Science.gov

Sample records for cerebratulus lacteus cytolysin

  1. Functional interaction between Cerebratulus lacteus cytolysin A-III and phospholipase A/sub 2/

    SciTech Connect

    Liu, J.; Blumenthal, K.M.

    1988-05-15

    A study on the interaction between bee venom phospholipase A/sub 2/ and Cerebratulus lacteus cytolysin A-III, a major hemolysin secreted by this organism has been carried out. The hemolytic activity of A-III in phosphate-buffered saline is increased 5-fold in the presence of phospholipase A/sub 2/ from bee venom. Dansylphosphatidylethanolamine (DPE) labeled, phosphatidylcholine-containing liposomes and human erythrocyte membranes were employed to study the interaction between these two proteins. In DPE-liposomes, A-III alone had no effect on DPE fluorescence nor did it enhance either the phospholipase A/sub 2/-dependent fluorescence increase or blue shift in emission maximum, indicating that the cytolysis is not a major phospholipase A/sub 2/-activator. However, when DPE was incorporated into erythrocyte membranes, A-III alone induced a 40% fluorescence increase and a 5 nm blue shift, implying a transient activation of an endogenous phospholipase A/sub 2/. Further studies using synthetic lysophosphatidylcholine and free fatty acids demonstrated that the hemolytic activity of A-III is potentiated by free fatty acids, a product of phospholipid degradation catalyzed by phospholipase A/sub 2/. Subsequent analysis of this phenomenon by gel filtration chromatography, analytical ultracentrifugation, chemical cross-linking, and measurement of (/sup 14/C)oleic acid binding by the cytolysin demonstrated that binding of oleic acid to A-III causes aggregation of the toxin molecules to a tetrameric form which has a higher ..cap alpha..-helix content and a greater activity than the monomer.

  2. Structure and membrane actions of a marine worm protein cytolysin, Cerebratulus toxin A-III.

    PubMed

    Kem, W R

    1994-02-28

    Four homologous Cerebratulus lacteus A toxins are the first and as yet only protein cytolysins to be isolated from an ancient phylum of marine worms, the nemertines. The most abundant and toxic variant, toxin A-III, has been sequenced and its mechanisms of action studied in the most detail. It consists of a single basic polypeptide chain of 95 amino acid residues cross-linked by three disulfide bonds, and possesses a predominantly alpha-helical secondary structure. The C-terminal third of the toxin sequence is postulated to be a helical 'hairpin' structure involved in pore formation. Toxin A-III permeabilizes a variety of cells as well as liposomes made from a variety of phospholipids; apparently large pores are formed, as large proteins are released almost as rapidly as small organic molecules and inorganic ions. At sublytic concentrations, the toxin also inhibits protein kinase C and endogenous voltage-gated cation selective (sodium, calcium) channels occurring in the nervous and cardiovascular systems. A curious observation, also reported for colicins and some other protein cytolysins, was the conservation of toxin secondary structure upon insertion into phospholipid liposomes, despite the strong likelihood that significant changes in tertiary structure occur to provide a hydrophobic surface for interaction with membrane lipids. Because of its small size and presumed single helical hairpin secondary structure, Cl toxin A-III is an excellent molecular subject for investigating protein insertion into biological membranes and mechanisms of pore formation.

  3. Ligand Migration in the Apolar Tunnel of Cerebratulus lacteus Mini-Hemoglobin*

    PubMed Central

    Pesce, Alessandra; Nardini, Marco; Dewilde, Sylvia; Capece, Luciana; Martí, Marcelo A.; Congia, Sonia; Salter, Mallory D.; Blouin, George C.; Estrin, Darío A.; Ascenzi, Paolo; Moens, Luc; Bolognesi, Martino; Olson, John S.

    2011-01-01

    The large apolar tunnel traversing the mini-hemoglobin from Cerebratulus lacteus (CerHb) has been examined by x-ray crystallography, ligand binding kinetics, and molecular dynamic simulations. The addition of 10 atm of xenon causes loss of diffraction in wild-type (wt) CerHbO2 crystals, but Leu-86(G12)Ala CerHbO2, which has an increased tunnel volume, stably accommodates two discrete xenon atoms: one adjacent to Leu-86(G12) and another near Ala-55(E18). Molecular dynamics simulations of ligand migration in wt CerHb show a low energy pathway through the apolar tunnel when Leu or Ala, but not Phe or Trp, is present at the 86(G12) position. The addition of 10–15 atm of xenon to solutions of wt CerHbCO and L86A CerHbCO causes 2–3-fold increases in the fraction of geminate ligand recombination, indicating that the bound xenon blocks CO escape. This idea was confirmed by L86F and L86W mutations, which cause even larger increases in the fraction of geminate CO rebinding, 2–5-fold decreases in the bimolecular rate constants for ligand entry, and large increases in the computed energy barriers for ligand movement through the apolar tunnel. Both the addition of xenon to the L86A mutant and oxidation of wt CerHb heme iron cause the appearance of an out Gln-44(E7) conformer, in which the amide side chain points out toward the solvent and appears to lower the barrier for ligand escape through the E7 gate. However, the observed kinetics suggest little entry and escape (≤25%) through the E7 pathway, presumably because the in Gln-44(E7) conformer is thermodynamically favored. PMID:21147768

  4. High resolution crystal structures of the Cerebratulus lacteus mini-Hb in the unligated and carbomonoxy states.

    PubMed

    Germani, Francesca; Pesce, Alessandra; Venturini, Andrea; Moens, Luc; Bolognesi, Martino; Dewilde, Sylvia; Nardini, Marco

    2012-01-01

    The nerve tissue mini-hemoglobin from Cerebratulus lacteus (CerHb) displays an essential globin fold hosting a protein matrix tunnel held to allow traffic of small ligands to and from the heme. CerHb heme pocket hosts the distal TyrB10/GlnE7 pair, normally linked to low rates of O(2) dissociation and ultra-high O(2) affinity. However, CerHb affinity for O(2) is similar to that of mammalian myoglobins, due to a dynamic equilibrium between high and low affinity states driven by the ability of ThrE11 to orient the TyrB10 OH group relative to the heme ligand. We present here the high resolution crystal structures of CerHb in the unligated and carbomonoxy states. Although CO binds to the heme with an orientation different from the O(2) ligand, the overall binding schemes for CO and O(2) are essentially the same, both ligands being stabilized through a network of hydrogen bonds based on TyrB10, GlnE7, and ThrE11. No dramatic protein structural changes are needed to support binding of the ligands, which can freely reach the heme distal site through the apolar tunnel. A lack of main conformational changes between the heme-unligated and -ligated states grants stability to the folded mini-Hb and is a prerequisite for fast ligand diffusion to/from the heme.

  5. Membrane damage by cytolysin A-III: effects of monovalent and divalent cations

    SciTech Connect

    Liu, J.; Blumenthal, K.M.

    1987-05-01

    The effects of monovalent and divalent cations on the hemolytic activity of Cerebratulus lacteus toxin A-III were studied. In PBS buffer, A-III activity is strongly inhibited by increasing the osmotic pressure with sodium chloride but not with sucrose. Different salts, whether permeant or impermeant show qualitatively similar inhibitory effects. In low ionic strength isotonic buffer the hemolytic activity of A-III is remarkably increased, the HC50 being shifted from 2 ..mu..g/ml to 20-30 ng/ml in Hepes-sucrose. This corresponds to a 50-100 fold increase in activity. The divalent cations Zn/sup 2 +/ and Ca/sup 2 +/ also inhibit A-III activity, 0.3 mM Zn/sup 2 +/ totally abolishing A-III dependent hemolysis of human erythrocytes. Analogous studies on marker release from liposomes suggested that the effect of Zn/sup 2 +/ is due to its interaction with phospholipids. Inhibition of A-III activity by both mono and divalent cations is compatible with the importance of membrane surface potential in cytolysis. Screening of the surface potential by cations decreases membrane damage by A-III. Their data suggest a direct effect of cations on membrane phospholipid and are, to their knowledge, the first to show that cytolysin activity can be enhanced by decreasing ionic strength, in contrast to data obtained previously with other cytolysins.

  6. Cholesterol-dependent cytolysins.

    PubMed

    Gilbert, Robert J C

    2010-01-01

    The cholesterol-dependent cytolysins (CDCs) are part of a large family of pore-forming proteins that include the human proteins perforin and the complement membrane attack complex. The activity of all family members is focused on membranes, but the proteins are themselves involved in a diverse range of phenomena. An overview of some of these phenomena is provided here, along with an historical perspective of CDCs themselves and how our understanding of their mechanism of action has developed over the years. The way in which pore formation depends on specific characteristics of the membrane under attack as well as of the protein doing the attacking is emphasised. The cholesterol-dependent cytolysins (CDCs) have been the focus of a renewed keen research interest for over ten years now. Their importance has been even further enhanced by the homology now identified between them and the membrane attack complex/perforin (MACPF) family of proteins, which includes several components of the complement cascade as well as perforin itself. In this chapter I aim to provide an overview of our understanding of the interaction between CDCs and other members of what is now called the MACPF/CDC superfamily, with their target membranes. CDCs (also in the past known as thiol-activated toxins or cholesterol-binding toxins) were originally identified from four Gram-positive bacterial genera (Clostridium, Listeria, Bacillus and Streptococcus). Well-known examples include listeriolysin, perfringolysin, streptolysin and pneumoysin. Listeriolysin from L. monocytogenes is responsible for the escape of bacteria from the phagosome to colonise the cytoplasm and has been applied as a protein adjuvant in the development of vaccines against cancer and tuberculosis, for example. Perfringolysin from C. perfringens (Fig. 1A) has become perhaps the most studied CDC4 and has an important role in pathology associated with infection (gangrene). Streptolysin from S. pyogenes is another intensely studied

  7. DNA barcoding should accompany taxonomy - the case of Cerebratulus spp (Nemertea).

    PubMed

    Sundberg, P; Thuroczy Vodoti, E; Strand, M

    2010-03-01

    Many issues in DNA barcoding need to be solved before it can reach its goal to become a general database for species identification. While species delimitations are more or less well established in several taxa, there are still many groups where this is not the case. Without the proper taxonomic background/knowledge and corroboration with other kinds of data, the DNA barcoding approach may fail to identify species accurately. The classification and taxonomy of phylum Nemertea (nemerteans, ribbon worms) are traditionally based on morphology, but are not corroborated by an increasing amount of genetic data when it comes to classification either into species or into higher taxa. The taxonomy of the phylum needs to be improved before the full potential of DNA barcoding can be utilized to make sure that valid Linnean names accompany the barcode sequences. We illustrate the problematic situation in the phylum Nemertea by a case study from the genus Cerebratulus.

  8. Isotopic fingerprints of bacterial chemosymbiosis in the bivalve Loripes lacteus

    NASA Astrophysics Data System (ADS)

    Dreier, A.; Stannek, L.; Blumenberg, M.; Taviani, M.; Sigovini, M.; Wrede, C.; Thiel, V.; Hoppert, M.

    2012-04-01

    Metazoans with chemosynthetic bacterial endosymbionts are widespread in marine habitats and respective endosymbioses are known from seven recent animal phyla. However, little is known about endosymbioses in fossil settings and, hence, ecological significance in earth history. In the presented project, we investigate the ancient and recent bivalve fauna living at marine sedimentary oxic/anoxic interfaces. Two bivalve species collected from the same benthic environment - a Mediterranean lagoon - were studied in detail. The diet of Loripes lacteus is based on thiotrophic gill symbionts whereas Venerupis aureus is a filter feeding bivalve without symbionts. The presence of three key enzymes from sulfur oxidation (APS-reductase), carbon fixation (RubisCO) and assimilation of nitrogen (glutamine synthetase [GS]) were detected by immunofluorescence in symbionts of Loripes and/or by activity tests in living specimens. In search of biosignatures associated with thiotrophic chemosymbionts that might be suitable for detection of chemosymbiotic diets in recent and fossil bivalve shells, we analyzed the isotopic composition of shell lipids (δ13C) and the bulk organic matrix of the shell (δ13C, δ15N, δ34S). We could show that the combined δ15N and δ13C values from shell extracts are stable in subfossil (Pleistocene) bivalve specimens, as long as the isotopic data is "calibrated" with respective signatures from a filter feeding bivalve sampled from the same site or lithostratigraphic bed.

  9. Enterococcus faecalis cytolysin without effect on the intestinal growth of susceptible enterococci in mice.

    PubMed

    Huycke, M M; Joyce, W A; Gilmore, M S

    1995-07-01

    A murine model was developed to determine whether the Enterococcus faecalis cytolysin, through its bacteriolytic action on gram-positive bacteria, could promote intestinal overgrowth of cytolytic strains. Sets of E. faecalis strains with varying cytolytic production and susceptibility to cytolytic activity were mixed 1:1 and allowed to compete in vitro in broth or in vivo after orogastric administration in mice pretreated with antibiotics. In general, cytolytic strains outgrew, by as much as 2000-fold, competing cytolysin-susceptible or -hypersusceptible strains in vitro. In contrast, no growth advantage was observed in vivo, despite similar transient colonization of the murine intestinal tract by both cytolytic and cytolysin-susceptible strains. These data suggest that cytolysin plays little role in promoting intestinal overgrowth of enterococci through bacteriolytic activity. PMID:7797930

  10. Cell damage by cytolysin. Spontaneous recovery and reversible inhibition by divalent cations

    SciTech Connect

    Bashford, C.L.; Menestrina, G.; Henkart, P.A.; Pasternak, C.A.

    1988-12-01

    Cytolysin-induced membrane damage (which requires low Ca2+) has been studied 1) in E by assay of hemolysis, 2) in Lettre cells by measurement of transmembrane potential, intracellular content of K+ and Na+, leakage of phosphoryl(3H)choline or 51Cr from (3H)choline-labeled or 51CrO4(2-)-labeled cells and leakage of lactate dehydrogenase, and 3) in phospholipid bilayers by measurement of electrical conductivity changes. In Lettre cells, damage is restricted and reversible: little lactate dehydrogenase leaks from cells that leak substantial amounts of Na+, K+, and phosphoryl(3H)choline; at low amounts of cytolysin, membrane potential and intracellular content of Na+ and K+ recover within minutes. In E and Lettre cells, membrane damage is inhibited by Zn2+, by high Ca2+, or by low pH. Inhibition is reversible: addition of EGTA to Zn2+-protected E or Lettre cells (incubated in the presence of cytolysin, low Ca2+ and Zn2+) initiates leakage; removal of Zn2+ (and cytolysin and Ca2+) by washing also initiates leakage; such leakage is again sensitive to Zn2+, high Ca2+, or H+. In phospholipid bilayers, channels induced by cytolysin (at low Ca2+) are partially closed by negative voltage; Ca2+, Zn2+, or H+ promote channel closure. Channels are re-opened (only partially in the case of Zn2+) by positive voltage. From all these results it is concluded that the action of cytolysin on membranes is similar to that of other pore-forming agents: damage does not necessarily lead to lysis of nucleated cells, and can be prevented by Ca2+, Zn2+, or H+.

  11. The diversity of receptor recognition in cholesterol-dependent cytolysins.

    PubMed

    Tabata, Atsushi; Ohkura, Kazuto; Ohkubo, Yukimasa; Tomoyasu, Toshifumi; Ohkuni, Hisashi; Whiley, Robert A; Nagamune, Hideaki

    2014-03-01

    Cholesterol-dependent cytolysins (CDCs) are bacterial pore-forming toxins secreted mainly by pathogenic Gram-positive bacteria. CDCs generally recognize and bind to membrane cholesterol to create pores and lyse target cells. However, in contrast to typical CDCs such as streptolysin O, several atypical CDCs have been reported. The first of these was intermedilysin, which is secreted by Streptococcus intermedius and has human cell-specificity, human CD59 (huCD59) being its receptor. In the study reported here, the diversity of receptor recognition among CDCs was investigated and multi-receptor recognition characteristics were identified within this toxin family. Streptococcus mitis-derived human platelet aggregation factor (Sm-hPAF) secreted by S. mitis strain Nm-65 isolated from a patient with Kawasaki disease was previously shown to hemolyze erythrocytes in a species-dependent manner, its maximum activity being in human cells. In the present study, it was found that Sm-hPAF recognizes both membrane cholesterol and huCD59 as receptors for triggering pore-formation. Moreover, vaginolysin (VLY) of Gardnerella vaginalis showed similar characteristics to Sm-hPAF regarding receptor recognition. On the basis of the results presented here, the mode of receptor recognition of CDCs can be categorized into the following three groups: (i) Group I, comprising typical CDCs with high affinity to cholesterol and no or very little affinity to huCD59; (ii) Group II, including atypical CDCs such as ILY, with no or very little affinity to cholesterol and high affinity to huCD59; and (iii) Group III, which contains atypical CDCs such as Sm-hPAF and VLY with affinity to both cholesterol and huCD59.

  12. Biodegradation and detoxification potential of rotating biological contactor (RBC) with Irpex lacteus for remediation of dye-containing wastewater.

    PubMed

    Malachova, Katerina; Rybkova, Zuzana; Sezimova, Hana; Cerven, Jiri; Novotny, Cenek

    2013-12-01

    Use of fungal organisms in rotating biological contactors (RBC) for bioremediation of liquid industrial wastes has so far been limited in spite of their significant biodegradation potential. The purpose was to investigate the power of RBC using Irpex lacteus for decolorization and detoxification of industrial dyes and dyeing textile liquors. Recalcitrant dye Methylene Blue (150 mg L(-1)) was decolorized within 70 days, its mutagenicity removed, and the biological toxicity decreased more than 10-fold. I. lacteus biofilm in the RBC completely decolorized within 26 and 47 days dyeing liquors containing disperse or reactive dyes adjusted to pH4.5 and 5-fold diluted with the growth medium, respectively. Their respective biological toxicity values were reduced 10- to 10(4)-fold in dependence of the test used. A battery of toxicity tests comprising Vibrio fisheri, Lemna minor and Sinapis alba was efficient to monitor the toxicity of textile dyes and wastewaters. Strong decolorization and detoxification power of RBC using I. lacteus biofilms was demonstrated.

  13. Biodecolorization and biodegradation of reactive Levafix Blue E-RA granulate dye by the white rot fungus Irpex lacteus.

    PubMed

    Kalpana, Duraisamy; Velmurugan, Natarajan; Shim, Jae Hong; Oh, Byung-Taek; Senthil, Kalaiselvi; Lee, Yang Soo

    2012-11-30

    The treatment of effluents from textile industry with microorganisms, especially bacteria and fungi, has recently gained attention. The present study was conducted using white rot fungi Irpex lacteus, Trametes hirsuta, Trametes sp., and Lentinula edodes for the decolorization of reactive textile Levafix Blue E-RA granulate dye. I. lacteus resulted in the best decolorization and degradation of the dye within four days. Therefore, more detailed studies were carried out using I. lacteus. The decolorization was evaluated at various concentration, pH values, and temperatures. The activities of laccase, manganese peroxidase, and lignin peroxidase enzymes were estimated to reveal the roles of enzymes in decolorization. The colorless nature of the fungal cells revealed that decolorization occurred through degradation, and confirmed by analysis of the metabolites by UV-visible spectroscopy and High Performance Liquid Chromatography after decolorization. The metabolites were identified by Gas Chromatography-Mass Spectrometry, and functional group analysis was performed by Fourier Transform Infrared Spectroscopy. The degraded dye metabolites were assessed for phytotoxicity using Vigna radiata and Brassica juncea, which demonstrated nontoxic nature of the metabolites formed after degradation of dye.

  14. Biodecolorization and biodegradation of reactive Levafix Blue E-RA granulate dye by the white rot fungus Irpex lacteus.

    PubMed

    Kalpana, Duraisamy; Velmurugan, Natarajan; Shim, Jae Hong; Oh, Byung-Taek; Senthil, Kalaiselvi; Lee, Yang Soo

    2012-11-30

    The treatment of effluents from textile industry with microorganisms, especially bacteria and fungi, has recently gained attention. The present study was conducted using white rot fungi Irpex lacteus, Trametes hirsuta, Trametes sp., and Lentinula edodes for the decolorization of reactive textile Levafix Blue E-RA granulate dye. I. lacteus resulted in the best decolorization and degradation of the dye within four days. Therefore, more detailed studies were carried out using I. lacteus. The decolorization was evaluated at various concentration, pH values, and temperatures. The activities of laccase, manganese peroxidase, and lignin peroxidase enzymes were estimated to reveal the roles of enzymes in decolorization. The colorless nature of the fungal cells revealed that decolorization occurred through degradation, and confirmed by analysis of the metabolites by UV-visible spectroscopy and High Performance Liquid Chromatography after decolorization. The metabolites were identified by Gas Chromatography-Mass Spectrometry, and functional group analysis was performed by Fourier Transform Infrared Spectroscopy. The degraded dye metabolites were assessed for phytotoxicity using Vigna radiata and Brassica juncea, which demonstrated nontoxic nature of the metabolites formed after degradation of dye. PMID:22846889

  15. Purification of thermostable α-galactosidase from Irpex lacteus and its use for hydrolysis of oligosaccharides.

    PubMed

    Guo, Yajie; Song, Yi; Qiu, Yi; Shao, Xiaoming; Wang, Hexiang; Song, Yuan

    2016-05-01

    A monomeric α-galactosidase (ILGI) from the mushroom Irpex lacteus was purified 94.19-fold to electrophoretic homogeneity. ILGI exhibited a specific activity of 18.36 U mg(-1) and demonstrated a molecular mass of 60 kDa in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). ILGI was optimally active at 80 °C and pH 5.0, and it was stable over a temperature range of 4-70 °C and a wide pH range of 2.0-12.0. ILGI was completely inactivated by Ag(+) and Hg(2+) ions and N-bromosuccinimide (NBS). Moreover, ILGI exhibited good resistance to proteases. Galactose acted as a noncompetitive inhibitor with Ki and Kis of 3.34 and 0.29 mM, respectively. The α-galactosidase presented a broad substrate specificity, which included p-nitrophenyl α-D-galactopyranoside (pNPGal), melibiose, stachyose, and raffinose with Km values of 1.27, 3.24, 7.1, and 22.12 mM, correspondingly. ILGI exhibited efficient and complete hydrolysis to raffinose and stachyose. The aforementioned features of this enzyme suggest its potential value in food and feed industries.

  16. Ponticoccus lacteus sp. nov. of the family Rhodobacteraceae, isolated from surface seawater.

    PubMed

    Yang, Yujie; Sun, Jia; Tang, Kai; Lin, Dan; Li, Chenlan; Lin, Yingfang

    2015-04-01

    A Gram-stain-negative, rod-shaped, non-motile, aerobic bacterium, strain JL351(T), was isolated from the surface seawater of the South China Sea. Phylogenetic analysis based on 16S rRNA gene sequences showed that the strain had a close relationship with members of the genera Ponticoccus , Antarctobacter and Sagittula , and the closest relative was Ponticoccus litoralis CL-GR66(T) (with 96.56% 16S rRNA gene sequence similarity). The polar lipids of strain JL351(T) comprised diphosphatidylglycerol, phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, three unidentified aminolipids, three unidentified phospholipids and an unidentified glycolipid. The predominant isoprenoid quinone was Q-10. The major fatty acids were C(18 : 1)ω7c (60.9%), C(18 : 0) (13.7%), C(16 : 0) (9.4%), 11-methyl C(18 : 1)ω7c (4.5%), and C(12 : 1) 3-OH (4.4%). The DNA G+C content was 66.2 mol%. Based on phenotypic, phylogenetic and genotypic data, strain JL351(T) is considered to represent a novel species in the genus Ponticoccus , for which the name Ponticoccus lacteus sp. nov. is proposed. The type strain is JL351(T) ( = CGMCC 1.12986(T) = JCM 30379(T)).

  17. A cleavable cytolysin-neuropeptide Y bioconjugate enables specific drug delivery and demonstrates intracellular mode of action.

    PubMed

    Ahrens, Verena M; Kostelnik, Katja B; Rennert, Robert; Böhme, David; Kalkhof, Stefan; Kosel, David; Weber, Lutz; von Bergen, Martin; Beck-Sickinger, Annette G

    2015-07-10

    Myxobacterial tubulysins are promising chemotherapeutics inhibiting microtubule polymerization, however, high unspecific toxicity so far prevents their application in therapy. For selective cancer cell targeting, here the coupling of a synthetic cytolysin to the hY1-receptor preferring peptide [F(7),P(34)]-neuropeptide Y (NPY) using a labile disulfide linker is described. Since hY1-receptors are overexpressed in breast tumors and internalize rapidly, this system has high potential as peptide-drug shuttle system. Molecular characterization of the cytolysin-[F(7),P(34)]-NPY bioconjugate revealed potent receptor activation and receptor-selective internalization, while viability studies verified toxicity. Triple SILAC studies comparing free cytolysin with the bioconjugate demonstrated an intracellular mechanism of action regardless of the delivery pathway. Treatments resulted in a regulation of proteins implemented in cell cycle arrest confirming the tubulysin-like effect of the cytolysin. Thus, the cytolysin-peptide bioconjugate fused by a cleavable linker enables a receptor-specific delivery as well as a potent intracellular drug-release with high cytotoxic activity.

  18. Purification and characterization of two Listeria ivanovii cytolysins, a sphingomyelinase C and a thiol-activated toxin (ivanolysin O).

    PubMed Central

    Vazquez-Boland, J A; Dominguez, L; Rodriguez-Ferri, E F; Suarez, G

    1989-01-01

    The strong bizonal hemolysis on blood agar and the positive CAMP reaction with Rhodococcus equi denotes the production of two different cytolytic factors by Listeria ivanovii. One was characterized as a thiol-activated (SH) cytolysin of 61 kilodaltons and was termed ivanolysin O (ILO) since data suggested that it is different from listeriolysin O, the SH-cytolysin produced by Listeria monocytogenes. The other is a 27-kilodalton hemolytic sphingomyelinase C that was found to be the cytolytic factor responsible for the halo of incomplete hemolysis synergistically enhanced by R. equi exosubstances. When thiol-disulfide exchange affinity chromatography and gel filtration were applied to the purification of ILO from concentrated L. ivanovii culture supernatants, the copurification of the two cytolysins was observed. This phenomenon seems to be due to the formation of intermolecular disulfide bonds between ILO and the sphingomyelinase, since the latter was found to contain free SH groups, not essential for the activity. These SH groups could react with the single cysteine residue characteristically present in the SH-cytolysins, forming a dimeric cytolytic complex. The purification of ILO was achieved by a further gel filtration with a reducing agent (dithiothreitol) in the eluent. A method for the purification of the sphingomyelinase based on selective sequestration of ILO from the L. ivanovii concentrated culture supernatant by the SH cytolysin target molecule cholesterol and thiol-disulfide affinity chromatography is described. Images PMID:2553614

  19. Immunocytochemical localization of hydroxyindole-o-methyltransferase (HIOMT) in the brain of Myoisophagos lacteus (Nemertea: Heteronemertea: Lineidae).

    PubMed

    Arnoult, F; Vernet, G

    2001-07-01

    In an attempt to identify the brain structures that synthesize melatonin and that probably mediate the photoperiodic response of the heteronemertean Myoisophagos lacteus, we utilized immunocytochemical techniques and employed immunoglobulins directed against hydroxyindole-O-methyltransferase (HIOMT, EC 2.1.1.4). This enzyme catalyzes the last step of melatonin biosynthesis. In immunocytochemically treated head sections of Myoisophagos lacteus, antibodies labelled a few cells in the dorsal region of the dorsal cerebral ganglia. Previous studies have shown that melatonin is present both in the brain and eyes of this nemertean species and that melatonin is involved in control of the worm reproduction. Other studies have demonstrated the presence of photoreceptor-like cells in the same region of the worm brain that showed HIOMT immunostaining. Therefore, anatomical findings of the present study, coupled with results of previous works, provide strong evidence that this region of the worm brain houses a photoperiodic receptor involved in melatonin biosynthesis. J. Exp. Zool. 290:156-162, 2001.

  20. Biobleaching of Acacia kraft pulp with extracellular enzymes secreted by Irpex lacteus KB-1.1 and Lentinus tigrinus LP-7 using low-cost media.

    PubMed

    Afrida, Sitompul; Tamai, Yutaka; Watanabe, Toshihiro; Osaki, Mitsuru

    2014-08-01

    The white-rot fungi Irpex lacteus KB-1.1 and Lentinus tigrinus LP-7 have been shown in previous studies to have high biobleaching activity in vivo. The aim of this study was to investigate the activities and stabilities of extracellular enzymes, prepared from I. lacteus and L. tigrinus culture grown in three types of economical media of agricultural and forestry wastes, for biobleaching of Acacia oxygen-delignified kraft pulp using kappa number reduction as an indicator of delignification. After 3 days of incubation, the extracellular enzymes preparations from I. lacteus and L. tigrinus cultures in media of Acacia mangium wood powder supplemented with rice bran and addition 1 % glucose (WRBG), resulted in significant decrease of 4.4 and 6.7 %, respectively. A slightly higher kappa number reduction (7.4 %) was achieved with the combine extracellular enzymes from I. lacteus and L. tigrinus. One of the strategies for reducing the cost of enzyme production for treatment processes in the pulp and paper industry is the utilization of agricultural and forestry waste. Thus, WRBG has potential as a culture medium for producing stable lignolytic enzymes simply and economically.

  1. Biobleaching of Acacia kraft pulp with extracellular enzymes secreted by Irpex lacteus KB-1.1 and Lentinus tigrinus LP-7 using low-cost media.

    PubMed

    Afrida, Sitompul; Tamai, Yutaka; Watanabe, Toshihiro; Osaki, Mitsuru

    2014-08-01

    The white-rot fungi Irpex lacteus KB-1.1 and Lentinus tigrinus LP-7 have been shown in previous studies to have high biobleaching activity in vivo. The aim of this study was to investigate the activities and stabilities of extracellular enzymes, prepared from I. lacteus and L. tigrinus culture grown in three types of economical media of agricultural and forestry wastes, for biobleaching of Acacia oxygen-delignified kraft pulp using kappa number reduction as an indicator of delignification. After 3 days of incubation, the extracellular enzymes preparations from I. lacteus and L. tigrinus cultures in media of Acacia mangium wood powder supplemented with rice bran and addition 1 % glucose (WRBG), resulted in significant decrease of 4.4 and 6.7 %, respectively. A slightly higher kappa number reduction (7.4 %) was achieved with the combine extracellular enzymes from I. lacteus and L. tigrinus. One of the strategies for reducing the cost of enzyme production for treatment processes in the pulp and paper industry is the utilization of agricultural and forestry waste. Thus, WRBG has potential as a culture medium for producing stable lignolytic enzymes simply and economically. PMID:24699808

  2. Bacterial Pore-Forming Cytolysins Induce Neuronal Damage in a Rat Model of Neonatal Meningitis

    PubMed Central

    Reiß, Anja; Braun, Johann S.; Jäger, Katja; Freyer, Dorette; Laube, Gregor; Bührer, Christoph; Felderhoff-Müser, Ursula; Stadelmann, Christine; Nizet, Victor

    2011-01-01

    Background. Group B Streptococcus (GBS) and Streptococcus pneumoniae (SP) are leading causes of bacterial meningitis in neonates and children. Each pathogen produces a pore-forming cytolytic toxin, β-hemolysin/cytolysin (β-h/c) by GBS and pneumolysin by SP. The aim of this study was to understand the role of these pore-forming cytotoxins, in particular of the GBS β-h/c, as potential neurotoxins in experimental neonatal meningitis. Methods. Meningitis was induced in 7- and 11-day-old rats by intracisternal injection of wild type (WT) GBS or SP and compared with isogenic β-h/c- or pneumolysin-deficient mutants, or a double mutant of SP deficient in pneumolysin and hydrogen peroxide production. Results. GBS β-h/c and SP pneumolysin contributed to neuronal damage, worsened clinical outcome and weight loss, but had no influence on the early kinetics of leukocyte influx and bacterial growth in the cerebrospinal fluid. In vitro, β-h/c-induced neuronal apoptosis occurred independently of caspase-activation and was not preventable by the broad spectrum caspase-inhibitor z-VAD-fmk. Conclusions. These data suggest that both cytolytic toxins, the GBS β-h/c and SP pneumolysin, contribute to neuronal damage in meningitis and extend the concept of a key role for bacterial pore-forming cytolysins in the pathogenesis and sequelae of neonatal meningitis. PMID:21186256

  3. The promoting effects of manganese on biological pretreatment with Irpex lacteus and enzymatic hydrolysis of corn stover.

    PubMed

    Song, Lili; Ma, Fuying; Zeng, Yelin; Zhang, Xiaoyu; Yu, Hongbo

    2013-05-01

    The effect of metal ions on biological pretreatment was evaluated for improving subsequent enzymatic hydrolysis. Results showed that the efficiency of fungal pretreatment was greatly improved with manganese supplement in biomass. After enzymatic hydrolysis of 28-d pretreated corn stover, maximum glucose yield was 308.98 mg/g corn stover with manganese supplement, which increased by 61.39% as compared to the conventional fungal pretreatment. Furthermore, manganese also enhanced the production of ethanol, corresponding to a high ethanol conversion (83.39%). Manganese greatly improved the delignification of Irpex lacteus specially. Correspondingly, the efficiency of saccharification and fermentation was closely related to the removal of lignin. This study showed a promising effect of manganese on fungal pretreatment and the production of biofuels.

  4. Crystal structure of an invertebrate cytolysin pore reveals unique properties and mechanism of assembly.

    PubMed

    Podobnik, Marjetka; Savory, Peter; Rojko, Nejc; Kisovec, Matic; Wood, Neil; Hambley, Richard; Pugh, Jonathan; Wallace, E Jayne; McNeill, Luke; Bruce, Mark; Liko, Idlir; Allison, Timothy M; Mehmood, Shahid; Yilmaz, Neval; Kobayashi, Toshihide; Gilbert, Robert J C; Robinson, Carol V; Jayasinghe, Lakmal; Anderluh, Gregor

    2016-01-01

    The invertebrate cytolysin lysenin is a member of the aerolysin family of pore-forming toxins that includes many representatives from pathogenic bacteria. Here we report the crystal structure of the lysenin pore and provide insights into its assembly mechanism. The lysenin pore is assembled from nine monomers via dramatic reorganization of almost half of the monomeric subunit structure leading to a β-barrel pore ∼10 nm long and 1.6-2.5 nm wide. The lysenin pore is devoid of additional luminal compartments as commonly found in other toxin pores. Mutagenic analysis and atomic force microscopy imaging, together with these structural insights, suggest a mechanism for pore assembly for lysenin. These insights are relevant to the understanding of pore formation by other aerolysin-like pore-forming toxins, which often represent crucial virulence factors in bacteria.

  5. The membrane attack complex, perforin and cholesterol-dependent cytolysin superfamily of pore-forming proteins.

    PubMed

    Lukoyanova, Natalya; Hoogenboom, Bart W; Saibil, Helen R

    2016-06-01

    The membrane attack complex and perforin proteins (MACPFs) and bacterial cholesterol-dependent cytolysins (CDCs) are two branches of a large and diverse superfamily of pore-forming proteins that function in immunity and pathogenesis. During pore formation, soluble monomers assemble into large transmembrane pores through conformational transitions that involve extrusion and refolding of two α-helical regions into transmembrane β-hairpins. These transitions entail a dramatic refolding of the protein structure, and the resulting assemblies create large holes in cellular membranes, but they do not use any external source of energy. Structures of the membrane-bound assemblies are required to mechanistically understand and modulate these processes. In this Commentary, we discuss recent advances in the understanding of assembly mechanisms and molecular details of the conformational changes that occur during MACPF and CDC pore formation. PMID:27179071

  6. Crystal structure of an invertebrate cytolysin pore reveals unique properties and mechanism of assembly

    NASA Astrophysics Data System (ADS)

    Podobnik, Marjetka; Savory, Peter; Rojko, Nejc; Kisovec, Matic; Wood, Neil; Hambley, Richard; Pugh, Jonathan; Wallace, E. Jayne; McNeill, Luke; Bruce, Mark; Liko, Idlir; Allison, Timothy M.; Mehmood, Shahid; Yilmaz, Neval; Kobayashi, Toshihide; Gilbert, Robert J. C.; Robinson, Carol V.; Jayasinghe, Lakmal; Anderluh, Gregor

    2016-05-01

    The invertebrate cytolysin lysenin is a member of the aerolysin family of pore-forming toxins that includes many representatives from pathogenic bacteria. Here we report the crystal structure of the lysenin pore and provide insights into its assembly mechanism. The lysenin pore is assembled from nine monomers via dramatic reorganization of almost half of the monomeric subunit structure leading to a β-barrel pore ~10 nm long and 1.6-2.5 nm wide. The lysenin pore is devoid of additional luminal compartments as commonly found in other toxin pores. Mutagenic analysis and atomic force microscopy imaging, together with these structural insights, suggest a mechanism for pore assembly for lysenin. These insights are relevant to the understanding of pore formation by other aerolysin-like pore-forming toxins, which often represent crucial virulence factors in bacteria.

  7. Crystal structure of an invertebrate cytolysin pore reveals unique properties and mechanism of assembly

    PubMed Central

    Podobnik, Marjetka; Savory, Peter; Rojko, Nejc; Kisovec, Matic; Wood, Neil; Hambley, Richard; Pugh, Jonathan; Wallace, E. Jayne; McNeill, Luke; Bruce, Mark; Liko, Idlir; Allison, Timothy M.; Mehmood, Shahid; Yilmaz, Neval; Kobayashi, Toshihide; Gilbert, Robert J. C.; Robinson, Carol V.; Jayasinghe, Lakmal; Anderluh, Gregor

    2016-01-01

    The invertebrate cytolysin lysenin is a member of the aerolysin family of pore-forming toxins that includes many representatives from pathogenic bacteria. Here we report the crystal structure of the lysenin pore and provide insights into its assembly mechanism. The lysenin pore is assembled from nine monomers via dramatic reorganization of almost half of the monomeric subunit structure leading to a β-barrel pore ∼10 nm long and 1.6–2.5 nm wide. The lysenin pore is devoid of additional luminal compartments as commonly found in other toxin pores. Mutagenic analysis and atomic force microscopy imaging, together with these structural insights, suggest a mechanism for pore assembly for lysenin. These insights are relevant to the understanding of pore formation by other aerolysin-like pore-forming toxins, which often represent crucial virulence factors in bacteria. PMID:27176125

  8. Cardiovascular effects of Sp-CTx, a cytolysin from the scorpionfish (Scorpaena plumieri) venom.

    PubMed

    Gomes, Helena L; Menezes, Thiago N; Malacarne, Pedro F; Roman-Campos, Danilo; Gondim, Antonio N; Cruz, Jader S; Vassallo, Dalton V; Figueiredo, Suely G

    2016-08-01

    Fish venom cytolysins are multifunctional proteins that in addition to their cytolytic/hemolytic effects display neurotoxic, cardiotoxic and inflammatory activities, being described as "protein lethal factors". A pore-forming cytolysin called Sp-CTx (Scorpaena plumieriCytolytic Toxin) has been recently purified from the venom of the scorpionfish Scorpaena plumieri. It is a glycoprotein with dimeric constitution, comprising subunits of approximately 65 kDa. Previous studies have revealed that this toxin has a vasorelaxant activity that appears to involve the L-arginine-nitric oxide synthase pathway; however its cardiovascular effects have not been fully comprehended. The present study examined the cardiovascular effects of Sp-CTx in vivo and in vitro. In anesthetized rats Sp-CTx (70 μg/kg i.v) produced a biphasic response which consisted of an initial systolic and diastolic pressure increase followed by a sustained decrease of these parameters and the heart rate. In isolated rats hearts Sp-CTx (10(-9) to 5 × 10(-6) M) produced concentration-dependent and transient ventricular positive inotropic effect and vasoconstriction response on coronary bed. In papillary muscle, Sp-CTx (10(-7) M) also produced an increase in contractile isometric force, which was attenuated by the catecholamine releasing agent tyramine (100 μM) and the β-adrenergic antagonist propranolol (10 μM). On isolated ventricular cardiomyocytes Sp-CTx (1 nM) increased the L-type Ca(2+) current density. The results show that Sp-CTx induces disorders in the cardiovascular system through increase of sarcolemmal calcium influx, which in turn is partially caused by the release of endogenous noradrenaline. PMID:27155562

  9. Identification of two novel cytolysins from the hydrozoan Olindias sambaquiensis (Cnidaria)

    PubMed Central

    2014-01-01

    Background Although the hydrozoan Olindias sambaquiensis is the most common jellyfish associated with human envenomation in southeastern and southern Brazil, information about the composition of its venom is rare. Thus, the present study aimed to analyze pharmacological aspects of O. sambaquiensis venom as well as clinical manifestations observed in affected patients. Crude protein extracts were prepared from the tentacles of animals; peptides and proteins were sequenced and submitted to circular dichroism spectroscopy. Creatine kinase, cytotoxicity and hemolytic activity were evaluated by specific methods. Results We identified two novel cytolysins denominated oshem 1 and oshem 2 from the tentacles of this jellyfish. The cytolysins presented the amino acid sequences NEGKAKCGNTAGSKLTFKSADECTKTGQK (oshem 1) and NNSKAKCGDLAGWSKLTFKSADECTKTGQKS (oshem 2) with respective molecular masses of 3.013 kDa and 3.375 kDa. Circular dichroism revealed that oshem 1 has random coils and small α-helix conformation as main secondary structure whereas oshem 2 presents mainly random coils as its main secondary structure probably due to the presence of W (13) in oshem 2. The hemolysis levels induced by oshem 1 and oshem 2 using a peptide concentration of 0.2 mg/mL were, respectively, 51.7 ± 6.5% and 32.9 ± 8.7% (n = 12 and p ≤ 0.05). Oshem 1 and oshem 2 showed significant myonecrotic activity, evaluated by respective CK level measurements of 1890.4 ± 89 and 1212.5 ± 103 (n = 4 and p ≤ 0.05). In addition, myonecrosis was also evaluated by cell survival, which was measured at 72.4 ± 8.6% and 83.5 ± 6.7% (n = 12 and p ≤ 0.05), respectively. The structural analysis showed that both oshem 1 and oshem 2 should be classified as a small basic hemolytic peptide. Conclusion The amino acid sequences of two peptides were highly similar while the primary amino acid sequence analysis revealed W (22th) as the most important mutation. Finally oshem 1 and oshem 2 are the first cytolytic

  10. A non-classical assembly pathway of Escherichia coli pore-forming toxin cytolysin A.

    PubMed

    Fahie, Monifa; Romano, Fabian B; Chisholm, Christina; Heuck, Alejandro P; Zbinden, Mark; Chen, Min

    2013-10-25

    Cytolysin A (ClyA) is an α-pore forming toxin from pathogenic Escherichia coli (E. coli) and Salmonella enterica. Here, we report that E. coli ClyA assembles into an oligomeric structure in solution in the absence of either bilayer membranes or detergents at physiological temperature. These oligomers can rearrange to create transmembrane pores when in contact with detergents or biological membranes. Intrinsic fluorescence measurements revealed that oligomers adopted an intermediate state found during the transition between monomer and transmembrane pore. These results indicate that the water-soluble oligomer represents a prepore intermediate state. Furthermore, we show that ClyA does not form transmembrane pores on E. coli lipid membranes. Because ClyA is delivered to the target host cell in an oligomeric conformation within outer membrane vesicles (OMVs), our findings suggest ClyA forms a prepore oligomeric structure independently of the lipid membrane within the OMV. The proposed model for ClyA represents a non-classical pathway to attack eukaryotic host cells.

  11. Identification and Characterization of the First Cholesterol-Dependent Cytolysins from Gram-Negative Bacteria

    PubMed Central

    Hotze, Eileen M.; Le, Huynh M.; Sieber, Jessica R.; Bruxvoort, Christina; McInerney, Michael J.

    2013-01-01

    The cholesterol-dependent cytolysins (CDCs) are pore-forming toxins that have been exclusively associated with a wide variety of bacterial pathogens and opportunistic pathogens from the Firmicutes and Actinobacteria, which exhibit a Gram-positive type of cell structure. We have characterized the first CDCs from Gram-negative bacterial species, which include Desulfobulbus propionicus type species Widdel 1981 (DSM 2032) (desulfolysin [DLY]) and Enterobacter lignolyticus (formerly Enterobacter cloacae) SCF1 (enterolysin [ELY]). The DLY and ELY primary structures show that they maintain the signature motifs of the CDCs but lack an obvious secretion signal. Recombinant, purified DLY (rDLY) and ELY (rELY) exhibited cholesterol-dependent binding and cytolytic activity and formed the typical large CDC membrane oligomeric pore complex. Unlike the CDCs from Gram-positive species, which are human- and animal-opportunistic pathogens, neither D. propionicus nor E. lignolyticus is known to be a pathogen or commensal of humans or animals: the habitats of both organisms appear to be restricted to anaerobic soils and/or sediments. These studies reveal for the first time that the genes for functional CDCs are present in bacterial species that exhibit a Gram-negative cell structure. These are also the first bacterial species containing a CDC gene that are not known to inhabit or cause disease in humans or animals, which suggests a role of these CDCs in the defense against eukaryote bacterial predators. PMID:23115036

  12. The Enterococcal Cytolysin Synthetase Coevolves with Substrate for Stereoselective Lanthionine Synthesis.

    PubMed

    Tang, Weixin; Thibodeaux, Gabrielle N; van der Donk, Wilfred A

    2016-09-16

    Stereochemical control is critical in natural product biosynthesis. For ribosomally synthesized and post-translationally modified peptides (RiPPs), the mechanism(s) by which stereoselectivity is achieved is still poorly understood. In this work, we focused on the stereoselective lanthionine synthesis in lanthipeptides, a major class of RiPPs formed by the addition of Cys residues to dehydroalanine (Dha) or dehydrobutyrine (Dhb). Nonenzymatic cyclization of the small subunit of a virulence lanthipeptide, the enterococcal cytolysin, resulted in the native modified peptide as the major product, suggesting that both regioselectivity and stereoselectivity are inherent to the dehydrated peptide sequence. These results support previous computational studies that a Dhx-Dhx-Xxx-Xxx-Cys motif (Dhx = Dha or Dhb; Xxx = any amino acid except Dha, Dhb, and Cys) preferentially cyclizes by attack on the Re face of Dha or Dhb. Characterization of the stereochemistry of the products formed enzymatically with substrate mutants revealed that the lanthionine synthetase actively reinforces Re face attack. These findings support the hypothesis of substrate-controlled selectivity in lanthionine synthesis but also reveal likely coevolution of substrates and lanthionine synthetases to ensure the stereoselective synthesis of lanthipeptides with defined biological activities. PMID:27348535

  13. Stepwise visualization of membrane pore formation by suilysin, a bacterial cholesterol-dependent cytolysin

    PubMed Central

    Lukoyanova, Natalya; Hodel, Adrian W; Farabella, Irene; Pandurangan, Arun P; Jahan, Nasrin; Pires Damaso, Mafalda; Osmanović, Dino; Reboul, Cyril F; Dunstone, Michelle A; Andrew, Peter W; Lonnen, Rana; Topf, Maya

    2014-01-01

    Membrane attack complex/perforin/cholesterol-dependent cytolysin (MACPF/CDC) proteins constitute a major superfamily of pore-forming proteins that act as bacterial virulence factors and effectors in immune defence. Upon binding to the membrane, they convert from the soluble monomeric form to oligomeric, membrane-inserted pores. Using real-time atomic force microscopy (AFM), electron microscopy (EM), and atomic structure fitting, we have mapped the structure and assembly pathways of a bacterial CDC in unprecedented detail and accuracy, focussing on suilysin from Streptococcus suis. We show that suilysin assembly is a noncooperative process that is terminated before the protein inserts into the membrane. The resulting ring-shaped pores and kinetically trapped arc-shaped assemblies are all seen to perforate the membrane, as also visible by the ejection of its lipids. Membrane insertion requires a concerted conformational change of the monomeric subunits, with a marked expansion in pore diameter due to large changes in subunit structure and packing. DOI: http://dx.doi.org/10.7554/eLife.04247.001 PMID:25457051

  14. Reduction in the mutagenicity of synthetic dyes by successive treatment with activated sludge and the ligninolytic fungus, Irpex lacteus.

    PubMed

    Malachová, Katerina; Pavlícková, Zuzana; Novotný, Cenek; Svobodová, Katerina; Lednická, Denisa; Musílková, Eva

    2006-08-01

    Synthetic dyes are released in wastewater from textile manufacturing plants, and many of these dyes are genotoxic. In the present study, the mutagenicity of azo, anthraquinone, and triphenyl methane dyes was investigated before and after successive biodegradation with activated sludge and the ligninolytic fungus, Irpex lacteus. Two biodegradation systems were used to reduce the genotoxicity of dyes that were not efficiently inactivated by activated sludge alone. Mutagenicity was monitored with the Salmonella reversion assay conducted with the base-pair substitution detector strains, TA100 and YG1042, and the frame-shift detector strains, TA98 and YG1041, with and without rat liver S9. All dyes except for Congo Red (CR) were mutagenic with S9 activation. Assays conducted with the dyes indicated that only the azo dye Reactive Orange 16 (RO16) was mutagenic in both TA98 and TA100. Methyl Red and Disperse Blue 3 (DB3) were mutagenic in TA98, YG1041 and YG1042, while Reactive Black 5 was mutagenic in YG1041 and YG1042. Remazol Brilliant Blue R (RBBR), Crystal violet (CV) and Bromophenol Blue (BPB) were mutagenic only in TA98, but the toxicity of the latter two dyes complicated the evaluation of their mutagenicity. CR was not mutagenic in any of the tester strains. Biodegradation studies conducted with RO16 and DB3 indicated that the two-step biodegradation process reduced the mutagenic potential of RO16 and DB3 to a greater extent than activated sludge alone; the mutagenicity of the two dyes was reduced by 95.2% and 77.8%, respectively, by the two-step process. These data indicate that the combined biodegradation process may be useful for reducing the mutagenicity associated with wastewater from textile factories that contain recalcitrant dyes.

  15. Degradation and detoxification of the triphenylmethane dye malachite green catalyzed by crude manganese peroxidase from Irpex lacteus F17.

    PubMed

    Yang, Xueting; Zheng, Jinzhao; Lu, Yongming; Jia, Rong

    2016-05-01

    Malachite green (MG), a recalcitrant, carcinogenic, and mutagenic triphenylmethane dye, was decolorized and detoxified using crude manganese peroxidase (MnP) prepared from the white rot fungus Irpex lacteus F17. In this study, the key factors (pH, temperature, MG, Mn(2+), H2O2, MnP) in these processes were investigated. Under optimal conditions, 96 % of 200 mg L(-1) of MG was decolorized when 66.32 U L(-1) of MnP was added for 1 h. The K m, V max, and k cat values were 109.9 μmol L(-1), 152.8 μmol L(-1) min(-1), and 44.5 s(-1), respectively. The decolorization of MG by MnP followed first-order reaction kinetics with a kinetic rate constant of 0.0129 h(-1). UV-vis and UPLC analysis revealed degradation of MG. Furthermore, seven different intermediates formed during the MnP treatment of 0.5 h were identified by LC-TOF-MS. These degradation products were generated via two different routes by either N-demethylation of MG or the oxidative cleavage of the C-C double bond in MG. Based on ecotoxicity analyses performed on bacteria and algae, it was confirmed that MG metabolites produced by the MnP-catalyzed system were appreciably less toxic than the parent compound. These studies indicate the potential use of this enzyme system in the clean-up of aquatic and terrestrial environments.

  16. Degradation and detoxification of the triphenylmethane dye malachite green catalyzed by crude manganese peroxidase from Irpex lacteus F17.

    PubMed

    Yang, Xueting; Zheng, Jinzhao; Lu, Yongming; Jia, Rong

    2016-05-01

    Malachite green (MG), a recalcitrant, carcinogenic, and mutagenic triphenylmethane dye, was decolorized and detoxified using crude manganese peroxidase (MnP) prepared from the white rot fungus Irpex lacteus F17. In this study, the key factors (pH, temperature, MG, Mn(2+), H2O2, MnP) in these processes were investigated. Under optimal conditions, 96 % of 200 mg L(-1) of MG was decolorized when 66.32 U L(-1) of MnP was added for 1 h. The K m, V max, and k cat values were 109.9 μmol L(-1), 152.8 μmol L(-1) min(-1), and 44.5 s(-1), respectively. The decolorization of MG by MnP followed first-order reaction kinetics with a kinetic rate constant of 0.0129 h(-1). UV-vis and UPLC analysis revealed degradation of MG. Furthermore, seven different intermediates formed during the MnP treatment of 0.5 h were identified by LC-TOF-MS. These degradation products were generated via two different routes by either N-demethylation of MG or the oxidative cleavage of the C-C double bond in MG. Based on ecotoxicity analyses performed on bacteria and algae, it was confirmed that MG metabolites produced by the MnP-catalyzed system were appreciably less toxic than the parent compound. These studies indicate the potential use of this enzyme system in the clean-up of aquatic and terrestrial environments. PMID:26846235

  17. Vibriocholerae cytolysin recognizes the heptasaccharide core of complex N-glycans with nanomolar affinity

    PubMed Central

    Levan, Sophia; De, Swastik; Olson, Rich

    2013-01-01

    Pathogens selectively target host cells using adhesion molecules and secreted virulence factors that may utilize protein, lipid, or carbohydrate ligands on the cell surface. The human intestinal pathogen Vibrio cholerae secretes a pore-forming toxin, Vibrio cholerae cytolysin (VCC), which contains two domains that are structurally similar to known carbohydrate-binding proteins. These tandem domains are attached to the carboxy-terminus of the cytolytic domain and contain a β-trefoil fold and a β-prism fold. VCC has been shown to bind glycosylated proteins, and removal of the β-prism domain leads to a large decrease in lytic activity against rabbit erythrocytes. Despite these clues, the identity of the glycan receptors of VCC and the role of glycan binding in toxin activity remains unknown. To better understand this specificity, we used a combination of structural and functional approaches to characterize the carbohydrate-binding activity of the VCC toxin. We first probed the monosaccharide-binding activity of VCC and demonstrated that the toxin exhibits millimolar affinity for aldohexoses. To understand this specificity, we solved the crystal structure of the VCC β-prism domain bound to methyl-α-mannose. Next, we utilized a mammalian glycan screen to determine that the β-prism domain preferentially binds complex N-glycans with a heptasaccharide GlcNAc4 Man3 core (NGA2). Fluorescence anisotropy and surface plasmon resonance indicated an approximately 100-nanomolar affinity of the β-prism domain for the heptasaccharide core. Our results suggest that carbohydrate-binding domains on the VCC toxin facilitate high-affinity targeting of mammalian cell membranes, which may contribute to the ability of VCC to lyse cells at picomolar concentrations. PMID:23274141

  18. Outer Membrane Vesicles Mediate Transport of Biologically Active Vibrio cholerae Cytolysin (VCC) from V. cholerae Strains

    PubMed Central

    Elluri, Sridhar; Enow, Constance; Vdovikova, Svitlana; Rompikuntal, Pramod K.; Dongre, Mitesh; Carlsson, Sven; Pal, Amit; Uhlin, Bernt Eric; Wai, Sun Nyunt

    2014-01-01

    Background Outer membrane vesicles (OMVs) released from Gram-negative bacteria can serve as vehicles for the translocation of virulence factors. Vibrio cholerae produce OMVs but their putative role in translocation of effectors involved in pathogenesis has not been well elucidated. The V. cholerae cytolysin (VCC), is a pore-forming toxin that lyses target eukaryotic cells by forming transmembrane oligomeric β-barrel channels. It is considered a potent toxin that contributes to V. cholerae pathogenesis. The mechanisms involved in the secretion and delivery of the VCC have not been extensively studied. Methodology/Principal Findings OMVs from V. cholerae strains were isolated and purified using a differential centrifugation procedure and Optiprep centrifugation. The ultrastructure and the contents of OMVs were examined under the electron microscope and by immunoblot analyses respectively. We demonstrated that VCC from V. cholerae strain V:5/04 was secreted in association with OMVs and the release of VCC via OMVs is a common feature among V. cholerae strains. The biological activity of OMV-associated VCC was investigated using contact hemolytic assay and epithelial cell cytotoxicity test. It showed toxic activity on both red blood cells and epithelial cells. Our results indicate that the OMVs architecture might play a role in stability of VCC and thereby can enhance its biological activities in comparison with the free secreted VCC. Furthermore, we tested the role of OMV-associated VCC in host cell autophagy signalling using confocal microscopy and immunoblot analysis. We observed that OMV-associated VCC triggered an autophagy response in the target cell and our findings demonstrated for the first time that autophagy may operate as a cellular defence mechanism against an OMV-associated bacterial virulence factor. Conclusion/Significance Biological assays of OMVs from the V. cholerae strain V:5/04 demonstrated that OMV-associated VCC is indeed biologically active and

  19. Requirement for Serratia marcescens cytolysin in a murine model of hemorrhagic pneumonia.

    PubMed

    González-Juarbe, Norberto; Mares, Chris A; Hinojosa, Cecilia A; Medina, Jorge L; Cantwell, Angelene; Dube, Peter H; Orihuela, Carlos J; Bergman, Molly A

    2015-02-01

    Serratia marcescens, a member of the carbapenem-resistant Enterobacteriaceae, is an important emerging pathogen that causes a wide variety of nosocomial infections, spreads rapidly within hospitals, and has a systemic mortality rate of ≤41%. Despite multiple clinical descriptions of S. marcescens nosocomial pneumonia, little is known regarding the mechanisms of bacterial pathogenesis and the host immune response. To address this gap, we developed an oropharyngeal aspiration model of lethal and sublethal S. marcescens pneumonia in BALB/c mice and extensively characterized the latter. Lethal challenge (>4.0 × 10(6) CFU) was characterized by fulminate hemorrhagic pneumonia with rapid loss of lung function and death. Mice challenged with a sublethal dose (<2.0 × 10(6) CFU) rapidly lost weight, had diminished lung compliance, experienced lung hemorrhage, and responded to the infection with extensive neutrophil infiltration and histopathological changes in tissue architecture. Neutrophil extracellular trap formation and the expression of inflammatory cytokines occurred early after infection. Mice depleted of neutrophils were exquisitely susceptible to an otherwise nonlethal inoculum, thereby demonstrating the requirement for neutrophils in host protection. Mutation of the genes encoding the cytolysin ShlA and its transporter ShlB resulted in attenuated S. marcescens strains that failed to cause profound weight loss, extended illness, hemorrhage, and prolonged lung pathology in mice. This study describes a model of S. marcescens pneumonia that mimics known clinical features of human illness, identifies neutrophils and the toxin ShlA as a key factors important for defense and infection, respectively, and provides a solid foundation for future studies of novel therapeutics for this important opportunistic pathogen.

  20. Multifaceted activity of listeriolysin O, the cholesterol-dependent cytolysin of Listeria monocytogenes.

    PubMed

    Seveau, Stephanie

    2014-01-01

    The cholesterol-dependent cytolysins (CDCs) are a large family of pore-forming toxins that are produced by numerous Gram-positive bacterial pathogens. These toxins are released in the extracellular environment as water-soluble monomers or dimers that bind to cholesterol-rich membranes and assemble into large pore complexes. Depending upon their concentration, the nature of the host cell and membrane (cytoplasmic or intracellular) they target, the CDCs can elicit many different cellular responses. Among the CDCs, listeriolysin O (LLO), which is a major virulence factor of the facultative intracellular pathogen Listeria monocytogenes, is involved in several stages of the intracellular lifecycle of the bacterium and displays unique characteristics. It has long been known that following L. monocytogenes internalization into host cells, LLO disrupts the internalization vacuole, enabling the bacterium to replicate into the host cell cytosol. LLO is then used by cytosolic bacteria to spread from cell to cell, avoiding bacterial exposure to the extracellular environment. Although LLO is continuously produced during the intracellular lifecycle of L. monocytogenes, several processes limit its toxicity to ensure the survival of infected cells. It was previously thought that LLO activity was limited to mediating vacuolar escape during bacterial entry and cell to cell spreading. This concept has been challenged by compelling evidence suggesting that LLO secreted by extracellular L. monocytogenes perforates the host cell plasma membrane, triggering important host cell responses. This chapter provides an overview of the well-established intracellular activity of LLO and the multiple roles attributed to LLO secreted by extracellular L. monocytogenes.

  1. Induction, Purification and Characterization of a Novel Manganese Peroxidase from Irpex lacteus CD2 and Its Application in the Decolorization of Different Types of Dye

    PubMed Central

    Qin, Xing; Zhang, Jie; Zhang, Xiaoyu; Yang, Yang

    2014-01-01

    Manganese peroxidase (MnP) is the one of the important ligninolytic enzymes produced by lignin-degrading fungi which has the great application value in the field of environmental biotechnology. Searching for new MnP with stronger tolerance to metal ions and organic solvents is important for the maximization of potential of MnP in the biodegradation of recalcitrant xenobiotics. In this study, it was found that oxalic acid, veratryl alcohol and 2,6-Dimehoxyphenol could stimulate the synthesis of MnP in the white-rot fungus Irpex lacteus CD2. A novel manganese peroxidase named as CD2-MnP was purified and characterized from this fungus. CD2-MnP had a strong capability for tolerating different metal ions such as Ca2+, Cd2+, Co2+, Mg2+, Ni2+ and Zn2+ as well as organic solvents such as methanol, ethanol, DMSO, ethylene glycol, isopropyl alcohol, butanediol and glycerin. The different types of dyes including the azo dye (Remazol Brilliant Violet 5R, Direct Red 5B), anthraquinone dye (Remazol Brilliant Blue R), indigo dye (Indigo Carmine) and triphenylmethane dye (Methyl Green) as well as simulated textile wastewater could be efficiently decolorized by CD2-MnP. CD2-MnP also had a strong ability of decolorizing different dyes with the coexistence of metal ions and organic solvents. In summary, CD2-MnP from Irpex lacteus CD2 could effectively degrade a broad range of synthetic dyes and exhibit a great potential for environmental biotechnology. PMID:25412169

  2. Induction, purification and characterization of a novel manganese peroxidase from Irpex lacteus CD2 and its application in the decolorization of different types of dye.

    PubMed

    Qin, Xing; Zhang, Jie; Zhang, Xiaoyu; Yang, Yang

    2014-01-01

    Manganese peroxidase (MnP) is the one of the important ligninolytic enzymes produced by lignin-degrading fungi which has the great application value in the field of environmental biotechnology. Searching for new MnP with stronger tolerance to metal ions and organic solvents is important for the maximization of potential of MnP in the biodegradation of recalcitrant xenobiotics. In this study, it was found that oxalic acid, veratryl alcohol and 2,6-Dimehoxyphenol could stimulate the synthesis of MnP in the white-rot fungus Irpex lacteus CD2. A novel manganese peroxidase named as CD2-MnP was purified and characterized from this fungus. CD2-MnP had a strong capability for tolerating different metal ions such as Ca2+, Cd2+, Co2+, Mg2+, Ni2+ and Zn2+ as well as organic solvents such as methanol, ethanol, DMSO, ethylene glycol, isopropyl alcohol, butanediol and glycerin. The different types of dyes including the azo dye (Remazol Brilliant Violet 5R, Direct Red 5B), anthraquinone dye (Remazol Brilliant Blue R), indigo dye (Indigo Carmine) and triphenylmethane dye (Methyl Green) as well as simulated textile wastewater could be efficiently decolorized by CD2-MnP. CD2-MnP also had a strong ability of decolorizing different dyes with the coexistence of metal ions and organic solvents. In summary, CD2-MnP from Irpex lacteus CD2 could effectively degrade a broad range of synthetic dyes and exhibit a great potential for environmental biotechnology.

  3. Comparing mark-recapture and constant removal protocols for estimating forager population size of the subterranean termite Coptotermes lacteus (Isoptera: Rhinotermitidae).

    PubMed

    Evans, T A

    2004-02-01

    Forager population sizes of colonies of Coptotermes lacteus(Froggatt) in New South Wales were estimated using two methods: mark-recapture and constant removal, in two disturbed habitats: a pine plantation and cleared farmland. Mark-recapture population estimates were unrealistic and unreliable: they could be improbably large, over 200 million foragers, and they varied enormously between samples for each colony without any pattern. The constant removal population estimates could also be unrealistic: they could be negative or quite different when calculated using regression and maximum likelihood methods. However, the unrealistic results could be predicted reliably, and explained by the lack of re-contact with the sampling devices (bait stations) - a violation of an assumption of the method. This happened more frequently in the plantation than in the farmland, probably because of the greater abundance of alternative food sources in the plantation. Of the two methods, constant removal provided reasonable forager population estimates, relative to direct counts, at least some of the time, plus a mechanism by which reliability could be tested, whereas mark-recapture provided neither. Further refinement and testing of constant removal methods are urged to provide a more reliable population estimation technique for termites. PMID:14972044

  4. Three-dimensional structure of the detergent-solubilized Vibrio cholerae cytolysin (VCC) heptamer by electron cryomicroscopy.

    PubMed

    He, Yongning; Olson, Rich

    2010-01-01

    Vibrio cholerae cytolysin (VCC) is a pore-forming toxin that inserts a lytic water-filled channel into susceptible host membranes. Assembly of the toxin on cell surfaces may be enhanced by two tandem lectin domains, in addition to direct interactions with lipids and cholesterol within the membrane itself. We used single-particle electron cryomicroscopy (cryoEM) to generate a low-resolution molecular structure of the detergent-solubilized VCC oligomer to 20A resolution. After confirming a heptameric arrangement of individual protomers, sevenfold averaging around the central pore was utilized to improve the structure. Docking of the previously determined VCC protoxin crystal structure was possible with rigid-body rearrangements between the cytolytic and lectin domains. A second cryoEM reconstruction of a truncated VCC mutant supported the topology of our model in which the carboxyl-terminal lectin domain forms "spikes" around the toxin core with the putative carbohydrate receptor-binding site accessible on the surface of the oligomer. This finding points to an assembly mechanism in which lectin domains may remain bound to receptors on the cell surface throughout assembly of the cytolytic toxin core and explains the hemagglutinating activity of purified toxin. Our model provides an insight into the structural rearrangements that accompany VCC-mediated cytolysis and may aid in the engineering of novel pore-forming toxins to attack specific cells towards therapeutic ends.

  5. Revisiting the membrane interaction mechanism of a membrane-damaging β-barrel pore-forming toxin Vibrio cholerae cytolysin.

    PubMed

    Rai, Anand Kumar; Chattopadhyay, Kausik

    2015-09-01

    Vibrio cholerae cytolysin (VCC) permeabilizes target cell membranes by forming transmembrane oligomeric β-barrel pores. VCC has been shown to associate with the target membranes via amphipathicity-driven spontaneous partitioning into the membrane environment. More specific interaction(s) of VCC with the membrane components have also been documented. In particular, specific binding of VCC with the membrane lipid components is believed to play a crucial role in determining the efficacy of the pore-formation process. However, the structural basis and the functional implications of the VCC interaction with the membrane lipids remain unclear. Here we show that the distinct loop sequences within the membrane-proximal region of VCC play critical roles to determine the functional interactions of the toxin with the membrane lipids. Alterations of the loop sequences via structure-guided mutagenesis allow amphipathicity-driven partitioning of VCC to the membrane lipid bilayer. Alterations of the loop sequences, however, block specific interactions of VCC with the membrane lipids and abort the oligomerization, membrane insertion, pore-formation and cytotoxic activity of the toxin. Present study identifies the structural signatures in VCC implicated for its functional interactions with the membrane lipid components, a process that presumably acts to drive the subsequent steps of the oligomeric β-barrel pore-formation and cytotoxic responses.

  6. Cellular functions and X-ray structure of anthrolysin O, a cholesterol-dependent cytolysin secreted by Bacillus anthracis.

    PubMed

    Bourdeau, Raymond W; Malito, Enrico; Chenal, Alexandre; Bishop, Brian L; Musch, Mark W; Villereal, Mitch L; Chang, Eugene B; Mosser, Elise M; Rest, Richard F; Tang, Wei-Jen

    2009-05-22

    Anthrolysin O (ALO) is a pore-forming, cholesterol-dependent cytolysin (CDC) secreted by Bacillus anthracis, the etiologic agent for anthrax. Growing evidence suggests the involvement of ALO in anthrax pathogenesis. Here, we show that the apical application of ALO decreases the barrier function of human polarized epithelial cells as well as increases intracellular calcium and the internalization of the tight junction protein occludin. Using pharmacological agents, we also found that barrier function disruption requires increased intracellular calcium and protein degradation. We also report a crystal structure of the soluble state of ALO. Based on our analytical ultracentrifugation and light scattering studies, ALO exists as a monomer. Our ALO structure provides the molecular basis as to how ALO is locked in a monomeric state, in contrast to other CDCs that undergo antiparallel dimerization or higher order oligomerization in solution. ALO has four domains and is globally similar to perfringolysin O (PFO) and intermedilysin (ILY), yet the highly conserved undecapeptide region in domain 4 (D4) adopts a completely different conformation in all three CDCs. Consistent with the differences within D4 and at the D2-D4 interface, we found that ALO D4 plays a key role in affecting the barrier function of C2BBE cells, whereas PFO domain 4 cannot substitute for this role. Novel structural elements and unique cellular functions of ALO revealed by our studies provide new insight into the molecular basis for the diverse nature of the CDC family.

  7. Cellular Functions and X-ray Structure of Anthrolysin O, a Cholesterol-dependent Cytolysin Secreted by Bacillus anthracis

    SciTech Connect

    Bourdeau, Raymond W.; Malito, Enrico; Chenal, Alexandre; Bishop, Brian L.; Musch, Mark W.; Villereal, Mitch L.; Chang, Eugene B.; Mosser, Elise M.; Rest, Richard F.; Tang, Wei-Jen

    2009-06-02

    Anthrolysin O (ALO) is a pore-forming, cholesterol-dependent cytolysin (CDC) secreted by Bacillus anthracis, the etiologic agent for anthrax. Growing evidence suggests the involvement of ALO in anthrax pathogenesis. Here, we show that the apical application of ALO decreases the barrier function of human polarized epithelial cells as well as increases intracellular calcium and the internalization of the tight junction protein occludin. Using pharmacological agents, we also found that barrier function disruption requires increased intracellular calcium and protein degradation. We also report a crystal structure of the soluble state of ALO. Based on our analytical ultracentrifugation and light scattering studies, ALO exists as a monomer. Our ALO structure provides the molecular basis as to how ALO is locked in a monomeric state, in contrast to other CDCs that undergo antiparallel dimerization or higher order oligomerization in solution. ALO has four domains and is globally similar to perfringolysin O (PFO) and intermedilysin (ILY), yet the highly conserved undecapeptide region in domain 4 (D4) adopts a completely different conformation in all three CDCs. Consistent with the differences within D4 and at the D2-D4 interface, we found that ALO D4 plays a key role in affecting the barrier function of C2BBE cells, whereas PFO domain 4 cannot substitute for this role. Novel structural elements and unique cellular functions of ALO revealed by our studies provide new insight into the molecular basis for the diverse nature of the CDC family.

  8. The cholesterol-dependent cytolysins pneumolysin and streptolysin O require binding to red blood cell glycans for hemolytic activity

    PubMed Central

    Shewell, Lucy K.; Harvey, Richard M.; Higgins, Melanie A.; Day, Christopher J.; Hartley-Tassell, Lauren E.; Chen, Austen Y.; Gillen, Christine M.; James, David B. A.; Alonzo, Francis; Torres, Victor J.; Walker, Mark J.; Paton, Adrienne W.; Paton, James C.; Jennings, Michael P.

    2014-01-01

    The cholesterol-dependent cytolysin (CDC) pneumolysin (Ply) is a key virulence factor of Streptococcus pneumoniae. Membrane cholesterol is required for the cytolytic activity of this toxin, but it is not clear whether cholesterol is the only cellular receptor. Analysis of Ply binding to a glycan microarray revealed that Ply has lectin activity and binds glycans, including the Lewis histo-blood group antigens. Surface plasmon resonance analysis showed that Ply has the highest affinity for the sialyl LewisX (sLeX) structure, with a Kd of 1.88 × 10−5 M. Ply hemolytic activity against human RBCs showed dose-dependent inhibition by sLeX. Flow cytometric analysis and Western blots showed that blocking binding of Ply to the sLeX glycolipid on RBCs prevents deposition of the toxin in the membrane. The lectin domain responsible for sLeX binding is in domain 4 of Ply, which contains candidate carbohydrate-binding sites. Mutagenesis of these predicted carbohydrate-binding residues of Ply resulted in a decrease in hemolytic activity and a reduced affinity for sLeX. This study reveals that this archetypal CDC requires interaction with the sLeX glycolipid cellular receptor as an essential step before membrane insertion. A similar analysis conducted on streptolysin O from Streptococcus pyogenes revealed that this CDC also has glycan-binding properties and that hemolytic activity against RBCs can be blocked with the glycan lacto-N-neotetraose by inhibiting binding to the cell surface. Together, these data support the emerging paradigm shift that pore-forming toxins, including CDCs, have cellular receptors other than cholesterol that define target cell tropism. PMID:25422425

  9. The Relationship between Glycan Binding and Direct Membrane Interactions in Vibrio cholerae Cytolysin, a Channel-forming Toxin.

    PubMed

    De, Swastik; Bubnys, Adele; Alonzo, Francis; Hyun, Jinsol; Lary, Jeffrey W; Cole, James L; Torres, Victor J; Olson, Rich

    2015-11-20

    Bacterial pore-forming toxins (PFTs) are structurally diverse pathogen-secreted proteins that form cell-damaging channels in the membranes of host cells. Most PFTs are released as water-soluble monomers that first oligomerize on the membrane before inserting a transmembrane channel. To modulate specificity and increase potency, many PFTs recognize specific cell surface receptors that increase the local toxin concentration on cell membranes, thereby facilitating channel formation. Vibrio cholerae cytolysin (VCC) is a toxin secreted by the human pathogen responsible for pandemic cholera disease and acts as a defensive agent against the host immune system. Although it has been shown that VCC utilizes specific glycan receptors on the cell surface, additional direct contacts with the membrane must also play a role in toxin binding. To better understand the nature of these interactions, we conducted a systematic investigation of the membrane-binding surface of VCC to identify additional membrane interactions important in cell targeting. Through cell-based assays on several human-derived cell lines, we show that VCC is unlikely to utilize high affinity protein receptors as do structurally similar toxins from Staphylococcus aureus. Next, we identified a number of specific amino acid residues that greatly diminish the VCC potency against cells and investigated the interplay between glycan binding and these direct lipid contacts. Finally, we used model membranes to parse the importance of these key residues in lipid and cholesterol binding. Our study provides a complete functional map of the VCC membrane-binding surface and insights into the integration of sugar, lipid, and cholesterol binding interactions.

  10. The Cholesterol-Dependent Cytolysin Pneumolysin from Streptococcus pneumoniae Binds to Lipid Raft Microdomains in Human Corneal Epithelial Cells

    PubMed Central

    Taylor, Sidney D.; Sanders, Melissa E.; Tullos, Nathan A.; Stray, Stephen J.; Norcross, Erin W.; McDaniel, Larry S.; Marquart, Mary E.

    2013-01-01

    Streptococcus pneumoniae (pneumococcus) is an opportunistic bacterial pathogen responsible for causing several human diseases including pneumonia, meningitis, and otitis media. Pneumococcus is also a major cause of human ocular infections and is commonly isolated in cases of bacterial keratitis, an infection of the cornea. The ocular pathology that occurs during pneumococcal keratitis is partly due to the actions of pneumolysin (Ply), a cholesterol-dependent cytolysin produced by pneumococcus. The lytic mechanism of Ply is a three step process beginning with surface binding to cholesterol. Multiple Ply monomers then oligomerize to form a prepore. The prepore then undergoes a conformational change that creates a large pore in the host cell membrane, resulting in cell lysis. We engineered a collection of single amino acid substitution mutants at residues (A370, A406, W433, and L460) that are crucial to the progression of the lytic mechanism and determined the effects that these mutations had on lytic function. Both PlyWT and the mutant Ply molecules (PlyA370G, PlyA370E, PlyA406G, PlyA406E, PlyW433G, PlyW433E, PlyW433F, PlyL460G, and PlyL460E) were able to bind to the surface of human corneal epithelial cells (HCECs) with similar efficiency. Additionally, PlyWT localized to cholesterol-rich microdomains on the HCEC surface, however, only one mutant (PlyA370G) was able to duplicate this behavior. Four of the 9 mutant Ply molecules (PlyA370E, PlyW433G, PlyW433E, and PlyL460E) were deficient in oligomer formation. Lastly, all of the mutant Ply molecules, except PlyA370G, exhibited significantly impaired lytic activity on HCECs. The other 8 mutants all experienced a reduction in lytic activity, but 4 of the 8 retained the ability to oligomerize. A thorough understanding of the molecular interactions that occur between Ply and the target cell, could lead to targeted treatments aimed to reduce the pathology observed during pneumococcal keratitis. PMID:23577214

  11. Crystallization and preliminary crystallographic analysis of an Enterococcus faecalis repressor protein, CylR2, involved in regulating cytolysin production through quorum-sensing

    SciTech Connect

    Ni, Shuisong; McAteer, Kathleen; Bussiere, Dirksen E.; Kennedy, Michael A.

    2004-06-01

    CylR2 is one of the two regulatory proteins associated with the quorum-sensing-dependent synthesis of cytolysin for the common pathogen Enterococcus faecalis. The protein was expressed with a C-terminal 6-histidine tag and purified to homogeneity with a cobalt affinity column followed by another size exclusion column. Both native and SeMet proteins were crystallized. A complete X-ray diffraction data set from the native crystal was collected to 2.3 resolution. The crystal was tetragonal, belonging to space group P41/43, with unit-cell dimensions a=b=66.2 , c=40.9 and a=b=g=90. The asymmetric unit contained two molecules of CylR2.

  12. Negatively charged residues of the segment linking the enzyme and cytolysin moieties restrict the membrane-permeabilizing capacity of adenylate cyclase toxin

    PubMed Central

    Masin, Jiri; Osickova, Adriana; Sukova, Anna; Fiser, Radovan; Halada, Petr; Bumba, Ladislav; Linhartova, Irena; Osicka, Radim; Sebo, Peter

    2016-01-01

    The whooping cough agent, Bordetella pertussis, secretes an adenylate cyclase toxin-hemolysin (CyaA) that plays a crucial role in host respiratory tract colonization. CyaA targets CR3-expressing cells and disrupts their bactericidal functions by delivering into their cytosol an adenylate cyclase enzyme that converts intracellular ATP to cAMP. In parallel, the hydrophobic domain of CyaA forms cation-selective pores that permeabilize cell membrane. The invasive AC and pore-forming domains of CyaA are linked by a segment that is unique in the RTX cytolysin family. We used mass spectrometry and circular dichroism to show that the linker segment forms α-helical structures that penetrate into lipid bilayer. Replacement of the positively charged arginine residues, proposed to be involved in target membrane destabilization by the linker segment, reduced the capacity of the toxin to translocate the AC domain across cell membrane. Substitutions of negatively charged residues then revealed that two clusters of negative charges within the linker segment control the size and the propensity of CyaA pore formation, thereby restricting the cell-permeabilizing capacity of CyaA. The ‘AC to Hly-linking segment’ thus appears to account for the smaller size and modest cell-permeabilizing capacity of CyaA pores, as compared to typical RTX hemolysins. PMID:27581058

  13. Group B Streptococcus β-hemolysin/Cytolysin Breaches Maternal-Fetal Barriers to Cause Preterm Birth and Intrauterine Fetal Demise in Vivo

    PubMed Central

    Randis, Tara M.; Gelber, Shari E.; Hooven, Thomas A.; Abellar, Rosanna G.; Akabas, Leor H.; Lewis, Emma L.; Walker, Lindsay B.; Byland, Leah M.; Nizet, Victor; Ratner, Adam J.

    2014-01-01

    Background. Maternal vaginal colonization with Streptococcus agalactiae (Group B Streptococcus [GBS]) is a precursor to chorioamnionitis, fetal infection, and neonatal sepsis, but the understanding of specific factors in the pathogenesis of ascending infection remains limited. Methods. We used a new murine model to evaluate the contribution of the pore-forming GBS β-hemolysin/cytolysin (βH/C) to vaginal colonization, ascension, and fetal infection. Results. Competition assays demonstrated a marked advantage to βH/C-expressing GBS during colonization. Intrauterine fetal demise and/or preterm birth were observed in 54% of pregnant mice colonized with wild-type (WT) GBS and 0% of those colonized with the toxin-deficient cylE knockout strain, despite efficient colonization and ascension by both strains. Robust placental inflammation, disruption of maternal-fetal barriers, and fetal infection were more frequent in animals colonized with WT bacteria. Histopathologic examination revealed bacterial tropism for fetal lung and liver. Conclusions. Preterm birth and fetal demise are likely the direct result of toxin-induced damage and inflammation rather than differences in efficiency of ascension into the upper genital tract. These data demonstrate a distinct contribution of βH/C to GBS chorioamnionitis and subsequent fetal infection in vivo and showcase a model for this most proximal step in GBS pathogenesis. PMID:24474814

  14. Cellular Functions and X-ray Structure of Anthrolysin O, a Cholesterol-dependent Cytolysin Secreted by Bacillus anthracis*S⃞

    PubMed Central

    Bourdeau, Raymond W.; Malito, Enrico; Chenal, Alexandre; Bishop, Brian L.; Musch, Mark W.; Villereal, Mitch L.; Chang, Eugene B.; Mosser, Elise M.; Rest, Richard F.; Tang, Wei-Jen

    2009-01-01

    Anthrolysin O (ALO) is a pore-forming, cholesterol-dependent cytolysin (CDC) secreted by Bacillus anthracis, the etiologic agent for anthrax. Growing evidence suggests the involvement of ALO in anthrax pathogenesis. Here, we show that the apical application of ALO decreases the barrier function of human polarized epithelial cells as well as increases intracellular calcium and the internalization of the tight junction protein occludin. Using pharmacological agents, we also found that barrier function disruption requires increased intracellular calcium and protein degradation. We also report a crystal structure of the soluble state of ALO. Based on our analytical ultracentrifugation and light scattering studies, ALO exists as a monomer. Our ALO structure provides the molecular basis as to how ALO is locked in a monomeric state, in contrast to other CDCs that undergo antiparallel dimerization or higher order oligomerization in solution. ALO has four domains and is globally similar to perfringolysin O (PFO) and intermedilysin (ILY), yet the highly conserved undecapeptide region in domain 4 (D4) adopts a completely different conformation in all three CDCs. Consistent with the differences within D4 and at the D2-D4 interface, we found that ALO D4 plays a key role in affecting the barrier function of C2BBE cells, whereas PFO domain 4 cannot substitute for this role. Novel structural elements and unique cellular functions of ALO revealed by our studies provide new insight into the molecular basis for the diverse nature of the CDC family. PMID:19307185

  15. Negatively charged residues of the segment linking the enzyme and cytolysin moieties restrict the membrane-permeabilizing capacity of adenylate cyclase toxin.

    PubMed

    Masin, Jiri; Osickova, Adriana; Sukova, Anna; Fiser, Radovan; Halada, Petr; Bumba, Ladislav; Linhartova, Irena; Osicka, Radim; Sebo, Peter

    2016-01-01

    The whooping cough agent, Bordetella pertussis, secretes an adenylate cyclase toxin-hemolysin (CyaA) that plays a crucial role in host respiratory tract colonization. CyaA targets CR3-expressing cells and disrupts their bactericidal functions by delivering into their cytosol an adenylate cyclase enzyme that converts intracellular ATP to cAMP. In parallel, the hydrophobic domain of CyaA forms cation-selective pores that permeabilize cell membrane. The invasive AC and pore-forming domains of CyaA are linked by a segment that is unique in the RTX cytolysin family. We used mass spectrometry and circular dichroism to show that the linker segment forms α-helical structures that penetrate into lipid bilayer. Replacement of the positively charged arginine residues, proposed to be involved in target membrane destabilization by the linker segment, reduced the capacity of the toxin to translocate the AC domain across cell membrane. Substitutions of negatively charged residues then revealed that two clusters of negative charges within the linker segment control the size and the propensity of CyaA pore formation, thereby restricting the cell-permeabilizing capacity of CyaA. The 'AC to Hly-linking segment' thus appears to account for the smaller size and modest cell-permeabilizing capacity of CyaA pores, as compared to typical RTX hemolysins. PMID:27581058

  16. Pathogenesis of Streptococcus urinary tract infection depends on bacterial strain and β-hemolysin/cytolysin that mediates cytotoxicity, cytokine synthesis, inflammation and virulence

    PubMed Central

    Leclercq, Sophie Y.; Sullivan, Matthew J.; Ipe, Deepak S.; Smith, Joshua P.; Cripps, Allan W.; Ulett, Glen C.

    2016-01-01

    Streptococcus agalactiae can cause urinary tract infection (UTI) including cystitis and asymptomatic bacteriuria (ABU). The early host-pathogen interactions that occur during S. agalactiae UTI and subsequent mechanisms of disease pathogenesis are poorly defined. Here, we define the early interactions between human bladder urothelial cells, monocyte-derived macrophages, and mouse bladder using uropathogenic S. agalactiae (UPSA) 807 and ABU-causing S. agalactiae (ABSA) 834 strains. UPSA 807 adhered, invaded and killed bladder urothelial cells more efficiently compared to ABSA 834 via mechanisms including low-level caspase-3 activation, and cytolysis, according to lactate dehydrogenase release measures and cell viability. Severe UPSA 807-induced cytotoxicity was mediated entirely by the bacterial β-hemolysin/cytolysin (β-H/C) because an β-H/C-deficient UPSA 807 isogenic mutant, UPSA 807ΔcylE, was not cytotoxic in vitro; the mutant was also significantly attenuated for colonization in the bladder in vivo. Analysis of infection-induced cytokines, including IL-8, IL-1β, IL-6 and TNF-α in vitro and in vivo revealed that cytokine and chemokine responses were dependent on expression of β-H/C that also elicited severe bladder neutrophilia. Thus, virulence of UPSA 807 encompasses adhesion to, invasion of and killing of bladder cells, pro-inflammatory cytokine/chemokine responses that elicit neutrophil infiltration, and β-H/C-mediated subversion of innate immune-mediated bacterial clearance from the bladder. PMID:27383371

  17. Soluble Oligomers of the Pore-forming Toxin Cytolysin A from Escherichia coli Are Off-pathway Products of Pore Assembly.

    PubMed

    Roderer, Daniel; Benke, Stephan; Schuler, Benjamin; Glockshuber, Rudi

    2016-03-11

    The α-pore-forming toxin Cytolysin A (ClyA) is responsible for the hemolytic activity of various Escherichia coli and Salmonella enterica strains. Soluble ClyA monomers spontaneously assemble into annular dodecameric pore complexes upon contact with membranes or detergent. At ClyA monomer concentrations above ∼100 nm, the rate-limiting step in detergent- or membrane- induced pore assembly is the unimolecular reaction from the monomer to the assembly-competent protomer, which then oligomerizes rapidly to active pore complexes. In the absence of detergent, ClyA slowly forms soluble oligomers. Here we show that soluble ClyA oligomers cannot form dodecameric pore complexes after the addition of detergent and are hemolytically inactive. In addition, we demonstrate that the natural cysteine pair Cys-87/Cys-285 of ClyA forms a disulfide bond under oxidizing conditions and that both the oxidized and reduced ClyA monomers assemble to active pores via the same pathway in the presence of detergent, in which an unstructured, monomeric intermediate is transiently populated. The results show that the oxidized ClyA monomer assembles to pore complexes about one order of magnitude faster than the reduced monomer because the unstructured intermediate of oxidized ClyA is less stable and dissolves more rapidly than the reduced intermediate. Moreover, we show that oxidized ClyA forms soluble, inactive oligomers in the absence of detergent much faster than the reduced monomer, providing an explanation for several contradictory reports in which oxidized ClyA had been described as inactive. PMID:26757820

  18. Soluble Oligomers of the Pore-forming Toxin Cytolysin A from Escherichia coli Are Off-pathway Products of Pore Assembly.

    PubMed

    Roderer, Daniel; Benke, Stephan; Schuler, Benjamin; Glockshuber, Rudi

    2016-03-11

    The α-pore-forming toxin Cytolysin A (ClyA) is responsible for the hemolytic activity of various Escherichia coli and Salmonella enterica strains. Soluble ClyA monomers spontaneously assemble into annular dodecameric pore complexes upon contact with membranes or detergent. At ClyA monomer concentrations above ∼100 nm, the rate-limiting step in detergent- or membrane- induced pore assembly is the unimolecular reaction from the monomer to the assembly-competent protomer, which then oligomerizes rapidly to active pore complexes. In the absence of detergent, ClyA slowly forms soluble oligomers. Here we show that soluble ClyA oligomers cannot form dodecameric pore complexes after the addition of detergent and are hemolytically inactive. In addition, we demonstrate that the natural cysteine pair Cys-87/Cys-285 of ClyA forms a disulfide bond under oxidizing conditions and that both the oxidized and reduced ClyA monomers assemble to active pores via the same pathway in the presence of detergent, in which an unstructured, monomeric intermediate is transiently populated. The results show that the oxidized ClyA monomer assembles to pore complexes about one order of magnitude faster than the reduced monomer because the unstructured intermediate of oxidized ClyA is less stable and dissolves more rapidly than the reduced intermediate. Moreover, we show that oxidized ClyA forms soluble, inactive oligomers in the absence of detergent much faster than the reduced monomer, providing an explanation for several contradictory reports in which oxidized ClyA had been described as inactive.

  19. Progress in nemertean biology: development and phylogeny.

    PubMed

    Turbeville, J M

    2002-07-01

    This paper reviews progress in developmental biology and phylogeny of the Nemertea, a common but poorly studied spiralian taxon of considerable ecological and evolutionary significance. Analyses of reproductive biology (including calcium dynamics during fertilization and oocyte maturation), larval morphology and development and developmental genetics have significantly extended our knowledge of spiralian developmental biology. Developmental genetics studies have in addition provided characters useful for reconstructing metazoan phylogeny. Reinvestigation of the cell lineage of Cerebratulus lacteus using fluorescent tracers revealed that endomesoderm forms from the 4d cell as in other spiralians and that ectomesoderm is derived from the 3a and 3b cells as in annelids, echiurans and molluscs. Studies examining blastomere specification show that cell fates are established precociously in direct developers and later in indirect developers. Morphological characters used to estimate the phylogenetic position of nemerteans are critically re-evaluated, and cladistic analyses of morphology reveal that conflicting hypotheses of nemertean relationships result because of different provisional homology statements. Analyses that include disputed homology statements (1, gliointerstitial cell system 2, coelomic circulatory system) suggest that nemerteans form the sister taxon to the coelomate spiralian taxa rather than the sister taxon to Platyhelminthes. Analyses of small subunit rRNA (18S rDNA) sequences alone or in combination with morphological characters support the inclusion of the nemerteans in a spiralian coelomate clade nested within a more inclusive lophotrochozoan clade. Ongoing evaluation of nemertean relationships with mitochondrial gene rearrangements and other molecular characters is discussed.

  20. A calcium-activated sodium conductance produces a long-duration action potential in the egg of a nemertean worm.

    PubMed Central

    Jaffe, L A; Kado, R T; Kline, D

    1986-01-01

    1. The egg of the nemertean worm Cerebratulus lacteus produced an action potential having a duration of about 9 min. We investigated the ionic conductances which accounted for this long-duration action potential. 2. The peak of the action potential was about +50 mV and depended on extracellular Ca2+, while the plateau potential was about +25 mV and depended on extracellular Na+. 3. Under voltage-clamp conditions, depolarization produced two temporally separate inward currents: a fast current which reached a peak at about 10 ms, and a slow current which took up to 1 min to reach its peak and lasted for several min. 4. The fast current was independent of extracellular Na+, but was blocked by removal of extracellular Ca2+. 5. The slow current was not seen when extracellular Na+ was replaced by choline+ or K+. 6. The slow current did not develop in Ca2+-free sea water, and was reduced to about half if Ca2+ was removed after the current had been initiated. 7. Microinjection of EGTA blocked the slow current, and reduced the action potential duration to about 1 min. 8. We concluded that a voltage-activated Ca2+ conductance produced the peak of the action potential, while a Ca2+-activated Na+ conductance produced its plateau. PMID:2442351

  1. Phylogenetic position of phylum Nemertini, inferred from 18S rRNA sequences: molecular data as a test of morphological character homology.

    PubMed

    Turbeville, J M; Field, K G; Raff, R A

    1992-03-01

    Partial 18S rRNA sequence of the nemertine Cerebratulus lacteus was obtained and compared with those of coelomate metazoans and acoelomate platyhelminths to test whether nemertines share a most recent common ancestor with the platyhelminths, as traditionally has been implied, or whether nemertines lie within a protostome coelomate clade, as suggested by more recent morphological analyses. Maximum-parsimony analysis supports the inclusion of the nemertine within a protostome-coelomate clade that falls within a more inclusive coelomate clade. Bootstrap analysis indicates strong support for a monophyletic Coelomata composed of a deuterostome and protostome-coelomate clade. Support for a monophyletic protostome Coelomata is weak. Inference by distance analysis is consistent with that of maximum parsimony. Analysis of down-weighted paired sites by maximum parsimony reveals variation in topology only within the protostome-coelomate clade. The relationships among the protostome coelomates cannot be reliably inferred from the partial sequences, suggesting that coelomate protostomes diversified rapidly. Results with evolutionary parsimony are consistent with the inclusion of the nemertine in a coelomate clade. The molecular inference corroborates recent morphological character analyses that reveal no synapomorphies of nemertines and flatworms but instead suggest that the circulatory system and rhynchocoel of nemertines are homologous to coelomic cavities of protostome coelomates, thus supporting the corresponding hypothesis that nemertines belong within a protostome-coelomate clade. The sequence data provide an independent test of morphological character homology.

  2. Determination of ligand pathways in globins: apolar tunnels versus polar gates.

    PubMed

    Salter, Mallory D; Blouin, George C; Soman, Jayashree; Singleton, Eileen W; Dewilde, Sylvia; Moens, Luc; Pesce, Alessandra; Nardini, Marco; Bolognesi, Martino; Olson, John S

    2012-09-28

    Although molecular dynamics simulations suggest multiple interior pathways for O(2) entry into and exit from globins, most experiments indicate well defined single pathways. In 2001, we highlighted the effects of large-to-small amino acid replacements on rates for ligand entry and exit onto the three-dimensional structure of sperm whale myoglobin. The resultant map argued strongly for ligand movement through a short channel from the heme iron to solvent that is gated by the distal histidine (His-64(E7)) near the solvent edge of the porphyrin ring. In this work, we have applied the same mutagenesis mapping strategy to the neuronal mini-hemoglobin from Cerebratulus lacteus (CerHb), which has a large internal tunnel from the heme iron to the C-terminal ends of the E and H helices, a direction that is 180° opposite to the E7 channel. Detailed comparisons of the new CerHb map with expanded results for Mb show unambiguously that the dominant (>90%) ligand pathway in CerHb is through the internal tunnel, and the major (>75%) ligand pathway in Mb is through the E7 gate. These results demonstrate that: 1) mutagenesis mapping can identify internal pathways when they exist; 2) molecular dynamics simulations need to be refined to address discrepancies with experimental observations; and 3) alternative pathways have evolved in globins to meet specific physiological demands. PMID:22859299

  3. [Low-molecular cytolysins and trypsin inhibitors from sea anemone Radianthus macrodactylus. Isolation and partial characterization].

    PubMed

    Zykova, T A; Monastyrnaia, M M; Apalikova, O V; Shvets, T V; Kozlovskaia, E P

    1998-07-01

    Two low-molecular cytolytic toxins (RmI and RmII) and four trypsin inhibitors were isolated from the aqueous extract of sea anemone Radianthus macrodactylus. The method of isolation involved precipitation with acetone, gel filtration on acrylex P-4, ion-exchange chromatography on CM-32 cellulose, affinity chromatography on trypsin-binding sepharose 4B, ion exchange chromatography on an Ultrapore TSK CM-3SW column, and reversed phase HPLC on a Silasorb C18 column. RmI, RmII, and JnI inhibitor displayed molecular masses 5100, 6100, and 7100 Da, respectively, when subjected to SDS-PAGE. The isoelectric points were 9.2 and 9.3 for RmI and RmII, respectively. The amino acid composition and N-terminal amino acid residue (glycine) were determined for RmI, RmII, and JnI. Both proteins were nontoxic to mice and crabs. Hemolytic activity was determined to be 25 and 20 HU/mg for RmI and RmII, respectively, and their action on erythrocyte membrane was not inhibited by exogenous sphingomyelin. RmI and RmII exhibited antihistamine activity.

  4. Fundamental properties of the spiralian developmental program are displayed by the basal nemertean Carinoma tremaphoros (Palaeonemertea, Nemertea).

    PubMed

    Maslakova, Svetlana A; Martindale, Mark Q; Norenburg, Jon L

    2004-03-15

    The first description of the cleavage program of the palaeonemertean Carinoma tremaphoros (a member of a basal clade of the Nemertea) is illustrated by confocal microscopy and microinjection and compared to development of more derived nemerteans and other eutrochozoans (Annelida, Mollusca, Sipunculida and Echiurida). Lineage tracers were injected into individual blastomeres of C. tremaphoros at the 2-, 4-, 8- and 16-cell stage. Subsequent development was followed to the formation of simple (so-called planuliform) planktonic larvae to establish the ultimate fates of the blastomeres. Results of labeling experiments demonstrate that the development of C. tremaphoros bears closer similarity to other Eutrochozoa than development of a previously studied hoplonemertean (Nemertopsis bivittata) and a heteronemertean (Cerebratulus lacteus) in that the first cleavage plane bears an invariant relationship to the plane of bilateral symmetry of the larval body. Additionally, our cell-labeling experiments support the earlier suggestion that the transitory pre-oral belt of cells in the larvae of C. tremaphoros corresponds to the prototroch of other Eutrochozoa. A unique feature of development of C. tremaphoros includes the oblique orientation of the trochal lineages with respect to the anterior-posterior axis of the larva. The significance and application of cleavage characters such as presence of molluscan vs. annelid cross for phylogenetic analyses is reviewed. We argue that molluscan or annelid cross, neither of which are present in nemerteans, are merely two out of much greater variety of patterns created by the differences in the relative size and timing of formation of micromere quartets and none can be considered, by itself, as evidence of close phylogenetic relationship between phyla.

  5. An intermolecular electrostatic interaction controls the prepore-to-pore transition in a cholesterol-dependent cytolysin

    PubMed Central

    Wade, Kristin R.; Hotze, Eileen M.; Kuiper, Michael J.; Morton, Craig J.; Parker, Michael W.; Tweten, Rodney K.

    2015-01-01

    β-Barrel pore-forming toxins (βPFTs) form an obligatory oligomeric prepore intermediate before the formation of the β-barrel pore. The molecular components that control the critical prepore-to-pore transition remain unknown for βPFTs. Using the archetype βPFT perfringolysin O, we show that E183 of each monomer within the prepore complex forms an intermolecular electrostatic interaction with K336 of the adjacent monomer on completion of the prepore complex. The signal generated throughout the prepore complex by this interaction irrevocably commits it to the formation of the membrane-inserted giant β-barrel pore. This interaction supplies the free energy to overcome the energy barrier (determined here to be ∼19 kcal/mol) to the prepore-to-pore transition by the coordinated disruption of a critical interface within each monomer. These studies provide the first insight to our knowledge into the molecular mechanism that controls the prepore-to-pore transition for a βPFT. PMID:25646411

  6. New records of ribbon worms (Nemertea) from Ceará, Northeast Brazil.

    PubMed

    Mendes, Cecili B; Matthews-Cascon, Helena; Norenburg, Jon L

    2016-01-05

    Of 45 species of nemerteans reported for the Brazilian coast, only two were recorded from Brazil's Northeast coast. Here we report seven new records for the state of Ceará, in Northeast Brazil: Tubulanus rhabdotus Côrrea, 1954, Carinomella cf. lactea Coe, 1905, Baseodiscus delineatus (Delle-Chiaje 1825), Cerebratulus cf. lineolatus Coe, 1905, Cerebratulus sp. 1, Cerebratulus sp. 2 and Lineidae sp. 1. Specimens were collected at the following beaches: Praia dos Dois Coqueiros, Praia do Pacheco, Pecém harbor, Praia da Pedra Rachada and Praia do Guajiru. T. rhabdotus is a new record for Northeast Brazil, Carinomella cf. lactea and Cerebratulus cf. lineolatus are new records for the South Atlantic Ocean and both genera are new records for Brazil.

  7. New records of ribbon worms (Nemertea) from Ceará, Northeast Brazil.

    PubMed

    Mendes, Cecili B; Matthews-Cascon, Helena; Norenburg, Jon L

    2016-01-01

    Of 45 species of nemerteans reported for the Brazilian coast, only two were recorded from Brazil's Northeast coast. Here we report seven new records for the state of Ceará, in Northeast Brazil: Tubulanus rhabdotus Côrrea, 1954, Carinomella cf. lactea Coe, 1905, Baseodiscus delineatus (Delle-Chiaje 1825), Cerebratulus cf. lineolatus Coe, 1905, Cerebratulus sp. 1, Cerebratulus sp. 2 and Lineidae sp. 1. Specimens were collected at the following beaches: Praia dos Dois Coqueiros, Praia do Pacheco, Pecém harbor, Praia da Pedra Rachada and Praia do Guajiru. T. rhabdotus is a new record for Northeast Brazil, Carinomella cf. lactea and Cerebratulus cf. lineolatus are new records for the South Atlantic Ocean and both genera are new records for Brazil. PMID:27395488

  8. Two-dimensional crystallization on lipid monolayers and three-dimensional structure of sticholysin II, a cytolysin from the sea anemone Stichodactyla helianthus.

    PubMed Central

    Martín-Benito, J; Gavilanes, F; de Los Ríos, V; Mancheño, J M; Fernández, J J; Gavilanes, J G

    2000-01-01

    Sticholysin II (Stn II), a potent cytolytic protein isolated from the sea anemone Stichodactyla helianthus, has been crystallized on lipid monolayers. With Fourier-based methods, a three-dimensional (3D) model of Stn II, up to a resolution of 15 A, has been determined. The two-sided plane group is p22(1)2, with dimensions a = 98 A, b = 196 A. The 3D model of Stn II displays a Y-shaped structure, slightly flattened, with a small curvature along its longest dimension (51 A). This protein, with a molecular mass of 19. 2 kDa, is one of the smallest structures reconstructed with this methodology. Two-dimensional (2D) crystals of Stn II on phosphatidylcholine monolayers present a unit cell with two tetrameric motifs, with the monomers in two different orientations: one with its longest dimension lying on the crystal plane and the other with this same axis leaning at an angle of approximately 60 degrees with the crystal plane. PMID:10827995

  9. Immunocompetent cells requisite for graft rejection in Lineus (Invertebrata, Nemertea).

    PubMed

    Langlet, C; Bierne, J

    1984-01-01

    Antecerebral ends from donors of one Lineus species (L. sanguineus) were grafted onto bispecific recipients previously constructed from two other Lineus species (denoted L. ruber----L. lacteus because the anterior component of chimeras was from L. ruber and the posterior component was from L. lacteus) and onto monospecific controls. Histological examination of areas where the tissues from L. sanguineus and L. ruber had been brought into contact by grafting always showed, at early stages, (6 to 20 days postgrafting), a great deal of difference depending upon whether the recipients were monospecific L. ruber or bispecific L. ruber----L. lacteus: only in grafts onto the former was there lysis of gland cells, connective tissue, muscular fibers, and finally epidermis. We attribute this lytic process to a strongly and rapidly cytotoxic action of lymphocyte-like cells from the L. ruber intestinal segment and the absence of lysis during the same stage in grafts onto composite recipients and monospecific L. lacteus to weak, delayed actions of immunocytes from the L. lacteus intestinal segment. Subsequent phagocytosis of material from lysed cell of grafts in the process of being rejected was effected by wandering amebocytes usually involved in destruction of degenerating "self" components, as in oosorption and resorptive processes after fasting. This work supports the existence of immunocytes at an early phylogenetic level.

  10. Downscaling the in vitro test of fungal bioremediation of polycyclic aromatic hydrocarbons: methodological approach.

    PubMed

    Drevinskas, Tomas; Mickienė, Rūta; Maruška, Audrius; Stankevičius, Mantas; Tiso, Nicola; Mikašauskaitė, Jurgita; Ragažinskienė, Ona; Levišauskas, Donatas; Bartkuvienė, Violeta; Snieškienė, Vilija; Stankevičienė, Antanina; Polcaro, Chiara; Galli, Emanuela; Donati, Enrica; Tekorius, Tomas; Kornyšova, Olga; Kaškonienė, Vilma

    2016-02-01

    The miniaturization and optimization of a white rot fungal bioremediation experiment is described in this paper. The optimized procedure allows determination of the degradation kinetics of anthracene. The miniaturized procedure requires only 2.5 ml of culture medium. The experiment is more precise, robust, and better controlled comparing it to classical tests in flasks. Using this technique, different parts, i.e., the culture medium, the fungi, and the cotton seal, can be analyzed. A simple sample preparation speeds up the analytical process. Experiments performed show degradation of anthracene up to approximately 60% by Irpex lacteus and up to approximately 40% by Pleurotus ostreatus in 25 days. Bioremediation of anthracene by the consortium of I. lacteus and P. ostreatus shows the biodegradation of anthracene up to approximately 56% in 23 days. At the end of the experiment, the surface tension of culture medium decreased comparing it to the blank, indicating generation of surfactant compounds. PMID:26660875

  11. Biotransformation of fluoroquinolone antibiotics by ligninolytic fungi--Metabolites, enzymes and residual antibacterial activity.

    PubMed

    Čvančarová, Monika; Moeder, Monika; Filipová, Alena; Cajthaml, Tomáš

    2015-10-01

    A group of white rot fungi (Irpex lacteus, Panus tigrinus, Dichomitus squalens, Trametes versicolor and Pleurotus ostreatus) was investigated for the biodegradation of norfloxacin (NOR), ofloxacin (OF) and ciprofloxacin (CIP). The selected fluoroquinolones were readily degraded almost completely by I. lacteus and T. versicolor within 10 and 14 d of incubation in liquid medium, respectively. The biodegradation products were identified by liquid chromatography-mass spectrometry. The analyses indicated that the fungi use similar mechanisms to degrade structurally related antibiotics. The piperazine ring of the molecules is preferably attacked via either substitution or/and decomposition. In addition to the degradation efficiency, attention was devoted to the residual antibiotic activities estimated using Gram-positive and Gram-negative bacteria. Only I. lacteus was able to remove the antibiotic activity during the course of the degradation of NOR and OF. The product-effect correlations evaluated by Principal Component Analysis (PCA) enabled elucidation of the participation of the individual metabolites in the residual antibacterial activity. Most of the metabolites correlated with the antibacterial activity, explaining the rather high residual activity remaining after the biodegradation. PCA of ligninolytic enzyme activities indicated that manganese peroxidase might participate in the degradation.

  12. Fungal biodegradation of anthracene-polluted cork: A comparative study.

    PubMed

    Jové, Patrícia; Olivella, Maria À; Camarero, Susana; Caixach, Josep; Planas, Carles; Cano, Laura; De Las Heras, Francesc X

    2016-01-01

    The efficiency of cork waste in adsorbing aqueous polycyclic aromatic hydrocarbons (PAHs) has been previously reported. Biodegradation of contaminated cork using filamentous fungi could be a good alternative for detoxifying cork to facilitate its final processing. For this purpose, the degradation efficiency of anthracene by three ligninolytic white-rot fungi (Phanerochaete chrysosporium, Irpex lacteus and Pleurotus ostreatus) and three non-ligninolytic fungi which are found in the cork itself (Aspergillus niger, Penicillium simplicissimum and Mucor racemosus) are compared. Anthracene degradation by all fungi was examined in solid-phase cultures after 0, 16, 30 and 61 days. The degradation products of anthracene by P. simplicissimum and I. lacteus were also identified by GC-MS and a metabolic pathway was proposed for P. simplicissimum. Results show that all the fungi tested degraded anthracene. After 61 days of incubation, approximately 86%, 40%, and 38% of the initial concentration of anthracene (i.e., 100 µM) was degraded by P. simplicissimum, P. chrysosporium and I. lacteus, respectively. The rest of the fungi degraded anthracene to a lesser extent (<30%). As a final remark, the results obtained in this study indicate that P. simplicissimum, a non-ligninolytic fungi characteristic of cork itself, could be used as an efficient degrader of PAH-contaminated cork. PMID:26540209

  13. Fungal Growth and Manganese Peroxidase Production in a Deep Tray Solid-State Bioreactor, and In Vitro Decolorization of Poly R-478 by MnP.

    PubMed

    Zhao, Xinshan; Huang, Xianjun; Yao, Juntao; Zhou, Yue; Jia, Rong

    2015-06-01

    The growth of Irpex lacteus F17 and manganese peroxidase (MnP) production in a selfdesigned tray bioreactor, operating in solid-state conditions at a laboratory scale, were studied. The bioreactor was divided into three layers by three perforated trays. Agroindustrial residues were used both as the carrier of bound mycelia and as a nutrient medium for the growth of I. lacteus F17. The maximum biomass production in the bioreactor was detected at 60 h of fermentation, which was consistent with the CO2 releasing rate by the fungus. During the stationary phase of fungal growth, the maximum MnP activity was observed, reaching 950 U/l at 84 h. Scanning electron microscopy images clearly showed the growth situation of mycelia on the support matrix. Furthermore, the MnP produced by I. lacteus F17 in the bioreactor was isolated and purified, and the internal peptide sequences were also identified with mass spectrometry. The optimal activity of the enzyme was detected at pH 7 and 25 °C, with a long half-life time of 9 days. In addition, the MnP exhibited significant stability within a broad pH range of 4-7 and at temperature up to 55 °C. Besides this, the MnP showed the ability to decolorize the polymeric model dye Poly R-478 in vitro.

  14. Fungal biodegradation of anthracene-polluted cork: A comparative study.

    PubMed

    Jové, Patrícia; Olivella, Maria À; Camarero, Susana; Caixach, Josep; Planas, Carles; Cano, Laura; De Las Heras, Francesc X

    2016-01-01

    The efficiency of cork waste in adsorbing aqueous polycyclic aromatic hydrocarbons (PAHs) has been previously reported. Biodegradation of contaminated cork using filamentous fungi could be a good alternative for detoxifying cork to facilitate its final processing. For this purpose, the degradation efficiency of anthracene by three ligninolytic white-rot fungi (Phanerochaete chrysosporium, Irpex lacteus and Pleurotus ostreatus) and three non-ligninolytic fungi which are found in the cork itself (Aspergillus niger, Penicillium simplicissimum and Mucor racemosus) are compared. Anthracene degradation by all fungi was examined in solid-phase cultures after 0, 16, 30 and 61 days. The degradation products of anthracene by P. simplicissimum and I. lacteus were also identified by GC-MS and a metabolic pathway was proposed for P. simplicissimum. Results show that all the fungi tested degraded anthracene. After 61 days of incubation, approximately 86%, 40%, and 38% of the initial concentration of anthracene (i.e., 100 µM) was degraded by P. simplicissimum, P. chrysosporium and I. lacteus, respectively. The rest of the fungi degraded anthracene to a lesser extent (<30%). As a final remark, the results obtained in this study indicate that P. simplicissimum, a non-ligninolytic fungi characteristic of cork itself, could be used as an efficient degrader of PAH-contaminated cork.

  15. Comparative Examination of the Olive Mill Wastewater Biodegradation Process by Various Wood-Rot Macrofungi

    PubMed Central

    Koutrotsios, Georgios; Zervakis, Georgios I.

    2014-01-01

    Olive mill wastewater (OMW) constitutes a major cause of environmental pollution in olive-oil producing regions. Sixty wood-rot macrofungi assigned in 43 species were evaluated for their efficacy to colonize solidified OMW media at initially established optimal growth temperatures. Subsequently eight strains of the following species were qualified: Abortiporus biennis, Ganoderma carnosum, Hapalopilus croceus, Hericium erinaceus, Irpex lacteus, Phanerochaete chrysosporium, Pleurotus djamor, and P. pulmonarius. Fungal growth in OMW (25%v/v in water) resulted in marked reduction of total phenolic content, which was significantly correlated with the effluent's decolorization. A. biennis was the best performing strain (it decreased phenolics by 92% and color by 64%) followed by P. djamor and I. lacteus. Increase of plant seeds germination was less pronounced evidencing that phenolics are only partly responsible for OMW's phytotoxicity. Laccase production was highly correlated with all three biodegradation parameters for H. croceus, Ph. chrysosporium, and Pleurotus spp., and so were manganese-independent and manganese dependent peroxidases for A. biennis and I. lacteus. Monitoring of enzymes with respect to biomass production indicated that Pleurotus spp., H. croceus, and Ph. chrysosporium shared common patterns for all three activities. Moreover, generation of enzymes at the early biodegradation stages enhanced the efficiency of OMW treatment. PMID:24987685

  16. An efficient PAH-degrading Lentinus (Panus) tigrinus strain: effect of inoculum formulation and pollutant bioavailability in solid matrices.

    PubMed

    Covino, Stefano; Cvancarová, Monika; Muzikár, Milan; Svobodová, Katerina; D'annibale, Alessandro; Petruccioli, Maurizio; Federici, Federico; Kresinová, Zdena; Cajthaml, Tomás

    2010-11-15

    This study comparatively investigated the PAH degradation ability of Lentinus tigrinus and Irpex lacteus in a historically polluted soil and creosote-impregnated shavings. With this regard, the effect of type of inoculum carrier (i.e., wheat straw, corn cobs and commercial pellets) and contaminant bioavailability was thoroughly determined. Although degradation performances of L. tigrinus were not significantly affected by the type of the support, they were invariably better than those of I. lacteus on both the polluted soil and the creosote-impregnated shavings. Although degradation efficiencies of all fungal microcosms were highly and significantly correlated with bioavailability, certain PAHs, such as chrysene and benzo[a]pyrene, were removed by L. tigrinus from the polluted soil at amounts that exceeded about 2.3-fold their respective bioavailabilities. Degradation of PAHs was negatively correlated with their organic carbon sorption coefficients (K(oc)) and hydrophobicity (logP). The strength of linear association with the latter parameter, however, was not affected by the type of contaminated matrix in L. tigrinus-based microcosms while it was significantly larger in the historically polluted soil than in the creosote-impregnated shavings in I. lacteus ones. PMID:20728989

  17. Listeriolysin genes: complete sequence of ilo from Listeria ivanovii and of lso from Listeria seeligeri.

    PubMed

    Haas, A; Dumbsky, M; Kreft, J

    1992-02-28

    The complete DNA sequences coding for the thiol-activated cytolysins from Listeria ivanovii, ivanolysin O (ILO) and for seeligerolysin O (LSO) from Listeria seeligeri have been determined. The deduced amino acid sequences revealed that: (i) the primary translation products comprise 528 (ILO) and 530 (LSO) amino acids, respectively, (ii) ILO contains two cysteines, LSO has a substitution in the conserved cysteine motif.

  18. Cytolytic pore-forming protein associated with the surface membrane of Naegleria fowleri

    SciTech Connect

    Lowrey, D.M.

    1985-01-01

    Whole cell homogenates of Naegleria fowleri were examined by hemolytic and /sup 51/Cr-release assays for the presence of cytolytic molecules which may participate in the cytopathogenic action of this amoeba. Two distinct cytolytic activities were found. A surface membrane cytolysin was identified which was found to be avidly associated with membranes possessing an equilibrium density of 1.135 g/cm/sup 3/ in isopycnic sucrose gradients. The activity of the surface membrane cytolysin was not affected by heating at 75/sup 0/C for 30 min. The second cytolytic activity was found in putative lysosomes possessing an equilibrium density of 1.162 g/cm/sup 3/ and was completely inactivated by heating at 75/sup 0/C for 30 min. Cytolysis produced in the presence of both cytolysins was consistently synergistic with respect to the activity of either cytolysin alone. The lesions produced on erythrocytes by this cooperative process were characterized by electron microscopy as transmembrane pores resembling a number of other cytolytic effector molecules including the ninth component of complement, perforins of cytolytic T lymphocytes, and the alphatoxin of Staphylococcus aureus.

  19. Cytolytic peptide and protein toxins from sea anemones (Anthozoa: Actiniaria).

    PubMed

    Anderluh, Gregor; Macek, Peter

    2002-02-01

    More than 32 species of sea anemones have been reported to produce lethal cytolytic peptides and proteins. Based on their primary structure and functional properties, cytolysins have been classified into four polypeptide groups. Group I consists of 5-8 kDa peptides, represented by those from the sea anemones Tealia felina and Radianthus macrodactylus. These peptides form pores in phosphatidylcholine containing membranes. The most numerous is group II comprising 20 kDa basic proteins, actinoporins, isolated from several genera of the fam. Actiniidae and Stichodactylidae. Equinatoxins, sticholysins, and magnificalysins from Actinia equina, Stichodactyla helianthus, and Heteractis magnifica, respectively, have been studied mostly. They associate typically with sphingomyelin containing membranes and create cation-selective pores. The crystal structure of equinatoxin II has been determined at 1.9A resolution. Lethal 30-40 kDa cytolytic phospholipases A(2) from Aiptasia pallida (fam. Aiptasiidae) and a similar cytolysin, which is devoid of enzymatic activity, from Urticina piscivora, form group III. A thiol-activated cytolysin, metridiolysin, with a mass of 80 kDa from Metridium senile (fam. Metridiidae) is a single representative of the fourth family. Its activity is inhibited by cholesterol or phosphatides. Biological, structure-function, and pharmacological characteristics of these cytolysins are reviewed.

  20. A taxonomic catalogue of Japanese nemerteans (phylum Nemertea).

    PubMed

    Kajihara, Hiroshi

    2007-04-01

    A literature-based taxonomic catalogue of the nemertean species (Phylum Nemertea) reported from Japanese waters is provided, listing 19 families, 45 genera, and 120 species as valid. Applications of the following species names to forms previously recorded from Japanese waters are regarded as uncertain: Amphiporus cervicalis, Amphiporus depressus, Amphiporus lactifloreus, Cephalothrix filiformis, Cephalothrix linearis, Cerebratulus fuscus, Lineus vegetus, Lineus bilineatus, Lineus gesserensis, Lineus grubei, Lineus longifissus, Lineus mcintoshii, Nipponnemertes pulchra, Oerstedia venusta, Prostoma graecense, and Prostoma grande. The identities of the taxa referred to by the following four nominal species require clarification through future investigations: Cosmocephala japonica, Dicelis rubra, Dichilus obscurus, and Nareda serpentina. The nominal species established from Japanese waters are tabulated. In addition, a brief history of taxonomic research on Japanese nemerteans is reviewed.

  1. Revision of the genus Ateralphus Restello, Iannuzzi & Marinoni, 2001 (Coleoptera: Cerambycidae: Lamiinae).

    PubMed

    Souza, Diego De S; Monné, Marcela L

    2013-01-01

    A revision of the genus Ateralphus Restello, Iannuzzi & Marinoni, 2001, based on the detailed study of the morphology of the type-species and on the external morphology and terminalia of the others species is presented. The genus and species are redescribed and three new species are described. The genus is composed of nine species: A. dejeani (Lane, 1973), A. javariensis (Lane, 1965), A. lacteus Galileo & Martins, 2006, A. senilis (Bates, 1862), A. subsellatus (White, 1855), A. variegatus (Mendes, 1938), A. auritarsus new species, A. lucianeae new species and A. tumidus new species. A key for identification of the species and maps of their geographical distribution are provided.

  2. The influence of termites on atmospheric trace gases: CH sub 4 , CO sub 2 , CHCl sub 3 , N sub 2 O, CO, H sub 2 , and light hydrocarbons

    SciTech Connect

    Khalil, M.A.K.; Rasmussen, R.A. ); French, J.R.J. ); Holt, J.A. )

    1990-03-20

    Based on field studies of mounds of Australian termites the authors estimate that on a global scale termites emit about 12 {times} 10{sup 12} g/yr of methane (< 20 tg/yr) and about 4 {times} 10{sup 15} g CO{sub 2}/yr (< 8 pg/yr). Most of the detailed results are based on studies of the species Coptotermes lacteus. They found that in mid-latitudes the emissions vary seasonally. As much methane is emitted in the summers as in all other seasons combined. The soils a few meters from the mounds consumed methane at an average rate of 40 {mu}g/m{sup 2}/h. They found no evidence of net emissions of CO and found that H{sub 2} is consistently consumed by the mounds and the soils near the mounds. All six species studied produced chloroform. The concentrations of chloroform inside the mounds of C. lacteus were a thousand times greater than ambient levels, but calculations show that termites are not likely to be a significant global source of chloroform. Finally, they used the results of this study, and others before them, to construct a view of the role of termites in the global carbon cycle.

  3. Analysis of ciliary band formation in the mollusc Ilyanassa obsoleta.

    PubMed

    Gharbiah, Maey; Nakamoto, Ayaki; Nagy, Lisa M

    2013-07-01

    Two primary ciliary bands, the prototroch and metatroch, are required for locomotion and in the feeding larvae of many spiralians. The metatroch has been reported to have different cellular origins in the molluscs Crepidula fornicata and Ilyanassa obsoleta, as well as in the annelid Polygordius lacteus, consistent with multiple independent origins of the spiralian metatroch. Here, we describe in further detail the cell lineage of the ciliary bands in the gastropod mollusc I. obsoleta using intracellular lineage tracing and the expression of an acetylated tubulin antigen that serves as a marker for ciliated cells. We find that the I. obsoleta metatroch is formed primarily by third quartet derivatives as well as a small number of second quartet derivatives. These results differ from the described metatrochal lineage in the mollusc C. fornicata that derives solely from the second quartet or the metatrochal lineage in the annelid P. lacteus that derives solely from the third quartet. The present study adds to a growing body of literature concerning the evolution of the metatroch and the plasticity of cell fates in homologous micromeres in spiralian embryos.

  4. Optimisation of the biological pretreatment of wheat straw with white-rot fungi for ethanol production.

    PubMed

    López-Abelairas, M; Álvarez Pallín, M; Salvachúa, D; Lú-Chau, T; Martínez, M J; Lema, J M

    2013-09-01

    The biological pretreatment of lignocellulosic biomass for the production of bioethanol is an environmentally friendly alternative to the most frequently used process, steam explosion (SE). However, this pretreatment can still not be industrially implemented due to long incubation times. The main objective of this work was to test the viability of and optimise the biological pretreatment of lignocellulosic biomass, which uses ligninolytic fungi (Pleurotus eryngii and Irpex lacteus) in a solid-state fermentation of sterilised wheat straw complemented with a mild alkali treatment. In this study, the most important parameters of the mechanical and thermal substrate conditioning processes and the most important parameters of the fungal fermentation process were optimised to improve sugar recovery. The largest digestibilities were achieved with fermentation with I. lacteus under optimised conditions, under which cellulose and hemicellulose digestibility increased after 21 days of pretreatment from 16 to 100 % and 12 to 87 %, respectively. The maximum glucose yield (84 %) of cellulose available in raw material was obtained after only 14 days of pretreatment with an overall ethanol yield of 74 % of the theoretical value, which is similar to that reached with SE.

  5. Genetic and biochemical properties of a hemolysin (pyolysin) produced by a swine isolate of Arcanobacterium (Actinomyces) pyogenes.

    PubMed

    Ikegami, M; Hashimoto, N; Kaidoh, T; Sekizaki, T; Takeuchi, S

    2000-01-01

    Arcanobacterium (Actinomyces) pyogenes, a causative agent of various pyogenic diseases in domestic animals, produces a hemolysin which is thought to be an important virulence factor. This hemolysin was purified from the culture supernatant of A. pyogenes swine isolate. The purified hemolysin showed a single band with a molecular mass of 56 kDa on SDS-polyacrylamide gel electrophoresis, and its isoelectric point was 9.2. The activity of this hemolysin was not enhanced by the addition of L-cysteine or sodium thioglycolate, but it was inhibited by cholesterol. The gene encoding the hemolysin was cloned, sequenced and expressed in Escherichia coli by means of ZAP Express vector. Analysis by SDS-polyacrylamide gel electrophoresis with immunoblotting showed that the molecular weight of the hemolysin expressed in E. coli is the same as that of the hemolysin purified from A. pyogenes. Nucleotide sequence analysis revealed an open reading frame of 1,605 bp encoding a 534 amino acid protein of 57,989 Da. The nucleotide sequence of the hemolysin gene from A. pyogenes swine isolate differed only slightly (97.6% identity) from the sequence of plo gene from A. pyogenes strain BBR1 reported by Billington et al (J. Bacteriol. 179: 6100-6106, 1997). The cysteine residue existed in the undecapeptide region of the hemolysin, which is highly conserved in thiol-activated cytolysins (cholesterol-binding cytolysins), and is replaced with alanine. Therefore, the hemolysin of A. pyogenes seems to be a novel member of the thiol-activated cytolysin family. PMID:10711593

  6. Group A streptococcus activates type I interferon production and MyD88-dependent signaling without involvement of TLR2, TLR4, and TLR9.

    PubMed

    Gratz, Nina; Siller, Maria; Schaljo, Barbara; Pirzada, Zaid A; Gattermeier, Irene; Vojtek, Ivo; Kirschning, Carsten J; Wagner, Hermann; Akira, Shizuo; Charpentier, Emmanuelle; Kovarik, Pavel

    2008-07-18

    Bacterial pathogens are recognized by the innate immune system through pattern recognition receptors, such as Toll-like receptors (TLRs). Engagement of TLRs triggers signaling cascades that launch innate immune responses. Activation of MAPKs and NF-kappaB, elements of the major signaling pathways induced by TLRs, depends in most cases on the adaptor molecule MyD88. In addition, Gram-negative or intracellular bacteria elicit MyD88-independent signaling that results in production of type I interferon (IFN). Here we show that in mouse macrophages, the activation of MyD88-dependent signaling by the extracellular Gram-positive human pathogen group A streptococcus (GAS; Streptococcus pyogenes) does not require TLR2, a receptor implicated in sensing of Gram-positive bacteria, or TLR4 and TLR9. Redundant engagement of either of these TLR molecules was excluded by using TLR2/4/9 triple-deficient macrophages. We further demonstrate that infection of macrophages by GAS causes IRF3 (interferon-regulatory factor 3)-dependent, MyD88-independent production of IFN. Surprisingly, IFN is induced also by GAS lacking slo and sagA, the genes encoding cytolysins that were shown to be required for IFN production in response to other Gram-positive bacteria. Our data indicate that (i) GAS is recognized by a MyD88-dependent receptor other than any of those typically used by bacteria, and (ii) GAS as well as GAS mutants lacking cytolysin genes induce type I IFN production by similar mechanisms as bacteria requiring cytoplasmic escape and the function of cytolysins.

  7. Group A Streptococcus Activates Type I Interferon Production and MyD88-dependent Signaling without Involvement of TLR2, TLR4, and TLR9*S⃞

    PubMed Central

    Gratz, Nina; Siller, Maria; Schaljo, Barbara; Pirzada, Zaid A.; Gattermeier, Irene; Vojtek, Ivo; Kirschning, Carsten J.; Wagner, Hermann; Akira, Shizuo; Charpentier, Emmanuelle; Kovarik, Pavel

    2008-01-01

    Bacterial pathogens are recognized by the innate immune system through pattern recognition receptors, such as Toll-like receptors (TLRs). Engagement of TLRs triggers signaling cascades that launch innate immune responses. Activation of MAPKs and NF-κB, elements of the major signaling pathways induced by TLRs, depends in most cases on the adaptor molecule MyD88. In addition, Gram-negative or intracellular bacteria elicit MyD88-independent signaling that results in production of type I interferon (IFN). Here we show that in mouse macrophages, the activation of MyD88-dependent signaling by the extracellular Gram-positive human pathogen group A streptococcus (GAS; Streptococcus pyogenes) does not require TLR2, a receptor implicated in sensing of Gram-positive bacteria, or TLR4 and TLR9. Redundant engagement of either of these TLR molecules was excluded by using TLR2/4/9 triple-deficient macrophages. We further demonstrate that infection of macrophages by GAS causes IRF3 (interferon-regulatory factor 3)-dependent, MyD88-independent production of IFN. Surprisingly, IFN is induced also by GAS lacking slo and sagA, the genes encoding cytolysins that were shown to be required for IFN production in response to other Gram-positive bacteria. Our data indicate that (i) GAS is recognized by a MyD88-dependent receptor other than any of those typically used by bacteria, and (ii) GAS as well as GAS mutants lacking cytolysin genes induce type I IFN production by similar mechanisms as bacteria requiring cytoplasmic escape and the function of cytolysins. PMID:18480050

  8. Identification of a Streptolysin S-Associated Gene Cluster and Its Role in the Pathogenesis of Streptococcus iniae Disease

    PubMed Central

    Fuller, Jeffrey D.; Camus, Alvin C.; Duncan, Carla L.; Nizet, Victor; Bast, Darrin J.; Thune, Ronald L.; Low, Donald E.; de Azavedo, Joyce C. S.

    2002-01-01

    Streptococcus iniae causes meningoencephalitis and death in cultured fish species and soft-tissue infection in humans. We recently reported that S. iniae is responsible for local tissue necrosis and bacteremia in a murine subcutaneous infection model. The ability to cause bacteremia in this model is associated with a genetic profile unique to strains responsible for disease in fish and humans (J. D. Fuller, D. J. Bast, V. Nizet, D. E. Low, and J. C. S. de Azavedo, Infect. Immun. 69:1994-2000, 2001). S. iniae produces a cytolysin that confers a hemolytic phenotype on blood agar media. In this study, we characterized the genomic region responsible for S. iniae cytolysin production and assessed its contribution to virulence. Transposon (Tn917) mutant libraries of commensal and disease-associated S. iniae strains were generated and screened for loss of hemolytic activity. Analysis of two nonhemolytic mutants identified a chromosomal locus comprising 9 genes with 73% homology to the group A streptococcus (GAS) sag operon for streptolysin S (SLS) biosynthesis. Confirmation that the S. iniae cytolysin is a functional homologue of SLS was achieved by PCR ligation mutagenesis, complementation of an SLS-negative GAS mutant, and use of the SLS inhibitor trypan blue. SLS-negative sagB mutants were compared to their wild-type S. iniae parent strains in the murine model and in human whole-blood killing assays. These studies demonstrated that S. iniae SLS expression is required for local tissue necrosis but does not contribute to the establishment of bacteremia or to resistance to phagocytic clearance. PMID:12228303

  9. Australian Marsh Beetles (Coleoptera: Scirtidae). 9. The relations of Australasian Ypsiloncyphon species to their Asian congeners, additions, mainly to Petrocyphon and Prionocyphon, and a key to Australian genera of Scirtinae.

    PubMed

    Zwick, Peter

    2016-03-02

    The endemic Australasian species of Ypsiloncyphon are the sister group of the combined Asian species groups 1, 2, and 4. The description of the type species, Y. chlorizans (Klausnitzer), is supplemented by details of male and female genitalia. New species are described and illustrated in several genera: Austrocyphon scissus n. sp., Leptocyphon abnormis n. sp., Petrocyphon bonang n. sp., P. lacteus n. sp., P. televisionarius n. sp., Prionocyphon bidentatus n. sp., P. cacatua n. sp., P. laurae n. sp., P. neboissi n. sp., P. serratus n. sp., P. uncatus n. sp., and P. urbanus n. sp. Genus Prionocyphon is distinguished from Oriental genera with similar antennal modifications. However, a synapomorphy of Prionocyphon as presently understood is not known. Supplementary information on various species in the aforementioned genera and in Pachycyphon and Calvarium is provided. A key to the genera of adult Australian Scirtidae: Scirtinae is presented.

  10. Comparative studies on thermochemical characterization of corn stover pretreated by white-rot and brown-rot fungi.

    PubMed

    Zeng, Yelin; Yang, Xuewei; Yu, Hongbo; Zhang, Xiaoyu; Ma, Fuying

    2011-09-28

    The effects of white-rot and brown-rot fungal pretreatment on the chemical composition and thermochemical conversion of corn stover were investigated. Fungus-pretreated corn stover was analyzed by Fourier transform infrared spectroscopy and X-ray diffraction analysis to characterize the changes in chemical composition. Differences in thermochemical conversion of corn stover after fungal pretreatment were investigated using thermogravimetric and pyrolysis analysis. The results indicated that the white-rot fungus Irpex lacteus CD2 has great lignin-degrading ability, whereas the brown-rot fungus Fomitopsis sp. IMER2 preferentially degrades the amorphous regions of the cellulose. The biopretreatment favors thermal decomposition of corn stover. The weight loss of IMER2-treated acid detergent fiber became greater, and the oil yield increased from 32.7 to 50.8%. After CD2 biopretreatment, 58% weight loss of acid detergent lignin was achieved and the oil yield increased from 16.8 to 26.8%.

  11. Occurrence of fungi and fungus-like organisms in the Horodnianka River in the vicinity of Białystok, Poland.

    PubMed

    Kiziewicz, Bozena; Zdrojkowska, Ewa; Gajo, Bernadetta; Godlewska, Anna; Muszyńska, Elzbieta; Mazalska, Bozenna

    2011-01-01

    Studies of fungi and fungus- like organisms in the northeastern Poland have mainly concentrated on running waters in the vicinity of Białystok, including the Horodnianka River. The main objective was to investigate biodiversity of fungi and fungus-like organisms which take part in decomposition of organic matter commonly found in inland waters. To obtain a complete picture of species composition of fungi and fungus-like organisms in running waters we decided to explore representative sites of the Horodnianka River such as Olmonty, Hryniewicze and Horodniany with close localization of landfill. Fungal species were isolated using baiting technique. Baits of onion skin (Alium cepa), hemp-seeds (Cannabis sativa), impregnated cellophane and snake skin (Natrix natrix) were applied to isolate fungi from water of the Horodnianka River. The fungal community consists of 26 species, 10 species of fungi belonging to class Chytridiomycetes (3), anamorphic fungi (6), and Zygomycetes (1). 16 species belong to fungus-like organisms from class Oomycetes. Most of the recognized species have already been found in other running waters. From all the examined habitats the fungi belonging to 26 species of 18 genera Achlya, Alternaria, Aphanomyces, Aspergillus, Catenophlyctis, Dictyuchus, Fusarium, Karlingia, Lagenidium, Leptomitus, Olpidiopsis, Penicillium, Phlyctochytrium, Pythium, Saprolegnia, Scoliognia, Thraustotheca and Zoophagus were obtained. Certain fungal species like Aphanomyces laevis, Fusarium aqueductum, F. moniliforme, F. oxysporum, Leptomitus lacteus, Saprolegnia feax and S. parasitica were found at all the study sites. Among fungi potentially pathogenic and allergogenic for humans the genera Alternaria, Aspergillus, Fusarium, Lagenidium and Penicillium have already been described. However, the species Lagenidium giganteum and Achlya androgyna are new in the fungal biota of Poland. The greatest number of fungal species occurred in Olmonty (24), the smallest in Horodniany

  12. Occurrence of fungi and fungus-like organisms in the Horodnianka River in the vicinity of Białystok, Poland.

    PubMed

    Kiziewicz, Bozena; Zdrojkowska, Ewa; Gajo, Bernadetta; Godlewska, Anna; Muszyńska, Elzbieta; Mazalska, Bozenna

    2011-01-01

    Studies of fungi and fungus- like organisms in the northeastern Poland have mainly concentrated on running waters in the vicinity of Białystok, including the Horodnianka River. The main objective was to investigate biodiversity of fungi and fungus-like organisms which take part in decomposition of organic matter commonly found in inland waters. To obtain a complete picture of species composition of fungi and fungus-like organisms in running waters we decided to explore representative sites of the Horodnianka River such as Olmonty, Hryniewicze and Horodniany with close localization of landfill. Fungal species were isolated using baiting technique. Baits of onion skin (Alium cepa), hemp-seeds (Cannabis sativa), impregnated cellophane and snake skin (Natrix natrix) were applied to isolate fungi from water of the Horodnianka River. The fungal community consists of 26 species, 10 species of fungi belonging to class Chytridiomycetes (3), anamorphic fungi (6), and Zygomycetes (1). 16 species belong to fungus-like organisms from class Oomycetes. Most of the recognized species have already been found in other running waters. From all the examined habitats the fungi belonging to 26 species of 18 genera Achlya, Alternaria, Aphanomyces, Aspergillus, Catenophlyctis, Dictyuchus, Fusarium, Karlingia, Lagenidium, Leptomitus, Olpidiopsis, Penicillium, Phlyctochytrium, Pythium, Saprolegnia, Scoliognia, Thraustotheca and Zoophagus were obtained. Certain fungal species like Aphanomyces laevis, Fusarium aqueductum, F. moniliforme, F. oxysporum, Leptomitus lacteus, Saprolegnia feax and S. parasitica were found at all the study sites. Among fungi potentially pathogenic and allergogenic for humans the genera Alternaria, Aspergillus, Fusarium, Lagenidium and Penicillium have already been described. However, the species Lagenidium giganteum and Achlya androgyna are new in the fungal biota of Poland. The greatest number of fungal species occurred in Olmonty (24), the smallest in Horodniany

  13. Bioluminescence based biosensors for quantitative detection of enterococcal peptide–pheromone activity reveal inter-strain telesensing in vivo during polymicrobial systemic infection

    PubMed Central

    La Rosa, Sabina Leanti; Solheim, Margrete; Diep, Dzung B.; Nes, Ingolf F.; Brede, Dag Anders

    2015-01-01

    Enterococcus faecalis is a significant threat in the nosocomial setting due to the emergence of isolates that are multi-antibiotic resistant, refractory to the available therapies and equipped with a variety of pathogenicity determinants. This bacterium uses quorum-sensing systems to regulate its physiological processes, including the expression of virulence traits, to adapt and proliferate within a host. Here, we describe the construction and application of two bioluminescence-based reporter systems for the direct detection of the quorum-sensing regulated expression of (i) the gelatinase biosynthesis-activating pheromone (GBAP) and (ii) the cytolysin small subunit (CylLS) in natural samples. The two E. faecalis reporters conditionally expressed bioluminescence in the presence of GBAP and CylLS both in the supernatants of liquid cultures and in an agar-overlay assay in as little as three hours, with a high level of sensitivity. Biosensors employed to investigate the interaction between the fsr and cyl systems revealed that fsr impeded CylLS activity by 75%. Furthermore, we identified a clinical E. faecalis isolate that acted as a biological cheater, producing cytolysin only upon sensing CylLS-producers in its environment. This isolate enhanced its virulence during polymicrobial systemic infection of Galleria mellonella. PMID:25661457

  14. Partial purification of cytolytic venom proteins from the box jellyfish, Chironex fleckeri.

    PubMed

    Brinkman, Diane; Burnell, James

    2008-04-01

    Venom proteins from the nematocysts of Chironex fleckeri were fractionated by size-exclusion and cation-exchange chromatography. Using sheep erythrocyte haemolysis as an indicator of cytolytic activity, two major cytolysins, with native molecular masses of approximately 370 and 145kDa, and one minor cytolysin ( approximately 70kDa) were isolated. SDS-PAGE and western blot protein profiles revealed that the 370kDa haemolysin is composed of CfTX-1 and CfTX-2 subunits ( approximately 43 and 45kDa, respectively); the most abundant proteins found in C. fleckeri nematocyst extracts. The 145kDa haemolysin predominately contains two other major proteins ( approximately 39 and 41kDa), which are not antigenic towards commercially available box jellyfish antivenom or rabbit polyclonal antibodies raised against whole C. fleckeri nematocyst extracts or CfTX-1 and -2. The kinetics of CfTX-1 and -2 haemolytic activities are temperature dependent and characterised by a pre-lytic lag phase ( approximately 6-7min) prior to initiation of haemolysis. Significant amino acid sequence homology between the CfTX proteins and other box jellyfish toxins suggest that CfTX-1 and -2 may also be lethal and dermonecrotic. Therefore, further in vivo and in vitro studies are required to investigate the potential roles of CfTX-1 and -2 in the lethal effects of C. fleckeri venom. PMID:18243272

  15. Channel formation by RTX-toxins of pathogenic bacteria: Basis of their biological activity.

    PubMed

    Benz, Roland

    2016-03-01

    The pore-forming cytolysins of the RTX-toxin (Repeats in ToXin) family are a relatively small fraction of a steadily increasing family of proteins that contain several functionally important glycine-rich and aspartate containing nonapeptide repeats. These cytolysins produced by a variety of Gram-negative bacteria form ion-permeable channels in erythrocytes and other eukaryotic cells. Hemolytic and cytolytic RTX-toxins represent pathogenicity factors of the toxin-producing bacteria and are very often important key factors in pathogenesis of the bacteria. Channel formation by RTX-toxins lead to the dissipation of ionic gradients and membrane potential across the cytoplasmic membrane of target cells, which results in cell death. Here we discuss channel formation and channel properties of some of the best known RTX-toxins, such as α-hemolysin (HlyA) of Escherichia coli and the uropathogenic EHEC strains, the adenylate cyclase toxin (ACT, CyaA) of Bordetella pertussis and the RTX-toxins (ApxI, ApxII and ApxIII) produced by different strains of Actinobacillus pleuropneumoniae. The channels formed by these RTX-toxins in lipid bilayers share some common properties such as cation selectivity and voltage-dependence. Furthermore the channels are transient and show frequent switching between different ion-conducting states. This article is part of a Special Issue entitled: Pore-Forming Toxins edited by Mauro Dalla Serra and Franco Gambale.

  16. Recurrence of pelvic abscess from Panton-Valentine leukocidin-positive community-acquired ST30 methicillin-resistant Staphylococcus aureus.

    PubMed

    Isobe, Hirokazu; Miyasaka, Dai; Ito, Tomoyuki; Takano, Tomomi; Nishiyama, Akihito; Iwao, Yasuhisa; Khokhlova, Olga E; Okubo, Takeshi; Endo, Naoto; Yamamoto, Tatsuo

    2013-02-01

    A 17-year-old female patient (a basketball player) suffered from recurrent pelvic abscesses from methicillin-resistant Staphylococcus aureus (MRSA). The first episode, from strain NN12, occurred in October 2004. Her cutaneous abscesses complicated into systemic progression to osteomyelitis and multifocal pelvic abscesses, adjacent to the sacroiliac joint. The second episode, abscesses at tissues adjacent to the sacroiliac joint from strain NN31A, occurred late in February 2005. The third episode, from strain NN31B, occurred on July 30, 2005, repeating the second episode. Three MRSA strains were identical in terms of genotypes (belonging to Panton-Valentine leukocidin [PVL]-positive ST30 community-acquired MRSA, CA-MRSA), pulsed-field gel electrophoresis patterns, and peptide cytolysin gene (psmα) expression levels. The three MRSA strains exhibited superior THP-1 cell invasion ability over hospital-acquired MRSA (New York/Japan clone). The data suggest that PVL-positive ST30 CA-MRSA, with high levels of cell invasion and peptide cytolysins, causes recurrence of pelvic abscesses in a healthy adolescent.

  17. The Impact of Paralogy on Phylogenomic Studies – A Case Study on Annelid Relationships

    PubMed Central

    Struck, Torsten H.

    2013-01-01

    Phylogenomic studies based on hundreds of genes derived from expressed sequence tags libraries are increasingly used to reveal the phylogeny of taxa. A prerequisite for these studies is the assignment of genes into clusters of orthologous sequences. Sophisticated methods of orthology prediction are used in such analyses, but it is rarely assessed whether paralogous sequences have been erroneously grouped together as orthologous sequences after the prediction, and whether this had an impact on the phylogenetic reconstruction using a super-matrix approach. Herein, I tested the impact of paralogous sequences on the reconstruction of annelid relationships based on phylogenomic datasets. Using single-partition analyses, screening for bootstrap support, blast searches and pruning of sequences in the supermatrix, wrongly assigned paralogous sequences were found in eight partitions and the placement of five taxa (the annelids Owenia, Scoloplos, Sthenelais and Eurythoe and the nemertean Cerebratulus) including the robust bootstrap support could be attributed to the presence of paralogous sequences in two partitions. Excluding these sequences resulted in a different, weaker supported placement for these taxa. Moreover, the analyses revealed that paralogous sequences impacted the reconstruction when only a single taxon represented a previously supported higher taxon such as a polychaete family. One possibility of a priori detection of wrongly assigned paralogous sequences could combine 1) a screening of single-partition analyses based on criteria such as nodal support or internal branch length with 2) blast searches of suspicious cases as presented herein. Also possible are a posteriori approaches in which support for specific clades is investigated by comparing alternative hypotheses based on differences in per-site likelihoods. Increasing the sizes of EST libraries will also decrease the likelihood of wrongly assigned paralogous sequences, and in the case of orthology

  18. A genomic virulence reference map of Enterococcus faecalis reveals an important contribution of phage03-like elements in nosocomial genetic lineages to pathogenicity in a Caenorhabditis elegans infection model.

    PubMed

    La Rosa, Sabina Leanti; Snipen, Lars-Gustav; Murray, Barbara E; Willems, Rob J L; Gilmore, Michael S; Diep, Dzung B; Nes, Ingolf F; Brede, Dag Anders

    2015-05-01

    In the present study, the commensal and pathogenic host-microbe interaction of Enterococcus faecalis was explored using a Caenorhabditis elegans model system. The virulence of 28 E. faecalis isolates representing 24 multilocus sequence types (MLSTs), including human commensal and clinical isolates as well as isolates from animals and of insect origin, was investigated using C. elegans strain glp-4 (bn2ts); sek-1 (km4). This revealed that 6 E. faecalis isolates behaved in a commensal manner with no nematocidal effect, while the remaining strains showed a time to 50% lethality ranging from 47 to 120 h. Principal component analysis showed that the difference in nematocidal activity explained 94% of the variance in the data. Assessment of known virulence traits revealed that gelatinase and cytolysin production accounted for 40.8% and 36.5% of the observed pathogenicity, respectively. However, coproduction of gelatinase and cytolysin did not increase virulence additively, accounting for 50.6% of the pathogenicity and therefore indicating a significant (26.7%) saturation effect. We employed a comparative genomic analysis approach using the 28 isolates comprising a collection of 82,356 annotated coding sequences (CDS) to identify 2,325 patterns of presence or absence among the investigated strains. Univariate statistical analysis of variance (ANOVA) established that individual patterns positively correlated (n = 61) with virulence. The patterns were investigated to identify potential new virulence traits, among which we found five patterns consisting of the phage03-like gene clusters. Strains harboring phage03 showed, on average, 17% higher killing of C. elegans (P = 4.4e(-6)). The phage03 gene cluster was also present in gelatinase-and-cytolysin-negative strain E. faecalis JH2-2. Deletion of this phage element from the JH2-2 clinical strain rendered the mutant apathogenic in C. elegans, and a similar mutant of the nosocomial V583 isolate showed significantly attenuated

  19. A common fold mediates vertebrate defense and bacterial attack.

    PubMed

    Rosado, Carlos J; Buckle, Ashley M; Law, Ruby H P; Butcher, Rebecca E; Kan, Wan-Ting; Bird, Catherina H; Ung, Kheng; Browne, Kylie A; Baran, Katherine; Bashtannyk-Puhalovich, Tanya A; Faux, Noel G; Wong, Wilson; Porter, Corrine J; Pike, Robert N; Ellisdon, Andrew M; Pearce, Mary C; Bottomley, Stephen P; Emsley, Jonas; Smith, A Ian; Rossjohn, Jamie; Hartland, Elizabeth L; Voskoboinik, Ilia; Trapani, Joseph A; Bird, Phillip I; Dunstone, Michelle A; Whisstock, James C

    2007-09-14

    Proteins containing membrane attack complex/perforin (MACPF) domains play important roles in vertebrate immunity, embryonic development, and neural-cell migration. In vertebrates, the ninth component of complement and perforin form oligomeric pores that lyse bacteria and kill virus-infected cells, respectively. However, the mechanism of MACPF function is unknown. We determined the crystal structure of a bacterial MACPF protein, Plu-MACPF from Photorhabdus luminescens, to 2.0 angstrom resolution. The MACPF domain reveals structural similarity with poreforming cholesterol-dependent cytolysins (CDCs) from Gram-positive bacteria. This suggests that lytic MACPF proteins may use a CDC-like mechanism to form pores and disrupt cell membranes. Sequence similarity between bacterial and vertebrate MACPF domains suggests that the fold of the CDCs, a family of proteins important for bacterial pathogenesis, is probably used by vertebrates for defense against infection.

  20. Crystal structure of Streptococcus pneumoniae pneumolysin provides key insights into early steps of pore formation

    PubMed Central

    Lawrence, Sara L.; Feil, Susanne C.; Morton, Craig J.; Farrand, Allison J.; Mulhern, Terrence D.; Gorman, Michael A.; Wade, Kristin R.; Tweten, Rodney K.; Parker, Michael W.

    2015-01-01

    Pore-forming proteins are weapons often used by bacterial pathogens to breach the membrane barrier of target cells. Despite their critical role in infection important structural aspects of the mechanism of how these proteins assemble into pores remain unknown. Streptococcus pneumoniae is the world’s leading cause of pneumonia, meningitis, bacteremia and otitis media. Pneumolysin (PLY) is a major virulence factor of S. pneumoniae and a target for both small molecule drug development and vaccines. PLY is a member of the cholesterol-dependent cytolysins (CDCs), a family of pore-forming toxins that form gigantic pores in cell membranes. Here we present the structure of PLY determined by X-ray crystallography and, in solution, by small-angle X-ray scattering. The crystal structure reveals PLY assembles as a linear oligomer that provides key structural insights into the poorly understood early monomer-monomer interactions of CDCs at the membrane surface. PMID:26403197

  1. Crystal structure of listeriolysin O reveals molecular details of oligomerization and pore formation

    NASA Astrophysics Data System (ADS)

    Köster, Stefan; van Pee, Katharina; Hudel, Martina; Leustik, Martin; Rhinow, Daniel; Kühlbrandt, Werner; Chakraborty, Trinad; Yildiz, Özkan

    2014-04-01

    Listeriolysin O (LLO) is an essential virulence factor of Listeria monocytogenes that causes listeriosis. Listeria monocytogenes owes its ability to live within cells to the pH- and temperature-dependent pore-forming activity of LLO, which is unique among cholesterol-dependent cytolysins. LLO enables the bacteria to cross the phagosomal membrane and is also involved in activation of cellular processes, including the modulation of gene expression or intracellular Ca2+ oscillations. Neither the pore-forming mechanism nor the mechanisms triggering the signalling processes in the host cell are known in detail. Here, we report the crystal structure of LLO, in which we identified regions important for oligomerization and pore formation. Mutants were characterized by determining their haemolytic and Ca2+ uptake activity. We analysed the pore formation of LLO and its variants on erythrocyte ghosts by electron microscopy and show that pore formation requires precise interface interactions during toxin oligomerization on the membrane.

  2. Inhibition of listeriolysin O and phosphatidylcholine-specific production in Listeria monocytogenes by subinhibitory concentrations of plant essential oils.

    PubMed

    Smith-Palmer, A; Stewartt, J; Fyfe, L

    2002-07-01

    Successful infection by Listeria monocytogenes is dependent upon a range of bacterial extracellular proteins including a cytolysin termed listeriolysin O and phosphatidylcholine-specific phospholipase C. Five plant essential oils--bay, clove, cinnamon, nutmeg and thyme--significantly reduced the production of listeriolysin O by L. monocytogenes. The greatest change was observed after culture with oil of thyme, which reduced haemolysis to 52.1 haemolytic units (HU)/ml compared with 99.8 HU/ml observed with the control. Oil of clove was the only oil that also significantly reduced phosphatidylcholine-specific phospholipase C activity. These changes were observed despite the oils causing no change to the final bacterial concentration or total extracellular protein concentration. PMID:12132773

  3. A Common Fold Mediates Vertebrate Defense and Bacterial Attack

    SciTech Connect

    Rosado, Carlos J.; Buckle, Ashley M.; Law, Ruby H.P.; Butcher, Rebecca E.; Kan, Wan-Ting; Bird, Catherina H.; Ung, Kheng; Browne, Kylie A.; Baran, Katherine; Bashtannyk-Puhalovich, Tanya A.; Faux, Noel G.; Wong, Wilson; Porter, Corrine J.; Pike, Robert N.; Ellisdon, Andrew M.; Pearce, Mary C.; Bottomley, Stephen P.; Emsley, Jonas; Smith, A. Ian; Rossjohn, Jamie; Hartland, Elizabeth L.; Voskoboinik, Ilia; Trapani, Joseph A.; Bird, Phillip I.; Dunstone, Michelle A.; Whisstock, James C.

    2008-10-02

    Proteins containing membrane attack complex/perforin (MACPF) domains play important roles in vertebrate immunity, embryonic development, and neural-cell migration. In vertebrates, the ninth component of complement and perforin form oligomeric pores that lyse bacteria and kill virus-infected cells, respectively. However, the mechanism of MACPF function is unknown. We determined the crystal structure of a bacterial MACPF protein, Plu-MACPF from Photorhabdus luminescens, to 2.0 angstrom resolution. The MACPF domain reveals structural similarity with poreforming cholesterol-dependent cytolysins (CDCs) from Gram-positive bacteria. This suggests that lytic MACPF proteins may use a CDC-like mechanism to form pores and disrupt cell membranes. Sequence similarity between bacterial and vertebrate MACPF domains suggests that the fold of the CDCs, a family of proteins important for bacterial pathogenesis, is probably used by vertebrates for defense against infection.

  4. Short communication: culture-independent detection of lactic Acid bacteria bacteriocin genes in two traditional slovenian raw milk cheeses and their microbial consortia.

    PubMed

    Trmcić, A; Obermajer, T; Rogelj, I; Bogovic Matijasić, B

    2008-12-01

    Two Slovenian traditional raw milk cheeses, Tolminc (from cows' milk) and Kraski (from ewes' milk), were examined for the presence of 19 lactic acid bacteria bacteriocin genes by PCR analysis of total DNA extracts from 9 cheeses and from consortia of strains isolated from these cheeses. Eleven bacteriocin genes were detected in at least one cheese or consortium, or from both. Different cheeses or consortia contained 3 to 9 bacteriocin determinants. Plantaricin A gene determinants were found in all cheese and consortia DNA extracts. Genes for enterocins A, B, P, L50A, and L50B, and the bacteriocin cytolysin were commonly detected, as were genes for nisin. These results indicate that bacteriocinogenic strains of Lactobacillus, Enterococcus, and Lactococcus genera with protective potential are common members of indigenous microbiota of raw milk cheeses, which can be a good source of new protective strains.

  5. Sensitive and rapid identification of Vibrio vulnificus by loop-mediated isothermal amplification.

    PubMed

    Ren, Chun-Hua; Hu, Chao-Qun; Luo, Peng; Wang, Qing-Bai

    2009-01-01

    Vibrio vulnificus is a serious bacterial pathogen for humans and aquatic animals. We developed a rapid, sensitive and specific identification method for V. vulnificus using loop-mediated isothermal amplification (LAMP) technique. A set of primers, composed of two outer primers and two inner primers, was designed based on the cytolysin gene sequence of V. vulnificus. The LAMP reaction was processed in a heat block at 65 degrees C for 60 min. The amplification products were detected by visual inspection using SYBR Green I, as well as by electrophoresis on agarose gels. Our results showed that the LAMP reaction was highly specific to V. vulnificus. This method was 10-fold more sensitive than conventional PCR. In conclusion, the LAMP assay was extremely rapid, simple, cost-effective, sensitive and specific for the rapid identification of V. vulnificus.

  6. Crystal structure of Streptococcus pneumoniae pneumolysin provides key insights into early steps of pore formation.

    PubMed

    Lawrence, Sara L; Feil, Susanne C; Morton, Craig J; Farrand, Allison J; Mulhern, Terrence D; Gorman, Michael A; Wade, Kristin R; Tweten, Rodney K; Parker, Michael W

    2015-01-01

    Pore-forming proteins are weapons often used by bacterial pathogens to breach the membrane barrier of target cells. Despite their critical role in infection important structural aspects of the mechanism of how these proteins assemble into pores remain unknown. Streptococcus pneumoniae is the world's leading cause of pneumonia, meningitis, bacteremia and otitis media. Pneumolysin (PLY) is a major virulence factor of S. pneumoniae and a target for both small molecule drug development and vaccines. PLY is a member of the cholesterol-dependent cytolysins (CDCs), a family of pore-forming toxins that form gigantic pores in cell membranes. Here we present the structure of PLY determined by X-ray crystallography and, in solution, by small-angle X-ray scattering. The crystal structure reveals PLY assembles as a linear oligomer that provides key structural insights into the poorly understood early monomer-monomer interactions of CDCs at the membrane surface. PMID:26403197

  7. Diagnosis of Listeria monocytogenes Meningoencephalitis by Real-Time PCR for the hly Gene ▿ §

    PubMed Central

    Le Monnier, Alban; Abachin, Eric; Beretti, Jean-Luc; Berche, Patrick; Kayal, Samer

    2011-01-01

    Listeria monocytogenes is a bacterial pathogen that can invade the central nervous system (CNS), causing meningoencephalitis and brain abscesses. The diagnosis of CNS listeriosis, based on the isolation of the bacteria in the cerebrospinal fluid (CSF), can be difficult because of previous antibiotic treatment and a low number of bacteria in the CSF. To improve the sensitivity of microbiological diagnosis, we have developed a real-time PCR assay for detecting and quantifying L. monocytogenes DNA in the CSF. The designed primers specifically amplify the L. monocytogenes hly gene, which encodes listeriolysin O, a pore-forming cytolysin. The PCR assay for the hly gene (PCR-hly) provides reproducible quantitative results over a wide dynamic range of concentrations and was highly sensitive while detecting a single gene copy/ml. By assaying a large panel of bacterial species, including species secreting pore-forming cytolysin, we determined the specificity of the PCR-hly, which exclusively detects the L. monocytogenes DNA. We then analyzed 214 CSF samples from patients suspected of having CNS listeriosis. PCR-hly was positive in all cases in which L. monocytogenes was isolated by culture. Positive PCR-hly of the CSF was also obtained for five additional, clinically confirmed cases of CNS listeriosis for which bacterial cultures were negative presumably due to previous treatment with antibiotics. As a complement to classical bacteriological CSF culture, our designed real-time PCR-hly assay proved to be valuable by enhancing the rapidity and the accuracy of the diagnosis of CNS infection by L. monocytogenes. In addition, the quantitative results provided may, in some instances, be useful for the follow-up of patients under treatment. PMID:21918022

  8. Listeriolysin O Is Necessary and Sufficient to Induce Autophagy during Listeria monocytogenes Infection

    PubMed Central

    Meyer-Morse, Nicole; Robbins, Jennifer R.; Rae, Chris S.; Mochegova, Sofia N.; Swanson, Michele S.; Zhao, Zijiang; Virgin, Herbert W.; Portnoy, Daniel

    2010-01-01

    Background Recent studies have suggested that autophagy is utilized by cells as a protective mechanism against Listeria monocytogenes infection. Methodology/Principal Findings However we find autophagy has no measurable role in vacuolar escape and intracellular growth in primary cultured bone marrow derived macrophages (BMDMs) deficient for autophagy (atg5−/−). Nevertheless, we provide evidence that the pore forming activity of the cholesterol-dependent cytolysin listeriolysin O (LLO) can induce autophagy subsequent to infection by L. monocytogenes. Infection of BMDMs with L. monocytogenes induced microtubule-associated protein light chain 3 (LC3) lipidation, consistent with autophagy activation, whereas a mutant lacking LLO did not. Infection of BMDMs that express LC3-GFP demonstrated that wild-type L. monocytogenes was encapsulated by LC3-GFP, consistent with autophagy activation, whereas a mutant lacking LLO was not. Bacillus subtilis expressing either LLO or a related cytolysin, perfringolysin O (PFO), induced LC3 colocalization and LC3 lipidation. Further, LLO-containing liposomes also recruited LC3-GFP, indicating that LLO was sufficient to induce targeted autophagy in the absence of infection. The role of autophagy had variable effects depending on the cell type assayed. In atg5−/− mouse embryonic fibroblasts, L. monocytogenes had a primary vacuole escape defect. However, the bacteria escaped and grew normally in atg5−/− BMDMs. Conclusions/Significance We propose that membrane damage, such as that caused by LLO, triggers bacterial-targeted autophagy, although autophagy does not affect the fate of wild-type intracellular L. monocytogenes in primary BMDMs. PMID:20062534

  9. The β-prism lectin domain of Vibrio cholerae hemolysin promotes self-assembly of the β-pore-forming toxin by a carbohydrate-independent mechanism.

    PubMed

    Ganguly, Sreerupa; Mukherjee, Amarshi; Mazumdar, Budhaditya; Ghosh, Amar N; Banerjee, Kalyan K

    2014-02-14

    Vibrio cholerae cytolysin/hemolysin (VCC) is an amphipathic 65-kDa β-pore-forming toxin with a C-terminal β-prism lectin domain. Because deletion or point mutation of the lectin domain seriously compromises hemolytic activity, it is thought that carbohydrate-dependent interactions play a critical role in membrane targeting of VCC. To delineate the contributions of the cytolysin and lectin domains in pore formation, we used wild-type VCC, 50-kDa VCC (VCC(50)) without the lectin domain, and mutant VCC(D617A) with no carbohydrate-binding activity. VCC and its two variants with no carbohydrate-binding activity moved to the erythrocyte stroma with apparent association constants on the order of 10(7) M(-1). However, loss of the lectin domain severely reduced the efficiency of self-association of the VCC monomer with the β-barrel heptamer in the synthetic lipid bilayer from ∼83 to 27%. Notably, inactivation of the carbohydrate-binding activity by the D617A mutation marginally reduced oligomerization to ∼77%. Oligomerization of VCC(50) was temperature-insensitive; by contrast, VCC self-assembly increased with increasing temperature, suggesting that the process is driven by entropy and opposed by enthalpy. Asialofetuin, the β1-galactosyl-terminated glycoprotein inhibitor of VCC-induced hemolysis, promoted oligomerization of 65-kDa VCC to a species that resembled the membrane-inserted heptamer in stoichiometry and morphology but had reduced global amphipathicity. In conclusion, we propose (i) that the β-prism lectin domain facilitated toxin assembly by producing entropy during relocation in the heptamer and (ii) that glycoconjugates inhibited VCC by promoting its assembly to a water-soluble, less amphipathic oligomer variant with reduced ability to penetrate the bilayer.

  10. Tethered bilayer membranes as a complementary tool for functional and structural studies: The pyolysin case.

    PubMed

    Preta, Giulio; Jankunec, Marija; Heinrich, Frank; Griffin, Sholeem; Sheldon, Iain Martin; Valincius, Gintaras

    2016-09-01

    We demonstrate the use of tethered bilayer lipid membranes (tBLMs) as an experimental platform for functional and structural studies of membrane associated proteins by electrochemical techniques. The reconstitution of the cholesterol-dependent cytolysin (CDC) pyolysin (PLO) from Trueperella pyogenes into tBLMs was followed in real-time by electrochemical impedance spectroscopy (EIS). Changes of the EIS parameters of the tBLMs upon exposure to PLO solutions were consistent with the dielectric barrier damage occurring through the formation of water-filled pores in membranes. Parallel experiments involving a mutant version of PLO, which is able to bind to the membranes but does not form oligomer pores, strengthen the reliability of this methodology, since no change in the electrochemical impedance was observed. Complementary atomic force microscopy (AFM) and neutron reflectometry (NR) measurements revealed structural details of the membrane bound PLO, consistent with the structural transformations of the membrane bound toxins found for other cholesterol dependent cytolysins. In this work, using the tBLMs platform we also observed a protective effect of the dynamin inhibitor Dynasore against pyolysin as well as pneumolysin. An effect of Dynasore in tBLMs, which was earlier observed in experiments with live cells, confirms the biological relevance of the tBLMs models, as well as demonstrates the potential of the electrochemical impedance spectroscopy to quantify membrane damage by the pore forming toxins. In conclusion, tBLMs are a reliable and complementary method to explore the activity of CDCs in eukaryotic cells and to develop strategies to limit the toxic effects of CDCs. PMID:27211243

  11. Eco-taxonomic insights into actinomycete symbionts of termites for discovery of novel bioactive compounds.

    PubMed

    Kurtböke, D Ipek; French, John R J; Hayes, R Andrew; Quinn, Ronald J

    2015-01-01

    Termites play a major role in foraging and degradation of plant biomass as well as cultivating bioactive microorganisms for their defense. Current advances in "omics" sciences are revealing insights into function-related presence of these symbionts, and their related biosynthetic activities and genes identified in gut symbiotic bacteria might offer a significant potential for biotechnology and biodiscovery. Actinomycetes have been the major producers of bioactive compounds with an extraordinary range of biological activities. These metabolites have been in use as anticancer agents, immune suppressants, and most notably, as antibiotics. Insect-associated actinomycetes have also been reported to produce a range of antibiotics such as dentigerumycin and mycangimycin. Advances in genomics targeting a single species of the unculturable microbial members are currently aiding an improved understanding of the symbiotic interrelationships among the gut microorganisms as well as revealing the taxonomical identity and functions of the complex multilayered symbiotic actinofloral layers. If combined with target-directed approaches, these molecular advances can provide guidance towards the design of highly selective culturing methods to generate further information related to the physiology and growth requirements of these bioactive actinomycetes associated with the termite guts. This chapter provides an overview on the termite gut symbiotic actinoflora in the light of current advances in the "omics" science, with examples of their detection and selective isolation from the guts of the Sunshine Coast regional termite Coptotermes lacteus in Queensland, Australia. PMID:24817085

  12. Degradation of Bunker C Fuel Oil by White-Rot Fungi in Sawdust Cultures Suggests Potential Applications in Bioremediation.

    PubMed

    Young, Darcy; Rice, James; Martin, Rachael; Lindquist, Erika; Lipzen, Anna; Grigoriev, Igor; Hibbett, David

    2015-01-01

    Fungal lignocellulolytic enzymes are promising agents for oxidizing pollutants. This study investigated degradation of Number 6 "Bunker C" fuel oil compounds by the white-rot fungi Irpex lacteus, Trichaptum biforme, Phlebia radiata, Trametes versicolor, and Pleurotus ostreatus (Basidiomycota, Agaricomycetes). Averaging across all studied species, 98.1%, 48.6%, and 76.4% of the initial Bunker C C10 alkane, C14 alkane, and phenanthrene, respectively were degraded after 180 days of fungal growth on pine media. This study also investigated whether Bunker C oil induces changes in gene expression in the white-rot fungus Punctularia strigosozonata, for which a complete reference genome is available. After 20 days of growth, a monokaryon P. strigosozonata strain degraded 99% of the initial C10 alkane in both pine and aspen media but did not affect the amounts of the C14 alkane or phenanthrene. Differential gene expression analysis identified 119 genes with ≥ log2(2-fold) greater expression in one or more treatment comparisons. Six genes were significantly upregulated in media containing oil; these genes included three enzymes with potential roles in xenobiotic biotransformation. Carbohydrate metabolism genes showing differential expression significantly accumulated transcripts on aspen vs. pine substrates, perhaps reflecting white-rot adaptations to growth on hardwood substrates. The mechanisms by which P. strigosozonata may degrade complex oil compounds remain obscure, but degradation results of the 180-day cultures suggest that diverse white-rot fungi have promise for bioremediation of petroleum fuels.

  13. Water recycle as a must: decolorization of textile wastewaters by plant-associated fungi.

    PubMed

    Tegli, Stefania; Cerboneschi, Matteo; Corsi, Massimo; Bonnanni, Marco; Bianchini, Roberto

    2014-02-01

    Textile dye effluents are among the most problematic pollutants because of their toxicity on several organisms and ecosystems. Low cost and ecocompatible bioremediation processes offer a promising alternative to the conventional and aspecific physico-chemical procedures adopted so far. Here, microorganisms resident on three real textile dyeing effluent were isolated, characterized, and tested for their decolorizing performances. Although able to survive on these real textile-dyeing wastewaters, they always showed a very low decolorizing activity. On the contrary, several plant-associated fungi (Bjerkandera adusta, Funalia trogii, Irpex lacteus, Pleurotus ostreatus, Trametes hirsuta, Trichoderma viride, and Aspergillus nidulans) were also assayed and demonstrated to be able both to survive and to decolorize to various extents the three effluents, used as such in liquid cultures. The decolorizing potential of these fungi was demonstrated to be influenced by nutrient availability and pH. Best performances were constantly obtained using B. adusta and A. nidulans, relying on two strongly different mechanisms for their decolorizing activities: degradation for B. adusta and biosorption for A. nidulans. Acute toxicity tests using Daphnia magna showed a substantial reduction in toxicity of the three textile dyeing effluents when treated with B. adusta and A. nidulans, as suggested by mass spectrometric analysis as well.

  14. Potential of combined fungal and bacterial treatment for color removal in textile wastewater.

    PubMed

    Novotný, Ceněk; Svobodová, Kateřina; Benada, Oldřich; Kofroňová, Olga; Heissenberger, Andreas; Fuchs, Werner

    2011-01-01

    Low efficiency of dye removal by mixed bacterial communities and high rates of dye decolorization by white-rot fungi suggest a combination of both processes to be an option of treatment of textile wastewaters containing dyes and high concentrations of organics. Bacteria were able to remove mono-azo dye but not other chemically different dyes whereas decolorization rates using Irpex lacteus mostly exceeded 90% within less than one week irrespective of dye structure. Decolorization rates for industrial textile wastewaters containing 2-3 different dyes by fungal trickling filters (FTF) attained 91%, 86%, 35% within 5-12 d. Sequential two-step application of FTF and bacterial reactors resulted in efficient decolorization in 1st step (various single dyes, 94-99% within 5 d; wastewater I, 90% within 7 d) and TOC reduction of 95-97% in the two steps. Large potential of combined use of white-rot fungi and traditional bacterial treatment systems for bioremediation of textile wastewaters was demonstrated.

  15. Eco-taxonomic insights into actinomycete symbionts of termites for discovery of novel bioactive compounds.

    PubMed

    Kurtböke, D Ipek; French, John R J; Hayes, R Andrew; Quinn, Ronald J

    2015-01-01

    Termites play a major role in foraging and degradation of plant biomass as well as cultivating bioactive microorganisms for their defense. Current advances in "omics" sciences are revealing insights into function-related presence of these symbionts, and their related biosynthetic activities and genes identified in gut symbiotic bacteria might offer a significant potential for biotechnology and biodiscovery. Actinomycetes have been the major producers of bioactive compounds with an extraordinary range of biological activities. These metabolites have been in use as anticancer agents, immune suppressants, and most notably, as antibiotics. Insect-associated actinomycetes have also been reported to produce a range of antibiotics such as dentigerumycin and mycangimycin. Advances in genomics targeting a single species of the unculturable microbial members are currently aiding an improved understanding of the symbiotic interrelationships among the gut microorganisms as well as revealing the taxonomical identity and functions of the complex multilayered symbiotic actinofloral layers. If combined with target-directed approaches, these molecular advances can provide guidance towards the design of highly selective culturing methods to generate further information related to the physiology and growth requirements of these bioactive actinomycetes associated with the termite guts. This chapter provides an overview on the termite gut symbiotic actinoflora in the light of current advances in the "omics" science, with examples of their detection and selective isolation from the guts of the Sunshine Coast regional termite Coptotermes lacteus in Queensland, Australia.

  16. Population genomics of sexual and asexual lineages in fissiparous ribbon worms (Lineus, Nemertea): hybridization, polyploidy and the Meselson effect.

    PubMed

    Ament-Velásquez, S L; Figuet, E; Ballenghien, M; Zattara, E E; Norenburg, J L; Fernández-Álvarez, F A; Bierne, J; Bierne, N; Galtier, N

    2016-07-01

    Comparative population genetics in asexual vs. sexual species offers the opportunity to investigate the impact of asexuality on genome evolution. Here, we analyse coding sequence polymorphism and divergence patterns in the fascinating Lineus ribbon worms, a group of marine, carnivorous nemerteans with unusual regeneration abilities, and in which asexual reproduction by fissiparity is documented. The population genomics of the fissiparous L. pseudolacteus is characterized by an extremely high level of heterozygosity and unexpectedly elevated πN /πS ratio, in apparent agreement with theoretical expectations under clonal evolution. Analysis of among-species allele sharing and read-count distribution, however, reveals that L. pseudolacteus is a triploid hybrid between Atlantic populations of L. sanguineus and L. lacteus. We model and quantify the relative impact of hybridity, polyploidy and asexuality on molecular variation patterns in L. pseudolacteus and conclude that (i) the peculiarities of L. pseudolacteus population genomics result in the first place from hybridization and (ii) the accumulation of new mutations through the Meselson effect is more than compensated by processes of heterozygosity erosion, such as gene conversion or gene copy loss. This study illustrates the complexity of the evolutionary processes associated with asexuality and identifies L. pseudolacteus as a promising model to study the first steps of polyploid genome evolution in an asexual context. PMID:27286413

  17. Population genomics of sexual and asexual lineages in fissiparous ribbon worms (Lineus, Nemertea): hybridization, polyploidy and the Meselson effect.

    PubMed

    Ament-Velásquez, S L; Figuet, E; Ballenghien, M; Zattara, E E; Norenburg, J L; Fernández-Álvarez, F A; Bierne, J; Bierne, N; Galtier, N

    2016-07-01

    Comparative population genetics in asexual vs. sexual species offers the opportunity to investigate the impact of asexuality on genome evolution. Here, we analyse coding sequence polymorphism and divergence patterns in the fascinating Lineus ribbon worms, a group of marine, carnivorous nemerteans with unusual regeneration abilities, and in which asexual reproduction by fissiparity is documented. The population genomics of the fissiparous L. pseudolacteus is characterized by an extremely high level of heterozygosity and unexpectedly elevated πN /πS ratio, in apparent agreement with theoretical expectations under clonal evolution. Analysis of among-species allele sharing and read-count distribution, however, reveals that L. pseudolacteus is a triploid hybrid between Atlantic populations of L. sanguineus and L. lacteus. We model and quantify the relative impact of hybridity, polyploidy and asexuality on molecular variation patterns in L. pseudolacteus and conclude that (i) the peculiarities of L. pseudolacteus population genomics result in the first place from hybridization and (ii) the accumulation of new mutations through the Meselson effect is more than compensated by processes of heterozygosity erosion, such as gene conversion or gene copy loss. This study illustrates the complexity of the evolutionary processes associated with asexuality and identifies L. pseudolacteus as a promising model to study the first steps of polyploid genome evolution in an asexual context.

  18. Species Diversity of Ramphogordius sanguineus/Lineus ruber-Like Nemerteans (Nemertea: Heteronemertea) and Geographic Distribution of R. sanguineus.

    PubMed

    Kang, Xing-Xing; Fernández-Álvarez, Fernando Ángel; Alfaya, José E F; Machordom, Annie; Strand, Malin; Sundberg, Per; Sun, Shi-Chun

    2015-12-01

    Heteronemerteans, such as Lineus ruber, L. viridis, Ramphogordius sanguineus, R. lacteus, Riseriellus occultus, and Micrura varicolor, share many similar external characters. Although several internal characters useful for distinguishing these nemertean species have been documented, their identification is based mostly on coloration, the shape of the head, and how they contract, which may not be always reliable. We sequenced the mitochondrial COI gene for 160 specimens recently collected from 27 locations around the world (provisionally identified as the above species, according to external characters and contraction patterns, with most of them as R. sanguineus). Based on these specimens, together with sequences of 16 specimens from GenBank, we conducted a DNA-based species delimitation/identification by means of statistical parsimony and phylogenetic analyses. Our results show that the analyzed specimens may contain nine species, which can be separated by large genetic gaps; heteronemerteans with an external appearance similar to R. sanguineus/Lineus ruber/L. viridis have high species diversity in European waters from where eight species can be discriminated. Our 42 individuals from Vancouver Island (Canada) are revealed to be R. sanguineus, which supports an earlier argument that nemerteans reported as L. ruber or L. viridis from the Pacific Northwest may refer to this species. We report R. sanguineus from Chile, southern China, and the species is also distributed on the Atlantic coast of South America (Argentina). In addition, present analyses reveal the occurrence of L. viridis in Qingdao, which is the first record of the species from Chinese waters.

  19. Improving the conversion of biomass in catalytic fast pyrolysis via white-rot fungal pretreatment.

    PubMed

    Yu, Yanqing; Zeng, Yelin; Zuo, Jiane; Ma, Fuying; Yang, Xuewei; Zhang, Xiaoyu; Wang, Yujue

    2013-04-01

    This study investigated the effect of white-rot fungal pretreatment on corn stover conversion in catalytic fast pyrolysis (CFP). Corn stover pretreated by white-rot fungus Irpex lacteus CD2 was fast pyrolyzed alone (non-CFP) and with ZSM-5 zeolite (CFP) in a semi-batch pyroprobe reactor. The fungal pretreatment considerably increased the volatile product yields (predominantly oxygenated compounds) in non-CFP, indicating that fungal pretreatment enhances the corn stover conversion in fast pyrolysis. In the presence of ZSM-5 zeolite, these oxygenated volatiles were further catalytically converted to aromatic hydrocarbons, whose yield increased from 10.03 wt.% for the untreated corn stover to 11.49 wt.% for the pretreated sample. In contrast, the coke yield decreased from 14.29 to 11.93 wt.% in CFP following the fungal pretreatment. These results indicate that fungal pretreatment can enhance the production of valuable aromatics and decrease the amount of undesired coke, and thus has a beneficial effect on biomass conversion in CFP. PMID:23506976

  20. Synthesis of rebaudioside A from stevioside and their interaction model with hTAS2R4 bitter taste receptor.

    PubMed

    Singla, Ramit; Jaitak, Vikas

    2016-05-01

    Steviol glycosides (SG's) from Stevia rebaudiana (Bertoni) have been used as a natural low-calorie sweeteners. Its aftertaste bitterness restricts its use for human consumption and limits its application in food and pharmaceutical products. In present study, we have performed computational analysis in order to investigate the interaction of two major constituents of SG's against homology model of the hTAS2R4 receptor. Molecular simulation study was performed using stevioside and rebaudioside A revealed that, sugar moiety at the C-3'' position in rebaudioside A causes restriction of its entry into the receptor site thereby unable to trigger the bitter reception signaling cascade. Encouraged by the current finding, we have also developed a greener route using β-1,3-glucanase from Irpex lacteus for the synthesis of de-bittered rebaudioside A from stevioside. The rebaudioside A obtained was of high quality with percent conversion of 62.5%. The results here reported could be used for the synthesis of rebaudioside A which have large application in food and pharmaceutical industry. PMID:26976334

  1. Degradation of Bunker C Fuel Oil by White-Rot Fungi in Sawdust Cultures Suggests Potential Applications in Bioremediation

    PubMed Central

    Young, Darcy; Rice, James; Martin, Rachael; Lindquist, Erika; Lipzen, Anna; Grigoriev, Igor; Hibbett, David

    2015-01-01

    Fungal lignocellulolytic enzymes are promising agents for oxidizing pollutants. This study investigated degradation of Number 6 “Bunker C” fuel oil compounds by the white-rot fungi Irpex lacteus, Trichaptum biforme, Phlebia radiata, Trametes versicolor, and Pleurotus ostreatus (Basidiomycota, Agaricomycetes). Averaging across all studied species, 98.1%, 48.6%, and 76.4% of the initial Bunker C C10 alkane, C14 alkane, and phenanthrene, respectively were degraded after 180 days of fungal growth on pine media. This study also investigated whether Bunker C oil induces changes in gene expression in the white-rot fungus Punctularia strigosozonata, for which a complete reference genome is available. After 20 days of growth, a monokaryon P. strigosozonata strain degraded 99% of the initial C10 alkane in both pine and aspen media but did not affect the amounts of the C14 alkane or phenanthrene. Differential gene expression analysis identified 119 genes with ≥ log2(2-fold) greater expression in one or more treatment comparisons. Six genes were significantly upregulated in media containing oil; these genes included three enzymes with potential roles in xenobiotic biotransformation. Carbohydrate metabolism genes showing differential expression significantly accumulated transcripts on aspen vs. pine substrates, perhaps reflecting white-rot adaptations to growth on hardwood substrates. The mechanisms by which P. strigosozonata may degrade complex oil compounds remain obscure, but degradation results of the 180-day cultures suggest that diverse white-rot fungi have promise for bioremediation of petroleum fuels. PMID:26111162

  2. Degradation of Bunker C Fuel Oil by White-Rot Fungi in Sawdust Cultures Suggests Potential Applications in Bioremediation.

    PubMed

    Young, Darcy; Rice, James; Martin, Rachael; Lindquist, Erika; Lipzen, Anna; Grigoriev, Igor; Hibbett, David

    2015-01-01

    Fungal lignocellulolytic enzymes are promising agents for oxidizing pollutants. This study investigated degradation of Number 6 "Bunker C" fuel oil compounds by the white-rot fungi Irpex lacteus, Trichaptum biforme, Phlebia radiata, Trametes versicolor, and Pleurotus ostreatus (Basidiomycota, Agaricomycetes). Averaging across all studied species, 98.1%, 48.6%, and 76.4% of the initial Bunker C C10 alkane, C14 alkane, and phenanthrene, respectively were degraded after 180 days of fungal growth on pine media. This study also investigated whether Bunker C oil induces changes in gene expression in the white-rot fungus Punctularia strigosozonata, for which a complete reference genome is available. After 20 days of growth, a monokaryon P. strigosozonata strain degraded 99% of the initial C10 alkane in both pine and aspen media but did not affect the amounts of the C14 alkane or phenanthrene. Differential gene expression analysis identified 119 genes with ≥ log2(2-fold) greater expression in one or more treatment comparisons. Six genes were significantly upregulated in media containing oil; these genes included three enzymes with potential roles in xenobiotic biotransformation. Carbohydrate metabolism genes showing differential expression significantly accumulated transcripts on aspen vs. pine substrates, perhaps reflecting white-rot adaptations to growth on hardwood substrates. The mechanisms by which P. strigosozonata may degrade complex oil compounds remain obscure, but degradation results of the 180-day cultures suggest that diverse white-rot fungi have promise for bioremediation of petroleum fuels. PMID:26111162

  3. Chaetochromones A and B, two new polyketides from the fungus Chaetomium indicum (CBS.860.68).

    PubMed

    Lu, Keyang; Zhang, Yisheng; Li, Li; Wang, Xuewei; Ding, Gang

    2013-01-01

    Chaetochromones A (1) and B (2), two novel polyketides, were isolated from the crude extract of fungus Chaetomium indicum (CBS.860.68) together with three known analogues PI-3(3), PI-4 (4) and SB236050 (5). The structures of these compounds were determined by HRESI-MS and NMR experiments. Chaetochromones A (1) and B (2) are a member of the polyketides family, which might originate from a similar biogenetic pathway as the known compounds PI-3 (3), PI-4 (4) and SB236050 (5). The biological activities of these secondary metabolites were evaluated against eight plant pathogens, including Alternaria alternata, Ilyonectria radicicola, Trichoderma viride pers, Aspergillus niger, Fusarium verticillioide, Irpex lacteus (Fr.), Poria placenta (Fr.) Cooke and Coriolus versicolor (L.) Quél. Compound 1 displayed moderate inhibitory rate (>60%) against the brown rot fungus Poria placenta (Fr.) Cooke, which causes significant wood decay. In addition, the cytotoxic activities against three cancer cell lines A549, MDA-MB-231, PANC-1 were also tested, without any inhibitory activities being detected. PMID:24013408

  4. Genomic and molecular mechanisms for efficient biodegradation of aromatic dye.

    PubMed

    Sun, Su; Xie, Shangxian; Chen, Hu; Cheng, Yanbing; Shi, Yan; Qin, Xing; Dai, Susie Y; Zhang, Xiaoyu; Yuan, Joshua S

    2016-01-25

    Understanding the molecular mechanisms for aromatic compound degradation is crucial for the development of effective bioremediation strategies. We report the discovery of a novel phenomenon for improved degradation of Direct Red 5B azo dye by Irpex lacteus CD2 with lignin as a co-substrate. Transcriptomics analysis was performed to elucidate the molecular mechanisms of aromatic degradation in white rot fungus by comparing dye, lignin, and dye/lignin combined treatments. A full spectrum of lignin degradation peroxidases, oxidases, radical producing enzymes, and other relevant components were up-regulated under DR5B and lignin treatments. Lignin induced genes complemented the DR5B induced genes to provide essential enzymes and redox conditions for aromatic compound degradation. The transcriptomics analysis was further verified by manganese peroxidase (MnP) protein over-expression, as revealed by proteomics, dye decolorization assay by purified MnP and increased hydroxyl radical levels, as indicated by an iron reducing activity assay. Overall, the molecular and genomic mechanisms indicated that effective aromatic polymer degradation requires synergistic enzymes and radical-mediated oxidative reactions to form an effective network of chemical processes. This study will help to guide the development of effective bioremediation and biomass degradation strategies.

  5. Fermentation of biologically pretreated wheat straw for ethanol production: comparison of fermentative microorganisms and process configurations.

    PubMed

    López-Abelairas, María; Lu-Chau, Thelmo Alejandro; Lema, Juan Manuel

    2013-08-01

    The pretreatment of lignocellulosic biomass with white-rot fungi to produce bioethanol is an environmentally friendly alternative to the commonly used physico-chemical processes. After biological pretreatment, a solid substrate composed of cellulose, hemicellulose and lignin, the two latter with a composition lower than that of the initial substrate, is obtained. In this study, six microorganisms and four process configurations were utilised to ferment a hydrolysate obtained from wheat straw pretreated with the white-rot fungus Irpex lacteus. To enhance total sugars utilisation, five of these microorganisms are able to metabolise, in addition to glucose, most of the pentoses obtained after the hydrolysis of wheat straw by the application of a mixture of hemicellulolytic and cellulolytic enzymes. The highest overall ethanol yield was obtained with the yeast Pachysolen tannophilus. Its application in combination with the best process configuration yielded 163 mg ethanol per gram of raw wheat straw, which was between 23 and 35 % greater than the yields typically obtained with a conventional bioethanol process, in which wheat straw is pretreated using steam explosion and fermented with the yeast Saccharomyces cerevisiae.

  6. An initial examination of the potential role of T-cell immunity in protection against feline immunodeficiency virus (FIV) infection.

    PubMed

    Aranyos, Alek M; Roff, Shannon R; Pu, Ruiyu; Owen, Jennifer L; Coleman, James K; Yamamoto, Janet K

    2016-03-14

    The importance of vaccine-induced T-cell immunity in conferring protection with prototype and commercial FIV vaccines is still unclear. Current studies performed adoptive transfer of T cells from prototype FIV-vaccinated cats to partial-to-complete feline leukocyte antigen (FLA)-matched cats a day before either homologous FIVPet or heterologous-subtype pathogenic FIVFC1 challenge. Adoptive-transfer (A-T) conferred a protection rate of 87% (13 of 15, p < 0.001) against FIVPet using the FLA-matched T cells, whereas all 12 control cats were unprotected. Furthermore, A-T conferred protection rate of 50% (6 of 12, p<0.023) against FIVFC1 using FLA-matched T cells, whereas all 8 control cats were unprotected. Transfer of FLA-matched T and B cells demonstrated that T cells are needed to confer A-T protection. In addition, complete FLA-matching and addition of T-cell numbers > 13 × 10(6) cells were required for A-T protection against FIVFC1 strain, reported to be a highly pathogenic virus resistant to vaccine-induced neutralizing-antibodies. The addition of FLA-matched B cells alone was not protective. The poor quality of the anti-FIV T-cell immunity induced by the vaccine likely contributed to the lack of protection in an FLA-matched recipient against FIVFC1. The quality of the immune response was determined by the presence of high mRNA levels of cytolysin (perforin) and cytotoxins (granzymes A, B, and H) and T helper-1 cytokines (interferon-γ [IFNγ] and IL2). Increased cytokine, cytolysin and cytotoxin production was detected in the donors which conferred protection in A-T studies. In addition, the CD4(+) and CD8(+) T-cell proliferation and/or IFNγ responses to FIV p24 and reverse transcriptase increased with each year in cats receiving 1X-3X vaccine boosts over 4 years. These studies demonstrate that anti-FIV T-cell immunity induced by vaccination with a dual-subtype FIV vaccine is essential for prophylactic protection against AIDS lentiviruses such as FIV and

  7. Presence of extracellular NAD(+) and NADH in cultures of wood-degrading fungi.

    PubMed

    Kido, Ryuta; Takeeda, Midori; Manabe, Mitsuhiro; Miyagawa, Yutaka; Itakura, Shuji; Tanaka, Hiromi

    2015-01-01

    Our previous studies indicated that extracellular glycoproteins produced by some white-rot and brown-rot basidiomycetous fungi reduce Fe(III) to Fe(II) and O2 to H2O2 and produce hydroxyl radicals. The continuous generation of hydroxyl radicals requires a constant supply of O2 and an electron donor for the reduction of oxidized forms of the glycoproteins to the reduced forms. However, electron donors for this reaction, such as NADH, have not been identified. In this study, the amounts of the extracellular pyridine coenzymes, NAD(+) and NADH, were measured in agar cultures of four white-rot fungi, one brown-rot fungus, and three soft-rot fungi. The sums of NAD(+) and NADH detected in wood-containing cultures of all five basidiomycetes were greater than those in glucose cultures. The amounts of NAD(+) were higher than those of NADH in all wood-containing cultures except that of Irpex lacteus, and NAD(+) was greater than NADH in all glucose cultures except that of Fomitopsis palustris. Significant amounts of pyridine coenzymes were present in glucose and wood-containing cultures of the three soft-rot fungi. The non-wood-degrading fungus, Penicillium funiculosum, did not produce NAD(+) or NADH in either glucose or wood-containing cultures. The extracellular pyridine coenzyme levels were relatively high compared to the rates of extracellular hydroxyl radical generation in wood-degrading fungal cultures. Thus, white-, brown-, and soft-rot fungi produce pyridine coenzymes that could serve as electron donors for the production of hydroxyl radicals during wood degradation.

  8. Evaluation of white-rot fungi for detoxification and decolorization of effluents from the green olive debittering process.

    PubMed

    Aggelis, G; Ehaliotis, C; Nerud, F; Stoychev, I; Lyberatos, G; Zervakis, G I

    2002-07-01

    Wastewater produced by the debittering process of green olives (GOW) is rich in polyphenolics and presents high chemical oxygen demand and alkalinity values. Eight white-rot fungi ( Abortiporus biennis, Dichomitus squalens, Inonotus hispidus, Irpex lacteus, Lentinus tigrinus, Panellus stipticus, Pleurotus ostreatus and Trametes hirsuta) were grown in GOW for 1 month and the reduction in total phenolics, the decolorization activity and the related enzyme activities were compared. Phenolics were efficiently reduced by P. ostreatus (52%) and A. biennis (55%), followed by P. stipticus (42%) and D. squalens (36%), but only P. ostreatus had high decolorization efficiency (49%). Laccase activity was the highest in all of the fungi, followed by manganese-independent peroxidase (MnIP). Substantial manganese peroxidase (MnP) activity was observed only in GOW treated with P. ostreatus and A. biennis, whereas lignin peroxidase (LiP) and veratryl alcohol oxidase (VAOx) activities were not detected. Early measurements of laccase activity were highly correlated ( r(2)=0.91) with the final reduction of total phenolics and could serve as an early indicator of the potential of white-rot fungi to efficiently reduce the amount of total phenolics in GOW. The presence of MnP was, however, required to achieve efficient decolorization. Phytotoxicity of GOW treated with a selected P. ostreatus strain did not decline despite large reductions of the phenolic content (76%). Similarly, in GOW treated with purified laccase from Polyporus pensitius, a reduction in total phenolics which exceeded 50% was achieved; however, it was not accompanied by a decline in phytotoxicity. These results are probably related to the formation of phenoxy radicals and quinonoids, which re-polymerize in the absence of VAOx but do not lead to polymer precipitation in the treated GOW.

  9. Degradation of CL-20 by white-rot fungi.

    PubMed

    Fournier, Diane; Monteil-Rivera, Fanny; Halasz, Annamaria; Bhatt, Manish; Hawari, Jalal

    2006-03-01

    In previous studies, we found that the emerging energetic chemical, CL-20 (C6H6N12O12, 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane), can be degraded following its initial denitration using both aerobic and anaerobic bacteria. The C and N mass balances were not determined due to the absence of labeled starting compounds. The present study describes the degradation of the emerging contaminant by Phanerochaete chrysosporium using ring-labeled [15N]-CL-20 and [14C]-CL-20. Ligninolytic cultures degraded CL-20 with the release of nitrous oxide (N2O) in amounts corresponding to 45% of the nitrogen content of CL-20. When ring-labeled [15N]-CL-20 was used, both 14N14NO and 15N14NO were observed, likely produced from -NO2 and N-NO2, respectively. The incubation of uniformly labeled [14C]-CL-20 with fungi led to the production of 14CO2 (> 80%). Another ligninolytic fungus, Irpex lacteus, was also able to degrade CL-20, but as for P. chrysosporium, no early intermediates were observed. When CL-20 was incubated with manganese peroxidase (MnP), we detected an intermediate with a [M-H]- mass ion at 345 Da (or 351 and 349 Da when using ring-labeled and nitro-labeled [15N]-CL-20, respectively) matching a molecular formula of C6H6N10O8. The intermediate was thus tentatively identified as a doubly denitrated CL-20 product. The concomitant release of nitrite ions (NO2-) with CL-20 degradation by MnP also supported the occurrence of an initial denitration prior to cleavage and decomposition. PMID:16112713

  10. Influence of Hyphal Inoculum potential on the Competitive Success of Fungi Colonizing Wood.

    PubMed

    Song, Zewei; Vail, Andrew; Sadowsky, Michael J; Schilling, Jonathan S

    2015-05-01

    The relative amounts of hyphal inoculum in forest soils may determine the capacity for fungi to compete with and replace early colonizers of wood in ground contact. Our aim in this study was to test the flexibility of priority effects (colonization timing) by varying the timing of inoculum introduction (i.e., precolonization) and amount of inoculum (i.e., inoculum potential). We controlled these variables in soil-block microcosms using fungi with known competitive outcomes in similar conditions, tracking isolate-specific fungal biomass, and residue physiochemistry over time. In the precolonization trial (experiment I), a brown rot fungus Gloeophyllum trabeum was given 1, 3, or 5 weeks to precolonize wood blocks (oak, birch, pine, and spruce) prior the introduction of a white rot fungus, Irpex lacteus, a more aggressive colonizer in this set-up. In the inoculum potential trial (experiment II), the fungi were inoculated simultaneously, but with eightfold higher brown rot inoculum than that of experiment I. As expected, longer precolonization duration increased the chance for the less-competitive brown rot fungus to outcompete its white rot opponent. Higher brown rot fungal inoculum outside of the wood matrix also resulted in competitive success for the brown rot isolate in most cases. These temporal shifts in fungal dominance were detectable in a 'community snapshot' as isolate-specific quantitative PCR, but also as functionally-relevant consequences of wood rot type, including carbohydrate depolymerization and pH. These results from a controlled system reinforce fungal-fungal interaction and suggest that relative inoculum availability beyond the wood matrix (i.e., soils) might regulate the duration of priority effects and shift the functional trajectory of wood decomposition.

  11. Evaluation of white-rot fungi for detoxification and decolorization of effluents from the green olive debittering process.

    PubMed

    Aggelis, G; Ehaliotis, C; Nerud, F; Stoychev, I; Lyberatos, G; Zervakis, G I

    2002-07-01

    Wastewater produced by the debittering process of green olives (GOW) is rich in polyphenolics and presents high chemical oxygen demand and alkalinity values. Eight white-rot fungi ( Abortiporus biennis, Dichomitus squalens, Inonotus hispidus, Irpex lacteus, Lentinus tigrinus, Panellus stipticus, Pleurotus ostreatus and Trametes hirsuta) were grown in GOW for 1 month and the reduction in total phenolics, the decolorization activity and the related enzyme activities were compared. Phenolics were efficiently reduced by P. ostreatus (52%) and A. biennis (55%), followed by P. stipticus (42%) and D. squalens (36%), but only P. ostreatus had high decolorization efficiency (49%). Laccase activity was the highest in all of the fungi, followed by manganese-independent peroxidase (MnIP). Substantial manganese peroxidase (MnP) activity was observed only in GOW treated with P. ostreatus and A. biennis, whereas lignin peroxidase (LiP) and veratryl alcohol oxidase (VAOx) activities were not detected. Early measurements of laccase activity were highly correlated ( r(2)=0.91) with the final reduction of total phenolics and could serve as an early indicator of the potential of white-rot fungi to efficiently reduce the amount of total phenolics in GOW. The presence of MnP was, however, required to achieve efficient decolorization. Phytotoxicity of GOW treated with a selected P. ostreatus strain did not decline despite large reductions of the phenolic content (76%). Similarly, in GOW treated with purified laccase from Polyporus pensitius, a reduction in total phenolics which exceeded 50% was achieved; however, it was not accompanied by a decline in phytotoxicity. These results are probably related to the formation of phenoxy radicals and quinonoids, which re-polymerize in the absence of VAOx but do not lead to polymer precipitation in the treated GOW. PMID:12111170

  12. The diversity and evolution of anuran skin peptides.

    PubMed

    König, Enrico; Bininda-Emonds, Olaf R P; Shaw, Chris

    2015-01-01

    Amphibians exhibit various, characteristic adaptations related to their "incomplete" shift from the aquatic to the terrestrial habitat. In particular, the integument was subject to a number of specialized modifications during the evolution of these animals. In this review, we place special emphasis on endogenous host-defence skin peptides from the cuteanous granular glands anuran amphibians (frogs and toads). The overview on the two broad groups of neuroactive and antimicrobial peptides (AMPs) goes beyond a simple itemization in that we provide a new perspective into the evolution and function of anuran AMPs. Briefly, these cationic, amphipathic and α-helical peptides are traditionally viewed as being part of the innate immune system, protecting the moist skin against invading microorganisms through their cytolytic action. However, the complete record of anuran species investigated to date suggests that AMPs are distributed sporadically (i.e., non-universally) across Anura. Together with the intriguing observation that virtually all anurans known to produce neuropeptides in their granular glands also co-secrete cytolytic peptides, we call the traditional role for AMPs as being purely antimicrobial into question and present an alternative scenario. We hypothesize AMPs to assist neuroactive peptides in their antipredator role through their cytolytic action increasing the delivery of the latter to the endocrine and nervous system of the predator. Thus, AMPs are more accurately viewed as cytolysins and their contribution to the immune system is better regarded as an accessory benefit.

  13. Gigantoxin-4-4D5 scFv is a novel recombinant immunotoxin with specific toxicity against HER2/neu-positive ovarian carcinoma cells.

    PubMed

    Lv, Xinxin; Zhang, Jian; Xu, Rui; Dong, Yuguo; Sun, Aiyou; Shen, Yaling; Wei, Dongzhi

    2016-07-01

    Immunotoxins are a new class of antibody-targeted therapy in clinical development. Traditional immunotoxins that are constructed from the toxins of plants or bacteria need to be internalized to the cytoplasm and thus have limited antitumor efficacy. In the present study, we combined a recently reported sea anemone cytolysin Gigantoxin-4 with an anti-HER2/neu single-chain variable fragment 4D5 scFv to construct a novel immunotoxin. We fused a SUMO tag to the N-terminus of Gigantoxin-4-4D5 scFv and it was successfully expressed in Escherichia coli strain BL21 (DE3) in a soluble form. After purification, the purity of Gigantoxin-4-4D5 scFv reached 96 % and the yield was 14.3 mg/L. Our results demonstrated that Gigantoxin-4-4D5 scFv exerted a highly cytotoxic effect on the HER2/neu-positive ovarian carcinoma SK-OV-3 cell line. And the hemolytic activity was weaker, making it safe for normal cells. The results of immunofluorescence analysis showed that this novel immunotoxin could specifically bind to SK-OV-3 cells with no recognition of human embryonic kidney 293 cells. Scanning electron microscope observations and extracellular lactate dehydrogenase activity indicated that it could induce necrosis in SK-OV-3 cells by disrupting the cell membrane. Moreover, it could also mediate apoptosis of SK-OV-3 cells. PMID:27063011

  14. Engineering of bacteria for the visualization of targeted delivery of a cytolytic anticancer agent.

    PubMed

    Jiang, Sheng-Nan; Park, Seung-Hwan; Lee, Hee Jung; Zheng, Jin Hai; Kim, Hyung-Seok; Bom, Hee-Seung; Hong, Yeongjin; Szardenings, Michael; Shin, Myung Geun; Kim, Sun-Chang; Ntziachristos, Vasilis; Choy, Hyon E; Min, Jung-Joon

    2013-11-01

    A number of recent reports have demonstrated that attenuated Salmonella typhimurium are capable of targeting both primary and metastatic tumors. The use of bacteria as a vehicle for the delivery of anticancer drugs requires a mechanism that precisely regulates and visualizes gene expression to ensure the appropriate timing and location of drug production. To integrate these functions into bacteria, we used a repressor-regulated tetracycline efflux system, in which the expression of a therapeutic gene and an imaging reporter gene were controlled by divergent promoters (tetAP and tetRP) in response to extracellular tetracycline. Attenuated S. typhimurium was transformed with the expression plasmids encoding cytolysin A, a therapeutic gene, and renilla luciferase variant 8, an imaging reporter gene, and administered intravenously to tumor-bearing mice. The engineered Salmonella successfully localized to tumor tissue and gene expression was dependent on the concentration of inducer, indicating the feasibility of peripheral control of bacterial gene expression. The bioluminescence signal permitted the localization of gene expression from the bacteria. The engineered bacteria significantly suppressed both primary and metastatic tumors and prolonged survival in mice. Therefore, engineered bacteria that carry a therapeutic and an imaging reporter gene for targeted anticancer therapy can be designed as a theranostic agent.

  15. Pneumococcal Pneumolysin Induces DNA Damage and Cell Cycle Arrest

    PubMed Central

    Rai, Prashant; He, Fang; Kwang, Jimmy; Engelward, Bevin P.; Chow, Vincent T.K.

    2016-01-01

    Streptococcus pneumoniae produces pneumolysin toxin as a key virulence factor against host cells. Pneumolysin is a cholesterol-dependent cytolysin (CDC) toxin that forms lytic pores in host membranes and mediates pneumococcal disease pathogenesis by modulating inflammatory responses. Here, we show that pneumolysin, which is released during bacterial lysis, induces DNA double strand breaks (DSBs), as indicated by ataxia telangiectasia mutated (ATM)-mediated H2AX phosphorylation (γH2AX). Pneumolysin-induced γH2AX foci recruit mediator of DNA damage checkpoint 1 (MDC1) and p53 binding protein 1 (53BP1), to sites of DSBs. Importantly, results show that toxin-induced DNA damage precedes cell cycle arrest and causes apoptosis when DNA-dependent protein kinase (DNA-PK)-mediated non-homologous end joining is inhibited. Further, we observe that cells that were undergoing DNA replication harbored DSBs in greater frequency during pneumolysin treatment. This observation raises the possibility that DSBs might be arising as a result of replication fork breakdown. Additionally, neutralizing the oligomerization domain of pneumolysin with monoclonal antibody suppresses DNA damage and also cell cycle arrest, indicating that pneumolysin oligomerization is important for causing DNA damage. Taken together, this study reveals a previously unidentified ability of pneumolysin to induce cytotoxicity via DNA damage, with implications in the pathophysiology of S. pneumoniae infection. PMID:27026501

  16. Vibrio vulnificus infection complicated by acute respiratory distress syndrome in a child with nephrotic syndrome.

    PubMed

    Wang, S M; Liu, C C; Chiou, Y Y; Yang, H B; Chen, C T

    2000-05-01

    A 9-year-old girl with nephrotic syndrome visited a local hospital after developing fever, chills, and edematous changes and multiple hemorrhagic bullae on both legs over 2 days. Cultures of blood and an aspirate from the bullae yielded Vibrio vulnificus. The patient was transferred to our hospital because of persistent fever, generalized edema, acute renal failure, and disseminated intravascular coagulopathy. We treated this patient as a V. vulnificus infection complicated with necrotizing fasciitis. With minocycline and ceftazidime combination therapy was instituted. Emergency fasciotomy and continuous peritoneal dialysis were performed. The patient developed acute respiratory distress syndrome (ARDS) during the hospitalization, requiring intubation and mechanical ventilation. She eventually died. The histopathological findings showed diffuse alveolar damage with lobular pneumonitis. Hyaline membranes, composed of proteinaceous exudate and cellular debris, covered the alveolar surfaces. Microscopic examinations of lung could not distinguish the effects of cytolysin from other insults to lungs that occur in ARDS. This report highlights the postmortem pathological findings in V. vulnificus infection in a child with nephrotic syndrome complicated by ARDS.

  17. Biochemical and molecular characterisation of cubozoan protein toxins.

    PubMed

    Brinkman, Diane L; Burnell, James N

    2009-12-15

    Class Cubozoa includes several species of box jellyfish that are harmful to humans. The venoms of box jellyfish are stored and discharged by nematocysts and contain a variety of bioactive proteins that are cytolytic, cytotoxic, inflammatory or lethal. Although cubozoan venoms generally share similar biological activities, the diverse range and severity of effects caused by different species indicate that their venoms vary in protein composition, activity and potency. To date, few individual venom proteins have been thoroughly characterised, however, accumulating evidence suggests that cubozoan jellyfish produce at least one group of homologous bioactive proteins that are labile, basic, haemolytic and similar in molecular mass (42-46 kDa). The novel box jellyfish toxins are also potentially lethal and the cause of cutaneous pain, inflammation and necrosis, similar to that observed in envenomed humans. Secondary structure analysis and remote protein homology predictions suggest that the box jellyfish toxins may act as alpha-pore-forming toxins. However, more research is required to elucidate their structures and investigate their mechanism(s) of action. The biological, biochemical and molecular characteristics of cubozoan venoms and their bioactive protein components are reviewed, with particular focus on cubozoan cytolysins and the newly emerging family of box jellyfish toxins. PMID:19232527

  18. Mechanisms linking bacterial infections of the bovine endometrium to disease and infertility.

    PubMed

    Carneiro, Luísa Cunha; Cronin, James Graham; Sheldon, Iain Martin

    2016-03-01

    Bacterial infections of the endometrium after parturition commonly cause metritis and endometritis in dairy cattle, and these diseases are important because they compromise animal welfare and incur economic costs, as well as delaying or preventing conception. Here we highlight that uterine infections cause infertility, discuss which bacteria cause uterine disease, and review the evidence for mechanisms of inflammation and tissue damage in the endometrium. Bacteria cultured from the uterus of diseased animals include Escherichia coli, Trueperella pyogenes, and several anaerobic species, but their causative role in disease is challenged by the discovery of many other bacteria in the uterine disease microbiome. Irrespective of the species of bacteria, endometrial cell inflammatory responses to infection initially depend on innate immunity, with Toll-like receptors binding pathogen-associated molecular patterns, such as lipopolysaccharide and bacterial lipopeptides. In addition to tissue damage associated with parturition and inflammation, endometrial cell death is caused by a cholesterol-dependent cytolysin secreted by T. pyogenes, called pyolysin, which forms pores in plasma membranes of endometrial cells. However, endometrial cells surprisingly do not sense damage-associated molecular patterns, but a combination of infections followed by cell damage leads to release of the intracellular cytokine interleukin (IL)-1 alpha from endometrial cells, which then acts to scale inflammatory responses. To develop strategies to limit the impact of uterine disease on fertility, future work should focus on determining which bacteria and virulence factors cause endometritis, and understanding how the host response to infection is regulated in the endometrium. PMID:26952747

  19. Intermedilysin, a novel cytotoxin specific for human cells secreted by Streptococcus intermedius UNS46 isolated from a human liver abscess.

    PubMed Central

    Nagamune, H; Ohnishi, C; Katsuura, A; Fushitani, K; Whiley, R A; Tsuji, A; Matsuda, Y

    1996-01-01

    A novel cytotoxin (intermedilysin) specific for human cells was identified as a cytolytic factor of Streptococcus intermedius UNS46 isolated from a human liver abscess. Intermedilysin caused human cell death with membrane blebs. Intermedilysin was purified from UNS46 culture medium by means of gel filtration and hydrophobic chromatography. The purified toxin was resolved into major and minor bands of 54 and 53 kDa, respectively, by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These proteins reacted with an antibody against intermedilysin. Five internal peptide fragments of intermedilysin were sequenced and found to have 42 to 71% homology with the thiol-activated cytotoxin pneumolysin. However, the action of intermedilysin differed from that of thiol-activated cytotoxins, especially in terms of a lack of activation by dithiothreitol and resistance to treatments with N-ethylmaleimide and 5,5'-dithio-bis-(2-nitrobenzoic acid), although cholesterol inhibited the toxin activity. Intermedilysin was potently hemolytic on human erythrocytes but was 100-fold less effective on chimpanzee and cynomolgus monkey erythrocytes. Intermedilysin was not hemolytic in nine other animal species tested. Since human erythrocytes treated with trypsin were far less sensitive to intermedilysin than were the intact cells, a cell membrane protein(s) may participate in the intermedilysin action. These data demonstrated that intermedilysin is distinguishable from all known bacterial cytolysins. PMID:8757839

  20. The Streptococcus pyogenes NAD+ Glycohydrolase Modulates Epithelial Cell PARylation and HMGB1 Release

    PubMed Central

    Chandrasekaran, Sukantha; Caparon, Michael G.

    2015-01-01

    Streptococcus pyogenes uses the cytolysin Streptolysin O (SLO) to translocate an enzyme, the S. pyogenes NAD+ glycohydrolase (SPN), into the host cell cytosol. However, the function of SPN in this compartment is not known. As a complication, many S. pyogenes strains express a SPN variant lacking NAD+ glycohydrolase (NADase) activity. Here, we show that SPN modifies several SLO- and NAD+-dependent host cell responses in patterns that correlate with NADase activity. SLO pore formation results in hyper-activation of the cellular enzyme Poly-ADP-ribose Polymerase-1 (PARP-1) and production of polymers of Poly-ADP-ribose (PAR). However, while SPN NADase activity moderates PARP-1 activation and blocks accumulation of PAR, these processes continued unabated in the presence of NADase-inactive SPN. Temporal analyses revealed that while PAR production is initially independent of NADase activity, PAR rapidly disappears in the presence of NADase-active SPN, host cell ATP is depleted and the pro-inflammatory mediator High-Mobility Group Box-1 (HMGB1) protein is released from the nucleus by a PARP-1 dependent mechanism. In contrast, HMGB1 is not released in response to NADase-inactive SPN and instead the cells release elevated levels of IL-8 and TNFα. Thus, SPN and SLO combine to induce cellular responses subsequently influenced by the presence or absence of NADase activity. PMID:25818652

  1. High-resolution crystal structure of Streptococcus pyogenes β-NAD+ glycohydrolase in complex with its endogenous inhibitor IFS reveals a highly water-rich interface

    PubMed Central

    Yoon, Ji Young; An, Doo Ri; Yoon, Hye-Jin; Kim, Hyoun Sook; Lee, Sang Jae; Im, Ha Na; Jang, Jun Young; Suh, Se Won

    2013-01-01

    One of the virulence factors produced by Streptococcus pyogenes is β-NAD+ glycohydrolase (SPN). S. pyogenes injects SPN into the cytosol of an infected host cell using the cytolysin-mediated translocation pathway. As SPN is toxic to bacterial cells themselves, S. pyogenes possesses the ifs gene that encodes an endogenous inhibitor for SPN (IFS). IFS is localized intracellularly and forms a complex with SPN. This intracellular complex must be dissociated during export through the cell envelope. To provide a structural basis for understanding the interactions between SPN and IFS, the complex was overexpressed between the mature SPN (residues 38–451) and the full-length IFS (residues 1–161), but it could not be crystallized. Therefore, limited proteolysis was used to isolate a crystallizable SPNct–IFS complex, which consists of the SPN C-terminal domain (SPNct; residues 193–451) and the full-length IFS. Its crystal structure has been determined by single anomalous diffraction and the model refined at 1.70 Å resolution. Interestingly, our high-resolution structure of the complex reveals that the interface between SPNct and IFS is highly rich in water molecules and many of the interactions are water-mediated. The wet interface may facilitate the dissociation of the complex for translocation across the cell envelope. PMID:24121349

  2. Giant MACPF/CDC pore forming toxins: A class of their own.

    PubMed

    Reboul, Cyril F; Whisstock, James C; Dunstone, Michelle A

    2016-03-01

    Pore Forming Toxins (PFTs) represent a key mechanism for permitting the passage of proteins and small molecules across the lipid membrane. These proteins are typically produced as soluble monomers that self-assemble into ring-like oligomeric structures on the membrane surface. Following such assembly PFTs undergo a remarkable conformational change to insert into the lipid membrane. While many different protein families have independently evolved such ability, members of the Membrane Attack Complex PerForin/Cholesterol Dependent Cytolysin (MACPF/CDC) superfamily form distinctive giant β-barrel pores comprised of up to 50 monomers and up to 300Å in diameter. In this review we focus on recent advances in understanding the structure of these giant MACPF/CDC pores as well as the underlying molecular mechanisms leading to their formation. Commonalities and evolved variations of the pore forming mechanism across the superfamily are discussed. This article is part of a Special Issue entitled: Pore-Forming Toxins edited by Mauro Dalla Serra and Franco Gambale.

  3. Measuring kinetic drivers of pneumolysin pore structure.

    PubMed

    Gilbert, Robert J C; Sonnen, Andreas F-P

    2016-05-01

    Most membrane attack complex-perforin/cholesterol-dependent cytolysin (MACPF/CDC) proteins are thought to form pores in target membranes by assembling into pre-pore oligomers before undergoing a pre-pore to pore transition. Assembly during pore formation is into both full rings of subunits and incomplete rings (arcs). The balance between arcs and full rings is determined by a mechanism dependent on protein concentration in which arc pores arise due to kinetic trapping of the pre-pore forms by the depletion of free protein subunits during oligomerization. Here we describe the use of a kinetic assay to study pore formation in red blood cells by the MACPF/CDC pneumolysin from Streptococcus pneumoniae. We show that cell lysis displays two kinds of dependence on protein concentration. At lower concentrations, it is dependent on the pre-pore to pore transition of arc oligomers, which we show to be a cooperative process. At higher concentrations, it is dependent on the amount of pneumolysin bound to the membrane and reflects the affinity of the protein for its receptor, cholesterol. A lag occurs before cell lysis begins; this is dependent on oligomerization of pneumolysin. Kinetic dissection of cell lysis by pneumolysin demonstrates the capacity of MACPF/CDCs to generate pore-forming oligomeric structures of variable size with, most likely, different functional roles in biology. PMID:26906727

  4. Virulence of enterococci.

    PubMed Central

    Jett, B D; Huycke, M M; Gilmore, M S

    1994-01-01

    Enterococci are commensal organisms well suited to survival in intestinal and vaginal tracts and the oral cavity. However, as for most bacteria described as causing human disease, enterococci also possess properties that can be ascribed roles in pathogenesis. The natural ability of enterococci to readily acquire, accumulate, and share extrachromosomal elements encoding virulence traits or antibiotic resistance genes lends advantages to their survival under unusual environmental stresses and in part explains their increasing importance as nosocomial pathogens. This review discusses the current understanding of enterococcal virulence relating to (i) adherence to host tissues, (ii) invasion and abscess formation, (iii) factors potentially relevant to modulation of host inflammatory responses, and (iv) potentially toxic secreted products. Aggregation substance, surface carbohydrates, or fibronectin-binding moieties may facilitate adherence to host tissues. Enterococcus faecalis appears to have the capacity to translocate across intact intestinal mucosa in models of antibiotic-induced superinfection. Extracellular toxins such as cytolysin can induce tissue damage as shown in an endophthalmitis model, increase mortality in combination with aggregation substance in an endocarditis model, and cause systemic toxicity in a murine peritonitis model. Finally, lipoteichoic acid, superoxide production, or pheromones and corresponding peptide inhibitors each may modulate local inflammatory reactions. Images PMID:7834601

  5. Preclinical evaluation of VAX-IP, a novel bacterial minicell-based biopharmaceutical for nonmuscle invasive bladder cancer.

    PubMed

    Tsuji, Shingo; Chen, Xuguang; Hancock, Bryan; Hernandez, Veronica; Visentin, Barbara; Reil, Katherine; Sabbadini, Roger; Giacalone, Matthew; Godbey, W T

    2016-01-01

    The development of new therapies that can prevent recurrence and progression of nonmuscle invasive bladder cancer remains an unmet clinical need. The continued cost of monitoring and treatment of recurrent disease, along with its high prevalence and incidence rate, is a strain on healthcare economics worldwide. The current work describes the characterization and pharmacological evaluation of VAX-IP as a novel bacterial minicell-based biopharmaceutical agent undergoing development for the treatment of nonmuscle invasive bladder cancer and other oncology indications. VAX-IP minicells selectively target two oncology-associated integrin heterodimer subtypes to deliver a unique bacterial cytolysin protein toxin, perfringolysin O, specifically to cancer cells, rapidly killing integrin-expressing murine and human urothelial cell carcinoma cells with a unique tumorlytic mechanism. The in vivo pharmacological evaluation of VAX-IP minicells as a single agent administered intravesically in two clinically relevant variations of a syngeneic orthotopic model of superficial bladder cancer results in a significant survival advantage with 28.6% (P = 0.001) and 16.7% (P = 0.003) of animals surviving after early or late treatment initiation, respectively. The results of these preclinical studies warrant further nonclinical and eventual clinical investigation in underserved nonmuscle invasive bladder cancer patient populations where complete cures are achievable. PMID:27119118

  6. Enterococcus faecalis from Food, Clinical Specimens, and Oral Sites: Prevalence of Virulence Factors in Association with Biofilm Formation

    PubMed Central

    Anderson, Annette C.; Jonas, Daniel; Huber, Ingrid; Karygianni, Lamprini; Wölber, Johan; Hellwig, Elmar; Arweiler, Nicole; Vach, Kirstin; Wittmer, Annette; Al-Ahmad, Ali

    2016-01-01

    Enterococci have gained significance as the cause of nosocomial infections; they occur as food contaminants and have also been linked to dental diseases. E. faecalis has a great potential to spread virulence as well as antibiotic resistance genes via horizontal gene transfer. The integration of food-borne enterococci into the oral biofilm in-vivo has been observed. Therefore, we investigated the virulence determinants and antibiotic resistance of 97 E. faecalis isolates from the oral cavity, food, and clinical specimens. In addition, phenotypic expression of gelatinase and cytolysin were tested, in-vitro biofilm formation was quantified and isolates were compared for strain relatedness via pulsed field gel electrophoresis (PFGE). Each isolate was found to possess two or more virulence genes, most frequently gelE, efaA, and asa1. Notably, plaque/saliva isolates possessed the highest abundance of virulence genes, the highest levels of phenotypic gelatinase and hemolysin activity and concurrently a high ability to form biofilm. The presence of asa1 was associated with biofilm formation. The biofilm formation capacity of clinical and plaque/saliva isolates was considerably higher than that of food isolates and they also showed similar antibiotic resistance patterns. These results indicate that the oral cavity can constitute a reservoir for virulent E. faecalis strains possessing antibiotic resistance traits and at the same time distinct biofilm formation capabilities facilitating exchange of genetic material. PMID:26793174

  7. The psmα locus regulates production of Staphylococcus aureus alpha-toxin during infection.

    PubMed

    Berube, Bryan J; Sampedro, Georgia R; Otto, Michael; Bubeck Wardenburg, Juliane

    2014-08-01

    Staphylococcus aureus is a leading cause of human bacterial infection, causing a wide spectrum of disease ranging from skin and soft tissue infections to life-threatening pneumonia and sepsis. S. aureus toxins play an essential role in disease pathogenesis, contributing to both immunomodulation and host tissue injury. Prominent among these toxins are the membrane-active pore-forming cytolysin alpha-toxin (Hla) and the amphipathic α-helical phenol-soluble modulin (PSM) peptides. As deletion of either the hla or psm locus leads to a phenotypically similar virulence defect in skin and soft tissue infection, we sought to determine the relative contribution of each locus to disease pathogenesis. Here we show that production of Hla can be modulated by PSM expression. An S. aureus mutant lacking PSM expression exhibits a transcriptional delay in hla mRNA production and therefore fails to secrete normal levels of Hla at early phases of growth. This leads to attenuation of virulence in vitro and in murine skin and lung models of infection, correlating with reduced recovery of Hla from host tissues. Production of Hla and restoration of staphylococcal virulence can be achieved in the psm mutant by plasmid-driven overexpression of hla. Our study suggests the coordinated action of Hla and PSMs in host tissue during early pathogenesis, confirming a major role for Hla in epithelial injury during S. aureus infection. These findings highlight the possibility that therapeutics targeting PSM production may simultaneously prevent Hla-mediated tissue injury.

  8. Structural basis of complement membrane attack complex formation

    NASA Astrophysics Data System (ADS)

    Serna, Marina; Giles, Joanna L.; Morgan, B. Paul; Bubeck, Doryen

    2016-02-01

    In response to complement activation, the membrane attack complex (MAC) assembles from fluid-phase proteins to form pores in lipid bilayers. MAC directly lyses pathogens by a `multi-hit' mechanism; however, sublytic MAC pores on host cells activate signalling pathways. Previous studies have described the structures of individual MAC components and subcomplexes; however, the molecular details of its assembly and mechanism of action remain unresolved. Here we report the electron cryo-microscopy structure of human MAC at subnanometre resolution. Structural analyses define the stoichiometry of the complete pore and identify a network of interaction interfaces that determine its assembly mechanism. MAC adopts a `split-washer' configuration, in contrast to the predicted closed ring observed for perforin and cholesterol-dependent cytolysins. Assembly precursors partially penetrate the lipid bilayer, resulting in an irregular β-barrel pore. Our results demonstrate how differences in symmetric and asymmetric components of the MAC underpin a molecular basis for pore formation and suggest a mechanism of action that extends beyond membrane penetration.

  9. Structure of the poly-C9 component of the complement membrane attack complex

    NASA Astrophysics Data System (ADS)

    Dudkina, Natalya V.; Spicer, Bradley A.; Reboul, Cyril F.; Conroy, Paul J.; Lukoyanova, Natalya; Elmlund, Hans; Law, Ruby H. P.; Ekkel, Susan M.; Kondos, Stephanie C.; Goode, Robert J. A.; Ramm, Georg; Whisstock, James C.; Saibil, Helen R.; Dunstone, Michelle A.

    2016-02-01

    The membrane attack complex (MAC)/perforin-like protein complement component 9 (C9) is the major component of the MAC, a multi-protein complex that forms pores in the membrane of target pathogens. In contrast to homologous proteins such as perforin and the cholesterol-dependent cytolysins (CDCs), all of which require the membrane for oligomerisation, C9 assembles directly onto the nascent MAC from solution. However, the molecular mechanism of MAC assembly remains to be understood. Here we present the 8 Å cryo-EM structure of a soluble form of the poly-C9 component of the MAC. These data reveal a 22-fold symmetrical arrangement of C9 molecules that yield an 88-strand pore-forming β-barrel. The N-terminal thrombospondin-1 (TSP1) domain forms an unexpectedly extensive part of the oligomerisation interface, thus likely facilitating solution-based assembly. These TSP1 interactions may also explain how additional C9 subunits can be recruited to the growing MAC subsequent to membrane insertion.

  10. Preclinical evaluation of VAX-IP, a novel bacterial minicell-based biopharmaceutical for nonmuscle invasive bladder cancer

    PubMed Central

    Tsuji, Shingo; Chen, Xuguang; Hancock, Bryan; Hernandez, Veronica; Visentin, Barbara; Reil, Katherine; Sabbadini, Roger; Giacalone, Matthew; Godbey, WT

    2016-01-01

    The development of new therapies that can prevent recurrence and progression of nonmuscle invasive bladder cancer remains an unmet clinical need. The continued cost of monitoring and treatment of recurrent disease, along with its high prevalence and incidence rate, is a strain on healthcare economics worldwide. The current work describes the characterization and pharmacological evaluation of VAX-IP as a novel bacterial minicell-based biopharmaceutical agent undergoing development for the treatment of nonmuscle invasive bladder cancer and other oncology indications. VAX-IP minicells selectively target two oncology-associated integrin heterodimer subtypes to deliver a unique bacterial cytolysin protein toxin, perfringolysin O, specifically to cancer cells, rapidly killing integrin-expressing murine and human urothelial cell carcinoma cells with a unique tumorlytic mechanism. The in vivo pharmacological evaluation of VAX-IP minicells as a single agent administered intravesically in two clinically relevant variations of a syngeneic orthotopic model of superficial bladder cancer results in a significant survival advantage with 28.6% (P = 0.001) and 16.7% (P = 0.003) of animals surviving after early or late treatment initiation, respectively. The results of these preclinical studies warrant further nonclinical and eventual clinical investigation in underserved nonmuscle invasive bladder cancer patient populations where complete cures are achievable. PMID:27119118

  11. Genomic Analysis of Immune Response against Vibrio cholerae Hemolysin in Caenorhabditis elegans

    PubMed Central

    Sahu, Surasri N.; Bozdag, Serdar; Lee, Jeong H.; LeClerc, Joseph E.; Cinar, Hediye Nese

    2012-01-01

    Vibrio cholerae cytolysin (VCC) is among the accessory V. cholerae virulence factors that may contribute to disease pathogenesis in humans. VCC, encoded by hlyA gene, belongs to the most common class of bacterial toxins, known as pore-forming toxins (PFTs). V. cholerae infects and kills Caenorhabditis elegans via cholerae toxin independent manner. VCC is required for the lethality, growth retardation and intestinal cell vacuolation during the infection. However, little is known about the host gene expression responses against VCC. To address this question we performed a microarray study in C. elegans exposed to V. cholerae strains with intact and deleted hlyA genes. Many of the VCC regulated genes identified, including C-type lectins, Prion-like (glutamine [Q]/asparagine [N]-rich)-domain containing genes, genes regulated by insulin/IGF-1-mediated signaling (IIS) pathway, were previously reported as mediators of innate immune response against other bacteria in C. elegans. Protective function of the subset of the genes up-regulated by VCC was confirmed using RNAi. By means of a machine learning algorithm called FastMEDUSA, we identified several putative VCC induced immune regulatory transcriptional factors and transcription factor binding motifs. Our results suggest that VCC is a major virulence factor, which induces a wide variety of immune response- related genes during V. cholerae infection in C. elegans. PMID:22675448

  12. Native Microbial Colonization of Drosophila melanogaster and Its Use as a Model of Enterococcus faecalis Pathogenesis▿ †

    PubMed Central

    Cox, Christopher R.; Gilmore, Michael S.

    2007-01-01

    Enterococci are commensal organisms of the gastrointestinal (GI) tracts of a broad range of mammalian and insect hosts, but they are also leading causes of nosocomial infection. Little is known about the ecological role of enterococci in the GI tract consortia. To develop a tractable model for studying the roles of these organisms as commensals and pathogens, we characterized the Drosophila melanogaster microflora and examined the occurrence of enterococci in the gastrointestinal consortium of Drosophila. In a survey of laboratory-reared Drosophila and wild-captured flies, we found that Drosophila was naturally colonized by representatives of five bacterial phyla. Among these organisms were several species of enterococci, including Enterococcus faecalis, Enterococcus faecium, Enterococcus gallinaraum, and Enterococcus durans, as well as a previously detected but uncultured Enterococcus species. Drosophila could be cured of enterococcal carriage by antibiotic treatment and could be reassociated with laboratory strains. High-level colonization by a well-characterized strain expressing the enterococcal cytolysin was found to be detrimental to Drosophila compared to the effect of an isogenic, noncytolytic control. The anatomical distribution of enterococci in the Drosophila GI tract was determined by immunohistochemical staining of thin sections of naturally colonized and reassociated flies. PMID:17220307

  13. Structural Basis for Recognition of the Pore-Forming Toxin Intermedilysin by Human Complement Receptor CD59

    PubMed Central

    Johnson, Steven; Brooks, Nicholas J.; Smith, Richard A.G.; Lea, Susan M.; Bubeck, Doryen

    2013-01-01

    Summary Pore-forming proteins containing the structurally conserved membrane attack complex/perforin fold play an important role in immunity and host-pathogen interactions. Intermedilysin (ILY) is an archetypal member of a cholesterol-dependent cytolysin subclass that hijacks the complement receptor CD59 to make cytotoxic pores in human cells. ILY directly competes for the membrane attack complex binding site on CD59, rendering cells susceptible to complement lysis. To understand how these bacterial pores form in lipid bilayers and the role CD59 plays in complement regulation, we determined the crystal structure of human CD59 bound to ILY. Here, we show the ILY-CD59 complex at 3.5 Å resolution and identify two interfaces mediating this host-pathogen interaction. An ILY-derived peptide based on the binding site inhibits pore formation in a CD59-containing liposome model system. These data provide insight into how CD59 coordinates ILY monomers, nucleating an early prepore state, and suggest a potential mechanism of inhibition for the complement terminal pathway. PMID:23665225

  14. Prevalence of sorbitol non-fermenting Shiga toxin-producing Escherichia coli in Black Bengal goats on smallholdings.

    PubMed

    Gupta, M DAS; DAS, A; Islam, M Z; Biswas, P K

    2016-09-01

    A cross-sectional survey was carried out in Bangladesh with the sampling of 514 Black Bengal goats on smallholdings to determine the presence of sorbitol non-fermenting (SNF) Shiga toxin-producing E. coli (STEC). Swab samples collected from the recto-anal junction were plated onto cefixime and potassium tellurite added sorbitol MacConkey (CT-SMAC) agar, a selective medium for STEC O157 serogroup, where this serogroup and other SNF STEC produce colourless colonies. The SNF E. coli (SNF EC) isolates obtained from the survey were investigated by PCR for the presence of Shiga toxin-producing genes, stx1 and stx2, and two other virulence genes, eae and hlyA that code for adherence factor (intimin protein) and pore-forming cytolysin, respectively. The SNF EC isolates were also assessed for the presence of the rfbO157 gene to verify their identity to O157 serogroup. The results revealed that the proportions of goats carrying SNF EC isolates and stx1 and stx2 genes were 6·2% (32/514) [95% confidence interval (CI) 4·4-8·7)], 1·2% (95% CI 0·5-2·6) and 1·2% (95% CI 0·5-2·6), respectively. All the SNF STEC tested negative for rfbO157, hlyA and eae genes. The risk for transmission of STEC from Black Bengal goats to humans is low. PMID:27267779

  15. Effects of Suilysin on Streptococcus suis-Induced Platelet Aggregation

    PubMed Central

    Zhang, Shengwei; Wang, Junping; Chen, Shaolong; Yin, Jiye; Pan, Zhiyuan; Liu, Keke; Li, Lin; Zheng, Yuling; Yuan, Yuan; Jiang, Yongqiang

    2016-01-01

    Blood platelets play important roles during pathological thrombocytopenia in streptococcal toxic shock syndrome (STSS). Streptococcus suis (S. suis) an emerging human pathogen, can cause STSS similarly to S. pyogenes. However, S. suis interactions with platelets are poorly understood. Here, we found that suilysin (SLY), different from other bacterial cholesterol-dependent cytolysins (CDCs), was the sole stimulus that induced platelet aggregation. Furthermore, the inside-out activation of GPIIb/IIIa of platelets mediated SLY-induced platelet aggregation. This process was triggered by Ca2+ influx that depend on the pore forming on platelets by SLY. Additionally, although SLY induced α-granule release occurred via the MLCK-dependent pathway, PLC-β-IP3/DAG-MLCK and Rho-ROCK-MLCK signaling were not involved in SLY-induced platelet aggregation. Interestingly, the pore dependent Ca2+ influx was also found to participate in the induction of platelet aggregation with pneumolysin (PLY) and streptolysin O (SLO), two other CDCs. It is possible that the CDC-mediated platelet aggregation we observed in S. suis is a similar response mechanism to that used by a wide range of bacteria. These findings might lead to the discovery of potential therapeutic targets for S. suis-associated STSS. PMID:27800304

  16. Molecular Characterization of Nonhemolytic and Nonpigmented Group B Streptococci Responsible for Human Invasive Infections

    PubMed Central

    Six, Anne; Firon, Arnaud; Plainvert, Céline; Caplain, Camille; Touak, Gérald; Dmytruk, Nicolas; Longo, Magalie; Letourneur, Franck; Fouet, Agnès; Trieu-Cuot, Patrick

    2015-01-01

    Group B Streptococcus (GBS) is a common commensal bacterium in adults, but is also the leading cause of invasive bacterial infections in neonates in developed countries. The β-hemolysin/cytolysin (β-h/c), which is always associated with the production of an orange-to-red pigment, is a major virulence factor that is also used for GBS diagnosis. A collection of 1,776 independent clinical GBS strains isolated in France between 2006 and 2013 was evaluated on specific medium for β-h/c activity and pigment production. The genomic sequences of nonhemolytic and nonpigmented (NH/NP) strains were analyzed to identify the molecular basis of this phenotype. Gene deletions or complementations were carried out to confirm the genotype-phenotype association. Sixty-three GBS strains (3.5%) were NH/NP, and 47 of these (74.6%) originated from invasive infections, including bacteremia and meningitis, in neonates or adults. The mutations are localized predominantly in the cyl operon, encoding the β-h/c pigment biosynthetic pathway and, in the abx1 gene, encoding a CovSR regulator partner. In conclusion, although usually associated with GBS virulence, β-h/c pigment production is not absolutely required to cause human invasive infections. Caution should therefore be taken in the use of hemolysis and pigmentation as criteria for GBS diagnosis in routine clinical laboratory settings. PMID:26491182

  17. Proteomic characterisation of toxins isolated from nematocysts of the South Atlantic jellyfish Olindias sambaquiensis.

    PubMed

    Weston, Andrew J; Chung, Ray; Dunlap, Walter C; Morandini, André C; Marques, Antonio C; Moura-da-Silva, Ana M; Ward, Malcolm; Padilla, Gabriel; da Silva, Luiziana Ferreira; Andreakis, Nikos; Long, Paul F

    2013-09-01

    Surprisingly little is known of the toxic arsenal of cnidarian nematocysts compared to other venomous animals. Here we investigate the toxins of nematocysts isolated from the jellyfish Olindias sambaquiensis. A total of 29 unique ms/ms events were annotated as potential toxins homologous to the toxic proteins from diverse animal phyla, including cone-snails, snakes, spiders, scorpions, wasp, bee, parasitic worm and other Cnidaria. Biological activities of these potential toxins include cytolysins, neurotoxins, phospholipases and toxic peptidases. The presence of several toxic enzymes is intriguing, such as sphingomyelin phosphodiesterase B (SMase B) that has only been described in certain spider venoms, and a prepro-haystatin P-IIId snake venom metalloproteinase (SVMP) that activates coagulation factor X, which is very rare even in snake venoms. Our annotation reveals sequence orthologs to many representatives of the most important superfamilies of peptide venoms suggesting that their origins in higher organisms arise from deep eumetazoan innovations. Accordingly, cnidarian venoms may possess unique biological properties that might generate new leads in the discovery of novel pharmacologically active drugs.

  18. Genomes and Virulence Factors of Novel Bacterial Pathogens Causing Bleaching Disease in the Marine Red Alga Delisea pulchra

    PubMed Central

    Fernandes, Neil; Case, Rebecca J.; Longford, Sharon R.; Seyedsayamdost, Mohammad R.; Steinberg, Peter D.; Kjelleberg, Staffan; Thomas, Torsten

    2011-01-01

    Nautella sp. R11, a member of the marine Roseobacter clade, causes a bleaching disease in the temperate-marine red macroalga, Delisea pulchra. To begin to elucidate the molecular mechanisms underpinning the ability of Nautella sp. R11 to colonize, invade and induce bleaching of D. pulchra, we sequenced and analyzed its genome. The genome encodes several factors such as adhesion mechanisms, systems for the transport of algal metabolites, enzymes that confer resistance to oxidative stress, cytolysins, and global regulatory mechanisms that may allow for the switch of Nautella sp. R11 to a pathogenic lifestyle. Many virulence effectors common in phytopathogenic bacteria are also found in the R11 genome, such as the plant hormone indole acetic acid, cellulose fibrils, succinoglycan and nodulation protein L. Comparative genomics with non-pathogenic Roseobacter strains and a newly identified pathogen, Phaeobacter sp. LSS9, revealed a patchy distribution of putative virulence factors in all genomes, but also led to the identification of a quorum sensing (QS) dependent transcriptional regulator that was unique to pathogenic Roseobacter strains. This observation supports the model that a combination of virulence factors and QS-dependent regulatory mechanisms enables indigenous members of the host alga's epiphytic microbial community to switch to a pathogenic lifestyle, especially under environmental conditions when innate host defence mechanisms are compromised. PMID:22162749

  19. Assembly of streptolysin O pores assessed by quartz crystal microbalance and atomic force microscopy provides evidence for the formation of anchored but incomplete oligomers.

    PubMed

    Stewart, Sarah E; D'Angelo, Michael E; Paintavigna, Stefania; Tabor, Rico F; Martin, Lisandra L; Bird, Phillip I

    2015-01-01

    Streptolysin O (SLO) is a bacterial pore forming protein that is part of the cholesterol dependent cytolysin (CDC) family. We have used quartz crystal microbalance with dissipation monitoring (QCM-D) to examine SLO membrane binding and pore formation. In this system, SLO binds tightly to cholesterol-containing membranes, and assembles into partial and complete pores confirmed by atomic force microscopy. SLO binds to the lipid bilayer at a single rate consistent with the Langmuir isotherm model of adsorption. Changes in dissipation illustrate that SLO alters the viscoelastic properties of the bilayer during pore formation, but there is no loss of material from the bilayer as reported for small membrane-penetrating peptides. SLO mutants were used to further dissect the assembly and insertion processes by QCM-D. This shows the signature of SLO in QCM-D changes when pore formation is inhibited, and that bound and inserted SLO forms can be distinguished. Furthermore a pre-pore locked SLO mutant binds reversibly to lipid, suggesting that the partially complete wtSLO forms observed by AFM are anchored to the membrane.

  20. Crystal structure of enterococcus faecalis sly A-like transcriptional factor.

    SciTech Connect

    Wu, R.; Zhang, R.; Zagnitko, O.; Dementieva, I.; Maltsev, N.; Watson, J. D.; Laskowski, R.; Gornicki, P.; Joachimiak, A.; Univ. of Chicago; European Bioinformatics Inst.

    2003-05-30

    The crystal structure of a SlyA transcriptional regulator at 1.6 {angstrom} resolution is presented, and structural relationships between members of the MarR/SlyA family are discussed. The SlyA family, which includes SlyA, Rap, Hor, and RovA proteins, is widely distributed in bacterial and archaeal genomes. Current evidence suggests that SlyA-like factors act as repressors, activators, and modulators of gene transcription. These proteins have been shown to up-regulate the expression of molecular chaperones, acid-resistance proteins, and cytolysin, and down-regulate several biosynthetic enzymes. The structure of SlyA from Enterococcus faecalis, determined as a part of an ongoing structural genomics initiative (www.mcsg.anl.gov), revealed the same winged helix DNA-binding motif that was recently found in the MarR repressor from Escherichia coli and the MexR repressor from Pseudomonas aeruginosa, a sequence homologue of MarR. Phylogenetic analysis of the MarR/SlyA family suggests that Sly is placed between the SlyA and MarR subfamilies and shows significant sequence similarity to members of both subfamilies.

  1. Characterization of Enterococcus faecalis and Enterococcus faecium from wild flowers.

    PubMed

    Sánchez Valenzuela, Antonio; Benomar, Nabil; Abriouel, Hikmate; Pérez Pulido, Rubén; Martínez Cañamero, Magdalena; Gálvez, Antonio

    2012-05-01

    Wild flowers in the South of Spain were screened for Enterococcus faecalis and Enterococcus faecium. Enterococci were frequently associated with prickypear and fieldpoppy flowers. Forty-six isolates, from 8 different flower species, were identified as E. faecalis (28 isolates) or E. faecium (18 isolates) and clustered in well-defined groups by ERIC-PCR fingerprinting. A high incidence of antibiotic resistance was detected among the E. faecalis isolates, especially to quinupristin/dalfopristin (75%), rifampicin (68%) and ciprofloxacin (57%), and to a lesser extent to levofloxacin (35.7%), erythromycin (28.5%), tetracycline (3.5%), chloramphenicol (3.5%) and streptomycin (3.5%). Similar results were observed for E. faecium isolates, except for a higher incidence of resistance to tetracycline (17%) and lower to erythromycin (11%) or quinupristin/dalfopristin (22%). Vancomycin or teicoplanin resistances were not detected. Most isolates (especially E. faecalis) were proteolytic and carried the gelatinase gene gelE. Genes encoding other potential virulence factors (ace, efaA (fs), ccf and cpd) were frequently detected. Cytolysin genes were mainly detected in a few haemolytic E. faecium isolates, three of which also carried the collagen adhesin acm gene. Hyaluronidase gene (hyl ( Efm )) was detected in two isolates. Many isolates produced bacteriocins and carried genes for enterocins A, B, and L50 mainly. The similarities found between enterococci from wild flowers and those from animal and food sources raise new questions about the puzzling lifestyle of these commensals and opportunistic pathogens.

  2. Perfringolysin O: The Underrated Clostridium perfringens Toxin?

    PubMed Central

    Verherstraeten, Stefanie; Goossens, Evy; Valgaeren, Bonnie; Pardon, Bart; Timbermont, Leen; Haesebrouck, Freddy; Ducatelle, Richard; Deprez, Piet; Wade, Kristin R.; Tweten, Rodney; Van Immerseel, Filip

    2015-01-01

    The anaerobic bacterium Clostridium perfringens expresses multiple toxins that promote disease development in both humans and animals. One such toxin is perfringolysin O (PFO, classically referred to as θ toxin), a pore-forming cholesterol-dependent cytolysin (CDC). PFO is secreted as a water-soluble monomer that recognizes and binds membranes via cholesterol. Membrane-bound monomers undergo structural changes that culminate in the formation of an oligomerized prepore complex on the membrane surface. The prepore then undergoes conversion into the bilayer-spanning pore measuring approximately 250–300 Å in diameter. PFO is expressed in nearly all identified C. perfringens strains and harbors interesting traits that suggest a potential undefined role for PFO in disease development. Research has demonstrated a role for PFO in gas gangrene progression and bovine necrohemorrhagic enteritis, but there is limited data available to determine if PFO also functions in additional disease presentations caused by C. perfringens. This review summarizes the known structural and functional characteristics of PFO, while highlighting recent insights into the potential contributions of PFO to disease pathogenesis. PMID:26008232

  3. Autonomous expression of the slo gene of the bicistronic nga-slo operon of Streptococcus pyogenes.

    PubMed

    Savic, Dragutin J; McShan, William M; Ferretti, Joseph J

    2002-05-01

    A recent model for cytolysin-mediated translocation in Streptococcus pyogenes proposes that NAD-glycohydrolase is translocated through streptolysin O-generated pores into a host cell (J. Madden, N. Ruiz, and M. Caparon, Cell 104:143-152, 2001). This model also assumes that the NAD-glycohydrolase (nga) and streptolysin O (slo) genes that code for these products are organized in an operon-like structure expressed from a single promoter only (nga). We expand this model by showing that slo possesses its own autonomous promoter, which is located 155 bp upstream of the slo gene. Under experimental conditions in which S. pyogenes is grown in THY medium, the strength of the slo promoter, as measured by the activity of a lacZ reporter gene, resulted in low but highly reproducible values. Finally, we demonstrated that sloR, a S. pyogenes gene that closely resembles the Clostridium perfringens pfoR gene, exerts a negative effect on the expression of the slo gene. PMID:11953421

  4. Staphylococcus haemolyticus - an emerging threat in the twilight of the antibiotics age.

    PubMed

    Czekaj, Tomasz; Ciszewski, Marcin; Szewczyk, Eligia M

    2015-11-01

    Staphylococcus haemolyticus is one of the most frequent aetiological factors of staphylococcal infections. This species seems to lack the important virulence attributes described in other staphylococci. However, studies have shown that the presence of various enzymes, cytolysins and surface substances affects the virulence of S. haemolyticus. Nevertheless, none of them has been identified as crucial and determinative. Despite this, S. haemolyticus is, after Staphylococcus epidermidis, the second most frequently isolated coagulase-negative staphylococcus from clinical cases, notably from blood infections, including sepsis. This raises the question of what is the reason for the increasing clinical significance of S. haemolyticus? The most important factor might be the ability to acquire multiresistance against available antimicrobial agents, even glycopeptides. The unusual genome plasticity of S. haemolyticus strains manifested by a large number of insertion sequences and identified SNPs might contribute to its acquisition of antibiotic resistance. Interspecies transfer of SCCmec cassettes suggests that S. haemolyticus might also be the reservoir of resistance genes for other staphylococci, including Staphylococcus aureus. Taking into consideration the great adaptability and the ability to survive in the hospital environment, especially on medical devices, S. haemolyticus becomes a crucial factor in nosocomial infections caused by multiresistant staphylococci.

  5. The Intraperitoneal Transcriptome of the Opportunistic Pathogen Enterococcus faecalis in Mice

    PubMed Central

    Muller, Cécile; Cacaci, Margherita; Sauvageot, Nicolas; Sanguinetti, Maurizio; Rattei, Thomas; Eder, Thomas; Giard, Jean-Christophe; Kalinowski, Jörn; Hain, Torsten; Hartke, Axel

    2015-01-01

    Enterococcus faecalis is a Gram-positive lactic acid intestinal opportunistic bacterium with virulence potential. For a better understanding of the adapation of this bacterium to the host conditions, we performed a transcriptome analysis of bacteria isolated from an infection site (mouse peritonitis) by RNA-sequencing. We identified a total of 211 genes with significantly higher transcript levels and 157 repressed genes. Our in vivo gene expression database reflects well the infection process since genes encoding important virulence factors like cytolysin, gelatinase or aggregation substance as well as stress response proteins, are significantly induced. Genes encoding metabolic activities are the second most abundant in vivo induced genes demonstrating that the bacteria are metabolically active and adapt to the special nutrient conditions of the host. α- and β- glucosides seem to be important substrates for E. faecalis inside the host. Compared to laboratory conditions, the flux through the upper part of glycolysis seems to be reduced and more carbon may enter the pentose phosphate pathway. This may reflect the need of the bacteria under infection conditions to produce more reducing power for biosynthesis. Another important substrate is certainly glycerol since both pathways of glycerol catabolism are strongly induced. Strongly in vivo induced genes should be important for the infection process. This assumption has been verified in a virulence test using well characterized mutants affected in glycerol metabolism. This showed indeed that mutants unable to metabolize this sugar alcohol are affected in organ colonisation in a mouse model. PMID:25978463

  6. Pneumococcal Pneumolysin Induces DNA Damage and Cell Cycle Arrest.

    PubMed

    Rai, Prashant; He, Fang; Kwang, Jimmy; Engelward, Bevin P; Chow, Vincent T K

    2016-01-01

    Streptococcus pneumoniae produces pneumolysin toxin as a key virulence factor against host cells. Pneumolysin is a cholesterol-dependent cytolysin (CDC) toxin that forms lytic pores in host membranes and mediates pneumococcal disease pathogenesis by modulating inflammatory responses. Here, we show that pneumolysin, which is released during bacterial lysis, induces DNA double strand breaks (DSBs), as indicated by ataxia telangiectasia mutated (ATM)-mediated H2AX phosphorylation (γH2AX). Pneumolysin-induced γH2AX foci recruit mediator of DNA damage checkpoint 1 (MDC1) and p53 binding protein 1 (53BP1), to sites of DSBs. Importantly, results show that toxin-induced DNA damage precedes cell cycle arrest and causes apoptosis when DNA-dependent protein kinase (DNA-PK)-mediated non-homologous end joining is inhibited. Further, we observe that cells that were undergoing DNA replication harbored DSBs in greater frequency during pneumolysin treatment. This observation raises the possibility that DSBs might be arising as a result of replication fork breakdown. Additionally, neutralizing the oligomerization domain of pneumolysin with monoclonal antibody suppresses DNA damage and also cell cycle arrest, indicating that pneumolysin oligomerization is important for causing DNA damage. Taken together, this study reveals a previously unidentified ability of pneumolysin to induce cytotoxicity via DNA damage, with implications in the pathophysiology of S. pneumoniae infection. PMID:27026501

  7. Incidence of virulence factors in enterococci from raw and fermented meat and biofilm forming capacity at 25°C and 37°C.

    PubMed

    Jahan, Musarrat; Holley, Richard A

    2014-01-17

    Twenty-nine Enterococcus strains from raw and fermented meat products were screened for the presence of virulence genes, including those for aggregation substances (asa1 and asa373), cytolysin activator (cylA), collagen binding protein (ace), endocarditis antigen (efaA), enterococcal surface protein (esp) and gelatinase (gelE). Virulence gene occurrence, expression of gelatinase and pheromone aggregation was greater in Enterococcus faecalis than in Enterococcus faecium strains. All E. faecalis and 54% of E. faecium were positive for at least one or more virulence gene. The only strain of Enterococcus gallinarum tested also contained virulence genes. The effect of different growth temperatures (25 and 37°C) on biofilm formation using polystyrene plates was also assessed. Strong biofilm formation occurred at lower than optimum temperature in all three species of enterococci. Neither esp nor gelE was necessary for biofilm formation and this relationship was species rather than strain specific. This study emphasizes the importance of enterococci as a reservoir of virulence genes and the potential for their genetic transfer to human strains following consumption of uncooked or undercooked contaminated meat.

  8. Stored-product insects carry antibiotic-resistant and potentially virulent enterococci.

    PubMed

    Channaiah, Lakshmikantha H; Subramanyam, Bhadriraju; McKinney, Leland J; Zurek, Ludek

    2010-11-01

    A total of 154 enterococcal isolates from 95 stored-product insects collected from a feed mill, a grain storage silo, and a retail store were isolated and identified to the species level using PCR. Enterococcus casseliflavus represented 51% of the total isolates, followed by Enterococcus gallinarum (24%), Enterococcus faecium (14%), Enterococcus faecalis (7%), and Enterococcus hirae (5%). Many isolates were resistant to tetracycline (48%), followed by streptomycin (21%), erythromycin (14%), kanamycin (13%), ciprofloxacin (12%), ampicillin (4%), and chloramphenicol (<1%). Enterococci carried genes coding for virulence factors, including the gelatinase gene gelE (26% of isolates), an enterococcal surface protein gene esp (1%), and the cytolysin gene cylA (2%). An aggregation substance (asa1) gene was detected in six out of 10 E. faecalis isolates and five of these were positive for the aggregation substance. Enterococci were positive for hemolytic (57% of isolates) and gelatinolytic (23%) activity. The filter-mating assay showed that the tetracycline resistance gene, tetM, was transferable among E. faecalis by conjugation. These data demonstrated that stored-product insects can serve as potential vectors in disseminating antibiotic-resistant and potentially virulent enterococci.

  9. Lipidome and Transcriptome Profiling of Pneumolysin Intoxication Identifies Networks Involved in Statin-Conferred Protection of Airway Epithelial Cells

    PubMed Central

    Statt, Sarah; Ruan, Jhen-Wei; Huang, Chih-Ting; Wu, Reen; Kao, Cheng-Yuan

    2015-01-01

    Pneumonia remains one of the leading causes of death in both adults and children worldwide. Despite the adoption of a wide variety of therapeutics, the mortality from community-acquired pneumonia has remained relatively constant. Although viral and fungal acute airway infections can result in pneumonia, bacteria are the most common cause of community-acquired pneumonia, with Streptococcus pneumoniae isolated in nearly 50% of cases. Pneumolysin is a cholesterol-dependent cytolysin or pore-forming toxin produced by Streptococcus pneumonia and has been shown to play a critical role in bacterial pathogenesis. Airway epithelium is the initial site of many bacterial contacts and its barrier and mucosal immunity functions are central to infectious lung diseases. In our studies, we have shown that the prior exposure to statins confers significant resistance of airway epithelial cells to the cytotoxicity of pneumolysin. We decided to take this study one step further, assessing changes in both the transcriptome and lipidome of human airway epithelial cells exposed to toxin, statin or both. Our current work provides the first global view in human airway epithelial cells of both the transcriptome and the lipid interactions that result in cellular protection from pneumolysin. PMID:26023727

  10. Efficient suilysin-mediated invasion and apoptosis in porcine respiratory epithelial cells after streptococcal infection under air-liquid interface conditions

    PubMed Central

    Meng, Fandan; Wu, Nai-Huei; Seitz, Maren; Herrler, Georg; Valentin-Weigand, Peter

    2016-01-01

    Streptococci may colonize the epithelium in the airways and other entry sites. While local infection often remains asymptomatic, severe or even fatal diseases occur when streptococci become invasive and spread to different sites in the infected host. We have established porcine respiratory air-liquid interface cultures (ALI) from the porcine lung to analyze the interaction of streptococci with their primary target cells. As representative of the streptococcal family we chose Streptococcus suis (S. suis) that is not only a major swine respiratory pathogen but can also infect humans. Suilysin, a cholesterol-dependent cytolysin (CDC), is an important virulence factor. By comparing a S. suis wt strain with a suilysin-deficient mutant, we demonstrate that suilysin contributes to (i) adherence to airway cells (ii) loss of ciliated cells (iii) apoptosis, and (iv) invasion. Furthermore, we show that cytolytic activity of suilysin is crucial for these effects. A striking result of our analysis was the high efficiency of S. suis-induced apoptosis and invasion upon infection under ALI conditions. These properties have been reported to be less efficient when analyzed with immortalized cells. We hypothesize that soluble effectors such as suilysin are present at higher concentrations in cells kept at ALI conditions and thus more effective. These results should be relevant also for infection of the respiratory tract by other respiratory pathogens. PMID:27229328

  11. Structural Studies of Streptococcus pyogenes Streptolysin O Provide Insights into the Early Steps of Membrane Penetration

    PubMed Central

    Feil, Susanne C.; Ascher, David B.; Kuiper, Michael J.; Tweten, Rodney K.; Parker, Michael W.

    2015-01-01

    Cholesterol-dependent cytolysins (CDCs) are a large family of bacterial toxins that exhibit a dependence on the presence of membrane cholesterol in forming large pores in cell membranes. Significant changes in the three-dimensional structure of these toxins are necessary to convert the soluble monomeric protein into a membrane pore. We have determined the crystal structure of the archetypical member of the CDC family, streptolysin O (SLO), a virulence factor from Streptococcus pyogenes. The overall fold is similar to previously reported CDC structures, although the C-terminal domain is in a different orientation with respect to the rest of the molecule. Surprisingly, a signature stretch of CDC sequence called the undecapeptide motif, a key region involved in membrane recognition, adopts a very different structure in SLO to that of the well-characterized CDC perfringolysin O (PFO), although the sequences in this region are identical. An analysis reveals that, in PFO, there are complementary interactions between the motif and the rest of domain 4 that are lost in SLO. Molecular dynamics simulations suggest that the loss of a salt bridge in SLO and a cation–pi interaction are determining factors in the extended conformation of the motif, which in turn appears to result in a greater flexibility of the neighboring L1 loop that houses a cholesterol-sensing motif. These differences may explain the differing abilities of SLO and PFO to efficiently penetrate target cell membranes in the first step of toxin insertion into the membrane. PMID:24316049

  12. New Cyt-like δ-endotoxins from Dickeya dadantii: structure and aphicidal activity.

    PubMed

    Loth, Karine; Costechareyre, Denis; Effantin, Géraldine; Rahbé, Yvan; Condemine, Guy; Landon, Céline; da Silva, Pedro

    2015-03-05

    In the track of new biopesticides, four genes namely cytA, cytB, cytC and cytD encoding proteins homologous to Bacillus thuringiensis (Bt) Cyt toxins have been identified in the plant pathogenic bacteria Dickeya dadantii genome. Here we show that three Cyt-like δ-endotoxins from D. dadantii (CytA, CytB and CytC) are toxic to the pathogen of the pea aphid Acyrthosiphon pisum in terms of both mortality and growth rate. The phylogenetic analysis of the comprehensive set of Cyt toxins available in genomic databases shows that the whole family is of limited taxonomic occurrence, though in quite diverse microbial taxa. From a structure-function perspective the 3D structure of CytC and its backbone dynamics in solution have been determined by NMR. CytC adopts a cytolysin fold, structurally classified as a Cyt2-like protein. Moreover, the identification of a putative lipid binding pocket in CytC structure, which has been probably maintained in most members of the Cyt-toxin family, could support the importance of this lipid binding cavity for the mechanism of action of the whole family. This integrative approach provided significant insights into the evolutionary and functional history of D. dadantii Cyt toxins, which appears to be interesting leads for biopesticides.

  13. Cold shock proteins contribute to the regulation of listeriolysin O production in Listeria monocytogenes.

    PubMed

    Schärer, Kerstin; Stephan, Roger; Tasara, Taurai

    2013-12-01

    Cold shock proteins (Csps) are multifunctional nucleic acid binding proteins used to regulate a wide range of gene expression responses in bacteria. We report here that Csps regulate the production of the pore-forming cytolysin listeriolysin (LLO) and hemolysis phenotypes in Listeria monocytogenes. A triple csp gene deletion mutant incapable of producing any Csps, as well as double csp gene deletion mutants only producing either CspA or CspD, caused less hemolysis and produced lower LLO concentration. On the other hand, another double csp gene deletion mutant that produces CspB retained hemolysis and LLO production levels that are similar to the parental wild-type strain. Transcription analysis showed that in absence of all three csp genes or cspB alone, L. monocytogenes cells have decreased levels of hly gene transcripts, which code for the synthesis of LLO proteins. A comparative examination of mRNA stability showed that hly transcripts were more rapidly degraded in L. monocytogenes triple csp gene deletion mutant cells that are not capable of producing Csps. Overall, our results indicate that Csps, in particular CspB, are important components of gene expression regulatory mechanisms that promote efficient LLO production and hence virulence responses of L. monocytogenes.

  14. Helical crystallization on nickel-lipid nanotubes: perfringolysin O as a model protein.

    PubMed

    Dang, Thanh X; Milligan, Ronald A; Tweten, Rodney K; Wilson-Kubalek, Elizabeth M

    2005-11-01

    To facilitate purification and subsequent structural studies of recombinant proteins the most widely used genetically encoded tag is the histidine tag (His-tag) which specifically binds to N-nitrilotriacetic-acid-chelated nickel ions. Lipids derivatized with a nickel-chelating head group can be mixed with galactosylceramide glycolipids to prepare lipid nanotubes that bind His-tagged proteins. In this study, we use His-tagged perfringolysin O (PFO), a soluble toxin secreted by the bacterial pathogen Clostridium perfringens, as a model protein to test the utility of nickel-lipid nanotubes as a tool for structural studies of His-tagged proteins. PFO is a member of the cholesterol dependent cytolysin family (CDC) of oligomerizing, pore-forming toxins found in a variety of Gram-positive bacterial pathogens. CDC pores have been difficult to study by X-ray crystallography because they are membrane associated and vary in size. We demonstrate that both a wild-type and a mutant form of PFO form helical arrays on nickel-lipid containing nanotubes. Cryo-electron microscopy and image analysis of the helical arrays were used to reconstruct a 3D density map of wild-type PFO. This study suggests that the use of nickel-lipid nanotubes may offer a general approach for structural studies of recombinant proteins and may provide insights into the molecular interactions of proteins that have a natural affinity for a membrane surface.

  15. Safety assessment and probiotic evaluation of Enterococcus faecium YF5 isolated from sourdough.

    PubMed

    Tan, Qianglai; Xu, Hengyi; Aguilar, Zoraida P; Peng, Shanshan; Dong, Suqin; Wang, Baogui; Li, Ping; Chen, Tingtao; Xu, Feng; Wei, Hua

    2013-04-01

    Enterococcus faecium YF5, a strain previously isolated from sourdough, was assessed for safety and probiotic potential. Its virulence and antibiotic resistant phenotypes (cytolysin and gelatinase production, antibiotic susceptibility) and genes (cylA, gelE, ace, agg, esp, and vanA) were surveyed. Results indicated that the tested virulence determinants were nontoxic. In addition, E. faecium YF5 was sensitive to 3 antibiotics such as amoxicillin, vancomycin, and chloramphenicol. Furthermore, results of in vivo animal acute oral toxicity of E. faecium YF5 studies were similar to the control group that indicated no abnormalities. In addition, E. faecium YF5 stably survived in low pH, bile salts, gastric, and intestinal fluids in vitro. Moreover, E. faecium YF5 was found to adhere to human colon cancer cell line HT-29 at 3.39 (±0.67) × 10(5) CFU/mL. When cocultured with pathogenic organisms (Enterobacter sakazakii CMCC45402, Escherichia coli CMCC44102, enterohemorrhage Escherichia coli O157: H7 CMCC44828, Salmonella Typhimurium CMCC50071, Shigella flexneri 301, and Shigella sonnei ATCC 29930) and 2 gram-positive strains (Listeria monocytogenes CMCC54001 and Staphylococcus aureus CMCC 26003), it inhibited these foodborne pathogens with exception of S. aureus. Therefore, E. faecium YF5 can be regarded as a safe strain and it may be used as a probiotic preparation or for microecologics. PMID:23488799

  16. Potent leukocidal action of Escherichia coli hemolysin mediated by permeabilization of target cell membranes

    PubMed Central

    1989-01-01

    The contribution of Escherichia coli hemolysin (ECH) to bacterial virulence has been considered mainly in context with its hemolytic properties. We here report that this prevalent bacterial cytolysin is the most potent leukocidin known to date. Very low concentrations (approximately 1 ng/ml) of ECH evoke membrane permeability defects in PMN (2-10 x 10(6) cells/ml) leading to an efflux of cellular ATP and influx of propidium iodide. The attacked cells do not appear to repair the membrane lesions. Human serum albumin, high density and low density lipoprotein, and IgG together protect erythrocytes and platelets against attack by even high doses (5-25 micrograms/ml) of ECH. In contrast, PMN are still permeabilized by ECH at low doses (50-250 ng/ml) in the presence of these plasma inactivators. Thus, PMN become preferred targets for attack by ECH in human blood and protein-rich body fluids. Kinetic studies demonstrate that membrane permeabilization is a rapid process, ATP-release commencing within seconds after application of toxin to leukocytes. It is estimated that membrane permeabilization ensues upon binding of approximately 300 molecules ECH/PMN. This process is paralleled by granule exocytosis, and by loss of phagocytic killing capacity of the cells. The recognition that ECH directly counteracts a major immune defence mechanism of the human organism through its attack on granulocytes under physiological conditions sheds new light on its possible role and potential importance as a virulence factor of E. coli. PMID:2538544

  17. Phobalysin, a Small β-Pore-Forming Toxin of Photobacterium damselae subsp. damselae

    PubMed Central

    Rivas, Amable J.; von Hoven, Gisela; Neukirch, Claudia; Meyenburg, Martina; Qin, Qianqian; Füser, Sabine; Boller, Klaus; Lemos, Manuel L.; Osorio, Carlos R.

    2015-01-01

    Photobacterium damselae subsp. damselae, an important pathogen of marine animals, may also cause septicemia or hyperaggressive necrotizing fasciitis in humans. We previously showed that hemolysin genes are critical for virulence of this organism in mice and fish. In the present study, we characterized the hlyA gene product, a putative small β-pore-forming toxin, and termed it phobalysin P (PhlyP), for “photobacterial lysin encoded on a plasmid.” PhlyP formed stable oligomers and small membrane pores, causing efflux of K+, with no significant leakage of lactate dehydrogenase but entry of vital dyes. The latter feature distinguished PhlyP from the related Vibrio cholerae cytolysin. Attack by PhlyP provoked a loss of cellular ATP, attenuated translation, and caused profound morphological changes in epithelial cells. In coculture experiments with epithelial cells, Photobacterium damselae subsp. damselae led to rapid hemolysin-dependent membrane permeabilization. Unexpectedly, hemolysins also promoted the association of P. damselae subsp. damselae with epithelial cells. The collective observations of this study suggest that membrane-damaging toxins commonly enhance bacterial adherence. PMID:26303391

  18. Structure of the poly-C9 component of the complement membrane attack complex

    PubMed Central

    Dudkina, Natalya V.; Spicer, Bradley A.; Reboul, Cyril F.; Conroy, Paul J.; Lukoyanova, Natalya; Elmlund, Hans; Law, Ruby H. P.; Ekkel, Susan M.; Kondos, Stephanie C.; Goode, Robert J. A.; Ramm, Georg; Whisstock, James C.; Saibil, Helen R.; Dunstone, Michelle A.

    2016-01-01

    The membrane attack complex (MAC)/perforin-like protein complement component 9 (C9) is the major component of the MAC, a multi-protein complex that forms pores in the membrane of target pathogens. In contrast to homologous proteins such as perforin and the cholesterol-dependent cytolysins (CDCs), all of which require the membrane for oligomerisation, C9 assembles directly onto the nascent MAC from solution. However, the molecular mechanism of MAC assembly remains to be understood. Here we present the 8 Å cryo-EM structure of a soluble form of the poly-C9 component of the MAC. These data reveal a 22-fold symmetrical arrangement of C9 molecules that yield an 88-strand pore-forming β-barrel. The N-terminal thrombospondin-1 (TSP1) domain forms an unexpectedly extensive part of the oligomerisation interface, thus likely facilitating solution-based assembly. These TSP1 interactions may also explain how additional C9 subunits can be recruited to the growing MAC subsequent to membrane insertion. PMID:26841934

  19. Enterococcus cecorum infection in a racing pigeon.

    PubMed

    Jung, Arne; Teske, Lydia; Rautenschlein, Silke

    2014-12-01

    Until now, Enterococcus cecorum (EC) has been known as a pathogen for broilers, broiler breeders, and Pekin ducks. In the present report, we describe a fatal systemic EC infection in a young racing pigeon (Columba livia forma domestica). EC was isolated from the heart, liver, spleen, and intestine of the bird in pure culture. In the pathologic examination, the pigeon showed enteritis and an ulcerative gastritis, which may have been predisposing factors for the development of the generalized EC infection. An accumulation of gram-positive cocci in spleen tissue was found in the histopathologic examination and confirms the presence of a systemic EC infection in the pigeon. Additionally, EC was isolated from cloacal swabs of other pigeons in the same loft, but no additional pigeons were submitted for necropsy. All EC isolates tested were negative by PCR for the enterococcal virulence factors cytolysin, enterococcal surface protein, aggregation substance, hyaluronidase, and gelatinase. Therefore, the reason for the enhanced virulence of the EC isolate remains unknown. Our report confirms EC as a disease-causing agent in pigeons and presents the first data concerning the analysis of EC for virulence factors.

  20. Enterococcus faecalis from Food, Clinical Specimens, and Oral Sites: Prevalence of Virulence Factors in Association with Biofilm Formation.

    PubMed

    Anderson, Annette C; Jonas, Daniel; Huber, Ingrid; Karygianni, Lamprini; Wölber, Johan; Hellwig, Elmar; Arweiler, Nicole; Vach, Kirstin; Wittmer, Annette; Al-Ahmad, Ali

    2015-01-01

    Enterococci have gained significance as the cause of nosocomial infections; they occur as food contaminants and have also been linked to dental diseases. E. faecalis has a great potential to spread virulence as well as antibiotic resistance genes via horizontal gene transfer. The integration of food-borne enterococci into the oral biofilm in-vivo has been observed. Therefore, we investigated the virulence determinants and antibiotic resistance of 97 E. faecalis isolates from the oral cavity, food, and clinical specimens. In addition, phenotypic expression of gelatinase and cytolysin were tested, in-vitro biofilm formation was quantified and isolates were compared for strain relatedness via pulsed field gel electrophoresis (PFGE). Each isolate was found to possess two or more virulence genes, most frequently gelE, efaA, and asa1. Notably, plaque/saliva isolates possessed the highest abundance of virulence genes, the highest levels of phenotypic gelatinase and hemolysin activity and concurrently a high ability to form biofilm. The presence of asa1 was associated with biofilm formation. The biofilm formation capacity of clinical and plaque/saliva isolates was considerably higher than that of food isolates and they also showed similar antibiotic resistance patterns. These results indicate that the oral cavity can constitute a reservoir for virulent E. faecalis strains possessing antibiotic resistance traits and at the same time distinct biofilm formation capabilities facilitating exchange of genetic material.

  1. Stonefish toxin defines an ancient branch of the perforin-like superfamily.

    PubMed

    Ellisdon, Andrew M; Reboul, Cyril F; Panjikar, Santosh; Huynh, Kitmun; Oellig, Christine A; Winter, Kelly L; Dunstone, Michelle A; Hodgson, Wayne C; Seymour, Jamie; Dearden, Peter K; Tweten, Rodney K; Whisstock, James C; McGowan, Sheena

    2015-12-15

    The lethal factor in stonefish venom is stonustoxin (SNTX), a heterodimeric cytolytic protein that induces cardiovascular collapse in humans and native predators. Here, using X-ray crystallography, we make the unexpected finding that SNTX is a pore-forming member of an ancient branch of the Membrane Attack Complex-Perforin/Cholesterol-Dependent Cytolysin (MACPF/CDC) superfamily. SNTX comprises two homologous subunits (α and β), each of which comprises an N-terminal pore-forming MACPF/CDC domain, a central focal adhesion-targeting domain, a thioredoxin domain, and a C-terminal tripartite motif family-like PRY SPla and the RYanodine Receptor immune recognition domain. Crucially, the structure reveals that the two MACPF domains are in complex with one another and arranged into a stable early prepore-like assembly. These data provide long sought after near-atomic resolution insights into how MACPF/CDC proteins assemble into prepores on the surface of membranes. Furthermore, our analyses reveal that SNTX-like MACPF/CDCs are distributed throughout eukaryotic life and play a broader, possibly immune-related function outside venom. PMID:26627714

  2. Insights into aureocin A70 regulation: participation of regulator AurR, alternative transcription factor σ(B) and phage ϕ11 regulator cI.

    PubMed

    Coelho, Marcus Lívio Varella; Fleming, Luana Rocha; Bastos, Maria do Carmo de Freire

    2016-01-01

    Aureocin A70 is a four-component bacteriocin produced by Staphylococcus aureus A70. Its locus encompasses three transcriptional units coding for: (i) structural peptides (aurABCD), (ii) an ABC transporter (aurT) and (iii) the dedicated immunity protein and a putative transcriptional regulator (aurRI). The data provided here showed that AurR is an HTH-containing protein that reduces aureocin A70 production on solid medium, but not in broth. AurR seems to work similarly to LtnR and CylR2, repressors of lantibiotics lacticin 3147 and cytolysin, respectively. At least two other factors play a role in aureocin A70 production: (i) the alternative σ(B) factor, as σ(B)-defective cells produce more bacteriocin than the restored σ(B+) cells, and (ii) the ϕ11 regulator cI, since a lysogenic strain for ϕ11 exhibited a significant reduction in aureocin A70 production on solid medium when compared with the non-lysogenic isogenic strain. Full aeration and ROS generation abolished the effect of the phage regulators on aureocin A70 production. Interestingly, the ϕ11 regulator cI seems to cooperate with AurR to abolish aureocin A70 production. This study therefore represents the first report showing that phage regulators may play a role in regulation of bacteriocin production.

  3. Biochemical and molecular characterisation of cubozoan protein toxins.

    PubMed

    Brinkman, Diane L; Burnell, James N

    2009-12-15

    Class Cubozoa includes several species of box jellyfish that are harmful to humans. The venoms of box jellyfish are stored and discharged by nematocysts and contain a variety of bioactive proteins that are cytolytic, cytotoxic, inflammatory or lethal. Although cubozoan venoms generally share similar biological activities, the diverse range and severity of effects caused by different species indicate that their venoms vary in protein composition, activity and potency. To date, few individual venom proteins have been thoroughly characterised, however, accumulating evidence suggests that cubozoan jellyfish produce at least one group of homologous bioactive proteins that are labile, basic, haemolytic and similar in molecular mass (42-46 kDa). The novel box jellyfish toxins are also potentially lethal and the cause of cutaneous pain, inflammation and necrosis, similar to that observed in envenomed humans. Secondary structure analysis and remote protein homology predictions suggest that the box jellyfish toxins may act as alpha-pore-forming toxins. However, more research is required to elucidate their structures and investigate their mechanism(s) of action. The biological, biochemical and molecular characteristics of cubozoan venoms and their bioactive protein components are reviewed, with particular focus on cubozoan cytolysins and the newly emerging family of box jellyfish toxins.

  4. Group B streptococcal haemolysin and pigment, a tale of twins

    PubMed Central

    Rosa-Fraile, Manuel; Dramsi, Shaynoor; Spellerberg, Barbara

    2014-01-01

    Group B streptococcus [(GBS or Streptococcus agalactiae)] is a leading cause of neonatal meningitis and septicaemia. Most clinical isolates express simultaneously a β-haemolysin/cytolysin and a red polyenic pigment, two phenotypic traits important for GBS identification in medical microbiology. The genetic determinants encoding the GBS haemolysin and pigment have been elucidated and the molecular structure of the pigment has been determined. The cyl operon involved in haemolysin and pigment production is regulated by the major two-component system CovS/R, which coordinates the expression of multiple virulence factors of GBS. Genetic analyses indicated strongly that the haemolysin activity was due to a cytolytic toxin encoded by cylE. However, the biochemical nature of the GBS haemolysin has remained elusive for almost a century because of its instability during purification procedures. Recently, it has been suggested that the haemolytic and cytolytic activity of GBS is due to the ornithine rhamnopolyenic pigment and not to the CylE protein. Here we review and summarize our current knowledge of the genetics, regulation and biochemistry of these twin GBS phenotypic traits, including their functions as GBS virulence factors. PMID:24617549

  5. pH controlled gating of toxic protein pores by dendrimers

    NASA Astrophysics Data System (ADS)

    Mandal, Taraknath; Kanchi, Subbarao; Ayappa, K. G.; Maiti, Prabal K.

    2016-06-01

    Designing effective nanoscale blockers for membrane inserted pores formed by pore forming toxins, which are expressed by several virulent bacterial strains, on a target cell membrane is a challenging and active area of research. Here we demonstrate that PAMAM dendrimers can act as effective pH controlled gating devices once the pore has been formed. We have used fully atomistic molecular dynamics (MD) simulations to characterize the cytolysin A (ClyA) protein pores modified with fifth generation (G5) PAMAM dendrimers. Our results show that the PAMAM dendrimer, in either its protonated (P) or non-protonated (NP) states can spontaneously enter the protein lumen. Protonated dendrimers interact strongly with the negatively charged protein pore lumen. As a consequence, P dendrimers assume a more expanded configuration efficiently blocking the pore when compared with the more compact configuration adopted by the neutral NP dendrimers creating a greater void space for the passage of water and ions. To quantify the effective blockage of the protein pore, we have calculated the pore conductance as well as the residence times by applying a weak force on the ions/water. Ionic currents are reduced by 91% for the P dendrimers and 31% for the NP dendrimers. The preferential binding of Cl- counter ions to the P dendrimer creates a zone of high Cl- concentration in the vicinity of the internalized dendrimer and a high concentration of K+ ions in the transmembrane region of the pore lumen. In addition to steric effects, this induced charge segregation for the P dendrimer effectively blocks ionic transport through the pore. Our investigation shows that the bio-compatible PAMAM dendrimers can potentially be used to develop therapeutic protocols based on the pH sensitive gating of pores formed by pore forming toxins to mitigate bacterial infections.Designing effective nanoscale blockers for membrane inserted pores formed by pore forming toxins, which are expressed by several virulent

  6. Colostrum of Healthy Slovenian Mothers: Microbiota Composition and Bacteriocin Gene Prevalence

    PubMed Central

    Obermajer, Tanja; Lipoglavšek, Luka; Tompa, Gorazd; Treven, Primož; Lorbeg, Petra Mohar; Matijašić, Bojana Bogovič; Rogelj, Irena

    2015-01-01

    Microbial communities inhabiting the breast milk microenvironment are essential in supporting mammary gland health in lactating women and in providing gut-colonizing bacterial 'inoculum' for their infants’ gastro-intestinal development. Bacterial DNA was extracted from colostrum samples of 45 healthy Slovenian mothers. Characteristics of the communities in the samples were assessed by polymerase chain reaction (PCR) coupled with denaturing gradient gel electrophoresis (DGGE) and by quantitative real-time PCR (qPCR). PCR screening for the prevalence of bacteriocin genes was performed on DNA of culturable and total colostrum bacteria. DGGE profiling revealed the presence of Staphylococcus and Gemella in most of the samples and exposed 4 clusters based on the abundance of 3 bands: Staphylococcus epidermidis/Gemella, Streptococcus oralis/pneumonia and Streptococcus salivarius. Bacilli represented the largest proportion of the communities. High prevalence in samples at relatively low quantities was confirmed by qPCR for enterobacteria (100%), Clostridia (95.6%), Bacteroides-Prevotella group (62.2%) and bifidobacteria (53.3%). Bacterial quantities (genome equivalents ml-1) varied greatly among the samples; Staphylococcus epidermidis and staphylococci varied in the range of 4 logs, streptococci and all bacteria varied in the range of 2 logs, and other researched groups varied in the range of 1 log. The quantity of most bacterial groups was correlated with the amount of all bacteria. The majority of the genus Staphylococcus was represented by the species Staphylococcus epidermidis (on average 61%), and their abundances were linearly correlated. Determinants of salivaricin A, salivaricin B, streptin and cytolysin were found in single samples. This work provides knowledge on the colostrum microbial community composition of healthy lactating Slovenian mothers and reports bacteriocin gene prevalence. PMID:25919457

  7. Staphylococcus epidermidis strategies to avoid killing by human neutrophils.

    PubMed

    Cheung, Gordon Y C; Rigby, Kevin; Wang, Rong; Queck, Shu Y; Braughton, Kevin R; Whitney, Adeline R; Teintze, Martin; DeLeo, Frank R; Otto, Michael

    2010-01-01

    Staphylococcus epidermidis is a leading nosocomial pathogen. In contrast to its more aggressive relative S. aureus, it causes chronic rather than acute infections. In highly virulent S. aureus, phenol-soluble modulins (PSMs) contribute significantly to immune evasion and aggressive virulence by their strong ability to lyse human neutrophils. Members of the PSM family are also produced by S. epidermidis, but their role in immune evasion is not known. Notably, strong cytolytic capacity of S. epidermidis PSMs would be at odds with the notion that S. epidermidis is a less aggressive pathogen than S. aureus, prompting us to examine the biological activities of S. epidermidis PSMs. Surprisingly, we found that S. epidermidis has the capacity to produce PSMδ, a potent leukocyte toxin, representing the first potent cytolysin to be identified in that pathogen. However, production of strongly cytolytic PSMs was low in S. epidermidis, explaining its low cytolytic potency. Interestingly, the different approaches of S. epidermidis and S. aureus to causing human disease are thus reflected by the adaptation of biological activities within one family of virulence determinants, the PSMs. Nevertheless, S. epidermidis has the capacity to evade neutrophil killing, a phenomenon we found is partly mediated by resistance mechanisms to antimicrobial peptides (AMPs), including the protease SepA, which degrades AMPs, and the AMP sensor/resistance regulator, Aps (GraRS). These findings establish a significant function of SepA and Aps in S. epidermidis immune evasion and explain in part why S. epidermidis may evade elimination by innate host defense despite the lack of cytolytic toxin expression. Our study shows that the strategy of S. epidermidis to evade elimination by human neutrophils is characterized by a passive defense approach and provides molecular evidence to support the notion that S. epidermidis is a less aggressive pathogen than S. aureus.

  8. Intermedilysin induces EGR-1 expression through calcineurin/NFAT pathway in human cholangiocellular carcinoma cells

    SciTech Connect

    Susilowati, Heni; Okamura, Hirohiko; Hirota, Katsuhiko; Shono, Masayuki; Yoshida, Kaya; Murakami, Keiji; Tabata, Atsushi; Nagamune, Hideaki; Haneji, Tatsuji; Miyake, Yoichiro

    2011-01-07

    Research highlights: {yields} ILY leads to the accumulation of [Ca{sup 2+}]i in the nucleus in HuCCT1 cells. {yields} ILY induced activation of NFAT1 through a calcineurin-dependent pathway. {yields} Calcineuri/NFAT pathway is involved in EGR-1 expression in response to ILY treatment. -- Abstract: Intermedilysin (ILY) is a cholesterol-dependent cytolysin produced by Streptococcus intermedius, which is associated with human brain and liver abscesses. Although intrahepatic bile duct cells play a valuable role in the pathogenesis of liver abscess, the molecular mechanism of ILY-treated intrahepatic bile duct cells remains unknown. In this study, we report that ILY induced a nuclear accumulation of intracellular calcium ([Ca{sup 2+}]i) in human cholangiocellular cells HuCCT1. We also demonstrate that 10 ng/ml ILY induced NFAT1 dephosphorylation and its nuclear translocation in HuCCT1 cells. In contrast to the result that ILY induced NF-{kappa}B translocation in human hepatic HepG2 cells, ILY did not affect NF-{kappa}B localization in HuCCT1 cells. Dephosphorylation and nuclear translocation of NFAT1 caused by ILY were prevented by [Ca{sup 2+}]i calcium chelator, BAPTA/AM, and calcineurin inhibitors, cyclosporine A and tacrolimus. ILY induced early growth response-1 (EGR-1) expression and it was inhibited by the pre-treatment with cyclosporine A, indicating that the calcineurin/NFAT pathway was involved in EGR-1 expression in response to ILY. ILY-induced calcineurin/NFAT1 activation and sequential EGR-1 expression might be related to the pathogenesis of S. intermedius in human bile duct cells.

  9. A streptolysin S homologue is essential for β-haemolytic Streptococcus constellatus subsp. constellatus cytotoxicity.

    PubMed

    Tabata, Atsushi; Sato, Yuji; Maya, Kentaro; Nakano, Kota; Kikuchi, Ken; Whiley, Robert A; Ohkura, Kazuto; Tomoyasu, Toshifumi; Nagamune, Hideaki

    2014-05-01

    Streptococcus constellatus is a member of the Anginosus group streptococci (AGS) and primarily inhabits the human oral cavity. S. constellatus is composed of three subspecies: S. constellatus subsp. constellatus (SCC), S. constellatus subsp. pharyngis and the newly described subspecies S. constellatus subsp. viborgensis. Although previous studies have established that SCC contains β-haemolytic strains, the factor(s) responsible for β-haemolysis in β-haemolytic SCC (β-SCC) has yet to be clarified. Recently, we discovered that a streptolysin S (SLS) homologue is the β-haemolytic factor of β-haemolytic Streptococcus anginosus subsp. anginosus (β-SAA), another member of the AGS. Furthermore, because previous studies have suggested that other AGS species, except for Streptococcus intermedius, do not possess a haemolysin(s) belonging to the family of cholesterol-dependent cytolysins, we hypothesized that, as with β-SAA, the SLS homologue is the β-haemolytic factor of β-SCC, and therefore aimed to investigate and characterize the haemolytic factor of β-SCC in the present study. PCR amplification revealed that all of the tested β-SCC strains were positive for the sagA homologue of SCC (sagA(SCC)). Further investigations using β-SCC strain W277 were conducted to elucidate the relationship between sagA(SCC) and β-haemolysis by constructing sagA(SCC) deletion mutants, which completely lost β-haemolytic activity. This loss of β-haemolytic activity was restored by trans-complementation of sagA(SCC). Furthermore, a co-cultivation assay established that the cytotoxicity of β-SCC was clearly dependent on the presence of sagA(SCC). These results demonstrate that sagA(SCC) is the factor responsible for β-SCC β-haemolysis and cytotoxicity. PMID:24600025

  10. Sea anemone (Cnidaria, Anthozoa, Actiniaria) toxins: an overview.

    PubMed

    Frazão, Bárbara; Vasconcelos, Vitor; Antunes, Agostinho

    2012-08-01

    The Cnidaria phylum includes organisms that are among the most venomous animals. The Anthozoa class includes sea anemones, hard corals, soft corals and sea pens. The composition of cnidarian venoms is not known in detail, but they appear to contain a variety of compounds. Currently around 250 of those compounds have been identified (peptides, proteins, enzymes and proteinase inhibitors) and non-proteinaceous substances (purines, quaternary ammonium compounds, biogenic amines and betaines), but very few genes encoding toxins were described and only a few related protein three-dimensional structures are available. Toxins are used for prey acquisition, but also to deter potential predators (with neurotoxicity and cardiotoxicity effects) and even to fight territorial disputes. Cnidaria toxins have been identified on the nematocysts located on the tentacles, acrorhagi and acontia, and in the mucous coat that covers the animal body. Sea anemone toxins comprise mainly proteins and peptides that are cytolytic or neurotoxic with its potency varying with the structure and site of action and are efficient in targeting different animals, such as insects, crustaceans and vertebrates. Sea anemones toxins include voltage-gated Na⁺ and K⁺ channels toxins, acid-sensing ion channel toxins, Cytolysins, toxins with Kunitz-type protease inhibitors activity and toxins with Phospholipase A2 activity. In this review we assessed the phylogentic relationships of sea anemone toxins, characterized such toxins, the genes encoding them and the toxins three-dimensional structures, further providing a state-of-the-art description of the procedures involved in the isolation and purification of bioactive toxins.

  11. Hypoxia and the hypoxic response pathway protect against pore-forming toxins in C. elegans.

    PubMed

    Bellier, Audrey; Chen, Chang-Shi; Kao, Cheng-Yuan; Cinar, Hediye N; Aroian, Raffi V

    2009-12-01

    Pore-forming toxins (PFTs) are by far the most abundant bacterial protein toxins and are important for the virulence of many important pathogens. As such, cellular responses to PFTs critically modulate host-pathogen interactions. Although many cellular responses to PFTs have been recorded, little is understood about their relevance to pathological or defensive outcomes. To shed light on this important question, we have turned to the only genetic system for studying PFT-host interactions-Caenorhabditis elegans intoxication by Crystal (Cry) protein PFTs. We mutagenized and screened for C. elegans mutants resistant to a Cry PFT and recovered one mutant. Complementation, sequencing, transgenic rescue, and RNA interference data demonstrate that this mutant eliminates a gene normally involved in repression of the hypoxia (low oxygen response) pathway. We find that up-regulation of the C. elegans hypoxia pathway via the inactivation of three different genes that normally repress the pathway results in animals resistant to Cry PFTs. Conversely, mutation in the central activator of the hypoxia response, HIF-1, suppresses this resistance and can result in animals defective in PFT defenses. These results extend to a PFT that attacks mammals since up-regulation of the hypoxia pathway confers resistance to Vibrio cholerae cytolysin (VCC), whereas down-regulation confers hypersusceptibility. The hypoxia PFT defense pathway acts cell autonomously to protect the cells directly under attack and is different from other hypoxia pathway stress responses. Two of the downstream effectors of this pathway include the nuclear receptor nhr-57 and the unfolded protein response. In addition, the hypoxia pathway itself is induced by PFT, and low oxygen is protective against PFT intoxication. These results demonstrate that hypoxia and induction of the hypoxia response protect cells against PFTs, and that the cellular environment can be modulated via the hypoxia pathway to protect against the

  12. LacR mutations are frequently observed in Streptococcus intermedius and are responsible for increased intermedilysin production and virulence.

    PubMed

    Tomoyasu, Toshifumi; Imaki, Hidenori; Masuda, Sachiko; Okamoto, Ayumi; Kim, Hyejin; Waite, Richard D; Whiley, Robert A; Kikuchi, Ken; Hiramatsu, Keiichi; Tabata, Atsushi; Nagamune, Hideaki

    2013-09-01

    Streptococcus intermedius secretes a human-specific cytolysin, intermedilysin (ILY), which is considered to be the major virulence factor of this pathogen. We screened for a repressor of ily expression by using random gene disruption in a low-ILY-producing strain (PC574). Three independent high-ILY-producing colonies that had plasmid insertions within a gene that has high homology to lacR were isolated. Validation of these observations was achieved through disruption of lacR in strain PC574 with an erythromycin cassette, which also led to higher hemolytic activity, increased transcription of ily, and higher cytotoxicity against HepG2 cells, compared to the parental strain. The direct binding of LacR within the ily promoter region was shown by a biotinylated DNA probe pulldown assay, and the amount of ILY secreted into the culture supernatant by PC574 cells was increased by adding lactose or galactose to the medium as a carbon source. Furthermore, we examined lacR nucleotide sequences and the hemolytic activity of 50 strains isolated from clinical infections and 7 strains isolated from dental plaque. Of the 50 strains isolated from infections, 13 showed high ILY production, 11 of these 13 strains had one or more point mutations and/or an insertion mutation in LacR, and almost all mutations were associated with a marked decline in LacR function. These results strongly suggest that mutation in lacR is required for the overproduction of ILY, which is associated with an increase in pathogenicity of S. intermedius.

  13. Five birds, one stone: neutralization of α-hemolysin and 4 bi-component leukocidins of Staphylococcus aureus with a single human monoclonal antibody.

    PubMed

    Rouha, Harald; Badarau, Adriana; Visram, Zehra C; Battles, Michael B; Prinz, Bianka; Magyarics, Zoltán; Nagy, Gábor; Mirkina, Irina; Stulik, Lukas; Zerbs, Manuel; Jägerhofer, Michaela; Maierhofer, Barbara; Teubenbacher, Astrid; Dolezilkova, Ivana; Gross, Karin; Banerjee, Srijib; Zauner, Gerhild; Malafa, Stefan; Zmajkovic, Jakub; Maier, Sabine; Mabry, Robert; Krauland, Eric; Wittrup, K Dane; Gerngross, Tillman U; Nagy, Eszter

    2015-01-01

    Staphylococcus aureus is a major human pathogen associated with high mortality. The emergence of antibiotic resistance and the inability of antibiotics to counteract bacterial cytotoxins involved in the pathogenesis of S. aureus call for novel therapeutic approaches, such as passive immunization with monoclonal antibodies (mAbs). The complexity of staphylococcal pathogenesis and past failures with single mAb products represent considerable barriers for antibody-based therapeutics. Over the past few years, efforts have focused on neutralizing α-hemolysin. Recent findings suggest that the concerted actions of several cytotoxins, including the bi-component leukocidins play important roles in staphylococcal pathogenesis. Therefore, we aimed to isolate mAbs that bind to multiple cytolysins by employing high diversity human IgG1 libraries presented on the surface of yeast cells. Here we describe cross-reactive antibodies with picomolar affinity for α-hemolysin and 4 different bi-component leukocidins that share only ∼26% overall amino acid sequence identity. The molecular basis of cross-reactivity is the recognition of a conformational epitope shared by α-hemolysin and F-components of gamma-hemolysin (HlgAB and HlgCB), LukED and LukSF (Panton-Valentine Leukocidin). The amino acids predicted to form the epitope are conserved and known to be important for cytotoxic activity. We found that a single cross-reactive antibody prevented lysis of human phagocytes, epithelial and red blood cells induced by α-hemolysin and leukocidins in vitro, and therefore had superior effectiveness compared to α-hemolysin specific antibodies to protect from the combined cytolytic effect of secreted S. aureus toxins. Such mAb afforded high levels of protection in murine models of pneumonia and sepsis.

  14. [Seroimmunological studies by Dr Hideyo Noguchi - introduction and illustration of his seroimmunological research, with a connection to recent seroimmunology].

    PubMed

    Yoshida, Hiroshi

    2009-12-01

    Dr. Hideyo Noguchi (Noguchi) is the most well-known scientist in Japanese history because of his eventful life and research on syphilis and yellow fever; however, details of his scientific research, especially in the seroimmunological field, performed in the USA have not been recognized. More than 200 papers were published, mostly in English, and about half of them were published in J. Exp. Medicine. Arbitrary evaluation was performed of his research, recognizing the value of his seroimmunological studies. In this lecture, the background at that time and a small part of the contents of 10 papers on serology and biochemistry are introduced and explained, in connection with recent seroimmunology: (1) On snake venom: In the first experiment, under the guidance of Drs. Flexner and Mitchel, many new findings were obtained regarding bacteriolysis, hemolysis, leucolysis, and the toxicity of venoms in relation to antibody and complement. Especially, the bacteriolytic activity of serum induced by venom was disclosed later to be caused by the activation of alternative pathway of complement by a factor termed cobra venom factor. (2) Heat-stable anticomplementary factor: Preheating sera produced an anticomplementary factor, termed protectin. (3) The pleurality of cytolysins (natural antibody) in sera not only of mammals but also of a reptile and an amphibian was identified. (4) Toxin-antitoxin reaction: One of the fundamental analyses of the antigen-antibody reaction. (5) Gel diffusion of antigen and antibody. (6) Various factors affecting the Wassermann reaction, in which the butyric acid method to detect globulin was introduced. (7) A new and simple method for the serodiagnosis of syphilis. (8) A study of syphilis antigen, in which the antigenicity of acetone-soluble lipid was stressed. (9) Pure cultivation of Treponema pallidum. (10) Demonstration of T. pallidum in the brain. More than 40 papers on syphilis were published, for which he was nominated for the Nobel prize 3

  15. Membrane cholesterol and sphingomyelin, and ostreolysin A are obligatory for pore-formation by a MACPF/CDC-like pore-forming protein, pleurotolysin B.

    PubMed

    Ota, Katja; Leonardi, Adrijana; Mikelj, Miha; Skočaj, Matej; Wohlschlager, Therese; Künzler, Markus; Aebi, Markus; Narat, Mojca; Križaj, Igor; Anderluh, Gregor; Sepčić, Kristina; Maček, Peter

    2013-10-01

    The mushroom Pleurotus ostreatus has been reported to produce the hemolytic proteins ostreolysin (OlyA), pleurotolysin A (PlyA) and pleurotolysin B (PlyB). The present study of the native and recombinant proteins dissects out their lipid-binding characteristics and their roles in lipid binding and membrane permeabilization. Using lipid-binding studies, permeabilization of erythrocytes, large unilamellar vesicles of various lipid compositions, and electron microscopy, we show that OlyA, a PlyA homolog, preferentially binds to membranes rich in sterol and sphingomyelin, but it does not permeabilize them. The N-terminally truncated Δ48PlyB corresponds to the mature and active form of native PlyB, and it has a membrane attack complex-perforin (MACPF) domain. Δ48PlyB spontaneously oligomerizes in solution, and binds weakly to various lipid membranes but is not able to perforate them. However, binding of Δ48PlyB to the cholesterol and sphingomyelin membranes, and consequently, their permeabilization is dramatically promoted in the presence of OlyA. On these membranes, Δ48PlyB and OlyA form predominantly 13-meric oligomers. These are rosette-like structures with a thickness of ∼9 nm from the membrane surface, with 19.7 nm and 4.9 nm outer and inner diameters, respectively. When present on opposing vesicle membranes, these oligomers can dimerize and thus promote aggregation of vesicles. Based on the structural and functional characteristics of Δ48PlyB, we suggest that it shares some features with MACPF/cholesterol-dependent cytolysin (CDC) proteins. OlyA is obligatory for the Δ48PlyB permeabilization of membranes rich in cholesterol and sphingomyelin. PMID:23806422

  16. Drawing the line between commensal and pathogenic Gardnerella vaginalis through genome analysis and virulence studies

    PubMed Central

    2010-01-01

    Background Worldwide, bacterial vaginosis (BV) is the most common vaginal disorder. It is associated with risk for preterm birth and HIV infection. The etiology of the condition has been debated for nearly half a century and the lack of knowledge about its cause and progression has stymied efforts to improve therapy and prevention. Gardnerella vaginalis was originally identified as the causative agent, but subsequent findings that it is commonly isolated from seemingly healthy women cast doubt on this claim. Recent studies shedding light on the virulence properties of G. vaginalis, however, have drawn the species back into the spotlight. Results In this study, we sequenced the genomes of a strain of G. vaginalis from a healthy woman, and one from a woman with bacterial vaginosis. Comparative analysis of the genomes revealed significant divergence and in vitro studies indicated disparities in the virulence potential of the two strains. The commensal isolate exhibited reduced cytotoxicity and yet the cytolysin proteins encoded by the two strains were nearly identical, differing at a single amino acid, and were transcribed at similar levels. The BV-associated strain encoded a different variant of a biofilm associated protein gene and demonstrated greater adherence, aggregation, and biofilm formation. Using filters with different pore sizes, we found that direct contact between the bacteria and epithelial cells is required for cytotoxicity. Conclusions The results indicated that contact is required for cytotoxicity and suggested that reduced cytotoxicity in the commensal isolate could be due to impaired adherence. This study outlines two distinct genotypic variants of G. vaginalis, one apparently commensal and one pathogenic, and presents evidence for disparate virulence potentials. PMID:20540756

  17. Protein-lipid interactions and non-lamellar lipidic structures in membrane pore formation and membrane fusion.

    PubMed

    Gilbert, Robert J C

    2016-03-01

    Pore-forming proteins and peptides act on their targeted lipid bilayer membranes to increase permeability. This approach to the modulation of biological function is relevant to a great number of living processes, including; infection, parasitism, immunity, apoptosis, development and neurodegeneration. While some pore-forming proteins/peptides assemble into rings of subunits to generate discrete, well-defined pore-forming structures, an increasing number is recognised to form pores via mechanisms which co-opt membrane lipids themselves. Among these, membrane attack complex-perforin/cholesterol-dependent cytolysin (MACPF/CDC) family proteins, Bax/colicin family proteins and actinoporins are especially prominent and among the mechanisms believed to apply are the formation of non-lamellar (semi-toroidal or toroidal) lipidic structures. In this review I focus on the ways in which lipids contribute to pore formation and contrast this with the ways in which lipids are co-opted also in membrane fusion and fission events. A variety of mechanisms for pore formation that involve lipids exists, but they consistently result in stable hybrid proteolipidic structures. These structures are stabilised by mechanisms in which pore-forming proteins modify the innate capacity of lipid membranes to respond to their environment, changing shape and/or phase and binding individual lipid molecules directly. In contrast, and despite the diversity in fusion protein types, mechanisms for membrane fusion are rather similar to each other, mapping out a pathway from pairs of separated compartments to fully confluent fused membranes. Fusion proteins generate metastable structures along the way which, like long-lived proteolipidic pore-forming complexes, rely on the basic physical properties of lipid bilayers. Membrane fission involves similar intermediates, in the reverse order. I conclude by considering the possibility that at least some pore-forming and fusion proteins are evolutionarily related

  18. Role of house flies in the ecology of Enterococcus faecalis from wastewater treatment facilities.

    PubMed

    Doud, C W; Scott, H M; Zurek, L

    2014-02-01

    Enterococci are important nosocomial pathogens, with Enterococcus faecalis most commonly responsible for human infections. In this study, we used several measures to test the hypothesis that house flies, Musca domestica (L.), acquire and disseminate antibiotic-resistant and potentially virulent E. faecalis from wastewater treatment facilities (WWTF) to the surrounding urban environment. House flies and sludge from four WWTF (1-4) as well as house flies from three urban sites close to WWTF-1 were collected and cultured for enterococci. Enterococci were identified, quantified, screened for antibiotic resistance and virulence traits, and assessed for clonality. Of the 11 antibiotics tested, E. faecalis was most commonly resistant to tetracycline, doxycycline, streptomycin, gentamicin, and erythromycin, and these traits were intra-species horizontally transferrable by in vitro conjugation. Profiles of E. faecalis (prevalence, antibiotic resistance, and virulence traits) from each of WWTF sludge and associated house flies were similar, indicating that flies successfully acquired these bacteria from this substrate. The greatest number of E. faecalis with antibiotic resistance and virulence factors (i.e., gelatinase, cytolysin, enterococcus surface protein, and aggregation substance) originated from WWTF-1 that processed meat waste from a nearby commercial meat-processing plant, suggesting an agricultural rather than human clinical source of these isolates. E. faecalis from house flies collected from three sites 0.7-1.5 km away from WWTF-1 were also similar in their antibiotic resistance profiles; however, antibiotic resistance was significantly less frequent. Clonal diversity assessment using pulsed-field gel electrophoresis revealed the same clones of E. faecalis from sludge and house flies from WWTF-1 but not from the three urban sites close to WWTF-1. This study demonstrates that house flies acquire antibiotic-resistant enterococci from WWTF and potentially

  19. Role of house flies in the ecology of Enterococcus faecalis from wastewater treatment facilities.

    PubMed

    Doud, C W; Scott, H M; Zurek, L

    2014-02-01

    Enterococci are important nosocomial pathogens, with Enterococcus faecalis most commonly responsible for human infections. In this study, we used several measures to test the hypothesis that house flies, Musca domestica (L.), acquire and disseminate antibiotic-resistant and potentially virulent E. faecalis from wastewater treatment facilities (WWTF) to the surrounding urban environment. House flies and sludge from four WWTF (1-4) as well as house flies from three urban sites close to WWTF-1 were collected and cultured for enterococci. Enterococci were identified, quantified, screened for antibiotic resistance and virulence traits, and assessed for clonality. Of the 11 antibiotics tested, E. faecalis was most commonly resistant to tetracycline, doxycycline, streptomycin, gentamicin, and erythromycin, and these traits were intra-species horizontally transferrable by in vitro conjugation. Profiles of E. faecalis (prevalence, antibiotic resistance, and virulence traits) from each of WWTF sludge and associated house flies were similar, indicating that flies successfully acquired these bacteria from this substrate. The greatest number of E. faecalis with antibiotic resistance and virulence factors (i.e., gelatinase, cytolysin, enterococcus surface protein, and aggregation substance) originated from WWTF-1 that processed meat waste from a nearby commercial meat-processing plant, suggesting an agricultural rather than human clinical source of these isolates. E. faecalis from house flies collected from three sites 0.7-1.5 km away from WWTF-1 were also similar in their antibiotic resistance profiles; however, antibiotic resistance was significantly less frequent. Clonal diversity assessment using pulsed-field gel electrophoresis revealed the same clones of E. faecalis from sludge and house flies from WWTF-1 but not from the three urban sites close to WWTF-1. This study demonstrates that house flies acquire antibiotic-resistant enterococci from WWTF and potentially

  20. Characterization of functional properties of Enterococcus faecium strains isolated from human gut.

    PubMed

    İspirli, Hümeyra; Demirbaş, Fatmanur; Dertli, Enes

    2015-11-01

    The aim of this work was to characterize the functional properties of Enterococcus faecium strains identified after isolation from human faeces. Of these isolates, strain R13 showed the best resistance to low pH, bile salts, and survival in the simulated in vitro digestion assay, and demonstrated an important level of adhesion to hexadecane as a potential probiotic candidate. Analysis of the antibiotic resistance of E. faecium strains indicated that in general these isolates were sensitive to the tested antibiotics and no strain appeared to be resistant to vancomycin. Examination of the virulence determinants for E. faecium strains demonstrated that all strains contained the virulence genes common in gut- and food-originated enterococci, and strain R13 harboured the lowest number of virulence genes. Additionally, no strain contained the genes related to cytolysin metabolism and showed hemolytic activity. The antimicrobial role of E. faecium strains was tested against several pathogens, in which different levels of inhibitory effects were observed, and strain R13 was inhibitory to all tested pathogens. PCR screening of genes encoding enterocin A and B indicated the presence of these genes in E. faecium strains. Preliminary characterization of bacteriocins revealed that their activity was lost after proteolytic enzyme treatments, but no alteration in antimicrobial activity was observed at different pHs (3.5 to 9.5) and after heat treatments. In conclusion, this study revealed the functional characteristics of E. faecium R13 as a gut isolate, and this strain could be developed as a new probiotic after further tests.

  1. Virulence factors genes in enterococci isolated from beavers (Castor fiber).

    PubMed

    Lauková, Andrea; Strompfová, Viola; Kandričáková, Anna; Ščerbová, Jana; Semedo-Lemsaddek, Teresa; Miltko, Renata; Belzecki, Grzegorz

    2015-03-01

    Only limited information exists concerning the microbiota in beaver (Castor fiber). This study has been focused on the virulence factors genes detection in enterococci from beavers. In general, animals are not affected by enterococcal infections, but they can be a reservoir of, e.g. pathogenic strains. Moreover, detection of virulence factors genes in enterococci from beavers was never tested before. Free-living beavers (12), male and female (age 4-5 years) were caught in the north-east part of Poland. Sampling of lower gut and faeces was provided according to all ethical rules for animal handling. Samples were treated using a standard microbiological method. Pure bacterial colonies were identified by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) identification system. Virulence factors genes-gelE (gelatinase), agg (aggregation), cylA (cytolysin A), efaAfs (adhesin Enterococcus faecalis), efaAfm (adhesin Enterococcus faecium) and esp (surface protein) were tested by PCR. Moreover, gelatinase and antibiotic phenotypes were tested. Species detected were Enterococcus thailandicus, E. faecium, E. faecalis and Enterococcus durans. In literature, enterococcal species distribution was never reported yet up to now. Strains were mostly sensitive to antibiotics. Vancomycin-resistant E. faecalis EE9Tr1 possess cylA, efaAfs, esp and gelE genes. Strains were aggregation substance genes absent. Adhesin E. faecium (efaAfm) gene was detected in two of three E. faecium strains, but it was present also in E. thailandicus. Esp gene was present in EE9Tr1 and E. durans EDTr92. The most detected were gelE, efaAfm genes; in EF 4Hc1 also gelatinase phenotype was found. Strains with virulence factors genes will be tested for their sensitivity to antimicrobial enterocins.

  2. pH controlled gating of toxic protein pores by dendrimers.

    PubMed

    Mandal, Taraknath; Kanchi, Subbarao; Ayappa, K G; Maiti, Prabal K

    2016-07-14

    Designing effective nanoscale blockers for membrane inserted pores formed by pore forming toxins, which are expressed by several virulent bacterial strains, on a target cell membrane is a challenging and active area of research. Here we demonstrate that PAMAM dendrimers can act as effective pH controlled gating devices once the pore has been formed. We have used fully atomistic molecular dynamics (MD) simulations to characterize the cytolysin A (ClyA) protein pores modified with fifth generation (G5) PAMAM dendrimers. Our results show that the PAMAM dendrimer, in either its protonated (P) or non-protonated (NP) states can spontaneously enter the protein lumen. Protonated dendrimers interact strongly with the negatively charged protein pore lumen. As a consequence, P dendrimers assume a more expanded configuration efficiently blocking the pore when compared with the more compact configuration adopted by the neutral NP dendrimers creating a greater void space for the passage of water and ions. To quantify the effective blockage of the protein pore, we have calculated the pore conductance as well as the residence times by applying a weak force on the ions/water. Ionic currents are reduced by 91% for the P dendrimers and 31% for the NP dendrimers. The preferential binding of Cl(-) counter ions to the P dendrimer creates a zone of high Cl(-) concentration in the vicinity of the internalized dendrimer and a high concentration of K(+) ions in the transmembrane region of the pore lumen. In addition to steric effects, this induced charge segregation for the P dendrimer effectively blocks ionic transport through the pore. Our investigation shows that the bio-compatible PAMAM dendrimers can potentially be used to develop therapeutic protocols based on the pH sensitive gating of pores formed by pore forming toxins to mitigate bacterial infections. PMID:27328315

  3. The Streptococcus pyogenes serotype M49 Nra-Ralp3 transcriptional regulatory network and its control of virulence factor expression from the novel eno ralp3 epf sagA pathogenicity region.

    PubMed

    Kreikemeyer, Bernd; Nakata, Masanobu; Köller, Thomas; Hildisch, Hendrikje; Kourakos, Vassilios; Standar, Kerstin; Kawabata, Shigetada; Glocker, Michael O; Podbielski, Andreas

    2007-12-01

    Many Streptococcus pyogenes (group A streptococcus [GAS]) virulence factor- and transcriptional regulator-encoding genes cluster together in discrete genomic regions. Nra is a central regulator of the FCT region. Previous studies exclusively described Nra as a transcriptional repressor of adhesin and toxin genes. Here transcriptome and proteome analysis of a serotype M49 GAS strain and an isogenic Nra mutant of this strain revealed the complete Nra regulon profile. Nra is active in all growth phases tested, with the largest regulon in the transition phase. Almost exclusively, virulence factor-encoding genes are repressed by Nra; these genes include the GAS pilus operon, the capsule synthesis operon, the cytolysin-mediated translocation system genes, all Mga region core virulence genes, and genes encoding other regulators, like the Ihk/Irr system, Rgg, and two additional RofA-like protein family regulators. Surprisingly, our experiments revealed that Nra additionally acts as a positive regulator, mostly for genes encoding proteins and enzymes with metabolic functions. Epidemiological investigations revealed strong genetic linkage of one particular Nra-repressed regulator, Ralp3 (SPy0735), with a gene encoding Epf (extracellular protein factor from Streptococcus suis). In a serotype-specific fashion, this ralp3 epf gene block is integrated, most likely via transposition, into the eno sagA virulence gene block, which is present in all GAS serotypes. In GAS serotypes M1, M4, M12, M28, and M49 this novel discrete genetic region is therefore designated the eno ralp3 epf sagA (ERES) pathogenicity region. Functional experiments showed that Epf is a novel GAS plasminogen-binding protein and revealed that Ralp3 activity counteracts Nra and MsmR regulatory activity. In addition to the Mga and FCT regions, the ERES region is the third discrete chromosomal pathogenicity region. All of these regions are transcriptionally linked, adding another level of complexity to the known

  4. Intranasal vaccination in mice with an attenuated Salmonella enterica Serovar 908htr A expressing Cp15 of Cryptosporidium: impact of malnutrition with preservation of cytokine secretion.

    PubMed

    Roche, James K; Rojo, Ana Lara; Costa, Lourrany B; Smeltz, Ronald; Manque, Patricio; Woehlbier, Ute; Bartelt, Luther; Galen, James; Buck, Gregory; Guerrant, Richard L

    2013-01-30

    Cryptosporidium is a protozoan parasite associated with acute and persistent diarrhea that, even in asymptomatic persons, can impair normal growth and potentially cognitive and physical development in young children. The recent availability of the complete gene sequence for Cryptosporidium hominis antigen Cp15 allows examination of innovative vaccine regimens involving intra-nasal antigen priming with live bacterial vectors applicable to human populations. We used a recently described weaned mouse model of cryptosporidiosis, where nourished and malnourished vaccinated mice receive the Cp15 antigen recombinant with cytolysinA on a Salmonella serovar Typhi CVD 908-htr A vector, followed by parenteral exposure to antigen with adjuvant. After challenge with Cryptosporidium oocysts via gavage, parameters of infection and disease (stool shedding of parasites, growth rates) were quantified, and serum/lymphoid tissue harvested to elucidate the Cp15-specific adaptive immune response. In vaccinated nourished mice, the regimen was highly immunogenic, with strong antigen-specific IL-6 and IFN-γ secretion and robust Cp15-specific immunoglobulin titers. In vaccinated malnourished mice, secretion of cytokines, particularly IFN-γ, and antigen-specific humoral immunity were generally undiminished despite protein deprivation and stunted growth. In contrast, after natural (oral) challenge with an identical inoculum of Cryptosporidium oocysts, cytokine and humoral responses to Cp15 were less than one-fourth those in vaccinated mice. Nevertheless, vaccination resulted in only transient reduction in stool shedding of parasites and was not otherwise protective against disease. Overall, immunogenicity for a C. hominis antigen was documented in mice, even in the setting of prolonged malnutrition, using an innovative vaccine regimen involving intra-nasal antigen priming with a live enteric bacterial vector, that has potential applicability to vulnerable human populations irrespective of

  5. Molecular detection of virulence factors among food and clinical Enterococcus faecalis strains in South Brazil.

    PubMed

    Medeiros, A W; Pereira, R I; Oliveira, D V; Martins, P D; d'Azevedo, P A; Van der Sand, S; Frazzon, J; Frazzon, A P G

    2014-01-01

    The present report aimed to perform a molecular epidemiological survey by investigating the presence of virulence factors in E. faecalis isolated from different human clinical (n = 57) and food samples (n = 55) in Porto Alegre, Brazil, collected from 2006 to 2009. In addition, the ability to form biofilm in vitro on polystyrene and the β-haemolytic and gelatinase activities were determined. Clinical strains presented a higher prevalence of aggregation substance (agg), enterococcal surface protein (esp) and cytolysin (cylA) genes when compared with food isolates. The esp gene was found only in clinical strains. On the other hand, the gelatinase (gelE) and adherence factor (ace) genes had similar prevalence among the strains, showing the widespread occurrence of these virulence factors among food and clinical E. faecalis strains in South Brazil. More than three virulence factor genes were detected in 77.2% and 18.2% of clinical and food strains, respectively. Gelatinase and β-haemolysin activities were not associated with the presence of gelE and cylA genes. The ability to produce biofilm was detected in 100% of clinical and 94.6% of food isolates, and clinical strains were more able to form biofilm than the food isolates (Student's t-test, p < 0.01). Results from the statistical analysis showed significant associations between strong biofilm formation and ace (p = 0.015) and gelE (p = 0.007) genes in clinical strains. In conclusion, our data indicate that E. faecalis strains isolated from clinical and food samples possess distinctive patterns of virulence factors, with a larger number of genes that encode virulence factors detected in clinical strains.

  6. MLST analysis reveals a highly conserved core genome among poultry isolates of Clostridium septicum.

    PubMed

    Neumann, Anthony P; Rehberger, Thomas G

    2009-06-01

    Clostridium septicum is a highly virulent, anaerobic bacterium capable of establishing necrotizing tissue infections and forming heat resistant endospores. Disease is primarily facilitated by secretion of numerous toxic products including a lethal pore-forming cytolysin. Spontaneously occurring clostridial myonecrosis involving C. septicum has recently reemerged as a concern for many poultry producers. However, despite its increasing prevalence, the epidemiology of infection and population structure of C. septicum remains largely unknown. In this study a multilocus sequence typing (MLST) approach was utilized to examine evolutionary relationships within a diverse collection of C. septicum isolates recovered from poultry flocks experiencing episodes of gangrenous dermatitis. The 109 isolates examined represented 42 turkey flocks and 24 different flocks of broiler chickens as well as C. septicum type strain, ATCC 12464. Isolates were recovered predominantly from gangrenous lesions although isolates from livers, gastrointestinal tracts, spleens and blood were included. The loci analyzed were csa, the major lethal toxin produced by C. septicum, and the housekeeping genes gyrA, groEL, dnaK, recA, tpi, ddl, colA and glpK. These loci were included in part because of their previous use in MLST analysis of Clostridium perfringens and Clostridium difficile. Results indicated a high level of conservation present within these housekeeping gene fragments when compared to what has been previously reported for the aforementioned clostridia. Of the 5352 bp of sequence data examined for each isolate, 99.7% (5335/5352) was absolutely conserved among the 109 isolates. Only one of the ten unique sequence types, or allelic profiles, identified among the isolates was recovered from both turkeys and broiler chickens suggesting some host species preference. Phylogenetic analyses identified two unique clusters, or clonal complexes, among these poultry isolates which may have important

  7. Screening of the Enterocin-Encoding Genes and Antimicrobial Activity in Enterococcus Species.

    PubMed

    Ogaki, Mayara Baptistucci; Rocha, Katia Real; Terra, MÁrcia Regina; Furlaneto, MÁrcia Cristina; Maia, Luciana Furlaneto

    2016-06-28

    In the current study, a total of 135 enterococci strains from different sources were screened for the presence of the enterocin-encoding genes entA, entP, entB, entL50A, and entL50B. The enterocin genes were present at different frequencies, with entA occurring the most frequently, followed by entP and entB; entL50A and L50B were not detected. The occurrence of single enterocin genes was higher than the occurrence of multiple enterocin gene combinations. The 80 isolates that harbor at least one enterocin-encoding gene (denoted "Gene(+) strains") were screened for antimicrobial activity. A total of 82.5% of the Gene(+) strains inhibited at least one of the indicator strains, and the isolates harboring multiple enterocin-encoding genes inhibited a larger number of indicator strains than isolates harboring a single gene. The indicator strains that exhibited growth inhibition included Listeria innocua strain CLIP 12612 (ATCC BAA-680), Listeria monocytogenes strain CDC 4555, Enterococcus faecalis ATCC 29212, Staphylococcus aureus ATCC 25923, S. aureus ATCC 29213, S. aureus ATCC 6538, Salmonella enteritidis ATCC 13076, Salmonella typhimurium strain UK-1 (ATCC 68169), and Escherichia coli BAC 49LT ETEC. Inhibition due to either bacteriophage lysis or cytolysin activity was excluded. The growth inhibition of antilisterial Gene+ strains was further tested under different culture conditions. Among the culture media formulations, the MRS agar medium supplemented with 2% (w/v) yeast extract was the best solidified medium for enterocin production. Our findings extend the current knowledge of enterocin-producing enterococci, which may have potential applications as biopreservatives in the food industry due to their capability of controlling food spoilage pathogens. PMID:26907753

  8. Streptolysin S Promotes Programmed Cell Death and Enhances Inflammatory Signaling in Epithelial Keratinocytes during Group A Streptococcus Infection

    PubMed Central

    Flaherty, Rebecca A.; Puricelli, Jessica M.; Higashi, Dustin L.; Park, Claudia J.

    2015-01-01

    Streptococcus pyogenes, or group A Streptococcus (GAS), is a pathogen that causes a multitude of human diseases from pharyngitis to severe infections such as toxic shock syndrome and necrotizing fasciitis. One of the primary virulence factors produced by GAS is the peptide toxin streptolysin S (SLS). In addition to its well-recognized role as a cytolysin, recent evidence has indicated that SLS may influence host cell signaling pathways at sublytic concentrations during infection. We employed an antibody array-based approach to comprehensively identify global host cell changes in human epithelial keratinocytes in response to the SLS toxin. We identified key SLS-dependent host responses, including the initiation of specific programmed cell death and inflammatory cascades with concomitant downregulation of Akt-mediated cytoprotection. Significant signaling responses identified by our array analysis were confirmed using biochemical and protein identification methods. To further demonstrate that the observed SLS-dependent host signaling changes were mediated primarily by the secreted toxin, we designed a Transwell infection system in which direct bacterial attachment to host cells was prevented, while secreted factors were allowed access to host cells. The results using this approach were consistent with our direct infection studies and reveal that SLS is a bacterial toxin that does not require bacterial attachment to host cells for activity. In light of these findings, we propose that the production of SLS by GAS during skin infection promotes invasive outcomes by triggering programmed cell death and inflammatory cascades in host cells to breach the keratinocyte barrier for dissemination into deeper tissues. PMID:26238711

  9. Targeted deletion of the ara operon of Salmonella typhimurium enhances L-arabinose accumulation and drives PBAD-promoted expression of anti-cancer toxins and imaging agents.

    PubMed

    Hong, Hyun; Lim, Daejin; Kim, Geun-Joong; Park, Seung-Hwan; Sik Kim, Hyeon; Hong, Yeongjin; Choy, Hyon E; Min, Jung-Joon

    2014-01-01

    Tumor-specific expression of antitumor drugs can be achieved using attenuated Salmonella typhimurium harboring the PBAD promoter, which is induced by L-arabinose. However, L-arabinose does not accumulate because it is metabolized to D-xylulose-5-P by enzymes encoded by the ara operon in Salmonellae. To address this problem, we developed an engineered strain of S. typhimurium in which the ara operon is deleted. Linear DNA transformation was performed using λ red recombinase to exchange the ara operon with linear DNA carrying an antibiotic-resistance gene with homology to regions adjacent to the ara operon. The ara operon-deleted strain and its parental strain were transformed with a plasmid encoding Renilla luciferase variant 8 (RLuc8) or cytolysin A (clyA) under the control of the PBAD promoter. Luciferase assays demonstrated that RLuc8 expression was 49-fold higher in the ara operon-deleted S. typhimurium than in the parental strain after the addition of L-arabinose. In vivo bioluminescence imaging showed that the tumor tissue targeted by the ara operon-deleted Salmonella had a stronger imaging signal (~30-fold) than that targeted by the parental strain. Mice with murine colon cancer (CT26) that had been injected with the ara operon-deleted S. typhimurium expressing clyA showed significant tumor suppression. The present report demonstrates that deletion of the ara operon of S. typhimurium enhances L-arabinose accumulation and thereby drives PBAD-promoted expression of cytotoxic agents and imaging agents. This is a promising approach for tumor therapy and imaging.

  10. Five birds, one stone: Neutralization of α-hemolysin and 4 bi-component leukocidins of Staphylococcus aureus with a single human monoclonal antibody

    PubMed Central

    Rouha, Harald; Badarau, Adriana; Visram, Zehra C; Battles, Michael B; Prinz, Bianka; Magyarics, Zoltán; Nagy, Gábor; Mirkina, Irina; Stulik, Lukas; Zerbs, Manuel; Jägerhofer, Michaela; Maierhofer, Barbara; Teubenbacher, Astrid; Dolezilkova, Ivana; Gross, Karin; Banerjee, Srijib; Zauner, Gerhild; Malafa, Stefan; Zmajkovic, Jakub; Maier, Sabine; Mabry, Robert; Krauland, Eric; Wittrup, K Dane; Gerngross, Tillman U; Nagy, Eszter

    2015-01-01

    Staphylococcus aureus is a major human pathogen associated with high mortality. The emergence of antibiotic resistance and the inability of antibiotics to counteract bacterial cytotoxins involved in the pathogenesis of S. aureus call for novel therapeutic approaches, such as passive immunization with monoclonal antibodies (mAbs). The complexity of staphylococcal pathogenesis and past failures with single mAb products represent considerable barriers for antibody-based therapeutics. Over the past few years, efforts have focused on neutralizing α-hemolysin. Recent findings suggest that the concerted actions of several cytotoxins, including the bi-component leukocidins play important roles in staphylococcal pathogenesis. Therefore, we aimed to isolate mAbs that bind to multiple cytolysins by employing high diversity human IgG1 libraries presented on the surface of yeast cells. Here we describe cross-reactive antibodies with picomolar affinity for α-hemolysin and 4 different bi-component leukocidins that share only ∼26% overall amino acid sequence identity. The molecular basis of cross-reactivity is the recognition of a conformational epitope shared by α-hemolysin and F-components of gamma-hemolysin (HlgAB and HlgCB), LukED and LukSF (Panton-Valentine Leukocidin). The amino acids predicted to form the epitope are conserved and known to be important for cytotoxic activity. We found that a single cross-reactive antibody prevented lysis of human phagocytes, epithelial and red blood cells induced by α-hemolysin and leukocidins in vitro, and therefore had superior effectiveness compared to α-hemolysin specific antibodies to protect from the combined cytolytic effect of secreted S. aureus toxins. Such mAb afforded high levels of protection in murine models of pneumonia and sepsis. PMID:25523282

  11. Sea Anemone (Cnidaria, Anthozoa, Actiniaria) Toxins: An Overview

    PubMed Central

    Frazão, Bárbara; Vasconcelos, Vitor; Antunes, Agostinho

    2012-01-01

    The Cnidaria phylum includes organisms that are among the most venomous animals. The Anthozoa class includes sea anemones, hard corals, soft corals and sea pens. The composition of cnidarian venoms is not known in detail, but they appear to contain a variety of compounds. Currently around 250 of those compounds have been identified (peptides, proteins, enzymes and proteinase inhibitors) and non-proteinaceous substances (purines, quaternary ammonium compounds, biogenic amines and betaines), but very few genes encoding toxins were described and only a few related protein three-dimensional structures are available. Toxins are used for prey acquisition, but also to deter potential predators (with neurotoxicity and cardiotoxicity effects) and even to fight territorial disputes. Cnidaria toxins have been identified on the nematocysts located on the tentacles, acrorhagi and acontia, and in the mucous coat that covers the animal body. Sea anemone toxins comprise mainly proteins and peptides that are cytolytic or neurotoxic with its potency varying with the structure and site of action and are efficient in targeting different animals, such as insects, crustaceans and vertebrates. Sea anemones toxins include voltage-gated Na+ and K+ channels toxins, acid-sensing ion channel toxins, Cytolysins, toxins with Kunitz-type protease inhibitors activity and toxins with Phospholipase A2 activity. In this review we assessed the phylogentic relationships of sea anemone toxins, characterized such toxins, the genes encoding them and the toxins three-dimensional structures, further providing a state-of-the-art description of the procedures involved in the isolation and purification of bioactive toxins. PMID:23015776

  12. Lactobacillus pentosus B231 Isolated from a Portuguese PDO Cheese: Production and Partial Characterization of Its Bacteriocin.

    PubMed

    Guerreiro, Joana; Monteiro, Vitor; Ramos, Carla; Franco, Bernadette Dora Gombossy de Melo; Martinez, Rafael Chacon Ruiz; Todorov, Svetoslav Dimitrov; Fernandes, Paulo

    2014-06-01

    Bacteriocin B231 produced by Lactobacillus pentosus, isolated from an artisanal raw cow's milk protected designation of origin Portuguese cheese, is a small protein with an apparent relative mass of about 5 kDa and active against a large number of Listeria monocytogenes wild-type strains, Listeria ivanovii and Listeria innocua. Bacteriocin B231 production is highly dependent on the type of the culture media used for growth of Lact. pentosus B231. Replacement of glucose with maltose yielded the highest bacteriocin production from eight different carbon sources. Similar results were recorded in the presence of combination of glucose and maltose or galactose. Production of bacteriocin B231 reached maximal levels of 800 AU/ml during the stationary phase of growth of Lact. pentosus B231 in MRS broth at 30 °C. Bacteriocin B231 (in cell-free supernatant) was sensitive to treatment with trypsin and proteinase K, but not affected by the thermal treatment in range of 55-121 °C, or freezing (-20 °C). Bacteriocin production and inhibitory spectrum were evaluated. Gene encoding plantaricin S has been detected in the genomic DNA. Virulence potential and safety of Lact. pentosus B231 were assessed by PCR targeted the genes gelE, hyl, asa1, esp, cylA, efaA, ace, vanA, vanB, hdc1, hdc2, tdc and odc. The Lact. pentosus B231 strains harbored plantaricin S gene, while the occurrence of virulence, antibiotic resistance and biogenic amine genes was limited to cytolysin, hyaluronidase, aggregation substance, adhesion of collagen protein, gelatinase, tyrosine decarboxylase and vancomycin B genes.

  13. Functional characterization of sticholysin I and W111C mutant reveals the sequence of the actinoporin's pore assembly.

    PubMed

    Antonini, Valeria; Pérez-Barzaga, Victor; Bampi, Silvia; Pentón, David; Martínez, Diana; Dalla Serra, Mauro; Tejuca, Mayra

    2014-01-01

    The use of pore-forming toxins in the construction of immunotoxins against tumour cells is an alternative for cancer therapy. In this protein family one of the most potent toxins are the actinoporins, cytolysins from sea anemones. We work on the construction of tumour proteinase-activated immunotoxins using sticholysin I (StI), an actinoporin isolated from the sea anemone Stichodactyla helianthus. To accomplish this objective, recombinant StI (StIr) with a mutation in the membrane binding region has been employed. In this work, it was evaluated the impact of mutating tryptophan 111 to cysteine on the toxin pore forming capability. StI W111C is still able to permeabilize erythrocytes and liposomes, but at ten-fold higher concentration than StI. This is due to its lower affinity for the membrane, which corroborates the importance of residue 111 for the binding of actinoporins to the lipid bilayer. In agreement, other functional characteristics not directly associated to the binding, are essentially the same for both variants, that is, pores have oligomeric structures with similar radii, conductance, cation-selectivity, and instantaneous current-voltage behavior. In addition, this work provides experimental evidence sustaining the toroidal protein-lipid actinoporins lytic structures, since the toxins provoke the trans-bilayer movement (flip-flop) of a pyrene-labeled analogue of phosphatidylcholine in liposomes, indicating the existence of continuity between the outer and the inner membrane leaflet. Finally, our planar lipid membranes results have also contributed to a better understanding of the actinoporin's pore assembly mechanism. After the toxin binding and the N-terminal insertion in the lipid membrane, the pore assembly occurs by passing through different transient sub-conductance states. These states, usually 3 or 4, are due to the successive incorporation of N-terminal α-helices and lipid heads to the growing pores until a stable toroidal oligomeric structure

  14. Human hyperimmune globulin protects against the cytotoxic action of staphylococcal alpha-toxin in vitro and in vivo.

    PubMed Central

    Bhakdi, S; Mannhardt, U; Muhly, M; Hugo, F; Ronneberger, H; Hungerer, K D

    1989-01-01

    Alpha-toxin, the major cytolysin of Staphylococcus aureus, preferentially attacks human platelets and cultured monocytes, thereby promoting coagulation and the release of interleukin-1 and tumor necrosis factor. Titers of naturally occurring antibodies in human blood are not high enough to substantially inhibit these pathological reactions. In the present study, F(ab')2 fragment preparations from hyperimmune globulin obtained from immunized volunteers were tested for their capacity to inhibit the cytotoxic action of alpha-toxin in vitro and in vivo. These antibody preparations exhibited neutralizing anti-alpha-toxin titers of 80 to 120 IU/ml, whereas titers in commercial immunoglobulin preparations were 1 to 4 IU/ml. In vitro, the presence of 2 to 4 mg of hyperimmune globulin per ml protected human platelets against the action of 1 to 2 micrograms of alpha-toxin per ml. Similarly, these antibodies fully protected human monocytes against the ATP-depleting and cytokine-liberating effects of 0.1 to 1 microgram of alpha-toxin per ml. Intravenous application of 0.5 mg (85 to 120 micrograms/kg of body weight) of alpha-toxin in cynomolgus monkeys elicited acute pathophysiological reactions which were heralded by a selective drop in blood platelet counts. Toxin doses of 1 to 2 mg (170 to 425 micrograms/kg) had a rapid lethal effect, the animals presenting with signs of cardiovascular collapse and pulmonary edema. Prior intravenous application of 4 ml of hyperimmune globulins per kg inhibited the systemic toxic and lethal effects of 1 mg (200 micrograms/kg) of alpha-toxin. In contrast, normal human immunoglobulins exhibited no substantial protective efficacy in vitro and only marginal effects in vivo. It is concluded that high-titered anti-alpha-toxin antibodies effectively protect against the cytotoxic actions of alpha-toxin. PMID:2777380

  15. Membrane pore formation by human complement: functional importance of the transmembrane β-hairpin (TMH) segments of C8α and C9.

    PubMed

    Weiland, Mitch H; Qian, Yu; Sodetz, James M

    2014-02-01

    Human C8 and C9 have a key role in forming the pore-like "membrane attack complex" (MAC) of complement on bacterial cells. A possible mechanism for membrane insertion of these proteins was suggested when studies revealed a structural similarity between the MACPF domains of the C8α and C8β subunits and the pore-forming bacterial cholesterol-dependent cytolysins (CDCs). This similarity includes a pair of α-helical bundles that in the CDCs refold during pore formation to produce two transmembrane β-hairpins (TMH1 and TMH2). C9 is the major pore-forming component of the MAC and is also likely to contain two TMH segments because of its homology to C8α and C8β. To determine their potential for membrane insertion, the TMH sequences in C8α and those predicted to be in C9 were substituted for the TMH sequences in perfringolysin O (PFO), a well-characterized CDC. Only chimeric proteins containing TMH2 from C8α (PFO/αT2) or C9 (PFO/C9T2) could be expressed in soluble, active form. The PFO/αT2 and PFO/C9T2 chimeras retained significant hemolytic activity, formed pore-like structures on membranes, and could combine with PFO to form hemolytically active mixed complexes that were functionally similar to PFO alone. These results provide experimental evidence in support of the hypothesis that TMH segments in C8α and those predicted to be in C9 have a direct role in MAC membrane penetration and pore formation.

  16. Five birds, one stone: neutralization of α-hemolysin and 4 bi-component leukocidins of Staphylococcus aureus with a single human monoclonal antibody.

    PubMed

    Rouha, Harald; Badarau, Adriana; Visram, Zehra C; Battles, Michael B; Prinz, Bianka; Magyarics, Zoltán; Nagy, Gábor; Mirkina, Irina; Stulik, Lukas; Zerbs, Manuel; Jägerhofer, Michaela; Maierhofer, Barbara; Teubenbacher, Astrid; Dolezilkova, Ivana; Gross, Karin; Banerjee, Srijib; Zauner, Gerhild; Malafa, Stefan; Zmajkovic, Jakub; Maier, Sabine; Mabry, Robert; Krauland, Eric; Wittrup, K Dane; Gerngross, Tillman U; Nagy, Eszter

    2015-01-01

    Staphylococcus aureus is a major human pathogen associated with high mortality. The emergence of antibiotic resistance and the inability of antibiotics to counteract bacterial cytotoxins involved in the pathogenesis of S. aureus call for novel therapeutic approaches, such as passive immunization with monoclonal antibodies (mAbs). The complexity of staphylococcal pathogenesis and past failures with single mAb products represent considerable barriers for antibody-based therapeutics. Over the past few years, efforts have focused on neutralizing α-hemolysin. Recent findings suggest that the concerted actions of several cytotoxins, including the bi-component leukocidins play important roles in staphylococcal pathogenesis. Therefore, we aimed to isolate mAbs that bind to multiple cytolysins by employing high diversity human IgG1 libraries presented on the surface of yeast cells. Here we describe cross-reactive antibodies with picomolar affinity for α-hemolysin and 4 different bi-component leukocidins that share only ∼26% overall amino acid sequence identity. The molecular basis of cross-reactivity is the recognition of a conformational epitope shared by α-hemolysin and F-components of gamma-hemolysin (HlgAB and HlgCB), LukED and LukSF (Panton-Valentine Leukocidin). The amino acids predicted to form the epitope are conserved and known to be important for cytotoxic activity. We found that a single cross-reactive antibody prevented lysis of human phagocytes, epithelial and red blood cells induced by α-hemolysin and leukocidins in vitro, and therefore had superior effectiveness compared to α-hemolysin specific antibodies to protect from the combined cytolytic effect of secreted S. aureus toxins. Such mAb afforded high levels of protection in murine models of pneumonia and sepsis. PMID:25523282

  17. Smooth and Rough Biotypes of Arcanobacterium haemolyticum Can Be Genetically Distinguished at the Arcanolysin Locus

    PubMed Central

    Ruther, Haley S.; Phillips, Kalyn; Ross, Dolores; Crawford, Alyssa; Weidner, M. Payton; Sammra, Osama; Lämmler, Christoph; McGee, David J.

    2015-01-01

    Arcanobacterium haemolyticum is a Gram-positive, β-hemolytic emerging human pathogen that is classified into smooth or rough biotypes. This bacterial species is also a rare pathogen of animals. Smooth biotypes possess smooth colony edges, are moderate to strong in β-hemolysis, and predominately cause wound infections. In contrast, rough biotypes possess rough and irregular colony edges, have weak to no β-hemolytic activity, and predominately cause pharyngitis. Using horse erythrocytes we confirmed that smooth isolates are generally more hemolytic than rough isolates. A hemolysin from A. haemolyticum, arcanolysin (aln/ALN), was recently discovered and is a member of the cholesterol-dependent cytolysin (CDC) family. PCR amplification of aln from all 36 smooth A. haemolyticum isolates yielded the expected 2.0 kb product. While 21 rough isolates yielded the 2.0 kb product, 16 isolates had a 3.2 kb product. The extra 1.2 kb segment was 99% identical to IS911 (insertion sequence) from Corynebacterium diphtheriae. PCR amplification and sequence analysis of the upstream region of aln revealed ~40 nucleotide polymorphisms among 73 clinical isolates from Finland, Denmark, Germany and United States (Nebraska). Remarkably, multi-sequence alignments of the aln upstream region demonstrated that ~90% of the isolates phylogenetically clustered as either smooths or roughs. Differential restriction enzyme analysis of the aln upstream region also demonstrated that the aln upstream region of most (~75%) smooth isolates was cleaved with ClaI while this region in most (~86%) rough isolates was cleaved with XcmI. We conclude that the aln upstream region can be used to genetically distinguish between smooth and rough biotypes of this important emerging pathogen. PMID:26382754

  18. Colostrum of healthy Slovenian mothers: microbiota composition and bacteriocin gene prevalence.

    PubMed

    Obermajer, Tanja; Lipoglavšek, Luka; Tompa, Gorazd; Treven, Primož; Lorbeg, Petra Mohar; Matijašić, Bojana Bogovič; Rogelj, Irena

    2014-01-01

    Microbial communities inhabiting the breast milk microenvironment are essential in supporting mammary gland health in lactating women and in providing gut-colonizing bacterial 'inoculum' for their infants' gastro-intestinal development. Bacterial DNA was extracted from colostrum samples of 45 healthy Slovenian mothers. Characteristics of the communities in the samples were assessed by polymerase chain reaction (PCR) coupled with denaturing gradient gel electrophoresis (DGGE) and by quantitative real-time PCR (qPCR). PCR screening for the prevalence of bacteriocin genes was performed on DNA of culturable and total colostrum bacteria. DGGE profiling revealed the presence of Staphylococcus and Gemella in most of the samples and exposed 4 clusters based on the abundance of 3 bands: Staphylococcus epidermidis/Gemella, Streptococcus oralis/pneumonia and Streptococcus salivarius. Bacilli represented the largest proportion of the communities. High prevalence in samples at relatively low quantities was confirmed by qPCR for enterobacteria (100%), Clostridia (95.6%), Bacteroides-Prevotella group (62.2%) and bifidobacteria (53.3%). Bacterial quantities (genome equivalents ml-1) varied greatly among the samples; Staphylococcus epidermidis and staphylococci varied in the range of 4 logs, streptococci and all bacteria varied in the range of 2 logs, and other researched groups varied in the range of 1 log. The quantity of most bacterial groups was correlated with the amount of all bacteria. The majority of the genus Staphylococcus was represented by the species Staphylococcus epidermidis (on average 61%), and their abundances were linearly correlated. Determinants of salivaricin A, salivaricin B, streptin and cytolysin were found in single samples. This work provides knowledge on the colostrum microbial community composition of healthy lactating Slovenian mothers and reports bacteriocin gene prevalence. PMID:25919457

  19. Listeriolysin O-dependent bacterial entry into the cytoplasm is required for calpain activation and interleukin-1 alpha secretion in macrophages infected with Listeria monocytogenes.

    PubMed

    Dewamitta, Sita R; Nomura, Takamasa; Kawamura, Ikuo; Hara, Hideki; Tsuchiya, Kohsuke; Kurenuma, Takeshi; Shen, Yanna; Daim, Sylvia; Yamamoto, Takeshi; Qu, Huixin; Sakai, Shunsuke; Xu, Yanting; Mitsuyama, Masao

    2010-05-01

    Listeriolysin O (LLO), an hly-encoded cytolysin of Listeria monocytogenes, plays an essential role in the entry of L. monocytogenes into the host cell cytoplasm. L. monocytogenes-infected macrophages produce various proinflammatory cytokines, including interleukin-1 alpha (IL-1 alpha), that contribute to the host immune response. In this study, we have examined IL-1 alpha production in macrophages infected with wild-type L. monocytogenes or a nonescaping mutant strain deficient for LLO (Delta hly). Expression of IL-1 alpha mRNA and accumulation of pro-IL-1 alpha in the cytoplasm were induced by both strains. In contrast, the secretion of the mature form of IL-1 alpha from infected macrophages was observed in infection with wild-type L. monocytogenes but not with the Delta hly mutant. A recovery of the ability to induce IL-1 alpha secretion was shown in a mutant strain complemented with the hly gene. The Toll-like receptor (TLR)/MyD88 signaling pathway was exclusively required for the expression of pro-IL-1 alpha, independently of LLO-mediated cytoplasmic entry of L. monocytogenes. The LLO-dependent secretion of mature IL-1 alpha was abolished by addition of calcium chelators, and only LLO-producing L. monocytogenes strains were able to induce elevation of the intracellular calcium level in infected macrophages. A calcium-dependent protease, calpain, was implicated in the maturation and secretion of IL-1 alpha induced by LLO-producing L. monocytogenes strains based on the effect of calpain inhibitor. Functional activation of calpain was detected in macrophages infected with LLO-producing L. monocytogenes strains but not with a mutant strain lacking LLO. These results clearly indicated that LLO-mediated cytoplasmic entry of bacteria could induce the activation of intracellular calcium signaling, which is essential for maturation and secretion of IL-1 alpha in macrophages during L. monocytogenes infection through activation of a calcium-dependent calpain protease. In

  20. Crystal Structure of the MACPF Domain of Human Complement Protein C8[alpha] in Complex with the C8[gamma] Subunit

    SciTech Connect

    Slade, Daniel J.; Lovelace, Leslie L.; Chruszcz, Maksymilian; Minor, Wladek; Lebioda, Lukasz; Sodetz, James M.

    2010-03-04

    Human C8 is one of five complement components (C5b, C6, C7, C8, and C9) that assemble on bacterial membranes to form a porelike structure referred to as the 'membrane attack complex' (MAC). C8 contains three genetically distinct subunits (C8{alpha}, C8{beta}, C8{gamma}) arranged as a disulfide-linked C8{alpha}-{gamma} dimer that is noncovalently associated with C8{beta}. C6, C7 C8{alpha}, C8{beta}, and C9 are homologous. All contain N- and C-terminal modules and an intervening 40-kDa segment referred to as the membrane attack complex/perforin (MACPF) domain. The C8{gamma} subunit is unrelated and belongs to the lipocalin family of proteins that display a {beta}-barrel fold and generally bind small, hydrophobic ligands. Several hundred proteins with MACPF domains have been identified based on sequence similarity; however, the structure and function of most are unknown. Crystal structures of the secreted bacterial protein Plu-MACPF and the human C8{alpha} MACPF domain were recently reported and both display a fold similar to those of the bacterial pore-forming cholesterol-dependent cytolysins (CDCs). In the present study, we determined the crystal structure of the human C8{alpha} MACPF domain disulfide-linked to C8{gamma} ({alpha}MACPF-{gamma}) at 2.15 {angstrom} resolution. The {alpha}MACPF portion has the predicted CDC-like fold and shows two regions of interaction with C8{gamma}. One is in a previously characterized 19-residue insertion (indel) in C8{alpha} and fills the entrance to the putative C8{gamma} ligand-binding site. The second is a hydrophobic pocket that makes contact with residues on the side of the C8{gamma} {beta}-barrel. The latter interaction induces conformational changes in {alpha}MACPF that are likely important for C8 function. Also observed is structural conservation of the MACPF signature motif Y/W-G-T/S-H-F/Y-X{sub 6}-G-G in {alpha}MACPF and Plu-MACPF, and conservation of several key glycine residues known to be important for refolding and

  1. The engineered Salmonella typhimurium inhibits tumorigenesis in advanced glioma

    PubMed Central

    Chen, Jian-qiang; Zhan, Yue-fu; Wang, Wei; Jiang, Sheng-nan; Li, Xiang-ying

    2015-01-01

    Objective To explore the antitumor role of the attenuated Salmonella typhimurium ΔppGpp with inducible cytolysin A (ClyA) in advanced stage of glioma. Materials and methods The C6 rat glioma cells were orthotopically implanted by surgery into the caudate nucleus of rat brains. The rats were then randomly divided into the treatment group (SL + ClyA) (n=12), negative control group (SL) (n=12), and control group (phosphate-buffered saline [PBS]) (n=12). In the treatment group, the attenuated S. typhimurium were transformed with the plasmid-encoded antitumor gene ClyA. The expression of ClyA was controlled by the TetR-regulated promoter in response to extracellular doxycycline. The plasmid also contained an imaging gene lux to allow illumination of the tumor infected by the bacteria. The rat glioma C6 cells were implanted into the caudate nucleus of all rats. The engineered S. typhimurium and respective controls were injected intravenously into the rats 21 days after initial tumor implantation. The pathological analysis of the glioma tumor was performed at 21 days and 28 days (7 days after doxycycline treatment) postimplantation. All rats underwent MRI (magnetic resonance imaging) and bioluminescence study at 21 days and 28 days postimplantation to detect tumor volume. The differences between the three groups in tumor volume and survival time were analyzed. Results Advanced stage glioma was detected at 21 days postimplantation. Bioluminescence showed that the engineered S. typhimurium accumulated in glioma tumors and disappeared in the normal reticuloendothelial tissues 3 days after intravenous injection. MRI showed that the tumor volume in the S. typhimurium with ClyA group were significantly reduced compared to the bacteria alone and no bacteria groups 7 days post-doxycycline treatment (P<0.05), while the necrotic tumor volume in the S. typhimurium with ClyA group and S. typhimurium alone group increased significantly compared to the control group (P<0.01). In

  2. eIF2α Confers Cellular Tolerance to S. aureus α-Toxin

    PubMed Central

    von Hoven, Gisela; Neukirch, Claudia; Meyenburg, Martina; Füser, Sabine; Petrivna, Maria Bidna; Rivas, Amable J.; Ryazanov, Alexey; Kaufman, Randal J.; Aroian, Raffi V.; Husmann, Matthias

    2015-01-01

    We report on the role of conserved stress–response pathways for cellular tolerance to a pore forming toxin. First, we observed that small molecular weight inhibitors including of eIF2α-phosphatase, jun-N-terminal kinase (JNK), and PI3-kinase sensitized normal mouse embryonal fibroblasts (MEFs) to the small pore forming S. aureus α-toxin. Sensitization depended on expression of mADAM10, the murine ortholog of a proposed high-affinity receptor for α-toxin in human cells. Similarly, eIF2αS51A/S51A MEFs, which harbor an Ala knock-in mutation at the regulated Ser51 phosphorylation site of eukaryotic translation initiation factor 2α, were hyper-sensitive to α-toxin. Inhibition of translation with cycloheximide did not mimic the tolerogenic effect of eIF2α-phosphorylation. Notably, eIF2α-dependent tolerance of MEFs was toxin-selective, as wild-type MEFs and eIF2αS51A/S51A MEFs exhibited virtually equal sensitivity to Vibrio cholerae cytolysin. Binding of S. aureus α-toxin to eIF2αS51A/S51A MEFs and toxicity in these cells were enhanced as compared to wild-type cells. This led to the unexpected finding that the mutant cells carried more ADAM10. Because basal phosphorylation of eIF2α in MEFs required amino acid deprivation-activated eIF2α-kinase 4/GCN2, the data reveal that basal activity of this kinase mediates tolerance of MEFs to α-toxin. Further, they suggest that modulation of ADAM10 is involved. During infection, bacterial growth may cause nutrient shortage in tissues, which might activate this response. Tolerance to α-toxin was robust in macrophages and did not depend on GCN2. However, JNKs appeared to play a role, suggesting differential cell type and toxin selectivity of tolerogenic stress responses. Understanding their function or failure will be important to comprehend anti-bacterial immune responses. PMID:26284068

  3. Super-resolution Stimulated Emission Depletion-Fluorescence Correlation Spectroscopy Reveals Nanoscale Membrane Reorganization Induced by Pore-Forming Proteins.

    PubMed

    Sarangi, Nirod Kumar; P, Ilanila I; Ayappa, K G; Visweswariah, Sandhya S; Basu, Jaydeep Kumar

    2016-09-20

    the affinity for cholesterol in the membrane binding motifs of the LLO subdomains induce cholesterol and lipid reorganization to a greater extent in the distal (upper) leaflet when compared with the proximal (lower) leaflet. The observed length scale-dependent membrane reorganization that occurs due to invasion by LLO could be generalized to other cholesterol-dependent cytolysins and emphasizes the significant advantage of using super-resolution STED nanoscopy to unravel complex lipid-protein interactions in membrane and cellular biophysics. PMID:27564541

  4. Characterization of antimicrobial resistance and virulence genes in Enterococcus spp. isolated from retail meats in Alberta, Canada.

    PubMed

    Aslam, Mueen; Diarra, Moussa S; Checkley, Sylvia; Bohaychuk, Valerie; Masson, Luke

    2012-06-01

    The objective of this study was to characterize antimicrobial resistance (AMR) and virulence genotypes of Enterococcus spp. particularly Enterococcus faecalis isolated from retail meats purchased (2007-2008) in Alberta, Canada. Unconditional statistical associations between AMR pheno- and genotypes and virulence genotypes were determined. A total of 532 enterococci comprising one isolate from each positive sample were analyzed for antimicrobial susceptibility. A customized enterococcal microarray was used for species identification and the detection of AMR and virulence genes. E. faecalis was found in >94% of poultry samples and in about 73% of beef and 86% of pork samples. Enterococcus faecium was not found in turkey meat and its prevalence was 2% in beef and pork and 4% in chicken samples. None of the enterococci isolates were resistant to the clinically important drugs ciprofloxacin, daptomycin, linezolid and vancomycin. Multiresistance (≥3 antimicrobials) was more common in E. faecalis (91%) isolated from chicken and turkey (91%) than those isolated from beef (14%) or pork (45%). Resistance to aminoglycosides was also noted at varying degrees. The most common resistance genes found in E. faecalis were aminoglycosides (aac, aphA3, aadE, sat4, aadA), macrolides (ermB, ermA), tetracyclines (tetM, tetL, tetO), streptogramin (vatE), bacitracin (bcrR) and lincosamide (linB). Virulence genes expressing aggregation substances (agg) and cytolysin (cylA, cylB, cylL, cylM) were found more frequently in poultry E. faecalis and were unconditionally associated with tetM, linB and bcrR resistance genes. Other virulence genes coding for adhesion (ace, efaAfs), gelatinase (gelE) were also found in the majority of E. faecalis. Significant statistical associations were found between resistance and virulence genotypes, suggesting their possible physical link on a common genetic element. This study underscores the importance of E. faecalis as a reservoir of resistance and

  5. [Enterohemorrhagic Escherichia coli and hemolytic-uremic syndrome].

    PubMed

    Allerberger, F; Sölder, B; Caprioli, A; Karch, H

    1997-09-19

    Enterohemorrhagic Escherichia coli (EHEC) are increasingly identified as the cause of diarrhea and hemorrhagic colitis in countries with highly developed livestock. In 5-10% of patients, full-blown hemolytic uremic syndrome (HUS) occurs as a postinfectious life-threatening complication. Up to 1996, 5 out of 39 patients (12.8%) with EHEC O157 infections in Austria developed HUS. Acute complications of HUS such as brain edema may also lead to death; one fatal outcome has been observed so far in Austrian patients. Aside from the cytotoxic Shiga toxins, other different pathogenic factors are often found in clinical EHEC isolates. These include a cytolysin termed EHEC-hemolysin and a low molecular heat-stabile enterotoxin. Furthermore, most EHEC strains express an important surface protein, intimin, which is important for adherence to intestinal epithelial cells. EHEC are heterogeneous in their antigenic structure (O-, H-antigens). In Austria O157:H7 and O157:H- are the dominating serogroups; in 1997 the first Austrian case of HUS due to EHEC O26:H11 was documented. Because there are no known reliable phenotypical markers for EHEC, diagnostic strategies should focus on the demonstration of Shiga toxins or Shiga toxin genes. For epidemiological purposes it is also important to attempt to isolate the causative agent. Cows and other ruminants are reservoirs for EHEC. In the Tyrol 3% of unpasteurised milk samples, up to 10% of minced beef samples, and 6% of calves yield EHEC O157. Aside from transmission via contaminated food, direct transmission from person to person also plays a major role in the chain of EHEC infection. In contrast to Italy and Bavaria, Austria has not experienced a major outbreak due to this organism so far. A nationwide surveillance system of HUS has shown an incidence of 0.37 HUS cases per 100,000 residents in the age group 0-14 years for 1995 (Italy: 0.2 cases per 100,000; Bavaria: approx. 1.5 cases per 100,000). PMID:9381722

  6. Assessment of safety of enterococci isolated throughout traditional Terrincho cheesemaking: virulence factors and antibiotic susceptibility.

    PubMed

    Pimentel, Lígia L; Semedo, Teresa; Tenreiro, Rogério; Crespo, M Teresa B; Pintado, M Manuela E; Malcata, F Xavier

    2007-09-01

    Enterococci account for an important fraction of the adventitious microflora of traditional cheeses manufactured in Mediterranean countries from small ruminants' raw milk and play an important role in the development of suitable organoleptic characteristics of the final product. It has been suggested that animals used for food or animals that supply edible products are a reservoir of antibiotic-resistant enterococci. The main purpose of this research effort was thus to identify, to the species level, a total of 73 enterococci with high tolerance to acidic pH and bile salts (as prevailing environmental conditions in the first portion of the gastrointestinal tract), which were previously isolated from the milk feedstock to the final product of Terrincho cheesemaking, and to determine their profiles of antibiotic susceptibility, coupled with the occurrence of specific virulence factors (especially in those that might eventually be claimed to exhibit suitable probiotic and technological performances). Isolates, identified by both API 20 STREP and PCR methods, were found to belong to the following Enterococcus species: E. casseliflavus, E. durans, E. faecalis, E. faecium, and E. gallinarum. Susceptibility of those isolates was observed to most antibiotics tested, whereas none harbored aminoglycoside resistance genes. PCR screenings for cytolysin genes (cylL(L), cylL(s), cylM, cylB, and cylA), surface adhesin genes (efaA(fs), efaA(fm), and esp), the aggregation protein gene (agg), and the extracellular metalloendopeptidase gene (gelE) were performed. All isolates proved negative for cylL(L), cylM, cylB, and agg genes. Both E. faecalis strains were positive for the cell wall-associated protein Esp and the cell wall adhesin efaA(fs), whereas the cell wall adhesin efaA(fm) was detected in 11 of the 12 E. faecium strains. Only one strain possessed the cylL(s) determinant, and another possessed the cylA gene. Incidence of virulence determinants was thus very low; hence, the