotion produces diameter changes of comparable amplitude, however at lower rates, and could contribute to these mechanisms of Aβ clearance. In spite of potential clinical interest, studies addressing cerebral vasomotion in the context of AD/CAA are limited. This study reviews the current literature on vasomotion, and hypothesizes potential paths implicating impaired cerebral vasomotion in AD/CAA. Aβ and oxidative stress cause vascular tone dysregulation through direct effects on vascular cells, and indirect effects mediated by impaired neurovascular coupling. Vascular tone dysregulation is further aggravated by cholinergic deficit and results in depressed cerebrovascular reactivity and (possibly) impaired vasomotion, aggravating regional hypoperfusion and promoting further Aβ and oxidative stress accumulation.

  7. Is Vasomotion in Cerebral Arteries Impaired in Alzheimer’s Disease?

    PubMed Central

    Di Marco, Luigi Yuri; Farkas, Eszter; Martin, Chris; Venneri, Annalena; Frangi, Alejandro F.

    2015-01-01

    Abstract A substantial body of evidence supports the hypothesis of a vascular component in the pathogenesis of Alzheimer’s disease (AD). Cerebral hypoperfusion and blood-brain barrier dysfunction have been indicated as key elements of this pathway. Cerebral amyloid angiopathy (CAA) is a cerebrovascular disorder, frequent in AD, characterized by the accumulation of amyloid-β (Aβ) peptide in cerebral blood vessel walls. CAA is associated with loss of vascular integrity, resulting in impaired regulation of cerebral circulation, and increased susceptibility to cerebral ischemia, microhemorrhages, and white matter damage. Vasomotion— the spontaneous rhythmic modulation of arterial diameter, typically observed in arteries/arterioles in various vascular beds including the brain— is thought to participate in tissue perfusion and oxygen delivery regulation. Vasomotion is impaired in adverse conditions such as hypoperfusion and hypoxia. The perivascular and glymphatic pathways of Aβ clearance are thought to be driven by the systolic pulse. Vasomotion produces diameter changes of comparable amplitude, however at lower rates, and could contribute to these mechanisms of Aβ clearance. In spite of potential clinical interest, studies addressing cerebral vasomotion in the context of AD/CAA are limited. This study reviews the current literature on vasomotion, and hypothesizes potential paths implicating impaired cerebral vasomotion in AD/CAA. Aβ and oxidative stress cause vascular tone dysregulation through direct effects on vascular cells, and indirect effects mediated by impaired neurovascular coupling. Vascular tone dysregulation is further aggravated by cholinergic deficit and results in depressed cerebrovascular reactivity and (possibly) impaired vasomotion, aggravating regional hypoperfusion and promoting further Aβ and oxidative stress accumulation. PMID:25720414

  8. Axon-glial disruption: the link between vascular disease and Alzheimer's disease?

    PubMed

    Horsburgh, Karen; Reimer, Michell M; Holland, Philip; Chen, Guiquan; Scullion, Gillian; Fowler, Jill H

    2011-08-01

    Vascular risk factors play a critical role in the development of cognitive decline and AD (Alzheimer's disease), during aging, and often result in chronic cerebral hypoperfusion. The neurobiological link between hypoperfusion and cognitive decline is not yet defined, but is proposed to involve damage to the brain's white matter. In a newly developed mouse model, hypoperfusion, in isolation, produces a slowly developing and diffuse damage to myelinated axons, which is widespread in the brain, and is associated with a selective impairment in working memory. Cerebral hypoperfusion, an early event in AD, has also been shown to be associated with white matter damage and notably an accumulation of amyloid. The present review highlights some of the published data linking white matter disruption to aging and AD as a result of vascular dysfunction. A model is proposed by which chronic cerebral hypoperfusion, as a result of vascular factors, results in both the generation and accumulation of amyloid and injury to white matter integrity, resulting in cognitive impairment. The generation of amyloid and accumulation in the vasculature may act to perpetuate further vascular dysfunction and accelerate white matter pathology, and as a consequence grey matter pathology and cognitive decline.

  9. Cerebral Vascular Injury in Traumatic Brain Injury.

    PubMed

    Kenney, Kimbra; Amyot, Franck; Haber, Margalit; Pronger, Angela; Bogoslovsky, Tanya; Moore, Carol; Diaz-Arrastia, Ramon

    2016-01-01

    Traumatic cerebral vascular injury (TCVI) is a very frequent, if not universal, feature after traumatic brain injury (TBI). It is likely responsible, at least in part, for functional deficits and TBI-related chronic disability. Because there are multiple pharmacologic and non-pharmacologic therapies that promote vascular health, TCVI is an attractive target for therapeutic intervention after TBI. The cerebral microvasculature is a component of the neurovascular unit (NVU) coupling neuronal metabolism with local cerebral blood flow. The NVU participates in the pathogenesis of TBI, either directly from physical trauma or as part of the cascade of secondary injury that occurs after TBI. Pathologically, there is extensive cerebral microvascular injury in humans and experimental animal, identified with either conventional light microscopy or ultrastructural examination. It is seen in acute and chronic TBI, and even described in chronic traumatic encephalopathy (CTE). Non-invasive, physiologic measures of cerebral microvascular function show dysfunction after TBI in humans and experimental animal models of TBI. These include imaging sequences (MRI-ASL), Transcranial Doppler (TCD), and Near InfraRed Spectroscopy (NIRS). Understanding the pathophysiology of TCVI, a relatively under-studied component of TBI, has promise for the development of novel therapies for TBI. Published by Elsevier Inc.

  10. [Impact of isolated diastolic hypertension on new-onset cardiovascular and cerebro-vascular diseases].

    PubMed

    Xing, Fengmei; Dong, Yan; Tao, Jie; Gao, Xinying; Zhou, Jianhui; Chen, Shuohua; Ji, Chunpeng; Yao, Tao; Wu, Shouling

    2014-08-01

    To explore the impact of isolated diastolic hypertension (IDH) on new-onset cardio-cerebral vascular diseases (CVD). This cohort study involved 101 510 participants who were employees of the Kailuan Group-a state-run coal mining company, in 2006 and 2007. Among them, 6 780 subjects were diagnosed with IDH, 35 448 subjects were diagnosed with high-normal blood pressure and 19 460 subjects were diagnosed with normal tension. However, none of them had the history of either cardio-cerebral vascular disease or malignant cancer. Cardio-cerebral vascular events including cerebral infarction, cerebral hemorrhage, acute myocardial infarction were recorded every 6 months during the follow-up (47.1 ± 4.8) period. Multivariable Cox proportional hazards regression models were used to analyze the risk factors of first-ever CVD events. 1) There were 675 CVD events occurred during the follow-up period. The incidence rates of CVD events (1.7% vs. 0.9%), cerebral infarction (1.0% vs. 0.6%) and cerebral hemorrhage (0.4% vs. 0.1%) were significantly higher in IDH group than that in the normal tension group (all P < 0.05). 2) After adjustment for other established CVD risk factors, the hazards ratios became 1.67 (95% CI: 1.28-2.17) for total CVD events and 1.59 (95% CI: 1.12-2.27) for cerebral infarction and 2.67 (95% CI: 1.54-4.65) for cerebral hemorrhage in the IDH group. 3). In stratified analysis on age, after adjustment for other established CVD risk factors, the hazards ratio was 2.22 (95% CI: 1.41-3.50) for cerebral infarction in lower 60 years old group, while the it was 7.27 (95% CI: 2.58-20.42) for cerebral hemorrhage in groups older than 60 years of age. IDH was the independent risk factor for the total cardio-cerebral vascular events, on both cerebral infarction and cerebral hemorrhage. The predicted values of IDH for different CVD events were diverse on different age groups.

  11. A failure to communicate: patients with cerebral aneurysms and vascular neurosurgeons.

    PubMed

    King, J T; Yonas, H; Horowitz, M B; Kassam, A B; Roberts, M S

    2005-04-01

    To assess communication between vascular neurosurgeons and their patients with unruptured cerebral aneurysms about treatment options and expected outcomes. Vascular neurosurgeons and their patients with cerebral aneurysms were surveyed immediately following outpatient appointments in a neurosurgery clinic. Data collected included how well the patient understood their aneurysm treatment options, the risks of a poor outcome from various treatments, and the consensus "best" treatment. Patient and neurosurgeon responses were measured using Likert scales, multiple choice questions, and visual analogue scales. Agreement between patient and neurosurgeon was assessed with kappa scores. The Wilcoxon sign rank test was used to compare visual analogue scale responses. Data for 44 patient-neurosurgeon pairs were collected. Only 61% of patient-neurosurgeon pairs agreed on the best treatment plan for the patient's aneurysm (kappa = 0.51, moderate agreement). Among the neurosurgeons, agreement with their patients ranged from 82% (kappa = 0.77, almost perfect agreement) to 52% (kappa = 0.37, fair agreement). Patients estimated much higher risks of stroke or death from surgical clipping, endovascular embolisation, or no intervention compared with the estimates offered by their neurosurgeons (surgical clipping: patient 36% v neurosurgeon 13%, p<0.001; endovascular embolisation: patient 35% v neurosurgeon 19%, p = 0.040; and no patient 63% v neurosurgeon 25%, p<0.001). Following consultation with a vascular neurosurgeon, many patients with cerebral aneurysms have an inaccurate understanding of their aneurysm treatment plan and an exaggerated sense of the risks of aneurysmal disease and treatment.

  12. Hereditary cerebral hemorrhage with amyloidosis in patients of Dutch origin is related to Alzheimer disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Duinen, S.G.; Castano, E.M.; Prelli, F.

    1987-08-01

    Hereditary cerebral hemorrhage with amyloidosis in Dutch patients is an autosomal dominant form of vascular amyloidosis restricted to the leptomeninges and cerebral cortex. Clinically the disease is characterized by cerebral hemorrhages leading to an early death. Immunohistochemical studies of five patients revealed that the vascular amyloid deposits reacted intensely with an antiserum raised against a synthetic peptide homologous to the Alzheimer disease-related ..beta..-protein. Silver stain-positive, senile plaque-like structures were also labeled by the antiserum, yet these lesions lacked the dense amyloid cores present in typical plaques of Alzheimer disease. No neurofibrillary tangles were present. Amyloid fibrils were purified from themore » leptomeningeal vessels of one patient who clinically had no signs of dementia. The protein had a molecular weight of approx. 4000 and its partial amino acid sequence to position 21 showed homology to the ..beta..-protein of Alzheimer disease and Down syndrome. These results suggest that hereditary cerebral hemorrhage with amyloidosis of Dutch origin is pathogenetically related to Alzheimer disease and support the concept that the initial amyloid deposition in this disorder occurs in the vessel walls before damaging the brain parenchyma. Thus, deposition of ..beta..-protein in brain tissue seems to be related to a spectrum of diseases involving vascular syndromes, progressive dementia, or both.« less

  13. Vascular determinants of cholinergic deficits in Alzheimer disease and vascular dementia.

    PubMed

    Román, Gustavo C; Kalaria, Raj N

    2006-12-01

    Alzheimer's disease (AD) and vascular dementia (VaD) are widely accepted as the most common forms of dementia. Cerebrovascular lesions frequently coexist with AD, creating an overlap in the clinical and pathological features of VaD and AD. This review assembles evidence for a role for cholinergic mechanisms in the pathogenesis of VaD, as has been established for AD. We first consider the anatomy and vascularization of the basal forebrain cholinergic neuronal system, emphasizing its susceptibility to the effects of arterial hypertension, sustained hypoperfusion, and ischemic cerebrovascular disease. The impact of aging and consequences of disruption of the cholinergic system in cognition and in control of cerebral blood flow are further discussed. We also summarize preclinical and clinical evidence supporting cholinergic deficits and the use of cholinesterase inhibitors in patients with VaD. We postulate that vascular pathology likely plays a common role in initiating cholinergic neuronal abnormalities in VaD and AD.

  14. Sulforaphane activates the cerebral vascular Nrf2-ARE pathway and suppresses inflammation to attenuate cerebral vasospasm in rat with subarachnoid hemorrhage.

    PubMed

    Zhao, Xudong; Wen, Liting; Dong, Min; Lu, Xiaojie

    2016-12-15

    Nrf2-ARE pathway reportedly plays a protective role in several central nervous system diseases. No study has explored the role of the Nrf2-ARE pathway in cerebral vasospasm(CVS) after subarachnoid hemorrhage(SAH). The purpose of the present study was to investigate the activation of the cerebral vascular Nrf2-ARE pathway and to determine the potential role of this pathway in the development of CVS following SAH. We investigated whether the administration of sulforaphane (SFN, a specific Nrf2 activator) modulated vascular caliber, Nrf2-ARE pathway activity, proinflammatory cytokine expression, and clinical behavior in a rat model of SAH. A two-hemorrhage protocol was used to generate an animal model of SAH in male Sprague-Dawley rats. Administration of SFN to these rats following SAH enhanced the activity of the Nrf2-ARE pathway and suppressed the release of proinflammatory cytokines. Vasospasm was markedly attenuated in the basilar arteries after SFN therapy. Additionally, SFN administration significantly ameliorated two behavioral functions disrupted by SAH. These results suggest that SFN has a therapeutic benefit in post-SAH, and this may be due to elevated Nrf2-ARE pathway activity and inhibition of cerebral vascular proinflammatory cytokine expression. Copyright © 2016. Published by Elsevier B.V.

  15. Neural Vascular Mechanism for the Cerebral Blood Flow Autoregulation after Hemorrhagic Stroke.

    PubMed

    Xiao, Ming; Li, Qiang; Feng, Hua; Zhang, Le; Chen, Yujie

    2017-01-01

    During the initial stages of hemorrhagic stroke, including intracerebral hemorrhage and subarachnoid hemorrhage, the reflex mechanisms are activated to protect cerebral perfusion, but secondary dysfunction of cerebral flow autoregulation will eventually reduce global cerebral blood flow and the delivery of metabolic substrates, leading to generalized cerebral ischemia, hypoxia, and ultimately, neuronal cell death. Cerebral blood flow is controlled by various regulatory mechanisms, including prevailing arterial pressure, intracranial pressure, arterial blood gases, neural activity, and metabolic demand. Evoked by the concept of vascular neural network, the unveiled neural vascular mechanism gains more and more attentions. Astrocyte, neuron, pericyte, endothelium, and so forth are formed as a communicate network to regulate with each other as well as the cerebral blood flow. However, the signaling molecules responsible for this communication between these new players and blood vessels are yet to be definitively confirmed. Recent evidence suggested the pivotal role of transcriptional mechanism, including but not limited to miRNA, lncRNA, exosome, and so forth, for the cerebral blood flow autoregulation. In the present review, we sought to summarize the hemodynamic changes and underline neural vascular mechanism for cerebral blood flow autoregulation in stroke-prone state and after hemorrhagic stroke and hopefully provide more systematic and innovative research interests for the pathophysiology and therapeutic strategies of hemorrhagic stroke.

  16. A failure to communicate: patients with cerebral aneurysms and vascular neurosurgeons

    PubMed Central

    King, J; Yonas, H; Horowitz, M; Kassam, A; Roberts, M

    2005-01-01

    Objective: To assess communication between vascular neurosurgeons and their patients with unruptured cerebral aneurysms about treatment options and expected outcomes. Methods: Vascular neurosurgeons and their patients with cerebral aneurysms were surveyed immediately following outpatient appointments in a neurosurgery clinic. Data collected included how well the patient understood their aneurysm treatment options, the risks of a poor outcome from various treatments, and the consensus "best" treatment. Patient and neurosurgeon responses were measured using Likert scales, multiple choice questions, and visual analogue scales. Agreement between patient and neurosurgeon was assessed with kappa scores. The Wilcoxon sign rank test was used to compare visual analogue scale responses. Results: Data for 44 patient–neurosurgeon pairs were collected. Only 61% of patient–neurosurgeon pairs agreed on the best treatment plan for the patient's aneurysm (κ = 0.51, moderate agreement). Among the neurosurgeons, agreement with their patients ranged from 82% (κ = 0.77, almost perfect agreement) to 52% (κ = 0.37, fair agreement). Patients estimated much higher risks of stroke or death from surgical clipping, endovascular embolisation, or no intervention compared with the estimates offered by their neurosurgeons (surgical clipping: patient 36% v neurosurgeon 13%, p<0.001; endovascular embolisation: patient 35% v neurosurgeon 19%, p = 0.040; and no intervention: patient 63% v neurosurgeon 25%, p<0.001). Conclusions: Following consultation with a vascular neurosurgeon, many patients with cerebral aneurysms have an inaccurate understanding of their aneurysm treatment plan and an exaggerated sense of the risks of aneurysmal disease and treatment. PMID:15774444

  17. Vascular and parenchymal amyloid pathology in an Alzheimer disease knock-in mouse model: interplay with cerebral blood flow.

    PubMed

    Li, Hongmei; Guo, Qinxi; Inoue, Taeko; Polito, Vinicia A; Tabuchi, Katsuhiko; Hammer, Robert E; Pautler, Robia G; Taffet, George E; Zheng, Hui

    2014-08-09

    Accumulation and deposition of β-amyloid peptides (Aβ) in the brain is a central event in the pathogenesis of Alzheimer's disease (AD). Besides the parenchymal pathology, Aβ is known to undergo active transport across the blood-brain barrier and cerebral amyloid angiopathy (CAA) is a prominent feature in the majority of AD. Although impaired cerebral blood flow (CBF) has been implicated in faulty Aβ transport and clearance, and cerebral hypoperfusion can exist in the pre-clinical phase of Alzheimer's disease (AD), it is still unclear whether it is one of the causal factors for AD pathogenesis, or an early consequence of a multi-factor condition that would lead to AD at late stage. To study the potential interaction between faulty CBF and amyloid accumulation in clinical-relevant situation, we generated a new amyloid precursor protein (APP) knock-in allele that expresses humanized Aβ and a Dutch mutation in addition to Swedish/London mutations and compared this line with an equivalent knock-in line but in the absence of the Dutch mutation, both crossed onto the PS1M146V knock-in background. Introduction of the Dutch mutation results in robust CAA and parenchymal Aβ pathology, age-dependent reduction of spatial learning and memory deficits, and CBF reduction as detected by fMRI. Direct manipulation of CBF by transverse aortic constriction surgery on the left common carotid artery caused differential changes in CBF in the anterior and middle region of the cortex, where it is reduced on the left side and increased on the right side. However these perturbations in CBF resulted in the same effect: both significantly exacerbate CAA and amyloid pathology. Our study reveals a direct and positive link between vascular and parenchymal Aβ; both can be modulated by CBF. The new APP knock-in mouse model recapitulates many symptoms of AD including progressive vascular and parenchymal Aβ pathology and behavioral deficits in the absence of APP overexpression.

  18. Vascular signaling abnormalities in Alzheimer disease.

    PubMed

    Grammas, Paula; Sanchez, Alma; Tripathy, Debjani; Luo, Ester; Martinez, Joseph

    2011-08-01

    Our laboratory has documented that brain microvessels derived from patients with Alzheimer disease (AD) express or release a myriad of factors that have been implicated in vascular activation and angiogenesis. In addition, we have documented that signaling cascades associated with vascular activation and angiogenesis are upregulated in AD-derived brain microvessels. These results are consistent with emerging data suggesting that factors and processes characteristic of vascular activation and angiogenesis are found in the AD brain. Despite increases in proangiogenic factors and signals in the AD brain, however, evidence for increased vascularity in AD is lacking. Cerebral hypoperfusion/hypoxia, a potent stimulus for vascular activation and angiogenesis, triggers hypometabolic, cognitive, and degenerative changes in the brain. In our working model, hypoxia stimulates the angiogenic process; yet, there is no new vessel growth. Therefore, there are no feedback signals to shut off vascular activation, and endothelial cells become irreversibly activated. This activation results in release of a large number of proteases, inflammatory proteins, and other gene products with biologic activity that can injure or kill neurons. Pathologic activation of brain vasculature may contribute noxious mediators that lead to neuronal injury and disease processes in AD brains. This concept is supported by preliminary experiments in our laboratory, which show that pharmacologic blockade of vascular activation improves cognitive function in an animal model of AD. Thus, "vascular activation" could be a novel, unexplored therapeutic target in AD.

  19. Effects of Mild Blast Traumatic Brain Injury on Cerebral Vascular, Histopathological, and Behavioral Outcomes in Rats

    PubMed Central

    Zeng, Yaping; Deyo, Donald; Parsley, Margaret A.; Hawkins, Bridget E.; Prough, Donald S.; DeWitt, Douglas S.

    2018-01-01

    Abstract To determine the effects of mild blast-induced traumatic brain injury (bTBI), several groups of rats were subjected to blast injury or sham injury in a compressed air-driven shock tube. The effects of bTBI on relative cerebral perfusion (laser Doppler flowmetry [LDF]), and mean arterial blood pressure (MAP) cerebral vascular resistance were measured for 2 h post-bTBI. Dilator responses to reduced intravascular pressure were measured in isolated middle cerebral arterial (MCA) segments, ex vivo, 30 and 60 min post-bTBI. Neuronal injury was assessed (Fluoro-Jade C [FJC]) 24 and 48 h post-bTBI. Neurological outcomes (beam balance and walking tests) and working memory (Morris water maze [MWM]) were assessed 2 weeks post-bTBI. Because impact TBI (i.e., non-blast TBI) is often associated with reduced cerebral perfusion and impaired cerebrovascular function in part because of the generation of reactive oxygen and nitrogen species such as peroxynitrite (ONOO−), the effects of the administration of the ONOO− scavenger, penicillamine methyl ester (PenME), on cerebral perfusion and cerebral vascular resistance were measured for 2 h post-bTBI. Mild bTBI resulted in reduced relative cerebral perfusion and MCA dilator responses to reduced intravascular pressure, increases in cerebral vascular resistance and in the numbers of FJC-positive cells in the brain, and significantly impaired working memory. PenME administration resulted in significant reductions in cerebral vascular resistance and a trend toward increased cerebral perfusion, suggesting that ONOO− may contribute to blast-induced cerebral vascular dysfunction. PMID:29160141

  20. Study of the Dynamics of Transcephalic Cerebral Impedance Data during Cardio-Vascular Surgery

    NASA Astrophysics Data System (ADS)

    Atefi, S. R.; Seoane, F.; Lindecrantz, K.

    2013-04-01

    Postoperative neurological deficits are one of the risks associated with cardio vascular surgery, necessitating development of new techniques for cerebral monitoring. In this study an experimental observation regarding the dynamics of transcephalic Electrical Bioimpedance (EBI) in patients undergoing cardiac surgery with and without extracorporeal circulation (ECC) was conducted to investigate the potential use of electrical Bioimpedance for cerebral monitoring in cardio vascular surgery. Tetrapolar transcephalic EBI measurements at single frequency of 50 kHz were recorded prior to and during cardio vascular surgery. The obtained results show that the transcephalic impedance decreases in both groups of patients as operation starts, however slight differences in these two groups were also observed with the cerebral impedance reduction in patients having no ECC being less common and not as pronounced as in the ECC group. Changes in the cerebral impedance were in agreement with changes of haematocrit and temperature. The origin of EBI changes is still unexplained however these results encourage us to continue investigating the application of electrical bioimpedance cerebral monitoring clinically.

  1. Dual-wavelength hybrid optoacoustic-ultrasound biomicroscopy for functional imaging of large-scale cerebral vascular networks.

    PubMed

    Rebling, Johannes; Estrada, Héctor; Gottschalk, Sven; Sela, Gali; Zwack, Michael; Wissmeyer, Georg; Ntziachristos, Vasilis; Razansky, Daniel

    2018-04-19

    A critical link exists between pathological changes of cerebral vasculature and diseases affecting brain function. Microscopic techniques have played an indispensable role in the study of neurovascular anatomy and functions. Yet, investigations are often hindered by suboptimal trade-offs between the spatiotemporal resolution, field-of-view (FOV) and type of contrast offered by the existing optical microscopy techniques. We present a hybrid dual-wavelength optoacoustic (OA) biomicroscope capable of rapid transcranial visualization of large-scale cerebral vascular networks. The system offers 3-dimensional views of the morphology and oxygenation status of the cerebral vasculature with single capillary resolution and a FOV exceeding 6 × 8 mm 2 , thus covering the entire cortical vasculature in mice. The large-scale OA imaging capacity is complemented by simultaneously acquired pulse-echo ultrasound (US) biomicroscopy scans of the mouse skull. The new approach holds great potential to provide better insights into cerebrovascular function and facilitate efficient studies into neurological and vascular abnormalities of the brain. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Hypertension-Induced Cerebral Small Vessel Disease Leading to Cognitive Impairment.

    PubMed

    Liu, Yang; Dong, Yan-Hong; Lyu, Pei-Yuan; Chen, Wei-Hong; Li, Rui

    2018-03-05

    Alzheimer's disease and vascular dementia are responsible for more than 80% of dementia cases. These two conditions share common risk factors including hypertension. Cerebral small vessel disease (CSVD) is strongly associated with both hypertension and cognitive impairment. In this review, we identify the pathophysiological changes in CSVD that are caused by hypertension and further explore the relationship between CSVD and cognitive impairment. We searched and scanned the PubMed database for recently published literatures up to December 2017. We used the keywords of "hypertension", "cerebral small vessel disease", "white matter lesions", "enlarged perivascular spaces", "lacunar infarcts", "cerebral microbleeds", and "cognitive impairment" in the database of PubMed. Articles were obtained and reviewed to analyze the hypertension-induced pathophysiological changes that occur in CSVD and the correlation between CSVD and cognitive impairment. In recent years, studies have demonstrated that hypertension-related changes (e.g., small vascular lesions, inflammatory reactions, hypoperfusion, oxidative stress, damage to autoregulatory processes and the blood-brain barrier, and cerebral amyloid angiopathy) can occur over time in cerebral small vessels, potentially leading to lower cognitive function when blood pressure (BP) control is poor or lacking. Both isolated and co-occurrent CSVD can lead to cognitive deterioration, and this effect may be attributable to a dysfunction in either the cholinergic system or the functionality of cortical and subcortical tracts. We explore the currently available evidence about the hypertensive vasculopathy and inflammatory changes that occur in CSVD. Both are vital prognostic indicators of the development of cognitive impairment. Future studies should be performed to validate the relationship between BP levels and CSVD progression and between the numbers, volumes, and anatomical locations of CSVD and cognitive impairment.

  3. Cerebral vascular reactivity on return from the International Space Station

    NASA Astrophysics Data System (ADS)

    Zuj, Kathryn; Greaves, Danielle; Shoemaker, Kevin; Blaber, Andrew; Hughson, Richard L.

    Returning from spaceflight, astronauts experience a high incidence of orthostatic intolerance and syncope. Longer duration space flight may result in greater adaptations to microgravity which could increase the post-flight incidence of syncope. CCISS (Cardiovascular and Cerebovascular Control on return from the International Space Station) is an ongoing project designed to help determine adaptations that occur during spaceflight which may contribute to orthostatic intolerance. One component of this project involves looking at cerebral vascular responses before and after long duration spaceflight. As a known vasodilator, carbon dioxide (CO2) has been frequently used to assess changes in cerebral vascular reactivity. In this experiment, end tidal PCO2 was manipulated through changes in respired air. Two breaths of a 10% CO2 gas mixture were administered at 1-min intervals resulting in an increase in end tidal PCO2 . Throughout the testing, cerebral blood flow velocity (CBFV) was determined using transcranial Doppler ultrasound. The cerebral resistance index (RI) was calculated from the Doppler wave form using the equation; RI=(CBFVsystolic-CBFVdiastolic)/CBFVsystolic. Changes in this index have been shown to reflect changes in cerebral vascular resistance. Peak responses to the CO2 stimulus were determined and compared to baseline measures taken at the beginning of the testing. Cerebral blood flow velocity increased and RI decreased with the two breaths of CO2. Preliminary data show a 36.0% increase in CBFV and a 9.0% decrease in RI pre-flight. Post flight, the response to CO2 appears to change showing a potentially blunted decrease in resistance (6.8%) and a smaller increase in CBFV (22.8%). Long term spaceflight may result in cerebrovascular changes which could decrease the vasodilatory capacity of cerebral resistance vessels. Further investigations in the CCISS project will reveal the interactive role of CO2 and arterial blood pressure on maintenance of brain

  4. Fluid-attenuated inversion recovery vascular hyperintensities in predicting cerebral hyperperfusion after intracranial arterial stenting.

    PubMed

    Wan, Chih-Cheng; Chen, David Yen-Ting; Tseng, Ying-Chi; Yan, Feng-Xian; Lee, Kun-Yu; Chiang, Chen-Hua; Chen, Chi-Jen

    2017-08-01

    No reliable imaging sign predicting cerebral hyperperfusion after intracranial arterial stenting (IAS) had been described in the literature. This study evaluated the effect of fluid-attenuated inversion recovery vascular hyperintensities (FVHs), also called hyperintense vessel sign on T2-weighted fluid-attenuated inversion recovery (T2-FLAIR) MR images, in predicting significant increase in cerebral blood flow (CBF) defined by arterial spin labeling (ASL) after IAS. We reviewed ASL CBF images and T2-FLAIR MR images before (D0), 1 day after (D1), and 3 days after (D3) IAS of 16 patients. T1-weighted MR images were used as cerebral maps for calculating CBF. The changes in CBF values after IAS were calculated in and compared among stenting and nonstenting vascular territories. An increase more than 50% of CBF was considered as hyperperfusion. The effect of FVHs in predicting hyperperfusion was calculated. The D1 CBF value was significantly higher than the D0 CBF value in stenting vascular, contralateral anterior cerebral artery, contralateral middle cerebral artery, and contralateral posterior cerebral artery (PCA) territories (all P < .05). The D1 and D3 CBF values were significantly higher than the D0 CBF value in overall vascular (P < .001), overall nonstenting vascular (P < .001), and ipsilateral PCA (P < .05) territories. The rate of more than 50% increases in CBF was significantly higher in patients who exhibited asymmetric FVHs than in those who did not exhibit these findings. FVHs could be a critical predictor of a significant increase in CBF after IAS.

  5. Regional cerebral blood flow and cerebrovascular reactivity in Alzheimer's disease and vascular dementia assessed by arterial spinlabeling magnetic resonance imaging.

    PubMed

    Gao, Yong-Zhe; Zhang, Jun-Jian; Liu, Hui; Wu, Guang-Yao; Xiong, Li; Shu, Min

    2013-02-01

    Hemodynamic disturbance in cerebral blood flow (CBF) is common in both Alzheimer's disease (AD) and vascular dementia (VaD).The aim of this study is to investigate the different patterns of regional cerebral blood flow (rCBF) change and cerebrovascular reactivity (CVR) in these two types of dementia. Mean flow velocity (MFV) of middle cerebral artery and rCBF were measured by Transcranial Doppler ultrasound (TCD) and arterial spin-labeling (ASL) magnetic resonance, separately. CVR was evaluated by MFV or rCBF change in response to 5% CO2 inhalation. The ASL results showed that, rCBF was significantly lower in both the bilateral frontal and temporal lobes in AD group and lower in left frontal and temporal white matter in patients with VaD. CVR calculated by rCBF was impaired more severely in bilateral frontal cortices in AD. Conversely, TCD tests failed to demonstrate significant difference in MFV and CVR between the two groups. It is concluded that the different patterns detected by ASL in resting rCBF change and cerebrovascular reactivity in response to carbogen inhalation may serve as a potential marker to distinguish AD and VaD.

  6. Cerebral oximetry in cardiac and major vascular surgery.

    PubMed

    Fischer, G W; Silvay, G

    2010-01-01

    We describe the development and current applications of cerebral oximetry (based on near-infrared reflectance spectroscopy) that can be used during cardiac and major vascular surgery to determined brain tissue oxygen saturation. There are presently three cerebral oximetry devices with FDA approval in the United States to measure and monitor cerebral tissue oxygen saturation. 1. INVOS (Somanetics Corporation, Troy, MI - recently COVIDIEN, Boulder, CO); FORE-SIGHT (CAS Medical Systems, Inc. Branford, CT); EQUANOX (Nonin Medical Inc.Minnesota, MN). All devices are portable, non-invasive and easy to use in operating room and intensive care unit. The data provided in these communication may provided information for improvement of perioperative neuromonitoring techniques, and may be crucial in the design of future clinical trials.

  7. Chronic cerebral hypoperfusion: a key mechanism leading to vascular cognitive impairment and dementia. Closing the translational gap between rodent models and human vascular cognitive impairment and dementia.

    PubMed

    Duncombe, Jessica; Kitamura, Akihiro; Hase, Yoshiki; Ihara, Masafumi; Kalaria, Raj N; Horsburgh, Karen

    2017-10-01

    Increasing evidence suggests that vascular risk factors contribute to neurodegeneration, cognitive impairment and dementia. While there is considerable overlap between features of vascular cognitive impairment and dementia (VCID) and Alzheimer's disease (AD), it appears that cerebral hypoperfusion is the common underlying pathophysiological mechanism which is a major contributor to cognitive decline and degenerative processes leading to dementia. Sustained cerebral hypoperfusion is suggested to be the cause of white matter attenuation, a key feature common to both AD and dementia associated with cerebral small vessel disease (SVD). White matter changes increase the risk for stroke, dementia and disability. A major gap has been the lack of mechanistic insights into the evolution and progress of VCID. However, this gap is closing with the recent refinement of rodent models which replicate chronic cerebral hypoperfusion. In this review, we discuss the relevance and advantages of these models in elucidating the pathogenesis of VCID and explore the interplay between hypoperfusion and the deposition of amyloid β (Aβ) protein, as it relates to AD. We use examples of our recent investigations to illustrate the utility of the model in preclinical testing of candidate drugs and lifestyle factors. We propose that the use of such models is necessary for tackling the urgently needed translational gap from preclinical models to clinical treatments. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  8. Association factor analysis between osteoporosis with cerebral artery disease: The STROBE study.

    PubMed

    Jin, Eun-Sun; Jeong, Je Hoon; Lee, Bora; Im, Soo Bin

    2017-03-01

    The purpose of this study was to determine the clinical association factors between osteoporosis and cerebral artery disease in Korean population. Two hundred nineteen postmenopausal women and men undergoing cerebral computed tomography angiography were enrolled in this study to evaluate the cerebral artery disease by cross-sectional study. Cerebral artery disease was diagnosed if there was narrowing of 50% higher diameter in one or more cerebral vessel artery or presence of vascular calcification. History of osteoporotic fracture was assessed using medical record, and radiographic data such as simple radiography, MRI, and bone scan. Bone mineral density was checked by dual-energy x-ray absorptiometry. We reviewed clinical characteristics in all patients and also performed subgroup analysis for total or extracranial/ intracranial cerebral artery disease group retrospectively. We performed statistical analysis by means of chi-square test or Fisher's exact test for categorical variables and Student's t-test or Wilcoxon's rank sum test for continuous variables. We also used univariate and multivariate logistic regression analyses were conducted to assess the factors associated with the prevalence of cerebral artery disease. A two-tailed p-value of less than 0.05 was considered as statistically significant. All statistical analyses were performed using R (version 3.1.3; The R Foundation for Statistical Computing, Vienna, Austria) and SPSS (version 14.0; SPSS, Inc, Chicago, Ill, USA). Of the 219 patients, 142 had cerebral artery disease. All vertebral fracture was observed in 29 (13.24%) patients. There was significant difference in hip fracture according to the presence or absence of cerebral artery disease. In logistic regression analysis, osteoporotic hip fracture was significantly associated with extracranial cerebral artery disease after adjusting for multiple risk factors. Females with osteoporotic hip fracture were associated with total calcified cerebral artery

  9. A theoretical framework for determining cerebral vascular function and heterogeneity from dynamic susceptibility contrast MRI.

    PubMed

    Digernes, Ingrid; Bjørnerud, Atle; Vatnehol, Svein Are S; Løvland, Grete; Courivaud, Frédéric; Vik-Mo, Einar; Meling, Torstein R; Emblem, Kyrre E

    2017-06-01

    Mapping the complex heterogeneity of vascular tissue in the brain is important for understanding cerebrovascular disease. In this translational study, we build on previous work using vessel architectural imaging (VAI) and present a theoretical framework for determining cerebral vascular function and heterogeneity from dynamic susceptibility contrast magnetic resonance imaging (MRI). Our tissue model covers realistic structural architectures for vessel branching and orientations, as well as a range of hemodynamic scenarios for blood flow, capillary transit times and oxygenation. In a typical image voxel, our findings show that the apparent MRI relaxation rates are independent of the mean vessel orientation and that the vortex area, a VAI-based parameter, is determined by the relative oxygen saturation level and the vessel branching of the tissue. Finally, in both simulated and patient data, we show that the relative distributions of the vortex area parameter as a function of capillary transit times show unique characteristics in normal-appearing white and gray matter tissue, whereas tumour-voxels in comparison display a heterogeneous distribution. Collectively, our study presents a comprehensive framework that may serve as a roadmap for in vivo and per-voxel determination of vascular status and heterogeneity in cerebral tissue.

  10. The relationship to age and cerebral vascular accidents of fibrin and fibrinolytic activity

    PubMed Central

    Hume, R.

    1961-01-01

    Three `normal' groups of people—young, middle-aged, and old—have been investigated with regard to the fibrin content and fibrinolytic activity of the blood. The fourth group consisted of middle-aged people who had previously sustained a cerebral vascular accident matched statistically for age with the middle-aged normals. It was concluded that fibrin increases with age but there is an interaction between age and sex, the female having a higher level in the young group and the male a higher level in the middle-aged group. There was no sex difference in the levels of fibrin in the old age group. Fibrinolytic activity increases with age and there is a positive correlation between fibrin and fibrinolytic activity but no age-sex interaction. Those with cerebral vascular accidents tended to have higher fibrin levels and lower fibrinolytic activity but the differences were not statistically significant. There did, however, appear to be an increase in antifibrinolytic activity in the cerebral vascular group. PMID:13716799

  11. Critical role of matrix metalloprotease-9 in chronic high fat diet-induced cerebral vascular remodelling and increase of ischaemic brain injury in mice†

    PubMed Central

    Deng, Jiao; Zhang, Junfeng; Feng, Chenzhuo; Xiong, Lize; Zuo, Zhiyi

    2014-01-01

    Aims About one-third of American adults and 20% of teenagers are obese. Obesity and its associated metabolic disturbances including hyperlipidaemia are risk factors for cardiovascular diseases including stroke. They can worsen neurological outcome after stroke. We determined whether obesity and hyperlipidaemia could induce cerebral vascular remodelling via matrix metalloproteases (MMP) and whether this remodelling affected neurological outcome after brain ischaemia. Methods and results Six-week-old male CD1, C57BL/6J, and MMP-9−/− mice were fed regular diet (RD) or high-fat diet (HFD) for 10 weeks. They were subjected to vascular casting or a 90 min middle cerebral arterial occlusion (MCAO). Mice on HFD were heavier and had higher blood glucose and lipid levels than those on RD. HFD-fed CD1 and C57BL/6J mice had an increased cerebral vascular tortuosity index and decreased inner diameters of the middle cerebral arterial root. HFD increased microvessel density in CD1 mouse cerebral cortex. After MCAO, CD1 and C57BL/6J mice on HFD had a bigger infarct volume, more severe brain oedema and blood–brain barrier damage, higher haemorrhagic transformation rate, greater haemorrhagic volume, and worse neurological function. HFD increased MMP-9 activity in the ischaemic and non-ischaemic brain tissues. Although HFD increased the body weights, blood glucose, and lipid levels in the MMP-9−/− mice on a C57BL/6J genetic background, the HFD-induced cerebral vascular remodelling and worsening of neurological outcome did not occur in these mice. Conclusion HFD induces cerebral vascular remodelling and worsens neurological outcome after transient focal brain ischaemia. MMP-9 activation plays a critical role in these HFD effects. PMID:24935427

  12. Vascular care in patients with Alzheimer disease with cerebrovascular lesions slows progression of white matter lesions on MRI: the evaluation of vascular care in Alzheimer's disease (EVA) study.

    PubMed

    Richard, Edo; Gouw, Alida A; Scheltens, Philip; van Gool, Willem A

    2010-03-01

    White matter lesions (WMLs) and cerebral infarcts are common findings in Alzheimer disease and may contribute to dementia severity. WMLs and lacunar infarcts may provide a potential target for intervention strategies. This study assessed whether multicomponent vascular care in patients with Alzheimer disease with cerebrovascular lesions slows progression of WMLs and prevents occurrence of new infarcts. A randomized controlled clinical trial, including 123 subjects, compared vascular care with standard care in patients with Alzheimer disease with cerebrovascular lesions on MRI. Progression of WMLs, lacunes, medial temporal lobe atrophy, and global cortical atrophy were semiquantitatively scored after 2-year follow-up. Sixty-five subjects (36 vascular care, 29 standard care) had a baseline and a follow-up MRI and in 58 subjects, a follow-up scan could not be obtained due to advanced dementia or death. Subjects in the vascular care group had less progression of WMLs as measured with the WML change score (1.4 versus 2.3, P=0.03). There was no difference in the number of new lacunes or change in global cortical atrophy or medial temporal lobe atrophy between the 2 groups. Vascular care in patients with Alzheimer disease with cerebrovascular lesions slows progression of WMLs. Treatment aimed at vascular risk factors in patients with early Alzheimer disease may be beneficial, possibly in an even earlier stage of the disease.

  13. [Results of percutaneous transluminal dilatation of cerebral vascular stenoses].

    PubMed

    Kachel, R; Ritter, H; Grossmann, K; Glaser, F H

    1986-03-01

    The present paper is a review of 37 successful catheter dilatations of supra-aortic vascular stenoses. There were sixteen patients with a total of 21 stenoses of the internal carotid, vertebral artery or common carotid artery and sixteen patients with subclavian stenoses. Amongst the patients with stenoses of the cerebral vessels, there were ten with multiple lesions and six with a single stenosis. Three patients had successful dilatations of bilateral stenoses. The indications, technique, and complications of catheter dilatation of lesions of the cerebral vessels are described and discussed.

  14. Cerebral dominance for speech and handwriting of patients with cortical vascular malformations.

    PubMed

    Sass, K J; Buchanan, C P; Westerveld, M; Spencer, D D

    1994-10-01

    Lateralization of speech dominance was established using amobarbital for 22 patients with vascular malformations lateralized to the left cerebral hemisphere. Patients' histories were negative for clinically evident neurological events (e.g., seizures or hemorrhage) prior to adulthood. The vascular lesions were categorized as high flow arteriovenous malformations (AVMs) (n = 4), low flow AVMs (n = 6), cavernous hemangiomas (n = 10), or venous angiomas (n = 2) by reviewing angiographic findings and surgical pathology for those patients whose lesions were excised. Three of the malformations encroached upon primary language areas. The frequency of right hemisphere speech dominance was not significantly elevated in comparison with the normal population, even though the incidence of nonright-handedness was. Ninety-five percent of the patients were left hemisphere dominant for speech: only one patient, with a parietal lobe cavernous hemangioma, was found to be right hemisphere dominant for speech. This malformation did not involve the primary language areas. These findings suggest that vascular malformations do not affect speech dominance as readily as other neurological diseases, but frequently affect manual dominance.

  15. l-arginine and l-NMMA for assessing cerebral endothelial dysfunction in ischaemic cerebrovascular disease: A systematic review.

    PubMed

    Karlsson, William K; Sørensen, Caspar G; Kruuse, Christina

    2017-01-01

    Endothelial dysfunction (ED), in particular cerebral ED, may be an essential biomarker for ischaemic cerebrovascular disease. However, there is no consensus on methods to best estimate cerebral ED. In this systematic review, we evaluate the use of l-arginine and N G -monomethyl-l-arginine (l-NMMA) for assessment of cerebral ED. A systematic search of PubMed, EMBASE and the Cochrane Library was done. We included studies investigating cerebrovascular response to l-arginine or l-NMMA in human subjects with vascular risk factors or ischaemic cerebrovascular disease. Seven studies (315 subjects) were eligible according to inclusion and exclusion criteria. Studies investigated the effect of age (n=2), type 2 diabetes mellitus (DM) (n=1), cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) (n=1), leukoaraiosis (n=1), and prior ischaemic stroke or transient ischaemic attack (TIA) (n=2) on cerebral ED. Most studies applied transcranial Doppler to quantify cerebral ED. Endothelium-dependent vasodilatation (EDV) induced by l-arginine was impaired in elderly and subjects with leukoaraiosis, but enhanced in CADASIL patients. Studies including subjects with prior ischaemic stroke or TIA reported both enhanced and impaired EDV to l-arginine. Responses to l-NMMA deviated between subjects with type 2 DM and the elderly. We found only few studies investigating cerebral endothelial responses to l-arginine and l-NMMA in subjects with vascular risk factors or ischaemic cerebrovascular disease. Inconsistencies in results were most likely due to variations in methods and included subject populations. In order to use cerebral ED as a prognostic marker, further studies are required to evaluate the association to cerebrovascular disease. © 2016 John Wiley & Sons Australia, Ltd.

  16. Majewski osteodysplastic primordial dwarfism type II (MOPD II) complicated by stroke: clinical report and review of cerebral vascular anomalies.

    PubMed

    Brancati, Francesco; Castori, Marco; Mingarelli, Rita; Dallapiccola, Bruno

    2005-12-15

    We report on a 2 9/12-year-old boy with disproportionate short stature, microcephaly, subtle craniofacial dysmorphisms, and generalized skeletal dysplasia, who developed a left hemiparesis. Brain neuroimaging disclosed a complex cerebral vascular anomaly (CVA) with stenosis of the right anterior cerebral artery and telangiectatic collateral vessels supplying the cerebral cortex, consistent with moyamoya disease. Based on clinical and skeletal features, a diagnosis of Majewski osteodysplastic primordial dwarfism type II (MOPD II) was established. Review of 16 published patients with CVA affected by either Seckel syndrome or MOPD II suggested that CVA is preferentially associated to the latter subtype affecting about 1/4 of the patients. 2005 Wiley-Liss, Inc.

  17. Cerebral Microbleeds in Patients with Dementia with Lewy Bodies and Parkinson Disease Dementia.

    PubMed

    Kim, S W; Chung, S J; Oh, Y-S; Yoon, J H; Sunwoo, M K; Hong, J Y; Kim, J-S; Lee, P H

    2015-09-01

    The burden of amyloid β is greater in patients with dementia with Lewy bodies than in those with Parkinson disease dementia, and an increased amyloid β load is closely related to a higher incidence of cerebral microbleeds. Here, we investigated the prevalence and topography of cerebral microbleeds in patients with dementia with Lewy bodies and those with Parkinson disease dementia to examine whether cerebral microbleeds are more prevalent in patients with dementia with Lewy bodies than in those with Parkinson disease dementia. The study population consisted of 42 patients with dementia with Lewy bodies, 88 patients with Parkinson disease dementia, and 35 controls who underwent brain MR imaging with gradient recalled-echo. Cerebral microbleeds were classified as deep, lobar, or infratentorial. The frequency of cerebral microbleeds was significantly greater in patients with dementia with Lewy bodies (45.2%) than in those with Parkinson disease dementia (26.1%) or in healthy controls (17.1%; P = .017). Lobar cerebral microbleeds were observed more frequently in the dementia with Lewy bodies group (40.5%) than in the Parkinson disease dementia (17%; P = .004) or healthy control (8.6%; P = .001) group, whereas the frequencies of deep and infratentorial cerebral microbleeds did not differ among the 3 groups. Logistic regression analyses revealed that, compared with the healthy control group, the dementia with Lewy bodies group was significantly associated with the presence of lobar cerebral microbleeds after adjusting for age, sex, nonlobar cerebral microbleeds, white matter hyperintensities, and other vascular risk factors (odds ratio, 4.39 [95% CI, 1.27-15.25]). However, compared with the healthy control group, the Parkinson disease dementia group was not significantly associated with lobar cerebral microbleeds. This study showed that patients with dementia with Lewy bodies had a greater burden of cerebral microbleeds and exhibited a lobar predominance of cerebral

  18. Cigarette smoking impairs nitric oxide-mediated cerebral blood flow increase: Implications for Alzheimer's disease.

    PubMed

    Toda, Noboru; Okamura, Tomio

    2016-08-01

    Cerebral blood flow is mainly regulated by nitrergic (parasympathetic, postganglionic) nerves and nitric oxide (NO) liberated from endothelial cells in response to shear stress and stretch of vasculature, whereas sympathetic vasoconstrictor control is quite weak. On the other hand, peripheral vascular resistance and blood flow are mainly controlled by adrenergic vasoconstrictor nerves; endothelium-derived NO and nitrergic nerves play some roles as vasodilator factors. Cigarette smoking impairs NO synthesis in cerebral vascular endothelial cells and nitrergic nerves leading to interference with cerebral blood flow and glucose metabolism in the brain. Smoking-induced cerebral hypoperfusion is induced by impairment of synthesis and actions of NO via endothelial nitric oxide synthase (eNOS)/neuronal NOS (nNOS) inhibition and by increased production of oxygen radicals, resulting in decreased actions of NO on vascular smooth muscle. Nicotine acutely and chronically impairs the action of endothelial NO and also inhibits nitrergic nerve function in chronic use. Impaired cerebral blood supply promotes the synthesis of amyloid β that accelerates blood flow decrease. This vicious cycle is thought to be one of the important factors involving in Alzheimer's disease (AD). Quitting smoking is undoubtedly one of the important ways to prevent and delay the genesis or slow the progress of impaired cognitive function and AD. Copyright © 2016 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  19. A Pilot Study Evaluating Cerebral Vasculitis in Kawasaki's Disease.

    PubMed

    Yeom, Jung Sook; Cho, Young Hye; Koo, Chung Mo; Jun, Jin Su; Park, Ji Sook; Park, Eun Sil; Seo, Ji-Hyun; Lim, Jae-Young; Woo, Hyang-Ok; Youn, Hee-Shang

    2018-06-18

    Cerebral vasculitis is thought to be a possible underlying mechanism of severe neurological complications of Kawasaki's disease (KD), such as cerebral infarct or aneurysm rupture. To evaluate the intracranial inflammatory response in patients with acute-stage KD, we measured the levels of cytokines (interleukin [IL]-6 and tumor necrosis factor [TNF]-α) and pentraxin-3 (PTX3) in the cerebrospinal fluid of patients with KD ( n  = 7) and compared the levels to those of the age- and sex-matched febrile control patients (bacterial meningitis [ n  = 5], enteroviral meningitis [ n  = 10], nonspecific viral illness without central nervous system involvement [ n  = 10]). PTX3 and TNF-α were rarely detected and only in trace concentration in KD, and the levels of IL-6 were not different from those of nonspecific viral illnesses. These mediators are not established biomarkers for cerebral vasculitis but might reflect vascular inflammation in various diseases including KD. Therefore, intracranial inflammation including vasculitis seems to be insignificant in our patients with KD. However, our results might be attributed to the fact that these patients lacked any clinical signs of cerebral or coronary vessel involvement. None of them underwent brain imaging. To clarify this issue, further studies involving patients with neurologic symptoms and proven involvement of cerebral vessels are needed. Georg Thieme Verlag KG Stuttgart · New York.

  20. mTOR drives cerebral blood flow and memory deficits in LDLR-/- mice modeling atherosclerosis and vascular cognitive impairment.

    PubMed

    Jahrling, Jordan B; Lin, Ai-Ling; DeRosa, Nicholas; Hussong, Stacy A; Van Skike, Candice E; Girotti, Milena; Javors, Martin; Zhao, Qingwei; Maslin, Leigh Ann; Asmis, Reto; Galvan, Veronica

    2018-01-01

    We recently showed that mTOR attenuation blocks progression and abrogates established cognitive deficits in Alzheimer's disease (AD) mouse models. These outcomes were associated with the restoration of cerebral blood flow (CBF) and brain vascular density (BVD) resulting from relief of mTOR inhibition of NO release. Recent reports suggested a role of mTOR in atherosclerosis. Because mTOR drives aging and vascular dysfunction is a universal feature of aging, we hypothesized that mTOR may contribute to brain vascular and cognitive dysfunction associated with atherosclerosis. We measured CBF, BVD, cognitive function, markers of inflammation, and parameters of cardiovascular disease in LDLR -/- mice fed maintenance or high-fat diet ± rapamycin. Cardiovascular pathologies were proportional to severity of brain vascular dysfunction. Aortic atheromas were reduced, CBF and BVD were restored, and cognitive dysfunction was attenuated potentially through reduction in systemic and brain inflammation following chronic mTOR attenuation. Our studies suggest that mTOR regulates vascular integrity and function and that mTOR attenuation may restore neurovascular function and cardiovascular health. Together with our previous studies in AD models, our data suggest mTOR-driven vascular damage may be a mechanism shared by age-associated neurological diseases. Therefore, mTOR attenuation may have promise for treatment of cognitive impairment in atherosclerosis.

  1. Structure and vascular function of MEKK3–cerebral cavernous malformations 2 complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, Oriana S.; Deng, Hanqiang; Liu, Dou

    Cerebral cavernous malformations 2 (CCM2) loss is associated with the familial form of CCM disease. The protein kinase MEKK3 (MAP3K3) is essential for embryonic angiogenesis in mice and interacts physically with CCM2, but how this interaction is mediated and its relevance to cerebral vasculature are unknown. Here we report that Mekk3 plays an intrinsic role in embryonic vascular development. Inducible endothelial Mekk3 knockout in neonatal mice is lethal due to multiple intracranial haemorrhages and brain blood vessels leakage. We discover direct interaction between CCM2 harmonin homology domain (HHD) and the N terminus of MEKK3, and determine a 2.35 Å cocrystalmore » structure. We find Mekk3 deficiency impairs neurovascular integrity, which is partially dependent on Rho–ROCK signalling, and that disruption of MEKK3:CCM2 interaction leads to similar neurovascular leakage. We conclude that CCM2:MEKK3-mediated regulation of Rho signalling is required for maintenance of neurovascular integrity, unravelling a mechanism by which CCM2 loss leads to disease.« less

  2. Cortical Cerebral Microinfarcts on 3 Tesla MRI in Patients with Vascular Cognitive Impairment.

    PubMed

    Ferro, Doeschka A; van Veluw, Susanne J; Koek, Huiberdina L; Exalto, Lieza G; Biessels, Geert Jan

    2017-01-01

    Cerebral microinfarcts (CMIs) are small ischemic lesions that are a common neuropathological finding in patients with stroke or dementia. CMIs in the cortex can now be detected in vivo on 3 Tesla MRI. To determine the occurrence of CMIs and associated clinical features in patients with possible vascular cognitive impairment (VCI). 182 memory-clinic patients (mean age 71.4±10.6, 55% male) with vascular injury on brain MRI (i.e., possible VCI) underwent a standardized work-up including 3 Tesla MRI and cognitive assessment. A control group consisted of 70 cognitively normal subjects (mean age 70.6±4.7, 60% male). Cortical CMIs and other neuroimaging markers of vascular brain injury were rated according to established criteria. Occurrence of CMIs was higher (20%) in patients compared to controls (10%). Among patients, the presence of CMIs was associated with male sex, history of stroke, infarcts, and white matter hyperintensities. CMI presence was also associated with a diagnosis of vascular dementia and reduced performance in multiple cognitive domains. CMIs on 3 Tesla MRI are common in patients with possible VCI and co-occur with imaging markers of small and large vessel disease, likely reflecting a heterogeneous etiology. CMIs are associated with worse cognitive performance, independent of other markers of vascular brain injury.

  3. Multiple Spontaneous Cerebral Microbleeds and Leukoencephalopathy in PSEN1-Associated Familial Alzheimer's Disease: Mirror of Cerebral Amyloid Angiopathy?

    PubMed

    Floris, Gianluca; Di Stefano, Francesca; Cherchi, Maria Valeria; Costa, Gianna; Marrosu, Francesco; Marrosu, Maria Giovanna

    2015-01-01

    Cerebral microbleeds (CMB) might reflect specific underlying vascular pathologies like cerebral amyloid angiopathy (CAA). In the present study we report the gradient-echo MRI pattern of two siblings with P284S PSEN1 mutation. T2* gradient-echo images of the two subjects demonstrated multiple microbleeds in lobar regions. The role and causes of CMB in sporadic Alzheimer's disease (AD) patients have not been clearly established and useful contributions could derive from familial AD studies. Furthermore, since CAA is a potential risk factor for developing adverse events in AD immunization trials, the identification in vivo of CAA through non-invasive MRI methods could be useful to monitoring side effects.

  4. Cerebral misery perfusion due to carotid occlusive disease

    PubMed Central

    Maddula, Mohana; Sprigg, Nikola; Bath, Philip M; Munshi, Sunil

    2017-01-01

    Purpose Cerebral misery perfusion (CMP) is a condition where cerebral autoregulatory capacity is exhausted, and cerebral blood supply in insufficient to meet metabolic demand. We present an educational review of this important condition, which has a range of clinical manifestations. Method A non-systematic review of published literature was undertaken on CMP and major cerebral artery occlusive disease, using Pubmed and Sciencedirect. Findings Patients with CMP may present with strokes in watershed territories, collapses and transient ischaemic attacks or episodic movements associated with an orthostatic component. While positron emission tomography is the gold standard investigation for misery perfusion, advanced MRI is being increasingly used as an alternative investigation modality. The presence of CMP increases the risk of strokes. In addition to the devastating effect of stroke, there is accumulating evidence of impaired cognition and quality of life with carotid occlusive disease (COD) and misery perfusion. The evidence for revascularisation in the setting of complete carotid occlusion is weak. Medical management constitutes careful blood pressure management while addressing other vascular risk factors. Discussion The evidence for the management of patients with COD and CMP is discussed, together with recommendations based on our local experience. In this review, we focus on misery perfusion due to COD. Conclusion Patients with CMP and COD may present with a wide-ranging clinical phenotype and therefore to many specialties. Early identification of patients with misery perfusion may allow appropriate management and focus on strategies to maintain or improve cerebral blood flow, while avoiding potentially harmful treatment. PMID:28959496

  5. Collagen vascular disease

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/001223.htm Collagen vascular disease To use the sharing features on ... were previously said to have "connective tissue" or "collagen vascular" disease. We now have names for many ...

  6. Selective head cooling during neonatal seizures prevents postictal cerebral vascular dysfunction without reducing epileptiform activity

    PubMed Central

    Harsono, Mimily; Pourcyrous, Massroor; Jolly, Elliott J.; de Jongh Curry, Amy; Fedinec, Alexander L.; Liu, Jianxiong; Basuroy, Shyamali; Zhuang, Daming; Leffler, Charles W.

    2016-01-01

    Epileptic seizures in neonates cause cerebrovascular injury and impairment of cerebral blood flow (CBF) regulation. In the bicuculline model of seizures in newborn pigs, we tested the hypothesis that selective head cooling prevents deleterious effects of seizures on cerebral vascular functions. Preventive or therapeutic ictal head cooling was achieved by placing two head ice packs during the preictal and/or ictal states, respectively, for the ∼2-h period of seizures. Head cooling lowered the brain and core temperatures to 25.6 ± 0.3 and 33.5 ± 0.1°C, respectively. Head cooling had no anticonvulsant effects, as it did not affect the bicuculline-evoked electroencephalogram parameters, including amplitude, duration, spectral power, and spike frequency distribution. Acute and long-term cerebral vascular effects of seizures in the normothermic and head-cooled groups were tested during the immediate (2–4 h) and delayed (48 h) postictal periods. Seizure-induced cerebral vascular injury during the immediate postictal period was detected as terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive staining of cerebral arterioles and a surge of brain-derived circulating endothelial cells in peripheral blood in the normothermic group, but not in the head-cooled groups. During the delayed postictal period, endothelium-dependent cerebral vasodilator responses were greatly reduced in the normothermic group, indicating impaired CBF regulation. Preventive or therapeutic ictal head cooling mitigated the endothelial injury and greatly reduced loss of postictal cerebral vasodilator functions. Overall, head cooling during seizures is a clinically relevant approach to protecting the neonatal brain by preventing cerebrovascular injury and the loss of the endothelium-dependent control of CBF without reducing epileptiform activity. PMID:27591217

  7. Chronic rapamycin restores brain vascular integrity and function through NO synthase activation and improves memory in symptomatic mice modeling Alzheimer's disease

    PubMed Central

    Lin, Ai-Ling; Zheng, Wei; Halloran, Jonathan J; Burbank, Raquel R; Hussong, Stacy A; Hart, Matthew J; Javors, Martin; Shih, Yen-Yu Ian; Muir, Eric; Solano Fonseca, Rene; Strong, Randy; Richardson, Arlan G; Lechleiter, James D; Fox, Peter T; Galvan, Veronica

    2013-01-01

    Vascular pathology is a major feature of Alzheimer's disease (AD) and other dementias. We recently showed that chronic administration of the target-of-rapamycin (TOR) inhibitor rapamycin, which extends lifespan and delays aging, halts the progression of AD-like disease in transgenic human (h)APP mice modeling AD when administered before disease onset. Here we demonstrate that chronic reduction of TOR activity by rapamycin treatment started after disease onset restored cerebral blood flow (CBF) and brain vascular density, reduced cerebral amyloid angiopathy and microhemorrhages, decreased amyloid burden, and improved cognitive function in symptomatic hAPP (AD) mice. Like acetylcholine (ACh), a potent vasodilator, acute rapamycin treatment induced the phosphorylation of endothelial nitric oxide (NO) synthase (eNOS) and NO release in brain endothelium. Administration of the NOS inhibitor L-NG-Nitroarginine methyl ester reversed vasodilation as well as the protective effects of rapamycin on CBF and vasculature integrity, indicating that rapamycin preserves vascular density and CBF in AD mouse brains through NOS activation. Taken together, our data suggest that chronic reduction of TOR activity by rapamycin blocked the progression of AD-like cognitive and histopathological deficits by preserving brain vascular integrity and function. Drugs that inhibit the TOR pathway may have promise as a therapy for AD and possibly for vascular dementias. PMID:23801246

  8. Sleep Apnea, Sleep Duration and Brain MRI Markers of Cerebral Vascular Disease and Alzheimer's Disease: The Atherosclerosis Risk in Communities Study (ARIC).

    PubMed

    Lutsey, Pamela L; Norby, Faye L; Gottesman, Rebecca F; Mosley, Thomas; MacLehose, Richard F; Punjabi, Naresh M; Shahar, Eyal; Jack, Clifford R; Alonso, Alvaro

    2016-01-01

    A growing body of literature has suggested that obstructive sleep apnea (OSA) and habitual short sleep duration are linked to poor cognitive function. Neuroimaging studies may provide insight into this relation. We tested the hypotheses that OSA and habitual short sleep duration, measured at ages 54-73 years, would be associated with adverse brain morphology at ages 67-89 years. Included in this analysis are 312 ARIC study participants who underwent in-home overnight polysomnography in 1996-1998 and brain MRI scans about 15 years later (2012-2013). Sleep apnea was quantified by the apnea-hypopnea index and categorized as moderate/severe (≥15.0 events/hour), mild (5.0-14.9 events/hour), or normal (<5.0 events/hour). Habitual sleep duration was categorized, in hours, as <7, 7 to <8, ≥8. MRI outcomes included number of infarcts (total, subcortical, and cortical) and white matter hyperintensity (WMH) and Alzheimer's disease signature region volumes. Multivariable adjusted logistic and linear regression models were used. All models incorporated inverse probability weighting, to adjust for potential selection bias. At the time of the sleep study participants were 61.7 (SD: 5.0) years old and 54% female; 19% had moderate/severe sleep apnea. MRI imaging took place 14.8 (SD: 1.0) years later, when participants were 76.5 (SD: 5.2) years old. In multivariable models which accounted for body mass index, neither OSA nor abnormal sleep duration were statistically significantly associated with odds of cerebral infarcts, WMH brain volumes or regional brain volumes. In this community-based sample, mid-life OSA and habitually short sleep duration were not associated with later-life cerebral markers of vascular dementia and Alzheimer's disease. However, selection bias may have influenced our results and the modest sample size led to relatively imprecise associations.

  9. Nox4 NADPH oxidase mediates oxidative stress and apoptosis caused by TNF-α in cerebral vascular endothelial cells

    PubMed Central

    Basuroy, Shyamali; Bhattacharya, Sujoy; Leffler, Charles W.; Parfenova, Helena

    2009-01-01

    Inflammatory brain disease may damage cerebral vascular endothelium leading to cerebral blood flow dysregulation. The proinflammatory cytokine TNF-α causes oxidative stress and apoptosis in cerebral microvascular endothelial cells (CMVEC) from newborn pigs. We investigated contribution of major cellular sources of reactive oxygen species to endothelial inflammatory response. Nitric oxide synthase and xanthine oxidase inhibitors (Nω-nitro-l-arginine and allopurinol) had no effect, while mitochondrial electron transport inhibitors (CCCP, 2-thenoyltrifluoroacetone, and rotenone) attenuated TNF-α-induced superoxide (O2•−) and apoptosis. NADPH oxidase inhibitors (diphenylene iodonium and apocynin) greatly reduced TNF-α-evoked O2•− generation and apoptosis. TNF-α rapidly increased NADPH oxidase activity in CMVEC. Nox4, the cell-specific catalytic subunit of NADPH oxidase, is highly expressed in CMVEC, contributes to basal O2•− production, and accounts for a burst of oxidative stress in response to TNF-α. Nox4 small interfering RNA, but not Nox2, knockdown prevented oxidative stress and apoptosis caused by TNF-α in CMVEC. Nox4 is colocalized with HO-2, the constitutive isoform of heme oxygenase (HO), which is critical for endothelial protection against TNF-α toxicity. The products of HO activity, bilirubin and carbon monoxide (CO, as a CO-releasing molecule, CORM-A1), inhibited Nox4-generated O2•− and apoptosis caused by TNF-α stimulation. We conclude that Nox4 is the primary source of inflammation- and TNF-α-induced oxidative stress leading to apoptosis in brain endothelial cells. The ability of CO and bilirubin to combat TNF-α-induced oxidative stress by inhibiting Nox4 activity and/or by O2•− scavenging, taken together with close intracellular compartmentalization of HO-2 and Nox4 in cerebral vascular endothelium, may contribute to HO-2 cytoprotection against inflammatory cerebrovascular disease. PMID:19118162

  10. Notch Signaling in Vascular Smooth Muscle Cells

    PubMed Central

    Baeten, J.T.; Lilly, B.

    2018-01-01

    The Notch signaling pathway is a highly conserved pathway involved in cell fate determination in embryonic development and also functions in the regulation of physiological processes in several systems. It plays an especially important role in vascular development and physiology by influencing angiogenesis, vessel patterning, arterial/venous specification, and vascular smooth muscle biology. Aberrant or dysregulated Notch signaling is the cause of or a contributing factor to many vascular disorders, including inherited vascular diseases, such as cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, associated with degeneration of the smooth muscle layer in cerebral arteries. Like most signaling pathways, the Notch signaling axis is influenced by complex interactions with mediators of other signaling pathways. This complexity is also compounded by different members of the Notch family having both overlapping and unique functions. Thus, it is vital to fully understand the roles and interactions of each Notch family member in order to effectively and specifically target their exact contributions to vascular disease. In this chapter, we will review the Notch signaling pathway in vascular smooth muscle cells as it relates to vascular development and human disease. PMID:28212801

  11. The Third, Intensive Care Bundle With Blood Pressure Reduction in Acute Cerebral Hemorrhage Trial

    ClinicalTrials.gov

    2018-04-24

    Cerebral Hemorrhage; Stroke; Hypertension; Diabetes; Anticoagulant-induced Bleeding; Cerebral Vascular Disorder; Brain Disorder; Hemorrhage; Intracranial Hemorrhages; Cardiovascular Diseases; Central Nervous System Diseases

  12. [The importance of heart disease in the various types of cerebral vascular disease. A prospective study].

    PubMed

    Soares Franco, A; Monteiro, J; Ferreira, D; Fonseca, T P; Melo, T P; Ferro, J; Freitas, A; Nogueira, J M; Mota, E; da Costa, J N

    1990-05-01

    A prospective study was performed in 106 patients with acute stroke. The main purpose was the cardiac evaluation in the different types of cerebrovascular disease: Intracerebral hemorrhage (H), Cortical ischaemic events (C) and Subcortical ischaemic events (SC) and also to evaluate the interest of echocardiography in detecting occult cardiac sources of emboli. The study population included 54 men and 52 women with a mean age of 66.8 +/- 10.3 years. A thorough neurologic and cardiologic study with a computed tomography of the brain (TAC) and an echocardiogram (ECO) were performed in all patients. It was found 24 (23%) of H, 40 (38%) of C and 32 (30%) of SC. In the past history, heart diseases were more prevalent in C (p less than 0.04); previous stroke and systemic hypertension (HTA) were less prevalent in H (p less than 0.008) and in C (p less than 0.004), respectively. Atrial fibrillation (FA) was more frequent in ischaemic stroke (p less than 0.02) and within these in C (p less than 0.005). No more clinical and functional cardiac features or echocardiographic aspects had any difference in their prevalence in different types of stroke. Without clinical heart disease there were 19 (18%) cases but only in 10 were found in their echocardiograms a potentially embolic heart disease (PEHD) but 8 of them had questionable pathologic significance. C had more heart disease in their past history; FA is more frequent in C; it is difficult to diagnose a cerebral embolism with only a coexistent C and CPE, but if there is FA or a past history of heart disease in a C, the diagnosis of cerebral embolism is more probable; finally, echocardiography is of limited value to diagnose a PEHD in the elderly, however it makes possible to better evaluate most cardiac situations.

  13. Cerebral vascular amyloid seeds drive amyloid β-protein fibril assembly with a distinct anti-parallel structure

    PubMed Central

    Xu, Feng; Fu, Ziao; Dass, Sharmila; Kotarba, AnnMarie E.; Davis, Judianne; Smith, Steven O.; Van Nostrand, William E.

    2016-01-01

    Cerebrovascular accumulation of amyloid β-protein (Aβ), a condition known as cerebral amyloid angiopathy (CAA), is a common pathological feature of patients with Alzheimer's disease. Familial Aβ mutations, such as Dutch-E22Q and Iowa-D23N, can cause severe cerebrovascular accumulation of amyloid that serves as a potent driver of vascular cognitive impairment and dementia. The distinctive features of vascular amyloid that underlie its unique pathological properties remain unknown. Here, we use transgenic mouse models producing CAA mutants (Tg-SwDI) or overproducing human wild-type Aβ (Tg2576) to demonstrate that CAA-mutant vascular amyloid influences wild-type Aβ deposition in brain. We also show isolated microvascular amyloid seeds from Tg-SwDI mice drive assembly of human wild-type Aβ into distinct anti-parallel β-sheet fibrils. These findings indicate that cerebrovascular amyloid can serve as an effective scaffold to promote rapid assembly and strong deposition of Aβ into a unique structure that likely contributes to its distinctive pathology. PMID:27869115

  14. Can vascular risk factors influence number and size of cerebral metastases? A 3D-MRI study in patients with different tumor entities.

    PubMed

    Nagel, Sandra; Berk, Benjamin-Andreas; Kortmann, Rolf-Dieter; Hoffmann, Karl-Titus; Seidel, Clemens

    2018-02-01

    There is increasing evidence that cerebral microangiopathy reduces number of brain metastases. Aim of this study was to analyse if vascular risk factors (arterial hypertension, diabetes mellitus, smoking, and hypercholesterolemia) or the presence of peripheral arterial occlusive disease (PAOD) can have an impact on number or size of brain metastases. 200 patients with pre-therapeutic 3D-brain MRI and available clinical data were analyzed retrospectively. Mean number of metastases (NoM) and mean diameter of metastases (mDM) were compared between patients with/without vascular risk factors (vasRF). No general correlation of vascular risk factors with brain metastases was found in this monocentric analysis of a patient cohort with several tumor types. Arterial hypertension, diabetes mellitus, hypercholesterolemia and smoking did not show an effect in uni- and multivariate analysis. In patients with PAOD the number of BM was lower than without PAOD. This was the case independent from cerebral microangiopathy but did not persist in multivariate analysis. From this first screening approach vascular risk factors do not appear to strongly influence brain metastasation. However, larger prospective multi-centric studies with better characterized severity of vascular risk are needed to more accurately detect effects of individual factors. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Human apolipoprotein E ɛ4 expression impairs cerebral vascularization and blood–brain barrier function in mice

    PubMed Central

    Alata, Wael; Ye, Yue; St-Amour, Isabelle; Vandal, Milène; Calon, Frédéric

    2015-01-01

    Human apolipoprotein E (APOE) exists in three isoforms ɛ2, ɛ3, and ɛ4, of which APOE4 is the main genetic risk factor of Alzheimer's disease (AD). As cerebrovascular defects are associated with AD, we tested whether APOE genotype has an impact on the integrity and function of the blood–brain barrier (BBB) in human APOE-targeted replacement mice. Using the quantitative in situ brain perfusion technique, we first found lower (13.0% and 17.0%) brain transport coefficient (Clup) of [3H]-diazepam in APOE4 mice at 4 and 12 months, compared with APOE2 and APOE3 mice, reflecting a decrease in cerebral vascularization. Accordingly, results from immunohistofluorescence experiments revealed a structurally reduced cerebral vascularization (26% and 38%) and thinner basement membranes (30% and 35%) in 12-month-old APOE4 mice compared with APOE2 and APOE3 mice, suggesting vascular atrophy. In addition, APOE4 mice displayed a 29% reduction in [3H]-d-glucose transport through the BBB compared with APOE2 mice without significant changes in the expression of its transporter GLUT1 in brain capillaries. However, an increase of 41.3% of receptor for advanced glycation end products (RAGE) was found in brain capillaries of 12-month-old APOE4 mice. In conclusion, profound divergences were observed between APOE genotypes at the cerebrovascular interface, suggesting that APOE4-induced BBB anomalies may contribute to AD development. PMID:25335802

  16. Vitamin D status and vascular dementia due to cerebral small vessel disease in the elderly Asian Indian population.

    PubMed

    Prabhakar, Puttachandra; Chandra, Sadanandavalli Retnaswami; Supriya, Manjunath; Issac, Thomas Gregor; Prasad, Chandrajit; Christopher, Rita

    2015-12-15

    Vitamin D plays vital roles in human health and recent studies have shown its beneficial effect on brain functioning. The present study was designed to evaluate the association of vitamin D with vascular dementia (VaD) due to cerebral small vessel disease (SVD) in Asian Indian population. 140 VaD patients aged ≥ 60 years with neuroimaging evidence of SVD, and 132 age and gender-matched controls, were investigated. Vitamin D status was estimated by measuring serum 25-hydroxy vitamin D. Logistic regression model revealed that deficient levels of vitamin D (<12 ng/ml) were associated with 2.2-fold increase in odds of VaD after adjustment with covariates. Hypertension was independently associated with 11.3-fold increased odds of VaD. In hypertensives with vitamin D deficiency and insufficiency (12-20 ng/ml), the odds were increased to 31.6-fold and 14.4-fold, respectively. However, in hypertensives with vitamin D sufficiency (>20 ng/ml), the odds of VaD were increased by 3.8-fold only. Pearson correlation showed that serum vitamin D was inversely associated with systolic and diastolic blood pressure (r=-0.401 and -0.411, p<0.01, respectively) in vitamin D-deficient subjects. Since the combined presence of hypertension and vitamin D deficiency increases the probability of developing VaD, screening for vitamin D status in addition to regular monitoring of blood pressure, could reduce the risk of VaD associated with cerebral SVD in the elderly Asian Indian subjects. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Simvastatin attenuates the cerebral vascular endothelial inflammatory response in a rat traumatic brain injury.

    PubMed

    Wang, Kuo-Wei; Chen, Han-Jung; Lu, Kang; Liliang, Po-Chou; Liang, Cheng-Loong; Tsai, Yu-Duan; Cho, Chung-Lung

    2014-01-01

    Traumatic brain injury (TBI) leads to important and deleterious inflammation, as evidenced by edema, cytokine production, induction of nitric oxide synthase, and leukocyte infiltration. After TBI, the activation of cerebral vascular endothelial cells plays a crucial role in the pathogenesis of inflammation. In this study, we hypothesized that the activation of cerebral vascular endothelial cells plays a crucial role in the pathogenesis of inflammation and outcome after TBI. It may represent a key cellular target for statin therapy. In our study, cortical contusions were induced, and the effect of continuous treatment of simvastatin on behavior and inflammation in adult rats following experimental TBI was evaluated. The treatment group received 15 mg/kg of simvastatin daily for 3 days. Neurological function was assessed with the grip test. The results showed that the non-treatment control group had a significantly greater increase in ICAM-1 expression from pre-injury to the post-injury 72 h time point as compared to the expression in treatment group. The treatment group had better neurological function as evidenced in a grip test performed from baseline to 72 h. The analysis of a western blot test and pathology also demonstrated reduced ICAM-1 expression and a smaller area of damage and tissue loss. Our findings suggest that simvastatin could attenuate the activation of cerebral vascular endothelial inflammatory response and decrease the loss of neurological function and brain tissue.

  18. Age differences in arterial and venous extra-cerebral blood flow in healthy adults: contributions of vascular risk factors and genetic variants.

    PubMed

    Raz, Naftali; Daugherty, Ana M; Sethi, Sean K; Arshad, Muzamil; Haacke, E Mark

    2017-08-01

    Sufficient cerebral blood flow (CBF) and venous drainage are critical for normal brain function, and their alterations can affect brain aging. However, to date, most studies focused on arterial CBF (inflow) with little attention paid to the age differences in venous outflow. We measured extra-cerebral arterial and venous blood flow rates with phase-contrast MRI and assessed the influence of vascular risk factors and genetic polymorphisms (ACE insertion/deletion, COMT val158met, and APOEε4) in 73 adults (age 18-74 years). Advanced age, elevated vascular risk, ACE Deletion, and COMT met alleles were linked to lower in- and outflow, with no effects of APOE ε4 noted. Lower age-related CBF rate was unrelated to brain volume and was observed only in val homozygotes of COMTval158met. Thus, in a disease-free population, age differences in CBF may be notable only in persons with high vascular risk and carriers of genetic variants associated with vasoconstriction and lower dopamine availability. It remains to be established if treatments targeting alleviation of the mutable factors can improve the course of cerebrovascular aging in spite of the immutable genetic influence.

  19. Brain vascular heterogeneity: implications for disease pathogenesis and design of in vitro blood-brain barrier models.

    PubMed

    Noumbissi, Midrelle E; Galasso, Bianca; Stins, Monique F

    2018-04-23

    The vertebrate blood-brain barrier (BBB) is composed of cerebral microvascular endothelial cells (CEC). The BBB acts as a semi-permeable cellular interface that tightly regulates bidirectional molecular transport between blood and the brain parenchyma in order to maintain cerebral homeostasis. The CEC phenotype is regulated by a variety of factors, including cells in its immediate environment and within functional neurovascular units. The cellular composition of the brain parenchyma surrounding the CEC varies between different brain regions; this difference is clearly visible in grey versus white matter. In this review, we discuss evidence for the existence of brain vascular heterogeneity, focusing on differences between the vessels of the grey and white matter. The region-specific differences in the vasculature of the brain are reflective of specific functions of those particular brain areas. This BBB-endothelial heterogeneity may have implications for the course of pathogenesis of cerebrovascular diseases and neurological disorders involving vascular activation and dysfunction. This heterogeneity should be taken into account when developing BBB-neuro-disease models representative of specific brain areas.

  20. The pathobiology of vascular dementia

    PubMed Central

    Iadecola, Costantino

    2013-01-01

    Vascular cognitive impairment defines alterations in cognition, ranging from subtle deficits to full-blown dementia, attributable to cerebrovascular causes. Often coexisting with Alzheimer’s disease, mixed vascular and neurodegenerative dementia has emerged as the leading cause of age-related cognitive impairment. Central to the disease mechanism is the crucial role that cerebral blood vessels play in brain health, not only for the delivery of oxygen and nutrients, but also for the trophic signaling that links inextricably the well being of neurons and glia to that of cerebrovascular cells. This review will examine how vascular damage disrupts these vital homeostatic interactions, focusing on the hemispheric white matter, a region at heightened risk for vascular damage, and on the interplay between vascular factors and Alzheimer’s disease. Finally, preventative and therapeutic prospects will be examined, highlighting the importance of midlife vascular risk factor control in the prevention of late-life dementia. PMID:24267647

  1. A vascular disease educational program in the preclinical years of medical school increases student interest in vascular disease.

    PubMed

    Godshall, Christopher J; Moore, Phillip S; Fleming, Shawn H; Andrews, Jeanette S; Hansen, Kimberley J; Hoyle, John R; Edwards, Matthew S

    2010-09-01

    New training paradigms in vascular surgery necessitate medical student interest in vascular disease. We examined the effects of incorporation of a vascular disease educational program during the second year of the medical school curriculum on student acquisition of knowledge and interest in the treatment of vascular disease. We developed and administered a new educational program on vascular disease and delivered the program to all second-year medical students. The new program encompassed 9 didactic hours, including 7 traditional lecture hours and 2 hours of problem-based learning. After completing the program, students were surveyed regarding vascular disease-specific knowledge, interest in treating vascular disease, and career choices. Third-year students who were not exposed to the program were surveyed as a control group. We recorded the voluntary student enrollment in the vascular and endovascular surgery rotation during the following academic year. Voluntary enrollment of the students exposed to the vascular disease education program was compared with enrollment for the previous 8 years. Before the introduction of the new educational program, 946 total lecture hours were delivered to first- and second-year medical students, comprising 490 hours (52%) given by nonsurgeon physicians, 445 (47%) by nonphysicians, and 11 (1%) by surgeons. Survey response rate was 93% (112 of 121) for second-year students and 95% (39 of 41) for third-year students. After the vascular disease program, second-year students answered 7.1 +/- 1.4 of 9 vascular disease questions correctly, whereas unexposed third-year students answered 7.2 +/- 1.7 questions correctly (P = .96). Most second-year medical students described a "somewhat" or "much greater" interest in the medical (63%), procedural (59%), and overall (63%) management of vascular disease after exposure to the program. Most also had a "somewhat" or "much greater" interest in a vascular medicine (64%) or vascular and endovascular

  2. Detection of cerebral amyloid angiopathy by 3-T magnetic resonance imaging and amyloid positron emission tomography in a patient with subcortical ischaemic vascular dementia.

    PubMed

    Kida, Hirotaka; Satoh, Masayuki; Ii, Yuichiro; Fukuyama, Hidenao; Maeda, Masayuki; Tomimoto, Hidekazu

    2017-01-01

    The patient was an 81-year-old man who had been treated for hypertension for several decades. In 2012, he developed gait disturbance and mild amnesia. One year later, his gait disturbance worsened, and he developed urinary incontinence. Conventional brain magnetic resonance imaging using T 2 -weighted images and fluid-attenuated inversion recovery showed multiple lacunar infarctions. These findings fulfilled the diagnostic criteria for subcortical ischaemic vascular dementia. However, susceptibility weighted imaging showed multiple lobar microbleeds in the bilateral occipitoparietal lobes, and double inversion recovery and 3-D fluid-attenuated inversion recovery images on 3-T magnetic resonance imaging revealed cortical microinfarctions in the left parietal-temporo-occipito region. Pittsburgh compound B-positron emission tomography revealed diffuse uptake in the cerebral cortex. Therefore, we diagnosed the patient with subcortical ischaemic vascular dementia associated with Alzheimer's disease. The use of the double inversion recovery and susceptibility weighted imaging on 3-T magnetic resonance imaging may be a supplemental strategy for diagnosing cerebral amyloid angiopathy, which is closely associated with Alzheimer's disease. © 2016 The Authors. Psychogeriatrics © 2016 Japanese Psychogeriatric Society.

  3. Effects of acetazolamide on the micro- and macro-vascular cerebral hemodynamics: a diffuse optical and transcranial doppler ultrasound study

    PubMed Central

    Zirak, Peyman; Delgado-Mederos, Raquel; Martí-Fàbregas, Joan; Durduran, Turgut

    2010-01-01

    Acetazolamide (ACZ) was used to stimulate the cerebral vasculature on ten healthy volunteers to assess the cerebral vasomotor reactivity (CVR). We have combined near infrared spectroscopy (NIRS), diffuse correlation spectroscopy (DCS) and transcranial Doppler (TCD) technologies to non-invasively assess CVR in real-time by measuring oxy- and deoxy-hemoglobin concentrations, using NIRS, local cerebral blood flow (CBF), using DCS, and blood flow velocity (CBFV) in the middle cerebral artery, using TCD. Robust and persistent increases in oxy-hemoglobin concentration, CBF and CBFV were observed. A significant agreement was found between macro-vascular (TCD) and micro-vascular (DCS) hemodynamics, between the NIRS and TCD data, and also within NIRS and DCS results. The relative cerebral metabolic rate of oxygen, rCMRO2, was also determined, and no significant change was observed. Our results showed that the combined diffuse optics-ultrasound technique is viable to follow (CVR) and rCMRO2 changes in adults, continuously, at the bed-side and in real time. PMID:21258561

  4. Effects of acetazolamide on the micro- and macro-vascular cerebral hemodynamics: a diffuse optical and transcranial doppler ultrasound study.

    PubMed

    Zirak, Peyman; Delgado-Mederos, Raquel; Martí-Fàbregas, Joan; Durduran, Turgut

    2010-11-19

    Acetazolamide (ACZ) was used to stimulate the cerebral vasculature on ten healthy volunteers to assess the cerebral vasomotor reactivity (CVR). We have combined near infrared spectroscopy (NIRS), diffuse correlation spectroscopy (DCS) and transcranial Doppler (TCD) technologies to non-invasively assess CVR in real-time by measuring oxy- and deoxy-hemoglobin concentrations, using NIRS, local cerebral blood flow (CBF), using DCS, and blood flow velocity (CBFV) in the middle cerebral artery, using TCD. Robust and persistent increases in oxy-hemoglobin concentration, CBF and CBFV were observed. A significant agreement was found between macro-vascular (TCD) and micro-vascular (DCS) hemodynamics, between the NIRS and TCD data, and also within NIRS and DCS results. The relative cerebral metabolic rate of oxygen, rCMRO(2), was also determined, and no significant change was observed. Our results showed that the combined diffuse optics-ultrasound technique is viable to follow (CVR) and rCMRO(2) changes in adults, continuously, at the bed-side and in real time.

  5. Panax ginseng extract attenuates neuronal injury and cognitive deficits in rats with vascular dementia induced by chronic cerebral hypoperfusion.

    PubMed

    Zhu, Jun-De; Wang, Jun-Jie; Zhang, Xian-Hu; Yu, Yan; Kang, Zhao-Sheng

    2018-04-01

    Panax ginseng is a slow-growing perennial plant. Panax ginseng extract has numerous biological activities, including antitumor, anti-inflammatory and antistress activities. Panax ginseng extract also has a cognition-enhancing effect in rats with alcohol-induced memory impairment. In this study, we partially occluded the bilateral carotid arteries in the rat to induce chronic cerebral hypoperfusion, a well-known model of vascular dementia. The rats were then intragastrically administered 50 or 100 mg/kg Panax ginseng extract. Morris water maze and balance beam tests were used to evaluate memory deficits and motor function, respectively. Protein quantity was used to evaluate cholinergic neurons. Immunofluorescence staining was used to assess the number of glial fibrillary acidic protein-positive cells. Western blot assay was used to evaluate protein levels of vascular endothelial growth factor, basic fibroblast growth factor, Bcl-2 and Bax. Treatment with Panax ginseng extract for 8 weeks significantly improved behavioral function and increased neuronal density and VEGF and bFGF protein expression in the hippocampal CA3 area. Furthermore, Panax ginseng extract reduced the number of glial fibrillary acidic protein-immunoreactive cells, and it decreased apoptosis by upregulating Bcl-2 and downregulating Bax protein expression. The effect of Panax ginseng extract was dose-dependent and similar to that of nimodipine, a commonly used drug for the treatment of vascular dementia. These findings suggest that Panax ginseng extract is neuroprotective against vascular dementia induced by chronic cerebral hypoperfusion, and therefore might have therapeutic potential for preventing and treating the disease.

  6. Protecting against vascular disease in brain

    PubMed Central

    2011-01-01

    Endothelial cells exert an enormous influence on blood vessels throughout the circulation, but their impact is particularly pronounced in the brain. New concepts have emerged recently regarding the role of this cell type and mechanisms that contribute to endothelial dysfunction and vascular disease. Activation of the renin-angiotensin system plays a prominent role in producing these abnormalities. Both oxidative stress and local inflammation are key mechanisms that underlie vascular disease of diverse etiology. Endogenous mechanisms of vascular protection are also present, including antioxidants, anti-inflammatory molecules, and peroxisome proliferator-activated receptor-γ. Despite their clear importance, studies of mechanisms that underlie cerebrovascular disease continue to lag behind studies of vascular biology in general. Identification of endogenous molecules and pathways that protect the vasculature may result in targeted approaches to prevent or slow the progression of vascular disease that causes stroke and contributes to the vascular component of dementia and Alzheimer's disease. PMID:21335467

  7. Patients with advanced Parkinson's disease with and without freezing of gait: a comparative analysis of vascular lesions using brain MRI.

    PubMed

    Gallardo, M J; Cabello, J P; Pastor, C; Muñoz-Torrero, J J; Carrasco, S; Ibañez, R; Vaamonde, J

    2014-05-01

    Freezing of gait (FOG) is one of the most disabling and enigmatic symptoms in Parkinson's disease. Vascular lesions, observed in magnetic resonance imaging (MRI) scans, may produce or exacerbate this symptom. The study includes 22 patients with Parkinson's disease subjects, 12 with freezing of gait and 10 without. All patients underwent an MRI scan and any vascular lesions were analysed using the modified Fazekas scale. Patients with FOG scored higher on the modified Fazekas scale than the rest of the group. Although the two groups contained the same percentage of patients with vascular lesions (50% in both groups), lesion load was higher in the group of patients with FOG. Vascular lesions in the periventricular area and deep white matter seem to be the most involved in the development of FOG. Vascular lesions may contribute to the onset or worsening of FOG in patients with PD. This study suggests that cerebral vascular disease should be considered in patients with FOG. Copyright © 2012 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  8. Vascular Diseases

    MedlinePlus

    ... vessels, such as diabetes or high cholesterol Smoking Obesity Losing weight, eating healthy foods, being active and not smoking can help vascular disease. Other treatments include medicines and surgery.

  9. Omega-3 fatty acids: benefits for cardio-cerebro-vascular diseases.

    PubMed

    Siegel, G; Ermilov, E

    2012-12-01

    Intracranial artery stenosis (ICAS) is a narrowing of an intracranial artery, which is a common etiology for ischemic stroke. In this commentary, we review key aspects of the discrimination between non-stroke controls and ischemic stroke patients on the background of phospholipid ω3-fatty acid (DHA, EPA) composition. The discussion is embedded in the presentation of general effects of long-chain ω3 polyunsaturated fatty acids (PUFAs) in cardio-cerebro-vascular diseases (CCVDs) and Alzheimer dementia (AD). ICAS is a common stroke subtype and has emerged as a major factor in recurrent stroke and vascular mortality. DHA and EPA are important fatty acids to distinguish between NCAS (no cerebral arteriosclerotic stenosis) and ICAS in stroke. The risk of ICAS is inversely correlated with the DHA content in phospholipids. Furthermore, a mechanistic explanation has been proposed for the beneficial effects of PUFAs in CCVDs and AD. Whereas the beneficial effects of EPA/DHA for cardiovascular diseases and stroke seem to be beyond question, preventive effects in patients with very mild cognitive dysfunction and beginning Alzheimer's disease undoubtedly need confirmation by larger clinical trials. A collaborative international basic science approach is warranted considering cautiously designed studies in order to avoid ethical problems. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  10. Central Pulsatile Pressure and Flow Relationship in the Time and Frequency Domain to Characterise Hydraulic Input to the Brain and Cerebral Vascular Impedance.

    PubMed

    Kim, Mi Ok; O'Rourke, Michael F; Adji, Audrey; Avolio, Alberto P

    2016-01-01

    In the time domain, pulsatile flow and pressure can be characterised as the ratio of the late systolic boost of flow or pressure to the pulse amplitude so as to estimate the hydraulic input to the brain. While vascular impedance has been widely used to represent the load presented to the heart by the systemic circulation, it has not been applied to the cerebral circulation.We set out to study the relationship between the pressure and the flow augmentation index (AIx) in the time domain and to determine cerebral vascular impedance using aortic blood pressure and cerebral blood flow waveforms in the frequency domain. Twenty-four young subjects (aged 21-39 years) were recruited; aortic pressure was derived using SphygmoCor from radial pressure. Flow waveforms were recorded from the middle cerebral artery. In three subjects, we performed the Valsalva manoeuvre to investigate their response to physiological intervention. There was a linear relationship between flow and pressure AIx, and cerebral impedance values were similar to those estimated for low resistance vascular beds. Substantial change in pressure and flow wave contour was observed during the Valsalva manoeuvre; however, the relationship in both the time and the frequency domains were unchanged. This confirms that aortic pressure and cerebral flow waveform can be used to study cerebral impedance.

  11. Functional vascular contributions to cognitive impairment and dementia: mechanisms and consequences of cerebral autoregulatory dysfunction, endothelial impairment, and neurovascular uncoupling in aging

    PubMed Central

    Toth, Peter; Tarantini, Stefano; Csiszar, Anna

    2017-01-01

    Increasing evidence from epidemiological, clinical and experimental studies indicate that age-related cerebromicrovascular dysfunction and microcirculatory damage play critical roles in the pathogenesis of many types of dementia in the elderly, including Alzheimer’s disease. Understanding and targeting the age-related pathophysiological mechanisms that underlie vascular contributions to cognitive impairment and dementia (VCID) are expected to have a major role in preserving brain health in older individuals. Maintenance of cerebral perfusion, protecting the microcirculation from high pressure-induced damage and moment-to-moment adjustment of regional oxygen and nutrient supply to changes in demand are prerequisites for the prevention of cerebral ischemia and neuronal dysfunction. This overview discusses age-related alterations in three main regulatory paradigms involved in the regulation of cerebral blood flow (CBF): cerebral autoregulation/myogenic constriction, endothelium-dependent vasomotor function, and neurovascular coupling responses responsible for functional hyperemia. The pathophysiological consequences of cerebral microvascular dysregulation in aging are explored, including blood-brain barrier disruption, neuroinflammation, exacerbation of neurodegeneration, development of cerebral microhemorrhages, microvascular rarefaction, and ischemic neuronal dysfunction and damage. Due to the widespread attention that VCID has captured in recent years, the evidence for the causal role of cerebral microvascular dysregulation in cognitive decline is critically examined. PMID:27793855

  12. PPARδ regulation of miR-15a in ischemia-induced cerebral vascular endothelial injury

    PubMed Central

    Yin, K.J.; Deng, Z.; Hamblin, M.; Xiang, Y.; Huang, H.R.; Zhang, J.; Jiang, X. D.; Wang, Y.; Chen, Y. E.

    2010-01-01

    Cerebral endothelial cell (CEC) degeneration significantly contributes to blood-brain barrier (BBB) breakdown and neuronal loss after cerebral ischemia. Recently, emerging data suggest that peroxisome proliferator-activated receptor δ (PPARδ) activation has a potential neuroprotective role in ischemic stroke. Here we report for the first time that PPARδ is significantly reduced in oxygen-glucose deprivation (OGD)-induced mouse CEC death. Interestingly, PPARδ overexpression can suppress OGD-induced caspase-3 activity, Golgi fragmentation, and CEC death through an increase of bcl-2 protein levels without change of bcl-2 mRNA levels. To explore the molecular mechanisms, we have identified that upregulation of PPARδ can alleviate ODG-activated microRNA-15a (miR-15a) expression in CECs. Moreover, we have demonstrated that bcl-2 is a translationally-repressed target of miR-15a. Intriguingly, gain- or loss-of-miR-15a function can significantly reduce or increase OGD-induced CEC death, respectively. Furthermore, we have identified that miR-15a is a transcriptional target of PPARδ. Consistent with the in vitro findings, we found that intracerebroventricular infusion of a specific PPARδ agonist, GW 501516, significantly reduced ischemia-induced miR-15a expression, increased bcl-2 protein levels, and attenuated caspase-3 activity and subsequent DNA fragmentation in isolated cerebral microvessels, leading to decreased BBB disruption and reduced cerebral infarction in mice after transient focal cerebral ischemia. Taken together, these results suggest that PPARδ plays a vascular-protective role in ischemia-like insults via transcriptional repression of miR-15a, resulting in subsequent release of its posttranscriptional inhibition of bcl-2. Thus, regulation of PPARδ-mediated miR-15a inhibition of bcl-2 could provide a novel therapeutic strategy for the treatment of stroke-related vascular dysfunction. PMID:20445066

  13. Extracellular matrix inflammation in vascular cognitive impairment and dementia.

    PubMed

    Rosenberg, Gary A

    2017-03-01

    Vascular cognitive impairment and dementia (VCID) include a wide spectrum of chronic manifestations of vascular disease related to large vessel strokes and small vessel disease (SVD). Lacunar strokes and white matter (WM) injury are consequences of SVD. The main vascular risk factor for SVD is brain hypoperfusion from cerebral blood vessel narrowing due to chronic hypertension. The hypoperfusion leads to activation and degeneration of astrocytes with the resulting fibrosis of the extracellular matrix (ECM). Elasticity is lost in fibrotic cerebral vessels, reducing the response of stiffened blood vessels in times of increased metabolic need. Intermittent hypoxia/ischaemia activates a molecular injury cascade, producing an incomplete infarction that is most damaging to the deep WM, which is a watershed region for cerebral blood flow. Neuroinflammation caused by hypoxia activates microglia/macrophages to release proteases and free radicals that perpetuate the damage over time to molecules in the ECM and the neurovascular unit (NVU). Matrix metalloproteinases (MMPs) secreted in an attempt to remodel the blood vessel wall have the undesired consequences of opening the blood-brain barrier (BBB) and attacking myelinated fibres. This dual effect of the MMPs causes vasogenic oedema in WM and vascular demyelination, which are the hallmarks of the subcortical ischaemic vascular disease (SIVD), which is the SVD form of VCID also called Binswanger's disease (BD). Unravelling the complex pathophysiology of the WM injury-related inflammation in the small vessel form of VCID could lead to novel therapeutic strategies to reduce damage to the ECM, preventing the progressive damage to the WM. © 2017 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  14. Protective effect of cilazapril on the cerebral circulation.

    PubMed

    Véniant, M; Clozel, J P; Kuhn, H; Clozel, M

    1992-01-01

    The goal of an antihypertensive treatment is to prevent "end-organ" damage. Cerebral vascular complications are among the most important because they are life threatening and can occur even at an early stage of the disease. Recently, it has been shown that cilazapril can decrease the mortality of stroke-prone rats, suggesting a decrease in the incidence of strokes, which occur spontaneously in these animals. The present article reviews the different functional and morphological changes that may explain the cerebral protective effects of cilazapril, such as the normalization of cerebral vascular reserve, decrease in the media, increase in the external diameter, and normalization of the mechanics and endothelial function of cerebral arterioles. In addition, the inhibition by cilazapril of injury-induced proliferation of smooth muscle cells and the infiltration of the endothelium by macrophages could prevent the development of atherosclerosis.

  15. The Association of Type 2 Diabetes Mellitus with Cerebral Gray Matter Volume Is Independent of Retinal Vascular Architecture and Retinopathy.

    PubMed

    Moran, C; Tapp, R J; Hughes, A D; Magnussen, C G; Blizzard, L; Phan, T G; Beare, R; Witt, N; Venn, A; Münch, G; Amaratunge, B C; Srikanth, V

    2016-01-01

    It is uncertain whether small vessel disease underlies the relationship between Type 2 Diabetes Mellitus (T2DM) and brain atrophy. We aimed to study whether retinal vascular architecture, as a proxy for cerebral small vessel disease, may modify or mediate the associations of T2DM with brain volumes. In this cross-sectional study using Magnetic Resonance Imaging (MRI) scans and retinal photographs in 451 people with and without T2DM, we measured brain volumes, geometric measures of retinal vascular architecture, clinical retinopathy, and MRI cerebrovascular lesions. There were 270 people with (mean age 67.3 years) and 181 without T2DM (mean age 72.9 years). T2DM was associated with lower gray matter volume (p = 0.008). T2DM was associated with greater arteriolar diameter (p = 0.03) and optimality ratio (p = 0.04), but these associations were attenuated by adjustments for age and sex. Only optimality ratio was associated with lower gray matter volume (p = 0.03). The inclusion of retinal measures in regression models did not attenuate the association of T2DM with gray matter volume. The association of T2DM with lower gray matter volume was independent of retinal vascular architecture and clinical retinopathy. Retinal vascular measures or retinopathy may not be sufficiently sensitive to confirm a microvascular basis for T2DM-related brain atrophy.

  16. Cerebral vasomotor reactivity in neurodegenerative diseases.

    PubMed

    Smoliński, Łukasz; Członkowska, Anna

    Small-caliber cerebral vessels change their diameters in response to alterations of key metabolite concentrations such as carbon dioxide or oxygen. This phenomenon, termed the cerebral vasomotor reactivity (CVMR), is the basis for blood flow regulation in the brain in accordance with its metabolic status. Typically, CVMR is determined as the amount of change in cerebral blood flow in response to a vasodilating stimulus, which can be measured by various neuroimaging methods or by transcranial Doppler. It has been shown that CVMR is impaired in cerebrovascular diseases, but there is also evidence of a similar dysfunction in neurodegenerative disorders. Here, we review studies that have investigated CVMR in the common neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease and multiple sclerosis. Moreover, we discuss potential neurodegenerative mechanisms responsible for the impairment of CVMR. Copyright © 2016 Polish Neurological Society. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  17. Placental growth factor deficiency is associated with impaired cerebral vascular development in mice.

    PubMed

    Luna, Rayana Leal; Kay, Vanessa R; Rätsep, Matthew T; Khalaj, Kasra; Bidarimath, Mallikarjun; Peterson, Nichole; Carmeliet, Peter; Jin, Albert; Croy, B Anne

    2016-02-01

    Placental growth factor (PGF) is expressed in the developing mouse brain and contributes to vascularization and vessel patterning. PGF is dynamically expressed in fetal mouse brain, particularly forebrain, and is essential for normal cerebrovascular development. PGF rises in maternal plasma over normal human and mouse pregnancy but is low in many women with the acute onset hypertensive syndrome, pre-eclampsia (PE). Little is known about the expression of PGF in the fetus during PE. Pgf  (-/-) mice appear normal but recently cerebral vascular defects were documented in adult Pgf  (-/-) mice. Here, temporal-spatial expression of PGF is mapped in normal fetal mouse brains and cerebral vasculature development is compared between normal and congenic Pgf  (-/-) fetuses to assess the actions of PGF during cerebrovascular development. Pgf/PGF, Vegfa/VEGF, Vegf receptor (Vegfr)1 and Vegfr2 expression were examined in the brains of embryonic day (E)12.5, 14.5, 16.5 and 18.5 C57BL/6 (B6) mice using quantitative PCR and immunohistochemistry. The cerebral vasculature was compared between Pgf  (-/-) and B6 embryonic and adult brains using whole mount techniques. Vulnerability to cerebral ischemia was investigated using a left common carotid ligation assay. Pgf/PGF and Vegfr1 are highly expressed in E12.5-14.5 forebrain relative to VEGF and Vegfr2. Vegfa/VEGF is relatively more abundant in hindbrain (HB). PGF and VEGF expression were similar in midbrain. Delayed HB vascularization was seen at E10.5 and 11.5 in Pgf  (-/-) brains. At E14.5, Pgf  (-/-) circle of Willis showed unilateral hypoplasia and fewer collateral vessels, defects that persisted post-natally. Functionally, adult Pgf  (-/-) mice experienced cerebral ischemia after left common carotid arterial occlusion while B6 mice did not. Since Pgf  (-/-) mice were used, consequences of complete absence of maternal and fetal PGF were defined. Therefore, the effects of maternal versus fetal PGF

  18. Microvasculature of the cerebral cortex: a vascular corrosion cast and immunocytochemical study.

    PubMed

    Scala, Gaetano

    2014-04-01

    In mammals, the cerebral cortex microvasculature (CCM) of the neopallium plays important roles in the physiological and pathological processes of the brain. The aim of the present work is to analyze the CCM by use of the SEM-vascular corrosion cast technique, and to examine the immunocytochemical characteristics of the CCM in adult domestic ruminants (cattle, buffalo, and sheep) by using the SEM-immunogold technique. The CCM originated from the very small, finger-like terminal branches of the macrovasculature of the brain. The superficial cortical arterioles were more numerous than the deep straight arterioles which proceeded toward the white matter. The surface casts of the arterioles and capillaries of the cerebral cortex showed ring-shaped formations in the arterioles and at the origin of the capillaries. All capillaries down-stream from these ring-shaped formations were flaccid. Casts of the capillaries showed wrinkles due to the presence of endothelial folds, which is characteristic of varying blood pressure. Formations having intense anti-GIFAP immunoreactivity were frequently evident along the course of the blood capillaries in the cerebral cortex. These formations were probably astrocytes that might regulate the cerebral microcirculation based on physiological and pathological stimuli, such as neuronal activation. Copyright © 2014 Wiley Periodicals, Inc.

  19. Acute effect of coffee drinking on dynamic cerebral autoregulation.

    PubMed

    Sasaki, Hiroyuki; Hirasawa, Ai; Washio, Takuro; Ogoh, Shigehiko

    2016-05-01

    Drinking coffee causes caffeine-induced physiological alterations such as increases in arterial blood pressure, sympathetic nerve activity, cerebral vasoconstriction, etc., and these physiological alterations may be associated with a reduced risk of cerebral vascular disease. However, the effect of coffee drinking on dynamic cerebral blood flow (CBF) regulation remains unclear. The aim of this study was to test our hypothesis that coffee drinking enhances dynamic cerebral autoregulation. Twelve healthy young subjects participated in the present study. After a 5 min baseline measurement in a semi-recumbent position on the hospital bed, each subject drank water (CON) as a placebo condition or coffee beverage (Coffee INT). Arterial blood pressure and middle cerebral artery blood velocity (MCAv) were measured continuously throughout the experiment. At 30 min after the intake of either water or coffee, dynamic cerebral autoregulation was examined using a thigh cuffs occlusion and release technique. Each condition was randomly performed on a different day. Under Coffee INT condition, mean arterial blood pressure was increased (P = 0.01) and mean MCAv was decreased (P = 0.01) from the baseline. The rate of regulation (RoR), as an index of dynamic cerebral autoregulation, during coffee condition was significantly higher than that during CON (P = 0.0009). The findings of the present study suggest that coffee drinking augments dynamic CBF regulation with cerebral vasoconstriction. This phenomenon may be associated with a reduction in the risk of cerebral vascular disease.

  20. The pathology and pathophysiology of vascular dementia.

    PubMed

    Kalaria, Raj N

    2017-12-19

    Vascular dementia (VaD) is widely recognised as the second most common type of dementia. Consensus and accurate diagnosis of clinically suspected VaD relies on wide-ranging clinical, neuropsychological and neuroimaging measures in life but more importantly pathological confirmation. Factors defining subtypes of VaD include the nature and extent of vascular pathologies, degree of involvement of extra and intracranial vessels and the anatomical location of tissue changes as well as time after the initial vascular event. Atherosclerotic and cardioembolic diseases combined appear the most common subtypes of vascular brain injury. In recent years, cerebral small vessel disease (SVD) has gained prominence worldwide as an important substrate of cognitive impairment. SVD is characterised by arteriolosclerosis, lacunar infarcts and cortical and subcortical microinfarcts and diffuse white matter changes, which involve myelin loss and axonal abnormalities. Global brain atrophy and focal degeneration of the cerebrum including medial temporal lobe atrophy are also features of VaD similar to Alzheimer's disease. Hereditary arteriopathies have provided insights into the mechanisms of dementia particularly how arteriolosclerosis, a major contributor of SVD promotes cognitive impairment. Recently developed and validated neuropathology guidelines indicated that the best predictors of vascular cognitive impairment were small or lacunar infarcts, microinfarcts, perivascular space dilation, myelin loss, arteriolosclerosis and leptomeningeal cerebral amyloid angiopathy. While these substrates do not suggest high specificity, VaD is likely defined by key neuronal and dendro-synaptic changes resulting in executive dysfunction and related cognitive deficits. Greater understanding of the molecular pathology is needed to clearly define microvascular disease and vascular substrates of dementia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Vascular space occupancy (VASO) cerebral blood volume-weighted MRI identifies hemodynamic impairment in patients with carotid artery disease.

    PubMed

    Donahue, Manus J; van Laar, Peter Jan; van Zijl, Peter C M; Stevens, Robert D; Hendrikse, Jeroen

    2009-03-01

    To assess the role of vascular space occupancy (VASO) magnetic resonance imaging (MRI), a noninvasive cerebral blood volume (CBV)-weighted technique, for evaluating CBV reactivity in patients with internal carotid artery (ICA) stenosis. VASO reactivity, defined as a signal change in response to hypercapnic stimulus (4-second exhale, 14-second breath-hold), was measured in the left and right ICA flow territories in patients (n=10) with varying degrees of unilateral and bilateral ICA stenosis and in healthy volunteers (n=10). Percent VASO reactivity was more negative (P<0.01) bilaterally in patients (ipsilateral: -3.6+/-1.5%; contralateral: -3.4+/-1.2%) compared with age-matched controls (left: -1.9+/-0.6%; right: -1.9+/-0.8%). Owing to the nature of the VASO contrast mechanism, this more negative VASO reactivity was attributed to autoregulatory CBV effects in patients. A postbreath-hold overshoot, which was absent in healthy volunteers, was observed unilaterally in a subset of patients. More negative VASO reactivity was observed in patients with ICA stenosis and may be a marker of autoregulatory effects. Furthermore, the postbreath-hold overshoot observed in patients is consistent with compensatory microvascular vasoconstriction and may be a marker of hemodynamic impairment. Based on the results of this feasibility study, VASO should be useful for identifying CBV adjustments in patients with steno-occlusive disease of the ICA. Copyright (c) 2009 Wiley-Liss, Inc.

  2. Genetic modification of cerebral arterial wall: implications for prevention and treatment of cerebral vasospasm.

    PubMed

    Vijay, Anantha; Santhanam, R; Katusic, Zvonimir S

    2006-10-01

    Genetic modification of cerebral vessels represents a promising and novel approach for prevention and/or treatment of various cerebral vascular disorders, including cerebral vasospasm. In this review, we focus on the current understanding of the use of gene transfer to the cerebral arteries for prevention and/or treatment of cerebral vasospasm following subarachnoid hemorrhage (SAH). We also discuss the recent developments in vascular therapeutics, involving the autologous use of progenitor cells for repair of damaged vessels, as well as a cell-based gene delivery approach for the prevention and treatment of cerebral vasospasm.

  3. Hyaline-Vascular Type Castleman's Disease, Sarcoidosis, and Crohns Disease.

    PubMed

    Gupta, Arjun; Ayyar, Balaji; Zia, Hamid; Chen, Weina; Harris, Samar; Naina, Harris V

    2016-06-01

    Sarcoidosis and Crohns disease have been associated with increased long term risk of lymphoproliferative disorders, including lymphomas. Newly developed lymphadenopathy in a patient with these disorders should prompt pathological evaluation. Castleman's disease is a lymphoproliferative disorder characterized by enlarged hyperplastic lymph nodes with regressed follicles surrounded by expanded mantle zones of small lymphocytes, and interfollicular vascular proliferation in the hyaline-vascular type. Similar to sarcoidosis and Crohns disease, its etiology is incompletely understood, although immune dysregulation, genetic factors and infectious and environmental factors are thought to play a role in all three diseases. Interleukin-6 is a possible pathological common factor between these three disease processed. Unicentric, hyaline-vascular type Castleman's disease can be treated successfully with complete surgical resection. We report a patient with long history of sarcoidosis and Crohns disease with newly developed lymphadenopathy which was found to be due to Castleman's disease.

  4. Information entropy-based fitting of the disease trajectory of brain ischemia-induced vascular cognitive impairment.

    PubMed

    Liu, Lin; Huo, Ju; Zhao, Ying; Tian, Yu

    2012-03-25

    The present study investigated the disease trajectory of vascular cognitive impairment using the entropy of information in a neural network mathematical simulation based on the free radical and excitatory amino acids theories. Glutamate, malondialdehyde, and inducible nitric oxide synthase content was significantly elevated, but acetylcholine, catalase, superoxide dismutase, glutathione peroxidase and constitutive nitric oxide synthase content was significantly decreased in our vascular cognitive impairment model. The fitting curves for each factor were obtained using Matlab software. Nineteen, 30 and 49 days post ischemia were the main output time frames of the influence of these seven factors. Our results demonstrated that vascular cognitive impairment involves multiple factors. These factors include excitatory amino acid toxicity and nitric oxide toxicity. These toxicities disrupt the dynamic equilibrium of the production and removal of oxygen free radicals after cerebral ischemia, reducing the ability to clear oxygen free radicals and worsening brain injury.

  5. Oscillation of Angiogenesis and Vascular Dropout in Progressive Human Vascular Disease. [Vascular Pattern as Useful Read-Out of Complex Molecular Signaling

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, Patricia

    2010-01-01

    When analyzed by VESsel GENeration Analysis (VESGEN) software, vascular patterns provide useful integrative read-outs of complex, interacting molecular signaling pathways. Using VESGEN, we recently discovered and published our innovative, surprising findings that angiogenesis oscillated with vascular dropout throughout progression of diabetic retinopathy, a blinding vascular disease. Our findings provide a potential paradigm shift in the current prevailing view on progression and treatment of this disease, and a new early-stage window of regenerative therapeutic opportunities. The findings also suggest that angiogenesis may oscillate with vascular disease in a homeostatic-like manner during early stages of other inflammatory progressive diseases such as cancer and coronary vascular disease.

  6. P14.21 Can vascular risk factors influence number of brain metastases?

    PubMed Central

    Berk, B.; Nagel, S.; Kortmann, R.; Hoffmann, K.; Gaudino, C.; Seidel, C.

    2017-01-01

    Abstract BACKGROUND: Up to 30-40% of patients with solid tumors develop cerebral metastases. Number of cerebral metastases is relevant for treatment and prognosis. However, factors that determine number of metastases are not well defined. Distribution of metastases is influenced by blood vessels and cerebral small vessel disease can reduce number of metastases. Aim of this pilot study was to analyze the influence of vascular risk factors (arterial hypertension, diabetes mellitus, smoking, hypercholesterolemia) and of peripheral arterial occlusive disease (PAOD) on number of brain metastases. METHODS: 200 patients with pre-therapeutic 3D-brain MRI and available clinical data were analyzed retrospectively. Number of metastases (NoM) was compared between patients with/without vascular risk factors (vasRF). Results: Patients with PAOD had significant less brain metastases than patients without PAOD (NoM=4.43 vs. 6.02, p=0.043), no other single vasRF conferred a significant effect on NoM. NoM differed significantly between different tumor entities. CONCLUSION: Presence of PAOD showed some effect on number of brain metastases implying that tumor-independent vascular factors can influence brain metastasation.

  7. Cerebral Small Vessel Disease and Motoric Cognitive Risk Syndrome: Results from the Kerala-Einstein Study.

    PubMed

    Wang, Nan; Allali, Gilles; Kesavadas, Chandrasekharan; Noone, Mohan L; Pradeep, Vayyattu G; Blumen, Helena M; Verghese, Joe

    2016-01-01

    The contribution of cerebral small vessel disease to cognitive decline, especially in non-Caucasian populations, is not well established. We examined the relationship between cerebral small vessel disease and motoric cognitive risk syndrome (MCR), a recently described pre-dementia syndrome, in Indian seniors. 139 participants (mean age 66.6 ± 5.4 y, 33.1% female) participating in the Kerala-Einstein study in Southern India were examined in a cross-sectional study. The presence of cerebral small vessel disease (lacunar infarcts and cerebral microbleeds (CMB)) and white matter hyperintensities on MRI was ascertained by raters blinded to clinical information. MCR was defined by the presence of cognitive complaints and slow gait in older adults without dementia or mobility disability. Thirty-eight (27.3%) participants met MCR criteria. The overall prevalence of lacunar infarcts and CMB was 49.6% and 9.4% , respectively. Lacunar infarcts in the frontal lobe, but no other brain regions, were associated with MCR even after adjusting for vascular risk factors and presence of white matter hyperintensities (adjusted Odds Ratio (aOR): 4.67, 95% CI: 1.69-12.94). Frontal lacunar infarcts were associated with slow gait (aOR: 3.98, 95% CI: 1.46-10.79) and poor performance on memory test (β: -1.24, 95% CI: -2.42 to -0.05), but not with cognitive complaints or non-memory tests. No association of CMB was found with MCR, individual MCR criterion or cognitive tests. Frontal lacunar infarcts are associated with MCR in Indian seniors, perhaps, by contributing to slow gait and poor memory function.

  8. Behçet syndrome: the vascular cluster.

    PubMed

    Yazıcı, Hasan; Seyahi, Emire

    2016-11-17

    Although skin-mucosa lesions are common in almost all patients with Behçet syndrome (BS), clinical properties may differ from one patient to another. Within BS, there are subsets with different organ involvement and hence probably different pathological pathways. These subsets can be described as a) solo skin-mucosa disease with no major organ involvement, b) eye disease, c) seronegative spondyloarthropathy-like disease (arthritis, enthesopathy, and folliculitis), d) Crohn-like disease, and finally the topic of this chapter: e) vascular disease. In the vascular disease subset, not surprisingly, several types of vascular involvement may be observed in the same individual. These subsets may make up the total clinical picture all at the same time or step by step with each relapse. Significant correlations exist between cerebral vascular thrombosis and pulmonary artery involvement, intracardiac thrombi and pulmonary artery involvement, Budd-Chiari syndrome, and inferior vena cava syndrome. Lower extremity vein thrombosis is often present in these associations and even precedes them. The recognition of these clusters is not only important in diagnosis and management but also in basic science, including genetic studies.

  9. Comparing cerebrovascular reactivity measured using BOLD and cerebral blood flow MRI: The effect of basal vascular tension on vasodilatory and vasoconstrictive reactivity

    PubMed Central

    Halani, Sheliza; Kwinta, Jonathan B.; Golestani, Ali M.; Khatamian, Yasha B.; Chen, J. Jean

    2016-01-01

    Cerebrovascular reactivity (CVR) is an important metric of cerebrovascular health. While the BOLD fMRI method in conjunction with carbon-dioxide (CO2) based vascular manipulation has been the most commonly used, the BOLD signal is not a direct measure of vascular changes, and the use of arterial-spin labeling (ASL) cerebral blood flow (CBF) imaging is increasingly advocated. Nonetheless, given the differing dependencies of BOLD and CBF on vascular baseline conditions and the diverse CO2 manipulation types currently used in the literature, knowledge of potential biases introduced by each technique is critical for the interpretation of CVR measurements. In this work, we use simultaneous BOLD-CBF acquisitions during both vasodilatory (hypercapnic) and vasoconstrictive (hypocapnic) stimuli to measure CVR. We further imposed different levels of baseline vascular tension by inducing hypercapnic and hypocapnic baselines, separately from normocapnia by 4 mm Hg. We saw significant and diverse dependencies on vascular stimulus and baseline condition in both BOLD and CBF CVR measurements: (i) BOLD-based CVR is more sensitive to basal vascular tension than CBF-based CVR; (ii) the use of a combination of vasodilatory and vasoconstrictive stimuli maximizes the sensitivity of CBF-based CVR to vascular tension changes; (iii) the BOLD and CBF vascular response delays are both significantly lengthened at predilated baseline. As vascular tension can often be altered by potential pathology, our findings are important considerations when interpreting CVR measurements in health and disease. PMID:25655446

  10. Morning Glory Syndrome with Carotid and Middle Cerebral Artery Vasculopathy.

    PubMed

    Nezzar, Hachemi; Mbekeani, Joyce N; Dalens, Helen

    2015-12-01

    To report a case of incidental asymptomatic atypical morning glory syndrome (MGS) with concomitant ipsilateral carotid and middle cerebral dysgenesis. A 6-year-old child was discovered to have incidental findings of MGS, with atypia. All visual functions were normal including vision and stereopsis. Neuroimaging revealed ipsilateral carotid and middle cerebral vascular narrowing without associated collateral vessels or cerebral ischemia commonly seen in Moyamoya disease. Subsequent annual examinations have been stable, without signs of progression. This case demonstrates disparity between structural aberrations and final visual and neurological function and reinforces the association between MGS and intracranial vascular disruption. Full ancillary ophthalmic and neuroimaging studies should be performed in all patients with MGS with interval reassessments, even when the patient is asymptomatic and functionally intact.

  11. Towards the concept of disease-modifier in post-stroke or vascular cognitive impairment: a consensus report.

    PubMed

    Bordet, Régis; Ihl, Ralf; Korczyn, Amos D; Lanza, Giuseppe; Jansa, Jelka; Hoerr, Robert; Guekht, Alla

    2017-05-24

    Vascular cognitive impairment (VCI) is a complex spectrum encompassing post-stroke cognitive impairment (PSCI) and small vessel disease-related cognitive impairment. Despite the growing health, social, and economic burden of VCI, to date, no specific treatment is available, prompting the introduction of the concept of a disease modifier. Within this clinical spectrum, VCI and PSCI remain advancing conditions as neurodegenerative diseases with progression of both vascular and degenerative lesions accounting for cognitive decline. Disease-modifying strategies should integrate both pharmacological and non-pharmacological multimodal approaches, with pleiotropic effects targeting (1) endothelial and brain-blood barrier dysfunction; (2) neuronal death and axonal loss; (3) cerebral plasticity and compensatory mechanisms; and (4) degenerative-related protein misfolding. Moreover, pharmacological and non-pharmacological treatment in PSCI or VCI requires valid study designs clearly stating the definition of basic methodological issues, such as the instruments that should be used to measure eventual changes, the biomarker-based stratification of participants to be investigated, and statistical tests, as well as the inclusion and exclusion criteria that should be applied. A consensus emerged to propose the development of a disease-modifying strategy in VCI and PSCI based on pleiotropic pharmacological and non-pharmacological approaches.

  12. Spatial mapping of dynamic cerebral autoregulation by multichannel near-infrared spectroscopy in high-grade carotid artery disease

    NASA Astrophysics Data System (ADS)

    Reinhard, Matthias; Schumacher, F. Konrad; Rutsch, Sebastian; Oeinck, Maximilian; Timmer, Jens; Mader, Irina; Schelter, Björn; Weiller, Cornelius; Kaller, Christoph P.

    2014-09-01

    The exact spatial distribution of impaired cerebral autoregulation in carotid artery disease is unknown. In this pilot study, we present a new approach of multichannel near-infrared spectroscopy (mcNIRS) for noninvasive spatial mapping of dynamic autoregulation in carotid artery disease. In 15 patients with unilateral severe carotid artery stenosis or occlusion, cortical hemodynamics in the bilateral frontal cortex were assessed from changes in oxyhemoglobin concentration using 52-channel NIRS (spatial resolution ˜2 cm). Dynamic autoregulation was graded by the phase shift between respiratory-induced 0.1 Hz oscillations of blood pressure and oxyhemoglobin. Ten of 15 patients showed regular phase values in the expected (patho) physiological range. Five patients had clearly outlying irregular phase values mostly due to artifacts. In patients with a regular phase pattern, a significant side-to-side difference of dynamic autoregulation was observed for the cortical border zone area between the middle and anterior cerebral artery (p<0.05). In conclusion, dynamic cerebral autoregulation can be spatially assessed from slow hemodynamic oscillations with mcNIRS. In high-grade carotid artery disease, cortical dynamic autoregulation is affected mostly in the vascular border zone. Spatial mapping of dynamic autoregulation may serve as a powerful tool for identifying brain regions at specific risks for hemodynamic infarction.

  13. Cerebral vascular structure in the motor cortex of adult mice is stable and is not altered by voluntary exercise.

    PubMed

    Cudmore, Robert H; Dougherty, Sarah E; Linden, David J

    2017-12-01

    The cerebral vasculature provides blood flow throughout the brain, and local changes in blood flow are regulated to match the metabolic demands of the active brain regions. This neurovascular coupling is mediated by real-time changes in vessel diameter and depends on the underlying vascular network structure. Neurovascular structure is configured during development by genetic and activity-dependent factors. In adulthood, it can be altered by experiences such as prolonged hypoxia, sensory deprivation and seizure. Here, we have sought to determine whether exercise could alter cerebral vascular structure in the adult mouse. We performed repeated in vivo two-photon imaging in the motor cortex of adult transgenic mice expressing membrane-anchored green fluorescent protein in endothelial cells (tyrosine endothelial kinase 2 receptor (Tie2)-Cre:mTmG). This strategy allows for high-resolution imaging of the vessel walls throughout the lifespan. Vascular structure, as measured by capillary branch point number and position, segment diameter and length remained stable over a time scale of months as did pericyte number and position. Furthermore, we compared the vascular structure before, during, and after periods of voluntary wheel running and found no alterations in these same parameters. In both running and control mice, we observed a low rate of capillary segment subtraction. Interestingly, these rare subtraction events preferentially remove short vascular loops.

  14. Improving Cognitive Function in Veterans with Gulf War Illness by Improving Cerebral Vascular Function

    DTIC Science & Technology

    2017-10-01

    AWARD NUMBER: W81XWH-16-1-0610 TITLE: Improving Cognitive Function in Veterans with Gulf War Illness by Improving Cerebral Vascular Function...From - To) 15 Sep 2016 - 14 Sep 2017 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Improving Cognitive Function in Veterans with Gulf War Illness by...investigate a relationship between cognitive impairment in Veterans with Gulf War Illness (GWI) and reduced vasodilatory function. One of the multiple

  15. Role of Multimodal Evaluation of Cerebral Hemodynamics in Selecting Patients with Symptomatic Carotid or Middle Cerebral Artery Steno-occlusive Disease for Revascularization

    PubMed Central

    Sharma, Vijay K; Tsivgoulis, Georgios; Ning, Chou; Teoh, Hock L; Bairaktaris, Chrisostomos; Chong, Vincent FH; Ong, Benjamin KC; Chan, Bernard PL; Sinha, Arvind K

    2008-01-01

    Background: The circle of Willis provides collateral pathways to perfuse the affected vascular territories in patients with severe stenoocclusive disease of major arteries. The collateral perfusion may become insufficient in certain physiological circumstances due to failed vasodilatory reserve and intracranial steal phenomenon, so-called ‘Reversed-Robinhood syndrome’. We evaluated cerebral hemodynamics and vasodilatory reserve in patients with symptomatic distal internal carotid (ICA) or middle cerebral artery (MCA) severe steno-occlusive disease. Methods: Diagnostic transcranial Doppler (TCD) and TCD-monitoring with voluntary breath-holding according to a standard scanning protocol were performed in patients with severe ICA or MCA steno-occlusive disease. The steal phenomenon was detected as transient, spontaneous, or vasodilatory stimuli-induced velocity reductions in affected arteries at the time of velocity increase in normal vessels. Patients with exhausted vasomotor reactivity and intracranial steal phenomenon during breath-holding were further evaluated by 99technetiumm-hexamethyl propylene amine oxime single photon emission computed tomography (HMPAO-SPECT) with acetazolamide challenge. Results: Sixteen patients (age 27–74 years, 11 men) fulfilled our TCD criteria for exhausted vasomotor reactivity and intracranial steal phenomenon during the standard vasomotor testing by breath holding. Acetazolamide-challenged HMPAO-SPECT demonstrated significant hypoperfusion in 12 patients in affected arterial territories, suggestive of failed vasodilatory reserve. A breath-holding index of ≤0.3 on TCD was associated with an abnormal HMPAO-SPECT with acetazolamide challenge. TCD findings of a breath holding index of ≤0.3 and intracranial steal during the procedure were determinants of a significant abnormality on HMPAO-SPECT with acetazolamide challenge. Conclusion: Multimodal evaluation of cerebral hemodynamics in symptomatic patients with severe steno

  16. Reversible cerebral vasoconstriction syndrome: a comprehensive update.

    PubMed

    Mehdi, Ali; Hajj-Ali, Rula A

    2014-09-01

    Reversible cerebral vasoconstriction syndrome (RCVS) is a clinico-radiological syndrome characterized by recurrent thunderclap headache, with or without neurologic symptoms, and reversible vasoconstriction of cerebral arteries. RCVS affects patients in various racial and ethnic groups and in all age groups, although most commonly in the fourth decade of life. Many conditions and exposures have been linked to RCVS, including vasoactive drugs and the peripartum period. Disturbance of the cerebral vascular tone is thought to contribute to the disease's pathophysiology. RCVS generally follows a monophasic course. Associated strokes and cerebral hemorrhages are not uncommon. In this review we will attempt to provide a comprehensive overview of RCVS, with emphasis on the controversies in the field and the newest findings in the reported literature.

  17. Rac-1 as a new therapeutic target in cerebro- and cardio-vascular diseases.

    PubMed

    Carrizzo, Albino; Forte, Maurizio; Lembo, Maria; Formisano, Luigi; Puca, Annibale A; Vecchione, Carmine

    2014-01-01

    Growing evidence indicates that overproduction of reactive oxygen species (ROS) plays a prominent role in the development of cardio- and cerebro-vascular diseases. Among the mechanisms identified to produce oxidative stress in the vascular wall, those mediated by membrane-bound NAD(P)H oxidases represent a major one. NAD(P)H oxidases are a family of enzymes that generate ROS both in phagocytic and non-phagocytic cell types. Vascular NAD(P)H oxidase contains the membrane-bound subunits Nox1, Nox2 (gp91phox), Nox4 and p22phox, the catalytic site of the oxidase, and the cytosolic components p47phox and p67phox. Rac1 (Ras-related C3 botulinum toxin substrate1) is a small GTPase essential for the assembly and activation of NADPH oxidase. Several molecular and cellular studies have reported the involvement of Rac1 in different cardiovascular pathologies, such as vascular smooth muscle proliferation, cardiomyocyte hypertrophy, endothelial cell shape change, atherosclerosis and endothelial dysfunction in hypertension. In addition, increased activation of NADPH oxidase by Rac1 has been reported in animals and humans after myocardial infarction and heart failure. The Rac1/NADPH pathway has also been found involved in different pathologies of the cerebral district, such as ischemic stroke, cognitive impairment, subaracnoid hemorrhage and neuronal oxidative damage typical of several neurodegenerative disorders. In addition, thrombotic events are an important step in the onset of cardio- and cerebrovascular diseases. Rac1 has been found involved also in platelet activation, inducing actin polymerization and lamellipodia formation, which are necessary steps for platelet aggregation. Taken together, the evidence candidates Rac1 as a new pharmacological target of cardiovascular and cerebrovascular diseases. Although the involvement of Rac1 in the beneficial pleiotropic effects of drugs such as statins is well known, and the onset of numerous side effects has raised concern for the

  18. Estradiol modulates post-ischemic cerebral vascular remodeling and improves long-term functional outcome in a rat model of stroke

    PubMed Central

    Ardelt, Agnieszka A.; Carpenter, Randall S.; Lobo, Merryl R.; Zeng, Huadong; Solanki, Rajanikant B.; Zhang, An; Kulesza, Piotr; Pike, Martin M.

    2012-01-01

    We previously observed that 17β-estradiol (E2) augments ischemic borderzone vascular density 10 days after focal cerebral ischemia-reperfusion in rats. We now evaluated the effect of E2 on vascular remodeling, lesional characteristics, and motor recovery up to 30 days after injury. Peri-lesional vascular density in tissue sections from rats treated with 0.72 mg E2 pellets was higher compared to 0.18 mg E2 pellets or placebo (P) pellets: vascular density index, 1.9 ± 0.2 (0.72 mg E2) vs. 1.4 ± 0.2 (0.18 mg E2) vs. 1.5 ± 0.4 (P), p=0.01. This was consistent with perfusion magnetic resonance imaging (MRI) measurements of lesional relative cerebral blood flow (rCBF): 1.89 ± 0.32 (0.72 mg E2) vs. 1.32 ± 0.19 (P), p=0.04. Post-ischemic angiogenesis occurred in P-treated as well as E2-treated rats. There was no treatment-related effect on lesional size, but lesional tissue was better preserved in E2-treated rats: cystic component as a % of total lesion, 30 ± 12 (0.72 mg E2) vs. 29 ± 17 (0.18 mg E2) vs. 61 ± 29 (P), p=0.008. Three weeks after right middle cerebral artery territory injury, rats treated with 0.72 mg E2 pellets used the left forelimb more than P-treated or 0.18 mg E2-treated rats: limb use asymmetry score, 0.09 ± 0.43 (0.72 mg E2) vs. 0.54 ± 0.12 (0.18 mg E2) vs. 0.54 ± 0.40 (P), p=0.05. We conclude that treatment with 0.72 mg E2 pellets beginning one week prior to ischemia/reperfusion and continuing through the one-month recovery period results in augmentation of lesional vascularity and perfusion, as well as improved motor recovery. PMID:22572084

  19. Update on Vascular Cognitive Impairment Associated with Subcortical Small-Vessel Disease

    PubMed Central

    Wallin, Anders; Román, Gustavo C.; Esiri, Margaret; Kettunen, Petronella; Svensson, Johan; Paraskevas, George P.; Kapaki, Elisabeth

    2018-01-01

    Subcortical small-vessel disease (SSVD) is a disorder well characterized from the clinical, imaging, and neuropathological viewpoints. SSVD is considered the most prevalent ischemic brain disorder, increasing in frequency with age. Vascular risk factors include hypertension, diabetes, hyperlipidemia, elevated homocysteine, and obstructive sleep apnea. Ischemic white matter lesions are the hallmark of SSVD; other pathological lesions include arteriolosclerosis, dilatation of perivascular spaces, venous collagenosis, cerebral amyloid angiopathy, microbleeds, microinfarcts, lacunes, and large infarcts. The pathogenesis of SSVD is incompletely understood but includes endothelial changes and blood-brain barrier alterations involving metalloproteinases, vascular endothelial growth factors, angiotensin II, mindin/spondin, and the mammalian target of rapamycin pathway. Metabolic and genetic conditions may also play a role but hitherto there are few conclusive studies. Clinical diagnosis of SSVD includes early executive dysfunction manifested by impaired capacity to use complex information, to formulate strategies, and to exercise self-control. In comparison with Alzheimer’s disease (AD), patients with SSVD show less pronounced episodic memory deficits. Brain imaging has advanced substantially the diagnostic tools for SSVD. With the exception of cortical microinfarcts, all other lesions are well visualized with MRI. Diagnostic biomarkers that separate AD from SSVD include reduction of cerebrospinal fluid amyloid-β (Aβ)42 and of the ratio Aβ42/Aβ40 often with increased total tau levels. However, better markers of small-vessel function of intracerebral blood vessels are needed. The treatment of SSVD remains unsatisfactory other than control of vascular risk factors. There is an urgent need of finding targets to slow down and potentially halt the progression of this prevalent, but often unrecognized, disorder. PMID:29562536

  20. Cerebral oxygen delivery is reduced in newborns with congenital heart disease.

    PubMed

    Lim, Jessie Mei; Kingdom, Theodore; Saini, Brahmdeep; Chau, Vann; Post, Martin; Blaser, Susan; Macgowan, Christopher; Miller, Steven P; Seed, Mike

    2016-10-01

    To investigate preoperative cerebral hemodynamics in newborns with congenital heart disease. We hypothesized that cerebral blood flow and oxygen delivery would be decreased in newborns with congenital heart disease compared with controls. Using a "feed-and-sleep" approach to performing neonatal magnetic resonance imaging, we measured cerebral blood flow by using a slice prescription perpendicular to the right and left internal carotid arteries and basilar artery at the level of the clivus. We calculated brain volume by segmenting a 3-dimensional steady-state free procession acquisition of the whole brain, allowing quantification of cerebral blood flow indexed to brain volume. Cerebral oxygen delivery was calculated as the product of cerebral blood flow and preductal systemic arterial oxygen content obtained via a combination of conventional pulse oximetry and laboratory analysis of venous blood samples for hemoglobin concentration. A complete set of measurements were obtained in 32 newborns with heart disease and 31 controls. There was no difference in gestational age between the heart disease and control groups. There was no difference in cerebral blood flow compared with controls (103.5 ± 34.0 vs 119.7 ± 40.4 mL/min), whereas cerebral oxygen delivery was significantly lower in the congenital heart disease subjects (1881 ± 625.7 vs 2712 ± 915.7 mLO2/min). Ten newborns with congenital heart disease had diffuse excessive high signal intensity in their white matter and 2 had white matter injury whereas another 5 had both. Newborns with unrepaired cyanotic congenital heart disease have decreased cerebral oxygen delivery due to arterial desaturation. If brain growth and development are adversely affected through oxygen conformance, our findings could have clinical implications in terms of timing of surgical repair. Copyright © 2016 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  1. Plasma Amyloid-β Levels, Cerebral Small Vessel Disease, and Cognition: The Rotterdam Study.

    PubMed

    Hilal, Saima; Akoudad, Saloua; van Duijn, Cornelia M; Niessen, Wiro J; Verbeek, Marcel M; Vanderstichele, Hugo; Stoops, Erik; Ikram, M Arfan; Vernooij, Meike W

    2017-01-01

    Plasma amyloid-β (Aβ) levels are increasingly studied as a potential, accessible marker of cognitive impairment and dementia. The most common plasma Aβ isoforms, i.e., Aβ1-40 and Aβ1-42 have been linked with risk of Alzheimer's disease. However, it remains under-explored whether plasma Aβ levels including novel Aβ1-38 relate to vascular brain disease and cognition in a preclinical-phase of dementiaObjective:To examine the association of plasma Aβ levels (i.e., Aβ1-38, Aβ1-40, and Aβ1-42) with markers of cerebral small vessel disease (SVD) and cognition in a large population-based setting. We analyzed plasma Aβ1 levels in 1201 subjects from two independent cohorts of the Rotterdam Study. Markers of SVD [lacunes, white matter hyperintensity (WMH) volume] were assessed on brain MRI (1.5T). Cognition was assessed by a detailed neuropsychological battery. In each cohort, the association of Aβ levels with SVD and cognition was performed using regression models. Estimates were then pooled across cohorts using inverse variance meta-analysis with fixed effects. Higher levels of plasma Aβ1-38, Aβ1-40, Aβ1-42, and Aβ1-40/ Aβ1-42 ratio were associated with increasing lacunar and microbleeds counts. Moreover, higher levels of Aβ1-40 and Aβ1-40/ Aβ1-42 were significantly associated with larger WMH volumes. With regard to cognition, a higher level of Aβ1-38 Aβ1-40 and Aβ1-40/ Aβ1-42 was related to worse performance on cognitive test specifically in memory domain. Higher plasma levels of Aβ levels are associated with subclinical markers of vascular disease and poorer memory. Plasma Aβ levels thus mark the presence of vascular brain pathology.

  2. Cerebral malaria in children: using the retina to study the brain

    PubMed Central

    Beare, Nicholas A. V.; Taylor, Terrie E.; Barrera, Valentina; White, Valerie A.; Hiscott, Paul; Molyneux, Malcolm E.; Dhillon, Baljean; Harding, Simon P.

    2014-01-01

    Cerebral malaria is a dangerous complication of Plasmodium falciparum infection, which takes a devastating toll on children in sub-Saharan Africa. Although autopsy studies have improved understanding of cerebral malaria pathology in fatal cases, information about in vivo neurovascular pathogenesis is scarce because brain tissue is inaccessible in life. Surrogate markers may provide insight into pathogenesis and thereby facilitate clinical studies with the ultimate aim of improving the treatment and prognosis of cerebral malaria. The retina is an attractive source of potential surrogate markers for paediatric cerebral malaria because, in this condition, the retina seems to sustain microvascular damage similar to that of the brain. In paediatric cerebral malaria a combination of retinal signs correlates, in fatal cases, with the severity of brain pathology, and has diagnostic and prognostic significance. Unlike the brain, the retina is accessible to high-resolution, non-invasive imaging. We aimed to determine the extent to which paediatric malarial retinopathy reflects cerebrovascular damage by reviewing the literature to compare retinal and cerebral manifestations of retinopathy-positive paediatric cerebral malaria. We then compared retina and brain in terms of anatomical and physiological features that could help to account for similarities and differences in vascular pathology. These comparisons address the question of whether it is biologically plausible to draw conclusions about unseen cerebral vascular pathogenesis from the visible retinal vasculature in retinopathy-positive paediatric cerebral malaria. Our work addresses an important cause of death and neurodisability in sub-Saharan Africa. We critically appraise evidence for associations between retina and brain neurovasculature in health and disease, and in the process we develop new hypotheses about why these vascular beds are susceptible to sequestration of parasitized erythrocytes. PMID:24578549

  3. Protective or pathogenic effects of vascular endothelial growth factor (VEGF) as potential biomarker in cerebral malaria.

    PubMed

    Canavese, Miriam; Spaccapelo, Roberta

    2014-03-01

    Cerebral malaria (CM) is the major lethal complication of Plasmodium falciparum infection. It is characterized by persistent coma along with symmetrical motor signs. Several clinical, histopathological, and laboratory studies have suggested that cytoadherence of parasitized erythrocytes, neural injury by malarial toxin, and excessive inflammatory cytokine production are possible pathogenic mechanisms. Although the detailed pathophysiology of CM remains unsolved, it is thought that the binding of parasitized erythrocytes to the cerebral endothelia of microvessels, leading to their occlusion and the consequent angiogenic dysregulation play a key role in the disease pathogenesis. Recent evidences showed that vascular endothelial growth factor (VEGF) and its receptor-related molecules are over-expressed in the brain tissues of CM patients, as well as increased levels of VEGF are detectable in biologic samples from malaria patients. Whether the modulation of VEGF is causative agent of CM mortality or a specific phenotype of patients with susceptibility to fatal CM needs further evaluation. Currently, there is no biological test available to confirm the diagnosis of CM and its complications. It is hoped that development of biomarkers to identify patients and potential risk for adverse outcomes would greatly enhance better intervention and clinical management to improve the outcomes. We review and discuss here what it is currently known in regard to the role of VEGF in CM as well as VEGF as a potential biomarker.

  4. Biology of vascular malformations of the brain.

    PubMed

    Leblanc, Gabrielle G; Golanov, Eugene; Awad, Issam A; Young, William L

    2009-12-01

    This review discusses recent research on the genetic, molecular, cellular, and developmental mechanisms underlying the etiology of vascular malformations of the brain (VMBs), including cerebral cavernous malformation, sporadic brain arteriovenous malformation, and the arteriovenous malformations of hereditary hemorrhagic telangiectasia. Summary of Review- The identification of gene mutations and genetic risk factors associated with cerebral cavernous malformation, hereditary hemorrhagic telangiectasia, and sporadic arteriovenous malformation has enabled the development of animal models for these diseases and provided new insights into their etiology. All of the genes associated with VMBs to date have known or plausible roles in angiogenesis and vascular remodeling. Recent work suggests that the angiogenic process most severely disrupted by VMB gene mutation is that of vascular stabilization, the process whereby vascular endothelial cells form capillary tubes, strengthen their intercellular junctions, and recruit smooth muscle cells to the vessel wall. In addition, there is now good evidence that in some cases, cerebral cavernous malformation lesion formation involves a genetic 2-hit mechanism in which a germline mutation in one copy of a cerebral cavernous malformation gene is followed by a somatic mutation in the other copy. There is also increasing evidence that environmental second hits can produce lesions when there is a mutation to a single allele of a VMB gene. Recent findings begin to explain how mutations in VMB genes render vessels vulnerable to rupture when challenged with other inauspicious genetic or environmental factors and have suggested candidate therapeutics. Understanding of the cellular mechanisms of VMB formation and progression in humans has lagged behind that in animal models. New knowledge of lesion biology will spur new translational work. Several well-established clinical and genetic database efforts are already in place, and further

  5. Stabilization of VEGFR2 signaling by cerebral cavernous malformation 3 is critical for vascular development.

    PubMed

    He, Yun; Zhang, Haifeng; Yu, Luyang; Gunel, Murat; Boggon, Titus J; Chen, Hong; Min, Wang

    2010-04-06

    Cerebral cavernous malformations (CCMs) are human vascular malformations caused by mutations in three genes of unknown function: CCM1, CCM2, and CCM3. CCM3, also known as PDCD10 (programmed cell death 10), was initially identified as a messenger RNA whose abundance was induced by apoptotic stimuli in vitro. However, the in vivo function of CCM3 has not been determined. Here, we describe mice with a deletion of the CCM3 gene either ubiquitously or specifically in the vascular endothelium, smooth muscle cells, or neurons. Mice with global or endothelial cell-specific deletion of CCM3 exhibited defects in embryonic angiogenesis and died at an early embryonic stage. CCM3 deletion reduced vascular endothelial growth factor receptor 2 (VEGFR2) signaling in embryos and endothelial cells. In response to VEGF stimulation, CCM3 was recruited to and stabilized VEGFR2, and the carboxyl-terminal domain of CCM3 was required for the stabilization of VEGFR2. Indeed, the CCM3 mutants found in human patients lacking the carboxyl-terminal domain were labile and were unable to stabilize and activate VEGFR2. These results demonstrate that CCM3 promotes VEGFR2 signaling during vascular development.

  6. Is cerebral vasomotor reactivity impaired in Parkinson disease?

    PubMed

    Hanby, Martha F; Panerai, Ronney B; Robinson, Thompson G; Haunton, Victoria J

    2017-04-01

    The ability of a blood vessel to change diameter in response to a change in carbon dioxide concentration is often referred to as vasomotor reactivity. This study aimed to determine whether vasomotor reactivity is impaired in patients with idiopathic Parkinson's Disease in comparison to healthy controls. Transcranial Doppler was used to measure cerebral blood flow velocity in the middle cerebral arteries at baseline and under hypocapnic conditions in 40 patients with idiopathic Parkinson's disease and 50 healthy controls. Vasomotor reactivity, assessed under hypocapnic conditions, is not impaired in patients with idiopathic Parkinson's Disease in comparison to healthy controls.

  7. MTHFR and ACE Gene Polymorphisms and Risk of Vascular and Degenerative Dementias in the Elderly

    ERIC Educational Resources Information Center

    Pandey, Pratima; Pradhan, Sunil; Modi, Dinesh Raj; Mittal, Balraj

    2009-01-01

    Focal lacunar infarctions due to cerebral small vessel atherosclerosis or single/multiple large cortical infarcts lead to vascular dementia, and different genes and environmental factors have been implicated in causation or aggravation of the disease. Previous reports suggest that some of the risk factors may be common to both vascular as well as…

  8. Retinal Vascular Fractal Dimension, Childhood IQ, and Cognitive Ability in Old Age: The Lothian Birth Cohort Study 1936

    PubMed Central

    Taylor, Adele M.; MacGillivray, Thomas J.; Henderson, Ross D.; Ilzina, Lasma; Dhillon, Baljean; Starr, John M.; Deary, Ian J.

    2015-01-01

    Purpose Cerebral microvascular disease is associated with dementia. Differences in the topography of the retinal vascular network may be a marker for cerebrovascular disease. The association between cerebral microvascular state and non-pathological cognitive ageing is less clear, particularly because studies are rarely able to adjust for pre-morbid cognitive ability level. We measured retinal vascular fractal dimension (D f) as a potential marker of cerebral microvascular disease. We examined the extent to which it contributes to differences in non-pathological cognitive ability in old age, after adjusting for childhood mental ability. Methods Participants from the Lothian Birth Cohort 1936 Study (LBC1936) had cognitive ability assessments and retinal photographs taken of both eyes aged around 73 years (n = 648). IQ scores were available from childhood. Retinal vascular D f was calculated with monofractal and multifractal analysis, performed on custom-written software. Multiple regression models were applied to determine associations between retinal vascular D f and general cognitive ability (g), processing speed, and memory. Results Only three out of 24 comparisons (two eyes × four D f parameters × three cognitive measures) were found to be significant. This is little more than would be expected by chance. No single association was verified by an equivalent association in the contralateral eye. Conclusions The results show little evidence that fractal measures of retinal vascular differences are associated with non-pathological cognitive ageing. PMID:25816017

  9. [Management of cerebral small vessel disease for the diagnosis and treatment of dementia].

    PubMed

    Ihara, Masafumi

    2013-07-01

    With the demographic shift in life expectancy inexorably increasing in developed countries, dementia is set to become one of the most important health problems worldwide. In recent years, cerebral small vessel disease (SVD) has received much attention as an important cause of dementia. The reason for this is twofold: firstly, arteriosclerosis (type 1 SVD) is the leading cause of vascular cognitive impairment, and secondly, cerebral amyloid angiopathy (CAA; type 2 SVD) is an almost invariable accompaniment of Alzheimer's disease. SVD is known to induce a variety of pathological changes; for example, type 1 SVD results in lacunar infarction, deep microbleeds, and white matter damage, while type 2 SVD leads to cortical microinfarcts, lobar microbleeds, and white matter damage. SVD is considered a spectrum of abnormalities, with the majority of patients experiencing symptoms from both type 1 and type 2 SVD as the disease progresses. The discouraging results of immunotherapy clinical trials for Alzheimer's disease have shifted the scientific attention from the classical neuron-centric approach towards a novel neurovascular approach. As arteries stiffen with age or with other co-morbid factors such as life-related diseases, amyloid β (Aβ) synthesis becomes upregulated, resulting in the deposition of insoluble Aβ not only in the parenchyma as senile plaques but also in the perivascular drainage pathways as CAA. Therefore, therapeutic strategies such as vasoactive drugs that enhance the patency of this Aβ drainage pathway may facilitate Aβ removal and help prevent cognitive decline in the elderly. Based on this emerging paradigm, clinical trials are warranted to investigate whether a neurovascular therapeutic approach can effectively halt cognitive decline and act as a preemptive medicine for patients at risk of dementia.

  10. Relation of cerebral vessel disease to Alzheimer's disease dementia and cognitive function in elderly people: a cross-sectional study.

    PubMed

    Arvanitakis, Zoe; Capuano, Ana W; Leurgans, Sue E; Bennett, David A; Schneider, Julie A

    2016-08-01

    scores for global cognition (estimate -0·10 [SE 0·04], p=0·0096) and four cognitive domains (episodic memory -0·10 [0·04], p=0·017; semantic memory -0·11 [0·05], p=0·018; perceptual speed -0·14 [0·04], p=0·00080; and visuospatial abilities -0·13 [0·04], p=0·0080), but not working memory (-0·05 [0·04], p=0·21). Arteriolosclerosis was associated with lower scores for global cognition (estimate -0·10 [0·03], p=0·0015) and four domains (episodic memory -0·12 [0·04], p=0·00090; semantic memory -0·10 [0·04], p=0·013; working memory -0·07 [0·03], p=0·045; perceptual speed -0·12 [0·04], p=0·0012), and a non-significant association was noted for visuospatial abilities (-0·07 [0·03], p=0·052). Findings were unchanged in analyses controlling for the presence of APOE ε4 allele or vascular risk factors. Cerebral atherosclerosis and arteriolosclerosis are associated with Alzheimer's disease dementia, and are also associated with low scores in most cognitive domains. Cerebral vessel pathology might be an under-recognised risk factor for Alzheimer's disease dementia. US National Institutes of Health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Endothelial Mineralocorticoid Receptor Mediates Parenchymal Arteriole and Posterior Cerebral Artery Remodeling During Angiotensin II-Induced Hypertension.

    PubMed

    Diaz-Otero, Janice M; Fisher, Courtney; Downs, Kelsey; Moss, M Elizabeth; Jaffe, Iris Z; Jackson, William F; Dorrance, Anne M

    2017-12-01

    The brain is highly susceptible to injury caused by hypertension because the increased blood pressure causes artery remodeling that can limit cerebral perfusion. Mineralocorticoid receptor (MR) antagonism prevents hypertensive cerebral artery remodeling, but the vascular cell types involved have not been defined. In the periphery, the endothelial MR mediates hypertension-induced vascular injury, but cerebral and peripheral arteries are anatomically distinct; thus, these findings cannot be extrapolated to the brain. The parenchymal arterioles determine cerebrovascular resistance. Determining the effects of hypertension and MR signaling on these arterioles could lead to a better understanding of cerebral small vessel disease. We hypothesized that endothelial MR signaling mediates inward cerebral artery remodeling and reduced cerebral perfusion during angiotensin II (AngII) hypertension. The biomechanics of the parenchymal arterioles and posterior cerebral arteries were studied in male C57Bl/6 and endothelial cell-specific MR knockout mice and their appropriate controls using pressure myography. AngII increased plasma aldosterone and decreased cerebral perfusion in C57Bl/6 and MR-intact littermates. Endothelial cell MR deletion improved cerebral perfusion in AngII-treated mice. AngII hypertension resulted in inward hypotrophic remodeling; this was prevented by MR antagonism and endothelial MR deletion. Our studies suggest that endothelial cell MR mediates hypertensive remodeling in the cerebral microcirculation and large pial arteries. AngII-induced inward remodeling of cerebral arteries and arterioles was associated with a reduction in cerebral perfusion that could worsen the outcome of stroke or contribute to vascular dementia. © 2017 American Heart Association, Inc.

  12. White matter hyperintensities and the mediating role of cerebral amyloid angiopathy in dominantly-inherited Alzheimer's disease.

    PubMed

    Lee, Seonjoo; Zimmerman, Molly E; Narkhede, Atul; Nasrabady, Sara E; Tosto, Giuseppe; Meier, Irene B; Benzinger, Tammie L S; Marcus, Daniel S; Fagan, Anne M; Fox, Nick C; Cairns, Nigel J; Holtzman, David M; Buckles, Virginia; Ghetti, Bernardino; McDade, Eric; Martins, Ralph N; Saykin, Andrew J; Masters, Colin L; Ringman, John M; Fӧrster, Stefan; Schofield, Peter R; Sperling, Reisa A; Johnson, Keith A; Chhatwal, Jasmeer P; Salloway, Stephen; Correia, Stephen; Jack, Clifford R; Weiner, Michael; Bateman, Randall J; Morris, John C; Mayeux, Richard; Brickman, Adam M

    2018-01-01

    White matter hyperintensity (WMH) volume on MRI is increased among presymptomatic individuals with autosomal dominant mutations for Alzheimer's disease (AD). One potential explanation is that WMH, conventionally considered a marker of cerebrovascular disease, are a reflection of cerebral amyloid angiopathy (CAA) and that increased WMH in this population is a manifestation of this vascular form of primary AD pathology. We examined whether the presence of cerebral microbleeds, a marker of CAA, mediates the relationship between WMH and estimated symptom onset in individuals with and without autosomal dominant mutations for AD. Participants (n = 175, mean age = 41.1 years) included 112 with an AD mutation and 63 first-degree non-carrier controls. We calculated the estimated years from expected symptom onset (EYO) and analyzed baseline MRI data for WMH volume and presence of cerebral microbleeds. Mixed effects regression and tests of mediation were used to examine microbleed and WMH differences between carriers and non-carriers and to test the whether the association between WMH and mutation status is dependent on the presence of microbleeds. Mutation carriers were more likely to have microbleeds than non-carriers (p<0.05) and individuals with microbleeds had higher WMH volume than those without (p<0.05). Total WMH volume was increased in mutation carriers compared with non-carriers, up to 20 years prior to EYO, after controlling for microbleed status, as we demonstrated previously. Formal testing of mediation demonstrated that 21% of the association between mutation status and WMH was mediated by presence of microbleeds (p = 0.03) but a significant direct effect of WMH remained (p = 0.02) after controlling for presence of microbleeds. Although there is some co-dependency between WMH and microbleeds, the observed increases in WMH among mutation carriers does not appear to be fully mediated by this marker of CAA. The findings highlight the possibility that WMH represent

  13. Cerebral Perfusion Enhancing Interventions: A New Strategy for the Prevention of Alzheimer Dementia.

    PubMed

    de la Torre, Jack C

    2016-09-01

    Cardiovascular and cerebrovascular diseases are major risk factors in the development of cognitive impairment and Alzheimer's disease (AD). These cardio-cerebral disorders promote a variety of vascular risk factors which in the presence of advancing age are prone to markedly reduce cerebral perfusion and create a neuronal energy crisis. Long-term hypoperfusion of the brain evolves mainly from cardiac structural pathology and brain vascular insufficiency. Brain hypoperfusion in the elderly is strongly associated with the development of mild cognitive impairment (MCI) and both conditions are presumed to be precursors of Alzheimer dementia. A therapeutic target to prevent or treat MCI and consequently reduce the incidence of AD aims to elevate cerebral perfusion using novel pharmacological agents. As reviewed here, the experimental pharmaca include the use of Rho kinase inhibitors, neurometabolic energy boosters, sirtuins and vascular growth factors. In addition, a compelling new technique in laser medicine called photobiomodulation is reviewed. Photobiomodulation is based on the use of low level laser therapy to stimulate mitochondrial energy production non-invasively in nerve cells. The use of novel pharmaca and photobiomodulation may become important tools in the treatment or prevention of cognitive decline that can lead to dementia. © 2016 International Society of Neuropathology.

  14. Partial eNOS deficiency causes spontaneous thrombotic cerebral infarction, amyloid angiopathy and cognitive impairment.

    PubMed

    Tan, Xing-Lin; Xue, Yue-Qiang; Ma, Tao; Wang, Xiaofang; Li, Jing Jing; Lan, Lubin; Malik, Kafait U; McDonald, Michael P; Dopico, Alejandro M; Liao, Francesca-Fang

    2015-06-24

    Cerebral infarction due to thrombosis leads to the most common type of stroke and a likely cause of age-related cognitive decline and dementia. Endothelial nitric oxide synthase (eNOS) generates NO, which plays a crucial role in maintaining vascular function and exerting an antithrombotic action. Reduced eNOS expression and eNOS polymorphisms have been associated with stroke and Alzheimer's disease (AD), the most common type of dementia associated with neurovascular dysfunction. However, direct proof of such association is lacking. Since there are no reports of complete eNOS deficiency in humans, we used heterozygous eNOS(+/-) mice to mimic partial deficiency of eNOS, and determine its impact on cerebrovascular pathology and perfusion of cerebral vessels. Combining cerebral angiography with immunohistochemistry, we found thrombotic cerebral infarctions in eNOS(+/-) mice as early as 3-6 months of age but not in eNOS(+/+) mice at any age. Remarkably, vascular occlusions in eNOS(+/-) mice were found almost exclusively in three areas: temporoparietal and retrosplenial granular cortexes, and hippocampus this distribution precisely matching the hypoperfused areas identified in preclinical AD patients. Moreover, progressive cerebral amyloid angiopaphy (CAA), blood brain barrier (BBB) breakdown, and cognitive impairment were also detected in aged eNOS(+/-) mice. These data provide for the first time the evidence that partial eNOS deficiency results in spontaneous thrombotic cerebral infarctions that increase with age, leading to progressive CAA and cognitive impairments. We thus conclude that eNOS(+/-) mouse may represent an ideal model of ischemic stroke to address early and progressive damage in spontaneously-evolving chronic cerebral ischemia and thus, study vascular mechanisms contributing to vascular dementia and AD.

  15. Local estrogenic/androgenic balance in the cerebral vasculature

    PubMed Central

    Krause, Diana N.; Duckles, Sue P.; Gonzales, Rayna J.

    2011-01-01

    Reproductive effects of sex steroids are well-known, however it is increasingly apparent that these hormones have important actions on non-reproductive tissues such as the vasculature. The latter effects can be relevant throughout the lifespan, not just limited to reproductive years, and are not necessarily restricted to one sex or the other. Our work has established that cerebral blood vessels are a non-reproductive target tissue for sex steroids. We have found that estrogen and androgens alter vascular tone, endothelial function, oxidative stress and inflammatory responses in cerebral vessels. Often the actions of estrogen and androgens oppose each other. Moreover, it is clear that cerebral vessels are directly targeted by sex steroids as they express specific receptors for these hormones. Interestingly, cerebral blood vessels also express enzymes that metabolize sex steroids. These findings suggest that local synthesis of 17β-estradiol and dihydrotestosterone can occur within the vessel wall. One of the enzymes present, aromatase, converts testosterone to 17β-estradiol, which would alter the local balance of androgenic and estrogenic influences. Thus cerebral vessels are affected by circulating sex hormones as well as locally synthesized sex steroids. The presence of vascular endocrine effector mechanisms has important implications for male-female differences in cerebrovascular function and disease. Moreover, the cerebral circulation is a target for gonadal hormones as well as anabolic steroids and therapeutic drugs used to manipulate sex steroid actions. The long-term consequences of these influences have yet to be determined. PMID:21535417

  16. Vascular Inward Rectifier K+ Channels as External K+ Sensors in the Control of Cerebral Blood Flow

    PubMed Central

    LONGDEN, THOMAS A.; NELSON, MARK T.

    2015-01-01

    For decades it has been known that external potassium (K+) ions are rapid and potent vasodilators that increase cerebral blood flow (CBF). Recent studies have implicated the local release of K+ from astrocytic endfeet—which encase the entirety of the parenchymal vasculature—in the dynamic regulation of local CBF during neurovascular coupling (NVC). It has been proposed that the activation of strong inward rectifier K+ (KIR) channels in the vascular wall by external K+ is a central component of these hyperemic responses; however, a number of significant gaps in our knowledge remain. Here, we explore the concept that vascular KIR channels are the major extracellular K+ sensors in the control of CBF. We propose that K+ is an ideal mediator of NVC, and discuss KIR channels as effectors that produce rapid hyperpolarization and robust vasodilation of cerebral arterioles. We provide evidence that KIR channels, of the KIR2 subtype in particular, are present in both the endothelial and smooth muscle cells of parenchymal arterioles and propose that this dual positioning of KIR2 channels increases the robustness of the vasodilation to external K+, enables the endothelium to be actively engaged in neurovascular coupling, and permits electrical signaling through the endothelial syncytium to promote upstream vasodilation to modulate CBF. PMID:25641345

  17. Visfatin and cardio-cerebro-vascular disease.

    PubMed

    Wang, Pei; Vanhoutte, Paul M; Miao, Chao-Yu

    2012-01-01

    Nicotinamide phosphoribosyltransferase is the rate-limiting enzyme that catalyzes the first step in the biosynthesis of nicotinamide adenine dinucleotide from nicotinamide. This protein was originally cloned as a putative pre-B cell colony-enhancing factor and also found to be a visceral fat-derived adipokine (visfatin). As a multifunctional protein, visfatin plays an important role in immunity, metabolism, aging, inflammation, and responses to stress. Visfatin also participates in several pathophysiological processes contributing to cardio-cerebro-vascular diseases, including hypertension, atherosclerosis, ischemic heart disease, and ischemic stroke. However, whether visfatin is a friend or a foe in these diseases remains uncertain. This brief review focuses on the current understanding of the complex role of visfatin in the cardio-cerebro-vascular system under normal and pathophysiological conditions.

  18. [Neuroradiological pattern of peripartum cerebro vascular disease medicating transfer to determine care unit].

    PubMed

    Lakhdar, Rim; Baffoun, Nader; Hammami, Nadia; Nagi, Sonia; Baccar, Kamel; Drissi, Syrine; Kaddour, Chokri

    2012-03-01

    Pregnancy and puerperium are considered a period of a high risk of stroke responsible in a part of the morbidity and mortality in women. Imaging is the pivotal tool to diagnostics and care. To investigate the clinical and imaging features cerebrovascular complications during pregnancy and in post partum period. We report a retrospective analysis of forty four patients (November 2002 - October 2010) admitted in the intensive car department of the national institute of neurology for cerebro-vascular complications during pregnancy and in post partum period. Cerebro-vascular imaging modalities included cerebral computed tomography (CCT) with and without contrast in 94% of cases, magnetic resonance imaging (MRI) in 30.6% of cases completed by venous angiography MRI in 27.2% of cases and angiography MRI of Willis polygon in 11.3% of cases and by cerebral angiography in 13.6% of cases. Posterior reversible encephalopathy syndrome (PRES) is diagnosed in 61.4 % of cases followed by meningo-cerebral haemorrhage (MCH) in 29.5% and finally cerebral venous thrombosis (CVT) and arterial ischemia in 4.5% of cases each one. The cerebro-vascular complications are revelled in 86.3 % of the cases during the postpartum and were associated with the eclampsia or preeclampsia in 90.9 % of the cases (n=40). CCT showed typical lesions of PRES in 23 patients. It confirms the presence of hematoma in the 13 patients with MCH and find hypodense lesion in one case with ischemic stroke. CCT show direct (delta sign) and indirect signs of CVT. MRI confirms the diagnostic of PRES, when done (11 of 12 cases) and show cortical sub cortical hyper signal on T2 and FLAIR and hypo signal on T1 sequences. MRI was normal in one case. It shows hemorrhagic lesion in the 2 cases of MCH, thrombosis in the cases of CVT and ischemic lesion in the cases of ischemic stroke. CCT and MRI done within 48 hours from admission were decisive for early diagnostic and for fast and adequate care. Early recognition of stroke

  19. Descriptive study of relationship between cardio-ankle vascular index and biomarkers in vascular-related diseases.

    PubMed

    Liu, Jinbo; Liu, Huan; Zhao, Hongwei; Shang, Guangyun; Zhou, Yingyan; Li, Lihong; Wang, Hongyu

    2017-01-01

    Cardio-ankle vascular index (CAVI) was supposed to be an independent predictor for vascular-related events. Biomarkers such as homocysteine (Hcy), N-terminal pro-brain natriuretic peptide (NT-proBNP), and urine albumin(microalbumin) (UAE) have involved the pathophysiological development of arteriosclerosis. The present study was to investigate relationship between CAVI and biomarkers in vascular-related diseases. A total of 656 subjects (M/F 272/384) from department of Vascular Medicine were enrolled into our study. They were divided into four groups according to the numbers of suffered diseases, healthy group (group 0: subjects without diseases of hypertension, diabetes mellitus (DM), coronary heart disease (CHD); n = 186), group 1 (with one of diseases of hypertension, CHD, DM; n = 237), group 2 (with two of diseases of hypertension, CHD, DM; n = 174), and group 3 (with all diseases of hypertension, CHD, DM; n = 59). CAVI was measured by VS-1000 apparatus. CAVI was increasing with increasing numbers of suffered vascular-related diseases. Similar results were found in the parameters of biomarkers such as Hcy, log NT-ProBNP, and log UAE. There were positive correlation between log NT-proBNP, Hcy, log UAE, and CAVI in the entire study group and nonhealthy group. Positive correlation between log UAE and CAVI were found in the entire study group after adjusting for age, body mass index (BMI), blood pressure, uric acid, and lipids. Multivariate analysis showed that log UAE was an independent associating factor of CAVI in all subjects. CAVI was significantly higher in subjects with hypertension, CHD, and DM. There was correlation between arterial stiffness and biomarkers such as NT-proBNP, Hcy, and UAE.

  20. [Menopause: Hypertension and vascular disease].

    PubMed

    Zilberman, J M

    Hypertension is the main cardiovascular risk factor affecting 25% of women. Hormone changes and hypertension after menopause may lead to higher target organ damage and cardiovascular disease such as increased arterial stiffness, coronary diseases, chronic heart failure and stroke. The physiopathological mechanisms involved in the development of hypertension and cardiovascular diseases in menopausal women are controversial. There are pharmacokinetic and pharmacodynamic differences in both sexes, the women have more coughing when using the converting-enzyme inhibitors, more cramps when using thiazide diuretics and more oedema in the inferior limbs when using calcium antagonists. The aim of this review is to analyse possible physiopathological mechanisms involved in hypertension after menopause and to gain a better understanding of the biological effects mediated by vascular ageing in women when the level of oestrogen protective effect decreases over the vascular system. Copyright © 2017 SEH-LELHA. Publicado por Elsevier España, S.L.U. All rights reserved.

  1. Vascular Contributions to Cognitive Impairment and Dementia

    PubMed Central

    Gorelick, Philip B.; Scuteri, Angelo; Black, Sandra E.; DeCarli, Charles; Greenberg, Steven M.; Iadecola, Costantino; Launer, Lenore J.; Laurent, Stephane; Lopez, Oscar L.; Nyenhuis, David; Petersen, Ronald C.; Schneider, Julie A.; Tzourio, Christophe; Arnett, Donna K.; Bennett, David A.; Chui, Helena C.; Higashida, Randall T.; Lindquist, Ruth; Nilsson, Peter M.; Roman, Gustavo C.; Sellke, Frank W.; Seshadri, Sudha

    2013-01-01

    dementia. Dysfunction of the neurovascular unit and mechanisms regulating cerebral blood flow are likely to be important components of the pathophysiological processes underlying VCI. Cerebral amyloid angiopathy is emerging as an important marker of risk for Alzheimer disease, microinfarction, microhemorrhage and macrohemorrhage of the brain, and VCI. The neuropathology of cognitive impairment in later life is often a mixture of Alzheimer disease and microvascular brain damage, which may overlap and synergize to heighten the risk of cognitive impairment. In this regard, magnetic resonance imaging and other neuroimaging techniques play an important role in the definition and detection of VCI and provide evidence that subcortical forms of VCI with white matter hyperintensities and small deep infarcts are common. In many cases, risk markers for VCI are the same as traditional risk factors for stroke. These risks may include but are not limited to atrial fibrillation, hypertension, diabetes mellitus, and hypercholesterolemia. Furthermore, these same vascular risk factors may be risk markers for Alzheimer disease. Carotid intimal-medial thickness and arterial stiffness are emerging as markers of arterial aging and may serve as risk markers for VCI. Currently, no specific treatments for VCI have been approved by the US Food and Drug Administration. However, detection and control of the traditional risk factors for stroke and cardiovascular disease may be effective in the prevention of VCI, even in older people. Conclusions Vascular contributions to cognitive impairment and dementia are important. Understanding of VCI has evolved substantially in recent years, based on preclinical, neuropathologic, neuroimaging, physiological, and epidemiological studies. Transdisciplinary, translational, and transactional approaches are recommended to further our understanding of this entity and to better characterize its neuropsychological profile. There is a need for prospective, quantitative

  2. Stabiliztin of VEGFR2 Signaling by Cerebral Cavernous Malformation 3 is Critical for Vascular Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Y He; H Zhang; L Yu

    2011-12-31

    Cerebral cavernous malformations (CCMs) are human vascular malformations caused by mutations in three genes of unknown function: CCM1, CCM2, and CCM3. CCM3, also known as PDCD10 (programmed cell death 10), was initially identified as a messenger RNA whose abundance was induced by apoptotic stimuli in vitro. However, the in vivo function of CCM3 has not been determined. Here, we describe mice with a deletion of the CCM3 gene either ubiquitously or specifically in the vascular endothelium, smooth muscle cells, or neurons. Mice with global or endothelial cell-specific deletion of CCM3 exhibited defects in embryonic angiogenesis and died at an earlymore » embryonic stage. CCM3 deletion reduced vascular endothelial growth factor receptor 2 (VEGFR2) signaling in embryos and endothelial cells. In response to VEGF stimulation, CCM3 was recruited to and stabilized VEGFR2, and the carboxyl-terminal domain of CCM3 was required for the stabilization of VEGFR2. Indeed, the CCM3 mutants found in human patients lacking the carboxyl-terminal domain were labile and were unable to stabilize and activate VEGFR2. These results demonstrate that CCM3 promotes VEGFR2 signaling during vascular development.« less

  3. 2011 Vascular Research Initiatives Conference: basic foundations of translational research in vascular disease.

    PubMed

    Ziegler, Kenneth R; Dardik, Alan

    2011-07-01

    The Vascular Research Initiatives Conference (VRIC) is an annual conference organized by the Society for Vascular Surgery (SVS). The 2011 VRIC was held in Chicago (IL, USA) to precede and coincide with the first day of the meeting of the Council on Arteriosclerosis, Thrombosis and Vascular Biology (ATVB) of the American Heart Association. The event is designed to present world class vascular research results, encourage collaboration between vascular surgeons and basic scientists in related disciplines, as well as to stimulate interest in research among aspiring academic vascular surgeons. The 2011 VRIC featured plenary sessions addressing peripheral arterial disease, vascular endothelium and thrombosis, aneurysms, and stem cells and tissue engineering. Recipients of the SVS partner grants with the National Institutes of Health K08 awardees presented their progress reports, and keynote addresses were given by Linda Graham and Frank LoGerfo.

  4. Inter-arm systolic blood pressure differences, relations with future vascular events and mortality in patients with and without manifest vascular disease.

    PubMed

    Kranenburg, Guido; Spiering, Wilko; de Jong, Pim A; Kappelle, L Jaap; de Borst, Gert Jan; Cramer, Maarten J; Visseren, Frank L J; Aboyans, Victor; Westerink, Jan

    2017-10-01

    Inter-arm systolic blood pressure difference (SBPD) is an easily obtained patient characteristic which relates to vascular disease. We aimed to identify determinants of large inter-arm SBPD and to investigate the relation between inter-arm SBPD and vascular events in patients with and without manifest vascular disease. In a cohort of 7344 patients with manifest vascular disease or vascular risk factors alone enrolled in the Second Manifestations of ARTerial disease (SMART) study, single bilateral non-simultaneous blood pressure measurements were performed. Logistic and Cox regression was used to identify determinants of large inter-arm SBPD (≥15mmHg) and to investigate the relation between inter-arm SBPD and vascular events (composite of non-fatal myocardial infarction, stroke, and vascular mortality) and all-cause mortality. In all patients the median inter-arm SBPD was 7mmHg (IQR 3-11) and 1182 (16%) patients had inter-arm SBPD ≥15mmHg. Higher age, higher systolic blood pressure, diabetes mellitus, peripheral artery disease, carotid artery stenosis, higher carotid intima-media thickness, and lower ankle-brachial indices were related to large inter-arm SBPD (≥15mmHg). Each 5mmHg increase in inter-arm SBPD was related to a 12% higher risk of vascular events in patients without manifest vascular disease (HR 1.12; 95% CI 1.00-1.27), whereas no relation was apparent in patients with manifest vascular disease (HR 0.98; 95% CI 0.93-1.04, interaction p-value 0.036). Inter-arm SBPD was not related to all-cause mortality (HR 1.05; 95% CI 0.93-1.19). Inter-arm SBPD relates to a higher risk of vascular events in patients without manifest vascular disease, whereas this relation is not apparent in patients with manifest vascular disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Assessment of cerebral microbleeds by susceptibility-weighted imaging in Alzheimer's disease patients: A neuroimaging biomarker of the disease.

    PubMed

    Sparacia, Gianvincenzo; Agnello, Francesco; La Tona, Giuseppe; Iaia, Alberto; Midiri, Federico; Sparacia, Benedetta

    2017-08-01

    Purpose The objective of this study was to correlate the presence and distribution of cerebral microbleeds in Alzheimer's disease patients with cerebrospinal fluid biomarkers (amyloid-beta and phosphorylated tau 181 protein levels) and cognitive decline by using susceptibility-weighted imaging magnetic resonance sequences at 1.5 T. Material and methods Fifty-four consecutive Alzheimer's disease patients underwent brain magnetic resonance imaging at 1.5 T to assess the presence and distribution of cerebral microbleeds on susceptibility-weighted imaging images. The images were analyzed in consensus by two neuroradiologists, each with at least 10 years' experience. Dementia severity was assessed with the Mini-Mental State Examination score. A multiple regression analysis was performed to assess the associations between the number and location of cerebral microbleed lesions with the age, sex, duration of the disease, cerebrospinal fluid amyloid-beta and phosphorylated tau 181 protein levels, and cognitive functions. Results A total of 296 microbleeds were observed in 54 patients; 38 patients (70.4%) had lobar distribution, 13 patients (24.1%) had non-lobar distribution, and the remaining three patients (5.6%) had mixed distribution, demonstrating that Alzheimer's disease patients present mainly a lobar distribution of cerebral microbleeds. The age and the duration of the disease were correlated with the number of lobar cerebral microbleeds ( P < 0.001). Cerebrospinal fluid amyloid-beta, phosphorylated tau 181 protein levels, and cognitive decline were correlated with the number of lobar cerebral microbleeds in Alzheimer's disease patients ( P < 0.001). Conclusion Lobar distribution of cerebral microbleeds is associated with Alzheimer's disease and the number of lobar cerebral microbleeds directly correlates with cerebrospinal fluid amyloid-beta and phosphorylated tau 181 protein levels and with the cognitive decline of Alzheimer's disease patients.

  6. Small white matter lesion detection in cerebral small vessel disease

    NASA Astrophysics Data System (ADS)

    Ghafoorian, Mohsen; Karssemeijer, Nico; van Uden, Inge; de Leeuw, Frank E.; Heskes, Tom; Marchiori, Elena; Platel, Bram

    2015-03-01

    Cerebral small vessel disease (SVD) is a common finding on magnetic resonance images of elderly people. White matter lesions (WML) are important markers for not only the small vessel disease, but also neuro-degenerative diseases including multiple sclerosis, Alzheimer's disease and vascular dementia. Volumetric measurements such as the "total lesion load", have been studied and related to these diseases. With respect to SVD we conjecture that small lesions are important, as they have been observed to grow over time and they form the majority of lesions in number. To study these small lesions they need to be annotated, which is a complex and time-consuming task. Existing (semi) automatic methods have been aimed at volumetric measurements and large lesions, and are not suitable for the detection of small lesions. In this research we established a supervised voxel classification CAD system, optimized and trained to exclusively detect small WMLs. To achieve this, several preprocessing steps were taken, which included a robust standardization of subject intensities to reduce inter-subject intensity variability as much as possible. A number of features that were found to be well identifying small lesions were calculated including multimodal intensities, tissue probabilities, several features for accurate location description, a number of second order derivative features as well as multi-scale annular filter for blobness detection. Only small lesions were used to learn the target concept via Adaboost using random forests as its basic classifiers. Finally the results were evaluated using Free-response receiver operating characteristic.

  7. Cerebral Embolic Activity in a Patient during Acute Crisis of Takayasu's Arteritis

    PubMed Central

    Nogueira, Ricardo de Carvalho; Bor-Seng-Shu, Edson; Marchiori, Paulo Eurípedes; Teixeira, Manoel Jacobsen

    2012-01-01

    Takayasu's arteritis is a disease that affects large vessels and may cause neurological symptoms either by stenoses/occlusions or embolisms from vessels with an inflammatory process. Transcranial Doppler (TCD) ultrasound can provide useful information for diagnosis and monitoring during the active phase of the disease. Cerebral embolic signals can be detected by TCD and have been considered a risk factor for vascular events. We report a patient in whom TCD ultrasound was used to monitor cerebral embolic signals during the active phase of the disease. This case report suggests that embolic activity in Takayasu's arteritis may represent disease activity, and its monitoring may be useful for evaluating the response to therapy. PMID:22379479

  8. Is Pseudoexfoliation Syndrome a Risk Factor for Cerebro Vascular Disease?

    PubMed

    Kan, Emrah; Yılmaz, Ahmet; Demirağ, Mehmet Derya; Çalık, Murat

    2017-01-01

    To determine the relationship between cerebro vascular disease and pseudoexfoliation syndrome. This cross-sectional case control study consisted of 50 patients with ischemic-type cerebro vascular disease and 50 control subjects. All subjects were investigated for diabetes mellitus and hypertension status and underwent a detailed ophthalmic examination. A diagnosis of pseudoexfoliation syndrome was made if characteristic greyish particulate matter was found on the anterior lens capsule after pupillary dilatation by slit-lamp examination. All subjects were compared in terms of pseudoexfoliation syndrome, diabetes mellitus, and hypertension. Pearson Chi Square and Student's t test were used for statistical analysis. Logistic regression analyses of the risk factors between groups were also made. The presence of pseudoexfoliation syndrome was significantly higher in patients with cerebro vascular disease when compared to the control subjects (p = 0.02). The frequency of diabetes mellitus was similar between the two groups. Arterial hypertension was significantly more frequent in the patient group when compared to the control subjects (p < 0.01). The logistic regression analysis showed that both pseudoexfoliation syndrome and hypertension were significantly associated with cerebro vascular disease. In the present study, we found that pseudoexfoliation syndrome frequency was found to be higher in patients with cerebro vascular disease than in control subjects. A slit-lamp examination of the eye could be an important marker that indicates the risk of cerebro vascular disease. We recommend an evaluation of all subjects with pseudoexfoliation syndrome for the presence of cerebro vascular disease. Longitudinal studies with larger populations are needed to confirm this relationship.

  9. White matter hyperintensities and the mediating role of cerebral amyloid angiopathy in dominantly-inherited Alzheimer’s disease

    PubMed Central

    Lee, Seonjoo; Zimmerman, Molly E.; Narkhede, Atul; Nasrabady, Sara E.; Tosto, Giuseppe; Meier, Irene B.; Benzinger, Tammie L. S.; Marcus, Daniel S.; Fagan, Anne M.; Fox, Nick C.; Cairns, Nigel J.; Holtzman, David M.; Buckles, Virginia; Ghetti, Bernardino; McDade, Eric; Martins, Ralph N.; Saykin, Andrew J.; Masters, Colin L.; Ringman, John M.; Fӧrster, Stefan; Schofield, Peter R.; Sperling, Reisa A.; Johnson, Keith A.; Chhatwal, Jasmeer P.; Salloway, Stephen; Correia, Stephen; Jack, Clifford R.; Weiner, Michael; Bateman, Randall J.; Morris, John C.; Mayeux, Richard

    2018-01-01

    Introduction White matter hyperintensity (WMH) volume on MRI is increased among presymptomatic individuals with autosomal dominant mutations for Alzheimer’s disease (AD). One potential explanation is that WMH, conventionally considered a marker of cerebrovascular disease, are a reflection of cerebral amyloid angiopathy (CAA) and that increased WMH in this population is a manifestation of this vascular form of primary AD pathology. We examined whether the presence of cerebral microbleeds, a marker of CAA, mediates the relationship between WMH and estimated symptom onset in individuals with and without autosomal dominant mutations for AD. Participants and methods Participants (n = 175, mean age = 41.1 years) included 112 with an AD mutation and 63 first-degree non-carrier controls. We calculated the estimated years from expected symptom onset (EYO) and analyzed baseline MRI data for WMH volume and presence of cerebral microbleeds. Mixed effects regression and tests of mediation were used to examine microbleed and WMH differences between carriers and non-carriers and to test the whether the association between WMH and mutation status is dependent on the presence of microbleeds. Results Mutation carriers were more likely to have microbleeds than non-carriers (p<0.05) and individuals with microbleeds had higher WMH volume than those without (p<0.05). Total WMH volume was increased in mutation carriers compared with non-carriers, up to 20 years prior to EYO, after controlling for microbleed status, as we demonstrated previously. Formal testing of mediation demonstrated that 21% of the association between mutation status and WMH was mediated by presence of microbleeds (p = 0.03) but a significant direct effect of WMH remained (p = 0.02) after controlling for presence of microbleeds. Discussion Although there is some co-dependency between WMH and microbleeds, the observed increases in WMH among mutation carriers does not appear to be fully mediated by this marker of CAA

  10. A Comparative Investigation on the Performance of Different Micro Mixers: Toward Cerebral Microvascular Analysis

    NASA Astrophysics Data System (ADS)

    Abdi, Mohsen; Pishbin, Esmail; Karimi, Alireza; Navidbakhsh, Mahdi

    In this study, a novel fluidic concept was presented to resemble the cerebral microvascular in four types to assess its complexity by using centrifugal platform. The setup consisted of a microstructured disk with a round mixing chamber rotating on a macroscopic drive unit. The left and right internal carotid arteries (L.ICA and R.ICA) and basilar artery (BA) are two isolated vascular system supplying circle of Willis (CoW). The left and right middle cerebral arteries (L.MCA and R.MCA), left and right anterior cerebral arteries (L.ACA and R.ACA), and finally left and right posterior cerebral arteries (L.PCA and R.PCA) constitute efferent arteries of CoW. In this study, cerebral microvascular was investigated by microfluidics approach. The results revealed that a more complex mixing chamber provides normal pixel percentage distribution with respect to the other ones. The outcomes of this study may have implications not only for perception of the intracranial vascular hemodynamic in healthy circumstance, but also for diagnosing the diseases in the blood circulatory system of the human body.

  11. Single Sustained Inflation followed by Ventilation Leads to Rapid Cardiorespiratory Recovery but Causes Cerebral Vascular Leakage in Asphyxiated Near-Term Lambs

    PubMed Central

    Sobotka, Kristina S.; Hooper, Stuart B.; Crossley, Kelly J.; Ong, Tracey; Schmölzer, Georg M.; Barton, Samantha K.; McDougall, Annie R. A.; Miller, Suzie L.; Tolcos, Mary; Klingenberg, Claus; Polglase, Graeme R.

    2016-01-01

    Background A sustained inflation (SI) rapidly restores cardiac function in asphyxic, bradycardic newborns but its effects on cerebral haemodynamics and brain injury are unknown. We determined the effect of different SI strategies on carotid blood flow (CaBF) and cerebral vascular integrity in asphyxiated near-term lambs. Methods Lambs were instrumented and delivered at 139 ± 2 d gestation and asphyxia was induced by delaying ventilation onset. Lambs were randomised to receive 5 consecutive 3 s SI (multiple SI; n = 6), a single 30 s SI (single SI; n = 6) or conventional ventilation (no SI; n = 6). Ventilation continued for 30 min in all lambs while CaBF and respiratory function parameters were recorded. Brains were assessed for gross histopathology and vascular leakage. Results CaBF increased more rapidly and to a greater extent during a single SI (p = 0.01), which then decreased below both other groups by 10 min, due to a higher cerebral oxygen delivery (p = 0.01). Blood brain barrier disruption was increased in single SI lambs as indicated by increased numbers of blood vessel profiles with plasma protein extravasation (p = 0.001) in the cerebral cortex. There were no differences in CaBF or cerebral oxygen delivery between the multiple SI and no SI lambs. Conclusions Ventilation with an initial single 30 s SI improves circulatory recovery, but is associated with greater disruption of blood brain barrier function, which may exacerbate brain injury suffered by asphyxiated newborns. This injury may occur as a direct result of the initial SI or to the higher tidal volumes delivered during subsequent ventilation. PMID:26765258

  12. Bacterial toxins activation of abbreviated urea cycle in porcine cerebral vascular smooth muscle cells.

    PubMed

    Mishra, Rajesh G; Tseng, Tzu-Ling; Chen, Mei-Fang; Chen, Po-Yi; Lee, Tony J-F

    2016-12-01

    Nitric oxide (NO) overproduction via induction of inducible nitric oxide synthase (iNOS) is implicated in vasodilatory shock in sepsis, leading to septic encephalopathy and accelerating cerebral ischemic injury. An abbreviated urea-cycle (l-citrulline-l-arginine-NO cycle) has been demonstrated in cerebral perivascular nitrergic nerves and endothelial cells but not in normal cerebral vascular smooth muscle cell (CVSMC). This cycle indicates that argininosuccinate synthase (ASS) catalyzes l-citrulline (l-cit) conversion to form argininosuccinate (AS), and subsequent AS cleavage by argininosuccinate lyase (ASL) forms l-arginine (l-arg), the substrate for NO synthesis. The possibility that ASS enzyme in this cycle was induced in the CVSMC in sepsis was examined. Blood-vessel myography technique was used for measuring porcine isolated basilar arterial tone. NO in cultured CVSMC and in condition mediums were estimated by diaminofluorescein (DAF)-induced fluorescence and Griess reaction, respectively. Immunohistochemical and immunoblotting analyses were used to examine iNOS and ASS induction. l-cit and l-arg, which did not relax endothelium-denuded normal basilar arteries precontracted by U-46619, induced significant vasorelaxation with increased NO production in these arteries and the CVSMCs following 6-hour exposure to 20μg/ml lipopolysaccharide (LPS) or lipoteichoic acid (LTA). Pre-treatment with pyrrolidine dithiocarbamate (PDTC) and salicylate (SAL) (NFκB inhibitors), aminoguanidine (AG, an iNOS inhibitor), and nitro-l-arg (NLA, a non-specific NOS inhibitor) blocked NO synthesis in the CVSMC and attenuated l-cit- and l-arg-induced relaxation of LPS- and LTA-treated arteries. Furthermore, immunohistochemical and immunoblotting studies demonstrated that expression of basal iNOS and ASS in the smooth muscle cell of arterial segments denuded of endothelium and the cultured CVSMCs was significantly increased following 6-hour incubation with LPS or LTA. This increased i

  13. Can vessel dimension explain tolerance toward fungal vascular wilt diseases in woody plants? Lessons from Dutch elm disease and esca disease in grapevine

    PubMed Central

    Pouzoulet, Jérôme; Pivovaroff, Alexandria L.; Santiago, Louis S.; Rolshausen, Philippe E.

    2014-01-01

    This review illuminates key findings in our understanding of grapevine xylem resistance to fungal vascular wilt diseases. Grapevine (Vitis spp.) vascular diseases such as esca, botryosphaeria dieback, and eutypa dieback, are caused by a set of taxonomically unrelated ascomycete fungi. Fungal colonization of the vascular system leads to a decline of the plant host because of a loss of the xylem function and subsequent decrease in hydraulic conductivity. Fungal vascular pathogens use different colonization strategies to invade and kill their host. Vitis vinifera cultivars display different levels of tolerance toward vascular diseases caused by fungi, but the plant defense mechanisms underlying those observations have not been completely elucidated. In this review, we establish a parallel between two vascular diseases, grapevine esca disease and Dutch elm disease, and argue that the former should be viewed as a vascular wilt disease. Plant genotypes exhibit differences in xylem morphology and resistance to fungal pathogens causing vascular wilt diseases. We provide evidence that the susceptibility of three commercial V. vinifera cultivars to esca disease is correlated to large vessel diameter. Additionally, we explore how xylem morphological traits related to water transport are influenced by abiotic factors, and how these might impact host tolerance of vascular wilt fungi. Finally, we explore the utility of this concept for predicting which V. vinifera cultivars are most vulnerable of fungal vascular wilt diseases and propose new strategies for disease management. PMID:24971084

  14. Sex, Aging, and Preexisting Cerebral Ischemic Disease in Patients With Aortic Stenosis

    PubMed Central

    Wang, Ping; Acker, Michael A.; Bilello, Michel; Melhem, Elias R.; Stambrook, Elizabeth; Ratcliffe, Sarah J.; Floyd, Thomas F.

    2011-01-01

    Background Patients undergoing cardiac surgery have a high frequency of preexisting cerebral ischemic lesions, the presence of which appears to predict cognitive sequelae. Patients undergoing aortic valve replacement for aortic stenosis (AS) incur an exceptionally high risk for perioperative cerebral ischemia. The extreme risk in this subgroup may arise from the preexisting burden of cerebral ischemic disease. We tested the hypotheses that increasing age, female sex, coronary artery disease, and the severity of AS are predictive of the severity of preexisting cerebral ischemic lesions. Methods A total of 95 subjects were included in this study. Subjects were imaged on 1.5 Tesla magnetic resonance imaging scanners to obtain multimodal image sets which were used for the automatic segmentation of cerebral lesion volume. The dependence of lesion volume upon age, sex, coronary artery disease, and the severity of AS were tested. Results The results demonstrate a strong correlation between aging, female sex, and white matter and ischemia-like lesion volume in patients with aortic stenosis. Conclusions Women and those of advanced age presenting for aortic valve replacement for AS may incur a particularly high risk for postoperative neurologic sequelae due to an exceptional preexisting burden of cerebral ischemic disease. PMID:20868818

  15. [Intraoperative monitoring of oxygen tissue pressure: Applications in vascular neurosurgery].

    PubMed

    Arikan, Fuat; Vilalta, Jordi; Torne, Ramon; Chocron, Ivette; Rodriguez-Tesouro, Ana; Sahuquillo, Juan

    2014-01-01

    Ischemic lesions related to surgical procedures are a major cause of postoperative morbidity in patients with cerebral vascular disease. There are different systems of neuromonitoring to detect intraoperative ischemic events, including intraoperative monitoring of oxygen tissue pressure (PtiO2). The aim of this article was to describe, through the discussion of 4 cases, the usefulness of intraoperative PtiO2 monitoring during vascular neurosurgery. In presenting these cases, we demonstrate that monitoring PtiO2 is a reliable way to detect early ischemic events during surgical procedures. Continuous monitoring of PtiO2 in an area at risk allows the surgeon to resolve the cause of the ischemic event before it evolves to an established cerebral infarction. Copyright © 2014 Sociedad Española de Neurocirugía. Published by Elsevier España. All rights reserved.

  16. Modeling the Role of the Glymphatic Pathway and Cerebral Blood Vessel Properties in Alzheimer's Disease Pathogenesis.

    PubMed

    Kyrtsos, Christina Rose; Baras, John S

    2015-01-01

    Alzheimer's disease (AD) is the most common cause of dementia in the elderly, affecting over 10% population over the age of 65 years. Clinically, AD is described by the symptom set of short term memory loss and cognitive decline, changes in mentation and behavior, and eventually long-term memory deficit as the disease progresses. On imaging studies, significant atrophy with subsequent increase in ventricular volume have been observed. Pathology on post-mortem brain specimens demonstrates the classic findings of increased beta amyloid (Aβ) deposition and the presence of neurofibrillary tangles (NFTs) within affected neurons. Neuroinflammation, dysregulation of blood-brain barrier transport and clearance, deposition of Aβ in cerebral blood vessels, vascular risk factors such as atherosclerosis and diabetes, and the presence of the apolipoprotein E4 allele have all been identified as playing possible roles in AD pathogenesis. Recent research has demonstrated the importance of the glymphatic system in the clearance of Aβ from the brain via the perivascular space surrounding cerebral blood vessels. Given the variety of hypotheses that have been proposed for AD pathogenesis, an interconnected, multilayer model offers a unique opportunity to combine these ideas into a single unifying model. Results of this model demonstrate the importance of vessel stiffness and heart rate in maintaining adequate clearance of Aβ from the brain.

  17. CD8+ T Cells Induce Fatal Brainstem Pathology during Cerebral Malaria via Luminal Antigen-Specific Engagement of Brain Vasculature

    PubMed Central

    Swanson, Phillip A.; Hart, Geoffrey T.; Russo, Matthew V.; Nayak, Debasis; Yazew, Takele; Peña, Mirna; Khan, Shahid M.; Pierce, Susan K.; McGavern, Dorian B.

    2016-01-01

    Cerebral malaria (CM) is a severe complication of Plasmodium falciparum infection that results in thousands of deaths each year, mostly in African children. The in vivo mechanisms underlying this fatal condition are not entirely understood. Using the animal model of experimental cerebral malaria (ECM), we sought mechanistic insights into the pathogenesis of CM. Fatal disease was associated with alterations in tight junction proteins, vascular breakdown in the meninges / parenchyma, edema, and ultimately neuronal cell death in the brainstem, which is consistent with cerebral herniation as a cause of death. At the peak of ECM, we revealed using intravital two-photon microscopy that myelomonocytic cells and parasite-specific CD8+ T cells associated primarily with the luminal surface of CNS blood vessels. Myelomonocytic cells participated in the removal of parasitized red blood cells (pRBCs) from cerebral blood vessels, but were not required for the disease. Interestingly, the majority of disease-inducing parasite-specific CD8+ T cells interacted with the lumen of brain vascular endothelial cells (ECs), where they were observed surveying, dividing, and arresting in a cognate peptide-MHC I dependent manner. These activities were critically dependent on IFN-γ, which was responsible for activating cerebrovascular ECs to upregulate adhesion and antigen-presenting molecules. Importantly, parasite-specific CD8+ T cell interactions with cerebral vessels were impaired in chimeric mice rendered unable to present EC antigens on MHC I, and these mice were in turn resistant to fatal brainstem pathology. Moreover, anti-adhesion molecule (LFA-1 / VLA-4) therapy prevented fatal disease by rapidly displacing luminal CD8+ T cells from cerebrovascular ECs without affecting extravascular T cells. These in vivo data demonstrate that parasite-specific CD8+ T cell-induced fatal vascular breakdown and subsequent neuronal death during ECM is associated with luminal, antigen

  18. Retinal vascular changes in preterm infants: heart and lung diseases and plus disease.

    PubMed

    Arriola-Lopez, Andrea Elizabeth; Martinez-Perez, M Elena; Martinez-Castellanos, Maria Ana

    2017-12-01

    To report the retinal vascular features of preterm infants with congenital heart disease (CHD), lung disease (pulmonary hypertension [PH] and bronchopulmonary dysplasia [BPD]), and ROP with plus disease to determine whether these disease entities are distinguishable on the basis of retinal vessel morphology. The medical records of preterm infants with CHD, lung disease, and ROP with plus disease were reviewed retrospectively. Qualitative vascular findings were validated using computer-based software to analyze 25 representative images, each corresponding to one infant's eye. The images were organized into five groups, based on clinical information. Vessel diameter (d) and tortuosity index (TI) were measured. A total of 106 infants (mean gestational age, 30.5 ± 2.22 weeks) were initially included. Ophthalmologic evaluation of preterm infants with CHD and lung diseases showed vascular tortuosity without vasodilation at the posterior pole as well as in the periphery. Quantitative analysis showed that venular diameter was significantly increased in the plus disease group (P = 0.0022) compared to other groups. There was significantly less tortuosity in both arterioles and venules in BPD (P < 0.001, P = 0.0453) compared with plus group. The patterns of retinal vascular tortuosity observed in preterm infants may be unique to different systemic congestive conditions and could have therapeutic implications. Copyright © 2017 American Association for Pediatric Ophthalmology and Strabismus. Published by Elsevier Inc. All rights reserved.

  19. Platelet Factor 4 Mediates Inflammation in Cerebral Malaria

    PubMed Central

    Srivastava, Kalyan; Cockburn, Ian A.; Swaim, AnneMarie; Thompson, Laura E.; Tripathi, Abhai; Fletcher, Craig A.; Shirk, Erin M.; Sun, Henry; Kowalska, M. Anna; Fox-Talbot, Karen; Sullivan, David; Zavala, Fidel; Morrell, Craig N.

    2008-01-01

    Summary Cerebral malaria is a major complication of Plasmodium falciparum infection in children. The pathogenesis of cerebral malaria involves vascular inflammation, immune stimulation and obstruction of cerebral capillaries. Platelets have a prominent role in both immune responses and vascular obstruction. We now demonstrate that the platelet derived chemokine, platelet factor 4 (PF4)/CXCL4, promotes the development of experimental cerebral malaria. Plasmodium infected red blood cells (RBC) activated platelets independent of vascular effects, resulting in increased plasma PF4. PF4 or CXCR3 null mice had less ECM, decreased brain T-cell recruitment, and platelet depletion or aspirin treatment reduced the development of ECM. We conclude that Plasmodium infected RBC can activate platelets and platelet derived PF4 then contributes to immune activation and T-cell trafficking as part of the pathogenesis of ECM. PMID:18692777

  20. [Insomnia and cerebral hypoperfusion].

    PubMed

    Káposzta, Zoltán; Rácz, Klára

    2007-11-18

    Insomnia is defined as difficulty with the initiation, maintenance, duration, or quality of sleep that results in the impairment of daytime functioning, despite adequate opportunity and circumstances for sleep. In most countries approximately every third inhabitant has insomnia. Insomnia can be classified as primary and secondary. The pathogenesis of primary insomnia is unknown, but available evidence suggests a state of hyperarousal. Insomnia secondary to other causes is more common than primary insomnia. Cerebral hypoperfusion can be the cause of insomnia in some cases. In such patients the cerebral blood flow should be improved using parenteral vascular therapy. If insomnia persists despite treatment, then therapy for primary insomnia should be instituted using benzodiazepine-receptor agonists such as Zolpidem, Zopiclone, or Zaleplon. In those cases Midazolam cannot be used for the treatment of insomnia due to its marked negative effect on cerebral blood flow. In Hungary there is a need to organize multidisciplinary Insomnia Clinics because insomnia is more than a disease, it is a public health problem in this century.

  1. Vascular disease, ESRD, and death: interpreting competing risk analyses.

    PubMed

    Grams, Morgan E; Coresh, Josef; Segev, Dorry L; Kucirka, Lauren M; Tighiouart, Hocine; Sarnak, Mark J

    2012-10-01

    Vascular disease, a common condition in CKD, is a risk factor for mortality and ESRD. Optimal patient care requires accurate estimation and ordering of these competing risks. This is a prospective cohort study of screened (n=885) and randomized participants (n=837) in the Modification of Diet in Renal Disease study (original study enrollment, 1989-1992), evaluating the association of vascular disease with ESRD and pre-ESRD mortality using standard survival analysis and competing risk regression. The method of analysis resulted in markedly different estimates. Cumulative incidence by standard analysis (censoring at the competing event) implied that, with vascular disease, the 15-year incidence was 66% and 51% for ESRD and pre-ESRD death, respectively. A more accurate representation of absolute risk was estimated with competing risk regression: 15-year incidence was 54% and 29% for ESRD and pre-ESRD death, respectively. For the association of vascular disease with pre-ESRD death, estimates of relative risk by the two methods were similar (standard survival analysis adjusted hazard ratio, 1.63; 95% confidence interval, 1.20-2.20; competing risk regression adjusted subhazard ratio, 1.57; 95% confidence interval, 1.15-2.14). In contrast, the hazard and subhazard ratios differed substantially for other associations, such as GFR and pre-ESRD mortality. When competing events exist, absolute risk is better estimated using competing risk regression, but etiologic associations by this method must be carefully interpreted. The presence of vascular disease in CKD decreases the likelihood of survival to ESRD, independent of age and other risk factors.

  2. Exercise training and cardiometabolic diseases: focus on the vascular system.

    PubMed

    Roque, Fernanda R; Hernanz, Raquel; Salaices, Mercedes; Briones, Ana M

    2013-06-01

    The regular practice of physical activity is a well-recommended strategy for the prevention and treatment of several cardiovascular and metabolic diseases. Physical exercise prevents the progression of vascular diseases and reduces cardiovascular morbidity and mortality. Exercise training also ameliorates vascular changes including endothelial dysfunction and arterial remodeling and stiffness, usually present in type 2 diabetes, obesity, hypertension and metabolic syndrome. Common to these diseases is excessive oxidative stress, which plays an important role in the processes underlying vascular changes. At the vascular level, exercise training improves the redox state and consequently NO availability. Moreover, growing evidence indicates that other mediators such as prostanoids might be involved in the beneficial effects of exercise. The purpose of this review is to update recent findings describing the adaptation response induced by exercise in cardiovascular and metabolic diseases, focusing more specifically on the beneficial effects of exercise in the vasculature and the underlying mechanisms.

  3. Nursing diagnoses in patients with cerebral vascular accident: an integrative review.

    PubMed

    Lima, Ana Carolina Maria Araújo Chagas Costa; Silva, Aurilene Lima da; Guerra, Débora Rodrigues; Barbosa, Islene Victor; Bezerra, Karine de Castro; Oriá, Mônica Oliveira Batista

    2016-01-01

    to verify the nursing diagnoses in patients affected by CVAs. this is an integrative review of the literature. The search was conducted on LILACS, Scielo, Medline, CINAHL, and Scopus databases between February and March 2015, using the following keywords: "Enfermagem", "Acidente Vascular Cerebral", "Diagnóstico de Enfermagem"; and "Nursing", "Stroke", and "Nursing Diagnosis". we found 9 articles published between 2009 and 2015; most of them were Brazilian, cross-sectional, and exploratory, with a level of evidence of 6. The evidence from the publications was classified as: "Evaluation and validation of specific nursing diagnoses for subjects affected by CVAs" and "Application of the nursing process on subjects affected by CVAs". we noticed the publications focused on nursing diagnoses related to motor disorders, such as risk of falls and impaired physical mobility. Domains regarding safety/protection (domain 11) and sleep/resting (domain 4) were present in most evaluated publications.

  4. Review: Cerebral microvascular pathology in aging and neurodegeneration

    PubMed Central

    Brown, William R.; Thore, Clara R.

    2010-01-01

    This review of age-related brain microvascular pathologies focuses on topics studied by this laboratory, including anatomy of the blood supply, tortuous vessels, venous collagenosis, capillary remnants, vascular density, and microembolic brain injury. Our studies feature thick sections, large blocks embedded in celloidin, and vascular staining by alkaline phosphatase (AP). This permits study of the vascular network in three dimensions, and the differentiation of afferent from efferent vessels. Current evidence suggests that there is decreased vascular density in aging, Alzheimer’s disease (AD), and leukoaraiosis (LA), and cerebrovascular dysfunction precedes and accompanies cognitive dysfunction and neurodegeneration. A decline in cerebrovascular angiogenesis may inhibit recovery from hypoxia-induced capillary loss. Cerebral blood flow (CBF) is inhibited by tortuous arterioles and deposition of excessive collagen in veins and venules. Misery perfusion due to capillary loss appears to occur before cell loss in LA, and CBF is also reduced in the normal-appearing white matter. Hypoperfusion occurs early in AD, inducing white matter lesions and correlating with dementia. In vascular dementia, cholinergic reductions are correlated with cognitive impairment, and cholinesterase inhibitors have some benefit. Most lipid microemboli from cardiac surgery pass through the brain in a few days, but some remain for weeks. They can cause what appears to be a type of vascular dementia years after surgery. Donepezil has shown some benefit. Emboli, such as clots, cholesterol crystals, and microspheres can be extruded through the walls of cerebral vessels, but there is no evidence yet that lipid emboli undergo such extravasation. PMID:20946471

  5. Neuroprotective Effects of Agomelatine and Vinpocetine Against Chronic Cerebral Hypoperfusion Induced Vascular Dementia.

    PubMed

    Gupta, Surbhi; Singh, Prabhat; Sharma, Brij Mohan; Sharma, Bhupesh

    2015-01-01

    Chronic cerebral hypoperfusion (CCH) has been considered as a critical cause for the development of cognitive decline and dementia of vascular origin. Melatonin receptors have been reported to be beneficial in improving memory deterioration. Phosphodiesterase-1 (PDE1) enzyme offers protection against cognitive impairments and cerebrovascular disorders. Aim of this study is to explore the role of agomelatine (a dual MT1 and MT2 melatonin receptor agonist) and vinpocetine (selective PDE1 inhibitor) in CCH induced vascular dementia (VaD). Two vessel occlusion (2VO) or bilateral common carotid arteries ligation method was performed to initiate a phase of chronic hypoperfusion in mice. 2VO animals have shown significant cognitive deficits (Morris water maze), cholinergic dysfunction (increased acetyl cholinesterase -AChE) activity alongwith increased brain oxidative stress (decreased brain catalase, glutathione, as well as superoxide dismutase with an increase in malondialdehyde levels), and significant increase in brain infarct size (2,3,5- triphenylterazolium chloride-TTC staining). Treatment of agomelatine and vinpocetine reduced CCH induced learning and memory deficits and limited cholinergic dysfunction, oxidative stress, and tissue damage, suggesting that agomelatine and vinpocetine may provide benefits in CCH induced VaD.

  6. On the history of lacunes, etat criblé, and the white matter lesions of vascular dementia.

    PubMed

    Román, Gustavo C

    2002-01-01

    The history of lesions associated with vascular dementia (17th to 19th century) is reviewed. Recognition of ischemic and hemorrhagic stroke types dates back to the 17th century; however, at that time a third type ('cerebral congestion') emerged as the most common form of apoplexy. This entity vanished as arterial hypertension became established with the introduction of the sphygmomanometer (1905). Before the 19th century, apoplexy was considered a uniformly fatal disease, although Willis first recognized post-stroke dementia in 1672. Dechambre (1838) first reported 'lacunes' in stroke survivors with small cerebral softenings. Durand-Fardel (1842) described interstitial atrophy of the brain (leukoaraiosis) and état criblé (cribriform state) reflecting chronic cerebral congestion. In 1894, Alzheimer and Binswanger identified 'arteriosclerotic brain atrophy,' a form of vascular dementia characterized by 'miliary apoplexies' (lacunes). Also in 1894, Binswanger described the disease that now bears his name. In 1901, Pierre Marie coined the name état lacunaire (lacunar state) for the clinical syndrome of elderly patients with multiple lacunes. Copyright 2002 S. Karger AG, Basel

  7. Hypertrophy of the vasa vasorum: vascular response to the hungry brain.

    PubMed

    Cho, Hyun-Ji; Roh, Hong Gee; Chun, Young Il; Moon, Chang Taek; Chung, Hyun Woo; Kim, Hahn Young

    2012-05-01

    The vasa vasorum is a network of microvessels that supplies nutrients to the vessel wall itself. In pathologic conditions, the vasa vasorum can develop as potential collateral channels. Previous research documents revascularization through hypertrophy of the vasa vasorum after occlusion of the carotid artery. However, the relationship between the cerebral vascular demands and the hypertrophy of the vasa vasorum has not been well delineated by functional studies. A 66-year-old man presented with left hemiparesis, dysarthria, and hemineglect. Magnetic resonance imaging revealed an acute infarction in the vascular territory of the right middle cerebral artery. Transfemoral cerebral angiography revealed occlusion of the right proximal internal carotid artery (ICA). Single-photon emission computed tomography study showed decreased vascular reserve in the right cerebral hemisphere. Right superficial temporal artery-middle cerebral artery bypass surgery was performed in an attempt to improve hemispheric perfusion. Follow-up angiography 1 year later showed revascularization of the distal ICA by the hypertrophied vasa vasorum. Follow-up single-photon emission computed tomography study showed persistent decreased vascular reserve. In cases of ICA occlusion, a 1-year or less hungry period for the cerebral vascular demand may activate potential collateral channels of the vasa vasorum. In addition to the metabolic demand of the occluded vessel wall itself, the vascular demands of the hypoperfused brain may be a trigger factor that leads to hypertrophy of the vasa vasorum as collateral channels.

  8. Intracerebral Hemorrhage Caused by Cerebral Hyperperfusion after Superficial Temporal Artery to Middle Cerebral Artery Bypass for Atherosclerotic Occlusive Cerebrovascular Disease

    PubMed Central

    Matano, Fumihiro; Murai, Yasuo; Mizunari, Takayuki; Adachi, Koji; Kobayashi, Shiro; Morita, Akio

    Few papers have reported detailed accounts of intracerebral hemorrhage caused by cerebral hyperperfusion after superficial temporal artery to middle cerebral artery bypass (STA-MCA) bypass for atherosclerotic occlusive cerebrovascular disease. We report a case of vasogenic edema and subsequent intracerebral hemorrhage caused by the cerebral hyperperfusion syndrome (CHS) after STA-MCA bypass for atherosclerotic occlusive cerebrovascular disease disease without intense postoperative blood pressure control. A 63-year-old man with repeating left hemiparesis underwent magnetic resonance angiography (MRA), which revealed right internal carotid artery (ICA) occlusion. We performed a double bypass superficial temporal artery (STA)–middle cerebral artery (MCA) bypass surgery for the M2 and M3 branches. While the patient’s postoperative course was relatively uneventful, he suffered generalized convulsions, and computed tomography revealed a low area in the right frontal lobe on Day 4 after surgery. We considered this lesion to be pure vasogenic edema caused by cerebral hyperperfusion after revascularization. Intravenous drip infusion of a free radical scavenger (edaravone) and efforts to reduce systolic blood pressure to <120 mmHg were continued. The patient experienced severe left hemiparesis and disturbance of consciousness on Day 8 after surgery, due to intracerebral hemorrhage in the right frontal lobe at the site of the earlier vasogenic edema. Brain edema associated with cerebral hyperperfusion after STA-MCA bypass for atherosclerotic occlusive cerebrovascular disease should be recognized as a risk factor for intracerebral hemorrhage. The development of brain edema associated with CHS after STA-MCA bypass for atherosclerotic occlusive cerebrovascular disease requires not only intensive control of blood pressure, but also consideration of sedation therapy with propofol. PMID:28664022

  9. Comparison of cerebral vascular reactivity measures obtained using breath-holding and CO2 inhalation

    PubMed Central

    Tancredi, Felipe B; Hoge, Richard D

    2013-01-01

    Stimulation of cerebral vasculature using hypercapnia has been widely used to study cerebral vascular reactivity (CVR), which can be expressed as the quantitative change in cerebral blood flow (CBF) per mm Hg change in end-tidal partial pressure of CO2 (PETCO2). We investigate whether different respiratory manipulations, with arterial spin labeling used to measure CBF, lead to consistent measures of CVR. The approaches included: (1) an automated system delivering variable concentrations of inspired CO2 for prospective targeting of PETCO2, (2) administration of a fixed concentration of CO2 leading to subject-dependent changes in PETCO2, (3) a breath-hold (BH) paradigm with physiologic modeling of CO2 accumulation, and (4) a maneuver combining breath-hold and hyperventilation. When CVR was expressed as the percent change in CBF per mm Hg change in PETCO2, methods 1 to 3 gave consistent results. The CVR values using method 4 were significantly lower. When CVR was expressed in terms of the absolute change in CBF (mL/100 g per minute per mm Hg), greater discrepancies became apparent: methods 2 and 3 gave lower absolute CVR values compared with method 1, and the value obtained with method 4 was dramatically lower. Our findings indicate that care must be taken to ensure that CVR is measured over the linear range of the CBF-CO2 dose–response curve, avoiding hypocapnic conditions. PMID:23571282

  10. Rapamycin rescues vascular, metabolic and learning deficits in apolipoprotein E4 transgenic mice with pre-symptomatic Alzheimer's disease.

    PubMed

    Lin, Ai-Ling; Jahrling, Jordan B; Zhang, Wei; DeRosa, Nicholas; Bakshi, Vikas; Romero, Peter; Galvan, Veronica; Richardson, Arlan

    2017-01-01

    Apolipoprotein E ɛ4 allele is a common susceptibility gene for late-onset Alzheimer's disease. Brain vascular and metabolic deficits can occur in cognitively normal apolipoprotein E ɛ4 carriers decades before the onset of Alzheimer's disease. The goal of this study was to determine whether early intervention using rapamycin could restore neurovascular and neurometabolic functions, and thus impede pathological progression of Alzheimer's disease-like symptoms in pre-symptomatic Apolipoprotein E ɛ4 transgenic mice. Using in vivo, multimodal neuroimaging, we found that apolipoprotein E ɛ4 mice treated with rapamycin had restored cerebral blood flow, blood-brain barrier integrity and glucose metabolism, compared to age- and gender-matched wild-type controls. The preserved vasculature and metabolism were associated with amelioration of incipient learning deficits. We also found that rapamycin restored the levels of the proinflammatory cyclophilin A in vasculature, which may contribute to the preservation of cerebrovascular function in the apolipoprotein E ɛ4 transgenics. Our results show that rapamycin improves functional outcomes in this mouse model and may have potential as an effective intervention to block progression of vascular, metabolic and early cognitive deficits in human Apolipoprotein E ɛ4 carriers. As rapamycin is FDA-approved and neuroimaging is readily used in humans, the results of the present study may provide the basis for future Alzheimer's disease intervention studies in human subjects. © The Author(s) 2015.

  11. Effects of cilazapril on the cerebral circulation in spontaneously hypertensive rats.

    PubMed

    Clozel, J P; Kuhn, H; Hefti, F

    1989-12-01

    Chronic hypertension is associated with a lower cerebral vascular reserve due to thickening of the media of cerebral vessels. The goal of the present study was to determine if long-term inhibition of angiotensin converting enzyme with cilazapril, a new long-acting angiotensin converting enzyme inhibitor, could improve cerebral vascular reserve. For this purpose, two groups of 12 spontaneously hypertensive rats were compared. One group was treated with 10 mg/kg/day cilazapril from 14 weeks to 33 weeks of age and was compared with a group treated with placebo. A third group of 12 Wistar-Kyoto rats treated with placebo was used as reference. At the end of the treatment period, cerebral vascular reserve was evaluated by measuring cerebral blood flow (radioactive microspheres) at rest and during maximal vasodilation induced by seizures provoked by bicuculline. Then, the rats were perfusion-fixed, and morphometry of the cerebral vasculature was performed. Cerebral vascular reserve was severely impaired in the spontaneously hypertensive rats since their maximal cerebral blood flow was decreased by 52% compared with the Wistar-Kyoto rats. Cilazapril normalized cerebral blood flow reserve. This normalization was associated with a decreased thickness of the medial layer in the carotid artery, the middle cerebral artery, and in the pial arteries larger than 100 microns. Further studies are required to determine whether this decreased medial thickness is due to the normalization of blood pressure induced by cilazapril or to the reduction of trophic factors such as angiotensin II.

  12. Vascular Disease, ESRD, and Death: Interpreting Competing Risk Analyses

    PubMed Central

    Coresh, Josef; Segev, Dorry L.; Kucirka, Lauren M.; Tighiouart, Hocine; Sarnak, Mark J.

    2012-01-01

    Summary Background and objectives Vascular disease, a common condition in CKD, is a risk factor for mortality and ESRD. Optimal patient care requires accurate estimation and ordering of these competing risks. Design, setting, participants, & measurements This is a prospective cohort study of screened (n=885) and randomized participants (n=837) in the Modification of Diet in Renal Disease study (original study enrollment, 1989–1992), evaluating the association of vascular disease with ESRD and pre-ESRD mortality using standard survival analysis and competing risk regression. Results The method of analysis resulted in markedly different estimates. Cumulative incidence by standard analysis (censoring at the competing event) implied that, with vascular disease, the 15-year incidence was 66% and 51% for ESRD and pre-ESRD death, respectively. A more accurate representation of absolute risk was estimated with competing risk regression: 15-year incidence was 54% and 29% for ESRD and pre-ESRD death, respectively. For the association of vascular disease with pre-ESRD death, estimates of relative risk by the two methods were similar (standard survival analysis adjusted hazard ratio, 1.63; 95% confidence interval, 1.20–2.20; competing risk regression adjusted subhazard ratio, 1.57; 95% confidence interval, 1.15–2.14). In contrast, the hazard and subhazard ratios differed substantially for other associations, such as GFR and pre-ESRD mortality. Conclusions When competing events exist, absolute risk is better estimated using competing risk regression, but etiologic associations by this method must be carefully interpreted. The presence of vascular disease in CKD decreases the likelihood of survival to ESRD, independent of age and other risk factors. PMID:22859747

  13. Interplay between coagulation and vascular inflammation in sickle cell disease

    PubMed Central

    Sparkenbaugh, Erica; Pawlinski, Rafal

    2013-01-01

    Sickle cell disease is the most common inherited hematologic disorder that leads to the irreversible damage of multiple organs. Although sickling of red blood cells and vaso-occlusion are central to the pathophysiology of sickle cell disease the importance of hemolytic anemia and vasculopathy has been recently recognized. Hypercoagulation state is another prominent feature of sickle cell disease and is mediated by activation of both intrinsic and extrinsic coagulation pathways. Growing evidence demonstrates that coagulation may not only contribute to the thrombotic complications, but also to vascular inflammation associated with this disease. This article summarizes the role of vascular inflammation and coagulation activation, discusses potential mechanisms responsible for activation of coagulation and reviews recent data demonstrating the crosstalk between coagulation and vascular inflammation in sickle cell disease. PMID:23593937

  14. Cortical Superficial Siderosis in Different Types of Cerebral Small Vessel Disease.

    PubMed

    Wollenweber, Frank Arne; Baykara, Ebru; Zedde, Marialuisa; Gesierich, Benno; Achmüller, Melanie; Jouvent, Eric; Viswanathan, Anand; Ropele, Stefan; Chabriat, Hugues; Schmidt, Reinhold; Opherk, Christian; Dichgans, Martin; Linn, Jennifer; Duering, Marco

    2017-05-01

    Cortical superficial siderosis (cSS) has emerged as a clinically relevant imaging feature of cerebral amyloid angiopathy (CAA). However, it remains unknown whether cSS is also present in nonamyloid-associated small vessel disease and whether patients with cSS differ in terms of other small vessel disease imaging features. Three hundred sixty-four CADASIL (cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy) patients, 372 population-based controls, and 100 CAA patients with cSS (fulfilling the modified Boston criteria for possible/probable CAA) were included. cSS and cerebral microbleeds were visually rated on T2*-weighted magnetic resonance imaging. White matter hyperintensities were segmented on fluid-attenauted inversion recovery images, and their spatial distribution was compared between groups using colocalization analysis. Cerebral microbleeds location was determined in an observer-independent way using an atlas in standard space. cSS was absent in CADASIL and present in only 2 population-based controls (0.5%). Cerebral microbleeds were present in 64% of CAA patients with cSS, 34% of patients with CADASIL, and 12% of population-based controls. Among patients with cerebral microbleeds, lobar location was found in 95% of CAA patients with cSS, 48% of CADASIL patients, and 69% of population-based controls. The spatial distribution of white matter hyperintensities was comparable between CAA with cSS and CADASIL as indicated by high colocalization coefficients. cSS was absent in CADASIL, whereas other small vessel disease imaging features were similar to CAA patients with cSS. Our findings suggest that cSS in combination with other small vessel disease imaging markers is highly indicative of CAA. © 2017 American Heart Association, Inc.

  15. Obesity and risk of vascular disease: importance of endothelium-dependent vasoconstriction

    PubMed Central

    Barton, Matthias; Baretella, Oliver; Meyer, Matthias R

    2012-01-01

    Obesity has become a serious global health issue affecting both adults and children. Recent devolopments in world demographics and declining health status of the world's population indicate that the prevalence of obesity will continue to increase in the next decades. As a disease, obesity has deleterious effects on metabolic homeostasis, and affects numerous organ systems including heart, kidney and the vascular system. Thus, obesity is now regarded as an independent risk factor for atherosclerosis-related diseases such as coronary artery disease, myocardial infarction and stroke. In the arterial system, endothelial cells are both the source and target of factors contributing to atherosclerosis. Endothelial vasoactive factors regulate vascular homeostasis under physiological conditions and maintain basal vascular tone. Obesity results in an imbalance between endothelium-derived vasoactive factors favouring vasoconstriction, cell growth and inflammatory activation. Abnormal regulation of these factors due to endothelial cell dysfunction is both a consequence and a cause of vascular disease processes. Finally, because of the similarities of the vascular pathomechanisms activated, obesity can be considered to cause accelerated, ‘premature’ vascular aging. Here, we will review some of the pathomechanisms involved in obesity-related activation of endothelium-dependent vasoconstriction, the clinical relevance of obesity-associated vascular risk, and therapeutic interventions using ‘endothelial therapy’ aiming at maintaining or restoring vascular endothelial health. LINKED ARTICLES This article is part of a themed section on Fat and Vascular Responsiveness. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-3 PMID:21557734

  16. Obesity and risk of vascular disease: importance of endothelium-dependent vasoconstriction.

    PubMed

    Barton, Matthias; Baretella, Oliver; Meyer, Matthias R

    2012-02-01

    Obesity has become a serious global health issue affecting both adults and children. Recent devolopments in world demographics and declining health status of the world's population indicate that the prevalence of obesity will continue to increase in the next decades. As a disease, obesity has deleterious effects on metabolic homeostasis, and affects numerous organ systems including heart, kidney and the vascular system. Thus, obesity is now regarded as an independent risk factor for atherosclerosis-related diseases such as coronary artery disease, myocardial infarction and stroke. In the arterial system, endothelial cells are both the source and target of factors contributing to atherosclerosis. Endothelial vasoactive factors regulate vascular homeostasis under physiological conditions and maintain basal vascular tone. Obesity results in an imbalance between endothelium-derived vasoactive factors favouring vasoconstriction, cell growth and inflammatory activation. Abnormal regulation of these factors due to endothelial cell dysfunction is both a consequence and a cause of vascular disease processes. Finally, because of the similarities of the vascular pathomechanisms activated, obesity can be considered to cause accelerated, 'premature' vascular aging. Here, we will review some of the pathomechanisms involved in obesity-related activation of endothelium-dependent vasoconstriction, the clinical relevance of obesity-associated vascular risk, and therapeutic interventions using 'endothelial therapy' aiming at maintaining or restoring vascular endothelial health. This article is part of a themed section on Fat and Vascular Responsiveness. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-3. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  17. [Effect of Electroacupuncture on Expression of Apelin-APJ System of Cerebral Vascular Endothelial Cell in Rats with Cerebral Infarction].

    PubMed

    Yang, Li-Hong; Du, Yuan-Hao; Li, Jing

    2017-02-25

    To observe the regulation of APJ and its ligand Apelin on the angiogenesis pathway after cerebral infarction and the intervention effect of acupuncture. Wistar rats were randomly divided into model group( n =90), electroacupuncture(EA) group( n =90), sham operation group( n =90) and control group( n =10). The first three groups were further divided into 1,3,6,9,12,24 h and 3,7, 12 d subgroups( n =10 in each subgroup). The cerebral infarction model was established by middle cerebral artery occlusion (MCAO). EA(15 Hz, 2 mA) was applied to "Shuigou" (GV 26) for 20 min in the EA group. The 1, 3, 6, 9, 12, 24 h subgroups were treated immediately after modeling, the 3, 7, 9 d subgroups were treated once daily for 3, 7 or 9 days. Real-time fluorescent quantitative (RT-PCR) and Western blot were applied to detect the changes of Apelin and APJ in cerebrovascular endothelial cells, respectively. Compared with the control group, the expression of Apelin-APJ mRNA was decreased in the model group(12 h, 12 d, P <0.05, P <0.01); After EA, the Apelin mRNA expression was increased in the 12 h and 7 d subgroups ( P <0.01), while the APJ mRNA expression was increased in the 6, 9, 12 h subgroups( P <0.05, P <0.01). Compared with the control group, the Apelin(1, 3, 6, 24 h and 3, 7, 12 d) and APJ(1, 3, 6, 9 h and 3 d) protein expressions were decreased in the model group( P <0.01, P <0.05); After EA, the Apelin protein expression was increased in the 6, 24 h and 3, 7, 12 d subgroups ( P <0.05, P <0.01), while the APJ protein expression was increased in the 1, 9, 12, 24 h and 3, 7, 12 d subgroups ( P <0.05, P <0.01). EA can up-regulate the expression of Apelin-APJ mRNA and protein of cerebral vascular endothelial cell in MCAO rats which has an important role in the establishment of blood vessel regeneration and collateral circulation.

  18. Novel vascular endothelial growth factor blocker improves cellular viability and reduces hypobaric hypoxia-induced vascular leakage and oedema in rat brain.

    PubMed

    Saraswat, Deepika; Nehra, Sarita; Chaudhary, Kamal; CVS, Siva Prasad

    2015-05-01

    Vascular endothelial growth factor (VEGF) is an important cerebral angiogenic and permeability factor under hypoxia. There is a need to find effective molecules that may ameliorate hypoxia-induced cerebral oedema. In silico identification of novel candidate molecules that block VEGF-A site were identified and validated with a Ramachandran plot. The active site residues of VEGF-A were detected by Pocketfinder, CASTp, and DogSiteScorer. Based on in silico data, three VEGF-A blocker (VAB) candidate molecules (VAB1, VAB2, and VAB3) were checked for improvement in cellular viability and regulation of VEGF levels in N2a cells under hypoxia (0.5% O2 ). Additionally, the best candidate molecule's efficacy was assessed in male Sprague-Dawley rats for its ameliorative effect on cerebral oedema and vascular leakage under hypobaric hypoxia 7260 m. All experimental results were compared with the commercially available VEGF blocker sunitinib. Vascular endothelial growth factor-A blocker 1 was found most effective in increasing cellular viability and maintaining normal VEGF levels under hypoxia (0.5% oxygen) in N2a cells. Vascular endothelial growth factor-A blocker 1 effectively restored VEGF levels, decreased cerebral oedema, and reduced vascular leakage under hypobaric hypoxia when compared to sunitinib-treated rats. Vascular endothelial growth factor-A blocker 1 may be a promising candidate molecule for ameliorating hypobaric hypoxia-induced vasogenic oedema by regulating VEGF levels. © 2015 Wiley Publishing Asia Pty Ltd.

  19. Estrogen, vascular estrogen receptor and hormone therapy in postmenopausal vascular disease.

    PubMed

    Khalil, Raouf A

    2013-12-15

    Cardiovascular disease (CVD) is less common in premenopausal women than men of the same age or postmenopausal women, suggesting vascular benefits of estrogen. Estrogen activates estrogen receptors ERα, ERβ and GPR30 in endothelium and vascular smooth muscle (VSM), which trigger downstream signaling pathways and lead to genomic and non-genomic vascular effects such as vasodilation, decreased VSM contraction and growth and reduced vascular remodeling. However, randomized clinical trials (RCTs), such as the Women's Health Initiative (WHI) and Heart and Estrogen/progestin Replacement Study (HERS), have shown little vascular benefits and even adverse events with menopausal hormone therapy (MHT), likely due to factors related to the MHT used, ER profile, and RCT design. Some MHT forms, dose, combinations or route of administration may have inadequate vascular effects. Age-related changes in ER amount, distribution, integrity and post-ER signaling could alter the vascular response to MHT. The subject's age, preexisting CVD, and hormone environment could also reduce the effects of MHT. Further evaluation of natural and synthetic estrogens, phytoestrogens, and selective estrogen-receptor modulators (SERMs), and the design of appropriate MHT combinations, dose, route and 'timing' could improve the effectiveness of conventional MHT and provide alternative therapies in the peri-menopausal period. Targeting ER using specific ER agonists, localized MHT delivery, and activation of specific post-ER signaling pathways could counter age-related changes in ER. Examination of the hormone environment and conditions associated with hormone imbalance such as polycystic ovary syndrome may reveal the causes of abnormal hormone-receptor interactions. Consideration of these factors in new RCTs such as the Kronos Early Estrogen Prevention Study (KEEPS) could enhance the vascular benefits of estrogen in postmenopausal CVD. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Estrogen, Vascular Estrogen Receptor and Hormone Therapy in Postmenopausal Vascular Disease

    PubMed Central

    Khalil, Raouf A.

    2013-01-01

    Cardiovascular disease (CVD) is less common in premenopausal women than men of the same age or postmenopausal women, suggesting vascular benefits of estrogen. Estrogen activates estrogen receptors ERα, ERβ and GPR30 in endothelium and vascular smooth muscle (VSM), which trigger downstream signaling pathways and lead to genomic and non-genomic vascular effects such as vasodilation, decreased VSM contraction and growth and reduced vascular remodeling. However, randomized clinical trials (RCTs), such as the Women’s Health Initiative (WHI) and Heart and Estrogen/progestin Replacement Study (HERS), have shown little vascular benefits and even adverse events with menopausal hormone therapy (MHT), likely due to factors related to the MHT used, ER profile, and RCT design. Some MHT forms, dose, combinations or route of administration may have inadequate vascular effects. Age-related changes in ER amount, distribution, integrity and post-ER signaling could alter the vascular response to MHT. The subject’s age, preexisting CVD, and hormone environment could also reduce the effects of MHT. Further evaluation of natural and synthetic estrogens, phytoestrogens, and selective estrogen-receptor modulators (SERMs), and the design of appropriate MHT combinations, dose, route and 'timing' could improve the effectiveness of conventional MHT and provide alternative therapies in the peri-menopausal period. Targeting ER using specific ER agonists, localized MHT delivery, and activation of specific post-ER signaling pathways could counter age-related changes in ER. Examination of the hormone environment and conditions associated with hormone imbalance such as polycystic ovary syndrome may reveal the causes of abnormal hormone-receptor interactions. Consideration of these factors in new RCTs such as the Kronos Early Estrogen Prevention Study (KEEPS) could enhance the vascular benefits of estrogen in postmenopausal CVD. PMID:24099797

  1. Vascular Factors and Cognitive Dysfunction in Alzheimer Disease.

    PubMed

    Pąchalska, Maria; Bidzan, Leszek; Bidzan, Mariola; Góral-Półrola, Jolanta

    2015-11-12

    The purpose of the present study was to assess the influence of vascular factors on the degree of intensity and rate of progression of cognitive disorders in the course of Alzheimer Disease (AD). The research group consisted of 39 persons, all of whom were diagnosed with AD according to the NINCDS/ADRDA criteria. We divided these patients into 2 subgroups, based on the vascular factors measured by the modified Hachinski Ischemic Scale (Ha-mod): group A, without the vascular component (HA-mod score of 0-1 point), and group B, with the vascular component (a score over 1 point). Cognitive functions were evaluated at baseline and again 2 years later, using the Cognitive Part of the Alzheimer Disease Assessment Scale (ADAS-cog). We found that the patients from subgroup B, with the stronger vascular component, demonstrated the highest intensity of cognitive disorders at baseline, both in terms of the overall ADAS-cog score, and in the subscores for ideational praxis, orientation, spoken language ability, comprehension of spoken language, and word-finding difficulty in spontaneous speech. Another variable which was connected with the intensity of dementia was age. After 2 years, however, the rate of progression of cognitive disorders was not significantly different between the 2 groups. The severity of vascular factors correlates directly with the intensity of cognitive disturbances. At the 2-year follow-up examination, however, no correlation was observed in the research group between greater vascular involvement and more rapid progression of cognitive disorders, as measured by the ADAS-cog scale.

  2. Postoperative Cerebral Infarction Risk Factors and Postoperative Management of Pediatric Patients with Moyamoya Disease.

    PubMed

    Muraoka, Shinsuke; Araki, Yoshio; Kondo, Goro; Kurimoto, Michihiro; Shiba, Yoshiki; Uda, Kenji; Ota, Shinji; Okamoto, Sho; Wakabayashi, Toshihiko

    2018-05-01

    Although revascularization surgery for patients with moyamoya disease can effectively prevent ischemic events and thus improve the long-term clinical outcome, the incidence of postoperative ischemic complications affects patients' quality of life. This study aimed to clarify the risk factors associated with postoperative ischemic complications and to discuss the appropriate perioperative management. Fifty-eight revascularization operations were performed in 37 children with moyamoya disease. Patients with moyamoya syndrome were excluded from this study. Magnetic resonance imaging was performed within 7 days after surgery. Postoperative cerebral infarction was defined as a diffusion-weighted imaging high-intensity lesion with or without symptoms. We usually use fentanyl and dexmedetomidine as postoperative analgesic and sedative drugs for patients with moyamoya disease. We used barbiturate coma therapy for pediatric patients with moyamoya disease who have all postoperative cerebral infarction risk factors. Postoperative ischemic complications were observed in 10.3% of the children with moyamoya disease (6 of 58). Preoperative cerebral infarctions (P = 0.0005), younger age (P = 0.038), higher Suzuki grade (P = 0.003), and posterior cerebral artery stenosis/occlusion (P = 0.003) were related to postoperative ischemic complications. Postoperative cerebral infarction occurred all pediatric patients using barbiturate coma therapy. The risk factors associated with postoperative ischemic complications for children with moyamoya disease are preoperative infarction, younger age, higher Suzuki grade, and posterior cerebral artery stenosis/occlusion. Barbiturate coma therapy for pediatric patients with moyamoya disease who have the previous risk factors is insufficient for prevention of postoperative cerebral infarction. More studies are needed to identify the appropriate perioperative management. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Hypertonic saline alleviates experimentally induced cerebral oedema through suppression of vascular endothelial growth factor and its receptor VEGFR2 expression in astrocytes.

    PubMed

    Huang, Linqiang; Cao, Wei; Deng, Yiyu; Zhu, Gaofeng; Han, Yongli; Zeng, Hongke

    2016-10-13

    Cerebral oedema is closely related to the permeability of blood-brain barrier, vascular endothelial growth factor (VEGF) and its receptor vascular endothelial growth factor receptor 2 (VEGFR2) all of which are important blood-brain barrier (BBB) permeability regulatory factors. Zonula occludens 1 (ZO-1) and claudin-5 are also the key components of BBB. Hypertonic saline is widely used to alleviate cerebral oedema. This study aimed to explore the possible mechanisms underlying hypertonic saline that ameliorates cerebral oedema effectively. Middle cerebral artery occlusion (MCAO) model in Sprague-Dawley (SD) rats and of oxygen-glucose deprivation model in primary astrocytes were used in this study. The brain water content (BWC) was used to assess the effect of 10 % HS on cerebral oedema. The assessment of Evans blue (EB) extravasation was performed to evaluate the protective effect of 10 % HS on blood-brain barrier. The quantification of VEGF, VEGFR2, ZO-1 and claudin-5 was used to illustrate the mechanism of 10 % HS ameliorating cerebral oedema. BWC was analysed by wet-to-dry ratios in the ischemic hemisphere of SD rats; it was significantly decreased after 10 % HS treatment (P < 0.05). We also investigated the blood-brain barrier protective effect by 10 % HS which reduced EB extravasation effectively in the peri-ischemic brain tissue. In parallel to the above notably at 24 h following MCAO, mRNA and protein expression of VEGF and VEGFR2 in the peri-ischemic brain tissue was down-regulated after 10 % HS treatment (P < 0.05). Along with this, in vitro studies showed increased VEGF and VEGFR2 mRNA and protein expression in primary astrocytes under hypoxic condition (P < 0.05), but it was suppressed after HS treatment (P < 0.05). In addition, HS inhibited the down-regulation of ZO-1, claudin-5 effectively. The results suggest that 10 % HS could alleviate cerebral oedema possibly through reducing the ischemia induced BBB permeability as a consequence of

  4. Chronic kidney disease and poor outcomes in ischemic stroke: is impaired cerebral autoregulation the missing link?

    PubMed

    Castro, Pedro; Azevedo, Elsa; Rocha, Isabel; Sorond, Farzaneh; Serrador, Jorge M

    2018-03-02

    Chronic kidney disease increases stroke incidence and severity but the mechanisms behind this cerebro-renal interaction are mostly unexplored. Since both vascular beds share similar features, microvascular dysfunction could be the possible missing link. Therefore, we examined the relationship between renal function and cerebral autoregulation in the early hours post ischemia and its impact on outcome. We enrolled 46 ischemic strokes (middle cerebral artery). Dynamic cerebral autoregulation was assessed by transfer function (coherence, phase and gain) of spontaneous blood pressure oscillations to blood flow velocity within 6 h from symptom-onset. Estimated glomerular filtration rate (eGFR) was calculated. Hemorrhagic transformation (HT) and white matter lesions (WML) were collected from computed tomography performed at presentation and 24 h. Outcome was evaluated with modified Rankin Scale at 3 months. High gain (less effective autoregulation) was correlated with lower eGFR irrespective of infarct side (p < 0.05). Both lower eGFR and higher gain correlated with WML grade (p < 0.05). Lower eGFR and increased gain, alone and in combination, progressively reduced the odds of a good functional outcome [ipsilateral OR = 4.39 (CI95% 3.15-25.6), p = 0.019; contralateral OR = 8.15 (CI95% 4.15-15.6), p = 0.002] and increased risk of HT [ipsilateral OR = 3.48 (CI95% 0.60-24.0), p = 0.132; contralateral OR = 6.43 (CI95% 1.40-32.1), p = 0.034]. Lower renal function correlates with less effective dynamic cerebral autoregulation in acute ischemic stroke, both predicting a bad outcome. The evaluation of serum biomarkers of renal dysfunction could have interest in the future for assessing cerebral microvascular risk and relationship with stroke complications.

  5. Assessment by three-dimensional power Doppler ultrasound of cerebral blood flow perfusion in fetuses with congenital heart disease.

    PubMed

    Zeng, S; Zhou, J; Peng, Q; Tian, L; Xu, G; Zhao, Y; Wang, T; Zhou, Q

    2015-06-01

    To use three-dimensional (3D) power Doppler ultrasound to investigate cerebral blood flow perfusion in fetuses with congenital heart disease (CHD). The vascularization index (VI), flow index (FI) and vascularization flow index (VFI) in the total intracranial volume and the main arterial territories (middle cerebral artery (MCA), anterior cerebral artery (ACA) and posterior cerebral artery (PCA)) were evaluated prospectively and compared in 112 fetuses with CHD and 112 normal fetuses using 3D power Doppler. Correlations between the 3D power Doppler indices and neurodevelopment scores at 12 months of age were assessed in a subset of the CHD group, and values were compared with those of controls. Compared with the controls, the VI, FI and VFI of the total intracranial volume and the three main arteries were significantly higher in fetuses with hypoplastic left heart syndrome and left-sided obstructive lesions (P < 0.001), and the 3D power Doppler values in the ACA territory were significantly higher in fetuses with transposition of the great arteries (P < 0.01). The largest proportional increase in the blood flow perfusion indices in the fetuses with CHD relative to controls was observed in the ACA territory (P < 0.05). Among 41 cases with CHD that underwent testing, the mean Psychomotor Development Index (PDI) and Mental Development Index (MDI) scores were significantly lower than in 94 of the controls that were tested (P < 0.001). Among these CHD cases, total intracranial FI was positively correlated with PDI (r = 0.342, P = 0.029) and MDI (r = 0.339, P = 0.030), and ACA-VI and ACA-VFI were positively correlated with PDI (r = 0.377 and 0.389, P = 0.015 and 0.012, respectively) but were not correlated with MDI (r = 0.243 and 0.203, P = 0.126 and 0.204, respectively). Cerebral blood flow perfusion was increased relative to controls in most fetuses with CHD and was associated with neurodevelopment scores at 12 months

  6. Vascular wall progenitor cells in health and disease.

    PubMed

    Psaltis, Peter J; Simari, Robert D

    2015-04-10

    The vasculature plays an indispensible role in organ development and maintenance of tissue homeostasis, such that disturbances to it impact greatly on developmental and postnatal health. Although cell turnover in healthy blood vessels is low, it increases considerably under pathological conditions. The principle sources for this phenomenon have long been considered to be the recruitment of cells from the peripheral circulation and the re-entry of mature cells in the vessel wall back into cell cycle. However, recent discoveries have also uncovered the presence of a range of multipotent and lineage-restricted progenitor cells in the mural layers of postnatal blood vessels, possessing high proliferative capacity and potential to generate endothelial, smooth muscle, hematopoietic or mesenchymal cell progeny. In particular, the tunica adventitia has emerged as a progenitor-rich compartment with niche-like characteristics that support and regulate vascular wall progenitor cells. Preliminary data indicate the involvement of some of these vascular wall progenitor cells in vascular disease states, adding weight to the notion that the adventitia is integral to vascular wall pathogenesis, and raising potential implications for clinical therapies. This review discusses the current body of evidence for the existence of vascular wall progenitor cell subpopulations from development to adulthood and addresses the gains made and significant challenges that lie ahead in trying to accurately delineate their identities, origins, regulatory pathways, and relevance to normal vascular structure and function, as well as disease. © 2015 American Heart Association, Inc.

  7. Vascular Cells in Blood Vessel Wall Development and Disease.

    PubMed

    Mazurek, R; Dave, J M; Chandran, R R; Misra, A; Sheikh, A Q; Greif, D M

    2017-01-01

    The vessel wall is composed of distinct cellular layers, yet communication among individual cells within and between layers results in a dynamic and versatile structure. The morphogenesis of the normal vascular wall involves a highly regulated process of cell proliferation, migration, and differentiation. The use of modern developmental biological and genetic approaches has markedly enriched our understanding of the molecular and cellular mechanisms underlying these developmental events. Additionally, the application of similar approaches to study diverse vascular diseases has resulted in paradigm-shifting insights into pathogenesis. Further investigations into the biology of vascular cells in development and disease promise to have major ramifications on therapeutic strategies to combat pathologies of the vasculature. © 2017 Elsevier Inc. All rights reserved.

  8. Emerging diagnostic and therapeutic molecular imaging applications in vascular disease

    PubMed Central

    Eraso, Luis H; Reilly, Muredach P; Sehgal, Chandra; Mohler, Emile R

    2013-01-01

    Assessment of vascular disease has evolved from mere indirect and direct measurements of luminal stenosis to sophisticated imaging methods to depict millimeter structural changes of the vasculature. In the near future, the emergence of multimodal molecular imaging strategies may enable robust therapeutic and diagnostic (‘theragnostic’) approaches to vascular diseases that comprehensively consider structural, functional, biological and genomic characteristics of the disease in individualized risk assessment, early diagnosis and delivery of targeted interventions. This review presents a summary of recent preclinical and clinical developments in molecular imaging and theragnostic applications covering diverse atherosclerosis events such as endothelial activation, macrophage infammatory activity, plaque neovascularization and arterial thrombosis. The main focus is on molecular targets designed for imaging platforms commonly used in clinical medicine including magnetic resonance, computed tomography and positron emission tomography. A special emphasis is given to vascular ultrasound applications, considering the important role this imaging platform plays in the clinical and research practice of the vascular medicine specialty. PMID:21310769

  9. Evaluation of extracranial blood flow in Parkinson disease.

    PubMed

    Haktanir, Alpay; Yaman, Mehmet; Acar, Murat; Gecici, Omer; Demirel, Reha; Albayrak, Ramazan; Demirkirkan, Kemal

    2006-01-02

    Decreased cerebral flow velocities in Parkinsonian patients were reported previously. Because of the limited data on vascular changes in Parkinson disease (PD), which may have a vascular etiology, we aimed to disclose any possible cerebral hemodynamic alteration in Parkinsonian patients. We prospectively evaluated 28 non-demented, idiopathic parkinsonian patients and 19 age and sex matched controls with Doppler sonography. Flow volumes, peak systolic flow velocities, and cross-sectional areas of vertebral and internal carotid arteries (ICA) were measured and compared between patients and controls. Correlation of patient age and disease duration with Doppler parameters was observed; and each Doppler parameter of patients within each Hoehn-Yahr scale was compared. There was no significant difference of measured parameters between groups. No correlation was found between disease duration and age with flow volume, cross-sectional area or peak systolic velocity. Hoehn-Yahr scale was not found having significant relation with Doppler parameters. Values of vertebral, internal carotid and cerebral blood flow volumes (CBF), peak systolic velocities, and cross-sectional areas were not significantly different between Parkinsonian patients and age and sex matched controls. Although regional blood flow decreases may be seen as reported previously, Parkinson disease is not associated with a flow volume or velocity alteration of extracranial cerebral arteries.

  10. Time-of-Flight MR Angiography for Detection of Cerebral Hyperperfusion Syndrome after Superficial Temporal Artery-Middle Cerebral Artery Anastomosis in Moyamoya Disease.

    PubMed

    Sato, K; Yamada, M; Kuroda, H; Yamamoto, D; Asano, Y; Inoue, Y; Fujii, K; Kumabe, T

    2016-07-01

    Cerebral hyperperfusion syndrome is a potential complication of superficial temporal artery-MCA anastomosis for Moyamoya disease. In this study, we evaluated whether TOF-MRA could assess cerebral hyperperfusion syndrome after superficial temporal artery-MCA anastomosis for this disease. This retrospective study included patients with Moyamoya disease who underwent superficial temporal artery-MCA single anastomosis. TOF-MRA and SPECT were performed before and 1-6 days after anastomosis. Bilateral ROIs on the source image of TOF-MRA were manually placed directly on the parietal branch of the superficial temporal artery just after branching the frontal branch of the superficial temporal artery and on the contralateral superficial temporal artery on the same axial image, respectively. The change ratio of the maximum signal intensity of the superficial temporal artery on TOF-MRA was calculated by using the following formula: (Postoperative Ipsilateral/Postoperative Contralateral)/(Preoperative Ipsilateral/Preoperative Contralateral). Of 23 patients (26 sides) who underwent the operation, 5 sides showed cerebral hyperperfusion syndrome postoperatively. There was a significant difference in the change ratio of signal intensity on TOF-MRA observed between the cerebral hyperperfusion syndrome and non-cerebral hyperperfusion syndrome groups (cerebral hyperperfusion syndrome group: 1.88 ± 0.32; non-cerebral hyperperfusion syndrome group: 1.03 ± 0.20; P = .0009). The minimum ratio value for the cerebral hyperperfusion syndrome group was 1.63, and the maximum ratio value for the non-cerebral hyperperfusion syndrome group was 1.30. Thus, no overlap was observed between the 2 groups for the change ratio of signal intensity on TOF-MRA. Diagnosis of cerebral hyperperfusion syndrome is indicated by an increase in the change ratio of signal intensity on TOF-MRA by more than approximately 1.5 times the preoperative levels. © 2016 by American Journal of Neuroradiology.

  11. Cerebral small vessel disease: Capillary pathways to stroke and cognitive decline

    PubMed Central

    Engedal, Thorbjørn S; Moreton, Fiona; Hansen, Mikkel B; Wardlaw, Joanna M; Dalkara, Turgay; Markus, Hugh S; Muir, Keith W

    2015-01-01

    Cerebral small vessel disease (SVD) gives rise to one in five strokes worldwide and constitutes a major source of cognitive decline in the elderly. SVD is known to occur in relation to hypertension, diabetes, smoking, radiation therapy and in a range of inherited and genetic disorders, autoimmune disorders, connective tissue disorders, and infections. Until recently, changes in capillary patency and blood viscosity have received little attention in the aetiopathogenesis of SVD and the high risk of subsequent stroke and cognitive decline. Capillary flow patterns were, however, recently shown to limit the extraction efficacy of oxygen in tissue and capillary dysfunction therefore proposed as a source of stroke-like symptoms and neurodegeneration, even in the absence of physical flow-limiting vascular pathology. In this review, we examine whether capillary flow disturbances may be a shared feature of conditions that represent risk factors for SVD. We then discuss aspects of capillary dysfunction that could be prevented or alleviated and therefore might be of general benefit to patients at risk of SVD, stroke or cognitive decline. PMID:26661176

  12. Anatomic vascular phantom for the verification of MRA and XRA visualization and fusion

    NASA Astrophysics Data System (ADS)

    Mankovich, Nicholas J.; Lambert, Timothy; Zrimec, Tatjana; Hiller, John B.

    1995-05-01

    A project is underway to develop automated methods of fusing cerebral magnetic resonance angiography (MRA) and x-ray angiography (XRA) for creating accurate visualizations used in planning treatment of vascular disease. We have developed a vascular phantom suitable for testing segmentation and fusion algorithms with either derived images (psuedo-MRA/psuedo-XRA) or actual MRA or XRA image sequences. The initial unilateral arterial phantom design, based on normal human anatomy, contains 48 tapering vascular segments with lumen diameters from 2.5 millimeter to 0.25 millimeter. The initial phantom used rapid prototyping technology (stereolithography) with a 0.9 millimeter vessel wall fabricated in an ultraviolet-cured plastic. The model fabrication resulted in a hollow vessel model comprising the internal carotid artery, the ophthalmic artery, and the proximal segments of the anterior, middle, and posterior cerebral arteries. The complete model was fabricated but the model's lumen could not be cleared for vessels with less than 1 millimeter diameter. Measurements of selected vascular outer diameters as judged against the CAD specification showed an accuracy of 0.14 mm and precision (standard deviation) of 0.15 mm. The plastic vascular model produced provides a fixed geometric framework for the evaluation of imaging protocols and the development of algorithms for both segmentation and fusion.

  13. Redox-dependent impairment of vascular function in sickle cell disease.

    PubMed

    Aslan, Mutay; Freeman, Bruce A

    2007-12-01

    The vascular pathophysiology of sickle cell disease (SCD) is influenced by many factors, including adhesiveness of red and white blood cells to endothelium, increased coagulation, and homeostatic perturbation. The vascular endothelium is central to disease pathogenesis because it displays adhesion molecules for blood cells, balances procoagulant and anticoagulant properties of the vessel wall, and regulates vascular homeostasis by synthesizing vasoconstricting and vasodilating substances. The occurrence of intermittent vascular occlusion in SCD leads to reperfusion injury associated with granulocyte accumulation and enhanced production of reactive oxygen species. The participation of nitric oxide (NO) in oxidative reactions causes a reduction in NO bioavailability and contributes to vascular dysfunction in SCD. Therapeutic strategies designed to counteract endothelial, inflammatory, and oxidative abnormalities may reduce the frequency of hospitalization and blood transfusion, the incidence of pain, and the occurrence of acute chest syndrome and pulmonary hypertension in patients with SCD.

  14. Is cerebral microbleed prevalence relevant as a biomarker in amnestic mild cognitive impairment and mild Alzheimer's disease?

    PubMed

    Rabelo, Ana Gb; Teixeira, Camila Vl; Magalhães, Thamires Nc; Carletti-Cassani, Ana Flávia Mk; Amato Filho, Augusto Cs; Joaquim, Helena Pg; Talib, Leda L; Forlenza, Orestes; Ribeiro, Patrícia Ao; Secolin, Rodrigo; Lopes-Cendes, Iscia; Cendes, Fernando; Balthazar, Marcio Lf

    2017-10-01

    Introduction The search for a reliable neuroimaging biomarker in Alzheimer's disease is a matter of intense research. The presence of cerebral microbleeds seems to be a potential biomarker. However, it is not clear if the presence of microbleeds has clinical usefulness to differentiate mild Alzheimer's disease and amnestic mild cognitive impairment from normal aging. We aimed to verify if microbleed prevalence differs among three groups: mild Alzheimer's disease, amnestic mild cognitive impairment due to Alzheimer's disease, and normal controls. Moreover, we studied whether microbleeds were associated with apolipoprotein E allele ɛ4 status, cerebrospinal fluid amyloid-beta, total and phosphorylated tau protein levels, vascular factors, and cognition. Methods Twenty-eight mild Alzheimer's disease patients, 34 with amnestic mild cognitive impairment and 36 cognitively normal elderly subjects underwent: magnetic resonance imaging with a susceptibility-weighted imaging sequence on a 3T scanner, apolipoprotein E genotyping and a full neuropsychological evaluation. Only amnestic mild cognitive impairment and mild Alzheimer's disease underwent cerebrospinal fluid analysis. We compared the groups and verified if microbleeds were predicted by all other variables. Results Mild Alzheimer's disease presented a higher prevalence of apolipoprotein E allele ɛ4 in relation to amnestic mild cognitive impairment and control group. No significant differences were found between groups when considering microbleed presence. Logistic regression tests failed to find any relationship between microbleeds and the variables. We performed three different regression models using different independent variables: Model 1 - amyloid-beta, phosphorylated tau protein, total tau, apolipoprotein E allele ɛ4 status, age, and sex; Model 2 - vascular risk factors, age, and sex; Model 3 - cognitive scores sex, age, and education. Conclusion Although microbleeds might be related to the

  15. An interesting case of peripheral vascular disease, vascular reperfusion, and subsequent development of pain due to Paget's disease of bone.

    PubMed

    Kwun, Sunna; Tucci, Joseph R

    2013-01-01

    To present a case of Paget's disease of bone that was unmasked after vascular reperfusion. In this case study, we review the presentation, evaluation, diagnosis, and management of a patient with Paget's disease and peripheral vascular disease. A 79-year-old-woman with a history of coronary artery heart disease and recent finding of a T5 compression fracture was hospitalized for evaluation of right lower extremity claudication. Angiography demonstrated a focal complete occlusion of the distal right femoral and popliteal arteries. A self-expanding stent was placed in the distal femoral and popliteal arteries. Approximately 48 hours after the procedure, the patient developed severe, right lower leg pain. On endocrine evaluation, the patient was found to have clinical signs suggesting Paget's disease of bone, which was subsequently confirmed by imaging. This patient's development of severe pain following reperfusion of distal femoral and popliteal arteries is in keeping with the known and aforementioned hypervascularity of pagetic bone. The finding of increased warmth over an area of skeletal deformation should always raise the possibility of Paget's disease of bone.

  16. Chronic Supplementation of Paeonol Combined with Danshensu for the Improvement of Vascular Reactivity in the Cerebral Basilar Artery of Diabetic Rats

    PubMed Central

    Hu, Jing; Li, Ya-Ling; Li, Zi-Lin; Li, Hua; Zhou, Xuan-Xuan; Qiu, Peng-Cheng; Yang, Qian; Wang, Si-Wang

    2012-01-01

    One of the leading causes of death in the world is cerebrovascular disease. Numerous Chinese traditional medicines, such as Cortex Moutan (root bark of Paeonia suffruticosa Andrew) and Radix Salviae miltiorrhizae (root and rhizome of Salvia miltiorrhiza Bunge), protect against cerebrovascular diseases and exhibit anti-atherosclerotic effects. Traditional medicines have been routinely used for a long time in China. In addition, these two herbs are prescribed together in clinical practice. Therefore, the pharmacodynamic interactions between the active constituents of these two herbs, which are paeonol (Pae) and danshensu (DSS), should be particularly studied. The study of Pae and DSS can provide substantial foundations in understanding their mechanisms and empirical evidence to support clinical practice. This study investigated the effects and possible mechanisms of the pharmacodynamic interaction between Pae and DSS on cerebrovascular malfunctioning in diabetes. Experimental diabetes was induced in rats, which was then treated with Pae, DSS, and Pae + DSS for eight weeks. Afterward, cerebral arteries from all groups were isolated and equilibrated in an organ bath with Krebs buffer and ring tension. Effects of Pae, DSS, and Pae + DSS were observed on vessel relaxation with or without endothelium as well as on the basal tonus of vessels from normal and diabetic rats. Indexes about oxidative stress were also determined. We report that the cerebral arteries from diabetic rats show decreased vascular reactivity to acetylcholine (ACh) which was corrected in Pae, DSS, and Pae + DSS treated groups. Furthermore, phenylephrine (PE)-induced contraction response decreased in the treated groups. Phenylephrine and CaCl2-induced vasoconstrictions are partially inhibited in the three treated groups under Ca2+-free medium. Pre-incubated with tetraethylammonium, a non-selective K+ channel blocker, the antagonized relaxation responses increased in DSS and Pae + DSS treated diabetic

  17. Pathogenesis and neuroimaging of cerebral large and small vessel disease in type 2 diabetes: A possible link between cerebral and retinal microvascular abnormalities.

    PubMed

    Umemura, Toshitaka; Kawamura, Takahiko; Hotta, Nigishi

    2017-03-01

    Diabetes patients have more than double the risk of ischemic stroke compared with non-diabetic individuals, and its neuroimaging characteristics have important clinical implications. To understand the pathophysiology of ischemic stroke in diabetes, it is important to focus not only on the stroke subtype, but also on the size and location of the occlusive vessels. Specifically, ischemic stroke in diabetes patients might be attributed to both large and small vessels, and intracranial internal carotid artery disease and small infarcts of the posterior circulation often occur. An additional feature is that asymptomatic lacunar infarctions are often seen in the basal ganglia and brain stem on brain magnetic resonance imaging. In particular, cerebral small vessel disease (SVD), including lacunar infarctions, white matter lesions and cerebral microbleeds, has been shown to be associated not only with stroke incidence, but also with the development and progression of dementia and diabetic microangiopathy. However, the pathogenesis of cerebral SVD is not fully understood. In addition, data on the association between neuroimaging findings of the cerebral SVD and diabetes are limited. Recently, the clinical importance of the link between cerebral SVD and retinal microvascular abnormalities has been a topic of considerable interest. Several clinical studies have shown that retinal microvascular abnormalities are closely related to cerebral SVD, suggesting that retinal microvascular abnormalities might be pathophysiologically linked to ischemic cerebral SVD. We review the literature relating to the pathophysiology and neuroimaging of cerebrovascular disease in diabetes, and discuss the problems based on the concept of cerebral large and small vessel disease. © 2016 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  18. Microparticle Shedding from Neural Progenitor Cells and Vascular Compartment Cells Is Increased in Ischemic Stroke.

    PubMed

    Chiva-Blanch, Gemma; Suades, Rosa; Crespo, Javier; Peña, Esther; Padró, Teresa; Jiménez-Xarrié, Elena; Martí-Fàbregas, Joan; Badimon, Lina

    2016-01-01

    Ischemic stroke has shown to induce platelet and endothelial microparticle shedding, but whether stroke induces microparticle shedding from additional blood and vascular compartment cells is unclear. Neural precursor cells have been shown to replace dying neurons at sites of brain injury; however, if neural precursor cell activation is associated to microparticle shedding, and whether this activation is maintained at long term and associates to stroke type and severity remains unknown. We analyzed neural precursor cells and blood and vascular compartment cells microparticle shedding after an acute ischemic stroke. Forty-four patients were included in the study within the first 48h after the onset of stroke. The cerebral lesion size was evaluated at 3-7 days of the stroke. Circulating microparticles from neural precursor cells and blood and vascular compartment cells (platelets, endothelial cells, erythrocytes, leukocytes, lymphocytes, monocytes and smooth muscle cells) were analyzed by flow cytometry at the onset of stroke and at 7 and 90 days. Forty-four age-matched high cardiovascular risk subjects without documented vascular disease were used as controls. Compared to high cardiovascular risk controls, patients showed higher number of neural precursor cell- and all blood and vascular compartment cell-derived microparticles at the onset of stroke, and after 7 and 90 days. At 90 days, neural precursor cell-derived microparticles decreased and smooth muscle cell-derived microparticles increased compared to levels at the onset of stroke, but only in those patients with the highest stroke-induced cerebral lesions. Stroke increases blood and vascular compartment cell and neural precursor cell microparticle shedding, an effect that is chronically maintained up to 90 days after the ischemic event. These results show that stroke induces a generalized blood and vascular cell activation and the initiation of neuronal cell repair process after stroke. Larger cerebral lesions

  19. From hemobiology to vascular disease: a review of the potential of gliclazide to influence the pathogenesis of diabetic vascular disease.

    PubMed

    Jennings, P E

    1994-01-01

    Patients with type II diabetes commonly die from thrombotic vascular disease. Large vessel occlusion due to thrombosis or atherosclerotic stenosis is a process accelerated by diabetes and results in premature death. Diabetic small vessel disease, with its unique microangiopathic process, underlies many of the large vessel changes as well as causing retinopathy and nephropathy. The microangiopathic changes produce a prothrombotic tendency that has been widely reported in type II diabetes. There is reduced endothelial cell production of prostacyclin and the activators of fibrinolysis, together with increased platelet reactivity. In addition, there is increased lipid peroxidation and oxidative stress due to excess free-radical activity and impaired antioxidant defenses particularly in the presence of microvascular disease. The development of many of these abnormalities is associated with poor long-term glycemic control. However, the changes are also seen in atherosclerosis in nondiabetic patients where the progression of the disease can be modified by antiplatelet agents and antioxidants. The process of vascular damage is accelerated by diabetes, often due to co-existing disease and aging, although it is not clear that improvement in long-term glycemic control by lowering blood glucose levels to near to the nondiabetic state reduces the development of small and large vessel disease. Although the biochemical mechanism underlying this observation remains uncertain, protein glycosylation and increased platelet reactivity are implicated and interrelated. Increased oxidative stress due to excess free-radical activity may be central to diabetic vascular disease as endothelial cell damage, lipoprotein oxidation, modification of both platelet reactivity and arachidonic acid cascade are all properties of free radicals and their reaction products lipid peroxides.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Potential of optical microangiography to monitor cerebral blood perfusion and vascular plasticity following traumatic brain injury in mice in vivo

    NASA Astrophysics Data System (ADS)

    Jia, Yali; Alkayed, Nabil; Wang, Ruikang K.

    2009-07-01

    Optical microanglography (OMAG) is a recently developed imaging modality capable of volumetric imaging of dynamic blood perfusion, down to capillary level resolution, with an imaging depth up to 2.00 mm beneath the tissue surface. We report the use of OMAG to monitor the cerebral blood flow (CBF) over the cortex of mouse brain upon traumatic brain injury (TBI), with the cranium left intact, for a period of two weeks on the same animal. We show the ability of OMAG to repeatedly image 3-D cerebral vasculatures during pre- and post-traumatic phases, and to visualize the changes of regulated CBF and the vascular plasticity after TBI. The results indicate the potential of OMAG to explore the mechanism involved in the rehabilitation of TBI.

  1. Reduced global brain metabolism but maintained vascular function in amnestic mild cognitive impairment.

    PubMed

    Thomas, Binu P; Sheng, Min; Tseng, Benjamin Y; Tarumi, Takashi; Martin-Cook, Kristen; Womack, Kyle B; Cullum, Munro C; Levine, Benjamin D; Zhang, Rong; Lu, Hanzhang

    2017-04-01

    Amnestic mild cognitive impairment represents an early stage of Alzheimer's disease, and characterization of physiological alterations in mild cognitive impairment is an important step toward accurate diagnosis and intervention of this condition. To investigate the extent of neurodegeneration in patients with mild cognitive impairment, whole-brain cerebral metabolic rate of oxygen in absolute units of µmol O 2 /min/100 g was quantified in 44 amnestic mild cognitive impairment and 28 elderly controls using a novel, non-invasive magnetic resonance imaging method. We found a 12.9% reduction ( p = 0.004) in cerebral metabolic rate of oxygen in mild cognitive impairment, which was primarily attributed to a reduction in the oxygen extraction fraction, by 10% ( p = 0.016). Global cerebral blood flow was not found to be different between groups. Another aspect of vascular function, cerebrovascular reactivity, was measured by CO 2 -inhalation magnetic resonance imaging and was found to be equivalent between groups. Therefore, there seems to be a global, diffuse diminishment in neural function in mild cognitive impairment, while their vascular function did not show a significant reduction.

  2. Comparing cerebral perfusion in Alzheimer's disease and Parkinson's disease dementia: an ASL-MRI study.

    PubMed

    Le Heron, Campbell J; Wright, Sarah L; Melzer, Tracy R; Myall, Daniel J; MacAskill, Michael R; Livingston, Leslie; Keenan, Ross J; Watts, Richard; Dalrymple-Alford, John C; Anderson, Tim J

    2014-06-01

    Emerging evidence suggests that Alzheimer's disease (AD) and Parkinson's disease dementia (PDD) share neurodegenerative mechanisms. We sought to directly compare cerebral perfusion in these two conditions using arterial spin labeling magnetic resonance imaging (ASL-MRI). In total, 17 AD, 20 PDD, and 37 matched healthy controls completed ASL and structural MRI, and comprehensive neuropsychological testing. Alzheimer's disease and PDD perfusion was analyzed by whole-brain voxel-based analysis (to assess absolute blood flow), a priori specified region of interest analysis, and principal component analysis (to generate a network differentiating the two groups). Corrections were made for cerebral atrophy, age, sex, education, and MRI scanner software version. Analysis of absolute blood flow showed no significant differences between AD and PDD. Comparing each group with controls revealed an overlapping, posterior pattern of hypoperfusion, including posterior cingulate gyrus, precuneus, and occipital regions. The perfusion network that differentiated AD and PDD groups identified relative differences in medial temporal lobes (ADcerebral hypoperfusion is very similar in AD and PDD. This suggests closely linked mechanisms of neurodegeneration mediating the evolution of dementia in both conditions.

  3. The vascular neural network—a new paradigm in stroke pathophysiology

    PubMed Central

    Zhang, John H.; Badaut, Jerome; Tang, Jiping; Obenaus, Andre; Hartman, Richard; Pearce, William J.

    2013-01-01

    The concept of the neurovascular unit as the key brain component affected by stroke is controversial, because current definitions of this entity neglect mechanisms that control perfusion and reperfusion of arteries and arterioles upstream of the cerebral microcirculation. Indeed, although definitions vary, many researchers consider the neurovascular unit to be restricted to endothelial cells, neurons and glia within millimetres of the cerebral capillary microcirculation. This Perspectives article highlights the roles of vascular smooth muscle, endothelial cells and perivascular innervation of cerebral arteries in the initiation and progression of, and recovery from, ischaemic stroke. The concept of the vascular neural network—which includes cerebral arteries, arterioles, and downstream neuronal and glial cell types and structures—is introduced as the fundamental component affected by stroke pathophysiology. The authors also propose that the vascular neural network should be considered the main target for future therapeutic intervention after cerebrovascular insult. PMID:23070610

  4. Nonalcoholic fatty liver disease and chronic vascular complications of diabetes mellitus.

    PubMed

    Targher, Giovanni; Lonardo, Amedeo; Byrne, Christopher D

    2018-02-01

    Nonalcoholic fatty liver disease (NAFLD) and diabetes mellitus are common diseases that often coexist and might act synergistically to increase the risk of hepatic and extra-hepatic clinical outcomes. NAFLD affects up to 70-80% of patients with type 2 diabetes mellitus and up to 30-40% of adults with type 1 diabetes mellitus. The coexistence of NAFLD and diabetes mellitus increases the risk of developing not only the more severe forms of NAFLD but also chronic vascular complications of diabetes mellitus. Indeed, substantial evidence links NAFLD with an increased risk of developing cardiovascular disease and other cardiac and arrhythmic complications in patients with type 1 diabetes mellitus or type 2 diabetes mellitus. NAFLD is also associated with an increased risk of developing microvascular diabetic complications, especially chronic kidney disease. This Review focuses on the strong association between NAFLD and the risk of chronic vascular complications in patients with type 1 diabetes mellitus or type 2 diabetes mellitus, thereby promoting an increased awareness of the extra-hepatic implications of this increasingly prevalent and burdensome liver disease. We also discuss the putative underlying mechanisms by which NAFLD contributes to vascular diseases, as well as the emerging role of changes in the gut microbiota (dysbiosis) in the pathogenesis of NAFLD and associated vascular diseases.

  5. Inflammation markers and prediction of post-stroke vascular disease recurrence: the MITICO study.

    PubMed

    Castillo, J; Alvarez-Sabín, J; Martínez-Vila, E; Montaner, J; Sobrino, T; Vivancos, J

    2009-02-01

    Vascular disease recurrence following stroke is the main cause of morbidity and mortality. The MITICO study was designed to assess the prognostic value of markers of inflammation in relation to the risk of recurrence of vascular disease. Multi-centered prospective observational study, in patients with ischemic stroke not receiving anti-coagulation therapy and who were recruited within 1-3 months from stroke onset. Blood samples were obtained at baseline and follow- up for the determination of high-sensitive C reactive protein (CRP), IL-6, IL-10, ICAM-1, VCAM- 1, MMP-9 and cellular fibronectin. Four follow-up visits within the first year were to rule out recurrence. Of 965 patients from 65 hospitals, 780 (aged 67.5+/-11.2 years, 33.6 % female) were valid for main analysis. One-hundred and three patients (13.2 %) had a new adverse vascular event and 116 patients (14.9 %) a vascular event or vascular death (66.4 % stroke, 21.5 % coronary and 12.1 % peripheral). Levels of IL-6 > 5 pg/mL and VCAM-1 > 1350 ng/mL (ROC curve analyses) were associated with vascular disease recurrence risk (OR: 28.7; 95 % CI: 14.2-58.0 vs. OR: 4.1; 95 % CI: 2.4-7.1, respectively) following adjustment for confounding variables. Risk of adverse vascular event or death from vascular disease were associated with IL-6 (OR: 21.2; 95 % CI: 11.6-38.7) and VCAM-1 (OR: 3.8; 95 % CI: 2.3-6.4). Baseline values of IL-6 > 5 pg/mL and VCAM-1 > 1350 ng/mL increase 21-fold and 4-fold, respectively, the risk of new vascular disease event or death from vascular disease in patients with ischemic stroke not receiving anti-coagulation treatment.

  6. Oxidative stress and inflammation in cerebral cavernous malformation disease pathogenesis: Two sides of the same coin.

    PubMed

    Retta, Saverio Francesco; Glading, Angela J

    2016-12-01

    Cerebral Cavernous Malformation (CCM) is a vascular disease of proven genetic origin, which may arise sporadically or is inherited as an autosomal dominant condition with incomplete penetrance and highly variable expressivity. CCM lesions exhibit a range of different phenotypes, including wide inter-individual differences in lesion number, size, and susceptibility to intracerebral hemorrhage (ICH). Lesions may remain asymptomatic or result in pathological conditions of various type and severity at any age, with symptoms ranging from recurrent headaches to severe neurological deficits, seizures, and stroke. To date there are no direct therapeutic approaches for CCM disease besides the surgical removal of accessible lesions. Novel pharmacological strategies are particularly needed to limit disease progression and severity and prevent de novo formation of CCM lesions in susceptible individuals. Useful insights into innovative approaches for CCM disease prevention and treatment are emerging from a growing understanding of the biological functions of the three known CCM proteins, CCM1/KRIT1, CCM2 and CCM3/PDCD10. In particular, accumulating evidence indicates that these proteins play major roles in distinct signaling pathways, including those involved in cellular responses to oxidative stress, inflammation and angiogenesis, pointing to pathophysiological mechanisms whereby the function of CCM proteins may be relevant in preventing vascular dysfunctions triggered by these events. Indeed, emerging findings demonstrate that the pleiotropic roles of CCM proteins reflect their critical capacity to modulate the fine-tuned crosstalk between redox signaling and autophagy that govern cell homeostasis and stress responses, providing a novel mechanistic scenario that reconciles both the multiple signaling pathways linked to CCM proteins and the distinct therapeutic approaches proposed so far. In addition, recent studies in CCM patient cohorts suggest that genetic susceptibility

  7. Cerebral Autoregulation in Hypertension and Ischemic Stroke: A Mini Review

    PubMed Central

    Shekhar, Shashank; Liu, Ruen; Travis, Olivia K; Roman, Richard J; Fan, Fan

    2017-01-01

    Aging and chronic hypertension are associated with dysfunction in vascular smooth muscle, endothelial cells, and neurovascular coupling. These dysfunctions induce impaired myogenic response and cerebral autoregulation, which diminish the protection of cerebral arterioles to the cerebral microcirculation from elevated pressure in hypertension. Chronic hypertension promotes cerebral focal ischemia in response to reductions in blood pressure that are often seen in sedentary elderly patients on antihypertensive therapy. Cerebral autoregulatory dysfunction evokes Blood-Brain Barrier (BBB) leakage, allowing the circulating inflammatory factors to infiltrate the brain to activate glia. The impaired cerebral autoregulation-induced inflammatory and ischemic injury could cause neuronal cell death and synaptic dysfunction which promote cognitive deficits. In this brief review, we summarize the pathogenesis and signaling mechanisms of cerebral autoregulation in hypertension and ischemic stroke-induced cognitive deficits, and discuss our new targets including 20-Hydroxyeicosatetraenoic acid (20-HETE), Gamma-Adducin (Add3) and Matrix Metalloproteinase-9 (MMP-9) that may contribute to the altered cerebral vascular function. PMID:29333537

  8. Modeling the Role of the Glymphatic Pathway and Cerebral Blood Vessel Properties in Alzheimer’s Disease Pathogenesis

    PubMed Central

    Kyrtsos, Christina Rose; Baras, John S.

    2015-01-01

    Alzheimer’s disease (AD) is the most common cause of dementia in the elderly, affecting over 10% population over the age of 65 years. Clinically, AD is described by the symptom set of short term memory loss and cognitive decline, changes in mentation and behavior, and eventually long-term memory deficit as the disease progresses. On imaging studies, significant atrophy with subsequent increase in ventricular volume have been observed. Pathology on post-mortem brain specimens demonstrates the classic findings of increased beta amyloid (Aβ) deposition and the presence of neurofibrillary tangles (NFTs) within affected neurons. Neuroinflammation, dysregulation of blood-brain barrier transport and clearance, deposition of Aβ in cerebral blood vessels, vascular risk factors such as atherosclerosis and diabetes, and the presence of the apolipoprotein E4 allele have all been identified as playing possible roles in AD pathogenesis. Recent research has demonstrated the importance of the glymphatic system in the clearance of Aβ from the brain via the perivascular space surrounding cerebral blood vessels. Given the variety of hypotheses that have been proposed for AD pathogenesis, an interconnected, multilayer model offers a unique opportunity to combine these ideas into a single unifying model. Results of this model demonstrate the importance of vessel stiffness and heart rate in maintaining adequate clearance of Aβ from the brain. PMID:26448331

  9. Clinical features and outcome of cerebral abscess in congenital heart disease.

    PubMed

    Mehnaz, Atiq; Syed, Ahmed Umair; Saleem, Allana Salman; Khalid, Chishti N

    2006-01-01

    Cerebral abscess is a serious life threatening complication of several diseases. The objective of this study was to look at the clinical profile, microbiology and outcome of children with cerebral abscess having an underlying congenital heart disease as compared to other predisposing conditions. Thirty children aged less than 15 years were reviewed. There were 15 males and 15 females. The mean age of presentation was 5.6 +/- 4.4 years. The duration of illness at the time of admission was 17.6 +/- 24.6 days. Typically patients presented with fever, vomiting, headache and seizures. The predisposing conditions found were cyanotic congenital heart disease in 11 (37%) of children, meningitis in 6 (20%), septicemia in 7 (23%) and no underlying cause was found in 5 (17%) children. The most common microbe in children with cyanotic congenital heart disease was of the Streptococcus milleri group (52%). Computerized tomography confirmed the diagnosis and the most common location of the abscess was the parietal lobe of the cerebral hemisphere. All abscesses were large, more than 2 cm in diameter and were aspirated surgically. Excision was performed in 6 children. Five children expired, one due to a intracranial bleeding and the others due to severe cerebral edema and tentorial herniation. Complications were seen in 20 children and 16 had sequelae, hemiparesis in 11 and seizure disorder in 5. Brain abscess is a serious infection with poor outcome if diagnosed late. Delayed surgical drainage has high morbidity and mortality. The threshold for diagnosis should be low particularly in children with a predisposing condition like cyanotic congenital heart disease.

  10. Pathophysiology of the vascular wall and its relevance for cerebrovascular disorders in aged rodents.

    PubMed

    Popa-Wagner, A; Pirici, D; Petcu, E B; Mogoanta, L; Buga, A-M; Rosen, C L; Leon, R; Huber, J

    2010-08-01

    Chronic hypertension and cerebral amyloid angiopathy (CAA) are the main pathologies which can induce the rupture of cerebral vessels and intracerebral hemorrhages, as a result of degenerative changes in the vascular wall. A lot of progress has been made in this direction since the successful creation of the first mouse model for the study of Alzheimer's disease (AD), as the spectrum of AD pathology includes a plethora of changes found in pure cerebrovascular diseases. We describe here some of these mouse models having important vascular changes that parallel human AD pathology, and more importantly, we show how these models have helped us understand more about the mechanisms that lead to CAA formation. An important cellular event associated with reduced structural and functional recovery after stroke in aged animals is the early formation of a scar in the infarcted region that impairs subsequent neural recovery and repair. We review recent evidence showing that the rapid formation of the glial scar following stroke in aged rats is associated with premature cellular proliferation that originates primarily from the walls of capillaries in the corpus callosum adjacent to the infarcted region. After stroke several vascular mechanisms are turned-on immediately to protect the brain from further damage and help subsequent neuroregeneration and functional recovery. Although does occur after stroke, vasculogenesis is overshadowed in its protective/restorative role by the angiogenesis and arteriogenesis. Understanding the basic mechanisms underlying functional recovery after cerebral stroke in aging subjects is likely to yield new insights into the treatment of brain injury in the clinic.

  11. Linking vascular disorders and Alzheimer’s disease: Potential involvement of BACE1

    PubMed Central

    Cole, Sarah L.; Vassar, Robert

    2012-01-01

    The etiology of Alzheimer’s disease (AD) remains unknown. However, specific risk factors have been identified, and aging is the strongest AD risk factor. The majority of cardiovascular events occur in older people and a close relationship between vascular disorders and AD exists. Amyloid plaques, composed of the beta amyloid peptide (Aβ), are hallmark lesions in AD and evidence indicates that Aβ plays a central role in AD pathophysiology. The BACE1 enzyme is essential for Aβ generation, and BACE1 levels are elevated in AD brain. The cause(s) of this BACE1 elevation remains undetermined. Here we review the potential contribution of vascular disease to AD pathogenesis. We examine the putative vasoactive properties of Aβ and how the cellular changes associated with vascular disease may elevate BACE1 levels. Despite increasing evidence, the exact role(s) vascular disorders play in AD remains to be determined. However, given that vascular diseases can be addressed by lifestyle and pharmacologic interventions, the potential benefits of these therapies in delaying the clinical appearance and progression of AD may warrant investigation. PMID:18289733

  12. Cerebral small vessel disease and the risk of Alzheimer's disease: A systematic review.

    PubMed

    Liu, Yue; Braidy, Nady; Poljak, Anne; Chan, Daniel Ky; Sachdev, Perminder

    2018-06-10

    Cerebral small vessel disease (CSVD) comprises a variety of disorders affecting small arteries and microvessels of the brain, manifesting as white matter hyperintensities (WMHs), cerebral microbleeds (CMBs), and deep brain infarcts. In addition to its contribution to vascular dementia (VaD), it has also been suggested to contribute to the pathogenesis of Alzheimer's disease (AD). A systematic review of the literature available on Medline, Embase and Pubmed was undertaken, whereby CSVD was divided into WMHs, CMBs and deep brain infarcts. Biomarkers of AD pathology in the cerebrospinal fluid or plasma, or positron emission tomographic imaging for amyloid and/or tau deposition were used for AD pathology. A total of 4117 articles were identified and 41 articles met criteria for inclusion. These consisted of 17 articles on vascular risk factors for clinical AD, 21 articles on Aβ pathology and 15 articles on tau pathology, permitting ten meta-analyses. CMBs or lobar CMBs were associated with pooled relative risk (RR) of AD at 1.546, (95%CI 0.842-2.838, z = 1.41 p = 0.160) and 1.526(95%CI 0.760-3.063, z = 1.19, p = 0.235) respectively, both non-significant. Microinfarcts were associated with significantly increased AD risk, with pooled odds ratio OR at 1.203(95%CI 1.014-1.428, 2.12 p = 0.034). Aβ pathology was significantly associated with WMHs in AD patients but not in normal age-matched controls. The pooled β (linear regression) for total WMHs with CSF Aβ42 in AD patients was -0.19(95%CI -0.26-0.11, z = 4.83 p = 0.000) and the pooled r (correlation coefficient) for WMHs and PiB in the normal population was -0.10 (95%CI -0.11-0.30, 0.93 p = 0.351). CMBs were significantly associated with Aβ pathology in AD patients. The pooled standardized mean difference (SMD) was -0.453, 95%CI -0.697- -0.208, z = 3.63 p = 0.000. There was no significant relationship between the incidence of lacunes and levels of CSFAβ, with a pooled β of 0

  13. Relationship between vascular endothelium and periodontal disease in atherosclerotic lesions: Review article

    PubMed Central

    Saffi, Marco Aurélio Lumertz; Furtado, Mariana Vargas; Polanczyk, Carisi Anne; Montenegro, Márlon Munhoz; Ribeiro, Ingrid Webb Josephson; Kampits, Cassio; Haas, Alex Nogueira; Rösing, Cassiano Kuchenbecker; Rabelo-Silva, Eneida Rejane

    2015-01-01

    Inflammation and endothelial dysfunction are linked to the pathogenesis of atherosclerotic disease. Recent studies suggest that periodontal infection and the ensuing increase in the levels of inflammatory markers may be associated with myocardial infarction, peripheral vascular disease and cerebrovascular disease. The present article aimed at reviewing contemporary data on the pathophysiology of vascular endothelium and its association with periodontitis in the scenario of cardiovascular disease. PMID:25632316

  14. Myocardin Regulates Vascular Smooth Muscle Cell Inflammatory Activation and Disease

    PubMed Central

    Ackers-Johnson, Matthew; Talasila, Amarnath; Sage, Andrew P; Long, Xiaochun; Bot, Ilze; Morrell, Nicholas W; Bennett, Martin R; Miano, Joseph M.; Sinha, Sanjay

    2015-01-01

    Objective Atherosclerosis, the cause of 50% of deaths in westernised societies, is widely regarded as a chronic vascular inflammatory disease. Vascular smooth muscle cell (VSMC) inflammatory activation in response to local pro-inflammatory stimuli contributes to disease progression and is a pervasive feature in developing atherosclerotic plaques. Therefore, it is of considerable therapeutic importance to identify mechanisms that regulate the VSMC inflammatory response. Approach and Results We report that myocardin, a powerful myogenic transcriptional coactivator, negatively regulates VSMC inflammatory activation and vascular disease. Myocardin levels are reduced during atherosclerosis, in association with phenotypic switching of smooth muscle cells. Myocardin deficiency accelerates atherogenesis in hypercholesterolemic ApoE−/− mice. Conversely, increased myocardin expression potently abrogates the induction of an array of inflammatory cytokines, chemokines and adhesion molecules in VSMCs. Expression of myocardin in VSMCs reduces lipid uptake, macrophage interaction, chemotaxis and macrophage-endothelial tethering in vitro, and attenuates monocyte accumulation within developing lesions in vivo. These results demonstrate that endogenous levels of myocardin are a critical regulator of vessel inflammation. Conclusions We propose myocardin as a guardian of the contractile, non-inflammatory VSMC phenotype, with loss of myocardin representing a critical permissive step in the process of phenotypic transition and inflammatory activation, at the onset of vascular disease. PMID:25614278

  15. Cerebral Atrophy

    MedlinePlus

    ... Alzheimer’s disease, Pick’s disease, and fronto-temporal dementia cerebral palsy , in which lesions (damaged areas) may impair motor ... Alzheimer’s disease, Pick’s disease, and fronto-temporal dementia cerebral palsy , in which lesions (damaged areas) may impair motor ...

  16. Cerebral Small Vessel Disease: Targeting Oxidative Stress as a Novel Therapeutic Strategy?

    PubMed Central

    De Silva, T. Michael; Miller, Alyson A.

    2016-01-01

    Cerebral small vessel disease (SVD) is a major contributor to stroke, and a leading cause of cognitive impairment and dementia. Despite the devastating effects of cerebral SVD, the pathogenesis of cerebral SVD is still not completely understood. Moreover, there are no specific pharmacological strategies for its prevention or treatment. Cerebral SVD is characterized by marked functional and structural abnormalities of the cerebral microcirculation. The clinical manifestations of these pathological changes include lacunar infarcts, white matter hyperintensities, and cerebral microbleeds. The main purpose of this review is to discuss evidence implicating oxidative stress in the arteriopathy of both non-amyloid and amyloid (cerebral amyloid angiopathy) forms of cerebral SVD and its most important risk factors (hypertension and aging), as well as its contribution to cerebral SVD-related brain injury and cognitive impairment. We also highlight current evidence of the involvement of the NADPH oxidases in the development of oxidative stress, enzymes that are a major source of reactive oxygen species in the cerebral vasculature. Lastly, we discuss potential pharmacological strategies for oxidative stress in cerebral SVD, including some of the historical and emerging NADPH oxidase inhibitors. PMID:27014073

  17. Inapparent pulmonary vascular disease in an ex-heroin user

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antonelli Incalzi, R.; Ludovico Maini, C.; Giuliano Bonetti, M.

    1986-04-01

    A severe pulmonary vascular derangement, usually reported in drug addicts, was diagnosed in a 28-year-old asymptomatic ex-heroin user by means of fortuitously performed pulmonary perfusion imaging. Neither physical findings nor pulmonary function tests, aroused suspicion of the diagnosis. A search for asymptomatic pulmonary vascular disease probably should be undertaken in drug addicts.

  18. Mediterranean Diet, Alzheimer Disease, and Vascular Mediation

    PubMed Central

    Scarmeas, Nikolaos; Stern, Yaakov; Mayeux, Richard; Luchsinger, Jose A.

    2011-01-01

    Objectives To examine the association between the Mediterranean diet (MeDi) and Alzheimer disease (AD) in a different AD population and to investigate possible mediation by vascular pathways. Design, Setting, Patients, and Main Outcome Measures A case-control study nested within a community-based cohort in New York, NY. Adherence to the MeDi (0- to 9-point scale with higher scores indicating higher adherence) was the main predictor of AD status (194 patients with AD vs 1790 nondemented subjects) in logistic regression models that were adjusted for cohort, age, sex, ethnicity, education, apolipoprotein E genotype, caloric intake, smoking, medical comorbidity index, and body mass index (calculated as weight in kilograms divided by height in meters squared). We investigated whether there was attenuation of the association between MeDi and AD when vascular variables (stroke, diabetes mellitus, hypertension, heart disease, lipid levels) were simultaneously introduced in the models (which would constitute evidence of mediation). Results Higher adherence to the MeDi was associated with lower risk for AD (odds ratio, 0.76; 95% confidence interval, 0.67–0.87; P<.001). Compared with subjects in the lowest MeDi tertile, subjects in the middle MeDi tertile had an odds ratio of 0.47 (95% confidence interval, 0.29–0.76) and those at the highest tertile an odds ratio of 0.32 (95% confidence interval, 0.17–0.59) for AD (P for trend <.001). Introduction of the vascular variables in the model did not change the magnitude of the association. Conclusions We note once more that higher adherence to the MeDi is associated with a reduced risk for AD. The association does not seem to be mediated by vascular comorbidity. This could be the result of either other biological mechanisms (oxidative or inflammatory) being implicated or measurement error of the vascular variables. PMID:17030648

  19. Multimodal MRI in cerebral small vessel disease: its relationship with cognition and sensitivity to change over time.

    PubMed

    Nitkunan, Arani; Barrick, Tom R; Charlton, Rebecca A; Clark, Chris A; Markus, Hugh S

    2008-07-01

    Cerebral small vessel disease is the most common cause of vascular dementia. Interest in using MRI parameters as surrogate markers of disease to assess therapies is increasing. In patients with symptomatic sporadic small vessel disease, we determined which MRI parameters best correlated with cognitive function on cross-sectional analysis and which changed over a period of 1 year. Thirty-five patients with lacunar stroke and leukoaraiosis were recruited. They underwent multimodal MRI (brain volume, fluid-attenuated inversion recovery lesion load, lacunar infarct number, fractional anisotropy, and mean diffusivity from diffusion tensor imaging) and neuropsychological testing. Twenty-seven agreed to reattend for repeat MRI and neuropsychology at 1 year. An executive function score correlated most strongly with diffusion tensor imaging (fractional anisotropy histogram, r=-0.640, P=0.004) and brain volume (r=0.501, P=0.034). Associations with diffusion tensor imaging were stronger than with all other MRI parameters. On multiple regression of all imaging parameters, a model that contained brain volume and fractional anisotropy, together with age, gender, and premorbid IQ, explained 74% of the variance of the executive function score (P=0.0001). Changes in mean diffusivity and fractional anisotropy were detectable over the 1-year follow-up; in contrast, no change in other MRI parameters was detectable over this time period. A multimodal MRI model explains a large proportion of the variation in executive function in cerebral small vessel disease. In particular, diffusion tensor imaging correlates best with executive function and is the most sensitive to change. This supports the use of MRI, in particular diffusion tensor imaging, as a surrogate marker in treatment trials.

  20. Cerebral blood flow measured by arterial spin labeling MRI at resting state in normal aging and Alzheimer's disease.

    PubMed

    Zhang, Nan; Gordon, Marc L; Goldberg, Terry E

    2017-01-01

    Arterial spin labeling (ASL) magnetic resonance imaging uses arterial blood water as an endogenous tracer to measure cerebral blood flow (CBF). In this review, based on ASL studies in the resting state, we discuss state-of-the-art technical and data processing improvements in ASL, and ASL CBF changes in normal aging, mild cognitive impairment (MCI), Alzheimer's disease (AD), and other types of dementia. We propose that vascular and AD risk factors should be considered when evaluating CBF changes in aging, and that other validated biomarkers should be used as inclusion criteria or covariates when evaluating CBF changes in MCI and AD. With improvements in hardware and experimental design, ASL is proving to be an increasingly promising tool for exploring pathogenetic mechanisms, early detection, monitoring disease progression and pharmacological response, and differential diagnosis of AD. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. [Clinical and electroencephalographic characteristic of noopept in patients with mild cognitive impairment of posttraumatic and vascular origin].

    PubMed

    Bochkarev, V K; Teleshova, E S; Siuniakov, S A; Davydova, D V; Neznamov, G G

    2008-01-01

    An effect of a new nootropic drug noopept on the dynamics of main EEG rhythms and narrow-band spectral EEG characteristics in patients with cerebral asthenic and cognitive disturbances caused by traumas or vascular brain diseases has been studied. Noopept caused the EEG changes characteristic of the action of nootropics: the increase of alpha- and beta-rhythms power and reduction of delta-rhythms power. The reaction of alpha-rhythm was provided mostly by the dynamics of its low and medium frequencies (6,7-10,2 Hz), the changes of beta-rhythm were augmented in frontal and attenuated in occipital areas. The analysis of frequency and spatial structure of EEG changes reveals that noopept exerts a nonspecific activation and anxyolytic effect. The differences in EEG changes depending on the brain pathology were found. The EEG indices of nootropic effect of the drug were most obvious in cerebral vascular diseases. The EEG changes in posttraumatic brain lesion were less typical.

  2. Uric acid promotes oxidative stress and enhances vascular endothelial cell apoptosis in rats with middle cerebral artery occlusion.

    PubMed

    Song, Chengfu; Zhao, Xiangdong

    2018-05-15

    In patients with cerebral infarction (CI), elevated serum uric acid (UA) level may exacerbate the occurrence and development of carotid atherosclerosis (AS). Our study intended to explore the underlying mechanism. We enrolled 86 patients with CI, and divided them into four groups: Non-AS, AS-mild, AS-moderate, and AS-severe groups; the levels of UA and oxidative stress-related factors in serum were detected. The middle cerebral artery occlusion (MCAO) model was used to stimulate CI in rats, and different doses of UA were administrated. The levels of oxidative stress-related factors in serum were detected. Hematoxylin & eosin (H&E) staining was used to observe the morphological alterations, and the apoptotic cell death detection kit was used to detect apoptotic cells. Increased UA concentration and enhanced oxidative stress were found in AS patients. H&E staining results showed that UA treatment exacerbated morphological damage in rats with MCAO, promoted oxidative stress, and enhanced vascular endothelial cell apoptosis in rats with MCAO. © 2017 The Author(s).

  3. Using Omics to Understand and Treat Pulmonary Vascular Disease.

    PubMed

    Hemnes, Anna R

    2018-01-01

    Pulmonary arterial hypertension (PAH) is a devastating disease for which there is no cure. Presently this condition is differentiated from other diseases of the pulmonary vasculature by a practitioner's history, physical examination, and clinical studies with clinical markers of disease severity primarily guiding therapeutic choices. New technologies such as next generation DNA sequencing, high throughput RNA sequencing, metabolomics and proteomics have greatly enhanced the amount of data that can be studied efficiently in patients with PAH and other rare diseases. There is emerging data on the use of these "Omics" for pulmonary vascular disease classification and diagnosis and also new work that suggests molecular markers, including Omics, may be used to more efficiently match patients to their own most effective therapies. This review focuses on the state of knowledge on molecular classification and treatment of PAH. Strengths and weaknesses of current Omic technologies are discussed and how these new technologies can be used in the future to improve diagnosis of pulmonary vascular disease, more effectively treat patients with existing and future drugs, and generate new understanding of disease pathogenesis and mechanisms underlying treatment success or failure. Bioinformatic methods to analyze the large volumes of data are developing rapidly, but still present major challenges to interpretation of potential Omic findings in pulmonary vascular disease, with low numbers of patients studied and a potentially high false discovery rate. With more experience, precise and established drug response definitions, this field with move forward and will likely be a major component of the clinical care of PH patients in the future.

  4. Analysis of ischemic cerebral lesions using 3.0-T diffusion-weighted imaging and magnetic resonance angiography after revascularization surgery for ischemic disease.

    PubMed

    Murai, Yasuo; Mizunari, Takayuki; Takagi, Ryo; Amano, Yasuo; Mizumura, Sunao; Komaba, Yuichi; Okubo, Seiji; Kobayashi, Shiro; Teramoto, Akira

    2013-07-01

    Cerebral revascularization surgery (CRS) is increasingly recognized as an important component in the treatment of complex cerebral vascular disease and tumors. CRS requires that the incidence of perioperative neurological complications should be minimized, because CRS for ischemic disease is often not the goal of treatment, but rather a prophylactic surgery. CRS carries the risk of focal postoperative neurological deficits. Little has been established concerning mechanisms of post-CRS ischemia. We used 3.0-T diffusion-weighted magnetic resonance imaging (DWI) and magnetic resonance angiography (MRA) to analyze the incidence and mechanism of ischemic lesions. We studied the anterior circulation territory after 20 CRS procedures involving 33 vascular anastomosis procedures (13 double anastomoses and 7 single anastomoses) in 12 men and 8 women between June 2007 and October 2011. The operations included single or double superficial temporal artery-middle cerebral artery (STA-MCA) anastomosis to treat internal carotid artery/MCA occlusions or severe MCA stenosis. A combined STA-MCA anastomosis and indirect bypass were performed for moyamoya disease. Postoperative DWI and MRA were obtained in all patients between 24 and 96 h after surgery to detect thromboembolism, hypoperfusion, or procedural ischemic complications and vasospasms of the donor STA. Follow-up DWI and MRA were carried out 1.8±0.6 days after CRS (range, 1-4 days). Temporary occlusion time for anastomoses averaged 18.9 min (range, 16-32 min). Asymptomatic new hyperintensities occurred in the ipsilateral hemisphere of 2 patients on postoperative DWI (10% patients/6.0% anastomoses), and 1 moyamoya patient (5.0% patients/3.0% anastomoses) developed a symptomatic hyperintensity in the ipsilateral occipital lobe in response to the operation. Two abnormal small (<5 mm) cortical DWI lesions were caused by sacrifices of a small branch of the recipient MCA. This study is the first postoperative 3.0-T DWI study of

  5. Shunting effects in patients with idiopathic normal pressure hydrocephalus; correlation with cerebral and leptomeningeal biopsy findings.

    PubMed

    Bech, R A; Waldemar, G; Gjerris, F; Klinken, L; Juhler, M

    1999-01-01

    Normal Pressure Hydrocephalus (NPH) is a potentially treatable syndrome with abnormal cerebrospinal fluid dynamics. Meningeal fibrosis and/or obliteration of the subarachnoid space have been suggested as one of the patho-anatomical substrates. However, other types of adult onset dementia, predominantly Alzheimer's disease and Vascular Dementia, may mimic the clinical NPH characteristics. The purpose of the present study was to correlate cerebral parenchymal and leptomeningeal biopsy findings to the clinical outcome after CSF shunting in a prospective group of idiopathic NPH (INPH) patients. The study comprises 27 patients with INPH, diagnosed and shunted according to generally accepted clinical, imaging and hydrodynamic criteria. In all patients a frontal leptomeningeal and brain biopsy was obtained prior to the shunt insertion. Degenerative cerebral changes, most often Alzheimer (6 cases) or vascular changes (7 cases) were described in 14 out of 27 biopsies. Arachnoid fibrosis was found in 9 of the 18 biopsies containing arachnoid tissue. Overall, nine patients (33%) improved, of whom 6 presented Alzheimer or vascular changes in their biopsies. No correlation was found between clinical outcome and the presence or absence of degenerative cerebral changes and/or arachnoid fibrosis. However, a tendency towards higher improvement rates was noted in the subgroups presenting degenerative cerebral changes or arachnoid fibrosis. The results suggest that no constant morphological element exists in the syndrome of INPH. Various aetiologies may be involved in the pathogenesis and possibly in some cases co-existing: Patients may also improve by shunting despite the presence of degenerative cerebral parenchymal changes.

  6. The adaptation of the cerebral circulation to pregnancy: mechanisms and consequences

    PubMed Central

    Cipolla, Marilyn J

    2013-01-01

    The adaptation of the cerebral circulation to pregnancy is unique from other vascular beds. Most notably, the growth and vasodilatory response to high levels of circulating growth factors and cytokines that promote substantial hemodynamic changes in other vascular beds is limited in the cerebral circulation. This is accomplished through several mechanisms, including downregulation of key receptors and transcription factors, and production of circulating factors that counteract the vasodilatory effects of vascular endothelial growth factor (VEGF) and placental growth factor. Pregnancy both prevents and reverses hypertensive inward remodeling of cerebral arteries, possibly through downregulation of the angiotensin type 1 receptor. The blood–brain barrier (BBB) importantly adapts to pregnancy by preventing the passage of seizure provoking serum into the brain and limiting the permeability effects of VEGF that is more highly expressed in cerebral vasculature during pregnancy. While the adaptation of the cerebral circulation to pregnancy provides for relatively normal cerebral blood flow and BBB properties in the face of substantial cardiovascular changes and high levels of circulating factors, under pathologic conditions, these adaptations appear to promote greater brain injury, including edema formation during acute hypertension, and greater sensitivity to bacterial endotoxin. PMID:23321787

  7. Therapeutic Potential of Modulating microRNAs in Atherosclerotic Vascular Disease

    PubMed Central

    Araldi, Elisa; Chamorro-Jorganes, Aranzazu; van Solingen, Coen; Fernández-Hernando, Carlos; Suárez, Yajaira

    2013-01-01

    Atherosclerosis (also known as arteriosclerotic vascular disease) is a chronic inflammatory disease of the arterial wall, characterized by the formation of lipid-laden lesions. The activation of endothelial cells at atherosclerotic lesion–prone sites in the arterial tree results in the up-regulation of cell adhesion molecules and chemokines, which mediate the recruitment of circulating monocytes. Accumulation of monocytes and monocyte-derived phagocytes in the wall of large arteries leads to chronic inflammation and the development and progression of atherosclerosis. The lesion experiences the following steps: foam cell formation, fatty streak accumulation, migration and proliferation of vascular smooth muscle cells, and fibrous cap formation. Finally, the rupture of the unstable fibrous cap causes thrombosis in complications of advanced lesions that leads to unstable coronary syndromes, myocardial infarction and stroke. MicroRNAs have recently emerged as a novel class of gene regulators at the post-transcriptional level. Several functions of vascular cells, such as cell differentiation, contraction, migration, proliferation and inflammation that are involved in angiogenesis, neointimal formation and lipid metabolism underlying various vascular diseases, have been found to be regulated by microRNAs and are described in the present review as well as their potential therapeutic application. PMID:23713860

  8. Indian-Ink Perfusion Based Method for Reconstructing Continuous Vascular Networks in Whole Mouse Brain

    PubMed Central

    Xue, Songchao; Gong, Hui; Jiang, Tao; Luo, Weihua; Meng, Yuanzheng; Liu, Qian; Chen, Shangbin; Li, Anan

    2014-01-01

    The topology of the cerebral vasculature, which is the energy transport corridor of the brain, can be used to study cerebral circulatory pathways. Limited by the restrictions of the vascular markers and imaging methods, studies on cerebral vascular structure now mainly focus on either observation of the macro vessels in a whole brain or imaging of the micro vessels in a small region. Simultaneous vascular studies of arteries, veins and capillaries have not been achieved in the whole brain of mammals. Here, we have combined the improved gelatin-Indian ink vessel perfusion process with Micro-Optical Sectioning Tomography for imaging the vessel network of an entire mouse brain. With 17 days of work, an integral dataset for the entire cerebral vessels was acquired. The voxel resolution is 0.35×0.4×2.0 µm3 for the whole brain. Besides the observations of fine and complex vascular networks in the reconstructed slices and entire brain views, a representative continuous vascular tracking has been demonstrated in the deep thalamus. This study provided an effective method for studying the entire macro and micro vascular networks of mouse brain simultaneously. PMID:24498247

  9. Depression, insight, and personality changes in Alzheimer's disease and vascular dementia.

    PubMed

    Verhey, F R; Ponds, R W; Rozendaal, N; Jolles, J

    1995-01-01

    Although it is generally believed that depression, retained insight, and preserved personality occur more frequently in vascular dementia than in Alzheimer's disease, there is little empiric evidence for this presumption. Most studies on this subject have been carried out with severely demented inpatients, and confounding factors such as age, sex, and severity of dementia have not been sufficiently taken into account. We compared 48 patients with relatively mild vascular dementia with 48 patients with Alzheimer's disease, matched for age, sex, and stage of dementia, to investigate if depression, lack of insight, and personality changes were related to the cause of dementia. The two groups did not differ regarding the incidence of major depression, the mean depression score, the awareness score, or the sum of scores on the items of the Blessed Dementia Scale concerning personality changes. We conclude that depression, lack of insight, and personality changes do not favor an etiology of vascular dementia over that of Alzheimer's disease. The present findings underscore the notion that the severity of the dementia should be considered in studies on the differences between vascular dementia and Alzheimer's disease.

  10. In vivo imaging of spontaneous low-frequency oscillations in cerebral hemodynamics with a digital red-green-blue camera

    NASA Astrophysics Data System (ADS)

    Mustari, Afrina; Nakamura, Naoki; Nishidate, Izumi; Kawauchi, Satoko; Sato, Shunichi; Sato, Manabu; Kokobo, Yasuaki

    2017-04-01

    Nervous system relies on a continuous and adequate supply of blood flow, bringing the nutrients that it needs and removing the waste products of metabolism. Failure of these mechanisms is found in a number of devastating cerebral diseases, including stroke, vascular dementia, brain injury and trauma. Vasomotion which is the spontaneous low-frequency oscillation derived by the contraction and relaxation of arterioles and appears to be an intrinsic property of the cerebral vasculature, is important for monitoring the cerebral flow, tissue metabolism and health status of brain tissue. In the present study, we investigated a method to visualize the spontaneous low-frequency oscillation of cerebral blood volume based on the sequential RGB images of exposed brain.

  11. Enhanced contractility of intraparenchymal arterioles after global cerebral ischaemia in rat - new insights into the development of delayed cerebral hypoperfusion.

    PubMed

    Spray, S; Johansson, S E; Radziwon-Balicka, A; Haanes, K A; Warfvinge, K; Povlsen, G K; Kelly, P A T; Edvinsson, L

    2017-08-01

    Delayed cerebral hypoperfusion is a secondary complication found in the days after transient global cerebral ischaemia that worsens the ischaemic damage inflicted by the initial transient episode of global cerebral ischaemia. A recent study demonstrated increased cerebral vasoconstriction in the large arteries on the brain surface (pial arteries) after global cerebral ischaemia. However, smaller arterioles inside the brain (parenchymal arterioles) are equally important in the regulation of cerebral blood flow and yet their pathophysiology after global cerebral ischaemia is largely unknown. Therefore, we investigated whether increased contractility occurs in the intraparenchymal arterioles. Global cerebral ischaemia was induced in male Wistar rats by bilateral common carotid occlusion for 15 min combined with hypovolaemia. Regional cerebral blood flow was determined by quantitative autoradiography. Intraparenchymal arterioles were isolated and pressurized, and concentration-response curves to endothelin-1 with and without the endothelin B receptor-selective antagonist BQ788 was generated. Endothelin B receptor expression was investigated by quantitative flow cytometry and immunohistochemistry. We observed increased endothelin-1-mediated contractility of parenchymal arterioles correlating with reduced cerebral blood flow of the cortex, hippocampus and caudate nucleus 48 h after global cerebral ischaemia. The increased endothelin-1-mediated contractility was abolished by BQ788, and the vascular smooth muscle cell-specific expression of endothelin B receptors was significantly increased after global cerebral ischaemia. Increased endothelin-1-mediated contractility and expression of endothelin B receptors in the intraparenchymal vasculature contributes to the development of delayed cerebral hypoperfusion after global cerebral ischaemia in combination with vascular changes of the pial vasculature. © 2016 Scandinavian Physiological Society. Published by John Wiley

  12. VEGF (Vascular Endothelial Growth Factor) and Fibrotic Lung Disease.

    PubMed

    Barratt, Shaney L; Flower, Victoria A; Pauling, John D; Millar, Ann B

    2018-04-24

    Interstitial lung disease (ILD) encompasses a group of heterogeneous diseases characterised by varying degrees of aberrant inflammation and fibrosis of the lung parenchyma. This may occur in isolation, such as in idiopathic pulmonary fibrosis (IPF) or as part of a wider disease process affecting multiple organs, such as in systemic sclerosis. Anti-Vascular Endothelial Growth Factor (anti-VEGF) therapy is one component of an existing broad-spectrum therapeutic option in IPF (nintedanib) and may become part of the emerging therapeutic strategy for other ILDs in the future. This article describes our current understanding of VEGF biology in normal lung homeostasis and how changes in its bioavailability may contribute the pathogenesis of ILD. The complexity of VEGF biology is particularly highlighted with an emphasis on the potential non-vascular, non-angiogenic roles for VEGF in the lung, in both health and disease.

  13. [Etiologies of cerebral palsy and classical treatment possibilities].

    PubMed

    Maurer, Ute

    2002-01-01

    Cerebral palsy is a non-progressive disorder of the developing brain with different etiologies in the pre-, peri- or postnatal period. The most important of these diseases is cystic periventricular leukomalacia (PVL), followed by intra- and periventricular hemorrhage, hypoxic-ischemic encephalopathy, vascular disorders, infections or brain malformations. The underlying cause is always a damage of the first motor neuron. Prevalence of cerebral palsy in Europe is 2-3 per 1000 live births with a broad spectrum in different birth weight groups. Our own data concerning only pre-term infants in the NICU with birth weight below 1500 g (VLBW) are between 10%-20%. Established classical treatment methods include physiotherapy (Bobath, Vojta, Hippotherapy), methods of speech and occupational therapists (Castillo-Morales, Sensory Integration) and other therapeutical concepts (Petö, Affolter, Frostig).

  14. Effect of electromagnetic pulse exposure on brain micro vascular permeability in rats.

    PubMed

    Ding, Gui-Rong; Li, Kang-Chu; Wang, Xiao-Wu; Zhou, Yong-Chun; Qiu, Lian-Bo; Tan, Juan; Xu, Sheng-Long; Guo, Guo-Zhen

    2009-06-01

    To observe the effect of electromagnetic pulse (EMP) exposure on cerebral micro vascular permeability in rats. The whole-body of male Sprague-Dawley rats were exposed or sham exposed to 200 pulses or 400 pulses (1 Hz) of EMP at 200 kV/m. At 0.5, 1, 3, 6, and 12 h after EMP exposure, the permeability of cerebral micro vascular was detected by transmission electron microscopy and immunohistochemistry using lanthanum nitrate and endogenous albumin as vascular tracers, respectively. The lanthanum nitrate tracer was limited to the micro vascular lumen with no lanthanum nitrate or albumin tracer extravasation in control rat brain. After EMP exposure, the lanthanum nitrate ions reached the tight junction, basal lamina and pericapillary tissue. Similarly, the albumin immunopositive staining was identified in pericapillary tissue. The changes in brain micro vascular permeability were transient, the leakage of micro vascular vessels appeared at 1 h, and reached its peak at 3 h, and nearly recovered at 12 h, after EMP exposure. In addition, the leakage of micro vascular was more obvious after exposure of EMP at 400 pulses than after exposure of EMP at 200 pulses. Exposure to 200 and 400 pulses (1 Hz) of EMP at 200 kV/m can increase cerebral micro vascular permeability in rats, which is recoverable.

  15. [Multicentric hyaline vascular Castleman's disease. A POEMS type variant].

    PubMed

    Gracia-Ramos, Abraham Edgar; Cruz-Domínguez, María del Pilar; Vera-Lastra, Olga Lidia

    2013-01-01

    Castleman's disease is an atypical lymphoproliferative disorder which may be compatible with paraneoplastic manifestations of POEMS syndrome. a 53 year old man with a history of type 2 diabetes, hypothyroidism and Addison's disease presented with numbness and weakness in limbs, dyspnea, skin hardening, Raynaud's phenomenon, weight loss and fatigue. A physical exam showed tachypnea, generalized cutaneous hyperpigmentation and skin hardening of extremities, muscle weakness, hypoesthesia and hyporeflexia. Laboratory showed hyperprolactinemia, low testosterone, hypothyroidism and Addison's disease. Electrophoresis of proteins showed polyclonal hypergammaglobulinemia. Somatosensory evoked potentials reported peripheral neuropathy and severe axonal polyneuropathy by electromyography. Chest X-rays showed bilateral reticular infiltrates and mediastinal widening. An echocardiogram displayed moderate pulmonary hypertension. Skin biopsy had no evidence of scleroderma. CT reported axillar, mediastinal and retroperitoneal nodes. The mediastinal lesion biopsy reported hyaline vascular Castleman's disease, multicentric variety. He was treated with rituximab. the case meet criteria for multicentric hyaline vascular Castleman's disease, POEMS variant, treated with rituximab.

  16. Diagnostic Utility of Contrast-enhanced 3D T1-weighted Imaging in Acute Cerebral Infarction Associated with Graves Disease.

    PubMed

    Gon, Yasufumi; Sakaguchi, Manabu; Oyama, Naoki; Mochizuki, Hideki

    2017-02-01

    Graves disease is rarely complicated with cerebrovascular steno-occlusive diseases. Previous studies have suggested several hypotheses for this occurrence, including excess thyroid hormone, which stimulates the sympathetic nervous system, which in turn causes an abnormal hemodynamic response with consequent atherosclerotic changes, and antithyroid antibodies cause local vascular inflammation in patients with Graves disease. However, radiological findings of vasculitis in patients with Graves disease and cerebral infarction remain less known. We report the case of a 30-year-old Japanese woman with acute cerebral infarction due to vasculitis associated with Graves disease. She was admitted to our hospital with a 4-day history of intermittent transient dysarthria and limb shaking of the left leg when standing. Three weeks before admission, she went to a local hospital because of general malaise and was diagnosed with Graves disease. Neurological examination revealed paralytic dysarthria, left central facial nerve palsy, and left hemiparesis (manual muscle testing, 4 of 5). Blood examinations showed hyperthyroidism (thyroid-stimulating hormone ≤.010 µU/mL; free T3 ≥25.0 pg/mL; free T4 ≥8.0 ng/dL) and elevation of antithyroid antibody levels (thyroid peroxidase antibody, 87 IU/mL). The vessel wall of the right internal carotid artery was markedly enhanced on contrast-enhanced three-dimensional T1-weighted magnetic resonance imaging, suggesting vasculitis. Magnetic resonance angiography revealed right internal carotid artery occlusion after the branching ophthalmic artery. Arterial stenosis due to vasculitis was considered the cause of hemodynamic ischemic stroke. Vessel wall imaging such as high-resolution contrast-enhanced T1-weighted imaging seems useful for assessing the underlying mechanism of stroke in patients with Graves disease. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  17. Microparticle Shedding from Neural Progenitor Cells and Vascular Compartment Cells Is Increased in Ischemic Stroke

    PubMed Central

    Chiva-Blanch, Gemma; Suades, Rosa; Crespo, Javier; Peña, Esther; Padró, Teresa; Jiménez-Xarrié, Elena; Martí-Fàbregas, Joan; Badimon, Lina

    2016-01-01

    Purpose Ischemic stroke has shown to induce platelet and endothelial microparticle shedding, but whether stroke induces microparticle shedding from additional blood and vascular compartment cells is unclear. Neural precursor cells have been shown to replace dying neurons at sites of brain injury; however, if neural precursor cell activation is associated to microparticle shedding, and whether this activation is maintained at long term and associates to stroke type and severity remains unknown. We analyzed neural precursor cells and blood and vascular compartment cells microparticle shedding after an acute ischemic stroke. Methods Forty-four patients were included in the study within the first 48h after the onset of stroke. The cerebral lesion size was evaluated at 3–7 days of the stroke. Circulating microparticles from neural precursor cells and blood and vascular compartment cells (platelets, endothelial cells, erythrocytes, leukocytes, lymphocytes, monocytes and smooth muscle cells) were analyzed by flow cytometry at the onset of stroke and at 7 and 90 days. Forty-four age-matched high cardiovascular risk subjects without documented vascular disease were used as controls. Results Compared to high cardiovascular risk controls, patients showed higher number of neural precursor cell- and all blood and vascular compartment cell-derived microparticles at the onset of stroke, and after 7 and 90 days. At 90 days, neural precursor cell-derived microparticles decreased and smooth muscle cell-derived microparticles increased compared to levels at the onset of stroke, but only in those patients with the highest stroke-induced cerebral lesions. Conclusions Stroke increases blood and vascular compartment cell and neural precursor cell microparticle shedding, an effect that is chronically maintained up to 90 days after the ischemic event. These results show that stroke induces a generalized blood and vascular cell activation and the initiation of neuronal cell repair process

  18. Increased Vascular Disease Mortality Risk in Prediabetic Korean Adults Is Mainly Attributable to Ischemic Stroke.

    PubMed

    Kim, Nam Hoon; Kwon, Tae Yeon; Yu, Sungwook; Kim, Nan Hee; Choi, Kyung Mook; Baik, Sei Hyun; Park, Yousung; Kim, Sin Gon

    2017-04-01

    Prediabetes is a known risk factor for vascular diseases; however, its differential contribution to mortality risk from various vascular disease subtypes is not known. The subjects of the National Health Insurance Service in Korea (2002-2013) nationwide cohort were stratified into normal glucose tolerance (fasting glucose <100 mg/dL), impaired fasting glucose (IFG) stage 1 (100-109 mg/dL), IFG stage 2 (110-125 mg/dL), and diabetes mellitus groups based on the fasting glucose level. A Cox regression analysis with counting process formulation was used to assess the mortality risk for vascular disease and its subtypes-ischemic heart disease, ischemic stroke, and hemorrhagic stroke. When adjusted for age, sex, and body mass index, IFG stage 2, but not stage 1, was associated with significantly higher all-cause mortality (hazard ratio [HR], 1.26; 95% confidence interval [CI], 1.18-1.34) and vascular disease mortality (HR, 1.27; 95% CI, 1.08-1.49) compared with normal glucose tolerance. Among the vascular disease subtypes, mortality from ischemic stroke was significantly higher (HR, 1.60; 95% CI, 1.18-2.18) in subjects with IFG stage 2 but not from ischemic heart disease and hemorrhagic stroke. The ischemic stroke mortality associated with IFG stage 2 remained significantly high when adjusted other modifiable vascular disease risk factors (HR, 1.51; 95% CI: 1.10-2.09) and medical treatments (HR, 1.75; 95% CI, 1.19-2.57). Higher IFG degree (fasting glucose, 110-125 mg/dL) was associated with increased all-cause and vascular disease mortality. The increased vascular disease mortality in IFG stage 2 was attributable to ischemic stroke, but not ischemic heart disease or hemorrhagic stroke in Korean adults. © 2017 American Heart Association, Inc.

  19. Management of Major Vascular Injury: Open.

    PubMed

    Tisherman, Samuel A

    2016-06-01

    Major blood vessels are in proximity to other vital structures in the neck and base of skull. Infections and tumors of the head and neck can invade vascular structures. Vascular injuries can lead to massive hemorrhage, cerebral ischemia, or stroke. Emergency and definitive management can be challenging. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Vascular Variations Associated with Intracranial Aneurysms.

    PubMed

    Orakdogen, Metin; Emon, Selin Tural; Somay, Hakan; Engin, Taner; Is, Merih; Hakan, Tayfun

    2017-01-01

    To investigate the vascular variations in patients with intracranial aneurysm in circle of Willis. We used the data on 128 consecutive intracranial aneurysm cases. Cerebral angiography images were analyzed retrospectively. Arteries were grouped as anterior cerebral arterial system (ACS), posterior cerebral arterial system (PCS) and middle cerebral arterial system (MCS) for grouping vascular variations. Lateralization, being single/multiple, gender; and also any connection with accompanying aneurysms" number, localization, dimension, whether bleeding/incidental aneurysm has been inspected. Variations were demonstrated in 57.8% of the cases. The most common variation was A1 variation (34.4%). The rate of variations was 36.7%, 24.2% and 10.2% respectively in ACS, PCS and MCS. MCS variations were significantly higher in males. Anterior communicating artery (ACoA) aneurysm observance rates were significantly higher and posterior communicating artery (PCoA) aneurysm and middle cerebral artery (MCA) aneurysm observance rates were significantly lower when compared to "no ACS variation detected" cases. In "PCS variation detected" cases, PCoA aneurysm observance rates and coexistence of multiple variations were significantly higher. The rate of vascular variations in patients with aneurysms was 57.8%. Arterial hypoplasia and aplasia were the most common variations. ACS was the most common region that variations were located in; they were mostly detected on the right side. Coexistence of ACoA aneurysm was higher than PCoA and MCA aneurysms. In the PCS variations group, PCoA aneurysms were the most common aneurysms that accompanying the variation and multiple variations were more common than in the other two groups. The variations in MCS were most common in males.

  1. Vascular aging: Chronic oxidative stress and impairment of redox signaling—consequences for vascular homeostasis and disease

    PubMed Central

    Bachschmid, Markus M.; Schildknecht, Stefan; Matsui, Reiko; Zee, Rebecca; Haeussler, Dagmar; Cohen, Richard A.; Pimental, David; van der Loo, Bernd

    2013-01-01

    Characteristic morphological and molecular alterations such as vessel wall thickening and reduction of nitric oxide occur in the aging vasculature leading to the gradual loss of vascular homeostasis. Consequently, the risk of developing acute and chronic cardiovascular diseases increases with age. Current research of the underlying molecular mechanisms of endothelial function demonstrates a duality of reactive oxygen and nitrogen species in contributing to vascular homeostasis or leading to detrimental effects when formed in excess. Furthermore, changes in function and redox status of vascular smooth muscle cells contribute to age-related vascular remodeling. The age-dependent increase in free radical formation causes deterioration of the nitric oxide signaling cascade, alters and activates prostaglandin metabolism, and promotes novel oxidative posttranslational protein modifications that interfere with vascular and cell signaling pathways. As a result, vascular dysfunction manifests. Compensatory mechanisms are initially activated to cope with age-induced oxidative stress, but become futile, which results in irreversible oxidative modifications of biological macromolecules. These findings support the ‘free radical theory of aging’ but also show that reactive oxygen and nitrogen species are essential signaling molecules, regulating vascular homeostasis. PMID:22380696

  2. Clinicopathological correlation of psychosis and brain vascular changes in Alzheimer's disease.

    PubMed

    Ting, Simon Kang Seng; Hao, Ying; Chia, Pei Shi; Tan, Eng-King; Hameed, Shahul

    2016-02-12

    Psychosis is common in Alzheimer's disease (AD). However, studies on neuropathology in vascular etiology contributing to psychosis in AD is lacking to date. The aim of this study was to investigate neuropathological vascular related changes in Alzheimer's disease with psychosis. Data of patients with AD from the National Alzheimer's Coordinating Center between 2005 to September 2013 was accessed and reviewed. Presence of psychosis was determined based on Neuropsychiatric Inventory Questionnaire taken from the last visit within one year prior to death, and patients were divided into psychosis positive and negative group. Comparison of clinical details and neuropathological vascular changes between the groups was performed using Wilcoxon rank sum test and Chi-square/ Fisher's exact test. Significant variables were further included in a multivariate logistic model. Overall, 145 patients was included. Of these, 50 patients were psychosis positive. Presence of one or more cortical microinfarcts and moderate to severe arteriosclerosis was found to be positively associated with psychosis. Our results suggest vascular changes correlate with psychosis in Alzheimer's disease.

  3. Age-Specific Associations of Renal Impairment With Magnetic Resonance Imaging Markers of Cerebral Small Vessel Disease in Transient Ischemic Attack and Stroke

    PubMed Central

    Liu, Bian; Lau, Kui Kai; Li, Linxin; Lovelock, Caroline; Liu, Ming; Kuker, Wilhelm

    2018-01-01

    Background and Purpose— It has been hypothesized that cerebral small vessel disease (SVD) and chronic renal impairment may be part of a multisystem small-vessel disorder, but their association may simply be as a result of shared risk factors (eg, hypertension) rather than to a systemic susceptibility to premature SVD. However, most previous studies were hospital based, most had inadequate adjustment for hypertension, many were confined to patients with lacunar stroke, and none stratified by age. Methods— In a population-based study of transient ischemic attack and ischemic stroke (OXVASC [Oxford Vascular Study]), we evaluated the magnetic resonance imaging markers of cerebral SVD, including lacunes, white matter hyperintensities, cerebral microbleeds, and enlarged perivascular space. We studied the age-specific associations of renal impairment (estimated glomerular filtration rate <60 mL/min per 1.73 m2) and total SVD burden (total SVD score) adjusting for age, sex, vascular risk factors, and premorbid blood pressure (mean blood pressure during 15 years preevent). Results— Of 1080 consecutive patients, 1028 (95.2%) had complete magnetic resonance imaging protocol and creatinine measured at baseline. Renal impairment was associated with total SVD score (odds ratio [OR], 2.16; 95% confidence interval [CI], 1.69–2.75; P<0.001), but only at age <60 years (<60 years: OR, 3.97; 95% CI, 1.69–9.32; P=0.002; 60–79 years: OR, 1.01; 95% CI, 0.72–1.41; P=0.963; ≥80 years: OR, 0.95; 95% CI, 0.59–1.54; P=0.832). The overall association of renal impairment and total SVD score was also attenuated after adjustment for age, sex, history of hypertension, diabetes mellitus, and premorbid average systolic blood pressure (adjusted OR, 0.76; 95% CI, 0.56–1.02; P=0.067), but the independent association of renal impairment and total SVD score at age <60 years was maintained (adjusted OR, 3.11; 95% CI, 1.21–7.98; P=0.018). Associations of renal impairment and SVD were

  4. Age-Specific Associations of Renal Impairment With Magnetic Resonance Imaging Markers of Cerebral Small Vessel Disease in Transient Ischemic Attack and Stroke.

    PubMed

    Liu, Bian; Lau, Kui Kai; Li, Linxin; Lovelock, Caroline; Liu, Ming; Kuker, Wilhelm; Rothwell, Peter M

    2018-04-01

    It has been hypothesized that cerebral small vessel disease (SVD) and chronic renal impairment may be part of a multisystem small-vessel disorder, but their association may simply be as a result of shared risk factors (eg, hypertension) rather than to a systemic susceptibility to premature SVD. However, most previous studies were hospital based, most had inadequate adjustment for hypertension, many were confined to patients with lacunar stroke, and none stratified by age. In a population-based study of transient ischemic attack and ischemic stroke (OXVASC [Oxford Vascular Study]), we evaluated the magnetic resonance imaging markers of cerebral SVD, including lacunes, white matter hyperintensities, cerebral microbleeds, and enlarged perivascular space. We studied the age-specific associations of renal impairment (estimated glomerular filtration rate <60 mL/min per 1.73 m 2 ) and total SVD burden (total SVD score) adjusting for age, sex, vascular risk factors, and premorbid blood pressure (mean blood pressure during 15 years preevent). Of 1080 consecutive patients, 1028 (95.2%) had complete magnetic resonance imaging protocol and creatinine measured at baseline. Renal impairment was associated with total SVD score (odds ratio [OR], 2.16; 95% confidence interval [CI], 1.69-2.75; P <0.001), but only at age <60 years (<60 years: OR, 3.97; 95% CI, 1.69-9.32; P =0.002; 60-79 years: OR, 1.01; 95% CI, 0.72-1.41; P =0.963; ≥80 years: OR, 0.95; 95% CI, 0.59-1.54; P =0.832). The overall association of renal impairment and total SVD score was also attenuated after adjustment for age, sex, history of hypertension, diabetes mellitus, and premorbid average systolic blood pressure (adjusted OR, 0.76; 95% CI, 0.56-1.02; P =0.067), but the independent association of renal impairment and total SVD score at age <60 years was maintained (adjusted OR, 3.11; 95% CI, 1.21-7.98; P =0.018). Associations of renal impairment and SVD were consistent for each SVD marker at age <60 years but

  5. Vascular-targeted nanocarriers: design considerations and strategies for successful treatment of atherosclerosis and other vascular diseases.

    PubMed

    Kelley, William J; Safari, Hanieh; Lopez-Cazares, Genesis; Eniola-Adefeso, Omolola

    2016-11-01

    Vascular-targeted nanocarriers are an attractive option for the treatment of a number of cardiovascular diseases, as they allow for more specific delivery and increased efficacy of many small molecule drugs. However, immune clearance, limited cellular uptake, and particle-cell dynamics in blood flow can hinder nanocarrier efficacy in many applications. This review aims to investigate successful strategies for the use of vascular-targeted nanocarriers in the treatment of cardiovascular diseases such as atherosclerosis. In particular, the review will highlight strategies employed for actively targeting the components of the atherosclerotic plaque, including endothelial cells, macrophages, and platelets and passive targeting via endothelial permeability, as well as design specifications (such as size, shape, and density) aimed at enhancing the ability of nanocarriers to reach the vascular wall. WIREs Nanomed Nanobiotechnol 2016, 8:909-926. doi: 10.1002/wnan.1414 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.

  6. Assessment of risk of peripheral vascular disease and vascular care capacity in low- and middle-income countries.

    PubMed

    Gyedu, A; Stewart, B T; Nakua, E; Quansah, R; Donkor, P; Mock, C; Hardy, M; Yangni-Angate, K H

    2016-01-01

    This study aimed to describe national peripheral vascular disease (PVD) risk and health burden, and vascular care capacity in Ghana. The gap between PVD burden and vascular care capacity in low- and middle-income countries was defined, and capacity improvement priorities were identified. Data to estimate PVD risk factor burden were obtained from the World Health Organization Study on Global Ageing and Adult Health (SAGE), Ghana, and the Institute of Health Metrics and Evaluation Global Burden of Disease (IHME GBD) database. In addition, a novel nationwide assessment of vascular care capacity was performed, with 20 vascular care items assessed at 40 hospitals in Ghana. Factors contributing to specific item deficiency were described. From the SAGE database, there were 4305 respondents aged at least 50 years with data to estimate PVD risk. Of these, 57·4 per cent were at moderate to risk high of PVD with at least three risk factors; extrapolating nationally, the estimate was 1 654 557 people. Based on IHME GBD data, the estimated disability-adjusted life-years incurred from PVD increased fivefold from 1990 to 2010 (from 6·3 to 31·7 per 100 000 persons respectively). Vascular care capacity assessment demonstrated marked deficiencies in items for diagnosis, and in perioperative and vascular surgical care. Deficiencies were most often due to absence of equipment, lack of training and technology breakage. Risk factor reduction and management as well as optimization of current resources are paramount to avoid the large burden of PVD falling on healthcare systems in low- and middle-income countries. These countries are not well equipped to handle vascular surgical care, and rapid development of such capacity would be difficult and expensive. © 2015 BJS Society Ltd Published by John Wiley & Sons Ltd.

  7. Acute and chronic head-down tail suspension diminishes cerebral perfusion in rats

    NASA Technical Reports Server (NTRS)

    Wilkerson, M. Keith; Colleran, Patrick N.; Delp, Michael D.

    2002-01-01

    The purpose of this study was to test the hypothesis that regional brain blood flow and vascular resistance are altered by acute and chronic head-down tail suspension (HDT). Regional cerebral blood flow, arterial pressure, heart rate, and vascular resistance were measured in a group of control rats during normal standing and following 10 min of HDT and in two other groups of rats after 7 and 28 days of HDT. Heart rate was not different among conditions, whereas mean arterial pressure was elevated at 10 min of HDT relative to the other conditions. Total brain blood flow was reduced from that during standing by 48, 24, and 27% following 10 min and 7 and 28 days of HDT, respectively. Regional blood flows to all cerebral tissues and the eyes were reduced with 10 min of HDT and remained lower in the eye, olfactory bulbs, left and right cerebrum, thalamic region, and the midbrain with 7 and 28 days of HDT. Total brain vascular resistance was 116, 44, and 38% greater following 10 min and 7 and 28 days of HDT, respectively, relative to that during control standing. Vascular resistance was elevated in all cerebral regions with 10 min of HDT and remained higher than control levels in most brain regions. These results demonstrate that HDT results in chronic elevations in total and regional cerebral vascular resistance, and this may be the underlying stimulus for the HDT-induced smooth muscle hypertrophy of cerebral resistance arteries.

  8. Increased Arterial Diameters in the Posterior Cerebral Circulation in Men with Fabry Disease

    PubMed Central

    Üçeyler, Nurcan; Homola, György A.; Guerrero González, Hans; Kramer, Daniela; Wanner, Christoph; Weidemann, Frank; Solymosi, László; Sommer, Claudia

    2014-01-01

    A high load of white matter lesions and enlarged basilar arteries have been shown in selected patients with Fabry disease, a disorder associated with an increased stroke risk. We studied a large cohort of patients with Fabry disease to differentially investigate white matter lesion load and cerebral artery diameters. We retrospectively analyzed cranial magnetic resonance imaging scans of 87 consecutive Fabry patients, 20 patients with ischemic stroke, and 36 controls. We determined the white matter lesion load applying the Fazekas score on fluid-attenuated inversion recovery sequences and measured the diameters of cerebral arteries on 3D-reconstructions of the time-of-flight-MR-angiography scans. Data of different Fabry patient subgroups (males – females; normal – impaired renal function) were compared with data of patients with stroke and controls. A history of stroke or transient ischemic attacks was present in 4/30 males (13%) and 5/57 (9%) females with Fabry disease, all in the anterior circulation. Only one man with Fabry disease showed confluent cerebral white matter lesions in the Fazekas score assessment (1%). Male Fabry patients had a larger basilar artery (p<0.01) and posterior cerebral artery diameter (p<0.05) compared to male controls. This was independent of disease severity as measured by renal function and did not lead to changes in arterial blood flow properties. A basilar artery diameter of >3.2 mm distinguished between men with Fabry disease and controls (sensitivity: 87%, specificity: 86%, p<0.001), but not from stroke patients. Enlarged arterial diameters of the posterior circulation are present only in men with Fabry disease independent of disease severity. PMID:24475221

  9. Neuroimmunological Blood Brain Barrier Opening in Experimental Cerebral Malaria

    PubMed Central

    Baer, Kerstin; Mikolajczak, Sebastian A.; Kappe, Stefan H. I.; Frevert, Ute

    2012-01-01

    Plasmodium falciparum malaria is responsible for nearly one million annual deaths worldwide. Because of the difficulty in monitoring the pathogenesis of cerebral malaria in humans, we conducted a study in various mouse models to better understand disease progression in experimental cerebral malaria (ECM). We compared the effect on the integrity of the blood brain barrier (BBB) and the histopathology of the brain of P. berghei ANKA, a known ECM model, P. berghei NK65, generally thought not to induce ECM, P. yoelii 17XL, originally reported to induce human cerebral malaria-like histopathology, and P. yoelii YM. As expected, P. berghei ANKA infection caused neurological signs, cerebral hemorrhages, and BBB dysfunction in CBA/CaJ and Swiss Webster mice, while Balb/c and A/J mice were resistant. Surprisingly, PbNK induced ECM in CBA/CaJ mice, while all other mice were resistant. P. yoelii 17XL and P. yoelii YM caused lethal hyperparasitemia in all mouse strains; histopathological alterations, BBB dysfunction, or neurological signs were not observed. Intravital imaging revealed that infected erythrocytes containing mature parasites passed slowly through capillaries making intimate contact with the endothelium, but did not arrest. Except for relatively rare microhemorrhages, mice with ECM presented no obvious histopathological alterations that would explain the widespread disruption of the BBB. Intravital imaging did reveal, however, that postcapillary venules, but not capillaries or arterioles, from mice with ECM, but not hyperparasitemia, exhibit platelet marginalization, extravascular fibrin deposition, CD14 expression, and extensive vascular leakage. Blockage of LFA-1 mediated cellular interactions prevented leukocyte adhesion, vascular leakage, neurological signs, and death from ECM. The endothelial barrier-stabilizing mediators imatinib and FTY720 inhibited vascular leakage and neurological signs and prolonged survival to ECM. Thus, it appears that neurological

  10. Combined Direct and Indirect Cerebral Revascularization Using Local and Flow-Through Flaps.

    PubMed

    Azadgoli, Beina; Leland, Hyuma A; Wolfswinkel, Erik M; Bakhsheshian, Joshua; Russin, Jonathan J; Carey, Joseph N

    2018-02-01

     Extracranial-intracranial bypass is indicated in ischemic disease such as moyamoya, certain intracranial aneurysms, and other complex neurovascular diseases. In this article, we present our series of local and flow-through flaps for cerebral revascularization as an additional tool to provide direct and indirect revascularization and/or soft tissue coverage.  A retrospective review of a prospectively maintained database was performed identifying nine patients. Ten direct arterial bypass procedures with nine indirect revascularization and/or soft tissue reconstruction were performed.  Indications for arterial bypass included intracranial aneurysm ( n  = 2) and moyamoya disease ( n  = 8). Indications for soft tissue transfer included infected cranioplasty (one) and indirect cerebral revascularization (eight). Four flow-through flaps and five pedicled flaps were used including a flow-through radial forearm fasciocutaneous flap (one), flow-through radial forearm fascial flaps (three), and pedicled temporoparietal fascial (TPF) flaps with distal end anastomosis (five). The superficial temporal vessels (seven) and facial vessels (two) were used as the vascular inflow. Arterial bypass was established into the middle cerebral artery (six) and anterior communicating artery (three). There were no intraoperative complications. All flaps survived with no donor-site complications. In one case of flow-through TPF flap, the direct graft failed, but the indirect flap remained vascularized.  Local and flow-through flaps can improve combined direct and indirect revascularization and provide soft tissue reconstruction. Minimal morbidity has been encountered in early outcomes though long-term results remain under investigation for these combined neurosurgery and plastic surgery procedures.  The level of evidence is IV. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  11. Applications of Doppler ultrasound in clinical vascular disease

    NASA Technical Reports Server (NTRS)

    Barnes, R. W.; Hokanson, D. E.; Sumner, D. S.; Strandness, D. E., Jr.

    1975-01-01

    Doppler ultrasound has become the most useful and versatile noninvasive technique for objective evaluation of clinical vascular disease. Commercially available continuous-wave instruments provide qualitative and quantitative assessment of venous and arterial disease. Pulsed Doppler ultrasound was developed to provide longitudinal and transverse cross-sectional images of the arterial lumen with a resolution approaching that of conventional X-ray techniques. Application of Doppler ultrasound in venous, peripheral arterial, and cerebrovascular diseases is reviewed.

  12. Mutation of the Alzheimer's Disease Amyloid Gene in Hereditary Cerebral Hemorrhage, Dutch Type

    NASA Astrophysics Data System (ADS)

    Levy, Efrat; Carman, Mark D.; Fernandez-Madrid, Ivan J.; Power, Michael D.; Lieberburg, Ivan; van Duinen, Sjoerd G.; Bots, Gerard Th. A. M.; Luyendijk, Willem; Frangione, Blas

    1990-06-01

    An amyloid protein that precipitates in the cerebral vessel walls of Dutch patients with hereditary cerebral hemorrhage with amyloidosis is similar to the amyloid protein in vessel walls and senile plaques in brains of patients with Alzheimer's disease, Down syndrome, and sporadic cerebral amyloid angiopathy. Cloning and sequencing of the two exons that encode the amyloid protein from two patients with this amyloidosis revealed a cytosine-to-guanine transversion, a mutation that caused a single amino acid substitution (glutamine instead of glutamic acid) at position 22 of the amyloid protein. The mutation may account for the deposition of this amyloid protein in the cerebral vessel walls of these patients, leading to cerebral hemorrhages and premature death.

  13. Platelets as Cellular Effectors of Inflammation in Vascular Diseases

    PubMed Central

    Rondina, Matthew T.; Weyrich, Andrew S.; Zimmerman, Guy A.

    2013-01-01

    Platelets are chief effector cells in hemostasis. In addition, they are multifaceted inflammatory cells with functions that span the continuum from innate immune responses to adaptive immunity. Activated platelets have key “thromboinflammatory” activities in a variety of vascular disorders and vasculopathies. Recently-identified inflammatory and immune activities provide insights into the biology of these versatile blood cells that are directly relevant to human vascular diseases. PMID:23704217

  14. Principal component analysis of indocyanine green fluorescence dynamics for diagnosis of vascular diseases

    NASA Astrophysics Data System (ADS)

    Seo, Jihye; An, Yuri; Lee, Jungsul; Choi, Chulhee

    2015-03-01

    Indocyanine green (ICG), a near-infrared fluorophore, has been used in visualization of vascular structure and non-invasive diagnosis of vascular disease. Although many imaging techniques have been developed, there are still limitations in diagnosis of vascular diseases. We have recently developed a minimally invasive diagnostics system based on ICG fluorescence imaging for sensitive detection of vascular insufficiency. In this study, we used principal component analysis (PCA) to examine ICG spatiotemporal profile and to obtain pathophysiological information from ICG dynamics. Here we demonstrated that principal components of ICG dynamics in both feet showed significant differences between normal control and diabetic patients with vascula complications. We extracted the PCA time courses of the first three components and found distinct pattern in diabetic patient. We propose that PCA of ICG dynamics reveal better classification performance compared to fluorescence intensity analysis. We anticipate that specific feature of spatiotemporal ICG dynamics can be useful in diagnosis of various vascular diseases.

  15. Mechanical Injury Induces Brain Endothelial-Derived Microvesicle Release: Implications for Cerebral Vascular Injury during Traumatic Brain Injury.

    PubMed

    Andrews, Allison M; Lutton, Evan M; Merkel, Steven F; Razmpour, Roshanak; Ramirez, Servio H

    2016-01-01

    . These results indicate that following TBI, the cerebral endothelium undergoes vascular remodeling through shedding of eMVs containing TJPs and endothelial markers. The detection of this shedding potentially allows for a novel methodology for real-time monitoring of cerebral vascular health (remodeling), BBB status and neuroinflammation following a TBI event.

  16. Combined effects of age and polymorphisms in Notch3 in the pathogenesis of cerebral infarction disease.

    PubMed

    Zhu, Chun-Yu; Wang, Yue; Zeng, Qing-Xuan; Qian, Yu; Li, Huan; Yang, Zi-Xia; Yang, Ya-Mei; Zhang, Qiong; Li, Fei-Feng; Liu, Shu-Lin

    2016-10-01

    Cerebral infarction disease is a severe hypoxic ischemic tissue necrosis in the brain, often leading to long-term functional disability and residual impairments. The Notch signaling pathway plays key roles in proliferation and survival of the stem/progenitor cells of the central and peripheral nervous systems. Notch3 is an important member of the pathway, but the relationships between the genetic abnormalities and cerebral infarction disease still remain unclear. The aim of this work was to evaluate variations in Notch3 gene for their possible associations with the cerebral infarction disease. We sequenced the Notch3 gene for 260 patients with cerebral infarction disease, 300 normal controls with old ages and 300 normal controls with younger ages, and identified the variations. The statistical analyses were conducted using Chi-Square Tests as implemented in SPSS (version 19.0). The Hardy-Weinberg equilibrium test of the population was carried out using the online software OEGE. Six variations, including rs1044116, rs1044009, rs1044006, rs10408676, rs1043996 and rs16980398 within or near the Notch3 gene, were found. The genetic heterozygosity of rs1044116, rs1044009, rs1044006, and rs1043996 was very high, whereas that of rs10408676 and rs16980398 was very low. Statistical analyses showed that rs1044009 and rs1044006 were associated with the risk of cerebral infarction disease in the Chinese Han agedness population. The SNPs rs1044009 and rs1044006 in the Notch3 gene were associated with the risk of cerebral infarction diseases in the Chinese Han agedness population.

  17. Retinal vascular and structural changes are associated with amyloid burden in the elderly: ophthalmic biomarkers of preclinical Alzheimer's disease.

    PubMed

    Golzan, S Mojtaba; Goozee, Kathryn; Georgevsky, Dana; Avolio, Alberto; Chatterjee, Pratishtha; Shen, Kaikai; Gupta, Vivek; Chung, Roger; Savage, Greg; Orr, Carolyn F; Martins, Ralph N; Graham, Stuart L

    2017-03-01

    Retinal imaging may serve as an alternative approach to monitor brain pathology in Alzheimer's disease (AD). In this study, we investigated the association between retinal vascular and structural changes and cerebral amyloid-β (Aβ) plaque load in an elderly cohort. We studied a total of 101 participants, including 73 elderly subjects (79 ± 5 years, 22 male) with no clinical diagnosis of AD but reporting some subjective memory change and an additional 28 subjects (70 ± 9 years, 16 male) with clinically established AD. Following a complete dilated ocular examination, the amplitude of retinal vascular pulsations and dynamic response, retinal nerve fibre layer thickness and retinal ganglion cell layer (RGCL) thickness were determined in all patients. Systemic blood pressure and carotid-to-femoral pulse wave velocity were measured. The elderly cohort also underwent magnetic resonance imaging and 18 F-florbetaben (FBB)-positron emission tomographic amyloid imaging to measure neocortical Aβ standardised uptake value ratio (SUVR), and this was used to characterise a 'preclinical' group (SUVR >1.4). The mean FBB neocortical SUVR was 1.35 ± 0.3. The amplitude of retinal venous pulsations correlated negatively with the neocortical Aβ scores (p < 0.001), whereas the amplitude of retinal arterial pulsations correlated positively with neocortical Aβ scores (p < 0.01). RGCL thickness was significantly lower in the clinical AD group (p < 0.05). The correlation between retinal vascular changes and Aβ plaque load supports the possibility of a vascular component to AD. Dynamic retinal vascular parameters may provide an additional inexpensive tool to aid in the preclinical assessment of AD.

  18. Current drug therapies for rosacea: a chronic vascular and inflammatory skin disease.

    PubMed

    Feldman, Steven R; Huang, William W; Huynh, Tu T

    2014-06-01

    Rosacea is a chronic skin disorder that presents with abnormal vascular and inflammatory conditions. Clinical manifestations include flushing, facial erythema, inflammatory papules and pustules, telangiectasias, edema, and watery or irritated eyes. To discuss the evolving pathophysiology of rosacea, factors involved in promoting the chronic vascular and inflammatory abnormalities seen in rosacea, and the available drug therapies for the condition. Chronic inflammation and vascular changes are believed to be underlying factors in the pathophysiology of rosacea. Aberrant cathelicidin expression, elevated kallikrein 5 (KLK5) proteolytic activity, and altered toll-like receptor 2 (TLR2) expression have been reported in rosacea skin leading to the production of proinflammatory cytokines. Until recently, drug therapies only targeted the inflammatory lesions (papules and pustules) and transient erythema associated with these inflammatory lesions of rosacea. Brimonidine tartrate gel 0.5% was recently approved for the treatment of persistent (nontransient) facial erythema of rosacea, acting primarily on the cutaneous vascular component of the disease. Rosacea is a chronic vascular and inflammatory skin disease. Understanding the role of factors that trigger the onset of rosacea symptoms and exacerbate the condition is crucial in treating this skin disease.

  19. Progressive Cortical Neuronal Damage and Chronic Hemodynamic Impairment in Atherosclerotic Major Cerebral Artery Disease.

    PubMed

    Yamauchi, Hiroshi; Kagawa, Shinya; Kishibe, Yoshihiko; Takahashi, Masaaki; Higashi, Tatsuya

    2016-06-01

    Cross-sectional studies suggest that chronic hemodynamic impairment may cause selective cortical neuronal damage in patients with atherosclerotic internal carotid artery or middle cerebral artery occlusive disease. The purpose of this longitudinal study was to determine whether the progression of cortical neuronal damage, evaluated as a decrease in central benzodiazepine receptors (BZRs), is associated with hemodynamic impairment at baseline or hemodynamic deterioration during follow-up. We evaluated the distribution of BZRs twice using positron emission tomography and (11)C-flumazenil over time in 80 medically treated patients with atherosclerotic internal carotid artery or middle cerebral artery occlusive disease that had no ischemic episodes during follow-up. Using 3D stereotactic surface projections, we quantified abnormal decreases in the BZRs in the cerebral cortex within the middle cerebral artery distribution and correlated changes in the BZR index with the mean hemispheric values of hemodynamic parameters obtained from (15)O gas positron emission tomography. In the hemisphere affected by arterial disease, the BZR index in 40 patients (50%) was increased during follow-up (mean 26±20 months). In multivariable logistic regression analyses, increases in the BZR index were associated with the decreased cerebral blood flow at baseline and an increased oxygen extraction fraction during follow-up. Increases in the oxygen extraction fraction during follow-up were associated with a lack of statin use. In patients with atherosclerotic internal carotid artery or middle cerebral artery disease, the progression of cortical neuronal damage was associated with hemodynamic impairment at baseline and hemodynamic deterioration during follow-up. Statin use may be beneficial against hemodynamic deterioration and therefore neuroprotective. © 2016 American Heart Association, Inc.

  20. IR imaging of blood circulation of patients with vascular disease

    NASA Astrophysics Data System (ADS)

    Wang, Hsin; Wade, Dwight R., Jr.; Kam, Jack

    2004-04-01

    We conducted a preliminary IR imaging study of blood circulation in patients with peripheral vascular diseases. Abnormal blood flow is common in older adults, especially those with elevated blood lipids, diabetes, hypertension, and a history of smoking. All of these conditions have a high prevalence in our population, often with more than one condition in the same individual. The differences in blood flow is revealed by temperature differences in areas of the extremities as well as other regions of the body. However, what is needed is an imaging technique that is relatively inexpensive and can reveal the blood flow in real time. The IR imaging can show detailed venous system and small tempearture changes associated with blood flow. Six patients with vascular diseases were tested in a clinic set up. Their legs and feet were imaged. We observed large temperature differences (cooling of more than 10° C) at the foot, especially toes. More valuable information were obtained from the temperature distribution maps. IR thermography is potentially a very valuable tool for medical application, especially for vascular diseases.

  1. Low HDL and High LDL Serum Cholesterol Are Associated With Cerebral Amyloidosis

    PubMed Central

    Reed, Bruce; Villeneuve, Sylvia; Mack, Wendy; DeCarli, Charles; Chui, Helena C.; Jagust, William

    2014-01-01

    Importance Because deposition of cerebral beta amyloid (Aβ) appears to be a key initiating event in Alzheimer’s disease, factors associated with increased deposition are of great interest. Whether or not elevated serum cholesterol acts as such a factor is unknown. Objective To investigate the relationship between serum cholesterol levels and cerebral Aβ during life, early in the AD process. Design Cross sectional analysis of potential associations between contemporaneously measured total serum cholesterol, HDL cholesterol, LDL cholesterol and cerebral Aβ, measured using PIB PET. Setting Multi-site, university medical center based study of vascular contributions to dementia. Participants 74 persons, mean age 78, recruited via direct outreach in stroke clinics and community senior facilities following a protocol designed to obtain a cohort enriched for cerebrovascular disease and elevated vascular risk. Three cases had mild dementia. All others were clinically normal (33 cases) or had mild cognitive impairment (38 cases). Results Cerebral Aβ was quantified using a global PIB index, which averages PIB retention in cortical areas prone to amyloidosis. Statistical models that controlled for age and the apoE ε4 allele showed independent associations between LDL cholesterol, HDL cholesterol and PIB index. Higher LDL and lower HDL were both associated with higher PIB index. No association was found between total cholesterol and PIB index. No association was found between statin use and PIB index, nor did controlling for cholesterol treatment in the statistical models alter the basic findings. Conclusions and Relevance Elevated cerebral Aβ was associated with cholesterol fractions in a pattern analogous to that found in coronary artery disease. This finding, in living, non-demented humans, is consistent with prior autopsy reports, with epidemiological findings, and with both animal and in vitro work suggesting an important role for cholesterol in Aβ processing

  2. [Cerebral hemodynamics in patients with neurosensory hearing loss before and after magnetotherapy].

    PubMed

    Morenko, V M; Enin, I P

    2001-01-01

    Magnetotherapy effects on cerebral hemodynamics were studied using rheoencephalography (REG). When the treatment results and changes in cerebral hemodynamics were compared it was evident that normalization or improvement of vascular status in vertebrobasilar and carotid territories registered at REG results in better hearing. This confirms the role of vascular factor in pathogenesis of neurosensory hypoacusis of different etiology and effectiveness of magnetotherapy in such patients.

  3. VEGF inhibitors in the treatment of cerebral edema in patients with brain cancer

    PubMed Central

    Gerstner, Elizabeth R.; Duda, Dan G.; di Tomaso, Emmanuelle; Ryg, Peter A.; Loeffler, Jay S.; Sorensen, A. Gregory; Ivy, Percy; Jain, Rakesh K.; Batchelor, Tracy T.

    2016-01-01

    Most brain tumors oversecrete vascular endothelial growth factor (VEGF), which leads to an abnormally permeable tumor vasculature. This hyperpermeability allows fluid to leak from the intravascular space into the brain parenchyma, which causes vasogenic cerebral edema and increased interstitial fluid pressure. Increased interstitial fluid pressure has an important role in treatment resistance by contributing to tumor hypoxia and preventing adequate tumor penetration of chemotherapy agents. In addition, edema and the corticosteroids needed to control cerebral edema cause significant morbidity and mortality. Agents that block the VEGF pathway are able to decrease vascular permeability and, thus, cerebral edema, by restoring the abnormal tumor vasculature to a more normal state. Decreasing cerebral edema minimizes the adverse effects of corticosteroids and could improve clinical outcomes. Anti-VEGF agents might also be useful in other cancer-related conditions that increase vascular permeability, such as malignant pleural effusions or ascites. PMID:19333229

  4. Targeted Vascular Drug Delivery in Cerebral Cancer.

    PubMed

    Humle, Nanna; Johnsen, Kasper Bendix; Arendt, Gitte Abildgaard; Nielsen, Rikke Paludan; Moos, Torben; Thomsen, Louiza Bohn

    2016-01-01

    This review presents the present-day literature on the anatomy and physiological mechanisms of the blood-brain barrier and the problematic of cerebral drug delivery in relation to malignant brain tumors. First step in treatment of malignant brain tumors is resection, but there is a high risk of single remnant infiltrative tumor cells in the outer zone of the brain tumor. These infiltrative single-cells will be supplied by capillaries with an intact BBB as opposed to the partly leaky BBB found in the tumor tissue before resection. Even though BBB penetrance of a chemotherapeutic agent is considered irrelevant though the limited success rate for chemotherapeutic treatability of GBM tumors indicate otherwise. Therefore drug delivery strategies to cerebral cancer after resection should be tailored to being able to both penetrate the intact BBB and target the cancer cells. In this review the intact bloodbrain barrier and cerebral cancer with main focus on glioblastoma multiforme (GBM) is introduced. The GBM induced formation of a blood-tumor barrier and the consequences hereof is described and discussed with emphasis on the impact these changes of the BBB has on drug delivery to GBM. The most commonly used drug carriers for drug delivery to GBM is described and the current drug delivery strategies for glioblastoma multiforme including possible routes through the BBB and epitopes, which can be targeted on the GBM cells is outlined. Overall, this review aims to address targeted drug delivery in GBM treatment when taking the differing permeability of the BBB into consideration.

  5. Vascular lesions in mixed dementia, vascular dementia, and Alzheimer disease with cerebrovascular disease: the Kurihara Project.

    PubMed

    Meguro, Kenichi; Tanaka, Naofumi; Nakatsuka, Masahiro; Nakamura, Kei; Satoh, Masayuki

    2012-11-15

    The concept and diagnosis for mixed dementia is not simple, since it is difficult to identify the type and regions of cerebrovascular disease (CVD) responsible for causing dementia. An investigation is needed to confirm the presence of mixed dementia, those who met the criteria for Alzheimer's disease (AD) and those for vascular dementia (VaD). According to the community-based stroke, dementia, and bed-confinement prevention in Kurihara, northern Japan (Kurihara Project), the prevalence of dementia and dementing diseases was surveyed in 2008-2010. Five hundred and ninety people finally agreed to participate (47.0%), and 73 (12.4%) people were diagnosed with dementia according to the DSM-IV. Using MRI, intensive evaluations on CVDs were performed for the 49 dementia patients associated with CVDs (mixed dementia, VaD, and AD with CVD). For the mixed dementia group, all had left subcortical strategic CVDs. These included the caudate head and thalamus. For the VaD group, all patients had at least cortical CVDs or subcortical strategic CVDs. The AD with CVD group had non-strategic CVDs in cortical, subcortical, or other areas in 5 or 6 patients each. Two extreme concepts regarding CVD and dementia are possible. One is that there is no concept for mixed dementia or VaD. An alternative is that the vascular factor should be considered as primary. Our data showed an importance of cortical and subcortical "strategic" areas, the latter included thalamus and caudate head. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Revascularization experience and results in ischaemic cerebrovascular disease: Moyamoya disease and carotid occlusion.

    PubMed

    Arikan, Fuat; Rubiera, Marta; Serena, Joaquín; Rodríguez-Hernández, Ana; Gándara, Darío; Lorenzo-Bosquet, Carles; Tomasello, Alejandro; Chocrón, Ivette; Quintana-Corvalan, Maximiliano; Sahuquillo, Juan

    2018-03-14

    Cerebral revascularization techniques are an indispensable tool in the current armamentarium of vascular neurosurgeons. We present revascularization surgery experience and results in both moyamoya disease and occlusive cerebral ischaemia. Patients with ischaemic occlusive disease and moyamoya disease who underwent microsurgical revascularization between October 2014 and September 2017 were analysed. In the study period, 23 patients with occlusive ischaemic disease underwent microsurgical revascularization. Three patients presented with serious postoperative complications (2 intraparenchymal haemorrhages in the immediate postoperative period and one thrombosis of the femoral artery). All patients, except one, achieved normalization of the cerebral hemodynamic reserve (CHR) in the SPECT study. Twenty patients had a good neurological result, with no ischaemic recurrence of the revascularized territory. Among patients with moyamoya, 20 had moyamoya disease and 5 had moyamoya syndrome with unilateral involvement. Five patients were treated at paediatric age. Haemorrhagic onset occurred in 2 patients. The CHR study showed hemodynamic compromise in all patients. Cerebral SPECT at one year showed resolution of the hemodynamic failure in all patients. There have been 4 postoperative complications (acute subdural hematoma, two subdural collections and one dehiscence of the surgical wound). No patient presented with neurological worsening at 6 and 12months of follow-up. Cerebral revascularization through end-to-side anastomosis between the superficial temporal artery and a cortical branch of the middle cerebral artery is an indisputable technique in the treatment of moyamoya disease and possibly in a subgroup of patients with symptomatic occlusive ischaemic cerebrovascular disease. Copyright © 2018 Sociedad Española de Neurocirugía. Publicado por Elsevier España, S.L.U. All rights reserved.

  7. Loss-of-function mutations in APOC3 and risk of ischemic vascular disease.

    PubMed

    Jørgensen, Anders Berg; Frikke-Schmidt, Ruth; Nordestgaard, Børge G; Tybjærg-Hansen, Anne

    2014-07-03

    High plasma levels of nonfasting triglycerides are associated with an increased risk of ischemic cardiovascular disease. Whether lifelong low levels of nonfasting triglycerides owing to mutations in the gene encoding apolipoprotein C3 (APOC3) are associated with a reduced risk of ischemic cardiovascular disease in the general population is unknown. Using data from 75,725 participants in two general-population studies, we first tested whether low levels of nonfasting triglycerides were associated with reduced risks of ischemic vascular disease and ischemic heart disease. Second, we tested whether loss-of-function mutations in APOC3, which were associated with reduced levels of nonfasting triglycerides, were also associated with reduced risks of ischemic vascular disease and ischemic heart disease. During follow-up, ischemic vascular disease developed in 10,797 participants, and ischemic heart disease developed in 7557 of these 10,797 participants. Participants with nonfasting triglyceride levels of less than 1.00 mmol per liter (90 mg per deciliter) had a significantly lower incidence of cardiovascular disease than those with levels of 4.00 mmol per liter (350 mg per deciliter) or more (hazard ratio for ischemic vascular disease, 0.43; 95% confidence interval [CI], 0.35 to 0.54; hazard ratio for ischemic heart disease, 0.40; 95% CI, 0.31 to 0.52). Heterozygosity for loss-of-function mutations in APOC3, as compared with no APOC3 mutations, was associated with a mean reduction in nonfasting triglyceride levels of 44% (P<0.001). The cumulative incidences of ischemic vascular disease and ischemic heart disease were reduced in heterozygotes as compared with noncarriers of APOC3 mutations (P=0.009 and P=0.05, respectively), with corresponding risk reductions of 41% (hazard ratio, 0.59; 95% CI, 0.41 to 0.86; P=0.007) and 36% (hazard ratio, 0.64; 95% CI, 0.41 to 0.99; P=0.04). Loss-of-function mutations in APOC3 were associated with low levels of triglycerides and a reduced

  8. Binswanger's disease: biomarkers in the inflammatory form of vascular cognitive impairment and dementia.

    PubMed

    Rosenberg, Gary A

    2018-03-01

    Vascular cognitive impairment and dementia (VCID) is a major public health concern because of the increased incidence of vascular disease in the aging population and the impact of vascular disease on Alzheimer's disease. VCID is a heterogeneous group of diseases for which there are no proven treatments. Biomarkers can be used to select more homogeneous populations. Small vessel disease is the most prevalent form of VCID and is the optimal form for treatment trials because there is a progressive course with characteristic pathological changes. Subcortical ischemic vascular disease of the Binswanger type (SIVD-BD) has a characteristic set of features that can be used both to identify patients and to follow treatment. SIVD-BD patients have clinical, neuropsychological, cerebrospinal fluid (CSF) and imaging features that can be used as biomarkers. No one feature is diagnostic, but a multimodal approach defines the SIVD-BD spectrum disorder. The most important features are large white matter lesions with axonal damage, blood-brain barrier disruption as shown by magnetic resonance imaging and CSF, and neuropsychological evidence of executive dysfunction. We have used these features to create a Binswanger Disease Scale and a probability of SIVD-BD, using a machine-learning algorithm. The patients discussed in this review are derived from published studies. Biomarkers not only aid in early diagnosis before the disease process has progressed too far for treatment, but also can indicate response to treatment. Refining the use of biomarkers will allow dementia treatment to enter the era of precision medicine. This article is part of the Special Issue "Vascular Dementia". © 2017 International Society for Neurochemistry.

  9. Quantitative assessment of cerebral hemodynamic parameters by QUASAR arterial spin labeling in Alzheimer's disease and cognitively normal Elderly adults at 3-tesla.

    PubMed

    Mak, Henry K F; Chan, Queenie; Zhang, Zhipeng; Petersen, Esben T; Qiu, Deqiang; Zhang, Linda; Yau, Kelvin K W; Chu, Leung-Wing; Golay, Xavier

    2012-01-01

    QUASAR arterial spin labeling (ASL) was used to investigate the role of vascular impairment in Alzheimer's disease (AD). We hypothesized that the hemodynamic parameters monitoring cerebrovascular integrity, i.e., cerebral blood flow (CBF), arterial blood volume (aBV), and arterial transit time (aTT), would be affected. 13 AD patients and 15 healthy control (HC) subjects underwent 3T MRI scanning. Two separate blood flow acquisitions were obtained with 1 slice overlap for whole brain coverage. CBF, aBV, and aTT maps were calculated using in-house software. Preprocessing and statistical analyses were performed on SPM5. Region-of-interest (ROI) studies of ten selected cerebral regions were also conducted. There were significant differences in mini mental status exam (MMSE) (AD: 16.3 ± 4.55, HC: 28.5 ± 2.00) and Alzheimer's disease assessment scale-cognitive subscale (ADAS-cog) scores (AD: 25.25 ± 9.64, HC: 5.51 ± 2.62) between the 2 groups (p < 0.001) but none in age (p = 0.068). CBF decreased significantly (p < 0.01) in AD compared to controls in the right middle cingulate, left cuneus, left inferior and middle frontal, right superior frontal, left inferior parietal, and right supramarginal gyri. ROI studies confirmed significant hemodynamic impairments in AD compared to HC (p < 0.05): CBF in middle and posterior cingulate, aBV in left superior temporal, right inferior parietal, and posterior cingulate, and aTT in left inferior frontal and middle cingulate gyri. CBF correlated positively while aTT correlated negatively to MMSE, and vice versa for ADAS-cog. Using QUASAR ASL, we found patterns of regional hemodynamic impairment typical of moderate AD, suggesting underlying vascular abnormality. As potential biomarkers, these hemodynamic parameters could differentiate patients from volunteers, and possibly indicate the conversion from healthy aging to mild cognitive impairment to AD.

  10. Clinicopathological correlation of psychosis and brain vascular changes in Alzheimer’s disease

    PubMed Central

    Ting, Simon Kang Seng; Hao, Ying; Chia, Pei Shi; Tan, Eng-King; Hameed, Shahul

    2016-01-01

    Psychosis is common in Alzheimer’s disease (AD). However, studies on neuropathology in vascular etiology contributing to psychosis in AD is lacking to date. The aim of this study was to investigate neuropathological vascular related changes in Alzheimer’s disease with psychosis. Data of patients with AD from the National Alzheimer’s Coordinating Center between 2005 to September 2013 was accessed and reviewed. Presence of psychosis was determined based on Neuropsychiatric Inventory Questionnaire taken from the last visit within one year prior to death, and patients were divided into psychosis positive and negative group. Comparison of clinical details and neuropathological vascular changes between the groups was performed using Wilcoxon rank sum test and Chi-square/ Fisher’s exact test. Significant variables were further included in a multivariate logistic model. Overall, 145 patients was included. Of these, 50 patients were psychosis positive. Presence of one or more cortical microinfarcts and moderate to severe arteriosclerosis was found to be positively associated with psychosis. Our results suggest vascular changes correlate with psychosis in Alzheimer’s disease. PMID:26868671

  11. Vascular disease and risk factors are associated with cognitive decline in the alzheimer disease spectrum.

    PubMed

    Lorius, Natacha; Locascio, Joseph J; Rentz, Dorene M; Johnson, Keith A; Sperling, Reisa A; Viswanathan, Anand; Marshall, Gad A

    2015-01-01

    We investigated the relationship between vascular disease and risk factors versus cognitive decline cross-sectionally and longitudinally in normal older control, mild cognitive impairment, and mild Alzheimer disease (AD) dementia subjects. A total of 812 participants (229 normal older control, 395 mild cognitive impairment, 188 AD) underwent cognitive testing, brain magnetic resonance imaging, and clinical evaluations at baseline and over a period of 3 years. General linear, longitudinal mixed-effects, and Cox proportional hazards models were used. Greater homocysteine level and white matter hyperintensity volume were associated with processing speed impairment (homocysteine: P=0.02; white matter hyperintensity: P<0.0001); greater Vascular Index score was associated with memory impairment (P=0.007); and greater number of apolipoprotein E ε4 (APOE4) alleles was associated with global cognitive impairment (P=0.007) at baseline. Apolipoprotein E ε4 was associated with greater rate of increase in global cognitive impairment (P=0.002) and processing speed impairment (P=0.001) over time, whereas higher total cholesterol was associated with greater rate of increase in global cognitive impairment (P=0.02) and memory impairment (P=0.06) over time. These results suggest a significant association of increased vascular disease and risk factors with cognitive impairment at baseline and over time in the AD spectrum in a sample that was selected to have low vascular burden at baseline.

  12. Understanding the role of the perivascular space in cerebral small vessel disease.

    PubMed

    Brown, Rosalind; Benveniste, Helene; Black, Sandra E; Charpak, Serge; Dichgans, Martin; Joutel, Anne; Nedergaard, Maiken; Smith, Kenneth J; Zlokovic, Berislav V; Wardlaw, Joanna M

    2018-05-02

    Small vessel diseases are a group of disorders that result from pathological alteration of the small blood vessels in the brain, including the small arteries, capillaries and veins. Of the 35-36 million people that are estimated to suffer from dementia worldwide, up to 65% have an SVD component. Furthermore, SVD causes 20-25% of strokes, worsens outcome after stroke and is a leading cause of disability, cognitive impairment and poor mobility. Yet the underlying cause(s) of SVD are not fully understood.Magnetic resonance imaging (MRI) has confirmed enlarged perivascular spaces (PVS) as a hallmark feature of SVD. In healthy tissue, these spaces are proposed to form part of a complex brain fluid drainage system which supports interstitial fluid exchange and may also facilitate clearance of waste products from the brain. The pathophysiological signature of PVS, and what this infers about their function and interaction with cerebral microcirculation, plus subsequent downstream effects on lesion development in the brain has not been established. Here we discuss the potential of enlarged PVS to be a unique biomarker for SVD and related brain disorders with a vascular component. We propose that widening of PVS suggests presence of peri-vascular cell debris and other waste products that forms part of a vicious cycle involving impaired cerebrovascular reactivity (CVR), blood-brain barrier (BBB) dysfunction, perivascular inflammation and ultimately impaired clearance of waste proteins from the interstitial fluid (ISF) space, leading to accumulation of toxins, hypoxia and tissue damage.Here, we outline current knowledge, questions and hypotheses regarding understanding the brain fluid dynamics underpinning dementia and stroke through the common denominator of SVD.

  13. Dynamics of pulsatile flow in fractal models of vascular branching networks.

    PubMed

    Bui, Anh; Sutalo, Ilija D; Manasseh, Richard; Liffman, Kurt

    2009-07-01

    Efficient regulation of blood flow is critically important to the normal function of many organs, especially the brain. To investigate the circulation of blood in complex, multi-branching vascular networks, a computer model consisting of a virtual fractal model of the vasculature and a mathematical model describing the transport of blood has been developed. Although limited by some constraints, in particular, the use of simplistic, uniformly distributed model for cerebral vasculature and the omission of anastomosis, the proposed computer model was found to provide insights into blood circulation in the cerebral vascular branching network plus the physiological and pathological factors which may affect its functionality. The numerical study conducted on a model of the middle cerebral artery region signified the important effects of vessel compliance, blood viscosity variation as a function of the blood hematocrit, and flow velocity profile on the distributions of flow and pressure in the vascular network.

  14. Cerebral collaterals and collateral therapeutics for acute ischemic stroke.

    PubMed

    Winship, Ian R

    2015-04-01

    Cerebral collaterals are vascular redundancies in the cerebral circulation that can partially maintain blood flow to ischemic tissue when primary conduits are blocked. After occlusion of a cerebral artery, anastomoses connecting the distal segments of the MCA with distal branches of the ACA and PCA (known as leptomeningeal or pial collaterals) allow for partially maintained blood flow in the ischemic penumbra and delay or prevent cell death. However, collateral circulation varies dramatically between individuals, and collateral extent is significant predictor of stroke severity and recanalization rate. Collateral therapeutics attempt to harness these vascular redundancies by enhancing blood flow through pial collaterals to reduce ischemia and brain damage after cerebral arterial occlusion. While therapies to enhance collateral flow remain relatively nascent neuroprotective strategies, experimental therapies including inhaled NO, transient suprarenal aortic occlusion, and electrical stimulation of the parasympathetic sphenopalatine ganglion show promise as collateral therapeutics with the potential to improve treatment of acute ischemic stroke. © 2014 John Wiley & Sons Ltd.

  15. Ischemic brain injury in cerebral amyloid angiopathy

    PubMed Central

    van Veluw, Susanne J; Greenberg, Steven M

    2016-01-01

    Cerebral amyloid angiopathy (CAA) is a common form of cerebral small vessel disease and an important risk factor for intracerebral hemorrhage and cognitive impairment. While the majority of research has focused on the hemorrhagic manifestation of CAA, its ischemic manifestations appear to have substantial clinical relevance as well. Findings from imaging and pathologic studies indicate that ischemic lesions are common in CAA, including white-matter hyperintensities, microinfarcts, and microstructural tissue abnormalities as detected with diffusion tensor imaging. Furthermore, imaging markers of ischemic disease show a robust association with cognition, independent of age, hemorrhagic lesions, and traditional vascular risk factors. Widespread ischemic tissue injury may affect cognition by disrupting white-matter connectivity, thereby hampering communication between brain regions. Challenges are to identify imaging markers that are able to capture widespread microvascular lesion burden in vivo and to further unravel the etiology of ischemic tissue injury by linking structural magnetic resonance imaging (MRI) abnormalities to their underlying pathophysiology and histopathology. A better understanding of the underlying mechanisms of ischemic brain injury in CAA will be a key step toward new interventions to improve long-term cognitive outcomes for patients with CAA. PMID:25944592

  16. Strategic Role of Frontal White Matter Tracts in Vascular Cognitive Impairment: A Voxel-Based Lesion-Symptom Mapping Study in CADASIL

    ERIC Educational Resources Information Center

    Duering, Marco; Zieren, Nikola; Herve, Dominique; Jouvent, Eric; Reyes, Sonia; Peters, Nils; Pachai, Chahin; Opherk, Christian; Chabriat, Hugues; Dichgans, Martin

    2011-01-01

    Cerebral small vessel disease is the most common cause of vascular cognitive impairment. It typically manifests with lacunar infarcts and ischaemic white matter lesions. However, little is known about how these lesions relate to the cognitive symptoms. Previous studies have found a poor correlation between the burden of ischaemic lesions and…

  17. The Role of Pathogen-Secreted Proteins in Fungal Vascular Wilt Diseases

    PubMed Central

    de Sain, Mara; Rep, Martijn

    2015-01-01

    A limited number of fungi can cause wilting disease in plants through colonization of the vascular system, the most well-known being Verticillium dahliae and Fusarium oxysporum. Like all pathogenic microorganisms, vascular wilt fungi secrete proteins during host colonization. Whole-genome sequencing and proteomics screens have identified many of these proteins, including small, usually cysteine-rich proteins, necrosis-inducing proteins and enzymes. Gene deletion experiments have provided evidence that some of these proteins are required for pathogenicity, while the role of other secreted proteins remains enigmatic. On the other hand, the plant immune system can recognize some secreted proteins or their actions, resulting in disease resistance. We give an overview of proteins currently known to be secreted by vascular wilt fungi and discuss their role in pathogenicity and plant immunity. PMID:26473835

  18. Planning-free cerebral blood flow territory mapping in patients with intracranial arterial stenosis

    PubMed Central

    Arteaga, Daniel F; Strother, Megan K; Davis, L Taylor; Fusco, Matthew R; Faraco, Carlos C; Roach, Brent A; Scott, Allison O

    2016-01-01

    A noninvasive method for quantifying cerebral blood flow and simultaneously visualizing cerebral blood flow territories is vessel-encoded pseudocontinuous arterial spin labeling MRI. However, obstacles to acquiring such information include limited access to the methodology in clinical centers and limited work on how clinically acquired vessel-encoded pseudocontinuous arterial spin labeling data correlate with gold-standard methods. The purpose of this work is to develop and validate a semiautomated pipeline for the online quantification of cerebral blood flow maps and cerebral blood flow territories from planning-free vessel-encoded pseudocontinuous arterial spin labeling MRI with gold-standard digital subtraction angiography. Healthy controls (n = 10) and intracranial atherosclerotic disease patients (n = 34) underwent 3.0 T MRI imaging including vascular (MR angiography) and hemodynamic (cerebral blood flow-weighted arterial spin labeling) MRI. Patients additionally underwent catheter and/or CT angiography. Variations in cross-territorial filling were grouped according to diameters of circle of Willis vessels in controls. In patients, Cohen’s k-statistics were computed to quantify agreement in perfusion patterns between vessel-encoded pseudocontinuous arterial spin labeling and angiography. Cross-territorial filling patterns were consistent with circle of Willis anatomy. The intraobserver Cohen's k-statistics for cerebral blood flow territory and digital subtraction angiography perfusion agreement were 0.730 (95% CI = 0.593–0.867; reader one) and 0.708 (95% CI = 0.561–0.855; reader two). These results support the feasibility of a semiautomated pipeline for evaluating major neurovascular cerebral blood flow territories in patients with intracranial atherosclerotic disease. PMID:27389177

  19. Vascular inward rectifier K+ channels as external K+ sensors in the control of cerebral blood flow.

    PubMed

    Longden, Thomas A; Nelson, Mark T

    2015-04-01

    For decades it has been known that external K(+) ions are rapid and potent vasodilators that increase CBF. Recent studies have implicated the local release of K(+) from astrocytic endfeet-which encase the entirety of the parenchymal vasculature-in the dynamic regulation of local CBF during NVC. It has been proposed that the activation of KIR channels in the vascular wall by external K(+) is a central component of these hyperemic responses; however, a number of significant gaps in our knowledge remain. Here, we explore the concept that vascular KIR channels are the major extracellular K(+) sensors in the control of CBF. We propose that K(+) is an ideal mediator of NVC, and discuss KIR channels as effectors that produce rapid hyperpolarization and robust vasodilation of cerebral arterioles. We provide evidence that KIR channels, of the KIR 2 subtype in particular, are present in both the endothelial and SM cells of parenchymal arterioles and propose that this dual positioning of KIR 2 channels increases the robustness of the vasodilation to external K(+), enables the endothelium to be actively engaged in NVC, and permits electrical signaling through the endothelial syncytium to promote upstream vasodilation to modulate CBF. © 2015 John Wiley & Sons Ltd.

  20. Occipital Artery to Middle Cerebral Artery Bypass: Operative Nuances.

    PubMed

    Kimura, Toshikazu; Morita, Akio

    2017-12-01

    Superficial temporal artery (STA)-middle cerebral artery (MCA) anastomosis is a common procedure for vascular neurosurgeons, and it is used in a variety of diseases. However, there are cases in which the STA is absent or is too hypoplastic to be used as a donor for revascularization. Occipital artery (OA)-MCA bypass may be a treatment option in these cases. We encountered 4 cases of symptomatic cerebral ischemia in which the STA was absent or unavailable. These cases were treated by revascularization from the OA to the periphery of the MCA. By meticulous dissection of the OA to the level of the superior temporal line, the OA could reach the periphery of the angular artery and be anastomosed to it in the usual fashion. The patency of the donor artery was confirmed by magnetic resonance angiography soon after the operation and 3 years later. OA-MCA bypass may be a surgical option for cerebral revascularization when the STA is not available. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Pulmonary vascular disease in a rabbit a high altitude

    NASA Astrophysics Data System (ADS)

    Heath, Donald; Williams, David; Rios-Datenz, Jaime; Gosney, John

    1990-03-01

    A male weanling rabbit of the New Zealand White strain, born and living at an altitude of 3800 m in La Paz, Bolivia, developed right ventricular hypertrophy. This was found to be associated with growth of vascular smooth muscle cells in the intima of pulmonary arterioles, and contrasted with muscularization of the walls of pulmonary arterioles, without extension into the intima, found in a healthy, high-altitude control rabbit of the same strain. A low-altitude control showed no such muscularization. It is concluded that alveolar hypoxia, acting directly or through an intermediate agent, is a growth factor for vascular smooth muscle cells in pulmonary arterioles. This is the first report of pulmonary vascular disease due to high altitude in rabbits.

  2. Inadequate Health Literacy in Patients with Arterial Vascular Disease.

    PubMed

    Strijbos, Ruben M; Hinnen, Jan-Willem; van den Haak, Ronald F F; Verhoeven, Bart A N; Koning, Olivier H J

    2018-06-08

    The aim was to identify the prevalence of inadequate health literacy in patients with arterial vascular disease. This was a cross sectional study. Patients with arterial vascular disease visiting the outpatient clinic between January 5, 2015 and December 28, 2016, were randomly included and screened for inadequate health literacy with the Newest Vital Sign-Dutch (NVS-D), a validated health literacy assessment measure. A score of <4 out of six identified individuals with inadequate health literacy. Age, gender, highest education level, and reason for consultation were also registered. Data analysis was performed using Student's t-test or the Mann-Whitney U test and chi-square test. Logistic regression with backward elimination was applied to identify independent predictors. A total of 202 patients were included. The mean NVS-D score was 1.91 (SD ± 1.948, median 1). The prevalence of inadequate health literacy was 76.7%. A significantly higher prevalence of inadequate health literacy was found in patients ≥65 years (p < .001) and patients with a lower education level (p < .001). No significant difference was found between female/male patients (p = .056), nor between participants with peripheral arterial occlusive disease and abdominal aortic aneurysm (p = .116). Age (OR 1.060; 95% CI 1.017-1.104; p = .005) and education level (OR 0.164; 95% CI 0.078-0.346; p < .001) were identified as independent predictors of inadequate health literacy. This study shows a prevalence of inadequate health literacy of 76.7% in patients with arterial vascular disease, with a significantly higher prevalence in patients ≥ 65 years and patients with a lower education level. The high prevalence of inadequate health literacy should be considered when information is provided, and suggests the need to further investigate the best methods to convey medical information to this group of vulnerable patients. Copyright © 2018 European Society for Vascular Surgery. Published by

  3. Memory deficiency, cerebral amyloid angiopathy, and amyloid-β plaques in APP+PS1 double transgenic rat model of Alzheimer's disease.

    PubMed

    Klakotskaia, Diana; Agca, Cansu; Richardson, Rachel A; Stopa, Edward G; Schachtman, Todd R; Agca, Yuksel

    2018-01-01

    Transgenic rat models of Alzheimer's disease were used to examine differences in memory and brain histology. Double transgenic female rats (APP+PS1) over-expressing human amyloid precursor protein (APP) and presenilin 1 (PS1) and single transgenic rats (APP21) over-expressing human APP were compared with wild type Fischer rats (WT). The Barnes maze assessed learning and memory and showed that both APP21 and APP+PS1 rats made significantly more errors than the WT rats during the acquisition phase, signifying slower learning. Additionally, the APP+PS1 rats made significantly more errors following a retention interval, indicating impaired memory compared to both the APP21 and WT rats. Immunohistochemistry using an antibody against amyloid-β (Aβ) showed extensive and mostly diffuse Aβ plaques in the hippocampus and dense plaques that contained tau in the cortex of the brains of the APP+PS1 rats. Furthermore, the APP+PS1 rats also showed vascular changes, including cerebral amyloid angiopathy with extensive Aβ deposits in cortical and leptomeningeal blood vessel walls and venous collagenosis. In addition to the Aβ accumulation observed in arterial, venous, and capillary walls, APP+PS1 rats also displayed enlarged blood vessels and perivascular space. Overall, the brain histopathology and behavioral assessment showed that the APP+PS1 rats demonstrated behavioral characteristics and vascular changes similar to those commonly observed in patients with Alzheimer's disease.

  4. mTOR and vascular remodeling in lung diseases: current challenges and therapeutic prospects.

    PubMed

    Goncharova, Elena A

    2013-05-01

    Mammalian target of rapamycin (mTOR) is a major regulator of cellular metabolism, proliferation, and survival that is implicated in various proliferative and metabolic diseases, including obesity, type 2 diabetes, hamartoma syndromes, and cancer. Emerging evidence suggests a potential critical role of mTOR signaling in pulmonary vascular remodeling. Remodeling of small pulmonary arteries due to increased proliferation, resistance to apoptosis, and altered metabolism of cells forming the pulmonary vascular wall is a key currently irreversible pathological feature of pulmonary hypertension, a progressive pulmonary vascular disorder with high morbidity and mortality. In addition to rare familial and idiopathic forms, pulmonary hypertension is also a life-threatening complication of several lung diseases associated with hypoxia. This review aims to summarize our current knowledge and recent advances in understanding the role of the mTOR pathway in pulmonary vascular remodeling, with a specific focus on the hypoxia component, a confirmed shared trigger of pulmonary hypertension in lung diseases. We also discuss the emerging role of mTOR as a promising therapeutic target and mTOR inhibitors as potential pharmacological approaches to treat pulmonary vascular remodeling in pulmonary hypertension.

  5. Regulation and function of endothelial glycocalyx layer in vascular diseases.

    PubMed

    Sieve, Irina; Münster-Kühnel, Anja K; Hilfiker-Kleiner, Denise

    2018-01-01

    In the vascular system, the endothelial surface layer (ESL) as the inner surface of blood vessels affects mechanotransduction, vascular permeability, rheology, thrombogenesis, and leukocyte adhesion. It creates barriers between endothelial cells and blood and neighbouring cells. The glycocalyx, composed of glycoconjugates and proteoglycans, is an integral component of the ESL and a key element in inter- and intracellular communication and tissue homeostasis. In pathophysiological conditions (atherosclerosis, infection, ischemia/reperfusion injury, diabetes, trauma and acute lung injury) glycocalyx-degrading factors, i.e. reactive oxygen and nitrogen species, matrix metalloproteinases, heparanase and sialidases, damage the ESL, thereby impairing endothelial functions. This leads to increased capillary permeability, leucocyte-endothelium interactions, thrombosis and vascular inflammation, the latter further driving glycocalyx destruction. The present review highlights current knowledge on the vasculoprotective role of the ESL, with specific emphasis on its remodelling in inflammatory vascular diseases and discusses its potential as a novel therapeutic target to treat vascular pathologies. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Characterization of White Matter Injury in a Rat Model of Chronic Cerebral Hypoperfusion.

    PubMed

    Choi, Bo-Ryoung; Kim, Dong-Hee; Back, Dong Bin; Kang, Chung Hwan; Moon, Won-Jin; Han, Jung-Soo; Choi, Dong-Hee; Kwon, Kyoung Ja; Shin, Chan Young; Kim, Bo-Ram; Lee, Jongmin; Han, Seol-Heui; Kim, Hahn Young

    2016-02-01

    Chronic cerebral hypoperfusion can lead to ischemic white matter injury resulting in vascular dementia. To characterize white matter injury in vascular dementia, we investigated disintegration of diverse white matter components using a rat model of chronic cerebral hypoperfusion. Chronic cerebral hypoperfusion was modeled in Wistar rats by permanent occlusion of the bilateral common carotid arteries. We performed cognitive behavioral tests, including the water maze task, odor discrimination task, and novel object test; histological investigation of neuroinflammation, oligodendrocytes, myelin basic protein, and nodal or paranodal proteins at the nodes of Ranvier; and serial diffusion tensor imaging. Cilostazol was administered to protect against white matter injury. Diverse cognitive impairments were induced by chronic cerebral hypoperfusion. Disintegration of white matter was characterized by neuroinflammation, loss of oligodendrocytes, attenuation of myelin density, structural derangement at the nodes of Ranvier, and disintegration of white matter tracts. Cilostazol protected against cognitive impairments and white matter disintegration. White matter injury induced by chronic cerebral hypoperfusion can be characterized by disintegration of diverse white matter components. Cilostazol might be a therapeutic strategy against white matter disintegration in patients with vascular dementia. © 2015 American Heart Association, Inc.

  7. Multichannel optical brain imaging to separate cerebral vascular, tissue metabolic, and neuronal effects of cocaine

    NASA Astrophysics Data System (ADS)

    Ren, Hugang; Luo, Zhongchi; Yuan, Zhijia; Pan, Yingtian; Du, Congwu

    2012-02-01

    Characterization of cerebral hemodynamic and oxygenation metabolic changes, as well neuronal function is of great importance to study of brain functions and the relevant brain disorders such as drug addiction. Compared with other neuroimaging modalities, optical imaging techniques have the potential for high spatiotemporal resolution and dissection of the changes in cerebral blood flow (CBF), blood volume (CBV), and hemoglobing oxygenation and intracellular Ca ([Ca2+]i), which serves as markers of vascular function, tissue metabolism and neuronal activity, respectively. Recently, we developed a multiwavelength imaging system and integrated it into a surgical microscope. Three LEDs of λ1=530nm, λ2=570nm and λ3=630nm were used for exciting [Ca2+]i fluorescence labeled by Rhod2 (AM) and sensitizing total hemoglobin (i.e., CBV), and deoxygenated-hemoglobin, whereas one LD of λ1=830nm was used for laser speckle imaging to form a CBF mapping of the brain. These light sources were time-sharing for illumination on the brain and synchronized with the exposure of CCD camera for multichannel images of the brain. Our animal studies indicated that this optical approach enabled simultaneous mapping of cocaine-induced changes in CBF, CBV and oxygenated- and deoxygenated hemoglobin as well as [Ca2+]i in the cortical brain. Its high spatiotemporal resolution (30μm, 10Hz) and large field of view (4x5 mm2) are advanced as a neuroimaging tool for brain functional study.

  8. Extracellular nucleotide and nucleoside signaling in vascular and blood disease

    PubMed Central

    Idzko, Marco; Ferrari, Davide; Riegel, Ann-Kathrin

    2014-01-01

    Nucleotides and nucleosides—such as adenosine triphosphate (ATP) and adenosine—are famous for their intracellular roles as building blocks for the genetic code or cellular energy currencies. In contrast, their function in the extracellular space is different. Here, they are primarily known as signaling molecules via activation of purinergic receptors, classified as P1 receptors for adenosine or P2 receptors for ATP. Because extracellular ATP is rapidly converted to adenosine by ectonucleotidase, nucleotide-phosphohydrolysis is important for controlling the balance between P2 and P1 signaling. Gene-targeted mice for P1, P2 receptors, or ectonucleotidase exhibit only very mild phenotypic manifestations at baseline. However, they demonstrate alterations in disease susceptibilities when exposed to a variety of vascular or blood diseases. Examples of phenotypic manifestations include vascular barrier dysfunction, graft-vs-host disease, platelet activation, ischemia, and reperfusion injury or sickle cell disease. Many of these studies highlight that purinergic signaling events can be targeted therapeutically. PMID:25001468

  9. Endothelin-1 Mediates Brain Microvascular Dysfunction Leading to Long-Term Cognitive Impairment in a Model of Experimental Cerebral Malaria

    PubMed Central

    Freeman, Brandi D.; Martins, Yuri C.; Akide-Ndunge, Oscar B.; Bruno, Fernando P.; Wang, Hua; Tanowitz, Herbert B.; Spray, David C.; Desruisseaux, Mahalia S.

    2016-01-01

    Plasmodium falciparum infection causes a wide spectrum of diseases, including cerebral malaria, a potentially life-threatening encephalopathy. Vasculopathy is thought to contribute to cerebral malaria pathogenesis. The vasoactive compound endothelin-1, a key participant in many inflammatory processes, likely mediates vascular and cognitive dysfunctions in cerebral malaria. We previously demonstrated that C57BL6 mice infected with P. berghei ANKA, our fatal experimental cerebral malaria model, sustained memory loss. Herein, we demonstrate that an endothelin type A receptor (ETA) antagonist prevented experimental cerebral malaria-induced neurocognitive impairments and improved survival. ETA antagonism prevented blood-brain barrier disruption and cerebral vasoconstriction during experimental cerebral malaria, and reduced brain endothelial activation, diminishing brain microvascular congestion. Furthermore, exogenous endothelin-1 administration to P. berghei NK65-infected mice, a model generally regarded as a non-cerebral malaria negative control for P. berghei ANKA infection, led to experimental cerebral malaria-like memory deficits. Our data indicate that endothelin-1 is critical in the development of cerebrovascular and cognitive impairments with experimental cerebral malaria. This vasoactive peptide may thus serve as a potential target for adjunctive therapy in the management of cerebral malaria. PMID:27031954

  10. Vinpocetine suppresses pathological vascular remodeling by inhibiting vascular smooth muscle cell proliferation and migration.

    PubMed

    Cai, Yujun; Knight, Walter E; Guo, Shujie; Li, Jian-Dong; Knight, Peter A; Yan, Chen

    2012-11-01

    Abnormal vascular smooth muscle cell (SMC) activation is associated with various vascular disorders such as atherosclerosis, in-stent restenosis, vein graft disease, and transplantation-associated vasculopathy. Vinpocetine, a derivative of the alkaloid vincamine, has long been used as a cerebral blood flow enhancer for treating cognitive impairment. However, its role in pathological vascular remodeling remains unexplored. Herein, we show that systemic administration of vinpocetine significantly reduced neointimal formation in carotid arteries after ligation injury. Vinpocetine also markedly decreased spontaneous remodeling of human saphenous vein explants in ex vivo culture. In cultured SMCs, vinpocetine dose-dependently suppressed cell proliferation and caused G1-phase cell cycle arrest, which is associated with a decrease in cyclin D1 and an increase in p27Kip1 levels. In addition, vinpocetine dose-dependently inhibited platelet-derived growth factor (PDGF)-stimulated SMC migration as determined by the two-dimensional migration assays and three-dimensional aortic medial explant invasive assay. Moreover, vinpocetine significantly reduced PDGF-induced type I collagen and fibronectin expression. It is noteworthy that PDGF-stimulated phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2), but not protein kinase B, was specifically inhibited by vinpocetine. Vinpocetine powerfully attenuated intracellular reactive oxidative species (ROS) production, which largely mediates the inhibitory effects of vinpocetine on ERK1/2 activation and SMC growth. Taken together, our results reveal a novel function of vinpocetine in attenuating neointimal hyperplasia and pathological vascular remodeling, at least partially through suppressing ROS production and ERK1/2 activation in SMCs. Given the safety profile of vinpocetine, this study provides insight into the therapeutic potential of vinpocetine in proliferative vascular disorders.

  11. Vinpocetine Suppresses Pathological Vascular Remodeling by Inhibiting Vascular Smooth Muscle Cell Proliferation and Migration

    PubMed Central

    Cai, Yujun; Knight, Walter E.; Guo, Shujie; Li, Jian-Dong; Knight, Peter A.

    2012-01-01

    Abnormal vascular smooth muscle cell (SMC) activation is associated with various vascular disorders such as atherosclerosis, in-stent restenosis, vein graft disease, and transplantation-associated vasculopathy. Vinpocetine, a derivative of the alkaloid vincamine, has long been used as a cerebral blood flow enhancer for treating cognitive impairment. However, its role in pathological vascular remodeling remains unexplored. Herein, we show that systemic administration of vinpocetine significantly reduced neointimal formation in carotid arteries after ligation injury. Vinpocetine also markedly decreased spontaneous remodeling of human saphenous vein explants in ex vivo culture. In cultured SMCs, vinpocetine dose-dependently suppressed cell proliferation and caused G1-phase cell cycle arrest, which is associated with a decrease in cyclin D1 and an increase in p27Kip1 levels. In addition, vinpocetine dose-dependently inhibited platelet-derived growth factor (PDGF)-stimulated SMC migration as determined by the two-dimensional migration assays and three-dimensional aortic medial explant invasive assay. Moreover, vinpocetine significantly reduced PDGF-induced type I collagen and fibronectin expression. It is noteworthy that PDGF-stimulated phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2), but not protein kinase B, was specifically inhibited by vinpocetine. Vinpocetine powerfully attenuated intracellular reactive oxidative species (ROS) production, which largely mediates the inhibitory effects of vinpocetine on ERK1/2 activation and SMC growth. Taken together, our results reveal a novel function of vinpocetine in attenuating neointimal hyperplasia and pathological vascular remodeling, at least partially through suppressing ROS production and ERK1/2 activation in SMCs. Given the safety profile of vinpocetine, this study provides insight into the therapeutic potential of vinpocetine in proliferative vascular disorders. PMID:22915768

  12. Patent Foramen Ovale in Patients with Cerebral Infarction: A Transesophageal Echocradigraphy Study

    NASA Technical Reports Server (NTRS)

    Petty, George W.; Khandheria, Bijoy K.; Chu, Chu-Pin; Sicks, JoRean D.; Whisnant, Jack P.

    1997-01-01

    Patent foramen ovale was detected in 37 patients (32%). Mean age was similar in those with (60 years) and those without (64 years) PFO. Patent foramen ovale was more frequent among men (39%) than women (20%, P=.03). Patients with PFO had a lower frequency of atrial fibrillation, diabetes me!litus, hypertension, and peripheral vascular disease compared with those without PFO. There was no difference in frequency of the following characteristics in patients with PFO compared with those without PFO: pulmonary embolus, chronic obstructive pulmonary disease, pulmonary hypertension, peripheral embolism, prior cerebral infarction, nosocomial cerebral infarction, Valsalva maneuver at the time of cerebral infarction, recent surgery, or hemorrhagic transformation of cerebral infarction. Patent foramen ovale was found in 22 (40%) of 55 patients with infarcts of uncertain cause and in 15 (25%) of 61 with infarcts of known cause (cardioembolic, 21%; large vessel atherostenosis, 25%; lacune, 40%) (P=.08). When the analysis was restricted to patients who underwent Valsalva maneuver, PFO with right to left or bidirectional shunt was found in 19 (50%) of 38 patients with infarcts of uncertain cause and in 6 (20%) of 30 with infarcts of known cause (P=.Ol). Conclusion: Although PFO was over-represented in patients with infarcts of uncertain cause in our and other studies, it has a high frequency among patients with cerebral infarction of all types. The relation between PFO and stroke requires further study.

  13. Language Impairment in Alzheimer's Disease and Vascular Dementia.

    ERIC Educational Resources Information Center

    Lempinen, Maire; And Others

    A study of 21 patients with Alzheimer's Disease and 25 with vascular dementia, the two most common forms of dementia, investigated language impairments in the dementia syndrome to see if analysis of language disturbances is helpful in differential diagnosis. Diagnostic assessment included a neurological examination, detailed medical history,…

  14. Protective effects of low-intensity pulsed ultrasound on aluminum-induced cerebral damage in Alzheimer's disease rat model

    NASA Astrophysics Data System (ADS)

    Lin, Wei-Ting; Chen, Ran-Chou; Lu, Wen-Wei; Liu, Shing-Hwa; Yang, Feng-Yi

    2015-04-01

    The protein expressions of neurotrophic factors can be enhanced by low-intensity pulsed ultrasound (LIPUS) stimulation in the brain. The purpose of this study was to demonstrate the protective effect of LIPUS stimulation against aluminum-induced cerebral damage in Alzheimer's disease rat model. LIPUS was administered 7 days before each aluminum chloride (AlCl3) administration, and concomitantly given with AlCl3 daily for a period of 6 weeks. Neurotrophic factors in hippocampus were measured by western blot analysis. Behavioral changes in the Morris water maze and elevated plus maze were examined in rats after administration of AlCl3. Various biochemical analyses were performed to evaluate the extent of brain damages. LIPUS is capable of prompting levels of brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), and vascular endothelial growth factor (VEGF) in rat brain. AlCl3 administration resulted in a significant increase in the aluminum concentration, acetylcholinesterase activity and beta-amyloid (Aβ) deposition in AlCl3 treated rats. LIPUS stimulation significantly attenuated aluminum concentration, acetylcholinesterase activity, Aβ deposition and karyopyknosis in AlCl3 treated rats. Furthermore, LIPUS significantly improved memory retention in AlCl3-induced memory impairment. These experimental results indicate that LIPUS has neuroprotective effects against AlCl3-induced cerebral damages and cognitive dysfunction.

  15. BOLD delay times using group delay in sickle cell disease

    NASA Astrophysics Data System (ADS)

    Coloigner, Julie; Vu, Chau; Bush, Adam; Borzage, Matt; Rajagopalan, Vidya; Lepore, Natasha; Wood, John

    2016-03-01

    Sickle cell disease (SCD) is an inherited blood disorder that effects red blood cells, which can lead to vasoocclusion, ischemia and infarct. This disease often results in neurological damage and strokes, leading to morbidity and mortality. Functional Magnetic Resonance Imaging (fMRI) is a non-invasive technique for measuring and mapping the brain activity. Blood Oxygenation Level-Dependent (BOLD) signals contain also information about the neurovascular coupling, vascular reactivity, oxygenation and blood propagation. Temporal relationship between BOLD fluctuations in different parts of the brain provides also a mean to investigate the blood delay information. We used the induced desaturation as a label to profile transit times through different brain areas, reflecting oxygen utilization of tissue. In this study, we aimed to compare blood flow propagation delay times between these patients and healthy subjects in areas vascularized by anterior, middle and posterior cerebral arteries. In a group comparison analysis with control subjects, BOLD changes in these areas were found to be almost simultaneous and shorter in the SCD patients, because of their increased brain blood flow. Secondly, the analysis of a patient with a stenosis on the anterior cerebral artery indicated that signal of the area vascularized by this artery lagged the MCA signal. These findings suggest that sickle cell disease causes blood propagation modifications, and that these changes could be used as a biomarker of vascular damage.

  16. Cerebral venous thrombosis in Behçet's disease.

    PubMed

    Saadoun, D; Wechsler, B; Resche-Rigon, M; Trad, S; Le Thi Huong, D; Sbai, A; Dormont, D; Amoura, Z; Cacoub, P; Piette, J C

    2009-04-15

    To analyze the clinical findings, treatment, outcome, and prevalence of cerebral venous thrombosis (CVT) in a large cohort of patients with Behçet's disease (BD) from a single center. We reported a series of 64 consecutive patients with CVT who fulfilled the international criteria for BD. Multivariate analysis was performed to define factors that affect prognosis. Among a cohort of 820 patients with BD, CVT was present in 64 (7.8%). Compared with BD patients without CVT, those with CVT had lower parenchymal central nervous system involvement (4.7% versus 28.7%; P = 0.0001) and higher extraneurologic vascular lesions (62.5% versus 38.8%; P = 0.03). Up to 90% of patients responded to anticoagulation therapy without severe hemorrhagic complications. Neither steroid nor immunosuppressant use provided better outcome. Severe visual loss due to optic atrophy was the main complication of CVT, being found in 15% of patients. In multivariate analysis, papilledema (odds ratio [OR] 7.1, 95% confidence interval [95% CI] 1.6-31.9) and concurrent prothrombotic risk factors (OR 4.6, 95% CI 1.1-20.2) were independently associated with the occurrence of sequelae. Factors associated with relapse of thrombosis were concurrent prothrombotic risk factors (hazard ratio [HR] 4.9, 95% CI 1.5-15.4) and a peripheral venous thrombosis (HR 2.8, 95% CI 0.7-10.5). After a mean +/- SD followup of 8.2 +/- 6.9 years, 4 deaths unrelated to CVT were noted. CVT in patients with BD may result in serious neurologic outcomes. Anticoagulation represents a safe and effective therapy. Extensive investigation of prothrombotic disorders should be considered.

  17. Efficacy of superficial temporal artery-middle cerebral artery double anastomoses in a patient with rapidly progressive moyamoya disease: case report.

    PubMed

    Yokosawa, Michiko; Hayashi, Toshiaki; Shirane, Reizo; Tominaga, Teiji

    2014-01-01

    Moyamoya disease can be associated with a rapidly progressive course in young patients. This report describes a patient with moyamoya disease who experienced rapid disease progression, resulting in cerebral infarction and a wide area of diminished cerebral perfusion. Double superficial temporal artery (STA)-middle cerebral artery (MCA) anastomoses were utilized to immediately increase cerebral perfusion in the affected area. This case involved a 5-year-old girl who had been diagnosed with moyamoya disease and had undergone STA-MCA anastomosis with indirect bypass in the right hemisphere at the age of 3. At the time of presentation, magnetic resonance (MR) imaging showed cerebral infarction at the left frontal lobe, and MR angiography showed rapidly progressive narrowing of the left MCA that had not been present 3 months prior. N-isopropyl-p-[I123] iodoamphetamine single-photon emission computed tomography (IMP-SPECT) showed markedly decreased uptake in the left hemisphere. She underwent emergent STA-MCA double anastomoses with indirect bypass on the left side. IMP-SPECT showed marked increase in uptake in the left hemisphere. The anterior cerebral artery (ACA) territory adjacent to the cerebral infarction also showed increased uptake on the SPECT. Postoperatively, there were no clinical or radiographic indications of ischemic or hemorrhagic complications. Double anastomoses are effective in quickly and significantly increasing blood flow. The postoperative course in this case was uneventful. Double anastomoses are a surgical option for patients with moyamoya disease who show rapid disease progression, even in those in the acute phase of cerebral infarction.

  18. Efficacy of Superficial Temporal Artery-Middle Cerebral Artery Double Anastomoses in a Patient with Rapidly Progressive Moyamoya Disease: Case Report

    PubMed Central

    YOKOSAWA, Michiko; HAYASHI, Toshiaki; SHIRANE, Reizo; TOMINAGA, Teiji

    2014-01-01

    Moyamoya disease can be associated with a rapidly progressive course in young patients. This report describes a patient with moyamoya disease who experienced rapid disease progression, resulting in cerebral infarction and a wide area of diminished cerebral perfusion. Double superficial temporal artery (STA)-middle cerebral artery (MCA) anastomoses were utilized to immediately increase cerebral perfusion in the affected area. This case involved a 5-year-old girl who had been diagnosed with moyamoya disease and had undergone STA-MCA anastomosis with indirect bypass in the right hemisphere at the age of 3. At the time of presentation, magnetic resonance (MR) imaging showed cerebral infarction at the left frontal lobe, and MR angiography showed rapidly progressive narrowing of the left MCA that had not been present 3 months prior. N-isopropyl-p-[I123] iodoamphetamine single-photon emission computed tomography (IMP-SPECT) showed markedly decreased uptake in the left hemisphere. She underwent emergent STA-MCA double anastomoses with indirect bypass on the left side. IMP-SPECT showed marked increase in uptake in the left hemisphere. The anterior cerebral artery (ACA) territory adjacent to the cerebral infarction also showed increased uptake on the SPECT. Postoperatively, there were no clinical or radiographic indications of ischemic or hemorrhagic complications. Double anastomoses are effective in quickly and significantly increasing blood flow. The postoperative course in this case was uneventful. Double anastomoses are a surgical option for patients with moyamoya disease who show rapid disease progression, even in those in the acute phase of cerebral infarction. PMID:24584280

  19. Evoked Electrical and Cerebral Vascular Responses Following Sleep Deprivation

    PubMed Central

    Schei, Jennifer L.; Rector, David M.

    2011-01-01

    Neuronal activity elicits vascular dilation, delivering additional blood and metabolites to the activated region. With increasing neural activity, vessels stretch and may become less compliant. Most functional imaging studies assume that limits to vascular expansion are not normally reached except under pathological conditions, with the possibility that metabolism could outpace supply. However, we previously demonstrated that evoked hemodynamic responses were larger during quiet sleep when compared to both waking and REM sleep, suggesting that high basal activity during wake may elicit blunted evoked hemodynamic responses due to vascular expansion limits. We hypothesized that extended brain activity through sleep deprivation will further dilate blood vessels, and exacerbate the blunted evoked hemodynamic responses observed during wake, and dampen responses in subsequent sleep. We measured evoked electrical and hemodynamic responses from rats using auditory clicks (0.5 s, 10 Hz, 2–13 s random ISIs) for one hour following 2, 4, or 6 hours of sleep deprivation. Time-of-day matched controls were recorded continuously for 7 hours. Within quiet sleep periods following deprivation, ERP amplitude did not differ; however, the evoked vascular response was smaller with longer sleep deprivation periods. These results suggest that prolonged neural activity periods through sleep deprivation may diminish vascular compliance as indicated by the blunted vascular response. Subsequent sleep may allow vessels to relax, restoring their ability to deliver blood. These results also suggest that severe sleep deprivation or chronic sleep disturbances could push the vasculature to critical limits, leading to metabolic deficit and the potential for tissue trauma. PMID:21854966

  20. Exercise considerations in coronary artery disease, peripheral vascular disease, and diabetes mellitus.

    PubMed

    Armen, Joseph; Smith, Bryan W

    2003-01-01

    Physical inactivity is a risk factor for cardiovascular disease. Regular aerobic and resistance training increases exercise capacity and plays a role both in the primary and secondary prevention of cardiovascular disease. Patients with coronary artery disease, peripheral vascular disease, or diabetes mellitus must be considered individually when prescribing exercise because their clinical status can vary greatly. In addition, a majority of these patients have multiple comorbid disorders such as renal, neurologic, and retinal disease that may affect their ability to exercise safely. Therefore, a preparticipation medical evaluation is required. An exercise prescription should be tailored to each person's unique set of circumstances and reflect an effort to maximize the anticipated benefits while minimizing the risks.

  1. Immunosuppression Related to Collagen-Vascular Disease or Its Treatment

    PubMed Central

    Hamilton, Carol Dukes

    2005-01-01

    Collagen-vascular diseases are associated with immune dysregulation and inflammation, leading to tissue destruction or compromise. Immunosuppression is more commonly associated with the drugs used to treat these disorders than with the diseases themselves. The newest agents being used to treat collagen-vascular diseases are the tumor necrosis factor (TNF)-α inhibitors. U.S. Food and Drug Administration–approved TNF-α inhibitors have differing effects on the immune system, reflecting their potency and mechanisms of action. They are particularly effective in breaking down granulomatous inflammation, which makes them effective treatment for sarcoidosis and Wegener's granulomatosis. This same property makes them likely to break down the host defense mechanism that normally contains pathogens such as mycobacteria and fungi in a dormant state, namely the physical and immunologic barrier formed by granulomas in the lung and elsewhere. The most common infection reported with the TNF-α inhibitors has been tuberculosis, which may manifest as pulmonary and/or extrapulmonary disease, with the latter being more common and severe than usual. Histoplasma capsulatum, Aspergillus, Cryptococcus neoformans, and Listeria monocytogenes have also been described in a number of cases, and their frequency is discussed. PMID:16322600

  2. The use of N-terminal pro-brain natriuretic Peptide to evaluate vascular disease in elderly patients with mental illness.

    PubMed

    Nilsson, Karin; Gustafson, Lars; Hultberg, Björn

    2012-01-01

    Serum N-terminal pro-brain natriuretic peptide (NT-proBNP) is regarded as a sensitive marker of cardiovascular disease. Vascular disease plays an important role in cognitive impairment. In 447 elderly patients with mental illness, serum NT-proBNP level and the presence or absence of vascular disease according to the medical record were used to categorize patients in different subgroups of vascular disease. Patients with vascular disease and elevated serum NT-proBNP level had a lower cognition level, shorter survival time, lower renal function and a higher percentage of pathological brain imaging than patients with vascular disease and normal NT-proBNP level. Thus, elevated serum NT-proBNP level might be helpful to detect patients who have a more severe cardiovascular disease.

  3. Vascular cognitive impairment neuropathology guidelines (VCING): the contribution of cerebrovascular pathology to cognitive impairment.

    PubMed

    Skrobot, Olivia A; Attems, Johannes; Esiri, Margaret; Hortobágyi, Tibor; Ironside, James W; Kalaria, Rajesh N; King, Andrew; Lammie, George A; Mann, David; Neal, James; Ben-Shlomo, Yoav; Kehoe, Patrick G; Love, Seth

    2016-11-01

    There are no generally accepted protocols for post-mortem assessment in cases of suspected vascular cognitive impairment. Neuropathologists from seven UK centres have collaborated in the development of a set of vascular cognitive impairment neuropathology guidelines (VCING), representing a validated consensus approach to the post-mortem assessment and scoring of cerebrovascular disease in relation to vascular cognitive impairment. The development had three stages: (i) agreement on a sampling protocol and scoring criteria, through a series of Delphi method surveys; (ii) determination of inter-rater reliability for each type of pathology in each region sampled (Gwet's AC2 coefficient); and (iii) empirical testing and validation of the criteria, by blinded post-mortem assessment of brain tissue from 113 individuals (55 to 100 years) without significant neurodegenerative disease who had had formal cognitive assessments within 12 months of death. Fourteen different vessel and parenchymal pathologies were assessed in 13 brain regions. Almost perfect agreement (AC2 > 0.8) was found when the agreed criteria were used for assessment of leptomeningeal, cortical and capillary cerebral amyloid angiopathy, large infarcts, lacunar infarcts, microhaemorrhage, larger haemorrhage, fibrinoid necrosis, microaneurysms, perivascular space dilation, perivascular haemosiderin leakage, and myelin loss. There was more variability (but still reasonably good agreement) in assessment of the severity of arteriolosclerosis (0.45-0.91) and microinfarcts (0.52-0.84). Regression analyses were undertaken to identify the best predictors of cognitive impairment. Seven pathologies-leptomeningeal cerebral amyloid angiopathy, large infarcts, lacunar infarcts, microinfarcts, arteriolosclerosis, perivascular space dilation and myelin loss-predicted cognitive impairment. Multivariable logistic regression determined the best predictive models of cognitive impairment. The preferred model included moderate

  4. Dietary vitamin K and therapeutic warfarin alter susceptibility to vascular calcification in experimental chronic kidney disease

    USDA-ARS?s Scientific Manuscript database

    The leading cause of death in patients with chronic kidney disease (CKD) is cardiovascular disease (CVD), with vascular calcification (VC) being a key modifier of disease progression. A local regulator of vascular calcification is vitamin K. This gamma-glutamyl carboxylase substrate is an essential ...

  5. Simultaneous occurrence of diabetic ketoacidosis, thyroid storm, and multiple cerebral infarctions due to Moyamoya disease.

    PubMed

    Noh, Byoungho H; Cho, Sang-Won; Ahn, Sung Yeon

    2016-02-01

    Diabetic ketoacidosis (DKA) is one of the precipitating factors that can evoke a thyroid storm. Thyroid storm may cause cerebral ischemia in Moyamoya disease, which can coexist in patients with Graves' disease. A 16-year-old girl complaining of dizziness and palpitations visited the emergency department and was diagnosed with DKA combined with hyperthyroidism. A thyroid storm occurred 6 h after the start of DKA management. Her Burch and Wartofsky score was 65 points. Right hemiplegia developed during the thyroid storm, and brain magnetic resonance (MR) diffusion-weighted images revealed multiple acute infarcts in both hemispheres. MR angiography showed stenosis of both distal internal carotid arteries and both M1 portions of the middle cerebral arteries, consistent with Moyamoya disease. After acute management for the thyroid storm with methimazole, Lugol solution and hydrocortisone, the patient's neurological symptoms completely resolved within 1 month, and free T4 level normalized within 2 months. Thyroid storm may trigger cerebral ischemia in Moyamoya disease and lead to rapid progression of cerebrovascular occlusive disease. As a simultaneous occurrence of DKA, thyroid storm and cerebrovascular accident in Moyamoya disease highly elevates morbidity and mortality, prompt recognition and management are critical to save the patient's life.

  6. Choline and its metabolites are differently associated with cardiometabolic risk factors, history of cardiovascular disease, and MRI-documented cerebrovascular disease in older adults.

    PubMed

    Roe, Annie J; Zhang, Shucha; Bhadelia, Rafeeque A; Johnson, Elizabeth J; Lichtenstein, Alice H; Rogers, Gail T; Rosenberg, Irwin H; Smith, Caren E; Zeisel, Steven H; Scott, Tammy M

    2017-06-01

    Background: There is a potential role of choline in cardiovascular and cerebrovascular disease through its involvement in lipid and one-carbon metabolism. Objective: We evaluated the associations of plasma choline and choline-related compounds with cardiometabolic risk factors, history of cardiovascular disease, and cerebrovascular pathology. Design: A cross-sectional subset of the Nutrition, Aging, and Memory in Elders cohort who had undergone MRI of the brain ( n = 296; mean ± SD age: 73 ± 8.1 y) was assessed. Plasma concentrations of free choline, betaine, and phosphatidylcholine were measured with the use of liquid-chromatography-stable-isotope dilution-multiple-reaction monitoring-mass spectrometry. A volumetric analysis of MRI was used to determine the cerebrovascular pathology (white-matter hyperintensities and small- and large-vessel infarcts). Multiple linear and logistic regression models were used to examine relations of plasma measures with cardiometabolic risk factors, history of cardiovascular disease, and radiologic evidence of cerebrovascular pathology. Results: Higher concentrations of plasma choline were associated with an unfavorable cardiometabolic risk-factor profile [lower high-density lipoprotein (HDL) cholesterol, higher total homocysteine, and higher body mass index (BMI)] and greater odds of large-vessel cerebral vascular disease or history of cardiovascular disease but lower odds of small-vessel cerebral vascular disease. Conversely, higher concentrations of plasma betaine were associated with a favorable cardiometabolic risk-factor profile [lower low-density lipoprotein (LDL) cholesterol and triglycerides] and lower odds of diabetes. Higher concentrations of plasma phosphatidylcholine were associated with characteristics of both a favorable cardiometabolic risk-factor profile (higher HDL cholesterol, lower BMI, lower C-reactive protein, lower waist circumference, and lower odds of hypertension and diabetes) and an unfavorable profile

  7. Assessing Intracranial Vascular Compliance Using Dynamic Arterial Spin Labeling

    PubMed Central

    Yan, Lirong; Liu, Collin Y.; Smith, Robert X.; Jog, Mayank; Langham, Michael; Krasileva, Kate; Chen, Yufen; Ringman, John M.; Wang, Danny J.J.

    2015-01-01

    Vascular compliance (VC) is an important marker for a number of cardiovascular diseases and dementia, which is typically assessed in central and peripheral arteries indirectly by quantifying pulse wave velocity (PWV), and/or pulse pressure waveform. To date, very few methods are available for the quantification of intracranial VC. In the present study, a novel MRI technique for in-vivo assessment of intracranial VC was introduced, where dynamic arterial spin labeling (ASL) scans were synchronized with the systolic and diastolic phases of the cardiac cycle. VC is defined as the ratio of change in arterial cerebral blood volume (ΔCBV) and change in arterial pressure (ΔBP). Intracranial VC was assessed in different vascular components using the proposed dynamic ASL method. Our results show that VC mainly occurs in large arteries, gradually decreases in small arteries and arterioles. The comparison of intracranial VC between young and elderly subjects shows that aging is accompanied by a reduction of intracranial VC, in good agreement with the literature. Furthermore, a positive association between intracranial VC and cerebral perfusion measured using pseudo-continuous ASL with 3D GRASE MRI was observed independent of aging effects, suggesting loss of VC is associated with a decline in perfusion. Finally, a significant positive correlation between intracranial and central (aortic arch) VC was observed using an ungated phase-contrast 1D projection PWV technique. The proposed dynamic ASL method offers a promising approach for assessing intracranial VC in a range of cardiovascular diseases and dementia. PMID:26364865

  8. Orthostatic hypotension, cerebral hypoperfusion, and visuospatial deficits in Lewy body disorders.

    PubMed

    Robertson, Andrew D; Messner, Michelle A; Shirzadi, Zahra; Kleiner-Fisman, Galit; Lee, Joyce; Hopyan, Julia; Lang, Anthony E; Black, Sandra E; MacIntosh, Bradley J; Masellis, Mario

    2016-01-01

    Orthostatic hypotension and cognitive impairment are two non-motor attributes of Lewy body spectrum disorders that impact independence. This proof-of-concept study examined cerebral blood flow (perfusion) as a mediator of orthostatic hypotension and cognition. In fifteen patients with Lewy body disorders, we estimated regional perfusion using pseudo-continuous arterial spin labeling MRI, and quantified orthostatic hypotension from the change in systolic blood pressure between supine and standing positions. Executive, visuospatial, attention, memory, and language domains were characterized by neuropsychological tests. A matching sample of non-demented adults with cerebral small vessel disease was obtained to contrast perfusion patterns associated with comorbid vascular pathology. Compared to the vascular group, patients with Lewy body disorders exhibited lower perfusion to temporal and occipital lobes than to frontal and parietal lobes (q < 0.05). A greater orthostatic drop in systolic pressure was associated with lower occipito-parietal perfusion in these patients (uncorrected p < 0.005; cluster size ≥ 20 voxels). Although orthostatic hypotension and supine hypertension were strongly correlated (r = -0.79, p < 0.001), the patterns of association for each with perfusion were distinct. Specifically, supine hypertension was associated with high perfusion to anterior and middle cerebral arterial territories, as well as with low perfusion to posterior regions. Perfusion within orthostatic hypotension-defined regions was directly related to performance on visuospatial and attention tasks, independent of dementia severity (p < 0.05). These findings provide new insight that regional cerebral hypoperfusion is related to orthostatic hypotension, and may be involved in domain-specific cognitive deficits in Lewy body disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Increased Notch3 Activity Mediates pathological Changes in Structure of Cerebral arteries

    PubMed Central

    Baron-Menguy, Celine; Domenga-Denier, Valérie; Ghezali, Lamia; Faraci, Frank; Joutel, Anne

    2016-01-01

    CADASIL, the most frequent genetic cause of stroke and vascular dementia, is caused by highly stereotyped mutations in the NOTCH3 receptor, which is predominantly expressed in vascular smooth muscle. The well-established TgNotch3R169C mouse model develops characteristic features of the human disease, with deposition of NOTCH3 and other proteins, including TIMP3 (tissue inhibitor of metalloproteinase 3), on brain vessels as well as reduced maximal dilation, and attenuated myogenic tone of cerebral arteries, but without elevated blood pressure. Increased TIMP3 levels were recently shown to be a major determinant of altered myogenic tone. In this study, we investigated the contribution of TIMP3 and Notch3 signaling to the impairment of maximal vasodilator capacity caused by the archetypal R169C mutation. Maximally dilated cerebral arteries in TgNotch3R169C mice exhibited a decrease in lumen diameter over a range of physiological pressures that occurred prior to myogenic tone deficits. This defect was not prevented by genetic reduction of TIMP3 in TgNotch3R169C mice and was not observed in mice overexpressing TIMP3. Knock-in mice with the R169C mutation (Notch3R170C/R170C) exhibited similar reductions in arterial lumen, and both TgNotch3R169C and Notch3R170C/R170C mice showed increased cerebral artery expression of Notch3 target genes. Reduced maximal vasodilation was prevented by conditional reduction of Notch activity in smooth muscle of TgNotch3R169C mice and mimicked by conditional activation of Notch3 in smooth muscle, an effect that was blood pressure-independent. We conclude that increased Notch3 activity mediates reduction in maximal dilator capacity of cerebral arteries in CADASIL and may contribute to reductions in cerebral blood flow. PMID:27821617

  10. Could Better Phenotyping Small Vessel Disease Provide New Insights into Alzheimer Disease and Improve Clinical Trial Outcomes?

    PubMed

    Marnane, Michael; Hsiung, Ging-Yuek R

    2016-01-01

    Alzheimer Disease (AD) is the most common primary cause of dementia with a burgeoning epidemic as life expectancy and general medical care improve worldwide. Recent data from pathologic studies has shown that the cooccurrence of other neurodegenerative and vascular pathologies is in fact the rule rather than the exception. In late onset AD, cerebral small vessel disease (SVD) is almost invariably co-existent to a greater or lesser extent and is known to promote cognitive deterioration. Previous observational studies and clinical trials have largely sought to divide dementia based on predominant neurodegenerative or vascular mechanisms. Given the high degree of overlap, findings from such studies may be difficult to interpret and apply to population cohorts. Additionally opportunities may be lost for uncovering novel interventions that target interactions between co-existent vascular and neurodegenerative pathologies. In the current review, we consider potential pathophysiologic mechanisms through which SVD may be associated with and promote AD pathology. In particular we explore shared environmental and genetic associations and how these may converge via neuroinflammatory pathways potentially providing novel therapeutic targets. SVD has heterogenous manifestations on cerebral imaging and at pathology. We discuss how studying SVD topography may enable us to better identify those at risk for more rapid cognitive decline and improve future clinical trial design.

  11. Vascular cognitive impairment, a cardiovascular complication.

    PubMed

    Frances, Adiukwu; Sandra, Ofori; Lucy, Ugbomah

    2016-06-22

    Over the past two decades, the term vascular cognitive impairment (VCI) has been used to refer to a spectrum of cognitive decline characterized by executive dysfunction, associated with vascular pathology. With 30% of stroke survivors showing cognitive impairments, it is regarded as the most common cause of cognitive impairment. This is a narrative review of available literature citing sources from PubMed, MEDLINE and Google Scholar. VCI has a high prevalence both before and after a stroke and is associated with great economic and caregiver burden. Despite this, there is no standardized diagnostic criteria for VCI. Hypertension has been identified as a risk factor for VCI and causes changes in cerebral vessel structure and function predisposing to lacuna infarcts and small vessel haemorrhages in the frontostriatal loop leading to executive dysfunction and other cognitive impairments. Current trials have shown promising results in the use of antihypertensive medications in the management of VCI and prevention of disease progression to vascular dementia. Prevention of VCI is necessary in light of the looming dementia pandemic. All patients with cardiovascular risk factors would therefore benefit from cognitive screening with screening instruments sensitive to executive dysfunction as well as prompt and adequate control of hypertension.

  12. Vascular cognitive impairment, a cardiovascular complication

    PubMed Central

    Frances, Adiukwu; Sandra, Ofori; Lucy, Ugbomah

    2016-01-01

    Over the past two decades, the term vascular cognitive impairment (VCI) has been used to refer to a spectrum of cognitive decline characterized by executive dysfunction, associated with vascular pathology. With 30% of stroke survivors showing cognitive impairments, it is regarded as the most common cause of cognitive impairment. This is a narrative review of available literature citing sources from PubMed, MEDLINE and Google Scholar. VCI has a high prevalence both before and after a stroke and is associated with great economic and caregiver burden. Despite this, there is no standardized diagnostic criteria for VCI. Hypertension has been identified as a risk factor for VCI and causes changes in cerebral vessel structure and function predisposing to lacuna infarcts and small vessel haemorrhages in the frontostriatal loop leading to executive dysfunction and other cognitive impairments. Current trials have shown promising results in the use of antihypertensive medications in the management of VCI and prevention of disease progression to vascular dementia. Prevention of VCI is necessary in light of the looming dementia pandemic. All patients with cardiovascular risk factors would therefore benefit from cognitive screening with screening instruments sensitive to executive dysfunction as well as prompt and adequate control of hypertension. PMID:27354961

  13. Atherosclerotic vascular disease in systemic lupus erythematosus.

    PubMed

    Liang, Matthew H; Mandl, Lisa A; Costenbader, Karen; Fox, Ervin; Karlson, Elizabeth

    2002-09-01

    In the United States, systemic lupus erythematosus (SLE) disproportionately affects African Americans. It has become a chronic disease with long-term morbidity including chronic renal disease, osteoporosis, cataracts, psychosocial impairment, and importantly, atherosclerotic vascular disease (ASVD). The latter (myocardial infarction, angina, peripheral vascular disease and stroke) are strikingly accelerated, occurring in subjects who are predominantly premenopausal women at an age when ASVD is rare or unusual. Although much is known about the biology, risk factors, and the prevention of atherosclerosis in normal individuals, little work has been done in SLE. In fact, ASVD in people with SLE may be a different disease. Approximately 1.5% of SLE patients per year will have a myocardial infarction or equivalent; about 0.5% of SLE patients per year will have a stroke. The risk factors for ASVD in SLE are based on small, retrospective, single center studies. These suggest that the risk factors known for the general population (i.e., smoking, obesity, sedentary lifestyle, high LDL cholesterol, etc.) are also observed in SLE. The best study of risk factors shows that even accounting for the known factors, SLE and/or its treatment (glucocorticoids) is by far the most important. Our current management of cardiovascular risk factors in SLE patients with ASVD is substandard and our adherence to national guidelines for prevention is substandard. It is not known whether improving either will prevent these disastrous outcomes. Very little is known about the risk factors in African Americans with SLE, although there is data to suggest that they may not be identical to those seen in Caucasian populations. The study of the best and most effective means to prevent ASVD in SLE and in African Americans with SLE and in African Americans with SLE should be a major priority.

  14. Endogenous sex steroids and cardio- and cerebro-vascular disease in the postmenopausal period.

    PubMed

    Pappa, Theodora; Alevizaki, Maria

    2012-08-01

    Cardio- and cerebro-vascular diseases are two leading causes of death and long-term disability in postmenopausal women. The acute fall of estrogen in menopause is associated with increased cardiovascular risk. The relative contribution of androgen to this risk is also being recognized. The use of more sensitive assays for estradiol measurement and the study of receptor and carrier protein gene polymorphisms have provided some new information on the clinical relevance of endogenous sex steroids. We provide an update on the role of endogenous sex steroids on cardio- and cerebro-vascular disease in the postmenopausal period. We performed a PubMed search using the terms 'endogenous estrogen', 'androgen', 'cardiovascular disease', 'cerebro-vascular disease', 'stroke', 'carotid artery disease', and 'subclinical atherosclerosis'. The majority of studies show a beneficial effect of endogenous estrogen on the vasculature; however, there are a few studies reporting the contrary. A significant body of literature has reported associations of endogenous estrogen and androgen with early markers of atherosclerosis and metabolic parameters. Data on the relevance of endogenous sex steroids in heart disease and stroke are inconclusive. Most studies support a beneficial role of endogenous estrogens and, probably, an adverse effect of androgens in the vasculature in postmenopausal women. However, the described associations may not always be considered as causal. It is possible that circulating estrogen might represent a marker of general health status or alternatively reflect the sum of endogenous androgens aromatized in the periphery. Elucidating the role of sex steroids in cardio- and cerebro-vascular disease remains an interesting field of future research.

  15. AltitudeOmics: effect of ascent and acclimatization to 5260 m on regional cerebral oxygen delivery.

    PubMed

    Subudhi, Andrew W; Fan, Jui-Lin; Evero, Oghenero; Bourdillon, Nicolas; Kayser, Bengt; Julian, Colleen G; Lovering, Andrew T; Roach, Robert C

    2014-05-01

    Cerebral hypoxaemia associated with rapid ascent to high altitude can be life threatening; yet, with proper acclimatization, cerebral function can be maintained well enough for humans to thrive. We investigated adjustments in global and regional cerebral oxygen delivery (DO2) as 21 healthy volunteers rapidly ascended and acclimatized to 5260 m. Ultrasound indices of cerebral blood flow in internal carotid and vertebral arteries were measured at sea level, upon arrival at 5260 m (ALT1; atmospheric pressure 409 mmHg) and after 16 days of acclimatization (ALT16). Cerebral DO2 was calculated as the product of arterial oxygen content and flow in each respective artery and summed to estimate global cerebral blood flow. Vascular resistances were calculated as the quotient of mean arterial pressure and respective flows. Global cerebral blood flow increased by ∼70% upon arrival at ALT1 (P < 0.001) and returned to sea-level values at ALT16 as a result of changes in cerebral vascular resistance. A reciprocal pattern in arterial oxygen content maintained global cerebral DO2 throughout acclimatization, although DO2 to the posterior cerebral circulation was increased by ∼25% at ALT1 (P = 0.032). We conclude that cerebral DO2 is well maintained upon acute exposure and acclimatization to hypoxia, particularly in the posterior and inferior regions of the brain associated with vital homeostatic functions. This tight regulation of cerebral DO2 was achieved through integrated adjustments in local vascular resistances to alter cerebral perfusion during both acute and chronic exposure to hypoxia. © 2013 The Authors. Experimental Physiology © 2013 The Physiological Society.

  16. Choline and its metabolites are differently associated with cardiometabolic risk factors, history of cardiovascular disease, and MRI-documented cerebrovascular disease in older adults12

    PubMed Central

    Zhang, Shucha; Bhadelia, Rafeeque A; Johnson, Elizabeth J; Lichtenstein, Alice H; Rogers, Gail T; Rosenberg, Irwin H; Smith, Caren E; Zeisel, Steven H

    2017-01-01

    Background: There is a potential role of choline in cardiovascular and cerebrovascular disease through its involvement in lipid and one-carbon metabolism. Objective: We evaluated the associations of plasma choline and choline-related compounds with cardiometabolic risk factors, history of cardiovascular disease, and cerebrovascular pathology. Design: A cross-sectional subset of the Nutrition, Aging, and Memory in Elders cohort who had undergone MRI of the brain (n = 296; mean ± SD age: 73 ± 8.1 y) was assessed. Plasma concentrations of free choline, betaine, and phosphatidylcholine were measured with the use of liquid-chromatography–stable-isotope dilution–multiple-reaction monitoring–mass spectrometry. A volumetric analysis of MRI was used to determine the cerebrovascular pathology (white-matter hyperintensities and small- and large-vessel infarcts). Multiple linear and logistic regression models were used to examine relations of plasma measures with cardiometabolic risk factors, history of cardiovascular disease, and radiologic evidence of cerebrovascular pathology. Results: Higher concentrations of plasma choline were associated with an unfavorable cardiometabolic risk-factor profile [lower high-density lipoprotein (HDL) cholesterol, higher total homocysteine, and higher body mass index (BMI)] and greater odds of large-vessel cerebral vascular disease or history of cardiovascular disease but lower odds of small-vessel cerebral vascular disease. Conversely, higher concentrations of plasma betaine were associated with a favorable cardiometabolic risk-factor profile [lower low-density lipoprotein (LDL) cholesterol and triglycerides] and lower odds of diabetes. Higher concentrations of plasma phosphatidylcholine were associated with characteristics of both a favorable cardiometabolic risk-factor profile (higher HDL cholesterol, lower BMI, lower C-reactive protein, lower waist circumference, and lower odds of hypertension and diabetes) and an unfavorable

  17. Home Telecare for Chronic Disease Management

    DTIC Science & Technology

    2001-10-25

    in USA. Mortality rate rose 32.9% from 1979 to 1991 and age adjusted death rates for COPD rose 71% from 1966 to 1986.Over the same two decades death ... rates from all causes declined by 22% and for heart and cerebral vascular disease declined by 45% and 58% respectively. Increases in morbidity and

  18. Unusual Association: Cerebral Arteriovenous Malformation and Chiari Type I Malformation.

    PubMed

    Ogul, Hayri; Kantarci, Mecit

    2017-06-01

    Cerebral arteriovenous malformation (AVM) is a common type of cerebral vascular malformation. The imaging findings are enlarged vessels, thrombosed sinuses, and hemorrhage or gliosis on adjacent brain parenchyma. Magnetic resonance (MR) imaging can be used safely for diagnosis. Chiari type I malformation is characterized by a caudal descent of the cerebellar tonsil. Coincidence of cerebral AVM and Chiari type I malformation is very rare. In this paper, the authors report MR imaging findings of a patient with coincidence of cerebral AVM and Chiari type I malformation.

  19. [The age-related macular degeneration as a vascular disease/part of systemic vasculopathy: contributions to its pathogenesis].

    PubMed

    Fischer, Tamás

    2015-03-01

    The wall of blood vessels including those in choroids may be harmed by several repeated and/or prolonged mechanical, physical, chemical, microbiological, immunologic, and genetic impacts (risk factors), which may trigger a protracted response, the so-called host defense response. As a consequence, pathological changes resulting in vascular injury (e. g. atherosclerosis, age-related macular degeneration) may be evolved. Risk factors can also act directly on the endothelium through an increased production of reactive oxygen species promoting an endothelial activation, which leads to endothelial dysfunction, the onset of vascular disease. Thus, endothelial dysfunction is a link between the harmful stimulus and vascular injury; any kind of harmful stimuli may trigger the defensive chain that results in inflammation that may lead to vascular injury. It has been shown that even early age-related macular degeneration is associated with the presence of diffuse arterial disease and patients with early age-related macular degeneration demonstrate signs of systemic and retinal vascular alterations. Chronic inflammation, a feature of AMD, is tightly linked to diseases associated with ED: AMD is accompanied by a general inflammatory response, in the form of complement system activation, similar to that observed in degenerative vascular diseases such as atherosclerosis. All these facts indicate that age-related macular degeneration may be a vascular disease (or part of a systemic vasculopathy). This recognition could have therapeutic implications because restoration of endothelial dysfunction may prevent the development or improve vascular disease resulting in prevention or improvement of age-related macular degeneration as well.

  20. Vascular cognitive impairment, dementia, aging and energy demand. A vicious cycle.

    PubMed

    Popa-Wagner, A; Buga, Ana-Maria; Popescu, B; Muresanu, D

    2015-08-01

    To a great extent, cognitive health depends on cerebrovascular health and a deeper understanding of the subtle interactions between cerebrovascular function and cognition is needed to protect humans from one of the most devastating affliction, dementia. However, the underlying biological mechanisms are still not completely clear. Many studies demonstrated that the neurovascular unit is compromised in cerebrovascular diseases and also in other types of dementia. The hemodynamic neurovascular coupling ensures a strong increase of the cerebral blood flow (CBF) and an acute increase in neuronal glucose uptake upon increased neural activity. Dysfunction of cerebral autoregulation with increasing age along with age-related structural and functional alterations in cerebral blood vessels including accumulation of amyloid-beta (Aβ) in the media of cortical arterioles, neurovascular uncoupling due to astrocyte endfeet retraction, impairs the CBF and increases the neuronal degeneration and susceptibility to hypoxia and ischemia. A decreased cerebral glucose metabolism is an early event in Alzheimer's disease (AD) pathology and may precede the neuropathological Aβ deposition associated with AD. Aβ accumulation in turn leads to further decreases in the CBF closing the vicious cycle. Alzheimer, aging and diabetes are also influenced by insulin/insulin-like growth factor-1 signaling, and accumulated evidence indicates sporadic AD is associated with disturbed brain insulin metabolism. Understanding how vascular and metabolic factors interfere with progressive loss of functional neuronal networks becomes essential to develop efficient drugs to prevent cognitive decline in elderly.

  1. The Effect of Vascular Neuropathology on Late-life Cognition: Results from the SMART Project.

    PubMed

    Kryscio, R J; Abner, E L; Nelson, P T; Bennett, D; Schneider, J; Yu, L; Hemmy, L S; Lim, K O; Masaki, K; Cairns, N; Xiong, C; Woltjer, R; Dodge, H H; Tyas, S; Fardo, D W; Lou, W; Wan, L; Schmitt, F A

    2016-06-01

    Cerebral vascular pathology may contribute to cognitive decline experienced by some elderly near death. Given evidence for mixed neuropathologies in advanced age, preventing or reducing cerebrovascular burden in late life may be beneficial. To correlate measures of cerebral vascular pathology with cognitive trajectories. Observational study. A cohort of 2,274 individuals who came to autopsy at a mean age of 89.3 years and 82 percent of whom had at least two cognitive assessments within the last six years of life was compiled from six centers conducting longitudinal studies. For each cognitive domain: immediate and delayed memory, language, and naming, three trajectories were examined: good, intermediate, and poor cognition. The probability of a participant belonging to each trajectory was associated with measures of cerebral vascular pathology after adjustment for demographics, APOE, and Alzheimer neuropathology. A large proportion of the cohort (72-94%) experienced good or intermediate cognition in the four domains examined. The presence of arteriolosclerosis and the presence of lacunar infarcts doubled the odds of belonging to the poor cognitive trajectory for language when compared to the good trajectory. The presence of lacunar infarcts increased the odds of an intermediate or poor trajectory for immediate and delayed recall while the presence of large artery infarcts increased the odds of poor trajectories for all four cognitive domains examined. Microinfarcts and cerebral amyloid angiopathy had little effect on the trajectories. Indicators of cerebral vascular pathology act differently on late life cognition.

  2. Perioperative Near-Infrared Spectroscopy Monitoring in Neonates With Congenital Heart Disease: Relationship of Cerebral Tissue Oxygenation Index Variability With Neurodevelopmental Outcome.

    PubMed

    Spaeder, Michael C; Klugman, Darren; Skurow-Todd, Kami; Glass, Penny; Jonas, Richard A; Donofrio, Mary T

    2017-03-01

    To evaluate the value of perioperative cerebral near-infrared spectroscopy monitoring using variability analysis in the prediction of neurodevelopmental outcomes in neonates undergoing surgery for congenital heart disease. Retrospective cohort study. Urban, academic, tertiary-care children's hospital. Neonates undergoing surgery with cardiopulmonary bypass for congenital heart disease. Perioperative monitoring of continuous cerebral tissue oxygenation index by near-infrared spectroscopy and subsequent neurodevelopmental testing at 6, 15, and 21 months of age. We developed a new measure, cerebral tissue oxygenation index variability, using the root mean of successive squared differences of averaged 1-minute cerebral tissue oxygenation index values for both the intraoperative and first 24-hours postoperative phases of monitoring. There were 62 neonates who underwent cerebral tissue oxygenation index monitoring during surgery for congenital heart disease and 44 underwent subsequent neurodevelopmental testing (12 did not survive until testing and six were lost to follow-up). Among the 44 monitored patients who underwent neurodevelopmental testing, 20 (45%) had abnormal neurodevelopmental indices. Patients with abnormal neurodevelopmental indices had lower postoperative cerebral tissue oxygenation index variability when compared with patients with normal indices (p = 0.01). Adjusting for class of congenital heart disease and duration of deep hypothermic circulatory arrest, lower postoperative cerebral tissue oxygenation index variability was associated with poor neurodevelopmental outcome (p = 0.02). We found reduced postoperative cerebral tissue oxygenation index variability in neonatal survivors of congenital heart disease surgery with poor neurodevelopmental outcomes. We hypothesize that reduced cerebral tissue oxygenation index variability may be a surrogate for impaired cerebral metabolic autoregulation in the immediate postoperative period. Further research is

  3. Methylmercury poisoning in common marmosets--a study of selective vulnerability within the cerebral cortex.

    PubMed

    Eto, K; Yasutake, A; Kuwana, T; Korogi, Y; Akima, M; Shimozeki, T; Tokunaga, H; Kaneko, Y

    2001-01-01

    Neuropathological lesions found in chronic human Minamata disease tend to be localized in the calcarine cortex of occipital lobes, the pre- and postcentral lobuli, and the temporal gyri. The mechanism for the selective vulnerability is still not clear, though several hypotheses have been proposed. One hypothesis is vascular and postulates that the lesions are the result of ischemia secondary to compression of sulcal arteries from methylmercury-induced cerebral edema. To test this hypothesis, we studied common marmosets because the cerebrum of marmosets has 2 distinct deep sulci, the calcarine and Sylvian fissures. MRI analysis, mercury assays of tissue specimens, histologic and histochemical studies of the brain are reported and discussed. Brains sacrificed early after exposure to methylmercury showed high contents of methylmercury and edema of the cerebral white matter. These results may explain the selective cortical degeneration along the deep cerebral fissures or sulci.

  4. Prevalence of middle cerebral artery stenosis in asymptomatic subjects of more than 40 years age group: a transcranial Doppler study.

    PubMed

    Sada, Sujay; Reddy, Yugandhar; Rao, Sampath; Alladi, Suvarna; Kaul, Subash

    2014-01-01

    Middle cerebral artery (MCA) disease is the most common vascular lesion in stroke. Transcranial Doppler (TCD) is a non-invasive bedside screening method for assessing cerebral blood flow. To investigate the prevalence of MCA stenosis in asymptomatic but high-risk individuals for stroke. Prospective study between December 2011 and December 2013. Vascular risk factors considered included: hypertension (HTN), diabetes mellitus, smoking, alcohol consumption, coronary artery disease (CAD), peripheral vascular disease (PVD), hypercholesterolemia and obesity. TCD was performed with portable machine through the temporal windows by use of a standardized protocol. Of the 427 subjects, 374 were analyzed; males 264 (70.6%) and females 110 (29.4%). Mean age was 54.2 ± 7.6 years. The frequency of the risk factors was: HTN 287 (76.7%), diabetes 220 (58.8%), CAD 120 (32.1%), hypercholesterolemia 181 (48.4%), smoking 147 (39.3%), alcohol 99 (26.5%), obesity 198 (52.9%) and PVD 8 (2.1%). Of the 374 subjects, 27 (7.2%) had intracranial arterial stenosis and the rest had normal intracranial arteries. On univariate analysis, subjects with higher age, HTN, CAD, smoking and hypercholesterolemia had higher risk of having intracranial arterial stenosis (P < 0.05). Multivariate analysis showed HTN and CAD are independent risk factors for intracranial arterial stenosis. Overall prevalence of intracranial arterial stenosis is 7.2% in high-risk population sample from Hyderabad in South India. HTN and CAD are independent risk factors for the development of intracranial arterial stenosis.

  5. Uric Acid, Hyperuricemia and Vascular Diseases

    PubMed Central

    Jin, Ming; Yang, Fan; Yang, Irene; Yin, Ying; Luo, Jin Jun; Wang, Hong; Yang, Xiao-Feng

    2011-01-01

    Uric acid is the product of purine metabolism. It is known that hyperuricemia, defined as high levels of blood uric acid, is the major etiological factor of gout. A number of epidemiological reports have increasingly linked hyperuricemia with cardiovascular and neurological diseases. Studies highlighting the pathogenic mechanisms of uric acid point to an inflammatory response as the primary mechanism for inducing gout and possibly contributing to uric acid's vascular effects. Monosodium urate (MSU) crystals induce an inflammatory reaction, which are recognized by Toll-like receptors (TLRs). These TLRs then activate NALP3 inflammasome. MSU also triggers neutrophil activation and further produces immune mediators, which lead to a proinflammatory response. In addition, soluble uric acid can also mediate the generation of free radicals and function as a pro-oxidant. This review summarizes the epidemiological studies of hyperuricemia and cardiovascular disease, takes a brief look at hyperuricemia and its role in neurological diseases, and highlights the studies of the advanced pathological mechanisms of uric acid and inflammation. PMID:22201767

  6. Increased Notch3 Activity Mediates Pathological Changes in Structure of Cerebral Arteries.

    PubMed

    Baron-Menguy, Celine; Domenga-Denier, Valérie; Ghezali, Lamia; Faraci, Frank M; Joutel, Anne

    2017-01-01

    CADASIL (Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy), the most frequent genetic cause of stroke and vascular dementia, is caused by highly stereotyped mutations in the NOTCH3 receptor, which is predominantly expressed in vascular smooth muscle. The well-established TgNotch3 R169C mouse model develops characteristic features of the human disease, with deposition of NOTCH3 and other proteins, including TIMP3 (tissue inhibitor of metalloproteinase 3), on brain vessels, as well as reduced maximal dilation, and attenuated myogenic tone of cerebral arteries, but without elevated blood pressure. Increased TIMP3 levels were recently shown to be a major determinant of altered myogenic tone. In this study, we investigated the contribution of TIMP3 and Notch3 signaling to the impairment of maximal vasodilator capacity caused by the archetypal R169C mutation. Maximally dilated cerebral arteries in TgNotch3 R169C mice exhibited a decrease in lumen diameter over a range of physiological pressures that occurred before myogenic tone deficits. This defect was not prevented by genetic reduction of TIMP3 in TgNotch3 R169C mice and was not observed in mice overexpressing TIMP3. Knock-in mice with the R169C mutation (Notch3 R170C/R170C ) exhibited similar reductions in arterial lumen, and both TgNotch3 R169C and Notch3 R170C/R170C mice showed increased cerebral artery expression of Notch3 target genes. Reduced maximal vasodilation was prevented by conditional reduction of Notch activity in smooth muscle of TgNotch3 R169C mice and mimicked by conditional activation of Notch3 in smooth muscle, an effect that was blood pressure-independent. We conclude that increased Notch3 activity mediates reduction in maximal dilator capacity of cerebral arteries in CADASIL and may contribute to reductions in cerebral blood flow. © 2016 American Heart Association, Inc.

  7. A survey of current practice of vascular surgeons in venous disease management.

    PubMed

    Bush, Ruth L; Gloviczki, Peter

    2013-01-01

    Acute venous thromboembolism and chronic venous diseases are common conditions that affect a large proportion of the United States population. The diagnosis of venous disease has improved, and the treatment options have rapidly evolved over the past decade. To date, it is unclear to what extent vascular surgeons have become involved in the modern management of venous disorders. This survey was undertaken to explore the current interest and practice of vascular surgeons in the contemporary care of venous disease. A survey was administered via a web-based platform to active and candidate members of the Society for Vascular Surgery (SVS). The survey included 30 questions investigating the characteristics of venous surgeons and scope of venous practice. Open-ended questions were also included for commentary. A total of 1879 surveys were sent to SVS members nationwide, and 385 members participated (response rate of 20.5%). The participants were mostly men (89.6%) with 37.7% practicing in an academic setting and 59.2% in private practice. The respondents treated superficial veins (92.9%) and deep veins (85.8%) in clinical practice, with 89.9% having their own vascular laboratory. A wide spectrum of interventions for superficial (91.9%), deep (85.8%), and perforator veins (52.7% endovenous, 19.4% subfascial endoscopic perforator surgery) are being performed by respondents. Only 26.2% had learned endovenous thermal ablation in their training program; however, over 96% of those performing venous interventions utilized this technique. Overall, the majority (85.5%) devoted 50% or less of practice to venous disorders. Respondents indicated that limitations to expansion of vein practices mainly involved challenges with third party payers, local competition, and existing large volumes of arterial interventions needing to be performed. Despite the widespread incorporation of venous disease into current vascular practices, 66.1% are not members of the American Venous Forum (AVF

  8. Cerebro vascular reactivity (CVR) of middle cerebral artery in response to CO2 5% inhalation in preeclamptic women.

    PubMed

    Sariri, Elaheh; Vahdat, Mansoureh; Behbahani, Afsaneh Shariati; Rohani, Mohammad; Kashanian, Maryam

    2013-07-01

    To compare the cerebro vascular reactivity (CVR) of middle cerebral artery (MCA) in response to CO2 5% inhalation between preeclamptic and normotensive pregnant women, also, between mild and severe preeclampsia. A comparative study was performed on 61 women with preeclampsia and 65 normotensive pregnant women who were in the third trimester of gestation. MCA transcranial Doppler ultrasound was used to measure CVR in response to CO2 5% inhalation. Pulsatility index (PI), resistance index (RI), blood pressure, maternal age, gestational age and gravidity were also recorded. Baseline PI and RI were lower in the preeclamptic group (p < 0.05). Inhalation of CO2 5% caused significant increase in CVR among normotensive pregnant women in comparison with preeclamptic group (1.006 ± 0.229 versus 0.503 ± 0.209, p = 0.0001). Significantly, more cerebral vasodilatation was found among mild preeclamptic women in comparison with severe preeclamptic women (0.583 ± 0.193 versus 0.383 ± 0.173, p = 0.0001). The receiver operating characteristics curve analysis revealed acceptable difference between CO2 stimulation test of preeclamptic and normotensive women (Area under curve = 0.973, p = 0.0001). CVR in response to CO2 5% is less in preeclamptic pregnant women than normotensives, also, in severe preeclampsia, it is less than mild preeclampsia.

  9. Evacetrapib and Cardiovascular Outcomes in High-Risk Vascular Disease.

    PubMed

    Lincoff, A Michael; Nicholls, Stephen J; Riesmeyer, Jeffrey S; Barter, Philip J; Brewer, H Bryan; Fox, Keith A A; Gibson, C Michael; Granger, Christopher; Menon, Venu; Montalescot, Gilles; Rader, Daniel; Tall, Alan R; McErlean, Ellen; Wolski, Kathy; Ruotolo, Giacomo; Vangerow, Burkhard; Weerakkody, Govinda; Goodman, Shaun G; Conde, Diego; McGuire, Darren K; Nicolau, Jose C; Leiva-Pons, Jose L; Pesant, Yves; Li, Weimin; Kandath, David; Kouz, Simon; Tahirkheli, Naeem; Mason, Denise; Nissen, Steven E

    2017-05-18

    The cholesteryl ester transfer protein inhibitor evacetrapib substantially raises the high-density lipoprotein (HDL) cholesterol level, reduces the low-density lipoprotein (LDL) cholesterol level, and enhances cellular cholesterol efflux capacity. We sought to determine the effect of evacetrapib on major adverse cardiovascular outcomes in patients with high-risk vascular disease. In a multicenter, randomized, double-blind, placebo-controlled phase 3 trial, we enrolled 12,092 patients who had at least one of the following conditions: an acute coronary syndrome within the previous 30 to 365 days, cerebrovascular atherosclerotic disease, peripheral vascular arterial disease, or diabetes mellitus with coronary artery disease. Patients were randomly assigned to receive either evacetrapib at a dose of 130 mg or matching placebo, administered daily, in addition to standard medical therapy. The primary efficacy end point was the first occurrence of any component of the composite of death from cardiovascular causes, myocardial infarction, stroke, coronary revascularization, or hospitalization for unstable angina. At 3 months, a 31.1% decrease in the mean LDL cholesterol level was observed with evacetrapib versus a 6.0% increase with placebo, and a 133.2% increase in the mean HDL cholesterol level was seen with evacetrapib versus a 1.6% increase with placebo. After 1363 of the planned 1670 primary end-point events had occurred, the data and safety monitoring board recommended that the trial be terminated early because of a lack of efficacy. After a median of 26 months of evacetrapib or placebo, a primary end-point event occurred in 12.9% of the patients in the evacetrapib group and in 12.8% of those in the placebo group (hazard ratio, 1.01; 95% confidence interval, 0.91 to 1.11; P=0.91). Although the cholesteryl ester transfer protein inhibitor evacetrapib had favorable effects on established lipid biomarkers, treatment with evacetrapib did not result in a lower rate of

  10. Addressing the challenges of phenotyping pediatric pulmonary vascular disease

    PubMed Central

    Goss, Kara N.; Everett, Allen D.; Mourani, Peter M.; Baker, Christopher D.; Abman, Steven H.

    2017-01-01

    Pediatric pulmonary vascular disease (PVD) and pulmonary hypertension (PH) represent phenotypically and pathophysiologically diverse disease categories, contributing substantial morbidity and mortality to a complex array of pediatric conditions. Here, we review the multifactorial nature of pediatric PVD, with an emphasis on improved recognition, phenotyping, and endotyping strategies for pediatric PH. Novel tailored approaches to diagnosis and treatment in pediatric PVD, as well as the implications for long-term outcomes, are highlighted. PMID:28680562

  11. Non-invasive assessment of cerebral oxygen metabolism following surgery of congenital heart disease.

    PubMed

    Neunhoeffer, Felix; Sandner, Katharina; Wiest, Milena; Haller, Christoph; Renk, Hanna; Kumpf, Matthias; Schlensak, Christian; Hofbeck, Michael

    2017-07-01

    Cerebral protection is a major issue in the treatment of infants with complex congenital heart disease. We tested a new device combining tissue spectrometry and laser Doppler flowmetry for non-invasive determination of cerebral oxygen metabolism following cardiac surgery in infants. We prospectively measured regional cerebral oxygen saturation cSO 2 and microperfusion (rcFlow) in 43 infants 12-24 h following corrective ( n  = 30) or palliative surgery ( n  = 13) of congenital heart defects. For comparison, cerebral blood flow (CBF) was determined by colour duplex sonography of the extracranial cerebral arteries. Cerebral fractional tissue oxygen extraction, approximated cerebral metabolic rate of oxygen (aCMRO 2 ) and cerebral metabolic rate of oxygen (CMRO 2 ) were calculated. cSO 2 was lower [54.6% (35.7-64.0) vs 59.7% (44.5-81.7); P  < 0.01] after neonatal palliation, while rcFlow [69.7 AU (42.5-165.3) vs 77.0 AU (41.2-168.1); P  = 0.06] and cerebral fractional tissue oxygen extraction [0.34 (0.24-0.82) vs 0.38 (0.17-0.55); P  = 0.63] showed a trend towards lower values. We found a positive correlation between aCMRO 2 and CMRO 2 ( r  = 0.27; P  = 0.03). aCMRO 2 was significantly lower after neonatal palliation [4.0 AU (2.1-6.3) vs 4.9 AU (2.2-15.6); P  = 0.02]. According to our experience, combined photospectrometry and laser Doppler flowmetry enable non-invasive assessment of cerebral oxygen metabolism. The method promises new insights into perioperative cerebral perfusion following palliation or corrective surgery in infancy. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  12. Evaluation of spontaneous low-frequency oscillations in cerebral hemodynamics with time-series red-green-blue images

    NASA Astrophysics Data System (ADS)

    Nishidate, Izumi; Mustari, Afrina; Nakamura, Naoki; Kawauchi, Satoko; Sato, Shunichi; Sato, Manabu; Kokubo, Yasuaki

    2017-02-01

    The brain relies on a continuous and adequate supply of blood flow, bringing the nutrients that it needs and removing the waste products of metabolism. It is thus one of the most tightly regulated systems in the body, whereby a whole range of mechanisms act to maintain this supply, despite changes in blood pressure etc. Failure of these mechanisms is found in a number of devastating cerebral diseases, including stroke, vascular dementia and brain injury and trauma. Spontaneous contraction and relaxation of arterioles (and in some instances venules) termed vasomotion has been observed in an extensive variety of tissues and species. Vasomotion has a beneficial effect on tissue oxygenation and enhance blood flow. Although vasomotion is strictly a local phenomenon, the regulation of contractile activity of vascular smooth muscle cells is dependent on the complex interplay between vasodilator and vasoconstrictor stimuli from circulating hormones, neurotransmitters, endothelial derived factors, and blood pressure. Therefore, evaluation of the spontaneous oscillations in cerebral vasculatures might be a useful tool for assessing risk and investigating different treatment strategies in neurological disorders, such as traumatic brain injury, seizure, ischemia, and stroke. In the present study, we newly propose a method to visualize the spontaneous low-frequency oscillation of cerebral blood volume based on the sequential RGB images of exposed brain.

  13. Experimental and clinical study of EHF treatment of vascular-vestibular dysfunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mal`tsev, A.E.; Abakarov, A.T.; Istomin, V.S.

    1994-07-01

    The authors present the results of a study of the effectiveness of EHF radiation on the cerebral hemodynamics, bioelectrical activity of the cerebral cortex, and functional state of the vestibular analyzer in chronic studies of cats using a model of vascular-vestibular dysfunction. The clinical part of the work reflects the results of studies of the functional state of cerebral blood circulation and the vestibular analyzer during the EHF treatment of angiovertebrogenic vestibular dysfunction in a background of initial manifestations of cerebral blood supply deficiency (angiodistonic variant).

  14. The effects of hypertension on the cerebral circulation

    PubMed Central

    Pires, Paulo W.; Dams Ramos, Carla M.; Matin, Nusrat

    2013-01-01

    Maintenance of brain function depends on a constant blood supply. Deficits in cerebral blood flow are linked to cognitive decline, and they have detrimental effects on the outcome of ischemia. Hypertension causes alterations in cerebral artery structure and function that can impair blood flow, particularly during an ischemic insult or during periods of low arterial pressure. This review will focus on the historical discoveries, novel developments, and knowledge gaps in 1) hypertensive cerebral artery remodeling, 2) vascular function with emphasis on myogenic reactivity and endothelium-dependent dilation, and 3) blood-brain barrier function. Hypertensive artery remodeling results in reduction in the lumen diameter and an increase in the wall-to-lumen ratio in most cerebral arteries; this is linked to reduced blood flow postischemia and increased ischemic damage. Many factors that are increased in hypertension stimulate remodeling; these include the renin-angiotensin-aldosterone system and reactive oxygen species levels. Endothelial function, vital for endothelium-mediated dilation and regulation of myogenic reactivity, is impaired in hypertension. This is a consequence of alterations in vasodilator mechanisms involving nitric oxide, epoxyeicosatrienoic acids, and ion channels, including calcium-activated potassium channels and transient receptor potential vanilloid channel 4. Hypertension causes blood-brain barrier breakdown by mechanisms involving inflammation, oxidative stress, and vasoactive circulating molecules. This exposes neurons to cytotoxic molecules, leading to neuronal loss, cognitive decline, and impaired recovery from ischemia. As the population ages and the incidence of hypertension, stroke, and dementia increases, it is imperative that we gain a better understanding of the control of cerebral artery function in health and disease. PMID:23585139

  15. Non operative management of cerebral abscess

    NASA Astrophysics Data System (ADS)

    Batubara, C. A.

    2018-03-01

    Cerebral abscess is a focal intracerebral infection that begins as a localized area of cerebritis and develops into a collection of pus surrounded by a well-vascularized capsule. Patients typically present with varying combinations of aheadache, progressive neurologic deficits, seizures, and evidence of infection. Computed Tomography and Magnetic Resonance Imagingare the most important diagnostic tools in diagnosing cerebral abscess. The treatment of cerebral abscess has been a challenge. Small cerebralabscesses (< 2.5 cm) have been treated empirically with antibiotics. Elevation of intracranial pressure and threatening herniation can be managed by the use of intravenous mannitol (or hypertonic saline) and dexamethasone. Acute seizures should be terminated with the administration of intravenous benzodiazepines or by intravenous fosphenytoin. Anticonvulsants prophylaxis must be initiated immediately and continued at least one year due to high risk in the cerebral abscesses. Easier detection of underlying conditions, monitoring of the therapeutic progress, and recognition of complications have probably contributed to the improved prognosis.

  16. A quantitative brain map of experimental cerebral malaria pathology.

    PubMed

    Strangward, Patrick; Haley, Michael J; Shaw, Tovah N; Schwartz, Jean-Marc; Greig, Rachel; Mironov, Aleksandr; de Souza, J Brian; Cruickshank, Sheena M; Craig, Alister G; Milner, Danny A; Allan, Stuart M; Couper, Kevin N

    2017-03-01

    The murine model of experimental cerebral malaria (ECM) has been utilised extensively in recent years to study the pathogenesis of human cerebral malaria (HCM). However, it has been proposed that the aetiologies of ECM and HCM are distinct, and, consequently, no useful mechanistic insights into the pathogenesis of HCM can be obtained from studying the ECM model. Therefore, in order to determine the similarities and differences in the pathology of ECM and HCM, we have performed the first spatial and quantitative histopathological assessment of the ECM syndrome. We demonstrate that the accumulation of parasitised red blood cells (pRBCs) in brain capillaries is a specific feature of ECM that is not observed during mild murine malaria infections. Critically, we show that individual pRBCs appear to occlude murine brain capillaries during ECM. As pRBC-mediated congestion of brain microvessels is a hallmark of HCM, this suggests that the impact of parasite accumulation on cerebral blood flow may ultimately be similar in mice and humans during ECM and HCM, respectively. Additionally, we demonstrate that cerebrovascular CD8+ T-cells appear to co-localise with accumulated pRBCs, an event that corresponds with development of widespread vascular leakage. As in HCM, we show that vascular leakage is not dependent on extensive vascular destruction. Instead, we show that vascular leakage is associated with alterations in transcellular and paracellular transport mechanisms. Finally, as in HCM, we observed axonal injury and demyelination in ECM adjacent to diverse vasculopathies. Collectively, our data therefore shows that, despite very different presentation, and apparently distinct mechanisms, of parasite accumulation, there appear to be a number of comparable features of cerebral pathology in mice and in humans during ECM and HCM, respectively. Thus, when used appropriately, the ECM model may be useful for studying specific pathological features of HCM.

  17. A quantitative brain map of experimental cerebral malaria pathology

    PubMed Central

    Schwartz, Jean-Marc; Greig, Rachel; Mironov, Aleksandr; de Souza, J. Brian; Cruickshank, Sheena M.; Craig, Alister G.; Milner, Danny A.; Allan, Stuart M.

    2017-01-01

    The murine model of experimental cerebral malaria (ECM) has been utilised extensively in recent years to study the pathogenesis of human cerebral malaria (HCM). However, it has been proposed that the aetiologies of ECM and HCM are distinct, and, consequently, no useful mechanistic insights into the pathogenesis of HCM can be obtained from studying the ECM model. Therefore, in order to determine the similarities and differences in the pathology of ECM and HCM, we have performed the first spatial and quantitative histopathological assessment of the ECM syndrome. We demonstrate that the accumulation of parasitised red blood cells (pRBCs) in brain capillaries is a specific feature of ECM that is not observed during mild murine malaria infections. Critically, we show that individual pRBCs appear to occlude murine brain capillaries during ECM. As pRBC-mediated congestion of brain microvessels is a hallmark of HCM, this suggests that the impact of parasite accumulation on cerebral blood flow may ultimately be similar in mice and humans during ECM and HCM, respectively. Additionally, we demonstrate that cerebrovascular CD8+ T-cells appear to co-localise with accumulated pRBCs, an event that corresponds with development of widespread vascular leakage. As in HCM, we show that vascular leakage is not dependent on extensive vascular destruction. Instead, we show that vascular leakage is associated with alterations in transcellular and paracellular transport mechanisms. Finally, as in HCM, we observed axonal injury and demyelination in ECM adjacent to diverse vasculopathies. Collectively, our data therefore shows that, despite very different presentation, and apparently distinct mechanisms, of parasite accumulation, there appear to be a number of comparable features of cerebral pathology in mice and in humans during ECM and HCM, respectively. Thus, when used appropriately, the ECM model may be useful for studying specific pathological features of HCM. PMID:28273147

  18. Vascular calcification: When should we interfere in chronic kidney disease patients and how?

    PubMed Central

    Sharaf El Din, Usama Abdel Azim; Salem, Mona Mansour; Abdulazim, Dina Ossama

    2016-01-01

    Chronic kidney disease (CKD) patients are endangered with the highest mortality rate compared to other chronic diseases. Cardiovascular events account for up to 60% of the fatalities. Cardiovascular calcifications affect most of the CKD patients. Most of this calcification is related to disturbed renal phosphate handling. Fibroblast growth factor 23 and klotho deficiency were incriminated in the pathogenesis of vascular calcification through different mechanisms including their effects on endothelium and arterial wall smooth muscle cells. In addition, deficient klotho gene expression, a constant feature of CKD, promotes vascular pathology and shares in progression of the CKD. The role of gut in the etio-pathogenesis of systemic inflammation and vascular calcification is a newly discovered mechanism. This review will cover the medical history, prevalence, pathogenesis, clinical relevance, different tools used to diagnose, the ideal timing to prevent or to withhold the progression of vascular calcification and the different medications and medical procedures that can help to prolong the survival of CKD patients. PMID:27648404

  19. Functional stability of cerebral circulatory system

    NASA Technical Reports Server (NTRS)

    Moskalenko, Y. Y.

    1980-01-01

    The functional stability of the cerebral circulation system seems to be based on the active mechanisms and on those stemming from specific of the biophysical structure of the system under study. This latter parameter has some relevant criteria for its quantitative estimation. The data obtained suggest that the essential part of the mechanism for active responses of cerebral vessels which maintains the functional stability of this portion of the vascular system, consists of a neurogenic component involving central nervous structures localized, for instance, in the medulla oblongata.

  20. Anesthetic issues and perioperative blood pressure management in patients who have cerebrovascular diseases undergoing surgical procedures.

    PubMed

    Jellish, W Scott

    2006-11-01

    Patients who have cerebrovascular disease and vascular insufficiency routinely have neurosurgical and nonneurosurgical procedures. Anesthetic priorities must provide a still bloodless operative field while maintaining cardiovascular stability and renal function. Patients who have symptoms or a history of cerebrovascular disease are at increased risk for stroke, cerebral hypoperfusion, and cerebral anoxia. Type of surgery and cardiovascular status are key concerns when considering neuroprotective strategies. Optimization of current condition is important for a good outcome; risks must be weighed against perceived benefits in protecting neurons. Anesthetic use and physiologic manipulations can reduce neurologic injury and assure safe and effective surgical care when cerebral hypoperfusion is a real and significant risk.

  1. Imaging of cerebrovascular pathology in animal models of Alzheimer's disease

    PubMed Central

    Klohs, Jan; Rudin, Markus; Shimshek, Derya R.; Beckmann, Nicolau

    2014-01-01

    In Alzheimer's disease (AD), vascular pathology may interact with neurodegeneration and thus aggravate cognitive decline. As the relationship between these two processes is poorly understood, research has been increasingly focused on understanding the link between cerebrovascular alterations and AD. This has at last been spurred by the engineering of transgenic animals, which display pathological features of AD and develop cerebral amyloid angiopathy to various degrees. Transgenic models are versatile for investigating the role of amyloid deposition and vascular dysfunction, and for evaluating novel therapeutic concepts. In addition, research has benefited from the development of novel imaging techniques, which are capable of characterizing vascular pathology in vivo. They provide vascular structural read-outs and have the ability to assess the functional consequences of vascular dysfunction as well as to visualize and monitor the molecular processes underlying these pathological alterations. This article focusses on recent in vivo small animal imaging studies addressing vascular aspects related to AD. With the technical advances of imaging modalities such as magnetic resonance, nuclear and microscopic imaging, molecular, functional and structural information related to vascular pathology can now be visualized in vivo in small rodents. Imaging vascular and parenchymal amyloid-β (Aβ) deposition as well as Aβ transport pathways have been shown to be useful to characterize their dynamics and to elucidate their role in the development of cerebral amyloid angiopathy and AD. Structural and functional imaging read-outs have been employed to describe the deleterious affects of Aβ on vessel morphology, hemodynamics and vascular integrity. More recent imaging studies have also addressed how inflammatory processes partake in the pathogenesis of the disease. Moreover, imaging can be pivotal in the search for novel therapies targeting the vasculature. PMID:24659966

  2. Arterial spin labelling reveals an abnormal cerebral perfusion pattern in Parkinson's disease.

    PubMed

    Melzer, Tracy R; Watts, Richard; MacAskill, Michael R; Pearson, John F; Rüeger, Sina; Pitcher, Toni L; Livingston, Leslie; Graham, Charlotte; Keenan, Ross; Shankaranarayanan, Ajit; Alsop, David C; Dalrymple-Alford, John C; Anderson, Tim J

    2011-03-01

    There is a need for objective imaging markers of Parkinson's disease status and progression. Positron emission tomography and single photon emission computed tomography studies have suggested patterns of abnormal cerebral perfusion in Parkinson's disease as potential functional biomarkers. This study aimed to identify an arterial spin labelling magnetic resonance-derived perfusion network as an accessible, non-invasive alternative. We used pseudo-continuous arterial spin labelling to measure cerebral grey matter perfusion in 61 subjects with Parkinson's disease with a range of motor and cognitive impairment, including patients with dementia and 29 age- and sex-matched controls. Principal component analysis was used to derive a Parkinson's disease-related perfusion network via logistic regression. Region of interest analysis of absolute perfusion values revealed that the Parkinson's disease pattern was characterized by decreased perfusion in posterior parieto-occipital cortex, precuneus and cuneus, and middle frontal gyri compared with healthy controls. Perfusion was preserved in globus pallidus, putamen, anterior cingulate and post- and pre-central gyri. Both motor and cognitive statuses were significant factors related to network score. A network approach, supported by arterial spin labelling-derived absolute perfusion values may provide a readily accessible neuroimaging method to characterize and track progression of both motor and cognitive status in Parkinson's disease.

  3. The Effect of Vascular Neuropathology on Late-life Cognition: Results from the SMART Project

    PubMed Central

    Kryscio, R.J.; Abner, E.L.; Nelson, P.T.; Bennett, D.; Schneider, J.; Yu, L.; Hemmy, L.S.; Lim, K.O.; Masaki, K.; Cairns, N.; Xiong, C.; Woltjer, R.; Dodge, H.H.; Tyas, S.; Fardo, D.W.; Lou, W.; Wan, L.; Schmitt, F.A.

    2016-01-01

    Background Cerebral vascular pathology may contribute to cognitive decline experienced by some elderly near death. Given evidence for mixed neuropathologies in advanced age, preventing or reducing cerebrovascular burden in late life may be beneficial. Objective To correlate measures of cerebral vascular pathology with cognitive trajectories. Setting Observational study. Participants A cohort of 2,274 individuals who came to autopsy at a mean age of 89.3 years and 82 percent of whom had at least two cognitive assessments within the last six years of life was compiled from six centers conducting longitudinal studies. Measurements For each cognitive domain: immediate and delayed memory, language, and naming, three trajectories were examined: good, intermediate, and poor cognition. The probability of a participant belonging to each trajectory was associated with measures of cerebral vascular pathology after adjustment for demographics, APOE, and Alzheimer neuropathology. Results A large proportion of the cohort (72-94%) experienced good or intermediate cognition in the four domains examined. The presence of arteriolosclerosis and the presence of lacunar infarcts doubled the odds of belonging to the poor cognitive trajectory for language when compared to the good trajectory. The presence of lacunar infarcts increased the odds of an intermediate or poor trajectory for immediate and delayed recall while the presence of large artery infarcts increased the odds of poor trajectories for all four cognitive domains examined. Microinfarcts and cerebral amyloid angiopathy had little effect on the trajectories. Conclusion Indicators of cerebral vascular pathology act differently on late life cognition. PMID:27709107

  4. Application of Diffusion Tensor Imaging Parameters to Detect Change in Longitudinal Studies in Cerebral Small Vessel Disease.

    PubMed

    Zeestraten, Eva Anna; Benjamin, Philip; Lambert, Christian; Lawrence, Andrew John; Williams, Owen Alan; Morris, Robin Guy; Barrick, Thomas Richard; Markus, Hugh Stephen

    2016-01-01

    Cerebral small vessel disease (SVD) is the major cause of vascular cognitive impairment, resulting in significant disability and reduced quality of life. Cognitive tests have been shown to be insensitive to change in longitudinal studies and, therefore, sensitive surrogate markers are needed to monitor disease progression and assess treatment effects in clinical trials. Diffusion tensor imaging (DTI) is thought to offer great potential in this regard. Sensitivity of the various parameters that can be derived from DTI is however unknown. We aimed to evaluate the differential sensitivity of DTI markers to detect SVD progression, and to estimate sample sizes required to assess therapeutic interventions aimed at halting decline based on DTI data. We investigated 99 patients with symptomatic SVD, defined as clinical lacunar syndrome with MRI confirmation of a corresponding infarct as well as confluent white matter hyperintensities over a 3 year follow-up period. We evaluated change in DTI histogram parameters using linear mixed effect models and calculated sample size estimates. Over a three-year follow-up period we observed a decline in fractional anisotropy and increase in diffusivity in white matter tissue and most parameters changed significantly. Mean diffusivity peak height was the most sensitive marker for SVD progression as it had the smallest sample size estimate. This suggests disease progression can be monitored sensitively using DTI histogram analysis and confirms DTI's potential as surrogate marker for SVD.

  5. The role of robotic surgical system in the management of vascular disease.

    PubMed

    Lin, Judith C

    2013-10-01

    The evolution of minimally invasive treatment for aneurysms and occlusive disease has led to the development of endovascular, laparoscopic, and robot-assisted techniques. This article reviews the current literature on the clinical use of robotic surgical systems in the treatment of patients with aneurysms and occlusive disease. A MEDLINE search was performed using the keywords "robotic, vascular, AND surgery." All pertinent articles concerning the use of the robotic surgical system on aneurysms and occlusive disease were reviewed. The author's personal experience consisted of a retrospective review of a prospectively maintained confidential database on all procedures performed with the da Vinci(®) surgical system. Several robot-assisted laparoscopic series on the treatment of aortic disease were identified, including review articles of potential clinical applications in hybrid, laparoscopic vascular, and endovascular treatments for vascular patients using robotic technology. The use of computer-enhanced or robotic technology as a sole modality for bypass of occlusive disease and repair of abdominal aortic, splenic, and renal aneurysms was described in case series with satisfactory patient outcomes. Current robotic endovascular technology was also described. Minimally invasive techniques using endovascular, laparoscopic, or robot-assisted technology have revolutionized the treatment of aortoiliac, splanchnic, and renal aneurysms and occlusive disease. However, robot-assisted techniques for aortic disease may involve a learning curve and increased operating times. Although endovascular therapy is preferred because of faster recovery, this preference for improved short-term outcomes will be balanced with the superiority and durability of robot-assisted endoscopic methods as comparable to open surgery. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Presenilin 1 mutation decreases both calcium and contractile responses in cerebral arteries.

    PubMed

    Toussay, Xavier; Morel, Jean-Luc; Biendon, Nathalie; Rotureau, Lolita; Legeron, François-Pierre; Boutonnet, Marie-Charlotte; Cho, Yoon H; Macrez, Nathalie

    2017-10-01

    Mutations or upregulation in presenilin 1 (PS1) gene are found in familial early-onset Alzheimer's disease or sporadic late-onset Alzheimer's disease, respectively. PS1 has been essentially studied in neurons and its mutation was shown to alter intracellular calcium (Ca 2+ ) signals. Here, we showed that PS1 is expressed in smooth muscle cells (SMCs) of mouse cerebral arteries, and we assessed the effects of the deletion of exon 9 of PS1 (PS1dE9) on Ca 2+ signals and contractile responses of vascular SMC. Agonist-induced contraction of cerebral vessels was significantly decreased in PS1dE9 both in vivo and ex vivo. Spontaneous activity of Ca 2+ sparks through ryanodine-sensitive channels (RyR) was unchanged, whereas the RyR-mediated Ca 2+ -release activated by caffeine was shorter in PS1dE9 SMC when compared with control. Moreover, PS1dE9 mutation decreased the caffeine-activated capacitive Ca 2+ entry, and inhibitors of SERCA pumps reversed the effects of PS1dE9 on Ca 2+ signals. PS1dE9 mutation also leads to the increased expression of SERCA3, phospholamban, and RyR3. These results show that PS1 plays a crucial role in the cerebrovascular system and the vascular reactivity is decreased through altered Ca 2+ signals in PS1dE9 mutant mice. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Experimental Cerebral Malaria Pathogenesis—Hemodynamics at the Blood Brain Barrier

    PubMed Central

    Nacer, Adéla; Movila, Alexandru; Sohet, Fabien; Girgis, Natasha M.; Gundra, Uma Mahesh; Loke, P'ng; Daneman, Richard; Frevert, Ute

    2014-01-01

    Cerebral malaria claims the lives of over 600,000 African children every year. To better understand the pathogenesis of this devastating disease, we compared the cellular dynamics in the cortical microvasculature between two infection models, Plasmodium berghei ANKA (PbA) infected CBA/CaJ mice, which develop experimental cerebral malaria (ECM), and P. yoelii 17XL (PyXL) infected mice, which succumb to malarial hyperparasitemia without neurological impairment. Using a combination of intravital imaging and flow cytometry, we show that significantly more CD8+ T cells, neutrophils, and macrophages are recruited to postcapillary venules during ECM compared to hyperparasitemia. ECM correlated with ICAM-1 upregulation on macrophages, while vascular endothelia upregulated ICAM-1 during ECM and hyperparasitemia. The arrest of large numbers of leukocytes in postcapillary and larger venules caused microrheological alterations that significantly restricted the venous blood flow. Treatment with FTY720, which inhibits vascular leakage, neurological signs, and death from ECM, prevented the recruitment of a subpopulation of CD45hi CD8+ T cells, ICAM-1+ macrophages, and neutrophils to postcapillary venules. FTY720 had no effect on the ECM-associated expression of the pattern recognition receptor CD14 in postcapillary venules suggesting that endothelial activation is insufficient to cause vascular pathology. Expression of the endothelial tight junction proteins claudin-5, occludin, and ZO-1 in the cerebral cortex and cerebellum of PbA-infected mice with ECM was unaltered compared to FTY720-treated PbA-infected mice or PyXL-infected mice with hyperparasitemia. Thus, blood brain barrier opening does not involve endothelial injury and is likely reversible, consistent with the rapid recovery of many patients with CM. We conclude that the ECM-associated recruitment of large numbers of activated leukocytes, in particular CD8+ T cells and ICAM+ macrophages, causes a severe restriction in

  8. Vascular Cognitive Impairment.

    PubMed

    Dichgans, Martin; Leys, Didier

    2017-02-03

    Cerebrovascular disease typically manifests with stroke, cognitive impairment, or both. Vascular cognitive impairment refers to all forms of cognitive disorder associated with cerebrovascular disease, regardless of the specific mechanisms involved. It encompasses the full range of cognitive deficits from mild cognitive impairment to dementia. In principle, any of the multiple causes of clinical stroke can cause vascular cognitive impairment. Recent work further highlights a role of microinfarcts, microhemorrhages, strategic white matter tracts, loss of microstructural tissue integrity, and secondary neurodegeneration. Vascular brain injury results in loss of structural and functional connectivity and, hence, compromise of functional networks within the brain. Vascular cognitive impairment is common both after stroke and in stroke-free individuals presenting to dementia clinics, and vascular pathology frequently coexists with neurodegenerative pathology, resulting in mixed forms of mild cognitive impairment or dementia. Vascular dementia is now recognized as the second most common form of dementia after Alzheimer's disease, and there is increasing awareness that targeting vascular risk may help to prevent dementia, even of the Alzheimer type. Recent advances in neuroimaging, neuropathology, epidemiology, and genetics have led to a deeper understanding of how vascular disease affects cognition. These new findings provide an opportunity for the present reappraisal of vascular cognitive impairment. We further briefly address current therapeutic concepts. © 2017 American Heart Association, Inc.

  9. Diabetic microangiopathy: impact of impaired cerebral vasoreactivity and delayed angiogenesis after permanent middle cerebral artery occlusion on stroke damage and cerebral repair in mice.

    PubMed

    Poittevin, Marine; Bonnin, Philippe; Pimpie, Cynthia; Rivière, Léa; Sebrié, Catherine; Dohan, Anthony; Pocard, Marc; Charriaut-Marlangue, Christiane; Kubis, Nathalie

    2015-03-01

    Diabetes increases the risk of stroke by three, increases related mortality, and delays recovery. We aimed to characterize functional and structural alterations in cerebral microvasculature before and after experimental cerebral ischemia in a mouse model of type 1 diabetes. We hypothesized that preexisting brain microvascular disease in patients with diabetes might partly explain increased stroke severity and impact on outcome. Diabetes was induced in 4-week-old C57Bl/6J mice by intraperitoneal injections of streptozotocin (60 mg/kg). After 8 weeks of diabetes, the vasoreactivity of the neurovascular network to CO2 was abolished and was not reversed by nitric oxide (NO) donor administration; endothelial NO synthase (eNOS) and neuronal NO synthase (nNOS) mRNA, phospho-eNOS protein, nNOS, and phospho-nNOS protein were significantly decreased; angiogenic and vessel maturation factors (vascular endothelial growth factor a [VEGFa], angiopoietin 1 (Ang1), Ang2, transforming growth factor-β [TGF-β], and platelet-derived growth factor-β [PDGF-β]) and blood-brain barrier (BBB) occludin and zona occludens 1 (ZO-1) expression were significantly decreased; and microvessel density was increased without changes in ultrastructural imaging. After permanent focal cerebral ischemia induction, infarct volume and neurological deficit were significantly increased at D1 and D7, and neuronal death (TUNEL+ / NeuN+ cells) and BBB permeability (extravasation of Evans blue) at D1. At D7, CD31+ / Ki67+ double-immunolabeled cells and VEGFa and Ang2 expression were significantly increased, indicating delayed angiogenesis. We show that cerebral microangiopathy thus partly explains stroke severity in diabetes. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  10. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the american heart association/american stroke association.

    PubMed

    Gorelick, Philip B; Scuteri, Angelo; Black, Sandra E; Decarli, Charles; Greenberg, Steven M; Iadecola, Costantino; Launer, Lenore J; Laurent, Stephane; Lopez, Oscar L; Nyenhuis, David; Petersen, Ronald C; Schneider, Julie A; Tzourio, Christophe; Arnett, Donna K; Bennett, David A; Chui, Helena C; Higashida, Randall T; Lindquist, Ruth; Nilsson, Peter M; Roman, Gustavo C; Sellke, Frank W; Seshadri, Sudha

    2011-09-01

    unit and mechanisms regulating cerebral blood flow are likely to be important components of the pathophysiological processes underlying VCI. Cerebral amyloid angiopathy is emerging as an important marker of risk for Alzheimer disease, microinfarction, microhemorrhage and macrohemorrhage of the brain, and VCI. The neuropathology of cognitive impairment in later life is often a mixture of Alzheimer disease and microvascular brain damage, which may overlap and synergize to heighten the risk of cognitive impairment. In this regard, magnetic resonance imaging and other neuroimaging techniques play an important role in the definition and detection of VCI and provide evidence that subcortical forms of VCI with white matter hyperintensities and small deep infarcts are common. In many cases, risk markers for VCI are the same as traditional risk factors for stroke. These risks may include but are not limited to atrial fibrillation, hypertension, diabetes mellitus, and hypercholesterolemia. Furthermore, these same vascular risk factors may be risk markers for Alzheimer disease. Carotid intimal-medial thickness and arterial stiffness are emerging as markers of arterial aging and may serve as risk markers for VCI. Currently, no specific treatments for VCI have been approved by the US Food and Drug Administration. However, detection and control of the traditional risk factors for stroke and cardiovascular disease may be effective in the prevention of VCI, even in older people. Vascular contributions to cognitive impairment and dementia are important. Understanding of VCI has evolved substantially in recent years, based on preclinical, neuropathologic, neuroimaging, physiological, and epidemiological studies. Transdisciplinary, translational, and transactional approaches are recommended to further our understanding of this entity and to better characterize its neuropsychological profile. There is a need for prospective, quantitative, clinical-pathological-neuroimaging studies to

  11. Age-specific association between blood pressure and vascular and non-vascular chronic diseases in 0·5 million adults in China: a prospective cohort study.

    PubMed

    Lacey, Ben; Lewington, Sarah; Clarke, Robert; Kong, Xiang Ling; Chen, Yiping; Guo, Yu; Yang, Ling; Bennett, Derrick; Bragg, Fiona; Bian, Zheng; Wang, Shaojie; Zhang, Hua; Chen, Junshi; Walters, Robin G; Collins, Rory; Peto, Richard; Li, Liming; Chen, Zhengming

    2018-06-01

    The age-specific association between blood pressure and vascular disease has been studied mostly in high-income countries, and before the widespread use of brain imaging for diagnosis of the main stroke types (ischaemic stroke and intracerebral haemorrhage). We aimed to investigate this relationship among adults in China. 512 891 adults (59% women) aged 30-79 years were recruited into a prospective study from ten areas of China between June 25, 2004, and July 15, 2008. Participants attended assessment centres where they were interviewed about demographic and lifestyle characteristics, and their blood pressure, height, and weight were measured. Incident disease was identified through linkage to local mortality records, chronic disease registries, and claims to the national health insurance system. We used Cox regression analysis to produce adjusted hazard ratios (HRs) relating systolic blood pressure to disease incidence. HRs were corrected for regression dilution to estimate associations with long-term average (usual) systolic blood pressure. During a median follow-up of 9 years (IQR 8-10), there were 88 105 incident vascular and non-vascular chronic disease events (about 90% of strokes events were diagnosed using brain imaging). At ages 40-79 years (mean age at event 64 years [SD 9]), usual systolic blood pressure was continuously and positively associated with incident major vascular disease throughout the range 120-180 mm Hg: each 10 mm Hg higher usual systolic blood pressure was associated with an approximately 30% higher risk of ischaemic heart disease (HR 1·31 [95% CI 1·28-1·34]) and ischaemic stroke (1·30 [1·29-1·31]), but the association with intracerebral haemorrhage was about twice as steep (1·68 [1·65-1·71]). HRs for vascular disease were twice as steep at ages 40-49 years than at ages 70-79 years. Usual systolic blood pressure was also positively associated with incident chronic kidney disease (1·40 [1·35-1·44]) and diabetes (1·14 [1

  12. Poor school and cognitive functioning with silent cerebral infarcts and sickle cell disease.

    PubMed

    Schatz, J; Brown, R T; Pascual, J M; Hsu, L; DeBaun, M R

    2001-04-24

    The authors evaluated education attainment and neuropsychological deficits in children with sickle cell disease (SCD) and silent cerebral infarcts. Children with silent infarcts had twice the rate of school difficulties as children without infarcts. Eighty percent of silent infarct cases had clinically significant cognitive deficits, whereas 35% had deficits in academic skills. Children with silent cerebral infarcts show high rates of poor educational attainment, cognitive deficits, and frontal lobe injury. Poor school performance in SCD is one indicator of silent infarcts.

  13. Cysteinyl Leukotrienes as Potential Pharmacological Targets for Cerebral Diseases

    PubMed Central

    Gelosa, Paolo; Colazzo, Francesca

    2017-01-01

    Cysteinyl leukotrienes (CysLTs) are potent lipid mediators widely known for their actions in asthma and in allergic rhinitis. Accumulating data highlights their involvement in a broader range of inflammation-associated diseases such as cancer, atopic dermatitis, rheumatoid arthritis, and cardiovascular diseases. The reported elevated levels of CysLTs in acute and chronic brain lesions, the association between the genetic polymorphisms in the LTs biosynthesis pathways and the risk of cerebral pathological events, and the evidence from animal models link also CysLTs and brain diseases. This review will give an overview of how far research has gone into the evaluation of the role of CysLTs in the most prevalent neurodegenerative disorders (ischemia, Alzheimer's and Parkinson's diseases, multiple sclerosis/experimental autoimmune encephalomyelitis, and epilepsy) in order to understand the underlying mechanism by which they might be central in the disease progression. PMID:28607533

  14. Early diagnosis of Alzheimer's disease and Parkinson's disease associated with dementia using cerebral perfusion SPECT.

    PubMed

    Song, In-Uk; Chung, Yong-An; Chung, Sung-Woo; Jeong, Jaeseung

    2014-01-01

    Since patterns of cognitive dysfunction in mild Parkinson's disease associated with dementia (PDD) are similar to those in mild Alzheimer's disease (AD), it is difficult to accurately differentiate between these two types of dementia in their early phases using neuropsychological tests. The purpose of the current study was to investigate differences in cerebral perfusion patterns of patients with AD and PDD at the earliest stages using single photon emission computed tomography (SPECT). We consecutively recruited 31 patients with mild PDD, 32 patients with mild probable AD and 33 age-matched healthy subjects. All subjects underwent (99m)Tc-hexamethylpropyleneamine oxime perfusion SPECT and completed general neuropsychological tests. We found that both mild PDD and AD patients showed distinct hypoperfusion in frontal, parietal and temporal regions, compared with healthy subjects. More importantly, hypoperfusion in occipital and cerebellar regions was observed only in mild PDD. The observation of a significant decrease in cerebral perfusion in occipital and cerebellar regions in patients with mild PDD is likely useful to differentiate between PDD and AD at the earliest stages. © 2013 S. Karger AG, Basel.

  15. Effects of forskolin on cerebral blood flow: implications for a role of adenylate cyclase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wysham, D.G.; Brotherton, A.F.; Heistad, D.D.

    1986-11-01

    We have studied cerebral vascular effects of forskolin, a drug which stimulates adenylate cyclase and potentiates dilator effects of adenosine in other vascular beds. Our goals were to determine whether forskolin is a cerebral vasodilator and whether it potentiates cerebral vasodilator responses to adenosine. We measured cerebral blood flow with microspheres in anesthetized rabbits. Forskolin (10 micrograms/kg per min) increased blood flow (ml/min per 100 gm) from 39 +/- 5 (mean +/- S.E.) to 56 +/- 9 (p less than 0.05) in cerebrum, and increased flow to myocardium and kidney despite a decrease in mean arterial pressure. Forskolin did notmore » alter cerebral oxygen consumption, which indicates that the increase in cerebral blood flow is a direct vasodilator effect and is not secondary to increased metabolism. We also examined effects of forskolin on the response to infusion of adenosine. Cerebral blood flow was measured during infusion of 1-5 microM/min adenosine into one internal carotid artery, under control conditions and during infusion of forskolin at 3 micrograms/kg per min i.v. Adenosine alone increased ipsilateral cerebral blood flow from 32 +/- 3 to 45 +/- 5 (p less than 0.05). Responses to adenosine were not augmented during infusion of forskolin. We conclude that forskolin is a direct cerebral vasodilator and forskolin does not potentiate cerebral vasodilator responses to adenosine.« less

  16. Neuroimaging of Cerebrovascular Disease in the Aging Brain

    PubMed Central

    Gupta, Ajay; Nair, Sreejit; Schweitzer, Andrew D.; Kishore, Sirish; Johnson, Carl E.; Comunale, Joseph P.; Tsiouris, Apostolos J.; Sanelli, Pina C.

    2012-01-01

    Cerebrovascular disease remains a significant public health burden with its greatest impact on the elderly population. Advances in neuroimaging techniques allow detailed and sophisticated evaluation of many manifestations of cerebrovascular disease in the brain parenchyma as well as in the intracranial and extracranial vasculature. These tools continue to contribute to our understanding of the multifactorial processes that occur in the age-dependent development of cerebrovascular disease. Structural abnormalities related to vascular disease in the brain and vessels have been well characterized with CT and MRI based techniques. We review some of the pathophysiologic mechanisms in the aging brain and cerebral vasculature and the related structural abnormalities detectable on neuroimaging, including evaluation of age-related white matter changes, atherosclerosis of the cerebral vasculature, and cerebral infarction. In addition, newer neuroimaging techniques, such as diffusion tensor imaging, perfusion techniques, and assessment of cerebrovascular reserve, are also reviewed, as these techniques can detect physiologic alterations which complement the morphologic changes that cause cerebrovascular disease in the aging brain.Further investigation of these advanced imaging techniques has potential application to the understanding and diagnosis of cerebrovascular disease in the elderly. PMID:23185721

  17. [Problems with certification of work capability for people with symptoms of functional and organic diseases of cerebral vessels].

    PubMed

    Polakowska, B

    1993-01-01

    The problems of certifying work capability for people with the symptoms of functional and organic diseases of cerebral vessels were investigated basing on the documentation of 470 medical consultations performed at the Out-Patient Department of Occupational Diseases, the Institute of Occupational Medicine, Lodz, Poland. The certification was most difficult in people with angiogenic headache, symptoms of transient cerebral ischaemia and apoplexy with non-intensive deficiency signs. The certification criteria most appropriate for that group of diseases were formulated.

  18. Micro-computed tomography in murine models of cerebral cavernous malformations as a paradigm for brain disease.

    PubMed

    Girard, Romuald; Zeineddine, Hussein A; Orsbon, Courtney; Tan, Huan; Moore, Thomas; Hobson, Nick; Shenkar, Robert; Lightle, Rhonda; Shi, Changbin; Fam, Maged D; Cao, Ying; Shen, Le; Neander, April I; Rorrer, Autumn; Gallione, Carol; Tang, Alan T; Kahn, Mark L; Marchuk, Douglas A; Luo, Zhe-Xi; Awad, Issam A

    2016-09-15

    Cerebral cavernous malformations (CCMs) are hemorrhagic brain lesions, where murine models allow major mechanistic discoveries, ushering genetic manipulations and preclinical assessment of therapies. Histology for lesion counting and morphometry is essential yet tedious and time consuming. We herein describe the application and validations of X-ray micro-computed tomography (micro-CT), a non-destructive technique allowing three-dimensional CCM lesion count and volumetric measurements, in transgenic murine brains. We hereby describe a new contrast soaking technique not previously applied to murine models of CCM disease. Volumetric segmentation and image processing paradigm allowed for histologic correlations and quantitative validations not previously reported with the micro-CT technique in brain vascular disease. Twenty-two hyper-dense areas on micro-CT images, identified as CCM lesions, were matched by histology. The inter-rater reliability analysis showed strong consistency in the CCM lesion identification and staging (K=0.89, p<0.0001) between the two techniques. Micro-CT revealed a 29% greater CCM lesion detection efficiency, and 80% improved time efficiency. Serial integrated lesional area by histology showed a strong positive correlation with micro-CT estimated volume (r(2)=0.84, p<0.0001). Micro-CT allows high throughput assessment of lesion count and volume in pre-clinical murine models of CCM. This approach complements histology with improved accuracy and efficiency, and can be applied for lesion burden assessment in other brain diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Context is everything: From cardiovascular disease to cerebral microbleeds.

    PubMed

    Charidimou, Andreas; Blacker, Deborah; Viswanathan, Anand

    2018-01-01

    Increasingly, our approach to cerebrovascular disease has become blurred by evidence published in literature often without careful consideration of what this evidence implies for specific patients at hand. In this essay, we analyze key contextual issues in cerebrovascular small vessel disease, in an attempt to highlight the symbolic gap that exists between research and clinical practice, a recurring theme in medicine. We highlight the importance of considering context when using data from epidemiologic, neuroimaging, and biomarker studies in determining relevance to the patient at hand. We argue, that while biomarkers and neuroimaging may eventually serve to help to identify individuals with specific cerebrovascular diseases, we must always continue to understand patients in a specific clinical context. These reflections are particularly relevant when considering cerebral microbleeds-a key marker of cerebrovascular small vessel disease whose detection often raises thorny clinical dilemmas.

  20. Pathogenic role and therapeutic potential of pleiotrophin in mouse models of ocular vascular disease.

    PubMed

    Wang, Weiwen; LeBlanc, Michelle E; Chen, Xiuping; Chen, Ping; Ji, Yanli; Brewer, Megan; Tian, Hong; Spring, Samantha R; Webster, Keith A; Li, Wei

    2017-11-01

    Angiogenic factors play an important role in the pathogenesis of diabetic retinopathy (DR), neovascular age-related macular degeneration (nAMD) and retinopathy of prematurity (ROP). Pleiotrophin, a well-known angiogenic factor, was recently reported to be upregulated in the vitreous fluid of patients with proliferative DR (PDR). However, its pathogenic role and therapeutic potential in ocular vascular diseases have not been defined in vivo. Here using corneal pocket assays, we demonstrated that pleiotrophin induced angiogenesis in vivo. To investigate the pathological role of pleiotrophin we used neutralizing antibody to block its function in multiple in vivo models of ocular vascular diseases. In a mouse model of DR, intravitreal injection of pleiotrophin-neutralizing antibody alleviated diabetic retinal vascular leakage. In a mouse model of oxygen-induced retinopathy (OIR), which is a surrogate model of ROP and PDR, we demonstrated that intravitreal injection of anti-pleiotrophin antibody prevented OIR-induced pathological retinal neovascularization and aberrant vessel tufts. Finally, pleiotrophin-neutralizing antibody ameliorated laser-induced choroidal neovascularization, a mouse model of nAMD, suggesting that pleiotrophin is involved in choroidal vascular disease. These findings suggest that pleiotrophin plays an important role in the pathogenesis of DR with retinal vascular leakage, ROP with retinal neovascularization and nAMD with choroidal neovascularization. The results also support pleiotrophin as a promising target for anti-angiogenic therapy.

  1. Long-term patency of superficial temporal artery to middle cerebral artery bypass for cerebral atherosclerotic disease: factors determining the bypass patent.

    PubMed

    Matano, Fumihiro; Murai, Yasuo; Tateyama, Kojiro; Tamaki, Tomonori; Mizunari, Takayuki; Matsukawa, Hideoshi; Teramoto, Akira; Morita, Akio

    2016-10-01

    Long-term patency of superficial temporal artery to middle cerebral artery (STA-MCA) bypass surgery for atherosclerotic disease and associated risk factors for loss of patency have rarely been discussed. We retrospectively analyzed long-term patency following STA-MCA bypass and evaluated various demographic and clinical factors to identify the ones predictive of postsurgical loss of patency using records of 84 revascularization procedures (58 patients, 45 males; mean age at surgery 63.6 years, range 31-78 years). Bypass patency was diagnosed based on magnetic resonance angiography or three-dimensional computed tomography. The mean follow-up period was 24.7 months (range 6-63 months). Decreased bypass patency was observed in 4 of 58 patients (6.9 %) who collectively underwent 6 bypasses (7.1 %) of 84. All cases of decreased bypass patency were first detected within 6 months of surgery. Bypass patency was not correlated with age, sex, number of anastomoses, postoperative cerebral infarction, or control of postoperative diabetes mellitus. We found a significant association of bypass patency with hyperperfusion (p = 0.01) and postoperative smoking (p = 0.0036). Furthermore, we found a significant association of hyperperfusion with STA diameter (p < 0.0001), location of anastomosis (p = 0.075), and preoperative cerebral blood flow (p = 0.0399). In our retrospective study, hyperperfusion and smoking after surgery may be risk factors for decreased bypass patency in cerebral atherosclerotic disease patients. Careful monitoring of patency to prevent hyperperfusion and cessation of smoking are recommended, particularly within 6 months of the surgery.

  2. Cerebral organoids derived from Sandhoff disease-induced pluripotent stem cells exhibit impaired neurodifferentiation.

    PubMed

    Allende, Maria L; Cook, Emily K; Larman, Bridget C; Nugent, Adrienne; Brady, Jacqueline M; Golebiowski, Diane; Sena-Esteves, Miguel; Tifft, Cynthia J; Proia, Richard L

    2018-03-01

    Sandhoff disease, one of the GM2 gangliosidoses, is a lysosomal storage disorder characterized by the absence of β-hexosaminidase A and B activity and the concomitant lysosomal accumulation of its substrate, GM2 ganglioside. It features catastrophic neurodegeneration and death in early childhood. How the lysosomal accumulation of ganglioside might affect the early development of the nervous system is not understood. Recently, cerebral organoids derived from induced pluripotent stem (iPS) cells have illuminated early developmental events altered by disease processes. To develop an early neurodevelopmental model of Sandhoff disease, we first generated iPS cells from the fibroblasts of an infantile Sandhoff disease patient, then corrected one of the mutant HEXB alleles in those iPS cells using CRISPR/Cas9 genome-editing technology, thereby creating isogenic controls. Next, we used the parental Sandhoff disease iPS cells and isogenic HEXB -corrected iPS cell clones to generate cerebral organoids that modeled the first trimester of neurodevelopment. The Sandhoff disease organoids, but not the HEXB -corrected organoids, accumulated GM2 ganglioside and exhibited increased size and cellular proliferation compared with the HEXB -corrected organoids. Whole-transcriptome analysis demonstrated that development was impaired in the Sandhoff disease organoids, suggesting that alterations in neuronal differentiation may occur during early development in the GM2 gangliosidoses.

  3. Acute Isolated Central Facial Palsy as Manifestation of Middle Cerebral Artery Ischemia.

    PubMed

    Sands, Kara A; Shahripour, Reza Bavarsad; Kumar, Gyanendra; Barlinn, Kristian; Lyerly, Michael J; Haršány, Michal; Cure, Joel; Yakov, Yuri L; Alexandrov, Anne W; Alexandrov, Andrei V

    2016-09-01

    Isolated central facial palsy (I-CFP) is attributed to a lacunar syndrome affecting the corona radiata region or pons. We examined our acute stroke registry for patients presenting with I-CFP and localized their symptoms to a vascular lesion. Our database of consecutive patients with symptoms of acute cerebral ischemia admitted from January 2008 to December 2012 was reviewed for NIH Stroke Scale (NIHSS) scores and subcomponents. All patients with I-CFP ± dysarthria (total NIHSS ≤ 3) had contrast-enhanced MR-angiography and transcranial Doppler as standard of care. All ischemic lesions were localized by MRI within 72 hours from symptom onset. Of 2,202 patients with acute cerebral ischemia, 879 patients (35%) had NIHSS score ≤ 3 points (mean age 63 + 15 years, 46 % women). Nine patients (.4%) presented with I-CFP ± dysarthria. Of these, only 1 had a lesion in the corona radiata and patent MCA, 1 had a pontine lesion without proximal vessel occlusion (2/9, or 22%). Remaining 7 patients (78%) had flow-limiting thromboembolic mid-to-distal M1/proximal M2 MCA disease. Of these, 6 (86%) patients had a prominent early anterior temporal artery on MRA and nonlacunar ischemic lesions on MRI. Contrary to current teaching of lesion localization for an I-CFP, our study revealed the majority of acute patients presenting with this symptom had evidence of flow-limiting thromboembolic MCA disease rather than a lacunar lesion. Our findings underscore the essential role of comprehensive vascular imaging in patients presenting with I-CFP, which is commonly associated with acute flow-limiting thromboembolic MCA disease. Copyright © 2016 by the American Society of Neuroimaging.

  4. MRI-visible perivascular space location is associated with Alzheimer's disease independently of amyloid burden.

    PubMed

    Banerjee, Gargi; Kim, Hee Jin; Fox, Zoe; Jäger, H Rolf; Wilson, Duncan; Charidimou, Andreas; Na, Han Kyu; Na, Duk L; Seo, Sang Won; Werring, David J

    2017-04-01

    Perivascular spaces that are visible on magnetic resonance imaging (MRI) are a neuroimaging marker of cerebral small vessel disease. Their location may relate to the type of underlying small vessel pathology: those in the white matter centrum semi-ovale have been associated with cerebral amyloid angiopathy, while those in the basal ganglia have been associated with deep perforating artery arteriolosclerosis. As cerebral amyloid angiopathy is an almost invariable pathological finding in Alzheimer's disease, we hypothesized that MRI-visible perivascular spaces in the centrum semi-ovale would be associated with a clinical diagnosis of Alzheimer's disease, whereas those in the basal ganglia would be associated with subcortical vascular cognitive impairment. We also hypothesized that MRI-visible perivascular spaces in the centrum semi-ovale would be associated with brain amyloid burden, as detected by amyloid positron emission tomography using 11C-Pittsburgh B compound (PiB-PET). Two hundred and twenty-six patients (Alzheimer's disease n = 110; subcortical vascular cognitive impairment n = 116) with standardized MRI and PiB-PET imaging were included. MRI-visible perivascular spaces were rated using a validated 4-point visual rating scale, and then categorized by severity ('none/mild', 'moderate' or 'frequent/severe'). Univariable and multivariable regression analyses were performed. Those with Alzheimer's disease-related cognitive impairment were younger, more likely to have a positive PiB-PET scan and carry at least one apolipoprotein E ɛ4 allele; those with subcortical vascular cognitive impairment were more likely to have hypertension, diabetes mellitus, hyperlipidaemia, prior stroke, lacunes, deep microbleeds, and carry the apolipoprotein E ɛ3 allele. In adjusted analyses, the severity of MRI-visible perivascular spaces in the centrum semi-ovale was independently associated with clinically diagnosed Alzheimer's disease (frequent/severe grade odds ratio 6.26, 95

  5. Macro-to-micro cortical vascular imaging underlies regional differences in ischemic brain

    NASA Astrophysics Data System (ADS)

    Dziennis, Suzan; Qin, Jia; Shi, Lei; Wang, Ruikang K.

    2015-05-01

    The ability to non-invasively monitor and quantify hemodynamic responses down to the capillary level is important for improved diagnosis, treatment and management of neurovascular disorders, including stroke. We developed an integrated multi-functional imaging system, in which synchronized dual wavelength laser speckle contrast imaging (DWLS) was used as a guiding tool for optical microangiography (OMAG) to test whether detailed vascular responses to experimental stroke in male mice can be evaluated with wide range sensitivity from arteries and veins down to the capillary level. DWLS enabled rapid identification of cerebral blood flow (CBF), prediction of infarct area and hemoglobin oxygenation over the whole mouse brain and was used to guide the OMAG system to hone in on depth information regarding blood volume, blood flow velocity and direction, vascular architecture, vessel diameter and capillary density pertaining to defined regions of CBF in response to ischemia. OMAG-DWLS is a novel imaging platform technology to simultaneously evaluate multiple vascular responses to ischemic injury, which can be useful in improving our understanding of vascular responses under pathologic and physiological conditions, and ultimately facilitating clinical diagnosis, monitoring and therapeutic interventions of neurovascular diseases.

  6. [Behavioural problems and personality change related to cerebral amyloid angiopathy].

    PubMed

    Gahr, Maximilian; Connemann, Bernhard J; Schönfeldt-Lecuona, Carlos

    2012-11-01

    Cerebral amyloid angiopathy (CAA) belongs to the group of amyloidoses that are characterized by the deposition of insoluble and tissue-damaging amyloid proteins. Spontaneous intracerebral hemorrhage is the common clinical presentation of CAA resulting from the degenerative effect of beta amyloid on the cerebral vascular system. Though CAA is rather a neurological disease psychiatric symptoms can occur and even dominate the clinical picture. A case report is presented in order to illustrate the association between CAA and psychiatric symptoms. We report the case of a 54-year-old female patient with radiologic references to a probable CAA and mild cognitive impairment who developed behavioural difficulties and personality change that necessitated a psychiatric treatment. Psychiatric symptoms were most likely due to CAA. CAA can be associated with psychiatric symptoms and hence should be considered in the treatment of elderly patients with behavioural problems or personality changes. Diagnostic neuroimaging and examination of cerebrospinal fluid is recommended. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Skin autofluorescence associates with vascular calcification in chronic kidney disease.

    PubMed

    Wang, Angela Yee-Moon; Wong, Chun-Kwok; Yau, Yat-Yin; Wong, Sharon; Chan, Iris Hiu-Shuen; Lam, Christopher Wai-Kei

    2014-08-01

    This study aims to evaluate the relationship between tissue advanced glycation end products, as reflected by skin autofluorescence, and vascular calcification in chronic kidney disease. Three hundred patients with stage 3 to 5 chronic kidney disease underwent multislice computed tomography to estimate total coronary artery calcium score (CACS) and had tissue advanced glycation end product assessed using a skin autofluorescence reader. Intact parathyroid hormone (P<0.001) displaced estimated glomerular filtration rate as third most significant factor associated with skin autofluorescence after age (P<0.001) and diabetes mellitus (P<0.001) in multiple regression analysis. On univariate multinomial logistic regression analysis, every 1-U increase in skin autofluorescence was associated with a 7.43-fold (95% confidence intervals, 3.59-15.37; P<0.001) increased odds of having CACS ≥400 compared with those with zero CACS. Skin autofluorescence retained significance in predicting CACS ≥400 (odds ratio, 3.63; 95% confidence intervals, 1.44-9.18; P=0.006) when adjusting for age, sex, serum calcium, phosphate, albumin, C-reactive protein, lipids, blood pressure, estimated glomerular filtration rate, and intact parathyroid hormone but marginally lost significance when additionally adjusting for diabetes mellitus (odds ratio, 2.23; 95% confidence intervals, 0.81-6.14; P=0.1). Combination of diabetes mellitus and higher intact parathyroid hormone was associated with greater skin autofluorescence and CACS versus those without diabetes mellitus and having lower intact parathyroid hormone. Tissue advanced glycation end product, as reflected by skin autofluorescence, showed a significant novel association with vascular calcification in chronic kidney disease. These data suggest that increased tissue advanced glycation end product may contribute to vascular calcification in chronic kidney disease and diabetes mellitus and warrant further experimental investigation. © 2014

  8. Age and Vascular Burden Determinants of Cortical Hemodynamics Underlying Verbal Fluency.

    PubMed

    Heinzel, Sebastian; Metzger, Florian G; Ehlis, Ann-Christine; Korell, Robert; Alboji, Ahmed; Haeussinger, Florian B; Wurster, Isabel; Brockmann, Kathrin; Suenkel, Ulrike; Eschweiler, Gerhard W; Maetzler, Walter; Berg, Daniela; Fallgatter, Andreas J

    2015-01-01

    Aging processes and several vascular burden factors have been shown to increase the risk of dementia including Alzheimer's disease. While pathological alterations in dementia precede diagnosis by many years, reorganization of brain processing might temporarily delay cognitive decline. We hypothesized that in healthy elderly individuals both age-related neural and vascular factors known to be related to the development of dementia impact functional cortical hemodynamics during increased cognitive demands. Vascular burden factors and cortical functional hemodynamics during verbal fluency were assessed in 1052 non-demented elderly individuals (51 to 83 years; cross-sectional data of the longitudinal TREND study) using functional near-infrared spectroscopy (fNIRS). The prediction of functional hemodynamic responses by age in multiple regressions and the impact of single and cumulative vascular burden factors including hypertension, diabetes, obesity, smoking and atherosclerosis were investigated. Replicating and extending previous findings we could show that increasing age predicted functional hemodynamics to be increased in right prefrontal and bilateral parietal cortex, and decreased in bilateral inferior frontal junction during phonological fluency. Cumulative vascular burden factors, with hypertension in particular, decreased left inferior frontal junction hemodynamic responses during phonological fluency. However, age and vascular burden factors showed no statistical interaction on functional hemodynamics. Based on these findings, one might hypothesize that increased fronto-parietal processing may represent age-related compensatory reorganization during increased cognitive demands. Vascular burden factors, such as hypertension, may contribute to regional cerebral hypoperfusion. These neural and vascular hemodynamic determinants should be investigated longitudinally and combined with other markers to advance the prediction of future cognitive decline and dementia.

  9. Long-term consequences of developmental vascular defects on retinal vessel homeostasis and function in a mouse model of Norrie disease.

    PubMed

    Beck, Susanne C; Feng, Yuxi; Sothilingam, Vithiyanjali; Garcia Garrido, Marina; Tanimoto, Naoyuki; Acar, Niyazi; Shan, Shenliang; Seebauer, Britta; Berger, Wolfgang; Hammes, Hans-Peter; Seeliger, Mathias W

    2017-01-01

    Loss of Norrin signalling due to mutations in the Norrie disease pseudoglioma gene causes severe vascular defects in the retina, leading to visual impairment and ultimately blindness. While the emphasis of experimental work so far was on the developmental period, we focus here on disease mechanisms that induce progression into severe adult disease. The goal of this study was the comprehensive analysis of the long-term effects of the absence of Norrin on vascular homeostasis and retinal function. In a mouse model of Norrie disease retinal vascular morphology and integrity were studied by means of in vivo angiography; the vascular constituents were assessed in detailed histological analyses using quantitative retinal morphometry. Finally, electroretinographic analyses were performed to assess the retinal function in adult Norrin deficient animals. We could show that the primary developmental defects not only persisted but developed into further vascular abnormalities and microangiopathies. In particular, the overall vessel homeostasis, the vascular integrity, and also the cellular constituents of the vascular wall were affected in the adult Norrin deficient retina. Moreover, functional analyses indicated to persistent hypoxia in the neural retina which was suggested as one of the major driving forces of disease progression. In summary, our data provide evidence that the key to adult Norrie disease are ongoing vascular modifications, driven by the persistent hypoxic conditions, which are ineffective to compensate for the primary Norrin-dependent defects.

  10. Long-term consequences of developmental vascular defects on retinal vessel homeostasis and function in a mouse model of Norrie disease

    PubMed Central

    Sothilingam, Vithiyanjali; Garcia Garrido, Marina; Tanimoto, Naoyuki; Acar, Niyazi; Shan, Shenliang; Seebauer, Britta; Berger, Wolfgang; Hammes, Hans-Peter; Seeliger, Mathias W.

    2017-01-01

    Loss of Norrin signalling due to mutations in the Norrie disease pseudoglioma gene causes severe vascular defects in the retina, leading to visual impairment and ultimately blindness. While the emphasis of experimental work so far was on the developmental period, we focus here on disease mechanisms that induce progression into severe adult disease. The goal of this study was the comprehensive analysis of the long-term effects of the absence of Norrin on vascular homeostasis and retinal function. In a mouse model of Norrie disease retinal vascular morphology and integrity were studied by means of in vivo angiography; the vascular constituents were assessed in detailed histological analyses using quantitative retinal morphometry. Finally, electroretinographic analyses were performed to assess the retinal function in adult Norrin deficient animals. We could show that the primary developmental defects not only persisted but developed into further vascular abnormalities and microangiopathies. In particular, the overall vessel homeostasis, the vascular integrity, and also the cellular constituents of the vascular wall were affected in the adult Norrin deficient retina. Moreover, functional analyses indicated to persistent hypoxia in the neural retina which was suggested as one of the major driving forces of disease progression. In summary, our data provide evidence that the key to adult Norrie disease are ongoing vascular modifications, driven by the persistent hypoxic conditions, which are ineffective to compensate for the primary Norrin-dependent defects. PMID:28575130

  11. Effects of Cerebral Ischemia in Mice Deficient in Neuronal Nitric Oxide Synthase

    NASA Astrophysics Data System (ADS)

    Huang, Zhihong; Huang, Paul L.; Panahian, Nariman; Dalkara, Turgay; Fishman, Mark C.; Moskowitz, Michael A.

    1994-09-01

    The proposal that nitric oxide (NO) or its reactant products mediate toxicity in brain remains controversial in part because of the use of nonselective agents that block NO formation in neuronal, glial, and vascular compartments. In mutant mice deficient in neuronal NO synthase (NOS) activity, infarct volumes decreased significantly 24 and 72 hours after middle cerebral artery occlusion, and the neurological deficits were less than those in normal mice. This result could not be accounted for by differences in blood flow or vascular anatomy. However, infarct size in the mutant became larger after endothelial NOS inhibition by nitro-L-arginine administration. Hence, neuronal NO production appears to exacerbate acute ischemic injury, whereas vascular NO protects after middle cerebral artery occlusion. The data emphasize the importance of developing selective inhibitors of the neuronal isoform.

  12. Vascular depression consensus report - a critical update.

    PubMed

    Aizenstein, Howard J; Baskys, Andrius; Boldrini, Maura; Butters, Meryl A; Diniz, Breno S; Jaiswal, Manoj Kumar; Jellinger, Kurt A; Kruglov, Lev S; Meshandin, Ivan A; Mijajlovic, Milija D; Niklewski, Guenter; Pospos, Sarah; Raju, Keerthy; Richter, Kneginja; Steffens, David C; Taylor, Warren D; Tene, Oren

    2016-11-03

    Vascular depression is regarded as a subtype of late-life depression characterized by a distinct clinical presentation and an association with cerebrovascular damage. Although the term is commonly used in research settings, widely accepted diagnostic criteria are lacking and vascular depression is absent from formal psychiatric manuals such as the Diagnostic and Statistical Manual of Mental Disorders, 5 th edition - a fact that limits its use in clinical settings. Magnetic resonance imaging (MRI) techniques, showing a variety of cerebrovascular lesions, including extensive white matter hyperintensities, subcortical microvascular lesions, lacunes, and microinfarcts, in patients with late life depression, led to the introduction of the term "MRI-defined vascular depression". This diagnosis, based on clinical and MRI findings, suggests that vascular lesions lead to depression by disruption of frontal-subcortical-limbic networks involved in mood regulation. However, despite multiple MRI approaches to shed light on the spatiotemporal structural changes associated with late life depression, the causal relationship between brain changes, related lesions, and late life depression remains controversial. While postmortem studies of elderly persons who died from suicide revealed lacunes, small vessel, and Alzheimer-related pathologies, recent autopsy data challenged the role of these lesions in the pathogenesis of vascular depression. Current data propose that the vascular depression connotation should be reserved for depressed older patients with vascular pathology and evident cerebral involvement. Based on current knowledge, the correlations between intra vitam neuroimaging findings and their postmortem validity as well as the role of peripheral markers of vascular disease in late life depression are discussed. The multifold pathogenesis of vascular depression as a possible subtype of late life depression needs further elucidation. There is a need for correlative clinical

  13. Cerebral versus systemic hemodynamics during graded orthostatic stress in humans

    NASA Technical Reports Server (NTRS)

    Levine, B. D.; Giller, C. A.; Lane, L. D.; Buckey, J. C.; Blomqvist, C. G.

    1994-01-01

    BACKGROUND: Orthostatic syncope is usually attributed to cerebral hypoperfusion secondary to systemic hemodynamic collapse. Recent research in patients with neurocardiogenic syncope has suggested that cerebral vasoconstriction may occur during orthostatic hypotension, compromising cerebral autoregulation and possibly contributing to the loss of consciousness. However, the regulation of cerebral blood flow (CBF) in such patients may be quite different from that of healthy individuals, particularly when assessed during the rapidly changing hemodynamic conditions associated with neurocardiogenic syncope. To be able to interpret the pathophysiological significance of these observations, a clear understanding of the normal responses of the cerebral circulation to orthostatic stress must be obtained, particularly in the context of the known changes in systemic and regional distributions of blood flow and vascular resistance during orthostasis. Therefore, the specific aim of this study was to examine the changes that occur in the cerebral circulation during graded reductions in central blood volume in the absence of systemic hypotension in healthy humans. We hypothesized that cerebral vasoconstriction would occur and CBF would decrease due to activation of the sympathetic nervous system. We further hypothesized, however, that the magnitude of this change would be small compared with changes in systemic or skeletal muscle vascular resistance in healthy subjects with intact autoregulation and would be unlikely to cause syncope without concomitant hypotension. METHODS AND RESULTS: To test this hypothesis, we studied 13 healthy men (age, 27 +/- 7 years) during progressive lower body negative pressure (LBNP). We measured systemic flow (Qc is cardiac output; C2H2 rebreathing), regional forearm flow (FBF; venous occlusion plethysmography), and blood pressure (BP; Finapres) and calculated systemic (SVR) and forearm (FVR) vascular resistances. Changes in brain blood flow were

  14. [Influence of neonatal diseases and treatments on the development of cerebral palsy in preterm infant].

    PubMed

    Yu, Tao; Rong, Luo; Wang, Qiu; You, Yi; Fu, Jun-Xian; Kang, Lin-Min; Wu, Yan-Qiao

    2013-03-01

    To investigated the risk factors of cerebral palsy development in preterm infants. This study included 203 preterm infants (gestation age < 37 weeks) diagnosed with cerebral palsy (CP) and 220 preterm infants without cerebral palsy or any other severe neurological disorders during April 2005 to August 2011. The risk factors in the development of cerebral palsy, including the diseases of premature infants and the treatments in neonatal period, were analyzed by multiple logistic regression analysis. Multivariate logistic analysis for the risk factors associated with cerebral palsy in neonatal period found significant differences in the occurrence of periventricular leukomalacia (PVL, OR = 39.87, P < 0.05), hypoxia-ischemic encephalopathy (HIE, OR = 4.24, P < 0.05), hypoglycemia of neonatal (OR = 2.18, P < 0.05), neonatal hyperbilirubinemia (OR = 1.72, P < 0.05), continuous positive airway pressure (CPAP, OR = 0.21, P < 0.05). The factors including PLV, HIE, hypoglycemia, and neonatal jaundice may increase the risk in the development of CP in preterm infant, while CPAP may decrease the risk of cerebral palsy.

  15. Rutin protects against cognitive deficits and brain damage in rats with chronic cerebral hypoperfusion.

    PubMed

    Qu, Jie; Zhou, Qiong; Du, Ying; Zhang, Wei; Bai, Miao; Zhang, Zhuo; Xi, Ye; Li, Zhuyi; Miao, Jianting

    2014-08-01

    Chronic cerebral hypoperfusion is a critical causative factor for the development of cognitive decline and dementia in the elderly, which involves many pathophysiological processes. Consequently, inhibition of several pathophysiological pathways is an attractive therapeutic strategy for this disorder. Rutin, a biologically active flavonoid, protects the brain against several insults through its antioxidant and anti-inflammatory properties, but its effect on cognitive deficits and brain damage caused by chronic cerebral hypoperfusion remains unknown. Here, we investigated the neuroprotective effect of rutin on cognitive impairments and the potential mechanisms underlying its action in rats with chronic cerebral hypoperfusion. We used Sprague-Dawley rats with permanent bilateral common carotid artery occlusion (BCCAO), a well-established model of chronic cerebral hypoperfusion. After rutin treatment for 12 weeks, the neuroprotective effect of rutin in rats was evaluated by behavioural tests, biochemical and histopathological analyses. BCCAO rats showed marked cognitive deficits, which were improved by rutin treatment. Moreover, BCCAO rats exhibited central cholinergic dysfunction, oxidative damage, inflammatory responses and neuronal damage in the cerebral cortex and hippocampus, compared with sham-operated rats. All these effects were significantly alleviated by treatment with rutin. Our results provide new insights into the pharmacological actions of rutin and suggest that rutin has multi-targeted therapeutical potential on cognitive deficits associated with conditions with chronic cerebral hypoperfusion such as vascular dementia and Alzheimer's disease. © 2014 The British Pharmacological Society.

  16. Targeting Nitric Oxide with Natural Derived Compounds as a Therapeutic Strategy in Vascular Diseases

    PubMed Central

    Forte, Maurizio; Damato, Antonio; Ambrosio, Mariateresa; Puca, Annibale A.; Sciarretta, Sebastiano; Frati, Giacomo; Vecchione, Carmine

    2016-01-01

    Within the family of endogenous gasotransmitters, nitric oxide (NO) is the smallest gaseous intercellular messenger involved in the modulation of several processes, such as blood flow and platelet aggregation control, essential to maintain vascular homeostasis. NO is produced by nitric oxide synthases (NOS) and its effects are mediated by cGMP-dependent or cGMP-independent mechanisms. Growing evidence suggests a crosstalk between the NO signaling and the occurrence of oxidative stress in the onset and progression of vascular diseases, such as hypertension, heart failure, ischemia, and stroke. For these reasons, NO is considered as an emerging molecular target for developing therapeutic strategies for cardio- and cerebrovascular pathologies. Several natural derived compounds, such as polyphenols, are now proposed as modulators of NO-mediated pathways. The aim of this review is to highlight the experimental evidence on the involvement of nitric oxide in vascular homeostasis focusing on the therapeutic potential of targeting NO with some natural compounds in patients with vascular diseases. PMID:27651855

  17. Novel Applications of Radionuclide Imaging in Peripheral Vascular Disease

    PubMed Central

    Stacy, Mitchel R.; Sinusas, Albert J.

    2015-01-01

    Peripheral vascular disease (PVD) is a progressive atherosclerotic disease that leads to stenosis or occlusion of blood vessels supplying the lower extremities. Current diagnostic imaging techniques commonly focus on evaluation of anatomy or blood flow at the macrovascular level and do not permit assessment of the underlying pathophysiology associated with disease progression or treatment response. Molecular imaging with radionuclide-based approaches, such as PET and SPECT, can offer novel insight into PVD by providing non-invasive assessment of biological processes such as angiogenesis and atherosclerosis. This review discusses emerging radionuclide-based imaging approaches that have potential clinical applications in the evaluation of PVD progression and treatment. PMID:26590787

  18. Cerebral amyloidosis associated with cognitive decline in autosomal dominant Alzheimer disease

    PubMed Central

    Wang, Fen; Gordon, Brian A.; Ryman, Davis C.; Ma, Shengmei; Xiong, Chengjie; Hassenstab, Jason; Goate, Alison; Fagan, Anne M.; Cairns, Nigel J.; Marcus, Daniel S.; McDade, Eric; Ringman, John M.; Graff-Radford, Neill R.; Ghetti, Bernardino; Farlow, Martin R.; Sperling, Reisa; Salloway, Steve; Schofield, Peter R.; Masters, Colin L.; Martins, Ralph N.; Rossor, Martin N.; Jucker, Mathias; Danek, Adrian; Förster, Stefan; Lane, Christopher A.S.; Morris, John C.; Bateman, Randall J.

    2015-01-01

    Objective: To investigate the associations of cerebral amyloidosis with concurrent cognitive performance and with longitudinal cognitive decline in asymptomatic and symptomatic stages of autosomal dominant Alzheimer disease (ADAD). Methods: Two hundred sixty-three participants enrolled in the Dominantly Inherited Alzheimer Network observational study underwent neuropsychological evaluation as well as PET scans with Pittsburgh compound B. One hundred twenty-one participants completed at least 1 follow-up neuropsychological evaluation. Four composite cognitive measures representing global cognition, episodic memory, language, and working memory were generated using z scores from a battery of 13 standard neuropsychological tests. General linear mixed-effects models were used to investigate the relationship between baseline cerebral amyloidosis and baseline cognitive performance and whether baseline cerebral amyloidosis predicts cognitive change over time (mean follow-up 2.32 years ± 0.92, range 0.89–4.19) after controlling for estimated years from expected symptom onset, APOE ε4 allelic status, and education. Results: In asymptomatic mutation carriers, amyloid burden was not associated with baseline cognitive functioning but was significantly predictive of longitudinal decline in episodic memory. In symptomatic mutation carriers, cerebral amyloidosis was correlated with worse baseline performance in multiple cognitive composites and predicted greater decline over time in global cognition, working memory, and Mini-Mental State Examination. Conclusions: Cerebral amyloidosis predicts longitudinal episodic memory decline in presymptomatic ADAD and multidomain cognitive decline in symptomatic ADAD. These findings imply that amyloidosis in the brain is an indicator of early cognitive decline and provides a useful outcome measure for early assessment and prevention treatment trials. PMID:26245925

  19. Cerebral amyloidosis associated with cognitive decline in autosomal dominant Alzheimer disease.

    PubMed

    Wang, Fen; Gordon, Brian A; Ryman, Davis C; Ma, Shengmei; Xiong, Chengjie; Hassenstab, Jason; Goate, Alison; Fagan, Anne M; Cairns, Nigel J; Marcus, Daniel S; McDade, Eric; Ringman, John M; Graff-Radford, Neill R; Ghetti, Bernardino; Farlow, Martin R; Sperling, Reisa; Salloway, Steve; Schofield, Peter R; Masters, Colin L; Martins, Ralph N; Rossor, Martin N; Jucker, Mathias; Danek, Adrian; Förster, Stefan; Lane, Christopher A S; Morris, John C; Benzinger, Tammie L S; Bateman, Randall J

    2015-09-01

    To investigate the associations of cerebral amyloidosis with concurrent cognitive performance and with longitudinal cognitive decline in asymptomatic and symptomatic stages of autosomal dominant Alzheimer disease (ADAD). Two hundred sixty-three participants enrolled in the Dominantly Inherited Alzheimer Network observational study underwent neuropsychological evaluation as well as PET scans with Pittsburgh compound B. One hundred twenty-one participants completed at least 1 follow-up neuropsychological evaluation. Four composite cognitive measures representing global cognition, episodic memory, language, and working memory were generated using z scores from a battery of 13 standard neuropsychological tests. General linear mixed-effects models were used to investigate the relationship between baseline cerebral amyloidosis and baseline cognitive performance and whether baseline cerebral amyloidosis predicts cognitive change over time (mean follow-up 2.32 years ± 0.92, range 0.89-4.19) after controlling for estimated years from expected symptom onset, APOE ε4 allelic status, and education. In asymptomatic mutation carriers, amyloid burden was not associated with baseline cognitive functioning but was significantly predictive of longitudinal decline in episodic memory. In symptomatic mutation carriers, cerebral amyloidosis was correlated with worse baseline performance in multiple cognitive composites and predicted greater decline over time in global cognition, working memory, and Mini-Mental State Examination. Cerebral amyloidosis predicts longitudinal episodic memory decline in presymptomatic ADAD and multidomain cognitive decline in symptomatic ADAD. These findings imply that amyloidosis in the brain is an indicator of early cognitive decline and provides a useful outcome measure for early assessment and prevention treatment trials. © 2015 American Academy of Neurology.

  20. Systematization, distribution and territory of the middle cerebral artery on the brain surface in chinchilla (Chinchilla lanigera).

    PubMed

    De Araujo, A C P; Campos, R

    2009-02-01

    The aim of the present study was to analyse thirty chinchilla (Chinchilla lanigera) brains, injected with latex, and to systematize and describe the distribution and the vascularization territories of the middle cerebral artery. This long vessel, after it has originated from the terminal branch of the basilar artery, formed the following collateral branches: rostral, caudal and striated (perforating) central branches. After crossing the lateral rhinal sulcus, the middle cerebral artery emitted a sequence of rostral and caudal convex hemispheric cortical collateral branches on the convex surface of the cerebral hemisphere to the frontal, parietal, temporal and occipital lobes. Among the rostral convex hemispheric branches, a trunk was observed, which reached the frontal and parietal lobes and, in a few cases, the occipital lobe. The vascular territory of the chinchilla's middle cerebral artery included, in the cerebral hemisphere basis, the lateral cerebral fossa, the caudal third of the olfactory trigone, the rostral two-thirds of the piriform lobe, the lateral olfactory tract, and most of the convex surface of the cerebral hemisphere, except for a strip between the cerebral longitudinal fissure and the vallecula, which extended from the rostral to the caudal poles bordering the cerebral transverse fissure.

  1. Disruption of astrocyte-vascular coupling and the blood-brain barrier by invading glioma cells

    PubMed Central

    Watkins, Stacey; Robel, Stefanie; Kimbrough, Ian F.; Robert, Stephanie M.; Ellis-Davies, Graham; Sontheimer, Harald

    2014-01-01

    Astrocytic endfeet cover the entire cerebral vasculature and serve as exchange sites for ions, metabolites, and energy substrates from the blood to the brain. They maintain endothelial tight junctions that form the blood-brain barrier (BBB) and release vasoactive molecules that regulate vascular tone. Malignant gliomas are highly invasive tumors that use the perivascular space for invasion and co-opt existing vessels as satellite tumors form. Here we use a clinically relevant mouse model of glioma and find that glioma cells, as they populate the perivascular space of pre-existing vessels, displace astrocytic endfeet from endothelial or vascular smooth muscle cells. This causes a focal breach in the BBB. Furthermore, astrocyte-mediated gliovascular coupling is lost, and glioma cells seize control over regulation of vascular tone through Ca2+-dependent release of K+. These findings have important clinical implications regarding blood flow in the tumor-associated brain and the ability to locally deliver chemotherapeutic drugs in disease. PMID:24943270

  2. Rapid resolution of brain ischemic hypoxia after cerebral revascularization in moyamoya disease.

    PubMed

    Arikan, Fuat; Vilalta, Jordi; Torne, Ramon; Noguer, Montserrat; Lorenzo-Bosquet, Carles; Sahuquillo, Juan

    2015-03-01

    In moyamoya disease (MMD), cerebral revascularization is recommended in patients with recurrent or progressive ischemic events and associated reduced cerebral perfusion reserve. Low-flow bypass with or without indirect revascularization is generally the standard surgical treatment. Intraoperative monitoring of cerebral partial pressure of oxygen (PtiO2) with polarographic Clark-type probes in cerebral artery bypass surgery for MMD-induced chronic cerebral ischemia has not yet been described. To describe basal brain tissue oxygenation in MMD patients before revascularization as well as the immediate changes produced by the surgical procedure using intraoperative PtiO2 monitoring. Between October 2011 and January 2013, all patients with a diagnosis of MMD were intraoperatively monitored. Cerebral oxygenation status was analyzed based on the Ptio2/PaO2 ratio. Reference thresholds of PtiO2/PaO2 had been previously defined as below 0.1 for the lower reference threshold (hypoxia) and above 0.35 for the upper reference threshold (hyperoxia). Before STA-MCA bypass, all patients presented a situation of severe tissue hypoxia confirmed by a PtiO2/PaO2 ratio <0.1. After bypass, all patients showed a rapid and sustained increase in PtiO2, which reached normal values (PtiO2/PaO2 ratio between 0.1 and 0.35). One patient showed an initial PtiO2 improvement followed by a decrease due to bypass occlusion. After repeat anastomosis, the patient's PtiO2 increased again and stabilized. Direct anastomosis quickly improves cerebral oxygenation, immediately reducing the risk of ischemic stroke in both pediatric and adult patients. Intraoperative PtiO2 monitoring is a very reliable tool to verify the effectiveness of this revascularization procedure.

  3. Endothelin-1-induced focal cerebral ischemia in the growth hormone/IGF-1 deficient Lewis Dwarf rat.

    PubMed

    Yan, Han; Mitschelen, Matthew; Toth, Peter; Ashpole, Nicole M; Farley, Julie A; Hodges, Erik L; Warrington, Junie P; Han, Song; Fung, Kar-Ming; Csiszar, Anna; Ungvari, Zoltan; Sonntag, William E

    2014-11-01

    Aging is a major risk factor for cerebrovascular disease. Growth hormone (GH) and its anabolic mediator, insulin-like growth factor (IGF)-1, decrease with advancing age and this decline has been shown to promote vascular dysfunction. In addition, lower GH/IGF-1 levels are associated with higher stroke mortality in humans. These results suggest that decreased GH/IGF-1 level is an important factor in increased risk of cerebrovascular diseases. This study was designed to assess whether GH/IGF-1-deficiency influences the outcome of cerebral ischemia. We found that endothelin-1-induced middle cerebral artery occlusion resulted in a modest but nonsignificant decrease in cerebral infarct size in GH/IGF-1 deficient dw/dw rats compared with control heterozygous littermates and dw/dw rats with early-life GH treatment. Expression of endothelin receptors and endothelin-1-induced constriction of the middle cerebral arteries were similar in the three experimental groups. Interestingly, dw/dw rats exhibited reduced brain edema and less astrocytic infiltration compared with their heterozygous littermates and this effect was reversed by GH-treatment. Because reactive astrocytes are critical for the regulation of poststroke inflammatory processes, maintenance of the blood-brain barrier and neural repair, further studies are warranted to determine the long-term functional consequences of decreased astrocytic activation in GH/IGF-1 deficient animals after cerebral ischemia. Published by Oxford University Press on behalf of the Gerontological Society of America 2014.

  4. Male sex and vascular risk factors affect cystatin C-derived renal function in older people without diabetes or overt vascular disease.

    PubMed

    Werner, Karin Birgitta; Elmståhl, Sölve; Christensson, Anders; Pihlsgård, Mats

    2014-05-01

    to explore the effect of ageing on renal function with cystatin C as the marker of glomerular filtration rate (GFR) in the general population without vascular disease or diabetes. a cross-sectional analysis of a healthy subset from the Good Aging in Skåne-cohort study representative of the Swedish general population. 1252 participants without vascular disease and diabetes (43.9% men) of whom 203 were over 80 years old were included from the original cohort of 2931. plasma cystatin C and plasma creatinine were used as markers for GFR. Estimated GFR (eGFR) was calculated with three chronic kidney disease epidemiology collaboration (CKD-EPI) formulas involving cystatin C, creatinine or both. the median for plasma cystatin C was 0.93 mg/l (60-69 years old), 1.04 (70-79 years old) and 1.24 (80+ years old). The difference in mg/l between the 5th and 95th percentile was 0.46, 0.62 and 0.90 for these age groups. Male sex increased the age effect on plasma cystatin C levels with 0.004 mg/l/year (P = 0.03), adjusted for vascular risk factors. Smoking, lower HDL and higher diastolic blood pressure were associated with higher cystatin C levels. 54.7% (CKD-EPI creatinine) to 73.9% (CKD-EPI cystatin C) of the 80+ had an eGFR < 60 ml/min/1.73 m2. non-diabetics without overt vascular disease exhibit an age related but heterogeneous decline in renal function. The ageing effect is more pronounced in men. At least half of healthy 80+ years old could be expected to have at least CKD Stage 3 with eGFR < 60 ml/min/1.73 m2.

  5. Cerebral Small Vessel Disease Burden Is Associated with Motor Performance of Lower and Upper Extremities in Community-Dwelling Populations

    PubMed Central

    Su, Ning; Zhai, Fei-Fei; Zhou, Li-Xin; Ni, Jun; Yao, Ming; Li, Ming-Li; Jin, Zheng-Yu; Gong, Gao-Lang; Zhang, Shu-Yang; Cui, Li-Ying; Tian, Feng; Zhu, Yi-Cheng

    2017-01-01

    Objective: To investigate the correlation between cerebral small vessel disease (CSVD) burden and motor performance of lower and upper extremities in community-dwelling populations. Methods: We performed a cross-sectional analysis on 770 participants enrolled in the Shunyi study, which is a population-based cohort study. CSVD burden, including white matter hyperintensities (WMH), lacunes, cerebral microbleeds (CMBs), perivascular spaces (PVS), and brain atrophy were measured using 3T magnetic resonance imaging. All participants underwent quantitative motor assessment of lower and upper extremities, which included 3-m walking speed, 5-repeat chair-stand time, 10-repeat pronation–supination time, and 10-repeat finger-tapping time. Data on demographic characteristics, vascular risk factors, and cognitive functions were collected. General linear model analysis was performed to identify potential correlations between motor performance measures and imaging markers of CSVD after controlling for confounding factors. Results: For motor performance of the lower extremities, WMH was negatively associated with gait speed (standardized β = -0.092, p = 0.022) and positively associated with chair-stand time (standardized β = 0.153, p < 0.0001, surviving FDR correction). For motor performance of the upper extremities, pronation–supination time was positively associated with WMH (standardized β = 0.155, p < 0.0001, surviving FDR correction) and negatively with brain parenchymal fraction (BPF; standardized β = -0.125, p = 0.011, surviving FDR correction). Only BPF was found to be negatively associated with finger-tapping time (standardized β = -0.123, p = 0.012). However, lacunes, CMBs, or PVS were not found to be associated with motor performance of lower or upper extremities in multivariable analysis. Conclusion: Our findings suggest that cerebral microstructural changes related to CSVD may affect motor performance of both lower and upper extremities. WMH and brain

  6. Cerebral Small Vessel Disease Burden Is Associated with Motor Performance of Lower and Upper Extremities in Community-Dwelling Populations.

    PubMed

    Su, Ning; Zhai, Fei-Fei; Zhou, Li-Xin; Ni, Jun; Yao, Ming; Li, Ming-Li; Jin, Zheng-Yu; Gong, Gao-Lang; Zhang, Shu-Yang; Cui, Li-Ying; Tian, Feng; Zhu, Yi-Cheng

    2017-01-01

    Objective: To investigate the correlation between cerebral small vessel disease (CSVD) burden and motor performance of lower and upper extremities in community-dwelling populations. Methods: We performed a cross-sectional analysis on 770 participants enrolled in the Shunyi study, which is a population-based cohort study. CSVD burden, including white matter hyperintensities (WMH), lacunes, cerebral microbleeds (CMBs), perivascular spaces (PVS), and brain atrophy were measured using 3T magnetic resonance imaging. All participants underwent quantitative motor assessment of lower and upper extremities, which included 3-m walking speed, 5-repeat chair-stand time, 10-repeat pronation-supination time, and 10-repeat finger-tapping time. Data on demographic characteristics, vascular risk factors, and cognitive functions were collected. General linear model analysis was performed to identify potential correlations between motor performance measures and imaging markers of CSVD after controlling for confounding factors. Results: For motor performance of the lower extremities, WMH was negatively associated with gait speed (standardized β = -0.092, p = 0.022) and positively associated with chair-stand time (standardized β = 0.153, p < 0.0001, surviving FDR correction). For motor performance of the upper extremities, pronation-supination time was positively associated with WMH (standardized β = 0.155, p < 0.0001, surviving FDR correction) and negatively with brain parenchymal fraction (BPF; standardized β = -0.125, p = 0.011, surviving FDR correction). Only BPF was found to be negatively associated with finger-tapping time (standardized β = -0.123, p = 0.012). However, lacunes, CMBs, or PVS were not found to be associated with motor performance of lower or upper extremities in multivariable analysis. Conclusion: Our findings suggest that cerebral microstructural changes related to CSVD may affect motor performance of both lower and upper extremities. WMH and brain atrophy

  7. Pulmonary Vascular Complications of Liver Disease

    PubMed Central

    Fritz, Jason S.; Fallon, Michael B.

    2013-01-01

    Hepatopulmonary syndrome and portopulmonary hypertension are two pulmonary vascular complications of liver disease. The pathophysiology underlying each disorder is distinct, but patients with either condition may be limited by dyspnea. A careful evaluation of concomitant symptoms, the physical examination, pulmonary function testing and arterial blood gas analysis, and echocardiographic, imaging, and hemodynamic studies is crucial to establishing (and distinguishing) these diagnoses. Our understanding of the pathobiology, natural history, and treatment of these disorders has advanced considerably over the past decade; however, the presence of either still increases the risk of morbidity and mortality in patients with underlying liver disease. There is no effective medical treatment for hepatopulmonary syndrome. Although liver transplantation can resolve hepatopulmonary syndrome, there appears to be worse survival even with transplantation. Liver transplantation poses a very high risk of death in those with significant portopulmonary hypertension, where targeted medical therapies may improve functional status and allow successful transplantation in a small number of select patients. PMID:23155142

  8. Cerebral Vasculitis in X-linked Lymphoproliferative Disease Cured by Matched Unrelated Cord Blood Transplant.

    PubMed

    Gray, Paul E; O'Brien, Tracey A; Wagle, Mayura; Tangye, Stuart G; Palendira, Umaimainthan; Roscioli, Tony; Choo, Sharon; Sutton, Rosemary; Ziegler, John B; Frith, Katie

    2015-10-01

    Vasculitis occurs rarely in association with X-linked lymphoproliferative disease (XLP). There are four published cases of non-EBV XLP-associated cerebral vasculitis reported, none of whom have survived without major cognitive impairment. A 9-year old boy initially presented aged 5 years with a restrictive joint disease. He subsequently developed dysgammaglobulinemia, episodic severe pneumonitis, aplastic anaemia, gastritis and cerebral vasculitis. A diagnosis of XLP was made, based on flow cytometric analysis and the identification of a novel mutation in SH2D1A, c.96G>C. No peripheral blood lymphocyte clonal proliferation was identified and he was EBV negative, although human herpes virus-7 (HHV7) was detected repeatedly in his cerebrospinal fluid. He underwent a reduced intensity unrelated umbilical cord blood transplant, but failed to engraft. A second 5/6 matched cord gave 100 % donor engraftment. Complications included BK virus-associated haemorrhagic cystitis, a possible NK-cell mediated immune reconstitution syndrome and post-transplant anti-glomerular basement membrane disease, the latter treated with cyclophosphamide and rituximab. At +450 days post-transplant he is in remission from his vasculitis and anti-glomerular basement membrane disease, and HHV-7 has remained undetectable. This is the second published description of joint disease in XLP, and only the fourth case of non-EBV associated cerebral vasculitis in XLP, as well as being the first to be successfully treated for this manifestation. This case raises specific questions about vasculitis in XLP, in particular the potential relevance of HHV-7 to the pathogenesis.

  9. The intermediate-conductance Ca2+ -activated K+ channel (KCa3.1) in vascular disease.

    PubMed

    Tharp, D L; Bowles, D K

    2009-01-01

    The intermediate-conductance Ca(2+)-activated K(+) channel (K(Ca)3.1) was first described by Gardos in erythrocytes and later confirmed to play a significant role in T-cell activation and the immune response. More recently, K(Ca)3.1 has been characterized in numerous cell types which contribute to the development of vascular disease, such as T-cells, B-cells, endothelial cells, fibroblasts, macrophages, and dedifferentiated smooth muscle cells (SMCs). Physiologically, K(Ca)3.1 has been demonstrated to play a role in acetylcholine and endothelium-derived hyperpolarizing factor (EDHF) induced hyperpolarization, and thus control of blood pressure. Pathophysiologically, K(Ca)3.1 contributes to proliferation of T-cells, B-cells, fibroblasts, and vascular SMCs, as well as the migration of SMCs and macrophages and platelet coagulation. Recent studies have indicated that blockade of K(Ca)3.1, by specific blockers such as TRAM-34, could prove to be an effective treatment for vascular disease by inhibiting T-cell activation as well as preventing proliferation and migration of macrophages, endothelial cells, and SMCs. This vasculoprotective potential of K(Ca)3.1 inhibition has been confirmed in both rodent and swine models of restenosis. In this review, we will discuss the physiological and pathophysiological role of K(Ca)3.1 in cells closely associated with vascular biology, and the effect of K(Ca)3.1 blockers on the initiation and progression of vascular disease.

  10. Statin therapy exacerbates alcohol-induced constriction of cerebral arteries via modulation of ethanol-induced BK channel inhibition in vascular smooth muscle.

    PubMed

    Simakova, Maria N; Bisen, Shivantika; Dopico, Alex M; Bukiya, Anna N

    2017-12-01

    Statins constitute the most commonly prescribed drugs to decrease cholesterol (CLR). CLR is an important modulator of alcohol-induced cerebral artery constriction (AICAC). Using rats on a high CLR diet (2% CLR) we set to determine whether atorvastatin administration (10mg/kg daily for 18-23weeks) modified AICAC. Middle cerebral arteries were pressurized in vitro at 60mmHg and AICAC was evoked by 50mM ethanol, that is within the range of blood alcohol detected in humans following moderate-to-heavy drinking. AICAC was evident in high CLR+atorvastatin group but not in high CLR diet+placebo. Statin exacerbation of AICAC persisted in de-endothelialized arteries, and was blunted by CLR enrichment in vitro. Fluorescence imaging of filipin-stained arteries showed that atorvastatin decreased vascular smooth muscle (VSM) CLR when compared to placebo, this difference being reduced by CLR enrichment in vitro. Voltage- and calcium-gated potassium channels of large conductance (BK) are known VSM targets of ethanol, with their beta1 subunit being necessary for ethanol-induced channel inhibition and resulting AICAC. Ethanol-induced BK inhibition in excised membrane patches from freshly isolated myocytes was exacerbated in the high CLR diet+atorvastatin group when compared to high CLR diet+placebo. Unexpectedly, atorvastatin decreased the amount and function of BK beta1 subunit as documented by immunofluorescence imaging and functional patch-clamp studies. Atorvastatin exacerbation of ethanol-induced BK inhibition disappeared upon artery CLR enrichment in vitro. Our study demonstrates for the first time statin's ability to exacerbate the vascular effect of a widely consumed drug of abuse, this exacerbation being driven by statin modulation of ethanol-induced BK channel inhibition in the VSM via CLR-mediated mechanism. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Inherited neurovascular diseases affecting cerebral blood vessels and smooth muscle.

    PubMed

    Sam, Christine; Li, Fei-Feng; Liu, Shu-Lin

    2015-10-01

    Neurovascular diseases are among the leading causes of mortality and permanent disability due to stroke, aneurysm, and other cardiovascular complications. Cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) and Marfan syndrome are two neurovascular disorders that affect smooth muscle cells through accumulation of granule and osmiophilic materials and defective elastic fiber formations respectively. Moyamoya disease, hereditary hemorrhagic telangiectasia (HHT), microcephalic osteodysplastic primordial dwarfism type II (MOPD II), and Fabry's disease are disorders that affect the endothelium cells of blood vessels through occlusion or abnormal development. While much research has been done on mapping out mutations in these diseases, the exact mechanisms are still largely unknown. This paper briefly introduces the pathogenesis, genetics, clinical symptoms, and current methods of treatment of the diseases in the hope that it can help us better understand the mechanism of these diseases and work on ways to develop better diagnosis and treatment.

  12. Correlation between cerebral hemodynamic and perfusion pressure changes in non-human primates

    NASA Astrophysics Data System (ADS)

    Ruesch, A.; Smith, M. A.; Wollstein, G.; Sigal, I. A.; Nelson, S.; Kainerstorfer, J. M.

    2017-02-01

    The mechanism that maintains a stable blood flow in the brain despite changes in cerebral perfusion pressure (CPP), and therefore guaranties a constant supply of oxygen and nutrients to the neurons, is known as cerebral auto-regulation (CA). In a certain range of CPP, blood flow is mediated by a vasomotor adjustment in vascular resistance through dilation of blood vessels. CA is known to be impaired in diseases like traumatic brain injury, Parkinson's disease, stroke, hydrocephalus and others. If CA is impaired, blood flow and pressure changes are coupled and thee oxygen supply might be unstable. Lassen's blood flow auto-regulation curve describes this mechanism, where a plateau of stable blood flow in a specific range of CPP corresponds to intact auto-regulation. Knowing the limits of this plateau and maintaining CPP within these limits can improve patient outcome. Since CPP is influenced by both intracranial pressure and arterial blood pressure, long term changes in either can lead to auto-regulation impairment. Non-invasive methods for monitoring blood flow auto-regulation are therefore needed. We propose too use Near infrared spectroscopy (NIRS) too fill this need. NIRS is an optical technique, which measures microvascular changes in cerebral hemoglobin concentration. We performed experiments on non-human primates during exsanguination to demonstrate that thee limits of blood flow auto-regulation can be accessed with NIRS.

  13. VKORC1 haplotypes are associated with arterial vascular diseases (stroke, coronary heart disease, and aortic dissection).

    PubMed

    Wang, Yibo; Zhang, Weili; Zhang, Yuhui; Yang, Yuejin; Sun, Lizhong; Hu, Shengshou; Chen, Jilin; Zhang, Channa; Zheng, Yi; Zhen, Yisong; Sun, Kai; Fu, Chunyan; Yang, Tao; Wang, Jianwei; Sun, Jing; Wu, Haiying; Glasgow, Wayne C; Hui, Rutai

    2006-03-28

    The haplotypes in the gene vitamin K epoxide reductase complex subunit 1 (VKORC1) have been found to affect warfarin dose response through effects on the formation of reduced-form vitamin K, a cofactor for gamma-carboxylation of vitamin K-dependent proteins, which is involved in the coagulation cascade and has a potential impact on atherosclerosis. We hypothesized that VKORC1-dependent effects on the coagulation cascade and atherosclerosis would contribute to susceptibility for vascular diseases. To test the hypothesis, we studied the association of polymorphisms of VKORC1 with stroke (1811 patients), coronary heart disease (740 patients), and aortic dissection (253 patients) compared with matched controls (n=1811, 740, and 416, respectively). Five common noncoding single-nucleotide polymorphisms of VKORC1 were identified in a natural haplotype block with strong linkage disequilibrium (D'>0.9, r2>0.9), then single-nucleotide polymorphism (SNP) +2255 in the block was selected for the association study. We found that the presence of the C allele of the +2255 locus conferred almost twice the risk of vascular disease (odds ratio [OR] 1.95, 95% confidence interval [CI] .58 to 2.41, P<0.001 for stroke; OR 1.72, 95% CI 1.24 to 2.38, P<0.01 for coronary heart disease; and OR 1.90, 95% CI 1.04 to 3.48, P<0.05 for aortic dissection). We also observed that subjects with the CC and CT genotypes had lower levels of undercarboxylated osteocalcin (a regulator for the bone), probably vascular calcification, and lower levels of protein induced in vitamin K absence or antagonism II (PIVKA-II, a des-gamma-carboxy prothrombin) than those with TT genotypes. The haplotype of VKORC1 may serve as a novel genetic marker for the risk of stroke, coronary heart disease, and aortic dissection.

  14. T2’-Imaging to Assess Cerebral Oxygen Extraction Fraction in Carotid Occlusive Disease: Influence of Cerebral Autoregulation and Cerebral Blood Volume

    PubMed Central

    Deichmann, Ralf; Pfeilschifter, Waltraud; Hattingen, Elke; Singer, Oliver C.; Wagner, Marlies

    2016-01-01

    Purpose Quantitative T2'-mapping detects regional changes of the relation of oxygenated and deoxygenated hemoglobin (Hb) by using their different magnetic properties in gradient echo imaging and might therefore be a surrogate marker of increased oxygen extraction fraction (OEF) in cerebral hypoperfusion. Since elevations of cerebral blood volume (CBV) with consecutive accumulation of Hb might also increase the fraction of deoxygenated Hb and, through this, decrease the T2’-values in these patients we evaluated the relationship between T2’-values and CBV in patients with unilateral high-grade large-artery stenosis. Materials and Methods Data from 16 patients (13 male, 3 female; mean age 53 years) with unilateral symptomatic or asymptomatic high-grade internal carotid artery (ICA) or middle cerebral artery (MCA) stenosis/occlusion were analyzed. MRI included perfusion-weighted imaging and high-resolution T2’-mapping. Representative relative (r)CBV-values were analyzed in areas of decreased T2’ with different degrees of perfusion delay and compared to corresponding contralateral areas. Results No significant elevations in cerebral rCBV were detected within areas with significantly decreased T2’-values. In contrast, rCBV was significantly decreased (p<0.05) in regions with severe perfusion delay and decreased T2’. Furthermore, no significant correlation between T2’- and rCBV-values was found. Conclusions rCBV is not significantly increased in areas of decreased T2’ and in areas of restricted perfusion in patients with unilateral high-grade stenosis. Therefore, T2’ should only be influenced by changes of oxygen metabolism, regarding our patient collective especially by an increase of the OEF. T2’-mapping is suitable to detect altered oxygen consumption in chronic cerebrovascular disease. PMID:27560515

  15. Metabolic Vascular Syndrome: New Insights into a Multidimensional Network of Risk Factors and Diseases.

    PubMed

    Scholz, Gerhard H; Hanefeld, Markolf

    2016-10-01

    Since 1981, we have used the term metabolic syndrome to describe an association of a dysregulation in lipid metabolism (high triglycerides, low high-density lipoprotein cholesterol, disturbed glucose homeostasis (enhanced fasting and/or prandial glucose), gout, and hypertension), with android obesity being based on a common soil (overnutrition, reduced physical activity, sociocultural factors, and genetic predisposition). We hypothesized that main traits of the syndrome occur early and are tightly connected with hyperinsulinemia/insulin resistance, procoagulation, and cardiovascular diseases. To establish a close link between the traits of the metabolic vascular syndrome, we focused our literature search on recent original work and comprehensive reviews dealing with the topics metabolic syndrome, visceral obesity, fatty liver, fat tissue inflammation, insulin resistance, atherogenic dyslipidemia, arterial hypertension, and type 2 diabetes mellitus. Recent research supports the concept that the metabolic vascular syndrome is a multidimensional and interactive network of risk factors and diseases based on individual genetic susceptibility and epigenetic changes where metabolic dysregulation/metabolic inflexibility in different organs and vascular dysfunction are early interconnected. The metabolic vascular syndrome is not only a risk factor constellation but rather a life-long abnormality of a closely connected interactive cluster of developing diseases which escalate each other and should continuously attract the attention of every clinician.

  16. Application of Diffusion Tensor Imaging Parameters to Detect Change in Longitudinal Studies in Cerebral Small Vessel Disease

    PubMed Central

    Zeestraten, Eva Anna; Benjamin, Philip; Lambert, Christian; Lawrence, Andrew John; Williams, Owen Alan; Morris, Robin Guy; Barrick, Thomas Richard; Markus, Hugh Stephen

    2016-01-01

    Cerebral small vessel disease (SVD) is the major cause of vascular cognitive impairment, resulting in significant disability and reduced quality of life. Cognitive tests have been shown to be insensitive to change in longitudinal studies and, therefore, sensitive surrogate markers are needed to monitor disease progression and assess treatment effects in clinical trials. Diffusion tensor imaging (DTI) is thought to offer great potential in this regard. Sensitivity of the various parameters that can be derived from DTI is however unknown. We aimed to evaluate the differential sensitivity of DTI markers to detect SVD progression, and to estimate sample sizes required to assess therapeutic interventions aimed at halting decline based on DTI data. We investigated 99 patients with symptomatic SVD, defined as clinical lacunar syndrome with MRI confirmation of a corresponding infarct as well as confluent white matter hyperintensities over a 3 year follow-up period. We evaluated change in DTI histogram parameters using linear mixed effect models and calculated sample size estimates. Over a three-year follow-up period we observed a decline in fractional anisotropy and increase in diffusivity in white matter tissue and most parameters changed significantly. Mean diffusivity peak height was the most sensitive marker for SVD progression as it had the smallest sample size estimate. This suggests disease progression can be monitored sensitively using DTI histogram analysis and confirms DTI’s potential as surrogate marker for SVD. PMID:26808982

  17. The Return of an Old Worm: Cerebral Paragonimiasis Presenting with Intracerebral Hemorrhage

    PubMed Central

    Koh, Eun Jung; Kim, Seung-Ki; Wang, Kyu-Chang; Chai, Jong-Yil; Chong, Sangjoon; Park, Sung-Hye; Cheon, Jung-Eun

    2012-01-01

    Paragonimiasis is caused by ingesting crustaceans, which are the intermediate hosts of Paragonimus. The involvement of the brain was a common presentation in Korea decades ago, but it becomes much less frequent in domestic medical practices. We observed a rare case of cerebral paragonimiasis manifesting with intracerebral hemorrhage. A 10-yr-old girl presented with sudden-onset dysarthria, right facial palsy and clumsiness of the right hand. Brain imaging showed acute intracerebral hemorrhage in the left frontal area. An occult vascular malformation or small arteriovenous malformation compressed by the hematoma was initially suspected. The lesion progressed for over 2 months until a delayed surgery was undertaken. Pathologic examination was consistent with cerebral paragonimiasis. After chemotherapy with praziquantel, the patient was monitored without neurological deficits or seizure attacks for 6 months. This case alerts practicing clinicians to the domestic transmission of a forgotten parasitic disease due to environmental changes. PMID:23166429

  18. Blood-brain barrier dysfunction and cerebral small vessel disease (arteriolosclerosis) in brains of older people.

    PubMed

    Bridges, Leslie R; Andoh, Joycelyn; Lawrence, Andrew J; Khoong, Cheryl H L; Poon, Wayne; Esiri, Margaret M; Markus, Hugh S; Hainsworth, Atticus H

    2014-11-01

    The blood-brain barrier protects brain tissue from potentially harmful plasma components. Small vessel disease (SVD; also termed arteriolosclerosis) is common in the brains of older people and is associated with lacunar infarcts, leukoaraiosis, and vascular dementia. To determine whether plasma extravasation is associated with SVD, we immunolabeled the plasma proteins fibrinogen and immunoglobulin G, which are assumed to reflect blood-brain barrier dysfunction, in deep gray matter (DGM; anterior caudate-putamen) and deep subcortical white matter (DWM) in the brains of a well-characterized cohort of donated brains with minimal Alzheimer disease pathology (Braak Stages 0-II) (n = 84; aged 65 years or older). Morphometric measures of fibrinogen labeling were compared between people with neuropathologically defined SVD and aged control subjects. Parenchymal cellular labeling with fibrinogen and immunoglobulin G was detectable in DGM and DWM in many subjects (>70%). Quantitative measures of fibrinogen were not associated with SVD in DGM or DWM; SVD severity was correlated between DGM and DWM (p < 0.0001). Fibrinogen in DGM showed a modest association with a history of hypertension; DWM fibrinogen was associated with dementia and cerebral amyloid angiopathy (all p < 0.05). In DWM, SVD was associated with leukoaraiosis identified in life (p < 0.05), but fibrinogen was not. Our data suggest that, in aged brains, plasma extravasation and hence local blood-brain barrier dysfunction are common but do not support an association with SVD.

  19. Microscope-Integrated Optical Coherence Tomography Angiography in the Operating Room in Young Children With Retinal Vascular Disease.

    PubMed

    Chen, Xi; Viehland, Christian; Carrasco-Zevallos, Oscar M; Keller, Brenton; Vajzovic, Lejla; Izatt, Joseph A; Toth, Cynthia A

    2017-05-01

    Intraoperative optical coherence tomography (OCT) has gained traction as an important adjunct for clinical decision making during vitreoretinal surgery, and OCT angiography (OCTA) has provided novel insights in clinical evaluation of retinal diseases. To date, these two technologies have not been applied in combination to evaluate retinal vascular disease in the operating suite. To conduct microscope-integrated, swept-source OCTA (MIOCTA) in children with retinal vascular disease. In this case report analysis, OCT imaging in pediatric patients, MIOCTA images were obtained during examination under anesthesia from a young boy with a history of idiopathic vitreous hemorrhage and a female infant with familial exudative vitreoretinopathy. Side-by-side comparison of research MIOCT angiograms and clinically indicated fluorescein angiograms. In 2 young children with retinal vascular disease, the MIOCTA images showed more detailed vascular patterns than were visible on the fluorescein angiograms although within a more posterior field of view. The MIOCTA system allowed visualization of small pathological retinal vessels in the retinal periphery that were obscured in the fluorescein angiograms by fluorescein staining from underlying, preexisting laser scars. This is the first report to date of the use of MIOCTA in the operating room for young children with retinal vascular disease. Further optimization of this system may allow noninvasive detailed evaluation of retinal vasculature during surgical procedures and in patients who could not cooperate with in-office examinations.

  20. Molecular Pathogenesis of Retinal and Choroidal Vascular Diseases

    PubMed Central

    Campochiaro, Peter A.

    2015-01-01

    There are two major types of ocular neovascularization that affect the retina, retinal neovascularization (NV) and subretinal or choroidal NV. Retinal NV occurs in a group of diseases referred to as ischemic retinopathies in which damage to retinal vessels results in retinal ischemia. Most prevalent of these are diabetic retinopathy and retinal vein occlusions. Subretinal and choroidal NV occur in diseases of the outer retina and Bruch’s membrane, the most prevalent of which is age-related macular degeneration. Numerous studies in mouse models have helped to elucidate the molecular pathogenesis underlying retinal, subretinal, and choroidal NV. There is considerable overlap because the precipitating event in each is stabilization of hypoxia inducible factor-1 (HIF-1) which leads to upregulation of several hypoxia-regulated gene products, including vascular endothelial growth factor (VEGF), angiopoietin 2, vascular endothelial-protein tyrosine phosphatase (VE-PTP), and several others. Stimulation of VEGF signaling and suppression of Tie2 by angiopoietin 2 and VE-PTP are critical for sprouting of retinal, subretinal, and choroidal NV, with perturbation of Bruch’s membrane also needed for the latter. Additional HIF-1-regulated gene products cause further stimulation of the NV. It is difficult to model macular edema in animals and therefore proof-of-concept clinical trials were done and demonstrated that VEGF plays a central role and that suppression of Tie2 is also important. Neutralization of VEGF is currently the first line therapy for all of the above disease processes, but new treatments directed at some of the other molecular targets, particularly stabilization of Tie2, are likely to provide additional benefit for subretinal/choroidal NV and macular edema. In addition, the chronicity of these diseases as well as the implication of VEGF as a cause of retinal nonperfusion and progression of background diabetic retinopathy make sustained delivery approaches for

  1. Lack of sensitivity of measurements of Vd/Vt at rest and during exercise in detection of hemodynamically significant pulmonary vascular abnormalities in collagen vascular disease.

    PubMed

    Mohsenifar, Z; Tashkin, D P; Levy, S E; Bjerke, R D; Clements, P J; Furst, D

    1981-05-01

    Wasted ventilation fraction (Vd/Vt) normally declines substantially during exercise in persons without lung disease. Failure of Vd/Vt to decrease during exercise has been reported to be one of the earliest abnormalities in patients with dyspnea caused by pulmonary vaso-occlusive disease, suggesting that measurement of Vd/Vt at rest and during exercise are useful in the diagnosis of pulmonary vascular disorders. We studied pulmonary hemodynamic and Vd/Vt responses to exercise in 11 patients in the supine position with suspected pulmonary vascular involvement caused by progressive systemic sclerosis, systemic lupus erythematosus, or recurrent pulmonary emboli, 10 of whom had dyspnea at rest and/or on exertion. In contrast to previous reports of no change or an increase in Vd/Vt during exercise in patients with pulmonary vascular disease, we found Vd/Vt to decrease significantly during exercise in 8 of 9 patients in whom mean pulmonary artery pressures were abnormally elevated at rest and/or during exercise. Our findings suggest that normal responses of Vd/Vt to exercise do not exclude hemodynamically significant pulmonary vaso-occlusive disease.

  2. Attenuated flow‐induced dilatation of middle cerebral arteries is related to increased vascular oxidative stress in rats on a short‐term high salt diet

    PubMed Central

    Cosic, Anita; Jukic, Ivana; Stupin, Ana; Mihalj, Martina; Mihaljevic, Zrinka; Novak, Sanja; Vukovic, Rosemary

    2016-01-01

    Key points Recent studies have shown that high salt (HS) intake leads to endothelial dysfunction and impaired vascular reactivity in different vascular beds in both animal and human models, due to increased oxidative stress.The objective of this study was to assess vascular response to flow‐induced dilatation (FID) and to elucidate the role of vascular oxidative stress/antioxidative capacity in middle cerebral arteries (MCAs) of HS‐fed rats in vitro.The novelty of this study is in demonstrating impaired flow‐induced dilatation of MCAs and down‐regulation of vascular antioxidant genes with HS intake, leading to increased levels of oxidative stress in blood vessels and peripheral lymph organs, which together contribute to impaired FID.In addition, results show increased oxidative stress in leukocytes of peripheral lymph organs, suggesting the occurrence of inflammatory processes due to HS intake.Recirculation of leukocytes might additionally increase vascular oxidative stress in vivo. Abstract The aim of this study was to determine flow‐induced dilatation (FID) and the role of oxidative stress/antioxidative capacity in isolated, pressurized middle cerebral arteries (MCAs) of high salt (HS)‐fed rats. Healthy male Sprague‐Dawley rats (11 weeks old) were fed low salt (0.4% NaCl; LS group) or high salt (4% NaCl; HS group) diets for 1 week. Reactivity of MCAs in response to stepwise increases in pressure gradient (Δ10–Δ100 mmHg) was determined in the absence or presence of the superoxide dismutase (SOD) mimetic TEMPOL and/or the nitric oxide synthases (NOS) inhibitor N ω‐nitro‐l‐arginine methyl ester (l‐name). mRNA levels of antioxidative enzymes, NAPDH‐oxidase components, inducible (iNOS) and endothelial nitric oxide synthases (eNOS) were determined by quantitative real‐time PCR. Blood pressure (BP), antioxidant enzymes activity, oxidative stress in peripheral leukocytes, lipid peroxidation products and the antioxidant capacity of plasma

  3. Attenuated flow-induced dilatation of middle cerebral arteries is related to increased vascular oxidative stress in rats on a short-term high salt diet.

    PubMed

    Cosic, Anita; Jukic, Ivana; Stupin, Ana; Mihalj, Martina; Mihaljevic, Zrinka; Novak, Sanja; Vukovic, Rosemary; Drenjancevic, Ines

    2016-09-01

    Recent studies have shown that high salt (HS) intake leads to endothelial dysfunction and impaired vascular reactivity in different vascular beds in both animal and human models, due to increased oxidative stress. The objective of this study was to assess vascular response to flow-induced dilatation (FID) and to elucidate the role of vascular oxidative stress/antioxidative capacity in middle cerebral arteries (MCAs) of HS-fed rats in vitro. The novelty of this study is in demonstrating impaired flow-induced dilatation of MCAs and down-regulation of vascular antioxidant genes with HS intake, leading to increased levels of oxidative stress in blood vessels and peripheral lymph organs, which together contribute to impaired FID. In addition, results show increased oxidative stress in leukocytes of peripheral lymph organs, suggesting the occurrence of inflammatory processes due to HS intake. Recirculation of leukocytes might additionally increase vascular oxidative stress in vivo. The aim of this study was to determine flow-induced dilatation (FID) and the role of oxidative stress/antioxidative capacity in isolated, pressurized middle cerebral arteries (MCAs) of high salt (HS)-fed rats. Healthy male Sprague-Dawley rats (11 weeks old) were fed low salt (0.4% NaCl; LS group) or high salt (4% NaCl; HS group) diets for 1 week. Reactivity of MCAs in response to stepwise increases in pressure gradient (Δ10-Δ100 mmHg) was determined in the absence or presence of the superoxide dismutase (SOD) mimetic TEMPOL and/or the nitric oxide synthases (NOS) inhibitor N(ω) -nitro-l-arginine methyl ester (l-NAME). mRNA levels of antioxidative enzymes, NAPDH-oxidase components, inducible (iNOS) and endothelial nitric oxide synthases (eNOS) were determined by quantitative real-time PCR. Blood pressure (BP), antioxidant enzymes activity, oxidative stress in peripheral leukocytes, lipid peroxidation products and the antioxidant capacity of plasma were measured for both groups. FID was

  4. Increased regional cerebral glucose uptake in an APP/PS1 model of Alzheimer’s disease

    PubMed Central

    Poisnel, Géraldine; Hérard, Anne-Sophie; El Tannir El Tayara, Nadine; Bourrin, Emmanuel; Volk, Andreas; Kober, Frank; Delatour, Benoit; Delzescaux, Thierry; Debeir, Thomas; Rooney, Thomas; Benavides, Jésus; Hantraye, Philippe; Dhenain, Marc

    2013-01-01

    Alzheimer’s disease (AD), the most common age-related neurodegenerative disorder, is characterized by the invariant cerebral accumulation of β-amyloid peptide. This event occurs early in the disease process. In humans, [18F]-Fluoro-2-deoxy-D-Glucose-Positron Emission Tomography ([18F]-FDG-PET) is largely used to follow-up in vivo cerebral glucose utilisation (CGU) and brain metabolism modifications associated to the AD pathology. Here, [18F]-FDG-PET was used to study age-related changes of CGU under resting conditions in 3, 6 and 12-month-old APPSweLon/PS1M146L, a mouse model of amyloidosis. We showed an age-dependent increase of glucose uptake in several brain regions of APP/PS1 mice but not in control animals and a higher [18F]-FDG uptake in the cortex and the hippocampus of 12-month-old APP/PS1 mice as compared to age-matched control mice. We then developed a method of 3D-microscopic autoradiography to evaluate glucose uptake at the level of amyloid plaques and showed an increased glucose uptake close to the plaques rather than in amyloid-free cerebral tissues. These data suggest a macroscopic and microscopic reorganisation of glucose uptake in relation to cerebral amyloidosis. PMID:22079157

  5. Betulinic acid, a natural PDE inhibitor restores hippocampal cAMP/cGMP and BDNF, improve cerebral blood flow and recover memory deficits in permanent BCCAO induced vascular dementia in rats.

    PubMed

    Kaundal, Madhu; Zameer, Saima; Najmi, Abul Kalam; Parvez, Suhel; Akhtar, Mohd

    2018-08-05

    Vascular dementia (VaD) is the second most common form of senile dementia, embraces memory deficits, neuroinflammation, executive function damage, mood and behavioral changes and abnormal cerebral blood flow. The purpose of the study was to explore the therapeutic potential of betulinic acid in bilateral common carotid artery occlusion (BCCAO) induced VaD in experimental rats. VaD was induced by BCCAO in rats and betulinic acid (10 and 15 mg/kg/day po) was administered 1 week after surgery. The cerebral blood pressure of the animal was recorded before and after the treatment using Laser Doppler flow meter. Object recognition task for non-spatial, Morris water maze for spatial and locomotor activity was performed to evaluate behavioral changes in rats. At the end of the study, animals were decapitated and hippocampus was separated to perform biochemical, neuroinflammatory and second messengers cAMP/cGMP analysis. Histology was done to study the brain pathophysiology. BCCAO surgery was able to significantly impaired memory in rats as observed behavioral and biochemical parameters. Moreover, BA demonstrated a neuroprotective effect in a dose-dependent manner. BA was able to re-establish cerebral blood flow, restore behavioral parameters and showed significant improvements in the as cAMP,cGMP and BDNF levels, restrain the oxidative stress and inflammatory parameters. In histopathology, betulinic acid treated groups showed a decrease in microgliosis and less pathological abnormalities comparable to diseased rat's brain. The observed effect might be attributed to the neuroprotective potential of betulinic acid and its ability to restore cognitive impairment and hippocampal neurochemistry in VaD. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. The impact of age on cerebral perfusion, oxygenation and metabolism during exercise in humans

    PubMed Central

    Braz, Igor D.

    2015-01-01

    Abstract Age is one of the most important risk factors for dementia and stroke. Examination of the cerebral circulatory responses to acute exercise in the elderly may help to pinpoint the mechanisms by which exercise training can reduce the risk of brain diseases, inform the optimization of exercise training programmes and assist with the identification of age‐related alterations in cerebral vascular function. During low‐to‐moderate intensity dynamic exercise, enhanced neuronal activity is accompanied by cerebral perfusion increases of ∼10–30%. Beyond ∼60–70% maximal oxygen uptake, cerebral metabolism remains elevated but perfusion in the anterior portion of the circulation returns towards baseline, substantively because of a hyperventilation‐mediated reduction in the partial pressure of arterial carbon dioxide (P aC O2) and cerebral vasoconstriction. Cerebral perfusion is lower in older individuals, both at rest and during incremental dynamic exercise. Nevertheless, the increase in the estimated cerebral metabolic rate for oxygen and the arterial–internal jugular venous differences for glucose and lactate are similar in young and older individuals exercising at the same relative exercise intensities. Correction for the age‐related reduction in P aC O2 during exercise by the provision of supplementary CO2 is suggested to remove ∼50% of the difference in cerebral perfusion between young and older individuals. A multitude of candidates could account for the remaining difference, including cerebral atrophy, and enhanced vasoconstrictor and blunted vasodilatory pathways. In summary, age‐related reductions in cerebral perfusion during exercise are partly associated with a lower P aC O2 in exercising older individuals; nevertheless the cerebral extraction of glucose, lactate and oxygen appear to be preserved. PMID:26435295

  7. Post-thrombotic syndrome and venous disease-specific quality of life in patients with vascular Behçet's disease.

    PubMed

    Alibaz-Oner, Fatma; Aldag, Belgin; Aldag, Mustafa; Unal, A Ugur; Mutiş, Aydan; Toptas, Tayfur; Ergun, Tulin; Direskeneli, Haner

    2016-07-01

    Deep venous thrombosis (DVT) is the most common form of vascular involvement in Behçet's disease (BD). Chronic post-thrombotic syndrome (PTS) develops in up to one-half of patients with DVT and is associated with impaired quality of life (QoL). There are no data on the severity of DVT-related PTS and its effect on QoL in patients with vascular BD (VBD). We aimed to evaluate PTS and venous disease-specific QoL in patients with VBD. This study included 50 patients (41 men, nine women) with VBD and 31 individuals matched for age and gender (22 men, nine women) with DVT associated with non-BD causes. The Villalta scale was used to assess PTS. The Venous Disability Score and the Venous Clinical Severity Score were used for the assessment of venous disease. Venous disease-specific QoL was measured through Venous Insufficiency Epidemiological and Economic Study Quality of Life/Symptom (VEINES-QoL/Sym) questionnaire. The Behçet Syndrome Activity Score (BSAS) questionnaire was used to assess disease activity. We observed a significantly lower risk of PTS together with significantly better VEINES-QoL/Sym, and Venous Disability Score in the VBD group compared with the non-BD group. When VBD patients with PTS were compared with patients without PTS, VEINES-QoL/Sym, and Venous Clinical Severity Score were significantly worse. BSAS was also significantly higher in patients with PTS. An inverse correlation was found between the VEINES-QoL and the BSAS in multivariate analysis. There were no differences between anticoagulant users and nonusers regarding the presence of PTS and scores of all of the venous assessment tools. We found lower PTS risk and better venous disease-specific QoL, symptom severity, and venous disability scores in VBD patients compared with the non-BD group. Venous disease-specific QoL negatively correlated with disease activity. Effective control of vascular inflammation through treatment in VBD might explain lower rates of PTS and better venous Qo

  8. Type 2 diabetes aggravates Alzheimer's disease-associated vascular alterations of the aorta in mice.

    PubMed

    Sena, Cristina M; Pereira, Ana M; Carvalho, Cristina; Fernandes, Rosa; Seiça, Raquel M; Oliveira, Catarina R; Moreira, Paula I

    2015-01-01

    Vascular risk factors are associated with a higher incidence of dementia. In fact, diabetes mellitus is considered a main risk factor for Alzheimer's disease (AD) and both diseases are characterized by vascular dysfunction. However, the underlying mechanisms remain largely unknown. Here, the effects of high-sucrose-induced type 2 diabetes (T2D) in the aorta of wild type (WT) and triple-transgenic AD (3xTg-AD) mice were investigated. 3xTg-AD mice showed a significant decrease in body weight and an increase in postprandial glycemia, glycated hemoglobin (HbA1c), and vascular nitrotyrosine, superoxide anion (O2•-), receptor for the advanced glycation end products (RAGE) protein, and monocyte chemoattractant protein-1 (MCP-1) levels when compared to WT mice. High-sucrose intake caused a significant increase in body weight, postprandial glycemia, HbA1c, triglycerides, plasma vascular cell adhesion molecule 1 (VCAM-1), and vascular nitrotyrosine, O2•-, RAGE, and MCP-1 levels in both WT and 3xTg-AD mice when compared to the respective control group. Also, a significant decrease in nitric oxide-dependent vasorelaxation was observed in 3xTg-AD and sucrose-treated WT mice. In conclusion, AD and T2D promote similar vascular dysfunction of the aorta, this effect being associated with elevated oxidative and nitrosative stress and inflammation. Also, AD-associated vascular alterations are potentiated by T2D. These findings support the idea that metabolic alterations predispose to the onset and progression of dementia.

  9. Matrix metalloproteinase inhibitors as investigative tools in the pathogenesis and management of vascular disease.

    PubMed

    Benjamin, Mina M; Khalil, Raouf A

    2012-01-01

    Matrix metalloproteinases (MMPs) are proteolytic enzymes that degrade various components of the extracellular matrix (ECM). MMPs could also regulate the activity of several non-ECM bioactive substrates and consequently affect different cellular functions. Members of the MMPs family include collagenases, gelatinases, stromelysins, matrilysins, membrane-type MMPs, and others. Pro-MMPs are cleaved into active MMPs, which in turn act on various substrates in the ECM and on the cell surface. MMPs play an important role in the regulation of numerous physiological processes including vascular remodeling and angiogenesis. MMPs may also be involved in vascular diseases such as hypertension, atherosclerosis, aortic aneurysm, and varicose veins. MMPs also play a role in the hemodynamic and vascular changes associated with pregnancy and preeclampsia. The role of MMPs is commonly assessed by measuring their gene expression, protein amount, and proteolytic activity using gel zymography. Because there are no specific activators of MMPs, MMP inhibitors are often used to investigate the role of MMPs in different physiologic processes and in the pathogenesis of specific diseases. MMP inhibitors include endogenous tissue inhibitors (TIMPs) and pharmacological inhibitors such as zinc chelators, doxycycline, and marimastat. MMP inhibitors have been evaluated as diagnostic and therapeutic tools in cancer, autoimmune disease, and cardiovascular disease. Although several MMP inhibitors have been synthesized and tested both experimentally and clinically, only one MMP inhibitor, i.e., doxycycline, is currently approved by the Food and Drug Administration. This is mainly due to the undesirable side effects of MMP inhibitors especially on the musculoskeletal system. While most experimental and clinical trials of MMP inhibitors have not demonstrated significant benefits, some trials still showed promising results. With the advent of new genetic and pharmacological tools, disease-specific MMP

  10. Common NOTCH3 Variants and Cerebral Small-Vessel Disease.

    PubMed

    Rutten-Jacobs, Loes C A; Traylor, Matthew; Adib-Samii, Poneh; Thijs, Vincent; Sudlow, Cathie; Rothwell, Peter M; Boncoraglio, Giorgio; Dichgans, Martin; Bevan, Steve; Meschia, James; Levi, Christopher; Rost, Natalia S; Rosand, Jonathan; Hassan, Ahamad; Markus, Hugh S

    2015-06-01

    The most common monogenic cause of cerebral small-vessel disease is cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, caused by NOTCH3 gene mutations. It has been hypothesized that more common variants in NOTCH3 may also contribute to the risk of sporadic small-vessel disease. Previously, 4 common variants (rs10404382, rs1043994, rs10423702, and rs1043997) were found to be associated with the presence of white matter hyperintensity in hypertensive community-dwelling elderly. We investigated the association of common single nucleotide polymorphisms (SNPs) in NOTCH3 in 1350 patients with MRI-confirmed lacunar stroke and 7397 controls, by meta-analysis of genome-wide association study data sets. In addition, we investigated the association of common SNPs in NOTCH3 with MRI white matter hyperintensity volumes in 3670 white patients with ischemic stroke. In each analysis, we considered all SNPs within the NOTCH3 gene, and within 50-kb upstream and downstream of the coding region. A total of 381 SNPs from the 1000 genome population with a mean allele frequency>0.01 were included in the analysis. A significance level of P<0.0015 was used, adjusted for the effective number of independent SNPs in the region using the Galwey method. We found no association of any common variants in NOTCH3 (including rs10404382, rs1043994, rs10423702, and rs1043997) with lacunar stroke or white matter hyperintensity volume. We repeated our analysis stratified for hypertension but again found no association. Our study does not support a role for common NOTCH3 variation in the risk of sporadic small-vessel disease. © 2015 The Authors.

  11. Traffic Jam at the Blood Brain Barrier Promotes Greater Accumulation of Alzheimer’s Disease Amyloid-β Proteins in the Cerebral Vasculature

    PubMed Central

    Agyare, Edward K.; Leonard, Sarah R.; Curran, Geoffry L.; Yu, Caroline C.; Lowe, Val J.; Paravastu, Anant K.; Poduslo, Joseph F.; Kandimalla, Karunya K.

    2013-01-01

    Amyloid-β (Aβ) deposition in the brain vasculature results in cerebral amyloid angiopathy (CAA), which occurs in about 80% of Alzheimer’s disease (AD) patients. While Aβ42 predominates parenchymal amyloid plaques in AD brain, Aβ40 is prevalent in the cerebrovascular amyloid. Dutch mutation of Aβ40 (E22Q) promotes aggressive cerebrovascular accumulation and leads to severe CAA in the mutation carriers; knowledge of how DutchAβ40 drives this process more efficiently than Aβ40 could reveal various pathophysiological events that promote CAA. In this study we have demonstrated that DutchAβ40 show preferential accumulation in the blood-brain-barrier (BBB) endothelial cells due to its inefficient blood-to-brain transcytosis. Consequently, DutchAβ40 establishes a permeation barrier in the BBB endothelium, prevents its own clearance from the brain and promotes the formation of amyloid deposits in the cerebral microvessels. The BBB endothelial accumulation of native Aβ40 is not robust enough to exercise such a significant impact on its brain clearance. Hence, the cerebrovascular accumulation of Aβ40 is slow and may require other co-pathologies to precipitate into CAA. In conclusion, the magnitude of Aβ accumulation in the BBB endothelial cells is a critical factor that promotes CAA; hence, clearing vascular endothelium of Aβ proteins may halt or even reverse CAA. PMID:23249146

  12. Metabolic syndrome impairs reactivity and wall mechanics of cerebral resistance arteries in obese Zucker rats.

    PubMed

    Brooks, Steven D; DeVallance, Evan; d'Audiffret, Alexandre C; Frisbee, Stephanie J; Tabone, Lawrence E; Shrader, Carl D; Frisbee, Jefferson C; Chantler, Paul D

    2015-12-01

    The metabolic syndrome (MetS) is highly prevalent in the North American population and is associated with increased risk for development of cerebrovascular disease. This study determined the structural and functional changes in the middle cerebral arteries (MCA) during the progression of MetS and the effects of chronic pharmacological interventions on mitigating vascular alterations in obese Zucker rats (OZR), a translationally relevant model of MetS. The reactivity and wall mechanics of ex vivo pressurized MCA from lean Zucker rats (LZR) and OZR were determined at 7-8, 12-13, and 16-17 wk of age under control conditions and following chronic treatment with pharmacological agents targeting specific systemic pathologies. With increasing age, control OZR demonstrated reduced nitric oxide bioavailability, impaired dilator (acetylcholine) reactivity, elevated myogenic properties, structural narrowing, and wall stiffening compared with LZR. Antihypertensive therapy (e.g., captopril or hydralazine) starting at 7-8 wk of age blunted the progression of arterial stiffening compared with OZR controls, while treatments that reduced inflammation and oxidative stress (e.g., atorvastatin, rosiglitazone, and captopril) improved NO bioavailability and vascular reactivity compared with OZR controls and had mixed effects on structural remodeling. These data identify specific functional and structural cerebral adaptations that limit cerebrovascular blood flow in MetS patients, contributing to increased risk of cognitive decline, cerebral hypoperfusion, and ischemic stroke; however, these pathological adaptations could potentially be blunted if treated early in the progression of MetS. Copyright © 2015 the American Physiological Society.

  13. Branding of vascular surgery.

    PubMed

    Perler, Bruce A

    2008-03-01

    The Society for Vascular Surgery surveyed primary care physicians (PCPs) to understand how PCPs make referral decisions for their patients with peripheral vascular disease. Responses were received from 250 PCPs in 44 states. More than 80% of the respondents characterized their experiences with vascular surgeons as positive or very positive. PCPs perceive that vascular surgeons perform "invasive" procedures and refer patients with the most severe vascular disease to vascular surgeons but were more than twice as likely to refer patients to cardiologists, believing they are better able to perform minimally invasive procedures. Nevertheless, PCPs are receptive to the notion of increasing referrals to vascular surgeons. A successful branding campaign will require considerable education of referring physicians about the totality of traditional vascular and endovascular care increasingly provided by the contemporary vascular surgical practice and will be most effective at the local grassroots level.

  14. Widespread heterogeneous neuronal loss across the cerebral cortex in Huntington's disease.

    PubMed

    Nana, Alissa L; Kim, Eric H; Thu, Doris C V; Oorschot, Dorothy E; Tippett, Lynette J; Hogg, Virginia M; Synek, Beth J; Roxburgh, Richard; Waldvogel, Henry J; Faull, Richard L M

    2014-01-01

    Huntington's disease is an autosomal dominant neurodegenerative disease characterized by neuronal degeneration in the basal ganglia and cerebral cortex, and a variable symptom profile. Although progressive striatal degeneration is known to occur and is related to symptom profile, little is known about the cellular basis of symptom heterogeneity across the entire cerebral cortex. To investigate this, we have undertaken a double blind study using unbiased stereological cell counting techniques to determine the pattern of cell loss in six representative cortical regions from the frontal, parietal, temporal, and occipital lobes in the brains of 14 Huntington's disease cases and 15 controls. The results clearly demonstrate a widespread loss of total neurons and pyramidal cells across all cortical regions studied, except for the primary visual cortex. Importantly, the results show that cell loss is remarkably variable both within and between Huntington's disease cases. The results also show that neuronal loss in the primary sensory and secondary visual cortices relate to Huntington's disease motor symptom profiles, and neuronal loss across the associational cortices in the frontal, parietal and temporal lobes is related to both Huntington's disease motor and to mood symptom profiles. This finding considerably extends a previous study (Thu et al., Brain, 2010; 133:1094-1110) which showed that neuronal loss in the primary motor cortex was related specifically to the motor symptom profiles while neuronal loss in the anterior cingulate cortex was related specifically to mood symptom profiles. The extent of cortical cell loss in the current study was generally related to the striatal neuropathological grade, but not to CAG repeat length on the HTT gene. Overall our findings show that Huntington's disease is characterized by a heterogeneous pattern of neuronal cell loss across the entire cerebrum which varies with symptom profile.

  15. Metabolic and vascular origins of the BOLD effect: Implications for imaging pathology and resting-state brain function.

    PubMed

    Mark, Clarisse I; Mazerolle, Erin L; Chen, J Jean

    2015-08-01

    The blood oxygenation level-dependent (BOLD) phenomenon has profoundly revolutionized neuroscience, with applications ranging from normal brain development and aging, to brain disorders and diseases. While the BOLD effect represents an invaluable tool to map brain function, it does not measure neural activity directly; rather, it reflects changes in blood oxygenation resulting from the relative balance between cerebral oxygen metabolism (through neural activity) and oxygen supply (through cerebral blood flow and volume). As such, there are cases in which BOLD signals might be dissociated from neural activity, leading to misleading results. The emphasis of this review is to develop a critical perspective for interpreting BOLD results, through a comprehensive consideration of BOLD's metabolic and vascular underpinnings. We demonstrate that such an understanding is especially important under disease or resting conditions. We also describe state-of-the-art acquisition and analytical techniques to reveal physiological information on the mechanisms underlying measured BOLD signals. With these goals in mind, this review is structured to provide a fundamental understanding of: 1) the physiological and physical sources of the BOLD contrast; 2) the extraction of information regarding oxidative metabolism and cerebrovascular reactivity from the BOLD signal, critical to investigating neuropathology; and 3) the fundamental importance of metabolic and vascular mechanisms for interpreting resting-state BOLD measurements. © 2015 Wiley Periodicals, Inc.

  16. Causes and consequences of cerebral small vessel disease. The RUN DMC study: a prospective cohort study. Study rationale and protocol.

    PubMed

    van Norden, Anouk Gw; de Laat, Karlijn F; Gons, Rob Ar; van Uden, Inge Wm; van Dijk, Ewoud J; van Oudheusden, Lucas Jb; Esselink, Rianne Aj; Bloem, Bastiaan R; van Engelen, Baziel Gm; Zwarts, Machiel J; Tendolkar, Indira; Olde-Rikkert, Marcel G; van der Vlugt, Maureen J; Zwiers, Marcel P; Norris, David G; de Leeuw, Frank-Erik

    2011-02-28

    Cerebral small vessel disease (SVD) is a frequent finding on CT and MRI scans of elderly people and is related to vascular risk factors and cognitive and motor impairment, ultimately leading to dementia or parkinsonism in some. In general, the relations are weak, and not all subjects with SVD become demented or get parkinsonism. This might be explained by the diversity of underlying pathology of both white matter lesions (WML) and the normal appearing white matter (NAWM). Both cannot be properly appreciated with conventional MRI. Diffusion tensor imaging (DTI) provides alternative information on microstructural white matter integrity. The association between SVD, its microstructural integrity, and incident dementia and parkinsonism has never been investigated. The RUN DMC study is a prospective cohort study on the risk factors and cognitive and motor consequences of brain changes among 503 non-demented elderly, aged between 50-85 years, with cerebral SVD. First follow up is being prepared for July 2011. Participants alive will be included and invited to the research centre to undergo a structured questionnaire on demographics and vascular risk factors, and a cognitive, and motor, assessment, followed by a MRI protocol including conventional MRI, DTI and resting state fMRI. The follow up of the RUN DMC study has the potential to further unravel the causes and possibly better predict the consequences of changes in white matter integrity in elderly with SVD by using relatively new imaging techniques. When proven, these changes might function as a surrogate endpoint for cognitive and motor function in future therapeutic trials. Our data could furthermore provide a better understanding of the pathophysiology of cognitive and motor disturbances in elderly with SVD. The execution and completion of the follow up of our study might ultimately unravel the role of SVD on the microstructural integrity of the white matter in the transition from "normal" aging to cognitive and

  17. Comparison between Alzheimer's disease and subcortical vascular dementia: attentional cortex study in functional magnetic resonance imaging.

    PubMed

    Li, C; Zheng, J; Wang, J; Gui, L

    2011-01-01

    Blood oxygen level dependent functional magnetic resonance imaging (fMRI) and the Stroop test were used to assess attentional cortex activation in patients with Alzheimer's disease, subcortical vascular dementia, and normal control subjects. Patients with Alzheimer's disease and subcortical vascular dementia demonstrated similar locations of cortical activation, including the bilateral middle and inferior frontal gyri, anterior cingulate and inferior parietal lobule in response to Stroop colour word stimuli. This activation was distinctly decreased in patients with dementia compared with normal control subjects. Different regions of the brain were activated in patients with Alzheimer's disease and subcortical vascular dementia compared with normal controls. fMRI is a useful tool for the study of dementia in humans and has some potential diagnostic value. Further studies with larger numbers of participants are required.

  18. ABSORB: Postmarketing Surveillance Registry to Monitor the Everolimus-eluting Bioresorbable Vascular Scaffold in Patients With Coronary Artery Disease

    ClinicalTrials.gov

    2016-12-08

    Cardiovascular Diseases; Coronary Artery Disease; Myocardial Ischemia; Coronary Disease; Coronary Restenosis; Heart Diseases; Coronary Stenosis; Arteriosclerosis; Arterial Occlusive Diseases; Vascular Diseases

  19. Omental transplantation for neurodegenerative diseases.

    PubMed

    Rafael, Hernando

    2014-01-01

    Up to date, almost all researchers consider that there is still no effective therapy for neurodegenerative diseases (NDDs) and therefore, these diseases are incurable. However, since May 1998, we know that a progressive ischemia in the medial temporal lobes and subcommissural regions can cause Alzheimer's disease; because, in contrast to this, its revascularization by means of omental tissue can cure or improve this disease. Likewise we observed that the aging process, Huntington's disease, Parkinson's disease, and Amyotrophic lateral sclerosis; all of them are of ischemic origin caused by cerebral atherosclerosis, associated with vascular anomalies and/or environmental chemicals. On the contrary, an omental transplantation on the affected zone can stop and improve these diseases. For these reasons, I believe that NDDs, are wrongly classified as neurodegenerative disorders.

  20. Choices of Stent and Cerebral Protection in the Ongoing ACST-2 Trial: A Descriptive Study.

    PubMed

    de Waard, D D; Halliday, A; de Borst, G J; Bulbulia, R; Huibers, A; Casana, R; Bonati, L H; Tolva, V

    2017-05-01

    Several plaque and lesion characteristics have been associated with an increased risk for procedural stroke during or shortly after carotid artery stenting (CAS). While technical advancements in stent design and cerebral protection devices (CPD) may help reduce the procedural stroke risk, and anatomy remains important, tailoring stenting procedures according to plaque and lesion characteristics might be a useful strategy in reducing stroke associated with CAS. In this descriptive report of the ongoing Asymptomatic Carotid Surgery Trial-2 (ACST-2), it was assessed whether choice for stent and use or type of CPD was influenced by plaque and lesion characteristics. Trial patients who underwent CAS between 2008 and 2015 were included in this study. Chi-square statistics were used to study the effects of plaque echolucency, ipsilateral preocclusive disease (90-99%), and contralateral high-grade stenosis (>50%) or occlusion of the carotid artery on interventionalists' choice for stent and CPD. Differences in treatment preference between specialties were also analysed. In this study, 831 patients from 88 ACST-2 centres were included. Almost all procedures were performed by either interventional radiologists (50%) or vascular surgeons (45%). Plaque echolucency, ipsilateral preocclusive disease (90-99%), and significant contralateral stenosis (>50%) or occlusion did not affect the choice of stent or either the use of cerebral protection and type of CPD employed (i.e., filter/flow reversal). Vascular surgeons used a CPD significantly more often than interventional radiologists (98.6% vs. 76.3%; p < .001), but this choice did not appear to be dependent on patient characteristics. In ACST-2, plaque characteristics and severity of stenosis did not primarily determine interventionalists' choice of stent or use or type of CPD, suggesting that other factors, such as vascular anatomy or personal and centre preference, may be more important. Stent and CPD use was highly

  1. Cancer linked to Alzheimer disease but not vascular dementia

    PubMed Central

    Roe, C M.; Fitzpatrick, A L.; Xiong, C; Sieh, W; Kuller, L; Miller, J P.; Williams, M M.; Kopan, R; Behrens, M I.; Morris, J C.

    2010-01-01

    Objective: To investigate whether cancer is associated with Alzheimer disease (AD) and vascular dementia (VaD). Methods: Cox proportional hazards models were used to test associations between prevalent dementia and risk of future cancer hospitalization, and associations between prevalent cancer and risk of subsequent dementia. Participants in the Cardiovascular Health Study–Cognition Substudy, a prospective cohort study, aged 65 years or older (n = 3,020) were followed a mean of 5.4 years for dementia and 8.3 years for cancer. Results: The presence of any AD (pure AD + mixed AD/VaD; hazard ratio [HR] = 0.41, 95% confidence interval [CI] = 0.20–0.84) and pure AD (HR = 0.31, 95% CI = 0.12–0.86) was associated with a reduced risk of future cancer hospitalization, adjusted for demographic factors, smoking, obesity, and physical activity. No significant associations were found between dementia at baseline and rate of cancer hospitalizations for participants with diagnoses of VaD. Prevalent cancer was associated with reduced risk of any AD (HR = 0.72; 95% CI = 0.52–0.997) and pure AD (HR = 0.57; 95% CI = 0.36–0.90) among white subjects after adjustment for demographics, number of APOE ε4 alleles, hypertension, diabetes, and coronary heart disease; the opposite association was found among minorities, but the sample size was too small to provide stable estimates. No significant association was found between cancer and subsequent development of VaD. Conclusions: In white older adults, prevalent Alzheimer disease (AD) was longitudinally associated with a reduced risk of cancer, and a history of cancer was associated with a reduced risk of AD. Together with other work showing associations between cancer and Parkinson disease, these findings suggest the possibility that cancer is linked to neurodegeneration. GLOSSARY 3MSE = modified Mini-Mental State Examination; AD = Alzheimer disease; ADDTC = Alzheimer Disease Diagnostic and Treatment Centers; CHD = coronary heart

  2. Blast-induced phenotypic switching in cerebral vasospasm

    PubMed Central

    Alford, Patrick W.; Dabiri, Borna E.; Goss, Josue A.; Hemphill, Matthew A.; Brigham, Mark D.; Parker, Kevin Kit

    2011-01-01

    Vasospasm of the cerebrovasculature is a common manifestation of blast-induced traumatic brain injury (bTBI) reported among combat casualties in the conflicts in Afghanistan and Iraq. Cerebral vasospasm occurs more frequently, and with earlier onset, in bTBI patients than in patients with other TBI injury modes, such as blunt force trauma. Though vasospasm is usually associated with the presence of subarachnoid hemorrhage (SAH), SAH is not required for vasospasm in bTBI, which suggests that the unique mechanics of blast injury could potentiate vasospasm onset, accounting for the increased incidence. Here, using theoretical and in vitro models, we show that a single rapid mechanical insult can induce vascular hypercontractility and remodeling, indicative of vasospasm initiation. We employed high-velocity stretching of engineered arterial lamellae to simulate the mechanical forces of a blast pulse on the vasculature. An hour after a simulated blast, injured tissues displayed altered intracellular calcium dynamics leading to hypersensitivity to contractile stimulus with endothelin-1. One day after simulated blast, tissues exhibited blast force dependent prolonged hypercontraction and vascular smooth muscle phenotype switching, indicative of remodeling. These results suggest that an acute, blast-like injury is sufficient to induce a hypercontraction-induced genetic switch that potentiates vascular remodeling, and cerebral vasospasm, in bTBI patients. PMID:21765001

  3. An intelligent support system for automatic detection of cerebral vascular accidents from brain CT images.

    PubMed

    Hajimani, Elmira; Ruano, M G; Ruano, A E

    2017-07-01

    This paper presents a Radial Basis Functions Neural Network (RBFNN) based detection system, for automatic identification of Cerebral Vascular Accidents (CVA) through analysis of Computed Tomographic (CT) images. For the design of a neural network classifier, a Multi Objective Genetic Algorithm (MOGA) framework is used to determine the architecture of the classifier, its corresponding parameters and input features by maximizing the classification precision, while ensuring generalization. This approach considers a large number of input features, comprising first and second order pixel intensity statistics, as well as symmetry/asymmetry information with respect to the ideal mid-sagittal line. Values of specificity of 98% and sensitivity of 98% were obtained, at pixel level, by an ensemble of non-dominated models generated by MOGA, in a set of 150 CT slices (1,867,602pixels), marked by a NeuroRadiologist. This approach also compares favorably at a lesion level with three other published solutions, in terms of specificity (86% compared with 84%), degree of coincidence of marked lesions (89% compared with 77%) and classification accuracy rate (96% compared with 88%). Copyright © 2017. Published by Elsevier B.V.

  4. Cerebral Proliferative Angiopathy (CPA): Imaging Findings and Response to Therapy.

    PubMed

    Lopci, Egesta; Olivari, Laura; Bello, Lorenzo; Navarria, Pierina; Chiti, Arturo

    2016-12-01

    We report the case of a 55-year-old woman with cerebral proliferative angiopathy (CPA). Her medical history included brain surgery for small vascular lesions and suspicion of cerebral malignancy. C methionine PET (C-METH PET) demonstrated a diffusely increased uptake on the right hemisphere. Contrast-enhanced MRI documented a massive lesion with a diffuse "nidus" appearance, involving the right cerebral hemisphere (sparing the inferior frontal gyrus and the anterior frontal lobe), the brainstem, and the middle cerebellar peduncle. Pathology confirmed the diagnosis of CPA and, after radiation treatment, the patient presented with clinical and radiological response.

  5. Systematization and distribution of the middle cerebral artery on the brain surface in pampas fox (Pseudalopex gymnocercus).

    PubMed

    Depedrini, J S; Campos, R

    2007-12-01

    The present study has analysed 30 pampas fox brains (Pseudalopex gymnocercus), injected with latex, aiming to systematize and describe the distribution and vascularization territories of the middle cerebral artery. After being originated from the rostral branch of the internal carotid artery this vessel formed the following collateral branches: rostral choroidal artery, rostral and caudal central branches and cortical branches. Before crossing the lateral rhinal sulcus, the common trunk of the middle cerebral artery frequently bifurcated in a rostral and a caudal branch. In a smaller amount, the common trunk did not show any bifurcation, ramifying in arborescence. The vascular territory of the pampas fox middle cerebral artery included the lateral cerebral fossa, the lateral third of the olfactory trigone, the two rostral thirds of the piriform lobe, the lateral olfactory tract and most of the convex surface of the cerebral hemisphere, except for the more rostromedial areas of the frontal lobe bordering the endomarginal sulcus in the parietal and occipital lobes as well as the transverse fissure at the caudal pole of the cerebral hemisphere.

  6. Brain mitochondria as a primary target in the development of treatment strategies for Alzheimer disease.

    PubMed

    Aliev, Gjumrakch; Palacios, Hector H; Walrafen, Brianna; Lipsitt, Amanda E; Obrenovich, Mark E; Morales, Ludis

    2009-10-01

    Alzheimer's disease (AD) and cerebrovascular accidents are two leading causes of age-related dementia. Increasing evidence supports the idea that chronic hypoperfusion is primarily responsible for the pathogenesis that underlies both disease processes. In this regard, hypoperfusion appears to induce oxidative stress (OS), which is largely due to reactive oxygen species (ROS), and over time initiates mitochondrial failure which is known as an initiating factor of AD. Recent evidence indicates that chronic injury stimulus induces hypoperfusion seen in vulnerable brain regions. This reduced regional cerebral blood flow (CBF) then leads to energy failure within the vascular endothelium and associated brain parenchyma, manifested by damaged mitochondrial ultrastructure (the formation of large number of immature, electron-dense "hypoxic" mitochondria) and by overproduction of mitochondrial DNA (mtDNA) deletions. Additionally, these mitochondrial abnormalities co-exist with increased redox metal activity, lipid peroxidation, and RNA oxidation. Interestingly, vulnerable neurons and glial cells show mtDNA deletions and oxidative stress markers only in the regions that are closely associated with damaged vessels, and, moreover, brain vascular wall lesions linearly correlate with the degree of neuronal and glial cell damage. We summarize the large body of evidence which indicates that sporadic, late-onset AD results from a vascular etiology by briefly reviewing mitochondrial damage and vascular risk factors associated with the disease and then we discuss the cerebral microvascular changes reason for the energy failure that occurs in normal aging and, to a much greater extent, AD.

  7. LRP1 in brain vascular smooth muscle cells mediates local clearance of Alzheimer's amyloid-β.

    PubMed

    Kanekiyo, Takahisa; Liu, Chia-Chen; Shinohara, Mitsuru; Li, Jie; Bu, Guojun

    2012-11-14

    Impaired clearance of amyloid-β (Aβ) is a major pathogenic event for Alzheimer's disease (AD). Aβ depositions in brain parenchyma as senile plaques and along cerebrovasculature as cerebral amyloid angiopathy (CAA) are hallmarks of AD. A major pathway that mediates brain Aβ clearance is the cerebrovascular system where Aβ is eliminated through the blood-brain barrier (BBB) and/or degraded by cerebrovascular cells along the interstitial fluid drainage pathway. An Aβ clearance receptor, the low-density lipoprotein receptor-related protein 1 (LRP1), is abundantly expressed in cerebrovasculature, in particular in vascular smooth muscle cells. Previous studies have indicated a role of LRP1 in endothelial cells in transcytosing Aβ out of the brain across the BBB; however, whether this represents a significant pathway for brain Aβ clearance remains controversial. Here, we demonstrate that Aβ can be cleared locally in the cerebrovasculature by an LRP1-dependent endocytic pathway in smooth muscle cells. The uptake and degradation of both endogenous and exogenous Aβ were significantly reduced in LRP1-suppressed human brain vascular smooth muscle cells. Conditional deletion of Lrp1 in vascular smooth muscle cell in amyloid model APP/PS1 mice accelerated brain Aβ accumulation and exacerbated Aβ deposition as amyloid plaques and CAA without affecting Aβ production. Our results demonstrate that LRP1 is a major Aβ clearance receptor in cerebral vascular smooth muscle cell and a disturbance of this pathway contributes to Aβ accumulation. These studies establish critical functions of the cerebrovasculature system in Aβ metabolism and identify a new pathway involved in the pathogenesis of both AD and CAA.

  8. LRP1 in Brain Vascular Smooth Muscle Cells Mediates Local Clearance of Alzheimer's Amyloid-β

    PubMed Central

    Kanekiyo, Takahisa; Liu, Chia-Chen; Shinohara, Mitsuru; Li, Jie; Bu, Guojun

    2012-01-01

    Impaired clearance of amyloid-β (Aβ) is a major pathogenic event for Alzheimer’s disease (AD). Aβ depositions in brain parenchyma as senile plaques and along cerebrovasculature as cerebral amyloid angiopathy (CAA) are hallmarks of AD. A major pathway that mediates brain Aβ clearance is the cerebrovascular system where Aβ is eliminated through the blood-brain barrier (BBB) and/or degraded by cerebrovascular cells along the interstitial fluid drainage pathway. An Aβ clearance receptor, the low-density lipoprotein receptor-related protein 1 (LRP1), is abundantly expressed in cerebrovasculature, in particular in vascular smooth muscle cells. Previous studies have indicated a role of LRP1 in endothelial cells in transcytosing Aβ out of the brain across the BBB; however, whether this represents a significant pathway for brain Aβ clearance remains controversial. Here, we demonstrate that Aβ can be cleared locally in the cerebrovasculature by an LRP1-dependent endocytic pathway in smooth muscle cells. The uptake and degradation of both endogenous and exogenous Aβ were significantly reduced in LRP1-suppressed human brain vascular smooth muscle cells. Conditional deletion of Lrp1 in vascular smooth muscle cell in amyloid model APP/PS1 mice accelerated brain Aβ accumulation and exacerbated Aβ deposition as amyloid plaques and CAA without affecting Aβ production. Our results demonstrate that LRP1 is a major Aβ clearance receptor in cerebral vascular smooth muscle cell and a disturbance of this pathway contributes to Aβ accumulation. These studies establish critical functions of the cerebrovasculature system in Aβ metabolism and identify a new pathway involved in the pathogenesis of both AD and CAA. PMID:23152628

  9. Endoplasmic Reticulum Stress in Arterial Smooth Muscle Cells: A Novel Regulator of Vascular Disease

    PubMed Central

    Furmanik, Malgorzata; Shanahan, Catherine M.

    2017-01-01

    Cardiovascular disease continues to be the leading cause of death in industrialised societies. The idea that the arterial smooth muscle cell (ASMC) plays a key role in regulating many vascular pathologies has been gaining importance, as has the realisation that not enough is known about the pathological cellular mechanisms regulating ASMC function in vascular remodelling. In the past decade endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) have been recognised as a stress response underlying many physiological and pathological processes in various vascular cell types. Here we summarise what is known about how ER stress signalling regulates phenotypic switching, trans/dedifferentiation and apoptosis of ASMCs and contributes to atherosclerosis, hypertension, aneurysms and vascular calcification.

  10. Rheoencephalography in Meniere's disease

    NASA Technical Reports Server (NTRS)

    Nikolayev, M. P.; Mertsalova, O. N.

    1980-01-01

    Rheoencephalography (REG) was used on 35 patients with Meniere's disease to determine tonus and perfusion of cerebral vessels. The analysis took account of age, duration of the disease and presence or absence of cervical osteochondrosis. Hypertensive symptoms in the vertebro-basilar system predominated in the under 45 age group, while for the over 45 patients and those suffering for more than 5 years, hypertensive symptoms were likewise noted in the internal carotid arterial system. Signs of angiospasm were revealed both for patients with cervical osteochondrosis and without it. Hypertensive signs were noted in 88.5% of patients with Meniere's disease and as a rule they were noted in the entire vertebro-basilar system without respect to the presence or absence of concurrent cervical osteochondrosis and uni- or bilateral affection of the labyrinth; in patients over 45 who had suffered more than 5 years this also applied to the internal carotid arterial system. Identification of the condition of cerebral circulation and the planning of more effective therapy that influences vascular tone is made possible by REG.

  11. Nanoscale strategies: treatment for peripheral vascular disease and critical limb ischemia.

    PubMed

    Tu, Chengyi; Das, Subhamoy; Baker, Aaron B; Zoldan, Janeta; Suggs, Laura J

    2015-01-01

    Peripheral vascular disease (PVD) is one of the most prevalent vascular diseases in the U.S. afflicting an estimated 8 million people. Obstruction of peripheral arteries leads to insufficient nutrients and oxygen supply to extremities, which, if not treated properly, can potentially give rise to a severe condition called critical limb ischemia (CLI). CLI is associated with extremely high morbidities and mortalities. Conventional treatments such as angioplasty, atherectomy, stent implantation and bypass surgery have achieved some success in treating localized macrovascular disease but are limited by their invasiveness. An emerging alternative is the use of growth factor (delivered as genes or proteins) and cell therapy for PVD treatment. By delivering growth factors or cells to the ischemic tissue, one can stimulate the regeneration of functional vasculature network locally, re-perfuse the ischemic tissue, and thus salvage the limb. Here we review recent advance in nanomaterials, and discuss how their application can improve and facilitate growth factor or cell therapies. Specifically, nanoparticles (NPs) can serve as drug carrier and target to ischemic tissues and achieve localized and sustained release of pro-angiogenic proteins. As nonviral vectors, NPs can greatly enhance the transfection of target cells with pro-angiogenic genes with relatively fewer safety concern. Further, NPs may also be used in combination with cell therapy to enhance cell retention, cell survival and secretion of angiogenic factors. Lastly, nano/micro fibrous vascular grafts can be engineered to better mimic the structure and composition of native vessels, and hopefully overcome many complications/limitations associated with conventional synthetic grafts.

  12. The primary vascular dysregulation syndrome: implications for eye diseases

    PubMed Central

    2013-01-01

    Vascular dysregulation refers to the regulation of blood flow that is not adapted to the needs of the respective tissue. We distinguish primary vascular dysregulation (PVD, formerly called vasospastic syndrome) and secondary vascular dysregulation (SVD). Subjects with PVD tend to have cold extremities, low blood pressure, reduced feeling of thirst, altered drug sensitivity, increased pain sensitivity, prolonged sleep onset time, altered gene expression in the lymphocytes, signs of oxidative stress, slightly increased endothelin-1 plasma level, low body mass index and often diffuse and fluctuating visual field defects. Coldness, emotional or mechanical stress and starving can provoke symptoms. Virtually all organs, particularly the eye, can be involved. In subjects with PVD, retinal vessels are stiffer and more irregular, and both neurovascular coupling and autoregulation capacity are reduced while retinal venous pressure is often increased. Subjects with PVD have increased risk for normal-tension glaucoma, optic nerve compartment syndrome, central serous choroidopathy, Susac syndrome, retinal artery and vein occlusions and anterior ischaemic neuropathy without atherosclerosis. Further characteristics are their weaker blood–brain and blood-retinal barriers and the higher prevalence of optic disc haemorrhages and activated astrocytes. Subjects with PVD tend to suffer more often from tinnitus, muscle cramps, migraine with aura and silent myocardial ischaemic and are at greater risk for altitude sickness. While the main cause of vascular dysregulation is vascular endotheliopathy, dysfunction of the autonomic nervous system is also involved. In contrast, SVD occurs in the context of other diseases such as multiple sclerosis, retrobulbar neuritis, rheumatoid arthritis, fibromyalgia and giant cell arteritis. Taking into consideration the high prevalence of PVD in the population and potentially linked pathologies, in the current article, the authors provide

  13. Intravenous injection of beta-amyloid seeds promotes cerebral amyloid angiopathy (CAA).

    PubMed

    Burwinkel, Michael; Lutzenberger, Manuel; Heppner, Frank L; Schulz-Schaeffer, Walter; Baier, Michael

    2018-03-05

    Seeding and spread of beta-amyloid (Aβ) pathologies have been considered to be based on prion-like mechanisms. However, limited transmissibility of Aβ seeding activity upon peripheral exposure would represent a key difference to prions, not only in terms of pathogenesis but also in terms of potential transmission of disease. We partially characterized the seeded Aβ amyloidosis after intracerebral injection of various brain homogenates in APP/PS1 mice. One particularly seed-laden homogenate was selected to investigate the development of Aβ pathologies after intravenous exposure. We report here that a single intravenous injection of an Alzheimer disease patient's-brain extract into APP/PS1 recipient mice led to cerebral amyloid angiopathy within 180 days post injection. Thus, vascular proteinopathies such as CAA are transmissible in mice via the intravenous route of peripheral exposure.

  14. Activation of PPAR-γ by pioglitazone attenuates oxidative stress in aging rat cerebral arteries through upregulating UCP2.

    PubMed

    Wang, Peijian; Li, Binghu; Cai, Guocai; Huang, Mingqing; Jiang, Licheng; Pu, Jing; Li, Lu; Wu, Qi; Zuo, Li; Wang, Qiulin; Zhou, Peng

    2014-12-01

    Increasing amounts of evidence implicate oxidative stress as having a pivotal role in age-related cerebrovascular dysfunction, which is an important risk factor for the development of cerebrovascular disease. Previous studies have shown that the activation of the expression of peroxisome proliferator-activated receptor gamma (PPAR-γ) in vascular endothelial cells results in an improvement of vascular function. Pioglitazone, a well-known PPAR-γ agonist, protects against oxidative stress in the rostral ventrolateral medulla by the upregulation of mitochondrial uncoupling protein 2 (UCP2). In this study, we sought to explore the effects and the underlying mechanisms of pioglitazone on age-related oxidative stress elevation and cerebrovascular dysfunction in aging rat cerebral arteries. A natural aging model was constructed and used in these experiments. One-month oral administration of pioglitazone (20 mg·kg·d) ameliorated the production of reactive oxygen species, promoted endothelial nitric oxide synthase phosphorylation and increased the nitric oxide available, thus improving endothelium-dependent relaxation in aging rat cerebral arteries. One-month pioglitazone administration also restored PPAR-γ expression and increased the levels of UCP2 in aging rat cerebral arteries. Using in vitro studies, we demonstrated that pioglitazone attenuated reactive oxygen species levels in aging human umbilical vein endothelial cells through PPAR-γ activation. Furthermore, we found that this occurs in an UCP2-dependent manner. Our study demonstrated that the activation of PPAR-γ by pioglitazone protected against oxidative stress damage in aging cerebral arteries by upregulating UCP2. PPAR-γ may be a new target in treating age-related cerebrovascular dysfunction.

  15. Coma in fatal adult human malaria is not caused by cerebral oedema

    PubMed Central

    2011-01-01

    Background The role of brain oedema in the pathophysiology of cerebral malaria is controversial. Coma associated with severe Plasmodium falciparum malaria is multifactorial, but associated with histological evidence of parasitized erythrocyte sequestration and resultant microvascular congestion in cerebral vessels. To determine whether these changes cause breakdown of the blood-brain barrier and resultant perivascular or parenchymal cerebral oedema, histology, immunohistochemistry and image analysis were used to define the prevalence of histological patterns of oedema and the expression of specific molecular pathways involved in water balance in the brain in adults with fatal falciparum malaria. Methods The brains of 20 adult Vietnamese patients who died of severe malaria were examined for evidence of disrupted vascular integrity. Immunohistochemistry and image analysis was performed on brainstem sections for activation of the vascular endothelial growth factor (VEGF) receptor 2 and expression of the aquaporin 4 (AQP4) water channel protein. Fibrinogen immunostaining was assessed as evidence of blood-brain barrier leakage and perivascular oedema formation. Correlations were performed with clinical, biochemical and neuropathological parameters of severe malaria infection. Results The presence of oedema, plasma protein leakage and evidence of VEGF signalling were heterogeneous in fatal falciparum malaria and did not correlate with pre-mortem coma. Differences in vascular integrity were observed between brain regions with the greatest prevalence of disruption in the brainstem, compared to the cortex or midbrain. There was a statistically non-significant trend towards higher AQP4 staining in the brainstem of cases that presented with coma (P = .02). Conclusions Histological evidence of cerebral oedema or immunohistochemical evidence of localised loss of vascular integrity did not correlate with the occurrence of pre-mortem coma in adults with fatal falciparum malaria

  16. Coma in fatal adult human malaria is not caused by cerebral oedema.

    PubMed

    Medana, Isabelle M; Day, Nicholas P J; Sachanonta, Navakanit; Mai, Nguyen T H; Dondorp, Arjen M; Pongponratn, Emsri; Hien, Tran T; White, Nicholas J; Turner, Gareth D H

    2011-09-17

    The role of brain oedema in the pathophysiology of cerebral malaria is controversial. Coma associated with severe Plasmodium falciparum malaria is multifactorial, but associated with histological evidence of parasitized erythrocyte sequestration and resultant microvascular congestion in cerebral vessels. To determine whether these changes cause breakdown of the blood-brain barrier and resultant perivascular or parenchymal cerebral oedema, histology, immunohistochemistry and image analysis were used to define the prevalence of histological patterns of oedema and the expression of specific molecular pathways involved in water balance in the brain in adults with fatal falciparum malaria. The brains of 20 adult Vietnamese patients who died of severe malaria were examined for evidence of disrupted vascular integrity. Immunohistochemistry and image analysis was performed on brainstem sections for activation of the vascular endothelial growth factor (VEGF) receptor 2 and expression of the aquaporin 4 (AQP4) water channel protein. Fibrinogen immunostaining was assessed as evidence of blood-brain barrier leakage and perivascular oedema formation. Correlations were performed with clinical, biochemical and neuropathological parameters of severe malaria infection. The presence of oedema, plasma protein leakage and evidence of VEGF signalling were heterogeneous in fatal falciparum malaria and did not correlate with pre-mortem coma. Differences in vascular integrity were observed between brain regions with the greatest prevalence of disruption in the brainstem, compared to the cortex or midbrain. There was a statistically non-significant trend towards higher AQP4 staining in the brainstem of cases that presented with coma (P = .02). Histological evidence of cerebral oedema or immunohistochemical evidence of localised loss of vascular integrity did not correlate with the occurrence of pre-mortem coma in adults with fatal falciparum malaria. Enhanced expression of AQP4 water

  17. Cerebral Arterial Gas Embolism During Upper Endoscopy.

    PubMed

    Eoh, Eun J; Derrick, Bruce; Moon, Richard

    2015-09-15

    Arterial gas embolism can be caused by direct entry of gas into systemic arteries or indirectly by venous-to-arterial shunting. Although arterial gas embolism is rare, most documented cases are iatrogenic, resulting from the entry of gas during procedures that involve direct vascular cannulation or intracavitary air insufflation. Of the 18 identified case reports of air embolism during endoscopy, 11 cases describe findings of cerebral arterial gas embolism during upper endoscopy. Only 1 of these occurred during endoscopic balloon dilation of an esophageal stricture. We report a rare case of cerebral arterial gas embolism in a 64-year-old woman, which occurred during endoscopic dilation of an esophageal stricture and was subsequently treated with hyperbaric oxygen therapy. In this case report, we explore the possible etiologies, clinical workup, and therapeutic management of cerebral artery gas embolisms. Hyperbaric oxygen therapy is the treatment of choice for cerebral arterial gas embolism, with earlier treatments resulting in better outcomes.

  18. Blood Platelets in the Progression of Alzheimer’s Disease

    PubMed Central

    Gowert, Nina S.; Donner, Lili; Chatterjee, Madhumita; Eisele, Yvonne S.; Towhid, Seyda T.; Münzer, Patrick; Walker, Britta; Ogorek, Isabella; Borst, Oliver; Grandoch, Maria; Schaller, Martin; Fischer, Jens W.; Gawaz, Meinrad; Weggen, Sascha; Lang, Florian; Jucker, Mathias; Elvers, Margitta

    2014-01-01

    Alzheimer’s disease (AD) is characterized by neurotoxic amyloid-ß plaque formation in brain parenchyma and cerebral blood vessels known as cerebral amyloid angiopathy (CAA). Besides CAA, AD is strongly related to vascular diseases such as stroke and atherosclerosis. Cerebrovascular dysfunction occurs in AD patients leading to alterations in blood flow that might play an important role in AD pathology with neuronal loss and memory deficits. Platelets are the major players in hemostasis and thrombosis, but are also involved in neuroinflammatory diseases like AD. For many years, platelets were accepted as peripheral model to study the pathophysiology of AD because platelets display the enzymatic activities to generate amyloid-ß (Aß) peptides. In addition, platelets are considered to be a biomarker for early diagnosis of AD. Effects of Aß peptides on platelets and the impact of platelets in the progression of AD remained, however, ill-defined. The present study explored the cellular mechanisms triggered by Aß in platelets. Treatment of platelets with Aß led to platelet activation and enhanced generation of reactive oxygen species (ROS) and membrane scrambling, suggesting enhanced platelet apoptosis. More important, platelets modulate soluble Aß into fibrillar structures that were absorbed by apoptotic but not vital platelets. This together with enhanced platelet adhesion under flow ex vivo and in vivo and platelet accumulation at amyloid deposits of cerebral vessels of AD transgenic mice suggested that platelets are major contributors of CAA inducing platelet thrombus formation at vascular amyloid plaques leading to vessel occlusion critical for cerebrovascular events like stroke. PMID:24587388

  19. Cerebral amyloid-beta protein accumulation with aging in cotton-top tamarins: a model of early Alzheimer's disease?

    PubMed

    Lemere, Cynthia A; Oh, Jiwon; Stanish, Heather A; Peng, Ying; Pepivani, Imelda; Fagan, Anne M; Yamaguchi, Haruyasu; Westmoreland, Susan V; Mansfield, Keith G

    2008-04-01

    Alzheimer's disease (AD) is the most common progressive form of dementia in the elderly. Two major neuropathological hallmarks of AD include cerebral deposition of amyloid-beta protein (Abeta) into plaques and blood vessels, and the presence of neurofibrillary tangles in brain. In addition, activated microglia and reactive astrocytes are often associated with plaques and tangles. Numerous other proteins are associated with plaques in human AD brain, including Apo E and ubiquitin. The amyloid precursor protein and its shorter fragment, Abeta, are homologous between humans and non-human primates. Cerebral Abeta deposition has been reported previously for rhesus monkeys, vervets, squirrel monkeys, marmosets, lemurs, cynomologous monkeys, chimpanzees, and orangutans. Here we report, for the first time, age-related neuropathological changes in cotton-top tamarins (CTT, Saguinus oedipus), an endangered non-human primate native to the rainforests of Colombia and Costa Rica. Typical lifespan is 13-14 years of age in the wild and 15-20+ years in captivity. We performed detailed immunohistochemical analyses of Abeta deposition and associated pathogenesis in archived brain sections from 36 tamarins ranging in age from 6-21 years. Abeta plaque deposition was observed in 16 of the 20 oldest tamarins (>12 years). Plaques contained mainly Abeta42, and in the oldest animals, were associated with reactive astrocytes, activated microglia, Apo E, and ubiquitin-positive dystrophic neurites, similar to human plaques. Vascular Abeta was detected in 14 of the 20 aged tamarins; Abeta42 preceded Abeta40 deposition. Phospho-tau labeled dystrophic neurites and tangles, typically present in human AD, were absent in the tamarins. In conclusion, tamarins may represent a model of early AD pathology.

  20. Acute impact of drinking coffee on the cerebral and systemic vasculature.

    PubMed

    Washio, Takuro; Sasaki, Hiroyuki; Ogoh, Shigehiko

    2017-05-01

    Previous studies have suggested that the risk of ischemic stroke increases immediately after drinking coffee. Indeed, drinking coffee, that is, caffeine, acutely increases arterial stiffness as well as blood pressure and peripheral vascular resistance. On the other hand, it has been reported that arterial stiffening is associated with elevation in the pulsatility index (PI) of cerebral blood flow (CBF), which increases the risk of brain disease. However, the effect of drinking coffee on the PI of the CBF and its interaction with arterial stiffness remain unknown. Against this background, we hypothesized that an acute increase in arterial stiffness induced by drinking coffee augments cerebral pulsatile stress. To test this hypothesis, in 10 healthy young men we examined the effects of drinking coffee on the PI of middle cerebral artery blood velocity (MCAv) and brachial-ankle pulse wave velocity (baPWV) as indices of cerebral pulsatile stress and arterial stiffness, respectively. Mean arterial blood pressure and baPWV were higher ( P  < 0.01 and P  = 0.02), whereas mean MCA V and mean cerebrovascular conductance index were lower upon drinking coffee ( P  = 0.02 and P  < 0.01) compared with a placebo (decaffeinated coffee). However, there was no difference in the PI of MCAv between drinking coffee and the placebo condition. These findings suggest that drinking coffee does not increase cerebral pulsatile stress acutely despite an elevation in arterial stiffness in the systemic circulation. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  1. Bihemispheric cerebral FDG PET correlates of cognitive dysfunction as assessed by the CERAD in Alzheimer's disease.

    PubMed

    Schönknecht, Oskar Dieter Peter; Hunt, Aoife; Toro, Pablo; Guenther, Thomas; Henze, Marcus; Haberkorn, Uwe; Schröder, Johannes

    2011-04-01

    Alzheimer's disease (AD) is characterized by a variety of cognitive deficits which can be reliably assessed by the neuropsychological test battery of the Consortium to Establish a Registry for Alzheimer's Disease (CERAD), but the cerebral changes underlying the respective cognitive deficits are only partly understood. Measures of severity of dementia in AD as well as delayed episodic memory performance in mild cognitive impairment significantly correlated with bihemispheric cerebral glucose hypometabolism. We therefore hypothesized that the CERAD cognitive battery may represent cerebral dysfunction of both hemispheres in patients with AD. In 32 patients with AD, cerebral glucose metabolism was investigated using positron-emission-tomography with 18Fluorodeoxyglucose (FDG PET) and associated with the test scores of the CERAD cognitive battery by statistical parametric mapping. Episodic memory scores significantly correlated with temporopari etal glucose metabolism of both hemispheres while delayed episodic memory significantly was correlated with the right frontotemporal cortices. Verbal fluency and naming scores significantly correlated with glucose metabolism in left temporoparietal and right frontal cortices, whereas constructional praxis predominantly correlated significantly with the bilateral precuneus. In conclusion, the results of our study demonstrate that not only memory function but also functions of language and constructional praxis in AD are associated with glucose metabolism as revealed by FDG PET in subsets of uni- and bilateral brain areas. The findings of our study for the first time demonstrate that in AD neuropsychological deficits as assessed by the CERAD refer to different cerebral sites of both hemispheres.

  2. Cerebral Hemodynamics in the Elderly: A Transcranial Doppler Study in the Einstein Aging Study Cohort.

    PubMed

    Yang, Dixon; Cabral, Digna; Gaspard, Emmanuel N; Lipton, Richard B; Rundek, Tatjana; Derby, Carol A

    2016-09-01

    We sought to describe the relationship between age, sex, and race/ethnicity with transcranial Doppler hemodynamic characteristics from major intracerebral arterial segments in a large elderly population with varying demographics. We analyzed 369 stroke-free participants aged 70 years and older from the Einstein Aging Study. Single-gate, nonimaging transcranial Doppler sonography, a noninvasive sonographic technique that assesses real-time cerebrovascular hemodynamics, was used to interrogate 9 cerebral arterial segments. Individual Doppler spectra and cerebral blood flow velocities were acquired, and the pulsatility index and resistive index were calculated by the device's automated waveform-tracking function. Multiple linear regression models were used to examine the independent associations of age, sex, and race/ethnicity with transcranial Doppler measures, adjusting for hypertension, history of myocardial infarction or revascularization, and history of diabetes. Among enrolled participants, 303 individuals had at least 1 vessel insonated (mean age [SD], 80 [6] years; 63% women; 58% white; and 32% black). With age, transcranial Doppler measures of mean blood flow velocity were significantly decreased in the basilar artery (P = .001) and posterior cerebral artery (right, P = .003; left, P = .02). Pulsatility indices increased in the left middle cerebral artery (P = .01) and left anterior cerebral artery (P = .03), and the resistive index was increased in the left middle cerebral artery (P = .007) with age. Women had higher pulsatility and resistive indices compared to men in several vessels. We report a decreased mean blood flow velocity and weakly increased arterial pulsatility and resistance with aging in a large elderly stroke-free population. These referential trends in cerebrovascular hemodynamics may carry important implications in vascular diseases associated with advanced age, increased risk of cerebrovascular disease, cognitive decline, and dementia.

  3. Hypertension accelerates the progression of Alzheimer-like pathology in a mouse model of the disease.

    PubMed

    Cifuentes, Diana; Poittevin, Marine; Dere, Ekrem; Broquères-You, Dong; Bonnin, Philippe; Benessiano, Joëlle; Pocard, Marc; Mariani, Jean; Kubis, Nathalie; Merkulova-Rainon, Tatyana; Lévy, Bernard I

    2015-01-01

    Cerebrovascular impairment is frequent in patients with Alzheimer disease and is believed to influence clinical manifestation and severity of the disease. Cardiovascular risk factors, especially hypertension, have been associated with higher risk of developing Alzheimer disease. To investigate the mechanisms underlying the hypertension, Alzheimer disease cross talk, we established a mouse model of dual pathology by infusing hypertensive doses of angiotensin II into transgenic APPPS1 mice overexpressing mutated human amyloid precursor and presenilin 1 proteins. At 4.5 months, at the early stage of disease progression, only hypertensive APPPS1 mice presented impairment of temporal order memory performance in the episodic-like memory task. This cognitive deficit was associated with an increased number of cortical amyloid deposits (223±5 versus 207±5 plaques/mm(2); P<0.05) and a 2-fold increase in soluble amyloid levels in the brain and in plasma. Hypertensive APPPS1 mice presented several cerebrovascular alterations, including a 25% reduction in cerebral microvessel density and a 30% to 40% increase in cerebral vascular amyloid deposits, as well as a decrease in vascular endothelial growth factor A expression in the brain, compared with normotensive APPPS1 mice. Moreover, the brain levels of nitric oxide synthase 1 and 3 and the nitrite/nitrate levels were reduced in hypertensive APPPS1 mice (by 49%, 34%, and 33%, respectively, compared with wild-type mice; P<0.05). Our results indicate that hypertension accelerates the development of Alzheimer disease-related structural and functional alterations, partially through cerebral vasculature impairment and reduced nitric oxide production. © 2014 American Heart Association, Inc.

  4. VEGF production and signaling in Müller glia are critical to modulating vascular function and neuronal integrity in diabetic retinopathy and hypoxic retinal vascular diseases.

    PubMed

    Le, Yun-Zheng

    2017-10-01

    Müller glia (MG) are major retinal supporting cells that participate in retinal metabolism, function, maintenance, and protection. During the pathogenesis of diabetic retinopathy (DR), a neurovascular disease and a leading cause of blindness, MG modulate vascular function and neuronal integrity by regulating the production of angiogenic and trophic factors. In this article, I will (1) briefly summarize our work on delineating the role and mechanism of MG-modulated vascular function through the production of vascular endothelial growth factor (VEGF) and on investigating VEGF signaling-mediated MG viability and neural protection in diabetic animal models, (2) explore the relationship among VEGF and neurotrophins in protecting Müller cells in in vitro models of diabetes and hypoxia and its potential implication to neuroprotection in DR and hypoxic retinal diseases, and (3) discuss the relevance of our work to the effectiveness and safety of long-term anti-VEGF therapies, a widely used strategy to combat DR, diabetic macular edema, neovascular age-related macular degeneration, retinopathy of prematurity, and other hypoxic retinal vascular disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Regional cerebral blood flow in Parkinson disease with nonpsychotic visual hallucinations.

    PubMed

    Oishi, N; Udaka, F; Kameyama, M; Sawamoto, N; Hashikawa, K; Fukuyama, H

    2005-12-13

    Patients with Parkinson disease (PD) often experience visual hallucinations (VH) with retained insight (nonpsychotic) but the precise mechanism remains unclear. To clarify which neural substrates participate in nonpsychotic VH in PD, the authors evaluated regional cerebral blood flow (rCBF) changes in patients with PD and VH. The authors compared 24 patients with PD who had nonpsychotic VH (hallucinators) and 41 patients with PD who had never experienced VH (non-hallucinators) using SPECT images with N-isopropyl-p-[(123)I]iodoamphetamine. There were no significant differences in age, sex, duration of disease, doses of PD medications, Hoehn and Yahr scale, or Mini-Mental State Examination (MMSE) scores between the two groups. The rCBF data were analyzed using statistical parametric mapping (SPM). The rCBF in the right fusiform gyrus was lower in the hallucinators than in the non-hallucinators (corrected p < 0.05 at cluster levels). The hallucinators revealed higher rCBF in the right superior and middle temporal gyri than the non-hallucinators (uncorrected p < 0.001). These significant differences were demonstrated after MMSE scores and duration of disease, which are the relevant factors associated with VH, were covariated out. Nonpsychotic visual hallucinations in Parkinson disease (PD) may be associated with hypoperfusion in the right fusiform gyrus and hyperperfusion in the right superior and middle temporal gyri. These temporal regions are important for visual object recognition and these regional cerebral blood flow changes are associated with inappropriate visual processing and are responsible for nonpsychotic visual hallucinations in PD.

  6. White matter hyperintensities of presumed vascular origin: a population-based study in rural Ecuador (The Atahualpa Project).

    PubMed

    Del Brutto, Oscar H; Mera, Robertino M; Del Brutto, Victor J; Zambrano, Mauricio; Lama, Julio

    2015-04-01

    Cerebral small vessel disease is probably one of the most common pathogenetic mechanisms underlying stroke in Latin America. However, the importance of silent markers of small vessel disease, including white matter hyperintensities of presumed vascular origin, has not been assessed so far. The study aims to evaluate prevalence and correlates of white matter hyperintensities in community-dwelling elders living in Atahualpa (rural Ecuador). Atahualpa residents aged ≥ 60 years were identified during a door-to-door survey and invited to undergo brain magnetic resonance imaging for identification and grading white matter hyperintensities and other markers of small vessel disease. Using multivariate logistic regression models, we evaluated whether white matter hyperintensities is associated with demographics, cardiovascular health status, stroke, cerebral microbleeds, and cortical atrophy, after adjusting for the other variables. Out of 258 enrolled persons (mean age, 70 ± 8 years; 59% women), 172 (67%) had white matter hyperintensities, which were moderate to severe in 63. Analyses showed significant associations of white matter hyperintensities presence and severity with age and cardiovascular health status, as well as with overt and silent strokes, and a trend for association with cerebral microbleeds and cortical atrophy. Prevalence and correlates of white matter hyperintensities in elders living in rural Ecuador is almost comparable with that reported from industrialized nations, reinforcing the concept that the burden of small vessel disease is on the rise in underserved Latin American populations. © 2014 World Stroke Organization.

  7. Vascular Effects of Phytoestrogens and Alternative Menopausal Hormone Therapy in Cardiovascular Disease

    PubMed Central

    Gencel, Vahide B.; Benjamin, Mina M.; Bahou, Shafik N.; Khalil, Raouf A.

    2011-01-01

    Phytoestrogens are estrogenic compounds of plant origin classified into different groups including isoflavones, lignans, coumestans and stilbenes. Isoflavones such as genistein and daidzein are the most studied and most potent phytoestrogens, and are found mainly in soy based foods. The effects of phytoestrogens are partly mediated via estrogen receptors (ERs): ERα, ERβ and possibly GPER. The interaction of phytoestrogens with ERs is thought to induce both genomic and non-genomic effects in many tissues including the vasculature. Some phytoestrogens such as genistein have additional non-ER-mediated effects involving signaling pathways such as tyrosine kinase. Experimental studies have shown beneficial effects of phytoestrogens on endothelial cells, vascular smooth muscle, and extracellular matrix. Phytoestrogens may also affect other pathophysiologic vascular processes such as lipid profile, angiogenesis, inflammation, tissue damage by reactive oxygen species, and these effects could delay the progression of atherosclerosis. As recent clinical trials showed no vascular benefits or even increased risk of cardiovascular disease (CVD) and CV events with conventional menopausal hormone therapy (MHT), phytoestrogens are being considered as alternatives to pharmacologic MHT. Epidemiological studies in the Far East population suggest that dietary intake of phytoestrogens may contribute to the decreased incidence of postmenopausal CVD and thromboembolic events. Also, the WHO-CARDIAC study supported that consumption of high soybean diet is associated with lower mortalities from coronary artery disease. However, as with estrogen, there has been some discrepancy between the experimental studies demonstrating the vascular benefits of phytoestrogens and the data from clinical trials. This is likely because the phytoestrogens clinical trials have been limited in many aspects including the number of participants enrolled, the clinical end points investigated, and the lack of

  8. Spreading Depression, Spreading Depolarizations, and the Cerebral Vasculature

    PubMed Central

    Ayata, Cenk; Lauritzen, Martin

    2015-01-01

    Spreading depression (SD) is a transient wave of near-complete neuronal and glial depolarization associated with massive transmembrane ionic and water shifts. It is evolutionarily conserved in the central nervous systems of a wide variety of species from locust to human. The depolarization spreads slowly at a rate of only millimeters per minute by way of grey matter contiguity, irrespective of functional or vascular divisions, and lasts up to a minute in otherwise normal tissue. As such, SD is a radically different breed of electrophysiological activity compared with everyday neural activity, such as action potentials and synaptic transmission. Seventy years after its discovery by Leão, the mechanisms of SD and its profound metabolic and hemodynamic effects are still debated. What we did learn of consequence, however, is that SD plays a central role in the pathophysiology of a number of diseases including migraine, ischemic stroke, intracranial hemorrhage, and traumatic brain injury. An intriguing overlap among them is that they are all neurovascular disorders. Therefore, the interplay between neurons and vascular elements is critical for our understanding of the impact of this homeostatic breakdown in patients. The challenges of translating experimental data into human pathophysiology notwithstanding, this review provides a detailed account of bidirectional interactions between brain parenchyma and the cerebral vasculature during SD and puts this in the context of neurovascular diseases. PMID:26133935

  9. Cerebral oxygen metabolism in patients with early Parkinson's disease.

    PubMed

    Borghammer, Per; Cumming, Paul; Østergaard, Karen; Gjedde, Albert; Rodell, Anders; Bailey, Christopher J; Vafaee, Manoucher S

    2012-02-15

    Decreased activity of the mitochondrial electron transport chain (ETC) has been implicated in the pathogenesis of Parkinson's disease (PD). This model would most likely predict a decrease in the rate of cerebral oxygen consumption (CMRO(2)). To test this hypothesis, we compared CMRO(2) and cerebral blood flow (CBF) PET scans from PD patients and healthy controls. Nine early-stage PD patients and 15 healthy age-matched controls underwent PET scans for quantitative mapping of CMRO(2) and CBF. Between-group differences were evaluated for absolute data and intensity-normalized values. No group differences were detected in regional magnitudes of CMRO(2) or CBF. Upon normalization using the reference cluster method, significant relative CMRO(2) decreases were evident in widespread prefrontal, parieto-occipital, and lateral temporal regions. Sensory-motor and subcortical regions, brainstem, and the cerebellum were spared. A similar pattern was evident in normalized CBF data, as described previously. While the data did not reveal substantially altered absolute CMRO(2) in brain of PD patients, employing data-driven intensity normalization revealed widespread relative CMRO(2) decreases in cerebral cortex. The detected pattern was very similar to that reported in earlier CBF and CMRglc studies of PD, and in the CBF images from the same subjects. Thus, the present results are consistent with the occurrence of parallel declines in CMRO(2), CBF, and CMRglc in spatially contiguous cortical regions in early PD, and support the hypothesis that ETC dysfunction could be a primary pathogenic mechanism in early PD. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Cerebral microbleeds: different prevalence, topography, and risk factors depending on dementia diagnosis—the Karolinska Imaging Dementia Study.

    PubMed

    Shams, S; Martola, J; Granberg, T; Li, X; Shams, M; Fereshtehnejad, S M; Cavallin, L; Aspelin, P; Kristoffersen-Wiberg, M; Wahlund, L O

    2015-04-01

    Cerebral microbleeds are thought to represent cerebral amyloid angiopathy when in lobar regions of the brain and hypertensive arteriopathy when in deep and infratentorial locations. By studying cerebral microbleeds, their topography, and risk factors, we aimed to gain an insight into the vascular and amyloid pathology of dementia diagnoses and increase the understanding of cerebral microbleeds in dementia. We analyzed 1504 patients (53% women; mean age, 63 ± 10 years; 10 different dementia diagnoses) in this study. All patients underwent MR imaging as part of the dementia investigation, and all their clinical parameters were recorded. Among the 1504 patients with dementia, 22% had cerebral microbleeds. Cerebral microbleed topography was predominantly lobar (P = .01) and occipital (P = .007) in Alzheimer disease. Patients with cerebral microbleeds were significantly older (P < .001), were more frequently male (P < .001), had lower cognitive scores (P = .006), and more often had hypertension (P < .001). Risk factors for cerebral microbleeds varied depending on the dementia diagnosis. Odds ratios for having cerebral microbleeds increased with the number of risk factors (hypertension, hyperlipidemia, diabetes, male sex, and age 65 and older) in the whole patient group and increased differently in the separate dementia diagnoses. Prevalence, topography, and risk factors of cerebral microbleeds vary depending on the dementia diagnosis and reflect the inherent pathology of different dementia diagnoses. Because cerebral microbleeds are seen as possible predictors of intracerebral hemorrhage, their increasing prevalence with an increasing number of risk factors, as shown in our study, may require taking the number of risk factors into account when deciding on anticoagulant therapy in dementia. © 2015 by American Journal of Neuroradiology.

  11. Cerebral blood velocity and other cardiovascular responses to 2 days of head-down tilt

    NASA Technical Reports Server (NTRS)

    Frey, Mary A. B.; Mader, Thomas H.; Bagian, James P.; Charles, John B.; Meehan, Richard T.

    1993-01-01

    Spaceflight induces a cephalad redistribution of fluid volume and blood flow within the human body, and space motion sickness, which is a problem during the first few days of space flight, could be related to these changes in fluid status and in blood flow of the cerebrum and vestibular system. To evaluate possible changes in cerebral blood flow during simulated weightlessness, we measured blood velocity in the middle cerebral artery (MCA) along with retinal vascular diameters, intraocular pressure, impedance cardiography, and sphygmomanometry on nine men (26.2 +/- 6.6 yr) morning and evening for 2 days during continuous 10 deg head-down tilt (HDT). When subjects went from seated to head-down bed rest, their heart rate and retinal diameters decreased, and intraocular pressures increased. After 48 h of HDT, blood flow velocity in the MCA was decreased and thoracic impedance was increased, indicating less fluid in the thorax. Percent changes in blood flow velocities in the MCA after 48 h of HDT were inversely correlated with percent changes in retinal vascular diameters. Blood flow velocities in the MCA were inversely correlated (intersubject) with arterial pressures and retinal vascular diameters. Heart rate, stroke volume, cardiac output, systolic arterial pressure, and at times pulse pressure and blood flow velocities in the MCA were greater in the evening. Total peripheral resistance was higher in the morning. Although cerebral blood velocity is reduced after subjects are head down for 2 days, the inverse relationship with retinal vessel diameters, which have control analogous to that of cerebral vessels, indicates cerebral blood flow is not reduced.

  12. Cerebral organoids derived from Sandhoff disease-induced pluripotent stem cells exhibit impaired neurodifferentiation[S

    PubMed Central

    Allende, Maria L.; Cook, Emily K.; Larman, Bridget C.; Nugent, Adrienne; Brady, Jacqueline M.; Golebiowski, Diane; Sena-Esteves, Miguel; Tifft, Cynthia J.

    2018-01-01

    Sandhoff disease, one of the GM2 gangliosidoses, is a lysosomal storage disorder characterized by the absence of β-hexosaminidase A and B activity and the concomitant lysosomal accumulation of its substrate, GM2 ganglioside. It features catastrophic neurodegeneration and death in early childhood. How the lysosomal accumulation of ganglioside might affect the early development of the nervous system is not understood. Recently, cerebral organoids derived from induced pluripotent stem (iPS) cells have illuminated early developmental events altered by disease processes. To develop an early neurodevelopmental model of Sandhoff disease, we first generated iPS cells from the fibroblasts of an infantile Sandhoff disease patient, then corrected one of the mutant HEXB alleles in those iPS cells using CRISPR/Cas9 genome-editing technology, thereby creating isogenic controls. Next, we used the parental Sandhoff disease iPS cells and isogenic HEXB-corrected iPS cell clones to generate cerebral organoids that modeled the first trimester of neurodevelopment. The Sandhoff disease organoids, but not the HEXB-corrected organoids, accumulated GM2 ganglioside and exhibited increased size and cellular proliferation compared with the HEXB-corrected organoids. Whole-transcriptome analysis demonstrated that development was impaired in the Sandhoff disease organoids, suggesting that alterations in neuronal differentiation may occur during early development in the GM2 gangliosidoses. PMID:29358305

  13. Platelet chemokines in vascular disease

    PubMed Central

    Gleissner, Christian A.; von Hundelshausen, Philipp; Ley, Klaus

    2009-01-01

    Platelets are a rich source of different chemokines and express chemokine receptors. CXCL4 is highly abundant in platelets and involved in promoting monocyte arrest from rolling and monocyte differentiation to macrophages. CXCL4 can also associate with CCL5 and amplify its effect on monocytes. The megakaryocyte CXCL7 gene product is proteolytically cleaved into the strong neutrophil chemoattractant, NAP-2, which has also been implicated in repair cell homing to vascular lesions. Platelet adhesion can induce release of CCL2 and CXCL8 from endothelial cells. Conversely, the chemokines CCL17, CCL22 and CXCL12 made by other cells amplify platelet activation. Platelet chemokines enhance recruitment of various hematopoietic cells to the vascular wall, fostering processes such as neointima formation, atherosclerosis, and thrombosis but also vessel repair and regeneration after vascular injury. PMID:18723831

  14. The role of vitamin K in vascular calcification of patients with chronic kidney disease.

    PubMed

    Wuyts, Julie; Dhondt, Annemieke

    2016-12-01

    Patients with chronic kidney disease (CKD) are prone to vascular calcification. Pathogenetic mechanisms of vascular calcifications have been broadly studied and discussed such as the role of hyperphosphatemia, hypercalcemia, parathormone, and vitamin D. In recent years, new insights have been gained pointing to vitamin K as a main actor. It has been discovered that vitamin K is an essential cofactor for the activation of matrix Gla protein (MGP), a calcification inhibitor in the vessel wall. Patients with CKD often suffer from vitamin K deficiency, resulting in low active MGP and eventually a lack of inhibition of vascular calcification. Vitamin K supplementation and switching warfarin to new oral anticoagulants are potential treatments. In addition, MGP may have a role as a non-invasive biomarker for vascular calcification.

  15. Vascular risk factors and the effect of white matter lesions on extrapyramidal signs in Alzheimer's disease.

    PubMed

    Park, Moon Ho; Min, Joo Young; Kwon, Do-Young; Lee, Seung Hwan; Na, Hae Ri; Cho, Sung Tae; Na, Duk L

    2011-06-01

    Extrapyramidal signs (EPSs), which are important characteristics of Parkinson's disease (PD), occur frequently in Alzheimer's disease (AD). Although AD and PD share common clinical features such as EPSs, these diseases vary with respect to vascular risk factors. The presence of vascular risk factors increases the risk of AD; however, these factors have been known to be inversely associated with PD. We aimed to assess the effect of vascular risk factors and white matter lesions (WMLs) on EPSs in AD. We recruited 1,187 AD patients and 333 controls with neither cognitive impairment nor EPSs. All participants underwent detailed clinical evaluations which included assessments of vascular risk factors, cognitive function, and EPSs, as well as WMLs on brain MRIs. EPS subtypes were classified into tremor-dominant, postural instability gait difficulty, or indeterminate; WMLs subtypes were classified into periventricular WML (pvWML) or deep WML (dWML). EPSs were present in 17.9% of subjects with AD and were significantly associated with vascular risk factors such as age, male gender, diabetes mellitus, and WMLs. Additionally, a multivariate logistic regression analysis showed that EPSs in AD were associated with pvWML (odds ratio (OR), 1.61-2.52), not with dWML. With respect to EPS subtypes, the majority (78.4%) of EPSs in AD were postural instability gait difficulty, which was also associated with WMLs (OR 1.84-2.41), pvWML (OR 2.09-3.14), and dWML (OR 1.83-3.42). EPSs in AD are associated with selected vascular risk factors as well as WMLs.

  16. The Unfolded Protein Response in Retinal Vascular Diseases: Implications and Therapeutic Potential Beyond Protein Folding

    PubMed Central

    Zhang, Sarah X.; Ma, Jacey H.; Bhatta, Maulasri; Fliesler, Steven J.; Wang, Joshua J.

    2015-01-01

    Angiogenesis is a complex, step-wise process of new vessel formation that is involved in both normal embryonic development as well as postnatal pathological processes, such as cancer, cardiovascular disease, and diabetes. Aberrant blood vessel growth, also known as neovascularization, in the retina and the choroid is a major cause of vision loss in severe eye diseases, such as diabetic retinopathy, age-related macular degeneration, retinopathy of prematurity, and central and branch retinal vein occlusion. Yet, retinal neovascularization is causally and dynamically associated with vasodegeneration, ischemia, and vascular remodeling in retinal tissues. Understanding the mechanisms of retinal neovascularization is an urgent unmet need for developing new treatments for these devastating diseases. Accumulating evidence suggests a vital role for the unfolded protein response (UPR) in regulation of angiogenesis, in part through coordinating the secretion of pro-angiogenic growth factors, such as VEGF, and modulating endothelial cell survival and activity. Herein, we summarize current research in the context of endoplasmic reticulum (ER) stress and UPR signaling in retinal angiogenesis and vascular remodeling, highlighting potential implications of targeting these stress response pathways in the prevention and treatment of retinal vascular diseases that result in visual deficits and blindness. PMID:25529848

  17. Small vessels, dementia and chronic diseases - molecular mechanisms and pathophysiology.

    PubMed

    Horsburgh, Karen; Wardlaw, Joanna M; van Agtmael, Tom; Allan, Stuart M; Ashford, Mike L J; Bath, Philip M; Brown, Rosalind; Berwick, Jason; Cader, M Zameel; Carare, Roxana O; Davis, John B; Duncombe, Jessica; Farr, Tracy D; Fowler, Jill H; Goense, Jozien; Granata, Alessandra; Hall, Catherine N; Hainsworth, Atticus H; Harvey, Adam; Hawkes, Cheryl A; Joutel, Anne; Kalaria, Rajesh N; Kehoe, Patrick G; Lawrence, Catherine B; Lockhart, Andy; Love, Seth; Macleod, Malcolm R; Macrae, I Mhairi; Markus, Hugh S; McCabe, Chris; McColl, Barry W; Meakin, Paul J; Miller, Alyson; Nedergaard, Maiken; O'Sullivan, Michael; Quinn, Terry J; Rajani, Rikesh; Saksida, Lisa M; Smith, Colin; Smith, Kenneth J; Touyz, Rhian M; Trueman, Rebecca C; Wang, Tao; Williams, Anna; Williams, Steven C R; Work, Lorraine M

    2018-04-30

    Cerebral small vessel disease (SVD) is a major contributor to stroke, cognitive impairment and dementia with limited therapeutic interventions. There is a critical need to provide mechanistic insight and improve translation between pre-clinical research and the clinic. A 2-day workshop was held which brought together experts from several disciplines in cerebrovascular disease, dementia and cardiovascular biology, to highlight current advances in these fields, explore synergies and scope for development. These proceedings provide a summary of key talks at the workshop with a particular focus on animal models of cerebral vascular disease and dementia, mechanisms and approaches to improve translation. The outcomes of discussion groups on related themes to identify the gaps in knowledge and requirements to advance knowledge are summarized. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  18. Response of local vascular volumes to lower body negative pressure stress

    NASA Technical Reports Server (NTRS)

    Wolthuis, R. A.; Leblanc, A.; Carpentier, W. A.; Bergman, S. A., Jr.

    1975-01-01

    The present study involved an intravenous injection of radioactive iodinated serum albumin, equilibration of this isotope within the vascular space, and the continuous measurement of isotope activity over selected anatomical areas before, during and following multiple human LBNP tests. Both rate and magnitude of vascular pooling were distinctly different within each of five selected lower body anatomical areas. In the upper body, all areas except the abdomen showed depletions from their resting vascular volumes during LBNP. The presence of uniquely different pooling patterns in the lower body, the apparent stability of abdominal vascular volumes, and a possible decrease in cerebral blood volume during LBNP represent the major findings of this study.

  19. Molecular pathogenesis of retinal and choroidal vascular diseases.

    PubMed

    Campochiaro, Peter A

    2015-11-01

    There are two major types of ocular neovascularization that affect the retina, retinal neovascularization (NV) and subretinal or choroidal NV. Retinal NV occurs in a group of diseases referred to as ischemic retinopathies in which damage to retinal vessels results in retinal ischemia. Most prevalent of these are diabetic retinopathy and retinal vein occlusions. Subretinal and choroidal NV occur in diseases of the outer retina and Bruch's membrane, the most prevalent of which is age-related macular degeneration. Numerous studies in mouse models have helped to elucidate the molecular pathogenesis underlying retinal, subretinal, and choroidal NV. There is considerable overlap because the precipitating event in each is stabilization of hypoxia inducible factor-1 (HIF-1) which leads to upregulation of several hypoxia-regulated gene products, including vascular endothelial growth factor (VEGF), angiopoietin 2, vascular endothelial-protein tyrosine phosphatase (VE-PTP), and several others. Stimulation of VEGF signaling and suppression of Tie2 by angiopoietin 2 and VE-PTP are critical for sprouting of retinal, subretinal, and choroidal NV, with perturbation of Bruch's membrane also needed for the latter. Additional HIF-1-regulated gene products cause further stimulation of the NV. It is difficult to model macular edema in animals and therefore proof-of-concept clinical trials were done and demonstrated that VEGF plays a central role and that suppression of Tie2 is also important. Neutralization of VEGF is currently the first line therapy for all of the above disease processes, but new treatments directed at some of the other molecular targets, particularly stabilization of Tie2, are likely to provide additional benefit for subretinal/choroidal NV and macular edema. In addition, the chronicity of these diseases as well as the implication of VEGF as a cause of retinal nonperfusion and progression of background diabetic retinopathy make sustained delivery approaches for VEGF

  20. Effects of cranberry juice consumption on vascular function in patients with coronary artery disease

    USDA-ARS?s Scientific Manuscript database

    Cranberry juice contains polyphenolic compounds that could improve endothelial function and reduce cardiovascular disease risk. The objective was to examine the effects of cranberry juice on vascular function in subjects with coronary artery disease. We completed an acute pilot study with no placebo...

  1. Exercise induces cerebral VEGF and angiogenesis via the lactate receptor HCAR1

    PubMed Central

    Morland, Cecilie; Andersson, Krister A.; Haugen, Øyvind P.; Hadzic, Alena; Kleppa, Liv; Gille, Andreas; Rinholm, Johanne E.; Palibrk, Vuk; Diget, Elisabeth H.; Kennedy, Lauritz H.; Stølen, Tomas; Hennestad, Eivind; Moldestad, Olve; Cai, Yiqing; Puchades, Maja; Offermanns, Stefan; Vervaeke, Koen; Bjørås, Magnar; Wisløff, Ulrik; Storm-Mathisen, Jon; Bergersen, Linda H.

    2017-01-01

    Physical exercise can improve brain function and delay neurodegeneration; however, the initial signal from muscle to brain is unknown. Here we show that the lactate receptor (HCAR1) is highly enriched in pial fibroblast-like cells that line the vessels supplying blood to the brain, and in pericyte-like cells along intracerebral microvessels. Activation of HCAR1 enhances cerebral vascular endothelial growth factor A (VEGFA) and cerebral angiogenesis. High-intensity interval exercise (5 days weekly for 7 weeks), as well as L-lactate subcutaneous injection that leads to an increase in blood lactate levels similar to exercise, increases brain VEGFA protein and capillary density in wild-type mice, but not in knockout mice lacking HCAR1. In contrast, skeletal muscle shows no vascular HCAR1 expression and no HCAR1-dependent change in vascularization induced by exercise or lactate. Thus, we demonstrate that a substance released by exercising skeletal muscle induces supportive effects in brain through an identified receptor. PMID:28534495

  2. Exercise induces cerebral VEGF and angiogenesis via the lactate receptor HCAR1.

    PubMed

    Morland, Cecilie; Andersson, Krister A; Haugen, Øyvind P; Hadzic, Alena; Kleppa, Liv; Gille, Andreas; Rinholm, Johanne E; Palibrk, Vuk; Diget, Elisabeth H; Kennedy, Lauritz H; Stølen, Tomas; Hennestad, Eivind; Moldestad, Olve; Cai, Yiqing; Puchades, Maja; Offermanns, Stefan; Vervaeke, Koen; Bjørås, Magnar; Wisløff, Ulrik; Storm-Mathisen, Jon; Bergersen, Linda H

    2017-05-23

    Physical exercise can improve brain function and delay neurodegeneration; however, the initial signal from muscle to brain is unknown. Here we show that the lactate receptor (HCAR1) is highly enriched in pial fibroblast-like cells that line the vessels supplying blood to the brain, and in pericyte-like cells along intracerebral microvessels. Activation of HCAR1 enhances cerebral vascular endothelial growth factor A (VEGFA) and cerebral angiogenesis. High-intensity interval exercise (5 days weekly for 7 weeks), as well as L-lactate subcutaneous injection that leads to an increase in blood lactate levels similar to exercise, increases brain VEGFA protein and capillary density in wild-type mice, but not in knockout mice lacking HCAR1. In contrast, skeletal muscle shows no vascular HCAR1 expression and no HCAR1-dependent change in vascularization induced by exercise or lactate. Thus, we demonstrate that a substance released by exercising skeletal muscle induces supportive effects in brain through an identified receptor.

  3. Omental transplantation for neurodegenerative diseases

    PubMed Central

    Rafael, Hernando

    2014-01-01

    Up to date, almost all researchers consider that there is still no effective therapy for neurodegenerative diseases (NDDs) and therefore, these diseases are incurable. However, since May 1998, we know that a progressive ischemia in the medial temporal lobes and subcommissural regions can cause Alzheimer’s disease; because, in contrast to this, its revascularization by means of omental tissue can cure or improve this disease. Likewise we observed that the aging process, Huntington’s disease, Parkinson’s disease, and Amyotrophic lateral sclerosis; all of them are of ischemic origin caused by cerebral atherosclerosis, associated with vascular anomalies and/or environmental chemicals. On the contrary, an omental transplantation on the affected zone can stop and improve these diseases. For these reasons, I believe that NDDs, are wrongly classified as neurodegenerative disorders. PMID:25232510

  4. A study on cerebral hemodynamic analysis of moyamoya disease by using perfusion MRI

    NASA Astrophysics Data System (ADS)

    Dong, Kyung-Rae; Goo, Eun-Hoe; Lee, Jae-Seung; Chung, Woon-Kwan

    2013-10-01

    This study examined the clinical applications of perfusion magnetic resonance imaging (MRI) in patients with moyamoya disease (MMD). Twenty-two patients with moyamoya disease (9 men and 13 women) with a mean age of 9.3 years (range: 4-22 years) were enrolled in this study. Perfusion MRI was performed by scanning the patients7.5 cm upward from the base of the cerebellum before their being process for post-treatment. The scan led to the acquisition of the following four map images: the cerebral blood volume (CBV), the cerebral blood flow (CBF), the mean transit time (MTT) for the contrast medium, and the time to peak (TTP) for the contrast medium. The lesions were assessed using the CBV, the CBF, the MTT and the TTP maps of perfusion MRI; the MTT and the TTP were measured in the lesion areas, as well as in the normal and the symmetric areas. Perfusion defects were recognizable in all four perfusion MRI maps, and the MTT and the TTP showed a conspicuous delay in the parts where perfusion defects were recognized. The MTT and the TTP images of perfusion MRI reflected a significant correlation between the degrees of stenosis and occlusion in the posterior cerebral artery (PCA), as well as the development of collateral vessels. The four perfusion MRI maps could be used to predict the degrees of stenosis and occlusion in the posterior circulation, as well as the development of the collateral vessels, which enabled a hemodynamic evaluation of the parts with perfusion defects. Overall, perfusion MRI is useful for the diagnosis and the treatment of moyamoya disease and can be applied to clinical practice.

  5. Lacunar Infarcts, but Not Perivascular Spaces, Are Predictors of Cognitive Decline in Cerebral Small-Vessel Disease

    PubMed Central

    Trippier, Sarah; Lawrence, Andrew J.; Lambert, Christian; Zeestraten, Eva; Williams, Owen A.; Patel, Bhavini; Morris, Robin G.; Barrick, Thomas R.; MacKinnon, Andrew D.; Markus, Hugh S.

    2018-01-01

    Background and Purpose— Cerebral small-vessel disease is a major cause of cognitive impairment. Perivascular spaces (PvS) occur in small-vessel disease, but their relationship to cognitive impairment remains uncertain. One reason may be difficulty in distinguishing between lacunes and PvS. We determined the relationship between baseline PvS score and PvS volume with change in cognition over a 5-year follow-up. We compared this to the relationship between baseline lacune count and total lacune volume with cognition. In addition, we examined change in PvS volume over time. Methods— Data from the prospective SCANS study (St Georges Cognition and Neuroimaging in Stroke) of patients with symptomatic lacunar stroke and confluent leukoaraiosis were used (n=121). Multimodal magnetic resonance imaging was performed annually for 3 years and neuropsychological testing annually for 5 years. Lacunes were manually identified and distinguished from PvS. PvS were rated using a validated visual rating scale, and PvS volumes calculated using T1-weighted images. Linear mixed-effect models were used to determine the impact of PvS and lacunes on cognition. Results— Baseline PvS scores or volumes showed no association with cognitive indices. No change was detectable in PvS volumes over the 3 years. In contrast, baseline lacunes associated with all cognitive indices and predicted cognitive decline over the 5-year follow-up. Conclusions— Although a feature of small-vessel disease, PvS are not a predictor of cognitive decline, in contrast to lacunes. This study highlights the importance of carefully differentiating between lacunes and PvS in studies investigating vascular cognitive impairment. PMID:29438074

  6. Meeting report on the Bellagio Conference 'prevention of vascular diseases in the emerging world: An approach to global health equity'.

    PubMed

    Dirks, J H; Robinson, S W; Alderman, M; Couser, W G; Grundy, S M; Smith, S C; Remuzzi, G; Unwin, N

    2006-10-01

    Representatives from five international organizations (International Society of Nephrology, World Heart Federation, International Diabetes Federation, International Atherosclerosis Federation, and International Society of Hypertension) participated in a strategic planning workshop in December 2005 in Bellagio, Italy sponsored by the Rockefeller Foundation. There were equal representatives from developed and developing countries. Global perspectives on diabetes and cardiovascular and renal diseases were presented, with special emphasis on China, India, Latin America, and Africa. The rationale and effectiveness of preventive measures were discussed. It was apparent that measures for primary prevention and early intervention for all the chronic vascular diseases are similar. The five organizations agreed that an integrated global approach to chronic vascular diseases is needed. They resolved to collaborate and work towards an integrated approach to chronic vascular diseases with the establishment of a 5-year plan for the prevention and treatment of chronic vascular diseases, including public advocacy, advising international and national agencies, and improving education and the practice of established approaches.

  7. Subgroup of ADNI Normal Controls Characterized by Atrophy and Cognitive Decline Associated With Vascular Damage

    PubMed Central

    Nettiksimmons, Jasmine; Beckett, Laurel; Schwarz, Christopher; Carmichael, Owen; Fletcher, Evan; DeCarli, Charles

    2013-01-01

    Previous work examining Alzheimer’s Disease Neuroimaging Initiative (ADNI) normal controls using cluster analysis identified a subgroup characterized by substantial brain atrophy and white matter hyperintensities (WMH). We hypothesized that these effects could be related to vascular damage. Fifty-three individuals in the suspected vascular cluster (Normal 2) were compared with 31 individuals from the cluster characterized as healthy/typical (Normal 1) on a variety of outcomes, including magnetic resonance imaging (MRI) and cerebrospinal fluid (CSF) biomarkers, vascular risk factors and outcomes, cognitive trajectory, and medications for vascular conditions. Normal 2 was significantly older but did not differ on ApoE4+ prevalence. Normal 2 differed significantly from Normal 1 on all MRI measures but not on Amyloid-Beta1-42 or total tau protein. Normal 2 had significantly higher body mass index (BMI), Hachinksi score, and creatinine levels, and took significantly more medications for vascular conditions. Normal 2 had marginally significantly higher triglycerides and blood glucose. Normal 2 had a worse cognitive trajectory on the Rey’s Auditory Verbal Learning Test (RAVLT) 30-min delay test and the Functional Activity Questionnaire (FAQ). Cerebral atrophy associated with multiple vascular risks is common among cognitively normal individuals, forming a distinct subgroup with significantly increased cognitive decline. Further studies are needed to determine the clinical impact of these findings. PMID:23527743

  8. Heterogeneity in Kv7 channel function in the Cerebral and Coronary Circulation

    PubMed Central

    Tanner, Miles A.; Li, Min; Hill, Michael A.

    2014-01-01

    Kv7 channels are considered important regulators of vascular smooth muscle contractility. The present study examined the hypotheses that 1. Kv7 channels are present in mouse cerebral and coronary arteries and regulate vascular reactivity, and 2. regional differences exist in the activity of these channels. PCR confirmed that basilar, Circle of Willis and left anterior descending (LAD) arteries express predominantly Kv7.1 and 7.4. Western blot analysis, however, showed greater Kv7.4 protein levels in the cerebral vessels. Relaxation to the Kv7 channel activator, retigabine (1-50μM) was significantly greater in basilar compared to LAD. Similarly, the Kv7 channel inhibitor, linopirdine (10μM) caused stronger contraction of the basilar artery. Furthermore, pre-incubation with linopirdine reduced forskolin (cAMP activator)-induced vasorelaxation in basilar while not altering forskolin-induced vasorelaxation of the LAD, suggesting that Kv7 channels play a more prominent role in the cerebral than coronary circulation. Consistent with the vessel data, whole cell Kv7 currents in cerebral VSMCs were potentiated by retigabine and inhibited by linopirdine, while these responses were blunted in coronary VSMCs. This study provides evidence that mouse Kv7 channels may contribute differently to regulating the functional properties of cerebral and coronary arteries. Such heterogeneity has important implications for developing novel therapeutics for cardiovascular dysfunction. PMID:25476662

  9. Asymptomatic cervicocerebral atherosclerosis, intracranial vascular resistance and cognition: the AsIA-neuropsychology study.

    PubMed

    López-Olóriz, Jorge; López-Cancio, Elena; Arenillas, Juan F; Hernández, María; Jiménez, Marta; Dorado, Laura; Barrios, Maite; Soriano-Raya, Juan José; Miralbell, Júlia; Cáceres, Cynthia; Forés, Rosa; Pera, Guillem; Dávalos, Antoni; Mataró, Maria

    2013-10-01

    Carotid atherosclerosis has emerged as a relevant contributor to cognitive impairment and dementia whereas the role of intracranial stenosis and vascular resistance in cognition remains unknown. This study aims to assess the association of asymptomatic cervicocerebral atherosclerosis and intracranial vascular resistance with cognitive performance in a large dementia-free population. The Barcelona-AsIA (Asymptomatic Intracranial Atherosclerosis) Neuropsychology Study included 747 Caucasian subjects older than 50 with a moderate-high vascular risk (assessed by REGICOR score) and without history of neither symptomatic vascular disease nor dementia. Extracranial and transcranial color-coded duplex ultrasound examination was performed to assess carotid intima-media thickness (IMT), presence of carotid plaques (ECAD group), intracranial stenosis (ICAD group), and middle cerebral artery pulsatility index (MCA-PI) as a measure of intracranial vascular resistance. Neuropsychological assessment included tests in three cognitive domains: visuospatial skills and speed, verbal memory and verbal fluency. In univariate analyses, carotid IMT, ECAD and MCA-PI were associated with lower performance in almost all cognitive domains, and ICAD was associated with poor performance in some visuospatial and verbal cognitive tests. After adjustment for age, sex, vascular risk score, years of education and depressive symptoms, ECAD remained associated with poor performance in the three cognitive domains and elevated MCA-PI with worse performance in visuospatial skills and speed. Carotid plaques and increased intracranial vascular resistance are independently associated with low cognitive functioning in Caucasian stroke and dementia-free subjects. We failed to find an independent association of intracranial large vessel stenosis with cognitive performance. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. [Regional cerebral blood flow changes in Parkinson's disease: correlation with disease duration].

    PubMed

    Kapitán, M; Ferrando, R; Diéguez, E; de Medina, O; Aljanati, R; Ventura, R; Amorin, I; Salinas, D; Langhain, M; Gioia, A; Cardoso, A; Lago, G; Buzó, R

    2009-01-01

    Changes in regional cerebral blood flow (rCBF) have been reported in idiopathic Parkinson's disease (PD). Nonetheless, their typical pattern still remains controversial regarding some features, such as basal ganglia involvement and the main cortical regions affected. Functional neuroimaging makes it possible to identify the brain dysfunctions of the neural circuits underlying the disease. Voxel-based analysis methods make it possible to increase the reliability of the results. To assess the rCBF changes in patients with PD and their relation with disease duration. Thirty PD adult patients without dementia underwent evaluation with (99m)Tc-ECD SPECT. SPM5 was used for statistical comparison with 25 normal controls of similar ages. The disease course duration in years was added as a covariate. Additionally, patients with a 6-year evolution or less and those with more than 6 years were compared separately with normal controls. Significant hypoperfusion was detected in bilateral premotor and posterior parietal cortex and increase of perfusion was present in the cerebellum. These changes correlated with the years of evolution of the illness. Patients with longer evolution also presented thalamic, subthalamic and basal ganglia hypoperfusion. We describe rCBF changes in PD in neural circuits related with control of movements. These changes are more manifest in patients with a longer duration of the disease.

  11. [The use of low-frequency magnetotherapy and EHF puncture in the combined treatment of arterial hypertension in vibration-induced disease].

    PubMed

    Drobyshev, V A; Filippova, G N; Loseva, M I; Shpagina, L A; Shelepova, N V; Zhelezniak, M S

    2000-01-01

    Combination of EHF therapy + magnetotherapy + drugs results in faster and persistent hypotensive and analgetic effect compared to standard drug therapy, potentiates action of vascular drugs on cerebral and peripheral circulation, reduces dose of hypotensive drugs in patients with arterial hypertension and vibration disease.

  12. [Physiotherapy methods in the rehabilitation of patients with cerebral vascular diseases].

    PubMed

    Ezhov, V V

    1996-01-01

    The author has examined 650 patients aged 30-65 years with prestroke forms of cerebrovascular diseases. Basing on clinico-neurological, electrophysiological and biochemical data, five new variants of physiotherapy are proposed: transcerebral and segmental dalargin electrophoresis combined with magnetotherapy and manual therapy. Relevant practical recommendations are provided. The author's findings extend the knowledge of curative potential of physical methods and on their mechanism of action in cerebrovascular insufficiency.

  13. Cobalt chloride attenuates hypobaric hypoxia induced vascular leakage in rat brain: Molecular mechanisms of action of cobalt chloride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalpana, S.; Dhananjay, S.; Anju, B.

    2008-09-15

    This study reports the efficacy of cobalt preconditioning in preventing hypobaric hypoxia induced vascular leakage (an indicator of cerebral edema) using male Sprague-Dawley rats as model system. Exposure of animals to hypobaric hypoxia led to a significant increase in vascular leakage, reactive oxygen species (ROS), nitric oxide (NO), and vascular endothelial growth factor (VEGF) levels. There was a marked increase in Nuclear Factor {kappa}B (NF{kappa}B) DNA binding activity and levels of pro-inflammatory cytokines such as Monocyte chemoattractant protein (MCP-1), Interferon-{gamma} (IFN-{gamma}), Interleukin-1 (IL-1), and Tumor Necrosis Factor-{alpha} (TNF-{alpha}) and cell adhesion molecules such as Vascular Cell Adhesion Molecule-1 (VCAM-1), andmore » P-selectin. Chemical preconditioning by cobalt for 7 days (12.5 mg Co/kg b.w., oral) significantly attenuated cerebral vascular leakage and the expression of inflammatory mediators induced by hypoxia. Administration of NF{kappa}B inhibitor, curcumin (50 mg/kg b.w.; i.p.) appreciably inhibited hypoxia induced vascular leakage indicating the involvement of NF{kappa}B in causing vascular leakage. Interestingly, cobalt when administered at 12.5 mg Co/kg b.w. (i.p.), 1 h before hypoxia could not prevent the vascular leakage indicating that cobalt per se did not have an effect on NF{kappa}B. The lower levels of NF{kappa}B observed in the brains of cobalt administered animals might be due to higher levels of antioxidant and anti-inflammatory proteins (hemeoxygenase-1 and metallothionein). To conclude cobalt preconditioning inhibited hypobaric hypoxia induced cerebral vascular leakage by lowering NF{kappa}B DNA binding activity and its regulated pro-inflammatory mediators. This is contemplated to be mediated by cobalt induced reduction in ROS/NO and increase in HO-1 and MT.« less

  14. A model of the instantaneous pressure-velocity relationships of the neonatal cerebral circulation.

    PubMed

    Panerai, R B; Coughtrey, H; Rennie, J M; Evans, D H

    1993-11-01

    The instantaneous relationship between arterial blood pressure (BP) and cerebral blood flow velocity (CBFV), measured with Doppler ultrasound in the anterior cerebral artery, is represented by a vascular waterfall model comprising vascular resistance, compliance, and critical closing pressure. One min recordings obtained from 61 low birth weight newborns were fitted to the model using a least-squares procedures with correction for the time delay between the BP and CBFV signals. A sensitivity analysis was performed to study the effects of low-pass filtering (LPF), cutoff frequency, and noise on the estimated parameters of the model. Results indicate excellent fitting of the model (F-test, p < 0.0001) when the BP and CBFV signals are LPF at 7.5 Hz. Reconstructed CBFV waveforms using the BP signal and the model parameters have a mean correlation coefficient of 0.94 with the measured flow velocity tracing (N = 232 epochs). The model developed can be useful for interpreting clinical findings and as a framework for research into cerebral autoregulation.

  15. Optical coherence tomography angiography indicates associations of the retinal vascular network and disease activity in multiple sclerosis.

    PubMed

    Feucht, Nikolaus; Maier, Mathias; Lepennetier, Gildas; Pettenkofer, Moritz; Wetzlmair, Carmen; Daltrozzo, Tanja; Scherm, Pauline; Zimmer, Claus; Hoshi, Muna-Miriam; Hemmer, Bernhard; Korn, Thomas; Knier, Benjamin

    2018-01-01

    Patients with multiple sclerosis (MS) and clinically isolated syndrome (CIS) may show alterations of retinal layer architecture as measured by optical coherence tomography. Little is known about changes in the retinal vascular network during MS. To characterize retinal vessel structures in patients with MS and CIS and to test for associations with MS disease activity. In all, 42 patients with MS or CIS and 50 healthy controls underwent retinal optical coherence tomography angiography (OCT-A) with analysis of the superficial and deep vascular plexuses and the choriocapillaries. We tested OCT-A parameters for associations with retinal layer volumes, history of optic neuritis (ON), and the retrospective disease activity. Inner retinal layer volumes correlated positively with the density of both the superficial and deep vascular plexuses. Eyes of MS/CIS patients with a history of ON revealed reduced vessel densities of the superficial and deep vascular plexuses as compared to healthy controls. Higher choriocapillary vessel densities were associated with ongoing inflammatory disease activity during 24 months prior to OCT-A examination in MS and CIS patients. Optic neuritis is associated with rarefaction of the superficial and deep retinal vessels. Alterations of the choriocapillaries might be linked to disease activity in MS.

  16. [Effects of xenon anesthesia on cerebral blood flow in neurosurgical patients without intracranial hypertension].

    PubMed

    Rylova, A V; Beliaev, A Iu; Lubnin, A Iu

    2013-01-01

    Among anesthetic agents used in neurosurgery xenon appears to be the most advantageous. It preserves arterial blood pressure, assures rapid recovery and neuroprotection. But the data is lacking on xenon effect upon cerebral blood flow under anesthetic conditions. We measured flow velocity in middle cerebral artery in neurosurgical patients without intracranial hypertension during closed circuit xenon anesthesia comparing propofol and xenon effect in the same patients. In our study xenon didn't seem to induce clinically relevant changes in cerebral blood flow and preserved cerebral vascular reactivity thus proving its safety in patients without intracranial hypertension.

  17. Pathophysiological consequences of VEGF-induced vascular permeability

    NASA Astrophysics Data System (ADS)

    Weis, Sara M.; Cheresh, David A.

    2005-09-01

    Although vascular endothelial growth factor (VEGF) induces angiogenesis, it also disrupts vascular barrier function in diseased tissues. Accordingly, VEGF expression in cancer and ischaemic disease has unexpected pathophysiological consequences. By uncoupling endothelial cell-cell junctions VEGF causes vascular permeability and oedema, resulting in extensive injury to ischaemic tissues after stroke or myocardial infarction. In cancer, VEGF-mediated disruption of the vascular barrier may potentiate tumour cell extravasation, leading to widespread metastatic disease. Therefore, by blocking the vascular permeability promoting effects of VEGF it may be feasible to reduce tissue injury after ischaemic disease and minimize the invasive properties of circulating tumour cells.

  18. APOC3 may not be a predictor of risk of ischemic vascular disease in the Chinese population

    PubMed Central

    Wang, Qing-Yun; Zeng, Wei; Liu, Hui; Wu, Ying-Ying; Hu, Bei; Hu, Yu

    2014-01-01

    The genetic background of ischemic vascular disease is actively being explored. Several studies have shown that inhibition of APOC3 significantly reduces plasma levels of apolipoprotein C3 and triglycerides. Recently, the TG and HDL Working Group and Jørgensen et al. reported that loss-of-function mutations in APOC3 are associated with decreased triglyceride levels and a reduced risk of ischemic vascular disease in European and African individuals. We performed a replication study in 4470 Chinese participants. The coding regions of APOC3 were amplified and re-sequenced. However, only synonymous and intronic variants with no functional consequences were identified. None of the loss-of-function mutations reported in European and African individuals were observed. Therefore, APOC3 may not be an ideal predictor for risk of ischemic vascular disease in the Chinese population. PMID:25653838

  19. APOC3 may not be a predictor of risk of ischemic vascular disease in the Chinese population.

    PubMed

    Tang, Liang; Cheng, Zhi-Peng; Wang, Qing-Yun; Zeng, Wei; Liu, Hui; Wu, Ying-Ying; Hu, Bei; Hu, Yu

    2014-01-01

    The genetic background of ischemic vascular disease is actively being explored. Several studies have shown that inhibition of APOC3 significantly reduces plasma levels of apolipoprotein C3 and triglycerides. Recently, the TG and HDL Working Group and Jørgensen et al. reported that loss-of-function mutations in APOC3 are associated with decreased triglyceride levels and a reduced risk of ischemic vascular disease in European and African individuals. We performed a replication study in 4470 Chinese participants. The coding regions of APOC3 were amplified and re-sequenced. However, only synonymous and intronic variants with no functional consequences were identified. None of the loss-of-function mutations reported in European and African individuals were observed. Therefore, APOC3 may not be an ideal predictor for risk of ischemic vascular disease in the Chinese population.

  20. [Oral contraception and the vascular risk].

    PubMed

    Garnier, L F; Gruel, Y

    1989-01-01

    Vascular risk, mainly thromboembolitic risk, attributed to oral contraceptives (OCs) since 1962, has been primarily linked to ethinyl estradiol (EE). OCs which combine estrogen and have been associated with cerebral vascular accidents. A 1977 study showed a 40% increase of mortality due to cardiovascular complications in women taking OCs. There were of both an arterial and a venous character. The risk of myocardial infarction was 3 times more frequent among OC users. Deep venous thrombosis and pulmonary embolism were more numerous. Some other risk factors include smoking, hypertension, diabetes, and age 35. The risk of heart attack vanishes a few years after stopping OC use. The reduction of EE (and similarly progesterone) dosage from 100-50 mcg also lower the risk of hypertension, cerebral vascular accidents, and venous thrombosis. Prolonged use of OCs causes disorders of hemostasis affecting the walls of blood vessels, modifying the viscosity of blood flow (increase of hematocrits, reduction of venous tonus), modifying plasmatic coagulation (increase of platelets, increase of factors VII and X and plasma fibrinogen, and decrease of antithrombin III activity), and increased fibrinolysis. These anomalies are exclusively associated with high doses of estrogens. 5% of women using OCs develop moderate hypertension of 5-10 mm Hg of systolic pressure 5 years later, but after cessation it is reversed. OCs stimulate the renin-angiotensin-aldosterone system causing accelerated production of angiotensin II with the resultant forceful vasotension. 3 months after quitting OC use, high blood pressure returns to normal. EE can provoke diabetes; it increases very low density lipoprotein (VLDL) and high density lipoprotein (HDL) production, but total cholesterol is hardly affected. The androgenic property of progestogens reduces HDL. Combined OCs are contraindicated for women with hypertension, hyperlipidemia, diabetes, and a family history of vascular accidents.

  1. Imaging of Neuronal Activity in Awake Mice by Measurements of Flavoprotein Autofluorescence Corrected for Cerebral Blood Flow.

    PubMed

    Takahashi, Manami; Urushihata, Takuya; Takuwa, Hiroyuki; Sakata, Kazumi; Takado, Yuhei; Shimizu, Eiji; Suhara, Tetsuya; Higuchi, Makoto; Ito, Hiroshi

    2017-01-01

    Green fluorescence imaging (e.g., flavoprotein autofluorescence imaging, FAI) can be used to measure neuronal activity and oxygen metabolism in living brains without expressing fluorescence proteins. It is useful for understanding the mechanism of various brain functions and their abnormalities in age-related brain diseases. However, hemoglobin in cerebral blood vessels absorbs green fluorescence, hampering accurate assessments of brain function in animal models with cerebral blood vessel dysfunctions and subsequent cerebral blood flow (CBF) alterations. In the present study, we developed a new method to correct FAI signals for hemoglobin-dependent green fluorescence reductions by simultaneous measurements of green fluorescence and intrinsic optical signals. Intrinsic optical imaging enabled evaluations of light absorption and scatters by hemoglobin, which could then be applied to corrections of green fluorescence intensities. Using this method, enhanced flavoprotein autofluorescence by sensory stimuli was successfully detected in the brains of awake mice, despite increases of CBF, and hemoglobin interference. Moreover, flavoprotein autofluorescence could be properly quantified in a resting state and during sensory stimulation by a CO 2 inhalation challenge, which modified vascular responses without overtly affecting neuronal activities. The flavoprotein autofluorescence signal data obtained here were in good agreement with the previous findings from a condition with drug-induced blockade of cerebral vasodilation, justifying the current assaying methodology. Application of this technology to studies on animal models of brain diseases with possible changes of CBF, including age-related neurological disorders, would provide better understanding of the mechanisms of neurovascular coupling in pathological circumstances.

  2. Comprehensive Overview of Contemporary Management Strategies for Cerebral Aneurysms.

    PubMed

    Manhas, Amitoz; Nimjee, Shahid M; Agrawal, Abhishek; Zhang, Jonathan; Diaz, Orlando; Zomorodi, Ali R; Smith, Tony; Powers, Ciarán J; Sauvageau, Eric; Klucznik, Richard P; Ferrell, Andrew; Golshani, Kiarash; Stieg, Philip E; Britz, Gavin W

    2015-10-01

    Aneurysmal subarachnoid hemorrhage (SAH) remains an important health issue in the United States. Despite recent improvements in the diagnosis and treatment of cerebral aneurysms, the mortality rate following aneurysm rupture. In those patients who survive, up to 50% are left severely disabled. The goal of preventing the hemorrhage or re-hemorrhage can only be achieved by successfully excluding the aneurysm from the circulation. This article is a comprehensive review by contemporary vascular neurosurgeons and interventional neuroradiolgists on the modern management of cerebral aneurysms. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Magnetic Resonance Imaging (MRI) and Digital Subtraction Angiography Investigation of Childhood Moyamoya Disease.

    PubMed

    Song, Peiji; Qin, Jing; Lun, Han; Qiao, Penggang; Xie, Anming; Li, Gongjie

    2017-11-01

    Because digital subtraction angiography (DSA) is not an ideal angiographic examination for moyamoya disease in the pediatric population, magnetic resonance angiography (MRA) provides a noninvasive contrast-free angiographic examination; whereas magnetic resonance imaging (MRI) provides superior spatial resolution and soft-tissue contrast for lesion assessment. Ninety patients with moyamoya disease were examined by MRI and DSA to assess the distribution of lesions and their diagnostic agreement between modalities. MRI examination revealed 439 lesions. Punctate lesions were the most abundant, followed by patchy lesions. These lesions generally covered a smaller area than the abnormal-vascular corresponding brain parenchyma. Steno-occlusive changes at bilateral anterior, medial, and posterior cerebral arteries were identified by MRA and DSA. MRI showed moderate agreement in identifying lesions after steno-occlusive changes in anterior and medial cerebral arteries, and good agreement in posterior cerebral arteries; 6% to 11% of cases were misdiagnosed by MRA.

  4. [Cerebral ischemia in Rendu-Osler-Weber disease].

    PubMed

    Delgado Reyes, S; García de la Rocha, M L; Fernández-Armayor Ajo, V; Sierra Sierra, I; Martín Araguz, A; Moreno Martínez, J M

    2000-02-01

    Neurologic manifestations occur in 8-12% of the patients with Rendu-Osler-Weber disease or hereditary hemorrhagic telangiectasia (HHT), principally infectious and hemorrhagic and, less frequently, ischemic ones. More than a half of these neurologic complications are associated with pulmonary arterio-venous malformations (PAVM). The diagnosis of HHT is based on the presence of telangiectases, hemorrhagic events and a family history with an autosomal dominant pattern. We report a case of a patient diagnosed as having HHT with transient ischemic attacks and a PAVM, which was occluded by the use of embolotherapy. Cerebral ischemia in HHT is related to the existence of a PAVM and results from three mechanisms: 1) secondary poliglobulia and hyperviscosity because of the hypoxemia due to a right-left shunt; 2) communication between the airway and the pulmonary circulation during cough access, which produces gas embolism and hemoptysis; 3) and, finally, paradoxical embolism trough the PAVM, the same mechanism proposed to the infectious neurologic manifestations of the disease. When the diagnosis of HHT is suspected, early search and treatment of PAVM, with embolotherapy or surgery, are necessary in order to avoid respiratory problems (hemoptysis, exertional dyspnea, cianosis, clubbing) and neurologic complications.

  5. Functional imaging of cerebral blood flow and glucose metabolism in Parkinson's disease and Huntington's disease.

    PubMed

    Ma, Yilong; Eidelberg, David

    2007-01-01

    Brain imaging of cerebral blood flow and glucose metabolism has been playing key roles in describing pathophysiology of Parkinson's disease (PD) and Huntington's disease (HD), respectively. Many biomarkers have been developed in recent years to investigate the abnormality in molecular substrate, track the time course of disease progression, and evaluate the efficacy of novel experimental therapeutics. A growing body of literature has emerged on neurobiology of these two movement disorders in resting states and in response to brain activation tasks. In this paper, we review the latest applications of these approaches in patients and normal volunteers at rest conditions. The discussions focus on brain mapping studies with univariate and multivariate statistical analyses on a voxel basis. In particular, we present data to validate the reproducibility and reliability of unique spatial covariance patterns related with PD and HD.

  6. Early pulmonary vascular disease in preterm infants at risk for bronchopulmonary dysplasia.

    PubMed

    Mourani, Peter M; Sontag, Marci K; Younoszai, Adel; Miller, Joshua I; Kinsella, John P; Baker, Christopher D; Poindexter, Brenda B; Ingram, David A; Abman, Steven H

    2015-01-01

    Pulmonary hypertension (PH) is associated with poor outcomes among preterm infants with bronchopulmonary dysplasia (BPD), but whether early signs of pulmonary vascular disease are associated with the subsequent development of BPD or PH at 36 weeks post-menstrual age (PMA) is unknown. To prospectively evaluate the relationship of early echocardiogram signs of pulmonary vascular disease in preterm infants to the subsequent development of BPD and late PH (at 36 wk PMA). Prospectively enrolled preterm infants with birthweights 500-1,250 g underwent echocardiogram evaluations at 7 days of age (early) and 36 weeks PMA (late). Clinical and echocardiographic data were analyzed to identify early risk factors for BPD and late PH. A total of 277 preterm infants completed echocardiogram and BPD assessments at 36 weeks PMA. The median gestational age at birth and birthweight of the infants were 27 weeks and 909 g, respectively. Early PH was identified in 42% of infants, and 14% were diagnosed with late PH. Early PH was a risk factor for increased BPD severity (relative risk, 1.12; 95% confidence interval, 1.03-1.23) and late PH (relative risk, 2.85; 95% confidence interval, 1.28-6.33). Infants with late PH had greater duration of oxygen therapy and increased mortality in the first year of life (P < 0.05). Early pulmonary vascular disease is associated with the development of BPD and with late PH in preterm infants. Echocardiograms at 7 days of age may be a useful tool to identify infants at high risk for BPD and PH.

  7. Cilostazol prevents foot ulcers in diabetic patients with peripheral vascular disease.

    PubMed

    de Franciscis, Stefano; Gallelli, Luca; Battaglia, Luigi; Molinari, Vincenzo; Montemurro, Rossella; Stillitano, Domenico M; Buffone, Gianluca; Serra, Raffaele

    2015-06-01

    Diabetic patients are at high risk of foot ulcerations that may lead to limb amputations with important socio-economic impact. Peripheral vascular disease may be frequently associated in diabetes mellitus type II with its main symptom, intermittent claudication. Many studies reported the known efficacy of cilostazol in treating vascular claudication. Metalloproteinase-9 (MMP-9) seems to be a biochemical marker implicated in chronic wounds and in particular in diabetic foot ulcers. Cilostazol appears to have a lowering effect on MMP-9 levels and this may suggest a beneficial effect in order to prevent or retard the onset of foot ulcer in diabetic patients. In our study, two groups of diabetic patients with peripheral vascular disease were divided into two groups according to the presence of claudication in order to receive cilostazol. Group A (31 patients without claudication) were not eligible to receive cilostazol whereas Group B (47 patients with claudication) received cilostazol administration for 24 weeks (100 mg orally twice daily). Median follow up was of 16 months. During the follow up, 4·25% of patients of Group B and 35·48% of patients of Group A (P < 0·01) showed onset of foot ulceration. Although further randomised and controlled studies are required cilostazol seems to show beneficial effects for primary prevention of diabetic foot ulcers. © 2013 The Authors. International Wound Journal © 2013 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  8. Reduced myo-inositol and total choline measured with cerebral MRS in acute thyrotoxic Graves' disease.

    PubMed

    Elberling, T V; Danielsen, E R; Rasmussen, A K; Feldt-Rasmussen, U; Waldemar, G; Thomsen, C

    2003-01-14

    Neuropsychiatric symptoms in the acute thyrotoxic phase of Graves' disease suggest involvement of brain processes. Short-echo-time proton MRS was used to measure the cerebral metabolite profile in newly diagnosed and untreated Graves' disease. Sixteen patients with Graves' disease and 18 age- and sex-matched healthy volunteers were studied. The patients had significantly reduced total choline and myo-inositol in the acute phase of Graves' thyrotoxicosis compared with the healthy volunteers.

  9. Evaluation of cerebral vasomotor reactivity in Parkinson's disease: is there any association with orthostatic hypotension?

    PubMed

    Zamani, Babak; Mehrabani, Mehrnoush; Fereshtehnejad, Seyed-Mohammad; Rohani, Mohammad

    2011-06-01

    Our aim was to look for a probable relationship between cerebral vasomotor reactivity (VMR) and orthostatic hypotension (OH) in Parkinson's disease (PD). This study was conducted on 44 patients with PD. Assessment of cerebral VMR was performed by means of transcranial Doppler (TCD) of middle cerebral artery (MCA) before and after a vasodilatory stimulus, carbon dioxide test. Moreover, orthostatic hypotension was evaluated. OH was presented in 12 (27.3%) Parkinson's patients. The average resting blood flow velocity (BFV) in the MCA was 30.20 (SD=9.58)cms(-1) which significantly increased to 46.25 (SD=16.23)cms(-1) after carbon dioxide test (P<0.001). Impaired VMR was observed in 15 (34.1%) of the subjects, while it was not associated with the presence of OH (P=0.770). Evaluation of VMR in patients affected by PD, could assist in early diagnosis of cerebral autonomic dysfunction and prevent its serious consequences prior and more valid to OH. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  10. Vascular basement membranes as pathways for the passage of fluid into and out of the brain.

    PubMed

    Morris, Alan W J; Sharp, Matthew MacGregor; Albargothy, Nazira J; Fernandes, Rute; Hawkes, Cheryl A; Verma, Ajay; Weller, Roy O; Carare, Roxana O

    2016-05-01

    In the absence of conventional lymphatics, drainage of interstitial fluid and solutes from the brain parenchyma to cervical lymph nodes is along basement membranes in the walls of cerebral capillaries and tunica media of arteries. Perivascular pathways are also involved in the entry of CSF into the brain by the convective influx/glymphatic system. The objective of this study is to differentiate the cerebral vascular basement membrane pathways by which fluid passes out of the brain from the pathway by which CSF enters the brain. Experiment 1: 0.5 µl of soluble biotinylated or fluorescent Aβ, or 1 µl 15 nm gold nanoparticles was injected into the mouse hippocampus and their distributions determined at 5 min by transmission electron microscopy. Aβ was distributed within the extracellular spaces of the hippocampus and within basement membranes of capillaries and tunica media of arteries. Nanoparticles did not enter capillary basement membranes from the extracellular spaces. Experiment 2: 2 µl of 15 nm nanoparticles were injected into mouse CSF. Within 5 min, groups of nanoparticles were present in the pial-glial basement membrane on the outer aspect of cortical arteries between the investing layer of pia mater and the glia limitans. The results of this study and previous research suggest that cerebral vascular basement membranes form the pathways by which fluid passes into and out of the brain but that different basement membrane layers are involved. The significance of these findings for neuroimmunology, Alzheimer's disease, drug delivery to the brain and the concept of the Virchow-Robin space are discussed.

  11. Development of functional in vivo imaging of cerebral lenticulostriate artery using novel synchrotron radiation angiography

    NASA Astrophysics Data System (ADS)

    Lin, Xiaojie; Miao, Peng; Mu, Zhihao; Jiang, Zhen; Lu, Yifan; Guan, Yongjing; Chen, Xiaoyan; Xiao, Tiqiao; Wang, Yongting; Yang, Guo-Yuan

    2015-02-01

    The lenticulostriate artery plays a vital role in the onset and development of cerebral ischemia. However, current imaging techniques cannot assess the in vivo functioning of small arteries such as the lenticulostriate artery in the brain of rats. Here, we report a novel method to achieve a high resolution multi-functional imaging of the cerebrovascular system using synchrotron radiation angiography, which is based on spatio-temporal analysis of contrast density in the arterial cross section. This method provides a unique tool for studying the sub-cortical vascular elasticity after cerebral ischemia in rats. Using this technique, we demonstrated that the vascular elasticity of the lenticulostriate artery decreased from day 1 to day 7 after transient middle cerebral artery occlusion in rats and recovered from day 7 to day 28 compared to the controls (p < 0.001), which paralleled with brain edema formation and inversely correlated with blood flow velocity (p < 0.05). Our results demonstrated that the change of vascular elasticity was related to the levels of brain edema and the velocity of focal blood flow, suggesting that reducing brain edema is important for the improvement of the function of the lenticulostriate artery in the ischemic brain.

  12. Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer's disease

    PubMed Central

    Small, Gary W.; Ercoli, Linda M.; Silverman, Daniel H. S.; Huang, S.-C.; Komo, Scott; Bookheimer, Susan Y.; Lavretsky, Helen; Miller, Karen; Siddarth, Prabha; Rasgon, Natalie L.; Mazziotta, John C.; Saxena, Sanjaya; Wu, H. M.; Mega, Michael S.; Cummings, Jeffrey L.; Saunders, Ann M.; Pericak-Vance, Margaret A.; Roses, Allen D.; Barrio, Jorge R.; Phelps, Michael E.

    2000-01-01

    The major known genetic risk for Alzheimer's disease (AD), apolipoprotein E-4 (APOE-4), is associated with lowered parietal, temporal, and posterior cingulate cerebral glucose metabolism in patients with a clinical diagnosis of AD. To determine cognitive and metabolic decline patterns according to genetic risk, we investigated cerebral metabolic rates by using positron emission tomography in middle-aged and older nondemented persons with normal memory performance. A single copy of the APOE-4 allele was associated with lowered inferior parietal, lateral temporal, and posterior cingulate metabolism, which predicted cognitive decline after 2 years of longitudinal follow-up. For the 20 nondemented subjects followed longitudinally, memory performance scores did not decline significantly, but cortical metabolic rates did. In APOE-4 carriers, a 4% left posterior cingulate metabolic decline was observed, and inferior parietal and lateral temporal regions demonstrated the greatest magnitude (5%) of metabolic decline after 2 years. These results indicate that the combination of cerebral metabolic rates and genetic risk factors provides a means for preclinical AD detection that will assist in response monitoring during experimental treatments. PMID:10811879

  13. Alcohol consumption and risk of recurrent cardiovascular events and mortality in patients with clinically manifest vascular disease and diabetes mellitus: the Second Manifestations of ARTerial (SMART) disease study.

    PubMed

    Beulens, J W J; Algra, A; Soedamah-Muthu, S S; Visseren, F L J; Grobbee, D E; van der Graaf, Y

    2010-09-01

    This study investigated the relation between alcohol consumption and specific vascular events and mortality in a high risk population of patients with clinical manifestations of vascular disease and diabetes. Patients with clinically manifest vascular disease or diabetes (n=5447) from the SMART study were followed for cardiovascular events and mortality. Alcohol consumption was assessed with a baseline questionnaire and analysed in relation with coronary heart disease (CHD), amputations, stroke, and all-cause and vascular death. After a follow up of 4.7 years, we documented 363 cases of CHD, 187 cases of stroke, 79 amputations and 641 cases of all-cause death, of which 382 were vascular. In multivariate-adjusted models, alcohol consumption was inversely associated with CHD (p(linear trend)=0.007) and stroke (p(linear trend)=0.051) with respective hazard ratios of 0.39 (95%CI: 0.20-0.76) and 0.67 (0.31-1.46) for consuming 10-20 drinks/week compared with abstainers. We observed significant U-shaped associations between alcohol consumption and amputations (p(quadratic trend)=0.001), all-cause death (p(quadratic trend)=0.001) and vascular death (p(quadratic trend)=0.013). Hazard ratios for consuming 10-20 drinks/week were 0.29 (0.07-1.30) for amputations, 0.40 (0.24-0.69) for all-cause death and 0.34 (0.16-0.71) for vascular death compared with abstainers. Similar associations were observed for red wine consumption only. Moderate alcohol consumption (1-2 drinks/day) is not only associated with a reduced risk of vascular and all-cause death in a high risk patients with clinical manifestations of vascular disease, but also with reduced risks of non-fatal events like CHD, stroke and possibly amputations. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  14. Is Beta-Amyloid Accumulation a Cause or Consequence of Alzheimer’s Disease?

    PubMed Central

    Wang, Shaoxun; Mims, Paige N.; Roman, Richard J.; Fan, Fan

    2017-01-01

    Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that is characterized by the pathological hallmarks of extracellular beta-amyloid (Aβ) plaques and intraneuronal tau-containing neurofibrillary tangles in the brain. Intraneuronal accumulation of Aβ also plays a role to accelerate AD progression by promoting neurodegeneration. Additionally, AD is associated with the development of amyloid angiopathy (CAA), in which Aβ builds up on the walls of the cerebral arteries, which augments the development of cerebral vascular disease (CVD). Conversely, CVD promotes Aβ deposition and the development of AD by affecting the balance of Aβ production and clearance. However, it remains to be determined whether the accumulation of Aβ is a cause or consequence of AD. The interaction between AD and CVD is a topic of considerable current interest. Here, we discuss the role of CVD in Aβ accumulation and the development of AD to provide a new point of view that combination therapies that address the accompanying cerebral microvascular disease may potentiate the efficacy of emerging treatment for AD. PMID:28815226

  15. Detrimental effect of systemic vascular risk factors on brain hemodynamic function assessed with MRI.

    PubMed

    King, Kevin S; Sheng, Min; Liu, Peiying; Maroules, Christopher D; Rubin, Craig D; Peshock, Ron M; McColl, Roderick W; Lu, Hanzhang

    2018-06-01

    Background and purpose Vascular risk factors have been associated with decreased cerebral blood flow (CBF) but this is etiologically nonspecific and may result from vascular insufficiency or a response to decreased brain metabolic activity. We apply new MRI techniques to measure oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen consumption (CMRO 2 ), hypothesizing that decreased CBF related to these vascular risk factors will be associated with increased OEF, confirming a primary vascular insufficiency. Methods 3T MRI was obtained on 70 community-based participants in this IRB-approved study with informed consent, with previous assessment of systolic blood pressure, hypertension medication, elevated serum triglycerides, low serum HDL, and diabetes mellitus. CBF was measured using phase contrast adjusted for brain volume (ml/100 g/min), OEF (%) was obtained from T2-Relaxation-Under-Spin-Tagging (TRUST), and CMRO 2 (μmol/100 g/min) was derived using the Fick principle. Stepwise linear regression identified optimal predictors of CBF with age, sex, and hematocrit included for adjustment. This predictive model was then evaluated against OEF and CMRO 2 . Results Hypertriglyceridemia was associated with low CBF and high OEF. High systolic blood pressure was associated with high CBF and low OEF, which was primarily attributable to those with pressures above 160 mmHg. Neither risk factor was associated with significant differences in cerebral metabolic rate. Conclusion Low CBF related to hypertriglyceridemia was accompanied by high OEF with no significant difference in CMRO 2 , confirming subclinical vascular insufficiency. High CBF related to high systolic blood pressure likely reflected limitations of autoregulation at higher blood pressures.

  16. Free water determines diffusion alterations and clinical status in cerebral small vessel disease.

    PubMed

    Duering, Marco; Finsterwalder, Sofia; Baykara, Ebru; Tuladhar, Anil Man; Gesierich, Benno; Konieczny, Marek J; Malik, Rainer; Franzmeier, Nicolai; Ewers, Michael; Jouvent, Eric; Biessels, Geert Jan; Schmidt, Reinhold; de Leeuw, Frank-Erik; Pasternak, Ofer; Dichgans, Martin

    2018-06-01

    Diffusion tensor imaging detects early tissue alterations in Alzheimer's disease and cerebral small vessel disease (SVD). However, the origin of diffusion alterations in SVD is largely unknown. To gain further insight, we applied free water (FW) imaging to patients with genetically defined SVD (Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy [CADASIL], n = 57), sporadic SVD (n = 444), and healthy controls (n = 28). We modeled freely diffusing water in the extracellular space (FW) and measures reflecting fiber structure (tissue compartment). We tested associations between these measures and clinical status (processing speed and disability). Diffusion alterations in SVD were mostly driven by increased FW and less by tissue compartment alterations. Among imaging markers, FW showed the strongest association with clinical status (R 2 up to 34%, P < .0001). Findings were consistent across patients with CADASIL and sporadic SVD. Diffusion alterations and clinical status in SVD are largely determined by extracellular fluid increase rather than alterations of white matter fiber organization. Copyright © 2018 the Alzheimer's Association. All rights reserved.

  17. What Is Vascular Disease?

    MedlinePlus

    ... re human: Search ©2017 Vascular Cures is a tax-exempt, nonprofit organization tax ID#: 94-2825216 as described in the Section ... 3) of the Internal Revenue Code. Donations are tax deductible. 274 Redwood Shores Parkway, #717, Redwood City, ...

  18. [Cerebral protection].

    PubMed

    Cattaneo, A D

    1993-09-01

    metabolic standpoint, exposure to isoflurane at concentration of 2 MAC is credited with providing the same potential for protection as high dose barbiturate (isoelectric EEG). A possible major difference between barbiturates and isoflurane is the modest cerebral vasodilation induced by the latter while barbiturates are associated with decreased CBF. This suggests that in focal ischemia isoflurane may elicit an intracerebral steal. 3) Calcium entry blockers. Some calcium entry blockers with the distinctive feature of acting preferably on cerebral as opposed to systemic vascular smooth muscles may exert beneficial effects during or after brain ischemia. Two such drugs which have shown promise are nimodipine and lidoflazine. In animal and human studies nimodipine has been reported to improve the neurologic outcome of both the cerebral vasospasm and the postischemic hypoperfusion state.(ABSTRACT TRUNCATED AT 400 WORDS)

  19. Evidence for a role of macrophage migration inhibitory factor in vascular disease.

    PubMed

    Chen, Zhiping; Sakuma, Masashi; Zago, Alexandre C; Zhang, Xiaobin; Shi, Can; Leng, Lin; Mizue, Yuka; Bucala, Richard; Simon, Daniel

    2004-04-01

    Inflammation plays an essential role in atherosclerosis and restenosis. Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine that is widely expressed in vascular cells. However, there is no in vivo evidence that MIF participates directly in vascular injury and repair. Therefore, we investigated the effect of MIF blockade on the response to experimental angioplasty in atherosclerosis-susceptible mice. Carotid artery dilation (2.5 atm) and complete endothelial denudation were performed in male C57BL/6J LDL receptor-deficient mice treated with a neutralizing anti-MIF or isotype control monoclonal antibody. After 7 days and 28 days, intimal and medial sizes were measured and intima/media area ratio (I/M) was calculated. Intimal thickening and I/M were reduced significantly by anti-MIF compared with control antibody. Vascular injury was accompanied by progressive vessel enlargement or "positive remodeling" that was comparable in both treatment groups. MIF blockade was associated with reduced inflammation and cellular proliferation and increased apoptosis after injury. Neutralizing MIF bioactivity after experimental angioplasty in atherosclerosis-susceptible mice reduces vascular inflammation, cellular proliferation, and neointimal thickening. Although the molecular mechanisms responsible for these effects are not yet established, these data prompt further research directed at understanding the role of MIF in vascular disease and suggest novel therapeutic interventions for preventing atherosclerosis and restenosis.

  20. Controlled study on the effect of pentoxifylline and an ergot alkaloid derivative on regional cerebral blood flow in patients with chronic cerebrovascular disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartmann, A.; Tsuda, Y.

    Regional cerebral blood flow (rCBF) in 90 patients with CBF decreased due to vascular diseases was studied by using the xenon 133 inhalation technique and a 32-detector setup. Whereas 30 patients received their standard basic therapy only and were regarded as controls, 30 others received 3 x 2 mg/day of an ergot alkaloid (co-dergocrine mesylate), and 30 others received 3 x 400 mg pentoxifylline (slow-release formulation)/day orally. Therapy was performed for eight weeks and CBF measured before start of treatment, after a four-week treatment period, and at the end of the study. CBF did not change significantly in the controlmore » group; both the pentoxifylline and the ergot alkaloid group presented with a significant increase in the CBF. This positive effect was significantly more pronounced in the pentoxifylline group and affected more ischemic than other brain tissues. In addition, symptoms like sleep disturbances, vertigo, and tinnitus improved significantly during the pentoxifylline observation period.« less

  1. Non-invasive vascular biomarkers in patients with Behçet's disease: review of the data and future perspectives.

    PubMed

    Protogerou, Athanase D; Nasothimiou, Efthimia G; Sfikakis, Petros P; Tzioufas, Athanasios G

    2017-01-01

    Vascular inflammation in small to large veins and arteries contributes substantially to mortality above that of the general population in Behçet's disease. Recent data verified also the presence of accelerated classical subclinical arterial damage (atheromatosis, arteriosclerosis, arterial hypertrophy) even in patients free of overt vascular complications, and may be complementary to that of vasculitis. Early detection of such vascular damage might provide helpful pathophysiological insight and potentially even guide treatment management. Herein, we review the existing literature for each one of the most widely applied non-invasive vascular biomarkers (assessing endothelial dysfunction, atheromatosis/hypertrophy, arteriosclerosis and central haemodynamic parameters) that are clinically used in primary cardiovascular prevention. We aim to: (i) identify early pathophysiological vascular pathways, complementary to vasculitis, in the development of vascular complications and (ii) identify gaps in knowledge and suggest future research topics. We identified evidence of proof of concept for some of the widely applied non-invasive vascular biomarkers (carotid plaques, pulse wave velocity, flow mediated dilatation). Yet, several steps in their clinical validation process are lacking. Extensive vascular phenotyping of a large prospective observational patient cohort with the application of these easy-to-use, low-cost, free of any adverse effect, non-invasive methods should be performed in order to test their ability to provide clinically meaningful guidance regarding the prognosis and treatment of Behçet's disease.

  2. Methylene Blue Modulates β-Secretase, Reverses Cerebral Amyloidosis, and Improves Cognition in Transgenic Mice*

    PubMed Central

    Mori, Takashi; Koyama, Naoki; Segawa, Tatsuya; Maeda, Masahiro; Maruyama, Nobuhiro; Kinoshita, Noriaki; Hou, Huayan; Tan, Jun; Town, Terrence

    2014-01-01

    Amyloid precursor protein (APP) proteolysis is required for production of amyloid-β (Aβ) peptides that comprise β-amyloid plaques in the brains of patients with Alzheimer disease (AD). Here, we tested whether the experimental agent methylene blue (MB), used for treatment of methemoglobinemia, might improve AD-like pathology and behavioral deficits. We orally administered MB to the aged transgenic PSAPP mouse model of cerebral amyloidosis and evaluated cognitive function and cerebral amyloid pathology. Beginning at 15 months of age, animals were gavaged with MB (3 mg/kg) or vehicle once daily for 3 months. MB treatment significantly prevented transgene-associated behavioral impairment, including hyperactivity, decreased object recognition, and defective spatial working and reference memory, but it did not alter nontransgenic mouse behavior. Moreover, brain parenchymal and cerebral vascular β-amyloid deposits as well as levels of various Aβ species, including oligomers, were mitigated in MB-treated PSAPP mice. These effects occurred with inhibition of amyloidogenic APP proteolysis. Specifically, β-carboxyl-terminal APP fragment and β-site APP cleaving enzyme 1 protein expression and activity were attenuated. Additionally, treatment of Chinese hamster ovary cells overexpressing human wild-type APP with MB significantly decreased Aβ production and amyloidogenic APP proteolysis. These results underscore the potential for oral MB treatment against AD-related cerebral amyloidosis by modulating the amyloidogenic pathway. PMID:25157105

  3. Use of the 2.8 French Progreat microcatheter in diagnostic cerebral angiography.

    PubMed

    Griauzde, Julius; Gemmete, Joseph J; Shastri, Ravi; Pandey, Aditya S; Chaudhary, Neeraj

    2017-01-01

    Tortuous vascular anatomy poses a significant challenge to performing diagnostic cerebral angiography. To report a new cerebral angiography technique for overcoming tortuous aortic and supra-aortic anatomy using a 2.8 French (F) Progreat microcatheter (0.028 inch (internal diameter) (Terumo; Somerset, New Jersey, USA) to obtain a diagnostic cerebral angiogram. A retrospective analysis of consecutive cases undergoing diagnostic cerebral angiography at our institution between 1 January 2013 and 30 November 2015 in which a 2.8F Progreat microcatheter was used. Clinical and operative notes were reviewed and correlated with imaging. Radiologic imaging, including CT, MRI, and digital subtraction angiography, was reviewed. Neurologic, systemic, and local complications were recorded on the basis of clinical follow-up results after each angiographic examination. Events that occurred within 24 h of the angiography were considered to be complications of the procedure. Initial attempts at catheterization of the target vessel with various 4F and 5F catheters were unsuccessful owing to tortuosity, atherosclerotic disease, or occlusion of the catheter in the target vessel. Microcatheterization of the target vessel was successful in 59/62 (95%) target vessels. A diagnostic cerebral angiogram with a power injection was obtained in 59 (100%) of the successfully catheterized vessels. In one case, angiography proceeded to aneurysm coiling after over-the-wire exchange. In two cases, angiography proceeded to mechanical thrombectomy after over-the-wire exchange. No procedural complications were seen. The 2.8F Progreat microcatheter can be used to obtain a diagnostic cerebral angiogram in patients with anatomic challenges limiting catheterization by standard techniques. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  4. Can Combined Bypass Surgery at Middle Cerebral Artery Territory Save Anterior Cerebral Artery Territory in Adult Moyamoya Disease?

    PubMed

    Cho, Won-Sang; Kim, Jeong Eun; Paeng, Jin Chul; Suh, Minseok; Kim, Yong-Il; Kang, Hyun-Seung; Son, Young Je; Bang, Jae Seung; Oh, Chang Wan

    2017-03-01

    Patients with moyamoya disease are frequently encountered with improved symptoms related to anterior cerebral artery territory (ACAt) and middle cerebral artery territory (MCAt) after bypass surgery at MCAt. To evaluate hemodynamic changes in MCAt and ACAt after bypass surgery in adult moyamoya disease. Combined bypass surgery was performed on 140 hemispheres in 126 patients with MCAt symptoms. Among them, 87 hemispheres (62.1%) accompanied preoperative ACAt symptoms. Clinical, hemodynamic, and angiographic states were evaluated preoperatively and approximately 6 months after surgery. Preoperative symptoms resolved in 127 MCAt (90.7%) and 82 ACAt (94.3%). Hemodynamic analysis of total patients showed a significant improvement in MCAt basal perfusion and reservoir capacity ( P < .001 and P = .002, respectively) and ACAt basal perfusion ( P = .001). In a subgroup analysis, 82 hemispheres that completely recovered from preoperative ACAt symptoms showed a significant improvement in MCAt basal perfusion and reservoir capacity ( P < .001 and P = .05, respectively) and ACAt basal perfusion ( P = .04). Meanwhile, 53 hemispheres that had never experienced ACAt symptoms significantly improved MCAt basal perfusion and reservoir capacity ( P < .001 and P = .05, respectively); however, no ACAt changes were observed. A qualitative angiographic analysis demonstrated a higher trend of leptomeningeal formation from MCAt to ACAt in the former subgroup ( P = .05). During follow-up, no ACAt infarctions were observed. Combined bypass surgery at MCAt resulted in hemodynamic improvements in ACAt and MCAt, especially in patients with preoperative ACAt symptoms. Copyright © 2017 by the Congress of Neurological Surgeons

  5. Heterogeneity in Kv7 channel function in the cerebral and coronary circulation.

    PubMed

    Lee, Sewon; Yang, Yan; Tanner, Miles A; Li, Min; Hill, Michael A

    2015-02-01

    Kv7 channels are considered important regulators of vascular smooth muscle contractility. The present study aimed to examine the hypotheses that (i) Kv7 channels are present in mouse cerebral and coronary arteries and regulate vascular reactivity and (ii) regional differences exist in the activity of these channels. PCR confirmed that basilar, Circle of Willis and LAD arteries express predominantly Kv7.1 and 7.4. Western blot analysis, however, showed greater Kv7.4 protein levels in the cerebral vessels. Relaxation to the Kv7 channel activator, retigabine (1-50 μM) was significantly greater in the basilar artery compared to the LAD artery. Similarly, the Kv7 channel inhibitor, linopirdine (10 μM) caused a stronger contraction of the basilar artery. Furthermore, pre-incubation with linopirdine reduced forskolin (cAMP activator)-induced vasorelaxation in basilar while not altering forskolin-induced vasorelaxation of the LAD, suggesting that Kv7 channels play a more prominent role in the cerebral than in the coronary circulation. Consistent with the vessel data, whole cell Kv7 currents in cerebral VSMCs were potentiated by retigabine and inhibited by linopirdine, while these responses were blunted in coronary VSMCs. This study provides evidence that mouse Kv7 channels may contribute differently to regulating the functional properties of cerebral and coronary arteries. Such heterogeneity has important implications for developing novel therapeutics for cardiovascular dysfunction. © 2014 John Wiley & Sons Ltd.

  6. Periodontitis and coronary artery disease: a questioned association between periodontal and vascular plaques

    PubMed Central

    Thomopoulos, Costas; Tsioufis, Costas; Soldatos, Nikos; Kasiakogias, Alexandros; Stefanadis, Christodoulos

    2011-01-01

    Periodontitis is a bacterially-induced, localized chronic inflammatory disease destroying both the connective tissue and the supporting bone of the teeth. In the general population, severe forms of the disease demonstrate a prevalence of almost 5%, whereas initial epidemiological evidence suggests an association between periodontitis and coronary artery disease (CAD). Both the infectious nature of periodontitis and the yet etiologically unconfirmed infectious hypothesis of CAD, question their potential association. Ephemeral bacteremia, systemic inflammation and immune-pathological reactions constitute a triad of mechanisms supporting a cross-talk between periodontal and vascular damage. To which extent each of these periodontitis-mediated components contribute to vascular damage still remains uncertain. More than twenty years from the initial epidemiological association, the positive weight of evidence remains still alive but rather debated, because of both the presence of many uncontrolled confounding factors and the different assessment of periodontal disease. From the clinical point of view, advising periodontal prevention or treatment targeting on the prevention of CAD it is unjustified. By contrast, oral hygiene including periodontal health might contribute to the overall well-being and healthy lifestyle and hence as might at least partially contribute to cardiovascular prevention. PMID:22254188

  7. The use of Intravenous Laser Blood Irradiation (ILBI) at 630–640 nm to prevent vascular diseases and to increase life expectancy

    PubMed Central

    2015-01-01

    Background and Aims: The mortality rate from vascular diseases is one of the highest. The use of Intravenous Laser Blood Irradiation (ILBI) within the last 30 years has demonstrated high efficacy in the treatment of vascular, cardiac and other systemic diseases. Rationale: Laser energy at 630-640 nanometers is arguably the most effective for irradiation of blood and the vascular wall. Photons at this wavelength are absorbed by oxygen, improve microcirculation, can change the viscosity of the blood and affect vascular endothelium. Conclusions: In summary, more than 25 years of experience of using laser energy at 630-640 nm has shown that this waveband directly influences the parameters of all cells in the blood, blood plasma, the coagulation process and all the structural components of the vascular wall. Additionally, ILBI directly or indirectly affects the cells of the immune system, hormones, and exchange processes in an organism, thereby not only improving the function of the vascular system, but also the other systems of an organism. It can finally lead to lower the incidence and number of vascular diseases, and indirectly to the reduction of the number of diseases in other organs and even systemically, thus helping to prolong the lifespan. PMID:25941421

  8. Real-time estimation of paracellular permeability of cerebral endothelial cells by capacitance sensor array

    NASA Astrophysics Data System (ADS)

    Hyun Jo, Dong; Lee, Rimi; Hyoung Kim, Jin; Oh Jun, Hyoung; Geol Lee, Tae; Hun Kim, Jeong

    2015-06-01

    Vascular integrity is important in maintaining homeostasis of brain microenvironments. In various brain diseases including Alzheimer’s disease, stroke, and multiple sclerosis, increased paracellular permeability due to breakdown of blood-brain barrier is linked with initiation and progression of pathological conditions. We developed a capacitance sensor array to monitor dielectric responses of cerebral endothelial cell monolayer, which could be utilized to evaluate the integrity of brain microvasculature. Our system measured real-time capacitance values which demonstrated frequency- and time-dependent variations. With the measurement of capacitance at the frequency of 100 Hz, we could differentiate the effects of vascular endothelial growth factor (VEGF), a representative permeability-inducing factor, on endothelial cells and quantitatively analyse the normalized values. Interestingly, we showed differential capacitance values according to the status of endothelial cell monolayer, confluent or sparse, evidencing that the integrity of monolayer was associated with capacitance values. Another notable feature was that we could evaluate the expression of molecules in samples in our system with the reference of real-time capacitance values. We suggest that this dielectric spectroscopy system could be successfully implanted as a novel in vitro assay in the investigation of the roles of paracellular permeability in various brain diseases.

  9. Functional genomics indicate that schizophrenia may be an adult vascular-ischemic disorder

    PubMed Central

    Moises, H W; Wollschläger, D; Binder, H

    2015-01-01

    In search for the elusive schizophrenia pathway, candidate genes for the disorder from a discovery sample were localized within the energy-delivering and ischemia protection pathway. To test the adult vascular-ischemic (AVIH) and the competing neurodevelopmental hypothesis (NDH), functional genomic analyses of practically all available schizophrenia-associated genes from candidate gene, genome-wide association and postmortem expression studies were performed. Our results indicate a significant overrepresentation of genes involved in vascular function (P<0.001), vasoregulation (that is, perivascular (P<0.001) and shear stress (P<0.01), cerebral ischemia (P<0.001), neurodevelopment (P<0.001) and postischemic repair (P<0.001) among schizophrenia-associated genes from genetic association studies. These findings support both the NDH and the AVIH. The genes from postmortem studies showed an upregulation of vascular-ischemic genes (P=0.020) combined with downregulated synaptic (P=0.005) genes, and ND/repair (P=0.003) genes. Evidence for the AVIH and the NDH is critically discussed. We conclude that schizophrenia is probably a mild adult vascular-ischemic and postischemic repair disorder. Adult postischemic repair involves ND genes for adult neurogenesis, synaptic plasticity, glutamate and increased long-term potentiation of excitatory neurotransmission (i-LTP). Schizophrenia might be caused by the cerebral analog of microvascular angina. PMID:26261884

  10. Functional genomics indicate that schizophrenia may be an adult vascular-ischemic disorder.

    PubMed

    Moises, H W; Wollschläger, D; Binder, H

    2015-08-11

    In search for the elusive schizophrenia pathway, candidate genes for the disorder from a discovery sample were localized within the energy-delivering and ischemia protection pathway. To test the adult vascular-ischemic (AVIH) and the competing neurodevelopmental hypothesis (NDH), functional genomic analyses of practically all available schizophrenia-associated genes from candidate gene, genome-wide association and postmortem expression studies were performed. Our results indicate a significant overrepresentation of genes involved in vascular function (P < 0.001), vasoregulation (that is, perivascular (P < 0.001) and shear stress (P < 0.01), cerebral ischemia (P < 0.001), neurodevelopment (P < 0.001) and postischemic repair (P < 0.001) among schizophrenia-associated genes from genetic association studies. These findings support both the NDH and the AVIH. The genes from postmortem studies showed an upregulation of vascular-ischemic genes (P = 0.020) combined with downregulated synaptic (P = 0.005) genes, and ND/repair (P = 0.003) genes. Evidence for the AVIH and the NDH is critically discussed. We conclude that schizophrenia is probably a mild adult vascular-ischemic and postischemic repair disorder. Adult postischemic repair involves ND genes for adult neurogenesis, synaptic plasticity, glutamate and increased long-term potentiation of excitatory neurotransmission (i-LTP). Schizophrenia might be caused by the cerebral analog of microvascular angina.

  11. The potential roles of metallothionein as a therapeutic target for cerebral ischemia and retinal diseases.

    PubMed

    Ito, Yasushi; Tanaka, Hirotaka; Hara, Hideaki

    2013-01-01

    Methallothionein (MT) is a low molecular weight cysteine rich metalloprotein. In mammals, there are four isoforms (MT-1, -2, -3, and -4) and they have multiple roles, such as the detoxification of heavy metals, regulating essential metal homeostasis, and protecting against oxidative stress. Recently, accumulating studies have suggested that MTs (especially MT-1, -2, and -3) are an important neuroprotective substance for cerebral ischemia and retinal diseases, such as age-related macular degeneration (AMD) and retinitis pigmentosa (RP), that are characterized by a progressive retinal degeneration. Oxidative stress and/or zinc toxicity has been implicated as part of the common pathway in these diseases. Studying the expression patterns and functions of MTs may broaden our understanding of the endogenous molecular responses that these diseases trigger, and may help us to develop new therapeutic strategies to treat them. However, the precise roles of MTs within the brain and retina are not fully understood in terms of neuropathological conditions. In this review, we discuss the recent findings focusing on MTs' functions following cerebral ischemia, AMD, and RP.

  12. Measurement of leukocyte rheology in vascular disease: clinical rationale and methodology. International Society of Clinical Hemorheology.

    PubMed

    Wautier, J L; Schmid-Schönbein, G W; Nash, G B

    1999-01-01

    The measurement of leukocyte rheology in vascular disease is a recent development with a wide range of new opportunities. The International Society of Clinical Hemorheology has asked an expert panel to propose guidelines for the investigation of leukocyte rheology in clinical situations. This article first discusses the mechanical, adhesive and related functional properties of leukocytes (especially neutrophils) which influence their circulation, and establishes the rationale for clinically-related measurements of parameters which describe them. It is concluded that quantitation of leukocyte adhesion molecules, and of their endothelial receptors may assist understanding of leukocyte behaviour in vascular disease, along with measurements of flow resistance of leukocytes, free radical production, degranulation and gene expression. For instance, vascular cell adhesion molecule (VCAM-1) is abnormally present on endothelial cells in atherosclerosis, diabetes mellitus and inflammatory conditions. Soluble forms of intercellular adhesion molecule (ICAM-1) or VCAM can be found elevated in the blood of patients with rheumatoid arthritis or infections disease. In the second part of the article, possible technical approaches are presented and possible avenues for leukocyte rheological investigations are discussed.

  13. A Highly Similar Mathematical Model for Cerebral Blood Flow Velocity in Geriatric Patients with Suspected Cerebrovascular Disease

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Li, Qi; Wang, Jisheng; Xiang, Hu; Ge, Hong; Wang, Hui; Xie, Peng

    2015-10-01

    Cerebral blood flow velocity(CBFV) is an important parameter for study of cerebral hemodynamics. However, a simple and highly similar mathematical model has not yet been established for analyzing CBFV. To alleviate this issue, through TCD examination in 100 geriatric patients with suspected cerebrovascular disease (46 males and 54 females), we established a representative eighth-order Fourier function Vx(t) that simulates the CBFV. The measured TCD waveforms were compared to those derived from Vx(t), an illustrative Kolmogorov-Smirnov test was employed to determine the validity. The results showed that the TCD waves could been reconstructed for patients with different CBFVs by implementing their variable heart rates and the formulated maximum/minimum of Vx(t). Comparisons between derived and measured TCD waveforms suggest that the two waveforms are very similar. The results confirm that CBFV can be well-modeled through an eighth-order Fourier function. This function Vx(t) can be used extensively for a prospective study of cerebral hemodynamics in geriatric patients with suspected cerebrovascular disease.

  14. Brain atrophy and cerebral small vessel disease: a prospective follow-up study.

    PubMed

    Nitkunan, Arani; Lanfranconi, Silvia; Charlton, Rebecca A; Barrick, Thomas R; Markus, Hugh S

    2011-01-01

    cerebral small vessel disease (SVD) is the most common cause of vascular dementia. Interest in the use of surrogate markers is increasing. The aims of this study were to determine if brain volume was different between patients with SVD and control subjects, whether it correlated with cognition in SVD, and whether changes in brain volume could be detected during prospective follow-up. thirty-five patients (mean age, 68.8 years) who had a lacunar stroke and radiological evidence of confluent leukoaraiosis and 70 age- and gender-matched control subjects were recruited. Whole-brain T1-weighted imaging and neuropsychological testing were performed after 1 year on all patients and after 2 years for the control subjects. Fully automated software was used to determine brain volume and percentage brain volume change. An executive function score was derived. there was a significant difference in brain volume between the patients with SVD and control subjects (mean ± SD [mL] 1529 ± 84 versus 1573 ± 69, P=0.019). In the patients with SVD, there was a significant association between brain volume and executive function (r=0.501, P<0.05). The mean ± SD yearly brain atrophy rate for patients with SVD and control subjects was significantly different (-0.914% ± 0.8% versus -0.498% ± 0.4%, respectively, P=0.017). No change in executive function score was detected over this period. brain volume is reduced in SVD and a decline is detectable prospectively. The correlation with executive function at a cross-sectional level and the change in brain volume with time are both promising for the use of brain atrophy as a surrogate marker of SVD progression.

  15. Low systolic blood pressure and mortality from all causes and vascular diseases among older middle-aged men: Korean Veterans Health Study.

    PubMed

    Yi, Sang-Wook; Ohrr, Heechoul

    2015-03-01

    Recently, low systolic blood pressure (SBP) was found to be associated with an increased risk of death from vascular diseases in a rural elderly population in Korea. However, evidence on the association between low SBP and vascular diseases is scarce. The aim of this study was to prospectively examine the association between low SBP and mortality from all causes and vascular diseases in older middle-aged Korean men. From 2004 to 2010, 94 085 Korean Vietnam War veterans were followed-up for deaths. The adjusted hazard ratios (aHR) were calculated using the Cox proportional hazard model. A stratified analysis was conducted by age at enrollment. SBP was self-reported by a postal survey in 2004. Among the participants aged 60 and older, the lowest SBP (<90 mmHg) category had an elevated aHR for mortality from all causes (aHR, 1.9; 95% confidence interval [CI], 1.2 to 3.1) and vascular diseases (International Classification of Disease, 10th revision, I00-I99; aHR, 3.2; 95% CI, 1.2 to 8.4) compared to those with an SBP of 100 to 119 mmHg. Those with an SBP below 80 mmHg (aHR, 4.5; 95% CI, 1.1 to 18.8) and those with an SBP of 80 to 89 mmHg (aHR, 3.1; 95% CI, 0.9 to 10.2) also had an increased risk of vascular mortality, compared to those with an SBP of 90 to 119 mmHg. This association was sustained when excluding the first two years of follow-up or preexisting vascular diseases. In men younger than 60 years, the association of low SBP was weaker than that in those aged 60 years or older. Our findings suggest that low SBP (<90 mmHg) may increase vascular mortality in Korean men aged 60 years or older.

  16. Effects of Anacetrapib in Patients with Atherosclerotic Vascular Disease.

    PubMed

    Bowman, Louise; Hopewell, Jemma C; Chen, Fang; Wallendszus, Karl; Stevens, William; Collins, Rory; Wiviott, Stephen D; Cannon, Christopher P; Braunwald, Eugene; Sammons, Emily; Landray, Martin J

    2017-09-28

    Patients with atherosclerotic vascular disease remain at high risk for cardiovascular events despite effective statin-based treatment of low-density lipoprotein (LDL) cholesterol levels. The inhibition of cholesteryl ester transfer protein (CETP) by anacetrapib reduces LDL cholesterol levels and increases high-density lipoprotein (HDL) cholesterol levels. However, trials of other CETP inhibitors have shown neutral or adverse effects on cardiovascular outcomes. We conducted a randomized, double-blind, placebo-controlled trial involving 30,449 adults with atherosclerotic vascular disease who were receiving intensive atorvastatin therapy and who had a mean LDL cholesterol level of 61 mg per deciliter (1.58 mmol per liter), a mean non-HDL cholesterol level of 92 mg per deciliter (2.38 mmol per liter), and a mean HDL cholesterol level of 40 mg per deciliter (1.03 mmol per liter). The patients were assigned to receive either 100 mg of anacetrapib once daily (15,225 patients) or matching placebo (15,224 patients). The primary outcome was the first major coronary event, a composite of coronary death, myocardial infarction, or coronary revascularization. During the median follow-up period of 4.1 years, the primary outcome occurred in significantly fewer patients in the anacetrapib group than in the placebo group (1640 of 15,225 patients [10.8%] vs. 1803 of 15,224 patients [11.8%]; rate ratio, 0.91; 95% confidence interval, 0.85 to 0.97; P=0.004). The relative difference in risk was similar across multiple prespecified subgroups. At the trial midpoint, the mean level of HDL cholesterol was higher by 43 mg per deciliter (1.12 mmol per liter) in the anacetrapib group than in the placebo group (a relative difference of 104%), and the mean level of non-HDL cholesterol was lower by 17 mg per deciliter (0.44 mmol per liter), a relative difference of -18%. There were no significant between-group differences in the risk of death, cancer, or other serious adverse events. Among

  17. A population neuroscience approach to the study of cerebral small vessel disease in mid- and late-life: an Invited Review.

    PubMed

    Jorgensen, Dana R; Shaaban, C Elizabeth; Wiley, Clayton A; Gianaros, Peter J; Mettenburg, Joseph; Rosano, Caterina

    2018-02-02

    Aging in later life engenders numerous changes to the cerebral microvasculature. Such changes can remain clinically silent, but are associated with greater risk for negative health outcomes over time. Knowledge is limited about the pathogenesis, prevention, and treatment of potentially detrimental changes in the cerebral microvasculature that occur with advancing age. In this review, we summarize literature on aging of the cerebral microvasculature, and we propose a conceptual framework to fill existing research gaps and advance future work on this heterogeneous phenomenon. We propose that the major gaps in this area are attributable to an incomplete characterization of cerebrovascular pathology, the populations being studied, and the temporality of exposure to risk factors. Specifically, currently available measures of age-related cerebral microvasculature changes are indirect, primarily related to parenchymal damage rather than direct quantification of small vessel damage-limiting the understanding of cerebral small vessel disease (cSVD) itself. Moreover, studies seldom account for variability in the health-related conditions or interactions with risk factors, which are likely determinants of cSVD pathogenesis. Lastly, study designs are predominantly cross-sectional, and/or have relied on single time point measures, leaving no clear evidence of time trajectories of risk factors or of change in cerebral microvasculature. We argue that more resources should be invested in (1) developing methodological approaches and basic science models to better understand the pathogenic and etiological nature of age-related brain microvascular diseases, and (2) implementing state-of-the-science population study designs that account for the temporal evolution of cerebral microvascular changes in diverse populations across the life-span.

  18. Cryptotanshinone exhibits therapeutical effects on cerebral stroke through the PI3K/AKT‑eNOS signaling pathway.

    PubMed

    Zhu, Weixin; Qiu, Weihong; Lu, Ailan

    2017-12-01

    Cerebral stroke is a kind of acute cerebrovascular disease with high incidence, morbidity and disability. Treatments against various types of cerebral stroke are limited at preventive measurements due to the lack of effective therapeutic method. The present study aimed to investigate the protective effect of cryptotanshinone (CPT) on cerebral stroke, and investigate the possible mechanism involved in order to develop a novel therapy against stoke. The phosphoinositide 3‑kinase membrane translocation of cerebral stroke rats pretreated with CPT at various concentrations were measured, as well as the phosphorylation of protein kinase B (AKT) and endothelial nitric oxide synthase (eNOS). Additionally, the expression level of B‑cell lymphoma 2 (Bcl‑2), Bcl‑2‑associated X protein (Bax) and vascular endothelial growth factor were also assessed using western blotting and reverse transcription‑quantitative polymerase chain reaction. Furthermore, biochemical tests were used to measure the activity of superoxide dismutase (SOD), malondialdehyde (MDA) and nitric oxide (NO) in both the cerebral cortex and peripheral blood. As a result, CPT‑pretreated rats presented declined phosphoinositide 3‑kinase (PI3K) and AKT expression levels, indicating that the PI3K/AKT signaling pathway was inhibited. Increased Bcl‑2 and NO levels in both the cerebral cortex and peripheral blood demonstrated the anti‑apoptosis and blood vessel protection effect of CPT. Furthermore, increased SOD activity and declined MDA levels demonstrated suppressed lipid peroxidation. In conclusion, CPT exhibited a protective effect against cerebral stroke through inhibition of the PI3K/AKT‑eNOS signaling pathway. These results suggested the potential of CPT as a promising agent in the treatment of cerebral stroke.

  19. Vascular cognitive impairment and dementia.

    PubMed

    Gorelick, Philip B; Counts, Scott E; Nyenhuis, David

    2016-05-01

    Vascular contributions to cognitive impairment are receiving heightened attention as potentially modifiable factors for dementias of later life. These factors have now been linked not only to vascular cognitive disorders but also Alzheimer's disease. In this chapter we review 3 related topics that address vascular contributions to cognitive impairment: 1. vascular pathogenesis and mechanisms; 2. neuropsychological and neuroimaging phenotypic manifestations of cerebrovascular disease; and 3. prospects for prevention of cognitive impairment of later life based on cardiovascular and stroke risk modification. This article is part of a Special Issue entitled: Vascular Contributions to Cognitive Impairment and Dementia edited by M. Paul Murphy, Roderick A. Corriveau and Donna M. Wilcock. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Medical management of moyamoya disease and recurrent stroke in an infant with Majewski osteodysplastic primordial dwarfism type II (MOPD II).

    PubMed

    Kılıç, Esra; Utine, Eda; Unal, Sule; Haliloğlu, Göknur; Oğuz, Kader Karli; Cetin, Mualla; Boduroğlu, Koray; Alanay, Yasemin

    2012-10-01

    We report an infant diagnosed with Majewski osteodysplastic primordial dwarfism type II at age 8 months, who experienced cerebrovascular morbidities related to this entity. Molecular analysis identified c.2609+1 G>A, intron 14, homozygous splice site mutation in the pericentrin gene. At age 18 months, she developed recurrent strokes and hemiparesis. Brain magnetic resonance imaging and magnetic resonance angiography showed abnormal gyral pattern, cortical acute infarcts, bilateral stenosis of the internal carotid arteries and reduced flow on the cerebral arteries, consistent with moyamoya disease. In Majewski osteodysplastic primordial dwarfism type II, life expectancy is reduced because of high risk of stroke secondary to cerebral vascular anomalies (aneurysms, moyamoya disease). Periodic screening for vascular events is recommended in individuals with Majewski osteodysplastic primordial dwarfism type II every 12-18 months following diagnosis. Our patient was medically managed with low molecular weight heparin followed with aspirin prophylaxis, in addition to carbamazepine and physical rehabilitation. We report an infant with moyamoya disease and recurrent stroke presenting 10 months after diagnosis (at age 18 months), and discuss the outcome of nonsurgical medical management. The presented case is the second youngest case developing stroke and moyamoya disease.