USDA-ARS?s Scientific Manuscript database
We develop a robust understanding of the effects of assimilating remote sensing observations of leaf area index and soil moisture (in the top 5 cm) on DSSAT-CSM CropSim-Ceres wheat yield estimates. Synthetic observing system simulation experiments compare the abilities of the Ensemble Kalman Filter...
Offshore Radiation Observations for Climate Research at the CERES Ocean Validation Experiment
NASA Technical Reports Server (NTRS)
Rutledge, Charles K.; Schuster, Gregory L.; Charlock, Thomas P.; Denn, Frederick M.; Smith, William L., Jr.; Fabbri, Bryan E.; Madigan, James J., Jr.; Knapp, Robert J.
2006-01-01
When radiometers on a satellite are pointed towards the planet with the goal of understanding a phenomenon quantitatively, rather than just creating a pleasing image, the task at hand is often problematic. The signal at the detector can be affected by scattering, absorption, and emission; and these can be due to atmospheric constituents (gases, clouds, and aerosols), the earth's surface, and subsurface features. When targeting surface phenomena, the remote sensing algorithm needs to account for the radiation associated with the atmospheric constituents. Likewise, one needs to correct for the radiation leaving the surface, when atmospheric phenomena are of interest. Rigorous validation of such remote sensing products is a real challenge. In visible and near infrared wavelengths, the jumble of effects on atmospheric radiation are best accomplished over dark surfaces with fairly uniform reflective properties (spatial homogeneity) in the satellite instrument's field of view (FOV). The ocean's surface meets this criteria; land surfaces - which are brighter, more spatially inhomogeneous, and more changeable with time - generally do not. NASA's Clouds and the Earth's Radiant Energy System (CERES) project has used this backdrop to establish a radiation monitoring site in Virginia's coastal Atlantic Ocean. The project, called the CERES Ocean Validation Experiment (COVE), is located on a rigid ocean platform allowing the accurate measurement of radiation parameters that require precise leveling and pointing unavailable from ships or buoys. The COVE site is an optimal location for verifying radiative transfer models and remote sensing algorithms used in climate research; because of the platform's small size, there are no island wake effects; and suites of sensors can be simultaneously trained both on the sky and directly on ocean itself. This paper describes the site, the types of measurements made, multiple years of atmospheric and ocean surface radiation observations, and satellite validation results.
Highly Pristine Organic Matter in a Xenolith Clast in the Zag H Chrondrite
NASA Technical Reports Server (NTRS)
Kebukawa, Y.; Ito, M.; Zolensky, M. E.; Nakato, A.; Suga, H.; Takahashi, Y.; Takeichi, Y.; Mase, K.; Chan, Q.; Fries, M.;
2017-01-01
The Zag meteorite is a halite-bearing H3-6 chondrite [1]. We have been studying a dark Zag clast with abundant organic matter [2,3], which was proposed to be from Ceres [4,5]. Therefore, our systematic research of the Zag clast may provide an important linkage to the recent remote sensing observations obtained by the DAWN mission to Ceres. We prepared a new sub-sample of this clast for coordinated organic analysis by STXM-XANES and NanoSIMS, in order to understand the nature and origin of the organic matter.
NASA Technical Reports Server (NTRS)
Chambers, Lin H.; Young, David F.; Barkstrom, Bruce R.; Wielicki, Bruce A.
1997-01-01
The first Clouds and the Earth's Radiant Energy System (CERES) instrument will be launched on the Tropical Rainfall Measuring Mission (TRMM) spacecraft from a Japanese launch site in November 1997. This instrument is a follow-on to the Earth Radiation Budget Experiment (ERBE) begun in the 1980's. The instrument will measure the radiation budget - incoming and outgoing radiant energy - of the Earth. It will establish a baseline and look for climatic trends. The major feature of interest is clouds, which play a very strong role in regulating our climate. CERES will identify clear and cloudy regions and determine cloud physical and microphysical properties using imager data from a companion instrument. Validation efforts for the remote sensing algorithms will be intensive. As one component of the validation, the S'COOL (Students' Cloud Observations On-Line) project will involve school children from around the globe in making ground truth measurements at the time of a CERES overpass. Their observations will be collected at the NASA Langley Distributed Active Archive Center (DAAC) and made available over the Internet for educational purposes as well as for use by the CERES Science Team in validation efforts. Pilot testing of the S'COOL project began in January 1997 with two local schools in Southeastern Virginia and one remote site in Montana. This experience is helping guide the development of the S'COOL project. National testing is planned for April 1997, international testing for July 1997, and global testing for October 1997. In 1998, when the CERES instrument is operational, a global observer network should be in place providing useful information to the scientists and learning opportunities to the students.
CubeSat Remote Sensing: A Survey of Current Capabilities
NASA Astrophysics Data System (ADS)
Hegel, D.
2014-12-01
Recent years have seen dramatic growth in the availability and capability of very small satellites for atmospheric sensing, and other space-based science, as the simplicity of integration and low cost of these platforms enables projects that would otherwise be prohibitively expensive, or demand excessive expertise/infrastructure to execute. This paper surveys the current state-of-the-art for CubeSat performance, including pointing accuracy, geolocation, available power, and data downlink capacity. Applications for up-coming missions, such as CeREs, MinXSS, and HARP will also be discussed.
The review of dynamic monitoring technology for crop growth
NASA Astrophysics Data System (ADS)
Zhang, Hong-wei; Chen, Huai-liang; Zou, Chun-hui; Yu, Wei-dong
2010-10-01
In this paper, crop growth monitoring methods are described elaborately. The crop growth models, Netherlands-Wageningen model system, the United States-GOSSYM model and CERES models, Australia APSIM model and CCSODS model system in China, are introduced here more focus on the theories of mechanism, applications, etc. The methods and application of remote sensing monitoring methods, which based on leaf area index (LAI) and biomass were proposed by different scholars at home and abroad, are highly stressed in the paper. The monitoring methods of remote sensing coupling with crop growth models are talked out at large, including the method of "forced law" which using remote sensing retrieval state parameters as the crop growth model parameters input, and then to enhance the dynamic simulation accuracy of crop growth model and the method of "assimilation of Law" which by reducing the gap difference between the value of remote sensing retrieval and the simulated values of crop growth model and thus to estimate the initial value or parameter values to increasing the simulation accuracy. At last, the developing trend of monitoring methods are proposed based on the advantages and shortcomings in previous studies, it is assured that the combination of remote sensing with moderate resolution data of FY-3A, MODIS, etc., crop growth model, "3S" system and observation in situ are the main methods in refinement of dynamic monitoring and quantitative assessment techniques for crop growth in future.
Visualization and Quality Control Web Tools for CERES Products
NASA Astrophysics Data System (ADS)
Mitrescu, C.; Doelling, D.; Chu, C.; Mlynczak, P.
2014-12-01
The CERES project continues to provide the scientific community a wide variety of satellite-derived data products. The flagship products TOA broadband shortwave and longwave observed fluxes, computed TOA and Surface fluxes, as well as cloud, aerosol, and other atmospheric parameters. These datasets encompass a wide range of temporal and spatial resolutions, suited to specific applications. We thus offer time resolutions that range from instantaneous to monthly means, with spatial resolutions that range from 20-km footprint to global scales. The 14-year record is mostly used by climate modeling communities that focus on global mean energetics, meridianal heat transport, and climate trend studies. CERES products are also used by the remote sensing community for their climatological studies. In the last years however, our CERES products had been used by an even broader audience, like the green energy, health and environmental research communities, and others. Because of that, the CERES project has implemented a now well-established web-oriented Ordering and Visualization Tool (OVT), which is well into its fifth year of development. In order to help facilitate a comprehensive quality control of CERES products, the OVT Team began introducing a series of specialized functions. These include the 1- and 2-D histogram, anomaly, deseasonalization, temporal and spatial averaging, side-by-side parameter comparison, and other specialized scientific application capabilities. Over time increasingly higher order temporal and spatial resolution products are being made available to the public through the CERES OVT. These high-resolution products require accessing the existing long-term archive - thus the reading of many very large netCDF or HDF files that pose a real challenge to the task of near instantaneous visualization. An overview of the CERES OVT basic functions and QC capabilities as well as future steps in expanding its capabilities will be presented at the meeting.
NASA Astrophysics Data System (ADS)
Chu, C.; Sun-Mack, S.; Chen, Y.; Heckert, E.; Doelling, D. R.
2017-12-01
In Langley NASA, Clouds and the Earth's Radiant Energy System (CERES) and Moderate Resolution Imaging Spectroradiometer (MODIS) are merged with Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and CloudSat Cloud Profiling Radar (CPR). The CERES merged product (C3M) matches up to three CALIPSO footprints with each MODIS pixel along its ground track. It then assigns the nearest CloudSat footprint to each of those MODIS pixels. The cloud properties from MODIS, retrieved using the CERES algorithms, are included in C3M with the matched CALIPSO and CloudSat products along with radiances from 18 MODIS channels. The dataset is used to validate the CERES retrieved MODIS cloud properties and the computed TOA and surface flux difference using MODIS or CALIOP/CloudSAT retrieved clouds. This information is then used to tune the computed fluxes to match the CERES observed TOA flux. A visualization tool will be invaluable to determine the cause of these large cloud and flux differences in order to improve the methodology. This effort is part of larger effort to allow users to order the CERES C3M product sub-setted by time and parameter as well as the previously mentioned visualization capabilities. This presentation will show a new graphical 3D-interface, 3D-CERESVis, that allows users to view both passive remote sensing satellites (MODIS and CERES) and active satellites (CALIPSO and CloudSat), such that the detailed vertical structures of cloud properties from CALIPSO and CloudSat are displayed side by side with horizontally retrieved cloud properties from MODIS and CERES. Similarly, the CERES computed profile fluxes whether using MODIS or CALIPSO and CloudSat clouds can also be compared. 3D-CERESVis is a browser-based visualization tool that makes uses of techniques such as multiple synchronized cursors, COLLADA format data and Cesium.
Global cloud database from VIRS and MODIS for CERES
NASA Astrophysics Data System (ADS)
Minnis, Patrick; Young, David F.; Wielicki, Bruce A.; Sun-Mack, Sunny; Trepte, Qing Z.; Chen, Yan; Heck, Patrick W.; Dong, Xiquan
2003-04-01
The NASA CERES Project has developed a combined radiation and cloud property dataset using the CERES scanners and matched spectral data from high-resolution imagers, the Visible Infrared Scanner (VIRS) on the Tropical Rainfall Measuring Mission (TRMM) satellite and the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua. The diurnal cycle can be well-characterized over most of the globe using the combinations of TRMM, Aqua, and Terra data. The cloud properties are derived from the imagers using state-of-the-art methods and include cloud fraction, height, optical depth, phase, effective particle size, emissivity, and ice or liquid water path. These cloud products are convolved into the matching CERES fields of view to provide simultaneous cloud and radiation data at an unprecedented accuracy. Results are available for at least 3 years of VIRS data and 1 year of Terra MODIS data. The various cloud products are compared with similar quantities from climatological sources and instantaneous active remote sensors. The cloud amounts are very similar to those from surface observer climatologies and are 6-7% less than those from a satellite-based climatology. Optical depths are 2-3 times smaller than those from the satellite climatology, but are within 5% of those from the surface remote sensing. Cloud droplet sizes and liquid water paths are within 10% of the surface results on average for stratus clouds. The VIRS and MODIS retrievals are very consistent with differences that usually can be explained by sampling, calibration, or resolution differences. The results should be extremely valuable for model validation and improvement and for improving our understanding of the relationship between clouds and the radiation budget.
Analytical Web Tool for CERES Products
NASA Astrophysics Data System (ADS)
Mitrescu, C.; Chu, C.; Doelling, D.
2012-12-01
The CERES project provides the community climate quality observed TOA fluxes, consistent cloud properties, and computed profile and surface fluxes. The 11-year long data set proves invaluable for remote sensing and climate modeling communities for annual global mean energy, meridianal heat transport, consistent cloud and fluxes and climate trends studies. Moreover, a broader audience interested in Earth's radiative properties such as green energy, health and environmental companies have showed their interest in CERES derived products. A few years ago, the CERES team start developing a new web-based Ordering Tool tailored for this wide diversity of users. Recognizing the potential that web-2.0 technologies can offer to both Quality Control (QC) and scientific data visualization and manipulation, the CERES team began introducing a series of specialized functions that addresses the above. As such, displaying an attractive, easy to use modern web-based format, the Ordering Tool added the following analytical functions: i) 1-D Histograms to display the distribution of the data field to identify outliers that are useful for QC purposes; ii) an "Anomaly" map that shows the regional differences between the current month and the climatological monthly mean; iii) a 2-D Histogram that can identify either potential problems with the data (i.e. QC function) or provides a global view of trends and/or correlations between various CERES flux, cloud, aerosol, and atmospheric properties. The large volume and diversity of data, together with the on-the-fly execution were the main challenges that had to be tackle with. Depending on the application, the execution was done on either the browser side or the server side with the help of auxiliary files. Additional challenges came from the use of various open source applications, the multitude of CERES products and the seamless transition from previous development. For the future, we plan on expanding the analytical capabilities of the Ordering Tool and add/combine more CERES products to meet the growing data demand.
Self Validation of Radiance Measurements from the CERES (TRMM)Instrument
NASA Technical Reports Server (NTRS)
Paden, Jack; Pandey, Dhirendra K.; Lee, Robert B., III; Priestley, Kory J.
1999-01-01
Eight continuous months of earth-nadir-viewing radiance measurements from the 3-channel Tropical Rainfall Measuring Mission (TRMM,) Clouds and the Earth's Radiant Energy System (CERES) scanning radiometric measurement instrument, have been analyzed. While previous remote sensing satellites, such as the Earth Radiation Budget Experiment (ERBE) covered all subsets of the broadband radiance spectrum (total, longwave and shortwave.) CERES has two subset channels (window and shortwave) which do not give continuous frequency coverage over the total band. Previous experience with ERBE indicated the need for us to model the equivalent daytime longwave radiance using a window channel regression, which will allow us to validate the performance of the instrument using a three-channel inter-comparison. Limiting our consideration to the fixed azimuth plane, cross-track, scanning mode (FAPS), each nadir-viewing measurement was averaged into three subjective categories called daytime, nighttime, and twilight. Daytime was defined as any measurement taken when the solar zenith angle (SZA) was less than 90 ; nighttime was taken to be any measurement where the SZA was greater than 117 ; and twilight was everything else. Our analysis indicates that there are only two distinct categories of nadir-view data; daytime, and non-daytime (i.e., the union of the nighttime and twilight sets); and that the CERES longwave radiance is predictable to an accuracy of 1%, based on the SZA, and window channel measurements.
The CERES S'COOL Project: Development and Operational Phases
NASA Technical Reports Server (NTRS)
Chambers, Lin H.; Young, David F.; Racel, Anne M.
1998-01-01
As part of NASA's Mission to Planet Earth, the first Clouds and the Earth's Radiant Energy System (CERES) instrument will be launched on the Tropical Rainfall Measuring Mission (TRMM) spacecraft from the Tanegashima launch site in Japan in November 1997. The instrument will measure the radiation budget incoming and outgoing radiant energy - of the Earth. The major feature of interest is clouds, which play a very strong role in regulating our climate. CERES will identify clear and cloudy regions and determine cloud physical and microphysical properties using imager data from a companion instrument. Validation efforts for the remote sensing algorithms will be intensive. As one component of the validation, the S'COOL (Students' Cloud Observations On-Line) project will involve school children around the globe in making ground truth measurements at the time of a CERES overpass. They will report cloud type, height, fraction, and opacity, as well as the local surface conditions. Their observations will be collected at the NASA Langley Distributed Active Archive Center (DAAC) and made available over the Internet for educational purposes as well as for use by the CERES Science Team in validation efforts. Pilot testing of the S'COOL project began in January 1997 with two local schools in Southeastern Virginia and one remote site in Montana. National testing in April 1997 involved 8 schools (grades 3 to high school) across the United States. Global testing will be carried out in October 1997. Details of the S'COOL project, which is mainly Internet-based, are being developed in each of these phases according to feedback received from participants. In 1998, when the CERES instrument is operational, a global observer network should be in place providing useful information to the scientists and learning opportunities to the students. Broad participation in the S'COOL project is planned, both to obtain data from a wide range of geographic areas, and to involve as many students as possible in learning about clouds and atmospheric science. This paper reports on the development phase of the S'COOL project, including the reaction of the teachers and students who have been involved. It describes the operational state of the S'COOL network, and identifies opportunities for additional participants.
NASA Astrophysics Data System (ADS)
Kinne, Stefan; Stubenrauch, Claudia; Raschke, Erhard
2010-05-01
Satellite sensed solar and infrared broadband radiation maps at the top of the atmosphere (ToA) usually serve as reference and constrains to global modelling. Complimentary radiation maps at the surface are less certain, as they require accurate knowledge about atmospheric and environmental properties. Despite differences among multi-decadal data-projects of ISCCP, the SRB and the CERES, their diversity is small in comparison to efforts in global modelling. Based on simulations for the IPCC fourth assessment, clear biases on a regional and seasonal basis are identified and illustrate deficiencies in the representation of clouds. These deficiencies are explored in the context of available cloud data from passive and active remote sensing from space.
NASA Technical Reports Server (NTRS)
Casas, Joseph C.; Glaser, John A.; Copenhaver, Kenneth L.; May, George
2009-01-01
In recent years, the use of Plant Incorporated Protectant (PIP) corn by American producers has been increasing dramatically. PIP corn contains genetically inserted traits that produce toxins in the plant that provide narrowly targeted protection against specific insect pests. The plant producing t oxms can offer significant reductions in the application of broad -spectrum pesticides that have ecological and human health consequences. PIP corn as a percentage of total corn acreage planted in the US is expected to continue to increase as these protective traits are "stacked" with other desirable traits by seed companies, and producers are seeing considerable increases in corn yield as a result. The introduction of corn as a bio-fuel source for ethanol has increased production by over 6 million hectares in 2007. The United States Environmental Protection Agency (USEPA), which is responsible for the registration of PIP crops under the Federal Insecticide, Fungicide and Rodenticide Act, views the use of PIP corn as positive. Broad spectrum pesticide use has declined since the PIP traits have been introduced. As the agricultural landscape sees a higher percentage of corn acres using the PIP technology, the risk of the targeted insect pest populations developing resistance to the toxins, thereby rendering the in will increase as well. This result would negate the effectiveness of the PIP corn traits and could reduce production of a US field corn crop valued at $33 billion dollars in 2006 and place US food and now energy security at risk. Concerns over insect pest resistance development to PIP traits have led the USEPA to team with NASA and the Institute for Technology Development (ITD) to develop geo-spatial technologies designed to proactively monitor the corn production landscape for insect pest infestation and possible resistance development. USEPA resistance management simulation models are combined with NASA remote sensi ng products to monitor the corn landscape for resistance development. The two agencies have entered into an agreement which could potentially lead to the development of next generation NASA sensors that will more specifically address the requirements of the USEPA's resistance development strategy and offer opportunities to study the ever changing ecosystem complexities. The USEPA/NASA/ITD team has developed a broad research project entitled CERES (Crop Evaluation Research for Environmental Strategies). CERES is a research effort leading to decision support system tools that are designed to integrate multi-resolution NASA remote sensing data products and USEPA geo -spatial models to monitor the potential for insect pest resistance development from the regional to the landscape and then to the field level.
Remote Sensing of Aerosol and their Radiative Forcing of Climate
NASA Technical Reports Server (NTRS)
Kaufman, Yoram J.; Tanre, Didier; Remer, Lorraine A.
1999-01-01
Remote sensing of aerosol and aerosol radiative forcing of climate is going through a major transformation. The launch in next few years of new satellites designed specifically for remote sensing of aerosol is expected to further revolutionized aerosol measurements: until five years ago satellites were not designed for remote sensing of aerosol. Aerosol optical thickness was derived as a by product, only over the oceans using one AVHRR channel with errors of approx. 50%. However it already revealed a very important first global picture of the distribution and sources of aerosol. In the last 5 years we saw the introduction of polarization and multi-view observations (POLDER and ATSR) for satellite remote sensing of aerosol over land and ocean. Better products are derived from AVHRR using its two channels. The new TOMS aerosol index shows the location and transport of aerosol over land and ocean. Now we anticipate the launch of EOS-Terra with MODIS, MISR and CERES on board for multi-view, multi-spectral remote sensing of aerosol and its radiative forcing. This will allow application of new techniques, e.g. using a wide spectral range (0.55-2.2 microns) to derive precise optical thickness, particle size and mass loading. Aerosol is transparent in the 2.2 microns channel, therefore this channel can be used to detect surface features that in turn are used to derive the aerosol optical thickness in the visible part of the spectrum. New techniques are developed to derive the aerosol single scattering albedo, a measure of absorption of sunlight, and techniques to derive directly the aerosol forcing at the top of the atmosphere. In the last 5 years a global network of sun/sky radiometers was formed, designed to communicate in real time the spectral optical thickness from 50-80 locations every day, every 15 minutes. The sky angular and spectral information is also measured and used to retrieve the aerosol size distribution, refractive index, single scattering albedo and the spectral flux reaching the surface. Effort to introduce remote sensing from lidars will literally additional dimension to aerosol remote sensing. The vertical dimension is a critical link between the global satellite observations and modeling of aerosol transport. Lidars are also critical to study aerosol impact on cloud microphysics and reflectance. Both lidar ground networks and satellite systems are in development. This new capability is expected to put remote sensing in the forefront of aerosol and climate studies. Together with field experiments, chemical analysis and chemical transport models we anticipate, in the next decade, to be able to resolve some of the outstanding questions regarding the role of aerosol in climate, in atmospheric chemistry and its influence on human health and life on this planet.
NASA Technical Reports Server (NTRS)
Nearing, Grey S.; Crow, Wade T.; Thorp, Kelly R.; Moran, Mary S.; Reichle, Rolf H.; Gupta, Hoshin V.
2012-01-01
Observing system simulation experiments were used to investigate ensemble Bayesian state updating data assimilation of observations of leaf area index (LAI) and soil moisture (theta) for the purpose of improving single-season wheat yield estimates with the Decision Support System for Agrotechnology Transfer (DSSAT) CropSim-Ceres model. Assimilation was conducted in an energy-limited environment and a water-limited environment. Modeling uncertainty was prescribed to weather inputs, soil parameters and initial conditions, and cultivar parameters and through perturbations to model state transition equations. The ensemble Kalman filter and the sequential importance resampling filter were tested for the ability to attenuate effects of these types of uncertainty on yield estimates. LAI and theta observations were synthesized according to characteristics of existing remote sensing data, and effects of observation error were tested. Results indicate that the potential for assimilation to improve end-of-season yield estimates is low. Limitations are due to a lack of root zone soil moisture information, error in LAI observations, and a lack of correlation between leaf and grain growth.
Surface spectral emissivity derived from MODIS data
NASA Astrophysics Data System (ADS)
Chen, Yan; Sun-Mack, Sunny; Minnis, Patrick; Smith, William L.; Young, David F.
2003-04-01
Surface emissivity is essential for many remote sensing applications including the retrieval of the surface skin temperature from satellite-based infrared measurements, determining thresholds for cloud detection and for estimating the emission of longwave radiation from the surface, an important component of the energy budget of the surface-atmosphere interface. In this paper, data from the Terra MODIS (MODerate-resolution Imaging Spectroradiometer) taken at 3.7, 8.5, 10.8, 12.0 micron are used to simultaneously derive the skin temperature and the surface emissivities at the same wavelengths. The methodology uses separate measurements of the clear-sky temperatures that are determined by the CERES (Clouds and Earth's Radiant Energy System) scene classification in each channel during the daytime and at night. The relationships between the various channels at night are used during the day when solar reflectance affects the 3.7 micron data. A set of simultaneous equations is then solved to derive the emissivities. Global results are derived from MODIS. Numerical weather analyses are used to provide soundings for correcting the observed radiances for atmospheric absorption. These results are verified and will be available for remote sensing applications.
Clear-Sky Narrowband Albedo Datasets Derived from Modis Data
NASA Astrophysics Data System (ADS)
Chen, Y.; Minnis, P.; Sun-Mack, S.; Arduini, R. F.; Hong, G.
2013-12-01
Satellite remote sensing of clouds requires an accurate estimate of the clear-sky radiances for a given scene to detect clouds and aerosols and to retrieve their microphysical properties. Knowing the spatial and angular variability of clear-sky albedo is essential for predicting the clear-sky radiance at solar wavelengths. The Clouds and the Earth's Radiant Energy System (CERES) Project uses the near-infrared (NIR; 1.24, 1.6 or 2.13 μm) and visible (VIS; 0.63 μm) channels available on the Terra and Aqua Moderate Resolution Imaging Spectroradiometers (MODIS) to help identify clouds and retrieve their properties. Generally, clear-sky albedo for a given surface type is determined for conditions when the vegetation is either thriving or dormant and free of snow. The clear-sky albedos are derived using a radiative transfer parameterization of the impact of the atmosphere, including aerosols, on the observed reflectances. This paper presents the method of generating monthly clear-sky overhead albedo maps for both snow-free and snow-covered surfaces of these channels using one year of MODIS (Moderate Resolution Imaging Spectroradiometer) CERES products. Maps of 1.24 and 1.6 μm are being used as the background to help retrieve cloud properties (e.g., effective particle size, optical depth) in CERES cloud retrievals in both snow-free and snow-covered conditions.
NASA Technical Reports Server (NTRS)
Khaiyer, M. M.; Doelling, D. R.; Palikonda, R.; Mordeen, M. L.; Minnis, P.
2007-01-01
This poster presentation reviews the process used to validate the GOES-10 satellite derived cloud and radiative properties. The ARM Mobile Facility (AMF) deployment at Pt Reyes, CA as part of the Marine Stratus Radiation Aerosol and Drizzle experiment (MASRAD), 14 March - 14 September 2005 provided an excellent chance to validate satellite cloud-property retrievals with the AMF's flexible suite of ground-based remote sensing instruments. For this comparison, NASA LaRC GOES10 satellite retrievals covering this region and period were re-processed using an updated version of the Visible Infrared Solar-Infrared Split-Window Technique (VISST), which uses data taken at 4 wavelengths (0.65, 3.9,11 and 12 m resolution), and computes broadband fluxes using improved CERES (Clouds and Earth's Radiant Energy System)-GOES-10 narrowband-to-broadband flux conversion coefficients. To validate MASRAD GOES-10 satellite-derived cloud property data, VISST-derived cloud amounts, heights, liquid water paths are compared with similar quantities derived from available ARM ground-based instrumentation and with CERES fluxes from Terra.
NASA Astrophysics Data System (ADS)
Chambers, L. H.; Taylor, J.; Ellis, T. D.; McCrea, S.; Rogerson, T. M.; Falcon, P.
2016-12-01
In 1997, NASA's Clouds and the Earth's Radiant Energy System (CERES) team began engaging K-12 schools as ground truth observers of clouds. CERES seeks to understand cloud effects on Earth's energy budget; thus accurate detection and characterization of clouds is key. While satellite remote sensing provides global information about clouds, it is limited in time and resolution. Ground observers, on the other hand, can observe clouds at any time of day (and sometimes night), and can see small and thin clouds that are challenging to detect from space. In 2006, two active sensing satellites, CloudSat and CALIPSO, were launched into the A-Train, which already contained 2 CERES instruments on the Aqua spacecraft. The CloudSat team also engaged K-12 schools to observe clouds, through The GLOBE Program, with a specialized observation protocol customized for the narrow radar swath. While providing valuable data for satellite assessment, these activities also engage participants in accessible, authentic science that gets people outdoors, helps them develop observation skills, and is friendly to all ages. The effort has evolved substantially since 1997, adopting new technology to provide a more compelling experience to citizen observers. Those who report within 15 minutes of the passage of a wide range of satellites (Terra, Aqua, CloudSat, CALIPSO, NPP, as well as a number of geostationary satellites) are sent a satellite image centered on their location and are invited to extend the experience beyond simple observation to include analysis of the two different viewpoints. Over the years these projects have collected large amounts of cloud observations from every continent and ocean basin on Earth. A number of studies have been conducted comparing the ground observations to the satellite results. This presentation will provide an overview of those results and also describe plans for a coordinated, thematic cloud observation and data analysis activity going forward.
NASA Technical Reports Server (NTRS)
Chiriaco, M.; Chepfer, H.; Haeffelin, M.; Minnis, P.; Noel, V.; Platnick, S.; McGill, M.; Baumgardner, D.; Dubuisson, P.; Pelon, J.;
2007-01-01
This study compares cirrus particle effective radius retrieved by a CALIPSO-like method with two similar methods using MODIS, MODI Airborne Simulator (MAS), and GOES imagery. The CALIPSO-like method uses lidar measurements coupled with the split-window technique that uses the infrared spectral information contained at the 8.65-micrometer, 11.15-micrometer and 12.05-micrometer bands to infer the microphysical properties of cirrus clouds. The two other methods, sing passive remote sensing at visible and infrared wavelengths, are the operational MODIS cloud products (referred to by its archival product identifier MOD06 for MODIS Terra) and MODIS retrievals performed by the CERES team at LaRC (Langley Research Center) in support of CERES algorithms; the two algorithms will be referred to as MOD06- and LaRC-method, respectively. The three techniques are compared at two different latitudes: (i) the mid-latitude ice clouds study uses 18 days of observations at the Palaiseau ground-based site in France (SIRTA: Site Instrumental de Recherche par Teledetection Atmospherique) including a ground-based 532 nm lidar and the Moderate Resolution Imaging Spectrometer (MODIS) overpasses on the Terra Platform, (ii) the tropical ice clouds study uses 14 different flight legs of observations collected in Florida, during the intensive field experiment CRYSTAL-FACE (Cirrus Regional Study of Tropical Anvils and cirrus Layers-Florida Area Cirrus Experiment), including the airborne Cloud Physics Lidar (CPL) and the MAS. The comparison of the three methods gives consistent results for the particle effective radius and the optical thickness, but discrepancies in cloud detection and altitudes. The study confirms the value of an active remote-sensing method (CALIPSO-like) for the study of sub-visible ice clouds, in both mid-latitudes and tropics. Nevertheless, this method is not reliable in optically very thick tropical ice clouds.
Clear-sky narrowband albedos derived from VIRS and MODIS
NASA Astrophysics Data System (ADS)
Sun-Mack, Sunny; Minnis, Patrick; Chen, Yan; Arduini, Robert F.
2004-02-01
The Clouds and Earth"s Radiant Energy System (CERES) project is using multispectral imagers, the Visible Infrared Scanner (VIRS) on the tropical Rainfall Measuring Mission (TRMM) satellite and the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra, operating since spring 2000, and Aqua, operating since summer 2002, to provide cloud and clear-sky properties at various wavelengths. This paper presents the preliminary results of an analysis of the CERES clear-sky reflectances to derive a set top-of-atmosphere clear sky albedo for 0.65, 0.86, 1.6, 2.13 μm, for all major surface types using the combined MODIS and VIRS datasets. The variability of snow albedo with surface type is examined using MODIS data. Snow albedo was found to depend on the vertical structure of the vegetation. At visible wavelengths, it is least for forested areas and greatest for smooth desert and tundra surfaces. At 1.6 and 2.1-μm, the snow albedos are relatively insensitive to the underlying surface because snow decreases the reflectance. Additional analyses using all of the MODIS results will provide albedo models that should be valuable for many remote sensing, simulation and radiation budget studies.
NASA Astrophysics Data System (ADS)
Miller, W. F.; Kato, S.; Rose, F. G.; Sun-Mack, S.
2009-12-01
Under the NASA Energy and Water Cycle System (NEWS) program, cloud and aerosol properties derived from CALIPSO, CloudSat, and MODIS data then matched to the CERES footprint are used for irradiance profile computations. Irradiance profiles are included in the publicly available product, CCCM. In addition to the MODIS and CALIPSO generated aerosol, aerosol optical thickness is calculated over ocean by processing MODIS radiance through the Stowe-Ignatov algorithm. The CERES cloud mask and properties algorithm are use with MODIS radiance to provide additional cloud information to accompany the actively sensed data. The passively sensed data is the only input to the standard CERES radiative flux products. The combined information is used as input to the NASA Langley Fu-Liou radiative transfer model to determine vertical profiles and Top of Atmosphere shortwave and longwave flux for pristine, all-sky, and aerosol conditions for the special data product. In this study, the three sources of aerosol optical thickness will be compared directly and their influence on the calculated and measured TOA fluxes. Earlier studies indicate that the largest uncertainty in estimating direct aerosol forcing using aerosol optical thickness derived from passive sensors is caused by cloud contamination. With collocated CALIPSO data, we are able to estimate frequency of occurrence of cloud contamination, effect on the aerosol optical thickness and direct radiative effect estimates.
Artifacts reduction in VIR/Dawn data.
Carrozzo, F G; Raponi, A; De Sanctis, M C; Ammannito, E; Giardino, M; D'Aversa, E; Fonte, S; Tosi, F
2016-12-01
Remote sensing images are generally affected by different types of noise that degrade the quality of the spectral data (i.e., stripes and spikes). Hyperspectral images returned by a Visible and InfraRed (VIR) spectrometer onboard the NASA Dawn mission exhibit residual systematic artifacts. VIR is an imaging spectrometer coupling high spectral and spatial resolutions in the visible and infrared spectral domain (0.25-5.0 μm). VIR data present one type of noise that may mask or distort real features (i.e., spikes and stripes), which may lead to misinterpretation of the surface composition. This paper presents a technique for the minimization of artifacts in VIR data that include a new instrument response function combining ground and in-flight radiometric measurements, correction of spectral spikes, odd-even band effects, systematic vertical stripes, high-frequency noise, and comparison with ground telescopic spectra of Vesta and Ceres. We developed a correction of artifacts in a two steps process: creation of the artifacts matrix and application of the same matrix to the VIR dataset. In the approach presented here, a polynomial function is used to fit the high frequency variations. After applying these corrections, the resulting spectra show improvements of the quality of the data. The new calibrated data enhance the significance of results from the spectral analysis of Vesta and Ceres.
The Ceres S'COOL Project: Two Years After First Launch
NASA Technical Reports Server (NTRS)
Chambers, Lin H.; Young, David F.; Green, Carolyn J.; Haberer, Susan J.; Racel, Anne M.
2000-01-01
The idea for the Students' Cloud Observations OnLine (S'COOL) project as an outreach and education element of NASA's Clouds and the Earth's Radiant Energy System (CERES) research program was conceived in late 1996 during a conversation with a middle school science teacher. S'COOL was implemented in a series of increasingly developed test phases during 1997, as the launch of the first CERES instrument approached. Even before launch, the reception of the project in schools far exceeded expectations. After several delays the first instrument, on the Tropical Rainfall Measuring Mission (TRMM) spacecraft, was launched on Thanksgiving Day, 1997. Since the first launch, development and expansion of the project has continued with expectations for launch of Terra carrying two CERES instruments into a polar orbit in mid-1998. That launch is now expected in fall 1999, and will finally provide overflight of all participating schools. In two years, the project has grown from three initial test participants to over 300 schools now participating in 23 countries on five continents. Students from first grade through university level are involved (most participants are ages 10-15). S'COOL is also being used by a few education professors to teach about Internet use in the classroom. The project continues to grow through word of mouth, presentations at teacher workshops, and now increasingly through teachers who find it during web searches. Participants in the S'COOL project are part of the CERES validation team. They provide ground truth measurements at the time the CERES instrument flies over their location, to be compared with the retrieval of cloud properties by remote sensing from CERES. Quantities reported include cloud type, height, fraction and opacity; information on contrails; surface temperature, pressure and relative humidity; and ground cover (snow/ice, wet, dry; leaves on trees or not). in addition, a comment field on the report form serves as a catch-all for all kinds of interesting observations, including similes written by some classes to describe more exactly the clouds they see. Several not totally unexpected complications with the CERES instrument and processing software mean that the CERES team has not yet reached the point of computing the cloud properties, a high level product at the end of the processing stream. However, progress is being made and we anticipate that we will soon be populating the S'COOL database with a large number of satellite retrievals for comparison with the students' observations. Some satellite retrievals from the initial test phases are already available in the database, The CERES instruments are planned to operate at least through 2006, and the S'COOL Project is planned to continue at least that long, providing motivational learning to as many students as possible. This paper reports on the first several years of the S'CCOL project. It further reports on some of the noteworthy observations and comparisons made possible by this project. Schools are often located in interesting places, in terms of the clouds found there and the satellite's ability to observe these clouds. The paper also reports on the learning opportunities delivered by this project, and on new questions about the planet and its climate which arise in the students' minds as a result of their active participation.
The Composition of the Dwarf Planet Ceres
NASA Astrophysics Data System (ADS)
Rivkin, A.; Li, J. Y.; Milliken, R. E.; Lim, L. F.; Lovell, A.; Schmidt, B. E.; McFadden, L. A.
2012-12-01
Ceres, the largest object between Mars and Jupiter, is not easily classified. Its low density suggests a significant ice fraction, like the icy satellites. It is too warm for ice to remain stable over much of its surface, but may maintain ice at a depth of a few meters [1,2]. It is large enough to be in hydrostatic equilibrium, but is probably differentiated rock from ice rather than the metal-rock separation seen in the planets [3,4]. It is considered a "dwarf planet" in the current IAU scheme, the only one interior to Neptune. What we know about Ceres has to this point been determined via remote sensing. The first observations of Ceres were made in the visible-near IR (0.4-2.5 μm) spectral region, and established an overall similarity to carbonaceous chondrites based on a low albedo and relatively flat spectrum. Its visible specrtum places it within the C class, which dominates the middle of the asteroid belt [5,6]. Positive identifications of absorptions have been rare in this spectral region, beyond a decrease in reflectance shortward of 0.4 μm due to oxidized iron. A broad band centered near 1.1 μm is consistent with magnetite, which is also found in some carbonaceous chondrites [7]. Longer wavelengths have provided more quantitative identifications. A series of absorptions in the 3-4 μm region have been interpreted most recently as due to brucite and carbonates [8-11]. Mid-IR (8-13 μm) observations have inconsistently found evidence for carbonates, but on the whole are consistent with the 3-4 μm observations [12,13]. A list of identified and yet-unidentified [14,15] absorptions in Ceres' spectrum is presented in Table 1. In addition to these identified species, the possibility of near-surface ice on Ceres combined with a low obliquity and resultant low temperatures at high latitudes leads to the prospect of polar caps, undetected in our low spatial resolution data but observable from orbit. The possibility of solar wind-created OH and impactor contamination on Ceres' surface, as has been suggested for the Moon and Vesta [16,17], also needs to be considered when considering in detail what Dawn may find. Over the last 35 years, astronomers and geologists have pieced together our ideas of Ceres' surface composition, which along with modeling and laboratory efforts leads to our overall interpretation of this body. We will present our current synthesis of Ceres research as it stands in the pre-Dawn era. References: [1] Fanale and Salvail (1989) Icarus, 82, [ [2] Schorghofer (2008) ApJ, 682. [3] McCord and Sotin (2005) JGR, 110. [4] Thomas et al. (2005) Nature, 437. [5] Bus and Binzel (2002), Icarus, 158. [6] Johnson and Fanale (1973), JGR, 35. [7] Larson et al. (1979) Icarus, 39. [8] Lebofsky et al. (1981) Icarus, 48. [9] King et al. (1992) Science, 255. [10] Rivkin et al. (2006) Icarus, 185. [11] Milliken and Rivkin (2009) Nature Geo., 2. [12] Cohen et al. (1998), AJ, 115. [13] Lim et al. (2005) Icarus, 173. [14] Parker et al. (2002) AJ, 123. [15] Li et al. (2006) Icarus, 182. [16] Clark/Sunshine et al./Pieters et al. (2009) Science 326.[17] McCord et al. (2012) LPSC 43.Identified spectral features on Ceres
NASA Astrophysics Data System (ADS)
Duncan, P.; Lewarne, M.
2016-06-01
Understanding and identifying the spatial-temporal changes in the natural environment is crucial for monitoring and evaluating conservation efforts, as well as understanding the impact of human activities on natural resources, informing responsible land management, and promoting better decision-making. Conservation areas are often under pressure from expanding farming and related industry, invasive alien vegetation, and an ever-increasing human settlement footprint. This study focuses on detecting changes to the Prince Alfred Hamlet commonage, near Ceres in the Cape Floral Kingdom. It was chosen for its high conservation value and significance as a critical water source area. The study area includes a fast-growing human settlement footprint in a highly productive farming landscape. There are conflicting development needs as well as risks to agricultural production, and both of these threaten the integrity of the ecosystems which supply underlying services to both demands on the land. Using a multi-disciplinary approach and high-resolution satellite imagery, land use and land cover changes can be detected and classified, and the results used to support the conservation of biodiversity and wildlife, and protect our natural resources. The aim of this research is to study the efficacy of using remote sensing and GIS techniques to detect changes to critical conservation areas where disturbances can be understood, and therefore better managed and mitigated before these areas are degraded beyond repair.
Daytime Cloud Property Retrievals Over the Arctic from Multispectral MODIS Data
NASA Technical Reports Server (NTRS)
Spangenberg, Douglas A.; Trepte, Qing; Minnis, Patrick; Uttal, Taneil
2004-01-01
Improving climate model predictions over Earth's polar regions requires a complete understanding of polar clouds properties. Passive satellite remote sensing techniques can be used to retrieve macro and microphysical properties of polar cloud systems. However, over the Arctic, there is minimal contrast between clouds and the background snow surface observed in satellite data, especially for visible wavelengths. This makes it difficult to identify clouds and retrieve their properties from space. Variable snow and ice cover, temperature inversions, and the predominance of mixed-phase clouds further complicate cloud property identification. For this study, the operational Clouds and the Earth s Radiant Energy System (CERES) cloud mask is first used to discriminate clouds from the background surface in Terra Moderate Resolution Imaging Spectroradiometer (MODIS) data. A solar-infrared infrared nearinfrared technique (SINT) first used by Platnick et al. (2001) is used here to retrieve cloud properties over snow and ice covered regions.
EOSDIS Terra Data Sampler #1: Western US Wildfires 2000. 1.1
NASA Technical Reports Server (NTRS)
Perkins, Dorothy C. (Technical Monitor)
2000-01-01
This CD-ROM contains sample data in HDF-EOS format from the instruments on board the Earth Observing System (EOS) Terra satellite: (1) Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER); (2) Clouds and the Earth's Radiant Energy System (CERES); (3) Multi-angle Imaging Spectroradiometer (MISR); and (4) Moderate Resolution Imaging Spectroradiometer (MODIS). Data from the Measurements of Pollution in the Troposphere (MOPITT) instrument were not available for distribution (as of October 17, 2000). The remotely sensed, coincident data for the Western US wildfires were acquired August 30, 2000. This CD-ROM provides information about the Terra mission, instruments, data, and viewing tools. It also provides the Collage tool for viewing data, and links to Web sites containing other digital data processing software. Full granules of the data on this CD-ROM and other EOS Data and Information System (EOSDIS) data products are available from the NASA Distributed Active Archive Centers (DAACs).
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A.; Doelling, David R.; Young, David F.; Loeb, Norman G.; Garber, Donald P.; MacDonnell, David G.
2008-01-01
vAs the potential impacts of global climate change become more clear [1], the need to determine the accuracy of climate prediction over decade-to-century time scales has become an urgent and critical challenge. The most critical tests of climate model predictions will occur using observations of decadal changes in climate forcing, response, and feedback variables. Many of these key climate variables are observed by remotely sensing the global distribution of reflected solar spectral and broadband radiance. These "reflected solar" variables include aerosols, clouds, radiative fluxes, snow, ice, vegetation, ocean color, and land cover. Achieving sufficient satellite instrument accuracy, stability, and overlap to rigorously observe decadal change signals has proven very difficult in most cases and has not yet been achieved in others [2]. One of the earliest efforts to make climate quality observations was for Earth Radiation Budget: Nimbus 6/7 in the late 1970s, ERBE in the 1980s/90s, and CERES in 2000s are examples of the most complete global records. The recent CERES data products have carried out the most extensive intercomparisons because if the need to merge data from up to 11 instruments (CERES, MODIS, geostationary imagers) on 7 spacecraft (Terra, Aqua, and 5 geostationary) for any given month. In order to achieve climate calibration for cloud feedbacks, the radiative effect of clear-sky, all-sky, and cloud radiative effect must all be made with very high stability and accuracy. For shortwave solar reflected flux, even the 1% CERES broadband absolute accuracy (1-sigma confidence bound) is not sufficient to allow gaps in the radiation record for decadal climate change. Typical absolute accuracy for the best narrowband sensors like SeaWiFS, MISR, and MODIS range from 2 to 4% (1-sigma). IPCC greenhouse gas radiative forcing is approx. 0.6 W/sq m per decade or 0.6% of the global mean shortwave reflected flux, so that a 50% cloud feedback would change the global reflected flux by approx. 0.3 W/sq m or 0.3% per decade in broadband SW calibration change. Recent results comparing CERES reflected flux changes with MODIS, MISR, and SeaWiFS narrowband changes concluded that only SeaWiFS and CERES were approaching sufficient stability in calibration for decadal climate change [3]. Results using deep convective clouds in the optically thick limit as a stability target may prove very effective for improving past data sets like ISCCP. Results for intercalibration of geostationary imagers to CERES using an entire month of regional nearly coincident data demonstrates new approaches to constraining the calibration of current geostationary imagers. The new Decadal Survey Mission CLARREO is examining future approaches to a "NIST-in-Orbit" approach of very high absolute accuracy reference radiometers that cover the full solar and infrared spectrum at high spectral resolution but at low spatial resolution. Sampling studies have shown that a precessing CLARREO mission could calibrate other geo and leo reflected solar radiation and thermal infrared sensors.
Cloudy-sky Longwave Downward Radiation Estimation by Combining MODIS and AIRS/AMSU Measurements
NASA Astrophysics Data System (ADS)
Wang, T.; Shi, J.
2017-12-01
Longwave downward radiation (LWDR) is another main energy source received by the earth's surface except solar radiation. Its importance in regulating air temperature and balancing surface energy is enlarged especially under cloudy-sky. Unfortunately, to date, a large number of efforts have been made to derive LWDR from space under only clear-sky conditions leading to difficulty in utilizing space-based LWDR in most models due to its spatio-temporal discontinuity. Currently, only few studies focused on LWDR estimation under cloudy-sky conditions, while their global application is still questionable. In this paper, an alternative strategy is proposed aiming to derive high resolution(1km) cloudy-sky LWDR by fusing collocated satellite multi-sensor measurements. The results show that the newly developed method can work well and can derive LWDR at better accuracy with RMSE<27 W/m2 and bias < 10 W/m2 even under cloudy skies and at 1km scales. By comparing to CALIPSO-CloudSat-CERES-MODIS (CCCM) and SSF products of CERES, MERRA, ERA-interim and NCEP-CSFR products, the new approach demonstrates its superiority in terms of accuracy, temporal variation and spatial distribution pattern of LWDR. The comprehensive comparison analyses also reveal that, except for the proposed product, other four products (CERES, MERRA, ERA-interim and NCEP-CSFR) also show a big difference from each other in the LWDR spatio-temporal distribution pattern and magnitude. The difference between these products can still up to 60W/m2 even at the monthly scale, implying large uncertainties in current LWDR estimations. Besides the higher accuracy of the proposed method, more importantly, it provides unprecedented possibilities for jointly generating high resolution global LWDR datasets by connecting the NASA's Earth Observing System-(EOS) mission (MODIS-AIRS/AMSU) and the Suomi National Polar-orbiting Partnership-(NPP) mission (VIIRS-CrIS/ATMS). Meanwhile, the scheme proposed in this study also gives some clues for multiple data fusing in the remote sensing community.
Propagation Limitations in Remote Sensing.
Contents: Multi-sensors and systems in remote sensing ; Radar sensing systems over land; Remote sensing techniques in oceanography; Influence of...propagation media and background; Infrared techniques in remote sensing ; Photography in remote sensing ; Analytical studies in remote sensing .
2017-05-02
Ceres surface shows evidence for different types of flows that indicate the presence of ice in the regolith. One type of flow encircles the large impact crater at right in this image taken by NASA Dawn spacecraft. One type of flow encircles the large impact crater at right in this image. Scientists see features in this flow that indicate a low degree of internal friction within its material, meaning it was able to flow easily and far from its source. This could be due to the incorporation of a significant amount of liquid water or water vapor into the ejecta blanket. This flow also shows a large ridge along its edge (seen most clearly just to the left of the large crater). These features are commonly associated with flows on Mars called "fluidized ejecta blankets." This feature is located southwest of Kerwan crater at 40 degrees south latitude, 109 degrees east longitude. This is in the vicinity of the latitudes where Dawn's gamma ray and neutron spectrometer (GRaND) instrument sensed the presence of ice in the first meter of Ceres' regolith. The image was taken on August, 7, 2016 from an altitude of about 240 miles (390 kilometers) above Ceres. The image resolution is about 120 feet (35 meters) per pixel. https://photojournal.jpl.nasa.gov/catalog/PIA21404
Earth view: A business guide to orbital remote sensing
NASA Technical Reports Server (NTRS)
Bishop, Peter C.
1990-01-01
The following subject areas are covered: Earth view - a guide to orbital remote sensing; current orbital remote sensing systems (LANDSAT, SPOT image, MOS-1, Soviet remote sensing systems); remote sensing satellite; and remote sensing organizations.
Technology study of quantum remote sensing imaging
NASA Astrophysics Data System (ADS)
Bi, Siwen; Lin, Xuling; Yang, Song; Wu, Zhiqiang
2016-02-01
According to remote sensing science and technology development and application requirements, quantum remote sensing is proposed. First on the background of quantum remote sensing, quantum remote sensing theory, information mechanism, imaging experiments and prototype principle prototype research situation, related research at home and abroad are briefly introduced. Then we expounds compress operator of the quantum remote sensing radiation field and the basic principles of single-mode compression operator, quantum quantum light field of remote sensing image compression experiment preparation and optical imaging, the quantum remote sensing imaging principle prototype, Quantum remote sensing spaceborne active imaging technology is brought forward, mainly including quantum remote sensing spaceborne active imaging system composition and working principle, preparation and injection compression light active imaging device and quantum noise amplification device. Finally, the summary of quantum remote sensing research in the past 15 years work and future development are introduced.
A high throughput geocomputing system for remote sensing quantitative retrieval and a case study
NASA Astrophysics Data System (ADS)
Xue, Yong; Chen, Ziqiang; Xu, Hui; Ai, Jianwen; Jiang, Shuzheng; Li, Yingjie; Wang, Ying; Guang, Jie; Mei, Linlu; Jiao, Xijuan; He, Xingwei; Hou, Tingting
2011-12-01
The quality and accuracy of remote sensing instruments have been improved significantly, however, rapid processing of large-scale remote sensing data becomes the bottleneck for remote sensing quantitative retrieval applications. The remote sensing quantitative retrieval is a data-intensive computation application, which is one of the research issues of high throughput computation. The remote sensing quantitative retrieval Grid workflow is a high-level core component of remote sensing Grid, which is used to support the modeling, reconstruction and implementation of large-scale complex applications of remote sensing science. In this paper, we intend to study middleware components of the remote sensing Grid - the dynamic Grid workflow based on the remote sensing quantitative retrieval application on Grid platform. We designed a novel architecture for the remote sensing Grid workflow. According to this architecture, we constructed the Remote Sensing Information Service Grid Node (RSSN) with Condor. We developed a graphic user interface (GUI) tools to compose remote sensing processing Grid workflows, and took the aerosol optical depth (AOD) retrieval as an example. The case study showed that significant improvement in the system performance could be achieved with this implementation. The results also give a perspective on the potential of applying Grid workflow practices to remote sensing quantitative retrieval problems using commodity class PCs.
Ceres' deformational surface features compared to other planetary bodies.
NASA Astrophysics Data System (ADS)
von der Gathen, Isabel; Jaumann, Ralf; Krohn, Katrin; Buczkowski, Debra L.; Elgner, Stephan; Kersten, Elke; Matz, Klaus-Dieter; Nass, Andrea; Otto, Katharina; Preusker, Frank; Roatsch, Thomas; Schröder, Stefanus E.; Schulzeck, Franziska; Stephan, Katrin; Wagner, Roland; De Sanctis, Maria C.; Schenk, Paul; Scully, Jennifer E. C.; Williams, Dave A.; Raymond, Carol A.
2016-04-01
On March 2015, NASA's Dawn spacecraft arrived at the dwarf planet Ceres and has been providing images of its surface. Based on High Altitude Mapping Orbiter (HAMO) clear filter images (140 m/px res.), a Survey mosaic (~400 m/px) and a series of Low Altitude Mapping Orbiter (LAMO) clear filter images (35 m/px) of the Dawn mission [1], deformational features are identified on the surface of Ceres. In order to further our knowledge about the nature and origin of these features, we start a comparative analysis of similar features on different planetary bodies, like Enceladus, Ganymede and the Moon, based on images provided by the Cassini, Galileo and Lunar Orbiter mission. This study focuses on the small scale fractures, mostly located on Ceres' crater floors, in comparison with crater fractures on the planetary bodies named above. The fractures were analyzed concerning the morphology and shape, the distribution, orientation and possible building mechanisms. On Ceres, two different groups of fractures are distinct. The first one includes fractures, normally arranged in subparallel pattern, which are usually located on crater floors, but also on crater rims. Their sense of direction is relatively uniform but in some cases they get deformed by shearing. The second group consists of joint systems, which spread out of one single location, sometimes arranged concentric to the crater rim. They were likely formed by cooling-melting processes linked to the impact process or up doming material. Fractures located on crater floors are also common on the icy satellite Enceladus [3]. While Enceladus' fractures don't seem to have a lot in common compared to those on Ceres, we assume that similar fracture patterns and therefore similar building mechanism can be found e.g. on Ganymede and especially on the Moon [2]. Further work will include the comparison of the fractures with additional planetary bodies and the trial to explain why fracturing e.g. on Enceladus differs from that on Ceres. References: [1] Roatsch T. et al. (2016) PSS, in press. [2] Buczkowski D. L. (2016) LPSC. [3] Stephan, K. et al. (2013), in The Science of Solar System Ices, p. 279.
Applications of Remote Sensing to Emergency Management.
1980-02-15
Contents: Foundations of Remote Sensing : Data Acquisition and Interpretation; Availability of Remote Sensing Technology for Disaster Response...Imaging Systems, Current and Near Future Satellite and Aircraft Remote Sensing Systems; Utilization of Remote Sensing in Disaster Response: Categories of...Disasters, Phases of Monitoring Activities; Recommendations for Utilization of Remote Sensing Technology in Disaster Response; Selected Reading List.
The remote sensing image segmentation mean shift algorithm parallel processing based on MapReduce
NASA Astrophysics Data System (ADS)
Chen, Xi; Zhou, Liqing
2015-12-01
With the development of satellite remote sensing technology and the remote sensing image data, traditional remote sensing image segmentation technology cannot meet the massive remote sensing image processing and storage requirements. This article put cloud computing and parallel computing technology in remote sensing image segmentation process, and build a cheap and efficient computer cluster system that uses parallel processing to achieve MeanShift algorithm of remote sensing image segmentation based on the MapReduce model, not only to ensure the quality of remote sensing image segmentation, improved split speed, and better meet the real-time requirements. The remote sensing image segmentation MeanShift algorithm parallel processing algorithm based on MapReduce shows certain significance and a realization of value.
REMOTE SENSING TECHNOLOGIES APPLICATIONS RESEARCH
Remote sensing technologies applications research supports the ORD Landscape Sciences Program (LSP) in two separate areas: operational remote sensing, and remote sensing research and development. Operational remote sensing is provided to the LSP through the use of current and t...
Tunnel-Site Selection by Remote Sensing Techniques
A study of the role of remote sensing for geologic reconnaissance for tunnel-site selection was commenced. For this study, remote sensing was defined...conventional remote sensing . Future research directions are suggested, and the extension of remote sensing to include airborne passive microwave
System and method for evaluating wind flow fields using remote sensing devices
Schroeder, John; Hirth, Brian; Guynes, Jerry
2016-12-13
The present invention provides a system and method for obtaining data to determine one or more characteristics of a wind field using a first remote sensing device and a second remote sensing device. Coordinated data is collected from the first and second remote sensing devices and analyzed to determine the one or more characteristics of the wind field. The first remote sensing device is positioned to have a portion of the wind field within a first scanning sector of the first remote sensing device. The second remote sensing device is positioned to have the portion of the wind field disposed within a second scanning sector of the second remote sensing device.
Exploring Models and Data for Remote Sensing Image Caption Generation
NASA Astrophysics Data System (ADS)
Lu, Xiaoqiang; Wang, Binqiang; Zheng, Xiangtao; Li, Xuelong
2018-04-01
Inspired by recent development of artificial satellite, remote sensing images have attracted extensive attention. Recently, noticeable progress has been made in scene classification and target detection.However, it is still not clear how to describe the remote sensing image content with accurate and concise sentences. In this paper, we investigate to describe the remote sensing images with accurate and flexible sentences. First, some annotated instructions are presented to better describe the remote sensing images considering the special characteristics of remote sensing images. Second, in order to exhaustively exploit the contents of remote sensing images, a large-scale aerial image data set is constructed for remote sensing image caption. Finally, a comprehensive review is presented on the proposed data set to fully advance the task of remote sensing caption. Extensive experiments on the proposed data set demonstrate that the content of the remote sensing image can be completely described by generating language descriptions. The data set is available at https://github.com/201528014227051/RSICD_optimal
NASA Astrophysics Data System (ADS)
Bi, Siwen; Zhen, Ming; Yang, Song; Lin, Xuling; Wu, Zhiqiang
2017-08-01
According to the development and application needs of Remote Sensing Science and technology, Prof. Siwen Bi proposed quantum remote sensing. Firstly, the paper gives a brief introduction of the background of quantum remote sensing, the research status and related researches at home and abroad on the theory, information mechanism and imaging experiments of quantum remote sensing and the production of principle prototype.Then, the quantization of pure remote sensing radiation field, the state function and squeezing effect of quantum remote sensing radiation field are emphasized. It also describes the squeezing optical operator of quantum light field in active imaging information transmission experiment and imaging experiments, achieving 2-3 times higher resolution than that of coherent light detection imaging and completing the production of quantum remote sensing imaging prototype. The application of quantum remote sensing technology can significantly improve both the signal-to-noise ratio of information transmission imaging and the spatial resolution of quantum remote sensing .On the above basis, Prof.Bi proposed the technical solution of active imaging information transmission technology of satellite borne quantum remote sensing, launched researches on its system composition and operation principle and on quantum noiseless amplifying devices, providing solutions and technical basis for implementing active imaging information technology of satellite borne Quantum Remote Sensing.
Introduction to the physics and techniques of remote sensing
NASA Technical Reports Server (NTRS)
Elachi, Charles
1987-01-01
This book presents a comprehensive overview of the basics behind remote-sensing physics, techniques, and technology. The physics of wave/matter interactions, techniques of remote sensing across the electromagnetic spectrum, and the concepts behind remote sensing techniques now established and future ones under development are discussed. Applications of remote sensing are described for a wide variety of earth and planetary atmosphere and surface sciences. Solid surface sensing across the electromagnetic spectrum, ocean surface sensing, basic principles of atmospheric sensing and radiative transfer, and atmospheric remote sensing in the microwave, millimeter, submillimeter, and infrared regions are examined.
[Thematic Issue: Remote Sensing.
ERIC Educational Resources Information Center
Howkins, John, Ed.
1978-01-01
Four of the articles in this publication discuss the remote sensing of the Earth and its resources by satellites. Among the topics dealt with are the development and management of remote sensing systems, types of satellites used for remote sensing, the uses of remote sensing, and issues involved in using information obtained through remote…
75 FR 65304 - Advisory Committee on Commercial Remote Sensing (ACCRES); Request for Nominations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-22
... Commercial Remote Sensing (ACCRES); Request for Nominations AGENCY: National Oceanic and Atmospheric... Commercial Remote Sensing (ACCRES). SUMMARY: The Advisory Committee on Commercial Remote Sensing (ACCRES) was... Atmosphere, on matters relating to the U.S. commercial remote sensing industry and NOAA's activities to carry...
Literature relevant to remote sensing of water quality
NASA Technical Reports Server (NTRS)
Middleton, E. M.; Marcell, R. F.
1983-01-01
References relevant to remote sensing of water quality were compiled, organized, and cross-referenced. The following general categories were included: (1) optical properties and measurement of water characteristics; (2) interpretation of water characteristics by remote sensing, including color, transparency, suspended or dissolved inorganic matter, biological materials, and temperature; (3) application of remote sensing for water quality monitoring; (4) application of remote sensing according to water body type; and (5) manipulation, processing and interpretation of remote sensing digital water data.
Learning Methods of Remote Sensing In the 2013 Curriculum of Secondary School
NASA Astrophysics Data System (ADS)
Lili Somantri, Nandi
2016-11-01
The new remote sensing material included in the subjects of geography in the curriculum of 1994. For geography teachers generation of 90s and over who in college do not get the material remote sensing, for teaching is a tough matter. Most teachers only give a theoretical matter, and do not carry out practical reasons in the lack of facilities and infrastructure of computer laboratories. Therefore, in this paper studies the importance about the method or manner of teaching remote sensing material in schools. The purpose of this paper is 1) to explain the position of remote sensing material in the study of geography, 2) analyze the Geography Curriculum 2013 Subjects related to remote sensing material, 3) describes a method of teaching remote sensing material in schools. The method used in this paper is a descriptive analytical study supported by the literature. The conclusion of this paper that the position of remote sensing in the study of geography is a method or a way to obtain spatial data earth's surface. In the 2013 curriculum remote sensing material has been applied to the study of land use and transportation. Remote sensing methods of teaching must go through a practicum, which starts from the introduction of the theory of remote sensing, data extraction phase of remote sensing imagery to produce maps, both visually and digitally, field surveys, interpretation of test accuracy, and improved maps.
JPRS Report, Science & Technology, China, Remote Sensing Systems, Applications.
1991-01-17
Partial Contents: Short Introduction to Nation’s Remote Sensing Units, Domestic Airborne Remote - Sensing System, Applications in Monitoring Natural...Disasters, Applications of Imagery From Experimental Satellites Launched in 1985, 1986, Current Status, Future Prospects for Domestic Remote - Sensing -Satellite...Ground Station, and Radar Remote - Sensing Technology Used to Monitor Yellow River Delta,
[A review on polarization information in the remote sensing detection].
Gong, Jie-Qiong; Zhan, Hai-Gang; Liu, Da-Zhao
2010-04-01
Polarization is one of the inherent characteristics. Because the surface of the target structure, internal structure, and the angle of incident light are different, the earth's surface and any target in atmosphere under optical interaction process will have their own characteristic nature of polarization. Polarimetric characteristics of radiation energy from the targets are used in polarization remote sensing detection as detective information. Polarization remote sensing detection can get the seven-dimensional information of targets in complicated backgrounds, detect well-resolved outline of targets and low-reflectance region of objectives, and resolve the problems of atmospheric detection and identification camouflage detection which the traditional remote sensing detection can not solve, having good foreground in applications. This paper introduces the development of polarization information in the remote sensing detection from the following four aspects. The rationale of polarization remote sensing detection is the base of polarization remote sensing detection, so it is firstly introduced. Secondly, the present researches on equipments that are used in polarization remote sensing detection are particularly and completely expatiated. Thirdly, the present exploration of theoretical simulation of polarization remote sensing detection is well detailed. Finally, the authors present the applications research home and abroad of the polarization remote sensing detection technique in the fields of remote sensing, atmospheric sounding, sea surface and underwater detection, biology and medical diagnosis, astronomical observation and military, summing up the current problems in polarization remote sensing detection. The development trend of polarization remote sensing detection technology in the future is pointed out in order to provide a reference for similar studies.
Cybernetic Basis and System Practice of Remote Sensing and Spatial Information Science
NASA Astrophysics Data System (ADS)
Tan, X.; Jing, X.; Chen, R.; Ming, Z.; He, L.; Sun, Y.; Sun, X.; Yan, L.
2017-09-01
Cybernetics provides a new set of ideas and methods for the study of modern science, and it has been fully applied in many areas. However, few people have introduced cybernetics into the field of remote sensing. The paper is based on the imaging process of remote sensing system, introducing cybernetics into the field of remote sensing, establishing a space-time closed-loop control theory for the actual operation of remote sensing. The paper made the process of spatial information coherently, and improved the comprehensive efficiency of the space information from acquisition, procession, transformation to application. We not only describes the application of cybernetics in remote sensing platform control, sensor control, data processing control, but also in whole system of remote sensing imaging process control. We achieve the information of output back to the input to control the efficient operation of the entire system. This breakthrough combination of cybernetics science and remote sensing science will improve remote sensing science to a higher level.
Near-earth orbital guidance and remote sensing
NASA Technical Reports Server (NTRS)
Powers, W. F.
1972-01-01
The curriculum of a short course in remote sensing and parameter optimization is presented. The subjects discussed are: (1) basics of remote sensing and the user community, (2) multivariant spectral analysis, (3) advanced mathematics and physics of remote sensing, (4) the atmospheric environment, (5) imaging sensing, and (6)nonimaging sensing. Mathematical models of optimization techniques are developed.
Operational programs in forest management and priority in the utilization of remote sensing
NASA Technical Reports Server (NTRS)
Douglass, R. W.
1978-01-01
A speech is given on operational remote sensing programs in forest management and the importance of remote sensing in forestry is emphasized. Forest service priorities in using remote sensing are outlined.
CERES ERBE-like Instantaneous TOA Estimates (ES-8) in HDF (CER_ES4_TRMM-PFM_Edition1)
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A. (Principal Investigator)
The ERBE-like Monthly Geographical Averages (ES-4) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The ES-4 is also produced for combinations of scanner instruments. For each observed 2.5-degree spatial region, the daily average, the hourly average over the month, and the overall monthly average of shortwave and longwave fluxes at the Top-of-the-Atmosphere (TOA) from the CERES ES-9 product are spatially nested up from 2.5-degree regions to 5- and 10-degree regions, to 2.5-, 5-, and 10-degree zonal averages, and to global monthly averages. For each nested area, the albedo and net flux are given. For each region, the daily average flux is estimated from an algorithm that uses the available hourly data, scene identification data, and diurnal models. This algorithm is 'like' the algorithm used for the Earth Radiation Budget Experiment (ERBE). The following CERES ES4 data sets are currently available: CER_ES4_FM1+FM2_Edition1 CER_ES4_PFM+FM1+FM2_Edition1 CER_ES4_PFM+FM1+FM2_Edition2 CER_ES4_PFM+FM1_Edition1 CER_ES4_PFM+FM2_Edition1 CER_ES4_TRMM-PFM_Edition1 CER_ES4_TRMM-PFM_Edition2 CER_ES4_Terra-FM1_Edition1 CER_ES4_Terra-FM2_Edition1 CER_ES4_FM1+FM2_Edition2 CER_ES4_Terra-FM1_Edition2 CER_ES4_Terra-FM2_Edition2 CER_ES4_Aqua-FM3_Edition1 CER_ES4_Aqua-FM4_Edition1 CER_ES4_FM1+FM2+FM3+FM4_Edition1 CER_ES4_Aqua-FM3_Edition2 CER_ES4_Aqua-FM4_Edition2 CER_ES4_FM1+FM3_Edition2 CER_ES4_FM1+FM4_Edition2 CER_ES4_PFM+FM1_Edition2 CER_ES4_PFM+FM2_Edition2 CER_ES4_Aqua-FM3_Edition1-CV CER_ES4_Aqua-FM4_Edition1-CV CER_ES4_Terra-FM1_Edition1-CV CER_ES4_Terra-FM2_Edition1-CV. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=1998-08-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=2.5 degree; Longitude_Resolution=2.5 degree; Horizontal_Resolution_Range=250 km - < 500 km or approximately 2.5 degrees - < 5.0 degrees; Temporal_Resolution=1 month; Temporal_Resolution_Range=Monthly - < Annual].
CERES ERBE-like Monthly Geographical Averages (ES-4) in HDF (CER_ES4_PFM+FM1_Edition1)
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A. (Principal Investigator)
The ERBE-like Monthly Geographical Averages (ES-4) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The ES-4 is also produced for combinations of scanner instruments. For each observed 2.5-degree spatial region, the daily average, the hourly average over the month, and the overall monthly average of shortwave and longwave fluxes at the Top-of-the-Atmosphere (TOA) from the CERES ES-9 product are spatially nested up from 2.5-degree regions to 5- and 10-degree regions, to 2.5-, 5-, and 10-degree zonal averages, and to global monthly averages. For each nested area, the albedo and net flux are given. For each region, the daily average flux is estimated from an algorithm that uses the available hourly data, scene identification data, and diurnal models. This algorithm is 'like' the algorithm used for the Earth Radiation Budget Experiment (ERBE). The following CERES ES4 data sets are currently available: CER_ES4_FM1+FM2_Edition1 CER_ES4_PFM+FM1+FM2_Edition1 CER_ES4_PFM+FM1+FM2_Edition2 CER_ES4_PFM+FM1_Edition1 CER_ES4_PFM+FM2_Edition1 CER_ES4_TRMM-PFM_Edition1 CER_ES4_TRMM-PFM_Edition2 CER_ES4_Terra-FM1_Edition1 CER_ES4_Terra-FM2_Edition1 CER_ES4_FM1+FM2_Edition2 CER_ES4_Terra-FM1_Edition2 CER_ES4_Terra-FM2_Edition2 CER_ES4_Aqua-FM3_Edition1 CER_ES4_Aqua-FM4_Edition1 CER_ES4_FM1+FM2+FM3+FM4_Edition1 CER_ES4_Aqua-FM3_Edition2 CER_ES4_Aqua-FM4_Edition2 CER_ES4_FM1+FM3_Edition2 CER_ES4_FM1+FM4_Edition2 CER_ES4_PFM+FM1_Edition2 CER_ES4_PFM+FM2_Edition2 CER_ES4_Aqua-FM3_Edition1-CV CER_ES4_Aqua-FM4_Edition1-CV CER_ES4_Terra-FM1_Edition1-CV CER_ES4_Terra-FM2_Edition1-CV. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2000-03-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=2.5 degree; Longitude_Resolution=2.5 degree; Horizontal_Resolution_Range=250 km - < 500 km or approximately 2.5 degrees - < 5.0 degrees; Temporal_Resolution=1 month; Temporal_Resolution_Range=Monthly - < Annual].
CERES ERBE-like Monthly Geographical Averages (ES-4) in HDF (CER_ES4_FM1+FM4_Edition2)
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A. (Principal Investigator)
The ERBE-like Monthly Geographical Averages (ES-4) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The ES-4 is also produced for combinations of scanner instruments. For each observed 2.5-degree spatial region, the daily average, the hourly average over the month, and the overall monthly average of shortwave and longwave fluxes at the Top-of-the-Atmosphere (TOA) from the CERES ES-9 product are spatially nested up from 2.5-degree regions to 5- and 10-degree regions, to 2.5-, 5-, and 10-degree zonal averages, and to global monthly averages. For each nested area, the albedo and net flux are given. For each region, the daily average flux is estimated from an algorithm that uses the available hourly data, scene identification data, and diurnal models. This algorithm is 'like' the algorithm used for the Earth Radiation Budget Experiment (ERBE). The following CERES ES4 data sets are currently available: CER_ES4_FM1+FM2_Edition1 CER_ES4_PFM+FM1+FM2_Edition1 CER_ES4_PFM+FM1+FM2_Edition2 CER_ES4_PFM+FM1_Edition1 CER_ES4_PFM+FM2_Edition1 CER_ES4_TRMM-PFM_Edition1 CER_ES4_TRMM-PFM_Edition2 CER_ES4_Terra-FM1_Edition1 CER_ES4_Terra-FM2_Edition1 CER_ES4_FM1+FM2_Edition2 CER_ES4_Terra-FM1_Edition2 CER_ES4_Terra-FM2_Edition2 CER_ES4_Aqua-FM3_Edition1 CER_ES4_Aqua-FM4_Edition1 CER_ES4_FM1+FM2+FM3+FM4_Edition1 CER_ES4_Aqua-FM3_Edition2 CER_ES4_Aqua-FM4_Edition2 CER_ES4_FM1+FM3_Edition2 CER_ES4_FM1+FM4_Edition2 CER_ES4_PFM+FM1_Edition2 CER_ES4_PFM+FM2_Edition2 CER_ES4_Aqua-FM3_Edition1-CV CER_ES4_Aqua-FM4_Edition1-CV CER_ES4_Terra-FM1_Edition1-CV CER_ES4_Terra-FM2_Edition1-CV. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2005-03-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=2.5 degree; Longitude_Resolution=2.5 degree; Horizontal_Resolution_Range=250 km - < 500 km or approximately 2.5 degrees - < 5.0 degrees; Temporal_Resolution=1 month; Temporal_Resolution_Range=Monthly - < Annual].
CERES ERBE-like Monthly Geographical Averages (ES-4) in HDF (CER_ES4_Terra-FM2_Edition1-CV)
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A. (Principal Investigator)
The ERBE-like Monthly Geographical Averages (ES-4) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The ES-4 is also produced for combinations of scanner instruments. For each observed 2.5-degree spatial region, the daily average, the hourly average over the month, and the overall monthly average of shortwave and longwave fluxes at the Top-of-the-Atmosphere (TOA) from the CERES ES-9 product are spatially nested up from 2.5-degree regions to 5- and 10-degree regions, to 2.5-, 5-, and 10-degree zonal averages, and to global monthly averages. For each nested area, the albedo and net flux are given. For each region, the daily average flux is estimated from an algorithm that uses the available hourly data, scene identification data, and diurnal models. This algorithm is 'like' the algorithm used for the Earth Radiation Budget Experiment (ERBE). The following CERES ES4 data sets are currently available: CER_ES4_FM1+FM2_Edition1 CER_ES4_PFM+FM1+FM2_Edition1 CER_ES4_PFM+FM1+FM2_Edition2 CER_ES4_PFM+FM1_Edition1 CER_ES4_PFM+FM2_Edition1 CER_ES4_TRMM-PFM_Edition1 CER_ES4_TRMM-PFM_Edition2 CER_ES4_Terra-FM1_Edition1 CER_ES4_Terra-FM2_Edition1 CER_ES4_FM1+FM2_Edition2 CER_ES4_Terra-FM1_Edition2 CER_ES4_Terra-FM2_Edition2 CER_ES4_Aqua-FM3_Edition1 CER_ES4_Aqua-FM4_Edition1 CER_ES4_FM1+FM2+FM3+FM4_Edition1 CER_ES4_Aqua-FM3_Edition2 CER_ES4_Aqua-FM4_Edition2 CER_ES4_FM1+FM3_Edition2 CER_ES4_FM1+FM4_Edition2 CER_ES4_PFM+FM1_Edition2 CER_ES4_PFM+FM2_Edition2 CER_ES4_Aqua-FM3_Edition1-CV CER_ES4_Aqua-FM4_Edition1-CV CER_ES4_Terra-FM1_Edition1-CV CER_ES4_Terra-FM2_Edition1-CV. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2006-10-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=2.5 degree; Longitude_Resolution=2.5 degree; Horizontal_Resolution_Range=250 km - < 500 km or approximately 2.5 degrees - < 5.0 degrees; Temporal_Resolution=1 month; Temporal_Resolution_Range=Monthly - < Annual].
CERES ERBE-like Monthly Geographical Averages (ES-4) in HDF (CER_ES4_Aqua-FM3_Edition1)
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A. (Principal Investigator)
The ERBE-like Monthly Geographical Averages (ES-4) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The ES-4 is also produced for combinations of scanner instruments. For each observed 2.5-degree spatial region, the daily average, the hourly average over the month, and the overall monthly average of shortwave and longwave fluxes at the Top-of-the-Atmosphere (TOA) from the CERES ES-9 product are spatially nested up from 2.5-degree regions to 5- and 10-degree regions, to 2.5-, 5-, and 10-degree zonal averages, and to global monthly averages. For each nested area, the albedo and net flux are given. For each region, the daily average flux is estimated from an algorithm that uses the available hourly data, scene identification data, and diurnal models. This algorithm is 'like' the algorithm used for the Earth Radiation Budget Experiment (ERBE). The following CERES ES4 data sets are currently available: CER_ES4_FM1+FM2_Edition1 CER_ES4_PFM+FM1+FM2_Edition1 CER_ES4_PFM+FM1+FM2_Edition2 CER_ES4_PFM+FM1_Edition1 CER_ES4_PFM+FM2_Edition1 CER_ES4_TRMM-PFM_Edition1 CER_ES4_TRMM-PFM_Edition2 CER_ES4_Terra-FM1_Edition1 CER_ES4_Terra-FM2_Edition1 CER_ES4_FM1+FM2_Edition2 CER_ES4_Terra-FM1_Edition2 CER_ES4_Terra-FM2_Edition2 CER_ES4_Aqua-FM3_Edition1 CER_ES4_Aqua-FM4_Edition1 CER_ES4_FM1+FM2+FM3+FM4_Edition1 CER_ES4_Aqua-FM3_Edition2 CER_ES4_Aqua-FM4_Edition2 CER_ES4_FM1+FM3_Edition2 CER_ES4_FM1+FM4_Edition2 CER_ES4_PFM+FM1_Edition2 CER_ES4_PFM+FM2_Edition2 CER_ES4_Aqua-FM3_Edition1-CV CER_ES4_Aqua-FM4_Edition1-CV CER_ES4_Terra-FM1_Edition1-CV CER_ES4_Terra-FM2_Edition1-CV. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2005-10-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=2.5 degree; Longitude_Resolution=2.5 degree; Horizontal_Resolution_Range=250 km - < 500 km or approximately 2.5 degrees - < 5.0 degrees; Temporal_Resolution=1 month; Temporal_Resolution_Range=Monthly - < Annual].
CERES ERBE-like Monthly Geographical Averages (ES-4) in HDF (CER_ES4_Aqua-FM3_Edition2)
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A. (Principal Investigator)
The ERBE-like Monthly Geographical Averages (ES-4) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The ES-4 is also produced for combinations of scanner instruments. For each observed 2.5-degree spatial region, the daily average, the hourly average over the month, and the overall monthly average of shortwave and longwave fluxes at the Top-of-the-Atmosphere (TOA) from the CERES ES-9 product are spatially nested up from 2.5-degree regions to 5- and 10-degree regions, to 2.5-, 5-, and 10-degree zonal averages, and to global monthly averages. For each nested area, the albedo and net flux are given. For each region, the daily average flux is estimated from an algorithm that uses the available hourly data, scene identification data, and diurnal models. This algorithm is 'like' the algorithm used for the Earth Radiation Budget Experiment (ERBE). The following CERES ES4 data sets are currently available: CER_ES4_FM1+FM2_Edition1 CER_ES4_PFM+FM1+FM2_Edition1 CER_ES4_PFM+FM1+FM2_Edition2 CER_ES4_PFM+FM1_Edition1 CER_ES4_PFM+FM2_Edition1 CER_ES4_TRMM-PFM_Edition1 CER_ES4_TRMM-PFM_Edition2 CER_ES4_Terra-FM1_Edition1 CER_ES4_Terra-FM2_Edition1 CER_ES4_FM1+FM2_Edition2 CER_ES4_Terra-FM1_Edition2 CER_ES4_Terra-FM2_Edition2 CER_ES4_Aqua-FM3_Edition1 CER_ES4_Aqua-FM4_Edition1 CER_ES4_FM1+FM2+FM3+FM4_Edition1 CER_ES4_Aqua-FM3_Edition2 CER_ES4_Aqua-FM4_Edition2 CER_ES4_FM1+FM3_Edition2 CER_ES4_FM1+FM4_Edition2 CER_ES4_PFM+FM1_Edition2 CER_ES4_PFM+FM2_Edition2 CER_ES4_Aqua-FM3_Edition1-CV CER_ES4_Aqua-FM4_Edition1-CV CER_ES4_Terra-FM1_Edition1-CV CER_ES4_Terra-FM2_Edition1-CV. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2005-12-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=2.5 degree; Longitude_Resolution=2.5 degree; Horizontal_Resolution_Range=250 km - < 500 km or approximately 2.5 degrees - < 5.0 degrees; Temporal_Resolution=1 month; Temporal_Resolution_Range=Monthly - < Annual].
CERES ERBE-like Monthly Geographical Averages (ES-4) in HDF (CER_ES4_Aqua-FM4_Edition1)
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A. (Principal Investigator)
The ERBE-like Monthly Geographical Averages (ES-4) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The ES-4 is also produced for combinations of scanner instruments. For each observed 2.5-degree spatial region, the daily average, the hourly average over the month, and the overall monthly average of shortwave and longwave fluxes at the Top-of-the-Atmosphere (TOA) from the CERES ES-9 product are spatially nested up from 2.5-degree regions to 5- and 10-degree regions, to 2.5-, 5-, and 10-degree zonal averages, and to global monthly averages. For each nested area, the albedo and net flux are given. For each region, the daily average flux is estimated from an algorithm that uses the available hourly data, scene identification data, and diurnal models. This algorithm is 'like' the algorithm used for the Earth Radiation Budget Experiment (ERBE). The following CERES ES4 data sets are currently available: CER_ES4_FM1+FM2_Edition1 CER_ES4_PFM+FM1+FM2_Edition1 CER_ES4_PFM+FM1+FM2_Edition2 CER_ES4_PFM+FM1_Edition1 CER_ES4_PFM+FM2_Edition1 CER_ES4_TRMM-PFM_Edition1 CER_ES4_TRMM-PFM_Edition2 CER_ES4_Terra-FM1_Edition1 CER_ES4_Terra-FM2_Edition1 CER_ES4_FM1+FM2_Edition2 CER_ES4_Terra-FM1_Edition2 CER_ES4_Terra-FM2_Edition2 CER_ES4_Aqua-FM3_Edition1 CER_ES4_Aqua-FM4_Edition1 CER_ES4_FM1+FM2+FM3+FM4_Edition1 CER_ES4_Aqua-FM3_Edition2 CER_ES4_Aqua-FM4_Edition2 CER_ES4_FM1+FM3_Edition2 CER_ES4_FM1+FM4_Edition2 CER_ES4_PFM+FM1_Edition2 CER_ES4_PFM+FM2_Edition2 CER_ES4_Aqua-FM3_Edition1-CV CER_ES4_Aqua-FM4_Edition1-CV CER_ES4_Terra-FM1_Edition1-CV CER_ES4_Terra-FM2_Edition1-CV. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2005-03-29] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=2.5 degree; Longitude_Resolution=2.5 degree; Horizontal_Resolution_Range=250 km - < 500 km or approximately 2.5 degrees - < 5.0 degrees; Temporal_Resolution=1 month; Temporal_Resolution_Range=Monthly - < Annual].
CERES ERBE-like Monthly Geographical Averages (ES-4) in HDF (CER_ES4_FM1+FM2_Edition1)
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A. (Principal Investigator)
The ERBE-like Monthly Geographical Averages (ES-4) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The ES-4 is also produced for combinations of scanner instruments. For each observed 2.5-degree spatial region, the daily average, the hourly average over the month, and the overall monthly average of shortwave and longwave fluxes at the Top-of-the-Atmosphere (TOA) from the CERES ES-9 product are spatially nested up from 2.5-degree regions to 5- and 10-degree regions, to 2.5-, 5-, and 10-degree zonal averages, and to global monthly averages. For each nested area, the albedo and net flux are given. For each region, the daily average flux is estimated from an algorithm that uses the available hourly data, scene identification data, and diurnal models. This algorithm is 'like' the algorithm used for the Earth Radiation Budget Experiment (ERBE). The following CERES ES4 data sets are currently available: CER_ES4_FM1+FM2_Edition1 CER_ES4_PFM+FM1+FM2_Edition1 CER_ES4_PFM+FM1+FM2_Edition2 CER_ES4_PFM+FM1_Edition1 CER_ES4_PFM+FM2_Edition1 CER_ES4_TRMM-PFM_Edition1 CER_ES4_TRMM-PFM_Edition2 CER_ES4_Terra-FM1_Edition1 CER_ES4_Terra-FM2_Edition1 CER_ES4_FM1+FM2_Edition2 CER_ES4_Terra-FM1_Edition2 CER_ES4_Terra-FM2_Edition2 CER_ES4_Aqua-FM3_Edition1 CER_ES4_Aqua-FM4_Edition1 CER_ES4_FM1+FM2+FM3+FM4_Edition1 CER_ES4_Aqua-FM3_Edition2 CER_ES4_Aqua-FM4_Edition2 CER_ES4_FM1+FM3_Edition2 CER_ES4_FM1+FM4_Edition2 CER_ES4_PFM+FM1_Edition2 CER_ES4_PFM+FM2_Edition2 CER_ES4_Aqua-FM3_Edition1-CV CER_ES4_Aqua-FM4_Edition1-CV CER_ES4_Terra-FM1_Edition1-CV CER_ES4_Terra-FM2_Edition1-CV. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2003-12-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=2.5 degree; Longitude_Resolution=2.5 degree; Horizontal_Resolution_Range=250 km - < 500 km or approximately 2.5 degrees - < 5.0 degrees; Temporal_Resolution=1 month; Temporal_Resolution_Range=Monthly - < Annual].
CERES ERBE-like Monthly Geographical Averages (ES-4) in HDF (CER_ES4_Terra-FM1_Edition2)
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A. (Principal Investigator)
The ERBE-like Monthly Geographical Averages (ES-4) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The ES-4 is also produced for combinations of scanner instruments. For each observed 2.5-degree spatial region, the daily average, the hourly average over the month, and the overall monthly average of shortwave and longwave fluxes at the Top-of-the-Atmosphere (TOA) from the CERES ES-9 product are spatially nested up from 2.5-degree regions to 5- and 10-degree regions, to 2.5-, 5-, and 10-degree zonal averages, and to global monthly averages. For each nested area, the albedo and net flux are given. For each region, the daily average flux is estimated from an algorithm that uses the available hourly data, scene identification data, and diurnal models. This algorithm is 'like' the algorithm used for the Earth Radiation Budget Experiment (ERBE). The following CERES ES4 data sets are currently available: CER_ES4_FM1+FM2_Edition1 CER_ES4_PFM+FM1+FM2_Edition1 CER_ES4_PFM+FM1+FM2_Edition2 CER_ES4_PFM+FM1_Edition1 CER_ES4_PFM+FM2_Edition1 CER_ES4_TRMM-PFM_Edition1 CER_ES4_TRMM-PFM_Edition2 CER_ES4_Terra-FM1_Edition1 CER_ES4_Terra-FM2_Edition1 CER_ES4_FM1+FM2_Edition2 CER_ES4_Terra-FM1_Edition2 CER_ES4_Terra-FM2_Edition2 CER_ES4_Aqua-FM3_Edition1 CER_ES4_Aqua-FM4_Edition1 CER_ES4_FM1+FM2+FM3+FM4_Edition1 CER_ES4_Aqua-FM3_Edition2 CER_ES4_Aqua-FM4_Edition2 CER_ES4_FM1+FM3_Edition2 CER_ES4_FM1+FM4_Edition2 CER_ES4_PFM+FM1_Edition2 CER_ES4_PFM+FM2_Edition2 CER_ES4_Aqua-FM3_Edition1-CV CER_ES4_Aqua-FM4_Edition1-CV CER_ES4_Terra-FM1_Edition1-CV CER_ES4_Terra-FM2_Edition1-CV. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2005-12-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=2.5 degree; Longitude_Resolution=2.5 degree; Horizontal_Resolution_Range=250 km - < 500 km or approximately 2.5 degrees - < 5.0 degrees; Temporal_Resolution=1 month; Temporal_Resolution_Range=Monthly - < Annual].
CERES ERBE-like Monthly Geographical Averages (ES-4) in HDF (CER_ES4_Aqua-FM4_Edition2)
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A. (Principal Investigator)
The ERBE-like Monthly Geographical Averages (ES-4) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The ES-4 is also produced for combinations of scanner instruments. For each observed 2.5-degree spatial region, the daily average, the hourly average over the month, and the overall monthly average of shortwave and longwave fluxes at the Top-of-the-Atmosphere (TOA) from the CERES ES-9 product are spatially nested up from 2.5-degree regions to 5- and 10-degree regions, to 2.5-, 5-, and 10-degree zonal averages, and to global monthly averages. For each nested area, the albedo and net flux are given. For each region, the daily average flux is estimated from an algorithm that uses the available hourly data, scene identification data, and diurnal models. This algorithm is 'like' the algorithm used for the Earth Radiation Budget Experiment (ERBE). The following CERES ES4 data sets are currently available: CER_ES4_FM1+FM2_Edition1 CER_ES4_PFM+FM1+FM2_Edition1 CER_ES4_PFM+FM1+FM2_Edition2 CER_ES4_PFM+FM1_Edition1 CER_ES4_PFM+FM2_Edition1 CER_ES4_TRMM-PFM_Edition1 CER_ES4_TRMM-PFM_Edition2 CER_ES4_Terra-FM1_Edition1 CER_ES4_Terra-FM2_Edition1 CER_ES4_FM1+FM2_Edition2 CER_ES4_Terra-FM1_Edition2 CER_ES4_Terra-FM2_Edition2 CER_ES4_Aqua-FM3_Edition1 CER_ES4_Aqua-FM4_Edition1 CER_ES4_FM1+FM2+FM3+FM4_Edition1 CER_ES4_Aqua-FM3_Edition2 CER_ES4_Aqua-FM4_Edition2 CER_ES4_FM1+FM3_Edition2 CER_ES4_FM1+FM4_Edition2 CER_ES4_PFM+FM1_Edition2 CER_ES4_PFM+FM2_Edition2 CER_ES4_Aqua-FM3_Edition1-CV CER_ES4_Aqua-FM4_Edition1-CV CER_ES4_Terra-FM1_Edition1-CV CER_ES4_Terra-FM2_Edition1-CV. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2005-03-29] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=2.5 degree; Longitude_Resolution=2.5 degree; Horizontal_Resolution_Range=250 km - < 500 km or approximately 2.5 degrees - < 5.0 degrees; Temporal_Resolution=1 month; Temporal_Resolution_Range=Monthly - < Annual].
CERES ERBE-like Monthly Geographical Averages (ES-4) in HDF (CER_ES4_Aqua-FM4_Edition1-CV)
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A. (Principal Investigator)
The ERBE-like Monthly Geographical Averages (ES-4) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The ES-4 is also produced for combinations of scanner instruments. For each observed 2.5-degree spatial region, the daily average, the hourly average over the month, and the overall monthly average of shortwave and longwave fluxes at the Top-of-the-Atmosphere (TOA) from the CERES ES-9 product are spatially nested up from 2.5-degree regions to 5- and 10-degree regions, to 2.5-, 5-, and 10-degree zonal averages, and to global monthly averages. For each nested area, the albedo and net flux are given. For each region, the daily average flux is estimated from an algorithm that uses the available hourly data, scene identification data, and diurnal models. This algorithm is 'like' the algorithm used for the Earth Radiation Budget Experiment (ERBE). The following CERES ES4 data sets are currently available: CER_ES4_FM1+FM2_Edition1 CER_ES4_PFM+FM1+FM2_Edition1 CER_ES4_PFM+FM1+FM2_Edition2 CER_ES4_PFM+FM1_Edition1 CER_ES4_PFM+FM2_Edition1 CER_ES4_TRMM-PFM_Edition1 CER_ES4_TRMM-PFM_Edition2 CER_ES4_Terra-FM1_Edition1 CER_ES4_Terra-FM2_Edition1 CER_ES4_FM1+FM2_Edition2 CER_ES4_Terra-FM1_Edition2 CER_ES4_Terra-FM2_Edition2 CER_ES4_Aqua-FM3_Edition1 CER_ES4_Aqua-FM4_Edition1 CER_ES4_FM1+FM2+FM3+FM4_Edition1 CER_ES4_Aqua-FM3_Edition2 CER_ES4_Aqua-FM4_Edition2 CER_ES4_FM1+FM3_Edition2 CER_ES4_FM1+FM4_Edition2 CER_ES4_PFM+FM1_Edition2 CER_ES4_PFM+FM2_Edition2 CER_ES4_Aqua-FM3_Edition1-CV CER_ES4_Aqua-FM4_Edition1-CV CER_ES4_Terra-FM1_Edition1-CV CER_ES4_Terra-FM2_Edition1-CV. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2005-03-29] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=2.5 degree; Longitude_Resolution=2.5 degree; Horizontal_Resolution_Range=250 km - < 500 km or approximately 2.5 degrees - < 5.0 degrees; Temporal_Resolution=1 month; Temporal_Resolution_Range=Monthly - < Annual].
CERES ERBE-like Monthly Geographical Averages (ES-4) in HDF (CER_ES4_Terra-FM2_Edition1)
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A. (Principal Investigator)
The ERBE-like Monthly Geographical Averages (ES-4) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The ES-4 is also produced for combinations of scanner instruments. For each observed 2.5-degree spatial region, the daily average, the hourly average over the month, and the overall monthly average of shortwave and longwave fluxes at the Top-of-the-Atmosphere (TOA) from the CERES ES-9 product are spatially nested up from 2.5-degree regions to 5- and 10-degree regions, to 2.5-, 5-, and 10-degree zonal averages, and to global monthly averages. For each nested area, the albedo and net flux are given. For each region, the daily average flux is estimated from an algorithm that uses the available hourly data, scene identification data, and diurnal models. This algorithm is 'like' the algorithm used for the Earth Radiation Budget Experiment (ERBE). The following CERES ES4 data sets are currently available: CER_ES4_FM1+FM2_Edition1 CER_ES4_PFM+FM1+FM2_Edition1 CER_ES4_PFM+FM1+FM2_Edition2 CER_ES4_PFM+FM1_Edition1 CER_ES4_PFM+FM2_Edition1 CER_ES4_TRMM-PFM_Edition1 CER_ES4_TRMM-PFM_Edition2 CER_ES4_Terra-FM1_Edition1 CER_ES4_Terra-FM2_Edition1 CER_ES4_FM1+FM2_Edition2 CER_ES4_Terra-FM1_Edition2 CER_ES4_Terra-FM2_Edition2 CER_ES4_Aqua-FM3_Edition1 CER_ES4_Aqua-FM4_Edition1 CER_ES4_FM1+FM2+FM3+FM4_Edition1 CER_ES4_Aqua-FM3_Edition2 CER_ES4_Aqua-FM4_Edition2 CER_ES4_FM1+FM3_Edition2 CER_ES4_FM1+FM4_Edition2 CER_ES4_PFM+FM1_Edition2 CER_ES4_PFM+FM2_Edition2 CER_ES4_Aqua-FM3_Edition1-CV CER_ES4_Aqua-FM4_Edition1-CV CER_ES4_Terra-FM1_Edition1-CV CER_ES4_Terra-FM2_Edition1-CV. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2005-10-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=2.5 degree; Longitude_Resolution=2.5 degree; Horizontal_Resolution_Range=250 km - < 500 km or approximately 2.5 degrees - < 5.0 degrees; Temporal_Resolution=1 month; Temporal_Resolution_Range=Monthly - < Annual].
CERES ERBE-like Monthly Geographical Averages (ES-4) in HDF (CER_ES4_Terra-FM1_Edition1)
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A. (Principal Investigator)
The ERBE-like Monthly Geographical Averages (ES-4) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The ES-4 is also produced for combinations of scanner instruments. For each observed 2.5-degree spatial region, the daily average, the hourly average over the month, and the overall monthly average of shortwave and longwave fluxes at the Top-of-the-Atmosphere (TOA) from the CERES ES-9 product are spatially nested up from 2.5-degree regions to 5- and 10-degree regions, to 2.5-, 5-, and 10-degree zonal averages, and to global monthly averages. For each nested area, the albedo and net flux are given. For each region, the daily average flux is estimated from an algorithm that uses the available hourly data, scene identification data, and diurnal models. This algorithm is 'like' the algorithm used for the Earth Radiation Budget Experiment (ERBE). The following CERES ES4 data sets are currently available: CER_ES4_FM1+FM2_Edition1 CER_ES4_PFM+FM1+FM2_Edition1 CER_ES4_PFM+FM1+FM2_Edition2 CER_ES4_PFM+FM1_Edition1 CER_ES4_PFM+FM2_Edition1 CER_ES4_TRMM-PFM_Edition1 CER_ES4_TRMM-PFM_Edition2 CER_ES4_Terra-FM1_Edition1 CER_ES4_Terra-FM2_Edition1 CER_ES4_FM1+FM2_Edition2 CER_ES4_Terra-FM1_Edition2 CER_ES4_Terra-FM2_Edition2 CER_ES4_Aqua-FM3_Edition1 CER_ES4_Aqua-FM4_Edition1 CER_ES4_FM1+FM2+FM3+FM4_Edition1 CER_ES4_Aqua-FM3_Edition2 CER_ES4_Aqua-FM4_Edition2 CER_ES4_FM1+FM3_Edition2 CER_ES4_FM1+FM4_Edition2 CER_ES4_PFM+FM1_Edition2 CER_ES4_PFM+FM2_Edition2 CER_ES4_Aqua-FM3_Edition1-CV CER_ES4_Aqua-FM4_Edition1-CV CER_ES4_Terra-FM1_Edition1-CV CER_ES4_Terra-FM2_Edition1-CV. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2005-10-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=2.5 degree; Longitude_Resolution=2.5 degree; Horizontal_Resolution_Range=250 km - < 500 km or approximately 2.5 degrees - < 5.0 degrees; Temporal_Resolution=1 month; Temporal_Resolution_Range=Monthly - < Annual].
CERES ERBE-like Monthly Geographical Averages (ES-4) in HDF (CER_ES4_PFM+FM2_Edition1)
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A. (Principal Investigator)
The ERBE-like Monthly Geographical Averages (ES-4) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The ES-4 is also produced for combinations of scanner instruments. For each observed 2.5-degree spatial region, the daily average, the hourly average over the month, and the overall monthly average of shortwave and longwave fluxes at the Top-of-the-Atmosphere (TOA) from the CERES ES-9 product are spatially nested up from 2.5-degree regions to 5- and 10-degree regions, to 2.5-, 5-, and 10-degree zonal averages, and to global monthly averages. For each nested area, the albedo and net flux are given. For each region, the daily average flux is estimated from an algorithm that uses the available hourly data, scene identification data, and diurnal models. This algorithm is 'like' the algorithm used for the Earth Radiation Budget Experiment (ERBE). The following CERES ES4 data sets are currently available: CER_ES4_FM1+FM2_Edition1 CER_ES4_PFM+FM1+FM2_Edition1 CER_ES4_PFM+FM1+FM2_Edition2 CER_ES4_PFM+FM1_Edition1 CER_ES4_PFM+FM2_Edition1 CER_ES4_TRMM-PFM_Edition1 CER_ES4_TRMM-PFM_Edition2 CER_ES4_Terra-FM1_Edition1 CER_ES4_Terra-FM2_Edition1 CER_ES4_FM1+FM2_Edition2 CER_ES4_Terra-FM1_Edition2 CER_ES4_Terra-FM2_Edition2 CER_ES4_Aqua-FM3_Edition1 CER_ES4_Aqua-FM4_Edition1 CER_ES4_FM1+FM2+FM3+FM4_Edition1 CER_ES4_Aqua-FM3_Edition2 CER_ES4_Aqua-FM4_Edition2 CER_ES4_FM1+FM3_Edition2 CER_ES4_FM1+FM4_Edition2 CER_ES4_PFM+FM1_Edition2 CER_ES4_PFM+FM2_Edition2 CER_ES4_Aqua-FM3_Edition1-CV CER_ES4_Aqua-FM4_Edition1-CV CER_ES4_Terra-FM1_Edition1-CV CER_ES4_Terra-FM2_Edition1-CV. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2000-03-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=2.5 degree; Longitude_Resolution=2.5 degree; Horizontal_Resolution_Range=250 km - < 500 km or approximately 2.5 degrees - < 5.0 degrees; Temporal_Resolution=1 month; Temporal_Resolution_Range=Monthly - < Annual].
CERES ERBE-like Monthly Geographical Averages (ES-4) in HDF (CER_ES4_FM1+FM2_Edition2)
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A. (Principal Investigator)
The ERBE-like Monthly Geographical Averages (ES-4) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The ES-4 is also produced for combinations of scanner instruments. For each observed 2.5-degree spatial region, the daily average, the hourly average over the month, and the overall monthly average of shortwave and longwave fluxes at the Top-of-the-Atmosphere (TOA) from the CERES ES-9 product are spatially nested up from 2.5-degree regions to 5- and 10-degree regions, to 2.5-, 5-, and 10-degree zonal averages, and to global monthly averages. For each nested area, the albedo and net flux are given. For each region, the daily average flux is estimated from an algorithm that uses the available hourly data, scene identification data, and diurnal models. This algorithm is 'like' the algorithm used for the Earth Radiation Budget Experiment (ERBE). The following CERES ES4 data sets are currently available: CER_ES4_FM1+FM2_Edition1 CER_ES4_PFM+FM1+FM2_Edition1 CER_ES4_PFM+FM1+FM2_Edition2 CER_ES4_PFM+FM1_Edition1 CER_ES4_PFM+FM2_Edition1 CER_ES4_TRMM-PFM_Edition1 CER_ES4_TRMM-PFM_Edition2 CER_ES4_Terra-FM1_Edition1 CER_ES4_Terra-FM2_Edition1 CER_ES4_FM1+FM2_Edition2 CER_ES4_Terra-FM1_Edition2 CER_ES4_Terra-FM2_Edition2 CER_ES4_Aqua-FM3_Edition1 CER_ES4_Aqua-FM4_Edition1 CER_ES4_FM1+FM2+FM3+FM4_Edition1 CER_ES4_Aqua-FM3_Edition2 CER_ES4_Aqua-FM4_Edition2 CER_ES4_FM1+FM3_Edition2 CER_ES4_FM1+FM4_Edition2 CER_ES4_PFM+FM1_Edition2 CER_ES4_PFM+FM2_Edition2 CER_ES4_Aqua-FM3_Edition1-CV CER_ES4_Aqua-FM4_Edition1-CV CER_ES4_Terra-FM1_Edition1-CV CER_ES4_Terra-FM2_Edition1-CV. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2002-12-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=2.5 degree; Longitude_Resolution=2.5 degree; Horizontal_Resolution_Range=250 km - < 500 km or approximately 2.5 degrees - < 5.0 degrees; Temporal_Resolution=1 month; Temporal_Resolution_Range=Monthly - < Annual].
CERES ERBE-like Monthly Geographical Averages (ES-4) in HDF (CER_ES4_FM1+FM3_Edition2)
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A. (Principal Investigator)
The ERBE-like Monthly Geographical Averages (ES-4) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The ES-4 is also produced for combinations of scanner instruments. For each observed 2.5-degree spatial region, the daily average, the hourly average over the month, and the overall monthly average of shortwave and longwave fluxes at the Top-of-the-Atmosphere (TOA) from the CERES ES-9 product are spatially nested up from 2.5-degree regions to 5- and 10-degree regions, to 2.5-, 5-, and 10-degree zonal averages, and to global monthly averages. For each nested area, the albedo and net flux are given. For each region, the daily average flux is estimated from an algorithm that uses the available hourly data, scene identification data, and diurnal models. This algorithm is 'like' the algorithm used for the Earth Radiation Budget Experiment (ERBE). The following CERES ES4 data sets are currently available: CER_ES4_FM1+FM2_Edition1 CER_ES4_PFM+FM1+FM2_Edition1 CER_ES4_PFM+FM1+FM2_Edition2 CER_ES4_PFM+FM1_Edition1 CER_ES4_PFM+FM2_Edition1 CER_ES4_TRMM-PFM_Edition1 CER_ES4_TRMM-PFM_Edition2 CER_ES4_Terra-FM1_Edition1 CER_ES4_Terra-FM2_Edition1 CER_ES4_FM1+FM2_Edition2 CER_ES4_Terra-FM1_Edition2 CER_ES4_Terra-FM2_Edition2 CER_ES4_Aqua-FM3_Edition1 CER_ES4_Aqua-FM4_Edition1 CER_ES4_FM1+FM2+FM3+FM4_Edition1 CER_ES4_Aqua-FM3_Edition2 CER_ES4_Aqua-FM4_Edition2 CER_ES4_FM1+FM3_Edition2 CER_ES4_FM1+FM4_Edition2 CER_ES4_PFM+FM1_Edition2 CER_ES4_PFM+FM2_Edition2 CER_ES4_Aqua-FM3_Edition1-CV CER_ES4_Aqua-FM4_Edition1-CV CER_ES4_Terra-FM1_Edition1-CV CER_ES4_Terra-FM2_Edition1-CV. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2005-12-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=2.5 degree; Longitude_Resolution=2.5 degree; Horizontal_Resolution_Range=250 km - < 500 km or approximately 2.5 degrees - < 5.0 degrees; Temporal_Resolution=1 month; Temporal_Resolution_Range=Monthly - < Annual].
Remote sensing, land use, and demography - A look at people through their effects on the land
NASA Technical Reports Server (NTRS)
Paul, C. K.; Landini, A. J.
1976-01-01
Relevant causes of failure by the remote sensing community in the urban scene are analyzed. The reasons for the insignificant role of remote sensing in urban land use data collection are called the law of realism, the incompatibility of remote sensing and urban management system data formats is termed the law of nominal/ordinal systems compatibility, and the land use/population correlation dilemma is referred to as the law of missing persons. The study summarizes the three laws of urban land use information for which violations, avoidance, or ignorance have caused the decline of present remote sensing research. Particular attention is given to the rationale for urban land use information and for remote sensing. It is shown that remote sensing of urban land uses compatible with the three laws can be effectively developed by realizing the 10 percent contribution of remote sensing to urban land use planning data collection.
NASA Technical Reports Server (NTRS)
1991-01-01
The proceedings contain papers discussing the state-of-the-art exploration, engineering, and environmental applications of geologic remote sensing, along with the research and development activities aimed at increasing the future capabilities of this technology. The following topics are addressed: spectral geology, U.S. and international hydrocarbon exporation, radar and thermal infrared remote sensing, engineering geology and hydrogeology, mineral exploration, remote sensing for marine and environmental applications, image processing and analysis, geobotanical remote sensing, and data integration and geographic information systems. Particular attention is given to spectral alteration mapping with imaging spectrometers, mapping the coastal plain of the Congo with airborne digital radar, applications of remote sensing techniques to the assessment of dam safety, remote sensing of ferric iron minerals as guides for gold exploration, principal component analysis for alteration mappping, and the application of remote sensing techniques for gold prospecting in the north Fujian province.
Methods of training the graduate level and professional geologist in remote sensing technology
NASA Technical Reports Server (NTRS)
Kolm, K. E.
1981-01-01
Requirements for a basic course in remote sensing to accommodate the needs of the graduate level and professional geologist are described. The course should stress the general topics of basic remote sensing theory, the theory and data types relating to different remote sensing systems, an introduction to the basic concepts of computer image processing and analysis, the characteristics of different data types, the development of methods for geological interpretations, the integration of all scales and data types of remote sensing in a given study, the integration of other data bases (geophysical and geochemical) into a remote sensing study, and geological remote sensing applications. The laboratories should stress hands on experience to reinforce the concepts and procedures presented in the lecture. The geologist should then be encouraged to pursue a second course in computer image processing and analysis of remotely sensed data.
Remote sensing of Earth terrain
NASA Technical Reports Server (NTRS)
Kong, J. A.
1993-01-01
Progress report on remote sensing of Earth terrain covering the period from Jan. to June 1993 is presented. Areas of research include: radiative transfer model for active and passive remote sensing of vegetation canopy; polarimetric thermal emission from rough ocean surfaces; polarimetric passive remote sensing of ocean wind vectors; polarimetric thermal emission from periodic water surfaces; layer model with tandom spheriodal scatterers for remote sensing of vegetation canopy; application of theoretical models to active and passive remote sensing of saline ice; radiative transfer theory for polarimetric remote sensing of pine forest; scattering of electromagnetic waves from a dense medium consisting of correlated mie scatterers with size distributions and applications to dry snow; variance of phase fluctuations of waves propagating through a random medium; polarimetric signatures of a canopy of dielectric cylinders based on first and second order vector radiative transfer theory; branching model for vegetation; polarimetric passive remote sensing of periodic surfaces; composite volume and surface scattering model; and radar image classification.
Remote sensing by satellite - Technical and operational implications for international cooperation
NASA Technical Reports Server (NTRS)
Doyle, S. E.
1976-01-01
International cooperation in the U.S. Space Program is discussed and related to the NASA program for remote sensing of the earth. Satellite remote sensing techniques are considered along with the selection of the best sensors and wavelength bands. The technology of remote sensing satellites is considered with emphasis on the Landsat system configuration. Future aspects of remote sensing satellites are considered.
Remote sensing in operational range management programs in Western Canada
NASA Technical Reports Server (NTRS)
Thompson, M. D.
1977-01-01
A pilot program carried out in Western Canada to test remote sensing under semi-operational conditions and display its applicability to operational range management programs was described. Four agencies were involved in the program, two in Alberta and two in Manitoba. Each had different objectives and needs for remote sensing within its range management programs, and each was generally unfamiliar with remote sensing techniques and their applications. Personnel with experience and expertise in the remote sensing and range management fields worked with the agency personnel through every phase of the pilot program. Results indicate that these agencies have found remote sensing to be a cost effective tool and will begin to utilize remote sensing in their operational work during ensuing seasons.
PROCEEDINGS OF THE FOURTH SYMPOSIUM ON REMOTE SENSING OF ENVIRONMENT; 12, 13, 14 APRIL 1966.
The symposium was conducted as part of a continuing program investigating the field of remote sensing , its potential in scientific research and...information on all aspects of remote sensing , with special emphasis on such topics as needs for remotely sensed data, data management, and the special... remote sensing programs, data acquisition, data analysis and application, and equipment design, were presented. (Author)
Remote sensing and image interpretation
NASA Technical Reports Server (NTRS)
Lillesand, T. M.; Kiefer, R. W. (Principal Investigator)
1979-01-01
A textbook prepared primarily for use in introductory courses in remote sensing is presented. Topics covered include concepts and foundations of remote sensing; elements of photographic systems; introduction to airphoto interpretation; airphoto interpretation for terrain evaluation; photogrammetry; radiometric characteristics of aerial photographs; aerial thermography; multispectral scanning and spectral pattern recognition; microwave sensing; and remote sensing from space.
CERES ERBE-like Monthly Regional Averages (ES-9) in HDF (CER_ES9_Aqua-FM3_Edition1)
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A. (Principal Investigator)
The ERBE-like Monthly Regional Averages (ES-9) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The ES-9 is also produced for combinations of scanner instruments. All instantaneous shortwave and longwave fluxes at the Top-of-the-Atmosphere (TOA) from the CERES ES-8 product for a month are sorted by 2.5-degree spatial regions, by day number, and by the local hour of observation. The mean of the instantaneous fluxes for a given region-day-hour bin is determined and recorded on the ES-9 along with other flux statistics and scene information. For each region, the daily average flux is estimated from an algorithm that uses the available hourly data, scene identification data, and diurnal models. This algorithm is 'like' the algorithm used for the Earth Radiation Budget Experiment (ERBE). The ES-9 also contains hourly average fluxes for the month and an overall monthly average for each region. These average fluxes are given for both clear-sky and total-sky scenes. The following CERES ES9 data sets are currently available: CER_ES9_FM1+FM2_Edition1 CER_ES9_PFM+FM1+FM2_Edition1 CER_ES9_PFM+FM1+FM2_Edition2 CER_ES9_PFM+FM1_Edition1 CER_ES9_PFM+FM2_Edition1 CER_ES9_PFM+FM1_Edition2 CER_ES9_PFM+FM2_Edition2 CER_ES9_TRMM-PFM_Edition1 CER_ES9_TRMM-PFM_Edition2 CER_ES9_Terra-FM1_Edition1 CER_ES9_Terra-FM2_Edition1 CER_ES9_FM1+FM2_Edition2 CER_ES9_Terra-FM1_Edition2 CER_ES9_Terra-FM2_Edition2 CER_ES9_Aqua-FM3_Edition1 CER_ES9_Aqua-FM4_Edition1 CER_ES9_FM1+FM2+FM3+FM4_Edition1 CER_ES9_Aqua-FM3_Edition2 CER_ES9_Aqua-FM4_Edition2 CER_ES9_FM1+FM3_Edition2 CER_ES9_FM1+FM4_Edition2 CER_ES9_Aqua-FM3_Edition1-CV CER_ES9_Aqua-FM4_Edition1-CV CER_ES9_Terra-FM1_Edition1-CV CER_ES9_Terra-FM2_Edition1-CV. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2005-10-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=2.5 degree; Longitude_Resolution=2.5 degree; Horizontal_Resolution_Range=250 km - < 500 km or approximately 2.5 degrees - < 5.0 degrees; Temporal_Resolution=hourly, daily, monthly; Temporal_Resolution_Range=Hourly - < Daily, Daily - < Weekly, Monthly - < Annual].
CERES ERBE-like Monthly Regional Averages (ES-9) in HDF (CER_ES9_FM1+FM4_Edition2)
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A. (Principal Investigator)
The ERBE-like Monthly Regional Averages (ES-9) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The ES-9 is also produced for combinations of scanner instruments. All instantaneous shortwave and longwave fluxes at the Top-of-the-Atmosphere (TOA) from the CERES ES-8 product for a month are sorted by 2.5-degree spatial regions, by day number, and by the local hour of observation. The mean of the instantaneous fluxes for a given region-day-hour bin is determined and recorded on the ES-9 along with other flux statistics and scene information. For each region, the daily average flux is estimated from an algorithm that uses the available hourly data, scene identification data, and diurnal models. This algorithm is 'like' the algorithm used for the Earth Radiation Budget Experiment (ERBE). The ES-9 also contains hourly average fluxes for the month and an overall monthly average for each region. These average fluxes are given for both clear-sky and total-sky scenes. The following CERES ES9 data sets are currently available: CER_ES9_FM1+FM2_Edition1 CER_ES9_PFM+FM1+FM2_Edition1 CER_ES9_PFM+FM1+FM2_Edition2 CER_ES9_PFM+FM1_Edition1 CER_ES9_PFM+FM2_Edition1 CER_ES9_PFM+FM1_Edition2 CER_ES9_PFM+FM2_Edition2 CER_ES9_TRMM-PFM_Edition1 CER_ES9_TRMM-PFM_Edition2 CER_ES9_Terra-FM1_Edition1 CER_ES9_Terra-FM2_Edition1 CER_ES9_FM1+FM2_Edition2 CER_ES9_Terra-FM1_Edition2 CER_ES9_Terra-FM2_Edition2 CER_ES9_Aqua-FM3_Edition1 CER_ES9_Aqua-FM4_Edition1 CER_ES9_FM1+FM2+FM3+FM4_Edition1 CER_ES9_Aqua-FM3_Edition2 CER_ES9_Aqua-FM4_Edition2 CER_ES9_FM1+FM3_Edition2 CER_ES9_FM1+FM4_Edition2 CER_ES9_Aqua-FM3_Edition1-CV CER_ES9_Aqua-FM4_Edition1-CV CER_ES9_Terra-FM1_Edition1-CV CER_ES9_Terra-FM2_Edition1-CV. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2005-03-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=2.5 degree; Longitude_Resolution=2.5 degree; Horizontal_Resolution_Range=250 km - < 500 km or approximately 2.5 degrees - < 5.0 degrees; Temporal_Resolution=hourly, daily, monthly; Temporal_Resolution_Range=Hourly - < Daily, Daily - < Weekly, Monthly - < Annual].
CERES ERBE-like Monthly Regional Averages (ES-9) in HDF ( CER_ES9_Aqua-FM4_Edition1-CV)
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A. (Principal Investigator)
The ERBE-like Monthly Regional Averages (ES-9) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The ES-9 is also produced for combinations of scanner instruments. All instantaneous shortwave and longwave fluxes at the Top-of-the-Atmosphere (TOA) from the CERES ES-8 product for a month are sorted by 2.5-degree spatial regions, by day number, and by the local hour of observation. The mean of the instantaneous fluxes for a given region-day-hour bin is determined and recorded on the ES-9 along with other flux statistics and scene information. For each region, the daily average flux is estimated from an algorithm that uses the available hourly data, scene identification data, and diurnal models. This algorithm is 'like' the algorithm used for the Earth Radiation Budget Experiment (ERBE). The ES-9 also contains hourly average fluxes for the month and an overall monthly average for each region. These average fluxes are given for both clear-sky and total-sky scenes. The following CERES ES9 data sets are currently available: CER_ES9_FM1+FM2_Edition1 CER_ES9_PFM+FM1+FM2_Edition1 CER_ES9_PFM+FM1+FM2_Edition2 CER_ES9_PFM+FM1_Edition1 CER_ES9_PFM+FM2_Edition1 CER_ES9_PFM+FM1_Edition2 CER_ES9_PFM+FM2_Edition2 CER_ES9_TRMM-PFM_Edition1 CER_ES9_TRMM-PFM_Edition2 CER_ES9_Terra-FM1_Edition1 CER_ES9_Terra-FM2_Edition1 CER_ES9_FM1+FM2_Edition2 CER_ES9_Terra-FM1_Edition2 CER_ES9_Terra-FM2_Edition2 CER_ES9_Aqua-FM3_Edition1 CER_ES9_Aqua-FM4_Edition1 CER_ES9_FM1+FM2+FM3+FM4_Edition1 CER_ES9_Aqua-FM3_Edition2 CER_ES9_Aqua-FM4_Edition2 CER_ES9_FM1+FM3_Edition2 CER_ES9_FM1+FM4_Edition2 CER_ES9_Aqua-FM3_Edition1-CV CER_ES9_Aqua-FM4_Edition1-CV CER_ES9_Terra-FM1_Edition1-CV CER_ES9_Terra-FM2_Edition1-CV. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2005-03-29] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=2.5 degree; Longitude_Resolution=2.5 degree; Horizontal_Resolution_Range=250 km - < 500 km or approximately 2.5 degrees - < 5.0 degrees; Temporal_Resolution=hourly, daily, monthly; Temporal_Resolution_Range=Hourly - < Daily, Daily - < Weekly, Monthly - < Annual].
CERES ERBE-like Monthly Regional Averages (ES-9) in HDF ( CER_ES9_Terra-FM1_Edition1-CV)
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A. (Principal Investigator)
The ERBE-like Monthly Regional Averages (ES-9) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The ES-9 is also produced for combinations of scanner instruments. All instantaneous shortwave and longwave fluxes at the Top-of-the-Atmosphere (TOA) from the CERES ES-8 product for a month are sorted by 2.5-degree spatial regions, by day number, and by the local hour of observation. The mean of the instantaneous fluxes for a given region-day-hour bin is determined and recorded on the ES-9 along with other flux statistics and scene information. For each region, the daily average flux is estimated from an algorithm that uses the available hourly data, scene identification data, and diurnal models. This algorithm is 'like' the algorithm used for the Earth Radiation Budget Experiment (ERBE). The ES-9 also contains hourly average fluxes for the month and an overall monthly average for each region. These average fluxes are given for both clear-sky and total-sky scenes. The following CERES ES9 data sets are currently available: CER_ES9_FM1+FM2_Edition1 CER_ES9_PFM+FM1+FM2_Edition1 CER_ES9_PFM+FM1+FM2_Edition2 CER_ES9_PFM+FM1_Edition1 CER_ES9_PFM+FM2_Edition1 CER_ES9_PFM+FM1_Edition2 CER_ES9_PFM+FM2_Edition2 CER_ES9_TRMM-PFM_Edition1 CER_ES9_TRMM-PFM_Edition2 CER_ES9_Terra-FM1_Edition1 CER_ES9_Terra-FM2_Edition1 CER_ES9_FM1+FM2_Edition2 CER_ES9_Terra-FM1_Edition2 CER_ES9_Terra-FM2_Edition2 CER_ES9_Aqua-FM3_Edition1 CER_ES9_Aqua-FM4_Edition1 CER_ES9_FM1+FM2+FM3+FM4_Edition1 CER_ES9_Aqua-FM3_Edition2 CER_ES9_Aqua-FM4_Edition2 CER_ES9_FM1+FM3_Edition2 CER_ES9_FM1+FM4_Edition2 CER_ES9_Aqua-FM3_Edition1-CV CER_ES9_Aqua-FM4_Edition1-CV CER_ES9_Terra-FM1_Edition1-CV CER_ES9_Terra-FM2_Edition1-CV. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2006-09-30] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=2.5 degree; Longitude_Resolution=2.5 degree; Horizontal_Resolution_Range=250 km - < 500 km or approximately 2.5 degrees - < 5.0 degrees; Temporal_Resolution=hourly, daily, monthly; Temporal_Resolution_Range=Hourly - < Daily, Daily - < Weekly, Monthly - < Annual].
CERES ERBE-like Monthly Regional Averages (ES-9) in HDF (CER_ES9_TRMM-PFM_Edition1)
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A. (Principal Investigator)
The ERBE-like Monthly Regional Averages (ES-9) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The ES-9 is also produced for combinations of scanner instruments. All instantaneous shortwave and longwave fluxes at the Top-of-the-Atmosphere (TOA) from the CERES ES-8 product for a month are sorted by 2.5-degree spatial regions, by day number, and by the local hour of observation. The mean of the instantaneous fluxes for a given region-day-hour bin is determined and recorded on the ES-9 along with other flux statistics and scene information. For each region, the daily average flux is estimated from an algorithm that uses the available hourly data, scene identification data, and diurnal models. This algorithm is 'like' the algorithm used for the Earth Radiation Budget Experiment (ERBE). The ES-9 also contains hourly average fluxes for the month and an overall monthly average for each region. These average fluxes are given for both clear-sky and total-sky scenes. The following CERES ES9 data sets are currently available: CER_ES9_FM1+FM2_Edition1 CER_ES9_PFM+FM1+FM2_Edition1 CER_ES9_PFM+FM1+FM2_Edition2 CER_ES9_PFM+FM1_Edition1 CER_ES9_PFM+FM2_Edition1 CER_ES9_PFM+FM1_Edition2 CER_ES9_PFM+FM2_Edition2 CER_ES9_TRMM-PFM_Edition1 CER_ES9_TRMM-PFM_Edition2 CER_ES9_Terra-FM1_Edition1 CER_ES9_Terra-FM2_Edition1 CER_ES9_FM1+FM2_Edition2 CER_ES9_Terra-FM1_Edition2 CER_ES9_Terra-FM2_Edition2 CER_ES9_Aqua-FM3_Edition1 CER_ES9_Aqua-FM4_Edition1 CER_ES9_FM1+FM2+FM3+FM4_Edition1 CER_ES9_Aqua-FM3_Edition2 CER_ES9_Aqua-FM4_Edition2 CER_ES9_FM1+FM3_Edition2 CER_ES9_FM1+FM4_Edition2 CER_ES9_Aqua-FM3_Edition1-CV CER_ES9_Aqua-FM4_Edition1-CV CER_ES9_Terra-FM1_Edition1-CV CER_ES9_Terra-FM2_Edition1-CV. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=1998-08-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=2.5 degree; Longitude_Resolution=2.5 degree; Horizontal_Resolution_Range=250 km - < 500 km or approximately 2.5 degrees - < 5.0 degrees; Temporal_Resolution=hourly, daily, monthly; Temporal_Resolution_Range=Hourly - < Daily, Daily - < Weekly, Monthly - < Annual].
CERES ERBE-like Monthly Regional Averages (ES-9) in HDF (CER_ES9_Aqua-FM4_Edition1)
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A. (Principal Investigator)
The ERBE-like Monthly Regional Averages (ES-9) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The ES-9 is also produced for combinations of scanner instruments. All instantaneous shortwave and longwave fluxes at the Top-of-the-Atmosphere (TOA) from the CERES ES-8 product for a month are sorted by 2.5-degree spatial regions, by day number, and by the local hour of observation. The mean of the instantaneous fluxes for a given region-day-hour bin is determined and recorded on the ES-9 along with other flux statistics and scene information. For each region, the daily average flux is estimated from an algorithm that uses the available hourly data, scene identification data, and diurnal models. This algorithm is 'like' the algorithm used for the Earth Radiation Budget Experiment (ERBE). The ES-9 also contains hourly average fluxes for the month and an overall monthly average for each region. These average fluxes are given for both clear-sky and total-sky scenes. The following CERES ES9 data sets are currently available: CER_ES9_FM1+FM2_Edition1 CER_ES9_PFM+FM1+FM2_Edition1 CER_ES9_PFM+FM1+FM2_Edition2 CER_ES9_PFM+FM1_Edition1 CER_ES9_PFM+FM2_Edition1 CER_ES9_PFM+FM1_Edition2 CER_ES9_PFM+FM2_Edition2 CER_ES9_TRMM-PFM_Edition1 CER_ES9_TRMM-PFM_Edition2 CER_ES9_Terra-FM1_Edition1 CER_ES9_Terra-FM2_Edition1 CER_ES9_FM1+FM2_Edition2 CER_ES9_Terra-FM1_Edition2 CER_ES9_Terra-FM2_Edition2 CER_ES9_Aqua-FM3_Edition1 CER_ES9_Aqua-FM4_Edition1 CER_ES9_FM1+FM2+FM3+FM4_Edition1 CER_ES9_Aqua-FM3_Edition2 CER_ES9_Aqua-FM4_Edition2 CER_ES9_FM1+FM3_Edition2 CER_ES9_FM1+FM4_Edition2 CER_ES9_Aqua-FM3_Edition1-CV CER_ES9_Aqua-FM4_Edition1-CV CER_ES9_Terra-FM1_Edition1-CV CER_ES9_Terra-FM2_Edition1-CV. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2005-03-29] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=2.5 degree; Longitude_Resolution=2.5 degree; Horizontal_Resolution_Range=250 km - < 500 km or approximately 2.5 degrees - < 5.0 degrees; Temporal_Resolution=hourly, daily, monthly; Temporal_Resolution_Range=Hourly - < Daily, Daily - < Weekly, Monthly - < Annual].
CERES ERBE-like Monthly Regional Averages (ES-9) in HDF (CER_ES9_PFM+FM2_Edition1)
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A. (Principal Investigator)
The ERBE-like Monthly Regional Averages (ES-9) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The ES-9 is also produced for combinations of scanner instruments. All instantaneous shortwave and longwave fluxes at the Top-of-the-Atmosphere (TOA) from the CERES ES-8 product for a month are sorted by 2.5-degree spatial regions, by day number, and by the local hour of observation. The mean of the instantaneous fluxes for a given region-day-hour bin is determined and recorded on the ES-9 along with other flux statistics and scene information. For each region, the daily average flux is estimated from an algorithm that uses the available hourly data, scene identification data, and diurnal models. This algorithm is 'like' the algorithm used for the Earth Radiation Budget Experiment (ERBE). The ES-9 also contains hourly average fluxes for the month and an overall monthly average for each region. These average fluxes are given for both clear-sky and total-sky scenes. The following CERES ES9 data sets are currently available: CER_ES9_FM1+FM2_Edition1 CER_ES9_PFM+FM1+FM2_Edition1 CER_ES9_PFM+FM1+FM2_Edition2 CER_ES9_PFM+FM1_Edition1 CER_ES9_PFM+FM2_Edition1 CER_ES9_PFM+FM1_Edition2 CER_ES9_PFM+FM2_Edition2 CER_ES9_TRMM-PFM_Edition1 CER_ES9_TRMM-PFM_Edition2 CER_ES9_Terra-FM1_Edition1 CER_ES9_Terra-FM2_Edition1 CER_ES9_FM1+FM2_Edition2 CER_ES9_Terra-FM1_Edition2 CER_ES9_Terra-FM2_Edition2 CER_ES9_Aqua-FM3_Edition1 CER_ES9_Aqua-FM4_Edition1 CER_ES9_FM1+FM2+FM3+FM4_Edition1 CER_ES9_Aqua-FM3_Edition2 CER_ES9_Aqua-FM4_Edition2 CER_ES9_FM1+FM3_Edition2 CER_ES9_FM1+FM4_Edition2 CER_ES9_Aqua-FM3_Edition1-CV CER_ES9_Aqua-FM4_Edition1-CV CER_ES9_Terra-FM1_Edition1-CV CER_ES9_Terra-FM2_Edition1-CV. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2000-03-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=2.5 degree; Longitude_Resolution=2.5 degree; Horizontal_Resolution_Range=250 km - < 500 km or approximately 2.5 degrees - < 5.0 degrees; Temporal_Resolution=hourly, daily, monthly; Temporal_Resolution_Range=Hourly - < Daily, Daily - < Weekly, Monthly - < Annual].
CERES ERBE-like Monthly Regional Averages (ES-9) in HDF (CER_ES9_Terra-FM1_Edition1)
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A. (Principal Investigator)
The ERBE-like Monthly Regional Averages (ES-9) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The ES-9 is also produced for combinations of scanner instruments. All instantaneous shortwave and longwave fluxes at the Top-of-the-Atmosphere (TOA) from the CERES ES-8 product for a month are sorted by 2.5-degree spatial regions, by day number, and by the local hour of observation. The mean of the instantaneous fluxes for a given region-day-hour bin is determined and recorded on the ES-9 along with other flux statistics and scene information. For each region, the daily average flux is estimated from an algorithm that uses the available hourly data, scene identification data, and diurnal models. This algorithm is 'like' the algorithm used for the Earth Radiation Budget Experiment (ERBE). The ES-9 also contains hourly average fluxes for the month and an overall monthly average for each region. These average fluxes are given for both clear-sky and total-sky scenes. The following CERES ES9 data sets are currently available: CER_ES9_FM1+FM2_Edition1 CER_ES9_PFM+FM1+FM2_Edition1 CER_ES9_PFM+FM1+FM2_Edition2 CER_ES9_PFM+FM1_Edition1 CER_ES9_PFM+FM2_Edition1 CER_ES9_PFM+FM1_Edition2 CER_ES9_PFM+FM2_Edition2 CER_ES9_TRMM-PFM_Edition1 CER_ES9_TRMM-PFM_Edition2 CER_ES9_Terra-FM1_Edition1 CER_ES9_Terra-FM2_Edition1 CER_ES9_FM1+FM2_Edition2 CER_ES9_Terra-FM1_Edition2 CER_ES9_Terra-FM2_Edition2 CER_ES9_Aqua-FM3_Edition1 CER_ES9_Aqua-FM4_Edition1 CER_ES9_FM1+FM2+FM3+FM4_Edition1 CER_ES9_Aqua-FM3_Edition2 CER_ES9_Aqua-FM4_Edition2 CER_ES9_FM1+FM3_Edition2 CER_ES9_FM1+FM4_Edition2 CER_ES9_Aqua-FM3_Edition1-CV CER_ES9_Aqua-FM4_Edition1-CV CER_ES9_Terra-FM1_Edition1-CV CER_ES9_Terra-FM2_Edition1-CV. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2005-10-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=2.5 degree; Longitude_Resolution=2.5 degree; Horizontal_Resolution_Range=250 km - < 500 km or approximately 2.5 degrees - < 5.0 degrees; Temporal_Resolution=hourly, daily, monthly; Temporal_Resolution_Range=Hourly - < Daily, Daily - < Weekly, Monthly - < Annual].
CERES ERBE-like Monthly Regional Averages (ES-9) in HDF (CERES:CER_ES9_PFM+FM1_Edition2)
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A. (Principal Investigator)
The ERBE-like Monthly Regional Averages (ES-9) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The ES-9 is also produced for combinations of scanner instruments. All instantaneous shortwave and longwave fluxes at the Top-of-the-Atmosphere (TOA) from the CERES ES-8 product for a month are sorted by 2.5-degree spatial regions, by day number, and by the local hour of observation. The mean of the instantaneous fluxes for a given region-day-hour bin is determined and recorded on the ES-9 along with other flux statistics and scene information. For each region, the daily average flux is estimated from an algorithm that uses the available hourly data, scene identification data, and diurnal models. This algorithm is 'like' the algorithm used for the Earth Radiation Budget Experiment (ERBE). The ES-9 also contains hourly average fluxes for the month and an overall monthly average for each region. These average fluxes are given for both clear-sky and total-sky scenes. The following CERES ES9 data sets are currently available: CER_ES9_FM1+FM2_Edition1 CER_ES9_PFM+FM1+FM2_Edition1 CER_ES9_PFM+FM1+FM2_Edition2 CER_ES9_PFM+FM1_Edition1 CER_ES9_PFM+FM2_Edition1 CER_ES9_PFM+FM1_Edition2 CER_ES9_PFM+FM2_Edition2 CER_ES9_TRMM-PFM_Edition1 CER_ES9_TRMM-PFM_Edition2 CER_ES9_Terra-FM1_Edition1 CER_ES9_Terra-FM2_Edition1 CER_ES9_FM1+FM2_Edition2 CER_ES9_Terra-FM1_Edition2 CER_ES9_Terra-FM2_Edition2 CER_ES9_Aqua-FM3_Edition1 CER_ES9_Aqua-FM4_Edition1 CER_ES9_FM1+FM2+FM3+FM4_Edition1 CER_ES9_Aqua-FM3_Edition2 CER_ES9_Aqua-FM4_Edition2 CER_ES9_FM1+FM3_Edition2 CER_ES9_FM1+FM4_Edition2 CER_ES9_Aqua-FM3_Edition1-CV CER_ES9_Aqua-FM4_Edition1-CV CER_ES9_Terra-FM1_Edition1-CV CER_ES9_Terra-FM2_Edition1-CV. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2000-03-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=2.5 degree; Longitude_Resolution=2.5 degree; Horizontal_Resolution_Range=250 km - < 500 km or approximately 2.5 degrees - < 5.0 degrees; Temporal_Resolution=hourly, daily, monthly; Temporal_Resolution_Range=Hourly - < Daily, Daily - < Weekly, Monthly - < Annual].
CERES ERBE-like Monthly Regional Averages (ES-9) in HDF (CER_ES9_Aqua-FM4_Edition2)
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A. (Principal Investigator)
The ERBE-like Monthly Regional Averages (ES-9) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The ES-9 is also produced for combinations of scanner instruments. All instantaneous shortwave and longwave fluxes at the Top-of-the-Atmosphere (TOA) from the CERES ES-8 product for a month are sorted by 2.5-degree spatial regions, by day number, and by the local hour of observation. The mean of the instantaneous fluxes for a given region-day-hour bin is determined and recorded on the ES-9 along with other flux statistics and scene information. For each region, the daily average flux is estimated from an algorithm that uses the available hourly data, scene identification data, and diurnal models. This algorithm is 'like' the algorithm used for the Earth Radiation Budget Experiment (ERBE). The ES-9 also contains hourly average fluxes for the month and an overall monthly average for each region. These average fluxes are given for both clear-sky and total-sky scenes. The following CERES ES9 data sets are currently available: CER_ES9_FM1+FM2_Edition1 CER_ES9_PFM+FM1+FM2_Edition1 CER_ES9_PFM+FM1+FM2_Edition2 CER_ES9_PFM+FM1_Edition1 CER_ES9_PFM+FM2_Edition1 CER_ES9_PFM+FM1_Edition2 CER_ES9_PFM+FM2_Edition2 CER_ES9_TRMM-PFM_Edition1 CER_ES9_TRMM-PFM_Edition2 CER_ES9_Terra-FM1_Edition1 CER_ES9_Terra-FM2_Edition1 CER_ES9_FM1+FM2_Edition2 CER_ES9_Terra-FM1_Edition2 CER_ES9_Terra-FM2_Edition2 CER_ES9_Aqua-FM3_Edition1 CER_ES9_Aqua-FM4_Edition1 CER_ES9_FM1+FM2+FM3+FM4_Edition1 CER_ES9_Aqua-FM3_Edition2 CER_ES9_Aqua-FM4_Edition2 CER_ES9_FM1+FM3_Edition2 CER_ES9_FM1+FM4_Edition2 CER_ES9_Aqua-FM3_Edition1-CV CER_ES9_Aqua-FM4_Edition1-CV CER_ES9_Terra-FM1_Edition1-CV CER_ES9_Terra-FM2_Edition1-CV. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2005-03-29] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=2.5 degree; Longitude_Resolution=2.5 degree; Horizontal_Resolution_Range=250 km - < 500 km or approximately 2.5 degrees - < 5.0 degrees; Temporal_Resolution=hourly, daily, monthly; Temporal_Resolution_Range=Hourly - < Daily, Daily - < Weekly, Monthly - < Annual].
CERES ERBE-like Monthly Regional Averages (ES-9) in HDF (CER_ES9_PFM+FM1_Edition1)
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A. (Principal Investigator)
The ERBE-like Monthly Regional Averages (ES-9) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The ES-9 is also produced for combinations of scanner instruments. All instantaneous shortwave and longwave fluxes at the Top-of-the-Atmosphere (TOA) from the CERES ES-8 product for a month are sorted by 2.5-degree spatial regions, by day number, and by the local hour of observation. The mean of the instantaneous fluxes for a given region-day-hour bin is determined and recorded on the ES-9 along with other flux statistics and scene information. For each region, the daily average flux is estimated from an algorithm that uses the available hourly data, scene identification data, and diurnal models. This algorithm is 'like' the algorithm used for the Earth Radiation Budget Experiment (ERBE). The ES-9 also contains hourly average fluxes for the month and an overall monthly average for each region. These average fluxes are given for both clear-sky and total-sky scenes. The following CERES ES9 data sets are currently available: CER_ES9_FM1+FM2_Edition1 CER_ES9_PFM+FM1+FM2_Edition1 CER_ES9_PFM+FM1+FM2_Edition2 CER_ES9_PFM+FM1_Edition1 CER_ES9_PFM+FM2_Edition1 CER_ES9_PFM+FM1_Edition2 CER_ES9_PFM+FM2_Edition2 CER_ES9_TRMM-PFM_Edition1 CER_ES9_TRMM-PFM_Edition2 CER_ES9_Terra-FM1_Edition1 CER_ES9_Terra-FM2_Edition1 CER_ES9_FM1+FM2_Edition2 CER_ES9_Terra-FM1_Edition2 CER_ES9_Terra-FM2_Edition2 CER_ES9_Aqua-FM3_Edition1 CER_ES9_Aqua-FM4_Edition1 CER_ES9_FM1+FM2+FM3+FM4_Edition1 CER_ES9_Aqua-FM3_Edition2 CER_ES9_Aqua-FM4_Edition2 CER_ES9_FM1+FM3_Edition2 CER_ES9_FM1+FM4_Edition2 CER_ES9_Aqua-FM3_Edition1-CV CER_ES9_Aqua-FM4_Edition1-CV CER_ES9_Terra-FM1_Edition1-CV CER_ES9_Terra-FM2_Edition1-CV. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2000-03-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=2.5 degree; Longitude_Resolution=2.5 degree; Horizontal_Resolution_Range=250 km - < 500 km or approximately 2.5 degrees - < 5.0 degrees; Temporal_Resolution=hourly, daily, monthly; Temporal_Resolution_Range=Hourly - < Daily, Daily - < Weekly, Monthly - < Annual].
CERES ERBE-like Monthly Regional Averages (ES-9) in HDF ( CER_ES9_Aqua-FM3_Edition1-CV)
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A. (Principal Investigator)
The ERBE-like Monthly Regional Averages (ES-9) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The ES-9 is also produced for combinations of scanner instruments. All instantaneous shortwave and longwave fluxes at the Top-of-the-Atmosphere (TOA) from the CERES ES-8 product for a month are sorted by 2.5-degree spatial regions, by day number, and by the local hour of observation. The mean of the instantaneous fluxes for a given region-day-hour bin is determined and recorded on the ES-9 along with other flux statistics and scene information. For each region, the daily average flux is estimated from an algorithm that uses the available hourly data, scene identification data, and diurnal models. This algorithm is 'like' the algorithm used for the Earth Radiation Budget Experiment (ERBE). The ES-9 also contains hourly average fluxes for the month and an overall monthly average for each region. These average fluxes are given for both clear-sky and total-sky scenes. The following CERES ES9 data sets are currently available: CER_ES9_FM1+FM2_Edition1 CER_ES9_PFM+FM1+FM2_Edition1 CER_ES9_PFM+FM1+FM2_Edition2 CER_ES9_PFM+FM1_Edition1 CER_ES9_PFM+FM2_Edition1 CER_ES9_PFM+FM1_Edition2 CER_ES9_PFM+FM2_Edition2 CER_ES9_TRMM-PFM_Edition1 CER_ES9_TRMM-PFM_Edition2 CER_ES9_Terra-FM1_Edition1 CER_ES9_Terra-FM2_Edition1 CER_ES9_FM1+FM2_Edition2 CER_ES9_Terra-FM1_Edition2 CER_ES9_Terra-FM2_Edition2 CER_ES9_Aqua-FM3_Edition1 CER_ES9_Aqua-FM4_Edition1 CER_ES9_FM1+FM2+FM3+FM4_Edition1 CER_ES9_Aqua-FM3_Edition2 CER_ES9_Aqua-FM4_Edition2 CER_ES9_FM1+FM3_Edition2 CER_ES9_FM1+FM4_Edition2 CER_ES9_Aqua-FM3_Edition1-CV CER_ES9_Aqua-FM4_Edition1-CV CER_ES9_Terra-FM1_Edition1-CV CER_ES9_Terra-FM2_Edition1-CV. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2006-10-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=2.5 degree; Longitude_Resolution=2.5 degree; Horizontal_Resolution_Range=250 km - < 500 km or approximately 2.5 degrees - < 5.0 degrees; Temporal_Resolution=hourly, daily, monthly; Temporal_Resolution_Range=Hourly - < Daily, Daily - < Weekly, Monthly - < Annual].
CERES ERBE-like Monthly Regional Averages (ES-9) in HDF (CER_ES9_Terra-FM2_Edition1)
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A. (Principal Investigator)
The ERBE-like Monthly Regional Averages (ES-9) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The ES-9 is also produced for combinations of scanner instruments. All instantaneous shortwave and longwave fluxes at the Top-of-the-Atmosphere (TOA) from the CERES ES-8 product for a month are sorted by 2.5-degree spatial regions, by day number, and by the local hour of observation. The mean of the instantaneous fluxes for a given region-day-hour bin is determined and recorded on the ES-9 along with other flux statistics and scene information. For each region, the daily average flux is estimated from an algorithm that uses the available hourly data, scene identification data, and diurnal models. This algorithm is 'like' the algorithm used for the Earth Radiation Budget Experiment (ERBE). The ES-9 also contains hourly average fluxes for the month and an overall monthly average for each region. These average fluxes are given for both clear-sky and total-sky scenes. The following CERES ES9 data sets are currently available: CER_ES9_FM1+FM2_Edition1 CER_ES9_PFM+FM1+FM2_Edition1 CER_ES9_PFM+FM1+FM2_Edition2 CER_ES9_PFM+FM1_Edition1 CER_ES9_PFM+FM2_Edition1 CER_ES9_PFM+FM1_Edition2 CER_ES9_PFM+FM2_Edition2 CER_ES9_TRMM-PFM_Edition1 CER_ES9_TRMM-PFM_Edition2 CER_ES9_Terra-FM1_Edition1 CER_ES9_Terra-FM2_Edition1 CER_ES9_FM1+FM2_Edition2 CER_ES9_Terra-FM1_Edition2 CER_ES9_Terra-FM2_Edition2 CER_ES9_Aqua-FM3_Edition1 CER_ES9_Aqua-FM4_Edition1 CER_ES9_FM1+FM2+FM3+FM4_Edition1 CER_ES9_Aqua-FM3_Edition2 CER_ES9_Aqua-FM4_Edition2 CER_ES9_FM1+FM3_Edition2 CER_ES9_FM1+FM4_Edition2 CER_ES9_Aqua-FM3_Edition1-CV CER_ES9_Aqua-FM4_Edition1-CV CER_ES9_Terra-FM1_Edition1-CV CER_ES9_Terra-FM2_Edition1-CV. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2005-10-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=2.5 degree; Longitude_Resolution=2.5 degree; Horizontal_Resolution_Range=250 km - < 500 km or approximately 2.5 degrees - < 5.0 degrees; Temporal_Resolution=hourly, daily, monthly; Temporal_Resolution_Range=Hourly - < Daily, Daily - < Weekly, Monthly - < Annual].
CERES ERBE-like Instantaneous TOA Estimates (ES-8) in HDF (CER_ES8_Terra-FM1_Edition2)
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A. (Principal Investigator)
The ES-8 archival data product contains a 24-hour, single-satellite, instantaneous view of scanner fluxes at the top-of-atmosphere (TOA) reduced from spacecraft altitude unfiltered radiances using Earth Radiation Budget Experiment (ERBE) scanner Inversion algorithms and the ERBE shortwave (SW) and longwave (LW) Angular Distribution Models (ADMs). The ES-8 also includes the total (TOT), SW, LW, and window (WN) channel radiometric data; SW, LW, and WN unfiltered radiance values; and the ERBE scene identification for each measurement. These data are organized according to the CERES 3.3-second scan into 6.6-second records. As long as there is one valid scanner measurement within a record, the ES-8 record will be generated. The following CERES ES8 data sets are currently available: CER_ES8_TRMM-PFM_Edition1 CER_ES8_TRMM-PFM_Edition2 CER_ES8_TRMM-PFM_Transient-Ops2 CER_ES8_Terra-FM1_Edition1 CER_ES8_Terra-FM2_Edition1 CER_ES8_Terra-FM1_Edition2 CER_ES8_Terra-FM2_Edition2 CER_ES8_Aqua-FM3_Edition1 CER_ES8_Aqua-FM4_Edition1 CER_ES8_Aqua-FM3_Edition2 CER_ES8_Aqua-FM4_Edition2 CER_ES8_Aqua-FM3_Edition1-CV CER_ES8_Aqua-FM4_Edition1-CV CER_ES8_Terra-FM1_Edition1-CV CER_ES8_Terra-FM1_Edition1-CV. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1997-12-27; Stop_Date=2006-01-01] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Temporal_Resolution=1 day; Temporal_Resolution_Range=Daily - < Weekly].
CERES ERBE-like Instantaneous TOA Estimates (ES-8) in HDF (CER_ES8_Terra-FM1_Edition1-CV)
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A. (Principal Investigator)
The ES-8 archival data product contains a 24-hour, single-satellite, instantaneous view of scanner fluxes at the top-of-atmosphere (TOA) reduced from spacecraft altitude unfiltered radiances using Earth Radiation Budget Experiment (ERBE) scanner Inversion algorithms and the ERBE shortwave (SW) and longwave (LW) Angular Distribution Models (ADMs). The ES-8 also includes the total (TOT), SW, LW, and window (WN) channel radiometric data; SW, LW, and WN unfiltered radiance values; and the ERBE scene identification for each measurement. These data are organized according to the CERES 3.3-second scan into 6.6-second records. As long as there is one valid scanner measurement within a record, the ES-8 record will be generated. The following CERES ES8 data sets are currently available: CER_ES8_TRMM-PFM_Edition1 CER_ES8_TRMM-PFM_Edition2 CER_ES8_TRMM-PFM_Transient-Ops2 CER_ES8_Terra-FM1_Edition1 CER_ES8_Terra-FM2_Edition1 CER_ES8_Terra-FM1_Edition2 CER_ES8_Terra-FM2_Edition2 CER_ES8_Aqua-FM3_Edition1 CER_ES8_Aqua-FM4_Edition1 CER_ES8_Aqua-FM3_Edition2 CER_ES8_Aqua-FM4_Edition2 CER_ES8_Aqua-FM3_Edition1-CV CER_ES8_Aqua-FM4_Edition1-CV CER_ES8_Terra-FM1_Edition1-CV CER_ES8_Terra-FM1_Edition1-CV. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1997-12-27; Stop_Date=2006-09-30] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Temporal_Resolution=1 day; Temporal_Resolution_Range=Daily - < Weekly].
CERES ERBE-like Instantaneous TOA Estimates (ES-8) in HDF (CER_ES8_Aqua-FM4_Edition1-CV)
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A. (Principal Investigator)
The ES-8 archival data product contains a 24-hour, single-satellite, instantaneous view of scanner fluxes at the top-of-atmosphere (TOA) reduced from spacecraft altitude unfiltered radiances using Earth Radiation Budget Experiment (ERBE) scanner Inversion algorithms and the ERBE shortwave (SW) and longwave (LW) Angular Distribution Models (ADMs). The ES-8 also includes the total (TOT), SW, LW, and window (WN) channel radiometric data; SW, LW, and WN unfiltered radiance values; and the ERBE scene identification for each measurement. These data are organized according to the CERES 3.3-second scan into 6.6-second records. As long as there is one valid scanner measurement within a record, the ES-8 record will be generated. The following CERES ES8 data sets are currently available: CER_ES8_TRMM-PFM_Edition1 CER_ES8_TRMM-PFM_Edition2 CER_ES8_TRMM-PFM_Transient-Ops2 CER_ES8_Terra-FM1_Edition1 CER_ES8_Terra-FM2_Edition1 CER_ES8_Terra-FM1_Edition2 CER_ES8_Terra-FM2_Edition2 CER_ES8_Aqua-FM3_Edition1 CER_ES8_Aqua-FM4_Edition1 CER_ES8_Aqua-FM3_Edition2 CER_ES8_Aqua-FM4_Edition2 CER_ES8_Aqua-FM3_Edition1-CV CER_ES8_Aqua-FM4_Edition1-CV CER_ES8_Terra-FM1_Edition1-CV CER_ES8_Terra-FM1_Edition1-CV. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1997-12-27; Stop_Date=2005-03-29] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Temporal_Resolution=1 day; Temporal_Resolution_Range=Daily - < Weekly].
CERES ERBE-like Instantaneous TOA Estimates (ES-8) in HDF (CER_ES8_Terra-FM2_Edition1)
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A. (Principal Investigator)
The ES-8 archival data product contains a 24-hour, single-satellite, instantaneous view of scanner fluxes at the top-of-atmosphere (TOA) reduced from spacecraft altitude unfiltered radiances using Earth Radiation Budget Experiment (ERBE) scanner Inversion algorithms and the ERBE shortwave (SW) and longwave (LW) Angular Distribution Models (ADMs). The ES-8 also includes the total (TOT), SW, LW, and window (WN) channel radiometric data; SW, LW, and WN unfiltered radiance values; and the ERBE scene identification for each measurement. These data are organized according to the CERES 3.3-second scan into 6.6-second records. As long as there is one valid scanner measurement within a record, the ES-8 record will be generated. The following CERES ES8 data sets are currently available: CER_ES8_TRMM-PFM_Edition1 CER_ES8_TRMM-PFM_Edition2 CER_ES8_TRMM-PFM_Transient-Ops2 CER_ES8_Terra-FM1_Edition1 CER_ES8_Terra-FM2_Edition1 CER_ES8_Terra-FM1_Edition2 CER_ES8_Terra-FM2_Edition2 CER_ES8_Aqua-FM3_Edition1 CER_ES8_Aqua-FM4_Edition1 CER_ES8_Aqua-FM3_Edition2 CER_ES8_Aqua-FM4_Edition2 CER_ES8_Aqua-FM3_Edition1-CV CER_ES8_Aqua-FM4_Edition1-CV CER_ES8_Terra-FM1_Edition1-CV CER_ES8_Terra-FM1_Edition1-CV. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1997-12-27; Stop_Date=2005-11-01] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Temporal_Resolution=1 day; Temporal_Resolution_Range=Daily - < Weekly].
CERES ERBE-like Instantaneous TOA Estimates (ES-8) in HDF (CER_ES8_TRMM-PFM_Edition2)
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A. (Principal Investigator)
The ES-8 archival data product contains a 24-hour, single-satellite, instantaneous view of scanner fluxes at the top-of-atmosphere (TOA) reduced from spacecraft altitude unfiltered radiances using Earth Radiation Budget Experiment (ERBE) scanner Inversion algorithms and the ERBE shortwave (SW) and longwave (LW) Angular Distribution Models (ADMs). The ES-8 also includes the total (TOT), SW, LW, and window (WN) channel radiometric data; SW, LW, and WN unfiltered radiance values; and the ERBE scene identification for each measurement. These data are organized according to the CERES 3.3-second scan into 6.6-second records. As long as there is one valid scanner measurement within a record, the ES-8 record will be generated. The following CERES ES8 data sets are currently available: CER_ES8_TRMM-PFM_Edition1 CER_ES8_TRMM-PFM_Edition2 CER_ES8_TRMM-PFM_Transient-Ops2 CER_ES8_Terra-FM1_Edition1 CER_ES8_Terra-FM2_Edition1 CER_ES8_Terra-FM1_Edition2 CER_ES8_Terra-FM2_Edition2 CER_ES8_Aqua-FM3_Edition1 CER_ES8_Aqua-FM4_Edition1 CER_ES8_Aqua-FM3_Edition2 CER_ES8_Aqua-FM4_Edition2 CER_ES8_Aqua-FM3_Edition1-CV CER_ES8_Aqua-FM4_Edition1-CV CER_ES8_Terra-FM1_Edition1-CV CER_ES8_Terra-FM1_Edition1-CV. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1997-12-27; Stop_Date=2000-03-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Temporal_Resolution=1 day; Temporal_Resolution_Range=Daily - < Weekly].
CERES ERBE-like Instantaneous TOA Estimates (ES-8) in HDF (CER_ES8_Aqua-FM3_Edition2)
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A. (Principal Investigator)
The ES-8 archival data product contains a 24-hour, single-satellite, instantaneous view of scanner fluxes at the top-of-atmosphere (TOA) reduced from spacecraft altitude unfiltered radiances using Earth Radiation Budget Experiment (ERBE) scanner Inversion algorithms and the ERBE shortwave (SW) and longwave (LW) Angular Distribution Models (ADMs). The ES-8 also includes the total (TOT), SW, LW, and window (WN) channel radiometric data; SW, LW, and WN unfiltered radiance values; and the ERBE scene identification for each measurement. These data are organized according to the CERES 3.3-second scan into 6.6-second records. As long as there is one valid scanner measurement within a record, the ES-8 record will be generated. The following CERES ES8 data sets are currently available: CER_ES8_TRMM-PFM_Edition1 CER_ES8_TRMM-PFM_Edition2 CER_ES8_TRMM-PFM_Transient-Ops2 CER_ES8_Terra-FM1_Edition1 CER_ES8_Terra-FM2_Edition1 CER_ES8_Terra-FM1_Edition2 CER_ES8_Terra-FM2_Edition2 CER_ES8_Aqua-FM3_Edition1 CER_ES8_Aqua-FM4_Edition1 CER_ES8_Aqua-FM3_Edition2 CER_ES8_Aqua-FM4_Edition2 CER_ES8_Aqua-FM3_Edition1-CV CER_ES8_Aqua-FM4_Edition1-CV CER_ES8_Terra-FM1_Edition1-CV CER_ES8_Terra-FM1_Edition1-CV. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1997-12-27; Stop_Date=2005-12-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Temporal_Resolution=1 day; Temporal_Resolution_Range=Daily - < Weekly].
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, A.I.; Pettersson, C.B.
1988-01-01
Papers and discussions concerning the geotechnical applications of remote sensing and remote data transmission, sources of remotely sensed data, and glossaries of remote sensing and remote data transmission terms, acronyms, and abbreviations are presented. Aspects of remote sensing use covered include the significance of lineaments and their effects on ground-water systems, waste-site use and geotechnical characterization, the estimation of reservoir submerging losses using CIR aerial photographs, and satellite-based investigation of the significance of surficial deposits for surface mining operations. Other topics presented include the location of potential ground subsidence and collapse features in soluble carbonate rock, optical Fourier analysis ofmore » surface features of interest in geotechnical engineering, geotechnical applications of U.S. Government remote sensing programs, updating the data base for a Geographic Information System, the joint NASA/Geosat Test Case Project, the selection of remote data telemetry methods for geotechnical applications, the standardization of remote sensing data collection and transmission, and a comparison of airborne Goodyear electronic mapping system/SAR with satelliteborne Seasat/SAR radar imagery.« less
Education in Environmental Remote Sensing: Potentials and Problems.
ERIC Educational Resources Information Center
Kiefer, Ralph W.; Lillesand, Thomas M.
1983-01-01
Discusses remote sensing principles and applications and the status and needs of remote sensing education in the United States. A summary of the fundamental policy issues that will determine remote sensing's future role in environmental and resource managements is included. (Author/BC)
THE EPA REMOTE SENSING ARCHIVE
What would you do if you were faced with organizing 30 years of remote sensing projects that had been haphazardly stored at two separate locations for years then combined? The EPA Remote Sensing Archive, currently located in Las Vegas, Nevada. contains the remote sensing data and...
Research on remote sensing image pixel attribute data acquisition method in AutoCAD
NASA Astrophysics Data System (ADS)
Liu, Xiaoyang; Sun, Guangtong; Liu, Jun; Liu, Hui
2013-07-01
The remote sensing image has been widely used in AutoCAD, but AutoCAD lack of the function of remote sensing image processing. In the paper, ObjectARX was used for the secondary development tool, combined with the Image Engine SDK to realize remote sensing image pixel attribute data acquisition in AutoCAD, which provides critical technical support for AutoCAD environment remote sensing image processing algorithms.
Bibliography of Remote Sensing Techniques Used in Wetland Research.
1993-01-01
remote sensing technology for detecting changes in wetland environments. This report documents a bibliographic search conducted as part of that work unit on applications of remote sensing techniques in wetland research. Results were used to guide research efforts on the use of remote sensing technology for wetland change detection and assessment. The citations are presented in three appendixes, organized by wetland type, sensor type, and author.... Change detection, Wetland assessment, Remote sensing ,
Kite Aerial Photography as a Tool for Remote Sensing
ERIC Educational Resources Information Center
Sallee, Jeff; Meier, Lesley R.
2010-01-01
As humans, we perform remote sensing nearly all the time. This is because we acquire most of our information about our surroundings through the senses of sight and hearing. Whether viewed by the unenhanced eye or a military satellite, remote sensing is observing objects from a distance. With our current technology, remote sensing has become a part…
Remote sensing for detecting and mapping whitefly (Bemisia tabaci) infestations
USDA-ARS?s Scientific Manuscript database
Remote sensing technology has long been used for detecting insect infestations on agricultural crops. With recent advances in remote sensing sensors and other spatial information technologies such as Global Position Systems (GPS) and Geographic Information Systems (GIS), remote sensing is finding mo...
Reflections on Earth--Remote-Sensing Research from Your Classroom.
ERIC Educational Resources Information Center
Campbell, Bruce A.
2001-01-01
Points out the uses of remote sensing in different areas, and introduces the program "Reflections on Earth" which provides access to basic and instructional information on remote sensing to students and teachers. Introduces students to concepts related to remote sensing and measuring distances. (YDS)
Remote-Sensing Practice and Potential
1974-05-01
Six essential processes that must be accomplished if use of a remote - sensing system is to result in useful information are defined as problem...to be useful in remote - sensing projects are described. An overview of the current state-of-the-art of remote sensing is presented.
History and future of remote sensing technology and education
NASA Technical Reports Server (NTRS)
Colwell, R. N.
1980-01-01
A historical overview of the discovery and development of photography, related sciences, and remote sensing technology is presented. The role of education to date in the development of remote sensing is discussed. The probable future and potential of remote sensing and training is described.
Ten ways remote sensing can contribute to conservation
Rose, Robert A.; Byler, Dirck; Eastman, J. Ron; Fleishman, Erica; Geller, Gary; Goetz, Scott; Guild, Liane; Hamilton, Healy; Hansen, Matt; Headley, Rachel; Hewson, Jennifer; Horning, Ned; Kaplin, Beth A.; Laporte, Nadine; Leidner, Allison K.; Leimgruber, Peter; Morisette, Jeffrey T.; Musinsky, John; Pintea, Lilian; Prados, Ana; Radeloff, Volker C.; Rowen, Mary; Saatchi, Sassan; Schill, Steve; Tabor, Karyn; Turner, Woody; Vodacek, Anthony; Vogelmann, James; Wegmann, Martin; Wilkie, David; Wilson, Cara
2014-01-01
In an effort to increase conservation effectiveness through the use of Earth observation technologies, a group of remote sensing scientists affiliated with government and academic institutions and conservation organizations identified 10 questions in conservation for which the potential to be answered would be greatly increased by use of remotely sensed data and analyses of those data. Our goals were to increase conservation practitioners’ use of remote sensing to support their work, increase collaboration between the conservation science and remote sensing communities, identify and develop new and innovative uses of remote sensing for advancing conservation science, provide guidance to space agencies on how future satellite missions can support conservation science, and generate support from the public and private sector in the use of remote sensing data to address the 10 conservation questions. We identified a broad initial list of questions on the basis of an email chain-referral survey. We then used a workshop-based iterative and collaborative approach to whittle the list down to these final questions (which represent 10 major themes in conservation): How can global Earth observation data be used to model species distributions and abundances? How can remote sensing improve the understanding of animal movements? How can remotely sensed ecosystem variables be used to understand, monitor, and predict ecosystem response and resilience to multiple stressors? How can remote sensing be used to monitor the effects of climate on ecosystems? How can near real-time ecosystem monitoring catalyze threat reduction, governance and regulation compliance, and resource management decisions? How can remote sensing inform configuration of protected area networks at spatial extents relevant to populations of target species and ecosystem services? How can remote sensing-derived products be used to value and monitor changes in ecosystem services? How can remote sensing be used to monitor and evaluate the effectiveness of conservation efforts? How does the expansion and intensification of agriculture and aquaculture alter ecosystems and the services they provide? How can remote sensing be used to determine the degree to which ecosystems are being disturbed or degraded and the effects of these changes on species and ecosystem functions?
Ten ways remote sensing can contribute to conservation.
Rose, Robert A; Byler, Dirck; Eastman, J Ron; Fleishman, Erica; Geller, Gary; Goetz, Scott; Guild, Liane; Hamilton, Healy; Hansen, Matt; Headley, Rachel; Hewson, Jennifer; Horning, Ned; Kaplin, Beth A; Laporte, Nadine; Leidner, Allison; Leimgruber, Peter; Morisette, Jeffrey; Musinsky, John; Pintea, Lilian; Prados, Ana; Radeloff, Volker C; Rowen, Mary; Saatchi, Sassan; Schill, Steve; Tabor, Karyn; Turner, Woody; Vodacek, Anthony; Vogelmann, James; Wegmann, Martin; Wilkie, David; Wilson, Cara
2015-04-01
In an effort to increase conservation effectiveness through the use of Earth observation technologies, a group of remote sensing scientists affiliated with government and academic institutions and conservation organizations identified 10 questions in conservation for which the potential to be answered would be greatly increased by use of remotely sensed data and analyses of those data. Our goals were to increase conservation practitioners' use of remote sensing to support their work, increase collaboration between the conservation science and remote sensing communities, identify and develop new and innovative uses of remote sensing for advancing conservation science, provide guidance to space agencies on how future satellite missions can support conservation science, and generate support from the public and private sector in the use of remote sensing data to address the 10 conservation questions. We identified a broad initial list of questions on the basis of an email chain-referral survey. We then used a workshop-based iterative and collaborative approach to whittle the list down to these final questions (which represent 10 major themes in conservation): How can global Earth observation data be used to model species distributions and abundances? How can remote sensing improve the understanding of animal movements? How can remotely sensed ecosystem variables be used to understand, monitor, and predict ecosystem response and resilience to multiple stressors? How can remote sensing be used to monitor the effects of climate on ecosystems? How can near real-time ecosystem monitoring catalyze threat reduction, governance and regulation compliance, and resource management decisions? How can remote sensing inform configuration of protected area networks at spatial extents relevant to populations of target species and ecosystem services? How can remote sensing-derived products be used to value and monitor changes in ecosystem services? How can remote sensing be used to monitor and evaluate the effectiveness of conservation efforts? How does the expansion and intensification of agriculture and aquaculture alter ecosystems and the services they provide? How can remote sensing be used to determine the degree to which ecosystems are being disturbed or degraded and the effects of these changes on species and ecosystem functions? © 2014 Society for Conservation Biology.
Role of remote sensing in documenting living resources
NASA Technical Reports Server (NTRS)
Wagner, P. E.; Anderson, R. R.; Brun, B.; Eisenberg, M.; Genys, J. B.; Lear, D. W., Jr.; Miller, M. H.
1978-01-01
Specific cases of known or potentially useful applications of remote sensing in assessing biological resources are discussed. It is concluded that the more usable remote sensing techniques relate to the measurement of population fluctuations in aquatic systems. Sensing of the flora and the fauna of the Bay is considered with emphasis on direct sensing of aquatic plant populations and of water quality. Recommendations for remote sensing projects are given.
Commercial future: making remote sensing a media event
NASA Astrophysics Data System (ADS)
Lurie, Ian
1999-12-01
The rapid growth of commercial remote sensing has made high quality digital sensing data widely available -- now, remote sensing must become and remain a strong, commercially viable industry. However, this new industry cannot survive without an educated consumer base. To access markets, remote sensing providers must make their product more accessible, both literally and figuratively: Potential customers must be able to find the data they require, when they require it, and they must understand the utility of the information available to them. The Internet and the World Wide Web offer the perfect medium to educate potential customers and to sell remote sensing data to those customers. A well-designed web presence can provide both an information center and a market place for companies offering their data for sale. A very high potential web-based market for remote sensing lies in media. News agencies, web sites, and a host of other visual media services can use remote sensing data to provide current, relevant information regarding news around the world. This paper will provide a model for promotion and sale of remote sensing data via the Internet.
77 FR 39220 - Advisory Committee on Commercial Remote Sensing (ACCRES); Charter Renewal
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-02
... Commercial Remote Sensing (ACCRES); Charter Renewal AGENCY: National Oceanic and Atmospheric Administration... Committee on Commercial Remote Sensing (ACCRES) was renewed on March 14, 2012. SUPPLEMENTARY INFORMATION: In... Commercial Remote Sensing (ACCRES) is in the public interest in connection with the performance of duties...
76 FR 66042 - Advisory Committee on Commercial Remote Sensing (ACCRES); Request for Nominations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-25
... Commercial Remote Sensing (ACCRES); Request for Nominations ACTION: Notice requesting nominations for the Advisory Committee on Commercial Remote Sensing (ACCRES). SUMMARY: The Advisory Committee on Commercial Remote Sensing (ACCRES) was established to advise the Secretary of Commerce, through the Under Secretary...
An introduction to quantitative remote sensing. [data processing
NASA Technical Reports Server (NTRS)
Lindenlaub, J. C.; Russell, J.
1974-01-01
The quantitative approach to remote sensing is discussed along with the analysis of remote sensing data. Emphasis is placed on the application of pattern recognition in numerically oriented remote sensing systems. A common background and orientation for users of the LARS computer software system is provided.
Wang, Kai; Franklin, Steven E.; Guo, Xulin; Cattet, Marc
2010-01-01
Remote sensing, the science of obtaining information via noncontact recording, has swept the fields of ecology, biodiversity and conservation (EBC). Several quality review papers have contributed to this field. However, these papers often discuss the issues from the standpoint of an ecologist or a biodiversity specialist. This review focuses on the spaceborne remote sensing of EBC from the perspective of remote sensing specialists, i.e., it is organized in the context of state-of-the-art remote sensing technology, including instruments and techniques. Herein, the instruments to be discussed consist of high spatial resolution, hyperspectral, thermal infrared, small-satellite constellation, and LIDAR sensors; and the techniques refer to image classification, vegetation index (VI), inversion algorithm, data fusion, and the integration of remote sensing (RS) and geographic information system (GIS). PMID:22163432
Wang, Kai; Franklin, Steven E; Guo, Xulin; Cattet, Marc
2010-01-01
Remote sensing, the science of obtaining information via noncontact recording, has swept the fields of ecology, biodiversity and conservation (EBC). Several quality review papers have contributed to this field. However, these papers often discuss the issues from the standpoint of an ecologist or a biodiversity specialist. This review focuses on the spaceborne remote sensing of EBC from the perspective of remote sensing specialists, i.e., it is organized in the context of state-of-the-art remote sensing technology, including instruments and techniques. Herein, the instruments to be discussed consist of high spatial resolution, hyperspectral, thermal infrared, small-satellite constellation, and LIDAR sensors; and the techniques refer to image classification, vegetation index (VI), inversion algorithm, data fusion, and the integration of remote sensing (RS) and geographic information system (GIS).
Remote Sensing and Reflectance Profiling in Entomology.
Nansen, Christian; Elliott, Norman
2016-01-01
Remote sensing describes the characterization of the status of objects and/or the classification of their identity based on a combination of spectral features extracted from reflectance or transmission profiles of radiometric energy. Remote sensing can be benchtop based, and therefore acquired at a high spatial resolution, or airborne at lower spatial resolution to cover large areas. Despite important challenges, airborne remote sensing technologies will undoubtedly be of major importance in optimized management of agricultural systems in the twenty-first century. Benchtop remote sensing applications are becoming important in insect systematics and in phenomics studies of insect behavior and physiology. This review highlights how remote sensing influences entomological research by enabling scientists to nondestructively monitor how individual insects respond to treatments and ambient conditions. Furthermore, novel remote sensing technologies are creating intriguing interdisciplinary bridges between entomology and disciplines such as informatics and electrical engineering.
Remote Sensing in Geography in the New Millennium: Prospects, Challenges, and Opportunities
NASA Technical Reports Server (NTRS)
Quattrochi, Dale A.; Jensen, John R.; Morain, Stanley A.; Walsh, Stephen J.; Ridd, Merrill K.
1999-01-01
Remote sensing science contributes greatly to our understanding of the Earth's ecosystems and cultural landscapes. Almost all the natural and social sciences, including geography, rely heavily on remote sensing to provide quantitative, and indispensable spatial information. Many geographers have made significant contributions to remote sensing science since the 1970s, including the specification of advanced remote sensing systems, improvements in analog and digital image analysis, biophysical modeling, and terrain analysis. In fact, the Remote Sensing Specialty Group (RSSG) is one of the largest specialty groups within the AAG with over 500 members. Remote sensing in concert with a geographic information systems, offers much value to geography as both an incisive spatial-analytical tool and as a scholarly pursuit that adds to the body of geographic knowledge on the whole. The "power" of remote sensing as a research endeavor in geography lies in its capabilities for obtaining synoptic, near-real time data at many spatial and temporal scales, and in many regions of the electromagnetic spectrum - from microwave, to RADAR, to visible, and reflective and thermal infrared. In turn, these data present a vast compendium of information for assessing Earth attributes and characte6stics that are at the very core of geography. Here we revisit how remote sensing has become a fundamental and important tool for geographical research, and how with the advent of new and improved sensing systems to be launched in the near future, remote sensing will further advance geographical analysis in the approaching New Millennium.
1993-01-01
during the agricultural season. Satellite remote sensing can contribute significantly to such a system by collecting information on crops and on...well as techniques to derive biophysical variables from remotely-sensed data. Finally, the integration of these remote - sensing techniques with crop
Method of determining forest production from remotely sensed forest parameters
Corey, J.C.; Mackey, H.E. Jr.
1987-08-31
A method of determining forest production entirely from remotely sensed data in which remotely sensed multispectral scanner (MSS) data on forest 5 composition is combined with remotely sensed radar imaging data on forest stand biophysical parameters to provide a measure of forest production. A high correlation has been found to exist between the remotely sensed radar imaging data and on site measurements of biophysical 10 parameters such as stand height, diameter at breast height, total tree height, mean area per tree, and timber stand volume.
2010-12-01
remote - sensing reflectance) can be highly inaccurate if a spectrally constant value is applied (although errors can be reduced by carefully filtering measured raw data). To remove surface-reflected light in field measurements of remote sensing reflectance, a spectral optimization approach was applied, with results compared with those from remote sensing models and from direct measurements. The agreement from different determinations suggests that reasonable results for remote sensing reflectance of clear
2010-12-06
remote - sensing reflectance) can be highly inaccurate if a spectrally constant value is applied (although errors can be reduced by carefully filtering measured raw data). To remove surface-reflected light in field measurements of remote sensing reflectance, a spectral optimization approach was applied, with results compared with those from remote sensing models and from direct measurements. The agreement from different determinations suggests that reasonable results for remote sensing reflectance of clear
Thornton, P. K.; Bowen, W. T.; Ravelo, A.C.; Wilkens, P. W.; Farmer, G.; Brock, J.; Brink, J. E.
1997-01-01
Early warning of impending poor crop harvests in highly variable environments can allow policy makers the time they need to take appropriate action to ameliorate the effects of regional food shortages on vulnerable rural and urban populations. Crop production estimates for the current season can be obtained using crop simulation models and remotely sensed estimates of rainfall in real time, embedded in a geographic information system that allows simple analysis of simulation results. A prototype yield estimation system was developed for the thirty provinces of Burkina Faso. It is based on CERES-Millet, a crop simulation model of the growth and development of millet (Pennisetum spp.). The prototype was used to estimate millet production in contrasting seasons and to derive production anomaly estimates for the 1986 season. Provincial yields simulated halfway through the growing season were generally within 15% of their final (end-of-season) values. Although more work is required to produce an operational early warning system of reasonable credibility, the methodology has considerable potential for providing timely estimates of regional production of the major food crops in countries of sub-Saharan Africa.
Field Data Collection: an Essential Element in Remote Sensing Applications
NASA Technical Reports Server (NTRS)
Pettinger, L. R.
1971-01-01
Field data collected in support of remote sensing projects are generally used for the following purposes: (1) calibration of remote sensing systems, (2) evaluation of experimental applications of remote sensing imagery on small test sites, and (3) designing and evaluating operational regional resource studies and inventories which are conducted using the remote sensing imagery obtained. Field data may be used to help develop a technique for a particular application, or to aid in the application of that technique to a resource evaluation or inventory problem for a large area. Scientists at the Forestry Remote Sensing Laboratory have utilized field data for both purposes. How meaningful field data has been collected in each case is discussed.
Remote sensing and eLearning 2.0 for school education
NASA Astrophysics Data System (ADS)
Voss, Kerstin; Goetzke, Roland; Hodam, Henryk
2010-10-01
The "Remote Sensing in Schools" project aims at improving the integration of "Satellite remote sensing" into school teaching. Therefore, it is the project's overall objective to teach students in primary and secondary schools the basics and fields of application of remote sensing. Existing results show that many teachers are interested in remote sensing and at same time motivated to integrate it into their teaching. Despite the good intention, in the end, the implementation often fails due to the complexity and poor set-up of the information provided. Therefore, a comprehensive and well-structured learning platform on the topic of remote sensing is developed. The platform shall allow a structured introduction to the topic.
Remote sensing programs and courses in engineering and water resources
NASA Technical Reports Server (NTRS)
Kiefer, R. W.
1981-01-01
The content of typical basic and advanced remote sensing and image interpretation courses are described and typical remote sensing graduate programs of study in civil engineering and in interdisciplinary environmental remote sensing and water resources management programs are outlined. Ideally, graduate programs with an emphasis on remote sensing and image interpretation should be built around a core of five courses: (1) a basic course in fundamentals of remote sensing upon which the more specialized advanced remote sensing courses can build; (2) a course dealing with visual image interpretation; (3) a course dealing with quantitative (computer-based) image interpretation; (4) a basic photogrammetry course; and (5) a basic surveying course. These five courses comprise up to one-half of the course work required for the M.S. degree. The nature of other course work and thesis requirements vary greatly, depending on the department in which the degree is being awarded.
Remote sensing research in geographic education: An alternative view
NASA Technical Reports Server (NTRS)
Wilson, H.; Cary, T. K.; Goward, S. N.
1981-01-01
It is noted that within many geography departments remote sensing is viewed as a mere technique a student should learn in order to carry out true geographic research. This view inhibits both students and faculty from investigation of remotely sensed data as a new source of geographic knowledge that may alter our understanding of the Earth. The tendency is for geographers to accept these new data and analysis techniques from engineers and mathematicians without questioning the accompanying premises. This black-box approach hinders geographic applications of the new remotely sensed data and limits the geographer's contribution to further development of remote sensing observation systems. It is suggested that geographers contribute to the development of remote sensing through pursuit of basic research. This research can be encouraged, particularly among students, by demonstrating the links between geographic theory and remotely sensed observations, encouraging a healthy skepticism concerning the current understanding of these data.
Research on assessment and improvement method of remote sensing image reconstruction
NASA Astrophysics Data System (ADS)
Sun, Li; Hua, Nian; Yu, Yanbo; Zhao, Zhanping
2018-01-01
Remote sensing image quality assessment and improvement is an important part of image processing. Generally, the use of compressive sampling theory in remote sensing imaging system can compress images while sampling which can improve efficiency. A method of two-dimensional principal component analysis (2DPCA) is proposed to reconstruct the remote sensing image to improve the quality of the compressed image in this paper, which contain the useful information of image and can restrain the noise. Then, remote sensing image quality influence factors are analyzed, and the evaluation parameters for quantitative evaluation are introduced. On this basis, the quality of the reconstructed images is evaluated and the different factors influence on the reconstruction is analyzed, providing meaningful referential data for enhancing the quality of remote sensing images. The experiment results show that evaluation results fit human visual feature, and the method proposed have good application value in the field of remote sensing image processing.
Unmanned aerial vehicle: A unique platform for low-altitude remote sensing for crop management
USDA-ARS?s Scientific Manuscript database
Unmanned aerial vehicles (UAV) provide a unique platform for remote sensing to monitor crop fields that complements remote sensing from satellite, aircraft and ground-based platforms. The UAV-based remote sensing is versatile at ultra-low altitude to be able to provide an ultra-high-resolution imag...
Christopher D. Lippitt; Douglas A. Stow; Philip J. Riggan
2016-01-01
Remote sensing for hazard response requires a priori identification of sensor, transmission, processing, and distribution methods to permit the extraction of relevant information in timescales sufficient to allow managers to make a given time-sensitive decision. This study applies and demonstrates the utility of the Remote Sensing Communication...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-08
... Collection; Comment Request; Licensing of Private Remote-Sensing Space Systems AGENCY: National Oceanic and.... Abstract NOAA has established requirements for the licensing of private operators of remote-sensing space... Land Remote- Sensing Policy Act of 1992 and with the national security and international obligations of...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-24
... Collection; Comment Request; Licensing of Private Remote-Sensing Space Systems AGENCY: National Oceanic and... for the licensing of private operators of remote-sensing space systems. The information in applications and subsequent reports is needed to ensure compliance with the Land Remote- Sensing Policy Act of...
Advancement of China’s Visible Light Remote Sensing Technology In Aerospace,
1996-03-19
Aerospace visible light film systems were among the earliest space remote sensing systems to be developed in China. They have been applied very well...makes China the third nation in the world to master space remote sensing technology, it also puts recoverable remote sensing satellites among the first
Polarimetric passive remote sensing of periodic surfaces
NASA Technical Reports Server (NTRS)
Veysoglu, Murat E.; Yueh, H. A.; Shin, R. T.; Kong, J. A.
1991-01-01
The concept of polarimetry in active remote sensing is extended to passive remote sensing. The potential use of the third and fourth Stokes parameters U and V, which play an important role in polarimetric active remote sensing, is demonstrated for passive remote sensing. It is shown that, by the use of the reciprocity principle, the polarimetric parameters of passive remote sensing can be obtained through the solution of the associated direct scattering problem. These ideas are applied to study polarimetric passive remote sensing of periodic surfaces. The solution of the direct scattering problem is obtained by an integral equation formulation which involves evaluation of periodic Green's functions and normal derivative of those on the surface. Rapid evaluation of the slowly convergent series associated with these functions is observed to be critical for the feasibility of the method. New formulas, which are rapidly convergent, are derived for the calculation of these series. The study has shown that the brightness temperature of the Stokes parameter U can be significant in passive remote sensing. Values as high as 50 K are observed for certain configurations.
From planets to crops and back: Remote sensing makes sense
NASA Astrophysics Data System (ADS)
Mustard, John F.
2017-04-01
Remotely sensed data and the instruments that acquire them are core parts of Earth and planetary observation systems. They are used to quantify the Earth's interconnected systems, and remote sensing is the only way to get a daily, or more frequent, snapshot of the status of the Earth. It really is the Earth's stethoscope. In a similar manner remote sensing is the rock hammer of the planetary scientist and the only way comprehensive data sets can be acquired. To risk offending many remotely sensed data acquired across the electromagnetic spectrum, it is the tricorder to explore known and unknown planets. Arriving where we are today in the use of remotely sensed data in the solar system has been a continually evolving synergy between Earth observation, planetary exploration, and fundamental laboratory work.
Remote sensing of on-road vehicle emissions: Mechanism, applications and a case study from Hong Kong
NASA Astrophysics Data System (ADS)
Huang, Yuhan; Organ, Bruce; Zhou, John L.; Surawski, Nic C.; Hong, Guang; Chan, Edward F. C.; Yam, Yat Shing
2018-06-01
Vehicle emissions are a major contributor to air pollution in cities and have serious health impacts to their inhabitants. On-road remote sensing is an effective and economic tool to monitor and control vehicle emissions. In this review, the mechanism, accuracy, advantages and limitations of remote sensing were introduced. Then the applications and major findings of remote sensing were critically reviewed. It was revealed that the emission distribution of on-road vehicles was highly skewed so that the dirtiest 10% vehicles accounted for over half of the total fleet emissions. Such findings highlighted the importance and effectiveness of using remote sensing for in situ identification of high-emitting vehicles for further inspection and maintenance programs. However, the accuracy and number of vehicles affected by screening programs were greatly dependent on the screening criteria. Remote sensing studies showed that the emissions of gasoline and diesel vehicles were significantly reduced in recent years, with the exception of NOx emissions of diesel vehicles in spite of greatly tightened automotive emission regulations. Thirdly, the experience and issues of using remote sensing for identifying high-emitting vehicles in Hong Kong (where remote sensing is a legislative instrument for enforcement purposes) were reported. That was followed by the first time ever identification and discussion of the issue of frequent false detection of diesel high-emitters using remote sensing. Finally, the challenges and future research directions of on-road remote sensing were elaborated.
Anderson, Kim A.; Seck, Dogo; Hobbie, Kevin A.; Traore, Anna Ndiaye; McCartney, Melissa A.; Ndaye, Adama; Forsberg, Norman D.; Haigh, Theodore A.; Sower, Gregory J.
2014-01-01
It is difficult to assess pollution in remote areas of less-developed regions owing to the limited availability of energy, equipment, technology, trained personnel and other key resources. Passive sampling devices (PSDs) are technologically simple analytical tools that sequester and concentrate bioavailable organic contaminants from the environment. Scientists from Oregon State University and the Centre Régional de Recherches en Ecotoxicologie et de Sécurité Environnementale (CERES) in Senegal developed a partnership to build capacity at CERES and to develop a pesticide-monitoring project using PSDs. This engagement resulted in the development of a dynamic training process applicable to capacity-building programmes. The project culminated in a field and laboratory study where paired PSD samples were simultaneously analysed in African and US laboratories with quality control evaluation and traceability. The joint study included sampling from 63 sites across six western African countries, generating a 9000 data point pesticide database with virtual access to all study participants. PMID:24535398
Anderson, Kim A; Seck, Dogo; Hobbie, Kevin A; Traore, Anna Ndiaye; McCartney, Melissa A; Ndaye, Adama; Forsberg, Norman D; Haigh, Theodore A; Sower, Gregory J
2014-04-05
It is difficult to assess pollution in remote areas of less-developed regions owing to the limited availability of energy, equipment, technology, trained personnel and other key resources. Passive sampling devices (PSDs) are technologically simple analytical tools that sequester and concentrate bioavailable organic contaminants from the environment. Scientists from Oregon State University and the Centre Régional de Recherches en Ecotoxicologie et de Sécurité Environnementale (CERES) in Senegal developed a partnership to build capacity at CERES and to develop a pesticide-monitoring project using PSDs. This engagement resulted in the development of a dynamic training process applicable to capacity-building programmes. The project culminated in a field and laboratory study where paired PSD samples were simultaneously analysed in African and US laboratories with quality control evaluation and traceability. The joint study included sampling from 63 sites across six western African countries, generating a 9000 data point pesticide database with virtual access to all study participants.
Remote sensing of natural resources: Quarterly literature review
NASA Technical Reports Server (NTRS)
1976-01-01
A quarterly review of technical literature concerning remote sensing techniques is presented. The format contains indexed and abstracted materials with emphasis on data gathering techniques performed or obtained remotely from space, aircraft, or ground-based stations. Remote sensor applications including the remote sensing of natural resources are presented.
NASA Astrophysics Data System (ADS)
Diao, Chunyuan
In today's big data era, the increasing availability of satellite and airborne platforms at various spatial and temporal scales creates unprecedented opportunities to understand the complex and dynamic systems (e.g., plant invasion). Time series remote sensing is becoming more and more important to monitor the earth system dynamics and interactions. To date, most of the time series remote sensing studies have been conducted with the images acquired at coarse spatial scale, due to their relatively high temporal resolution. The construction of time series at fine spatial scale, however, is limited to few or discrete images acquired within or across years. The objective of this research is to advance the time series remote sensing at fine spatial scale, particularly to shift from discrete time series remote sensing to continuous time series remote sensing. The objective will be achieved through the following aims: 1) Advance intra-annual time series remote sensing under the pure-pixel assumption; 2) Advance intra-annual time series remote sensing under the mixed-pixel assumption; 3) Advance inter-annual time series remote sensing in monitoring the land surface dynamics; and 4) Advance the species distribution model with time series remote sensing. Taking invasive saltcedar as an example, four methods (i.e., phenological time series remote sensing model, temporal partial unmixing method, multiyear spectral angle clustering model, and time series remote sensing-based spatially explicit species distribution model) were developed to achieve the objectives. Results indicated that the phenological time series remote sensing model could effectively map saltcedar distributions through characterizing the seasonal phenological dynamics of plant species throughout the year. The proposed temporal partial unmixing method, compared to conventional unmixing methods, could more accurately estimate saltcedar abundance within a pixel by exploiting the adequate temporal signatures of saltcedar. The multiyear spectral angle clustering model could guide the selection of the most representative remotely sensed image for repetitive saltcedar mapping over space and time. Through incorporating spatial autocorrelation, the species distribution model developed in the study could identify the suitable habitats of saltcedar at a fine spatial scale and locate appropriate areas at high risk of saltcedar infestation. Among 10 environmental variables, the distance to the river and the phenological attributes summarized by the time series remote sensing were regarded as the most important. These methods developed in the study provide new perspectives on how the continuous time series can be leveraged under various conditions to investigate the plant invasion dynamics.
NASA Technical Reports Server (NTRS)
Christopher, Sundar A.; Wang, Min; Berendes, Todd A.; Welch, Ronald M.; Yang, Shi-Keng
1998-01-01
Using satellite imagery, more than five million square kilometers of the forest and cerrado regions over South America are extensively studied to monitor fires and smoke during the 1985 biomass burning season. The results are characterized for four major ecosystems, namely: (1) tropical rain forest, (2) tropical broadleaf seasonal, (3) savannah/grass and seasonal woods (SGW), and (4) mild/warm/hot grass/shrub (MGS). The spatial and temporal distribution of fires are examined from two different methods using the multispectral Advanced Very High Resolution Radiometer Local Area Coverage data. Using collocated measurements from the instantaneous scanner Earth Radiation Budget Experiment data, the direct regional radiative forcing of biomass burning aerosols is computed. The results show that more than 70% of the fires occur in the MGS and SGW ecosystems due to agricultural practices. The smoke generated from biomass burning has negative instantaneous net radiative forcing values for all four major ecosystems within South America. The smoke found directly over the fires has mean net radiative forcing values ranging from -25.6 to -33.9 W m(exp -2). These results confirm that the regional net radiative impact of biomass burning is one of cooling. The spectral and broadband properties for clear-sky and smoke regions are also presented that could be used as input and/or validation for other studies attempting to model the impact of aerosols on the earth-atmosphere system. These results have important applications for future instruments from the Earth Observing System (EOS) program. Specifically, the combination of the Visible Infrared Scanner and Clouds and the Earth's Radiant Energy System (CERES) instruments from the Tropical Rainfall Measuring Mission and the combination of Moderate Resolution Imaging Spectrometer and CERES instruments from the EOS morning crossing mission could provide reliable estimates of the direct radiative forcing of aerosols on a global scale, thereby reducing the uncertainties in current global aerosol radiative forcing values.
Machine Learning Applied to Dawn/VIR data of Vesta in view of MERTIS/BepiColombo.
NASA Astrophysics Data System (ADS)
Helbert, J.; D'Amore, M.; Le Scaon, R.; Maturilli, A.; Palomba, E.; Longobardo, A.; Hiesinger, H.
2016-12-01
Remote sensing spectroscopy is one of the most commonly used technique in planetary science and for recent instruments producing huge amount of data, classic methods could fails to unlock the full scientific potential buried in the measurements. We explored several Machine Learning techniques: multi-step clustering method is developed, using an image segmentation method, a stream algorithm, and hierarchical clustering. The MErcury Radiometer and Thermal infrared Imaging Spectrometer (MERTIS) is part of the payload of the Mercury Planetary Orbiter spacecraft of the ESA-JAXA BepiColombo mission. MERTIS's scientific goals are to infer rock-forming minerals, to map surface composition, and to study surface temperature variations on Mercury. The NASA mission DAWN carry a suites of instruments aimed at understanding the two most massive objects in the main asteroid belt: Vesta and Ceres. DAWN has already successfully completed the exploration of Vesta in September 2012 and it is now in the last phase of the mission around Ceres. To cope with the stream of data that will be delivered by MERTIS, we developed an algorithm that could aggregate new data as they come in during the mission giving the scientist a guide for the most interesting and new discovery on Mercury. The DAWN/VESTA VIR data is a testbed for the algorithm. The algorithm identified the Olivine outcrops around two craters on Vesta's surface described in Ammannito et al., 2013. We furthermore mimic the data acquisition process as if the mission were dumping the data live. The algorithm provides insightful information on the novelty and classes int he data as they are collected. This will enhance MERTIS targeting and maximize its scientific return during BepiColombo mission at Mercury. E Ammannito et al. "Olivine in an unexpected location on Vesta/'s surface". In: Nature 504.7478 (2013), pp. 122-125.
NASA Astrophysics Data System (ADS)
Scarino, B. R.; Smith, W. L., Jr.; Minnis, P.; Bedka, K. M.
2017-12-01
Atmospheric models rely on high-accuracy, high-resolution initial radiometric and surface conditions for better short-term meteorological forecasts, as well as improved evaluation of global climate models. Continuous remote sensing of the Earth's energy budget, as conducted by the Clouds and Earth's Radiant Energy System (CERES) project, allows for near-realtime evaluation of cloud and surface radiation properties. It is unfortunately common for there to be bias between atmospheric/surface radiation models and Earth-observations. For example, satellite-observed surface skin temperature (Ts), an important parameter for characterizing the energy exchange at the ground/water-atmosphere interface, can be biased due to atmospheric adjustment assumptions and anisotropy effects. Similarly, models are potentially biased by errors in initial conditions and regional forcing assumptions, which can be mitigated through assimilation with true measurements. As such, when frequent, broad-coverage, and accurate retrievals of satellite Ts are available, important insights into model estimates of Ts can be gained. The Satellite ClOud and Radiation Property retrieval System (SatCORPS) employs a single-channel thermal-infrared method to produce anisotropy-corrected Ts over clear-sky land and ocean surfaces from data taken by geostationary Earth orbit (GEO) satellite imagers. Regional and diurnal changes in model land surface temperature (LST) performance can be assessed owing to the somewhat continuous measurements of the LST offered by GEO satellites - measurements which are accurate to within 0.2 K. A seasonal, hourly comparison of satellite-observed LST with the NASA Goddard Earth Observing System Version 5 (GEOS-5) and the Modern-Era Retrospective Analysis for Research and Applications (MERRA) LST estimates is conducted to reveal regional and diurnal biases. This assessment is an important first step for evaluating the effectiveness of Ts assimilation, as well for determining the impact anisotropy correction has on observation - model bias, and is of critical importance for CERES.
Radiation Budget Instrument (RBI) for JPSS-2
NASA Technical Reports Server (NTRS)
Georgieva, Elena; Priestley, Kory; Dunn, Barry; Cageao, Richard; Barki, Anum; Osmundsen, Jim; Turczynski, Craig; Abedin, Nurul
2015-01-01
Radiation Budget Instrument (RBI) will be one of five instruments flying aboard the JPSS-2 spacecraft, a polar-orbiting sun-synchronous satellite in Low Earth Orbit. RBI is a passive remote sensing instrument that will follow the successful legacy of the Clouds and Earth's Radiant Energy System (CERES) instruments to make measurement of Earth's short and longwave radiation budget. The goal of RBI is to provide an independent measurement of the broadband reflected solar radiance and Earth's emitted thermal radiance by using three spectral bands (Shortwave, Longwave, and Total) that will have the same overlapped point spread function (PSF) footprint on Earth. To ensure precise NIST-traceable calibration in space the RBI sensor is designed to use a visible calibration target (VCT), a solar calibration target (SCT), and an infrared calibration target (ICT) containing phase change cells (PCC) to enable on-board temperature calibration. The VCT is a thermally controlled integrating sphere with space grade Spectralon covering the inner surface. Two sides of the sphere will have fiber-coupled laser diodes in the UV to IR wavelength region. An electrical substitution radiometer on the integrating sphere will monitor the long term stability of the sources and the possible degradation of the Spectralon in space. In addition the radiometric calibration operations will use the Spectralon diffusers of the SCT to provide accurate measurements of Solar degradation. All those stable on-orbit references will ensure that calibration stability is maintained over the RBI sensor lifetime. For the preflight calibration the RBI will view five calibration sources - two integrating spheres and three CrIS (Cross-track Infrared Sounder ) -like blackbodies whose outputs will be validated with NIST calibration approach. Thermopile are the selected detectors for the RBI. The sensor has a requirement to perform lunar calibration in addition to solar calibration in space in a way similar to CERES instruments approach. To monitor climate change and to get stable and traceable results, it is critical to assure stable calibration over instrument lifetime.
Predicting Clear-Sky Reflectance Over Snow/Ice in Polar Regions
NASA Technical Reports Server (NTRS)
Chen, Yan; Sun-Mack, Sunny; Arduini, Robert F.; Hong, Gang; Minnis, Patrick
2015-01-01
Satellite remote sensing of clouds requires an accurate estimate of the clear-sky radiances for a given scene to detect clouds and aerosols and to retrieve their microphysical properties. Knowing the spatial and angular variability of clear-sky albedo is essential for predicting clear-sky radiance at solar wavelengths. The Clouds and the Earth's Radiant Energy System (CERES) Project uses the nearinfrared (NIR; 1.24, 1.6 or 2.13 micrometers), visible (VIS; 0.63 micrometers) and vegetation (VEG; 0.86 micrometers) channels available on the Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) to help identify clouds and retrieve their properties in both snow-free and snow-covered conditions. Thus, it is critical to have reliable distributions of clear-sky albedo for all of these channels. In CERES Edition 4 (Ed4), the 1.24-micrometer channel is used to retrieve cloud optical depth over snow/ice-covered surfaces. Thus, it is especially critical to accurately predict the 1.24-micrometer clear-sky albedo alpha and reflectance rho for a given location and time. Snow albedo and reflectance patterns are very complex due to surface texture, particle shapes and sizes, melt water, and vegetation protrusions from the snow surface. To minimize those effects, this study focuses on the permanent snow cover of Antarctica where vegetation is absent and melt water is minimal. Clear-sky albedos are determined as a function of solar zenith angle (SZA) from observations over all scenes determined to be cloud-free to produce a normalized directional albedo model (DRM). The DRM is used to develop alpha(SZA=0 degrees) on 10 foot grid for each season. These values provide the basis for predicting r at any location and set of viewing & illumination conditions. This paper examines the accuracy of this approach for two theoretical snow surface reflectance models.
Forest mensuration with remote sensing: A retrospective and a vision for the future
Randolph H. Wynne
2004-01-01
Remote sensing, while occasionally oversold, has clear potential to reduce the overall cost of traditional forest inventories. Perhaps most important, some of the information needed for more intensive, rather than extensive, forest management is available from remote sensing. These new information needs may justify increased use and the increased cost of remote sensing...
15 CFR 960.12 - Data policy for remote sensing space systems.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Data policy for remote sensing space... REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.12 Data policy for remote sensing space systems. (a) In accordance with the Act, if the U.S. Government...
Remote Sensing: Analyzing Satellite Images to Create Higher Order Thinking Skills.
ERIC Educational Resources Information Center
Marks, Steven K.; And Others
1996-01-01
Presents a unit that uses remote-sensing images from satellites and other spacecraft to provide new perspectives of the earth and generate greater global awareness. Relates the levels of Bloom's hierarchy to different aspects of the remote sensing unit to confirm that the concepts and principles of remote sensing and related images belong in…
15 CFR 960.12 - Data policy for remote sensing space systems.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Data policy for remote sensing space... REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.12 Data policy for remote sensing space systems. (a) In accordance with the Act, if the U.S. Government...
15 CFR 960.12 - Data policy for remote sensing space systems.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 15 Commerce and Foreign Trade 3 2012-01-01 2012-01-01 false Data policy for remote sensing space... REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.12 Data policy for remote sensing space systems. (a) In accordance with the Act, if the U.S. Government...
15 CFR 960.12 - Data policy for remote sensing space systems.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 15 Commerce and Foreign Trade 3 2014-01-01 2014-01-01 false Data policy for remote sensing space... REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.12 Data policy for remote sensing space systems. (a) In accordance with the Act, if the U.S. Government...
15 CFR 960.12 - Data policy for remote sensing space systems.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 15 Commerce and Foreign Trade 3 2013-01-01 2013-01-01 false Data policy for remote sensing space... REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.12 Data policy for remote sensing space systems. (a) In accordance with the Act, if the U.S. Government...
Annotated bibliography of remote sensing methods for monitoring desertification
Walker, A.S.; Robinove, Charles J.
1981-01-01
Remote sensing techniques are valuable for locating, assessing, and monitoring desertification. Remotely sensed data provide a permanent record of the condition of the land in a format that allows changes in land features and condition to be measured. The annotated bibliography of 118 items discusses remote sensing methods that may be applied to desertification studies.
Applied Remote Sensing Program (ARSP)
NASA Technical Reports Server (NTRS)
Johnson, J. D.; Foster, K. E.; Mouat, D. A.; Miller, D. A.; Conn, J. S.
1976-01-01
The activities and accomplishments of the Applied Remote Sensing Program during FY 1975-1976 are reported. The principal objective of the Applied Remote Sensing Program continues to be designed projects having specific decision-making impacts as a principal goal. These projects are carried out in cooperation and collaboration with local, state and federal agencies whose responsibilities lie with planning, zoning and environmental monitoring and/or assessment in the application of remote sensing techniques. The end result of the projects is the use by the involved agencies of remote sensing techniques in problem solving.
Communicating remote sensing concepts in an interdisciplinary environment
NASA Technical Reports Server (NTRS)
Chung, R.
1981-01-01
Although remote sensing is currently multidisciplinary in its applications, many of its terms come from the engineering sciences, particularly from the field of pattern recognition. Scholars from fields such as the social sciences, botany, and biology, may experience initial difficulty with remote sensing terminology, even though parallel concepts exist in their own fields. Some parallel concepts and terminologies from nonengineering fields, which might enhance the understanding of remote sensing concepts in an interdisciplinary situation are identified. Feedbacks which this analogue strategy might have on remote sensing itself are explored.
People, Places and Pixels: Remote Sensing in the Service of Society
NASA Technical Reports Server (NTRS)
Lulla, Kamlesh
2003-01-01
What is the role of Earth remote sensing and other geospatial technologies in our society? Recent global events have brought into focus the role of geospatial science and technology such as remote sensing, GIS, GPS in assisting the professionals who are responsible for operations such as rescue and recovery of sites after a disaster or a terrorist act. This paper reviews the use of recent remote sensing products from satellites such as IKONOS in these efforts. Aerial and satellite imagery used in land mine detection has been evaluated and the results of this evaluation will be discussed. Synopsis of current and future ISS Earth Remote Sensing capabilities will be provided. The role of future missions in humanitarian use of remote sensing will be explored.
The application of remote sensing techniques to the study of ophiolites
NASA Astrophysics Data System (ADS)
Khan, Shuhab D.; Mahmood, Khalid
2008-08-01
Satellite remote sensing methods are a powerful tool for detailed geologic analysis, especially in inaccessible regions of the earth's surface. Short-wave infrared (SWIR) bands are shown to provide spectral information bearing on the lithologic, structural, and geochemical character of rock bodies such as ophiolites, allowing for a more comprehensive assessment of the lithologies present, their stratigraphic relationships, and geochemical character. Most remote sensing data are widely available for little or no cost, along with user-friendly software for non-specialists. In this paper we review common remote sensing systems and methods that allow for the discrimination of solid rock (lithologic) components of ophiolite complexes and their structural relationships. Ophiolites are enigmatic rock bodies which associated with most, if not all, plate collision sutures. Ophiolites are ideal for remote sensing given their widely recognized diversity of lithologic types and structural relationships. Accordingly, as a basis for demonstrating the utility of remote sensing techniques, we briefly review typical ophiolites in the Tethyan tectonic belt. As a case study, we apply integrated remote sensing studies of a well-studied example, the Muslim Bagh ophiolite, located in Balochistan, western Pakistan. On this basis, we attempt to demonstrate how remote sensing data can validate and reconcile existing information obtained from field studies. The lithologic and geochemical diversity of Muslim Bagh are representative of Tethyan ophiolites. Despite it's remote location it has been extensively mapped and characterized by structural and geochemical studies, and is virtually free of vegetative cover. Moreover, integrating the remote sensing data with 'ground truth' information thus offers the potential of an improved template for interpreting remote sensing data sets of other ophiolites for which little or no field information is available.
1996-04-08
Development tasks and products of remote sensing ground stations in Europe are represented by the In-Sec Corporation and the Schlumberger Industries Corporation. The article presents the main products of these two corporations.
[Estimation of desert vegetation coverage based on multi-source remote sensing data].
Wan, Hong-Mei; Li, Xia; Dong, Dao-Rui
2012-12-01
Taking the lower reaches of Tarim River in Xinjiang of Northwest China as study areaAbstract: Taking the lower reaches of Tarim River in Xinjiang of Northwest China as study area and based on the ground investigation and the multi-source remote sensing data of different resolutions, the estimation models for desert vegetation coverage were built, with the precisions of different estimation methods and models compared. The results showed that with the increasing spatial resolution of remote sensing data, the precisions of the estimation models increased. The estimation precision of the models based on the high, middle-high, and middle-low resolution remote sensing data was 89.5%, 87.0%, and 84.56%, respectively, and the precisions of the remote sensing models were higher than that of vegetation index method. This study revealed the change patterns of the estimation precision of desert vegetation coverage based on different spatial resolution remote sensing data, and realized the quantitative conversion of the parameters and scales among the high, middle, and low spatial resolution remote sensing data of desert vegetation coverage, which would provide direct evidence for establishing and implementing comprehensive remote sensing monitoring scheme for the ecological restoration in the study area.
NASA Astrophysics Data System (ADS)
Liu, Jia; Liu, Longli; Xue, Yong; Dong, Jing; Hu, Yingcui; Hill, Richard; Guang, Jie; Li, Chi
2017-01-01
Workflow for remote sensing quantitative retrieval is the ;bridge; between Grid services and Grid-enabled application of remote sensing quantitative retrieval. Workflow averts low-level implementation details of the Grid and hence enables users to focus on higher levels of application. The workflow for remote sensing quantitative retrieval plays an important role in remote sensing Grid and Cloud computing services, which can support the modelling, construction and implementation of large-scale complicated applications of remote sensing science. The validation of workflow is important in order to support the large-scale sophisticated scientific computation processes with enhanced performance and to minimize potential waste of time and resources. To research the semantic correctness of user-defined workflows, in this paper, we propose a workflow validation method based on tacit knowledge research in the remote sensing domain. We first discuss the remote sensing model and metadata. Through detailed analysis, we then discuss the method of extracting the domain tacit knowledge and expressing the knowledge with ontology. Additionally, we construct the domain ontology with Protégé. Through our experimental study, we verify the validity of this method in two ways, namely data source consistency error validation and parameters matching error validation.
An Approach of Registration between Remote Sensing Image and Electronic Chart Based on Coastal Line
NASA Astrophysics Data System (ADS)
Li, Ying; Yu, Shuiming; Li, Chuanlong
Remote sensing plays an important role marine oil spill emergency. In order to implement a timely and effective countermeasure, it is important to provide exact position of oil spills. Therefore it is necessary to match remote sensing image and electronic chart properly. Variance ordinarily exists between oil spill image and electronic chart, although geometric correction is applied to remote sensing image. It is difficult to find the steady control points on sea to make exact rectification of remote sensing image. An improved relaxation algorithm was developed for finding the control points along the coastline since oil spills occurs generally near the coast. A conversion function is created with the least square, and remote sensing image can be registered with the vector map based on this function. SAR image was used as the remote sensing data and shape format map as the electronic chart data. The results show that this approach can guarantee the precision of the registration, which is essential for oil spill monitoring.
The U.S. Geological Survey land remote sensing program
Saunders, T.; Feuquay, J.; Kelmelis, J.A.
2003-01-01
The U.S. Geological Survey has been a provider of remotely sensed information for decades. As the availability and use of satellite data has grown, USGS has placed increasing emphasis on expanding the knowledge about the science of remote sensing and on making remotely sensed data more accessible. USGS encourages widespread availability and distribution of these data and through its programs, encourages and enables a variety of research activities and the development of useful applications of the data. The science of remote sensing has great potential for assisting in the monitoring and assessment of the impacts of natural disasters, management and analysis of environmental, biological, energy, and mineral investigations, and supporting informed public policy decisions. By establishing the Land Remote Sensing Program (LRS) as a major unit of the USGS Geography Program, USGS has taken the next step to further increase support for the accessibility, understanding, and use of remotely sensed data. This article describes the LRS Program, its mission and objectives, and how the program has been structured to accomplish its goals.
NASA Technical Reports Server (NTRS)
Yueh, Simon H.
2004-01-01
Active and passive microwave remote sensing techniques have been investigated for the remote sensing of ocean surface wind and salinity. We revised an ocean surface spectrum using the CMOD-5 geophysical model function (GMF) for the European Remote Sensing (ERS) C-band scatterometer and the Ku-band GMF for the NASA SeaWinds scatterometer. The predictions of microwave brightness temperatures from this model agree well with satellite, aircraft and tower-based microwave radiometer data. This suggests that the impact of surface roughness on microwave brightness temperatures and radar scattering coefficients of sea surfaces can be consistently characterized by a roughness spectrum, providing physical basis for using combined active and passive remote sensing techniques for ocean surface wind and salinity remote sensing.
Online catalog access and distribution of remotely sensed information
NASA Astrophysics Data System (ADS)
Lutton, Stephen M.
1997-09-01
Remote sensing is providing voluminous data and value added information products. Electronic sensors, communication electronics, computer software, hardware, and network communications technology have matured to the point where a distributed infrastructure for remotely sensed information is a reality. The amount of remotely sensed data and information is making distributed infrastructure almost a necessity. This infrastructure provides data collection, archiving, cataloging, browsing, processing, and viewing for applications from scientific research to economic, legal, and national security decision making. The remote sensing field is entering a new exciting stage of commercial growth and expansion into the mainstream of government and business decision making. This paper overviews this new distributed infrastructure and then focuses on describing a software system for on-line catalog access and distribution of remotely sensed information.
Remote Sensing and the Environment.
ERIC Educational Resources Information Center
Osmers, Karl
1991-01-01
Suggests using remote sensing technology to help students make sense of the natural world. Explains that satellite information allows observation of environmental changes over time. Identifies possible student projects based on remotely sensed data. Recommends obtaining the assistance of experts and seeking funding through effective project…
Use of remote sensing in agriculture
NASA Technical Reports Server (NTRS)
Pettry, D. E.; Powell, N. L.; Newhouse, M. E.
1974-01-01
Remote sensing studies in Virginia and Chesapeake Bay areas to investigate soil and plant conditions via remote sensing technology are reported ant the results given. Remote sensing techniques and interactions are also discussed. Specific studies on the effects of soil moisture and organic matter on energy reflection of extensively occurring Sassafras soils are discussed. Greenhouse and field studies investigating the effects of chlorophyll content of Irish potatoes on infrared reflection are presented. Selected ground truth and environmental monitoring data are shown in summary form. Practical demonstrations of remote sensing technology in agriculture are depicted and future use areas are delineated.
Applications of remote sensing to watershed management
NASA Technical Reports Server (NTRS)
Rango, A.
1975-01-01
Aircraft and satellite remote sensing systems which are capable of contributing to watershed management are described and include: the multispectral scanner subsystem on LANDSAT and the basic multispectral camera array flown on high altitude aircraft such as the U-2. Various aspects of watershed management investigated by remote sensing systems are discussed. Major areas included are: snow mapping, surface water inventories, flood management, hydrologic land use monitoring, and watershed modeling. It is indicated that technological advances in remote sensing of hydrological data must be coupled with an expansion of awareness and training in remote sensing techniques of the watershed management community.
NASA Glenn OHIOVIEW FY01/02 Project
NASA Technical Reports Server (NTRS)
2003-01-01
The results of the research performed by the university principal investigators are herein compiled. OhioView's general goals were: 1) To increase remote sensing education for Ohio s undergraduate and graduate students, and also enhancing curriculum in the mathematics and science for K-12 students using the capabilities of remote sensing; 2) To conduct advanced research to develop novel remote sensing applications, i.e. to turn data into information for more applications; 3) To maximize the use of remote sensing technology by the general public through outreach and the development of tools for more user-friendly access to remote sensing data.
The availability of conventional forms of remotely sensed data
Sturdevant, James A.; Holm, Thomas M.
1982-01-01
For decades Federal and State agencies have been collecting aerial photographs of various film types and scales over parts of the United States. More recently, worldwide Earth resources data acquired by orbiting satellites have inundated the remote sensing community. Determining the types of remotely sensed data that are publicly available can be confusing to the land-resource manager, planner, and scientist. This paper is a summary of the more commonly used types of remotely sensed data (aircraft and satellite) and their public availability. Special emphasis is placed on the National High-Altitude Photography (NHAP) program and future remote-sensing satellites.
Announcement of CERES FM6 Edition1-CV Product Release
Atmospheric Science Data Center
2018-06-14
The Atmospheric Science Data Center (ASDC) at NASA Langley Research Center in collaboration with the CERES Science Team ... be found at the CERES data table: http://eosweb.larc.nasa.gov/project/ceres/ceres_table Edition1-CV is for instrument ...
NASA's Applied Remote Sensing Training (ARSET) Webinar Series
Atmospheric Science Data Center
2016-07-12
NASA's Applied Remote Sensing Training (ARSET) Webinar Series Tuesday, July 12, 2016 ... you of a free training opportunity: Introduction to Remote Sensing for Air Quality Applications Webinar Series Beginning in ...
Tropospheric Passive Remote Sensing
NASA Technical Reports Server (NTRS)
Keafer, L. S., Jr. (Editor)
1982-01-01
The long term role of airborne/spaceborne passive remote sensing systems for tropospheric air quality research and the identification of technology advances required to improve the performance of passive remote sensing systems were discussed.
Remote Sensing as a Demonstration of Applied Physics.
ERIC Educational Resources Information Center
Colwell, Robert N.
1980-01-01
Provides information about the field of remote sensing, including discussions of geo-synchronous and sun-synchronous remote-sensing platforms, the actual physical processes and equipment involved in sensing, the analysis of images by humans and machines, and inexpensive, small scale methods, including aerial photography. (CS)
NASA Technical Reports Server (NTRS)
Maxwell, E. L.
1980-01-01
The need for degree programs in remote sensing is considered. Any education program which claims to train remote sensing specialists must include expertise in the physical principles upon which remote sensing is based. These principles dictate the limits of engineering and design, computer analysis, photogrammetry, and photointerpretation. Faculty members must be hired to provide emphasis in those five areas.
Remote sensing of vegetation fires and its contribution to a fire management information system
Stephane P. Flasse; Simon N. Trigg; Pietro N. Ceccato; Anita H. Perryman; Andrew T. Hudak; Mark W. Thompson; Bruce H. Brockett; Moussa Drame; Tim Ntabeni; Philip E. Frost; Tobias Landmann; Johan L. le Roux
2004-01-01
In the last decade, research has proven that remote sensing can provide very useful support to fire managers. This chapter provides an overview of the types of information remote sensing can provide to the fire community. First, it considers fire management information needs in the context of a fire management information system. An introduction to remote sensing then...
2016-07-15
AFRL-AFOSR-JP-TR-2016-0068 Multi-scale Computational Electromagnetics for Phenomenology and Saliency Characterization in Remote Sensing Hean-Teik...SUBTITLE Multi-scale Computational Electromagnetics for Phenomenology and Saliency Characterization in Remote Sensing 5a. CONTRACT NUMBER 5b. GRANT NUMBER... electromagnetics to the application in microwave remote sensing as well as extension of modelling capability with computational flexibility to study
2016-07-15
AFRL-AFOSR-JP-TR-2016-0068 Multi-scale Computational Electromagnetics for Phenomenology and Saliency Characterization in Remote Sensing Hean-Teik...SUBTITLE Multi-scale Computational Electromagnetics for Phenomenology and Saliency Characterization in Remote Sensing 5a. CONTRACT NUMBER 5b. GRANT NUMBER...electromagnetics to the application in microwave remote sensing as well as extension of modelling capability with computational flexibility to study
Basic Remote Sensing Investigations for Beach Reconnaissance.
Progress is reported on three tasks designed to develop remote sensing beach reconnaissance techniques applicable to the benthic, beach intertidal...and beach upland zones. Task 1 is designed to develop remote sensing indicators of important beach composition and physical parameters which will...ultimately prove useful in models to predict beach conditions. Task 2 is designed to develop remote sensing techniques for survey of bottom features in
NASA Astrophysics Data System (ADS)
Burba, G. G.; Avenson, T.; Burkart, A.; Gamon, J. A.; Guan, K.; Julitta, T.; Pastorello, G.; Sakowska, K.
2017-12-01
Many hundreds of flux towers are presently operational as standalone projects and as parts of regional networks. However, the vast majority of these towers do not allow straightforward coupling with remote sensing (drone, aircraft, satellite, etc.) data, and even fewer have optical sensors for validation of remote sensing products, and upscaling from field to regional levels. In 2016-2017, new tools to collect, process, and share time-synchronized flux data from multiple towers were developed and deployed globally. Originally designed to automate site and data management, and to streamline flux data analysis, these tools allow relatively easy matching of tower data with remote sensing data: GPS-driven PTP time protocol synchronizes instrumentation within the station, different stations with each other, and all of these to remote sensing data to precisely align remote sensing and flux data in time Footprint size and coordinates computed and stored with flux data help correctly align tower flux footprints and drone, aircraft or satellite motion to precisely align optical and flux data in space Full snapshot of the remote sensing pixel can then be constructed, including leaf-level, ground optical sensor, and flux tower measurements from the same footprint area, closely coupled with the remote sensing measurements to help interpret remote sensing data, validate models, and improve upscaling Additionally, current flux towers can be augmented with advanced ground optical sensors and can use standard routines to deliver continuous products (e.g. SIF, PRI, NDVI, etc.) based on automated field spectrometers (e.g., FloX and RoX, etc.) and other optical systems. Several dozens of new towers already operational globally can be readily used for the proposed workflow. Over 500 active traditional flux towers can be updated to synchronize their data with remote sensing measurements. This presentation will show how the new tools are used by major networks, and describe how this approach can be utilized for matching remote sensing and tower data to aid in ground truthing, improve scientific interactions, and promote joint grant writing and other forms of collaboration between the flux and remote sensing communities.
Monitoring Crop Phenology and Growth Stages from Space: Opportunities and Challenges
NASA Astrophysics Data System (ADS)
Gao, F.; Anderson, M. C.; Mladenova, I. E.; Kustas, W. P.; Alfieri, J. G.
2014-12-01
Crop growth stages in concert with weather and soil moisture conditions can have a significant impact on crop yields. In the U.S., crop growth stages and conditions are reported by farmers at the county level. These reports are somewhat subjective and fluctuate between different reporters, locations and times. Remote sensing data provide an alternative approach to monitoring crop growth over large areas in a more consistent and quantitative way. In the recent years, remote sensing data have been used to detect vegetation phenology at 1-km spatial resolution globally. However, agricultural applications at field scale require finer spatial resolution remote sensing data. Landsat (30-m) data have been successfully used for agricultural applications. There are many medium resolution sensors available today or in near future. These include Landsat, SPOT, RapidEye, ASTER and future Sentinel-2 etc. Approaches have been developed in the past several years to integrate remote sensing data from different sensors which may have different sensor characteristics, and spatial and temporal resolutions. This allows us opportunities today to map crop growth stages and conditions using dense time-series remote sensing at field scales. However, remotely sensed phenology (or phenological metrics) is normally derived based on the mathematical functions of the time-series data. The phenological metrics are determined by either identifying inflection (curvature) points or some pre-defined thresholds in the remote sensing phenology algorithms. Furthermore, physiological crop growth stages may not be directly correlated to the remotely sensed phenology. The relationship between remotely sensed phenology and crop growth stages is likely to vary for specific crop types and varieties, growing stages, conditions and even locations. In this presentation, we will examine the relationship between remotely sensed phenology and crop growth stages using in-situ measurements from Fluxnet sites and crop progress reports from USDA NASS. We will present remote sensing approaches and focus on: 1) integrating multiple sources of remote sensing data; and 2) extracting crop phenology at field scales. An example in the U.S. Corn Belt area will be presented and analyzed. Future directions for mapping crop growth stages will be discussed.
Remote Sensing: A Film Review.
ERIC Educational Resources Information Center
Carter, David J.
1986-01-01
Reviews the content of 19 films on remote sensing published between 1973 and 1980. Concludes that they are overly simplistic, notably outdated, and generally too optimistic about the potential of remote sensing from space for resource exploration and environmental problem-solving. Provides names and addresses of more current remote sensing…
Educational activities of remote sensing archaeology (Conference Presentation)
NASA Astrophysics Data System (ADS)
Hadjimitsis, Diofantos G.; Agapiou, Athos; Lysandrou, Vasilki; Themistocleous, Kyriacos; Cuca, Branka; Nisantzi, Argyro; Lasaponara, Rosa; Masini, Nicola; Krauss, Thomas; Cerra, Daniele; Gessner, Ursula; Schreier, Gunter
2016-10-01
Remote sensing science is increasingly being used to support archaeological and cultural heritage research in various ways. Satellite sensors either passive or active are currently used in a systematic basis to detect buried archaeological remains and to systematic monitor tangible heritage. In addition, airborne and low altitude systems are being used for documentation purposes. Ground surveys using remote sensing tools such as spectroradiometers and ground penetrating radars can detect variations of vegetation and soil respectively, which are linked to the presence of underground archaeological features. Education activities and training of remote sensing archaeology to young people is characterized of highly importance. Specific remote sensing tools relevant for archaeological research can be developed including web tools, small libraries, interactive learning games etc. These tools can be then combined and aligned with archaeology and cultural heritage. This can be achieved by presenting historical and pre-historical records, excavated sites or even artifacts under a "remote sensing" approach. Using such non-form educational approach, the students can be involved, ask, read, and seek to learn more about remote sensing and of course to learn about history. The paper aims to present a modern didactical concept and some examples of practical implementation of remote sensing archaeology in secondary schools in Cyprus. The idea was built upon an ongoing project (ATHENA) focused on the sue of remote sensing for archaeological research in Cyprus. Through H2020 ATHENA project, the Remote Sensing Science and Geo-Environment Research Laboratory at the Cyprus University of Technology (CUT), with the support of the National Research Council of Italy (CNR) and the German Aerospace Centre (DLR) aims to enhance its performance in all these new technologies.
Atmospheric Science Data Center
2013-03-21
... Web Links to Relevant CERES Information Relevant information about CERES, CERES references, ... Instrument Working Group Home Page Aerosol Retrieval Web Page (Center for Satellite Applications and Research) ...
ERIC Educational Resources Information Center
Brosius, Craig A.; And Others
This document is designed to help senior high school students study remote sensing technology and techniques in relation to the environmental sciences. It discusses the acquisition, analysis, and use of ecological remote data. Material is divided into three sections and an appendix. Section One is an overview of the basics of remote sensing.…
Microwave remote sensing of snowpack properties
NASA Technical Reports Server (NTRS)
Rango, A. (Editor)
1980-01-01
Topic concerning remote sensing capabilities for providing reliable snow cover data and measurement of snow water equivalents are discussed. Specific remote sensing technqiues discussed include those in the microwave region of the electromagnetic spectrum.
Commerical Remote Sensing Data Contract
,
2005-01-01
The U. S. Geological Survey's (USGS) Commercial Remote Sensing Data Contracts (CRSDCs) provide government agencies with access to a broad range of commercially available remotely sensed airborne and satellite data. These contracts were established to support The National Map partners, other Federal Civilian agency programs, and Department of Defense programs that require data for the United States and its territories. Experience shows that centralized procurement of remotely sensed data leads to considerable cost savings to the Federal government through volume discounts, reduction of redundant contract administrative costs, and avoidance of duplicate purchases. These contracts directly support the President's Commercial Remote Sensing Space Policy, signed in 2003, by providing a centralized mechanism for civil agencies to acquire commercial remote sensing products to support their mission needs in an efficient and coordinated way. CRSDC administration is provided by the USGS Mid-Continent Mapping Center in Rolla, Missouri.
Object-oriented recognition of high-resolution remote sensing image
NASA Astrophysics Data System (ADS)
Wang, Yongyan; Li, Haitao; Chen, Hong; Xu, Yuannan
2016-01-01
With the development of remote sensing imaging technology and the improvement of multi-source image's resolution in satellite visible light, multi-spectral and hyper spectral , the high resolution remote sensing image has been widely used in various fields, for example military field, surveying and mapping, geophysical prospecting, environment and so forth. In remote sensing image, the segmentation of ground targets, feature extraction and the technology of automatic recognition are the hotspot and difficulty in the research of modern information technology. This paper also presents an object-oriented remote sensing image scene classification method. The method is consist of vehicles typical objects classification generation, nonparametric density estimation theory, mean shift segmentation theory, multi-scale corner detection algorithm, local shape matching algorithm based on template. Remote sensing vehicles image classification software system is designed and implemented to meet the requirements .
Experimental Sea Slicks in the Marsen (Maritime Remote Sensing) Exercise.
1980-10-30
Experimental slicks with various surface properties were generated in the North Sea as part of the MARSEN (Maritime Remote Sensing ) exercise. The one...with remote sensing instrumentation. Because of the numerous effects of surface films on air-sea interfacial processes, these experiments were designed...information was obtained on the influence of sea surface films on the interpretation of signals received by remote sensing systems. Criteria for the
SYMPOSIUM ON REMOTE SENSING IN THE POLAR REGIONS
The Arctic Institute of North America long has been interested in encouraging full and specific attention to applications of remote sensing to polar...research problems. The major purpose of the symposium was to acquaint scientists and technicians concerned with remote sensing with some of the...special problems of the polar areas and, in turn, to acquaint polar scientists with the potential of the use of remote sensing . The Symposium therefore was
REMOTE SENSING IN OCEANOGRAPHY.
remote sensing from satellites. Sensing of oceanographic variables from aircraft began with the photographing of waves and ice. Since then remote measurement of sea surface temperatures and wave heights have become routine. Sensors tested for oceanographic applications include multi-band color cameras, radar scatterometers, infrared spectrometers and scanners, passive microwave radiometers, and radar imagers. Remote sensing has found its greatest application in providing rapid coverage of large oceanographic areas for synoptic and analysis and
Methods of Determining Playa Surface Conditions Using Remote Sensing
1987-10-08
NO. 11. TITLE (include Security Classification) METHODS OF DETERMINING PLAYA SURFACE CONDITIONS USING REMOTE SENSING 12. PERSONAL AUTHOR(S) J. PONDER...PLAYA SURFACE CONDITIONS USING REMOTE SENSING J. Ponder Henley U. S. Army Engineer Topographic Laboratories Fort Belvoir, Virginia 22060-5546 "ABSTRACT...geochemistry, hydrology and remote sensing but all of these are important to the understanding of these unique geomorphic features. There is a large body
NASA Technical Reports Server (NTRS)
Spiering, Bruce; Underwood, Lauren; Ellis, Chris; Lehrter, John; Hagy, Jim; Schaeffer, Blake
2010-01-01
The goals of the project are to provide information from satellite remote sensing to support numeric nutrient criteria development and to determine data processing methods and data quality requirements to support nutrient criteria development and implementation. The approach is to identify water quality indicators that are used by decision makers to assess water quality and that are related to optical properties of the water; to develop remotely sensed data products based on algorithms relating remote sensing imagery to field-based observations of indicator values; to develop methods to assess estuarine water quality, including trends, spatial and temporal variability, and seasonality; and to develop tools to assist in the development and implementation of estuarine and coastal nutrient criteria. Additional slides present process, criteria development, typical data sources and analyses for criteria process, the power of remote sensing data for the process, examples from Pensacola Bay, spatial and temporal variability, pixel matchups, remote sensing validation, remote sensing in coastal waters, requirements for remotely sensed data products, and needs assessment. An additional presentation examines group engagement and information collection. Topics include needs assessment purpose and objectives, understanding water quality decision making, determining information requirements, and next steps.
Commercial use of remote sensing in agriculture: a case study
NASA Astrophysics Data System (ADS)
Gnauck, Gary E.
1999-12-01
Over 25 years of research have clearly shown that an analysis of remote sensing imagery can provide information on agricultural crops. Most of this research has been funded by and directed toward the needs of government agencies. Commercial use of agricultural remote sensing has been limited to very small-scale operations supplying remote sensing services to a few selected customers. Datron/Transco Inc. undertook an internally funded remote sensing program directed toward the California cash crop industry (strawberries, lettuce, tomatoes, other fresh vegetables and cotton). The objectives of this program were twofold: (1) to assess the need and readiness of agricultural land managers to adopt remote sensing as a management tool, and (2) determine what technical barriers exist to large-scale implementation of this technology on a commercial basis. The program was divided into three phases: Planning, Engineering Test and Evaluation, and Commercial Operations. Findings: Remote sensing technology can deliver high resolution multispectral imagery with rapid turnaround, that can provide information on crop stress insects, disease and various soil parameters. The limiting factors to the use of remote sensing in agriculture are a lack of familiarization by the land managers, difficulty in translating 'information' into increased revenue or reduced cost for the land manager, and the large economies of scale needed to make the venture commercially viable.
Code of Federal Regulations, 2013 CFR
2013-01-01
... remote sensing satellite industry. (Available from NOAA, National Environmental Satellite Data and... LICENSING OF PRIVATE REMOTE SENSING SYSTEMS General § 960.1 Purpose. (a) The regulations in this part set... sensing space system under Title II of the Land Remote Sensing Policy Act of 1992 (15 U.S.C. 5601 et seq...
Code of Federal Regulations, 2011 CFR
2011-01-01
... remote sensing satellite industry. (Available from NOAA, National Environmental Satellite Data and... LICENSING OF PRIVATE REMOTE SENSING SYSTEMS General § 960.1 Purpose. (a) The regulations in this part set... sensing space system under Title II of the Land Remote Sensing Policy Act of 1992 (15 U.S.C. 5601 et seq...
Code of Federal Regulations, 2014 CFR
2014-01-01
... remote sensing satellite industry. (Available from NOAA, National Environmental Satellite Data and... LICENSING OF PRIVATE REMOTE SENSING SYSTEMS General § 960.1 Purpose. (a) The regulations in this part set... sensing space system under Title II of the Land Remote Sensing Policy Act of 1992 (15 U.S.C. 5601 et seq...
Code of Federal Regulations, 2012 CFR
2012-01-01
... remote sensing satellite industry. (Available from NOAA, National Environmental Satellite Data and... LICENSING OF PRIVATE REMOTE SENSING SYSTEMS General § 960.1 Purpose. (a) The regulations in this part set... sensing space system under Title II of the Land Remote Sensing Policy Act of 1992 (15 U.S.C. 5601 et seq...
Code of Federal Regulations, 2010 CFR
2010-01-01
... LICENSING OF PRIVATE REMOTE SENSING SYSTEMS General § 960.1 Purpose. (a) The regulations in this part set... sensing space system under Title II of the Land Remote Sensing Policy Act of 1992 (15 U.S.C. 5601 et seq... remote sensing satellite industry. (Available from NOAA, National Environmental Satellite Data and...
Advanced Remote Sensing Research
Slonecker, Terrence; Jones, John W.; Price, Susan D.; Hogan, Dianna
2008-01-01
'Remote sensing' is a generic term for monitoring techniques that collect information without being in physical contact with the object of study. Overhead imagery from aircraft and satellite sensors provides the most common form of remotely sensed data and records the interaction of electromagnetic energy (usually visible light) with matter, such as the Earth's surface. Remotely sensed data are fundamental to geographic science. The Eastern Geographic Science Center (EGSC) of the U.S. Geological Survey (USGS) is currently conducting and promoting the research and development of three different aspects of remote sensing science: spectral analysis, automated orthorectification of historical imagery, and long wave infrared (LWIR) polarimetric imagery (PI).
NASA Technical Reports Server (NTRS)
Zaitzeff, J. B. (Editor); Cornillon, P. (Editor); Aubrey, D. A. (Editor)
1980-01-01
Presentations were grouped in the following categories: (1) a technical orientation of Earth resources remote sensing including data sources and processing; (2) a review of the present status of remote sensing technology applicable to the coastal and marine environment; (3) a description of data and information needs of selected coastal and marine activities; and (4) an outline of plans for marine monitoring systems for the east coast and a concept for an east coast remote sensing facility. Also discussed were user needs and remote sensing potentials in the areas of coastal processes and management, commercial and recreational fisheries, and marine physical processes.
Remote sensing of Earth terrain
NASA Technical Reports Server (NTRS)
Kong, J. A.
1992-01-01
Research findings are summarized for projects dealing with the following: application of theoretical models to active and passive remote sensing of saline ice; radiative transfer theory for polarimetric remote sensing of pine forest; scattering of electromagnetic waves from a dense medium consisting of correlated Mie scatterers with size distribution and applications to dry snow; variance of phase fluctuations of waves propagating through a random medium; theoretical modeling for passive microwave remote sensing of earth terrain; polarimetric signatures of a canopy of dielectric cylinders based on first and second order vector radiative transfer theory; branching model for vegetation; polarimetric passive remote sensing of periodic surfaces; composite volume and surface scattering model; and radar image classification.
Brazil's remote sensing activities in the Eighties
NASA Technical Reports Server (NTRS)
Raupp, M. A.; Pereiradacunha, R.; Novaes, R. A.
1985-01-01
Most of the remote sensing activities in Brazil have been conducted by the Institute for Space Research (INPE). This report describes briefly INPE's activities in remote sensing in the last years. INPE has been engaged in research (e.g., radiance studies), development (e.g., CCD-scanners, image processing devices) and applications (e.g., crop survey, land use, mineral resources, etc.) of remote sensing. INPE is also responsible for the operation (data reception and processing) of the LANDSATs and meteorological satellites. Data acquisition activities include the development of CCD-Camera to be deployed on board the space shuttle and the construction of a remote sensing satellite.
Application of remote sensing to state and regional problems. [for Mississippi
NASA Technical Reports Server (NTRS)
Miller, W. F.; Bouchillon, C. W.; Harris, J. C.; Carter, B.; Whisler, F. D.; Robinette, R.
1974-01-01
The primary purpose of the remote sensing applications program is for various members of the university community to participate in activities that improve the effective communication between the scientific community engaged in remote sensing research and development and the potential users of modern remote sensing technology. Activities of this program are assisting the State of Mississippi in recognizing and solving its environmental, resource and socio-economic problems through inventory, analysis, and monitoring by appropriate remote sensing systems. Objectives, accomplishments, and current status of the following individual projects are reported: (1) bark beetle project; (2) state park location planning; and (3) waste source location and stream channel geometry monitoring.
Physics teaching by infrared remote sensing of vegetation
NASA Astrophysics Data System (ADS)
Schüttler, Tobias; Maman, Shimrit; Girwidz, Raimund
2018-05-01
Context- and project-based teaching has proven to foster different affective and cognitive aspects of learning. As a versatile and multidisciplinary scientific research area with diverse applications for everyday life, satellite remote sensing is an interesting context for physics education. In this paper we give a brief overview of satellite remote sensing of vegetation and how to obtain your own, individual infrared remote sensing data with affordable converted digital cameras. This novel technique provides the opportunity to conduct individual remote sensing measurement projects with students in their respective environment. The data can be compared to real satellite data and is of sufficient accuracy for educational purposes.
Application of remote sensing to water resources problems
NASA Technical Reports Server (NTRS)
Clapp, J. L.
1972-01-01
The following conclusions were reached concerning the applications of remote sensing to water resources problems: (1) Remote sensing methods provide the most practical method of obtaining data for many water resources problems; (2) the multi-disciplinary approach is essential to the effective application of remote sensing to water resource problems; (3) there is a correlation between the amount of suspended solids in an effluent discharged into a water body and reflected energy; (4) remote sensing provides for more effective and accurate monitoring, discovery and characterization of the mixing zone of effluent discharged into a receiving water body; and (5) it is possible to differentiate between blue and blue-green algae.
Results of a Hubble Space Telescope Search for Natural Satellites of Dwarf Planet 1 Ceres
NASA Astrophysics Data System (ADS)
DeMario, Benjamin; Schmidt, Britney E.; Mutchler, Maximilian J.; Li, Jian-Yang; McFadden, Lucy Ann; McLean, Brian; Russell, Christopher T.
2016-10-01
In order to prepare for the arrival of the Dawn spacecraft at Ceres, a search for satellites was undertaken by the Hubble Space Telescope (HST) to enhance the mission science return and to ensure spacecraft safety. Previous satellite searches from ground-based telescopes have detected no satellites within Ceres' Hill sphere down to a size of 3 km (Gehrels et al. 1987) and early HST investigations searched to a limit of 1-2 km (Bieryla et al. 2011). The Wide Field Camera 3 (WFC3) on board the HST was used to image Ceres between 14 April - 28 April 2014. These images cover approximately the inner third of Ceres' Hill sphere, where the Hill sphere is the region surrounding Ceres where stable satellite orbits are possible. We performed a deep search for possible companions orbiting Ceres. No natural companions were located down to a diameter of 48 meters, over most of the Hill sphere to a distance of 205,000 km (434 Ceres radii) from the surface of Ceres. It was impossible to search all the way to the surface of Ceres because of scattered light, but at a distance of 2865 km (five Ceres radii), the search limit was determined to be 925 meters. The absence of a satellite around Ceres could, in the future, support more refined theories about satellite formation or capture mechanisms in the solar system.
SUPERFUND REMOTE SENSING SUPPORT
This task provides remote sensing technical support to the Superfund program. Support includes the collection, processing, and analysis of remote sensing data to characterize hazardous waste disposal sites and their history. Image analysis reports, aerial photographs, and assoc...
NASA Technical Reports Server (NTRS)
Brosius, C. A.; Gervin, J. C.; Ragusa, J. M.
1977-01-01
A text book on remote sensing, as part of the earth resources Skylab programs, is presented. The fundamentals of remote sensing and its application to agriculture, land use, geology, water and marine resources, and environmental monitoring are summarized.
Operational Use of Remote Sensing within USDA
NASA Technical Reports Server (NTRS)
Bethel, Glenn R.
2007-01-01
A viewgraph presentation of remote sensing imagery within the USDA is shown. USDA Aerial Photography, Digital Sensors, Hurricane imagery, Remote Sensing Sources, Satellites used by Foreign Agricultural Service, Landsat Acquisitions, and Aerial Acquisitions are also shown.
Investigation related to multispectral imaging systems
NASA Technical Reports Server (NTRS)
Nalepka, R. F.; Erickson, J. D.
1974-01-01
A summary of technical progress made during a five year research program directed toward the development of operational information systems based on multispectral sensing and the use of these systems in earth-resource survey applications is presented. Efforts were undertaken during this program to: (1) improve the basic understanding of the many facets of multispectral remote sensing, (2) develop methods for improving the accuracy of information generated by remote sensing systems, (3) improve the efficiency of data processing and information extraction techniques to enhance the cost-effectiveness of remote sensing systems, (4) investigate additional problems having potential remote sensing solutions, and (5) apply the existing and developing technology for specific users and document and transfer that technology to the remote sensing community.
An object-based storage model for distributed remote sensing images
NASA Astrophysics Data System (ADS)
Yu, Zhanwu; Li, Zhongmin; Zheng, Sheng
2006-10-01
It is very difficult to design an integrated storage solution for distributed remote sensing images to offer high performance network storage services and secure data sharing across platforms using current network storage models such as direct attached storage, network attached storage and storage area network. Object-based storage, as new generation network storage technology emerged recently, separates the data path, the control path and the management path, which solves the bottleneck problem of metadata existed in traditional storage models, and has the characteristics of parallel data access, data sharing across platforms, intelligence of storage devices and security of data access. We use the object-based storage in the storage management of remote sensing images to construct an object-based storage model for distributed remote sensing images. In the storage model, remote sensing images are organized as remote sensing objects stored in the object-based storage devices. According to the storage model, we present the architecture of a distributed remote sensing images application system based on object-based storage, and give some test results about the write performance comparison of traditional network storage model and object-based storage model.
Fuzzy Classification of High Resolution Remote Sensing Scenes Using Visual Attention Features.
Li, Linyi; Xu, Tingbao; Chen, Yun
2017-01-01
In recent years the spatial resolutions of remote sensing images have been improved greatly. However, a higher spatial resolution image does not always lead to a better result of automatic scene classification. Visual attention is an important characteristic of the human visual system, which can effectively help to classify remote sensing scenes. In this study, a novel visual attention feature extraction algorithm was proposed, which extracted visual attention features through a multiscale process. And a fuzzy classification method using visual attention features (FC-VAF) was developed to perform high resolution remote sensing scene classification. FC-VAF was evaluated by using remote sensing scenes from widely used high resolution remote sensing images, including IKONOS, QuickBird, and ZY-3 images. FC-VAF achieved more accurate classification results than the others according to the quantitative accuracy evaluation indices. We also discussed the role and impacts of different decomposition levels and different wavelets on the classification accuracy. FC-VAF improves the accuracy of high resolution scene classification and therefore advances the research of digital image analysis and the applications of high resolution remote sensing images.
Fuzzy Classification of High Resolution Remote Sensing Scenes Using Visual Attention Features
Xu, Tingbao; Chen, Yun
2017-01-01
In recent years the spatial resolutions of remote sensing images have been improved greatly. However, a higher spatial resolution image does not always lead to a better result of automatic scene classification. Visual attention is an important characteristic of the human visual system, which can effectively help to classify remote sensing scenes. In this study, a novel visual attention feature extraction algorithm was proposed, which extracted visual attention features through a multiscale process. And a fuzzy classification method using visual attention features (FC-VAF) was developed to perform high resolution remote sensing scene classification. FC-VAF was evaluated by using remote sensing scenes from widely used high resolution remote sensing images, including IKONOS, QuickBird, and ZY-3 images. FC-VAF achieved more accurate classification results than the others according to the quantitative accuracy evaluation indices. We also discussed the role and impacts of different decomposition levels and different wavelets on the classification accuracy. FC-VAF improves the accuracy of high resolution scene classification and therefore advances the research of digital image analysis and the applications of high resolution remote sensing images. PMID:28761440
NASA Astrophysics Data System (ADS)
Shuxin, Li; Zhilong, Zhang; Biao, Li
2018-01-01
Plane is an important target category in remote sensing targets and it is of great value to detect the plane targets automatically. As remote imaging technology developing continuously, the resolution of the remote sensing image has been very high and we can get more detailed information for detecting the remote sensing targets automatically. Deep learning network technology is the most advanced technology in image target detection and recognition, which provided great performance improvement in the field of target detection and recognition in the everyday scenes. We combined the technology with the application in the remote sensing target detection and proposed an algorithm with end to end deep network, which can learn from the remote sensing images to detect the targets in the new images automatically and robustly. Our experiments shows that the algorithm can capture the feature information of the plane target and has better performance in target detection with the old methods.
DARLA: Data Assimilation and Remote Sensing for Littoral Applications
NASA Astrophysics Data System (ADS)
Jessup, A.; Holman, R. A.; Chickadel, C.; Elgar, S.; Farquharson, G.; Haller, M. C.; Kurapov, A. L.; Özkan-Haller, H. T.; Raubenheimer, B.; Thomson, J. M.
2012-12-01
DARLA is 5-year collaborative project that couples state-of-the-art remote sensing and in situ measurements with advanced data assimilation (DA) modeling to (a) evaluate and improve remote sensing retrieval algorithms for environmental parameters, (b) determine the extent to which remote sensing data can be used in place of in situ data in models, and (c) infer bathymetry for littoral environments by combining remotely-sensed parameters and data assimilation models. The project uses microwave, electro-optical, and infrared techniques to characterize the littoral ocean with a focus on wave and current parameters required for DA modeling. In conjunction with the RIVET (River and Inlets) Project, extensive in situ measurements provide ground truth for both the remote sensing retrieval algorithms and the DA modeling. Our goal is to use remote sensing to constrain data assimilation models of wave and circulation dynamics in a tidal inlet and surrounding beaches. We seek to improve environmental parameter estimation via remote sensing fusion, determine the success of using remote sensing data to drive DA models, and produce a dynamically consistent representation of the wave, circulation, and bathymetry fields in complex environments. The objectives are to test the following three hypotheses: 1. Environmental parameter estimation using remote sensing techniques can be significantly improved by fusion of multiple sensor products. 2. Data assimilation models can be adequately constrained (i.e., forced or guided) with environmental parameters derived from remote sensing measurements. 3. Bathymetry on open beaches, river mouths, and at tidal inlets can be inferred from a combination of remotely-sensed parameters and data assimilation models. Our approach is to conduct a series of field experiments combining remote sensing and in situ measurements to investigate signature physics and to gather data for developing and testing DA models. A preliminary experiment conducted at the Field Research Facility at Duck, NC in September 2010 focused on assimilation of tower-based electo-optical, infrared, and radar measurements in predictions of longshore currents. Here we provide an overview of our contribution to the RIVET I experiment at New River Inlet, NC in May 2012. During the course of the 3-week measurement period, continuous tower-based remote sensing measurements were made using electro-optical, infrared, and radar techniques covering the nearshore zone and the inlet mouth. A total of 50 hours of airborne measurements were made using high-resolution infrared imagers and a customized along track interferometric synthetic aperture radar (ATI SAR). The airborne IR imagery provides kilometer-scale mapping of frontal features that evolve as the inlet flow interacts with the oceanic wave and current fields. The ATI SAR provides maps of the two-dimensional surface currents. Near-surface measurements of turbulent velocities and surface waves using SWIFT drifters, designed to measures near-surface properties relevant to remote sensing, complimented the extensive in situ measurements by RIVET investigators.
Resolved spectrophotometric properties of the Ceres surface from Dawn Framing Camera images
NASA Astrophysics Data System (ADS)
Schröder, S. E.; Mottola, S.; Carsenty, U.; Ciarniello, M.; Jaumann, R.; Li, J.-Y.; Longobardo, A.; Palmer, E.; Pieters, C.; Preusker, F.; Raymond, C. A.; Russell, C. T.
2017-05-01
We present a global spectrophotometric characterization of the Ceres surface using Dawn Framing Camera (FC) images. We identify the photometric model that yields the best results for photometrically correcting images. Corrected FC images acquired on approach to Ceres were assembled into global maps of albedo and color. Generally, albedo and color variations on Ceres are muted. The albedo map is dominated by a large, circular feature in Vendimia Planitia, known from HST images (Li et al., 2006), and dotted by smaller bright features mostly associated with fresh-looking craters. The dominant color variation over the surface is represented by the presence of "blue" material in and around such craters, which has a negative spectral slope over the visible wavelength range when compared to average terrain. We also mapped variations of the phase curve by employing an exponential photometric model, a technique previously applied to asteroid Vesta (Schröder et al., 2013b). The surface of Ceres scatters light differently from Vesta in the sense that the ejecta of several fresh-looking craters may be physically smooth rather than rough. High albedo, blue color, and physical smoothness all appear to be indicators of youth. The blue color may result from the desiccation of ejected material that is similar to the phyllosilicates/water ice mixtures in the experiments of Poch et al. (2016). The physical smoothness of some blue terrains would be consistent with an initially liquid condition, perhaps as a consequence of impact melting of subsurface water ice. We find red terrain (positive spectral slope) near Ernutet crater, where De Sanctis et al. (2017) detected organic material. The spectrophotometric properties of the large Vendimia Planitia feature suggest it is a palimpsest, consistent with the Marchi et al. (2016) impact basin hypothesis. The central bright area in Occator crater, Cerealia Facula, is the brightest on Ceres with an average visual normal albedo of about 0.6 at a resolution of 1.3 km per pixel (six times Ceres average). The albedo of fresh, bright material seen inside this area in the highest resolution images (35 m per pixel) is probably around unity. Cerealia Facula has an unusually steep phase function, which may be due to unresolved topography, high surface roughness, or large average particle size. It has a strongly red spectrum whereas the neighboring, less-bright, Vinalia Faculae are neutral in color. We find no evidence for a diurnal ground fog-type haze in Occator as described by Nathues et al. (2015). We can neither reproduce their findings using the same images, nor confirm them using higher resolution images. FC images have not yet offered direct evidence for present sublimation in Occator.
A remote sensing and GIS-enabled asset management system (RS-GAMS).
DOT National Transportation Integrated Search
2013-04-01
Under U.S. Department of Transportation (DOT) Commercial Remote Sensing and : Spatial Information (CRS&SI) Technology Initiative 2 of the Transportation : Infrastructure Construction and Condition Assessment, an intelligent Remote Sensing and : GIS-b...
ERIC Educational Resources Information Center
Williams, Richard S., Jr.; Southworth, C. Scott
1983-01-01
The Landsat Program became the major event of 1982 in geological remote sensing with the successful launch of Landsat 4. Other 1982 remote sensing accomplishments, research, publications, (including a set of Landsat worldwide reference system index maps), and conferences are highlighted. (JN)
Remote sensing utility in a disaster struck urban environment
NASA Technical Reports Server (NTRS)
Rush, M.; Holguin, A.; Vernon, S.
1974-01-01
A project to determine the ways in which remote sensing can contribute to solutions of urban public health problems in time of natural disaster is discussed. The objectives of the project are to determine and describe remote sensing standard operating procedures for public health assistance during disaster relief operations which will aid the agencies and organizations involved in disaster intervention. Proposed tests to determine the validity of the remote sensing system are reported.
2010-12-06
raw data). To remove surface-reflected light in field measurements of remote sensing reflectance, a spectral optimization approach was applied, with...results compared with those from remote - sensing models and from direct measurements. The agreement from different determinations suggests that...reasonable results for remote sensing reflectance of clear blue water to turbid brown water are obtainable from above-surface measurements, even under conditions of high waves.
Bibliography of Remote Sensing Techniques Used in Wetland Research
1993-01-01
8217 is investigating the application of remote sensing technology for detecting changes in wetland environments. This report documents a bibliographic...search conducted as part of that work unit on applications of remote sensing techniques in wetland research. Results were used to guide research...efforts on the use of remote sensing technology for wetland change detection and assessment. The citations are presented in three appendixes, organized by wetland type, sensor type, and author.
Use of Openly Available Satellite Images for Remote Sensing Education
NASA Astrophysics Data System (ADS)
Wang, C.-K.
2011-09-01
With the advent of Google Earth, Google Maps, and Microsoft Bing Maps, high resolution satellite imagery are becoming more easily accessible than ever. It have been the case that the college students may already have wealth experiences with the high resolution satellite imagery by using these software and web services prior to any formal remote sensing education. It is obvious that the remote sensing education should be adjusted to the fact that the audience are already the customers of remote sensing products (through the use of the above mentioned services). This paper reports the use of openly available satellite imagery in an introductory-level remote sensing course in the Department of Geomatics of National Cheng Kung University as a term project. From the experience learned from the fall of 2009 and 2010, it shows that this term project has effectively aroused the students' enthusiastic toward Remote Sensing.
Strategies for using remotely sensed data in hydrologic models
NASA Technical Reports Server (NTRS)
Peck, E. L.; Keefer, T. N.; Johnson, E. R. (Principal Investigator)
1981-01-01
Present and planned remote sensing capabilities were evaluated. The usefulness of six remote sensing capabilities (soil moisture, land cover, impervious area, areal extent of snow cover, areal extent of frozen ground, and water equivalent of the snow cover) with seven hydrologic models (API, CREAMS, NWSRFS, STORM, STANFORD, SSARR, and NWSRFS Snowmelt) were reviewed. The results indicate remote sensing information has only limited value for use with the hydrologic models in their present form. With minor modifications to the models the usefulness would be enhanced. Specific recommendations are made for incorporating snow covered area measurements in the NWSRFS Snowmelt model. Recommendations are also made for incorporating soil moisture measurements in NWSRFS. Suggestions are made for incorporating snow covered area, soil moisture, and others in STORM and SSARR. General characteristics of a hydrologic model needed to make maximum use of remotely sensed data are discussed. Suggested goals for improvements in remote sensing for use in models are also established.
NASA Technical Reports Server (NTRS)
Sand, F.; Christie, R.
1975-01-01
Extending the crop survey application of remote sensing from small experimental regions to state and national levels requires that a sample of agricultural fields be chosen for remote sensing of crop acreage, and that a statistical estimate be formulated with measurable characteristics. The critical requirements for the success of the application are reviewed in this report. The problem of sampling in the presence of cloud cover is discussed. Integration of remotely sensed information about crops into current agricultural crop forecasting systems is treated on the basis of the USDA multiple frame survey concepts, with an assumed addition of a new frame derived from remote sensing. Evolution of a crop forecasting system which utilizes LANDSAT and future remote sensing systems is projected for the 1975-1990 time frame.
Archimedean Witness: The Application of Remote Sensing as an Aid to Human Rights Prosecutions
NASA Astrophysics Data System (ADS)
Walker, James Robin
The 21st century has seen a significant increase in the use of remote sensing technology in the international human rights arena for the purposes of documenting crimes against humanity. The nexus between remote sensing, human rights activism, and international criminal prosecutions sits at a significant crossroads within geographic thought, calling attention to the epistemological and geopolitical implications that stem from the "view from nowhere" afforded by satellite imagery. Therefore, this thesis is divided into three sections. The first looks at the geographical questions raised by the expansion of remote sensing use in the context of international activism. The second explores the complications inherent in the presentation of remote sensing data as evidence of war crimes. Building upon the first two, the third section is a case study in alternate forms of analysis, aimed at expanding the utility of remote sensing data in international criminal prosecutions.
Sun, Zhong Yu; Chen, Yan Qiao; Yang, Long; Tang, Guang Liang; Yuan, Shao Xiong; Lin, Zhi Wen
2017-02-01
Low-altitude unmanned aerial vehicles (UAV) remote sensing system overcomes the deficiencies of space and aerial remote sensing system in resolution, revisit period, cloud cover and cost, which provides a novel method for ecological research on mesoscale. This study introduced the composition of UAV remote sensing system, reviewed its applications in species, population, community and ecosystem ecology research. Challenges and opportunities of UAV ecology were identified to direct future research. The promising research area of UAV ecology includes the establishment of species morphology and spectral characteristic data base, species automatic identification, the revelation of relationship between spectral index and plant physiological processes, three-dimension monitoring of ecosystem, and the integration of remote sensing data from multi resources and multi scales. With the development of UAV platform, data transformation and sensors, UAV remote sensing technology will have wide application in ecology research.
Results of a hubble space telescope search for natural satellites of dwarf planet 1 ceres
NASA Astrophysics Data System (ADS)
DeMario, Benjamin E.; Schmidt, Britney E.; Mutchler, Max J.; Li, Jian-Yang; McFadden, Lucy A.; McLean, Brian J.; Russell, Christopher T.
2016-12-01
In order to prepare for the arrival of the Dawn spacecraft at Ceres, a search for satellites was undertaken by the Hubble Space Telescope (HST) to enhance the mission science return and to ensure spacecraft safety. Previous satellite searches from ground-based telescopes have detected no satellites within Ceres' Hill sphere down to a size of 3 km (Gehrels et al. 1987) and early HST investigations searched to a limit of 1-2 km (Bieryla et al. 2011). The Wide Field Camera 3 (WFC3) on board the HST was used to image Ceres between 14 April-28 April 2014. These images cover approximately the inner third of Ceres' Hill sphere, where the Hill sphere is the region surrounding Ceres where stable satellite orbits are possible. We performed a deep search for possible companions orbiting Ceres. No natural companions were located down to a diameter of 48 m, over most of the Hill sphere to a distance of 205,000 km (434 Ceres radii) from the surface of Ceres. It was impossible to search all the way to the surface of Ceres because of scattered light, but at a distance of 2865 km (five Ceres radii), the search limit was determined to be 925 m.
Cloud Properties of CERES-MODIS Edition 4 and CERES-VIIRS Edition 1
NASA Technical Reports Server (NTRS)
Sun-Mack, Sunny; Minnis, Patrick; Chang, Fu-Lung; Hong, Gang; Arduini, Robert; Chen, Yan; Trepte, Qing; Yost, Chris; Smith, Rita; Brown, Ricky;
2015-01-01
The Clouds and Earth's Radiant Energy System (CERES) analyzes MODerate-resolution Imaging Spectroradiometer (MODIS) data and Visible Infrared Imaging Radiometer Suite (VIIRS) to derive cloud properties that are combine with aerosol and CERES broadband flux data to create a multi-parameter data set for climate study. CERES has produced over 15 years of data from Terra and over 13 years of data from Aqua using the CERES-MODIS Edition-2 cloud retrieval algorithm. A recently revised algorithm, CERESMODIS Edition 4, has been developed and is now generating enhanced cloud data for climate research (over 10 years for Terra and 8 years for Aqua). New multispectral retrievals of properties are included along with a multilayer cloud retrieval system. Cloud microphysical properties are reported at 3 wavelengths, 0.65, 1.24, and 2.1 microns to enable better estimates of the vertical profiles of cloud water contents. Cloud properties over snow are retrieved using the 1.24-micron channel. A new CERES-VIIRS cloud retrieval package was developed for the VIIRS spectral complement and is currently producing the CERES-VIIRS Edition 1 cloud dataset. The results from CERES-MODIS Edition 4 and CERES-VIIRS Edition 1 are presented and compared with each other and other datasets, including CALIPSO, CloudSat and the CERES-MODIS Edition-2 results.
International Models and Methods of Remote Sensing Education and Training.
ERIC Educational Resources Information Center
Anderson, Paul S.
A classification of remote sensing courses throughout the world, the world-wide need for sensing instruction, and alternative instructional methods for meeting those needs are discussed. Remote sensing involves aerial photointerpretation or the use of satellite and other non-photographic imagery; its focus is to interpret what is in the photograph…
NASA Technical Reports Server (NTRS)
Ross, A.; Richards, A.; Keith, K.; Frew, C.; Boseck, J.; Sutton, S.; Watts, C.; Rickman, D.
2007-01-01
This project focused on a comprehensive utilization of air quality model products as decision support tools (DST) needed for public health applications. A review of past and future air quality measurement methods and their uncertainty, along with the relationship of air quality to national and global public health, is vital. This project described current and future NASA satellite remote sensing and ground sensing capabilities and the potential for using these sensors to enhance the prediction, prevention, and control of public health effects that result from poor air quality. The qualitative uncertainty of current satellite remotely sensed air quality, the ground-based remotely sensed air quality, the air quality/public health model, and the decision making process is evaluated in this study. Current peer-reviewed literature suggests that remotely sensed air quality parameters correlate well with ground-based sensor data. A satellite remote-sensed and ground-sensed data complement is needed to enhance the models/tools used by policy makers for the protection of national and global public health communities
Theme section for 36th International Symposium for Remote Sensing of the Environment in Berlin
NASA Astrophysics Data System (ADS)
Trinder, John; Waske, Björn
2016-09-01
The International Symposium for Remote Sensing of the Environment (ISRSE) is the longest series of international conferences held on the topic of Remote Sensing, commencing in Ann Arbor, Michigan USA in 1962. While the name of the conference has changed over the years, it is regularly held approximately every 2 years and continues to be one of the leading international conferences on remote sensing. The latest of these conferences, the 36th ISRSE, was held in Berlin, Germany from 11 to 15 May 2015. All complete papers from the conference are available in the ISPRS International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences at http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-7-W3/index.html.
THE REMOTE SENSING DATA GATEWAY
The EPA Remote Sensing Data Gateway (RSDG) is a pilot project in the National Exposure Research Laboratory (NERL) to develop a comprehensive data search, acquisition, delivery and archive mechanism for internal, national and international sources of remote sensing data for the co...
A remote sensing and GIS-enabled asset management system (RS-GAMS) : phase 2.
DOT National Transportation Integrated Search
2014-04-01
Under the U.S. Department of Transportation (DOT) Commercial Remote Sensing and Spatial : Information (CRS&SI) Technology Initiative 2 of the Transportation Infrastructure Construction : and Condition Assessment, an intelligent Remote Sensing and GIS...
Remote sensing applications program
NASA Technical Reports Server (NTRS)
1984-01-01
The activities of the Mississippi Remote Sensing Center are described in addition to technology transfer and information dissemination, remote sensing topics such as timber identification, water quality, flood prevention, land use, erosion control, animal habitats, and environmental impact studies are also discussed.
Remote Sensing Terminology in a Global and Knowledge-Based World
NASA Astrophysics Data System (ADS)
Kancheva, Rumiana
The paper is devoted to terminology issues related to all aspects of remote sensing research and applications. Terminology is the basis for a better understanding among people. It is crucial to keep up with the latest developments and novelties of the terminology in advanced technology fields such as aerospace science and industry. This is especially true in remote sensing and geoinformatics which develop rapidly and have ever extending applications in various domains of science and human activities. Remote sensing terminology issues are directly relevant to the contemporary worldwide policies on information accessibility, dissemination and utilization of research results in support of solutions to global environmental challenges and sustainable development goals. Remote sensing and spatial information technologies are an integral part of the international strategies for cooperation in scientific, research and application areas with a particular accent on environmental monitoring, ecological problems natural resources management, climate modeling, weather forecasts, disaster mitigation and many others to which remote sensing data can be put. Remote sensing researchers, professionals, students and decision makers of different counties and nationalities should fully understand, interpret and translate into their native language any term, definition or acronym found in papers, books, proceedings, specifications, documentation, and etc. The importance of the correct use, precise definition and unification of remote sensing terms refers not only to people working in this field but also to experts in a variety of disciplines who handle remote sensing data and information products. In this paper, we draw the attention on the specifics, peculiarities and recent needs of compiling specialized dictionaries in the area of remote sensing focusing on Earth observations and the integration of remote sensing with other geoinformation technologies such as photogrammetry, geodesy, GIS, etc. Our belief is that the elaboration of bilingual and multilingual dictionaries and glossaries in this spreading, most technically advanced and promising field of human expertise is of great practical importance. The work on an English-Bulgarian Dictionary of Remote Sensing Terms is described including considerations on its scope, structure, information content, sellection of terms, and etc. The vision builds upon previous national and international experience and makes use of ongoing activities on the subject. Any interest in cooperation and initiating suchlike collaborative projects is welcome and highly appreciated.
Indicators of international remote sensing activities
NASA Technical Reports Server (NTRS)
Spann, G. W.
1977-01-01
The extent of worldwide remote sensing activities, including the use of satellite and high/medium altitude aircraft data was studied. Data were obtained from numerous individuals and organizations with international remote sensing responsibilities. Indicators were selected to evaluate the nature and scope of remote sensing activities in each country. These indicators ranged from attendance at remote sensing workshops and training courses to the establishment of earth resources satellite ground stations and plans for the launch of earth resources satellites. Results indicate that this technology constitutes a rapidly increasing component of environmental, land use, and natural resources investigations in many countries, and most of these countries rely on the LANDSAT satellites for a major portion of their data.
Free acquisition and dissemination of data through remote sensing. [Landsat program legal aspects
NASA Technical Reports Server (NTRS)
Hosenball, S. N.
1976-01-01
Free acquisition and dissemination of data through remote sensing is discussed with reference to the Landsat program. The role of the Scientific and Technical Subcommittee of the U.N. General Assembly's Committee on the Peaceful Uses of Outer Space has made recommendations on the expansion of existing ground stations and on the establishment of an experimental center for training in remote sensing. The working group for the legal subcommittee of the same U.N. committee indicates that there are common elements in the three drafts on remote sensing submitted to it: a call for international cooperation and the belief that remote sensing should be conducted for the benefit of all mankind.
Observations of Hydrated Minerals on Asteroids: Pushing Back the Frontiers
NASA Technical Reports Server (NTRS)
2005-01-01
The three accomplishments during this grant include: 1) Travel to 2004 Division of Planetary Science (of American Astronomical Society) Conference in Louisville, KY and presentation of Rotationally resolved spectroscopy of Vesta in the 1-4 micron region, abstract 28.07. 2) Remote observations using the IRTF on 20-21 June 2004 and 28-3 1 August 2004, and reduction of data as described in the grant proposal and descoping document. These observations confirm the presence of two different band shapes among C-class asteroid spectra in the 3-micron region. This allowed a revision of the known distribution of Ceres- and Pallas-type objects. 3) Remote observations using the IRTF on 7-10 August 2004. These observations of Vesta were presented, and the manuscript will be submitted to Icarus in June.
Some fundamental concepts in remote sensing
NASA Technical Reports Server (NTRS)
1982-01-01
The term remote sensing is defined as well as ideas such as class, pattern, feature, pattern recognition, feature extraction, and theme. The electromagnetic spectrum is examined especially those wavelength regions available to remote sensing. Relevant energy and wave propagation laws are discussed and the characteristics of emitted and reflected radiation and their detection are investigated. The identification of classes by their spectral signatures, the multispectral approach, and the principal types of sensors and platforms used in remote sensing are also considered.
LWIR Microgrid Polarimeter for Remote Sensing Studies
2010-02-28
Polarimeter for Remote Sensing Studies 5b. GRANT NUMBER FA9550-08-1-0295 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 1. Scott Tyo 5e. TASK...and tested at the University of Arizona, and preliminary images are shown in this final report. 15. SUBJECT TERMS Remote Sensing , polarimetry 16...7.0 LWIR Microgrid Polarimeter for Remote Sensing Studies J. Scott Tyo College of Optical Sciences University of Arizona Tucson, AZ, 85721 tyo
NASA Astrophysics Data System (ADS)
Han, Xiuzhen; Ma, Jianwen; Bao, Yuhai
2006-12-01
Currently the function of operational locust monitor system mainly focused on after-hazards monitoring and assessment, and to found the way effectively to perform early warning and prediction has more practical meaning. Through 2001, 2002 two years continuously field sample and statistics for locusts eggs hatching, nymph growth, adults 3 phases observation, sample statistics and calculation, spectral measurements as well as synchronically remote sensing data processing we raise the view point of Remote Sensing three stage monitor the locust hazards. Based on the point of view we designed remote sensing monitor in three stages: (1) during the egg hitching phase remote sensing can retrieve parameters of land surface temperature (LST) and soil moisture; (2) during nymph growth phase locust increases appetite greatly and remote sensing can calculate vegetation index, leaf area index, vegetation cover and analysis changes; (3) during adult phase the locust move and assembly towards ponds and water ditches as well as less than 75% vegetation cover areas and remote sensing combination with field data can monitor and predicts potential areas for adult locusts to assembly. In this way the priority of remote sensing technology is elaborated effectively and it also provides technique support for the locust monitor system. The idea and techniques used in the study can also be used as reference for other plant diseases and insect pests.
NASA Remote Sensing Research as Applied to Archaeology
NASA Technical Reports Server (NTRS)
Giardino, Marco J.; Thomas, Michael R.
2002-01-01
The use of remotely sensed images is not new to archaeology. Ever since balloons and airplanes first flew cameras over archaeological sites, researchers have taken advantage of the elevated observation platforms to understand sites better. When viewed from above, crop marks, soil anomalies and buried features revealed new information that was not readily visible from ground level. Since 1974 and initially under the leadership of Dr. Tom Sever, NASA's Stennis Space Center, located on the Mississippi Gulf Coast, pioneered and expanded the application of remote sensing to archaeological topics, including cultural resource management. Building on remote sensing activities initiated by the National Park Service, archaeologists increasingly used this technology to study the past in greater depth. By the early 1980s, there were sufficient accomplishments in the application of remote sensing to anthropology and archaeology that a chapter on the subject was included in fundamental remote sensing references. Remote sensing technology and image analysis are currently undergoing a profound shift in emphasis from broad classification to detection, identification and condition of specific materials, both organic and inorganic. In the last few years, remote sensing platforms have grown increasingly capable and sophisticated. Sensors currently in use, or nearing deployment, offer significantly finer spatial and spectral resolutions than were previously available. Paired with new techniques of image analysis, this technology may make the direct detection of archaeological sites a realistic goal.
Zimmermann, N.E.; Edwards, T.C.; Moisen, Gretchen G.; Frescino, T.S.; Blackard, J.A.
2007-01-01
1. Compared to bioclimatic variables, remote sensing predictors are rarely used for predictive species modelling. When used, the predictors represent typically habitat classifications or filters rather than gradual spectral, surface or biophysical properties. Consequently, the full potential of remotely sensed predictors for modelling the spatial distribution of species remains unexplored. Here we analysed the partial contributions of remotely sensed and climatic predictor sets to explain and predict the distribution of 19 tree species in Utah. We also tested how these partial contributions were related to characteristics such as successional types or species traits. 2. We developed two spatial predictor sets of remotely sensed and topo-climatic variables to explain the distribution of tree species. We used variation partitioning techniques applied to generalized linear models to explore the combined and partial predictive powers of the two predictor sets. Non-parametric tests were used to explore the relationships between the partial model contributions of both predictor sets and species characteristics. 3. More than 60% of the variation explained by the models represented contributions by one of the two partial predictor sets alone, with topo-climatic variables outperforming the remotely sensed predictors. However, the partial models derived from only remotely sensed predictors still provided high model accuracies, indicating a significant correlation between climate and remote sensing variables. The overall accuracy of the models was high, but small sample sizes had a strong effect on cross-validated accuracies for rare species. 4. Models of early successional and broadleaf species benefited significantly more from adding remotely sensed predictors than did late seral and needleleaf species. The core-satellite species types differed significantly with respect to overall model accuracies. Models of satellite and urban species, both with low prevalence, benefited more from use of remotely sensed predictors than did the more frequent core species. 5. Synthesis and applications. If carefully prepared, remotely sensed variables are useful additional predictors for the spatial distribution of trees. Major improvements resulted for deciduous, early successional, satellite and rare species. The ability to improve model accuracy for species having markedly different life history strategies is a crucial step for assessing effects of global change. ?? 2007 The Authors.
ZIMMERMANN, N E; EDWARDS, T C; MOISEN, G G; FRESCINO, T S; BLACKARD, J A
2007-01-01
Compared to bioclimatic variables, remote sensing predictors are rarely used for predictive species modelling. When used, the predictors represent typically habitat classifications or filters rather than gradual spectral, surface or biophysical properties. Consequently, the full potential of remotely sensed predictors for modelling the spatial distribution of species remains unexplored. Here we analysed the partial contributions of remotely sensed and climatic predictor sets to explain and predict the distribution of 19 tree species in Utah. We also tested how these partial contributions were related to characteristics such as successional types or species traits. We developed two spatial predictor sets of remotely sensed and topo-climatic variables to explain the distribution of tree species. We used variation partitioning techniques applied to generalized linear models to explore the combined and partial predictive powers of the two predictor sets. Non-parametric tests were used to explore the relationships between the partial model contributions of both predictor sets and species characteristics. More than 60% of the variation explained by the models represented contributions by one of the two partial predictor sets alone, with topo-climatic variables outperforming the remotely sensed predictors. However, the partial models derived from only remotely sensed predictors still provided high model accuracies, indicating a significant correlation between climate and remote sensing variables. The overall accuracy of the models was high, but small sample sizes had a strong effect on cross-validated accuracies for rare species. Models of early successional and broadleaf species benefited significantly more from adding remotely sensed predictors than did late seral and needleleaf species. The core-satellite species types differed significantly with respect to overall model accuracies. Models of satellite and urban species, both with low prevalence, benefited more from use of remotely sensed predictors than did the more frequent core species. Synthesis and applications. If carefully prepared, remotely sensed variables are useful additional predictors for the spatial distribution of trees. Major improvements resulted for deciduous, early successional, satellite and rare species. The ability to improve model accuracy for species having markedly different life history strategies is a crucial step for assessing effects of global change. PMID:18642470
Code of Federal Regulations, 2010 CFR
2010-01-01
... Committees prior to any release outside the Department. (6) Related to remote sensing. (i) Provide technical... satellite remote sensing activities to assure full consideration and evaluation of advanced technology. (ii) Coordinate administrative, management, and budget information relating to the Department's remote sensing...
Development of sea ice monitoring with aerial remote sensing technology
NASA Astrophysics Data System (ADS)
Jiang, Xuhui; Han, Lei; Dong, Liang; Cui, Lulu; Bie, Jun; Fan, Xuewei
2014-11-01
In the north China Sea district, sea ice disaster is very serious every winter, which brings a lot of adverse effects to shipping transportation, offshore oil exploitation, and coastal engineering. In recent years, along with the changing of global climate, the sea ice situation becomes too critical. The monitoring of sea ice is playing a very important role in keeping human life and properties in safety, and undertaking of marine scientific research. The methods to monitor sea ice mainly include: first, shore observation; second, icebreaker monitoring; third, satellite remote sensing; and then aerial remote sensing monitoring. The marine station staffs use relevant equipments to monitor the sea ice in the shore observation. The icebreaker monitoring means: the workers complete the test of the properties of sea ice, such as density, salinity and mechanical properties. MODIS data and NOAA data are processed to get sea ice charts in the satellite remote sensing means. Besides, artificial visual monitoring method and some airborne remote sensors are adopted in the aerial remote sensing to monitor sea ice. Aerial remote sensing is an important means in sea ice monitoring because of its strong maneuverability, wide watching scale, and high resolution. In this paper, several methods in the sea ice monitoring using aerial remote sensing technology are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Tianyu; Mani, R. G.; Wegscheider, W.
2013-11-04
A concurrent remote sensing and magneto-transport study of the microwave excited two dimensional electron system (2DES) at liquid helium temperatures has been carried out using a carbon detector to remotely sense the microwave activity of the 2D electron system in the GaAs/AlGaAs heterostructure during conventional magneto-transport measurements. Various correlations are observed and reported between the oscillatory magnetotransport and the remotely sensed reflection. In addition, the oscillatory remotely sensed signal is shown to exhibit a power law type variation in its amplitude, similar to the radiation-induced magnetoresistance oscillations.
Surface Mineralogy Mapping of Ceres from the Dawn Mission
NASA Astrophysics Data System (ADS)
McCord, T. B.; Zambon, F.
2017-12-01
Ceres' surface composition is of special interest because it is a window into the interior state and the past evolution of this dwarf planet. Disk-integrated telescopic spectral observations indicated that Ceres' surface is hydroxylated, similar to but not exactly the same as some of the carbonaceous chondrite classes of meteorites. Furthermore, Ceres' bulk density is low, indicating significant water content. The Dawn mission in orbit around Ceres, provided a new and larger set of observations on the mineralogy, molecular and elemental composition, and their distributions in association with surface features and geology. A set of articles was prepared, from which this presentation is derived, that is the first treatment of the entire surface composition of Ceres using the complete High Altitude Mapping Orbit (HAMO) Dawn Ceres data set and the calibrations from all the Dawn instruments. This report provides a current and comprehensive view of Ceres' surface composition and integrates them into general conclusions. Ceres' surface composition shows a fairly uniform distribution of NH4- and Mg-phyllosilicates, carbonates, mixed with a dark component. The widespread presence of phyllosilicates, and salts on Ceres' surface is indicative of the presence of aqueous alteration processes, which involved the whole dwarf planet. There is also likely some contamination by low velocity infall, as seen on Vesta, but it is more difficult to distinguish this infall from native Ceres material, unlike for the Vesta case.
Review of Remote Sensing Needs and Applications in Africa
NASA Technical Reports Server (NTRS)
Brown, Molly E.
2007-01-01
Remote sensing data has had an important role in identifying and responding to inter-annual variations in the African environment during the past three decades. As a largely agricultural region with diverse but generally limited government capacity to acquire and distribute ground observations of rainfall, temperature and other parameters, remote sensing is sometimes the only reliable measure of crop growing conditions in Africa. Thus, developing and maintaining the technical and scientific capacity to analyze and utilize satellite remote sensing data in Africa is critical to augmenting the continent's local weather/climate observation networks as well as its agricultural and natural resource development and management. The report Review of Remote Sensing Needs and Applications in Africa' has as its central goal to recommend to the US Agency for International Development an appropriate approach to support sustainable remote sensing applications at African regional remote sensing centers. The report focuses on "RS applications" to refer to the acquisition, maintenance and archiving, dissemination, distribution, analysis, and interpretation of remote sensing data, as well as the integration of interpreted data with other spatial data products. The report focuses on three primary remote sensing centers: (1) The AGRHYMET Regional Center in Niamey, Niger, created in 1974, is a specialized institute of the Permanent Interstate Committee for Drought Control in the Sahel (CILSS), with particular specialization in science and techniques applied to agricultural development, rural development, and natural resource management. (2) The Regional Centre for Maiming of Resources for Development (RCMRD) in Nairobi, Kenya, established in 1975 under the auspices of the United Nations Economic Commission for Africa and the Organization of African Unity (now the African Union), is an intergovernmental organization, with 15 member states from eastern and southern Africa. (3) The Regional Remote Sensing Unit (RRSU) in Gaborone, Botswana, began work in June 1988 and operates under the Agriculture Information Management System (AIMS), as part of the Food, Agriculture and Natural Resources (FANR) Directorate, based at the Southern Africa Development Community (SADC) Secretariat.
Sturdevant, J.A.
1981-01-01
The Earth Resources Observation Systems (EROS) Data Center (EDO, administered by the U.S. Geological Survey, U.S. Department of the Interior, provides remotely sensed data to the user community and offers a variety of professional services to further the understanding and use of remote sensing technology. EDC reproduces and sells photographic and electronic copies of satellite images of areas throughout the world. Other products include aerial photographs collected by 16 organizations, including the U.S. Geological Survey and the National Aeronautics and Space Administration. Primary users of the remotely sensed data are Federal, State, and municipal government agencies, universities, foreign nations, and private industries. The professional services available at EDC are primarily directed at integrating satellite and aircraft remote sensing technology into the programs of the Department of the Interior and its cooperators. This is accomplished through formal training workshops, user assistance, cooperative demonstration projects, and access to equipment and capabilities in an advanced data analysis laboratory. In addition, other Federal agencies, State and local governments, universities, and the general public can get assistance from the EDC Staff. Since 1973, EDC has contributed to the accelerating growth in development and operational use of remotely sensed data for land resource problems through its role as educator and by conducting basic and applied remote sensing applications research. As remote sensing technology continues to evolve, EDC will continue to respond to the increasing demand for timely information on remote sensing applications. Questions most often asked about EDC's research and training programs include: Who may attend an EDC remote sensing training course? Specifically, what is taught? Who may cooperate with EDC on remote sensing projects? Are interpretation services provided on a service basis? This report attempts to define the goals and objectives of and policies on the following EDC services: Training Program.User Assistance.Data Analysis Laboratory.Cooperative Demonstration Projects.Research Projects.
Risk profiling of schistosomiasis using remote sensing: approaches, challenges and outlook.
Walz, Yvonne; Wegmann, Martin; Dech, Stefan; Raso, Giovanna; Utzinger, Jürg
2015-03-17
Schistosomiasis is a water-based disease that affects an estimated 250 million people, mainly in sub-Saharan Africa. The transmission of schistosomiasis is spatially and temporally restricted to freshwater bodies that contain schistosome cercariae released from specific snails that act as intermediate hosts. Our objective was to assess the contribution of remote sensing applications and to identify remaining challenges in its optimal application for schistosomiasis risk profiling in order to support public health authorities to better target control interventions. We reviewed the literature (i) to deepen our understanding of the ecology and the epidemiology of schistosomiasis, placing particular emphasis on remote sensing; and (ii) to fill an identified gap, namely interdisciplinary research that bridges different strands of scientific inquiry to enhance spatially explicit risk profiling. As a first step, we reviewed key factors that govern schistosomiasis risk. Secondly, we examined remote sensing data and variables that have been used for risk profiling of schistosomiasis. Thirdly, the linkage between the ecological consequence of environmental conditions and the respective measure of remote sensing data were synthesised. We found that the potential of remote sensing data for spatial risk profiling of schistosomiasis is - in principle - far greater than explored thus far. Importantly though, the application of remote sensing data requires a tailored approach that must be optimised by selecting specific remote sensing variables, considering the appropriate scale of observation and modelling within ecozones. Interestingly, prior studies that linked prevalence of Schistosoma infection to remotely sensed data did not reflect that there is a spatial gap between the parasite and intermediate host snail habitats where disease transmission occurs, and the location (community or school) where prevalence measures are usually derived from. Our findings imply that the potential of remote sensing data for risk profiling of schistosomiasis and other neglected tropical diseases has yet to be fully exploited.
NASA Fluid Lensing & MiDAR: Next-Generation Remote Sensing Technologies for Aquatic Remote Sensing
NASA Technical Reports Server (NTRS)
Chirayath, Ved
2018-01-01
We present two recent instrument technology developments at NASA, Fluid Lensing and MiDAR, and their application to remote sensing of Earth's aquatic systems. Fluid Lensing is the first remote sensing technology capable of imaging through ocean waves in 3D at sub-cm resolutions. MiDAR is a next-generation active hyperspectral remote sensing and optical communications instrument capable of active fluid lensing. Fluid Lensing has been used to provide 3D multispectral imagery of shallow marine systems from unmanned aerial vehicles (UAVs, or drones), including coral reefs in American Samoa and stromatolite reefs in Hamelin Pool, Western Australia. MiDAR is being deployed on aircraft and underwater remotely operated vehicles (ROVs) to enable a new method for remote sensing of living and nonliving structures in extreme environments. MiDAR images targets with high-intensity narrowband structured optical radiation to measure an objectâ€"TM"s non-linear spectral reflectance, image through fluid interfaces such as ocean waves with active fluid lensing, and simultaneously transmit high-bandwidth data. As an active instrument, MiDAR is capable of remotely sensing reflectance at the centimeter (cm) spatial scale with a signal-to-noise ratio (SNR) multiple orders of magnitude higher than passive airborne and spaceborne remote sensing systems with significantly reduced integration time. This allows for rapid video-frame-rate hyperspectral sensing into the far ultraviolet and VNIR wavelengths. Previously, MiDAR was developed into a TRL 2 laboratory instrument capable of imaging in thirty-two narrowband channels across the VNIR spectrum (400-950nm). Recently, MiDAR UV was raised to TRL4 and expanded to include five ultraviolet bands from 280-400nm, permitting UV remote sensing capabilities in UV A, B, and C bands and enabling mineral identification and stimulated fluorescence measurements of organic proteins and compounds, such as green fluorescent proteins in terrestrial and aquatic organics.
Remote sensing as a source of data for outdoor recreation planning
NASA Technical Reports Server (NTRS)
Reed, W. E.; Goodell, H. G.; Emmitt, G. D.
1972-01-01
Specific data needs for outdoor recreation planning and the ability of tested remote sensors to provide sources for these data are examined. Data needs, remote sensor capabilities, availability of imagery, and advantages and problems of incorporating remote sensing data sources into ongoing planning data collection programs are discussed in detail. Examples of the use of imagery to derive data for a range of common planning analyses are provided. A selected bibliography indicates specific uses of data in planning, basic background materials on remote sensing technology, and sources of information on environmental information systems expected to use remote sensing to provide new environmental data of use in outdoor recreation planning.
Online Remote Sensing Interface
NASA Technical Reports Server (NTRS)
Lawhead, Joel
2007-01-01
BasinTools Module 1 processes remotely sensed raster data, including multi- and hyper-spectral data products, via a Web site with no downloads and no plug-ins required. The interface provides standardized algorithms designed so that a user with little or no remote-sensing experience can use the site. This Web-based approach reduces the amount of software, hardware, and computing power necessary to perform the specified analyses. Access to imagery and derived products is enterprise-level and controlled. Because the user never takes possession of the imagery, the licensing of the data is greatly simplified. BasinTools takes the "just-in-time" inventory control model from commercial manufacturing and applies it to remotely-sensed data. Products are created and delivered on-the-fly with no human intervention, even for casual users. Well-defined procedures can be combined in different ways to extend verified and validated methods in order to derive new remote-sensing products, which improves efficiency in any well-defined geospatial domain. Remote-sensing products produced in BasinTools are self-documenting, allowing procedures to be independently verified or peer-reviewed. The software can be used enterprise-wide to conduct low-level remote sensing, viewing, sharing, and manipulating of image data without the need for desktop applications.
What is a picture worth? A history of remote sensing
Moore, Gerald K.
1979-01-01
Remote sensing is the use of electromagnetic energy to measure the physical properties of distant objects. It includes photography and geophysical surveying as well as newer techniques that use other parts of the electromagnetic spectrum. The history of remote sensing begins with photography. The origin of other types of remote sensing can be traced to World War II, with the development of radar, sonar, and thermal infrared detection systems. Since the 1960s, sensors have been designed to operate in virtually all of the electromagnetic spectrum. Today a wide variety of remote sensing instruments are available for use in hydrological studies; satellite data, such as Skylab photographs and Landsat images are particularly suitable for regional problems and studies. Planned future satellites will provide a ground resolution of 10–80 m. Remote sensing is currently used for hydrological applications in most countries of the world. The range of applications includes groundwater exploration determination of physical water quality, snowfield mapping, flood-inundation delineation, and making inventories of irrigated land. The use of remote sensing commonly results in considerable hydrological information at minimal cost. This information can be used to speed-up the development of water resources, to improve management practices, and to monitor environmental problems.
NASA Technical Reports Server (NTRS)
2002-01-01
Contents include the following: Monitoring the Ancient Countryside: Remote Sensing and GIS at the Chora of Chersonesos (Crimea, Ukraine). Integration of Remote Sensing and GIS for Management Decision Support in the Pendjari Biosphere Reserve (Republic of Benin). Monitoring of deforestation invasion in natural reserves of northern Madagascar based on space imagery. Cartography of Kahuzi-Biega National Park. Cartography and Land Use Change of World Heritage Areas and the Benefits of Remote Sensing and GIS for Conservation. Assessing and Monitoring Vegetation in Nabq Protected Area, South Sinai, Egypt, using combine approach of Satellite Imagery and Land Surveys. Evaluation of forage resources in semi-arid savannah environments with satellite imagery: contribution to the management of a protected area (Nakuru National Park) in Kenya. SOGHA, the Surveillance of Gorilla Habitat in World Heritage sites using Space Technologies. Application of Remote Sensing to monitor the Mont-Saint-Michel Bay (France). Application of Remote Sensing & GIS for the Conservation of Natural and Cultural Heritage Sites of the Southern Province of Sri Lanka. Social and Environmental monitoring of a UNESCO Biosphere Reserve: Case Study over the Vosges du Nord and Pfalzerwald Parks using Corona and Spot Imagery. Satellite Remote Sensing as tool to Monitor Indian Reservation in the Brazilian Amazonia. Remote Sensing and GIS Technology for Monitoring UNESCO World Heritage Sites - A Pilot Project. Urban Green Spaces: Modern Heritage. Monitoring of the technical condition of the St. Sophia Cathedral and related monastic buildings in Kiev with Space Applications, geo-positioning systems and GIS tools. The Murghab delta palaeochannel Reconstruction on the Basis of Remote Sensing from Space. Acquisition, Registration and Application of IKONOS Space Imagery for the cultural World Heritage site at Mew, Turkmenistan. Remote Sensing and VR applications for the reconstruction of archaeological landscapes. Archaeology through Space: Experience in Indian Subcontinent. The creation of a GIS Archaeological Site Location Catalogue in Yucatan: A Tool to preserve its Cultural Heritage. Mapping the Ancient Anasazi Roads of Southeast Utah. Remote Sensing and GIS Technology for Identification of Conservation and Heritage sites in Urban Planning. Mapping Angkor: For a new appraisal of the Angkor region. Angkor and radar imaging: seeing a vast pre-industrial low-density, dispersed urban complex. Technical and methodological aspects of archaeological CRM integrating high resolution satellite imagery. The contribution of satellite imagery to archaeological survey: an example from western Syria. The use of satellite images, digital elevation models and ground truth for the monitoring of land degradation in the "Cinque Terre" National park. Remote Sensing and GIS Applications for Protection and Conservation of World Heritage Site on the coast - Case Study of Tamil Nadu Coast, India. Multispectral high resolution satellite imagery in combination with "traditional" remote sensing and ground survey methods to the study of archaeological landscapes. The case study of Tuscany. Use of Remotely-Sensed Imagery in Cultural Landscape. Characterisation at Fort Hood, Texas. Heritage Learning and Data Collection: Biodiversity & Heritage Conservation through Collaborative Monitoring & Research. A collaborative project by UNESCO's WHC (World Heritage Center) & The GLOBE Program (Global Learning and Observations to Benefit the Environment). Practical Remote Sensing Activities in an Interdisciplinary Master-Level Space Course.
Exploring Remote Rensing Through The Use Of Readily-Available Classroom Technologies
NASA Astrophysics Data System (ADS)
Rogers, M. A.
2013-12-01
Frontier geoscience research using remotely-sensed satellite observation routinely requires sophisticated and novel remote sensing techniques to succeed. Describing these techniques in an educational format presents significant challenges to the science educator, especially with regards to the professional development setting where a small, but competent audience has limited instructor contact time to develop the necessary understanding. In this presentation, we describe the use of simple and cheaply available technologies, including ultrasonic transducers, FLIR detectors, and even simple web cameras to provide a tangible analogue to sophisticated remote sensing platforms. We also describe methods of curriculum development that leverages the use of these simple devices to teach the fundamentals of remote sensing, resulting in a deeper and more intuitive understanding of the techniques used in modern remote sensing research. Sample workshop itineraries using these techniques are provided as well.
NASA Technical Reports Server (NTRS)
Roller, N. E. G.
1977-01-01
The concept of using remote sensing to inventory wetlands and the related topics of proper inventory design and data collection are discussed. The material presented shows that aerial photography is the form of remote sensing from which the greatest amount of wetlands information can be derived. For extensive, general-purpose wetlands inventories, however, the use of LANDSAT data may be more cost-effective. Airborne multispectral scanners and radar are, in the main, too expensive to use - unless the information that these sensors alone can gather remotely is absolutely required. Multistage sampling employing space and high altitude remote sensing data in the initial stages appears to be an efficient survey strategy for gathering non-point specific wetlands inventory data over large areas. The operational role of remote sensing insupplying inventory data for application to several typical wetlands management problems is illustrated by summary descriptions of past ERIM projects.
NASA Technical Reports Server (NTRS)
Byrnes, Ray
2007-01-01
A general overview of the USGS land remote sensing program is presented. The contents include: 1) Brief overview of USGS land remote sensing program; 2) Highlights of JACIE work at USGS; 3) Update on NASA/USGS Landsat Data Continuity Mission; and 4) Notes on alternative data sources.
Hydrological Application of Remote Sensing: Surface States -- Snow
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.; Kelly, Richard E. J.; Foster, James L.; Chang, Alfred T. C.
2004-01-01
Remote sensing research of snow cover has been accomplished for nearly 40 years. The use of visible, near-infrared, active and passive-microwave remote sensing for the analysis of snow cover is reviewed with an emphasis on the work on the last decade.
Remote sensing education in NASA's technology transfer program
NASA Technical Reports Server (NTRS)
Weinstein, R. H.
1981-01-01
Remote sensing is a principal focus of NASA's technology transfer program activity with major attention to remote sensing education the Regional Program and the University Applications Program. Relevant activities over the past five years are reviewed and perspective on future directions is presented.
Analysis of Coastal Dunes: A Remote Sensing and Statistical Approach.
ERIC Educational Resources Information Center
Jones, J. Richard
1985-01-01
Remote sensing analysis and statistical methods were used to analyze the coastal dunes of Plum Island, Massachusetts. The research methodology used provides an example of a student project for remote sensing, geomorphology, or spatial analysis courses at the university level. (RM)
7 CFR 2.72 - Chairman, World Agricultural Outlook Board.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Commodity Estimates Committees prior to any release outside the Department. (4) Related to remote sensing..., developing, and carrying out satellite remote sensing activities to assure full consideration and evaluation... to the Department's remote sensing activities including: (A) Inter- and intra-agency meetings...
Remote sensing and reflectance profiling in entomology
USDA-ARS?s Scientific Manuscript database
Remote sensing is about characterizing the status of objects and/or classifies their identity based on a combination of spectral features extracted from reflectance or transmission profiles of radiometric energy. Remote sensing can be ground-based, and therefore acquired at a high spatial resolutio...
Planning and Implementation of Remote Sensing Experiments.
Contents: TEKTITE II experiment-upwelling detection (NASA Mx 138); Design of oceanographic experiments (Gulf of Mexico, Mx 159); Design of oceanographic experiments (Gulf of Mexico, Mx 165); Experiments on thermal pollution; Remote sensing newsletter; Symposium on remote sensing in marine biology and fishery resources.
Ionospheric Profiles from Ultraviolet Remote Sensing
1997-09-30
The long-term goal of this project is to obtain ionospheric profiles from ultraviolet remote sensing of the ionosphere from orbiting space platforms... Remote sensing of the nighttime ionosphere is a more straightforward process because of the absence of the complications brought about by daytime
The hydrology of prehistoric farming systems in a central Arizona ecotone
NASA Technical Reports Server (NTRS)
Gumerman, G. J.; Hanson, J. A.; Brew, D.; Tomoff, K.; Weed, C. S.
1975-01-01
The prehistoric land use and water management in the semi-arid Southwest was examined. Remote sensing data, geology, hydrology and biology are discussed along with an evaluation of remote sensing contributions, recommendations for applications, and proposed future remote sensing studies.
NASA Technical Reports Server (NTRS)
Hidalgo, J. U.
1975-01-01
The applicability of remote sensing to transportation and traffic analysis, urban quality, and land use problems is discussed. Other topics discussed include preliminary user analysis, potential uses, traffic study by remote sensing, and urban condition analysis using ERTS.
Multi-scale remote sensing of coral reefs
Andréfouët, Serge; Hochberg, E.J.; Chevillon, Christophe; Muller-Karger, Frank E.; Brock, John C.; Hu, Chuanmin
2005-01-01
In this chapter we present how both direct and indirect remote sensing can be integrated to address two major coral reef applications - coral bleaching and assessment of biodiversity. This approach reflects the current non-linear integration of remote sensing for environmental assessment of coral reefs, resulting from a rapid increase in available sensors, processing methods and interdisciplinary collaborations (Andréfouët and Riegl, 2004). Moreover, this approach has greatly benefited from recent collaborations of once independent investigations (e.g., benthic ecology, remote sensing, and numerical modeling).
NASA Technical Reports Server (NTRS)
Philipson, W. R. (Principal Investigator)
1983-01-01
Built on Cornell's thirty years of experience in aerial photographic studies, the NASA-sponsored remote sensing program strengthened instruction and research in remote sensing, established communication links within and beyond the university community, and conducted research projects for or with town, county, state, federal, and private organizations in New York State. The 43 completed applied research projects are listed as well as 13 spinoff grants/contracts. The curriculum offered, consultations provided, and data processing facilities available are described. Publications engendered are listed including the thesis of graduates in the remote sensing program.
NASA Technical Reports Server (NTRS)
Seinfeld, J. H. (Principal Investigator)
1982-01-01
The problem of the assimilation of remote sensing data into mathematical models of atmospheric pollutant species was investigated. The data assimilation problem is posed in terms of the matching of spatially integrated species burden measurements to the predicted three-dimensional concentration fields from atmospheric diffusion models. General conditions were derived for the reconstructability of atmospheric concentration distributions from data typical of remote sensing applications, and a computational algorithm (filter) for the processing of remote sensing data was developed.
NASA Technical Reports Server (NTRS)
Seinfeld, J. H. (Principal Investigator)
1982-01-01
The problem of the assimilation of remote sensing data into mathematical models of atmospheric pollutant species was investigated. The problem is posed in terms of the matching of spatially integrated species burden measurements to the predicted three dimensional concentration fields from atmospheric diffusion models. General conditions are derived for the "reconstructability' of atmospheric concentration distributions from data typical of remote sensing applications, and a computational algorithm (filter) for the processing of remote sensing data is developed.
NASA Technical Reports Server (NTRS)
Polhemus, J. T.
1980-01-01
Five troublesome insect pest groups were chosen for study. These represent a broad spectrum of life cycles, ecological indicators, pest management strategies, and remote sensing requirements. Background data, and field study results for each of these subjects is discussed for each insect group. Specific groups studied include tsetse flies, locusts, western rangeland grasshoppers, range caterpillars, and mosquitoes. It is concluded that remote sensing methods are aplicable to the pest management of the insect groups studied.
Searches over graphs representing geospatial-temporal remote sensing data
Brost, Randolph; Perkins, David Nikolaus
2018-03-06
Various technologies pertaining to identifying objects of interest in remote sensing images by searching over geospatial-temporal graph representations are described herein. Graphs are constructed by representing objects in remote sensing images as nodes, and connecting nodes with undirected edges representing either distance or adjacency relationships between objects and directed edges representing changes in time. Geospatial-temporal graph searches are made computationally efficient by taking advantage of characteristics of geospatial-temporal data in remote sensing images through the application of various graph search techniques.
Antarctic Tabular Iceberg A-24 Movement and Decay Via Satellite Remote Sensing
1993-04-02
Austraia. Pulished by ft Amencan Meteormogicat Society. Bost:o, MA. P7.27 ANTARCTIC TABULAR ICEBERG A-24 MOVEMENT AND DECAY VIA SATELLITE REMOTE SENSING AD...2. REMOTE SENSING DATA SOURCES 85 GHz imagery verified that the iceberg began to indicate more than The vis/IR imagery from the one berg existed in...SSM/I Instrument Evaluation, conditions. The corresponding IR data IEEE Trans. Geosci. Remote Sensing , was also of particular interest due Vol. 28, pp
Coastal Remote Sensing Investigations. Volume 2. Beach Environment
1980-12-01
1 ’ "■"’.."■•■.» ■ a .1 "llpll CO Ifi o Q- O CO I y Final Report COASTAL REMOTE SENSING INVESTIGATIONS VOLUME 2: BEACH... Remote Sensing Grain Size Soil Moisture Soil Mineralogy Multispectral Scanner iO AUTNACT fCHtfÜBB on merit nJt ij ntinwin and idmlify In hloti...The work reported herein summarizes the final research activity in the Beach Environment Task of a program at ERIM entitled "Coastal Remote Sensing Investigations
Radar Remote Sensing of Waves and Currents in the Nearshore Zone
2006-01-01
and application of novel microwave, acoustic, and optical remote sensing techniques. The objectives of this effort are to determine the extent to which...Doppler radar techniques are useful for nearshore remote sensing applications. Of particular interest are estimates of surf zone location and extent...surface currents, waves, and bathymetry. To date, optical (video) techniques have been the primary remote sensing technology used for these applications. A key advantage of the radar is its all weather day-night operability.
Emergence of the Green’s Functions from Noise and Passive Acoustic Remote Sensing of Ocean Dynamics
2009-09-30
Acoustic Remote Sensing of Ocean Dynamics Oleg A. Godin CIRES/Univ. of Colorado and NOAA/OAR/Earth System Research Lab., R/PSD99, 325 Broadway...characterization of a time-varying ocean where ambient acoustic noise is utilized as a probing signal. • To develop a passive remote sensing technique for...inapplicable. 3. To quantify degradation of performance of passive remote sensing techniques due to ocean surface motion and other variations of underwater
Active and Passive Remote Sensing of Ice
1993-01-26
92 4. TITLE AND SUBTITLE S. FUNDING NUMBERS Active and Passive Remote Sensing of Ice NO0014-89-J-l 107 6. AUTHOR(S) 425f023-08 Prof. J.A. Kong 7... REMOTE SENSING OF ICE Sponsored by: Department of the Navy Office of Naval Research Contract number: N00014-89-J-1107 Research Organization: Center for...J. A. Kong Period covered: October 1, 1988 - November 30, 1992 St ACTIVE AND PASSIVE REMOTE SENSING OF ICE FINAL REPORT This annual report covers
Investigation of the application of remote sensing technology to environmental monitoring
NASA Technical Reports Server (NTRS)
Rader, M. L. (Principal Investigator)
1980-01-01
Activities and results are reported of a project to investigate the application of remote sensing technology developed for the LACIE, AgRISTARS, Forestry and other NASA remote sensing projects for the environmental monitoring of strip mining, industrial pollution, and acid rain. Following a remote sensing workshop for EPA personnel, the EOD clustering algorithm CLASSY was selected for evaluation by EPA as a possible candidate technology. LANDSAT data acquired for a North Dakota test sight was clustered in order to compare CLASSY with other algorithms.
Remote Sensing For Water Resources And Hydrology. Recommended research emphasis for the 1980's
NASA Technical Reports Server (NTRS)
1980-01-01
The problems and the areas of activity that the Panel believes should be emphasized in work on remote sensing for water resources and hydrology in the 1980's are set forth. The Panel deals only with those activities and problems in water resources and hydrology that the Panel considers important, and where, in the Panel's opinion, application of current remote sensing capability or advancements in remote sensing capability can help meet urgent problems and provide large returns in practical benefits.
Research on Method of Interactive Segmentation Based on Remote Sensing Images
NASA Astrophysics Data System (ADS)
Yang, Y.; Li, H.; Han, Y.; Yu, F.
2017-09-01
In this paper, we aim to solve the object extraction problem in remote sensing images using interactive segmentation tools. Firstly, an overview of the interactive segmentation algorithm is proposed. Then, our detailed implementation of intelligent scissors and GrabCut for remote sensing images is described. Finally, several experiments on different typical features (water area, vegetation) in remote sensing images are performed respectively. Compared with the manual result, it indicates that our tools maintain good feature boundaries and show good performance.
Nonlinear Photonic Systems for V- and W-Band Antenna Remoting Applications
2016-10-22
for commercial, academic, and military purposes delivering microwaves through fibers to remote areas for wireless sensing , imaging, and detection...academic, and military purposes, which use optical carriers to deliver microwave signals to remote areas for wireless sensing , imaging, and...and military purposes, which use optical carriers to deliver microwave signals to remote areas for wireless sensing , imaging, and detection
First results of ground-based LWIR hyperspectral imaging remote gas detection
NASA Astrophysics Data System (ADS)
Zheng, Wei-jian; Lei, Zheng-gang; Yu, Chun-chao; Wang, Hai-yang; Fu, Yan-peng; Liao, Ning-fang; Su, Jun-hong
2014-11-01
The new progress of ground-based long-wave infrared remote sensing is presented. The LWIR hyperspectral imaging by using the windowing spatial and temporal modulation Fourier spectroscopy, and the results of outdoor ether gas detection, verify the features of LWIR hyperspectral imaging remote sensing and technical approach. It provides a new technical means for ground-based gas remote sensing.
Panda, Sudhanshu S.; Rao, Mahesh N.; Thenkabail, Prasad S.; Fitzerald, James E.
2015-01-01
The American Society of Photogrammetry and Remote Sensing defined remote sensing as the measurement or acquisition of information of some property of an object or phenomenon, by a recording device that is not in physical or intimate contact with the object or phenomenon under study (Colwell et al., 1983). Environmental Systems Research Institute (ESRI) in its geographic information system (GIS) dictionary defines remote sensing as “collecting and interpreting information about the environment and the surface of the earth from a distance, primarily by sensing radiation that is naturally emitted or reflected by the earth’s surface or from the atmosphere, or by sending signals transmitted from a device and reflected back to it (ESRI, 2014).” The usual source of passive remote sensing data is the measurement of reflected or transmitted electromagnetic radiation (EMR) from the sun across the electromagnetic spectrum (EMS); this can also include acoustic or sound energy, gravity, or the magnetic field from or of the objects under consideration. In this context, the simple act of reading this text is considered remote sensing. In this case, the eye acts as a sensor and senses the light reflected from the object to obtain information about the object. It is the same technology used by a handheld camera to take a photograph of a person or a distant scenic view. Active remote sensing, however, involves sending a pulse of energy and then measuring the returned energy through a sensor (e.g., Radio Detection and Ranging [RADAR], Light Detection and Ranging [LiDAR]). Thermal sensors measure emitted energy by different objects. Thus, in general, passive remote sensing involves the measurement of solar energy reflected from the Earth’s surface, while active remote sensing involves synthetic (man-made) energy pulsed at the environment and the return signals are measured and recorded.
NASA Astrophysics Data System (ADS)
Chen, Xuelong; Su, Bob
2017-04-01
Remote sensing has provided us an opportunity to observe Earth land surface with a much higher resolution than any of GCM simulation. Due to scarcity of information for land surface physical parameters, up-to-date GCMs still have large uncertainties in the coupled land surface process modeling. One critical issue is a large amount of parameters used in their land surface models. Thus remote sensing of land surface spectral information can be used to provide information on these parameters or assimilated to decrease the model uncertainties. Satellite imager could observe the Earth land surface with optical, thermal and microwave bands. Some basic Earth land surface status (land surface temperature, canopy height, canopy leaf area index, soil moisture etc.) has been produced with remote sensing technique, which already help scientists understanding Earth land and atmosphere interaction more precisely. However, there are some challenges when applying remote sensing variables to calculate global land-air heat and water exchange fluxes. Firstly, a global turbulent exchange parameterization scheme needs to be developed and verified, especially for global momentum and heat roughness length calculation with remote sensing information. Secondly, a compromise needs to be innovated to overcome the spatial-temporal gaps in remote sensing variables to make the remote sensing based land surface fluxes applicable for GCM model verification or comparison. A flux network data library (more 200 flux towers) was collected to verify the designed method. Important progress in remote sensing of global land flux and evaporation will be presented and its benefits for GCM models will also be discussed. Some in-situ studies on the Tibetan Plateau and problems of land surface process simulation will also be discussed.
Research Status and Development Trend of Remote Sensing in China Using Bibliometric Analysis
NASA Astrophysics Data System (ADS)
Zeng, Y.; Zhang, J.; Niu, R.
2015-06-01
Remote sensing was introduced into China in 1970s and then began to flourish. At present, China has developed into a big remote sensing country, and remote sensing is increasingly playing an important role in various fields of national economic construction and social development. Based on China Academic Journals Full-text Database and China Citation Database published by China National Knowledge Infrastructure, this paper analyzed academic characteristics of 963 highly cited papers published by 16 professional and academic journals in the field of surveying and mapping from January 2010 to December 2014 in China, which include hot topics, literature authors, research institutions, and fundations. At the same time, it studied a total of 51,149 keywords published by these 16 journals during the same period. Firstly by keyword selection, keyword normalization, keyword consistency and keyword incorporation, and then by analysis of high frequency keywords, the progress and prospect of China's remote sensing technology in data acquisition, data processing and applications during the past five years were further explored and revealed. It can be seen that: highly cited paper analysis and word frequency analysis is complementary on subject progress analysis; in data acquisition phase, research focus is new civilian remote sensing satellite systems and UAV remote sensing system; research focus of data processing and analysis is multi-source information extraction and classification, laser point cloud data processing, objectoriented high resolution image analysis, SAR data and hyper-spectral image processing, etc.; development trend of remote sensing data processing is quantitative, intelligent, automated, and real-time, and the breadth and depth of remote sensing application is gradually increased; parallel computing, cloud computing and geographic conditions monitoring and census are the new research focuses to be paid attention to.
The U.S. Geological Survey Land Remote Sensing Program
,
2003-01-01
In 2002, the U. S. Geological Survey (USGS) launched a program to enhance the acquisition, preservation, and use of remotely sensed data for USGS science programs, as well as for those of cooperators and customers. Remotely sensed data are fundamental tools for studying the Earth's land surface, including coastal and near-shore environments. For many decades, the USGS has been a leader in providing remotely sensed data to the national and international communities. Acting on its historical topographic mapping mission, the USGS has archived and distributed aerial photographs of the United States for more than half a century. Since 1972, the USGS has acquired, processed, archived, and distributed Landsat and other satellite and airborne remotely sensed data products to users worldwide. Today, the USGS operates and manages the Landsats 5 and 7 missions and cooperates with the National Aeronautics and Space Administration (NASA) to define and implement future satellite missions that will continue and expand the collection of moderate-resolution remotely sensed data. In addition to being a provider of remotely sensed data, the USGS is a user of these data and related remote sensing technology. These data are used in natural resource evaluations for energy and minerals, coastal environmental surveys, assessments of natural hazards (earthquakes, volcanoes, and landslides), biological surveys and investigations, water resources status and trends analyses and studies, and geographic and cartographic applications, such as wildfire detection and tracking and as a source of information for The National Map. The program furthers these distinct but related roles by leading the USGS activities in providing remotely sensed data while advancing applications of such data for USGS programs and a wider user community.
NASA Technical Reports Server (NTRS)
Quattrochi, Dale A.; Luvall, Jeffrey C.
1998-01-01
Thermal Infrared (TIR) remote sensing data can provide important measurements of surface energy fluxes and temperatures, which are integral to understanding landscape processes and responses. One example of this is the successful application of TIR remote sensing data to estimate evapotranspiration and soil moisture, where results from a number of studies suggest that satellite-based measurements from TIR remote sensing data can lead to more accurate regional-scale estimates of daily evapotranspiration. With further refinement in analytical techniques and models, the use of TIR data from airborne and satellite sensors could be very useful for parameterizing surface moisture conditions and developing better simulations of landscape energy exchange over a variety of conditions and space and time scales. Thus, TIR remote sensing data can significantly contribute to the observation, measurement, and analysis of energy balance characteristics (i.e., the fluxes and redistribution of thermal energy within and across the land surface) as an implicit and important aspect of landscape dynamics and landscape functioning. The application of TIR remote sensing data in landscape ecological studies has been limited, however, for several fundamental reasons that relate primarily to the perceived difficulty in use and availability of these data by the landscape ecology community, and from the fragmentation of references on TIR remote sensing throughout the scientific literature. It is our purpose here to provide evidence from work that has employed TIR remote sensing for analysis of landscape characteristics to illustrate how these data can provide important data for the improved measurement of landscape energy response and energy flux relationships. We examine the direct or indirect use of TIR remote sensing data to analyze landscape biophysical characteristics, thereby offering some insight on how these data can be used more robustly to further the understanding and modeling of landscape ecological processes.
Use of Remote Sensing for Decision Support in Africa
NASA Technical Reports Server (NTRS)
Policelli, Frederick S.
2007-01-01
Over the past 30 years, the scientific community has learned a great deal about the Earth as an integrated system. Much of this research has been enabled by the development of remote sensing technologies and their operation from space. Decision makers in many nations have begun to make use of remote sensing data for resource management, policy making, and sustainable development planning. This paper makes an attempt to provide a survey of the current state of the requirements and use of remote sensing for sustainable development in Africa. This activity has shown that there are not many climate data ready decision support tools already functioning in Africa. There are, however, endusers with known requirements who could benefit from remote sensing data.
NASA Astrophysics Data System (ADS)
Tan, Songxin; Narayanan, Ram M.
2004-04-01
The University of Nebraska has developed a multiwavelength airborne polarimetric lidar (MAPL) system to support its Airborne Remote Sensing Program for vegetation remote sensing. The MAPL design and instrumentation are described in detail. Characteristics of the MAPL system include lidar waveform capture and polarimetric measurement capabilities, which provide enhanced opportunities for vegetation remote sensing compared with current sensors. Field tests were conducted to calibrate the range measurement. Polarimetric calibration of the system is also discussed. Backscattered polarimetric returns, as well as the cross-polarization ratios, were obtained from a small forested area to validate the system's ability for vegetation canopy detection. The system has been packaged to fly abroad a Piper Saratoga aircraft for airborne vegetation remote sensing applications.
Remote sensing with unmanned aircraft systems for precision agriculture applications
USDA-ARS?s Scientific Manuscript database
The Federal Aviation Administration is revising regulations for using unmanned aircraft systems (UAS) in the national airspace. An important potential application of UAS may be as a remote-sensing platform for precision agriculture, but simply down-scaling remote sensing methodologies developed usi...
Remote sensing for cotton farming
USDA-ARS?s Scientific Manuscript database
Application of remote sensing technologies in agriculture began with the use of aerial photography to identify cotton root rot in the late 1920s. From then on, agricultural remote sensing has developed gradually until the introduction of precision farming technologies in the late 1980s and biotechno...
Remote sensing for mined area reclamation: Application inventory
NASA Technical Reports Server (NTRS)
1971-01-01
Applications of aerial remote sensing to coal mined area reclamation are documented, and information concerning available data banks for coal producing areas in the east and midwest is given. A summary of mined area information requirements to which remote sensing methods might contribute is included.
NASA Technical Reports Server (NTRS)
Epps, J. W.
1973-01-01
Current references were surveyed for the application of remote sensing to traffic and transportation studies. The major problems are presented that concern traffic engineers and transportation managers, and the literature references that discuss remote sensing applications are summarized.
What does remote sensing do for ecology?
NASA Technical Reports Server (NTRS)
Roughgarden, J.; Running, S. W.; Matson, P. A.
1991-01-01
The application of remote sensing to ecological investigations is briefly discussed. Emphasis is given to the recruitment problem in marine population dynamics, the regional analysis of terrestrial ecosystems, and the monitoring of ecological changes. Impediments to the use of remote sensing data in ecology are addressed.
REVIEW OF METHODS FOR REMOTE SENSING OF ATMOSPHERIC EMISSIONS FROM STATIONARY SOURCES
The report reviews the commercially available and developing technologies for the application of remote sensing to the measurement of source emissions. The term 'remote sensing technology', as applied in the report, means the detection or concentration measurement of trace atmosp...
75 FR 26919 - Charter Renewals
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-13
...: Notice of Renewal of the Advisory Committee on Commercial Remote Sensing Charter. SUMMARY: In accordance... Commercial Remote Sensing (ACCRES) is in the public interest in connection with the performance of duties... Oceans and Atmosphere on matters relating to the U.S. commercial remote-sensing industry and NOAA's...
75 FR 52307 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-25
...: National Oceanic and Atmospheric Administration (NOAA). Title: Licensing of Private Remote-Sensing Space... National Satellite Land Remote Sensing Data Archive; 3 hours for the submission of an operational quarterly... and Uses: NOAA has established requirements for the licensing of private operators of remote-sensing...
Atmospheric Correction Algorithm for Hyperspectral Remote Sensing of Ocean Color from Space
2000-02-20
Existing atmospheric correction algorithms for multichannel remote sensing of ocean color from space were designed for retrieving water-leaving...atmospheric correction algorithm for hyperspectral remote sensing of ocean color with the near-future Coastal Ocean Imaging Spectrometer. The algorithm uses
Target detection method by airborne and spaceborne images fusion based on past images
NASA Astrophysics Data System (ADS)
Chen, Shanjing; Kang, Qing; Wang, Zhenggang; Shen, ZhiQiang; Pu, Huan; Han, Hao; Gu, Zhongzheng
2017-11-01
To solve the problem that remote sensing target detection method has low utilization rate of past remote sensing data on target area, and can not recognize camouflage target accurately, a target detection method by airborne and spaceborne images fusion based on past images is proposed in this paper. The target area's past of space remote sensing image is taken as background. The airborne and spaceborne remote sensing data is fused and target feature is extracted by the means of airborne and spaceborne images registration, target change feature extraction, background noise suppression and artificial target feature extraction based on real-time aerial optical remote sensing image. Finally, the support vector machine is used to detect and recognize the target on feature fusion data. The experimental results have established that the proposed method combines the target area change feature of airborne and spaceborne remote sensing images with target detection algorithm, and obtains fine detection and recognition effect on camouflage and non-camouflage targets.
NASA Astrophysics Data System (ADS)
Ding, Peng; Zhang, Ye; Deng, Wei-Jian; Jia, Ping; Kuijper, Arjan
2018-07-01
Detection of objects from satellite optical remote sensing images is very important for many commercial and governmental applications. With the development of deep convolutional neural networks (deep CNNs), the field of object detection has seen tremendous advances. Currently, objects in satellite remote sensing images can be detected using deep CNNs. In general, optical remote sensing images contain many dense and small objects, and the use of the original Faster Regional CNN framework does not yield a suitably high precision. Therefore, after careful analysis we adopt dense convoluted networks, a multi-scale representation and various combinations of improvement schemes to enhance the structure of the base VGG16-Net for improving the precision. We propose an approach to reduce the test-time (detection time) and memory requirements. To validate the effectiveness of our approach, we perform experiments using satellite remote sensing image datasets of aircraft and automobiles. The results show that the improved network structure can detect objects in satellite optical remote sensing images more accurately and efficiently.
Ontology-based classification of remote sensing images using spectral rules
NASA Astrophysics Data System (ADS)
Andrés, Samuel; Arvor, Damien; Mougenot, Isabelle; Libourel, Thérèse; Durieux, Laurent
2017-05-01
Earth Observation data is of great interest for a wide spectrum of scientific domain applications. An enhanced access to remote sensing images for "domain" experts thus represents a great advance since it allows users to interpret remote sensing images based on their domain expert knowledge. However, such an advantage can also turn into a major limitation if this knowledge is not formalized, and thus is difficult for it to be shared with and understood by other users. In this context, knowledge representation techniques such as ontologies should play a major role in the future of remote sensing applications. We implemented an ontology-based prototype to automatically classify Landsat images based on explicit spectral rules. The ontology is designed in a very modular way in order to achieve a generic and versatile representation of concepts we think of utmost importance in remote sensing. The prototype was tested on four subsets of Landsat images and the results confirmed the potential of ontologies to formalize expert knowledge and classify remote sensing images.
Scaling field data to calibrate and validate moderate spatial resolution remote sensing models
Baccini, A.; Friedl, M.A.; Woodcock, C.E.; Zhu, Z.
2007-01-01
Validation and calibration are essential components of nearly all remote sensing-based studies. In both cases, ground measurements are collected and then related to the remote sensing observations or model results. In many situations, and particularly in studies that use moderate resolution remote sensing, a mismatch exists between the sensor's field of view and the scale at which in situ measurements are collected. The use of in situ measurements for model calibration and validation, therefore, requires a robust and defensible method to spatially aggregate ground measurements to the scale at which the remotely sensed data are acquired. This paper examines this challenge and specifically considers two different approaches for aggregating field measurements to match the spatial resolution of moderate spatial resolution remote sensing data: (a) landscape stratification; and (b) averaging of fine spatial resolution maps. The results show that an empirically estimated stratification based on a regression tree method provides a statistically defensible and operational basis for performing this type of procedure.
Maxwell, S.K.; Meliker, J.R.; Goovaerts, P.
2010-01-01
In recent years, geographic information systems (GIS) have increasingly been used for reconstructing individual-level exposures to environmental contaminants in epidemiological research. Remotely sensed data can be useful in creating space-time models of environmental measures. The primary advantage of using remotely sensed data is that it allows for study at the local scale (e.g., residential level) without requiring expensive, time-consuming monitoring campaigns. The purpose of our study was to identify how land surface remotely sensed data are currently being used to study the relationship between cancer and environmental contaminants, focusing primarily on agricultural chemical exposure assessment applications. We present the results of a comprehensive literature review of epidemiological research where remotely sensed imagery or land cover maps derived from remotely sensed imagery were applied. We also discuss the strengths and limitations of the most commonly used imagery data (aerial photographs and Landsat satellite imagery) and land cover maps.
a Hadoop-Based Distributed Framework for Efficient Managing and Processing Big Remote Sensing Images
NASA Astrophysics Data System (ADS)
Wang, C.; Hu, F.; Hu, X.; Zhao, S.; Wen, W.; Yang, C.
2015-07-01
Various sensors from airborne and satellite platforms are producing large volumes of remote sensing images for mapping, environmental monitoring, disaster management, military intelligence, and others. However, it is challenging to efficiently storage, query and process such big data due to the data- and computing- intensive issues. In this paper, a Hadoop-based framework is proposed to manage and process the big remote sensing data in a distributed and parallel manner. Especially, remote sensing data can be directly fetched from other data platforms into the Hadoop Distributed File System (HDFS). The Orfeo toolbox, a ready-to-use tool for large image processing, is integrated into MapReduce to provide affluent image processing operations. With the integration of HDFS, Orfeo toolbox and MapReduce, these remote sensing images can be directly processed in parallel in a scalable computing environment. The experiment results show that the proposed framework can efficiently manage and process such big remote sensing data.
A NDVI assisted remote sensing image adaptive scale segmentation method
NASA Astrophysics Data System (ADS)
Zhang, Hong; Shen, Jinxiang; Ma, Yanmei
2018-03-01
Multiscale segmentation of images can effectively form boundaries of different objects with different scales. However, for the remote sensing image which widely coverage with complicated ground objects, the number of suitable segmentation scales, and each of the scale size is still difficult to be accurately determined, which severely restricts the rapid information extraction of the remote sensing image. A great deal of experiments showed that the normalized difference vegetation index (NDVI) can effectively express the spectral characteristics of a variety of ground objects in remote sensing images. This paper presents a method using NDVI assisted adaptive segmentation of remote sensing images, which segment the local area by using NDVI similarity threshold to iteratively select segmentation scales. According to the different regions which consist of different targets, different segmentation scale boundaries could be created. The experimental results showed that the adaptive segmentation method based on NDVI can effectively create the objects boundaries for different ground objects of remote sensing images.
NASA Astrophysics Data System (ADS)
Hong, Liang
2013-10-01
The availability of high spatial resolution remote sensing data provides new opportunities for urban land-cover classification. More geometric details can be observed in the high resolution remote sensing image, Also Ground objects in the high resolution remote sensing image have displayed rich texture, structure, shape and hierarchical semantic characters. More landscape elements are represented by a small group of pixels. Recently years, the an object-based remote sensing analysis methodology is widely accepted and applied in high resolution remote sensing image processing. The classification method based on Geo-ontology and conditional random fields is presented in this paper. The proposed method is made up of four blocks: (1) the hierarchical ground objects semantic framework is constructed based on geoontology; (2) segmentation by mean-shift algorithm, which image objects are generated. And the mean-shift method is to get boundary preserved and spectrally homogeneous over-segmentation regions ;(3) the relations between the hierarchical ground objects semantic and over-segmentation regions are defined based on conditional random fields framework ;(4) the hierarchical classification results are obtained based on geo-ontology and conditional random fields. Finally, high-resolution remote sensed image data -GeoEye, is used to testify the performance of the presented method. And the experimental results have shown the superiority of this method to the eCognition method both on the effectively and accuracy, which implies it is suitable for the classification of high resolution remote sensing image.
NASA Astrophysics Data System (ADS)
van der Linden, Sebastian
2016-05-01
Compiling a good book on urban remote sensing is probably as hard as the research in this disciplinary field itself. Urban areas comprise various environments and show high heterogeneity in many respects, they are highly dynamic in time and space and at the same time of greatest influence on connected and even tele-connected regions due to their great economic importance. Urban remote sensing is therefore of great importance, yet as manifold as its study area: mapping urban areas (or sub-categories thereof) plays an important (and challenging) role in land use and land cover (change) monitoring; the analysis of urban green and forests is by itself a specialization of ecological remote sensing; urban climatology asks for spatially and temporally highly resolved remote sensing products; the detection of artificial objects is not only a common and important remote sensing application but also a typical benchmark for image analysis techniques, etc. Urban analyses are performed with all available spaceborne sensor types and at the same time they are one of the most relevant fields for airborne remote sensing. Several books on urban remote sensing have been published during the past 10 years, each taking a different perspective. The book Global Urban Monitoring and Assessment through Earth Observation is motivated by the objectives of the Global Urban Observation and Information Task (SB-04) in the GEOSS (Global Earth Observation System of Systems) 2012-2015 workplan (compare Chapter 2) and wants to highlight the global aspects of state-of-the-art urban remote sensing.
Tian, Xin; Li, Zengyuan; Chen, Erxue; Liu, Qinhuo; Yan, Guangjian; Wang, Jindi; Niu, Zheng; Zhao, Shaojie; Li, Xin; Pang, Yong; Su, Zhongbo; van der Tol, Christiaan; Liu, Qingwang; Wu, Chaoyang; Xiao, Qing; Yang, Le; Mu, Xihan; Bo, Yanchen; Qu, Yonghua; Zhou, Hongmin; Gao, Shuai; Chai, Linna; Huang, Huaguo; Fan, Wenjie; Li, Shihua; Bai, Junhua; Jiang, Lingmei; Zhou, Ji
2015-01-01
The Complicate Observations and Multi-Parameter Land Information Constructions on Allied Telemetry Experiment (COMPLICATE) comprises a network of remote sensing experiments designed to enhance the dynamic analysis and modeling of remotely sensed information for complex land surfaces. Two types of experimental campaigns were established under the framework of COMPLICATE. The first was designed for continuous and elaborate experiments. The experimental strategy helps enhance our understanding of the radiative and scattering mechanisms of soil and vegetation and modeling of remotely sensed information for complex land surfaces. To validate the methodologies and models for dynamic analyses of remote sensing for complex land surfaces, the second campaign consisted of simultaneous satellite-borne, airborne, and ground-based experiments. During field campaigns, several continuous and intensive observations were obtained. Measurements were undertaken to answer key scientific issues, as follows: 1) Determine the characteristics of spatial heterogeneity and the radiative and scattering mechanisms of remote sensing on complex land surfaces. 2) Determine the mechanisms of spatial and temporal scale extensions for remote sensing on complex land surfaces. 3) Determine synergist inversion mechanisms for soil and vegetation parameters using multi-mode remote sensing on complex land surfaces. Here, we introduce the background, the objectives, the experimental designs, the observations and measurements, and the overall advances of COMPLICATE. As a result of the implementation of COMLICATE and for the next several years, we expect to contribute to quantitative remote sensing science and Earth observation techniques. PMID:26332035
Multiscale and Multitemporal Urban Remote Sensing
NASA Astrophysics Data System (ADS)
Mesev, V.
2012-07-01
The remote sensing of urban areas has received much attention from scientists conducting studies on measuring sprawl, congestion, pollution, poverty, and environmental encroachment. Yet much of the research is case and data-specific where results are greatly influenced by prevailing local conditions. There seems to be a lack of epistemological links between remote sensing and conventional theoretical urban geography; in other words, an oversight for the appreciation of how urban theory fuels urban change and how urban change is measured by remotely sensed data. This paper explores basic urban theories such as centrality, mobility, materiality, nature, public space, consumption, segregation and exclusion, and how they can be measured by remote sensing sources. In particular, the link between structure (tangible objects) and function (intangible or immaterial behavior) is addressed as the theory that supports the wellknow contrast between land cover and land use classification from remotely sensed data. The paper then couches these urban theories and contributions from urban remote sensing within two analytical fields. The first is the search for an "appropriate" spatial scale of analysis, which is conveniently divided between micro and macro urban remote sensing for measuring urban structure, understanding urban processes, and perhaps contributions to urban theory at a variety of scales of analysis. The second is on the existence of a temporal lag between materiality of urban objects and the planning process that approved their construction, specifically how time-dependence in urban structural-functional models produce temporal lags that alter the causal links between societal and political functional demands and structural ramifications.
NASA Technical Reports Server (NTRS)
Veziroglu, T. N.; Lee, S. S.
1973-01-01
A feasibility study for the development of a three-dimensional generalized, predictive, analytical model involving remote sensing, in-situ measurements, and an active system to remotely measure turbidity is presented. An implementation plan for the development of the three-dimensional model and for the application of remote sensing of temperature and turbidity measurements is outlined.
Remote sensing procurement package: Remote Sensing Industry Directory
NASA Technical Reports Server (NTRS)
1981-01-01
A directory of over 140 firms and organizations which contains detailed information in the types of products, services and equipment which they offer is presented. Also included for each firm or organization are addresses, phone numbers, contact person(s), and experience in the remote sensing field.
Accommodating Student Diversity in Remote Sensing Instruction.
ERIC Educational Resources Information Center
Hammen, John L., III.
1992-01-01
Discusses the difficulty of teaching computer-based remote sensing to students of varying levels of computer literacy. Suggests an instructional method that accommodates all levels of technical expertise through the use of microcomputers. Presents a curriculum that includes an introduction to remote sensing, digital image processing, and…
76 FR 65529 - Agency Information Collection Activities: Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-21
... National Land Remote Sensing Education, Outreach and Research Activity (NLRSEORA). As required by the... Drive MS 517, Reston, VA, 20192 (mail) . SUPPLEMENTARY INFORMATION: Title: National Land Remote Sensing... Remote Sensing Program, therefore it is more appropriate to refer to this effort as an activity rather...
15 CFR 960.11 - Conditions for operation.
Code of Federal Regulations, 2010 CFR
2010-01-01
... ENVIRONMENTAL DATA SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.11 Conditions for... all facilities which comprise the remote sensing space system for the purpose of conducting license... possession, the licensee shall offer such data to the National Satellite Land Remote Sensing Data Archive at...
Code of Federal Regulations, 2010 CFR
2010-01-01
... SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS General § 960.3 Definitions. For purposes of the regulations in this part, the following terms have the following meanings: Act means the Land Remote Sensing... application for a NOAA license to operate a remote sensing space system. Assistant Administrator means the...
Code of Federal Regulations, 2010 CFR
2010-01-01
... LICENSING OF PRIVATE REMOTE SENSING SYSTEMS General § 960.2 Scope. (a) The Act and the regulations in this... proposes to operate a private remote sensing space system, either directly or through an affiliate or... private remote sensing system. (b) In determining whether substantial connections exist with regard to a...
Western Regional Remote Sensing Conference Proceedings, 1981
NASA Technical Reports Server (NTRS)
1981-01-01
Diverse applications of LANDSAT data, problem solutions, and operational goals are described by remote sensing users from 14 western states. The proposed FY82 federal budget reductions for technology transfer activities and the planned transition of the operational remote sensing system to NOAA's supervision are also considered.
Some Defence Applications of Civilian Remote Sensing Satellite Images
1993-11-01
This report is on a pilot study to demonstrate some of the capabilities of remote sensing in intelligence gathering. A wide variety of issues, both...colour images. The procedure will be presented in a companion report. Remote sensing , Satellite imagery, Image analysis, Military applications, Military intelligence.
Active/Passive Remote Sensing of the Ocean Surface at Microwave Frequencies
1999-09-30
This report summarizes research activities and results obtained under grant N000l4-99-1-0627 "Active/Passive Remote Sensing of the Ocean Surface at...Measurements were completed during April 1999 by the Microwave Remote Sensing Laboratory at the University of Massachusetts.
Code of Federal Regulations, 2012 CFR
2012-01-01
... LICENSING OF PRIVATE REMOTE SENSING SYSTEMS General § 960.2 Scope. (a) The Act and the regulations in this... proposes to operate a private remote sensing space system, either directly or through an affiliate or... private remote sensing system. (b) In determining whether substantial connections exist with regard to a...
Code of Federal Regulations, 2014 CFR
2014-01-01
... LICENSING OF PRIVATE REMOTE SENSING SYSTEMS General § 960.2 Scope. (a) The Act and the regulations in this... proposes to operate a private remote sensing space system, either directly or through an affiliate or... private remote sensing system. (b) In determining whether substantial connections exist with regard to a...
Code of Federal Regulations, 2013 CFR
2013-01-01
... LICENSING OF PRIVATE REMOTE SENSING SYSTEMS General § 960.2 Scope. (a) The Act and the regulations in this... proposes to operate a private remote sensing space system, either directly or through an affiliate or... private remote sensing system. (b) In determining whether substantial connections exist with regard to a...
Code of Federal Regulations, 2011 CFR
2011-01-01
... LICENSING OF PRIVATE REMOTE SENSING SYSTEMS General § 960.2 Scope. (a) The Act and the regulations in this... proposes to operate a private remote sensing space system, either directly or through an affiliate or... private remote sensing system. (b) In determining whether substantial connections exist with regard to a...
Tools and Methods for the Registration and Fusion of Remotely Sensed Data
NASA Technical Reports Server (NTRS)
Goshtasby, Arthur Ardeshir; LeMoigne, Jacqueline
2010-01-01
Tools and methods for image registration were reviewed. Methods for the registration of remotely sensed data at NASA were discussed. Image fusion techniques were reviewed. Challenges in registration of remotely sensed data were discussed. Examples of image registration and image fusion were given.
Linking remote sensing, land cover and disease.
Curran, P J; Atkinson, P M; Foody, G M; Milton, E J
2000-01-01
Land cover is a critical variable in epidemiology and can be characterized remotely. A framework is used to describe both the links between land cover and radiation recorded in a remotely sensed image, and the links between land cover and the disease carried by vectors. The framework is then used to explore the issues involved when moving from remotely sensed imagery to land cover and then to vector density/disease risk. This exploration highlights the role of land cover; the need to develop a sound knowledge of each link in the predictive sequence; the problematic mismatch between the spatial units of the remotely sensed and epidemiological data and the challenges and opportunities posed by adding a temporal mismatch between the remotely sensed and epidemiological data. The paper concludes with a call for both greater understanding of the physical components of the proposed framework and the utilization of optimized statistical tools as prerequisites to progress in this field.
NASA Astrophysics Data System (ADS)
Lopez-Baeza, Ernesto; Geraldo Ferreira, A.; Saleh-Contell, Kauzar
Space technology facilitates humanity and science with a global revolutionary view of the Earth through the acquisition of Earth Observation satellite data. Satellites capture information over different spatial and temporal scales and assist in understanding natural climate processes and in detecting and explaining climate change. Accurate Earth Observation data is needed to describe climate processes by improving the parameterisations of different climate elements. Algorithms to produce geophysical parameters from raw satellite observations should go through selection processes or participate in inter-comparison programmes to ensure performance reliability. Geophysical parameter datasets, obtained from satellite observations, should pass a quality control before they are accepted in global databases for impact, diagnostic or sensitivity studies. Calibration and Validation, or simply "Cal/Val", is the activity that endeavours to ensure that remote sensing products are highly consistent and reproducible. This is an evolving scientific activity that is becoming increasingly important as more long-term studies on global change are undertaken, and new satellite missions are launched. Calibration is the process of quantitatively defining the system responses to known, controlled signal inputs. Validation refers to the process of assessing, by independent means, the quality of the data products derived from the system outputs. These definitions are generally accepted and most often used in the remote sensing context to refer specifically and respectively to sensor radiometric calibration and geophysical parameter validation. Anchor Stations are carefully selected locations at which instruments measure quantities that are needed to run, calibrate or validate models and algorithms. These are needed to quanti-tatively evaluate satellite data and convert it into geophysical information. The instruments collect measurements of basic quantities over a long timescale. Measurements are made of meteorological and hydrological background data, and of quantities not readily assessed at operational stations. Anchor Stations also offer infrastructure to undertake validation experi-ments. These are more detailed measurements over shorter intensive observation periods. The Valencia Anchor Station is showing its capabilities and conditions as a reference validation site in the framework of low spatial resolution remote sensing missions such as CERES, GERB and SMOS. The Alacant Anchor Station is a reference site in studies on the interactions between desertification and climate. This paper presents the activities so far carried out at both Anchor Stations, the precise and detailed ground and aircraft experiments carefully designed to develop a specific methodology to validate low spatial resolution satellite data and products, and the knowledge exchange currently being exercised between the University of Valencia, Spain, and FUNCEME, Brazil, in common objectives of mutual interest.
NASA Technical Reports Server (NTRS)
Lindenlaub, J. C.; Davis, S. M.
1974-01-01
Materials are presented for assisting instructors in teaching the LARSYS Educational Package, which is a set of instructional materials to train people to analyze remotely sensed multispectral data. The seven units of the package are described. These units are: quantitative remote sensing, overview of the LARSYS software system, the 2780 remote terminal, demonstration of LARSYS on the 2780 remote terminal, exercises, guide to multispectral data analysis, and a case study using LARSYS for analysis of LANDSAT data.
NASA Astrophysics Data System (ADS)
Gleason, J. L.; Hillyer, T. N.; Wilkins, J.
2012-12-01
The CERES Science Team integrates data from 5 CERES instruments onboard the Terra, Aqua and NPP missions. The processing chain fuses CERES observations with data from 19 other unique sources. The addition of CERES Flight Model 5 (FM5) onboard NPP, coupled with ground processing system upgrades further emphasizes the need for an automated job-submission utility to manage multiple processing streams concurrently. The operator-driven, legacy-processing approach relied on manually staging data from magnetic tape to limited spinning disk attached to a shared memory architecture system. The migration of CERES production code to a distributed, cluster computing environment with approximately one petabyte of spinning disk containing all precursor input data products facilitates the development of a CERES-specific, automated workflow manager. In the cluster environment, I/O is the primary system resource in contention across jobs. Therefore, system load can be maximized with a throttling workload manager. This poster discusses a Java and Perl implementation of an automated job management tool tailored for CERES processing.
A new simple concept for ocean colour remote sensing using parallel polarisation radiance
He, Xianqiang; Pan, Delu; Bai, Yan; Wang, Difeng; Hao, Zengzhou
2014-01-01
Ocean colour remote sensing has supported research on subjects ranging from marine ecosystems to climate change for almost 35 years. However, as the framework for ocean colour remote sensing is based on the radiation intensity at the top-of-atmosphere (TOA), the polarisation of the radiation, which contains additional information on atmospheric and water optical properties, has largely been neglected. In this study, we propose a new simple concept to ocean colour remote sensing that uses parallel polarisation radiance (PPR) instead of the traditional radiation intensity. We use vector radiative transfer simulation and polarimetric satellite sensing data to demonstrate that using PPR has two significant advantages in that it effectively diminishes the sun glint contamination and enhances the ocean colour signal at the TOA. This concept may open new doors for ocean colour remote sensing. We suggest that the next generation of ocean colour sensors should measure PPR to enhance observational capability. PMID:24434904
The University of Kansas Applied Sensing Program: An operational perspective
NASA Technical Reports Server (NTRS)
Martinko, E. A.
1981-01-01
The Kansas applied remote sensing (KARS) program conducts demonstration projects and applied research on remote sensing techniques which enable local, regional, state and federal agency personnel to better utilize available satellite and airborne remote sensing systems. As liason with Kansas agencies for the Earth Resources Laboratory (ERL), Kansas demonstration project, KARS coordinated interagency communication, field data collection, hands-on training, and follow-on technical assistance and worked with Kansas agency personnel in evaluating land cover maps provided by ERL. Short courses are being conducted to provide training in state-of-the-art remote sensing technology for university faculty, state personnel, and persons from private industry and federal government. Topics are listed which were considered in intensive five-day courses covering the acquisition, interpretation, and application of information derived through remote sensing with specific training and hands-on experience in image interpretation and the analysis of LANDSAT data are listed.
USDA-ARS?s Scientific Manuscript database
Using unmanned aircraft systems (UAS) as remote sensing platforms offers the unique ability for repeated deployment for acquisition of high temporal resolution data at very high spatial resolution. Most image acquisitions from UAS have been in the visible bands, while multispectral remote sensing ap...
Reflectance spectroscopy: quantitative analysis techniques for remote sensing applications.
Clark, R.N.; Roush, T.L.
1984-01-01
Several methods for the analysis of remotely sensed reflectance data are compared, including empirical methods and scattering theories, both of which are important for solving remote sensing problems. The concept of the photon mean path length and the implications for use in modeling reflectance spectra are presented.-from Authors
An overview of the development of remote sensing techniques for the screwworm eradication program
NASA Technical Reports Server (NTRS)
Barnes, C. M.; Forsberg, F. C.
1975-01-01
The current status of remote sensing techniques developed for the screwworm eradication program of the Mexican-American Screwworm Eradication Commission was reported. A review of the type of data and equipment used in the program is presented. Future applications of remote sensing techniques are considered.
Monitoring rice (oryza sativa L.) growth using multifrequency microwave scatterometers
USDA-ARS?s Scientific Manuscript database
Microwave remote sensing can help monitor the land surface water cycle and crop growth. This type of remote sensing has great potential over conventional remote sensing using the visible and infrared regions due to its all-weather day-and-night imaging capabilities. In this investigation, a ground-b...
Conference of Remote Sensing Educators (CORSE-78)
NASA Technical Reports Server (NTRS)
1978-01-01
Ways of improving the teaching of remote sensing students at colleges and universities are discussed. Formal papers and workshops on various Earth resources disciplines, image interpretation, and data processing concepts are presented. An inventory of existing remote sensing and related subject courses being given in western regional universities is included.
Frontiers of Remote Sensing of the Oceans and Troposphere from Air and Space Platforms
NASA Technical Reports Server (NTRS)
1984-01-01
Several areas of remote sensing are addressed including: future satellite systems; air-sea interaction/wind; ocean waves and spectra/S.A.R.; atmospheric measurements (particulates and water vapor); synoptic and weather forecasting; topography; bathymetry; sea ice; and impact of remote sensing on synoptic analysis/forecasting.
Remote sensing of earth terrain
NASA Technical Reports Server (NTRS)
Kong, Jin AU; Yueh, Herng-Aung; Shin, Robert T.
1991-01-01
Abstracts from 46 refereed journal and conference papers are presented for research on remote sensing of earth terrain. The topics covered related to remote sensing include the following: mathematical models, vegetation cover, sea ice, finite difference theory, electromagnetic waves, polarimetry, neural networks, random media, synthetic aperture radar, electromagnetic bias, and others.
Evapotranspiration estimates derived using multi-platform remote sensing in a semiarid region
USDA-ARS?s Scientific Manuscript database
Evapotranspiration (ET) is a key component of the water balance, especially in arid and semiarid regions. The current study takes advantage of spatially-distributed, near real-time information provided by satellite remote sensing to develop a regional scale ET product derived from remotely-sensed ob...
Code of Federal Regulations, 2010 CFR
2010-01-01
... SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.9 License term. (a) Each license for... licensee to: (1) Provide data to the National Satellite Land Remote Sensing Data Archive for the basic data set; (2) Make data available to the National Satellite Land Remote Sensing Data Archive that the...
NASA Technical Reports Server (NTRS)
Karakoylu, E.; Franz, B.
2016-01-01
First attempt at quantifying uncertainties in ocean remote sensing reflectance satellite measurements. Based on 1000 iterations of Monte Carlo. Data source is a SeaWiFS 4-day composite, 2003. The uncertainty is for remote sensing reflectance (Rrs) at 443 nm.
Elementary Age Children and Remote Sensing: Research from Project Omega.
ERIC Educational Resources Information Center
Kirman, Joseph M.
1991-01-01
Discusses remote sensing technology use in teaching elementary school students about science and social studies. Reviews findings dealing with the use of remote sensing and considering children's abilities, teacher training, computer applications, gifted children, and sex-related differences. Concludes that children as young as grade three can…
Inquiry-Based Learning in Remote Sensing: A Space Balloon Educational Experiment
ERIC Educational Resources Information Center
Mountrakis, Giorgos; Triantakonstantis, Dimitrios
2012-01-01
Teaching remote sensing in higher education has been traditionally restricted in lecture and computer-aided laboratory activities. This paper presents and evaluates an engaging inquiry-based educational experiment. The experiment was incorporated in an introductory remote sensing undergraduate course to bridge the gap between theory and…
Interactive Online Tools for Enhancing Student Learning Experiences in Remote Sensing
ERIC Educational Resources Information Center
Joyce, Karen E.; Boitshwarelo, Bopelo; Phinn, Stuart R.; Hill, Greg J. E.; Kelly, Gail D.
2014-01-01
The rapid growth in Information and Communications Technologies usage in higher education has provided immense opportunities to foster effective student learning experiences in geography. In particular, remote sensing lends itself to the creative utilization of multimedia technologies. This paper presents a case study of a remote sensing computer…
ERIC Educational Resources Information Center
Hotchkiss, Rose; Dickerson, Daniel
2008-01-01
Sponsored by NASA and the JASON Education Foundation, the remote Sensing Earth Science Teacher Education Program (RSESTeP) trains teachers to use state-of-the art remote-sensing technology with the idea that participants bring back what they learn and incorporate it into Earth science lessons using technology. The author's participation in the…
Code of Federal Regulations, 2010 CFR
2010-01-01
... SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Prohibitions § 960.13 Prohibitions. It is unlawful for... subsidiary or affiliate to: (a) Operate a private remote sensing space system in such a manner as to...) Operate a private remote sensing space system without possession of a valid license issued under the Act...
Fully Engaging Students in the Remote Sensing Process through Field Experience
ERIC Educational Resources Information Center
Rundquist, Bradley C.; Vandeberg, Gregory S.
2013-01-01
Field data collection is often crucial to the success of investigations based upon remotely sensed data. Students of environmental remote sensing typically learn about the discipline through classroom lectures, a textbook, and computer laboratory sessions focused on the interpretation and processing of aircraft and satellite data. The importance…
Satellites, Remote Sensing, and Classroom Geography for Canadian Teachers.
ERIC Educational Resources Information Center
Kirman, Joseph M.
1998-01-01
Argues that remote sensing images are a powerful tool for teaching geography. Discusses the use of remote sensing images in the classroom and provides a number of sources for them, some free, many on the World Wide Web. Reviews each source's usefulness for different grade levels and geographic topics. (DSK)
77 FR 14951 - Delegations of Authority
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-14
... reflect changes in the coordination of Departmental remote sensing activities. These responsibilities are... responsible for coordinating USDA remote sensing activities (7 CFR 2.29(a)(6)). Within the Office of the Chief... Outlook Board (WAOB) (7 CFR 2.72(a)(4)). WAOB coordinates USDA remote sensing activities by chairing the...
Active and Passive Remote Sensing of Ice.
1984-09-01
This is a report on the progress that has been made in the study of active and passive remote sensing of ice during the period of February 1, 1984...the emissivities as functions of viewing angles and polarizations. They are used to interpret the passive microwave remote sensing data from
Polarimetric Interferometry - Remote Sensing Applications
2007-02-01
This lecture is mainly based on the work of S.R. Cloude and presents examples for remote sensing applications Polarimetric SAR Interferometry...PolInSAR). PolInSAR has its origins in remote sensing and was first developed for applications in 1997 using SIRC L-Band data [1,2]. In its original form it
Remote Sensing in Latin America: Technology and Markets for the 1980s
1981-08-01
A review is made on the impact of satellite derived remote sensing data in Latin America. Data availability has generated a phenomenal growth in the...The international institutionalization of remote sensing interests in the area is an indicator submitted as a viable force in the continued, future
Active and Passive Remote Sensing of Ice.
1985-01-01
This is a report on the progress that has been made in the study of active and passive remote sensing of ice during the period of August 1, 1984...active and passive microwave remote sensing , (2) used the strong fluctuation theory and the fluctuation-dissipation theorem to calculate the brightness
Remote Sensing of Rock Type in the Visible and Near-Infrared,
Visible and near-infrared spectra of minerals and rocks have been measured and evaluated in terms of remote sensing applications. The authors...difficult or impossible to use in a generalized remote sensing effort in which the composition of all rocks is to be mapped. Instead, this spectral
Code of Federal Regulations, 2012 CFR
2012-01-01
... SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Prohibitions § 960.13 Prohibitions. It is unlawful for... subsidiary or affiliate to: (a) Operate a private remote sensing space system in such a manner as to...) Operate a private remote sensing space system without possession of a valid license issued under the Act...
Code of Federal Regulations, 2013 CFR
2013-01-01
... SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Prohibitions § 960.13 Prohibitions. It is unlawful for... subsidiary or affiliate to: (a) Operate a private remote sensing space system in such a manner as to...) Operate a private remote sensing space system without possession of a valid license issued under the Act...
Code of Federal Regulations, 2011 CFR
2011-01-01
... SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Prohibitions § 960.13 Prohibitions. It is unlawful for... subsidiary or affiliate to: (a) Operate a private remote sensing space system in such a manner as to...) Operate a private remote sensing space system without possession of a valid license issued under the Act...
Code of Federal Regulations, 2014 CFR
2014-01-01
... SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Prohibitions § 960.13 Prohibitions. It is unlawful for... subsidiary or affiliate to: (a) Operate a private remote sensing space system in such a manner as to...) Operate a private remote sensing space system without possession of a valid license issued under the Act...
NASA Technical Reports Server (NTRS)
1997-01-01
The Commercial Remote Sensing Program at Stennis Space Center assists numerous companies across the United States, in learning to use remote sensing capabilities to enhance their competitiveness. Through the Visiting Investigator Program, SSC helped Coast Delta Realty in Diamondhead, Miss., incorporate remote sensing and Geogrpahic Information System technology for real estate marketing and management.
Groundwater inventory and monitoring technical guide: Remote sensing of groundwater
USDA-ARS?s Scientific Manuscript database
The application of remotely sensed data in conjunction with in situ data greatly enhances the ability of the USDA Forest Service to meet the demands of field staff, customers, and others for groundwater information. Generally, the use of remotely sensed data to inventory and monitor groundwater reso...
Remote sensing of the Earth from Space: A program in crisis
NASA Technical Reports Server (NTRS)
1985-01-01
The present situation in earth remote sensing, determining why certain problems exist, and trying to find out what can be done to solve these problems are discussed. The conclusion is that operational remote sensing is in disarray. The difficulties involve policy and institutional issues. Recommendations are given.
Application of remote sensing to solution of ecological problems
NASA Technical Reports Server (NTRS)
Adelman, A.
1972-01-01
The application of remote sensing techniques to solving ecological problems is discussed. The three phases of environmental ecological management are examined. The differences between discovery and exploitation of natural resources and their ecological management are described. The specific application of remote sensing to water management is developed.
NASA Technical Reports Server (NTRS)
Benediktsson, J. A.; Swain, P. H.; Ersoy, O. K.
1993-01-01
Application of neural networks to classification of remote sensing data is discussed. Conventional two-layer backpropagation is found to give good results in classification of remote sensing data but is not efficient in training. A more efficient variant, based on conjugate-gradient optimization, is used for classification of multisource remote sensing and geographic data and very-high-dimensional data. The conjugate-gradient neural networks give excellent performance in classification of multisource data, but do not compare as well with statistical methods in classification of very-high-dimentional data.
NASA Technical Reports Server (NTRS)
Estes, J. E.; Smith, T.; Star, J. L.
1986-01-01
Research continues to focus on improving the type, quantity, and quality of information which can be derived from remotely sensed data. The focus is on remote sensing and application for the Earth Observing System (Eos) and Space Station, including associated polar and co-orbiting platforms. The remote sensing research activities are being expanded, integrated, and extended into the areas of global science, georeferenced information systems, machine assissted information extraction from image data, and artificial intelligence. The accomplishments in these areas are examined.
Present and future development of remote sensing in China
NASA Astrophysics Data System (ADS)
Pan, H. R.; Jiang, J. S.; Hu, D. Y.; Wang, C. Y.
This paper summarizes the program that has been established during the past decade and the present situation in remote sensing techniques and applications in China. Special attention is given to the recent results that have been achieved in remote sensing applications, such as the successful applications of aerial photography and satellite images to a wide range of grassland surveys in Xinjians province, and to real time flood monitoring in the Tons-Tins Lake drainage basin in 1985, etc. The paper also touches upon the future trends for developing remote sensing in China.
NASA Technical Reports Server (NTRS)
1984-01-01
Topics discussed at the symposium include hardware, geographic information system (GIS) implementation, processing remotely sensed data, spatial data structures, and NASA programs in remote sensing information systems. Attention is also given GIS applications, advanced techniques, artificial intelligence, graphics, spatial navigation, and classification. Papers are included on the design of computer software for geographic image processing, concepts for a global resource information system, algorithm development for spatial operators, and an application of expert systems technology to remotely sensed image analysis.
NASA Technical Reports Server (NTRS)
Murphy, J. D.; Dideriksen, R. I.
1975-01-01
The application of remote sensing technology by the U.S. Department of Agriculture (USDA) is examined. The activities of the USDA Remote-Sensing User Requirement Task Force which include cataloging USDA requirements for earth resources data, determining those requirements that would return maximum benefits by using remote sensing technology and developing a plan for acquiring, processing, analyzing, and distributing data to satisfy those requirements are described. Emphasis is placed on the large area crop inventory experiment and its relationship to the task force.
Chemical Remote Sensing ’Proof of Concept’,
1981-03-31
A122 579 CHEMICAL REMOTE SENSING ;PROOF OF CONCEPT’(U) UTAH 1/I \\ STATE UNIV LOGAN ELECTRO-DYNAMICS LAB BARTSCHI ET AL. 31 MAR 81 SCIENTIFC-8...STANDARDS -I963-A AFGL-TR-81-021 2 CHEMICAL REMOTE SENSING "Proof of Concept" B.Y. Bartschi F. P. DelGreco M. Ahmadjian Electro-Dynamics Laboratories...Applications of remote sensing 2 2.2 Program Development 4 -O 3.1 Optical Layout 6 3.2 Block Diagram of Sensor System 7 3.3 Sensor Facility 10 3.4
NASA Technical Reports Server (NTRS)
Thorley, G. A.; Draeger, W. C.; Lauer, D. T.; Lent, J.; Roberts, E.
1971-01-01
The four problem are as being investigated are: (1) determination of the feasibility of providing the resource manager with operationally useful information through the use of remote sensing techniques; (2) definition of the spectral characteristics of earth resources and the optimum procedures for calibrating tone and color characteristics of multispectral imagery (3) determination of the extent to which humans can extract useful earth resource information through remote sensing imagery; (4) determination of the extent to which automatic classification and data processing can extract useful information from remote sensing data.
A study of remote sensing as applied to regional and small watersheds. Volume 1: Summary report
NASA Technical Reports Server (NTRS)
Ambaruch, R.
1974-01-01
The accuracy of remotely sensed measurements to provide inputs to hydrologic models of watersheds is studied. A series of sensitivity analyses on continuous simulation models of three watersheds determined: (1)Optimal values and permissible tolerances of inputs to achieve accurate simulation of streamflow from the watersheds; (2) Which model inputs can be quantified from remote sensing, directly, indirectly or by inference; and (3) How accurate remotely sensed measurements (from spacecraft or aircraft) must be to provide a basis for quantifying model inputs within permissible tolerances.
Remote sensing impact on corridor selection and placement
NASA Technical Reports Server (NTRS)
Thomson, F. J.; Sellman, A. N.
1975-01-01
Computer-aided corridor selection techniques, utilizing digitized data bases of socio-economic, census, and cadastral data, and developed for highway corridor routing are considered. Land resource data generated from various remote sensing data sources were successfully merged with the ancillary data files of a corridor selection model and prototype highway corridors were designed using the combined data set. Remote sensing derived information considered useful for highway corridor location, special considerations in geometric correction of remote sensing data to facilitate merging it with ancillary data files, and special interface requirements are briefly discussed.
NASA Astrophysics Data System (ADS)
Zhu, Yunqiang; Zhu, Huazhong; Lu, Heli; Ni, Jianguang; Zhu, Shaoxia
2005-10-01
Remote sensing dynamic monitoring of land use can detect the change information of land use and update the current land use map, which is important for rational utilization and scientific management of land resources. This paper discusses the technological procedure of remote sensing dynamic monitoring of land use including the process of remote sensing images, the extraction of annual change information of land use, field survey, indoor post processing and accuracy assessment. Especially, we emphasize on comparative research on the choice of remote sensing rectifying models, image fusion algorithms and accuracy assessment methods. Taking Anning district in Lanzhou as an example, we extract the land use change information of the district during 2002-2003, access monitoring accuracy and analyze the reason of land use change.
Applying remote sensing and GIS techniques in solving rural county information needs
NASA Technical Reports Server (NTRS)
Johannsen, Chris J.; Fernandez, R. Norberto; Lozano-Garcia, D. Fabian
1992-01-01
The project designed was to acquaint county government officials and their clientele with remote sensing and GIS products that contain information about land conditions and land use. Other users determined through the course of this project were federal agencies working at the county level, agricultural businesses and others in need of spatial information. The specific project objectives were: (1) to investigate the feasibility of using remotely sensed data to identify and quantify specific land cover categories and conditions for purposes of tax assessment, cropland area measurements and land use evaluation; (2) to investigate the use of satellite remote sensing data as an aid in assessing soil management practices; and (3) to evaluate the use of remotely sensed data to assess soil resources and conditions which affect productivity.
NASA Technical Reports Server (NTRS)
Vandegriend, A. A.; Oneill, P. E.
1986-01-01
Using the De Vries models for thermal conductivity and heat capacity, thermal inertia was determined as a function of soil moisture for 12 classes of soil types ranging from sand to clay. A coupled heat and moisture balance model was used to describe the thermal behavior of the top soil, while microwave remote sensing was used to estimate the soil moisture content of the same top soil. Soil hydraulic parameters are found to be very highly correlated with the combination of soil moisture content and thermal inertia at the same moisture content. Therefore, a remotely sensed estimate of the thermal behavior of the soil from diurnal soil temperature observations and an independent remotely sensed estimate of soil moisture content gives the possibility of estimating soil hydraulic properties by remote sensing.
Future use of digital remote sensing data
NASA Technical Reports Server (NTRS)
Spann, G. W.; Jones, N. L.
1978-01-01
Users of remote sensing data are increasingly turning to digital processing techniques for the extraction of land resource, environmental, and natural resource information. This paper presents the results of recent and ongoing research efforts sponsored, in part, by NASA/Marshall Space Flight Center on the current uses of and future needs for digital remote sensing data. An ongoing investigation involves a comprehensive survey of capabilities for digital Landsat data use in the Southeastern U.S. Another effort consists of an evaluation of future needs for digital remote sensing data by federal, state, and local governments and the private sector. These needs are projected into the 1980-1985 time frame. Furthermore, the accelerating use of digital remote sensing data is not limited to the U.S. or even to the developed countries of the world.
National Satellite Land Remote Sensing Data Archive
Faundeen, John L.; Kelly, Francis P.; Holm, Thomas M.; Nolt, Jenna E.
2013-01-01
The National Satellite Land Remote Sensing Data Archive (NSLRSDA) resides at the U.S. Geological Survey's (USGS) Earth Resources Observation and Science (EROS) Center. Through the Land Remote Sensing Policy Act of 1992, the U.S. Congress directed the Department of the Interior (DOI) to establish a permanent Government archive containing satellite remote sensing data of the Earth's land surface and to make this data easily accessible and readily available. This unique DOI/USGS archive provides a comprehensive, permanent, and impartial observational record of the planet's land surface obtained throughout more than five decades of satellite remote sensing. Satellite-derived data and information products are primary sources used to detect and understand changes such as deforestation, desertification, agricultural crop vigor, water quality, invasive plant species, and certain natural hazards such as flood extent and wildfire scars.
NASA Astrophysics Data System (ADS)
Liu, Q.
2011-09-01
At first, research advances on radiation transfer modeling on multi-scale remote sensing data are presented: after a general overview of remote sensing radiation transfer modeling, several recent research advances are presented, including leaf spectrum model (dPROS-PECT), vegetation canopy BRDF models, directional thermal infrared emission models(TRGM, SLEC), rugged mountains area radiation models, and kernel driven models etc. Then, new methodologies on land surface parameters inversion based on multi-source remote sensing data are proposed. The land surface Albedo, leaf area index, temperature/emissivity, and surface net radiation etc. are taken as examples. A new synthetic land surface parameter quantitative remote sensing product generation system is designed and the software system prototype will be demonstrated. At last, multi-scale field experiment campaigns, such as the field campaigns in Gansu and Beijing, China will be introduced briefly. The ground based, tower based, and airborne multi-angular measurement system have been built to measure the directional reflectance, emission and scattering characteristics from visible, near infrared, thermal infrared and microwave bands for model validation and calibration. The remote sensing pixel scale "true value" measurement strategy have been designed to gain the ground "true value" of LST, ALBEDO, LAI, soil moisture and ET etc. at 1-km2 for remote sensing product validation.
NASA Astrophysics Data System (ADS)
Aguilar-Amuchas, N.; Henebry, G. M.; Blanchard, J.; Sutter, R.
2008-12-01
The potential use of remote sensing for the design and implementation of sustainable management, conservation, and monitoring of forest biodiversity has been well documented in the scientific literature. However, when we look into how often remote sensing is actually being used in the decision making processes affecting biodiversity conservation and sustainable management, we find that, apart from specific study cases, its use is not as widespread as we know it should. There is an enormous gap between our scientific achievements and their use in the real world towards the preservation of a rapidly vanishing biodiversity. Conservation managers understand the potential remote sensing has. However, logistical constraints and high technical skills requirements render the use of remote sensing data difficult. Sound and easy approaches need to be developed and implemented. We present two study cases that illustrate 1st. How the interaction between tropical forest managers and remote sensing specialist allowed developing a simple method for the identification of priority areas for field surveys of tropical forests management ecological sustainability indicators and, 2nd. How remote sensing is being used by The Nature Conservancy as a first level approach towards the assessment of forest conservation strategies effectiveness in for areas located in 11 states, covering different forest types and a variety of conservation objectives.
Remote sensing of ecosystem health: opportunities, challenges, and future perspectives.
Li, Zhaoqin; Xu, Dandan; Guo, Xulin
2014-11-07
Maintaining a healthy ecosystem is essential for maximizing sustainable ecological services of the best quality to human beings. Ecological and conservation research has provided a strong scientific background on identifying ecological health indicators and correspondingly making effective conservation plans. At the same time, ecologists have asserted a strong need for spatially explicit and temporally effective ecosystem health assessments based on remote sensing data. Currently, remote sensing of ecosystem health is only based on one ecosystem attribute: vigor, organization, or resilience. However, an effective ecosystem health assessment should be a comprehensive and dynamic measurement of the three attributes. This paper reviews opportunities of remote sensing, including optical, radar, and LiDAR, for directly estimating indicators of the three ecosystem attributes, discusses the main challenges to develop a remote sensing-based spatially-explicit comprehensive ecosystem health system, and provides some future perspectives. The main challenges to develop a remote sensing-based spatially-explicit comprehensive ecosystem health system are: (1) scale issue; (2) transportability issue; (3) data availability; and (4) uncertainties in health indicators estimated from remote sensing data. However, the Radarsat-2 constellation, upcoming new optical sensors on Worldview-3 and Sentinel-2 satellites, and improved technologies for the acquisition and processing of hyperspectral, multi-angle optical, radar, and LiDAR data and multi-sensoral data fusion may partly address the current challenges.
Methods and potentials for using satellite image classification in school lessons
NASA Astrophysics Data System (ADS)
Voss, Kerstin; Goetzke, Roland; Hodam, Henryk
2011-11-01
The FIS project - FIS stands for Fernerkundung in Schulen (Remote Sensing in Schools) - aims at a better integration of the topic "satellite remote sensing" in school lessons. According to this, the overarching objective is to teach pupils basic knowledge and fields of application of remote sensing. Despite the growing significance of digital geomedia, the topic "remote sensing" is not broadly supported in schools. Often, the topic is reduced to a short reflection on satellite images and used only for additional illustration of issues relevant for the curriculum. Without addressing the issue of image data, this can hardly contribute to the improvement of the pupils' methodical competences. Because remote sensing covers more than simple, visual interpretation of satellite images, it is necessary to integrate remote sensing methods like preprocessing, classification and change detection. Dealing with these topics often fails because of confusing background information and the lack of easy-to-use software. Based on these insights, the FIS project created different simple analysis tools for remote sensing in school lessons, which enable teachers as well as pupils to be introduced to the topic in a structured way. This functionality as well as the fields of application of these analysis tools will be presented in detail with the help of three different classification tools for satellite image classification.
The mass of (1) Ceres from perturbations on (348) May
NASA Technical Reports Server (NTRS)
Williams, Gareth V.
1992-01-01
The most promising ground-based technique for determining the mass of a minor planet is the observation of the perturbations it induces in the motion of another minor planet. This method requires careful observation of both minor planets over extended periods of time. The mass of (1) Ceres has been determined from the perturbations on (348) May, which made three close approaches to Ceres at intervals of 46 years between 1891 and 1984. The motion of May is clearly influenced by Ceres, and by using different test masses for Ceres, a search was made to determine the mass of Ceres that minimizes the residuals in the observations of May.
2015-01-19
This processed image, taken Jan. 13, 2015, shows the dwarf planet Ceres as seen from the Dawn spacecraft. The image hints at craters on the surface of Ceres. Dawn framing camera took this image at 238,000 miles 383,000 kilometers from Ceres. http://photojournal.jpl.nasa.gov/catalog/PIA19167
2016-11-18
This image of Ceres approximates how the dwarf planet's colors would appear to the eye. This view of Ceres, produced by the German Aerospace Center in Berlin, combines images taken during Dawn's first science orbit in 2015 using the framing camera's red, green and blue spectral filters. The color was calculated using a reflectance spectrum, which is based on the way that Ceres reflects different wavelengths of light and the solar wavelengths that illuminate Ceres. http://photojournal.jpl.nasa.gov/catalog/PIA21079
Oceanographic Remote Sensing; A Position Paper,
1979-01-26
The purpose of a Navy R&D remote sensing plan should be to set forth the requirements and direction of basic and exploratory research in satellite... remote sensing which supports the overall Navy oceanographic research and operational programs. The aim of the plan would be to outline the established...addressed. The plan should help serve as a single technology and program reference for implementation and planning of Navy related satellite remote
Millimeter and Submillimeter Observations of Ceres
NASA Astrophysics Data System (ADS)
Kuan, Yi-Jehng; Chuang, Yo-Ling; Tseng, Wei-Ling; Coulson, Iain M.; Chung, Ming-Chi
2016-07-01
1 Ceres is the largest celestial body in the Main Asteroid Belt and is also the sole dwarf planet in the inner solar system. Water vapor from small icy solar-system bodies, including Ceres and Europa, was detected by Herschel infrared space telescope recently. Data taken from Dawn spacecraft suggest that a subsurface layer of briny water ice, together with ammonia-rich clays, may exist on Ceres. We hence observed Ceres using the 15-m James Clerk Maxwell Telescope (JCMT) to search for other atmospheric molecules besides H _{2}O. Submillimeter continuum observations employing SCUBA-2 were also carried out. Here we report the tentative detection of hydrogen cyanide in the atmosphere of Ceres. If confirmed, our finding could imply that Ceres may have a comet-like chemical composition. However, further observational confirmation and more detailed analysis is needed.
Interior Structure of Ceres Artist Concept
2016-08-03
This artist's concept shows a diagram of how the inside of Ceres could be structured, based on data about the dwarf planet's gravity field from NASA's Dawn mission. Using information about Ceres' gravity and topography, scientists found that Ceres is "differentiated," which means that it has compositionally distinct layers at different depths. The densest layer is at the core, which scientists suspect is made of hydrated silicates. Above that is a volatile-rich shell, topped with a crust of mixed materials. This research teaches scientists about what internal processes could have occurred during the early history of Ceres. It appears that, during a heating phase early in the history of Ceres, water and other light materials partially separated from rock. These light materials and water then rose to the outer layer of Ceres. http://photojournal.jpl.nasa.gov/catalog/PIA20867
Ceres In Context: What the Rest of the Asteroid Population Tells Us About Its Largest Member
NASA Astrophysics Data System (ADS)
Rivkin, A.
2015-12-01
Ceres is famously the largest object in the asteroid belt. Over the course of the last 215 years it has been considered everything from a unique protoplanet (or indeed full-fledged "planet") to a large but run-of-the-mill piece of rock. Over the last decade, models of Ceres' thermal history and shape measurements based on HST imagery have led to the recognition that Ceres is a differentiated object, and likely an ice-rich one. In the last year the Dawn spacecraft has provided unprecedented views of Ceres' surface and combined with data from observational facilities like Herschel and countless telescopes it has shown the varied nature of its geology and ongoing processes. Even given these recent results, Ceres remains an inhabitant of the asteroid belt, existing in the ambient environment and affected by impactors, micrometeorites, solar wind, and other factors. While we only have spacecraft imagery from a very small number of targets, we do have a wealth of Earth-based data from the objects that have shared space with Ceres for billions of years. The insights gained from studying these objects can be applied to Ceres to understand its context and nature. Similarly, what we learn at Ceres will be applicable in many ways to other objects, particularly the twenty or so largest asteroids, which tend to be low-albedo, water-rich bodies. I will discuss our current understanding of the asteroids, particularly those that share important characteristics with Ceres, and focus on what we can learn about Ceres from these bodies.
NASA Technical Reports Server (NTRS)
Loeb, Norman G.; Wielicki, Bruce A.; Doelling, David R.
2008-01-01
There are some in the science community who believe that the response of the climate system to anthropogenic radiative forcing is unpredictable and we should therefore call off the quest . The key limitation in climate predictability is associated with cloud feedback. Narrowing the uncertainty in cloud feedback (and therefore climate sensitivity) requires optimal use of the best available observations to evaluate and improve climate model processes and constrain climate model simulations over longer time scales. The Clouds and the Earth s Radiant Energy System (CERES) is a satellite-based program that provides global cloud, aerosol and radiative flux observations for improving our understanding of cloud-aerosol-radiation feedbacks in the Earth s climate system. CERES is the successor to the Earth Radiation Budget Experiment (ERBE), which has widely been used to evaluate climate models both at short time scales (e.g., process studies) and at decadal time scales. A CERES instrument flew on the TRMM satellite and captured the dramatic 1998 El Nino, and four other CERES instruments are currently flying aboard the Terra and Aqua platforms. Plans are underway to fly the remaining copy of CERES on the upcoming NPP spacecraft (mid-2010 launch date). Every aspect of CERES represents a significant improvement over ERBE. While both CERES and ERBE measure broadband radiation, CERES calibration is a factor of 2 better than ERBE. In order to improve the characterization of clouds and aerosols within a CERES footprint, we use coincident higher-resolution imager observations (VIRS, MODIS or VIIRS) to provide a consistent cloud-aerosol-radiation dataset at climate accuracy. Improved radiative fluxes are obtained by using new CERES-derived Angular Distribution Models (ADMs) for converting measured radiances to fluxes. CERES radiative fluxes are a factor of 2 more accurate than ERBE overall, but the improvement by cloud type and at high latitudes can be as high as a factor of 5. Diurnal cycles are explicitly resolved by merging geostationary satellite observations with CERES and MODIS. Atmospheric state data are provided from a frozen version of the Global Modeling and Assimilation Office- Data Assimilation System at the NASA Goddard Space Flight Center. In addition to improving the accuracy of top-of-atmosphere (TOA) radiative fluxes, CERES also produces radiative fluxes at the surface and at several levels in the atmosphere using radiative transfer modeling, constrained at the TOA by CERES (ERBE was limited to the TOA). In all, CERES uses 11 instruments on 7 spacecraft all integrated to obtain climate accuracy in TOA to surface fluxes. This presentation will provide an overview of several new CERES datasets of interest to the climate community (including a new adjusted TOA flux dataset constrained by estimates of heat storage in the Earth system), show direct comparisons between CERES ad ERBE, and provide a detailed error analysis of CERES fluxes at various time and space scales. We discuss how observations can be used to reduce uncertainties in cloud feedback and climate sensitivity and strongly argue why we should NOT "call off the quest".
NASA Astrophysics Data System (ADS)
Washington-Allen, R. A.; Fatoyinbo, T. E.; Ribeiro, N. S.; Shugart, H. H.; Therrell, M. D.; Vaz, K. T.; von Schill, L.
2006-12-01
A workshop titled: Environmental Remote Sensing for Natural Resources Management was held from June 12 23, 2006 at Eduardo Mondlane University in Maputo Mozambique. The workshop was initiated through an invitation and pre-course evaluation form to interested NGOs, universities, and government organizations. The purpose of the workshop was to provide training to interested professionals, graduate students, faculty and researchers at Mozambican institutions on the research and practical uses of remote sensing for natural resource management. The course had 24 participants who were predominantly professionals in remote sensing and GIS from various NGOs, governmental and academic institutions in Mozambique. The course taught remote sensing from an ecological perspective, specifically the course focused on the application of new remote sensing technology [the Shuttle Radar Topography Mission (SRTM) C-band radar data] to carbon accounting research in Miombo woodlands and Mangrove forests. The 2-week course was free to participants and consisted of lectures, laboratories, and a field trip to the mangrove forests of Inhaca Island, Maputo. The field trip consisted of training in the use of forest inventory techniques in support of remote sensing studies. Specifically, the field workshop centered on use of Global Positioning Systems (GPS) and collection of forest inventory data on tree height, structure [leaf area index (LAI)], and productivity. Productivity studies were enhanced with the teaching of introductory dendrochronology including sample collection of tree rings from four different mangrove species. Students were provided with all course materials including a DVD that contained satellite data (e.g., Landsat and SRTM imagery), ancillary data, lectures, exercises, and remote sensing publications used in the course including a CD from the Environmental Protection Agency's Environmental Photographic Interpretation Center's (EPA-EPIC) program to teach remote sensing and data CDs from NASA's SAFARI 2000 field campaign. Nineteen participants evaluated the effectiveness of the course in regards to the course lectures, instructors, and the field trip. Future workshops should focus more on the individual projects that students are engaged with in their jobs, replace the laboratories computers with workstations geared towards computer intensive image processing software, and the purchase of field remote sensing instrumentation for practical exercises.
NASA Astrophysics Data System (ADS)
Hodam, H.; Goetzke, R.; Rinow, A.; Voß, K.
2012-04-01
The project FIS - Fernerkundung in Schulen (German for "Remote Sensing in Schools") - aims at a better integration of remote sensing in school lessons. Respectively, the overall ob-jective is to teach pupils from primary school up to high-school graduation basics and fields of application of remote sensing. Working with remote sensing data opens up new and modern ways of teaching. Therefore many teachers have great interest in the subject "remote sensing", being motivated to integrate this topic into teaching, provided that the curriculum is con-sidered. In many cases, this encouragement fails because of confusing information, which ruins all good intentions. For this reason, a comprehensive and well structured learning portal on the subject remote sensing is developed. This will allow teachers and pupils to have a structured initial understanding of the topic. Recognizing that in-depth use of satellite imagery can only be achieved by the means of computer aided learning methods, a sizeable number of e-Learning contents have been created throughout the last 5 years since the project's kickoff which are now integrated into the learning portal. Three main sections form the backbone of the developed learning portal. 1. The "Teaching Materials" section provides registered teachers with interactive lessons to convey curriculum relevant topics through remote sensing. They are able to use the implemented management system to create classes and enregister pupils, keep track of their progresses and control results of the conducted lessons. Abandoning the functio-nalities of the management system the lessons are also available to non-registered us-ers. 2. Pupils and Teachers can investigate further into remote sensing in the "Research" sec-tion, where a knowledge base alongside a satellite image gallery offer general back-ground information on remote sensing and the provided lessons in a semi interactive manner. 3. The "Analysis Tools" section offers means to further experiment with satellite images by working with predefined sets of Images and Tools. All three sections of the platform are presented exemplary explaining the underlying didactical and technical concepts of the project, showing how they are realized and what their potentials are when put to use in school lessons.
A review of progress in identifying and characterizing biocrusts using proximal and remote sensing
NASA Astrophysics Data System (ADS)
Rozenstein, Offer; Adamowski, Jan
2017-05-01
Biocrusts are critical components of desert ecosystems, significantly modifying the surfaces they occupy. The mixture of biological components and soil particles that form the crust, in conjunction with moisture, determines the biocrusts' spectral signatures. Proximal and remote sensing in complementary spectral regions, namely the reflective region, and the thermal region, have been used to study biocrusts in a non-destructive manner, in the laboratory, in the field, and from space. The objectives of this review paper are to present the spectral characteristics of biocrusts across the optical domain, and to discuss significant developments in the application of proximal and remote sensing for biocrust studies in the last few years. The motivation for using proximal and remote sensing in biocrust studies is discussed. Next, the application of reflectance spectroscopy to the study of biocrusts is presented followed by a review of the emergence of high spectral resolution thermal remote sensing, which facilitates the application of thermal spectroscopy for biocrust studies. Four specific topics at the forefront of proximal and remote sensing of biocrusts are discussed: (1) The use of remote sensing in determining the role of biocrusts in global biogeochemical cycles; (2) Monitoring the inceptive establishment of biocrusts; (3) Identifying and characterizing biocrusts using Longwave infrared spectroscopy; and (4) Diurnal emissivity dynamics of biocrusts in a sand dune environment. The paper concludes by identifying innovative technologies such as low altitude and high resolution imagery that are increasingly used in remote sensing science, and are expected to be used in future biocrusts studies.
Evidence for ammonium-bearing minerals in Ceres
NASA Technical Reports Server (NTRS)
King, T. V. V.; Clark, R. N.; Calvin, W. M.; Sherman, D. M.; Swayze, G. A.; Brown, R. H.
1991-01-01
Evidence for ammonium-bearing minerals was found on the surface of the largest asteroid Ceres. The presence of ammonium-bearing clays suggests that Ceres has experienced a period of alteration by substantial amounts of an ammonium-bearing fluid. The presence of the ammonium-bearing clays does not preclude Ceres maintaining a volatile inventory in the core or in a volatile-rich zone at some distance below the surface. Telescopic observations of Ceres, using the 3.0 meter NASA Infrared telescope facility prompted this reevaluation of its surface mineralogy.
Sensing our Environment: Remote sensing in a physics classroom
NASA Astrophysics Data System (ADS)
Isaacson, Sivan; Schüttler, Tobias; Cohen-Zada, Aviv L.; Blumberg, Dan G.; Girwidz, Raimund; Maman, Shimrit
2017-04-01
Remote sensing is defined as data acquisition of an object, deprived physical contact. Fundamentally, most remote sensing applications are referred to as the use of satellite- or aircraft-based sensor technologies to detect and classify objects mainly on Earth or other planets. In the last years there have been efforts to bring the important subject of remote sensing into schools, however, most of these attempts focused on geography disciplines - restricting to the applications of remote sensing and to a less extent the technique itself and the physics behind it. Optical remote sensing is based on physical principles and technical devices, which are very meaningful from a theoretical point of view as well as for "hands-on" teaching. Some main subjects are radiation, atom and molecular physics, spectroscopy, as well as optics and the semiconductor technology used in modern digital cameras. Thus two objectives were outlined for this project: 1) to investigate the possibilities of using remote sensing techniques in physics teaching, and 2) to identify its impact on pupil's interest in the field of natural sciences. This joint project of the DLR_School_Lab, Oberpfaffenhofen of the German Aerospace Center (DLR) and the Earth and Planetary Image Facility (EPIF) at BGU, was conducted in 2016. Thirty teenagers (ages 16-18) participated in the project and were exposed to the cutting edge methods of earth observation. The pupils on both sides participated in the project voluntarily, knowing that at least some of the project's work had to be done in their leisure time. The pupil's project started with a day at EPIF and DLR respectively, where the project task was explained to the participants and an introduction to remote sensing of vegetation was given. This was realized in lectures and in experimental workshops. During the following two months both groups took several measurements with modern optical remote sensing systems in their home region with a special focus on flora. The teams then processed their data and presented it to their foreign partners for evaluation in a video conference call. Alongside exciting insights about their respective environments and living conditions, the young scientists had daily access to live satellite sensors and remote sensing through the DLR_School_Lab in Germany and the Earth and Planetary Image Facility in Israel. This paper provides an overview regarding the project, the techniques used and the evaluation results following a pre-past-questionnaire design, and above all demonstrates the use of remote sensing as an application for physics teaching in a significant learning environment.
Needs Assessment for the Use of NASA Remote Sensing Data for Regulatory Water Quality
NASA Technical Reports Server (NTRS)
Spiering, Bruce; Underwood, Lauren
2010-01-01
This slide presentation reviews the assessment of the needs that NASA can use for the remote sensing of water quality. The goal of this project is to provide information for decision-making activities (water quality standards) using remotely sensed/satellite based water quality data from MODIS and Landsat data.
USDA-ARS?s Scientific Manuscript database
Remote sensing systems based on consumer-grade cameras have been increasingly used in scientific research and remote sensing applications because of their low cost and ease of use. However, the performance of consumer-grade cameras for practical applications have not been well documented in related ...
Sea Surface Salinity: The Next Remote Sensing Challenge
NASA Technical Reports Server (NTRS)
Lagerloef, Gary S. E.; Swift, Calvin T.; LeVine, David M.
1995-01-01
A brief history of salinity remote sensing is presented. The role of sea surface salinity (SSS) in the far north Atlantic and the influence of salinity variations on upper ocean dynamics in the tropics are described. An assessment of the present state of the technology of the SSS satellite remote sensing is given.
Evaluating high temporal and spatial resolution vegetation index for crop yield prediction
USDA-ARS?s Scientific Manuscript database
Remote sensing data have been widely used in estimating crop yield. Remote sensing derived parameters such as Vegetation Index (VI) were used either directly in building empirical models or by assimilating with crop growth models to predict crop yield. The abilities of remote sensing VI in crop yiel...
Remote sensing procurement package: A technical guide for state and local governments
NASA Technical Reports Server (NTRS)
1981-01-01
The guide provides the tools and techniques for procuring remote sensing products and services. It is written for administrators, procurement officials and line agency staff who are directly involved in identifying information needs; defining remote sensing project requirements; soliciting and evaluating contract responses and negotiating, awarding, and administering contracts.
Bringing an ecological view of change to Landsat-based remote sensing
Robert E. Kennedy; Serge Andrefouet; Warren B. Cohen; Cristina Gomez; Patrick Griffiths; Martin Hais; Sean P. Healey; Eileen H. Helmer; Patrick Hostert; Mitchell B. Lyons; Garrett W. Meigs; Dirk Pflugmacher; Stuart R. Phinn; Scott L. Powell; Peter Scarth; Susmita Sen; Todd A. Schroeder; Annemarie Schneider; Ruth Sonnenschein; James E. Vogelmann; Michael A. Wulder; Zhe Zhu
2014-01-01
When characterizing the processes that shape ecosystems, ecologists increasingly use the unique perspective offered by repeat observations of remotely sensed imagery. However, the concept of change embodied in much of the traditional remote-sensing literature was primarily limited to capturing large or extreme changes occurring in natural systems, omitting many more...
Ground-Based Remote Sensing of Water-Stressed Crops: Thermal and Multispectral Imaging
USDA-ARS?s Scientific Manuscript database
Ground-based methods of remote sensing can be used as ground-truthing for satellite-based remote sensing, and in some cases may be a more affordable means of obtaining such data. Plant canopy temperature has been used to indicate and quantify plant water stress. A field research study was conducted ...
Landsat's role in ecological applications of remote sensing.
Warren B. Cohen; Samuel N. Goward
2004-01-01
Remote sensing, geographic information systems, and modeling have combined to produce a virtual explosion of growth in ecological investigations and applications that are explicitly spatial and temporal. Of all remotely sensed data, those acquired by landsat sensors have played the most pivotal role in spatial and temporal scaling. Modern terrestrial ecology relies on...
Natural Resource Information System. Remote Sensing Studies.
ERIC Educational Resources Information Center
Leachtenauer, J.; And Others
A major design objective of the Natural Resource Information System entailed the use of remote sensing data as an input to the system. Potential applications of remote sensing data were therefore reviewed and available imagery interpreted to provide input to a demonstration data base. A literature review was conducted to determine the types and…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-08
... estimates. An innovative feature of this project will be the use of roadside remote-sensing measurements to...). The acquisition of remote-sensing measurements for hydrocarbons, carbon-monoxide, and oxides of... fleet. Research questions for the project include: (1) Can remote-sensing be used as a reliable index of...
Feasibility study ASCS remote sensing/compliance determination system
NASA Technical Reports Server (NTRS)
Duggan, I. E.; Minter, T. C., Jr.; Moore, B. H.; Nosworthy, C. T.
1973-01-01
A short-term technical study was performed by the MSC Earth Observations Division to determine the feasibility of the proposed Agricultural Stabilization and Conservation Service Automatic Remote Sensing/Compliance Determination System. For the study, the term automatic was interpreted as applying to an automated remote-sensing system that includes data acquisition, processing, and management.
Passive Polarimetric Remote Sensing of Snow and Ice
1997-09-30
In recent years, polarimetric radiometry has shown great potential to revolutionize passive remote sensing of the ocean surface. As a result, several...polarimetric radiometer, in 2001. This project explores the possibility of applying this new technology to remote sensing in the Polar Regions by investigating the polarimetric signature of ice and snow.
Project THEMIS: A Center for Remote Sensing.
This report summarizes the technical work accomplished under Project THEMIS, A Center for Remote Sensing at the University of Kansas during the...period 16 September 1967 through 15 September 1973. The highlights of the four major areas forming the remote sensing system are presented. A detailed description of the latest radar spectrometer results is presented.
Analysis of the Possibility of Military Applications of Civilian Remote Sensing Satellite Imagery,
1996-06-12
With the end of the Cold War and the changing of the world order, the market for civilian remote sensing satellite imagery is taking shape and...expanding. More and more civilian remote sensing reconnaissance-grade satellite systems are going into service one after the other. Exchanges of satellite
USDA-ARS?s Scientific Manuscript database
Recent developments in wireless sensor technology and remote sensing algorithms, coupled with increased use of center pivot irrigation systems, have removed several long-standing barriers to adoption of remote sensing for real-time irrigation management. One remote sensing-based algorithm is a two s...
Calibration of remotely sensed proportion or area estimates for misclassification error
Raymond L. Czaplewski; Glenn P. Catts
1992-01-01
Classifications of remotely sensed data contain misclassification errors that bias areal estimates. Monte Carlo techniques were used to compare two statistical methods that correct or calibrate remotely sensed areal estimates for misclassification bias using reference data from an error matrix. The inverse calibration estimator was consistently superior to the...
The application analysis of the multi-angle polarization technique for ocean color remote sensing
NASA Astrophysics Data System (ADS)
Zhang, Yongchao; Zhu, Jun; Yin, Huan; Zhang, Keli
2017-02-01
The multi-angle polarization technique, which uses the intensity of polarized radiation as the observed quantity, is a new remote sensing means for earth observation. With this method, not only can the multi-angle light intensity data be provided, but also the multi-angle information of polarized radiation can be obtained. So, the technique may solve the problems, those could not be solved with the traditional remote sensing methods. Nowadays, the multi-angle polarization technique has become one of the hot topics in the field of the international quantitative research on remote sensing. In this paper, we firstly introduce the principles of the multi-angle polarization technique, then the situations of basic research and engineering applications are particularly summarized and analysed in 1) the peeled-off method of sun glitter based on polarization, 2) the ocean color remote sensing based on polarization, 3) oil spill detection using polarization technique, 4) the ocean aerosol monitoring based on polarization. Finally, based on the previous work, we briefly present the problems and prospects of the multi-angle polarization technique used in China's ocean color remote sensing.
NASA Technical Reports Server (NTRS)
Merewitz, L.
1973-01-01
The following step-wise procedure for making a benefit-cost analysis of using remote sensing techniques could be used either in the limited context of California water resources, or a context as broad as the making of integrated resource surveys of the entire earth resource complex on a statewide, regional, national, or global basis. (1) Survey all data collection efforts which can be accomplished by remote sensing techniques. (2) Carefully inspect the State of California budget and the Budget of the United States Government to find annual cost of data collection efforts. (3) Decide the extent to which remote sensing can obviate each of the collection efforts. (4) Sum the annual costs of all data collection which can be equivalently accomplished through remote sensing. (5) Decide what additional data could and would be collected through remote sensing. (6) Estimate the value of this information. It is not harmful to do a benefit-cost analysis so long as its severe limitations are recalled and it is supplemented with socio-economic impact studies.
Bushland Evapotranspiration and Agricultural Remote Sensing System (BEARS) software
NASA Astrophysics Data System (ADS)
Gowda, P. H.; Moorhead, J.; Brauer, D. K.
2017-12-01
Evapotranspiration (ET) is a major component of the hydrologic cycle. ET data are used for a variety of water management and research purposes such as irrigation scheduling, water and crop modeling, streamflow, water availability, and many more. Remote sensing products have been widely used to create spatially representative ET data sets which provide important information from field to regional scales. As UAV capabilities increase, remote sensing use is likely to also increase. For that purpose, scientists at the USDA-ARS research laboratory in Bushland, TX developed the Bushland Evapotranspiration and Agricultural Remote Sensing System (BEARS) software. The BEARS software is a Java based software that allows users to process remote sensing data to generate ET outputs using predefined models, or enter custom equations and models. The capability to define new equations and build new models expands the applicability of the BEARS software beyond ET mapping to any remote sensing application. The software also includes an image viewing tool that allows users to visualize outputs, as well as draw an area of interest using various shapes. This software is freely available from the USDA-ARS Conservation and Production Research Laboratory website.
NASA Astrophysics Data System (ADS)
Genet, Richard P.
1995-11-01
Policy changes in the United States and Europe will bring a number of firms into the remote sensing market. More importantly, there will be a vast increase in the amount of data and potentially, the amount of information, that is available for academic, commercial and a variety of public uses. Presently many of the users of remote sensing data have some understanding of photogrammetric and remote sensing technologies. This is especially true of environmentalist users and academics. As the amount of remote sensing data increases, in order to broaden the user base, it will become increasingly important that the information user not be required to have a background in photogrammetry, remote sensing, or even in the basics of geographic information systems. The user must be able to articulate his requirements in view of existence of new sources of information. This paper provides the framework for expert systems to accomplish this interface. Specific examples of the capabilities which must be developed in order to maximize the utility of specific images and image archives are presented and discussed.
NASA Astrophysics Data System (ADS)
Jin, Jiahua; Yan, Xiangbin; Tan, Qiaoqiao; Li, Yijun
2014-03-01
With the development of remote sensing technology, remote-sensing satellite has been widely used in many aspects of national construction. Big data with different standards and massive users with different needs, make the satellite data delivery service to be a complex giant system. How to deliver remote-sensing satellite data efficiently and effectively is a big challenge. Based on customer service theory, this paper proposes a hierarchy conceptual model for examining the determinations of remote-sensing satellite data delivery service quality in the Chinese context. Three main dimensions: service expectation, service perception and service environment, and 8 sub-dimensions are included in the model. Large amount of first-hand data on the remote-sensing satellite data delivery service have been obtained through field research, semi-structured questionnaire and focused interview. A positivist case study is conducted to validate and develop the proposed model, as well as to investigate the service status and related influence mechanisms. Findings from the analysis demonstrate the explanatory validity of the model, and provide potentially helpful insights for future practice.
Secure distribution for high resolution remote sensing images
NASA Astrophysics Data System (ADS)
Liu, Jin; Sun, Jing; Xu, Zheng Q.
2010-09-01
The use of remote sensing images collected by space platforms is becoming more and more widespread. The increasing value of space data and its use in critical scenarios call for adoption of proper security measures to protect these data against unauthorized access and fraudulent use. In this paper, based on the characteristics of remote sensing image data and application requirements on secure distribution, a secure distribution method is proposed, including users and regions classification, hierarchical control and keys generation, and multi-level encryption based on regions. The combination of the three parts can make that the same remote sensing images after multi-level encryption processing are distributed to different permission users through multicast, but different permission users can obtain different degree information after decryption through their own decryption keys. It well meets user access control and security needs in the process of high resolution remote sensing image distribution. The experimental results prove the effectiveness of the proposed method which is suitable for practical use in the secure transmission of remote sensing images including confidential information over internet.
Retrieving Leaf Area Index (LAI) Using Remote Sensing: Theories, Methods and Sensors
Zheng, Guang; Moskal, L. Monika
2009-01-01
The ability to accurately and rapidly acquire leaf area index (LAI) is an indispensable component of process-based ecological research facilitating the understanding of gas-vegetation exchange phenomenon at an array of spatial scales from the leaf to the landscape. However, LAI is difficult to directly acquire for large spatial extents due to its time consuming and work intensive nature. Such efforts have been significantly improved by the emergence of optical and active remote sensing techniques. This paper reviews the definitions and theories of LAI measurement with respect to direct and indirect methods. Then, the methodologies for LAI retrieval with regard to the characteristics of a range of remotely sensed datasets are discussed. Remote sensing indirect methods are subdivided into two categories of passive and active remote sensing, which are further categorized as terrestrial, aerial and satellite-born platforms. Due to a wide variety in spatial resolution of remotely sensed data and the requirements of ecological modeling, the scaling issue of LAI is discussed and special consideration is given to extrapolation of measurement to landscape and regional levels. PMID:22574042
Retrieving Leaf Area Index (LAI) Using Remote Sensing: Theories, Methods and Sensors.
Zheng, Guang; Moskal, L Monika
2009-01-01
The ability to accurately and rapidly acquire leaf area index (LAI) is an indispensable component of process-based ecological research facilitating the understanding of gas-vegetation exchange phenomenon at an array of spatial scales from the leaf to the landscape. However, LAI is difficult to directly acquire for large spatial extents due to its time consuming and work intensive nature. Such efforts have been significantly improved by the emergence of optical and active remote sensing techniques. This paper reviews the definitions and theories of LAI measurement with respect to direct and indirect methods. Then, the methodologies for LAI retrieval with regard to the characteristics of a range of remotely sensed datasets are discussed. Remote sensing indirect methods are subdivided into two categories of passive and active remote sensing, which are further categorized as terrestrial, aerial and satellite-born platforms. Due to a wide variety in spatial resolution of remotely sensed data and the requirements of ecological modeling, the scaling issue of LAI is discussed and special consideration is given to extrapolation of measurement to landscape and regional levels.
First Monthly CERES Global Longwave and Shortwave Radiation
NASA Technical Reports Server (NTRS)
2002-01-01
Clouds and the Earth's Radiant Energy System, CERES, monitors solar energy reflected from the Earth and heat energy emitted from the Earth. In this image, heat energy radiated from the earth is shown in varying shades of yellow, red, blue and white. The brightest yellow areas, such as the Sahara Desert and Arabian Peninsula, are emitting the most energy out to space, while the dark blue polar regions and bright white clouds are the coldest areas on Earth, and are emitting the least energy. The animation (1.5MB) (high-res (4MB)) shows roughly a week of CERES data. For more information: CERES images through Visible Earth. CERES web site Image courtesy of the CERES instrument team
CERES Detects Earth's Heat and Energy
NASA Technical Reports Server (NTRS)
2002-01-01
Clouds and the Earth's Radiant Energy System, CERES, monitors solar energy reflected from the Earth and heat energy emitted from the Earth. In this image, heat energy radiated from the earth is shown in varying shades of yellow, red, blue and white. The brightest yellow areas, such as the Sahara Desert and Arabian Peninsula, are emitting the most energy out to space, while the dark blue polar regions and bright white clouds are the coldest areas on Earth, and are emitting the least energy. The animation (1.5MB) (high-res (4MB)) shows roughly a week of CERES data. For more information: CERES images through Visible Earth. CERES web site Image courtesy of the CERES instrument team
Satellite remote sensing, biodiversity research and conservation of the future
Pettorelli, Nathalie; Safi, Kamran; Turner, Woody
2014-01-01
Assessing and predicting ecosystem responses to global environmental change and its impacts on human well-being are high priority targets for the scientific community. The potential for synergies between remote sensing science and ecology, especially satellite remote sensing and conservation biology, has been highlighted by many in the past. Yet, the two research communities have only recently begun to coordinate their agendas. Such synchronization is the key to improving the potential for satellite data effectively to support future environmental management decision-making processes. With this themed issue, we aim to illustrate how integrating remote sensing into ecological research promotes a better understanding of the mechanisms shaping current changes in biodiversity patterns and improves conservation efforts. Added benefits include fostering innovation, generating new research directions in both disciplines and the development of new satellite remote sensing products. PMID:24733945
Land remote sensing in the 1980's
NASA Technical Reports Server (NTRS)
Thome, P. G.
1982-01-01
A discussion is presented concerning U.S. governmental funding policy for the Land Remote Sensing programs, in which the Landsat spacecraft and the research and development activities associated with them are essential elements. Even if present program management practices were to be changed in the next 1-2 years, the investment of significant amounts of private capital in land remote sensing may be 3-5 years away, due to the immaturity of the prospective markets for the services rendered and the present state of technological development. It is judged that even if NASA is successful in bringing significant private investment into remote sensing activities by the mid-1980s, government must continue to support basic research and expensive technology development in long term and high risk, but potentially high payoff, areas which the still-developing remote sensing industry cannot afford.
Joint Agency Commercial Imagery Evaluation (JACIE)
Jucht, Carrie
2010-01-01
Remote sensing data are vital to understanding the physical world and to answering many of its needs and problems. The United States Geological Survey's (USGS) Remote Sensing Technologies (RST) Project, working with its partners, is proud to sponsor the annual Joint Agency Commercial Imagery Evaluation (JACIE) Workshop to help understand the quality and usefulness of remote sensing data. The JACIE program was formed in 2001 to leverage U.S. Federal agency resources for the characterization of commercial remote sensing data. These agencies sponsor and co-chair JACIE: U.S. Geological Survey (USGS) National Aeronautics and Space Administration (NASA) National Geospatial-Intelligence Agency (NGA) U.S. Department of Agriculture (USDA) JACIE is an effort to coordinate data assessments between the participating agencies and partners and communicate the knowledge and results of the quality and utility of the remotely sensed data available for government and private use.
Remote sensing of atmospheric chemistry; Proceedings of the Meeting, Orlando, FL, Apr. 1-3, 1991
NASA Technical Reports Server (NTRS)
Mcelroy, James L. (Editor); Mcneal, Robert J. (Editor)
1991-01-01
The present volume on remote sensing of atmospheric chemistry discusses special remote sensing space observations and field experiments to study chemical change in the atmosphere, network monitoring for detection of stratospheric chemical change, stratospheric chemistry studies, and the combining of model, in situ, and remote sensing in atmospheric chemistry. Attention is given to the measurement of tropospheric carbon monoxide using gas filter radiometers, long-path differential absorption measurements of tropospheric molecules, air quality monitoring with the differential optical absorption spectrometer, and a characterization of tropospheric methane through space-based remote sensing. Topics addressed include microwave limb sounder experiments for UARS and EOS, an overview of the spectroscopy of the atmosphere using an FIR emission experiment, the detection of stratospheric ozone trends by ground-based microwave observations, and a FIR Fabry-Perot spectrometer for OH measurements.
Sources of support for remote sensing education
NASA Technical Reports Server (NTRS)
Estes, J. E.
1981-01-01
Past financial support for educational programs in remote sensing came largely in the form of short courses funded by the National Science Foundation. Later NASA began to fund such courses for local and state government and for some university participants in its regional programs. The greater impact came from the funding by a variety of federal agencies for remote sensing research projects at educational institutions throughout the country. Probably the best and most significant example of these programs, from the university standpoint is, and should continue to be, the NASA university affairs programs, which with its long term step funding of a number of institutions has probably done more for remote sensing education than any other federal program in this country. An incomplete listing of federal agencies that support remote sensing research at the university level is presented.
NASA Technical Reports Server (NTRS)
Davis, Frank W.; Quattrochi, Dale A.; Ridd, Merrill K.; Lam, Nina S.-N.; Walsh, Stephen J.
1991-01-01
This paper discusses some basic scientific issues and research needs in the joint processing of remotely sensed and GIS data for environmental analysis. Two general topics are treated in detail: (1) scale dependence of geographic data and the analysis of multiscale remotely sensed and GIS data, and (2) data transformations and information flow during data processing. The discussion of scale dependence focuses on the theory and applications of spatial autocorrelation, geostatistics, and fractals for characterizing and modeling spatial variation. Data transformations during processing are described within the larger framework of geographical analysis, encompassing sampling, cartography, remote sensing, and GIS. Development of better user interfaces between image processing, GIS, database management, and statistical software is needed to expedite research on these and other impediments to integrated analysis of remotely sensed and GIS data.
Possible role of remote sensing for increasing public awareness of the Chesapeake Bay environment
NASA Technical Reports Server (NTRS)
Wilkerson, T. D.; Maher, P. A.; Billings, G.; Cressy, P. J.; Jarman, J. W.; Macleod, N. H.; Trombka, J. I.; Wisner, T.
1978-01-01
Application of remote sensing techniques to the study of the Chesapeake Bay and the availability of the resulting information are discussed in terms of public awareness of the Chesapeake Bay, its total environment, and the need to protect that environment and to preserve the Bay. Recommendations given include: (1) continue the study of remote sensing technology and its use in the Chesapeake Bay region; (2) emphasize the importance of LANDSAT imagery to the evolution of remote sensing technological developments and the awareness of the environment and its changes; (3) increase dissemination of information of the environmental applications of remote sensing technology to the public; (4) design surveys of the Chesapeake Bay environment and its manmade changes; and (5) establish a coordinating regional institution to develop a management plan for the Chesapeake Bay.
NASA Astrophysics Data System (ADS)
Liu, Q.; Li, J.; Du, Y.; Wen, J.; Zhong, B.; Wang, K.
2011-12-01
As the remote sensing data accumulating, it is a challenge and significant issue how to generate high accurate and consistent land surface parameter product from the multi source remote observation and the radiation transfer modeling and inversion methodology are the theoretical bases. In this paper, recent research advances and unresolved issues are presented. At first, after a general overview, recent research advances on multi-scale remote sensing radiation transfer modeling are presented, including leaf spectrum model, vegetation canopy BRDF models, directional thermal infrared emission models, rugged mountains area radiation models, and kernel driven models etc. Then, new methodologies on land surface parameters inversion based on multi-source remote sensing data are proposed, taking the land surface Albedo, leaf area index, temperature/emissivity, and surface net radiation as examples. A new synthetic land surface parameter quantitative remote sensing product generation system is suggested and the software system prototype will be demonstrated. At last, multi-scale field experiment campaigns, such as the field campaigns in Gansu and Beijing, China are introduced briefly. The ground based, tower based, and airborne multi-angular measurement system have been built to measure the directional reflectance, emission and scattering characteristics from visible, near infrared, thermal infrared and microwave bands for model validation and calibration. The remote sensing pixel scale "true value" measurement strategy have been designed to gain the ground "true value" of LST, ALBEDO, LAI, soil moisture and ET etc. at 1-km2 for remote sensing product validation.
Brolly, Matthew; Woodhouse, Iain H.; Niklas, Karl J.; Hammond, Sean T.
2012-01-01
Individual trees have been shown to exhibit strong relationships between DBH, height and volume. Often such studies are cited as justification for forest volume or standing biomass estimation through remote sensing. With resolution of common satellite remote sensing systems generally too low to resolve individuals, and a need for larger coverage, these systems rely on descriptive heights, which account for tree collections in forests. For remote sensing and allometric applications, this height is not entirely understood in terms of its location. Here, a forest growth model (SERA) analyzes forest canopy height relationships with forest wood volume. Maximum height, mean, H100, and Lorey's height are examined for variability under plant number density, resource and species. Our findings, shown to be allometrically consistent with empirical measurements for forested communities world-wide, are analyzed for implications to forest remote sensing techniques such as LiDAR and RADAR. Traditional forestry measures of maximum height, and to a lesser extent H100 and Lorey's, exhibit little consistent correlation with forest volume across modeled conditions. The implication is that using forest height to infer volume or biomass from remote sensing requires species and community behavioral information to infer accurate estimates using height alone. SERA predicts mean height to provide the most consistent relationship with volume of the height classifications studied and overall across forest variations. This prediction agrees with empirical data collected from conifer and angiosperm forests with plant densities ranging between 102–106 plants/hectare and heights 6–49 m. Height classifications investigated are potentially linked to radar scattering centers with implications for allometry. These findings may be used to advance forest biomass estimation accuracy through remote sensing. Furthermore, Lorey's height with its specific relationship to remote sensing physics is recommended as a more universal indicator of volume when using remote sensing than achieved using either maximum height or H100. PMID:22457800
An Interactive Web-Based Analysis Framework for Remote Sensing Cloud Computing
NASA Astrophysics Data System (ADS)
Wang, X. Z.; Zhang, H. M.; Zhao, J. H.; Lin, Q. H.; Zhou, Y. C.; Li, J. H.
2015-07-01
Spatiotemporal data, especially remote sensing data, are widely used in ecological, geographical, agriculture, and military research and applications. With the development of remote sensing technology, more and more remote sensing data are accumulated and stored in the cloud. An effective way for cloud users to access and analyse these massive spatiotemporal data in the web clients becomes an urgent issue. In this paper, we proposed a new scalable, interactive and web-based cloud computing solution for massive remote sensing data analysis. We build a spatiotemporal analysis platform to provide the end-user with a safe and convenient way to access massive remote sensing data stored in the cloud. The lightweight cloud storage system used to store public data and users' private data is constructed based on open source distributed file system. In it, massive remote sensing data are stored as public data, while the intermediate and input data are stored as private data. The elastic, scalable, and flexible cloud computing environment is built using Docker, which is a technology of open-source lightweight cloud computing container in the Linux operating system. In the Docker container, open-source software such as IPython, NumPy, GDAL, and Grass GIS etc., are deployed. Users can write scripts in the IPython Notebook web page through the web browser to process data, and the scripts will be submitted to IPython kernel to be executed. By comparing the performance of remote sensing data analysis tasks executed in Docker container, KVM virtual machines and physical machines respectively, we can conclude that the cloud computing environment built by Docker makes the greatest use of the host system resources, and can handle more concurrent spatial-temporal computing tasks. Docker technology provides resource isolation mechanism in aspects of IO, CPU, and memory etc., which offers security guarantee when processing remote sensing data in the IPython Notebook. Users can write complex data processing code on the web directly, so they can design their own data processing algorithm.
LAnd surface remote sensing Products VAlidation System (LAPVAS) and its preliminary application
NASA Astrophysics Data System (ADS)
Lin, Xingwen; Wen, Jianguang; Tang, Yong; Ma, Mingguo; Dou, Baocheng; Wu, Xiaodan; Meng, Lumin
2014-11-01
The long term record of remote sensing product shows the land surface parameters with spatial and temporal change to support regional and global scientific research widely. Remote sensing product with different sensors and different algorithms is necessary to be validated to ensure the high quality remote sensing product. Investigation about the remote sensing product validation shows that it is a complex processing both the quality of in-situ data requirement and method of precision assessment. A comprehensive validation should be needed with long time series and multiple land surface types. So a system named as land surface remote sensing product is designed in this paper to assess the uncertainty information of the remote sensing products based on a amount of in situ data and the validation techniques. The designed validation system platform consists of three parts: Validation databases Precision analysis subsystem, Inter-external interface of system. These three parts are built by some essential service modules, such as Data-Read service modules, Data-Insert service modules, Data-Associated service modules, Precision-Analysis service modules, Scale-Change service modules and so on. To run the validation system platform, users could order these service modules and choreograph them by the user interactive and then compete the validation tasks of remote sensing products (such as LAI ,ALBEDO ,VI etc.) . Taking SOA-based architecture as the framework of this system. The benefit of this architecture is the good service modules which could be independent of any development environment by standards such as the Web-Service Description Language(WSDL). The standard language: C++ and java will used as the primary programming language to create service modules. One of the key land surface parameter, albedo, is selected as an example of the system application. It is illustrated that the LAPVAS has a good performance to implement the land surface remote sensing product validation.
Remote Sensing and the Kyoto Protocol: A Workshop Summary
NASA Technical Reports Server (NTRS)
Rosenqvist, Ake; Imhoff, Marc; Milne, Anthony; Dobson, Craig
2000-01-01
The Kyoto Protocol to the United Nations Framework Convention on Climate Change contains quantified, legally binding commitments to limit or reduce greenhouse gas emissions to 1990 levels and allows carbon emissions to be balanced by carbon sinks represented by vegetation. The issue of using vegetation cover as an emission offset raises a debate about the adequacy of current remote sensing systems and data archives to both assess carbon stocks/sinks at 1990 levels, and monitor the current and future global status of those stocks. These concerns and the potential ratification of the Protocol among participating countries is stimulating policy debates and underscoring a need for the exchange of information between the international legal community and the remote sensing community. On October 20-22 1999, two working groups of the International Society for Photogrammetry and Remote Sensing (ISPRS) joined with the University of Michigan (Michigan, USA) to convene discussions on how remote sensing technology could contribute to the information requirements raised by implementation of, and compliance with, the Kyoto Protocol. The meeting originated as a joint effort between the Global Monitoring Working Group and the Radar Applications Working Group in Commission VII of the ISPRS, co-sponsored by the University of Michigan. Tile meeting was attended by representatives from national government agencies and international organizations and academic institutions. Some of the key themes addressed were: (1) legal aspects of transnational remote sensing in the context of the Kyoto Protocol; (2) a review of the current and future and remote sensing technologies that could be applied to the Kyoto Protocol; (3) identification of areas where additional research is needed in order to advance and align remote sensing technology with the requirements and expectations of the Protocol; and 94) the bureaucratic and research management approaches needed to align the remote sensing community with both the science and policy communities.
Objected-oriented remote sensing image classification method based on geographic ontology model
NASA Astrophysics Data System (ADS)
Chu, Z.; Liu, Z. J.; Gu, H. Y.
2016-11-01
Nowadays, with the development of high resolution remote sensing image and the wide application of laser point cloud data, proceeding objected-oriented remote sensing classification based on the characteristic knowledge of multi-source spatial data has been an important trend on the field of remote sensing image classification, which gradually replaced the traditional method through improving algorithm to optimize image classification results. For this purpose, the paper puts forward a remote sensing image classification method that uses the he characteristic knowledge of multi-source spatial data to build the geographic ontology semantic network model, and carries out the objected-oriented classification experiment to implement urban features classification, the experiment uses protégé software which is developed by Stanford University in the United States, and intelligent image analysis software—eCognition software as the experiment platform, uses hyperspectral image and Lidar data that is obtained through flight in DaFeng City of JiangSu as the main data source, first of all, the experiment uses hyperspectral image to obtain feature knowledge of remote sensing image and related special index, the second, the experiment uses Lidar data to generate nDSM(Normalized DSM, Normalized Digital Surface Model),obtaining elevation information, the last, the experiment bases image feature knowledge, special index and elevation information to build the geographic ontology semantic network model that implement urban features classification, the experiment results show that, this method is significantly higher than the traditional classification algorithm on classification accuracy, especially it performs more evidently on the respect of building classification. The method not only considers the advantage of multi-source spatial data, for example, remote sensing image, Lidar data and so on, but also realizes multi-source spatial data knowledge integration and application of the knowledge to the field of remote sensing image classification, which provides an effective way for objected-oriented remote sensing image classification in the future.
Brolly, Matthew; Woodhouse, Iain H; Niklas, Karl J; Hammond, Sean T
2012-01-01
Individual trees have been shown to exhibit strong relationships between DBH, height and volume. Often such studies are cited as justification for forest volume or standing biomass estimation through remote sensing. With resolution of common satellite remote sensing systems generally too low to resolve individuals, and a need for larger coverage, these systems rely on descriptive heights, which account for tree collections in forests. For remote sensing and allometric applications, this height is not entirely understood in terms of its location. Here, a forest growth model (SERA) analyzes forest canopy height relationships with forest wood volume. Maximum height, mean, H₁₀₀, and Lorey's height are examined for variability under plant number density, resource and species. Our findings, shown to be allometrically consistent with empirical measurements for forested communities world-wide, are analyzed for implications to forest remote sensing techniques such as LiDAR and RADAR. Traditional forestry measures of maximum height, and to a lesser extent H₁₀₀ and Lorey's, exhibit little consistent correlation with forest volume across modeled conditions. The implication is that using forest height to infer volume or biomass from remote sensing requires species and community behavioral information to infer accurate estimates using height alone. SERA predicts mean height to provide the most consistent relationship with volume of the height classifications studied and overall across forest variations. This prediction agrees with empirical data collected from conifer and angiosperm forests with plant densities ranging between 10²-10⁶ plants/hectare and heights 6-49 m. Height classifications investigated are potentially linked to radar scattering centers with implications for allometry. These findings may be used to advance forest biomass estimation accuracy through remote sensing. Furthermore, Lorey's height with its specific relationship to remote sensing physics is recommended as a more universal indicator of volume when using remote sensing than achieved using either maximum height or H₁₀₀.
CERES SSF and SFC Edition 3A product issues
Atmospheric Science Data Center
2013-12-05
... order the CERES SSF and SFC Edition 3A products due to the discovery of an issue with the products. In mid 2010 the CERES SSF ... ordered the CERES SSF and SFC Edition 3A products due to the discovery of an issue with the products. Due to these problems, we are ...
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A. (Principal Investigator); Barkstrom, Bruce R. (Principal Investigator); Baum, Bryan A.; Cess, Robert D.; Charlock, Thomas P.; Coakley, James A.; Green, Richard N.; Lee, Robert B., III; Minnis, Patrick; Smith, G. Louis
1995-01-01
The theoretical bases for the Release 1 algorithms that will be used to process satellite data for investigation of the Clouds and the Earth's Radiant Energy System (CERES) are described. The architecture for software implementation of the methodologies is outlined. Volume 1 provides both summarized and detailed overviews of the CERES Release 1 data analysis system. CERES will produce global top-of-the-atmosphere shortwave and longwave radiative fluxes at the top of the atmosphere, at the surface, and within the atmosphere by using the combination of a large variety of measurements and models. The CERES processing system includes radiance observations from CERES scanning radiometers, cloud properties derived from coincident satellite imaging radiometers, temperature and humidity fields from meteorological analysis models, and high-temporal-resolution geostationary satellite radiances to account for unobserved times. CERES will provide a continuation of the ERBE record and the lowest error climatology of consistent cloud properties and radiation fields. CERES will also substantially improve our knowledge of the Earth's surface radiation budget.
Predicting risk of invasive species occurrence - remote-sesning strategies
USDA-ARS?s Scientific Manuscript database
Remote sensing is a means to describe characteristics of an area without physically sampling the area. Remote sensors can be mounted on a satellite, plane, or other airborne structure. Remotely sensed data allow for landscape perspectives on management issues. Sensors measure the electromagnetic ene...
NASA Technical Reports Server (NTRS)
1995-01-01
The theoretical bases for the Release 1 algorithms that will be used to process satellite data for investigation of the Clouds and Earth's Radiant Energy System (CERES) are described. The architecture for software implementation of the methodologies is outlined. Volume 3 details the advanced CERES methods for performing scene identification and inverting each CERES scanner radiance to a top-of-the-atmosphere (TOA) flux. CERES determines cloud fraction, height, phase, effective particle size, layering, and thickness from high-resolution, multispectral imager data. CERES derives cloud properties for each pixel of the Tropical Rainfall Measuring Mission (TRMM) visible and infrared scanner and the Earth Observing System (EOS) moderate-resolution imaging spectroradiometer. Cloud properties for each imager pixel are convolved with the CERES footprint point spread function to produce average cloud properties for each CERES scanner radiance. The mean cloud properties are used to determine an angular distribution model (ADM) to convert each CERES radiance to a TOA flux. The TOA fluxes are used in simple parameterization to derive surface radiative fluxes. This state-of-the-art cloud-radiation product will be used to substantially improve our understanding of the complex relationship between clouds and the radiation budget of the Earth-atmosphere system.
NASA Astrophysics Data System (ADS)
Mao, Xiaochen; McKinnon, William B.
2018-01-01
We show that Ceres' measured degree-2 zonal gravity, J2, is smaller by about 10% than that derived assuming Ceres' rotational flattening, as measured by Dawn, is hydrostatic. Irrespective of Ceres' radial density variation, as long as its internal structure is hydrostatic the J2 predicted from the shape model is consistently larger than measured. As an explanation, we suggest that Ceres' current shape may be a fossil remnant of faster rotation in the geologic past. We propose that up to ∼7% of Ceres' previous spin angular momentum has been removed by dynamic perturbations such as a random walk due to impacts or a loss of satellite that slowed Ceres spin as it tidally evolved outward. As an alternative, we also consider a formal degree-2 admittance solution, from which we infer a range of possible non-hydrostatic contributions to J2 from uncompensated, deep-seated density anomalies. We show that such density anomalies could be due to low order convection or upwelling. The normalized moments-of-inertia derived for the two explanations - faster paleospin and deep-seated density anomalies - range between 0.353 ± 0.009 and 0.375 ± 0.001 for a spherically equivalent Ceres, which can be used as constraints on more complex Ceres interior models.
Laboratory requirements for in-situ and remote sensing of suspended material
NASA Technical Reports Server (NTRS)
Kuo, C. Y.; Cheng, R. Y. K.
1978-01-01
Recommendations for laboratory and in-situ measurements required for remote sensing of suspended material are presented. This study investigates the properties of the suspended materials, factors influencing the upwelling radiance, and the various types of remote sensing techniques. Calibration and correlation procedures are given to obtain the accuracy necessary to quantify the suspended materials by remote sensing. In addition, the report presents a survey of the national need for sediment data, the agencies that deal with and require the data of suspended sediment, and a summary of some recent findings of sediment measurements.
The application of remote sensing techniques to inter and intra urban analysis
NASA Technical Reports Server (NTRS)
Horton, F. E.
1972-01-01
This is an effort to assess the applicability of air and spaceborne photography toward providing data inputs to urban and regional planning, management, and research. Through evaluation of remote sensing inputs to urban change detection systems, analyzing an effort to replicate an existing urban land use data file using remotely sensed data, estimating population and dwelling units from imagery, and by identifying and evaluating a system of urban places ultilizing space photography, it was determined that remote sensing can provide data concerning land use, changes in commercial structure, data for transportation planning, housing quality, residential dynamics, and population density.
NASA Technical Reports Server (NTRS)
Barr, B. G.; Martinko, E. A.
1976-01-01
Activities of the Kansas Applied Remote Sensing Program (KARS) designed to establish interactions on cooperative projects with decision makers in Kansas agencies in the development and application of remote sensing procedures are reported. Cooperative demonstration projects undertaken with several different agencies involved three principal areas of effort: Wildlife Habitat and Environmental Analysis; Urban and Regional Analysis; Agricultural and Rural Analysis. These projects were designed to concentrate remote sensing concepts and methodologies on existing agency problems to insure the continued relevancy of the program and maximize the possibility for immediate operational use. Completed projects are briefly discussed.
NASA Technical Reports Server (NTRS)
Koda, M.; Seinfeld, J. H.
1982-01-01
The reconstruction of a concentration distribution from spatially averaged and noise-corrupted data is a central problem in processing atmospheric remote sensing data. Distributed parameter observer theory is used to develop reconstructibility conditions for distributed parameter systems having measurements typical of those in remote sensing. The relation of the reconstructibility condition to the stability of the distributed parameter observer is demonstrated. The theory is applied to a variety of remote sensing situations, and it is found that those in which concentrations are measured as a function of altitude satisfy the conditions of distributed state reconstructibility.
Remote sensing; Proceedings of the Meeting, Orlando, FL, Apr. 3, 4, 1986
NASA Technical Reports Server (NTRS)
Menzies, Robert T. (Editor)
1986-01-01
Advances in optical technology for remote sensing are discussed in reviews and reports of recent experimental investigations. Topics examined include industrial applications, laser diagnostics for combustion research, laser remote sensing for ranging and altimetry, and imaging systems for terrestrial remote sensing from space. Consideration is given to LIF in forensic diagnostics, time-resolved laser-induced-breakdown spectrometry for rapid analysis of alloys, CARS in practical combustion environments, airborne inertial surveying using laser tracking and profiling techniques, earth-resources instrumentation for the EOS polar platform of the Space Station, and the SAR for EOS.
Remote sensing and urban public health
NASA Technical Reports Server (NTRS)
Rush, M.; Vernon, S.
1975-01-01
The applicability of remote sensing in the form of aerial photography to urban public health problems is examined. Environmental characteristics are analyzed to determine if health differences among areas could be predicted from the visual expression of remote sensing data. The analysis is carried out on a socioeconomic cross-sectional sample of census block groups. Six morbidity and mortality rates are the independent variables while environmental measures from aerial photographs and from the census constitute the two independent variable sets. It is found that environmental data collected by remote sensing are as good as census data in evaluating rates of health outcomes.
Hyperspectral remote sensing for terrestrial applications
Thenkabail, Prasad S.; Teluguntla, Pardhasaradhi G.; Murali Krishna Gumma,; Venkateswarlu Dheeravath,
2015-01-01
Remote sensing data are considered hyperspectral when the data are gathered from numerous wavebands, contiguously over an entire range of the spectrum (e.g., 400–2500 nm). Goetz (1992) defines hyperspectral remote sensing as “The acquisition of images in hundreds of registered, contiguous spectral bands such that for each picture element of an image it is possible to derive a complete reflectance spectrum.” However, Jensen (2004) defines hyperspectral remote sensing as “The simultaneous acquisition of images in many relatively narrow, contiguous and/or non contiguous spectral bands throughout the ultraviolet, visible, and infrared portions of the electromagnetic spectrum.
Laboratory requirements for in-situ and remote sensing of suspended material
NASA Technical Reports Server (NTRS)
Kuo, C. Y.; Cheng, R. Y. K.
1976-01-01
Recommendations for laboratory and in-situ measurements required for remote sensing of suspended material are presented. This study investigates the properties of the suspended materials, factors influencing the upwelling radiance, and the various types of remote sensing techniques. Calibration and correlation procedures are given to obtain the accuracy necessary to quantify the suspended materials by remote sensing. In addition, the report presents a survey of the national need for sediment data, the agencies that deal with and require the data of suspended sediment, and a summary of some recent findings of sediment measurements.
Prediction of health levels by remote sensing
NASA Technical Reports Server (NTRS)
Rush, M.; Vernon, S.
1975-01-01
Measures of the environment derived from remote sensing were compared to census population/housing measures in their ability to discriminate among health status areas in two urban communities. Three hypotheses were developed to explore the relationships between environmental and health data. Univariate and multiple step-wise linear regression analyses were performed on data from two sample areas in Houston and Galveston, Texas. Environmental data gathered by remote sensing were found to equal or surpass census data in predicting rates of health outcomes. Remote sensing offers the advantages of data collection for any chosen area or time interval, flexibilities not allowed by the decennial census.
NASA Technical Reports Server (NTRS)
Piepmeier, Jeffrey R.; Vega, Manuel; Fritts, Matthew; Du Toit, Cornelis; Knuble, Joseph; Lin, Yao-Cheng; Nold, Benjamin; Garrison, James
2017-01-01
Low frequency observations are desired for soil moisture and biomass remote sensing. Long wavelengths are needed to penetrate vegetation and Earths land surface. In addition to the technical challenges of developing Earth observing spaceflight instruments operating at low frequencies, the radio frequency spectrum allocated to remote sensing is limited. Signal-of-opportunity remote sensing offers the chance to use existing signals exploiting their allocated spectrum to make Earth science measurements. We have made observations of the radio frequency environment around 240-270 MHz and discuss properties of desired and undesired signals.
An international organization for remote sensing
NASA Technical Reports Server (NTRS)
Helm, Neil R.; Edelson, Burton I.
1991-01-01
A recommendation is presented for the formation of a new commercially oriented international organization to acquire or develop, coordinate or manage, the space and ground segments for a global operational satellite system to furnish the basic data for remote sensing and meteorological, land, and sea resource applications. The growing numbers of remote sensing programs are examined and possible ways of reducing redundant efforts and improving the coordination and distribution of these global efforts are discussed. This proposed remote sensing organization could play an important role in international cooperation and the distribution of scientific, commercial, and public good data.
NASA Technical Reports Server (NTRS)
Miller, L. D.; Tom, C.; Nualchawee, K.
1977-01-01
A tropical forest area of Northern Thailand provided a test case of the application of the approach in more natural surroundings. Remote sensing imagery subjected to proper computer analysis has been shown to be a very useful means of collecting spatial data for the science of hydrology. Remote sensing products provide direct input to hydrologic models and practical data bases for planning large and small-scale hydrologic developments. Combining the available remote sensing imagery together with available map information in the landscape model provides a basis for substantial improvements in these applications.
NDSI products system based on Hadoop platform
NASA Astrophysics Data System (ADS)
Zhou, Yan; Jiang, He; Yang, Xiaoxia; Geng, Erhui
2015-12-01
Snow is solid state of water resources on earth, and plays an important role in human life. Satellite remote sensing is significant in snow extraction with the advantages of cyclical, macro, comprehensiveness, objectivity, timeliness. With the continuous development of remote sensing technology, remote sensing data access to the trend of multiple platforms, multiple sensors and multiple perspectives. At the same time, in view of the remote sensing data of compute-intensive applications demand increase gradually. However, current the producing system of remote sensing products is in a serial mode, and this kind of production system is used for professional remote sensing researchers mostly, and production systems achieving automatic or semi-automatic production are relatively less. Facing massive remote sensing data, the traditional serial mode producing system with its low efficiency has been difficult to meet the requirements of mass data timely and efficient processing. In order to effectively improve the production efficiency of NDSI products, meet the demand of large-scale remote sensing data processed timely and efficiently, this paper build NDSI products production system based on Hadoop platform, and the system mainly includes the remote sensing image management module, NDSI production module, and system service module. Main research contents and results including: (1)The remote sensing image management module: includes image import and image metadata management two parts. Import mass basis IRS images and NDSI product images (the system performing the production task output) into HDFS file system; At the same time, read the corresponding orbit ranks number, maximum/minimum longitude and latitude, product date, HDFS storage path, Hadoop task ID (NDSI products), and other metadata information, and then create thumbnails, and unique ID number for each record distribution, import it into base/product image metadata database. (2)NDSI production module: includes the index calculation, production tasks submission and monitoring two parts. Read HDF images related to production task in the form of a byte stream, and use Beam library to parse image byte stream to the form of Product; Use MapReduce distributed framework to perform production tasks, at the same time monitoring task status; When the production task complete, calls remote sensing image management module to store NDSI products. (3)System service module: includes both image search and DNSI products download. To image metadata attributes described in JSON format, return to the image sequence ID existing in the HDFS file system; For the given MapReduce task ID, package several task output NDSI products into ZIP format file, and return to the download link (4)System evaluation: download massive remote sensing data and use the system to process it to get the NDSI products testing the performance, and the result shows that the system has high extendibility, strong fault tolerance, fast production speed, and the image processing results with high accuracy.
Geologic Mapping Results for Ceres from NASA's Dawn Mission
NASA Astrophysics Data System (ADS)
Williams, D. A.; Mest, S. C.; Buczkowski, D.; Scully, J. E. C.; Raymond, C. A.; Russell, C. T.
2017-12-01
NASA's Dawn Mission included a geologic mapping campaign during its nominal mission at dwarf planet Ceres, including production of a global geologic map and a series of 15 quadrangle maps to determine the variety of process-related geologic materials and the geologic history of Ceres. Our mapping demonstrates that all major planetary geologic processes (impact cratering, volcanism, tectonism, and gradation (weathering-erosion-deposition)) have occurred on Ceres. Ceres crust, composed of altered and NH3-bearing silicates, carbonates, salts and 30-40% water ice, preserves impact craters and all sizes and degradation states, and may represent the remains of the bottom of an ancient ocean. Volcanism is manifested by cryovolcanic domes, such as Ahuna Mons and Cerealia Facula, and by explosive cryovolcanic plume deposits such as the Vinalia Faculae. Tectonism is represented by several catenae extending from Ceres impact basins Urvara and Yalode, terracing in many larger craters, and many localized fractures around smaller craters. Gradation is manifested in a variety of flow-like features caused by mass wasting (landslides), ground ice flows, as well as impact ejecta lobes and melts. We have constructed a chronostratigraphy and geologic timescale for Ceres that is centered around major impact events. Ceres geologic periods include Pre-Kerwanan, Kerwanan, Yalodean/Urvaran, and Azaccan (the time of rayed craters, similar to the lunar Copernican). The presence of geologically young cryovolcanic deposits on Ceres surface suggests that there could be warm melt pockets within Ceres shallow crust and the dwarf planet remain geologically active.
Geostationary Enhanced Temporal Interpolation for CERES Flux Products
NASA Technical Reports Server (NTRS)
Doelling, David R.; Loeb, Norman G.; Keyes, Dennis F.; Nordeen, Michele L.; Morstad, Daniel; Nguyen, Cathy; Wielicki, Bruce A.; Young, David F.; Sun, Moguo
2013-01-01
The Clouds and the Earth's Radiant Energy System (CERES) instruments on board the Terra and Aqua spacecraft continue to provide an unprecedented global climate record of the earth's top-of-atmosphere (TOA) energy budget since March 2000. A critical step in determining accurate daily averaged flux involves estimating the flux between CERES Terra or Aqua overpass times. CERES employs the CERES-only (CO) and the CERES geostationary (CG) temporal interpolation methods. The CO method assumes that the cloud properties at the time of the CERES observation remain constant and that it only accounts for changes in albedo with solar zenith angle and diurnal land heating, by assuming a shape for unresolved changes in the diurnal cycle. The CG method enhances the CERES data by explicitly accounting for changes in cloud and radiation between CERES observation times using 3-hourly imager data from five geostationary (GEO) satellites. To maintain calibration traceability, GEO radiances are calibrated against Moderate Resolution Imaging Spectroradiometer (MODIS) and the derived GEO fluxes are normalized to the CERES measurements. While the regional (1 deg latitude x 1 deg longitude) monthly-mean difference between the CG and CO methods can exceed 25 W m(sub -2) over marine stratus and land convection, these regional biases nearly cancel in the global mean. The regional monthly CG shortwave (SW) and longwave (LW) flux uncertainty is reduced by 20%, whereas the daily uncertainty is reduced by 50% and 20%, respectively, over the CO method, based on comparisons with 15-min Geostationary Earth Radiation Budget (GERB) data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, B; Dong, X; Xie, S
2012-05-18
To support the LLNL ARM infrastructure team Climate Modeling Best Estimate (CMBE) data development, the University of North Dakota (UND)'s group will provide the LLNL team the NASA CERES and ISCCP satellite retrieved cloud and radiative properties for the periods when they are available over the ARM permanent research sites. The current available datasets, to date, are as follows: the CERES/TERRA during 200003-200812; the CERES/AQUA during 200207-200712; and the ISCCP during 199601-200806. The detailed parameters list below: (1) CERES Shortwave radiative fluxes (net and downwelling); (2) CERES Longwave radiative fluxes (upwelling) - (items 1 & 2 include both all-sky andmore » clear-sky fluxes); (3) CERES Layered clouds (total, high, middle, and low); (4) CERES Cloud thickness; (5) CERES Effective cloud height; (6) CERES cloud microphysical/optical properties; (7) ISCCP optical depth cloud top pressure matrix; (8) ISCCP derived cloud types (r.g., cirrus, stratus, etc.); and (9) ISCCP infrared derived cloud top pressures. (10) The UND group shall apply necessary quality checks to the original CERES and ISCCP data to remove suspicious data points. The temporal resolution for CERES data should be all available satellite overpasses over the ARM sites; for ISCCP data, it should be 3-hourly. The spatial resolution is the closest satellite field of view observations to the ARM surface sites. All the provided satellite data should be in a format that is consistent with the current ARM CMBE dataset so that the satellite data can be easily merged into the CMBE dataset.« less
ERIC Educational Resources Information Center
Bosler, Ulrich
Knowledge of the environment has grown to such an extent that information technology (IT) is essential to make sense of the available data. An example of this is remote sensing by satellite. In recent years this field has grown in importance and remote sensing is used for a range of uses including the automatic survey of wheat yields in North…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamada, Yuki; Rollins, Katherine E.
2016-11-01
Monitoring environmental impacts over large, remote desert regions for long periods of time can be very costly. Remote sensing technologies present a promising monitoring tool because they entail the collection of spatially contiguous data, automated processing, and streamlined data analysis. This report provides a summary of remote sensing products and refinement of remote sensing data interpretation methodologies that were generated as part of the U.S. Department of the Interior Bureau of Land Management Solar Energy Program. In March 2015, a team of researchers from Argonne National Laboratory (Argonne) collected field data of vegetation and surface types from more than 5,000more » survey points within the eastern part of the Riverside East Solar Energy Zone (SEZ). Using the field data, remote sensing products that were generated in 2014 using very high spatial resolution (VHSR; 15 cm) multispectral aerial images were validated in order to evaluate potential refinements to the previous methodologies to improve the information extraction accuracy.« less
Accurate estimation of motion blur parameters in noisy remote sensing image
NASA Astrophysics Data System (ADS)
Shi, Xueyan; Wang, Lin; Shao, Xiaopeng; Wang, Huilin; Tao, Zhong
2015-05-01
The relative motion between remote sensing satellite sensor and objects is one of the most common reasons for remote sensing image degradation. It seriously weakens image data interpretation and information extraction. In practice, point spread function (PSF) should be estimated firstly for image restoration. Identifying motion blur direction and length accurately is very crucial for PSF and restoring image with precision. In general, the regular light-and-dark stripes in the spectrum can be employed to obtain the parameters by using Radon transform. However, serious noise existing in actual remote sensing images often causes the stripes unobvious. The parameters would be difficult to calculate and the error of the result relatively big. In this paper, an improved motion blur parameter identification method to noisy remote sensing image is proposed to solve this problem. The spectrum characteristic of noisy remote sensing image is analyzed firstly. An interactive image segmentation method based on graph theory called GrabCut is adopted to effectively extract the edge of the light center in the spectrum. Motion blur direction is estimated by applying Radon transform on the segmentation result. In order to reduce random error, a method based on whole column statistics is used during calculating blur length. Finally, Lucy-Richardson algorithm is applied to restore the remote sensing images of the moon after estimating blur parameters. The experimental results verify the effectiveness and robustness of our algorithm.
NASA Technical Reports Server (NTRS)
Brooks, Colin; Bourgeau-Chavez, Laura; Endres, Sarah; Battaglia, Michael; Shuchman, Robert
2015-01-01
Assist with the evaluation and measuring of wetlands hydroperiod at the Plum Brook Station using multi-source remote sensing data as part of a larger effort on projecting climate change-related impacts on the station's wetland ecosystems. MTRI expanded on the multi-source remote sensing capabilities to help estimate and measure hydroperiod and the relative soil moisture of wetlands at NASA's Plum Brook Station. Multi-source remote sensing capabilities are useful in estimating and measuring hydroperiod and relative soil moisture of wetlands. This is important as a changing regional climate has several potential risks for wetland ecosystem function. The year two analysis built on the first year of the project by acquiring and analyzing remote sensing data for additional dates and types of imagery, combined with focused field work. Five deliverables were planned and completed: (1) Show the relative length of hydroperiod using available remote sensing datasets, (2) Date linked table of wetlands extent over time for all feasible non-forested wetlands, (3) Utilize LIDAR data to measure topographic height above sea level of all wetlands, wetland to catchment area radio, slope of wetlands, and other useful variables (4), A demonstration of how analyzed results from multiple remote sensing data sources can help with wetlands vulnerability assessment; and (5) A MTRI style report summarizing year 2 results.
Remote Sensing of Ecosystem Health: Opportunities, Challenges, and Future Perspectives
Li, Zhaoqin; Xu, Dandan; Guo, Xulin
2014-01-01
Maintaining a healthy ecosystem is essential for maximizing sustainable ecological services of the best quality to human beings. Ecological and conservation research has provided a strong scientific background on identifying ecological health indicators and correspondingly making effective conservation plans. At the same time, ecologists have asserted a strong need for spatially explicit and temporally effective ecosystem health assessments based on remote sensing data. Currently, remote sensing of ecosystem health is only based on one ecosystem attribute: vigor, organization, or resilience. However, an effective ecosystem health assessment should be a comprehensive and dynamic measurement of the three attributes. This paper reviews opportunities of remote sensing, including optical, radar, and LiDAR, for directly estimating indicators of the three ecosystem attributes, discusses the main challenges to develop a remote sensing-based spatially-explicit comprehensive ecosystem health system, and provides some future perspectives. The main challenges to develop a remote sensing-based spatially-explicit comprehensive ecosystem health system are: (1) scale issue; (2) transportability issue; (3) data availability; and (4) uncertainties in health indicators estimated from remote sensing data. However, the Radarsat-2 constellation, upcoming new optical sensors on Worldview-3 and Sentinel-2 satellites, and improved technologies for the acquisition and processing of hyperspectral, multi-angle optical, radar, and LiDAR data and multi-sensoral data fusion may partly address the current challenges. PMID:25386759
Coastal High-resolution Observations and Remote Sensing of Ecosystems (C-HORSE)
NASA Technical Reports Server (NTRS)
Guild, Liane
2016-01-01
Coastal benthic marine ecosystems, such as coral reefs, seagrass beds, and kelp forests are highly productive as well as ecologically and commercially important resources. These systems are vulnerable to degraded water quality due to coastal development, terrestrial run-off, and harmful algal blooms. Measurements of these features are important for understanding linkages with land-based sources of pollution and impacts to coastal ecosystems. Challenges for accurate remote sensing of coastal benthic (shallow water) ecosystems and water quality are complicated by atmospheric scattering/absorption (approximately 80+% of the signal), sun glint from the sea surface, and water column scattering (e.g., turbidity). Further, sensor challenges related to signal to noise (SNR) over optically dark targets as well as insufficient radiometric calibration thwart the value of coastal remotely-sensed data. Atmospheric correction of satellite and airborne remotely-sensed radiance data is crucial for deriving accurate water-leaving radiance in coastal waters. C-HORSE seeks to optimize coastal remote sensing measurements by using a novel airborne instrument suite that will bridge calibration, validation, and research capabilities of bio-optical measurements from the sea to the high altitude remote sensing platform. The primary goal of C-HORSE is to facilitate enhanced optical observations of coastal ecosystems using state of the art portable microradiometers with 19 targeted spectral channels and flight planning to optimize measurements further supporting current and future remote sensing missions.
WinASEAN for remote sensing data analysis
NASA Astrophysics Data System (ADS)
Duong, Nguyen Dinh; Takeuchi, Shoji
The image analysis system ASEAN (Advanced System for Environmental ANalysis with Remote Sensing Data) was designed and programmed by a software development group, ImaSOFr, Department of Remote Sensing Technology and GIS, Institute for Geography, National Centre for Natural Science and Technology of Vietnam under technical cooperation with the Remote Sensing Technology Centre of Japan and financial support from the National Space Development Agency of Japan. ASEAN has been in continuous development since 1989, with different versions ranging from the simplest one for MS-DOS with standard VGA 320×200×256 colours, through versions supporting SpeedStar 1.0 and SpeedStar PRO 2.0 true colour graphics cards, up to the latest version named WinASEAN, which is designed for the Windows 3.1 operating system. The most remarkable feature of WinASEAN is the use of algorithms that speed up the image analysis process, even on PC platforms. Today WinASEAN is continuously improved in cooperation with NASDA (National Space Development Agency of Japan), RESTEC (Remote Sensing Technology Center of Japan) and released as public domain software for training, research and education through the Regional Remote Sensing Seminar on Tropical Eco-system Management which is organised by NASDA and ESCAR In this paper, the authors describe the functionality of WinASEAN, some of the relevant analysis algorithms, and discuss its possibilities of computer-assisted teaching and training of remote sensing.
Remote sensing terminology: past experience and recent needs
NASA Astrophysics Data System (ADS)
Kancheva, Rumiana
2013-10-01
Terminology is a key issue for a better understanding among people using various languages. Terminology accuracy is essential during all phases of international cooperation. It is crucial to keep up with the latest quantitative and qualitative developments and novelties of the terminology in advanced technology fields such as aerospace science and industry. This is especially true in remote sensing and geoinformatics which develop rapidly and have wide and ever extending applications in various domains of human activity. The importance of the correct use of remote sensing terms refers not only to people working in this field but also to experts in many disciplines who handle remote sensing data and information products. The paper is devoted to terminology issues that refer to all aspects of remote sensing research and application areas. The attention is drawn on the recent needs and peculiarities of compiling specialized dictionaries in the subject area of remote sensing. Details are presented about the work in progress on the preparation of an English-Bulgarian dictionary of remote sensing terms focusing on Earth observations and geoinformation science. Our belief is that the elaboration of bilingual and multilingual dictionaries and glossaries in this spreading, most technically advanced and promising field of human expertise is of great practical importance. Any interest in cooperation and initiating of suchlike collaborative multilingual projects is welcome and highly appreciated.
Aerospace remote sensing of the coastal zone for water quality and biotic productivity applications
NASA Technical Reports Server (NTRS)
Pritchard, E. B.; Harriss, R. C.
1981-01-01
Remote sensing can provide the wide area synoptic coverage of surface waters which is required for studies of such phenomena as river plume mixing, phytoplankton dynamics, and pollutant transport and fate, but which is not obtainable by conventional oceanographic techniques. The application of several remote sensors (aircraftborne and spacecraftborne multispectral scanners, passive microwave radiometers, and active laser systems) to coastal zone research is discussed. Current measurement capabilities (particulates, chlorophyll a, temperature, salinity, ocean dumped materials, other pollutants, and surface winds and roughness) are defined and the results of recent remote sensing experiments conducted in the North Atlantic coastal zone are presented. The future development of remote sensing must rely on an integrated laboratory research program in optical physics. Recent results indicate the potential for separation of particulates into subsets by remote sensors.
Mississippi Sound Remote Sensing Study
NASA Technical Reports Server (NTRS)
Atwell, B. H.
1973-01-01
The Mississippi Sound Remote Sensing Study was initiated as part of the research program of the NASA Earth Resources Laboratory. The objective of this study is development of remote sensing techniques to study near-shore marine waters. Included within this general objective are the following: (1) evaluate existing techniques and instruments used for remote measurement of parameters of interest within these waters; (2) develop methods for interpretation of state-of-the-art remote sensing data which are most meaningful to an understanding of processes taking place within near-shore waters; (3) define hardware development requirements and/or system specifications; (4) develop a system combining data from remote and surface measurements which will most efficiently assess conditions in near-shore waters; (5) conduct projects in coordination with appropriate operating agencies to demonstrate applicability of this research to environmental and economic problems.
ERIC Educational Resources Information Center
Maxwell, Eugene L.
Presented is a portion of a research project which developed materials for teaching remote sensing of natural resources on an interdisciplinary basis at the graduate level. This volume contains notes developed for a course in active remote sensing. It is concerned with those methods or systems which generate the electromagnetic energy…
Potential benefits of remote sensing: Theoretical framework and empirical estimate
NASA Technical Reports Server (NTRS)
Eisgruber, L. M.
1972-01-01
A theoretical framwork is outlined for estimating social returns from research and application of remote sensing. The approximate dollar magnitude is given of a particular application of remote sensing, namely estimates of corn production, soybeans, and wheat. Finally, some comments are made on the limitations of this procedure and on the implications of results.
Remote Sensing for Tropical Forest Assessment
AJR Gillespie
1994-01-01
The purpose of this workshop was to allow remote sensing experts from Latin America, the U.S.A., and FAO to discuss state-of-the-art methodology in remote sensing of forest environments, and to develop plans on how to better incorporate this technology into FAO and national forest inventory efforts. The workshop included numerous presentations of ongoing activities, as...
NASA Astrophysics Data System (ADS)
Gordon, M. K.; Showalter, M. R.; Ballard, L.; Tiscareno, M.; French, R. S.; Olson, D.
2017-06-01
The PDS RMS Node hosts OPUS - an accurate, comprehensive search tool for spacecraft remote sensing observations. OPUS supports Cassini: CIRS, ISS, UVIS, VIMS; New Horizons: LORRI, MVIC; Galileo SSI; Voyager ISS; and Hubble: ACS, STIS, WFC3, WFPC2.
Remote Sensing Data Visualization, Fusion and Analysis via Giovanni
NASA Technical Reports Server (NTRS)
Leptoukh, G.; Zubko, V.; Gopalan, A.; Khayat, M.
2007-01-01
We describe Giovanni, the NASA Goddard developed online visualization and analysis tool that allows users explore various phenomena without learning remote sensing data formats and downloading voluminous data. Using MODIS aerosol data as an example, we formulate an approach to the data fusion for Giovanni to further enrich online multi-sensor remote sensing data comparison and analysis.
NASA Technical Reports Server (NTRS)
Mallon, H. J.; Howard, J. Y.; Karch, K. M.
1971-01-01
A comprehensive inventory of a series of remote sensing applications for a variety of regional planning programs in metropolitan Washington was undertaken. Examples of application, methods for data utilization, and corresponding photographic illustrations are provided illustrating how remote sensing would prove particularly useful as a unique and/or supplemental data source.
Remote sensing of wetlands, marshes, and shorelines in Michigan including St. John's Marsh
NASA Technical Reports Server (NTRS)
Lowe, D. S.
1976-01-01
Remote sensing data are used to show the strategic relationship of the endangered marsh to population centers of SE Michigan. The potential ecological consequences and the impact of past development and changing lake levels are discussed. Applications of remote sensing are presented showing its usefulness for preparing statewide infrared wetland and forest mapping.
N. E. Zimmermann; T. C. Edwards; G. G. Moisen; T. S. Frescino; J. A. Blackard
2007-01-01
Compared to bioclimatic variables, remote sensing predictors are rarely used for predictive species modelling. When used, the predictors represent typically habitat classifications or filters rather than gradual spectral, surface or biophysical properties. Consequently, the full potential of remotely sensed predictors for modelling the spatial distribution of species...
Remote sensing - A new view for public health
NASA Technical Reports Server (NTRS)
Morrison, D. R.; Barnes, C. M.; Fuller, C. E.
1973-01-01
It is shown that the technology of remote sensing can be of great importance to the field of public health. This possibility is based on the deepened understanding of the biologies and ecologies of the vector/organism/host interelationships of arthropod-, soil-, and water-borne diseases to result from the information that remote sensing can provide.
A systematic framework for Monte Carlo simulation of remote sensing errors map in carbon assessments
S. Healey; P. Patterson; S. Urbanski
2014-01-01
Remotely sensed observations can provide unique perspective on how management and natural disturbance affect carbon stocks in forests. However, integration of these observations into formal decision support will rely upon improved uncertainty accounting. Monte Carlo (MC) simulations offer a practical, empirical method of accounting for potential remote sensing errors...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-25
... johnstonii will be implemented for 9 years, and will include habitat evaluation using remote sensing of 20 populations and on-site monitoring of 10 populations. Habitat assessments with remote sensing will occur about... site visit will be triggered from remote sensing analysis when a 30 percent loss of habitat is detected...
Multistage remote sensing: toward an annual national inventory
Raymond L. Czaplewski
1999-01-01
Remote sensing can improve efficiency of statistical information. Landsat data can identify and map a few broad categories of forest cover and land use. However, more-detailed information requires a sample of higher-resolution imagery, which costs less than field data but considerably more than Landsat data. A national remote sensing program would be a major...
Remote sensing fire and fuels in southern California
Philip Riggan; Lynn Wolden; Bob Tissell; David Weise; J. Coen
2011-01-01
Airborne remote sensing at infrared wavelengths has the potential to quantify large-fire properties related to energy release or intensity, residence time, fuel-consumption rate, rate of spread, and soil heating. Remote sensing at a high temporal rate can track fire-line outbreaks and acceleration and spotting ahead of a fire front. Yet infrared imagers and imaging...
Monitoring landscape level processes using remote sensing of large plots
Raymond L. Czaplewski
1991-01-01
Global and regional assessaents require timely information on landscape level status (e.g., areal extent of different ecosystems) and processes (e.g., changes in land use and land cover). To measure and understand these processes at the regional level, and model their impacts, remote sensing is often necessary. However, processing massive volumes of remotely sensing...
Offshore Wind Resource Characterization | Wind | NREL
identify critical data needed. Remote Sensing and Modeling Photo of the SeaZephIR Prototype at sea. 2009 techniques such as remote sensing and modeling to provide data on design conditions. Research includes comparing the data provided by remote sensing devices and models to data collected by traditional methods
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-09
... toward understanding the earth by means of remote sensing. The award is sponsored jointly by the... program for civil remote sensing of the earth from space. The purpose of the award is to recognize individuals or groups working in the field of remote sensing of the earth. National and international...
Sebastian Martinuzzi; Lee A. Vierling; William A. Gould; Kerri T. Vierling; Andrew T. Hudak
2009-01-01
Remote sensing provides critical information for broad scale assessments of wildlife habitat distribution and conservation. However, such efforts have been typically unable to incorporate information about vegetation structure, a variable important for explaining the distribution of many wildlife species. We evaluated the consequences of incorporating remotely sensed...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-16
... groups that make outstanding contributions toward understanding the earth by means of remote sensing. The... motivating force behind the establishment of a program for civil remote sensing of the earth from space. The purpose of the award is to recognize individuals or groups working in the field of remote sensing of the...
Using a remote sensing-based, percent tree cover map to enhance forest inventory estimation
Ronald E. McRoberts; Greg C. Liknes; Grant M. Domke
2014-01-01
For most national forest inventories, the variables of primary interest to users are forest area and growing stock volume. The precision of estimates of parameters related to these variables can be increased using remotely sensed auxiliary variables, often in combination with stratified estimators. However, acquisition and processing of large amounts of remotely sensed...
NASA Technical Reports Server (NTRS)
Estes, J. E.; Jensen, J. R.; Simonett, D. S.
1977-01-01
The use of remotely sensed data by cartographers and other physical geographers is reviewed. The current status of remote sensing in the academic, governmental, and private sector is assessed, as well as its capability for providing information within the context of the explanatory forms used by geographers.
NASA Astrophysics Data System (ADS)
Araya, Mauricio F.
The existence of SELPER (Sociedad de Especialistas Latinoamericanos en Percepción Remota / Society of Latinamerican Specialists on Remote Sensing) has filled a great gap among latinamerican countries. SELPER was formed in 1980 and several important activities, having international support, have been performed and are planned in the near future. SELPER consolidation will help develop several important regional cooperation programs and the next years look very promisory in this sense. Different steps are planned but the most important is related with the formation of such a Latin American Council on Remote Sensing, having official support from different countries of the region; SELPER can help this important objective. Main advances and needs are summarized in this paper and it is possible to conclude that SELPER will be important for regional and inter-regional scientific and technical cooperation on remote sensing.
Microwave remote sensing from space for earth resource surveys
NASA Technical Reports Server (NTRS)
1977-01-01
The concepts of radar remote sensing and microwave radiometry are discussed and their utility in earth resource sensing is examined. The direct relationship between the character of the remotely sensed data and the level of decision making for which the data are appropriate is considered. Applications of active and a passive microwave sensing covered include hydrology, land use, mapping, vegetation classification, environmental monitoring, coastal features and processes, geology, and ice and snow. Approved and proposed microwave sensors are described and the use of space shuttle as a development platform is evaluated.
Use of remote sensing for land use policy formulation
NASA Technical Reports Server (NTRS)
1981-01-01
Progress in studies for using remotely sensed data for assessing crop stress and in crop estimation is reported. The estimation of acreage of small forested areas in the southern lower peninsula of Michigan using LANDSAT data is evaluated. Damage to small grains caused by the cereal leaf beetle was assessed through remote sensing. The remote detection of X-disease of peach and cherry trees and of fire blight of pear and apple trees was investigated. The reliability of improving on standard methods of crop production estimation was demonstrated. Areas of virus infestation in vineyards and blueberry fields in western and southwestern Michigan were identified. The installation and systems integration of a microcomputer system for processing and making available remotely sensed data are described.
Clouds and the Earth's Radiant Energy System (CERES)
NASA Technical Reports Server (NTRS)
Carman, Stephen L.; Cooper, John E.; Miller, James; Harrison, Edwin F.; Barkstrom, Bruce R.
1992-01-01
The CERES (Clouds and the Earth's Radiant Energy System) experiment will play a major role in NASA's multi-platform Earth Observing System (EOS) program to observe and study the global climate. The CERES instruments will provide EOS scientists with a consistent data base of accurately known fields of radiation and of clouds. CERES will investigate the important question of cloud forcing and its influence on the radiative energy flow through the Earth's atmosphere. The CERES instrument is an improved version of the ERBE (Earth Radiation Budget Experiment) broadband scanning radiometer flown by NASA from 1984 through 1989. This paper describes the science of CERES, presents an overview of the instrument preliminary design, and outlines the issues related to spacecraft pointing and attitude control.
Zhang, Jia-Hua; Li, Xin; Yao, Feng-Mei; Li, Xian-Hua
2009-08-01
Land surface temperature (LST) is an important parameter in the study on the exchange of substance and energy between land surface and air for the land surface physics process at regional and global scales. Many applications of satellites remotely sensed data must provide exact and quantificational LST, such as drought, high temperature, forest fire, earthquake, hydrology and the vegetation monitor, and the models of global circulation and regional climate also need LST as input parameter. Therefore, the retrieval of LST using remote sensing technology becomes one of the key tasks in quantificational remote sensing study. Normally, in the spectrum bands, the thermal infrared (TIR, 3-15 microm) and microwave bands (1 mm-1 m) are important for retrieval of the LST. In the present paper, firstly, several methods for estimating the LST on the basis of thermal infrared (TIR) remote sensing were synthetically reviewed, i. e., the LST measured with an ground-base infrared thermometer, the LST retrieval from mono-window algorithm (MWA), single-channel algorithm (SCA), split-window techniques (SWT) and multi-channels algorithm(MCA), single-channel & multi-angle algorithm and multi-channels algorithm & multi-angle algorithm, and retrieval method of land surface component temperature using thermal infrared remotely sensed satellite observation. Secondly, the study status of land surface emissivity (epsilon) was presented. Thirdly, in order to retrieve LST for all weather conditions, microwave remotely sensed data, instead of thermal infrared data, have been developed recently, and the LST retrieval method from passive microwave remotely sensed data was also introduced. Finally, the main merits and shortcomings of different kinds of LST retrieval methods were discussed, respectively.
Geological remote sensing signatures of terrestrial impact craters
NASA Technical Reports Server (NTRS)
Garvin, J. B.; Schnetzler, C.; Grieve, R. A. F.
1988-01-01
Geological remote sensing techniques can be used to investigate structural, depositional, and shock metamorphic effects associated with hypervelocity impact structures, some of which may be linked to global Earth system catastrophies. Although detailed laboratory and field investigations are necessary to establish conclusive evidence of an impact origin for suspected crater landforms, the synoptic perspective provided by various remote sensing systems can often serve as a pathfinder to key deposits which can then be targetted for intensive field study. In addition, remote sensing imagery can be used as a tool in the search for impact and other catastrophic explosion landforms on the basis of localized disruption and anomaly patterns. In order to reconstruct original dimensions of large, complex impact features in isolated, inaccessible regions, remote sensing imagery can be used to make preliminary estimates in the absence of field geophysical surveys. The experienced gained from two decades of planetary remote sensing of impact craters on the terrestrial planets, as well as the techniques developed for recognizing stages of degradation and initial crater morphology, can now be applied to the problem of discovering and studying eroded impact landforms on Earth. Preliminary results of remote sensing analyses of a set of terrestrial impact features in various states of degradation, geologic settings, and for a broad range of diameters and hence energies of formation are summarized. The intention is to develop a database of remote sensing signatures for catastrophic impact landforms which can then be used in EOS-era global surveys as the basis for locating the possibly hundreds of missing impact structures. In addition, refinement of initial dimensions of extremely recent structures such as Zhamanshin and Bosumtwi is an important objective in order to permit re-evaluation of global Earth system responses associated with these types of events.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wulfmeyer, Volker; Hardesty, R. Michael; Turner, David D.
A review of remote sensing technology for lower tropospheric thermodynamic (TD) profiling is presented with focus on high accuracy and high temporal-vertical resolution. The contributions of these instruments to the understanding of the Earth system are assessed with respect to radiative transfer, land surface-atmosphere feedback, convection initiation, and data assimilation. We demonstrate that for progress in weather and climate research, TD profilers are essential. These observational systems must resolve gradients of humidity and temperature in the stable or unstable atmospheric surface layer close to the ground, in the mixed layer, in the interfacial layer—usually characterized by an inversion—and the lowermore » troposphere. A thorough analysis of the current observing systems is performed revealing significant gaps that must be addressed to fulfill existing needs. We analyze whether current and future passive and active remote sensing systems can close these gaps. A methodological analysis and demonstration of measurement capabilities with respect to bias and precision is executed both for passive and active remote sensing including passive infrared and microwave spectroscopy, the global navigation satellite system, as well as water vapor and temperature Raman lidar and water vapor differential absorption lidar. Whereas passive remote sensing systems are already mature with respect to operational applications, active remote sensing systems require further engineering to become operational in networks. However, active remote sensing systems provide a smaller bias as well as higher temporal and vertical resolutions. For a suitable mesoscale network design, TD profiler system developments should be intensified and dedicated observing system simulation experiments should be performed.« less
Estimates of Leaf Relative Water Content from Optical Polarization Measurements
NASA Astrophysics Data System (ADS)
Dahlgren, R. P.; Vanderbilt, V. C.; Daughtry, C. S. T.
2017-12-01
Remotely sensing the water status of plant canopies remains a long term goal of remote sensing research. Existing approaches to remotely sensing canopy water status, such as the Crop Water Stress Index (CWSI) and the Equivalent Water Thickness (EWT), have limitations. The CWSI, based upon remotely sensing canopy radiant temperature in the thermal infrared spectral region, does not work well in humid regions, requires estimates of the vapor pressure deficit near the canopy during the remote sensing over-flight and, once stomata close, provides little information regarding the canopy water status. The EWT is based upon the physics of water-light interaction in the 900-2000nm spectral region, not plant physiology. Our goal, development of a remote sensing technique for estimating plant water status based upon measurements in the VIS/NIR spectral region, would potentially provide remote sensing access to plant dehydration physiology - to the cellular photochemistry and structural changes associated with water deficits in leaves. In this research, we used optical, crossed polarization filters to measure the VIS/NIR light reflected from the leaf interior, R, as well as the leaf transmittance, T, for 78 corn (Zea mays) and soybean (Glycine max) leaves having relative water contents (RWC) between 0.60 and 0.98. Our results show that as RWC decreases R increases while T decreases. Our results tie R and T changes in the VIS/NIR to leaf physiological changes - linking the light scattered out of the drying leaf interior to its relative water content and to changes in leaf cellular structure and pigments. Our results suggest remotely sensing the physiological water status of a single leaf - and perhaps of a plant canopy - might be possible in the future.
Gonçalves, Fabio; Treuhaft, Robert; Law, Beverly; ...
2017-01-07
Mapping and monitoring of forest carbon stocks across large areas in the tropics will necessarily rely on remote sensing approaches, which in turn depend on field estimates of biomass for calibration and validation purposes. Here, we used field plot data collected in a tropical moist forest in the central Amazon to gain a better understanding of the uncertainty associated with plot-level biomass estimates obtained specifically for the calibration of remote sensing measurements. In addition to accounting for sources of error that would be normally expected in conventional biomass estimates (e.g., measurement and allometric errors), we examined two sources of uncertaintymore » that are specific to the calibration process and should be taken into account in most remote sensing studies: the error resulting from spatial disagreement between field and remote sensing measurements (i.e., co-location error), and the error introduced when accounting for temporal differences in data acquisition. We found that the overall uncertainty in the field biomass was typically 25% for both secondary and primary forests, but ranged from 16 to 53%. Co-location and temporal errors accounted for a large fraction of the total variance (>65%) and were identified as important targets for reducing uncertainty in studies relating tropical forest biomass to remotely sensed data. Although measurement and allometric errors were relatively unimportant when considered alone, combined they accounted for roughly 30% of the total variance on average and should not be ignored. Lastly, our results suggest that a thorough understanding of the sources of error associated with field-measured plot-level biomass estimates in tropical forests is critical to determine confidence in remote sensing estimates of carbon stocks and fluxes, and to develop strategies for reducing the overall uncertainty of remote sensing approaches.« less
NASA Astrophysics Data System (ADS)
Kanwar, R.; Narayan, U.; Lakshmi, V.
2005-12-01
Remote sensing has the potential to immensely advance the science and application of hydrology as it provides multi-scale and multi-temporal measurements of several hydrologic parameters. There is a wide variety of remote sensing data sources available to a hydrologist with a myriad of data formats, access techniques, data quality issues and temporal and spatial extents. It is very important to make data availability and its usage as convenient as possible for potential users. The CUAHSI Hydrologic Information System (HIS) initiative addresses this issue of better data access and management for hydrologists with a focus on in-situ data, that is point measurements of water and energy fluxes which make up the 'more conventional' sources of hydrologic data. This paper explores various sources of remotely sensed hydrologic data available, their data formats and volumes, current modes of data acquisition by end users, metadata associated with data itself, and requirements from potential data models that would allow a seamless integration of remotely sensed hydrologic observations into the Hydrologic Information System. Further, a prototype hydrologic observatory (HO) for the Neuse River Basin is developed using surface temperature, vegetation indices and soil moisture estimates available from remote sensing. The prototype (HO) uses the CUAHSI digital library system (DLS) on the back (server) end. On the front (client) end, a rich visual environment has been developed in order to provide better decision making tools in order to make an optimal choice in the selection of remote sensing data for a particular application. An easy point and click interface to the remote sensing data is also implemented for common users who are just interested in location based query of hydrologic variable values.
NASA Astrophysics Data System (ADS)
Zhao, Shaoshuai; Ni, Chen; Cao, Jing; Li, Zhengqiang; Chen, Xingfeng; Ma, Yan; Yang, Leiku; Hou, Weizhen; Qie, Lili; Ge, Bangyu; Liu, Li; Xing, Jin
2018-03-01
The remote sensing image is usually polluted by atmosphere components especially like aerosol particles. For the quantitative remote sensing applications, the radiative transfer model based atmospheric correction is used to get the reflectance with decoupling the atmosphere and surface by consuming a long computational time. The parallel computing is a solution method for the temporal acceleration. The parallel strategy which uses multi-CPU to work simultaneously is designed to do atmospheric correction for a multispectral remote sensing image. The parallel framework's flow and the main parallel body of atmospheric correction are described. Then, the multispectral remote sensing image of the Chinese Gaofen-2 satellite is used to test the acceleration efficiency. When the CPU number is increasing from 1 to 8, the computational speed is also increasing. The biggest acceleration rate is 6.5. Under the 8 CPU working mode, the whole image atmospheric correction costs 4 minutes.
NASA Astrophysics Data System (ADS)
Liu, Likun
2018-01-01
In the field of remote sensing image processing, remote sensing image segmentation is a preliminary step for later analysis of remote sensing image processing and semi-auto human interpretation, fully-automatic machine recognition and learning. Since 2000, a technique of object-oriented remote sensing image processing method and its basic thought prevails. The core of the approach is Fractal Net Evolution Approach (FNEA) multi-scale segmentation algorithm. The paper is intent on the research and improvement of the algorithm, which analyzes present segmentation algorithms and selects optimum watershed algorithm as an initialization. Meanwhile, the algorithm is modified by modifying an area parameter, and then combining area parameter with a heterogeneous parameter further. After that, several experiments is carried on to prove the modified FNEA algorithm, compared with traditional pixel-based method (FCM algorithm based on neighborhood information) and combination of FNEA and watershed, has a better segmentation result.
Using GPS Reflections for Satellite Remote Sensing
NASA Technical Reports Server (NTRS)
Mickler, David
2000-01-01
GPS signals that have reflected off of the ocean's surface have shown potential for use in oceanographic and atmospheric studies. The research described here investigates the possible deployment of a GPS reflection receiver onboard a remote sensing satellite in low Earth orbit (LEO). The coverage and resolution characteristics of this receiver are calculated and estimated. This mission analysis examines using reflected GPS signals for several remote sensing missions. These include measurement of the total electron content in the ionosphere, sea surface height, and ocean wind speed and direction. Also discussed is the potential test deployment of such a GPS receiver on the space shuttle. Constellations of satellites are proposed to provide adequate spatial and temporal resolution for the aforementioned remote sensing missions. These results provide a starting point for research into the feasibility of augmenting or replacing existing remote sensing satellites with spaceborne GPS reflection-detecting receivers.
Applying narrowband remote-sensing reflectance models to wideband data.
Lee, Zhongping
2009-06-10
Remote sensing of coastal and inland waters requires sensors to have a high spatial resolution to cover the spatial variation of biogeochemical properties in fine scales. High spatial-resolution sensors, however, are usually equipped with spectral bands that are wide in bandwidth (50 nm or wider). In this study, based on numerical simulations of hyperspectral remote-sensing reflectance of optically-deep waters, and using Landsat band specifics as an example, the impact of a wide spectral channel on remote sensing is analyzed. It is found that simple adoption of a narrowband model may result in >20% underestimation in calculated remote-sensing reflectance, and inversely may result in >20% overestimation in inverted absorption coefficients even under perfect conditions, although smaller (approximately 5%) uncertainties are found for higher absorbing waters. These results provide a cautious note, but also a justification for turbid coastal waters, on applying narrowband models to wideband data.
The U.S. Geological Survey Land Remote Sensing Program
,
2007-01-01
The fundamental goals of the U.S. Geological Survey's Land Remote Sens-ing (LRS) Program are to provide the Federal Government and the public with a primary source of remotely sensed data and applications and to be a leader in defining the future of land remote sensing, nationally and internationally. Remotely sensed data provide information that enhance the understand-ing of ecosystems and the capabilities for predicting ecosystem change. The data promote an understanding of the role of the environment and wildlife in human health issues, the requirements for disaster response, the effects of climate variability, and the availability of energy and mineral resources. Also, as land satellite systems acquire global coverage, the program coordinates a network of international receiving stations and users of the data. It is the responsibility of the program to assure that data from land imaging satellites, airborne photography, radar, and other technologies are available to the national and global science communities.