Science.gov

Sample records for cerevisiae em caldo

  1. Models for the a subunits of the Thermus thermophilus V/A-ATPase and Saccharomyces cerevisiae V-ATPase enzymes by cryo-EM and evolutionary covariance

    PubMed Central

    Schep, Daniel G.; Rubinstein, John L.

    2016-01-01

    Rotary ATPases couple ATP synthesis or hydrolysis to proton translocation across a membrane. However, understanding proton translocation has been hampered by a lack of structural information for the membrane-embedded a subunit. The V/A-ATPase from the eubacterium Thermus thermophilus is similar in structure to the eukaryotic V-ATPase but has a simpler subunit composition and functions in vivo to synthesize ATP rather than pump protons. We determined the T. thermophilus V/A-ATPase structure by cryo-EM at 6.4 Å resolution. Evolutionary covariance analysis allowed tracing of the a subunit sequence within the map, providing a complete model of the rotary ATPase. Comparing the membrane-embedded regions of the T. thermophilus V/A-ATPase and eukaryotic V-ATPase from Saccharomyces cerevisiae allowed identification of the α-helices that belong to the a subunit and revealed the existence of previously unknown subunits in the eukaryotic enzyme. Subsequent evolutionary covariance analysis enabled construction of a model of the a subunit in the S. cerevisae V-ATPase that explains numerous biochemical studies of that enzyme. Comparing the two a subunit structures determined here with a structure of the distantly related a subunit from the bovine F-type ATP synthase revealed a conserved pattern of residues, suggesting a common mechanism for proton transport in all rotary ATPases. PMID:26951669

  2. Models for the a subunits of the Thermus thermophilus V/A-ATPase and Saccharomyces cerevisiae V-ATPase enzymes by cryo-EM and evolutionary covariance.

    PubMed

    Schep, Daniel G; Zhao, Jianhua; Rubinstein, John L

    2016-03-22

    Rotary ATPases couple ATP synthesis or hydrolysis to proton translocation across a membrane. However, understanding proton translocation has been hampered by a lack of structural information for the membrane-embedded a subunit. The V/A-ATPase from the eubacterium Thermus thermophilus is similar in structure to the eukaryotic V-ATPase but has a simpler subunit composition and functions in vivo to synthesize ATP rather than pump protons. We determined the T. thermophilus V/A-ATPase structure by cryo-EM at 6.4 Å resolution. Evolutionary covariance analysis allowed tracing of the a subunit sequence within the map, providing a complete model of the rotary ATPase. Comparing the membrane-embedded regions of the T. thermophilus V/A-ATPase and eukaryotic V-ATPase from Saccharomyces cerevisiae allowed identification of the α-helices that belong to the a subunit and revealed the existence of previously unknown subunits in the eukaryotic enzyme. Subsequent evolutionary covariance analysis enabled construction of a model of the a subunit in the S. cerevisae V-ATPase that explains numerous biochemical studies of that enzyme. Comparing the two a subunit structures determined here with a structure of the distantly related a subunit from the bovine F-type ATP synthase revealed a conserved pattern of residues, suggesting a common mechanism for proton transport in all rotary ATPases.

  3. Yeast (Saccharomyces cerevisiae).

    PubMed

    Hooykaas, Paul J J; den Dulk-Ras, Amke; Bundock, Paul; Soltani, Jalal; van Attikum, Haico; van Heusden, G Paul H

    2006-01-01

    The yeast Saccharomyces cerevisiae is one of the best characterized eukaryotic organisms. This species has enabled a detailed study of the (genetic) requirements for Agrobacterium-mediated DNA transformation. For instance research with this yeast has led to the recognition that the transforming DNA molecules integrate into the eukaryotic chromosomes either by homologous recombination, which is the preferred pathway in S. cerevisiae, or by nonhomologous end-joining. Based on the protocol for Agrobacterium-mediated transformation of S. cerevisiae methodology has been developed for the transformation of many other yeast and fungal species.

  4. 21 CFR 866.5785 - Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test systems.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Anti-Saccharomyces cerevisiae (S. cerevisiae... Immunological Test Systems § 866.5785 Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test systems. (a) Identification. The Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test system is...

  5. 21 CFR 866.5785 - Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test systems.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Anti-Saccharomyces cerevisiae (S. cerevisiae... Immunological Test Systems § 866.5785 Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test systems. (a) Identification. The Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test system is...

  6. 21 CFR 866.5785 - Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test systems.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Anti-Saccharomyces cerevisiae (S. cerevisiae... Immunological Test Systems § 866.5785 Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test systems. (a) Identification. The Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test system is...

  7. 21 CFR 866.5785 - Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test systems.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Anti-Saccharomyces cerevisiae (S. cerevisiae... Immunological Test Systems § 866.5785 Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test systems. (a) Identification. The Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test system is...

  8. Saccharomyces cerevisiae Shuttle vectors.

    PubMed

    Gnügge, Robert; Rudolf, Fabian

    2017-01-10

    Yeast shuttle vectors are indispensable tools in yeast research. They enable cloning of defined DNA sequences in Escherichia coli and their direct transfer into Saccharomyces cerevisiae cells. There are three types of commonly used yeast shuttle vectors: centromeric plasmids, episomal plasmids and integrating plasmids. In this review, we discuss the different plasmid systems and their characteristic features. We focus on their segregational stability and copy number and indicate how to modify these properties. Copyright © 2017 John Wiley & Sons, Ltd.

  9. Saccharomyces cerevisiae aldolase mutants.

    PubMed Central

    Lobo, Z

    1984-01-01

    Six mutants lacking the glycolytic enzyme fructose 1,6-bisphosphate aldolase have been isolated in the yeast Saccharomyces cerevisiae by inositol starvation. The mutants grown on gluconeogenic substrates, such as glycerol or alcohol, and show growth inhibition by glucose and related sugars. The mutations are recessive, segregate as one gene in crosses, and fall in a single complementation group. All of the mutants synthesize an antigen cross-reacting to the antibody raised against yeast aldolase. The aldolase activity in various mutant alleles measured as fructose 1,6-bisphosphate cleavage is between 1 to 2% and as condensation of triose phosphates to fructose 1,6-bisphosphate is 2 to 5% that of the wild-type. The mutants accumulate fructose 1,6-bisphosphate from glucose during glycolysis and dihydroxyacetone phosphate during gluconeogenesis. This suggests that the aldolase activity is absent in vivo. PMID:6384192

  10. Metabolic Engineering of Saccharomyces cerevisiae

    PubMed Central

    Ostergaard, Simon; Olsson, Lisbeth; Nielsen, Jens

    2000-01-01

    Comprehensive knowledge regarding Saccharomyces cerevisiae has accumulated over time, and today S. cerevisiae serves as a widley used biotechnological production organism as well as a eukaryotic model system. The high transformation efficiency, in addition to the availability of the complete yeast genome sequence, has facilitated genetic manipulation of this microorganism, and new approaches are constantly being taken to metabolicially engineer this organism in order to suit specific needs. In this paper, strategies and concepts for metabolic engineering are discussed and several examples based upon selected studies involving S. cerevisiae are reviewed. The many different studies of metabolic engineering using this organism illustrate all the categories of this multidisciplinary field: extension of substrate range, improvements of producitivity and yield, elimination of byproduct formation, improvement of process performance, improvements of cellular properties, and extension of product range including heterologous protein production. PMID:10704473

  11. Pyruvate metabolism in Saccharomyces cerevisiae.

    PubMed

    Pronk, J T; Yde Steensma, H; Van Dijken, J P

    1996-12-01

    In yeasts, pyruvate is located at a major junction of assimilatory and dissimilatory reactions as well as at the branch-point between respiratory dissimilation of sugars and alcoholic fermentation. This review deals with the enzymology, physiological function and regulation of three key reactions occurring at the pyruvate branch-point in the yeast Saccharomyces cerevisiae: (i) the direct oxidative decarboxylation of pyruvate to acetyl-CoA, catalysed by the pyruvate dehydrogenase complex, (ii) decarboxylation of pyruvate to acetaldehyde, catalysed by pyruvate decarboxylase, and (iii) the anaplerotic carboxylation of pyruvate to oxaloacetate, catalysed by pyruvate carboxylase. Special attention is devoted to physiological studies on S. cerevisiae strains in which structural genes encoding these key enzymes have been inactivated by gene disruption.

  12. 21 CFR 866.5785 - Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test systems.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test systems. 866.5785 Section 866.5785 Food and Drugs FOOD AND DRUG ADMINISTRATION... techniques, antibodies to S. cerevisiae (baker's or brewer's yeast) in human serum or plasma. Detection of S...

  13. PET genes of Saccharomyces cerevisiae.

    PubMed Central

    Tzagoloff, A; Dieckmann, C L

    1990-01-01

    We describe a collection of nuclear respiratory-defective mutants (pet mutants) of Saccharomyces cerevisiae consisting of 215 complementation groups. This set of mutants probably represents a substantial fraction of the total genetic information of the nucleus required for the maintenance of functional mitochondria in S. cerevisiae. The biochemical lesions of mutants in approximately 50 complementation groups have been related to single enzymes or biosynthetic pathways, and the corresponding wild-type genes have been cloned and their structures have been determined. The genes defined by an additional 20 complementation groups were identified by allelism tests with mutants characterized in other laboratories. Mutants representative of the remaining complementation groups have been assigned to one of the following five phenotypic classes: (i) deficiency in cytochrome oxidase, (ii) deficiency in coenzyme QH2-cytochrome c reductase, (iii) deficiency in mitochondrial ATPase, (iv) absence of mitochondrial protein synthesis, and (v) normal composition of respiratory-chain complexes and of oligomycin-sensitive ATPase. In addition to the genes identified through biochemical and genetic analyses of the pet mutants, we have cataloged PET genes not matched to complementation groups in the mutant collection and other genes whose products function in the mitochondria but are not necessary for respiration. Together, this information provides an up-to-date list of the known genes coding for mitochondrial constituents and for proteins whose expression is vital for the respiratory competence of S. cerevisiae. PMID:2215420

  14. Fatal Saccharomyces Cerevisiae Aortic Graft Infection

    NASA Technical Reports Server (NTRS)

    Meyer, Michael (Technical Monitor); Smith, Davey; Metzgar, David; Wills, Christopher; Fierer, Joshua

    2002-01-01

    Saccharomyces cerevisiae is a yeast commonly used in baking and a frequent colonizer of human mucosal surfaces. It is considered relatively nonpathogenic in immunocompetent adults. We present a case of S. cerevisiae fungemia and aortic graft infection in an immunocompetent adult. This is the first reported case of S. cerevisiue fungemia where the identity of the pathogen was confirmed by rRNA sequencing.

  15. Fatal Saccharomyces Cerevisiae Aortic Graft Infection

    NASA Technical Reports Server (NTRS)

    Meyer, Michael (Technical Monitor); Smith, Davey; Metzgar, David; Wills, Christopher; Fierer, Joshua

    2002-01-01

    Saccharomyces cerevisiae is a yeast commonly used in baking and a frequent colonizer of human mucosal surfaces. It is considered relatively nonpathogenic in immunocompetent adults. We present a case of S. cerevisiae fungemia and aortic graft infection in an immunocompetent adult. This is the first reported case of S. cerevisiue fungemia where the identity of the pathogen was confirmed by rRNA sequencing.

  16. [Thermoresistance in Saccharomyces cerevisiae yeasts].

    PubMed

    Kaliuzhin, V A

    2011-01-01

    Under natural conditions, yeast Saccharomyces cerevisiae reproduce, as a rule, on the surface of solid or liquid medium. Thus, life cycle of yeast populations is substantially influenced by diurnal changes in ambient temperature. The pattern in the response of unrestricted yeast S. cerevisiae culture to changes in the temperature of cultivation is revealed experimentally. Yeast population, in the absence of environmental constraints on the functioning of cell chemosmotic bioenergetic system, demonstrates the ability of thermoresistance when the temperature of cultivation switches from the range of 12-36 degrees C to 37.5-40 degrees C. During the transient period that is associated with the temperature switching and lasts from 1 to 4 turnover cycles, yeast reproduction rate remains 1.5-2 times higher than under stationary conditions. This is due to evolutionary acquired adaptive activity of cell chemosmotic system. After the adaptive resources exhausting, yeast thermoresistance fully recovers at the temperature range of 12-36 degrees C within one generation time under conditions of both restricted and unrestricted nourishment. Adaptive significance of such thermoresistance seems obvious enough--it allows maintaining high reproduction rate in yeast when ambient temperature is reaching a brief maximum shortly after noon.

  17. Translational thermotolerance in Saccharomyces cerevisiae

    PubMed Central

    Hallberg, Elizabeth M.; Hallberg, Richard L.

    1996-01-01

    While protein synthesis is rapidly inactivated in Saccharomyces cerevisiae, cells shifted from log growth at 30°C to 43°C, a 1-h 37°C treatment given to cells just prior to the shift to 43°C partially blocks this inactivation. By contrast, such a pre-heat shock treament has no protective effect on translational inactivation at 45°C or higher. Cells allowed to approach stationary phase not only develop an enhanced thermotolerance relative to log cells but also exhibit a pronounced resistance to inactivation of protein synthesis at 43°C as well as at 45°C. We have found that this ‘translational thermotolerance’ can also be induced in S. cerevisiae by briefly treating log phase cells at 30°C with cycloheximide. Using such a procedure to induce stabilization of protein synthesis at 43°C, we have been able to show that heat shock-induced proteins are not responsible for the establishment of this protective effect. This work shows that enhanced thermotolerance can be induced in log cells even after a shift to 43°C, as long as a prior translational thermotolerance has been established. Futhermore, we show that the capacity of plateau cells to maintain translation at 43°C contributes significantly to their state of enhanced thermotolerance. PMID:9222591

  18. Chromosome Duplication in Saccharomyces cerevisiae

    PubMed Central

    Bell, Stephen P.; Labib, Karim

    2016-01-01

    The accurate and complete replication of genomic DNA is essential for all life. In eukaryotic cells, the assembly of the multi-enzyme replisomes that perform replication is divided into stages that occur at distinct phases of the cell cycle. Replicative DNA helicases are loaded around origins of DNA replication exclusively during G1 phase. The loaded helicases are then activated during S phase and associate with the replicative DNA polymerases and other accessory proteins. The function of the resulting replisomes is monitored by checkpoint proteins that protect arrested replisomes and inhibit new initiation when replication is inhibited. The replisome also coordinates nucleosome disassembly, assembly, and the establishment of sister chromatid cohesion. Finally, when two replisomes converge they are disassembled. Studies in Saccharomyces cerevisiae have led the way in our understanding of these processes. Here, we review our increasingly molecular understanding of these events and their regulation. PMID:27384026

  19. Postreplication repair in Saccharomyces cerevisiae

    SciTech Connect

    Resnick, M.A.; Boyce, J.; Cox, B.

    1981-04-01

    Postreplication events in logarithmically growing excision-defective mutants of Saccharomyces cerevisiae were examined after low doses of ultraviolet light. Pulse-labeled deoxyribonucleic acid had interruptions, and when the cells were chased, the interruptions were no longer detected. Since the loss of interruptions was not associated with an exchange of pyrimidine dimers at a detection level of 10 to 20% of the induced dimers, it was concluded that postreplication repair in excision-defective mutants does not involve molecular recombination. Pyrimidine dimers were assayed by utilizing the ultraviolet-endonuclease activity in extracts of Micrococcus luteus and newly developed alkaline sucrose gradient techniques, which yielded chromosomal-size deoxyribonucleic acid after treatment of irradiated cells.

  20. Glucose repression in Saccharomyces cerevisiae

    PubMed Central

    Kayikci, Ömur; Nielsen, Jens

    2015-01-01

    Glucose is the primary source of energy for the budding yeast Saccharomyces cerevisiae. Although yeast cells can utilize a wide range of carbon sources, presence of glucose suppresses molecular activities involved in the use of alternate carbon sources as well as it represses respiration and gluconeogenesis. This dominant effect of glucose on yeast carbon metabolism is coordinated by several signaling and metabolic interactions that mainly regulate transcriptional activity but are also effective at post-transcriptional and post-translational levels. This review describes effects of glucose repression on yeast carbon metabolism with a focus on roles of the Snf3/Rgt2 glucose-sensing pathway and Snf1 signal transduction in establishment and relief of glucose repression. PMID:26205245

  1. Nucleosome Positioning in Saccharomyces cerevisiae

    PubMed Central

    Jansen, An; Verstrepen, Kevin J.

    2011-01-01

    Summary: The DNA of eukaryotic cells is spooled around large histone protein complexes, forming nucleosomes that make up the basis for a high-order packaging structure called chromatin. Compared to naked DNA, nucleosomal DNA is less accessible to regulatory proteins and regulatory processes. The exact positions of nucleosomes therefore influence several cellular processes, including gene expression, chromosome segregation, recombination, replication, and DNA repair. Here, we review recent technological advances enabling the genome-wide mapping of nucleosome positions in the model eukaryote Saccharomyces cerevisiae. We discuss the various parameters that determine nucleosome positioning in vivo, including cis factors like AT content, variable tandem repeats, and poly(dA:dT) tracts that function as chromatin barriers and trans factors such as chromatin remodeling complexes, transcription factors, histone-modifying enzymes, and RNA polymerases. In the last section, we review the biological role of chromatin in gene transcription, the evolution of gene regulation, and epigenetic phenomena. PMID:21646431

  2. Dissection of Saccharomyces cerevisiae asci.

    PubMed

    Morin, Audrey; Moores, Adrian W; Sacher, Michael

    2009-05-19

    Yeast is a highly tractable model system that is used to study many different cellular processes. The common laboratory strain Saccharomyces cerevisiae exists in either a haploid or diploid state. The ability to combine alleles from two haploids and the ability to introduce modifications to the genome requires the production and dissection of asci. Asci production from haploid cells begins with the mating of two yeast haploid strains with compatible mating types to produce a diploid strain. This can be accomplished in a number of ways either on solid medium or in liquid. It is advantageous to select for the diploids in medium that selectively promotes their growth compared to either of the haploid strains. The diploids are then allowed to sporulate on nutrient-poor medium to form asci, a bundle of four haploid daughter cells resulting from meiotic reproduction of the diploid. A mixture of vegetative cells and asci is then treated with the enzyme zymolyase to digest away the membrane sac surrounding the ascospores of the asci. Using micromanipulation with a microneedle under a dissection microscope one can pick up individual asci and separate and relocate the four ascopores. Dissected asci are grown for several days and tested for the markers or alleles of interest by replica plating onto appropriate selective media.

  3. Lead toxicity in Saccharomyces cerevisiae.

    PubMed

    Van der Heggen, Maarten; Martins, Sara; Flores, Gisela; Soares, Eduardo V

    2010-12-01

    The effect of Pb on Saccharomyces cerevisiae cell structure and function was examined. Membrane integrity was assessed by the release of UV-absorbing compounds and by the intracellular K(+) efflux. No leakage of UV(260)-absorbing compounds or loss of K(+) were observed in Pb (until 1,000 μmol/l) treated cells up to 30 min; these results suggest that plasma membrane seems not to be the immediate and primary target of Pb toxicity. The effect of Pb on yeast metabolism was examined using the fluorescent probe FUN-1 and compared with the ability to reproduce, evaluated by colony-forming units counting. The exposition of yeast cells, during 60 min to 1,000 μmol/l Pb, induces a decrease in the ability to process FUN-1 although the cells retain its proliferation capacity. A more prolonged contact time (120 min) of yeast cells with Pb induces a marked (> 50%) loss of yeast cells metabolic activity and replication competence through a mechanism which most likely requires protein synthesis.

  4. Proteomics of Saccharomyces cerevisiae Organelles*

    PubMed Central

    Wiederhold, Elena; Veenhoff, Liesbeth M.; Poolman, Bert; Slotboom, Dirk Jan

    2010-01-01

    Knowledge of the subcellular localization of proteins is indispensable to understand their physiological roles. In the past decade, 18 studies have been performed to analyze the protein content of isolated organelles from Saccharomyces cerevisiae. Here, we integrate the data sets and compare them with other large scale studies on protein localization and abundance. We evaluate the completeness and reliability of the organelle proteomics studies. Reliability depends on the purity of the organelle preparations, which unavoidably contain (small) amounts of contaminants from different locations. Quantitative proteomics methods can be used to distinguish between true organellar constituents and contaminants. Completeness is compromised when loosely or dynamically associated proteins are lost during organelle preparation and also depends on the sensitivity of the analytical methods for protein detection. There is a clear trend in the data from the 18 organelle proteomics studies showing that proteins of low abundance frequently escape detection. Proteins with unknown function or cellular abundance are also infrequently detected, indicating that these proteins may not be expressed under the conditions used. We discuss that the yeast organelle proteomics studies provide powerful lead data for further detailed studies and that methodological advances in organelle preparation and in protein detection may help to improve the completeness and reliability of the data. PMID:19955081

  5. Saccharomyces cerevisiae engineered for xylose metabolism exhibits a respiratory response

    Treesearch

    Yong-Su Jin; Jose M. Laplaza; Thomas W. Jeffries

    2004-01-01

    Native strains of Saccharomyces cerevisiae do not assimilate xylose. S. cerevisiae engineered for D-xylose utilization through the heterologous expression of genes for aldose reductase ( XYL1), xylitol dehydrogenase (XYL2), and D-xylulokinase ( XYL3 or XKS1) produce only limited amounts of ethanol in xylose medium. In recombinant S. cerevisiae expressing XYL1, XYL2,...

  6. Progress in metabolic engineering of Saccharomyces cerevisiae.

    PubMed

    Nevoigt, Elke

    2008-09-01

    The traditional use of the yeast Saccharomyces cerevisiae in alcoholic fermentation has, over time, resulted in substantial accumulated knowledge concerning genetics, physiology, and biochemistry as well as genetic engineering and fermentation technologies. S. cerevisiae has become a platform organism for developing metabolic engineering strategies, methods, and tools. The current review discusses the relevance of several engineering strategies, such as rational and inverse metabolic engineering, evolutionary engineering, and global transcription machinery engineering, in yeast strain improvement. It also summarizes existing tools for fine-tuning and regulating enzyme activities and thus metabolic pathways. Recent examples of yeast metabolic engineering for food, beverage, and industrial biotechnology (bioethanol and bulk and fine chemicals) follow. S. cerevisiae currently enjoys increasing popularity as a production organism in industrial ("white") biotechnology due to its inherent tolerance of low pH values and high ethanol and inhibitor concentrations and its ability to grow anaerobically. Attention is paid to utilizing lignocellulosic biomass as a potential substrate.

  7. [The ABC transporters of Saccharomyces cerevisiae].

    PubMed

    Wawrzycka, Donata

    2011-01-01

    The ABC transporters (ATP Binding Cassette) compose one of the bigest protein family with the great medical, industrial and economical impact. They are found in all organism from bacteria to man. ABC proteins are responsible for resistance of microorganism to antibiotics and fungicides and multidrug resistance of cancer cells. Mutations in ABC transporters genes cause seriuos deseases like cystic fibrosis, adrenoleucodystrophy or ataxia. Transport catalized by ABC proteins is charged with energy from the ATP hydrolysis. The ABC superfamily contains transporters, canals, receptors. Analysis of the Saccharomyces cerevisiae genome allowed to distinguish 30 potential ABC proteins which are classified into 6 subfamilies. The structural and functional similarity of the yeast and human ABC proteins allowes to use the S. cerevisiae as a model organism for ABC transporters characterisation. In this work the present state of knowleadge on yeast S. cerevisiae ABC proteins was summarised.

  8. [Urinary infection by Saccharomyces cerevisiae: Emerging yeast?].

    PubMed

    Elkhihal, B; Elhalimi, M; Ghfir, B; Mostachi, A; Lyagoubi, M; Aoufi, S

    2015-12-01

    Saccharomyces cerevisiae is a commensal yeast of the digestive, respiratory and genito-urinary tract. It is widely used as a probiotic for the treatment of post-antibiotic diarrhea. It most often occurs in immunocompromised patients frequently causing fungemia. We report the case of an adult diabetic patient who had a urinary tract infection due to S. cerevisiae. The disease started with urination associated with urinary frequency burns without fever. The diagnosis was established by the presence of yeasts on direct examination and positivity of culture on Sabouraud-chloramphenicol three times. The auxanogramme gallery (Auxacolor BioRad(®)) allowed the identification of S. cerevisiae. The patient was put on fluconazole with good outcome. This observation points out that this is an opportunistic yeast in immunocompromised patients. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  9. Saccharomyces cerevisiae metabolism in ecological context.

    PubMed

    Jouhten, Paula; Ponomarova, Olga; Gonzalez, Ramon; Patil, Kiran R

    2016-11-01

    The architecture and regulation of Saccharomyces cerevisiae metabolic network are among the best studied owing to its widespread use in both basic research and industry. Yet, several recent studies have revealed notable limitations in explaining genotype-metabolic phenotype relations in this yeast, especially when concerning multiple genetic/environmental perturbations. Apparently unexpected genotype-phenotype relations may originate in the evolutionarily shaped cellular operating principles being hidden in common laboratory conditions. Predecessors of laboratory S. cerevisiae strains, the wild and the domesticated yeasts, have been evolutionarily shaped by highly variable environments, very distinct from laboratory conditions, and most interestingly by social life within microbial communities. Here we present a brief review of the genotypic and phenotypic peculiarities of S. cerevisiae in the context of its social lifestyle beyond laboratory environments. Accounting for this ecological context and the origin of the laboratory strains in experimental design and data analysis would be essential in improving the understanding of genotype-environment-phenotype relationships.

  10. Integral Membrane Protein Expression in Saccharomyces cerevisiae.

    PubMed

    Boswell-Casteel, Rebba C; Johnson, Jennifer M; Stroud, Robert M; Hays, Franklin A

    2016-01-01

    Eukaryotic integral membrane proteins are challenging targets for crystallography or functional characterization in a purified state. Since expression is often a limiting factor when studying this difficult class of biological macromolecules, the intent of this chapter is to focus on the expression of eukaryotic integral membrane proteins (IMPs) using the model organism Saccharomyces cerevisiae. S. cerevisiae is a prime candidate for the expression of eukaryotic IMPs because it offers the convenience of using episomal expression plasmids, selection of positive transformants, posttranslational modifications, and it can properly fold and target IMPs. Here we present a generalized protocol and insights based on our collective knowledge as an aid to overcoming the challenges faced when expressing eukaryotic IMPs in S. cerevisiae.

  11. Mobilomics in Saccharomyces cerevisiae strains

    PubMed Central

    2013-01-01

    Background Mobile Genetic Elements (MGEs) are selfish DNA integrated in the genomes. Their detection is mainly based on consensus–like searches by scanning the investigated genome against the sequence of an already identified MGE. Mobilomics aims at discovering all the MGEs in a genome and understanding their dynamic behavior: The data for this kind of investigation can be provided by comparative genomics of closely related organisms. The amount of data thus involved requires a strong computational effort, which should be alleviated. Results Our approach proposes to exploit the high similarity among homologous chromosomes of different strains of the same species, following a progressive comparative genomics philosophy. We introduce a software tool based on our new fast algorithm, called regender, which is able to identify the conserved regions between chromosomes. Our case study is represented by a unique recently available dataset of 39 different strains of S.cerevisiae, which regender is able to compare in few minutes. By exploring the non–conserved regions, where MGEs are mainly retrotransposons called Tys, and marking the candidate Tys based on their length, we are able to locate a priori and automatically all the already known Tys and map all the putative Tys in all the strains. The remaining putative mobile elements (PMEs) emerging from this intra–specific comparison are sharp markers of inter–specific evolution: indeed, many events of non–conservation among different yeast strains correspond to PMEs. A clustering based on the presence/absence of the candidate Tys in the strains suggests an evolutionary interconnection that is very similar to classic phylogenetic trees based on SNPs analysis, even though it is computed without using phylogenetic information. Conclusions The case study indicates that the proposed methodology brings two major advantages: (a) it does not require any template sequence for the wanted MGEs and (b) it can be applied to

  12. Sterol methylation in Saccharomyces cerevisiae.

    PubMed Central

    McCammon, M T; Hartmann, M A; Bottema, C D; Parks, L W

    1984-01-01

    Various nystatin-resistant mutants defective in S-adenosylmethionine: delta 24-sterol-C-methyltransferase (EC 2.1.1.41) were shown to possess alleles of the same gene, erg6. The genetic map location of erg6 was shown to be close to trp1 on chromosome 4. Despite the single locus for erg6, S-adenosylmethionine: delta 24-sterol-C-methyltransferase enzyme activity was found in three separate fractions: mitochondria, microsomes, and the "floating lipid layer." The amount of activity in each fraction could be manipulated by assay conditions. The lipids and lipid synthesis of mutants of Saccharomyces cerevisiae defective in the delta 24-sterol-C-methyltransferase were compared with a C5(6) desaturase mutant and parental wild types. No ergosterol (C28 sterol) could be detected in whole-cell sterol extracts of the erg6 mutants, the limits of detection being less than 10(-11) mol of ergosterol per 10(8) cells. The distribution of accumulated sterols by these mutants varied with growth phase and between free and esterified fractions. The steryl ester concentrations of the mutants were eight times higher than those of the wild type from exponential growth samples. However, the concentration of the ester accumulated by the mutants was not as great in stationary-phase cells. Whereas the head group phospholipid composition was the same between parental and mutant strains, strain-dependent changes in fatty acids were observed, most notably a 40% increase in the oleic acid content of phosphatidylethanolamine of one erg6 mutant, JR5. PMID:6363386

  13. Replicative and chronological aging in Saccharomyces cerevisiae.

    PubMed

    Longo, Valter D; Shadel, Gerald S; Kaeberlein, Matt; Kennedy, Brian

    2012-07-03

    Saccharomyces cerevisiae has directly or indirectly contributed to the identification of arguably more mammalian genes that affect aging than any other model organism. Aging in yeast is assayed primarily by measurement of replicative or chronological life span. Here, we review the genes and mechanisms implicated in these two aging model systems and key remaining issues that need to be addressed for their optimization. Because of its well-characterized genome that is remarkably amenable to genetic manipulation and high-throughput screening procedures, S. cerevisiae will continue to serve as a leading model organism for studying pathways relevant to human aging and disease.

  14. Biotechnological implications of filamentation in Saccharomyces cerevisiae.

    PubMed

    Ceccato-Antonini, Sandra Regina

    2008-07-01

    The genetics governing the morphological switch from round or ovoid cells to filamentous growth in Saccharomyces cerevisiae has received significant interest in relation to sensing and signaling pathways as well as the control of cell processes including budding, elongation and adhesion. Little is known about the environmental signals which trigger these morphological changes from a biotechnological point of view. This review aims to highlight the main causes of filamentous growth in S. cerevisiae in its industrial setting with the purpose of stimulating additional studies within this field.

  15. Biosynthesis of silver nanoparticles using Saccharomyces cerevisiae.

    PubMed

    Korbekandi, Hassan; Mohseni, Soudabeh; Mardani Jouneghani, Rasoul; Pourhossein, Meraj; Iravani, Siavash

    2016-01-01

    The objectives of this study were the biosynthesis of silver nanoparticles (NPs) by biotransformations using Saccharomyces cerevisiae and analysis of the sizes and shapes of the NPs produced. Dried and freshly cultured S. cerevisiae were used as the biocatalyst. Dried yeast synthesized few NPs, but freshly cultured yeast produced a large amount of them. Silver NPs were spherical, 2-20 nm in diameter, and the NPs with the size of 5.4 nm were the most frequent ones. NPs were seen inside the cells, within the cell membrane, attached to the cell membrane during the exocytosis, and outside of the cells.

  16. Tangential Ultrafiltration of Aqueous "Saccharomyces Cerevisiae" Suspensions

    ERIC Educational Resources Information Center

    Silva, Carlos M.; Neves, Patricia S.; Da Silva, Francisco A.; Xavier, Ana M. R. B.; Eusebio, M. F. J.

    2008-01-01

    Experimental work on ultrafiltration is presented to illustrate the practical and theoretical principles of this separation technique. The laboratory exercise comprises experiments with pure water and with aqueous "Saccharomyces cerevisiae" (from commercial Baker's yeast) suspensions. With this work students detect the characteristic phenomena…

  17. Regulation of Mitotic Exit in Saccharomyces cerevisiae.

    PubMed

    Baro, Bàrbara; Queralt, Ethel; Monje-Casas, Fernando

    2017-01-01

    The Mitotic Exit Network (MEN) is an essential signaling pathway, closely related to the Hippo pathway in mammals, which promotes mitotic exit and initiates cytokinesis in the budding yeast Saccharomyces cerevisiae. Here, we summarize the current knowledge about the MEN components and their regulation.

  18. Mechanisms of Ethanol Tolerance in Saccharomyces cerevisiae

    USDA-ARS?s Scientific Manuscript database

    Saccharomyces cerevisiae is a superb ethanol producer, yet is also sensitive to higher ethanol concentrations especially under high gravity or very high gravity fermentation conditions. Ethanol tolerance is associated with interplay of complex networks at the genome level. Although significant eff...

  19. Tangential Ultrafiltration of Aqueous "Saccharomyces Cerevisiae" Suspensions

    ERIC Educational Resources Information Center

    Silva, Carlos M.; Neves, Patricia S.; Da Silva, Francisco A.; Xavier, Ana M. R. B.; Eusebio, M. F. J.

    2008-01-01

    Experimental work on ultrafiltration is presented to illustrate the practical and theoretical principles of this separation technique. The laboratory exercise comprises experiments with pure water and with aqueous "Saccharomyces cerevisiae" (from commercial Baker's yeast) suspensions. With this work students detect the characteristic phenomena…

  20. A halotolerant mutant of Saccharomyces cerevisiae.

    PubMed Central

    Gaxiola, R; Corona, M; Zinker, S

    1996-01-01

    FRD, a nuclear and dominant spontaneous mutant of Saccharomyces cerevisiae capable of growing in up to 2 M NaCl, was isolated. Compared with parental cells, the mutant cells have a lower intracellular Na+/K+ ratio, shorter generation times in the presence of 1 M NaCl, and alterations in gene expression. PMID:8631691

  1. Engineer Sccharomyces cerevisiae for consolidated bioprocessing

    USDA-ARS?s Scientific Manuscript database

    The current commercial biofuel production is based on a two-stage process of enzymatic treatment to degrade starch to fermentable sugar, followed by yeast fermentation of the sugar to ethanol. An attractive alternative would be to engineer Saccharomyces cerevisiae for cell-based saccharification an...

  2. Sporulation in the Budding Yeast Saccharomyces cerevisiae

    PubMed Central

    Neiman, Aaron M.

    2011-01-01

    In response to nitrogen starvation in the presence of a poor carbon source, diploid cells of the yeast Saccharomyces cerevisiae undergo meiosis and package the haploid nuclei produced in meiosis into spores. The formation of spores requires an unusual cell division event in which daughter cells are formed within the cytoplasm of the mother cell. This process involves the de novo generation of two different cellular structures: novel membrane compartments within the cell cytoplasm that give rise to the spore plasma membrane and an extensive spore wall that protects the spore from environmental insults. This article summarizes what is known about the molecular mechanisms controlling spore assembly with particular attention to how constitutive cellular functions are modified to create novel behaviors during this developmental process. Key regulatory points on the sporulation pathway are also discussed as well as the possible role of sporulation in the natural ecology of S. cerevisiae. PMID:22084423

  3. Transformation of Saccharomyces cerevisiae and other fungi

    PubMed Central

    Kawai, Shigeyuki; Hashimoto, Wataru

    2010-01-01

    Transformation (i.e., genetic modification of a cell by the incorporation of exogenous DNA) is indispensable for manipulating fungi. Here, we review the transformation methods for Saccharomyces cerevisiae, Schizosaccharomyces pombe, Candida albicans, Pichia pastoris and Aspergillus species and discuss some common modifications to improve transformation efficiency. We also present a model of the mechanism underlying S. cerevisiae transformation, based on recent reports and the mechanism of transfection in mammalian systems. This model predicts that DNA attaches to the cell wall and enters the cell via endocytotic membrane invagination, although how DNA reaches the nucleus is unknown. Polyethylene glycol is indispensable for successful transformation of intact cells and the attachment of DNA and also possibly acts on the membrane to increase the transformation efficiency. Both lithium acetate and heat shock, which enhance the transformation efficiency of intact cells but not that of spheroplasts, probably help DNA to pass through the cell wall. PMID:21468206

  4. Cell Wall Assembly in Saccharomyces cerevisiae

    PubMed Central

    Lesage, Guillaume; Bussey, Howard

    2006-01-01

    An extracellular matrix composed of a layered meshwork of β-glucans, chitin, and mannoproteins encapsulates cells of the yeast Saccharomyces cerevisiae. This organelle determines cellular morphology and plays a critical role in maintaining cell integrity during cell growth and division, under stress conditions, upon cell fusion in mating, and in the durable ascospore cell wall. Here we assess recent progress in understanding the molecular biology and biochemistry of cell wall synthesis and its remodeling in S. cerevisiae. We then review the regulatory dynamics of cell wall assembly, an area where functional genomics offers new insights into the integration of cell wall growth and morphogenesis with a polarized secretory system that is under cell cycle and cell type program controls. PMID:16760306

  5. Saccharomyces cerevisiae metabolism in ecological context

    PubMed Central

    Jouhten, Paula; Ponomarova, Olga; Gonzalez, Ramon; Patil, Kiran R.

    2016-01-01

    The architecture and regulation of Saccharomyces cerevisiae metabolic network are among the best studied owing to its widespread use in both basic research and industry. Yet, several recent studies have revealed notable limitations in explaining genotype–metabolic phenotype relations in this yeast, especially when concerning multiple genetic/environmental perturbations. Apparently unexpected genotype–phenotype relations may originate in the evolutionarily shaped cellular operating principles being hidden in common laboratory conditions. Predecessors of laboratory S. cerevisiae strains, the wild and the domesticated yeasts, have been evolutionarily shaped by highly variable environments, very distinct from laboratory conditions, and most interestingly by social life within microbial communities. Here we present a brief review of the genotypic and phenotypic peculiarities of S. cerevisiae in the context of its social lifestyle beyond laboratory environments. Accounting for this ecological context and the origin of the laboratory strains in experimental design and data analysis would be essential in improving the understanding of genotype–environment–phenotype relationships. PMID:27634775

  6. "Malonate uptake and metabolism in Saccharomyces cerevisiae".

    PubMed

    Chen, Wei Ning; Tan, Kee Yang

    2013-09-01

    Malonyl-CoA plays an important role in the synthesis and elongation of fatty acids in yeast Saccharomyces cerevisiae. Malonyl-CoA is at a low concentration inside the cell and is produced mainly from acetyl-CoA through the enzyme acetyl-CoA carboxylase. It would be beneficial to find an alternative source of malonyl-CoA to increase its intracellular concentration and overall synthesis of the fatty acids. MatB gene from the bacteria Rhizobium leguminosarium bv. trifolii encodes for a malonyl-CoA synthetase which catalyzes the formation of the malonyl-CoA directly from malonate and CoA. However, results from high-performance liquid chromatography (HPLC) proved that Saccharomyces cerevisiae itself does not contain enough cytoplasmic malonate within them and is unable to uptake exogenously supplied malonate in the form of malonic acid. A dicarboxylic acid plasma membrane transporter with the ability to uptake exogenous malonic acid was identified from another species of yeast known as Schizosaccharomyces pombe and the gene encoding this transporter is identified as the mae1 gene. From the experiments thus far, the mae1 gene had been successfully cloned and transformed into Saccharomyces cerevisiae. The expression and functional ability of the encoded plasma membrane dicarboxylic acid transporter were also demonstrated and verified using specialized technologies such as RT-PCR, yeast immunofluorescence, HPLC, and LC-MS.

  7. Synthesis of Morphinan Alkaloids in Saccharomyces cerevisiae.

    PubMed

    Fossati, Elena; Narcross, Lauren; Ekins, Andrew; Falgueyret, Jean-Pierre; Martin, Vincent J J

    2015-01-01

    Morphinan alkaloids are the most powerful narcotic analgesics currently used to treat moderate to severe and chronic pain. The feasibility of morphinan synthesis in recombinant Saccharomyces cerevisiae starting from the precursor (R,S)-norlaudanosoline was investigated. Chiral analysis of the reticuline produced by the expression of opium poppy methyltransferases showed strict enantioselectivity for (S)-reticuline starting from (R,S)-norlaudanosoline. In addition, the P. somniferum enzymes salutaridine synthase (PsSAS), salutaridine reductase (PsSAR) and salutaridinol acetyltransferase (PsSAT) were functionally co-expressed in S. cerevisiae and optimization of the pH conditions allowed for productive spontaneous rearrangement of salutaridinol-7-O-acetate and synthesis of thebaine from (R)-reticuline. Finally, we reconstituted a 7-gene pathway for the production of codeine and morphine from (R)-reticuline. Yeast cell feeding assays using (R)-reticuline, salutaridine or codeine as substrates showed that all enzymes were functionally co-expressed in yeast and that activity of salutaridine reductase and codeine-O-demethylase likely limit flux to morphine synthesis. The results of this study describe a significant advance for the synthesis of morphinans in S. cerevisiae and pave the way for their complete synthesis in recombinant microbes.

  8. Progress in Metabolic Engineering of Saccharomyces cerevisiae

    PubMed Central

    Nevoigt, Elke

    2008-01-01

    Summary: The traditional use of the yeast Saccharomyces cerevisiae in alcoholic fermentation has, over time, resulted in substantial accumulated knowledge concerning genetics, physiology, and biochemistry as well as genetic engineering and fermentation technologies. S. cerevisiae has become a platform organism for developing metabolic engineering strategies, methods, and tools. The current review discusses the relevance of several engineering strategies, such as rational and inverse metabolic engineering, evolutionary engineering, and global transcription machinery engineering, in yeast strain improvement. It also summarizes existing tools for fine-tuning and regulating enzyme activities and thus metabolic pathways. Recent examples of yeast metabolic engineering for food, beverage, and industrial biotechnology (bioethanol and bulk and fine chemicals) follow. S. cerevisiae currently enjoys increasing popularity as a production organism in industrial (“white”) biotechnology due to its inherent tolerance of low pH values and high ethanol and inhibitor concentrations and its ability to grow anaerobically. Attention is paid to utilizing lignocellulosic biomass as a potential substrate. PMID:18772282

  9. Synthesis of Morphinan Alkaloids in Saccharomyces cerevisiae

    PubMed Central

    Fossati, Elena; Narcross, Lauren; Ekins, Andrew; Falgueyret, Jean-Pierre; Martin, Vincent J. J.

    2015-01-01

    Morphinan alkaloids are the most powerful narcotic analgesics currently used to treat moderate to severe and chronic pain. The feasibility of morphinan synthesis in recombinant Saccharomyces cerevisiae starting from the precursor (R,S)-norlaudanosoline was investigated. Chiral analysis of the reticuline produced by the expression of opium poppy methyltransferases showed strict enantioselectivity for (S)-reticuline starting from (R,S)-norlaudanosoline. In addition, the P. somniferum enzymes salutaridine synthase (PsSAS), salutaridine reductase (PsSAR) and salutaridinol acetyltransferase (PsSAT) were functionally co-expressed in S. cerevisiae and optimization of the pH conditions allowed for productive spontaneous rearrangement of salutaridinol-7-O-acetate and synthesis of thebaine from (R)-reticuline. Finally, we reconstituted a 7-gene pathway for the production of codeine and morphine from (R)-reticuline. Yeast cell feeding assays using (R)-reticuline, salutaridine or codeine as substrates showed that all enzymes were functionally co-expressed in yeast and that activity of salutaridine reductase and codeine-O-demethylase likely limit flux to morphine synthesis. The results of this study describe a significant advance for the synthesis of morphinans in S. cerevisiae and pave the way for their complete synthesis in recombinant microbes. PMID:25905794

  10. Stoichiometric network constraints on xylose metabolism by recombinant Saccharomyces cerevisiae

    Treesearch

    Yong-Su Jin; Thomas W. Jeffries

    2004-01-01

    Metabolic pathway engineering is constrained by the thermodynamic and stoichiometric feasibility of enzymatic activities of introduced genes. Engineering of xylose metabolism in Saccharomyces cerevisiae has focused on introducing genes for the initial xylose assimilation steps from Pichia stipitis, a xylose-fermenting yeast, into S. cerevisiae, a yeast raditionally...

  11. Potential immobilized Saccharomyces cerevisiae as heavy metal removal

    NASA Astrophysics Data System (ADS)

    Raffar, Nur Izzati Abdul; Rahman, Nadhratul Nur Ain Abdul; Alrozi, Rasyidah; Senusi, Faraziehan; Chang, Siu Hua

    2015-05-01

    Biosorption of copper ion using treated and untreated immobilized Saccharomyces cerevisiae from aqueous solution was investigate in this study. S.cerevisiae has been choosing as biosorbent due to low cost, easy and continuously available from various industries. In this study, the ability of treated and untreated immobilized S.cerevisiae in removing copper ion influence by the effect of pH solution, and initial concentration of copper ion with contact time. Besides, adsorption isotherm and kinetic model also studied. The result indicated that the copper ion uptake on treated and untreated immobilized S.cerevisiae was increased with increasing of contact time and initial concentration of copper ion. The optimum pH for copper ion uptake on untreated and treated immobilized S.cerevisiae at 4 and 6. From the data obtained of copper ion uptake, the adsorption isotherm was fitted well by Freundlich model for treated immobilized S.cerevisiae and Langmuir model for untreated immobilized S.cerevisiae according to high correlation coefficient. Meanwhile, the pseudo second order was described as suitable model present according to high correlation coefficient. Since the application of biosorption process has been received more attention from numerous researchers as a potential process to be applied in the industry, future study will be conducted to investigate the potential of immobilized S.cerevisiae in continuous process.

  12. Kinetics of phosphomevalonate kinase from Saccharomyces cerevisiae.

    PubMed

    Garcia, David E; Keasling, Jay D

    2014-01-01

    The mevalonate-based isoprenoid biosynthetic pathway is responsible for producing cholesterol in humans and is used commercially to produce drugs, chemicals, and fuels. Heterologous expression of this pathway in Escherichia coli has enabled high-level production of the antimalarial drug artemisinin and the proposed biofuel bisabolane. Understanding the kinetics of the enzymes in the biosynthetic pathway is critical to optimize the pathway for high flux. We have characterized the kinetic parameters of phosphomevalonate kinase (PMK, EC 2.7.4.2) from Saccharomyces cerevisiae, a previously unstudied enzyme. An E. coli codon-optimized version of the S. cerevisiae gene was cloned into pET-52b+, then the C-terminal 6X His-tagged protein was expressed in E. coli BL21(DE3) and purified on a Ni²⁺ column. The KM of the ATP binding site was determined to be 98.3 µM at 30°C, the optimal growth temperature for S. cerevisiae, and 74.3 µM at 37°C, the optimal growth temperature for E. coli. The K(M) of the mevalonate-5-phosphate binding site was determined to be 885 µM at 30°C and 880 µM at 37°C. The V(max) was determined to be 4.51 µmol/min/mg enzyme at 30°C and 5.33 µmol/min/mg enzyme at 37°C. PMK is Mg²⁺ dependent, with maximal activity achieved at concentrations of 10 mM or greater. Maximum activity was observed at pH = 7.2. PMK was not found to be substrate inhibited, nor feedback inhibited by FPP at concentrations up to 10 µM FPP.

  13. [Engineering Saccharomyces cerevisiae for sclareol production].

    PubMed

    Yang, Wei; Zhou, Yongjin; Liu, Wujun; Shen, Hongwei; Zhao, Zongbao K

    2013-08-01

    Sclareol is a member of labdane type diterpenes mostly used as fragrance ingredient. To enable microbial production of sclareol, synthetic pathways were constructed by incorporating labdenediol diphosphate synthase (LPPS) and terpene synthase (TPS) of the plant Salvia sclarea into Saccharomyces cerevisiae. It was found that sclareol production could be benefited by overexpression of key enzyme for precursor biosynthesis, construction of fusion protein for substrate channeling, and removal of signal peptides from LPPS and TPS. Under optimal shake flask culture conditions, strain S6 produced 8.96 mg/L sclareol. These results provided useful information for development of heterologous hosts for production of terpenoids.

  14. Mitochondrial fission facilitates mitophagy in Saccharomyces cerevisiae.

    PubMed

    Mao, Kai; Klionsky, Daniel J

    2013-11-01

    As a highly dynamic organelle, mitochondria undergo constitutive fusion and fission as well as biogenesis and degradation. Mitophagy, selective mitochondrial degradation through autophagy, is a conserved cellular process used for the elimination of excessive and damaged mitochondria in eukaryotes. Despite the significance of mitophagy in cellular physiology and pathophysiologies, the underlying mechanism of this process is far from clear. In this report, we studied the role of mitochondrial fission during mitophagy, and uncover a direct link between the fission complex and mitophagy machinery in Saccharomyces cerevisiae.

  15. Components of microtubular structures in Saccharomyces cerevisiae.

    PubMed Central

    Pillus, L; Solomon, F

    1986-01-01

    Most studies of cytoskeletal organelles have concentrated on molecular analyses of abundant and biochemically accessible structures. In many of the classical cases, however, the nature of the system chosen has precluded a concurrent genetic analysis. The mitotic spindle of the yeast Saccharomyces cerevisiae is one example of an organelle that can be studied by both classical and molecular genetics. We show here that this microtubule structure also can be examined biochemically. The spindle can be isolated by selective extractions of yeast cells by using adaptations of methods successfully applied to animal cells. In this way, microtubule-associated proteins of the yeast spindle are identified. Images PMID:3517870

  16. Fatty Acid Synthetase of Saccharomyces cerevisiae

    PubMed Central

    Klein, Harold P.; Volkmann, Carol M.; Chao, Fu-Chuan

    1967-01-01

    A light particle fraction of Saccharomyces cerevisiae, obtained from the crude ribosomal material, and containing the fatty acid synthetase, consisted primarily of 27S and 47S components. This fraction has a protein-ribonucleic acid ratio of about 13. Electron micrographs showed particles ranging in diameter between 100 and 300 A in this material. By use of density gradient analysis, the fatty acid synthetase was found in the 47S component. This component contained particles which were predominantly 300 A in diameter and which were considerably flatter than ribosomes, and it consisted almost entirely of protein. Images PMID:6025308

  17. Efficient screening of environmental isolates for Saccharomyces cerevisiae strains that are suitable for brewing.

    PubMed

    Fujihara, Hidehiko; Hino, Mika; Takashita, Hideharu; Kajiwara, Yasuhiro; Okamoto, Keiko; Furukawa, Kensuke

    2014-01-01

    We developed an efficient screening method for Saccharomyces cerevisiae strains from environmental isolates. MultiPlex PCR was performed targeting four brewing S. cerevisiae genes (SSU1, AWA1, BIO6, and FLO1). At least three genes among the four were amplified from all S. cerevisiae strains. The use of this method allowed us to successfully obtain S. cerevisiae strains.

  18. Cell wall construction in Saccharomyces cerevisiae.

    PubMed

    Klis, Frans M; Boorsma, Andre; De Groot, Piet W J

    2006-02-01

    In this review, we discuss new insights in cell wall architecture and cell wall construction in the ascomycetous yeast Saccharomyces cerevisiae. Transcriptional profiling studies combined with biochemical work have provided ample evidence that the cell wall is a highly adaptable organelle. In particular, the protein population that is anchored to the stress-bearing polysaccharides of the cell wall, and forms the interface with the outside world, is highly diverse. This diversity is believed to play an important role in adaptation of the cell to environmental conditions, in growth mode and in survival. Cell wall construction is tightly controlled and strictly coordinated with progression of the cell cycle. This is reflected in the usage of specific cell wall proteins during consecutive phases of the cell cycle and in the recent discovery of a cell wall integrity checkpoint. When the cell is challenged with stress conditions that affect the cell wall, a specific transcriptional response is observed that includes the general stress response, the cell wall integrity pathway and the calcineurin pathway. This salvage mechanism includes increased expression of putative cell wall assemblases and some potential cross-linking cell wall proteins, and crucial changes in cell wall architecture. We discuss some more enzymes involved in cell wall construction and also potential inhibitors of these enzymes. Finally, we use both biochemical and genomic data to infer that the architectural principles used by S. cerevisiae to build its cell wall are also used by many other ascomycetous yeasts and also by some mycelial ascomycetous fungi.

  19. [Mitochondria inheritance in yeast saccharomyces cerevisiae].

    PubMed

    Fizikova, A Iu

    2011-01-01

    The review is devoted to the main mechanisms of mitochondria inheritance in yeast Saccharonmyces cerevisiae. The genetic mechanisms of functionally active mitochondria inheritance in eukaryotic cells is one of the most relevant in modem researches. A great number of genetic diseases are associated with mitochondria dysfunction. Plasticity of eukaryotic cell metabolism according to the environmental changes is ensured by adequate mitochondria functioning by means of ATP synthesis coordination, reactive oxygen species accumulation, apoptosis regulation and is an important factor of cell adaptation to stress. Mitochondria participation in important for cell vitality processes masters the presence of accurate mechanisms of mitochondria functions regulation according to environment fluctuations. The mechanisms of mitochondria division and distribution are highly conserved. Baker yeast S. cerevisiae is an ideal model object for mitochondria researches due to energetic metabolism lability, ability to switch over respiration to fermentation, and petite-positive phenotype. Correction of metabolism according to the environmental changes is necessary for cell vitality. The influence of respiratory, carbon, amino acid and phosphate metabolism on mitochondria functions was shown. As far as the mechanisms that stabilize functions of mitochondria and mtDNA are highly conserve, we can project yeast regularities on higher eukaryotes systems. This makes it possible to approximate understanding the etiology and pathogenesis of a great number of human diseases.

  20. Mechanisms of ethanol tolerance in Saccharomyces cerevisiae.

    PubMed

    Ma, Menggen; Liu, Z Lewis

    2010-07-01

    Saccharomyces cerevisiae is a superb ethanol producer, yet is also sensitive to higher ethanol concentrations especially under high gravity or very high gravity fermentation conditions. Ethanol tolerance is associated with interplay of complex networks at the genome level. Although significant efforts have been made to study ethanol stress response in past decades, mechanisms of ethanol tolerance are not well known. With developments of genome sequencing and genomic technologies, our understanding of yeast biology has been revolutionarily advanced. More evidence of mechanisms of ethanol tolerance have been discovered involving multiple loci, multi-stress, and complex interactions as well as signal transduction pathways and regulatory networks. Transcription dynamics and profiling studies of key gene sets including heat shock proteins provided insight into tolerance mechanisms. A transient gene expression response or a stress response to ethanol does not necessarily lead to ethanol tolerance in yeast. Reprogrammed pathways and interactions of cofactor regeneration and redox balance observed from studies of tolerant yeast demonstrated the significant importance of a time-course study for ethanol tolerance. In this review, we focus on current advances of our understanding for ethanol-tolerance mechanisms of S. cerevisiae including gene expression responses, pathway-based analysis, signal transduction and regulatory networks. A prototype of global system model for mechanisms of ethanol tolerance is presented.

  1. A Saccharomyces cerevisiae mutant with increased virulence.

    PubMed

    Wheeler, Robert T; Kupiec, Martin; Magnelli, Paula; Abeijon, Claudia; Fink, Gerald R

    2003-03-04

    Saccharomyces cerevisiae, bakers' yeast, is not a pathogen in healthy individuals, but is increasingly isolated from immunocompromised patients. The more frequent isolation of S. cerevisiae clinically raises a number of questions concerning the origin, survival, and virulence of this organism in human hosts. Here we compare the virulence of a human isolate, a strain isolated from decaying fruit, and a common laboratory strain in a mouse infection model. We find that the plant isolate is lethal in mice, whereas the laboratory strain is avirulent. A knockout of the SSD1 gene, which alters the composition and cell wall architecture of the yeast cell surface, causes both the clinical and plant isolates to be more virulent in the mouse model of infection. The hypervirulent ssd1 Delta/ssd1 Delta yeast strain is a more potent elicitor of proinflammatory cytokines from macrophages in vitro. Our data suggest that the increased virulence of the mutant strains is a consequence of unique surface characteristics that overstimulate the proinflammatory response.

  2. Killer systems of the yeast Saccharomyces cerevisiae

    SciTech Connect

    Nesterova, G.F.

    1989-01-01

    The killer systems of Saccharomyces cerevisiae are an unusual class of cytoplasmic symbionts of primitive eukaryotes. The genetic material of these symbionts is double-stranded RNA. They are characterized by the linearity of the genome, its fragmentation into a major and a minor fraction, which replicate separately, and their ability to control the synthesis of secretory mycocin proteins possessing a toxic action on closely related strains. The secretion of mycocins at the same time ensures acquiring of resistance to them. Strains containing killer symbionts are toxigenic and resistant to the action of their own toxin, but strains that are free of killer double-stranded RNAs are sensitive to the action of mycocins. The killer systems of S. cerevisiae have retained features relating them to viruses and are apparently the result of evolution of infectious viruses. The occurrences of such systems among monocellular eukaryotic organisms is an example of complication of the genome by means of its assembly from virus-like components. We discuss the unusual features of replication and the expression of killer systems and their utilization in the construction of vector molecules.

  3. Viruses and prions of Saccharomyces cerevisiae.

    PubMed

    Wickner, Reed B; Fujimura, Tsutomu; Esteban, Rosa

    2013-01-01

    Saccharomyces cerevisiae has been a key experimental organism for the study of infectious diseases, including dsRNA viruses, ssRNA viruses, and prions. Studies of the mechanisms of virus and prion replication, virus structure, and structure of the amyloid filaments that are the basis of yeast prions have been at the forefront of such studies in these classes of infectious entities. Yeast has been particularly useful in defining the interactions of the infectious elements with cellular components: chromosomally encoded proteins necessary for blocking the propagation of the viruses and prions, and proteins involved in the expression of viral components. Here, we emphasize the L-A dsRNA virus and its killer-toxin-encoding satellites, the 20S and 23S ssRNA naked viruses, and the several infectious proteins (prions) of yeast.

  4. Microautophagy in the yeast Saccharomyces cerevisiae.

    PubMed

    Uttenweiler, Andreas; Mayer, Andreas

    2008-01-01

    Microautophagy involves direct invagination and fission of the vacuolar/lysosomal membrane under nutrient limitation. In Saccharomyces cerevisiae microautophagic uptake of soluble cytosolic proteins occurs via an autophagic tube, a highly specialized vacuolar membrane invagination. At the tip of an autophagic tube vesicles (autophagic bodies) pinch off into thevacuolar lumen for degradation. Formation of autophagic tubes is topologically equivalent to other budding processes directed away from the cytosolic environment, e.g., the invagination of multivesicular endosomes, retroviral budding, piecemeal microautophagy of the nucleus and micropexophagy. This clearly distinguishes microautophagy from other membrane fission events following budding toward the cytosol. Such processes are implicated in transport between organelles like the plasma membrane, the endoplasmic reticulum (ER), and the Golgi. Over many years microautophagy only could be characterized microscopically. Recent studies provided the possibility to study the process in vitro and have identified the first molecules that are involved in microautophagy.

  5. Synchronization of the Budding Yeast Saccharomyces cerevisiae.

    PubMed

    Foltman, Magdalena; Molist, Iago; Sanchez-Diaz, Alberto

    2016-01-01

    A number of model organisms have provided the basis for our understanding of the eukaryotic cell cycle. These model organisms are generally much easier to manipulate than mammalian cells and as such provide amenable tools for extensive genetic and biochemical analysis. One of the most common model organisms used to study the cell cycle is the budding yeast Saccharomyces cerevisiae. This model provides the ability to synchronise cells efficiently at different stages of the cell cycle, which in turn opens up the possibility for extensive and detailed study of mechanisms regulating the eukaryotic cell cycle. Here, we describe methods in which budding yeast cells are arrested at a particular phase of the cell cycle and then released from the block, permitting the study of molecular mechanisms that drive the progression through the cell cycle.

  6. Viruses and prions of Saccharomyces cerevisiae

    PubMed Central

    Wickner, Reed B.; Fujimura, Tsutomu; Esteban, Rosa

    2014-01-01

    Saccharomyces cerevisiae has been a key experimental organism for the study of infectious diseases, including dsRNA viruses, ssRNA viruses and prions. Studies of the mechanisms of virus and prion replication, virus structure and structure of the amyloid filaments that are the basis of yeast prions have been at the forefront of such studies in these classes of infectious entities. Yeast has been particularly useful in defining the interactions of the infectious elements with cellular components: chromosomally encoded proteins necessary for or blocking the propagation of the viruses and prions, and proteins involved in expression of viral components. Here we emphasize the L-A dsRNA virus and its killer-toxin-encoding satellites, the 20S and 23S ssRNA naked viruses, and the several infectious proteins (prions) of yeast. PMID:23498901

  7. A global topology map of the Saccharomyces cerevisiae membrane proteome

    NASA Astrophysics Data System (ADS)

    Kim, Hyun; Melén, Karin; Österberg, Marie; von Heijne, Gunnar

    2006-07-01

    The yeast Saccharomyces cerevisiae is, arguably, the best understood eukaryotic model organism, yet comparatively little is known about its membrane proteome. Here, we report the cloning and expression of 617 S. cerevisiae membrane proteins as fusions to a C-terminal topology reporter and present experimentally constrained topology models for 546 proteins. By homology, the experimental topology information can be extended to 15,000 membrane proteins from 38 fully sequenced eukaryotic genomes. membrane proteins | membrane proteomics | yeast

  8. Saccharomyces cerevisiae var. boulardii fungemia following probiotic treatment.

    PubMed

    Appel-da-Silva, Marcelo C; Narvaez, Gabriel A; Perez, Leandro R R; Drehmer, Laura; Lewgoy, Jairo

    2017-12-01

    Probiotics are commonly prescribed as an adjuvant in the treatment of antibiotic-associated diarrhea caused by Clostridium difficile. We report the case of an immunocompromised 73-year-old patient on chemotherapy who developed Saccharomyces cerevisiae var. boulardii fungemia in a central venous catheter during treatment of antibiotic-associated pseudomembranous colitis with the probiotic Saccharomyces cerevisiae var. boulardii. Fungemia was resolved after interruption of probiotic administration without the need to replace the central venous line.

  9. Saccharomyces cerevisiae vaginitis: microbiology and in vitro antifungal susceptibility.

    PubMed

    Echeverría-Irigoyen, María Julia; Eraso, Elena; Cano, Josep; Gomáriz, María; Guarro, Josep; Quindós, Guillermo

    2011-09-01

    Genitourinary infections by Saccharomyces cerevisiae are rare. Here, we describe eight S. cerevisiae vulvovaginitis episodes where molecular (Affirm VPIII) and conventional microbiological methods (culture and carbohydrate assimilation) have proven to be inadequate for diagnostic purposes. DNA sequencing allowed the correct identification of the pathogen. All isolates were susceptible to most antifungal agents, with two of them also found to be susceptible-dose-dependent to itraconazole.

  10. Isolation, identification and characterization of regional indigenous Saccharomyces cerevisiae strains.

    PubMed

    Šuranská, Hana; Vránová, Dana; Omelková, Jiřina

    2016-01-01

    In the present work we isolated and identified various indigenous Saccharomyces cerevisiae strains and screened them for the selected oenological properties. These S. cerevisiae strains were isolated from berries and spontaneously fermented musts. The grape berries (Sauvignon blanc and Pinot noir) were grown under the integrated and organic mode of farming in the South Moravia (Czech Republic) wine region. Modern genotyping techniques such as PCR-fingerprinting and interdelta PCR typing were employed to differentiate among indigenous S. cerevisiae strains. This combination of the methods provides a rapid and relatively simple approach for identification of yeast of S. cerevisiae at strain level. In total, 120 isolates were identified and grouped by molecular approaches and 45 of the representative strains were tested for selected important oenological properties including ethanol, sulfur dioxide and osmotic stress tolerance, intensity of flocculation and desirable enzymatic activities. Their ability to produce and utilize acetic/malic acid was examined as well; in addition, H2S production as an undesirable property was screened. The oenological characteristics of indigenous isolates were compared to a commercially available S. cerevisiae BS6 strain, which is commonly used as the starter culture. Finally, some indigenous strains coming from organically treated grape berries were chosen for their promising oenological properties and these strains will be used as the starter culture, because application of a selected indigenous S. cerevisiae strain can enhance the regional character of the wines.

  11. Isolation, identification and characterization of regional indigenous Saccharomyces cerevisiae strains

    PubMed Central

    Šuranská, Hana; Vránová, Dana; Omelková, Jiřina

    2016-01-01

    In the present work we isolated and identified various indigenous Saccharomyces cerevisiae strains and screened them for the selected oenological properties. These S. cerevisiae strains were isolated from berries and spontaneously fermented musts. The grape berries (Sauvignon blanc and Pinot noir) were grown under the integrated and organic mode of farming in the South Moravia (Czech Republic) wine region. Modern genotyping techniques such as PCR-fingerprinting and interdelta PCR typing were employed to differentiate among indigenous S. cerevisiae strains. This combination of the methods provides a rapid and relatively simple approach for identification of yeast of S. cerevisiae at strain level. In total, 120 isolates were identified and grouped by molecular approaches and 45 of the representative strains were tested for selected important oenological properties including ethanol, sulfur dioxide and osmotic stress tolerance, intensity of flocculation and desirable enzymatic activities. Their ability to produce and utilize acetic/malic acid was examined as well; in addition, H2S production as an undesirable property was screened. The oenological characteristics of indigenous isolates were compared to a commercially available S. cerevisiae BS6 strain, which is commonly used as the starter culture. Finally, some indigenous strains coming from organically treated grape berries were chosen for their promising oenological properties and these strains will be used as the starter culture, because application of a selected indigenous S. cerevisiae strain can enhance the regional character of the wines. PMID:26887243

  12. [Saccharomyces cerevisiae invasive infection: The first reported case in Morocco].

    PubMed

    Maleb, A; Sebbar, E; Frikh, M; Boubker, S; Moussaoui, A; El Mekkaoui, A; Khannoussi, W; Kharrasse, G; Belefquih, B; Lemnouer, A; Ismaili, Z; Elouennass, M

    2017-02-07

    Saccharomyces cerevisiae is a cosmopolitan yeast, widely used in agro-alimentary and pharmaceutical industry. Its impact in human pathology is rare, but maybe still underestimated compared to the real situation. This yeast is currently considered as an emerging and opportunistic pathogen. Risk factors are immunosuppression and intravascular device carrying. Fungemias are the most frequent clinical forms. We report the first case of S. cerevisiae invasive infection described in Morocco, and to propose a review of the literature cases of S. cerevisiae infections described worldwide. A 77-year-old patient, with no notable medical history, who was hospitalized for a upper gastrointestinal stenosis secondary to impassable metastatic gastric tumor. Its history was marked by the onset of septic shock, with S. cerevisiae in his urine and in his blood, with arguments for confirmation of invasion: the presence of several risk factors in the patient, positive direct microbiological examination, abundant and exclusive culture of S. cerevisiae from clinical samples. Species identification was confirmed by the study of biochemical characteristics of the isolated yeast. Confirmation of S. cerevisiae infection requires a clinical suspicion in patients with risk factors, but also a correct microbiological diagnosis.

  13. Glycerol stress in Saccharomyces cerevisiae: Cellular responses and evolved adaptations.

    PubMed

    Mattenberger, Florian; Sabater-Muñoz, Beatriz; Hallsworth, John E; Fares, Mario A

    2017-03-01

    Glycerol synthesis is key to central metabolism and stress biology in Saccharomyces cerevisiae, yet the cellular adjustments needed to respond and adapt to glycerol stress are little understood. Here, we determined impacts of acute and chronic exposures to glycerol stress in S. cerevisiae. Glycerol stress can result from an increase of glycerol concentration in the medium due to the S. cerevisiae fermenting activity or other metabolic activities. Acute glycerol-stress led to a 50% decline in growth rate and altered transcription of more than 40% of genes. The increased genetic diversity in S. cerevisiae population, which had evolved in the standard nutrient medium for hundreds of generations, led to an increase in growth rate and altered transcriptome when such population was transferred to stressful media containing a high concentration of glycerol; 0.41 M (0.990 water activity). Evolution of S. cerevisiae populations during a 10-day period in the glycerol-containing medium led to transcriptome changes and readjustments to improve control of glycerol flux across the membrane, regulation of cell cycle, and more robust stress response; and a remarkable increase of growth rate under glycerol stress. Most of the observed regulatory changes arose in duplicated genes. These findings elucidate the physiological mechanisms, which underlie glycerol-stress response, and longer-term adaptations, in S. cerevisiae; they also have implications for enigmatic aspects of the ecology of this otherwise well-characterized yeast.

  14. Functional profiling of the Saccharomyces cerevisiae genome.

    PubMed

    Giaever, Guri; Chu, Angela M; Ni, Li; Connelly, Carla; Riles, Linda; Véronneau, Steeve; Dow, Sally; Lucau-Danila, Ankuta; Anderson, Keith; André, Bruno; Arkin, Adam P; Astromoff, Anna; El-Bakkoury, Mohamed; Bangham, Rhonda; Benito, Rocio; Brachat, Sophie; Campanaro, Stefano; Curtiss, Matt; Davis, Karen; Deutschbauer, Adam; Entian, Karl-Dieter; Flaherty, Patrick; Foury, Francoise; Garfinkel, David J; Gerstein, Mark; Gotte, Deanna; Güldener, Ulrich; Hegemann, Johannes H; Hempel, Svenja; Herman, Zelek; Jaramillo, Daniel F; Kelly, Diane E; Kelly, Steven L; Kötter, Peter; LaBonte, Darlene; Lamb, David C; Lan, Ning; Liang, Hong; Liao, Hong; Liu, Lucy; Luo, Chuanyun; Lussier, Marc; Mao, Rong; Menard, Patrice; Ooi, Siew Loon; Revuelta, Jose L; Roberts, Christopher J; Rose, Matthias; Ross-Macdonald, Petra; Scherens, Bart; Schimmack, Greg; Shafer, Brenda; Shoemaker, Daniel D; Sookhai-Mahadeo, Sharon; Storms, Reginald K; Strathern, Jeffrey N; Valle, Giorgio; Voet, Marleen; Volckaert, Guido; Wang, Ching-yun; Ward, Teresa R; Wilhelmy, Julie; Winzeler, Elizabeth A; Yang, Yonghong; Yen, Grace; Youngman, Elaine; Yu, Kexin; Bussey, Howard; Boeke, Jef D; Snyder, Michael; Philippsen, Peter; Davis, Ronald W; Johnston, Mark

    2002-07-25

    Determining the effect of gene deletion is a fundamental approach to understanding gene function. Conventional genetic screens exhibit biases, and genes contributing to a phenotype are often missed. We systematically constructed a nearly complete collection of gene-deletion mutants (96% of annotated open reading frames, or ORFs) of the yeast Saccharomyces cerevisiae. DNA sequences dubbed 'molecular bar codes' uniquely identify each strain, enabling their growth to be analysed in parallel and the fitness contribution of each gene to be quantitatively assessed by hybridization to high-density oligonucleotide arrays. We show that previously known and new genes are necessary for optimal growth under six well-studied conditions: high salt, sorbitol, galactose, pH 8, minimal medium and nystatin treatment. Less than 7% of genes that exhibit a significant increase in messenger RNA expression are also required for optimal growth in four of the tested conditions. Our results validate the yeast gene-deletion collection as a valuable resource for functional genomics.

  15. Regulation of Phosphatidylcholine Biosynthesis in Saccharomyces cerevisiae

    PubMed Central

    Waechter, Charles J.; Lester, Robert L.

    1971-01-01

    Evidence is presented which indicates that the biosynthesis of phosphatidylcholine by the methylation pathway in growing cultures of Saccharomyces cerevisiae is repressed by the presence of choline in the growth medium. This result, obtained previously for glucose-grown cells, was also observed for lactate-grown cells, of which half of the phosphatidylcholine is mitochondrial. A respiration-deficient mutant of the parent wild-type strain has been studied, and its inability to form functional mitochondria cannot be due to an impaired methylation pathway, as it has been shown to incorporate 14C-CH3-methionine into all of the methylated glycerophosphatides. The incorporation rate is depressed by the inclusion of 1 mm choline in the growth medium, suggesting a regulatory effect similar to that demonstrated for the wild-type strain. The effects of choline on the glycerophospholipid composition of lactate and glucose-grown cells is presented. The repressive effects of the two related bases, mono- and dimethylethanolamine, were examined, and reduced levels of 14C-CH3-methionine incorporation were found for cells grown in the presence of these bases. The effect of choline on the methylation rates is reversible and glucosegrown cells regain the nonrepressed level of methylation activity in 60 to 80 min after removal of choline from the growth medium. Images PMID:5547992

  16. Acetylation dynamics and stoichiometry in Saccharomyces cerevisiae.

    PubMed

    Weinert, Brian T; Iesmantavicius, Vytautas; Moustafa, Tarek; Schölz, Christian; Wagner, Sebastian A; Magnes, Christoph; Zechner, Rudolf; Choudhary, Chunaram

    2014-01-01

    Lysine acetylation is a frequently occurring posttranslational modification; however, little is known about the origin and regulation of most sites. Here we used quantitative mass spectrometry to analyze acetylation dynamics and stoichiometry in Saccharomyces cerevisiae. We found that acetylation accumulated in growth-arrested cells in a manner that depended on acetyl-CoA generation in distinct subcellular compartments. Mitochondrial acetylation levels correlated with acetyl-CoA concentration in vivo and acetyl-CoA acetylated lysine residues nonenzymatically in vitro. We developed a method to estimate acetylation stoichiometry and found that the vast majority of mitochondrial and cytoplasmic acetylation had a very low stoichiometry. However, mitochondrial acetylation occurred at a significantly higher basal level than cytoplasmic acetylation, consistent with the distinct acetylation dynamics and higher acetyl-CoA concentration in mitochondria. High stoichiometry acetylation occurred mostly on histones, proteins present in histone acetyltransferase and deacetylase complexes, and on transcription factors. These data show that a majority of acetylation occurs at very low levels in exponentially growing yeast and is uniformly affected by exposure to acetyl-CoA.

  17. A biochemically structured model for Saccharomyces cerevisiae.

    PubMed

    Lei, F; Rotbøll, M; Jørgensen, S B

    2001-07-12

    A biochemically structured model for the aerobic growth of Saccharomyces cerevisiae on glucose and ethanol is presented. The model focuses on the pyruvate and acetaldehyde branch points where overflow metabolism occurs when the growth changes from oxidative to oxido-reductive. The model is designed to describe the onset of aerobic alcoholic fermentation during steady-state as well as under dynamical conditions, by triggering an increase in the glycolytic flux using a key signalling component which is assumed to be closely related to acetaldehyde. An investigation of the modelled process dynamics in a continuous cultivation revealed multiple steady states in a region of dilution rates around the transition between oxidative and oxido-reductive growth. A bifurcation analysis using the two external variables, the dilution rate, D, and the inlet concentration of glucose, S(f), as parameters, showed that a fold bifurcation occurs close to the critical dilution rate resulting in multiple steady-states. The region of dilution rates within which multiple steady states may occur depends strongly on the substrate feed concentration. Consequently a single steady state may prevail at low feed concentrations, whereas multiple steady states may occur over a relatively wide range of dilution rates at higher feed concentrations.

  18. Cold Osmotic Shock in Saccharomyces cerevisiae

    PubMed Central

    Patching, J. W.; Rose, A. H.

    1971-01-01

    Saccharomyces cerevisiae NCYC 366 is susceptible to cold osmotic shock. Exponentially growing cells from batch cultures grown in defined medium at 30 C, after being suspended in 0.8 m mannitol containing 10 mm ethylenedia-minetetraacetic acid and then resuspended in ice-cold 0.5 mm MgCl2, accumulated the nonmetabolizable solutes d-glucosamine-hydrochloride and 2-aminoisobutyrate at slower rates than unshocked cells; shocked cells retained their viability. Storage of unshocked batch-grown cells in buffer at 10 C led to an increase in ability to accumulate glucosamine, and further experiments were confined to cells grown in a chemostat under conditions of glucose limitation, thereby obviating the need for storing cells before use. A study was made of the effect of the different stages in the cold osmotic shock procedure, including the osmotic stress, the chelating agent, and the cold Mg2+-containing diluent, on viability and solute-accumulating ability. Growth of shocked cells in defined medium resembled that of unshocked cells; however, in malt extract-yeast extract-glucose-peptone medium, the shocked cells had a longer lag phase of growth and initially grew at a slower rate. Cold osmotic shock caused the release of low-molecular-weight compounds and about 6 to 8% of the cell protein. Neither the cell envelope enzymes, invertase, acid phosphatase and l-leucine-β-naphthylamidase, nor the cytoplasmic enzyme, alkaline phosphatase, were released when yeast cells were subjected to cold osmotic shock. PMID:5001201

  19. Methylamine and ammonia transport in Saccharomyces cerevisiae.

    PubMed Central

    Roon, R J; Even, H L; Dunlop, P; Larimore, F L

    1975-01-01

    Methylamine (methylammonium ion) entered Saccharomyces cerevisiae X2180-A by means of a specific active transport system. Methylamine uptake was pH dependent (maximum rate between pH 6.0 and 6.5) and temperature dependent (increasing up to 35 C) and required the presence of a fermentable or oxidizable energy source in the growth medium. At 23 C the vmax for methylamine transport was similar 17 nmol/min per mg of cells (dry weight) and the apparent Km was 220 muM. The transport system exhibited maximal activity in ammonia-grown cells and was repressed 60 to 70 percent when glutamine or asparagine was added to the growth medium. There was no significant derepression of the transport system during nitrogen starvation. Ammonia (ammonium ion) was a strong competitive inhibitor of methylamine uptake, whereas other amines inhibited to a much lesser extent. Mutants selected on the basis of their reduced ability to transport methylamine (Mea-R) simultaneously exhibited a decreased ability to transport ammonia. PMID:236281

  20. Limited proteolysis of Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase.

    PubMed

    Herrera, L; Encinas, M V; Jabalquinto, A M; Cardemil, E

    1993-08-01

    Incubation of Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase with trypsin under native conditions cases a time-dependent loss of activity and the production of protein fragments. Cleavage sites determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis and sequence analyses identified protease-sensitive peptide bonds between amino acid residues at positions 9-10 and 76-77. Additional fragmentation sites were also detected in a region approximately 70-80 amino acids before the carboxyl end of the protein. These results suggest that the enzyme is formed by a central compact domain comprising more than two thirds of the whole protein structure. From proteolysis experiments carried out in the presence of substrates, it could be inferred that CO2 binding specifically protects position 76-77 from trypsin action. Intrinsic fluorescence measurements demonstrated that CO2 binding induces a protein conformational change, and a dissociation constant for the enzyme CO2 complex of 8.2 +/- 0.6 mM was determined.

  1. Stationary phase in the yeast Saccharomyces cerevisiae.

    PubMed Central

    Werner-Washburne, M; Braun, E; Johnston, G C; Singer, R A

    1993-01-01

    Growth and proliferation of microorganisms such as the yeast Saccharomyces cerevisiae are controlled in part by the availability of nutrients. When proliferating yeast cells exhaust available nutrients, they enter a stationary phase characterized by cell cycle arrest and specific physiological, biochemical, and morphological changes. These changes include thickening of the cell wall, accumulation of reserve carbohydrates, and acquisition of thermotolerance. Recent characterization of mutant cells that are conditionally defective only for the resumption of proliferation from stationary phase provides evidence that stationary phase is a unique developmental state. Strains with mutations affecting entry into and survival during stationary phase have also been isolated, and the mutations have been shown to affect at least seven different cellular processes: (i) signal transduction, (ii) protein synthesis, (iii) protein N-terminal acetylation, (iv) protein turnover, (v) protein secretion, (vi) membrane biosynthesis, and (vii) cell polarity. The exact nature of the relationship between these processes and survival during stationary phase remains to be elucidated. We propose that cell cycle arrest coordinated with the ability to remain viable in the absence of additional nutrients provides a good operational definition of starvation-induced stationary phase. PMID:8393130

  2. Ultrastructural changes of Saccharomyces cerevisiae in response to ethanol stress.

    PubMed

    Ma, Manli; Han, Pei; Zhang, Ruimin; Li, Hao

    2013-09-01

    In the fermentative process using Saccharomyces cerevisiae to produce bioethanol, the performance of cells is often compromised by the accumulation of ethanol. However, the mechanism of how S. cerevisiae responds against ethanol stress remains elusive. In the current study, S. cerevisiae cells were cultured in YPD (yeast extract - peptone - dextrose) medium containing various concentrations of ethanol (0%, 2.5%, 5%, 7.5%, 10%, and 15% (v/v)). Compared with the control group without ethanol, the mean cell volume of S. cerevisiae decreased significantly in the presence of 7.5% and 10% ethanol after incubation for 16 h (P < 0.05), and in the presence of 15% ethanol at all 3 sampling time points (1, 8, and 16 h) (P < 0.05). The exposure of S. cerevisiae cells to ethanol also led to an increase in malonyldialdehyde content (P < 0.05) and a decrease in sulfhydryl group content (P < 0.05). Moreover, the observations through transmission electron microscopy enabled us to relate ultrastructural changes elicited by ethanol with the cellular stress physiology. Under ethanol stress, the integrity of the cell membrane was compromised. The swelling or distortion of mitochondria together with the occurrence of a single and large vacuole was correlated with the addition of ethanol. These results suggested that the cell membrane is one of the targets of ethanol, and the degeneration of mitochondria promoted the accumulation of intracellular reactive oxygen species.

  3. Saccharomyces cerevisiae S288C genome annotation: a working hypothesis

    PubMed Central

    Fisk, Dianna G.; Ball, Catherine A.; Dolinski, Kara; Engel, Stacia R.; Hong, Eurie L.; Issel-Tarver, Laurie; Schwartz, Katja; Sethuraman, Anand; Botstein, David; Cherry, J. Michael

    2011-01-01

    The S. cerevisiae genome is the most well-characterized eukaryotic genome and one of the simplest in terms of identifying open reading frames (ORFs), yet its primary annotation has been updated continually in the decade since its initial release in 1996 (Goffeau et al., 1996). The Saccharomyces Genome Database (SGD; www.yeastgenome.org) (Hirschman et al., 2006), the community-designated repository for this reference genome, strives to ensure that the S. cerevisiae annotation is as accurate and useful as possible. At SGD, the S. cerevisiae genome sequence and annotation are treated as a working hypothesis, which must be repeatedly tested and refined. In this paper, in celebration of the tenth anniversary of the completion of the S. cerevisiae genome sequence, we discuss the ways in which the S. cerevisiae sequence and annotation have changed, consider the multiple sources of experimental and comparative data on which these changes are based, and describe our methods for evaluating, incorporating and documenting these new data. PMID:17001629

  4. Saccharomyces cerevisiae: a nomadic yeast with no niche?

    PubMed Central

    Goddard, Matthew R.; Greig, Duncan

    2015-01-01

    Different species are usually thought to have specific adaptations, which allow them to occupy different ecological niches. But recent neutral ecology theory suggests that species diversity can simply be the result of random sampling, due to finite population sizes and limited dispersal. Neutral models predict that species are not necessarily adapted to specific niches, but are functionally equivalent across a range of habitats. Here, we evaluate the ecology of Saccharomyces cerevisiae, one of the most important microbial species in human history. The artificial collection, concentration and fermentation of large volumes of fruit for alcohol production produce an environment in which S. cerevisiae thrives, and therefore it is assumed that fruit is the ecological niche that S. cerevisiae inhabits and has adapted to. We find very little direct evidence that S. cerevisiae is adapted to fruit, or indeed to any other specific niche. We propose instead a neutral nomad model for S. cerevisiae, which we believe should be used as the starting hypothesis in attempting to unravel the ecology of this important microbe. PMID:25725024

  5. Saccharomyces cerevisiae as a starter culture in Mycella.

    PubMed

    Hansen, T K; Tempel, T V; Cantor, M D; Jakobsen, M

    2001-09-19

    The potential use of Saccharomyces cerevisiae FB7 as an additional starter culture for the production of Mycella, a Danish Gorgonzola type cheese, was investigated. Two dairy productions of Mycella, each containing batches of experimental cheeses with S. cerevisiae added and reference cheeses without yeast added were carried out. For both experimental and reference cheeses, chemical analysis (pH, a(w), NaCl, water and fat content) were carried out during the ripening period, but no significant differences were found. The evolution of lactic acid bacteria was almost identical in both the experimental and reference cheeses and similar results were found for the number of yeast. S. cerevisiae FB7 was found to be predominant in the core of the experimental cheeses throughout the ripening period, while Debaryomyces hansenii dominated in the reference cheese and on the surface of the experimental cheeses. In the cheeses with S. cerevisiae FB7, an earlier sporulation and an improved growth of Penicillium roqueforti was observed compared to the reference cheeses. Furthermore, in the experimental cheese, synergistic interactions were also found in the aroma analysis, the degradation of casein and by the sensory analysis. The observed differences indicate a positive contribution to the overall quality of Mycella by S. cerevisiae FB7.

  6. Genetic mapping of quantitative phenotypic traits in Saccharomyces cerevisiae.

    PubMed

    Swinnen, Steve; Thevelein, Johan M; Nevoigt, Elke

    2012-03-01

    Saccharomyces cerevisiae has become a favorite production organism in industrial biotechnology presenting new challenges to yeast engineers in terms of introducing advantageous traits such as stress tolerances. Exploring subspecies diversity of S. cerevisiae has identified strains that bear industrially relevant phenotypic traits. Provided that the genetic basis of such phenotypic traits can be identified inverse engineering allows the targeted modification of production strains. Most phenotypic traits of interest in S. cerevisiae strains are quantitative, meaning that they are controlled by multiple genetic loci referred to as quantitative trait loci (QTL). A straightforward approach to identify the genetic basis of quantitative traits is QTL mapping which aims at the allocation of the genetic determinants to regions in the genome. The application of high-density oligonucleotide arrays and whole-genome re-sequencing to detect genetic variations between strains has facilitated the detection of large numbers of molecular markers thus allowing high-resolution QTL mapping over the entire genome. This review focuses on the basic principle and state of the art of QTL mapping in S. cerevisiae. Furthermore we discuss several approaches developed during the last decade that allow down-scaling of the regions identified by QTL mapping to the gene level. We also emphasize the particular challenges of QTL mapping in nonlaboratory strains of S. cerevisiae.

  7. Identification of Two Saccharomyces cerevisiae Cell Wall Mannan Chemotypes

    PubMed Central

    Cawley, T. N.; Ballou, Clinton E.

    1972-01-01

    We have obtained evidence for two structurally and antigenically different Saccharomyces cerevisiae cell wall mannans. One, which occurs widely and is found in S. cerevisiae strain 238C, is already known to be a neutral mannan which yields mannose, mannobiose, mannotriose, and mannotetraose on acetolysis of the (1 → 6)-linked backbone. The other, which was found in S. cerevisiae brewer's strains, is a phosphomannan with a structure very similar to that of Kloeckera brevis mannan. S. cerevisiae (brewer's yeast strain) was agglutinated by antiserum prepared against Kloeckera brevis cells. The mannan, isolated from a proteolytic digest of the cell wall of the former, did not react with S. cerevisiae 238C antiserum, whereas it cross-reacted strongly with K. brevis antiserum. Controlled acetolysis cleaved the (1 → 6)-linkages in the polysaccharide backbone and released mannose, mannobiose, mannotriose, and mannotriose phosphate. Mild acid treatment of the phosphomannan hydrolyzed the phosphodiester linkage, yielding phosphomonoester mannan and mannose. The resulting phosphomonoester mannan reacted with antiserum prepared against K. brevis possessing monoester phosphate groups on the cell surface. α-d-Mannose-1-phosphate completely inhibited the precipitin reaction between brewer's yeast mannan and the homologous antiserum. Flocculent and nonflocculent strains of this yeast were shown to have similar structural and immunological properties. PMID:4559821

  8. Overproduction of threonine by Saccharomyces cerevisiae mutants resistant to hydroxynorvaline.

    PubMed Central

    Ramos, C; Calderon, I L

    1992-01-01

    In this work, we isolated and characterized mutants that overproduce threonine from Saccharomyces cerevisiae. The mutants were selected for resistance to the threonine analog alpha-amino-beta-hydroxynorvalerate (hydroxynorvaline), and, of these, the ones able to excrete threonine to the medium were chosen. The mutant strains produce between 15 and 30 times more threonine than the wild type does, and, to a lesser degree, they also accumulate isoleucine. Genetic and biochemical studies have revealed that the threonine overproduction is, in all cases studied, associated with the presence in the strain of a HOM3 allele coding for a mutant aspartate kinase that is totally or partially insensitive to feedback inhibition by threonine. This enzyme seems, therefore, to be crucial in the regulation of threonine biosynthesis in S. cerevisiae. The results obtained suggest that this strategy could be efficiently applied to the isolation of threonine-overproducing strains of yeasts other than S. cerevisiae, even those used industrially. PMID:1622238

  9. Antimutagenic and antioxidant activity of Lisosan G in Saccharomyces cerevisiae.

    PubMed

    Frassinetti, Stefania; Della Croce, Clara Maria; Caltavuturo, Leonardo; Longo, Vincenzo

    2012-12-01

    In the present study the antimutagenic and antioxidant effects of a powder of grain (Lisosan G) in yeast Saccharomyces cerevisiae were studied. Results showed that Lisosan G treatment decreased significantly the intracellular ROS concentration and mutagenesis induced by hydrogen peroxide in S. cerevisiae D7 strain. The effect of Lisosan G was then evaluated by using superoxide dismutase (SOD) proficient and deficient strains of S. cerevisiae. Lisosan G showed protective activity in sod1Δ and sod2Δ mutant strains, indicating an in vivo antioxidant effect. A high radical scavenging activity of Lisosan G was also demonstrated in vitro using the oxygen radical absorbance capacity (ORAC) assay. The obtained results showed a protective effect of Lisosan G in yeast cells, indicating that its antioxidant capacity contributes to its antimutagenic action.

  10. Alternative Splicing in Next Generation Sequencing Data of Saccharomyces cerevisiae

    PubMed Central

    Schreiber, Konrad; Csaba, Gergely; Haslbeck, Martin; Zimmer, Ralf

    2015-01-01

    mRNA splicing is required in about 4% of protein coding genes in Saccharomyces cerevisiae. The gene structure of those genes is simple, generally comprising two exons and one intron. In order to characterize the impact of alternative splicing on the S. cerevisiae transcriptome, we perform a systematic analysis of mRNA sequencing data. We find evidence of a pervasive use of alternative splice sites and detect several novel introns both within and outside protein coding regions. We also find a predominance of alternative splicing on the 3’ side of introns, a finding which is consistent with existing knowledge on conservation of exon-intron boundaries in S. cerevisiae. Some of the alternatively spliced transcripts allow for a translation into different protein products. PMID:26469855

  11. Genetic engineering of industrial strains of Saccharomyces cerevisiae.

    PubMed

    Le Borgne, Sylvie

    2012-01-01

    Genetic engineering has been successfully applied to Saccharomyces cerevisiae laboratory strains for different purposes: extension of substrate range, improvement of productivity and yield, elimination of by-products, improvement of process performance and cellular properties, and extension of product range. The potential of genetically engineered yeasts for the massive production of biofuels as bioethanol and other nonfuel products from renewable resources as lignocellulosic biomass hydrolysates has been recognized. For such applications, robust industrial strains of S. cerevisiae have to be used. Here, some relevant genetic and genomic characteristics of industrial strains are discussed in relation to the problematic of the genetic engineering of such strains. General molecular tools applicable to the manipulation of S. cerevisiae industrial strains are presented and examples of genetically engineered industrial strains developed for the production of bioethanol from lignocellulosic biomass are given.

  12. Metabolic engineering of Saccharomyces cerevisiae for lactose/whey fermentation

    PubMed Central

    Guimarães, Pedro MR; Oliveira, Carla

    2010-01-01

    Lactose is an interesting carbon source for the production of several bio-products by fermentation, primarily because it is the major component of cheese whey, the main by-product of dairy activities. However, the microorganism more widely used in industrial fermentation processes, the yeast Saccharomyces cerevisiae, does not have a lactose metabolization system. Therefore, several metabolic engineering approaches have been used to construct lactose-consuming S. cerevisiae strains, particularly involving the expression of the lactose genes of the phylogenetically related yeast Kluyveromyces lactis, but also the lactose genes from Escherichia coli and Aspergillus niger, as reviewed here. Due to the existing large amounts of whey, the production of bio-ethanol from lactose by engineered S. cerevisiae has been considered as a possible route for whey surplus. Emphasis is given in the present review on strain improvement for lactose-to-ethanol bioprocesses, namely flocculent yeast strains for continuous high-cell-density systems with enhanced ethanol productivity. PMID:21326922

  13. Metabolic engineering of Saccharomyces cerevisiae for lactose/whey fermentation.

    PubMed

    Domingues, Lucília; Guimarães, Pedro M R; Oliveira, Carla

    2010-01-01

    Lactose is an interesting carbon source for the production of several bio-products by fermentation, primarily because it is the major component of cheese whey, the main by-product of dairy activities. However, the microorganism more widely used in industrial fermentation processes, the yeast Saccharomyces cerevisiae, does not have a lactose metabolization system. Therefore, several metabolic engineering approaches have been used to construct lactose-consuming S. cerevisiae strains, particularly involving the expression of the lactose genes of the phylogenetically related yeast Kluyveromyces lactis, but also the lactose genes from Escherichia coli and Aspergillus niger, as reviewed here. Due to the existing large amounts of whey, the production of bio-ethanol from lactose by engineered S. cerevisiae has been considered as a possible route for whey surplus. Emphasis is given in the present review on strain improvement for lactose-to-ethanol bioprocesses, namely flocculent yeast strains for continuous high-cell-density systems with enhanced ethanol productivity.

  14. Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae.

    PubMed

    van Zyl, Willem H; Lynd, Lee R; den Haan, Riaan; McBride, John E

    2007-01-01

    Consolidated bioprocessing (CBP) of lignocellulose to bioethanol refers to the combining of the four biological events required for this conversion process (production of saccharolytic enzymes, hydrolysis of the polysaccharides present in pretreated biomass, fermentation of hexose sugars, and fermentation of pentose sugars) in one reactor. CBP is gaining increasing recognition as a potential breakthrough for low-cost biomass processing. Although no natural microorganism exhibits all the features desired for CBP, a number of microorganisms, both bacteria and fungi, possess some of the desirable properties. This review focuses on progress made toward the development of baker's yeast (Saccharomyces cerevisiae) for CBP. The current status of saccharolytic enzyme (cellulases and hemicellulases) expression in S. cerevisiae to complement its natural fermentative ability is highlighted. Attention is also devoted to the challenges ahead to integrate all required enzymatic activities in an industrial S. cerevisiae strain(s) and the need for molecular and selection strategies pursuant to developing a yeast capable of CBP.

  15. Regulation of Cation Balance in Saccharomyces cerevisiae

    PubMed Central

    Cyert, Martha S.; Philpott, Caroline C.

    2013-01-01

    All living organisms require nutrient minerals for growth and have developed mechanisms to acquire, utilize, and store nutrient minerals effectively. In the aqueous cellular environment, these elements exist as charged ions that, together with protons and hydroxide ions, facilitate biochemical reactions and establish the electrochemical gradients across membranes that drive cellular processes such as transport and ATP synthesis. Metal ions serve as essential enzyme cofactors and perform both structural and signaling roles within cells. However, because these ions can also be toxic, cells have developed sophisticated homeostatic mechanisms to regulate their levels and avoid toxicity. Studies in Saccharomyces cerevisiae have characterized many of the gene products and processes responsible for acquiring, utilizing, storing, and regulating levels of these ions. Findings in this model organism have often allowed the corresponding machinery in humans to be identified and have provided insights into diseases that result from defects in ion homeostasis. This review summarizes our current understanding of how cation balance is achieved and modulated in baker’s yeast. Control of intracellular pH is discussed, as well as uptake, storage, and efflux mechanisms for the alkali metal cations, Na+ and K+, the divalent cations, Ca2+ and Mg2+, and the trace metal ions, Fe2+, Zn2+, Cu2+, and Mn2+. Signal transduction pathways that are regulated by pH and Ca2+ are reviewed, as well as the mechanisms that allow cells to maintain appropriate intracellular cation concentrations when challenged by extreme conditions, i.e., either limited availability or toxic levels in the environment. PMID:23463800

  16. Synthesis of ribosomes in Saccharomyces cerevisiae.

    PubMed Central

    Warner, J R

    1989-01-01

    The assembly of a eucaryotic ribosome requires the synthesis of four ribosomal ribonucleic acid (RNA) molecules and more than 75 ribosomal proteins. It utilizes all three RNA polymerases; it requires the cooperation of the nucleus and the cytoplasm, the processing of RNA, and the specific interaction of RNA and protein molecules. It is carried out efficiently and is exquisitely sensitive to the needs of the cell. Our current understanding of this process in the genetically tractable yeast Saccharomyces cerevisiae is reviewed. The ribosomal RNA genes are arranged in a tandem array of 100 to 200 copies. This tandem array has led to unique ways of carrying out a number of functions. Replication is asymmetric and does not initiate from every autonomously replicating sequence. Recombination is suppressed. Transcription of the major ribosomal RNA appears to involve coupling between adjacent transcription units, which are separated by the 5S RNA transcription unit. Genes for many ribosomal proteins have been cloned and sequenced. Few are linked; most are duplicated; most have an intron. There is extensive homology between yeast ribosomal proteins and those of other species. Most, but not all, of the ribosomal protein genes have one or two sites that are essential for their transcription and that bind a common transcription factor. This factor binds also to many other places in the genome, including the telomeres. There is coordinated transcription of the ribosomal protein genes under a variety of conditions. However, the cell seems to possess no mechanism for regulating the transcription of individual ribosomal protein genes in response either to a deficiency or an excess of a particular ribosomal protein. A deficiency causes slow growth. Any excess ribosomal protein is degraded very rapidly, with a half-life of 1 to 5 min. Unlike most types of cells, yeast cells appear not to regulate the translation of ribosomal proteins. However, in the case of ribosomal protein L32

  17. The ethanol stress response and ethanol tolerance of Saccharomyces cerevisiae.

    PubMed

    Stanley, D; Bandara, A; Fraser, S; Chambers, P J; Stanley, G A

    2010-07-01

    Saccharomyces cerevisiae is traditionally used for alcoholic beverage and bioethanol production; however, its performance during fermentation is compromised by the impact of ethanol accumulation on cell vitality. This article reviews studies into the molecular basis of the ethanol stress response and ethanol tolerance of S. cerevisiae; such knowledge can facilitate the development of genetic engineering strategies for improving cell performance during ethanol stress. Previous studies have used a variety of strains and conditions, which is problematic, because the impact of ethanol stress on gene expression is influenced by the environment. There is however some commonality in Gene Ontology categories affected by ethanol assault that suggests that the ethanol stress response of S. cerevisiae is compromised by constraints on energy production, leading to increased expression of genes associated with glycolysis and mitochondrial function, and decreased gene expression in energy-demanding growth-related processes. Studies using genome-wide screens suggest that the maintenance of vacuole function is important for ethanol tolerance, possibly because of the roles of this organelle in protein turnover and maintaining ion homoeostasis. Accumulation of Asr1 and Rat8 in the nucleus specifically during ethanol stress suggests S. cerevisiae has a specific response to ethanol stress although this supposition remains controversial.

  18. Interaction between Hanseniaspora uvarum and Saccharomyces cerevisiae during alcoholic fermentation.

    PubMed

    Wang, Chunxiao; Mas, Albert; Esteve-Zarzoso, Braulio

    2015-08-03

    During wine fermentation, Saccharomyces clearly dominate over non-Saccharomyces wine yeasts, and several factors could be related to this dominance. However, the main factor causing the reduction of cultivable non-Saccharomyces populations has not yet been fully established. In the present study, various single and mixed fermentations were performed to evaluate some of the factors likely responsible for the interaction between Saccharomyces cerevisiae and Hanseniaspora uvarum. Alcoholic fermentation was performed in compartmented experimental set ups with ratios of 1:1 and 1:9 and the cultivable population of both species was followed. The cultivable H. uvarum population decreased sharply at late stages when S. cerevisiae was present in the other compartment, similarly to alcoholic fermentations in non-compartmented vessels. Thus, cell-to-cell contact did not seem to be the main cause for the lack of cultivability of H. uvarum. Other compounds related to fermentation performance (such as sugar and ethanol) and/or certain metabolites secreted by S. cerevisiae could be related to the sharp decrease in H. uvarum cultivability. When these factors were analyzed, it was confirmed that metabolites from S. cerevisiae induced lack of cultivability in H. uvarum, however ethanol and other possible compounds did not seem to induce this effect but played some role during the process. This study contributes to a new understanding of the lack of cultivability of H. uvarum populations during the late stages of wine fermentation.

  19. Quantifying the complexities of Saccharomyces cerevisiae's ecosystem engineering via fermentation.

    PubMed

    Goddard, Matthew R

    2008-08-01

    The theory of niche construction suggests that organisms may engineer environments via their activities. Despite the potential of this phenomenon being realized by Darwin, the capability of niche construction to generally unite ecological and evolutionary biology has never been empirically quantified. Here I quantify the fitness effects of Saccharomyces cerevisiae's ecosystem engineering in a natural ferment in order to understand the interaction between ecological and evolutionary processes. I show that S. cerevisiae eventually dominates in fruit niches, where it is naturally initially rare, by modifying the environment through fermentation (the Crabtree effect) in ways which extend beyond just considering ethanol production. These data show that an additional cause of S. cerevisiae's competitive advantage over the other yeasts in the community is due to the production of heat via fermentation. Even though fermentation is less energetically efficient than respiration, it seems that this trait has been selected for because its net effect provides roughly a 7% fitness advantage over the other members of the community. These data provide an elegant example of niche construction because this trait clearly modifies the environment and therefore the selection pressures to which S. cerevisiae, and other organisms that access the fruit resource, including humans, are exposed to.

  20. Molecular mechanisms of ethanol tolerance in Saccharomyces cerevisiae

    USDA-ARS?s Scientific Manuscript database

    The yeast Saccharomyces cerevisiae is a superb ethanol producer, yet sensitive to ethanol at higher concentrations especially under high gravity or very high gravity fermentation conditions. Although significant efforts have been made to study ethanol-stress response in past decades, molecular mecha...

  1. Genetic stabilization of Saccharomyces cerevisiae oenological strains by using benomyl.

    PubMed

    Blasco, Lucía; Feijoo-Siota, Lucía; Veiga-Crespo, Patricia; Villa, Tomás G

    2008-06-01

    Wild-type oenological strains of Saccharomyces cerevisiae are usually aneuploid and heterozygotes; thus, when they are used as starters in must fermentation the resulting wine characteristics may vary from year to year. Treatment of a wild-type S. cerevisiae oenological strain with benomyl (methyl-l-butylcarbamoyl-2-benzimidazole carbamate), an antifungal agent shown to cause chromosome loss in yeasts, resulted in a stable starter strain in which the parental oenological traits were unchanged. The oenological S. cerevisiae strain was treated with benomyl in two different ways (A and B), and sporulation ability and spore viability were subsequently assayed. Treatment A resulted in both the highest numbers of tetrads and a reduction in DNA cell content, while treatment B increased spore viability. Fermentation assays were carried out with spore clones obtained from treatment A, and the concentrations of glycerol, lactic acid, acetic acid, and ethanol resulting from the treated strains were found to be similar to those of the parental strain. Benomyl treatment thus achieved stable, highly sporulating oenological S. cerevisiae strains of low ploidy, but preserved the desirable oenological properties of the parental strain.

  2. Improving biomass sugar utilization by engineered Saccharomyces cerevisiae

    USDA-ARS?s Scientific Manuscript database

    The efficient utilization of all available sugars in lignocellulosic biomass, which is more abundant than available commodity crops and starch, represents one of the most difficult technological challenges for the production of bioethanol. The well-studied yeast Saccharomyces cerevisiae has played a...

  3. Information propagation within the Genetic Network of Saccharomyces cerevisiae.

    PubMed

    Chowdhury, Sharif; Lloyd-Price, Jason; Smolander, Olli-Pekka; Baici, Wayne C V; Hughes, Timothy R; Yli-Harja, Olli; Chua, Gordon; Ribeiro, Andre S

    2010-10-26

    A gene network's capacity to process information, so as to bind past events to future actions, depends on its structure and logic. From previous and new microarray measurements in Saccharomyces cerevisiae following gene deletions and overexpressions, we identify a core gene regulatory network (GRN) of functional interactions between 328 genes and the transfer functions of each gene. Inferred connections are verified by gene enrichment. We find that this core network has a generalized clustering coefficient that is much higher than chance. The inferred Boolean transfer functions have a mean p-bias of 0.41, and thus similar amounts of activation and repression interactions. However, the distribution of p-biases differs significantly from what is expected by chance that, along with the high mean connectivity, is found to cause the core GRN of S. cerevisiae's to have an overall sensitivity similar to critical Boolean networks. In agreement, we find that the amount of information propagated between nodes in finite time series is much higher in the inferred core GRN of S. cerevisiae than what is expected by chance. We suggest that S. cerevisiae is likely to have evolved a core GRN with enhanced information propagation among its genes.

  4. Human acylphosphatase cannot replace phosphoglycerate kinase in Saccharomyces cerevisiae.

    PubMed

    Van Hoek, P; Modesti, A; Ramponi, G; Kötter, P; van Dijken, J P; Pron, J T

    2001-10-01

    Human acylphosphatase (h-AP, EC 3.6.1.7) has been reported to catalyse the hydrolysis of the 1-phosphate group of 1,3-diphosphoglycerate. In vivo operation of this reaction in the yeast Saccharomyces cerevisiae would bypass phosphoglycerate kinase and thus reduce the ATP yield from glycolysis. To investigate whether h-AP can indeed replace the S. cerevisiae phosphoglycerate kinase, a multi-copy plasmid carrying the h-AP gene under control of the yeast TDH3 promoter was introduced into a pgk1 delta mutant of S. cerevisiae. A strain carrying the expression vector without the h-AP cassette was used as a reference. For both strains, steady-state carbon- and energy-limited chemostat cultures were obtained at a dilution rate of 0.10 h(-1) on a medium containing a mixture of glucose and ethanol (15% and 85% on a carbon basis, respectively). Although the h-AP strain exhibited a high acylphosphatase activity in cell extracts, switching to glucose as sole carbon and energy source resulted in a complete arrest of glucose consumption and growth. The lack of a functional glycolytic pathway was further evident from the absence of ethanol formation in the presence of excess glucose in the culture. As h-AP cannot replace yeast phosphoglycerate kinase in vivo, the enzyme is not a useful tool to modify the ATP yield of glycolysis in S. cerevisiae.

  5. Analysis of the RNA Content of the Yeast "Saccharomyces Cerevisiae"

    ERIC Educational Resources Information Center

    Deutch, Charles E.; Marshall, Pamela A.

    2008-01-01

    In this article, the authors describe an interconnected set of relatively simple laboratory experiments in which students determine the RNA content of yeast cells and use agarose gel electrophoresis to separate and analyze the major species of cellular RNA. This set of experiments focuses on RNAs from the yeast "Saccharomyces cerevisiae", a…

  6. Analysis of the RNA Content of the Yeast "Saccharomyces Cerevisiae"

    ERIC Educational Resources Information Center

    Deutch, Charles E.; Marshall, Pamela A.

    2008-01-01

    In this article, the authors describe an interconnected set of relatively simple laboratory experiments in which students determine the RNA content of yeast cells and use agarose gel electrophoresis to separate and analyze the major species of cellular RNA. This set of experiments focuses on RNAs from the yeast "Saccharomyces cerevisiae", a…

  7. No current evidence for widespread dosage compensation in S. cerevisiae

    PubMed Central

    Torres, Eduardo M; Springer, Michael; Amon, Angelika

    2016-01-01

    Previous studies of laboratory strains of budding yeast had shown that when gene copy number is altered experimentally, RNA levels generally scale accordingly. This is true when the copy number of individual genes or entire chromosomes is altered. In a recent study, Hose et al. (2015) reported that this tight correlation between gene copy number and RNA levels is not observed in recently isolated wild Saccharomyces cerevisiae variants. To understand the origins of this proposed difference in gene expression regulation between natural variants and laboratory strains of S. cerevisiae, we evaluated the karyotype and gene expression studies performed by Hose et al. on wild S. cerevisiae strains. In contrast to the results of Hose et al., our reexamination of their data revealed a tight correlation between gene copy number and gene expression. We conclude that widespread dosage compensation occurs neither in laboratory strains nor in natural variants of S. cerevisiae. DOI: http://dx.doi.org/10.7554/eLife.10996.001 PMID:26949255

  8. Sucrose and Saccharomyces cerevisiae: a relationship most sweet.

    PubMed

    Marques, Wesley Leoricy; Raghavendran, Vijayendran; Stambuk, Boris Ugarte; Gombert, Andreas Karoly

    2016-02-01

    Sucrose is an abundant, readily available and inexpensive substrate for industrial biotechnology processes and its use is demonstrated with much success in the production of fuel ethanol in Brazil. Saccharomyces cerevisiae, which naturally evolved to efficiently consume sugars such as sucrose, is one of the most important cell factories due to its robustness, stress tolerance, genetic accessibility, simple nutrient requirements and long history as an industrial workhorse. This minireview is focused on sucrose metabolism in S. cerevisiae, a rather unexplored subject in the scientific literature. An analysis of sucrose availability in nature and yeast sugar metabolism was performed, in order to understand the molecular background that makes S. cerevisiae consume this sugar efficiently. A historical overview on the use of sucrose and S. cerevisiae by humans is also presented considering sugarcane and sugarbeet as the main sources of this carbohydrate. Physiological aspects of sucrose consumption are compared with those concerning other economically relevant sugars. Also, metabolic engineering efforts to alter sucrose catabolism are presented in a chronological manner. In spite of its extensive use in yeast-based industries, a lot of basic and applied research on sucrose metabolism is imperative, mainly in fields such as genetics, physiology and metabolic engineering.

  9. 2μ plasmid in Saccharomyces species and in Saccharomyces cerevisiae

    PubMed Central

    Strope, Pooja K.; Kozmin, Stanislav G.; Skelly, Daniel A.; Magwene, Paul M.; Dietrich, Fred S.; McCusker, John H.

    2015-01-01

    We determined that extrachromosomal 2μ plasmid was present in 67 of the Saccharomyces cerevisiae 100-genome strains; in addition to variation in the size and copy number of 2μ, we identified three distinct classes of 2μ. We identified 2μ presence/absence and class associations with populations, clinical origin and nuclear genotypes. We also screened genome sequences of S. paradoxus, S. kudriavzevii, S. uvarum, S. eubayanus, S. mikatae, S. arboricolus and S. bayanus strains for both integrated and extrachromosomal 2μ. Similar to S. cerevisiae, we found no integrated 2μ sequences in any S. paradoxus strains. However, we identified part of 2μ integrated into the genomes of some S. uvarum, S. kudriavzevii, S. mikatae and S. bayanus strains, which were distinct from each other and from all extrachromosomal 2μ. We identified extrachromosomal 2μ in one S. paradoxus, one S. eubayanus, two S. bayanus and 13 S. uvarum strains. The extrachromosomal 2μ in S. paradoxus, S. eubayanus and S. cerevisiae were distinct from each other. In contrast, the extrachromosomal 2μ in S. bayanus and S. uvarum strains were identical with each other and with one of the three classes of S. cerevisiae 2μ, consistent with interspecific transfer. PMID:26463005

  10. 2μ plasmid in Saccharomyces species and in Saccharomyces cerevisiae.

    PubMed

    Strope, Pooja K; Kozmin, Stanislav G; Skelly, Daniel A; Magwene, Paul M; Dietrich, Fred S; McCusker, John H

    2015-12-01

    We determined that extrachromosomal 2μ plasmid was present in 67 of the Saccharomyces cerevisiae 100-genome strains; in addition to variation in the size and copy number of 2μ, we identified three distinct classes of 2μ. We identified 2μ presence/absence and class associations with populations, clinical origin and nuclear genotypes. We also screened genome sequences of S. paradoxus, S. kudriavzevii, S. uvarum, S. eubayanus, S. mikatae, S. arboricolus and S. bayanus strains for both integrated and extrachromosomal 2μ. Similar to S. cerevisiae, we found no integrated 2μ sequences in any S. paradoxus strains. However, we identified part of 2μ integrated into the genomes of some S. uvarum, S. kudriavzevii, S. mikatae and S. bayanus strains, which were distinct from each other and from all extrachromosomal 2μ. We identified extrachromosomal 2μ in one S. paradoxus, one S. eubayanus, two S. bayanus and 13 S. uvarum strains. The extrachromosomal 2μ in S. paradoxus, S. eubayanus and S. cerevisiae were distinct from each other. In contrast, the extrachromosomal 2μ in S. bayanus and S. uvarum strains were identical with each other and with one of the three classes of S. cerevisiae 2μ, consistent with interspecific transfer. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Recycling carbon dioxide during xylose fermentation by engineered Saccharomyces cerevisiae

    USDA-ARS?s Scientific Manuscript database

    In this study, we introduced the ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and phosphoribulokinase (PRK) into an engineered S. cerevisiae (SR8) harboring the XR/XDH pathway and up-regulated PPP 10, to enable CO2 recycling through a synthetic rPPP during xylose fermentation (Fig. 1). ...

  12. Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae.

    PubMed

    Brat, Dawid; Boles, Eckhard; Wiedemann, Beate

    2009-04-01

    In industrial fermentation processes, the yeast Saccharomyces cerevisiae is commonly used for ethanol production. However, it lacks the ability to ferment pentose sugars like d-xylose and l-arabinose. Heterologous expression of a xylose isomerase (XI) would enable yeast cells to metabolize xylose. However, many attempts to express a prokaryotic XI with high activity in S. cerevisiae have failed so far. We have screened nucleic acid databases for sequences encoding putative XIs and finally were able to clone and successfully express a highly active new kind of XI from the anaerobic bacterium Clostridium phytofermentans in S. cerevisiae. Heterologous expression of this enzyme confers on the yeast cells the ability to metabolize d-xylose and to use it as the sole carbon and energy source. The new enzyme has low sequence similarities to the XIs from Piromyces sp. strain E2 and Thermus thermophilus, which were the only two XIs previously functionally expressed in S. cerevisiae. The activity and kinetic parameters of the new enzyme are comparable to those of the Piromyces XI. Importantly, the new enzyme is far less inhibited by xylitol, which accrues as a side product during xylose fermentation. Furthermore, expression of the gene could be improved by adapting its codon usage to that of the highly expressed glycolytic genes of S. cerevisiae. Expression of the bacterial XI in an industrially employed yeast strain enabled it to grow on xylose and to ferment xylose to ethanol. Thus, our findings provide an excellent starting point for further improvement of xylose fermentation in industrial yeast strains.

  13. Enhanced lysosomal activity by overexpressed aminopeptidase Y in Saccharomyces cerevisiae.

    PubMed

    Yoon, Jihee; Sekhon, Simranjeet Singh; Kim, Yang-Hoon; Min, Jiho

    2016-06-01

    Saccharomyces cerevisiae contains vacuoles corresponding to lysosomes in higher eukaryotes. Lysosomes are dynamic (not silent) organelles in which enzymes can be easily integrated or released when exposed to stressful conditions. Changes in lysosomal enzymes have been observed due to oxidative stress, resulting in an increased function of lysosomes. The protein profiles from H2O2- and NH4Cl-treated lysosomes showed different expression patterns, observed with two-dimensional gel electrophoresis. The aminopeptidase Y protein (APE3) that conspicuously enhanced antimicrobial activity than other proteins was selected for further studies. The S. cerevisiae APE3 gene was isolated and inserted into pYES2.0 expression vector. The GFP gene was inserted downstream to the APE3 gene for confirmation of APE3 targeting to lysosomes, and S. cerevisiae was transformed to pYES2::APE3::GFP. The APE3 did not enter in lysosomes and formed an inclusion body at 30 °C, but it inserted to lysosomes as shown by the merger of GFP with lysosomes at 28 °C. Antimicrobial activity of the cloned S. cerevisiae increased about 5 to 10 % against eight strains, compared to normal cells, and galactose induction is increased more two folds than that of normal cells. Therefore, S. cerevisiae was transformed to pYES2::APE3::GFP, accumulating a large amount of APE3, resulting in increased lysosomal activity. Increase in endogenous levels of lysosomes and their activity following genetic modification can lead to its use in applications such as antimicrobial agents and apoptosis-inducing materials for cancer cells, and consequently, it may also be possible to use the organelles for improving in vitro functions.

  14. Population structure of mitochondrial genomes in Saccharomyces cerevisiae.

    PubMed

    Wolters, John F; Chiu, Kenneth; Fiumera, Heather L

    2015-06-11

    Rigorous study of mitochondrial functions and cell biology in the budding yeast, Saccharomyces cerevisiae has advanced our understanding of mitochondrial genetics. This yeast is now a powerful model for population genetics, owing to large genetic diversity and highly structured populations among wild isolates. Comparative mitochondrial genomic analyses between yeast species have revealed broad evolutionary changes in genome organization and architecture. A fine-scale view of recent evolutionary changes within S. cerevisiae has not been possible due to low numbers of complete mitochondrial sequences. To address challenges of sequencing AT-rich and repetitive mitochondrial DNAs (mtDNAs), we sequenced two divergent S. cerevisiae mtDNAs using a single-molecule sequencing platform (PacBio RS). Using de novo assemblies, we generated highly accurate complete mtDNA sequences. These mtDNA sequences were compared with 98 additional mtDNA sequences gathered from various published collections. Phylogenies based on mitochondrial coding sequences and intron profiles revealed that intraspecific diversity in mitochondrial genomes generally recapitulated the population structure of nuclear genomes. Analysis of intergenic sequence indicated a recent expansion of mobile elements in certain populations. Additionally, our analyses revealed that certain populations lacked introns previously believed conserved throughout the species, as well as the presence of introns never before reported in S. cerevisiae. Our results revealed that the extensive variation in S. cerevisiae mtDNAs is often population specific, thus offering a window into the recent evolutionary processes shaping these genomes. In addition, we offer an effective strategy for sequencing these challenging AT-rich mitochondrial genomes for small scale projects.

  15. [Saccharomyces cerevisiae as a model organism for studying the carcinogenicity of non-ionizing electromagnetic fields and radiation].

    PubMed

    Voĭchuk, S I

    2014-01-01

    Medical and biological aspects of the effects of non-ionizing electromagnetic (EM) fields and radiation on human health are the important issues that have arisen as a result of anthropogenic impact on the biosphere. Safe use of man-made sources of non-ionizing electromagnetic fields and radiation in a broad range of frequencies--static, radio-frequency and microwave--is a subject of discussions and speculations. The main problem is the lack of understanding of the mechanism(s) of reception of EMFs by living organisms. In this review we have analyzed the existing literature data regarding the effects of the electromagnetic radiation on the model eukaryotic organism--yeast Saccharomyces cerevisiae. An attempt was made to estimate the probability of induction of carcinogenesis in humans under the influence of magnetic fields and electromagnetic radiation of extremely low frequency, radio frequency and microwave ranges.

  16. Transcriptional profiling of Saccharomyces cerevisiae exposed to propolis

    PubMed Central

    2012-01-01

    Background Propolis is a natural product of plant resins collected by honeybees (Apis mellifera) from various plant sources. Our previous studies indicated that propolis sensitivity is dependent on the mitochondrial function and that vacuolar acidification and autophagy are important for yeast cell death caused by propolis. Here, we extended our understanding of propolis-mediated cell death in the yeast Saccharomyces cerevisiae by applying systems biology tools to analyze the transcriptional profiling of cells exposed to propolis. Methods We have used transcriptional profiling of S. cerevisiae exposed to propolis. We validated our findings by using real-time PCR of selected genes. Systems biology tools (physical protein-protein interaction [PPPI] network) were applied to analyse the propolis-induced transcriptional bevavior, aiming to identify which pathways are modulated by propolis in S. cerevisiae and potentially influencing cell death. Results We were able to observe 1,339 genes modulated in at least one time point when compared to the reference time (propolis untreated samples) (t-test, p-value 0.01). Enrichment analysis performed by Gene Ontology (GO) Term finder tool showed enrichment for several biological categories among the genes up-regulated in the microarray hybridization such as transport and transmembrane transport and response to stress. Real-time RT-PCR analysis of selected genes showed by our microarray hybridization approach was capable of providing information about S. cerevisiae gene expression modulation with a considerably high level of confidence. Finally, a physical protein-protein (PPPI) network design and global topological analysis stressed the importance of these pathways in response of S. cerevisiae to propolis and were correlated with the transcriptional data obtained thorough the microarray analysis. Conclusions In summary, our data indicate that propolis is largely affecting several pathways in the eukaryotic cell. However, the most

  17. Isoprene hydrocarbons production upon heterologous transformation of Saccharomyces cerevisiae.

    PubMed

    Hong, S-Y; Zurbriggen, A S; Melis, A

    2012-07-01

      Isoprene (2-methyl-1,3-butadiene; C(5) H(8) ) is naturally produced by photosynthesis and emitted in the atmosphere by the leaves of many herbaceous, deciduous and woody plants. Fermentative yeast and fungi (Ascomycota) are not genetically endowed with the isoprene production process. The work investigated whether Ascomycota can be genetically modified and endowed with the property of constitutive isoprene production.   Two different strategies for expression of the IspS gene in Saccharomyces cerevisiae were employed: (i) optimization of codon usage of the IspS gene for specific expression in S. cerevisiae and (ii) multiple independent integrations of the IspS gene in the rDNA loci of the yeast genome. Copy number analysis showed that IspS transgenes were on the average incorporated within about 25% of the endogenous rDNA. Codon use optimization of the Pueraria montana (kudzu vine) IspS gene (SckIspS) for S. cerevisiae showed fivefold greater expression of the IspS protein compared with that of nonoptimized IspS (kIspS). With the strategies mentioned earlier, heterologous expression of the kudzu isoprene synthase gene (kIspS) in S. cerevisiae was tested for stability and as a potential platform of fermentative isoprene production. The multi-copy IspS transgenes were stably integrated and expressed for over 100 generations of yeast cell growth and constitutively produced volatile isoprene hydrocarbons. Secondary chemical modification of isoprene to a number of hydroxylated isoprene derivatives in the sealed reactor was also observed.   Transformation of S. cerevisiae with the Pueraria montana var. lobata (kudzu vine) isoprene synthase gene (IspS) conferred to the yeast cells constitutive isoprene hydrocarbons production in the absence of adverse or toxic effects.   First-time demonstration of constitutive isoprene hydrocarbons production in a fermentative eukaryote operated through the mevalonic acid pathway. The work provides concept validation for the

  18. ULTRAVIOLET MICROSCOPY OF THE VACUOLE OF SACCHAROMYCES CEREVISIAE DURING SPORULATION

    PubMed Central

    Svihla, G.; Dainko, J. L.; Schlenk, F.

    1964-01-01

    Svihla, G. (Argonne National Laboratory, Argonne, Ill.), J. L. Dainko, and F. Schlenk. Ultraviolet microscopy of the vacuole of Saccharomyces cerevisiae during sporulation. J. Bacteriol. 88:449–456. 1964.—Normal cells of Saccharomyces cerevisiae and cells containing, in their vacuoles, large quantities of S-adenosylmethionine were induced to sporulate. In the latter case, the strong ultraviolet absorption of the compound permitted photomicrographic observation of cytological detail. Chromatographic and spectrophotometric analyses of cell extracts supplemented the cytological studies. The vacuole is abolished at the onset of sporulation, and its contents may be observed temporarily in the intersporular space. As sporulation progresses, the material is discharged into the culture medium. Sporulation of both types of cells also leads to a release of nucleic acid fragments into the culture medium. Images PMID:14203363

  19. Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae.

    PubMed

    Den Haan, Riaan; Rose, Shaunita H; Lynd, Lee R; van Zyl, Willem H

    2007-01-01

    In this study, we expressed two cellulase encoding genes, an endoglucanase of Trichoderma reesei (EGI) and the beta-glucosidase of Saccharomycopsis fibuligera (BGL1), in combination in Saccharomyces cerevisiae. The resulting strain was able to grow on phosphoric acid swollen cellulose (PASC) through simultaneous production of sufficient extracellular endoglucanase and beta-glucosidase activity. Anaerobic growth (0.03h(-1)) up to 0.27gl(-1) DCW was observed on medium containing 10gl(-1) PASC as sole carbohydrate source with concomitant ethanol production of up to 1.0gl(-1). We have thus demonstrated the construction of a yeast strain capable of growth on and one-step conversion of amorphous cellulose to ethanol, representing significant progress towards realization of one-step processing of cellulosic biomass in a consolidated bioprocessing configuration. To our knowledge, this is the first report of a recombinant strain of S. cerevisiae growing on pure cellulose.

  20. The reference genome sequence of Saccharomyces cerevisiae: then and now.

    PubMed

    Engel, Stacia R; Dietrich, Fred S; Fisk, Dianna G; Binkley, Gail; Balakrishnan, Rama; Costanzo, Maria C; Dwight, Selina S; Hitz, Benjamin C; Karra, Kalpana; Nash, Robert S; Weng, Shuai; Wong, Edith D; Lloyd, Paul; Skrzypek, Marek S; Miyasato, Stuart R; Simison, Matt; Cherry, J Michael

    2014-03-20

    The genome of the budding yeast Saccharomyces cerevisiae was the first completely sequenced from a eukaryote. It was released in 1996 as the work of a worldwide effort of hundreds of researchers. In the time since, the yeast genome has been intensively studied by geneticists, molecular biologists, and computational scientists all over the world. Maintenance and annotation of the genome sequence have long been provided by the Saccharomyces Genome Database, one of the original model organism databases. To deepen our understanding of the eukaryotic genome, the S. cerevisiae strain S288C reference genome sequence was updated recently in its first major update since 1996. The new version, called "S288C 2010," was determined from a single yeast colony using modern sequencing technologies and serves as the anchor for further innovations in yeast genomic science.

  1. Pathways and Mechanisms that Prevent Genome Instability in Saccharomyces cerevisiae.

    PubMed

    Putnam, Christopher D; Kolodner, Richard D

    2017-07-01

    Genome rearrangements result in mutations that underlie many human diseases, and ongoing genome instability likely contributes to the development of many cancers. The tools for studying genome instability in mammalian cells are limited, whereas model organisms such as Saccharomyces cerevisiae are more amenable to these studies. Here, we discuss the many genetic assays developed to measure the rate of occurrence of Gross Chromosomal Rearrangements (called GCRs) in S. cerevisiae These genetic assays have been used to identify many types of GCRs, including translocations, interstitial deletions, and broken chromosomes healed by de novo telomere addition, and have identified genes that act in the suppression and formation of GCRs. Insights from these studies have contributed to the understanding of pathways and mechanisms that suppress genome instability and how these pathways cooperate with each other. Integrated models for the formation and suppression of GCRs are discussed. Copyright © 2017 by the Genetics Society of America.

  2. Saccharomyces cerevisiae thermal inactivation kinetics combined with ultrasound.

    PubMed

    López-Malo, A; Guerrero, S; Alzamora, S M

    1999-10-01

    Inactivation kinetics of Saccharomyces cerevisiae during thermal treatments at moderate temperatures (45.0, 47.5, 50.0, 52.5, or 55.0 degrees C) combined with application of 20 kHz of ultrasound were evaluated. S. cerevisiae inactivation under the combined effects of heat and ultrasound followed first-order reaction kinetics, with decimal reduction times (D) that varied from 22.3 to 0.8 min. D values in treatments that combined heat and ultrasound were significantly smaller (P < 0.05) than D values obtained for thermal treatments and were more noticeable at temperatures below 50 degrees C. The dependence of the D value on temperature had a significantly (P < 0.05) greater z value for combined treatments. Yeast heat inactivation kinetics revealed decreased thermal resistance caused by ultrasound.

  3. Advanced biofuel production by the yeast Saccharomyces cerevisiae.

    PubMed

    Buijs, Nicolaas A; Siewers, Verena; Nielsen, Jens

    2013-06-01

    Replacement of conventional transportation fuels with biofuels will require production of compounds that can cover the complete fuel spectrum, ranging from gasoline to kerosene. Advanced biofuels are expected to play an important role in replacing fossil fuels because they have improved properties compared with ethanol and some of these may have the energy density required for use in heavy duty vehicles, ships, and aviation. Moreover, advanced biofuels can be used as drop-in fuels in existing internal combustion engines. The yeast cell factory Saccharomyces cerevisiae can be turned into a producer of higher alcohols (1-butanol and isobutanol), sesquiterpenes (farnesene and bisabolene), and fatty acid ethyl esters (biodiesel), and here we discusses progress in metabolic engineering of S. cerevisiae for production of these advanced biofuels. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. SOME FACTORS AFFECTING STEROL FORMATION IN SACCHAROMYCES CEREVISIAE1

    PubMed Central

    Starr, Patricia R.; Parks, L. W.

    1962-01-01

    Starr, Patricia R. (Oregon State University, Corvallis) and L. W. Parks. Some factors affecting sterol formation in Saccharomyces cerevisiae. J. Bacteriol. 83:1042–1046. 1962.—A wild-type diploid strain of Saccharomyces cerevisiae was used in a study of factors that influence sterol synthesis. Maltose, glucose, sodium acetate, and ethanol were shown to be readily available for sterol synthesis in growing cultures of yeast. In cells grown anaerobically and then exposed to various substrates in aerobic resting-cell suspension, only glucose and ethanol stimulated ergosterol formation. Under these conditions, sterol synthesis was directly proportional to the amount of glucose provided. Sulfanilamide decreased the yield of sterol in growing cells, but had no effect on sterol synthesis by resting cultures. PMID:13916377

  5. Direct evidence for a xylose metabolic pathway in Saccharomyces cerevisiae

    SciTech Connect

    Batt, C.A.; Carvallo, S.; Easson, D.D.; Akedo, M.; Sinskey, A.J.

    1986-04-01

    Xylose transport, xylose reductase, and xylitol dehydrogenase activities are demonstrated in Saccharomyces cerevisiae. The enzymes in the xylose catabolic pathway necessary for the conversion of xylose xylulose are present, although S. cerevisiae cannot grow on xylose as a sole carbon source. Xylose transport is less efficient than glucose transport, and its rate is dependent upon aeration. Xylose reductase appears to be a xylose inducible enzyme and xylitol dehydrogenase activity is constitutive, although both are repressed by glucose. Both xylose reductase and xylitol dehydrogenase activities are five- to tenfold lower in S. cerevisie as compared to Candida utilis. In vivo conversion of /sup 14/C-xylose in S. cerevisiage is demonstrated and xylitol is detected, although no significant levels of any other /sup 14/C-labeled metabolites (e.g., ethanol) are observed. 22 references.

  6. The Reference Genome Sequence of Saccharomyces cerevisiae: Then and Now

    PubMed Central

    Engel, Stacia R.; Dietrich, Fred S.; Fisk, Dianna G.; Binkley, Gail; Balakrishnan, Rama; Costanzo, Maria C.; Dwight, Selina S.; Hitz, Benjamin C.; Karra, Kalpana; Nash, Robert S.; Weng, Shuai; Wong, Edith D.; Lloyd, Paul; Skrzypek, Marek S.; Miyasato, Stuart R.; Simison, Matt; Cherry, J. Michael

    2014-01-01

    The genome of the budding yeast Saccharomyces cerevisiae was the first completely sequenced from a eukaryote. It was released in 1996 as the work of a worldwide effort of hundreds of researchers. In the time since, the yeast genome has been intensively studied by geneticists, molecular biologists, and computational scientists all over the world. Maintenance and annotation of the genome sequence have long been provided by the Saccharomyces Genome Database, one of the original model organism databases. To deepen our understanding of the eukaryotic genome, the S. cerevisiae strain S288C reference genome sequence was updated recently in its first major update since 1996. The new version, called “S288C 2010,” was determined from a single yeast colony using modern sequencing technologies and serves as the anchor for further innovations in yeast genomic science. PMID:24374639

  7. Metabolic engineering of Saccharomyces cerevisiae for linalool production.

    PubMed

    Amiri, Pegah; Shahpiri, Azar; Asadollahi, Mohammad Ali; Momenbeik, Fariborz; Partow, Siavash

    2016-03-01

    To engineer the yeast Saccharomyces cerevisiae for the heterologous production of linalool. Expression of linalool synthase gene from Lavandula angustifolia enabled heterologous production of linalool in S. cerevisiae. Downregulation of ERG9 gene, that encodes squalene synthase, by replacing its native promoter with the repressible MET3 promoter in the presence of methionine resulted in accumulation of 78 µg linalool l(-1) in the culture medium. This was more than twice that produced by the control strain. The highest linalool titer was obtained by combined repression of ERG9 and overexpression of tHMG1. The yeast strain harboring both modifications produced 95 μg linalool l(-1). Although overexpression of tHMG1 and downregulation of ERG9 enhanced linalool titers threefold in the engineered yeast strain, alleviating linalool toxicity is necessary for further improvement of linalool biosynthesis in yeast.

  8. Pathways and Mechanisms that Prevent Genome Instability in Saccharomyces cerevisiae

    PubMed Central

    Putnam, Christopher D.; Kolodner, Richard D.

    2017-01-01

    Genome rearrangements result in mutations that underlie many human diseases, and ongoing genome instability likely contributes to the development of many cancers. The tools for studying genome instability in mammalian cells are limited, whereas model organisms such as Saccharomyces cerevisiae are more amenable to these studies. Here, we discuss the many genetic assays developed to measure the rate of occurrence of Gross Chromosomal Rearrangements (called GCRs) in S. cerevisiae. These genetic assays have been used to identify many types of GCRs, including translocations, interstitial deletions, and broken chromosomes healed by de novo telomere addition, and have identified genes that act in the suppression and formation of GCRs. Insights from these studies have contributed to the understanding of pathways and mechanisms that suppress genome instability and how these pathways cooperate with each other. Integrated models for the formation and suppression of GCRs are discussed. PMID:28684602

  9. Characterization of oligosaccharides from an antigenic mannan of Saccharomyces cerevisiae.

    PubMed

    Young, M; Davies, M J; Bailey, D; Gradwell, M J; Smestad-Paulsen, B; Wold, J K; Barnes, R M; Hounsell, E F

    1998-08-01

    Mannans of the yeast Saccharomyces cerevisiae have been implicated as containing the allergens to which bakers and brewers are sensitive and also the antigen recognized by patients with Crohn's disease. A fraction of S. cerevisiae mannan, Sc500, having high affinity for antibodies in Crohn's patients has been characterized by NMR spectroscopy followed by fragmentation using alkaline elimination, partial acid hydrolysis and acetolysis. The released oligosaccharides were separated by gel filtration on a Biogel P4 column and analyzed by fluorescence labeling, HPLC and methylation analysis. The relationship between structure and antigen activity was measured by competitive ELISA. The antigenic activity of the original high molecular weight mannan could be ascribed to terminal Manalpha1-->3Manalpha1-->2 sequences which are rarely found in human glycoproteins but were over-represented in Sc500 compared to other yeast mannans.

  10. Glucose- and nitrogen sensing and regulatory mechanisms in Saccharomyces cerevisiae.

    PubMed

    Rødkaer, Steven V; Faergeman, Nils J

    2014-08-01

    Pro- and eukaryotic cells are constantly challenged by varying concentrations of nutrients in their environment. Perceiving and adapting to such changes are therefore crucial for cellular viability. Thus, numerous specialized cellular receptors continuously sense and react to the availability of nutrients such as glucose and nitrogen. When stimulated, these receptors initiate various cellular signaling pathways, which in concert constitute a complex regulatory network. To ensure a highly specific response, these pathways and networks cross-communicate with each other and are regulated at several steps and by numerous different regulators. As numerous of these regulating proteins, biochemical mechanisms, and cellular pathways are evolutionary conserved, complex biochemical information relevant to humans can be obtained by studying simple organisms. Thus, the yeast Saccharomyces cerevisiae has been recognized as a powerful model system to study fundamental biochemical processes. In the present review, we highlight central signaling pathways and molecular circuits conferring nitrogen- and glucose sensing in S. cerevisiae.

  11. Comparative proteomic analysis of Saccharomyces cerevisiae under different nitrogen sources.

    PubMed

    Zhao, Shaohui; Zhao, Xinrui; Zou, Huijun; Fu, Jianwei; Du, Guocheng; Zhou, Jingwen; Chen, Jian

    2014-04-14

    In cultures containing multiple sources of nitrogen, Saccharomyces cerevisiae exhibits a sequential use of nitrogen sources through a mechanism known as nitrogen catabolite repression (NCR). To identify proteins differentially expressed due to NCR, proteomic analysis of S. cerevisiae S288C under different nitrogen source conditions was performed using two-dimensional gel electrophoresis (2-DE), revealing 169 candidate protein spots. Among these 169 protein spots, 121 were identified by matrix assisted laser desorption ionization-time of flight/time of flight mass spectrometry (MALDI-TOF/TOF). The identified proteins were closely associated with four main biological processes through Gene Ontology (GO) categorical analysis. The identification of the potential proteins and cellular processes related to NCR offer a global overview of changes elicited by different nitrogen sources, providing clues into how yeast adapt to different nutritional conditions. Moreover, by comparing our proteomic data with corresponding mRNA data, proteins regulated at the transcriptional and post-transcriptional level could be distinguished. Biological significance In S. cerevisiae, different nitrogen sources provide different growth characteristics and generate different metabolites. The nitrogen catabolite repression (NCR) process plays an important role for S. cerevisiae in the ordinal utilization of different nitrogen sources. NCR process can result in significant shift of global metabolic networks. Previous works on NCR primarily focused on transcriptomic level. The results obtained in this study provided a global atlas of the proteome changes triggered by different nitrogen sources and would facilitate the understanding of mechanisms for how yeast could adapt to different nutritional conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Proteomic analysis of protein methylation in the yeast Saccharomyces cerevisiae.

    PubMed

    Wang, Keyun; Zhou, Yongjin J; Liu, Hongwei; Cheng, Kai; Mao, Jiawei; Wang, Fangjun; Liu, Wujun; Ye, Mingliang; Zhao, Zongbao K; Zou, Hanfa

    2015-01-30

    Protein methylation catalyzed by SAM-dependent methyltransferase represents a major PTM involved in many important biological processes. Because methylation can occur on nitrogen, oxygen and sulfur centers and multiple methylation states exist on the nitrogen centers, methylproteome remains poorly documented. Here we present the methylation by isotope labeled SAM (MILS) strategy for a highly-confident analysis of the methylproteome of the yeast Saccharomyces cerevisiae based on the online multidimensional μHPLC/MS/MS technology. We identified 43 methylated proteins, containing 68 methylation events associated with 64 methylation sites. More than 90% of these methylation events were previously unannotated in Uniprot database. Our results indicated, 1) over 2.6% of identified S. cerevisiae proteins are methylated, 2) the amino acid residue preference of protein methylation follows the order Lys≫Arg>Asp>Asn≈Gln≈His>Glu>Cys, and 3) the methylation state on nitrogen center is largely exclusive. As our dataset covers various types of methylation centers, it provides rich information about yeast methylproteome and should significantly contribute to the field of protein methylation. In this paper, we presented the methylation by isotope labeled SAM (MILS) strategy for a highly-confident analysis of the methylproteome of the yeast S. cerevisiae and collected a comprehensive list of proteins methylated on a set of distinct residues (K, R, N, E, D, Q, H, C). Our study provided useful information about the amino acid residue preference and methylation state distributions on nitrogen centers of protein methylation in S. cerevisiae. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Efficient Extraction of Thioreodoxin from Saccharomyces cerevisiae by Ethanol▿

    PubMed Central

    Inoue, Yoshiharu; Nomura, Wataru; Takeuchi, Yoko; Ohdate, Takumi; Tamasu, Shogo; Kitaoka, Atsushi; Kiyokawa, Yoshifumi; Masutani, Hiroshi; Murata, Kazuo; Wakai, Yoshinori; Izawa, Shingo; Yodoi, Junji

    2007-01-01

    Thioredoxin, an antioxidant protein, is a promising molecule for development of functional foods because it protects the gastric mucosa and reduces the allergenicity of allergens. To establish a method for obtaining an ample amount of yeast thioredoxin, we found here that thioredoxin is released from Saccharomyces cerevisiae by treatment with 20% ethanol. We also found that Japanese sake contains a considerable amount of thioredoxin. PMID:17209065

  14. Depletion of Saccharomyces cerevisiae in psoriasis patients, restored by Dimethylfumarate therapy (DMF).

    PubMed

    Eppinga, Hester; Thio, H Bing; Schreurs, Marco W J; Blakaj, Blerdi; Tahitu, Ruena I; Konstantinov, Sergey R; Peppelenbosch, Maikel P; Fuhler, Gwenny M

    2017-01-01

    Psoriasis and inflammatory bowel disease (IBD) are chronic inflammatory diseases sharing similar pathogenic pathways. Intestinal microbial changes such as a decrease of bakers' yeast Saccharomyces cerevisiae have been reported in IBD, suggesting the presence of a gut-skin axis. To investigate whether the S. cerevisiae abundance was altered in psoriasis patients versus healthy controls, and whether dimethylfumarate (DMF) interacted with this yeast. Using qPCR, faecal samples were compared between psoriasis patients without DMF (n = 30), psoriasis patients with DMF (n = 28), and healthy controls (n = 32). Faecal S. cerevisiae abundance was decreased in psoriasis compared to healthy controls (p<0.001). Interestingly, DMF use raised S. cerevisiae levels (p<0.001). Gastrointestinal adverse-effects of DMF were correlated with a higher S. cerevisiae abundance (p = 0.010). In vitro, a direct effect of DMF on S. cerevisiae growth was observed. In addition, anti-Saccharomyces cerevisiae antibodies were not elevated in psoriasis. The abundance of baker's yeast S. cerevisiae is decreased in psoriasis patients, but appears to be restored upon DMF use. S. cerevisiae is generally classified as a yeast with beneficial immunomodulatory properties, but may also be involved in the occurrence of DMF's gastrointestinal adverse-effects. Potentially, DMF might be a new therapy for IBD.

  15. Transformations of inorganic mercury by Candida albicans and Saccharomyces cerevisiae

    SciTech Connect

    Yannai, S.; Berdicevsky, I.; Duek, L. )

    1991-01-01

    Saccharomyces cerevisiae and Candida albicans were incubated with 0.25, 0.5, or 0.75 {mu}g of Hg (as HgCl{sub 2}) per ml of Nelson's medium in the presence of trace amounts of oxygen at 28{degree}C for 12 days. Two control media were used, one without added Hg and one without yeast inoculum. Yeast cell growth was estimated after 1, 2, 3, and 8 days of incubation. The contents of organomercury in the system and of elemental mercury released from the media and collected in traps were determined at the end of the experiments. The results were as follows: (1) C. albicans was the more mercury-resistant species, but both yeast species failed to grown in the media containing 0.75 {mu}g of Hg per ml.; (2) The amounts of organomercury produced by the two species were proportional to the amount of HgCl{sub 2} added to the medium. In all cases C. albicans produced considerably larger amounts of methylmercury than S. cerevisiae; (3) The amounts of elemental Hg produced were inversely proportional to the HgCl{sub 2} level added in the case of S. cerevisiae but were all similar in the case of C. albicans;and (4) Neither organomercury nor elemental Hg was produced in any of the control media.

  16. Interaction of Prions Causes Heritable Traits in Saccharomyces cerevisiae

    PubMed Central

    Ryzhova, Tatyana A.; Inge-Vechtomov, Sergey G.; Galkin, Alexey P.

    2016-01-01

    The concept of "protein-based inheritance" defines prions as epigenetic determinants that cause several heritable traits in eukaryotic microorganisms, such as Saccharomyces cerevisiae and Podospora anserina. Previously, we discovered a non-chromosomal factor, [NSI+], which possesses the main features of yeast prions, including cytoplasmic infectivity, reversible curability, dominance, and non-Mendelian inheritance in meiosis. This factor causes omnipotent suppression of nonsense mutations in strains of S. cerevisiae bearing a deleted or modified Sup35 N-terminal domain. In this work, we identified protein determinants of [NSI+] using an original method of proteomic screening for prions. The suppression of nonsense mutations in [NSI+] strains is determined by the interaction between [SWI+] and [PIN+] prions. Using genetic and biochemical methods, we showed that [SWI+] is the key determinant of this nonsense suppression, whereas [PIN+] does not cause nonsense suppression by itself but strongly enhances the effect of [SWI+]. We demonstrated that interaction of [SWI+] and [PIN+] causes inactivation of SUP45 gene that leads to nonsense suppression. Our data show that prion interactions may cause heritable traits in Saccharomyces cerevisiae. PMID:28027291

  17. Interaction of Prions Causes Heritable Traits in Saccharomyces cerevisiae.

    PubMed

    Nizhnikov, Anton A; Ryzhova, Tatyana A; Volkov, Kirill V; Zadorsky, Sergey P; Sopova, Julia V; Inge-Vechtomov, Sergey G; Galkin, Alexey P

    2016-12-01

    The concept of "protein-based inheritance" defines prions as epigenetic determinants that cause several heritable traits in eukaryotic microorganisms, such as Saccharomyces cerevisiae and Podospora anserina. Previously, we discovered a non-chromosomal factor, [NSI+], which possesses the main features of yeast prions, including cytoplasmic infectivity, reversible curability, dominance, and non-Mendelian inheritance in meiosis. This factor causes omnipotent suppression of nonsense mutations in strains of S. cerevisiae bearing a deleted or modified Sup35 N-terminal domain. In this work, we identified protein determinants of [NSI+] using an original method of proteomic screening for prions. The suppression of nonsense mutations in [NSI+] strains is determined by the interaction between [SWI+] and [PIN+] prions. Using genetic and biochemical methods, we showed that [SWI+] is the key determinant of this nonsense suppression, whereas [PIN+] does not cause nonsense suppression by itself but strongly enhances the effect of [SWI+]. We demonstrated that interaction of [SWI+] and [PIN+] causes inactivation of SUP45 gene that leads to nonsense suppression. Our data show that prion interactions may cause heritable traits in Saccharomyces cerevisiae.

  18. Horizontal and vertical growth of S. cerevisiae metabolic network

    PubMed Central

    2011-01-01

    Background The growth and development of a biological organism is reflected by its metabolic network, the evolution of which relies on the essential gene duplication mechanism. There are two current views about the evolution of metabolic networks. The retrograde model hypothesizes that a pathway evolves by recruiting novel enzymes in a direction opposite to the metabolic flow. The patchwork model is instead based on the assumption that the evolution is based on the exploitation of broad-specificity enzymes capable of catalysing a variety of metabolic reactions. Results We analysed a well-studied unicellular eukaryotic organism, S. cerevisiae, and studied the effect of the removal of paralogous gene products on its metabolic network. Our results, obtained using different paralog and network definitions, show that, after an initial period when gene duplication was indeed instrumental in expanding the metabolic space, the latter reached an equilibrium and subsequent gene duplications were used as a source of more specialized enzymes rather than as a source of novel reactions. We also show that the switch between the two evolutionary strategies in S. cerevisiae can be dated to about 350 million years ago. Conclusions Our data, obtained through a novel analysis methodology, strongly supports the hypothesis that the patchwork model better explains the more recent evolution of the S. cerevisiae metabolic network. Interestingly, the effects of a patchwork strategy acting before the Euascomycete-Hemiascomycete divergence are still detectable today. PMID:21999464

  19. Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae.

    PubMed

    Vemuri, G N; Eiteman, M A; McEwen, J E; Olsson, L; Nielsen, J

    2007-02-13

    Respiratory metabolism plays an important role in energy production in the form of ATP in all aerobically growing cells. However, a limitation in respiratory capacity results in overflow metabolism, leading to the formation of byproducts, a phenomenon known as "overflow metabolism" or "the Crabtree effect." The yeast Saccharomyces cerevisiae has served as an important model organism for studying the Crabtree effect. When subjected to increasing glycolytic fluxes under aerobic conditions, there is a threshold value of the glucose uptake rate at which the metabolism shifts from purely respiratory to mixed respiratory and fermentative. It is well known that glucose repression of respiratory pathways occurs at high glycolytic fluxes, resulting in a decrease in respiratory capacity. Despite many years of detailed studies on this subject, it is not known whether the onset of the Crabtree effect is due to limited respiratory capacity or is caused by glucose-mediated repression of respiration. When respiration in S. cerevisiae was increased by introducing a heterologous alternative oxidase, we observed reduced aerobic ethanol formation. In contrast, increasing nonrespiratory NADH oxidation by overexpression of a water-forming NADH oxidase reduced aerobic glycerol formation. The metabolic response to elevated alternative oxidase occurred predominantly in the mitochondria, whereas NADH oxidase affected genes that catalyze cytosolic reactions. Moreover, NADH oxidase restored the deficiency of cytosolic NADH dehydrogenases in S. cerevisiae. These results indicate that NADH oxidase localizes in the cytosol, whereas alternative oxidase is directed to the mitochondria.

  20. Overproduction of fatty acids in engineered Saccharomyces cerevisiae.

    PubMed

    Li, Xiaowei; Guo, Daoyi; Cheng, Yongbo; Zhu, Fayin; Deng, Zixin; Liu, Tiangang

    2014-09-01

    The long hydrocarbon fatty acyl chain is energy rich, making it an ideal precursor for liquid transportation fuels and high-value oleo chemicals. As Saccharomyces cerevisiae has many advantages for industrial production compared to Escherichia coli. Here, we attempted to engineer Saccharomyces cerevisiae for overproduction of fatty acids. First, disruption of the beta-oxidation pathway, elimination of the acyl-CoA synthetases, overexpression of different thioesterases and acetyl-CoA carboxylase ACC1, and engineering the supply of precursor acetyl-CoA. The engineered strain XL122 produced more than 120 mg/L of fatty acids. In parallel, we inactivated ADH1, the dominant gene for ethanol production, to redirect the metabolic flux to fatty acids synthesis. The engineered strain DG005 produced about 140 mg/L fatty acids. Additionally, Acetyl-CoA carboxylase was identified as a critical bottleneck of fatty acids synthesis in S. cerevisiae with a cell-free system. However, overexpression of ACC1 has little effect on fatty acids biosynthesis. As it has been reported that phosphorylation of ACC1 may influent its activity, so phosphorylation sites of ACC1 were further identified. Although the regulatory mechanisms remain unclear, our results provide rationale for future studies to target this critical step. All these efforts, particularly the discovery of the limiting step are critical for developing a "cell factory" for the overproduction of fatty acids by using type I fatty acids synthase in yeast or other fungi.

  1. Polymorphisms of Saccharomyces cerevisiae genes involved in wine production.

    PubMed

    Vigentini, Ileana; Fracassetti, Daniela; Picozzi, Claudia; Foschino, Roberto

    2009-03-01

    The setting up of new molecular methods for Saccharomyces cerevisiae typing is valuable in enology. Actually, the ability to discriminate different strains in wine making can have a benefit both for the control of the fermentation process and for the preservation of wine typicity. This study focused on the screening of single-nucleotide polymorphisms in genes involved in wine production that could evolve rapidly considering the selective pressure of the isolation environment. Preliminary screening of 30 genes in silico was performed, followed by the selection of 10 loci belonging to 8 genes. The sequence analysis showed a low polymorphism and a degree of heterozygosity. However, a new potential molecular target was recognized in the TPS1 gene coding for the trehalose-6-phosphate synthase enzyme involved in the ethanol resistance mechanism. This gene showed a 1.42% sequence diversity with seven different nucleotide substitutions. Moreover, classic techniques were applied to a collection of 50 S. cerevisiae isolates, mostly with enologic origin. Our results confirmed that the wine making was not carried out only by the inoculated commercial starter because indigenous strains of S. cerevisiae present during fermentation were detected. In addition, a high genetic relationship among some commercial cultures was found, highlighting imprecision or fraudulent practices by starter manufacturers.

  2. An assay for functional xylose transporters in Saccharomyces cerevisiae.

    PubMed

    Wang, Chengqiang; Shen, Yu; Hou, Jin; Suo, Fan; Bao, Xiaoming

    2013-11-15

    It has been considered that more efficient uptake of xylose could promote increased xylose metabolic capacity of several microorganisms. In this study, an assay to screen xylose transporters was established in the Saccharomyces cerevisiae strain, which expresses the xylosidase gene of Bacillus pumilus intracellularly. The absorbed xylose analog p-nitrophenyl-β-d-xylopyranoside (pNPX) rapidly hydrolyzed to p-nitrophenol (pNP), which displayed a yellow tint when exposed to xylosidase in vivo. The xylose transporter activities of the strain were computed using the pNP production rate, which was detected extracellularly. This method could be used for both high-throughput screening and smaller scale investigations. AraEp, which is a pentose transporter of Corynebacterium glutamicum, was expressed in S. cerevisiae and exhibited better transport capacity than the endogenous transporters Hxt7p and Gal2p. Moreover, a mutant of AraEp with 103% greater transport capacity was screened out, and the computer simulation suggested that transmembrane domain 5 was an important factor for the transport capacity of AraEp in S. cerevisiae.

  3. Combinatorial metabolic engineering of Saccharomyces cerevisiae for terminal alkene production.

    PubMed

    Chen, Binbin; Lee, Dong-Yup; Chang, Matthew Wook

    2015-09-01

    Biological production of terminal alkenes has garnered a significant interest due to their industrial applications such as lubricants, detergents and fuels. Here, we engineered the yeast Saccharomyces cerevisiae to produce terminal alkenes via a one-step fatty acid decarboxylation pathway and improved the alkene production using combinatorial engineering strategies. In brief, we first characterized eight fatty acid decarboxylases to enable and enhance alkene production. We then increased the production titer 7-fold by improving the availability of the precursor fatty acids. We additionally increased the titer about 5-fold through genetic cofactor engineering and gene expression tuning in rich medium. Lastly, we further improved the titer 1.8-fold to 3.7 mg/L by optimizing the culturing conditions in bioreactors. This study represents the first report of terminal alkene biosynthesis in S. cerevisiae, and the abovementioned combinatorial engineering approaches collectively increased the titer 67.4-fold. We envision that these approaches could provide insights into devising engineering strategies to improve the production of fatty acid-derived biochemicals in S. cerevisiae.

  4. Can yeast (S. cerevisiae) metabolic volatiles provide polymorphic signaling?

    PubMed

    Arguello, J Roman; Sellanes, Carolina; Lou, Yann Ru; Raguso, Robert A

    2013-01-01

    Chemical signaling between organisms is a ubiquitous and evolutionarily dynamic process that helps to ensure mate recognition, location of nutrients, avoidance of toxins, and social cooperation. Evolutionary changes in chemical communication systems progress through natural variation within the organism generating the signal as well as the responding individuals. A promising yet poorly understood system with which to probe the importance of this variation exists between D. melanogaster and S. cerevisiae. D. melanogaster relies on yeast for nutrients, while also serving as a vector for yeast cell dispersal. Both are outstanding genetic and genomic models, with Drosophila also serving as a preeminent model for sensory neurobiology. To help develop these two genetic models as an ecological model, we have tested if - and to what extent - S. cerevisiae is capable of producing polymorphic signaling through variation in metabolic volatiles. We have carried out a chemical phenotyping experiment for 14 diverse accessions within a common garden random block design. Leveraging genomic sequences for 11 of the accessions, we ensured a genetically broad sample and tested for phylogenetic signal arising from phenotypic dataset. Our results demonstrate that significant quantitative differences for volatile blends do exist among S. cerevisiae accessions. Of particular ecological relevance, the compounds driving the blend differences (acetoin, 2-phenyl ethanol and 3-methyl-1-butanol) are known ligands for D. melanogasters chemosensory receptors, and are related to sensory behaviors. Though unable to correlate the genetic and volatile measurements, our data point clear ways forward for behavioral assays aimed at understanding the implications of this variation.

  5. The postmitotic Saccharomyces cerevisiae after spaceflight showed higher viability

    NASA Astrophysics Data System (ADS)

    Yi, Zong-Chun; Li, Xiao-Fei; Wang, Yan; Wang, Jie; Sun, Yan; Zhuang, Feng-Yuan

    2011-06-01

    The budding yeast Saccharomyces cerevisiae has been proposed as an ideal model organism for clarifying the biological effects caused by spaceflight conditions. The postmitotic S. cerevisiae cells onboard Practice eight recoverable satellite were subjected to spaceflight for 15 days. After recovery, the viability, the glycogen content, the activities of carbohydrate metabolism enzymes, the DNA content and the lipid peroxidation level in yeast cells were analyzed. The viability of the postmitotic yeast cells after spaceflight showed a three-fold increase as compared with that of the ground control cells. Compared to the ground control cells, the lipid peroxidation level in the spaceflight yeast cells markedly decreased. The spaceflight yeast cells also showed an increase in G2/M cell population and a decrease in Sub-G1 cell population. The glycogen content and the activities of hexokinase and succinate dehydrogenase significantly decreased in the yeast cells after spaceflight. In contrast, the activity of malate dehydrogenase showed an obvious increase after spaceflight. These results suggested that microgravity or spaceflight could promote the survival of postmitotic S. cerevisiae cells through regulating carbohydrate metabolism, ROS level and cell cycle progression.

  6. Early manifestations of replicative aging in the yeast Saccharomyces cerevisiae

    PubMed Central

    Sorokin, Maksim I.; Knorre, Dmitry A.; Severin, Fedor F.

    2014-01-01

    The yeast Saccharomyces cerevisiae is successfully used as a model organism to find genes responsible for lifespan control of higher organisms. As functional decline of higher eukaryotes can start as early as one quarter of the average lifespan, we asked whether S. cerevisiae can be used to model this manifestation of aging. While the average replicative lifespan of S. cerevisiae mother cells ranges between 15 and 30 division cycles, we found that resistances to certain stresses start to decrease much earlier. Looking into the mechanism, we found that knockouts of genes responsible for mitochondria-to-nucleus (retrograde) signaling, RTG1 or RTG3, significantly decrease the resistance of cells that generated more than four daughters, but not of the younger ones. We also found that even young mother cells frequently contain mitochondria with heterogeneous transmembrane potential and that the percentage of such cells correlates with replicative age. Together, these facts suggest that retrograde signaling starts to malfunction in relatively young cells, leading to accumulation of heterogeneous mitochondria within one cell. The latter may further contribute to a decline in stress resistances.

  7. Evolutionary engineering of Saccharomyces cerevisiae for improved industrially important properties.

    PubMed

    Cakar, Z Petek; Turanli-Yildiz, Burcu; Alkim, Ceren; Yilmaz, Ulkü

    2012-03-01

    This article reviews evolutionary engineering of Saccharomyces cerevisiae. Following a brief introduction to the 'rational' metabolic engineering approach and its limitations such as extensive genetic and metabolic information requirement on the organism of interest, complexity of cellular physiological responses, and difficulties of cloning in industrial strains, evolutionary engineering is discussed as an alternative, inverse metabolic engineering strategy. Major evolutionary engineering applications with S. cerevisiae are then discussed in two general categories: (1) evolutionary engineering of substrate utilization and product formation and (2) evolutionary engineering of stress resistance. Recent developments in functional genomics methods allow rapid identification of the molecular basis of the desired phenotypes obtained by evolutionary engineering. To conclude, when used alone or in combination with rational metabolic engineering and/or computational methods to study and analyze processes of adaptive evolution, evolutionary engineering is a powerful strategy for improvement in industrially important, complex properties of S. cerevisiae. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  8. Biogeographical characterization of Saccharomyces cerevisiae wine yeast by molecular methods

    PubMed Central

    Tofalo, Rosanna; Perpetuini, Giorgia; Schirone, Maria; Fasoli, Giuseppe; Aguzzi, Irene; Corsetti, Aldo; Suzzi, Giovanna

    2013-01-01

    Biogeography is the descriptive and explanatory study of spatial patterns and processes involved in the distribution of biodiversity. Without biogeography, it would be difficult to study the diversity of microorganisms because there would be no way to visualize patterns in variation. Saccharomyces cerevisiae, “the wine yeast,” is the most important species involved in alcoholic fermentation, and in vineyard ecosystems, it follows the principle of “everything is everywhere.” Agricultural practices such as farming (organic versus conventional) and floor management systems have selected different populations within this species that are phylogenetically distinct. In fact, recent ecological and geographic studies highlighted that unique strains are associated with particular grape varieties in specific geographical locations. These studies also highlighted that significant diversity and regional character, or ‘terroir,’ have been introduced into the winemaking process via this association. This diversity of wild strains preserves typicity, the high quality, and the unique flavor of wines. Recently, different molecular methods were developed to study population dynamics of S. cerevisiae strains in both vineyards and wineries. In this review, we will provide an update on the current molecular methods used to reveal the geographical distribution of S. cerevisiae wine yeast. PMID:23805132

  9. Membrane Trafficking in the Yeast Saccharomyces cerevisiae Model

    PubMed Central

    Feyder, Serge; De Craene, Johan-Owen; Bär, Séverine; Bertazzi, Dimitri L.; Friant, Sylvie

    2015-01-01

    The yeast Saccharomyces cerevisiae is one of the best characterized eukaryotic models. The secretory pathway was the first trafficking pathway clearly understood mainly thanks to the work done in the laboratory of Randy Schekman in the 1980s. They have isolated yeast sec mutants unable to secrete an extracellular enzyme and these SEC genes were identified as encoding key effectors of the secretory machinery. For this work, the 2013 Nobel Prize in Physiology and Medicine has been awarded to Randy Schekman; the prize is shared with James Rothman and Thomas Südhof. Here, we present the different trafficking pathways of yeast S. cerevisiae. At the Golgi apparatus newly synthesized proteins are sorted between those transported to the plasma membrane (PM), or the external medium, via the exocytosis or secretory pathway (SEC), and those targeted to the vacuole either through endosomes (vacuolar protein sorting or VPS pathway) or directly (alkaline phosphatase or ALP pathway). Plasma membrane proteins can be internalized by endocytosis (END) and transported to endosomes where they are sorted between those targeted for vacuolar degradation and those redirected to the Golgi (recycling or RCY pathway). Studies in yeast S. cerevisiae allowed the identification of most of the known effectors, protein complexes, and trafficking pathways in eukaryotic cells, and most of them are conserved among eukaryotes. PMID:25584613

  10. PGM2 overexpression improves anaerobic galactose fermentation in Saccharomyces cerevisiae

    PubMed Central

    2010-01-01

    Background In Saccharomyces cerevisiae galactose is initially metabolized through the Leloir pathway after which glucose 6-phosphate enters glycolysis. Galactose is controlled both by glucose repression and by galactose induction. The gene PGM2 encodes the last enzyme of the Leloir pathway, phosphoglucomutase 2 (Pgm2p), which catalyses the reversible conversion of glucose 1-phosphate to glucose 6-phosphate. Overexpression of PGM2 has previously been shown to enhance aerobic growth of S. cerevisiae in galactose medium. Results In the present study we show that overexpression of PGM2 under control of the HXT7'promoter from an integrative plasmid increased the PGM activity 5 to 6 times, which significantly reduced the lag phase of glucose-pregrown cells in an anaerobic galactose culture. PGM2 overexpression also increased the anaerobic specific growth rate whereas ethanol production was less influenced. When PGM2 was overexpressed from a multicopy plasmid instead, the PGM activity increased almost 32 times. However, this increase of PGM activity did not further improve aerobic galactose fermentation as compared to the strain carrying PGM2 on the integrative plasmid. Conclusion PGM2 overexpression in S. cerevisiae from an integrative plasmid is sufficient to reduce the lag phase and to enhance the growth rate in anaerobic galactose fermentation, which results in an overall decrease in fermentation duration. This observation is of particular importance for the future development of stable industrial strains with enhanced PGM activity. PMID:20507616

  11. Antimicrobial action of palmarosa oil (Cymbopogon martinii) on Saccharomyces cerevisiae.

    PubMed

    Prashar, Anjali; Hili, Pauline; Veness, Robert G; Evans, Christine S

    2003-07-01

    The essential oil extracted from palmarosa (Cymbopogon martinii) has proven anti-microbial properties against cells of Saccharomyces cerevisiae. Low concentrations of the oil (0.1%) inhibited the growth of S. cerevisiae cells completely. The composition of the sample of palmarosa oil was determined as 65% geraniol and 20% geranyl acetate as confirmed by GC-FTIR. The effect of palmarosa oil in causing K(+) leakage from yeast cells was attributed mainly to geraniol. Some leakage of magnesium ions was also observed. Blocking potassium membrane channels with caesium ions before addition of palmarosa oil did not change the extent of K(+) ion leakage, which was equal to the total sequestered K(+) in the cells. Palmarosa oil led to changes in the composition of the yeast cell membrane, with more saturated and less unsaturated fatty acids in the membrane after exposure of S. cerevisiae cells to the oil. Some of the palmarosa oil was lost by volatilization during incubation of the oil with the yeast cells. The actual concentration of the oil components affecting the yeast cells could not therefore be accurately determined.

  12. Early manifestations of replicative aging in the yeast Saccharomyces cerevisiae.

    PubMed

    Sorokin, Maksim I; Knorre, Dmitry A; Severin, Fedor F

    2014-01-06

    The yeast Saccharomyces cerevisiae is successfully used as a model organism to find genes responsible for lifespan control of higher organisms. As functional decline of higher eukaryotes can start as early as one quarter of the average lifespan, we asked whether S. cerevisiae can be used to model this manifestation of aging. While the average replicative lifespan of S. cerevisiae mother cells ranges between 15 and 30 division cycles, we found that resistances to certain stresses start to decrease much earlier. Looking into the mechanism, we found that knockouts of genes responsible for mitochondria-to-nucleus (retrograde) signaling, RTG1 or RTG3, significantly decrease the resistance of cells that generated more than four daughters, but not of the younger ones. We also found that even young mother cells frequently contain mitochondria with heterogeneous transmembrane potential and that the percentage of such cells correlates with replicative age. Together, these facts suggest that retrograde signaling starts to malfunction in relatively young cells, leading to accumulation of heterogeneous mitochondria within one cell. The latter may further contribute to a decline in stress resistances.

  13. Role of social wasps in Saccharomyces cerevisiae ecology and evolution.

    PubMed

    Stefanini, Irene; Dapporto, Leonardo; Legras, Jean-Luc; Calabretta, Antonio; Di Paola, Monica; De Filippo, Carlotta; Viola, Roberto; Capretti, Paolo; Polsinelli, Mario; Turillazzi, Stefano; Cavalieri, Duccio

    2012-08-14

    Saccharomyces cerevisiae is one of the most important model organisms and has been a valuable asset to human civilization. However, despite its extensive use in the last 9,000 y, the existence of a seasonal cycle outside human-made environments has not yet been described. We demonstrate the role of social wasps as vector and natural reservoir of S. cerevisiae during all seasons. We provide experimental evidence that queens of social wasps overwintering as adults (Vespa crabro and Polistes spp.) can harbor yeast cells from autumn to spring and transmit them to their progeny. This result is mirrored by field surveys of the genetic variability of natural strains of yeast. Microsatellites and sequences of a selected set of loci able to recapitulate the yeast strain's evolutionary history were used to compare 17 environmental wasp isolates with a collection of strains from grapes from the same region and more than 230 strains representing worldwide yeast variation. The wasp isolates fall into subclusters representing the overall ecological and industrial yeast diversity of their geographic origin. Our findings indicate that wasps are a key environmental niche for the evolution of natural S. cerevisiae populations, the dispersion of yeast cells in the environment, and the maintenance of their diversity. The close relatedness of several wasp isolates with grape and wine isolates reflects the crucial role of human activities on yeast population structure, through clonal expansion and selection of specific strains during the biotransformation of fermented foods, followed by dispersal mediated by insects and other animals.

  14. Stoichiometric network constraints on xylose metabolism by recombinant Saccharomyces cerevisiae.

    PubMed

    Jin, Yong-Su; Jeffries, Thomas W

    2004-07-01

    Metabolic pathway engineering is constrained by the thermodynamic and stoichiometric feasibility of enzymatic activities of introduced genes. Engineering of xylose metabolism in Saccharomyces cerevisiae has focused on introducing genes for the initial xylose assimilation steps from Pichia stipitis, a xylose-fermenting yeast, into S. cerevisiae, a yeast traditionally used in ethanol production from hexose. However, recombinant S. cerevisiae created in several laboratories have used xylose oxidatively rather than in the fermentative manner that this yeast metabolizes glucose. To understand the differences between glucose and engineered xylose metabolic networks, we performed a flux balance analysis (FBA) and calculated extreme pathways using a stoichiometric model that describes the biochemistry of yeast cell growth. FBA predicted that the ethanol yield from xylose exhibits a maximum under oxygen-limited conditions, and a fermentation experiment confirmed this finding. Fermentation results were largely consistent with in silico phenotypes based on calculated extreme pathways, which displayed several phases of metabolic phenotype with respect to oxygen availability from anaerobic to aerobic conditions. However, in contrast to the model prediction, xylitol production continued even after the optimum aeration level for ethanol production was attained. These results suggest that oxygen (or some other electron accepting system) is required to resolve the redox imbalance caused by cofactor difference between xylose reductase and xylitol dehydrogenase, and that other factors limit glycolytic flux when xylose is the sole carbon source.

  15. Ciclohexadespipeptide beauvericin degradation by different strains of Saccharomyces cerevisiae.

    PubMed

    Meca, G; Zhou, T; Li, X Z; Ritieni, A; Mañes, J

    2013-09-01

    The interaction between the mycotoxin beauvericin (BEA) and 9 yeast strains of Saccharomyces cerevisiae named LO9, YE-2, YE5, YE-6, YE-4, A34, A17, A42 and A08 was studied. The biological degradations were carried out under aerobic conditions in the liquid medium of Potato Dextrose Broth (PDB) at 25°C for 48 h and in a food/feed system composed of corn flour at 37°C for 3 days, respectively. BEA present in fermented medium and corn flour was determined using liquid chromatography coupled to the mass spectrometry detector in tandem (LC-MS/MS) and the BEA degradation products produced during the fermentations were determined using the technique of the liquid chromatography coupled to a linear ion trap (LIT). Results showed that the S. cerevisiae strains reduced meanly the concentration of the BEA present in PDB by 86.2% and in a food system by 71.1%. All the S. cerevisiae strains used in this study showed a significant BEA reduction during the fermentation process employed.

  16. Can Yeast (S. cerevisiae) Metabolic Volatiles Provide Polymorphic Signaling?

    PubMed Central

    Arguello, J. Roman; Sellanes, Carolina; Lou, Yann Ru; Raguso, Robert A.

    2013-01-01

    Chemical signaling between organisms is a ubiquitous and evolutionarily dynamic process that helps to ensure mate recognition, location of nutrients, avoidance of toxins, and social cooperation. Evolutionary changes in chemical communication systems progress through natural variation within the organism generating the signal as well as the responding individuals. A promising yet poorly understood system with which to probe the importance of this variation exists between D. melanogaster and S. cerevisiae. D. melanogaster relies on yeast for nutrients, while also serving as a vector for yeast cell dispersal. Both are outstanding genetic and genomic models, with Drosophila also serving as a preeminent model for sensory neurobiology. To help develop these two genetic models as an ecological model, we have tested if - and to what extent - S. cerevisiae is capable of producing polymorphic signaling through variation in metabolic volatiles. We have carried out a chemical phenotyping experiment for 14 diverse accessions within a common garden random block design. Leveraging genomic sequences for 11 of the accessions, we ensured a genetically broad sample and tested for phylogenetic signal arising from phenotypic dataset. Our results demonstrate that significant quantitative differences for volatile blends do exist among S. cerevisiae accessions. Of particular ecological relevance, the compounds driving the blend differences (acetoin, 2-phenyl ethanol and 3-methyl-1-butanol) are known ligands for D. melanogasters chemosensory receptors, and are related to sensory behaviors. Though unable to correlate the genetic and volatile measurements, our data point clear ways forward for behavioral assays aimed at understanding the implications of this variation. PMID:23990899

  17. Functional Diversity of Haloacid Dehalogenase Superfamily Phosphatases from Saccharomyces cerevisiae

    PubMed Central

    Kuznetsova, Ekaterina; Nocek, Boguslaw; Brown, Greg; Makarova, Kira S.; Flick, Robert; Wolf, Yuri I.; Khusnutdinova, Anna; Evdokimova, Elena; Jin, Ke; Tan, Kemin; Hanson, Andrew D.; Hasnain, Ghulam; Zallot, Rémi; de Crécy-Lagard, Valérie; Babu, Mohan; Savchenko, Alexei; Joachimiak, Andrzej; Edwards, Aled M.; Koonin, Eugene V.; Yakunin, Alexander F.

    2015-01-01

    The haloacid dehalogenase (HAD)-like enzymes comprise a large superfamily of phosphohydrolases present in all organisms. The Saccharomyces cerevisiae genome encodes at least 19 soluble HADs, including 10 uncharacterized proteins. Here, we biochemically characterized 13 yeast phosphatases from the HAD superfamily, which includes both specific and promiscuous enzymes active against various phosphorylated metabolites and peptides with several HADs implicated in detoxification of phosphorylated compounds and pseudouridine. The crystal structures of four yeast HADs provided insight into their active sites, whereas the structure of the YKR070W dimer in complex with substrate revealed a composite substrate-binding site. Although the S. cerevisiae and Escherichia coli HADs share low sequence similarities, the comparison of their substrate profiles revealed seven phosphatases with common preferred substrates. The cluster of secondary substrates supporting significant activity of both S. cerevisiae and E. coli HADs includes 28 common metabolites that appear to represent the pool of potential activities for the evolution of novel HAD phosphatases. Evolution of novel substrate specificities of HAD phosphatases shows no strict correlation with sequence divergence. Thus, evolution of the HAD superfamily combines the conservation of the overall substrate pool and the substrate profiles of some enzymes with remarkable biochemical and structural flexibility of other superfamily members. PMID:26071590

  18. Multilocus sequence typing of oenological Saccharomyces cerevisiae strains.

    PubMed

    Muñoz, Rosario; Gómez, Alicia; Robles, Virginia; Rodríguez, Patricia; Cebollero, Eduardo; Tabera, Laura; Carrascosa, Alfonso V; Gonzalez, Ramon

    2009-12-01

    This study describes the application of a multilocus sequence typing (MLST) analysis for molecular discrimination at the strain level of Spanish wine yeast strains. The discrimination power of MLST is compared to mitochondrial RFLP analysis. Fragments of the ADP1, ACC1, RPN2, GLN4, and ALA1 genes were amplified by PCR from chromosomal DNA of 18 wine Saccharomyces cerevisiae strains. Ten polymorphic sites were found in the five loci analyzed showing 13 different genotypes, with 11 of them represented by only one strain. RFLP analysis of the same 18 wine yeast strains showed seventeen different mitochondrial patterns. Phylogenetic relationships among the strains analyzed, inferred by MLST data, showed wine isolates of S. cerevisiae as a rather homogeneous group. The discrimination potential of mitochondrial RFLP analysis was superior to the MLST scheme used in this work. However, MLST analysis allowed an easy construction of reliable phylogenetic trees. MLST analysis offers the possibility of typing wine S. cerevisiae strains simultaneously to the study of the genetic relationship among them.

  19. Membrane trafficking in the yeast Saccharomyces cerevisiae model.

    PubMed

    Feyder, Serge; De Craene, Johan-Owen; Bär, Séverine; Bertazzi, Dimitri L; Friant, Sylvie

    2015-01-09

    The yeast Saccharomyces cerevisiae is one of the best characterized eukaryotic models. The secretory pathway was the first trafficking pathway clearly understood mainly thanks to the work done in the laboratory of Randy Schekman in the 1980s. They have isolated yeast sec mutants unable to secrete an extracellular enzyme and these SEC genes were identified as encoding key effectors of the secretory machinery. For this work, the 2013 Nobel Prize in Physiology and Medicine has been awarded to Randy Schekman; the prize is shared with James Rothman and Thomas Südhof. Here, we present the different trafficking pathways of yeast S. cerevisiae. At the Golgi apparatus newly synthesized proteins are sorted between those transported to the plasma membrane (PM), or the external medium, via the exocytosis or secretory pathway (SEC), and those targeted to the vacuole either through endosomes (vacuolar protein sorting or VPS pathway) or directly (alkaline phosphatase or ALP pathway). Plasma membrane proteins can be internalized by endocytosis (END) and transported to endosomes where they are sorted between those targeted for vacuolar degradation and those redirected to the Golgi (recycling or RCY pathway). Studies in yeast S. cerevisiae allowed the identification of most of the known effectors, protein complexes, and trafficking pathways in eukaryotic cells, and most of them are conserved among eukaryotes.

  20. Osmo-, Thermo- and Ethanol- Tolerances of Saccharomyces cerevisiae S1

    PubMed Central

    Balakumar, Sandrasegarampillai; Arasaratnam, Vasanthy

    2012-01-01

    Saccharomyces cerevisiae S1, which is a locally isolated and improved strain showed viability at 40, 45 and 50°C and produced ethanol at 40, 43 and 45°C. When the cells were given heat shock at 45°C for 30min and grown at 40°C, 100% viability was observed for 60h, and addition of 200gL−1 ethanol has led to complete cell death at 30h. Heat shock given at 45°C (for 30min) has improved the tolerance to temperature induced ethanol shock leading to 37% viability at 30h. When the cells were subjected to ethanol (200gL−1 for 30 min) and osmotic shock (sorbitol 300gL−1), trehalose contents in the cells were increased. The heat shocked cells showed better viability in presence of added ethanol. Soy flour supplementation has improved the viability of S. cerevisiae S1 to 80% in presence of 100gL−1 added ethanol and to 60% in presence of 300gL−1sorbitol. In presence of sorbitol (200gL−1) and ethanol (50gL−1) at 40°C, 46% viability was retained by S. cerevisiae S1 at 48h and it was improved to 80% by soy flour supplementation. PMID:24031814

  1. Switching the mode of sucrose utilization by Saccharomyces cerevisiae

    PubMed Central

    Badotti, Fernanda; Dário, Marcelo G; Alves, Sergio L; Cordioli, Maria Luiza A; Miletti, Luiz C; de Araujo, Pedro S; Stambuk, Boris U

    2008-01-01

    Background Overflow metabolism is an undesirable characteristic of aerobic cultures of Saccharomyces cerevisiae during biomass-directed processes. It results from elevated sugar consumption rates that cause a high substrate conversion to ethanol and other bi-products, severely affecting cell physiology, bioprocess performance, and biomass yields. Fed-batch culture, where sucrose consumption rates are controlled by the external addition of sugar aiming at its low concentrations in the fermentor, is the classical bioprocessing alternative to prevent sugar fermentation by yeasts. However, fed-batch fermentations present drawbacks that could be overcome by simpler batch cultures at relatively high (e.g. 20 g/L) initial sugar concentrations. In this study, a S. cerevisiae strain lacking invertase activity was engineered to transport sucrose into the cells through a low-affinity and low-capacity sucrose-H+ symport activity, and the growth kinetics and biomass yields on sucrose analyzed using simple batch cultures. Results We have deleted from the genome of a S. cerevisiae strain lacking invertase the high-affinity sucrose-H+ symporter encoded by the AGT1 gene. This strain could still grow efficiently on sucrose due to a low-affinity and low-capacity sucrose-H+ symport activity mediated by the MALx1 maltose permeases, and its further intracellular hydrolysis by cytoplasmic maltases. Although sucrose consumption by this engineered yeast strain was slower than with the parental yeast strain, the cells grew efficiently on sucrose due to an increased respiration of the carbon source. Consequently, this engineered yeast strain produced less ethanol and 1.5 to 2 times more biomass when cultivated in simple batch mode using 20 g/L sucrose as the carbon source. Conclusion Higher cell densities during batch cultures on 20 g/L sucrose were achieved by using a S. cerevisiae strain engineered in the sucrose uptake system. Such result was accomplished by effectively reducing sucrose

  2. A coniferyl aldehyde dehydrogenase gene from Pseudomonas sp. strain HR199 enhances the conversion of coniferyl aldehyde by Saccharomyces cerevisiae.

    PubMed

    Adeboye, Peter Temitope; Olsson, Lisbeth; Bettiga, Maurizio

    2016-07-01

    The conversion of coniferyl aldehyde to cinnamic acids by Saccharomyces cerevisiae under aerobic growth conditions was previously observed. Bacteria such as Pseudomonas have been shown to harbor specialized enzymes for converting coniferyl aldehyde but no comparable enzymes have been identified in S. cerevisiae. CALDH from Pseudomonas was expressed in S. cerevisiae. An acetaldehyde dehydrogenase (Ald5) was also hypothesized to be actively involved in the conversion of coniferyl aldehyde under aerobic growth conditions in S. cerevisiae. In a second S. cerevisiae strain, the acetaldehyde dehydrogenase (ALD5) was deleted. A prototrophic control strain was also engineered. The engineered S. cerevisiae strains were cultivated in the presence of 1.1mM coniferyl aldehyde under aerobic condition in bioreactors. The results confirmed that expression of CALDH increased endogenous conversion of coniferyl aldehyde in S. cerevisiae and ALD5 is actively involved with the conversion of coniferyl aldehyde in S. cerevisiae. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Effects of a Saccharomyces cerevisiae culture on in vitro mixed ruminal microorganism fermentation.

    PubMed

    Sullivan, H M; Martin, S A

    1999-09-01

    Previous research has shown that Saccharomyces cerevisiae culture increases lactate utilization and cellulose digestion by pure cultures of ruminal bacteria. Based on these pure culture results, in vitro mixed ruminal microorganism fermentations were conducted to determine the effects of 0.35 and 0.73 g/L of Sacc. cerevisiae culture on the fermentation of ground corn, maltose, alfalfa hay, bermudagrass hay, and lactate. In addition, experiments were performed to evaluate the effects of Sacc. cerevisiae culture and monensin on the mixed ruminal microorganism fermentation. In the presence of ground corn, both concentrations of Sacc. cerevisiae culture had little effect on final pH or fermentation products, except the 0.35 g/L treatment increased valerate concentration. Saccharomyces cerevisiae culture had little effect on final pH or fermentation products in maltose or lactate fermentations. When alfalfa hay was the substrate, 0.73 g/L of Sacc. cerevisiae culture increased propionate concentration and both treatments decreased the acetate to propionate ratio. In the case of Coastal bermudagrass hay, 0.73 g/L Sacc. cerevisiae culture increased concentrations of acetate, propionate, CH4, butyrate, isovalerate, valerate, and decreased the acetate to propionate ratio, whereas both treatments increased total volatile fatty acid concentrations. Similar to alfalfa hay, in vitro dry matter disappearance of Coastal bermudagrass hay was numerically increased in the presence of Sacc. cerevisiae culture. Monensin altered the fermentation by decreasing concentrations of CH4 and lactate and increasing concentrations of propionate. There was no interaction between Sacc. cerevisiae culture and monensin. In conclusion, the incorporation of Sacc. cerevisiae culture into mixed ruminal microorganism fermentations of ground corn, maltose, or lactate had little effect on final pH and fermentation products. However, in the presence of alfalfa hay or Coastal bermudagrass hay Sacc

  4. Indentation with atomic force microscope, Saccharomyces cerevisiae cell gains elasticity under ethanol stress.

    PubMed

    Niu, Yuan-Pu; Lin, Xiang-Hua; Dong, Shi-Jun; Yuan, Qi-Peng; Li, Hao

    2016-10-01

    During bioethanol fermentation process, Saccharomyces cerevisiae cell membrane is the first target to be attacked by the accumulated ethanol. In such a prominent position, S. cerevisiae cell membrane could reversely provide protection through changing fluidity or elasticity secondary to remodeled membrane components or structure during the fermentation process. However, there is yet to be a direct observation of the real effect of the membrane compositional change. In this study, atomic force microscope-based strategy was performed to determine Young's modulus of S. cerevisiae to directly clarify ethanol stress-associated changes and roles of S. cerevisiae cell membrane fluidity and elasticity. Cell survival rate decreased while the cell swelling rate and membrane permeability increased as ethanol concentration increased from 0% to 20% v/v. Young's modulus decreased continuously from 3.76MPa to 1.53MPa while ethanol stress increased from 0% to 20% v/v, indicating that ethanol stress induced the S. cerevisiae membrane fluidity and elasticity changes. Combined with the fact that membrane composition varies under ethanol stress, to some extent, this could be considered as a forced defensive act to the ethanol stress by S. cerevisiae cells. On the other hand, the ethanol stress induced loosening of cell membrane also caused S. cerevisiae cell to proactively remodel membrane to make cell membrane more agreeable to the increase of environmental threat. Increased ethanol stress made S. cerevisiae cell membrane more fluidized and elastic, and eventually further facilitated yeast cell's survival. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. ISOLATION OF A CYTOCHROME P-450 STRUCTURAL GENE FROM SACCHAROMYCES CEREVISIAE

    EPA Science Inventory

    We have transformed a Saccharomyces cerevisiae host with an S. cerevisiae genomic library contained in the shuttle vector YEp24 and screened the resultant transformants for resistance to ketoconazole (Kc), an inhibitor of the cytochrome P-450 (P-450) enzyme lanosterol 14-demethyl...

  6. Direct conversion of starch to ethanol using recombınant Saccharomyces cerevisiae containing glucoamylase gene

    NASA Astrophysics Data System (ADS)

    Purkan, P.; Baktir, A.; Puspaningsih, N. N. T.; Ni'mah, M.

    2017-09-01

    Saccharomyces cerevisiae is known for its high fermentative capacity, high ethanol yield and its high ethanol tolerance. The yeast is inability converting starch (relatively inexpensive substrate) into biofuel ethanol. Insertion of glucoamylase gene in yeast cell of Saccharomyces cerevisiae had been done to increase the yeast function in ethanol fermentation from starch. Transformation of yeast of S. cerevisiae with recombinant plasmid yEP-GLO1 carrying gene encoding glucoamylase (GLO1) produced the recombinant yeast which enable to degrade starch. Optimizing of bioconversion process of starch into ethanol by the yeast of recombinant Saccharomyces cerevisiae [yEP-GLO1] had been also done. Starch concentration which could be digested by recombinant yeast of S. cerevisiae [yEP-GLO1] was 10% (w/v). Bioconversion of starch having concentration 10% (b/v) using recombinant yeast of S. cerevisiae BY5207 [yEP-GLO1] could result ethanol as 20% (v/v) to alcoholmeter and 19,5% (v/v) to gas of chromatography. Otherwise, using recombinant yeast S. cerevisiae S. cerevisiae AS3324 [yEP-GLO1] resulted ethanol as 17% (v/v) to alcoholmeter and 17,5% (v/v) to gas of chromatography. The highest ethanol in starch bioconversion using both recombinant yeasts BY5207 and AS3324 could be resulted on 144 hours of fermentation time as well as in pH 5.

  7. Prevalence and susceptibility of Saccharomyces cerevisiae causing vaginitis in Greek women.

    PubMed

    Papaemmanouil, V; Georgogiannis, N; Plega, M; Lalaki, J; Lydakis, D; Dimitriou, M; Papadimitriou, A

    2011-12-01

    Saccharomyces cerevisiae is an ascomycetous yeast, that is traditionally used in wine bread and beer production. Vaginitis caused by S. cerevisiae is rare. The aim of this study was to evaluate the frequency of S. cerevisiae isolation from the vagina in two groups of women and determined the in vitro susceptibility of this fungus. Vaginal samples were collected from a total of 262 (asymptomatic and symptomatic) women with vaginitis attending the centre of family planning of General hospital of Piraeus. All blastomycetes that isolated from the vaginal samples were examined for microscopic morphological tests and identified by conventional methods: By API 20 C AUX and ID 32 C (Biomerieux). Antifungal susceptibility testing for amphotericin B,fluconazole itraconazole,voriconazole, posaconazole and caspofungin was performed by E -test (Ab BIODIKS SWEDEN) against S. cerevisiae. A total of 16 isolates of S. cerevisiae derived from vaginal sample of the referred women, average 6.10%. Susceptibility of 16 isolates of S. cerevisiae to a variety of antimycotic agents were obtained. So all isolates of S. cerevisiae were resistant to fluconazole, posaconazole and intraconazole, but they were sensitive to voriconazole caspofungin and Amphotericin B which were found sensitive (except 1/16 strains). None of the 16 patients had a history of occupational domestic use of baker's yeast. Vaginitis caused by S. cerevisiae occur, is rising and cannot be ignored. Treatment of Saccharomyces vaginitis constitutes a major challenge and may require selected and often prolonged therapy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Invertase SUC2 Is the Key Hydrolase for Inulin Degradation in Saccharomyces cerevisiae

    PubMed Central

    Wang, Shi-An

    2013-01-01

    Specific Saccharomyces cerevisiae strains were recently found to be capable of efficiently utilizing inulin, but genetic mechanisms of inulin hydrolysis in yeast remain unknown. Here we report functional characteristics of invertase SUC2 from strain JZ1C and demonstrate that SUC2 is the key enzyme responsible for inulin metabolism in S. cerevisiae. PMID:23104410

  9. Construction of an artificial pathway for isobutanol biosynthesis in the cytosol of Saccharomyces cerevisiae.

    PubMed

    Matsuda, Fumio; Kondo, Takashi; Ida, Kengo; Tezuka, Hironori; Ishii, Jun; Kondo, Akihiko

    2012-01-01

    To increase isobutanol production in Saccharomyces cerevisiae, the valine biosynthetic pathway was activated by overexpression of the relevant enzymes in the mitochondria and the cytosol. Native mitochondrial enzymes were overepxressed in the cytosol by deleting the mitochondrial transit peptides. The metabolically engineered S. cerevisiae possessing the cytosolic pathway showed increased isobutanol production (63 ± 4 mg/L).

  10. ISOLATION OF A CYTOCHROME P-450 STRUCTURAL GENE FROM SACCHAROMYCES CEREVISIAE

    EPA Science Inventory

    We have transformed a Saccharomyces cerevisiae host with an S. cerevisiae genomic library contained in the shuttle vector YEp24 and screened the resultant transformants for resistance to ketoconazole (Kc), an inhibitor of the cytochrome P-450 (P-450) enzyme lanosterol 14-demethyl...

  11. [Invertase Overproduction May Provide for Inulin Fermentation by Selection Strains of Saccharomyces cerevisiae].

    PubMed

    Naumov, G I; Naumova, E S

    2015-01-01

    In some recent publications, the ability of selection strains of Saccharomyces cerevisiae to ferment inulin was attributed to inulinase activity. The review summarizes the literature data indicating that overproduction of invertase, an enzyme common to S. cerevisiae, may be responsible for this phenomenon.

  12. Invertase SUC2 Is the key hydrolase for inulin degradation in Saccharomyces cerevisiae.

    PubMed

    Wang, Shi-An; Li, Fu-Li

    2013-01-01

    Specific Saccharomyces cerevisiae strains were recently found to be capable of efficiently utilizing inulin, but genetic mechanisms of inulin hydrolysis in yeast remain unknown. Here we report functional characteristics of invertase SUC2 from strain JZ1C and demonstrate that SUC2 is the key enzyme responsible for inulin metabolism in S. cerevisiae.

  13. [Morphological and biochemical characteristics of new isolates Saccharomyces cerevisiae U-503].

    PubMed

    Abramov, Sh A; Kotenko, S Ts; Aliverdieva, D A

    1997-01-01

    Compared with S. cerevisiae N73, its laser irradiation-induced mutant S. cerevisiae U-503 exhibited a significantly higher respiration rate. Electron microscopic changes consistent with this finding were found in the mitochondrial system of mutant cells. The mutant strain retained its physiological and biochemical properties over a nine-year storage period.

  14. Draft Genome Sequence of the Beer Spoilage Bacterium Megasphaera cerevisiae Strain PAT 1T

    PubMed Central

    Kutumbaka, Kirthi K.; Pasmowitz, Joshua; Mategko, James; Reyes, Dindo; Friedrich, Alex; Han, Sukkyun; Martens-Habbena, Willm; Neal-McKinney, Jason; Janagama, Harish K.; Nadala, Cesar

    2015-01-01

    The genus Megasphaera harbors important spoilage organisms that cause beer spoilage by producing off flavors, undesirable aroma, and turbidity. Megasphaera cerevisiae is mainly found in nonpasteurized low-alcohol beer. In this study, we report the draft genome of the type strain of the genus, M. cerevisiae strain PAT 1T. PMID:26358606

  15. Creation of a synthetic xylose-inducible promoter for Saccharomyces cerevisiae

    USDA-ARS?s Scientific Manuscript database

    Saccharomyces cerevisiae is currently used to produce ethanol from glucose, but it cannot utilize five-carbon sugars contained in the hemicellulose component of biomass feedstocks. S. cerevisiae strains engineered for xylose fermentation have been made using constitutive promoters to express the req...

  16. Growth and fermentation characteristics of Saccharomyces cerevisiae NK28 isolated from kiwi fruit.

    PubMed

    Lee, Jong-Sub; Park, Eun-Hee; Kim, Jung-Wan; Yeo, Soo-Hwan; Kim, Myoung-Dong

    2013-09-28

    The influences of glucose concentration, initial medium acidity (pH), and temperature on the growth and ethanol production of Saccharomyces cerevisiae NK28, which was isolated from kiwi fruit, were examined in shake flask cultures. The optimal glucose concentration, initial medium pH, and temperature for ethanol production were 200 g/l, pH 6.0, and 35oC, respectively. Under this growth condition, S. cerevisiae NK28 produced 98.9 ± 5.67 g/l ethanol in 24 h with a volumetric ethanol production rate of 4.12 ± 0.24 g/l·h. S. cerevisiae NK28 was more tolerant to heat and ethanol than laboratory strain S. cerevisiae BY4742, and its tolerance to ethanol and fermentation inhibitors was comparable to that of an ethanologen, S. cerevisiae D5A.

  17. Construction of Killer Industrial Yeast Saccharomyces Cerevisiae Hau-1 and its Fermentation Performance

    PubMed Central

    Bajaj, Bijender K.; Sharma, S.

    2010-01-01

    Saccharomyces cerevisiae HAU-1, a time tested industrial yeast possesses most of the desirable fermentation characteristics like fast growth and fermentation rate, osmotolerance, high ethanol tolerance, ability to ferment molasses, and to ferment at elevated temperatures etc. However, this yeast was found to be sensitive against the killer strains of Saccharomyces cerevisiae. In the present study, killer trait was introduced into Saccharomyces cerevisiae HAU-1 by protoplast fusion with Saccharomyces cerevisiae MTCC 475, a killer strain. The resultant fusants were characterized for desirable fermentation characteristics. All the technologically important characteristics of distillery yeast Saccharomyces cerevisiae HAU-1 were retained in the fusants, and in addition the killer trait was also introduced into them. Further, the killer activity was found to be stably maintained during hostile conditions of ethanol fermentations in dextrose or molasses, and even during biomass recycling. PMID:24031519

  18. Role of social wasps in Saccharomyces cerevisiae ecology and evolution

    PubMed Central

    Stefanini, Irene; Dapporto, Leonardo; Legras, Jean-Luc; Calabretta, Antonio; Di Paola, Monica; De Filippo, Carlotta; Viola, Roberto; Capretti, Paolo; Polsinelli, Mario; Turillazzi, Stefano; Cavalieri, Duccio

    2012-01-01

    Saccharomyces cerevisiae is one of the most important model organisms and has been a valuable asset to human civilization. However, despite its extensive use in the last 9,000 y, the existence of a seasonal cycle outside human-made environments has not yet been described. We demonstrate the role of social wasps as vector and natural reservoir of S. cerevisiae during all seasons. We provide experimental evidence that queens of social wasps overwintering as adults (Vespa crabro and Polistes spp.) can harbor yeast cells from autumn to spring and transmit them to their progeny. This result is mirrored by field surveys of the genetic variability of natural strains of yeast. Microsatellites and sequences of a selected set of loci able to recapitulate the yeast strain’s evolutionary history were used to compare 17 environmental wasp isolates with a collection of strains from grapes from the same region and more than 230 strains representing worldwide yeast variation. The wasp isolates fall into subclusters representing the overall ecological and industrial yeast diversity of their geographic origin. Our findings indicate that wasps are a key environmental niche for the evolution of natural S. cerevisiae populations, the dispersion of yeast cells in the environment, and the maintenance of their diversity. The close relatedness of several wasp isolates with grape and wine isolates reflects the crucial role of human activities on yeast population structure, through clonal expansion and selection of specific strains during the biotransformation of fermented foods, followed by dispersal mediated by insects and other animals. PMID:22847440

  19. Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae.

    PubMed

    Bakker, B M; Overkamp, K M; van Maris AJ; Kötter, P; Luttik, M A; van Dijken JP; Pronk, J T

    2001-01-01

    In Saccharomyces cerevisiae, reduction of NAD(+) to NADH occurs in dissimilatory as well as in assimilatory reactions. This review discusses mechanisms for reoxidation of NADH in this yeast, with special emphasis on the metabolic compartmentation that occurs as a consequence of the impermeability of the mitochondrial inner membrane for NADH and NAD(+). At least five mechanisms of NADH reoxidation exist in S. cerevisiae. These are: (1) alcoholic fermentation; (2) glycerol production; (3) respiration of cytosolic NADH via external mitochondrial NADH dehydrogenases; (4) respiration of cytosolic NADH via the glycerol-3-phosphate shuttle; and (5) oxidation of intramitochondrial NADH via a mitochondrial 'internal' NADH dehydrogenase. Furthermore, in vivo evidence indicates that NADH redox equivalents can be shuttled across the mitochondrial inner membrane by an ethanol-acetaldehyde shuttle. Several other redox-shuttle mechanisms might occur in S. cerevisiae, including a malate-oxaloacetate shuttle, a malate-aspartate shuttle and a malate-pyruvate shuttle. Although key enzymes and transporters for these shuttles are present, there is as yet no consistent evidence for their in vivo activity. Activity of several other shuttles, including the malate-citrate and fatty acid shuttles, can be ruled out based on the absence of key enzymes or transporters. Quantitative physiological analysis of defined mutants has been important in identifying several parallel pathways for reoxidation of cytosolic and intramitochondrial NADH. The major challenge that lies ahead is to elucidate the physiological function of parallel pathways for NADH oxidation in wild-type cells, both under steady-state and transient-state conditions. This requires the development of techniques for accurate measurement of intracellular metabolite concentrations in separate metabolic compartments.

  20. Exploring the Saccharomyces cerevisiae Volatile Metabolome: Indigenous versus Commercial Strains

    PubMed Central

    Alves, Zélia; Melo, André; Figueiredo, Ana Raquel; Coimbra, Manuel A.; Gomes, Ana C.; Rocha, Sílvia M.

    2015-01-01

    Winemaking is a highly industrialized process and a number of commercial Saccharomyces cerevisiae strains are used around the world, neglecting the diversity of native yeast strains that are responsible for the production of wines peculiar flavours. The aim of this study was to in-depth establish the S. cerevisiae volatile metabolome and to assess inter-strains variability. To fulfill this objective, two indigenous strains (BT2652 and BT2453 isolated from spontaneous fermentation of grapes collected in Bairrada Appellation, Portugal) and two commercial strains (CSc1 and CSc2) S. cerevisiae were analysed using a methodology based on advanced multidimensional gas chromatography (HS-SPME/GC×GC-ToFMS) tandem with multivariate analysis. A total of 257 volatile metabolites were identified, distributed over the chemical families of acetals, acids, alcohols, aldehydes, ketones, terpenic compounds, esters, ethers, furan-type compounds, hydrocarbons, pyrans, pyrazines and S-compounds. Some of these families are related with metabolic pathways of amino acid, carbohydrate and fatty acid metabolism as well as mono and sesquiterpenic biosynthesis. Principal Component Analysis (PCA) was used with a dataset comprising all variables (257 volatile components), and a distinction was observed between commercial and indigenous strains, which suggests inter-strains variability. In a second step, a subset containing esters and terpenic compounds (C10 and C15), metabolites of particular relevance to wine aroma, was also analysed using PCA. The terpenic and ester profiles express the strains variability and their potential contribution to the wine aromas, specially the BT2453, which produced the higher terpenic content. This research contributes to understand the metabolic diversity of indigenous wine microflora versus commercial strains and achieved knowledge that may be further exploited to produce wines with peculiar aroma properties. PMID:26600152

  1. Human G protein-coupled receptor studies in Saccharomyces cerevisiae.

    PubMed

    Liu, Rongfang; Wong, Winsy; IJzerman, Adriaan P

    2016-08-15

    G protein-coupled receptors (GPCRs) are one of the largest families of membrane proteins, with approximately 800 different GPCRs in the human genome. Signaling via GPCRs regulates many biological processes, such as cell proliferation, differentiation, and development. In addition, many receptors have a pivotal role in immunophysiology. Many hormones and neurotransmitters are ligands for these receptors, and hence it is not surprising that many drugs, either mimicking or blocking the action of the bodily substances, have been developed. It is estimated that 30-40% of current drugs on the market target GPCRs. Further identifying and elucidating the functions of GPCRs will provide opportunities for novel drug discovery, including for immunotherapy. The budding yeast Saccharomyces cerevisiae (S. cerevisiae) is a very important and useful platform in this respect. There are many advantages of using a yeast assay system, as it is cheap, safe and stable; it is also convenient for rapid feasibility and optimization studies. Moreover, it offers a "null" background when studying human GPCRs. New developments regarding human GPCRs expressed in a yeast platform are providing insight into GPCR activation and signaling, and facilitate agonist and antagonist identification. In this review we summarize the latest findings regarding human G-protein-coupled receptors in studies using S. cerevisiae, ever since the year 2005 when we last published a review on this topic. We describe 11 families of GPCRs in detail, while including the principles and developments of each yeast system applied to these different GPCRs and highlight and generalize the experimental findings of GPCR function in these systems. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Heterologous expression of cellulase genes in natural Saccharomyces cerevisiae strains.

    PubMed

    Davison, Steffi A; den Haan, Riaan; van Zyl, Willem Heber

    2016-09-01

    Enzyme cost is a major impediment to second-generation (2G) cellulosic ethanol production. One strategy to reduce enzyme cost is to engineer enzyme production capacity in a fermentative microorganism to enable consolidated bio-processing (CBP). Ideally, a strain with a high secretory phenotype, high fermentative capacity as well as an innate robustness to bioethanol-specific stressors, including tolerance to products formed during pre-treatment and fermentation of lignocellulosic substrates should be used. Saccharomyces cerevisiae is a robust fermentative yeast but has limitations as a potential CBP host, such as low heterologous protein secretion titers. In this study, we evaluated natural S. cerevisiae isolate strains for superior secretion activity and other industrially relevant characteristics needed during the process of lignocellulosic ethanol production. Individual cellulases namely Saccharomycopsis fibuligera Cel3A (β-glucosidase), Talaromyces emersonii Cel7A (cellobiohydrolase), and Trichoderma reesei Cel5A (endoglucanase) were utilized as reporter proteins. Natural strain YI13 was identified to have a high secretory phenotype, demonstrating a 3.7- and 3.5-fold higher Cel7A and Cel5A activity, respectively, compared to the reference strain S288c. YI13 also demonstrated other industrially relevant characteristics such as growth vigor, high ethanol titer, multi-tolerance to high temperatures (37 and 40 °C), ethanol (10 % w/v), and towards various concentrations of a cocktail of inhibitory compounds commonly found in lignocellulose hydrolysates. This study accentuates the value of natural S. cerevisiae isolate strains to serve as potential robust and highly productive chassis organisms for CBP strain development.

  3. Polymorphisms in multiple genes contribute to the spontaneous mitochondrial genome instability of Saccharomyces cerevisiae S288C strains.

    PubMed

    Dimitrov, Lazar N; Brem, Rachel B; Kruglyak, Leonid; Gottschling, Daniel E

    2009-09-01

    The mitochondrial genome (mtDNA) is required for normal cellular function; inherited and somatic mutations in mtDNA lead to a variety of diseases. Saccharomyces cerevisiae has served as a model to study mtDNA integrity, in part because it can survive without mtDNA. A measure of defective mtDNA in S. cerevisiae is the formation of petite colonies. The frequency at which spontaneous petite colonies arise varies by approximately 100-fold between laboratory and natural isolate strains. To determine the genetic basis of this difference, we applied quantitative trait locus (QTL) mapping to two strains at the opposite extremes of the phenotypic spectrum: the widely studied laboratory strain S288C and the vineyard isolate RM11-1a. Four main genetic determinants explained the phenotypic difference. Alleles of SAL1, CAT5, and MIP1 contributed to the high petite frequency of S288C and its derivatives by increasing the formation of petite colonies. By contrast, the S288C allele of MKT1 reduced the formation of petite colonies and compromised the growth of petite cells. The former three alleles were found in the EM93 strain, the founder that contributed approximately 88% of the S288C genome. Nearly all of the phenotypic difference between S288C and RM11-1a was reconstituted by introducing the common alleles of these four genes into the S288C background. In addition to the nuclear gene contribution, the source of the mtDNA influenced its stability. These results demonstrate that a few rare genetic variants with individually small effects can have a profound phenotypic effect in combination. Moreover, the polymorphisms identified in this study open new lines of investigation into mtDNA maintenance.

  4. Polymorphisms in Multiple Genes Contribute to the Spontaneous Mitochondrial Genome Instability of Saccharomyces cerevisiae S288C Strains

    PubMed Central

    Dimitrov, Lazar N.; Brem, Rachel B.; Kruglyak, Leonid; Gottschling, Daniel E.

    2009-01-01

    The mitochondrial genome (mtDNA) is required for normal cellular function; inherited and somatic mutations in mtDNA lead to a variety of diseases. Saccharomyces cerevisiae has served as a model to study mtDNA integrity, in part because it can survive without mtDNA. A measure of defective mtDNA in S. cerevisiae is the formation of petite colonies. The frequency at which spontaneous petite colonies arise varies by ∼100-fold between laboratory and natural isolate strains. To determine the genetic basis of this difference, we applied quantitative trait locus (QTL) mapping to two strains at the opposite extremes of the phenotypic spectrum: the widely studied laboratory strain S288C and the vineyard isolate RM11-1a. Four main genetic determinants explained the phenotypic difference. Alleles of SAL1, CAT5, and MIP1 contributed to the high petite frequency of S288C and its derivatives by increasing the formation of petite colonies. By contrast, the S288C allele of MKT1 reduced the formation of petite colonies and compromised the growth of petite cells. The former three alleles were found in the EM93 strain, the founder that contributed ∼88% of the S288C genome. Nearly all of the phenotypic difference between S288C and RM11-1a was reconstituted by introducing the common alleles of these four genes into the S288C background. In addition to the nuclear gene contribution, the source of the mtDNA influenced its stability. These results demonstrate that a few rare genetic variants with individually small effects can have a profound phenotypic effect in combination. Moreover, the polymorphisms identified in this study open new lines of investigation into mtDNA maintenance. PMID:19581448

  5. Metabolism of sulfur amino acids in Saccharomyces cerevisiae.

    PubMed Central

    Thomas, D; Surdin-Kerjan, Y

    1997-01-01

    Sulfur amino acid biosynthesis in Saccharomyces cerevisiae involves a large number of enzymes required for the de novo biosynthesis of methionine and cysteine and the recycling of organic sulfur metabolites. This review summarizes the details of these processes and analyzes the molecular data which have been acquired in this metabolic area. Sulfur biochemistry appears not to be unique through terrestrial life, and S. cerevisiae is one of the species of sulfate-assimilatory organisms possessing a larger set of enzymes for sulfur metabolism. The review also deals with several enzyme deficiencies that lead to a nutritional requirement for organic sulfur, although they do not correspond to defects within the biosynthetic pathway. In S. cerevisiae, the sulfur amino acid biosynthetic pathway is tightly controlled: in response to an increase in the amount of intracellular S-adenosylmethionine (AdoMet), transcription of the coregulated genes is turned off. The second part of the review is devoted to the molecular mechanisms underlying this regulation. The coordinated response to AdoMet requires two cis-acting promoter elements. One centers on the sequence TCACGTG, which also constitutes a component of all S. cerevisiae centromeres. Situated upstream of the sulfur genes, this element is the binding site of a transcription activation complex consisting of a basic helix-loop-helix factor, Cbf1p, and two basic leucine zipper factors, Met4p and Met28p. Molecular studies have unraveled the specific functions for each subunit of the Cbf1p-Met4p-Met28p complex as well as the modalities of its assembly on the DNA. The Cbf1p-Met4p-Met28p complex contains only one transcription activation module, the Met4p subunit. Detailed mutational analysis of Met4p has elucidated its functional organization. In addition to its activation and bZIP domains, Met4p contains two regulatory domains, called the inhibitory region and the auxiliary domain. When the level of intracellular AdoMet increases

  6. Expression of acylphosphatase in Saccharomyces cerevisiae enhances ethanol fermentation rate

    SciTech Connect

    Raugei, G.; Modesti, A.; Magherini, F.

    1996-06-01

    Previous experiments in vitro have demonstrated the ability of acylphosphatase to increase the rate of glucose fermentation in yeast. To evaluate the possibility of increasing fermentation in vivo also, a chemically synthesized DNA sequence coding for human muscle acylphosphatase was expressed at high level in Saccharomyces cerevisiae. Ethanol production was measured in these engineered strains in comparison with a control. Acylphosphatase expression strongly increased the rate of ethanol production both in aerobic and anaerobic culture. This finding may be potentially important for the development of more efficient industrial fermentation processes. 20 refs., 5 figs.

  7. Ammonia assimilation in S. cerevisiae under chemostatic growth.

    PubMed

    Lacerda, V; Marsden, A; Ledingham, W M

    1992-01-01

    Glutamate, glutamine, and ammonia pool size have been determined in two S. cerevisiae strains (GOGAT+ and GOGAT-) growing under ammonia excess and limitation at a dilution rate of 0.10/h. The biomass levels and glutamate dehydrogenase NADPH-dependent (NADPH-GDH) activities were also measured for both strains. The strain that lacks GOGAT activity showed lower levels of metabolites under both media and lower levels of biomass under carbon limitation (ammonia excess) compared to the GOGAT+ strain. Under nitrogen limitation, the biomass level was the same for both strains, but GOGAT- changed from rounded to ellipsoidal cells.

  8. Flocculation of industrial and laboratory strains of Saccharomyces cerevisiae.

    PubMed

    Sieiro, C; Reboredo, N M; Villa, T G

    1995-06-01

    A comparative study has been made of different laboratory and industrial wild-type strains of Saccharomyces cerevisiae in relation to their flocculation behavior. All strains were inhibited by mannose and only one by maltose. In regard to the stability of these characters in the presence of proteases and high salt concentrations, a relevant degree of variation was found among the strains. This was to such an extent that it did not allow their inclusion in the Flo1 or NewFlo phenotypes. Genetic characterization of one wild-type strain revealed that the flocculation-governing gene was allelic to FLO1 found in genetic strains.

  9. Isobutanol production from D-xylose by recombinant Saccharomyces cerevisiae.

    PubMed

    Brat, Dawid; Boles, Eckhard

    2013-03-01

    Simultaneous overexpression of an optimized, cytosolically localized valine biosynthesis pathway together with overexpression of xylose isomerase XylA from Clostridium phytofermentans, transaldolase Tal1 and xylulokinase Xks1 enabled recombinant Saccharomyces cerevisiae cells to complement the valine auxotrophy of ilv2,3,5 triple deletion mutants for growth on D-xylose as the sole carbon source. Moreover, after additional overexpression of ketoacid decarboxylase Aro10 and alcohol dehydrogenase Adh2, the cells were able to ferment D-xylose directly to isobutanol. © 2013 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  10. High-throughput expression in microplate format in Saccharomyces cerevisiae.

    PubMed

    Holz, Caterina; Lang, Christine

    2004-01-01

    We have developed a high-throughput technology that allows parallel expression, purification, and analysis of large numbers of cloned cDNAs in the yeast Saccharomyces cerevisiae. The technology is based on a vector for intracellular protein expression under control of the inducible CUP1 promoter, where the gene products are fused to specific peptide sequences. These N-terminal and C-terminal epitope tags allow the immunological identification and purification of the gene products independent of the protein produced. By introducing the method of recombinational cloning we avoid time-consuming re-cloning steps and enable the easy switching between different expression vectors and host systems.

  11. A waterbath method for preparation of RNA from Saccharomyces cerevisiae.

    PubMed

    Li, Jing; Liu, Juan; Wang, Xin; Zhao, Lei; Chen, Qiang; Zhao, Weiming

    2009-01-01

    We have developed a simple and efficient method for the preparation of total RNA from Saccharomyces cerevisiae. Yeast cells were incubated at 65 degrees C for 5 min in yeast RNA isolation buffer (10 mM EDTA, 50mM Tris-HCl, 5% SDS, pH 6.0), and the RNA was isolated and purified. The yield and quality of the isolated RNA was consistently high, and the isolated RNA was suitable for downstream applications, such as Northern blot hybridization and reverse transcription PCR (RT-PCR).

  12. [Purification and properties of intercellular inorganic pyrophosphatase from Saccharomyces cerevisiae].

    PubMed

    Gou, P; Yang, S

    1998-06-01

    An inorganic pyrophosphatase (EC3.6.1.1) from Saccharomyces cerevisiae was purified to PAGE homogeneity by sonication disruption, (NH4)2SO4 fractionation and DEAE-cellulose column chromatography. The optimum pH and temperature of the enzyme were 7.4-7.8 and 60 degrees C, respectively. The Km was 19.3 mmol/L. The enzyme required Mg2+ as a cofactor for hydrolysis of pyrophosphate and was inhibited by Ca2+, Hg2+, Pb2+, Mn2+.

  13. Immobilized cell cross-flow reactor. [Saccharomyces cerevisiae

    SciTech Connect

    Chotani, G.K.; Constantinides, A.

    1984-01-01

    A cross-current flow reactor was operated using sodium alginate gel entrapped yeast cells (Saccharomyces cerevisiae) under growth conditions. Micron-sized silica, incorporated into the biocatalyst particles (1 mm mean diameter) improved mechanical strength and internal surface adhesion. The process showed decreased productivity and stability at 35/sup 0/C compared to the normal study done at 30/sup 0/C. The increased number of cross flows diminish the product inhibition effect. The residence time distribution shows that the cross-flow bioreactor system can be approximated to either a train of backmixed fermentors in series or a plug flow fermentor with moderate axial dispersion.

  14. Improved galactose fermentation of Saccharomyces cerevisiae through inverse metabolic engineering.

    PubMed

    Lee, Ki-Sung; Hong, Min-Eui; Jung, Suk-Chae; Ha, Suk-Jin; Yu, Byung Jo; Koo, Hyun Min; Park, Sung Min; Seo, Jin-Ho; Kweon, Dae-Hyuk; Park, Jae Chan; Jin, Yong-Su

    2011-03-01

    Although Saccharomyces cerevisiae is capable of fermenting galactose into ethanol, ethanol yield and productivity from galactose are significantly lower than those from glucose. An inverse metabolic engineering approach was undertaken to improve ethanol yield and productivity from galactose in S. cerevisiae. A genome-wide perturbation library was introduced into S. cerevisiae, and then fast galactose-fermenting transformants were screened using three different enrichment methods. The characterization of genetic perturbations in the isolated transformants revealed three target genes whose overexpression elicited enhanced galactose utilization. One confirmatory (SEC53 coding for phosphomannomutase) and two novel targets (SNR84 coding for a small nuclear RNA and a truncated form of TUP1 coding for a general repressor of transcription) were identified as overexpression targets that potentially improve galactose fermentation. Beneficial effects of overexpression of SEC53 may be similar to the mechanisms exerted by overexpression of PGM2 coding for phosphoglucomutase. While the mechanism is largely unknown, overexpression of SNR84, improved both growth and ethanol production from galactose. The most remarkable improvement of galactose fermentation was achieved by overexpression of the truncated TUP1 (tTUP1) gene, resulting in unrivalled galactose fermentation capability, that is 250% higher in both galactose consumption rate and ethanol productivity compared to the control strain. Moreover, the overexpression of tTUP1 significantly shortened lag periods that occurs when substrate is changed from glucose to galactose. Based on these results we proposed a hypothesis that the mutant Tup1 without C-terminal repression domain might bring in earlier and higher expression of GAL genes through partial alleviation of glucose repression. mRNA levels of GAL genes (GAL1, GAL4, and GAL80) indeed increased upon overexpression of tTUP. The results presented in this study illustrate

  15. Improved anaerobic use of arginine by Saccharomyces cerevisiae.

    PubMed

    Martin, Olga; Brandriss, Marjorie C; Schneider, Gisbert; Bakalinsky, Alan T

    2003-03-01

    Anaerobic arginine catabolism in Saccharomyces cerevisiae was genetically modified to allow assimilation of all four rather than just three of the nitrogen atoms in arginine. This was accomplished by bypassing normal formation of proline, an unusable nitrogen source in the absence of oxygen, and causing formation of glutamate instead. A pro3 ure2 strain expressing a PGK1 promoter-driven PUT2 allele encoding Delta(1)-pyrroline-5-carboxylate dehydrogenase lacking a mitochondrial targeting sequence produced significant cytoplasmic activity, accumulated twice as much intracellular glutamate, and produced twice as much cell mass as the parent when grown anaerobically on limiting arginine as sole nitrogen source.

  16. Identification of the mitochondrial pyruvate carrier in Saccharomyces cerevisiae.

    PubMed Central

    Hildyard, John C W; Halestrap, Andrew P

    2003-01-01

    Mitochondrial pyruvate transport is fundamental for metabolism and mediated by a specific inhibitable carrier. We have identified the yeast mitochondrial pyruvate carrier by measuring inhibitor-sensitive pyruvate uptake into mitochondria from 18 different Saccharomyces cerevisiae mutants, each lacking an unattributed member of the mitochondrial carrier family (MCF). Only mitochondria from the YIL006w deletion mutant exhibited no inhibitor-sensitive pyruvate transport, but otherwise behaved normally. YIL006w encodes a 41.9 kDa MCF member with homologous proteins present in both the human and mouse genomes. PMID:12887330

  17. Heterologous biosynthesis and manipulation of crocetin in Saccharomyces cerevisiae.

    PubMed

    Chai, Fenghua; Wang, Ying; Mei, Xueang; Yao, Mingdong; Chen, Yan; Liu, Hong; Xiao, Wenhai; Yuan, Yingjin

    2017-03-29

    Due to excellent performance in antitumor, antioxidation, antihypertension, antiatherosclerotic and antidepressant activities, crocetin, naturally exists in Crocus sativus L., has great potential applications in medical and food fields. Microbial production of crocetin has received increasing concern in recent years. However, only a patent from EVOVA Inc. and a report from Lou et al. have illustrated the feasibility of microbial biosynthesis of crocetin, but there was no specific titer data reported so far. Saccharomyces cerevisiae is generally regarded as food safety and productive host, and manipulation of key enzymes is critical to balance metabolic flux, consequently improve output. Therefore, to promote crocetin production in S. cerevisiae, all the key enzymes, such as CrtZ, CCD and ALD should be engineered combinatorially. By introduction of heterologous CrtZ and CCD in existing β-carotene producing strain, crocetin biosynthesis was achieved successfully in S. cerevisiae. Compared to culturing at 30 °C, the crocetin production was improved to 223 μg/L at 20 °C. Moreover, an optimal CrtZ/CCD combination and a titer of 351 μg/L crocetin were obtained by combinatorial screening of CrtZs from nine species and four CCDs from Crocus. Then through screening of heterologous ALDs from Bixa orellana (Bix_ALD) and Synechocystis sp. PCC6803 (Syn_ALD) as well as endogenous ALD6, the crocetin titer was further enhanced by 1.8-folds after incorporating Syn_ALD. Finally a highest reported titer of 1219 μg/L at shake flask level was achieved by overexpression of CCD2 and Syn_ALD. Eventually, through fed-batch fermentation, the production of crocetin in 5-L bioreactor reached to 6278 μg/L, which is the highest crocetin titer reported in eukaryotic cell. Saccharomyces cerevisiae was engineered to achieve crocetin production in this study. Through combinatorial manipulation of three key enzymes CrtZ, CCD and ALD in terms of screening enzymes sources and regulating

  18. Raw starch conversion by Saccharomyces cerevisiae expressing Aspergillus tubingensis amylases

    PubMed Central

    2013-01-01

    Background Starch is one of the most abundant organic polysaccharides available for the production of bio-ethanol as an alternative transport fuel. Cost-effective utilisation of starch requires consolidated bioprocessing (CBP) where a single microorganism can produce the enzymes required for hydrolysis of starch, and also convert the glucose monomers to ethanol. Results The Aspergillus tubingensis T8.4 α-amylase (amyA) and glucoamylase (glaA) genes were cloned and expressed in the laboratory strain Saccharomyces cerevisiae Y294 and the semi-industrial strain, S. cerevisiae Mnuα1. The recombinant AmyA and GlaA displayed protein sizes of 110–150 kDa and 90 kDa, respectively, suggesting significant glycosylation in S. cerevisiae. The Mnuα1[AmyA-GlaA] and Y294[AmyA-GlaA] strains were able to utilise 20 g l-1 raw corn starch as sole carbohydrate source, with ethanol titers of 9.03 and 6.67 g l-1 (0.038 and 0.028 g l-1 h-1), respectively, after 10 days. With a substrate load of 200 g l-1 raw corn starch, Mnuα1[AmyA-GlaA] yielded 70.07 g l-1 ethanol (0.58 g l-1 h-1) after 120 h of fermentation, whereas Y294[AmyA-GlaA] was less efficient at 43.33 g l-1 ethanol (0.36 g l-1 h-1). Conclusions In a semi-industrial amylolytic S. cerevisiae strain expressing the A. tubingensis α-amylase and glucoamylase genes, 200 g l-1 raw starch was completely hydrolysed (saccharified) in 120 hours with 74% converted to released sugars plus fermentation products and the remainder presumably to biomass. The single-step conversion of raw starch represents significant progress towards the realisation of CBP without the need for any heat pretreatment. Furthermore, the amylases were produced and secreted by the host strain, thus circumventing the need for exogenous amylases. PMID:24286270

  19. Fluid-phase endocytosis in yeasts other than Saccharomyces cerevisiae.

    PubMed

    Fernandez, N; Puente, P; Leal, F

    1990-05-01

    A FITC-dextran internalization assay with Saccharomyces cerevisiae as positive control was used to determine whether fluid-phase endocytosis is a general characteristic of yeasts. Schizosaccharomyces pombe, Pichia polymorpha, Kluyveromyces phaseolosporus, Yarrowia lipolytica and Candida albicans were clearly positive, whereas results obtained with Debaryomyces marama were inconclusive. In all cases internalized FITC-dextran was found to be localized in the vacuoles and the process was always time- and temperature-dependent. Lower eucaryotes, particularly yeasts, appear to have the ability to incorporate substances from the extracellular medium through fluid-phase endocytosis.

  20. EMS Student Handbook.

    ERIC Educational Resources Information Center

    Ogle, Patrick

    This student guide is one of a series of self-contained materials for students enrolled in an emergency medical services (EMS) training program. Discussed in the individual sections of the guide are the following topics: the purpose and history of EMS professionals; EMS training, certification and examinations (national and state certification and…

  1. Optimised protocols for the metabolic profiling of S. cerevisiae by 1H-NMR and HRMAS spectroscopy.

    PubMed

    Palomino-Schätzlein, Martina; Molina-Navarro, Maria Micaela; Tormos-Pérez, Marta; Rodríguez-Navarro, Susana; Pineda-Lucena, Antonio

    2013-10-01

    An optimised extraction protocol for the analysis of Saccharomyces cerevisiae aqueous and organic metabolites by nuclear magnetic resonance spectroscopy that allows the identification and quantification of up to 50 different compounds is presented. The method was compared with other metabolic profiling protocols for S. cerevisiae, where generally different analytical techniques are applied for metabolite quantification. In addition, the analysis of intact S. cerevisiae cells by HRMAS was implemented for the first time as a complementary method. The optimised protocols were applied to study the metabolic effect of glucose and galactose on S. cerevisiae growth. Furthermore, the metabolic reaction of S. cerevisiae to osmotic stress has been studied.

  2. EM International. Volume 1

    SciTech Connect

    Not Available

    1993-07-01

    It is the intent of EM International to describe the Office of Environmental Restoration and Waste Management`s (EM`s) various roles and responsibilities within the international community. Cooperative agreements and programs, descriptions of projects and technologies, and synopses of visits to international sites are all highlighted in this semiannual journal. Focus on EM programs in this issue is on international collaboration in vitrification projects. Technology highlights covers: in situ sealing for contaminated sites; and remote sensors for toxic pollutants. Section on profiles of countries includes: Arctic contamination by the former Soviet Union, and EM activities with Germany--cooperative arrangements.

  3. The Saccharomyces cerevisiae spindle pole body duplication gene MPS1 is part of a mitotic checkpoint

    PubMed Central

    1996-01-01

    M-phase checkpoints inhibit cell division when mitotic spindle function is perturbed. Here we show that the Saccharomyces cerevisiae MPS1 gene product, an essential protein kinase required for spindle pole body (SPB) duplication (Winey et al., 1991; Lauze et al., 1995), is also required for M-phase check-point function. In cdc31-2 and mps2-1 mutants, conditional failure of SPB duplication results in cell cycle arrest with high p34CDC28 kinase activity that depends on the presence of the wild-type MAD1 checkpoint gene, consistent with checkpoint arrest of mitosis. In contrast, mps1 mutant cells fail to duplicate their SPBs and do not arrest division at 37 degrees C, exhibiting a normal cycle of p34CDC28 kinase activity despite the presence of a monopolar spindle. Double mutant cdc31-2, mps1-1 cells also fail to arrest mitosis at 37 degrees C, despite having SPB structures similar to cdc31-2 single mutants as determined by EM analysis. Arrest of mitosis upon microtubule depolymerization by nocodazole is also conditionally absent in mps1 strains. This is observed in mps1 cells synchronized in S phase with hydroxyurea before exposure to nocodazole, indicating that failure of checkpoint function in mps1 cells is independent of SPB duplication failure. In contrast, hydroxyurea arrest and a number of other cdc mutant arrest phenotypes are unaffected by mps1 alleles. We propose that the essential MPS1 protein kinase functions both in SPB duplication and in a mitotic checkpoint monitoring spindle integrity. PMID:8567717

  4. Analysis of novel Sir3 binding regions in Saccharomyces cerevisiae.

    PubMed

    Mitsumori, Risa; Ohashi, Tomoe; Kugou, Kazuto; Ichino, Ayako; Taniguchi, Kei; Ohta, Kunihiro; Uchida, Hiroyuki; Oki, Masaya

    2016-07-01

    In Saccharomyces cerevisiae, the HMR, HML, telomere and rDNA regions are silenced. Silencing at the rDNA region requires Sir2, and silencing at the HMR, HML and telomere regions requires binding of a protein complex, consisting of Sir2, Sir3 and Sir4, that mediates repression of gene expression. Here, several novel Sir3 binding domains, termed CN domains (Chromosomal Novel Sir3 binding region), were identified using chromatin immunoprecipitation (ChIP) on chip analysis of S. cerevisiae chromosomes. Furthermore, analysis of G1-arrested cells demonstrated that Sir3 binding was elevated in G1-arrested cells compared with logarithmically growing asynchronous cells, and that Sir3 binding varied with the cell cycle. In addition to 14 CN regions identified from analysis of logarithmically growing asynchronous cells (CN1-14), 11 CN regions were identified from G1-arrested cells (CN15-25). Gene expression at some CN regions did not differ between WT and sir3Δ strains. Sir3 at conventional heterochromatic regions is thought to be recruited to chromosomes by Sir2 and Sir4; however, in this study, Sir3 binding occurred at some CN regions even in sir2Δ and sir4Δ backgrounds. Taken together, our results suggest that Sir3 exhibits novel binding parameters and gene regulatory functions at the CN binding domains.

  5. Mead production: selection and characterization assays of Saccharomyces cerevisiae strains.

    PubMed

    Pereira, Ana Paula; Dias, Teresa; Andrade, João; Ramalhosa, Elsa; Estevinho, Letícia M

    2009-08-01

    Mead is a traditional drink, which results from the alcoholic fermentation of diluted honey carried out by yeasts. However, when it is produced in a homemade way, mead producers find several problems, namely, the lack of uniformity in the final product, delayed and arrested fermentations, and the production of "off-flavours" by the yeasts. These problems are usually associated with the inability of yeast strains to respond and adapt to unfavourable and stressful growth conditions. The main objectives of this work were to evaluate the capacity of Saccharomyces cerevisiae strains, isolated from honey of the Trás-os-Montes (Northeast Portugal), to produce mead. Five strains from honey, as well as one laboratory strain and one commercial wine strain, were evaluated in terms of their fermentation performance under ethanol, sulphur dioxide and osmotic stress. All the strains showed similar behaviour in these conditions. Two yeasts strains isolated from honey and the commercial wine strain were further tested for mead production, using two different honey (a dark and a light honey), enriched with two supplements (one commercial and one developed by the research team), as fermentation media. The results obtained in this work show that S. cerevisiae strains isolated from honey, are appropriate for mead production. However it is of extreme importance to take into account the characteristics of the honey, and supplements used in the fermentation medium formulation, in order to achieve the best results in mead production.

  6. Saccharomyces cerevisiae contains two functional citrate synthase genes.

    PubMed Central

    Kim, K S; Rosenkrantz, M S; Guarente, L

    1986-01-01

    The tricarboxylic acid cycle occurs within the mitochondria of the yeast Saccharomyces cerevisiae. A nuclear gene encoding the tricarboxylic acid cycle enzyme citrate synthase has previously been isolated (M. Suissa, K. Suda, and G. Schatz, EMBO J. 3:1773-1781, 1984) and is referred to here as CIT1. We report here the isolation, by an immunological method, of a second nuclear gene encoding citrate synthase (CIT2). Disruption of both genes in the yeast genome was necessary to produce classical citrate synthase-deficient phenotypes: glutamate auxotrophy and poor growth on rich medium containing lactate, a nonfermentable carbon source. Therefore, the citrate synthase produced from either gene was sufficient for these metabolic roles. Transcription of both genes was maximally repressed in medium containing both glucose and glutamate. However, transcription of CIT1 but not of CIT2 was derepressed in medium containing a nonfermentable carbon source. The significance of the presence of two genes encoding citrate synthase in S. cerevisiae is discussed. Images PMID:3023912

  7. Regulation of phosphatidylserine synthase from Saccharomyces cerevisiae by phospholipid precursors.

    PubMed Central

    Poole, M A; Homann, M J; Bae-Lee, M S; Carman, G M

    1986-01-01

    The addition of ethanolamine or choline to inositol-containing growth medium of Saccharomyces cerevisiae wild-type cells resulted in a reduction of membrane-associated phosphatidylserine synthase (CDPdiacylglycerol:L-serine O-phosphatidyltransferase, EC 2.7.8.8) activity in cell extracts. The reduction of activity did not occur when inositol was absent from the growth medium. Under the growth conditions where a reduction of enzyme activity occurred, there was a corresponding qualitative reduction of enzyme subunit as determined by immunoblotting with antiserum raised against purified phosphatidylserine synthase. Water-soluble phospholipid precursors did not effect purified phosphatidylserine synthase activity. Phosphatidylserine synthase (activity and enzyme subunit) was not regulated by the availability of water-soluble phospholipid precursors in S. cerevisiae VAL2C(YEp CHO1) and the opi1 mutant. VAL2C(YEp CHO1) is a plasmid-bearing strain that over produces phosphatidylserine synthase activity, and the opi1 mutant is an inositol biosynthesis regulatory mutant. The results of this study suggest that the regulation of phosphatidylserine synthase by the availability of phospholipid precursors occurs at the level of enzyme formation and not at the enzyme activity level. Furthermore, the regulation of phosphatidylserine synthase is coupled to inositol synthesis. Images PMID:3023284

  8. Anaerobic glycerol production by Saccharomyces cerevisiae strains under hyperosmotic stress.

    PubMed

    Modig, Tobias; Granath, Katarina; Adler, Lennart; Lidén, Gunnar

    2007-05-01

    Glycerol formation is vital for reoxidation of nicotinamide adenine dinucleotide (reduced form; NADH) under anaerobic conditions and for the hyperosmotic stress response in the yeast Saccharomyces cerevisiae. However, relatively few studies have been made on hyperosmotic stress under anaerobic conditions. To study the combined effect of salt stress and anaerobic conditions, industrial and laboratory strains of S. cerevisiae were grown anaerobically on glucose in batch-cultures containing 40 g/l NaCl. The time needed for complete glucose conversion increased considerably, and the specific growth rates decreased by 80-90% when the cells were subjected to the hyperosmotic conditions. This was accompanied by an increased yield of glycerol and other by-products and reduced biomass yield in all strains. The slowest fermenting strain doubled its glycerol yield (from 0.072 to 0.148 g/g glucose) and a nearly fivefold increase in acetate formation was seen. In more tolerant strains, a lower increase was seen in the glycerol and in the acetate, succinate and pyruvate yields. Additionally, the NADH-producing pathway from acetaldehyde to acetate was analysed by overexpressing the stress-induced gene ALD3. However, this had no or very marginal effect on the acetate and glycerol yields. In the control experiments, the production of NADH from known sources well matched the glycerol formation. This was not the case for the salt stress experiments in which the production of NADH from known sources was insufficient to explain the formed glycerol.

  9. Proteome analysis of aerobically and anaerobically grown Saccharomyces cerevisiae cells.

    PubMed

    Bruckmann, Astrid; Hensbergen, Paul J; Balog, Crina I A; Deelder, André M; Brandt, Raymond; Snoek, I S Ishtar; Steensma, H Yde; van Heusden, G Paul H

    2009-01-30

    The yeast Saccharomyces cerevisiae is able to grow under aerobic as well as anaerobic conditions. We and others previously found that transcription levels of approximately 500 genes differed more than two-fold when cells from anaerobic and aerobic conditions were compared. Here, we addressed the effect of anaerobic growth at the post-transcriptional level by comparing the proteomes of cells isolated from steady-state glucose-limited anaerobic and aerobic cultures. Following two-dimensional gel electrophoresis and mass spectrometry we identified 110 protein spots, corresponding to 75 unique proteins, of which the levels differed more than two-fold between aerobically and anaerobically-grown cells. For 21 of the 110 spots, the intensities decreased more than two-fold whereas the corresponding mRNA levels increased or did not change significantly under anaerobic conditions. The intensities of the other 89 spots changed in the same direction as the mRNA levels of the corresponding genes, although to different extents. For some genes of glycolysis a small increase in mRNA levels, 1.5-2 fold, corresponded to a 5-10 fold increase in protein levels. Extrapolation of our results suggests that transcriptional regulation is the major but not exclusive mechanism for adaptation of S. cerevisiae to anaerobic growth conditions.

  10. Lactose fermentation by engineered Saccharomyces cerevisiae capable of fermenting cellobiose.

    PubMed

    Liu, Jing-Jing; Zhang, Guo-Chang; Oh, Eun Joong; Pathanibul, Panchalee; Turner, Timothy L; Jin, Yong-Su

    2016-09-20

    Lactose is an inevitable byproduct of the dairy industry. In addition to cheese manufacturing, the growing Greek yogurt industry generates excess acid whey, which contains lactose. Therefore, rapid and efficient conversion of lactose to fuels and chemicals would be useful for recycling the otherwise harmful acid whey. Saccharomyces cerevisiae, a popular metabolic engineering host, cannot natively utilize lactose. However, we discovered that an engineered S. cerevisiae strain (EJ2) capable of fermenting cellobiose can also ferment lactose. This finding suggests that a cellobiose transporter (CDT-1) can transport lactose and a β-glucosidase (GH1-1) can hydrolyze lactose by acting as a β-galactosidase. While the lactose fermentation by the EJ2 strain was much slower than the cellobiose fermentation, a faster lactose-fermenting strain (EJ2e8) was obtained through serial subcultures on lactose. The EJ2e8 strain fermented lactose with a consumption rate of 2.16g/Lh. The improved lactose fermentation by the EJ2e8 strain was due to the increased copy number of cdt-1 and gh1-1 genes. Looking ahead, the EJ2e8 strain could be exploited for the production of other non-ethanol fuels and chemicals from lactose through further metabolic engineering. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. The unusual UBZ domain of Saccharomyces cerevisiae polymerase η

    PubMed Central

    Woodruff, Rachel V.; Bomar, Martha G.; D’Souza, Sanjay; Zhou, Pei; Walker, Graham C.

    2010-01-01

    Recent research has revealed the presence of ubiquitin-binding domains in the Y family polymerases. The ubiquitin-binding zinc finger (UBZ) domain of human polymerase η is vital for its regulation, localization, and function. Here, we elucidate structural and functional features of the non-canonical UBZ motif of S. cerevisiae pol η. Characterization of pol η mutants confirms the importance of the UBZ motif and implies that its function is independent of zinc binding. Intriguingly, we demonstrate that zinc does bind to and affect the structure of the purified UBZ domain, but is not required for its ubiquitin-binding activity. Our finding that this unusual zinc finger is able to interact with ubiquitin even in its apo form adds support to the model that ubiquitin binding is the primary and functionally important activity of the UBZ domain in S. cerevisiae polymerase η. Putative ubiquitin-binding domains, primarily UBZs, are identified in the majority of known pol η homologs. We discuss the implications of our observations for zinc finger structure and pol η regulation. PMID:20837403

  12. Omics analysis of acetic acid tolerance in Saccharomyces cerevisiae.

    PubMed

    Geng, Peng; Zhang, Liang; Shi, Gui Yang

    2017-05-01

    Acetic acid is an inhibitor in industrial processes such as wine making and bioethanol production from cellulosic hydrolysate. It causes energy depletion, inhibition of metabolic enzyme activity, growth arrest and ethanol productivity losses in Saccharomyces cerevisiae. Therefore, understanding the mechanisms of the yeast responses to acetic acid stress is essential for improving acetic acid tolerance and ethanol production. Although 329 genes associated with acetic acid tolerance have been identified in the Saccharomyces genome and included in the database ( http://www.yeastgenome.org/observable/resistance_to_acetic_acid/overview ), the cellular mechanistic responses to acetic acid remain unclear in this organism. Post-genomic approaches such as transcriptomics, proteomics, metabolomics and chemogenomics are being applied to yeast and are providing insight into the mechanisms and interactions of genes, proteins and other components that together determine complex quantitative phenotypic traits such as acetic acid tolerance. This review focuses on these omics approaches in the response to acetic acid in S. cerevisiae. Additionally, several novel strains with improved acetic acid tolerance have been engineered by modifying key genes, and the application of these strains and recently acquired knowledge to industrial processes is also discussed.

  13. Energy coupling in Saccharomyces cerevisiae: selected opportunities for metabolic engineering.

    PubMed

    de Kok, Stefan; Kozak, Barbara U; Pronk, Jack T; van Maris, Antonius J A

    2012-06-01

    Free-energy (ATP) conservation during product formation is crucial for the maximum product yield that can be obtained, but often overlooked in metabolic engineering strategies. Product pathways that do not yield ATP or even demand input of free energy (ATP) require an additional pathway to supply the ATP needed for product formation, cellular maintenance, and/or growth. On the other hand, product pathways with a high ATP yield may result in excess biomass formation at the expense of the product yield. This mini-review discusses the importance of the ATP yield for product formation and presents several opportunities for engineering free-energy (ATP) conservation, with a focus on sugar-based product formation by Saccharomyces cerevisiae. These engineering opportunities are not limited to the metabolic flexibility within S. cerevisiae itself, but also expression of heterologous reactions will be taken into account. As such, the diversity in microbial sugar uptake and phosphorylation mechanisms, carboxylation reactions, product export, and the flexibility of oxidative phosphorylation via the respiratory chain and H(+) -ATP synthase can be used to increase or decrease free-energy (ATP) conservation. For product pathways with a negative, zero or too high ATP yield, analysis and metabolic engineering of the ATP yield of product formation will provide a promising strategy to increase the product yield and simplify process conditions. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  14. Sweet wine production by two osmotolerant Saccharomyces cerevisiae strains.

    PubMed

    García-Martínez, Teresa; de Lerma, Nieves López; Moreno, Juan; Peinado, Rafael A; Millán, M Carmen; Mauricio, Juan C

    2013-06-01

    The use of Saccharomyces cerevisiae to produce sweet wine is difficult because yeast is affected by a hyperosmotic stress due to the high sugar concentrations in the fermenting must. One possible alternative could be the coimmobilization of the osmotolerant yeast strains S. cerevisiae X4 and X5 on Penicillium chrysogenum strain H3 (GRAS) for the partial fermentation of raisin musts. This immobilized has been, namely, as yeast biocapsules. Traditional sweet wine (that is, without fermentation of the must) and must partially fermented by free yeast cells were also used for comparison. Partially fermented sweet wines showed higher concentration of the volatile compounds than traditionally produced wines. The wines obtained by immobilized yeast cells reached minor concentrations of major alcohols than wines by free cells. The consumption of specific nitrogen compounds was dependent on yeast strain and the cellular immobilization. A principal component analysis shows that the compounds related to the response to osmotic stress (glycerol, acetaldehyde, acetoin, and butanediol) clearly differentiate the wines obtained with free yeasts but not the wines obtained with immobilized yeasts. © 2013 Institute of Food Technologists®

  15. MPR1 as a novel selection marker in Saccharomyces cerevisiae.

    PubMed

    Ogawa-Mitsuhashi, Kaoru; Sagane, Koji; Kuromitsu, Junro; Takagi, Hiroshi; Tsukahara, Kappei

    2009-11-01

    L-Azetidine-2-carboxylic acid (AZC) is a toxic four-membered ring analogue of L-proline that is transported into cells by proline transporters. AZC and L-proline in the cells are competitively incorporated into nascent proteins. When AZC is present in a minimum medium, misfolded proteins are synthesized in the cells, thereby inhibiting cell growth. The MPR1 gene has been isolated from the budding yeast Saccharomyces cerevisiae Sigma1278b as a multicopy suppressor of AZC-induced growth inhibition. MPR1 encodes a novel acetyltransferase that detoxifies AZC via N-acetylation. Since MPR1 is absent in the laboratory strain of S. cerevisiae S288C, it could be a positive selection marker that confers AZC resistance in the S288C background strains. To examine the usefulness of MPR1, we constructed some plasmid vectors that harboured MPR1 under the control of various promoters and introduced them into the S288C-derived strains. The expression of MPR1 conferred AZC resistance that was largely dependent on the expression level of MPR1. In an additional experiment, the galactose-inducible MPR1 and ppr1(+), the fission yeast Schizosaccharomyces pombe homologue of MPR1, were used for gene disruption by homologous recombination, and here AZC-resistant colonies were also successfully selected. We concluded that our MPR1-AZC system provides a powerful tool for yeast transformation. Copyright (c) 2009 John Wiley & Sons, Ltd.

  16. Modulation of efficiency of translation termination in Saccharomyces cerevisiae.

    PubMed

    Nizhnikov, Anton A; Antonets, Kirill S; Inge-Vechtomov, Sergey G; Derkatch, Irina L

    2014-01-01

    Nonsense suppression is a readthrough of premature termination codons. It typically occurs either due to the recognition of stop codons by tRNAs with mutant anticodons, or due to a decrease in the fidelity of translation termination. In the latter case, suppressors usually promote the readthrough of different types of nonsense codons and are thus called omnipotent nonsense suppressors. Omnipotent nonsense suppressors were identified in yeast Saccharomyces cerevisiae in 1960s, and most of subsequent studies were performed in this model organism. Initially, omnipotent suppressors were localized by genetic analysis to different protein- and RNA-encoding genes, mostly the components of translational machinery. Later, nonsense suppression was found to be caused not only by genomic mutations, but also by epigenetic elements, prions. Prions are self-perpetuating protein conformations usually manifested by infectious protein aggregates. Modulation of translational accuracy by prions reflects changes in the activity of their structural proteins involved in different aspects of protein synthesis. Overall, nonsense suppression can be seen as a "phenotypic mirror" of events affecting the accuracy of the translational machine. However, the range of proteins participating in the modulation of translation termination fidelity is not fully elucidated. Recently, the list has been expanded significantly by findings that revealed a number of weak genetic and epigenetic nonsense suppressors, the effect of which can be detected only in specific genetic backgrounds. This review summarizes the data on the nonsense suppressors decreasing the fidelity of translation termination in S. cerevisiae, and discusses the functional significance of the modulation of translational accuracy.

  17. Proteomic analysis of Saccharomyces cerevisiae under high gravity fermentation conditions.

    PubMed

    Pham, Trong Khoa; Chong, Poh Kuan; Gan, Chee Sian; Wright, Phillip C

    2006-12-01

    Saccharomyces cerevisiae KAY446 was utilized for ethanol production, with glucose concentrations ranging from 120 g/L (normal) to 300 g/L (high). Although grown in a high glucose environment, S. cerevisiae still retained the ability to produce ethanol with a high degree of glucose utilization. iTRAQ-mediated shotgun proteomics was applied to identify relative expression change of proteins under the different glucose conditions. A total of 413 proteins were identified from three replicate, independent LC-MS/MS runs. Unsurprisingly, many proteins in the glycolysis/gluconeogenesis pathway showed significant changes in expression level. Twenty five proteins involved in amino acid metabolism decreased their expression, while the expressions of 12 heat-shock related proteins were also identified. Under high glucose conditions, ethanol was produced as a major product. However, the assimilation of glucose as well as a number of byproducts was also enhanced. Therefore, to optimize the ethanol production under very high gravity conditions, a number of pathways will need to be deactivated, while still maintaining the correct cellular redox or osmotic state. Proteomics is demonstrated here as a tool to aid in this forward metabolic engineering.

  18. Brefeldin A causes a defect in secretion in Saccharomyces cerevisiae.

    PubMed

    Vogel, J P; Lee, J N; Kirsch, D R; Rose, M D; Sztul, E S

    1993-02-15

    Brefeldin A (BFA) blocks secretion in mammalian cells and causes the redistribution of Golgi resident membrane proteins to the endoplasmic reticulum (Klausner, R. D., Donaldson, J. G., and Lippincott-Schwartz, J. (1992) J. Cell Biol. 116, 1071-1080). The target(s) of BFA and its mechanism of action remain unknown. The yeast Saccharomyces cerevisiae represents an ideal organism in which to identify the BFA targets, since many molecules essential for vesicular traffic have been already identified taking advantage of the powerful genetics of this system. Unfortunately, wild type S. cerevisiae strains are largely insensitive to BFA (Hayashi, T., Takatsuki, A., and Tamura, G. (1982) Agric. Biol. Chem. 46, 2241-2248). Here we demonstrate that an erg6 mutant (Gaber, R., Copple, D., Kennedy, B., Vidal, M., and Bard, M. (1989) Mol. Cell. Biol. 9, 3447-3456) defective in the biosynthesis of ergosterol is sensitive to BFA. Treatment of erg6 cells with BFA results in an arrest in growth and causes a block in secretion similar to that seen in mammalian cells treated with BFA. Our data suggest that the changes in the erg6 strain allows BFA entry and that this strain can be used to examine the molecular mechanism of BFA action.

  19. Investigation of the Best Saccharomyces cerevisiae Growth Condition.

    PubMed

    Salari, Roshanak; Salari, Rosita

    2017-01-01

    Saccharomyces cerevisiae is known as one of the useful yeasts which are utilized in baking and other industries. It can be easily cultured at an economic price. Today the introduction of safe and efficient carriers is being considered. Due to its generally round shape, and the volume that is enclosed by its membrane and cell wall, it is used to encapsulate active materials to protect them from degradation or to introduce a sustained release drug delivery system. Providing the best conditions in order to achieve the best morphological properties of Saccharomyces cerevisiae as a carrier. In this research, the most suitable growth condition of yeast cells which provides the best size for use as drug carriers was found by a bioreactor in a synthetic culture medium. Yeast cell reproduction and growth curves were obtained, based on pour plate colony counting data and UV/Visible sample absorption at 600 nm. Yeast cell growth patterns and growth rates were determined by Matlab mathematical software. Results showed that pH=4 and dissolving oxygen (DO) 5% was the best condition for yeast cells to grow and reproduce. This condition also provided the largest size (2 × 3 μ) yeast cells. Owing to the yeast cells' low-cost production and their structural characteristics, they could be used as potent drug carriers. This work was supported by a grant from the Vice Chancellor of Research of Mashhad University of Medical Sciences.

  20. Investigation of the Best Saccharomyces cerevisiae Growth Condition

    PubMed Central

    Salari, Roshanak; Salari, Rosita

    2017-01-01

    Introduction Saccharomyces cerevisiae is known as one of the useful yeasts which are utilized in baking and other industries. It can be easily cultured at an economic price. Today the introduction of safe and efficient carriers is being considered. Due to its generally round shape, and the volume that is enclosed by its membrane and cell wall, it is used to encapsulate active materials to protect them from degradation or to introduce a sustained release drug delivery system. Providing the best conditions in order to achieve the best morphological properties of Saccharomyces cerevisiae as a carrier. Methods In this research, the most suitable growth condition of yeast cells which provides the best size for use as drug carriers was found by a bioreactor in a synthetic culture medium. Yeast cell reproduction and growth curves were obtained, based on pour plate colony counting data and UV/Visible sample absorption at 600 nm. Yeast cell growth patterns and growth rates were determined by Matlab mathematical software. Results Results showed that pH=4 and dissolving oxygen (DO) 5% was the best condition for yeast cells to grow and reproduce. This condition also provided the largest size (2 × 3 μ) yeast cells. Conclusion Owing to the yeast cells’ low-cost production and their structural characteristics, they could be used as potent drug carriers. Funding This work was supported by a grant from the Vice Chancellor of Research of Mashhad University of Medical Sciences. PMID:28243411

  1. Engineering the biocatalytic selectivity of iridoid production in Saccharomyces cerevisiae.

    PubMed

    Billingsley, John M; DeNicola, Anthony B; Barber, Joyann S; Tang, Man-Cheng; Horecka, Joe; Chu, Angela; Garg, Neil K; Tang, Yi

    2017-09-20

    Monoterpene indole alkaloids (MIAs) represent a structurally diverse, medicinally essential class of plant derived natural products. The universal MIA building block strictosidine was recently produced in the yeast Saccharomyces cerevisiae, setting the stage for optimization of microbial production. However, the irreversible reduction of pathway intermediates by yeast enzymes results in a non-recoverable loss of carbon, which has a strong negative impact on metabolic flux. In this study, we identified and engineered the determinants of biocatalytic selectivity which control flux towards the iridoid scaffold from which all MIAs are derived. Development of a bioconversion based production platform enabled analysis of the metabolic flux and interference around two critical steps in generating the iridoid scaffold: oxidation of 8-hydroxygeraniol to the dialdehyde 8-oxogeranial followed by reductive cyclization to form nepetalactol. In vitro reconstitution of previously uncharacterized shunt pathways enabled the identification of two distinct routes to a reduced shunt product including endogenous 'ene'-reduction and non-productive reduction by iridoid synthase when interfaced with endogenous alcohol dehydrogenases. Deletion of five genes involved in α,β-unsaturated carbonyl metabolism resulted in a 5.2-fold increase in biocatalytic selectivity of the desired iridoid over reduced shunt product. We anticipate that our engineering strategies will play an important role in the development of S. cerevisiae for sustainable production of iridoids and MIAs. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  2. Localization of nuclear retained mRNAs in Saccharomyces cerevisiae

    PubMed Central

    THOMSEN, RUNE; LIBRI, DOMENICO; BOULAY, JOCELYNE; ROSBASH, MICHAEL; JENSEN, TORBEN HEICK

    2003-01-01

    In the yeast Saccharomyces cerevisiae, a common conditional phenotype associated with deletion or mutation of genes encoding mRNA export factors is the rapid accumulation of mRNAs in intranuclear foci, suggested to be near transcription sites. The nuclear RNA exosome has been implicated in retaining RNAs in these foci; on deletion of the exosome component Rrp6p, the RNA is released. To determine the exact nuclear location of retained as well as released mRNAs, we have used mRNA export mutant strains to analyze the spatial relationship between newly synthesized heat shock mRNA, the chromosomal site of transcription, and known S. cerevisiae nuclear structures such as the nucleolus and the nucleolar body. Our results show that retained SSA4 RNA localizes to an area in close proximity to the SSA4 locus. On deletion of Rrp6p and release from the genomic locus, heat shock mRNAs produced in the rat7–1 strain colocalize predominantly with nucleolar antigens. Bulk poly(A)+ RNA, on the other hand, is localized primarily to the nuclear rim. Interestingly, the RNA binding nucleocytoplasmic shuttle protein Npl3p shows strong colocalization with bulk poly(A)+ RNA, regardless of its nuclear location. Taken together, our data show that retention occurs close to the gene and indicate distinct nuclear fates of different mRNAs. PMID:12923254

  3. Metabolomic approach for improving ethanol stress tolerance in Saccharomyces cerevisiae.

    PubMed

    Ohta, Erika; Nakayama, Yasumune; Mukai, Yukio; Bamba, Takeshi; Fukusaki, Eiichiro

    2016-04-01

    The budding yeast Saccharomyces cerevisiae is widely used for brewing and ethanol production. The ethanol sensitivity of yeast cells is still a serious problem during ethanol fermentation, and a variety of genetic approaches (e.g., random mutant screening under selective pressure of ethanol) have been developed to improve ethanol tolerance. In this study, we developed a strategy for improving ethanol tolerance of yeast cells based on metabolomics as a high-resolution quantitative phenotypic analysis. We performed gas chromatography-mass spectrometry analysis to identify and quantify 36 compounds on 14 mutant strains including knockout strains for transcription factor and metabolic enzyme genes. A strong relation between metabolome of these mutants and their ethanol tolerance was observed. Data mining of the metabolomic analysis showed that several compounds (such as trehalose, valine, inositol and proline) contributed highly to ethanol tolerance. Our approach successfully detected well-known ethanol stress related metabolites such as trehalose and proline thus, to further prove our strategy, we focused on valine and inositol as the most promising target metabolites in our study. Our results show that simultaneous deletion of LEU4 and LEU9 (leading to accumulation of valine) or INM1 and INM2 (leading to reduction of inositol) significantly enhanced ethanol tolerance. This study shows the potential of the metabolomic approach to identify target genes for strain improvement of S. cerevisiae with higher ethanol tolerance. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Electrochemical insights into the ethanol tolerance of Saccharomyces cerevisiae.

    PubMed

    Wang, Min; Zhao, Jinsheng; Yang, Zhenyu; Du, Zhankui; Yang, Zhengyu

    2007-11-01

    It is expected that intracellular redox activity may closely related to catabolic states of living cells, based on which a mediated electrochemical method has been proposed to measure the ethanol tolerance of the yeast Saccharomyces cerevisiae AS 3800. The couple menadione/ferricyanide was employed as a carrier mediator system, sensing intracellular redox activity. Microelectrode voltammetric method was introduced to assay the ferrocyanide accumulations arising from menadione mediated reduction of ferricyanide by the yeast. The mediated electrochemical study show that the maximal ethanol tolerance limit of S. cerevisiae is about 25% (v/v) ethanol, which is consistent with the result obtained by the conventional fermentative ability measurement. Moreover, the electrochemical method for the first time confirmed that the specific activities of the glycolytic and alcohologenic enzymes within intact living cells remained high by the presence of sublethal ethanol, which was only predicted by in vitro enzymatic assay and cannot be measured by conventional method. The new method can be used as an easy and rapid method to determine the maximal ethanol tolerance of yeast cells.

  5. Ethanol production using immobilized Saccharomyces cerevisiae in lyophilized cellulose gel.

    PubMed

    Winkelhausen, Eleonora; Velickova, Elena; Amartey, Samuel A; Kuzmanova, Slobodanka

    2010-12-01

    A new lyophilization technique was used for immobilization of Saccharomyces cerevisiae cells in hydroxyethylcellulose (HEC) gels. The suitability of the lyophilized HEC gels to serve as immobilization matrices for the yeast cells was assessed by calculating the immobilization efficiency and the cell retention in three consecutive batches, each in duration of 72 h. Throughout the repeated batch fermentation, the immobilization efficiency was almost constant with an average value of 0.92 (12-216 h). The maximum value of cell retention was 0.24 g immobilized cells/g gel. Both parameters indicated that lyophilized gels are stable and capable of retaining the immobilized yeast cells. Showing the yeast cells propagation within the polymeric matrix, the scanning electron microscope images also confirmed that the lyophilization technique for immobilization of S. cerevisiae cells in the HEC gels was successful. The activity of the immobilized yeast cells was demonstrated by their capacity to convert glucose to ethanol. Ethanol yield of 0.40, 0.43 and 0.30 g ethanol/g glucose corresponding to 79%, 84% and 60% of the theoretical yield was attained in the first, second and third batches, respectively. The cell leakage was less than 10% of the average concentration of the immobilized cells.

  6. Intracellular metabolite profiling of Saccharomyces cerevisiae evolved under furfural.

    PubMed

    Jung, Young Hoon; Kim, Sooah; Yang, Jungwoo; Seo, Jin-Ho; Kim, Kyoung Heon

    2017-03-01

    Furfural, one of the most common inhibitors in pre-treatment hydrolysates, reduces the cell growth and ethanol production of yeast. Evolutionary engineering has been used as a selection scheme to obtain yeast strains that exhibit furfural tolerance. However, the response of Saccharomyces cerevisiae to furfural at the metabolite level during evolution remains unknown. In this study, evolutionary engineering and metabolomic analyses were applied to determine the effects of furfural on yeasts and their metabolic response to continuous exposure to furfural. After 50 serial transfers of cultures in the presence of furfural, the evolved strains acquired the ability to stably manage its physiological status under the furfural stress. A total of 98 metabolites were identified, and their abundance profiles implied that yeast metabolism was globally regulated. Under the furfural stress, stress-protective molecules and cofactor-related mechanisms were mainly induced in the parental strain. However, during evolution under the furfural stress, S. cerevisiae underwent global metabolic allocations to quickly overcome the stress, particularly by maintaining higher levels of metabolites related to energy generation, cofactor regeneration and recovery from cellular damage. Mapping the mechanisms of furfural tolerance conferred by evolutionary engineering in the present study will be led to rational design of metabolically engineered yeasts. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  7. Production of recombinant Agaricus bisporus tyrosinase in Saccharomyces cerevisiae cells.

    PubMed

    Lezzi, Chiara; Bleve, Gianluca; Spagnolo, Stefano; Perrotta, Carla; Grieco, Francesco

    2012-12-01

    It has been demonstrated that Agaricus bisporus tyrosinase is able to oxidize various phenolic compounds, thus being an enzyme of great importance for a number of biotechnological applications. The tyrosinase-coding PPO2 gene was isolated by reverse-transcription polymerase chain reaction (RT-PCR) using total RNA extracted from the mushroom fruit bodies as template. The gene was sequenced and cloned into pYES2 plasmid, and the resulting pY-PPO2 recombinant vector was then used to transform Saccharomyces cerevisiae cells. Native polyacrylamide gel electrophoresis followed by enzymatic activity staining with L-3,4-dihydroxyphenylalanine (L-DOPA) indicated that the recombinant tyrosinase is biologically active. The recombinant enzyme was overexpressed and biochemically characterized, showing that the catalytic constants of the recombinant tyrosinase were higher than those obtained when a commercial tyrosinase was used, for all the tested substrates. The present study describes the recombinant production of A. bisporus tyrosinase in active form. The produced enzyme has similar properties to the one produced in the native A. bisporus host, and its expression in S. cerevisiae provides good potential for protein engineering and functional studies of this important enzyme.

  8. Cell Wall β-(1,6)-Glucan of Saccharomyces cerevisiae

    PubMed Central

    Aimanianda, Vishukumar; Clavaud, Cécile; Simenel, Catherine; Fontaine, Thierry; Delepierre, Muriel; Latgé, Jean-Paul

    2009-01-01

    Despite its essential role in the yeast cell wall, the exact composition of the β-(1,6)-glucan component is not well characterized. While solubilizing the cell wall alkali-insoluble fraction from a wild type strain of Saccharomyces cerevisiae using a recombinant β-(1,3)-glucanase followed by chromatographic characterization of the digest on an anion exchange column, we observed a soluble polymer that eluted at the end of the solvent gradient run. Further characterization indicated this soluble polymer to have a molecular mass of ∼38 kDa and could be hydrolyzed only by β-(1,6)-glucanase. Gas chromatographymass spectrometry and NMR (1H and 13C) analyses confirmed it to be a β-(1,6)-glucan polymer with, on average, branching at every fifth residue with one or two β-(1,3)-linked glucose units in the side chain. This polymer peak was significantly reduced in the corresponding digests from mutants of the kre genes (kre9 and kre5) that are known to play a crucial role in the β-(1,6)-glucan biosynthesis. In the current study, we have developed a biochemical assay wherein incubation of UDP-[14C]glucose with permeabilized S. cerevisiae yeasts resulted in the synthesis of a polymer chemically identical to the branched β-(1,6)-glucan isolated from the cell wall. Using this assay, parameters essential for β-(1,6)-glucan synthetic activity were defined. PMID:19279004

  9. Genomic Evolution of Saccharomyces cerevisiae under Chinese Rice Wine Fermentation

    PubMed Central

    Li, Yudong; Zhang, Weiping; Zheng, Daoqiong; Zhou, Zhan; Yu, Wenwen; Zhang, Lei; Feng, Lifang; Liang, Xinle; Guan, Wenjun; Zhou, Jingwen; Chen, Jian; Lin, Zhenguo

    2014-01-01

    Rice wine fermentation represents a unique environment for the evolution of the budding yeast, Saccharomyces cerevisiae. To understand how the selection pressure shaped the yeast genome and gene regulation, we determined the genome sequence and transcriptome of a S. cerevisiae strain YHJ7 isolated from Chinese rice wine (Huangjiu), a popular traditional alcoholic beverage in China. By comparing the genome of YHJ7 to the lab strain S288c, a Japanese sake strain K7, and a Chinese industrial bioethanol strain YJSH1, we identified many genomic sequence and structural variations in YHJ7, which are mainly located in subtelomeric regions, suggesting that these regions play an important role in genomic evolution between strains. In addition, our comparative transcriptome analysis between YHJ7 and S288c revealed a set of differentially expressed genes, including those involved in glucose transport (e.g., HXT2, HXT7) and oxidoredutase activity (e.g., AAD10, ADH7). Interestingly, many of these genomic and transcriptional variations are directly or indirectly associated with the adaptation of YHJ7 strain to its specific niches. Our molecular evolution analysis suggested that Japanese sake strains (K7/UC5) were derived from Chinese rice wine strains (YHJ7) at least approximately 2,300 years ago, providing the first molecular evidence elucidating the origin of Japanese sake strains. Our results depict interesting insights regarding the evolution of yeast during rice wine fermentation, and provided a valuable resource for genetic engineering to improve industrial wine-making strains. PMID:25212861

  10. Long-chain alkane production by the yeast Saccharomyces cerevisiae.

    PubMed

    Buijs, Nicolaas A; Zhou, Yongjin J; Siewers, Verena; Nielsen, Jens

    2015-06-01

    In the past decade industrial-scale production of renewable transportation biofuels has been developed as an alternative to fossil fuels, with ethanol as the most prominent biofuel and yeast as the production organism of choice. However, ethanol is a less efficient substitute fuel for heavy-duty and maritime transportation as well as aviation due to its low energy density. Therefore, new types of biofuels, such as alkanes, are being developed that can be used as drop-in fuels and can substitute gasoline, diesel, and kerosene. Here, we describe for the first time the heterologous biosynthesis of long-chain alkanes by the yeast Saccharomyces cerevisiae. We show that elimination of the hexadecenal dehydrogenase Hfd1 and expression of a redox system are essential for alkane biosynthesis in yeast. Deletion of HFD1 together with expression of an alkane biosynthesis pathway resulted in the production of the alkanes tridecane, pentadecane, and heptadecane. Our study provides a proof of principle for producing long-chain alkanes in the industrial workhorse S. cerevisiae, which was so far limited to bacteria. We anticipate that these findings will be a key factor for further yeast engineering to enable industrial production of alkane based drop-in biofuels, which can allow the biofuel industry to diversify beyond bioethanol.

  11. Metabolic engineering of recombinant protein secretion by Saccharomyces cerevisiae.

    PubMed

    Hou, Jin; Tyo, Keith E J; Liu, Zihe; Petranovic, Dina; Nielsen, Jens

    2012-08-01

    The yeast Saccharomyces cerevisiae is a widely used cell factory for the production of fuels and chemicals, and it is also provides a platform for the production of many heterologous proteins of medical or industrial interest. Therefore, many studies have focused on metabolic engineering S. cerevisiae to improve the recombinant protein production, and with the development of systems biology, it is interesting to see how this approach can be applied both to gain further insight into protein production and secretion and to further engineer the cell for improved production of valuable proteins. In this review, the protein post-translational modification such as folding, trafficking, and secretion, steps that are traditionally studied in isolation will here be described in the context of the whole system of protein secretion. Furthermore, examples of engineering secretion pathways, high-throughput screening and systems biology applications of studying protein production and secretion are also given to show how the protein production can be improved by different approaches. The objective of the review is to describe individual biological processes in the context of the larger, complex protein synthesis network.

  12. Ras proteins control mitochondrial biogenesis and function in Saccharomyces cerevisiae.

    PubMed

    Hlavatá, L; Nyström, T

    2003-01-01

    The evolutionarily conserved Ras proteins function as a point of convergence for different signaling pathways in eukaryotes and have been implicated in both aging and cancer development. In Saccharomyces cerevisiae the plasma membrane proteins Ras1 and Ras2 are sensing the nutritional status of the environments, e.g., the abundance and quality of available carbon sources. The cAMP-protein kinase A pathway is the most explored signaling pathway controlled by Ras proteins; it affects a large number of genes, some of which are important to defend the cell against oxidative stress. In addition, recent analysis has shown that the Ras system of yeast is involved in the development of mitochondria and in regulating their activity. As a sensor of environmental status and an effector of mitochondrial activity, Ras serves as a Rosetta stone of cellular energy transduction. This review summarizes the physical and functional involvement of Ras proteins and Ras-dependent signaling pathways in mitochondrial function in S. cerevisiae. Since mitochondria produce harmful reactive oxygen species as an inevitable byproduct and are partly under control of Ras, illuminating these regulatory interactions may improve our understanding of both cancer and aging.

  13. Effects of low-intensity ultrasound on the growth, cell membrane permeability and ethanol tolerance of Saccharomyces cerevisiae.

    PubMed

    Dai, Chunhua; Xiong, Feng; He, Ronghai; Zhang, Weiwei; Ma, Haile

    2017-05-01

    Effects of low-intensity ultrasound (at different frequency, treatment time and power) on Saccharomyces cerevisiae in different growth phase were evaluated by the biomass in the paper. In addition, the cell membrane permeability and ethanol tolerance of sonicated Saccharomyces cerevisiae were also researched. The results revealed that the biomass of Saccharomyces cerevisiae increased by 127.03% under the optimum ultrasonic conditions such as frequency 28kHz, power 140W/L and ultrasonic time 1h when Saccharomyces cerevisiae cultured to the latent anaphase. And the membrane permeability of Saccharomyces cerevisiae in latent anaphase enhanced by ultrasound, resulting in the augment of extracellular protein, nucleic acid and fructose-1,6-diphosphate (FDP) contents. In addition, sonication could accelerate the damage of high concentration alcohol to Saccharomyces cerevisiae although the ethanol tolerance of Saccharomyces cerevisiae was not affected significantly by ultrasound.

  14. Fumaric Acid Production in Saccharomyces cerevisiae by In Silico Aided Metabolic Engineering

    PubMed Central

    Xu, Guoqiang; Zou, Wei; Chen, Xiulai; Xu, Nan; Liu, Liming; Chen, Jian

    2012-01-01

    Fumaric acid (FA) is a promising biomass-derived building-block chemical. Bio-based FA production from renewable feedstock is a promising and sustainable alternative to petroleum-based chemical synthesis. Here we report on FA production by direct fermentation using metabolically engineered Saccharomyces cerevisiae with the aid of in silico analysis of a genome-scale metabolic model. First, FUM1 was selected as the target gene on the basis of extensive literature mining. Flux balance analysis (FBA) revealed that FUM1 deletion can lead to FA production and slightly lower growth of S. cerevisiae. The engineered S. cerevisiae strain obtained by deleting FUM1 can produce FA up to a concentration of 610±31 mg L–1 without any apparent change in growth in fed-batch culture. FT-IR and 1H and 13C NMR spectra confirmed that FA was synthesized by the engineered S. cerevisiae strain. FBA identified pyruvate carboxylase as one of the factors limiting higher FA production. When the RoPYC gene was introduced, S. cerevisiae produced 1134±48 mg L–1 FA. Furthermore, the final engineered S. cerevisiae strain was able to produce 1675±52 mg L–1 FA in batch culture when the SFC1 gene encoding a succinate–fumarate transporter was introduced. These results demonstrate that the model shows great predictive capability for metabolic engineering. Moreover, FA production in S. cerevisiae can be efficiently developed with the aid of in silico metabolic engineering. PMID:23300594

  15. Mutants of Saccharomyces cerevisiae and Bacillus citri Changed the Protein Content of the Nigerian Oryza sativa variety “Igbimo” during Fermentation

    PubMed Central

    Boboye, Bolatito E; Adeleke, Mutiat A; Olawale, Anthony O

    2012-01-01

    Effect of mutation on protein production by Saccharomyces cerevisiae and Bacillus citri, the best protein producing yeast and bacterium isolated during a previous natural fermentation of a Nigerian rice (“Igbimo”). The two microorganisms were grown to logarithmic phase and mutagenized separately using ethylmethyl sulphonate (EMS). The wild-types and variants were inoculated individually into sterile “Igbimo” rice. Fermentation was allowed to take place at 27°C for 7 days after which protein released into the rice was quantified using the Biuret reagent method. The data obtained showed that the mutants are different from each other. Some mutants did form the protein at lower concentrations, others at the same and higher concentrations than the mother strains. The parental strains of S. cerevisiae and B. citri synthesized 0.89 mg/mL and 0.36 mg/mL protein respectively. Four groups of the mutants are recognized: classes I, II, III and IV which are the Poor, Average, Good and Super Protein Producers with 0-0.20, 0.21-0.50, 0.51-1.0 and 1.0 mg/mL protein respectively The yeast mutants produced higher amounts of protein than those of the bacterium. PMID:23166568

  16. Inactivation of Saccharomyces cerevisiae suspended in orange juice using high-intensity pulsed electric fields.

    PubMed

    Elez-Martínez, Pedro; Escolà-Hernández, Joan; Soliva-Fortuny, Robert C; Martín-Belloso, Olga

    2004-11-01

    Saccharomyces cerevisiae is often associated with the spoilage of fruit juices. The purpose of this study was to evaluate the effect of high-intensity pulsed electric field (HIPEF) treatment on the survival of S. cerevisiae suspended in orange juice. Commercial heat-sterilized orange juice was inoculated with S. cerevisiae (CECT 1319) (10(8) CFU/ml) and then treated by HIPEFs. The effects of HIPEF parameters (electric field strength, treatment time, pulse polarity, frequency, and pulse width) were evaluated and compared to those of heat pasteurization (90 degrees C/min). In all of the HIPEF experiments, the temperature was kept below 39 degrees C. S. cerevisiae cell damage induced by HIPEF treatment was observed by electron microscopy. HIPEF treatment was effective for the inactivation of S. cerevisiae in orange juice at pasteurization levels. A maximum inactivation of a 5.1-log (CFU per milliliter) reduction was achieved after exposure of S. cerevisiae to HIPEFs for 1,000 micros (4-micros pulse width) at 35 kV/cm and 200 Hz in bipolar mode. Inactivation increased as both the field strength and treatment time increased. For the same electric field strength and treatment time, inactivation decreased when the frequency and pulse width were increased. Electric pulses applied in the bipolar mode were more effective than those in the monopolar mode for destroying S. cerevisiae. HIPEF processing inactivated S. cerevisiae in orange juice, and the extent of inactivation was similar to that obtained during thermal pasteurization. HIPEF treatments caused membrane damage and had a profound effect on the intracellular organization of S. cerevisiae.

  17. Characterization of Saccharomyces cerevisiae strains isolated from must of grape grown in experimental vineyard.

    PubMed

    Cappello, M S; Bleve, G; Grieco, F; Dellaglio, F; Zacheo, G

    2004-01-01

    Isolation and characterization of indigenous Saccharomyces cerevisiae strains from 12 grape varieties grown in an experimental vineyard of Apulia. Thirty to 40 colonies from each of the 12 fermentations were obtained at the end stage of spontaneous fermentation. By using morphological and physiological methods and by the PCR analysis of internal transcribed ITS1-5,8S-ITS2, the isolates belonging to Saccharomyces genus were identified. These isolates were further characterized by amplification with S. cerevisiae species- and delta element-specific primers, thus allowing the identification of S. cerevisiae strains selected from each of the 12 fermentations. By means of RFLP analysis of mtDNA, each S. cerevisiae population isolated from a single fermentation appeared to constitute a genetically homogenous group. The comparison of the 12 cultivar-specific mtDNA RFLP patterns, allowed classifying the 12 S. cerevisiae populations into three genetically homogenous groups. The isolated strains fermented vigorously in synthetic and grape juice medium and showed high alcohol and sulphur dioxide (SO(2)) resistance and low hydrogen sulphite (H(2)S) production. The molecular analysis, in conjunction with the traditional morphological and physiological methods, was useful in discriminating at strain level the indigenous population of S. cerevisiae present in a vineyard of Apulia. The dominant S. cerevisiae strains identified in the 12 fermented musts showed potentially important oenological characteristics. The characterization of natural S. cerevisiae strains from several typical Italian grapes grown in a restricted experimental vineyard is an important step towards the preservation and exploitation of yeast biodiversity of Apulia, a relevant wine-producing region. The close relationship between the S. cerevisiae strains from different grapes grown in the same vineyard indicated that the occurrence of native strains is representative of the area rather than of the variety of

  18. Isolation of xylose reductase gene of Pichia stipitis and its expression in Saccharomyces cerevisiae

    SciTech Connect

    Takuma, Shinya; Nakashima, Noriyuki; Tantirungkij, Manee

    1991-12-31

    A NADPH/NADH-dependent xylose reductase gene was isolated from the xylose-assimilating yeast, Pichia stipitis. DNA sequence analysis showed that the gene consists of 951 bp. The gene introduced in Saccharomyces cerevisiae was transcribed to mRNA, and a considerable amount of enzyme activity was observed constitutively, whereas transcription and translation in P steps were inducible. S. cerevisiae carrying the xylose reductase gene could not, however, grow on xylose medium, and could not produce ethanol from xylose. Since xylose uptake and accumulation of xylitol by S. cerevisiae were observed, the conversion of xylitol to xylulose seemed to be limited.

  19. Serum Anti-Saccharomyces Cerevisiae Antibodies in Greek Patients with Behcet's Disease

    PubMed Central

    Vaiopoulos, George; Lakatos, Peter Laszlo; Papp, Maria; Kaklamanis, Faedon; Economou, Efrosyni; Zevgolis, Vassilis; Sourdis, John

    2011-01-01

    We tested 59 Greek patients with Behcet's Disease (BD) for serum anti-Saccharomyces cerevisiae antibodies. No increase of these antibodies was detected in the cases compared to 55 healthy unrelated blood donors from the same population. This finding is in contrast with the correlation between Saccharomyces cerevisiae antibodies and BD as reported in other populations. It seems that environmental factors may contribute to disease expression in different populations, producing different effects according to the individual's genetic predisposition. Saccharomyces cerevisiae antibodies do not seem to be of any significance in the Greek population. PMID:21319357

  20. Isolation of a novel mutant strain of Saccharomyces cerevisiae by an ethyl methane sulfonate-induced mutagenesis approach as a high producer of bioethanol.

    PubMed

    Mobini-Dehkordi, Mohsen; Nahvi, Iraj; Zarkesh-Esfahani, Hamid; Ghaedi, Kamran; Tavassoli, Manoochehr; Akada, Rinji

    2008-04-01

    In order to obtain mutant strains showing higher bioethanol production than wild-type strains, a commercial Saccharomyces cerevisiae type was subjected to mutagenesis using ethyl methane sulfonate (EMS). After adding EMS to a shaken yeast suspension, the viability of yeast cells was assessed by diluted sample inoculation to solid yeast-extract peptone glucose (YEPG) medium at 15-min intervals. At 45 min, the viability of yeast cells was estimated to be about 40%. Mutagenized cells were recovered from YEPG broth after incubation at 30 degrees C for 18 h. After this period, EMS-treated yeast cells were grown on solid aerobic low-peptone (ALP) medium containing 2-12% (v/v) ethanol. All plates were incubated at 30 degrees C for 2-6 d in order to form colonies. The mutant strains that tolerated high concentrations of ethanol were selected for bioethanol production in microfuge tubes containing fermentation medium. Formation of bioethanol in small tubes was detected by the distillation-colorimetric method. In addition, trehalose content and invertase activity were determined in each mutant strain. Among many isolated mutant strains, there were six isolated colonies that grew on ALP medium supplemented with 10% (v/v) ethanol and one of them produced bioethanol 17.3% more than the wild type.

  1. Arrangement of the respiratory chain complexes in Saccharomyces cerevisiae supercomplex III2IV2 revealed by single particle cryo-electron microscopy.

    PubMed

    Mileykovskaya, Eugenia; Penczek, Pawel A; Fang, Jia; Mallampalli, Venkata K P S; Sparagna, Genevieve C; Dowhan, William

    2012-06-29

    Here we present for the first time a three-dimensional cryo-EM map of the Saccharomyces cerevisiae respiratory supercomplex composed of dimeric complex III flanked on each side by one monomeric complex IV. A precise fit of the existing atomic x-ray structures of complex III from yeast and complex IV from bovine heart into the cryo-EM map resulted in a pseudo-atomic model of the three-dimensional structure for the supercomplex. The distance between cytochrome c binding sites of complexes III and IV is about 6 nm, which supports proposed channeling of cytochrome c between the individual complexes. The opposing surfaces of complexes III and IV differ considerably from those reported for the bovine heart supercomplex as determined by cryo-EM. A closer association between the individual complex domains at the aqueous membrane interface and larger spaces between the membrane-embedded domains where lipid molecules may reside are also demonstrated. The supercomplex contains about 50 molecules of cardiolipin (CL) with a fatty acid composition identical to that of the inner membrane CL pool, consistent with CL-dependent stabilization of the supercomplex.

  2. Regulation of xylose metabolism in recombinant Saccharomyces cerevisiae

    PubMed Central

    Salusjärvi, Laura; Kankainen, Matti; Soliymani, Rabah; Pitkänen, Juha-Pekka; Penttilä, Merja; Ruohonen, Laura

    2008-01-01

    Background Considerable interest in the bioconversion of lignocellulosic biomass into ethanol has led to metabolic engineering of Saccharomyces cerevisiae for fermentation of xylose. In the present study, the transcriptome and proteome of recombinant, xylose-utilising S. cerevisiae grown in aerobic batch cultures on xylose were compared with those of glucose-grown cells both in glucose repressed and derepressed states. The aim was to study at the genome-wide level how signalling and carbon catabolite repression differ in cells grown on either glucose or xylose. The more detailed knowledge whether xylose is sensed as a fermentable carbon source, capable of catabolite repression like glucose, or is rather recognised as a non-fermentable carbon source is important for further engineering this yeast for more efficient anaerobic fermentation of xylose. Results Genes encoding respiratory proteins, proteins of the tricarboxylic acid and glyoxylate cycles, and gluconeogenesis were only partially repressed by xylose, similar to the genes encoding their transcriptional regulators HAP4, CAT8 and SIP1-2 and 4. Several genes that are repressed via the Snf1p/Mig1p-pathway during growth on glucose had higher expression in the cells grown on xylose than in the glucose repressed cells but lower than in the glucose derepressed cells. The observed expression profiles of the transcription repressor RGT1 and its target genes HXT2-3, encoding hexose transporters suggested that extracellular xylose was sensed by the glucose sensors Rgt2p and Snf3p. Proteome analyses revealed distinct patterns in phosphorylation of hexokinase 2, glucokinase and enolase isoenzymes in the xylose- and glucose-grown cells. Conclusion The results indicate that the metabolism of yeast growing on xylose corresponds neither to that of fully glucose repressed cells nor that of derepressed cells. This may be one of the major reasons for the suboptimal fermentation of xylose by recombinant S. cerevisiae strains

  3. Assay for Adhesion and Agar Invasion in S. cerevisiae

    PubMed Central

    Guldal, Cemile G; Broach, James

    2006-01-01

    Yeasts are found in natural biofilms, where many microorganisms colonize surfaces. In artificial environments, such as surfaces of man-made objects, biofilms can reduce industrial productivity, destroy structures, and threaten human life. 1-3 On the other hand, harnessing the power of biofilms can help clean the environment and generate sustainable energy. 4-8 The ability of S. cerevisiae to colonize surfaces and participate in complex biofilms was mostly ignored until the rediscovery of the differentiation programs triggered by various signaling pathways and environmental cues in this organism. 9, 10 The continuing interest in using S. cerevisiae as a model organism to understand the interaction and convergence of signaling pathways, such as the Ras-PKA, Kss1 MAPK, and Hog1 osmolarity pathways, quickly placed S. cerevisiae in the junction of biofilm biology and signal transduction research. 11-20 To this end, differentiation of yeast cells into long, adhesive, pseudohyphal filaments became a convenient readout for the activation of signal transduction pathways upon various environmental changes. However, filamentation is a complex collection of phenotypes, which makes assaying for it as if it were a simple phenotype misleading. In the past decade, several assays were successfully adopted from bacterial biofilm studies to yeast research, such as MAT formation assays to measure colony spread on soft agar and crystal violet staining to quantitatively measure cell-surface adherence. 12, 21 However, there has been some confusion in assays developed to qualitatively assess the adhesive and invasive phenotypes of yeast in agar. Here, we present a simple and reliable method for assessing the adhesive and invasive quality of yeast strains with easy-to-understand steps to isolate the adhesion assessment from invasion assessment. Our method, adopted from previous studies, 10, 16 involves growing cells in liquid media and plating on differential nutrient conditions for growth

  4. A Novel Saccharomyces cerevisiae Killer Strain Secreting the X Factor Related to Killer Activity and Inhibition of S. cerevisiae K1, K2 and K28 Killer Toxins.

    PubMed

    Melvydas, Vytautas; Bružauskaitė, Ieva; Gedminienė, Genovaitė; Šiekštelė, Rimantas

    2016-09-01

    It was determined that Kx strains secrete an X factor which can inhibit all known Saccharomyces cerevisiae killer toxins (K1, K2, K28) and some toxins of other yeast species-the phenomenon not yet described in the scientific literature. It was shown that Kx type yeast strains posess a killer phenotype producing small but clear lysis zones not only on the sensitive strain α'1 but also on the lawn of S. cerevisiae K1, K2 and K28 type killer strains at temperatures between 20 and 30 °C. The pH at which killer/antikiller effect of Kx strain reaches its maximum is about 5.0-5.2. The Kx yeast were identified as to belong to S. cerevisiae species. Another newly identified S. cerevisiae killer strain N1 has killer activity but shows no antikilller properties against standard K1, K2 and K28 killer toxins. The genetic basis for Kx killer/antikiller phenotype was associated with the presence of M-dsRNA which is bigger than M-dsRNA of standard S. cerevisiae K1, K2, K28 type killer strains. Killer and antikiller features should be encoded by dsRNA. The phenomenon of antikiller (inhibition) properties was observed against some killer toxins of other yeast species. The molecular weight of newly identified killer toxins which produces Kx type strains might be about 45 kDa.

  5. Leveraging EMS and VPP

    DTIC Science & Technology

    2009-05-01

    Elements of EMS  International Standards Organization ( ISO ) 14001 , Environmental Management Systems  The Key Elements of EMS: - Policy - Planning...wingman-- ON and OFF duty Fully Conforming vs. Fully Implemented  “Fully Conforming”  Meets standards established in ISO 14001  ESOH council...e n c e Every airman looking out for his wingman-- ON and OFF duty EMS & VPP Commonalities Environmental Management System ISO 14001 : 2004 Voluntary

  6. Exposure to benzene metabolites causes oxidative damage in Saccharomyces cerevisiae.

    PubMed

    Raj, Abhishek; Nachiappan, Vasanthi

    2016-06-01

    Hydroquinone (HQ) and benzoquinone (BQ) are known benzene metabolites that form reactive intermediates such as reactive oxygen species (ROS). This study attempts to understand the effect of benzene metabolites (HQ and BQ) on the antioxidant status, cell morphology, ROS levels and lipid alterations in the yeast Saccharomyces cerevisiae. There was a reduction in the growth pattern of wild-type cells exposed to HQ/BQ. Exposure of yeast cells to benzene metabolites increased the activity of the anti-oxidant enzymes catalase, superoxide dismutase and glutathione peroxidase but lead to a decrease in ascorbic acid and reduced glutathione. Increased triglyceride level and decreased phospholipid levels were observed with exposure to HQ and BQ. These results suggest that the enzymatic antioxidants were increased and are involved in the protection against macromolecular damage during oxidative stress; presumptively, these enzymes are essential for scavenging the pro-oxidant effects of benzene metabolites.

  7. Influence of killer strains of Saccharomyces cerevisiae on wine fermentation.

    PubMed

    Pérez, F; Ramírez, M; Regodón, J A

    2001-09-01

    The effect of killer strains of Saccharomyces cerevisiae on the growth of sensitive strains during must fermentation was studied by using a new method to monitor yeast populations. The capability of killer yeast strains to eliminate sensitive strains depends on the initial proportion of killer yeasts, the susceptibility of sensitive strains, and the treatment of the must. In sterile filtered must, an initial proportion of 2-6% of killer yeasts was responsible for protracted fermentation and suppression of isogenic sensitive strains. A more variable initial proportion was needed to get the same effect with non-isogenic strains. The suspended solids that remain in the must after cold-settling decreased killer toxin effect. The addition of bentonite to the must avoided protracted fermentation and the suppression of sensitive strains; however, the addition of yeast dietary nutrients with yeast cell walls did not, although it decreased fermentation lag.

  8. Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration.

    PubMed

    Lin, Su-Ju; Kaeberlein, Matt; Andalis, Alex A; Sturtz, Lori A; Defossez, Pierre-Antoine; Culotta, Valeria C; Fink, Gerald R; Guarente, Leonard

    2002-07-18

    Calorie restriction (CR) extends lifespan in a wide spectrum of organisms and is the only regimen known to lengthen the lifespan of mammals. We established a model of CR in budding yeast Saccharomyces cerevisiae. In this system, lifespan can be extended by limiting glucose or by reducing the activity of the glucose-sensing cyclic-AMP-dependent kinase (PKA). Lifespan extension in a mutant with reduced PKA activity requires Sir2 and NAD (nicotinamide adenine dinucleotide). In this study we explore how CR activates Sir2 to extend lifespan. Here we show that the shunting of carbon metabolism toward the mitochondrial tricarboxylic acid cycle and the concomitant increase in respiration play a central part in this process. We discuss how this metabolic strategy may apply to CR in animals.

  9. Regulation of Phospholipid Synthesis in the Yeast Saccharomyces cerevisiae

    PubMed Central

    Carman, George M.; Han, Gil-Soo

    2013-01-01

    The yeast Saccharomyces cerevisiae, with its full complement of organelles, synthesizes membrane phospholipids by pathways that are generally common to those found in higher eukaryotes. Phospholipid synthesis in yeast is regulated in response to a variety of growth conditions (e.g., inositol supplementation, zinc depletion, and growth stage) by a coordination of genetic (e.g., transcriptional activation and repression) and biochemical (e.g., activity modulation and localization) mechanisms. Phosphatidate (PA), whose cellular levels are controlled by the activities of key phospholipid synthesis enzymes, plays a central role in the transcriptional regulation of phospholipid synthesis genes. In addition to the regulation of gene expression, phosphorylation of key phospholipid synthesis catalytic and regulatory proteins controls the metabolism of phospholipid precursors and products. PMID:21275641

  10. Mutations in Ran system affected telomere silencing in Saccharomyces cerevisiae

    SciTech Connect

    Hayashi, Naoyuki Kobayashi, Masahiko; Shimizu, Hiroko; Yamamoto, Ken-ichi; Murakami, Seishi; Nishimoto, Takeharu

    2007-11-23

    The Ran GTPase system regulates the direction and timing of several cellular events, such as nuclear-cytosolic transport, centrosome formation, and nuclear envelope assembly in telophase. To gain insight into the Ran system's involvement in chromatin formation, we investigated gene silencing at the telomere in several mutants of the budding yeast Saccharomyces cerevisiae, which had defects in genes involved in the Ran system. A mutation of the RanGAP gene, rna1-1, caused reduced silencing at the telomere, and partial disruption of the nuclear Ran binding factor, yrb2-{delta}2, increased this silencing. The reduced telomere silencing in rna1-1 cells was suppressed by a high dosage of the SIR3 gene or the SIT4 gene. Furthermore, hyperphosphorylated Sir3 protein accumulated in the rna1-1 mutant. These results suggest that RanGAP is required for the heterochromatin structure at the telomere in budding yeast.

  11. Genetic dissection of acetic acid tolerance in Saccharomyces cerevisiae.

    PubMed

    Geng, Peng; Xiao, Yin; Hu, Yun; Sun, Haiye; Xue, Wei; Zhang, Liang; Shi, Gui-Yang

    2016-09-01

    Dissection of the hereditary architecture underlying Saccharomyces cerevisiae tolerance to acetic acid is essential for ethanol fermentation. In this work, a genomics approach was used to dissect hereditary variations in acetic acid tolerance between two phenotypically different strains. A total of 160 segregants derived from these two strains were obtained. Phenotypic analysis indicated that the acetic acid tolerance displayed a normal distribution in these segregants, and suggested that the acetic acid tolerant traits were controlled by multiple quantitative trait loci (QTLs). Thus, 220 SSR markers covering the whole genome were used to detect QTLs of acetic acid tolerant traits. As a result, three QTLs were located on chromosomes 9, 12, and 16, respectively, which explained 38.8-65.9 % of the range of phenotypic variation. Furthermore, twelve genes of the candidates fell into the three QTL regions by integrating the QTL analysis with candidates of acetic acid tolerant genes. These results provided a novel avenue to obtain more robust strains.

  12. Mechanism and Regulation of Protein Synthesis in Saccharomyces cerevisiae

    PubMed Central

    Dever, Thomas E.; Kinzy, Terri Goss; Pavitt, Graham D.

    2016-01-01

    In this review, we provide an overview of protein synthesis in the yeast Saccharomyces cerevisiae. The mechanism of protein synthesis is well conserved between yeast and other eukaryotes, and molecular genetic studies in budding yeast have provided critical insights into the fundamental process of translation as well as its regulation. The review focuses on the initiation and elongation phases of protein synthesis with descriptions of the roles of translation initiation and elongation factors that assist the ribosome in binding the messenger RNA (mRNA), selecting the start codon, and synthesizing the polypeptide. We also examine mechanisms of translational control highlighting the mRNA cap-binding proteins and the regulation of GCN4 and CPA1 mRNAs. PMID:27183566

  13. Bioethanol production from cellulosic hydrolysates by engineered industrial Saccharomyces cerevisiae.

    PubMed

    Lee, Ye-Gi; Jin, Yong-Su; Cha, Young-Lok; Seo, Jin-Ho

    2017-03-01

    Even though industrial yeast strains exhibit numerous advantageous traits for the production of bioethanol, their genetic manipulation has been limited. This study demonstrates that an industrial polyploidy Saccharomyces cerevisiae JHS200 can be engineered through Cas9 (CRISPR associated protein 9)-based genome editing. Specifically, we generated auxotrophic mutants and introduced a xylose metabolic pathway into the auxotrophic mutants. As expected, the engineered strain (JX123) enhanced ethanol production from cellulosic hydrolysates as compared to other engineered haploid strains. However, the JX123 strain produced substantial amounts of xylitol as a by-product during xylose fermentation. Hypothesizing that the xylitol accumulation might be caused by intracellular redox imbalance from cofactor difference, the NADH oxidase from Lactococcus lactis was introduced into the JX123 strain. The resulting strain (JX123_noxE) not only produced more ethanol, but also produced xylitol less than the JX123 strain. These results suggest that industrial polyploidy yeast can be modified for producing biofuels and chemicals.

  14. Identification of NAD+ capped mRNAs in Saccharomyces cerevisiae

    PubMed Central

    Walters, Robert W.; Matheny, Tyler; Mizoue, Laura S.; Rao, Bhalchandra S.; Muhlrad, Denise; Parker, Roy

    2017-01-01

    RNAs besides tRNA and rRNA contain chemical modifications, including the recently described 5′ nicotinamide-adenine dinucleotide (NAD+) RNA in bacteria. Whether 5′ NAD-RNA exists in eukaryotes remains unknown. We demonstrate that 5′ NAD-RNA is found on subsets of nuclear and mitochondrial encoded mRNAs in Saccharomyces cerevisiae. NAD-mRNA appears to be produced cotranscriptionally because NAD-RNA is also found on pre-mRNAs, and only on mitochondrial transcripts that are not 5′ end processed. These results define an additional 5′ RNA cap structure in eukaryotes and raise the possibility that this 5′ NAD+ cap could modulate RNA stability and translation on specific subclasses of mRNAs. PMID:28031484

  15. The concentration of ammonia regulates nitrogen metabolism in Saccharomyces cerevisiae.

    PubMed

    ter Schure, E G; Silljé, H H; Verkleij, A J; Boonstra, J; Verrips, C T

    1995-11-01

    Saccharomyces cerevisiae was grown in a continuous culture at a single dilution rate with input ammonia concentrations whose effects ranged from nitrogen limitation to nitrogen excess and glucose limitation. The rate of ammonia assimilation (in millimoles per gram of cells per hour) was approximately constant. Increased extracellular ammonia concentrations are correlated with increased intracellular glutamate and glutamine concentrations, increases in levels of NAD-dependent glutamate dehydrogenase activity and its mRNA (gene GDH2), and decreases in levels of NADPH-dependent glutamate dehydrogenase activity and its mRNA (gene GDH1), as well as decreases in the levels of mRNA for the amino acid permease-encoding genes GAP1 and PUT4. The governing factor of nitrogen metabolism might be the concentration of ammonia rather than its flux.

  16. Conservative Duplication of Spindle Poles during Meiosis in Saccharomyces cerevisiae

    PubMed Central

    Wesp, Andreas; Prinz, Susanne; Fink, Gerald R.

    2001-01-01

    During sporulation in diploid Saccharomyces cerevisiae, spindle pole bodies acquire the so-called meiotic plaque, a prerequisite for spore formation. Mpc70p is a component of the meiotic plaque and is thus essential for spore formation. We show here that MPC70/mpc70 heterozygous strains most often produce two spores instead of four and that these spores are always nonsisters. In wild-type strains, Mpc70p localizes to all four spindle pole bodies, whereas in MPC70/mpc70 strains Mpc70p localizes to only two of the four spindle pole bodies, and these are always nonsisters. Our data can be explained by conservative spindle pole body distribution in which the two newly synthesized meiosis II spindle pole bodies of MPC70/mpc70 strains lack Mpc70p. PMID:11244080

  17. Conservative duplication of spindle poles during meiosis in Saccharomyces cerevisiae.

    PubMed

    Wesp, A; Prinz, S; Fink, G R

    2001-04-01

    During sporulation in diploid Saccharomyces cerevisiae, spindle pole bodies acquire the so-called meiotic plaque, a prerequisite for spore formation. Mpc70p is a component of the meiotic plaque and is thus essential for spore formation. We show here that MPC70/mpc70 heterozygous strains most often produce two spores instead of four and that these spores are always nonsisters. In wild-type strains, Mpc70p localizes to all four spindle pole bodies, whereas in MPC70/mpc70 strains Mpc70p localizes to only two of the four spindle pole bodies, and these are always nonsisters. Our data can be explained by conservative spindle pole body distribution in which the two newly synthesized meiosis II spindle pole bodies of MPC70/mpc70 strains lack Mpc70p.

  18. Phenotypic effects of membrane protein overexpression in Saccharomyces cerevisiae

    NASA Astrophysics Data System (ADS)

    Melén, Karin; Blomberg, Anders; von Heijne, Gunnar

    2006-07-01

    Large-scale protein overexpression phenotype screens provide an important complement to the more common gene knockout screens. Here, we have targeted the so far poorly understood Saccharomyces cerevisiae membrane proteome and report growth phenotypes for a strain collection overexpressing 600 C-terminally tagged integral membrane proteins grown both under normal and three different stress conditions. Although overexpression of most membrane proteins reduce the growth rate in synthetic defined medium, we identify a large number of proteins that, when overexpressed, confer specific resistance to various stress conditions. Our data suggest that regulation of glycosylphosphatidylinositol anchor biosynthesis and the Na+/K+ homeostasis system constitute major downstream targets of the yeast PKA/RAS pathway and point to a possible connection between the early secretory pathway and the cells' response to oxidative stress. We also have quantified the expression levels for >550 membrane proteins, facilitating the choice of well expressing proteins for future functional and structural studies. caffeine | paraquat | salt tolerance | yeast

  19. Aging and senescence of the budding yeast Saccharomyces cerevisiae.

    PubMed

    Jazwinski, S M

    1990-03-01

    The budding yeast Saccharomyces cerevisiae has a limited life span, defined by the number of times an individual cell divides. Longevity in this organism involves a genetic component. Several morphological and physiological changes are associated with yeast aging and senescence. One of these, an increase in generation time with age, provides a 'biomarker' for the aging process. This increase in generation time has revealed the operation of a 'senescence factor(s)', which is likely to be a product of age-specific gene expression. The Cell Spiral Model indicates coordination of successive cell cycles to be inherent in the determination of life span. It is proposed that life expectancy depends on the function of a stochastic trigger during aging that sets in motion a programme leading to cell senescence and death.

  20. Bioaccumulation of cadmium by growing Zygosaccharomyces rouxii and Saccharomyces cerevisiae.

    PubMed

    Li, Chunsheng; Jiang, Wei; Ma, Ning; Zhu, Yinglian; Dong, Xiaoyan; Wang, Dongfeng; Meng, Xianghong; Xu, Ying

    2014-03-01

    Bioaccumulation via growing cells is a potential technique for heavy metal removal from food materials. The cadmium bioaccumulation characteristics by growing Zygosaccharomyces rouxii and Saccharomyces cerevisiae were investigated. Z. rouxii displayed powerful cadmium removal ability at low cadmium concentrations, which mainly depended on the intracellular cadmium bioaccumulation. The percentage of intracellular cadmium bioaccumulation of both yeasts obviously decreased with the increase of initial biomass and cadmium concentrations. Low pH and elevated concentrations of zinc and copper significantly decreased the intracellular cadmium bioaccumulation of both yeasts but improved the cadmium tolerance and the cell-surface cadmium bioaccumulation of Z. rouxii. Cadmium removal of Z. rouxii was improved by zinc and copper conditionally. Z. rouxii that possessed more powerful cadmium tolerance and removal ability at low pH and high concentration of competing ions can be developed into a potential cadmium removal agent using in complex food environment in future. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Effect of different glucose concentrations on proteome of Saccharomyces cerevisiae.

    PubMed

    Guidi, Francesca; Francesca, Guidi; Magherini, Francesca; Francesca, Magherini; Gamberi, Tania; Tania, Gamberi; Borro, Marina; Marina, Borro; Simmaco, Maurizio; Maurizio, Simmaco; Modesti, Alessandra; Alessandra, Modesti

    2010-07-01

    We performed a proteomic study to understand how Saccharomyces cerevisiae adapts its metabolism during the exponential growth on three different concentrations of glucose; this information will be necessary to understand yeast carbon metabolism in different environments. We induced a natural diauxic shift by growing yeast cells in glucose restriction thus having a fast and complete glucose exhaustion. We noticed differential expressions of groups of proteins. Cells in high glucose have a decreased growth rate during the initial phase of fermentation; in glucose restriction and in high glucose we found an over-expression of a protein (Peroxiredoxin) involved in protection against oxidative stress insult. The information obtained in our study validates the application of a proteomic approach for the identification of the molecular bases of environmental variations such as fermentation in high glucose and during a naturally induced diauxic shift.

  2. The Influence of Microgravity on Invasive Growth in Saccharomyces cerevisiae

    NASA Astrophysics Data System (ADS)

    Van Mulders, Sebastiaan E.; Stassen, Catherine; Daenen, Luk; Devreese, Bart; Siewers, Verena; van Eijsden, Rudy G. E.; Nielsen, Jens; Delvaux, Freddy R.; Willaert, Ronnie

    2011-01-01

    This study investigates the effects of microgravity on colony growth and the morphological transition from single cells to short invasive filaments in the model eukaryotic organism Saccharomyces cerevisiae. Two-dimensional spreading of the yeast colonies grown on semi-solid agar medium was reduced under microgravity in the Σ1278b laboratory strain but not in the CMBSESA1 industrial strain. This was supported by the Σ1278b proteome map under microgravity conditions, which revealed upregulation of proteins linked to anaerobic conditions. The Σ1278b strain showed a reduced invasive growth in the center of the yeast colony. Bud scar distribution was slightly affected, with a switch toward more random budding. Together, microgravity conditions disturb spatially programmed budding patterns and generate strain-dependent growth differences in yeast colonies on semi-solid medium.

  3. Hydrogen peroxide removal with magnetically responsive Saccharomyces cerevisiae cells.

    PubMed

    Safarik, Ivo; Sabatkova, Zdenka; Safarikova, Mirka

    2008-09-10

    Hydrogen peroxide (HP) is a promising chemical sanitizer for use in the food industry. Its residues have to be decomposed, usually using an enzyme process employing catalase. In order to offer an inexpensive biocatalyst and to simplify subsequent manipulation, we have prepared magnetically responsive alginate beads containing entrapped Saccharomyces cerevisiae cells and magnetite microparticles. Larger beads (2-3 mm in diameter) were prepared by dropping the mixture into calcium chloride solution, while microbeads (the diameter of majority of particles ranged between 50 and 100 microm) were prepared using the water in oil emulsification process. In general, microbeads enabled more efficient HP decomposition. The prepared microparticulate biocatalyst caused efficient decomposition of HP in water solutions (up to 2% concentration), leaving very low residual HP concentration after treatment (below 0.001% under appropriate conditions). The biocatalyst was stable; the same catalytic activity was observed after one month storage at 4 degrees C, and the microbeads could be used at least five times.

  4. MPS3 mediates meiotic bouquet formation in Saccharomyces cerevisiae

    PubMed Central

    Conrad, Michael N.; Lee, Chih-Ying; Wilkerson, Joseph L.; Dresser, Michael E.

    2007-01-01

    In meiotic prophase, telomeres associate with the nuclear envelope and accumulate adjacent to the centrosome/spindle pole to form the chromosome bouquet, a well conserved event that in Saccharomyces cerevisiae requires the meiotic telomere protein Ndj1p. Ndj1p interacts with Mps3p, a nuclear envelope SUN domain protein that is required for spindle pole body duplication and for sister chromatid cohesion. Removal of the Ndj1p-interaction domain from MPS3 creates an ndj1Δ-like separation-of-function allele, and Ndj1p and Mps3p are codependent for stable association with the telomeres. SUN domain proteins are found in the nuclear envelope across phyla and are implicated in mediating interactions between the interior of the nucleus and the cytoskeleton. Our observations indicate a general mechanism for meiotic telomere movements. PMID:17495028

  5. Technology development for natural product biosynthesis in Saccharomyces cerevisiae.

    PubMed

    Billingsley, John M; DeNicola, Anthony B; Tang, Yi

    2016-12-01

    The explosion of genomic sequence data and the significant advancements in synthetic biology have led to the development of new technologies for natural products discovery and production. Using powerful genetic tools, the yeast Saccharomyces cerevisiae has been engineered as a production host for natural product pathways from bacterial, fungal, and plant species. With an expanding library of characterized genetic parts, biosynthetic pathways can be refactored for optimized expression in yeast. New engineering strategies have enabled the increased production of valuable secondary metabolites by tuning metabolic pathways. Improvements in high-throughput screening methods have facilitated the rapid identification of variants with improved biosynthetic capabilities. In this review, we focus on the molecular tools and engineering strategies that have recently empowered heterologous natural product biosynthesis.

  6. Regulation of phospholipid synthesis in the yeast Saccharomyces cerevisiae.

    PubMed

    Carman, George M; Han, Gil-Soo

    2011-01-01

    The yeast Saccharomyces cerevisiae, with its full complement of organelles, synthesizes membrane phospholipids by pathways that are generally common to those found in higher eukaryotes. Phospholipid synthesis in yeast is regulated in response to a variety of growth conditions (e.g., inositol supplementation, zinc depletion, and growth stage) by a coordination of genetic (e.g., transcriptional activation and repression) and biochemical (e.g., activity modulation and localization) mechanisms. Phosphatidate (PA), whose cellular levels are controlled by the activities of key phospholipid synthesis enzymes, plays a central role in the transcriptional regulation of phospholipid synthesis genes. In addition to the regulation of gene expression, phosphorylation of key phospholipid synthesis catalytic and regulatory proteins controls the metabolism of phospholipid precursors and products.

  7. Parallel Identification of New Genes in Saccharomyces cerevisiae

    PubMed Central

    Oshiro, Guy; Wodicka, Lisa M.; Washburn, Michael P.; Yates, John R.; Lockhart, David J.; Winzeler, Elizabeth A.

    2002-01-01

    Short open reading frames (ORFs) occur frequently in primary genome sequence. Distinguishing bona fide small genes from the tens of thousands of short ORFs is one of the most challenging aspects of genome annotation. Direct experimental evidence is often required. Here we use a combination of expression profiling and mass spectrometry to verify the independent transcription of 138 and the translation of 50 previously nonannotated genes in the Saccharomyces cerevisiae genome. Through combined evidence, we propose the addition of 62 new genes to the genome and provide experimental support for the inclusion of 10 previously identified genes. [The following individuals kindly provided reagents, samples, or unpublished information as indicated in the paper: V. Velculescu. Supplementary material is available online at http://www.genome.org.] PMID:12176929

  8. Mechanism and Regulation of Protein Synthesis in Saccharomyces cerevisiae.

    PubMed

    Dever, Thomas E; Kinzy, Terri Goss; Pavitt, Graham D

    2016-05-01

    In this review, we provide an overview of protein synthesis in the yeast Saccharomyces cerevisiae The mechanism of protein synthesis is well conserved between yeast and other eukaryotes, and molecular genetic studies in budding yeast have provided critical insights into the fundamental process of translation as well as its regulation. The review focuses on the initiation and elongation phases of protein synthesis with descriptions of the roles of translation initiation and elongation factors that assist the ribosome in binding the messenger RNA (mRNA), selecting the start codon, and synthesizing the polypeptide. We also examine mechanisms of translational control highlighting the mRNA cap-binding proteins and the regulation of GCN4 and CPA1 mRNAs.

  9. Inorganic Phosphate and Sulfate Transport in S. cerevisiae.

    PubMed

    Samyn, D R; Persson, B L

    2016-01-01

    Inorganic ions such as phosphate and sulfate are essential macronutrients required for a broad spectrum of cellular functions and their regulation. In a constantly fluctuating environment microorganisms have for their survival developed specific nutrient sensing and transport systems ensuring that the cellular nutrient needs are met. This chapter focuses on the S. cerevisiae plasma membrane localized transporters, of which some are strongly induced under conditions of nutrient scarcity and facilitate the active uptake of inorganic phosphate and sulfate. Recent advances in studying the properties of the high-affinity phosphate and sulfate transporters by means of site-directed mutagenesis have provided further insight into the molecular mechanisms contributing to substrate selectivity and transporter functionality of this important class of membrane transporters.

  10. Molecular architecture of the Saccharomyces cerevisiae activated spliceosome.

    PubMed

    Rauhut, Reinhard; Fabrizio, Patrizia; Dybkov, Olexandr; Hartmuth, Klaus; Pena, Vladimir; Chari, Ashwin; Kumar, Vinay; Lee, Chung-Tien; Urlaub, Henning; Kastner, Berthold; Stark, Holger; Lührmann, Reinhard

    2016-09-23

    The activated spliceosome (B(act)) is in a catalytically inactive state and is remodeled into a catalytically active machine by the RNA helicase Prp2, but the mechanism is unclear. Here, we describe a 3D electron cryomicroscopy structure of the Saccharomyces cerevisiae B(act) complex at 5.8-angstrom resolution. Our model reveals that in B(act), the catalytic U2/U6 RNA-Prp8 ribonucleoprotein core is already established, and the 5' splice site (ss) is oriented for step 1 catalysis but occluded by protein. The first-step nucleophile-the branchsite adenosine-is sequestered within the Hsh155 HEAT domain and is held 50 angstroms away from the 5'ss. Our structure suggests that Prp2 adenosine triphosphatase-mediated remodeling leads to conformational changes in Hsh155's HEAT domain that liberate the first-step reactants for catalysis.

  11. Overexpressed ribosomal proteins suppress defective chaperonins in Saccharomyces cerevisiae.

    PubMed

    Kabir, M Anaul; Sherman, Fred

    2008-12-01

    The chaperonin Cct complex of the yeast Saccharomyces cerevisiae is composed of eight different subunits encoded by eight essential genes, CCT1-CCT8. This Cct complex is responsible for the folding of a number of proteins including actin and tubulin. We have isolated and characterized 22 multicopy suppressors of the temperature-sensitive allele, cct4-1, which encodes an altered protein with a G345D replacement that diminishes ATP hydrolysis. Fourteen of the suppressors encode ribosomal proteins, four have roles in ribosome biogenesis, two have phosphatase activities, one is involved in protein synthesis and one of the suppressors corresponded to Cct4p. Some of the suppressors also acted on certain cct1, cct2, cct3 and cct6 mutations. We suggest that certain overexpressed ribosomal and other proteins can act as weak chaperones, phenotypically alleviating the partial defects of mutationally altered Cct subunits.

  12. Response of Saccharomyces cerevisiae strains to antineoplastic agents.

    PubMed

    Delitheos, A; Karavokyros, I; Tiligada, E

    1995-10-01

    The effect of several antineoplastic agents on Saccharomyces cerevisiae strains has been investigated. Minimum inhibitory concentration (MIC), minimum cytotoxic concentration (MCC) and median effective concentration (EC50) were determined to identify strains with inherent sensitivity to the agents tested. Several strains proved to be sensitive to the antimetabolites 5-fluorouracil and methotrexate as well as to doxorubicin and cis-platine. On the contrary m-amsacrine, procarbazine, vinca alcaloids, melphalan and hydroxyurea were inactive at concentrations up to 400 micrograms ml-1. The strain ATCC 2366, the most relatively sensitive to the agents tested, was used for studying the effect of treatment duration and of drug concentration on cell survival. Methotrexate and cis-platine, which according to MIC and MCC tests seemed ineffective for this strain, reduced survival significantly after 6 h of treatment. A correlation of the shape of the survival curves with MIC and MCC values was attempted.

  13. Saccharomyces cerevisiae and Neurospora crassa contain heavy metal sequestering phytochelatin.

    PubMed

    Kneer, R; Kutchan, T M; Hochberger, A; Zenk, M H

    1992-01-01

    In fungi, cellular resistance to heavy metal cytotoxicity is mediated either by binding of metal ions to proteins of the metallothionein type or by chelation to phytochelatin-peptides of the general formula (gamma-Glu-Cys)n-Gly. Hitherto, only one fungus, Candida glabrata has been shown to contain both metal inactivating systems. Here we show by unambiguous FAB-MS analysis that both a metallothionein-free mutant of Saccharomyces cerevisiae as well as a wildtype strain synthesize phytochelatin (PC2) upon exposure to 250 microM Cd2+ ions. The presence of Zn and/or Cu ions in the nutrient broth also induces PC2 synthesis in this organism. By 109Cd exchange and subsequent monobromobimane fluorescence HPLC, it could be shown that the presence of Cd2+ in the growth medium also induces phytochelatin synthesis in Neurospora crassa, which contains metallothioneins.

  14. Patterns in Saccharomyces cerevisiae yeast colonies via magnetic resonance imaging.

    PubMed

    Tenório, Rômulo P; Barros, Wilson

    2017-01-23

    We report the use of high-resolution magnetic resonance imaging methods to observe pattern formation in colonies of Saccharomyces cerevisiae. Our results indicate substantial signal loss localized in specific regions of the colony rendering useful imaging contrast. This imaging contrast is recognizable as being due to discontinuities in magnetic susceptibility (χ) between different spatial regions. At the microscopic pixel level, the local variations in the magnetic susceptibility (Δχ) induce a loss in the NMR signal, which was quantified via T2 and T2* maps, permitting estimation of Δχ values for different regions of the colony. Interestingly the typical petal/wrinkling patterns present in the colony have a high degree of correlation with the estimated susceptibility distribution. We conclude that the presence of magnetic susceptibility inclusions, together with their spatial arrangement within the colony, may be a potential cause of the susceptibility distribution and therefore the contrast observed on the images.

  15. Impact of systems biology on metabolic engineering of Saccharomyces cerevisiae.

    PubMed

    Nielsen, Jens; Jewett, Michael C

    2008-02-01

    Industrial biotechnology is a rapidly growing field. With the increasing shift towards a bio-based economy, there is rising demand for developing efficient cell factories that can produce fuels, chemicals, pharmaceuticals, materials, nutraceuticals, and even food ingredients. The yeast Saccharomyces cerevisiae is extremely well suited for this objective. As one of the most intensely studied eukaryotic model organisms, a rich density of knowledge detailing its genetics, biochemistry, physiology, and large-scale fermentation performance can be capitalized upon to enable a substantial increase in the industrial application of this yeast. Developments in genomics and high-throughput systems biology tools are enhancing one's ability to rapidly characterize cellular behaviour, which is valuable in the field of metabolic engineering where strain characterization is often the bottleneck in strain development programmes. Here, the impact of systems biology on metabolic engineering is reviewed and perspectives on the role of systems biology in the design of cell factories are given.

  16. Saccharomyces cerevisiae Yta7 Regulates Histone Gene Expression

    PubMed Central

    Gradolatto, Angeline; Rogers, Richard S.; Lavender, Heather; Taverna, Sean D.; Allis, C. David; Aitchison, John D.; Tackett, Alan J.

    2008-01-01

    The Saccharomyces cerevisiae Yta7 protein is a component of a nucleosome bound protein complex that maintains distinct transcriptional zones of chromatin. We previously found that one protein copurifying with Yta7 is the yFACT member Spt16. Epistasis analyses revealed a link between Yta7, Spt16, and other previously identified members of the histone regulatory pathway. In concurrence, Yta7 was found to regulate histone gene transcription in a cell-cycle-dependent manner. Association at the histone gene loci appeared to occur through binding of the bromodomain-like region of Yta7 with the N-terminal tail of histone H3. Our work suggests a mechanism in which Yta7 is localized to chromatin to establish regions of transcriptional silencing, and that one facet of this cellular mechanism is to modulate transcription of histone genes. PMID:18493054

  17. Mechanisms and Regulation of Mitotic Recombination in Saccharomyces cerevisiae

    PubMed Central

    Symington, Lorraine S.; Rothstein, Rodney; Lisby, Michael

    2014-01-01

    Homology-dependent exchange of genetic information between DNA molecules has a profound impact on the maintenance of genome integrity by facilitating error-free DNA repair, replication, and chromosome segregation during cell division as well as programmed cell developmental events. This chapter will focus on homologous mitotic recombination in budding yeast Saccharomyces cerevisiae. However, there is an important link between mitotic and meiotic recombination (covered in the forthcoming chapter by Hunter et al. 2015) and many of the functions are evolutionarily conserved. Here we will discuss several models that have been proposed to explain the mechanism of mitotic recombination, the genes and proteins involved in various pathways, the genetic and physical assays used to discover and study these genes, and the roles of many of these proteins inside the cell. PMID:25381364

  18. Tolerance of budding yeast Saccharomyces cerevisiae to ultra high pressure

    NASA Astrophysics Data System (ADS)

    Shibata, M.; Torigoe, M.; Matsumoto, Y.; Yamamoto, M.; Takizawa, N.; Hada, Y.; Mori, Y.; Takarabe, K.; Ono, F.

    2014-05-01

    Our studies on the tolerance of plants and animals against very high pressure of several GPa have been extended to a smaller sized fungus, the budding yeast Saccharomyces cerevisiae. Several pieces of budding yeast (dry yeast) were sealed in a small teflon capsule with a liquid pressure medium fluorinate, and exposed to 7.5 GPa by using a cubic anvil press. The pressure was kept constant for various duration of time from 2 to 24 h. After the pressure was released, the specimens were brought out from the teflon capsule, and they were cultivated on a potato dextrose agar. It was found that the budding yeast exposed to 7.5 GPa for up to 6 h showed multiplication. However, those exposed to 7.5 GPa for longer than 12 h were found dead. The high pressure tolerance of budding yeast is a little weaker than that of tardigrades.

  19. Saccharomyces cerevisiae-based system for studying clustered DNA damages

    SciTech Connect

    Moscariello, M.M.; Sutherland, B.

    2010-08-01

    DNA-damaging agents can induce clustered lesions or multiply damaged sites (MDSs) on the same or opposing DNA strands. In the latter, attempts to repair MDS can generate closely opposed single-strand break intermediates that may convert non-lethal or mutagenic base damage into double-strand breaks (DSBs). We constructed a diploid S. cerevisiae yeast strain with a chromosomal context targeted by integrative DNA fragments carrying different damages to determine whether closely opposed base damages are converted to DSBs following the outcomes of the homologous recombination repair pathway. As a model of MDS, we studied clustered uracil DNA damages with a known location and a defined distance separating the lesions. The system we describe might well be extended to assessing the repair of MDSs with different compositions, and to most of the complex DNA lesions induced by physical and chemical agents.

  20. Production of natural products through metabolic engineering of Saccharomyces cerevisiae.

    PubMed

    Krivoruchko, Anastasia; Nielsen, Jens

    2015-12-01

    Many high-value metabolites are produced in nature by organisms that are not ideal for large-scale production. Therefore, interest exists in expressing the biosynthetic pathways of these compounds in organisms that are more suitable for industrial production. Recent years have seen developments in both the discovery of various biosynthetic pathways, as well as development of metabolic engineering tools that allow reconstruction of complex pathways in microorganisms. In the present review we discuss recent advances in reconstruction of the biosynthetic pathways of various high-value products in the yeast Saccharomyces cerevisiae, a commonly used industrial microorganism. Key achievements in the production of different isoprenoids, aromatics and polyketides are presented and the metabolic engineering strategies underlying these accomplishments are discussed.

  1. Preferentially quantized linker DNA lengths in Saccharomyces cerevisiae.

    PubMed

    Wang, Ji-Ping; Fondufe-Mittendorf, Yvonne; Xi, Liqun; Tsai, Guei-Feng; Segal, Eran; Widom, Jonathan

    2008-09-12

    The exact lengths of linker DNAs connecting adjacent nucleosomes specify the intrinsic three-dimensional structures of eukaryotic chromatin fibers. Some studies suggest that linker DNA lengths preferentially occur at certain quantized values, differing one from another by integral multiples of the DNA helical repeat, approximately 10 bp; however, studies in the literature are inconsistent. Here, we investigate linker DNA length distributions in the yeast Saccharomyces cerevisiae genome, using two novel methods: a Fourier analysis of genomic dinucleotide periodicities adjacent to experimentally mapped nucleosomes and a duration hidden Markov model applied to experimentally defined dinucleosomes. Both methods reveal that linker DNA lengths in yeast are preferentially periodic at the DNA helical repeat ( approximately 10 bp), obeying the forms 10n+5 bp (integer n). This 10 bp periodicity implies an ordered superhelical intrinsic structure for the average chromatin fiber in yeast.

  2. On the Mechanism of Gene Silencing in Saccharomyces cerevisiae

    PubMed Central

    Steakley, David Lee; Rine, Jasper

    2015-01-01

    Multiple mechanisms have been proposed for gene silencing in Saccharomyces cerevisiae, ranging from steric occlusion of DNA binding proteins from their recognition sequences in silenced chromatin to a specific block in the formation of the preinitiation complex to a block in transcriptional elongation. This study provided strong support for the steric occlusion mechanism by the discovery that RNA polymerase of bacteriophage T7 could be substantially blocked from transcribing from its cognate promoter when embedded in silenced chromatin. Moreover, unlike previous suggestions, we found no evidence for stalled RNA polymerase II within silenced chromatin. The effectiveness of the Sir protein–based silencing mechanism to block transcription activated by Gal4 at promoters in the domain of silenced chromatin was marginal, yet it improved when tested against mutant forms of the Gal4 protein, highlighting a role for specific activators in their sensitivity to gene silencing. PMID:26082137

  3. Mutants of Saccharomyces cerevisiae with defective vacuolar function

    SciTech Connect

    Kitamoto, K.; Yoshizawa, K.; Ohsumi, Y.; Anraku, Y.

    1988-06-01

    Mutants of the yeast Saccharomyces cerevisiae that have a small vacuolar lysine pool were isolated and characterized. Mutant KL97 (lys1 slp1-1) and strain KL197-1A (slp1-1), a prototrophic derivative of KL97, did not grow well in synthetic medium supplemented with 10 mM lysine. Genetic studies indicated that the slp1-1mutation (for small lysine pool) is recessive and is due to a single chromosomal mutation. Mutant KL97 shows the following pleiotropic defects in vacuolar functions. (i) It has small vacuolar pools for lysine, arginine, and histidine. (ii) Its growth is sensitive to lysine, histidine, Ca/sup 2 +/, heavy metal ions, and antibiotics. (iii) It has many small vesicles but no large central vacuole. (iv) It has a normal amount of the vacuolar membrane marker ..cap alpha..-mannosidase but shows reduced activities of the vacuole sap markers proteinase A, proteinase B, and carboxypeptidase Y.

  4. Genomic evolution of Saccharomyces cerevisiae under Chinese rice wine fermentation.

    PubMed

    Li, Yudong; Zhang, Weiping; Zheng, Daoqiong; Zhou, Zhan; Yu, Wenwen; Zhang, Lei; Feng, Lifang; Liang, Xinle; Guan, Wenjun; Zhou, Jingwen; Chen, Jian; Lin, Zhenguo

    2014-09-10

    Rice wine fermentation represents a unique environment for the evolution of the budding yeast, Saccharomyces cerevisiae. To understand how the selection pressure shaped the yeast genome and gene regulation, we determined the genome sequence and transcriptome of a S. cerevisiae strain YHJ7 isolated from Chinese rice wine (Huangjiu), a popular traditional alcoholic beverage in China. By comparing the genome of YHJ7 to the lab strain S288c, a Japanese sake strain K7, and a Chinese industrial bioethanol strain YJSH1, we identified many genomic sequence and structural variations in YHJ7, which are mainly located in subtelomeric regions, suggesting that these regions play an important role in genomic evolution between strains. In addition, our comparative transcriptome analysis between YHJ7 and S288c revealed a set of differentially expressed genes, including those involved in glucose transport (e.g., HXT2, HXT7) and oxidoredutase activity (e.g., AAD10, ADH7). Interestingly, many of these genomic and transcriptional variations are directly or indirectly associated with the adaptation of YHJ7 strain to its specific niches. Our molecular evolution analysis suggested that Japanese sake strains (K7/UC5) were derived from Chinese rice wine strains (YHJ7) at least approximately 2,300 years ago, providing the first molecular evidence elucidating the origin of Japanese sake strains. Our results depict interesting insights regarding the evolution of yeast during rice wine fermentation, and provided a valuable resource for genetic engineering to improve industrial wine-making strains. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  5. Global mapping of DNA conformational flexibility on Saccharomyces cerevisiae.

    PubMed

    Menconi, Giulia; Bedini, Andrea; Barale, Roberto; Sbrana, Isabella

    2015-04-01

    In this study we provide the first comprehensive map of DNA conformational flexibility in Saccharomyces cerevisiae complete genome. Flexibility plays a key role in DNA supercoiling and DNA/protein binding, regulating DNA transcription, replication or repair. Specific interest in flexibility analysis concerns its relationship with human genome instability. Enrichment in flexible sequences has been detected in unstable regions of human genome defined fragile sites, where genes map and carry frequent deletions and rearrangements in cancer. Flexible sequences have been suggested to be the determinants of fragile gene proneness to breakage; however, their actual role and properties remain elusive. Our in silico analysis carried out genome-wide via the StabFlex algorithm, shows the conserved presence of highly flexible regions in budding yeast genome as well as in genomes of other Saccharomyces sensu stricto species. Flexibile peaks in S. cerevisiae identify 175 ORFs mapping on their 3'UTR, a region affecting mRNA translation, localization and stability. (TA)n repeats of different extension shape the central structure of peaks and co-localize with polyadenylation efficiency element (EE) signals. ORFs with flexible peaks share common features. Transcripts are characterized by decreased half-life: this is considered peculiar of genes involved in regulatory systems with high turnover; consistently, their function affects biological processes such as cell cycle regulation or stress response. Our findings support the functional importance of flexibility peaks, suggesting that the flexible sequence may be derived by an expansion of canonical TAYRTA polyadenylation efficiency element. The flexible (TA)n repeat amplification could be the outcome of an evolutionary neofunctionalization leading to a differential 3'-end processing and expression regulation in genes with peculiar function. Our study provides a new support to the functional role of flexibility in genomes and a

  6. Copper Tolerance and Biosorption of Saccharomyces cerevisiae during Alcoholic Fermentation

    PubMed Central

    Liu, Ling-ling; Jia, Bo; Zhao, Fang; Huang, Wei-dong; Zhan, Ji-cheng

    2015-01-01

    At high levels, copper in grape mash can inhibit yeast activity and cause stuck fermentations. Wine yeast has limited tolerance of copper and can reduce copper levels in wine during fermentation. This study aimed to understand copper tolerance of wine yeast and establish the mechanism by which yeast decreases copper in the must during fermentation. Three strains of Saccharomyces cerevisiae (lab selected strain BH8 and industrial strains AWRI R2 and Freddo) and a simple model fermentation system containing 0 to 1.50 mM Cu2+ were used. ICP-AES determined Cu ion concentration in the must decreasing differently by strains and initial copper levels during fermentation. Fermentation performance was heavily inhibited under copper stress, paralleled a decrease in viable cell numbers. Strain BH8 showed higher copper-tolerance than strain AWRI R2 and higher adsorption than Freddo. Yeast cell surface depression and intracellular structure deformation after copper treatment were observed by scanning electron microscopy and transmission electron microscopy; electronic differential system detected higher surface Cu and no intracellular Cu on 1.50 mM copper treated yeast cells. It is most probably that surface adsorption dominated the biosorption process of Cu2+ for strain BH8, with saturation being accomplished in 24 h. This study demonstrated that Saccharomyces cerevisiae strain BH8 has good tolerance and adsorption of Cu, and reduces Cu2+ concentrations during fermentation in simple model system mainly through surface adsorption. The results indicate that the strain selected from China’s stress-tolerant wine grape is copper tolerant and can reduce copper in must when fermenting in a copper rich simple model system, and provided information for studies on mechanisms of heavy metal stress. PMID:26030864

  7. Adaptive Evolution of a Lactose-Consuming Saccharomyces cerevisiae Recombinant▿

    PubMed Central

    Guimarães, Pedro M. R.; François, Jean; Parrou, Jean Luc; Teixeira, José A.; Domingues, Lucília

    2008-01-01

    The construction of Saccharomyces cerevisiae strains that ferment lactose has biotechnological interest, particularly for cheese whey fermentation. A flocculent lactose-consuming S. cerevisiae recombinant expressing the LAC12 (lactose permease) and LAC4 (β-galactosidase) genes of Kluyveromyces lactis was constructed previously but showed poor efficiency in lactose fermentation. This strain was therefore subjected to an evolutionary engineering process (serial transfer and dilution in lactose medium), which yielded an evolved recombinant strain that consumed lactose twofold faster, producing 30% more ethanol than the original recombinant. We identified two molecular events that targeted the LAC construct in the evolved strain: a 1,593-bp deletion in the intergenic region (promoter) between LAC4 and LAC12 and a decrease of the plasmid copy number by about 10-fold compared to that in the original recombinant. The results suggest that the intact promoter was unable to mediate the induction of the transcription of LAC4 and LAC12 by lactose in the original recombinant and that the deletion established the transcriptional induction of both genes in the evolved strain. We propose that the tuning of the expression of the heterologous LAC genes in the evolved recombinant was accomplished by the interplay between the decreased copy number of both genes and the different levels of transcriptional induction for LAC4 and LAC12 resulting from the changed promoter structure. Nevertheless, our results do not exclude other possible mutations that may have contributed to the improved lactose fermentation phenotype. This study illustrates the usefulness of simple evolutionary engineering approaches in strain improvement. The evolved strain efficiently fermented threefold-concentrated cheese whey, providing an attractive alternative for the fermentation of lactose-based media. PMID:18245248

  8. Mutagenic effect of freezing on mitochondrial DNA of Saccharomyces cerevisiae.

    PubMed

    Stoycheva, T; Venkov, P; Tsvetkov, Ts

    2007-06-01

    Although suggested in some studies, the mutagenic effect of freezing has not been proved by induction and isolation of mutants. Using a well-defined genetic model, we supply in this communication evidence for the mutagenic effect of freezing on mitochondrial DNA (mtDNA) of the yeast Saccharomyces cerevisiae. The cooling for 2 h at +4 degrees C, followed by freezing for 1 h at -10 degrees C and 16 h at -20 degrees C resulted in induction of respiratory mutations. The immediate freezing in liquid nitrogen was without mutagenic effect. The study of the stepwise procedure showed that the induction of respiratory mutants takes place during the freezing at -10 and -20 degrees C of cells pre-cooled at +4 degrees C. The genetic crosses of freeze-induced mutants evidenced their mitochondrial rho- origin. The freeze-induced rho- mutants are most likely free of simultaneous nuclear mutations. The extracellular presence of cryoprotectants did not prevent the mutagenic effect of freezing while accumulation of cryoprotectors inside cells completely escaped mtDNA from cryodamage. Although the results obtained favor the notion that the mutagenic effect of freezing on yeast mtDNA is due to formation and growth of intracellular ice crystals, other reasons, such as impairment of mtDNA replication or elevated levels of ROS production are discussed as possible explanations of the mutagenic effect of freezing. It is concluded that: (i) freezing can be used as a method for isolation of mitochondrial mutants in S. cerevisiae and (ii) given the substantial development in cryopreservation of cells and tissues, special precautions should be made to avoid mtDNA damage during the cryopreservation procedures.

  9. Protein disulfide isomerase is essential for viability in Saccharomyces cerevisiae.

    PubMed

    Farquhar, R; Honey, N; Murant, S J; Bossier, P; Schultz, L; Montgomery, D; Ellis, R W; Freedman, R B; Tuite, M F

    1991-12-01

    Protein disulfide isomerase (PDI) is an enzyme involved in the catalysis of disulfide bond formation in secretory and cell-surface proteins. Using an oligodeoxyribonucleotide designed to detect the conserved 'thioredoxin-like' active site of vertebrate PDIs, we have isolated a gene encoding PDI from the lower eukaryote, Saccharomyces cerevisiae. The nucleotide sequence and deduced open reading frame of the cloned gene predict a 530-amino-acid (aa) protein of Mr 59,082 and a pI of 4.1, physical properties characteristic of mammalian PDIs. Furthermore, the aa sequence shows 30-32% identity with mammalian and avian PDI sequences and has a very similar overall organisation, namely the presence of two approx. 100-aa segments, each of which is repeated, with the most significant homologies to mammalian and avian PDIs being in the regions (a, a') that contain the conserved 'thioredoxin-like' active site. The N-terminal region has the characteristics of a cleavable secretory signal sequence and the C-terminal four aa (-His-Asp-Glu-Leu) are consistent with the protein being a component of the S. cerevisiae endoplasmic reticulum. Transformants carrying multiple copies of this gene (designated PDI1) have tenfold higher levels of PDI activity and overproduce a protein of the predicted Mr. The PDI1 gene is unique in the yeast genome and encodes a single 1.8-kb transcript that is not found in stationary phase cells. Disruption of the PDI1 gene is haplo-lethal indicating that the product of this gene is essential for viability.

  10. The plasma membrane of Saccharomyces cerevisiae: structure, function, and biogenesis.

    PubMed Central

    van der Rest, M E; Kamminga, A H; Nakano, A; Anraku, Y; Poolman, B; Konings, W N

    1995-01-01

    The composition of phospholipids, sphingolipids, and sterols in the plasma membrane has a strong influence on the activity of the proteins associated or embedded in the lipid bilayer. Since most lipid-synthesizing enzymes in Saccharomyces cerevisiae are located in intracellular organelles, an extensive flux of lipids from these organelles to the plasma membrane is required. Although the pathway of protein traffic to the plasma membrane is similar to that of most of the lipids, the bulk flow of lipids is separate from vesicle-mediated protein transport. Recent advances in the analysis of membrane budding and membrane fusion indicate that the mechanisms of protein transport from the endoplasmic reticulum to the Golgi and from the Golgi to plasma membrane are similar. The majority of plasma membrane proteins transport solutes across the membrane. A number of ATP-dependent export systems have been detected that couple the hydrolysis of ATP to transport of molecules out of the cell. The hydrolysis of ATP by the plasma membrane H(+)-ATPase generates a proton motive force which is used to drive secondary transport processes. In S. cerevisiae, many substrates are transported by more than one system. Transport of monosaccharide is catalyzed by uniport systems, while transport of disaccharides, amino acids, and nucleosides is mediated by proton symport systems. Transport activity can be regulated at the level of transcription, e.g., induction and (catabolite) repression, but transport proteins can also be affected posttranslationally by a process termed catabolite inactivation. Catabolite inactivation is triggered by the addition of fermentable sugars, intracellular acidification, stress conditions, and/or nitrogen starvation. Phosphorylation and/or ubiquitination of the transport proteins has been proposed as an initial step in the controlled inactivation and degradation of the target enzyme. The use of artificial membranes, like secretory vesicles and plasma membranes

  11. Adaptive evolution of a lactose-consuming Saccharomyces cerevisiae recombinant.

    PubMed

    Guimarães, Pedro M R; François, Jean; Parrou, Jean Luc; Teixeira, José A; Domingues, Lucília

    2008-03-01

    The construction of Saccharomyces cerevisiae strains that ferment lactose has biotechnological interest, particularly for cheese whey fermentation. A flocculent lactose-consuming S. cerevisiae recombinant expressing the LAC12 (lactose permease) and LAC4 (beta-galactosidase) genes of Kluyveromyces lactis was constructed previously but showed poor efficiency in lactose fermentation. This strain was therefore subjected to an evolutionary engineering process (serial transfer and dilution in lactose medium), which yielded an evolved recombinant strain that consumed lactose twofold faster, producing 30% more ethanol than the original recombinant. We identified two molecular events that targeted the LAC construct in the evolved strain: a 1,593-bp deletion in the intergenic region (promoter) between LAC4 and LAC12 and a decrease of the plasmid copy number by about 10-fold compared to that in the original recombinant. The results suggest that the intact promoter was unable to mediate the induction of the transcription of LAC4 and LAC12 by lactose in the original recombinant and that the deletion established the transcriptional induction of both genes in the evolved strain. We propose that the tuning of the expression of the heterologous LAC genes in the evolved recombinant was accomplished by the interplay between the decreased copy number of both genes and the different levels of transcriptional induction for LAC4 and LAC12 resulting from the changed promoter structure. Nevertheless, our results do not exclude other possible mutations that may have contributed to the improved lactose fermentation phenotype. This study illustrates the usefulness of simple evolutionary engineering approaches in strain improvement. The evolved strain efficiently fermented threefold-concentrated cheese whey, providing an attractive alternative for the fermentation of lactose-based media.

  12. Histone Deacetylases with Antagonistic Roles in Saccharomyces cerevisiae Heterochromatin Formation.

    PubMed

    Thurtle-Schmidt, Deborah M; Dodson, Anne E; Rine, Jasper

    2016-09-01

    As the only catalytic member of the Sir-protein gene-silencing complex, Sir2's catalytic activity is necessary for silencing. The only known role for Sir2's catalytic activity in Saccharomyces cerevisiae silencing is to deacetylate N-terminal tails of histones H3 and H4, creating high-affinity binding sites for the Sir-protein complex, resulting in association of Sir proteins across the silenced domain. This histone deacetylation model makes the simple prediction that preemptively removing Sir2's H3 and H4 acetyl substrates, by mutating these lysines to unacetylatable arginines, or removing the acetyl transferase responsible for their acetylation, should restore silencing in the Sir2 catalytic mutant. However, this was not the case. We conducted a genetic screen to explore what aspect of Sir2's catalytic activity has not been accounted for in silencing. Mutation of a nonsirtuin histone deacetylase, Rpd3, restored Sir-protein-based silencing in the absence of Sir2's catalytic activity. Moreover, this antagonism could be mediated by either the large or the small Rpd3-containing complex. Interestingly, this restoration of silencing appeared independent of any known histone H3 or H4 substrates of Rpd3 Investigation of Sir-protein association in the Rpd3 mutant revealed that the restoration of silencing was correlated with an increased association of Sir proteins at the silencers, suggesting that Rpd3 was an antagonist of Sir2's function in nucleation of Sir proteins to the silencer. Additionally, restoration of silencing by Rpd3 was dependent on another sirtuin family member, Hst3, indicating multiple antagonistic roles for deacetylases in S. cerevisiae silencing. Copyright © 2016 by the Genetics Society of America.

  13. Copper Tolerance and Biosorption of Saccharomyces cerevisiae during Alcoholic Fermentation.

    PubMed

    Sun, Xiang-Yu; Zhao, Yu; Liu, Ling-Ling; Jia, Bo; Zhao, Fang; Huang, Wei-Dong; Zhan, Ji-Cheng

    2015-01-01

    At high levels, copper in grape mash can inhibit yeast activity and cause stuck fermentations. Wine yeast has limited tolerance of copper and can reduce copper levels in wine during fermentation. This study aimed to understand copper tolerance of wine yeast and establish the mechanism by which yeast decreases copper in the must during fermentation. Three strains of Saccharomyces cerevisiae (lab selected strain BH8 and industrial strains AWRI R2 and Freddo) and a simple model fermentation system containing 0 to 1.50 mM Cu2+ were used. ICP-AES determined Cu ion concentration in the must decreasing differently by strains and initial copper levels during fermentation. Fermentation performance was heavily inhibited under copper stress, paralleled a decrease in viable cell numbers. Strain BH8 showed higher copper-tolerance than strain AWRI R2 and higher adsorption than Freddo. Yeast cell surface depression and intracellular structure deformation after copper treatment were observed by scanning electron microscopy and transmission electron microscopy; electronic differential system detected higher surface Cu and no intracellular Cu on 1.50 mM copper treated yeast cells. It is most probably that surface adsorption dominated the biosorption process of Cu2+ for strain BH8, with saturation being accomplished in 24 h. This study demonstrated that Saccharomyces cerevisiae strain BH8 has good tolerance and adsorption of Cu, and reduces Cu2+ concentrations during fermentation in simple model system mainly through surface adsorption. The results indicate that the strain selected from China's stress-tolerant wine grape is copper tolerant and can reduce copper in must when fermenting in a copper rich simple model system, and provided information for studies on mechanisms of heavy metal stress.

  14. From one to many: expanding the Saccharomyces cerevisiae reference genome panel.

    PubMed

    Engel, Stacia R; Weng, Shuai; Binkley, Gail; Paskov, Kelley; Song, Giltae; Cherry, J Michael

    2016-01-01

    In recent years, thousands of Saccharomyces cerevisiae genomes have been sequenced to varying degrees of completion. The Saccharomyces Genome Database (SGD) has long been the keeper of the original eukaryotic reference genome sequence, which was derived primarily from S. cerevisiae strain S288C. Because new technologies are pushing S. cerevisiae annotation past the limits of any system based exclusively on a single reference sequence, SGD is actively working to expand the original S. cerevisiae systematic reference sequence from a single genome to a multi-genome reference panel. We first commissioned the sequencing of additional genomes and their automated analysis using the AGAPE pipeline. Here we describe our curation strategy to produce manually reviewed high-quality genome annotations in order to elevate 11 of these additional genomes to Reference status. Database URL: http://www.yeastgenome.org/.

  15. Draft Genome Sequence of the Yeast Saccharomyces cerevisiae GUJ105 From Gujarat, India

    PubMed Central

    Detroja, Rajesh; Rathore, Ankita

    2016-01-01

    Here, we report the draft genome sequence of Saccharomyces cerevisiae strain GUJ105, isolated clinically. The size of the genome is approximately 11.5 Mb and contains 5,447 protein-coding genes. PMID:27908989

  16. [Effects of overexpression of NADH kinase gene on ethanol fermentation by Saccharomyces cerevisiae].

    PubMed

    Wang, Han; Zhang, Liang; Shi, Guiyang

    2014-09-01

    Glycerol is the main byproduct in ethanol production by Saccharomyces cerevisiae. In order to improve ethanol yield and the substrate conversion, a cassette about 4.5 kb for gene homologous recombination, gpd2Δ::PGK1(PT)-POS5-HyBR, was constructed and transformed into the haploid strain S. cerevisiae S1 (MATa) to replace the GPD2 gene by POS5 gene. The NADH kinase gene POS5 was successfully over expressed in the recombinant strain S. cerevisiae S3. Comparing with the parent strain, the recombinant strain S. cerevisiae S3 exhibited an 8% increase in ethanol production and a 33.64% decrease in glycerol production in the conical flask fermentation with an initiatory glucose concentration of 150 g/L. Overexpression of NADH kinase gene seems effective in reducing glycerol production and increasing ethanol yield.

  17. Opportunistic Strains of Saccharomyces cerevisiae: A Potential Risk Sold in Food Products.

    PubMed

    Pérez-Torrado, Roberto; Querol, Amparo

    2015-01-01

    In recent decades, fungal infections have emerged as an important health problem associated with more people who present deficiencies in the immune system, such as HIV or transplanted patients. Saccharomyces cerevisiae is one of the emerging fungal pathogens with a unique characteristic: its presence in many food products. S. cerevisiae has an impeccably good food safety record compared to other microorganisms like virus, bacteria and some filamentous fungi. However, humans unknowingly and inadvertently ingest large viable populations of S. cerevisiae (home-brewed beer or dietary supplements that contain yeast). In the last few years, researchers have studied the nature of S. cerevisiae strains and the molecular mechanisms related to infections. Here we review the last advance made in this emerging pathogen and we discuss the implication of using this species in food products.

  18. Stress Tolerance Variations in Saccharomyces cerevisiae Strains from Diverse Ecological Sources and Geographical Locations.

    PubMed

    Zheng, Yan-Lin; Wang, Shi-An

    2015-01-01

    The budding yeast Saccharomyces cerevisiae is a platform organism for bioethanol production from various feedstocks and robust strains are desirable for efficient fermentation because yeast cells inevitably encounter stressors during the process. Recently, diverse S. cerevisiae lineages were identified, which provided novel resources for understanding stress tolerance variations and related shaping factors in the yeast. This study characterized the tolerance of diverse S. cerevisiae strains to the stressors of high ethanol concentrations, temperature shocks, and osmotic stress. The results showed that the isolates from human-associated environments overall presented a higher level of stress tolerance compared with those from forests spared anthropogenic influences. Statistical analyses indicated that the variations of stress tolerance were significantly correlated with both ecological sources and geographical locations of the strains. This study provides guidelines for selection of robust S. cerevisiae strains for bioethanol production from nature.

  19. Metabolic engineering of Saccharomyces cerevisiae to improve succinic acid production based on metabolic profiling.

    PubMed

    Ito, Yuma; Hirasawa, Takashi; Shimizu, Hiroshi

    2014-01-01

    We performed metabolic engineering on the budding yeast Saccharomyces cerevisiae for enhanced production of succinic acid. Aerobic succinic acid production in S. cerevisiae was achieved by disrupting the SDH1 and SDH2 genes, which encode the catalytic subunits of succinic acid dehydrogenase. Increased succinic acid production was achieved by eliminating the ethanol biosynthesis pathways. Metabolic profiling analysis revealed that succinic acid accumulated intracellularly following disruption of the SDH1 and SDH2 genes, which suggests that enhancing the export of intracellular succinic acid outside of cells increases succinic acid production in S. cerevisiae. The mae1 gene encoding the Schizosaccharomyces pombe malic acid transporter was introduced into S. cerevisiae, and as a result, succinic acid production was successfully improved. Metabolic profiling analysis is useful in producing chemicals for metabolic engineering of microorganisms.

  20. Stress Tolerance Variations in Saccharomyces cerevisiae Strains from Diverse Ecological Sources and Geographical Locations

    PubMed Central

    Zheng, Yan-Lin; Wang, Shi-An

    2015-01-01

    The budding yeast Saccharomyces cerevisiae is a platform organism for bioethanol production from various feedstocks and robust strains are desirable for efficient fermentation because yeast cells inevitably encounter stressors during the process. Recently, diverse S. cerevisiae lineages were identified, which provided novel resources for understanding stress tolerance variations and related shaping factors in the yeast. This study characterized the tolerance of diverse S. cerevisiae strains to the stressors of high ethanol concentrations, temperature shocks, and osmotic stress. The results showed that the isolates from human-associated environments overall presented a higher level of stress tolerance compared with those from forests spared anthropogenic influences. Statistical analyses indicated that the variations of stress tolerance were significantly correlated with both ecological sources and geographical locations of the strains. This study provides guidelines for selection of robust S. cerevisiae strains for bioethanol production from nature. PMID:26244846

  1. Antioxidant properties and global metabolite screening of the probiotic yeast Saccharomyces cerevisiae var. boulardii.

    PubMed

    Datta, Suprama; Timson, David J; Annapure, Uday S

    2017-07-01

    Saccharomyces cerevisiae var. boulardii is the only yeast species with probiotic properties. It is considered to have therapeutic significance in gastrointestinal disorders. In the present study, a comparative physiological study between this yeast and Saccharomyces cerevisiae (BY4742) was performed by evaluating two prominent traits of probiotic species, responses to different stress conditions and antioxidant capacity. A global metabolite profile was also developed aiming to identify which therapeutically important secondary metabolites are produced. Saccharomyces cerevisiae var. boulardii showed no significant difference in growth patterns but greater stress tolerance compared to S. cerevisiae. It also demonstrated a six- to 10-fold greater antioxidant potential (judged by the 1,1-diphenyl-2-picrylhydrazyl assay), with a 70-fold higher total phenolic content and a 20-fold higher total flavonoid content in the extracellular fraction. These features were clearly differentiated by principal component analysis and further indicated by metabolite profiling. The extracellular fraction of the S. cerevisiae var. boulardii cultures was found to be rich in polyphenolic metabolites: vanillic acid, cinnamic acid, phenyl ethyl alcohol (rose oil), erythromycin, amphetamine and vitamin B6 , which results in the antioxidant capacity of this strain. The present study presents a new perspective for differentiating the two genetically related strains of yeast, S. cerevisiae and S. cerevisiae var. boulardii by assessing their metabolome fingerprints. In addition to the correlation of the phenotypic properties with the secretory metabolites of these two yeasts, the present study also emphasizes the potential to exploit S. cerevisiae var. boulardii in the industrial production of these metabolites. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  2. Genomic expression program of Saccharomyces cerevisiae along a mixed-culture wine fermentation with Hanseniaspora guilliermondii.

    PubMed

    Barbosa, Catarina; Mendes-Faia, Arlete; Lage, Patrícia; Mira, Nuno P; Mendes-Ferreira, Ana

    2015-08-28

    The introduction of yeast starter cultures consisting in a blend of Saccharomyces cerevisiae and non-Saccharomyces yeast strains is emerging for production of wines with improved complexity of flavor. The rational use of this approach is, however, dependent on knowing the impact that co-inoculation has in the physiology of S. cerevisiae. In this work the transcriptome of S. cerevisiae was monitored throughout a wine fermentation, carried out in single culture or in a consortium with Hanseniaspora guilliermondii, this being the first time that this relevant yeast-yeast interaction is examined at a genomic scale. Co-inoculation with H. guilliermondii reduced the overall genome-wide transcriptional response of S. cerevisiae throughout the fermentation, which was attributable to a lower fermentative activity of S. cerevisiae while in the mixed-fermentation. Approximately 350 genes S. cerevisiae genes were found to be differently expressed (FDR < 0.05) in response to the presence of H. guilliermondii in the fermentation medium. Genes involved in biosynthesis of vitamins were enriched among those up-regulated in the mixed-culture fermentation, while genes related with the uptake and biosynthesis of amino acids were enriched among those more expressed in the single-culture. The differences in the aromatic profiles of wines obtained in the single and in the mixed-fermentations correlated with the differential expression of S. cerevisiae genes encoding enzymes required for formation of aroma compounds. By integrating results obtained in the transcriptomic analysis performed with physiological data our study provided, for the first time, an integrated view into the adaptive responses of S. cerevisiae to the challenging environment of mixed culture fermentation. The availability of nutrients, in particular, of nitrogen and vitamins, stands out as a factor that may determine population dynamics, fermentative activity and by-product formation.

  3. Post-zygotic sterility and cytonuclear compatibility limits in S. cerevisiae xenomitochondrial cybrids

    PubMed Central

    Špírek, Mário; Poláková, Silvia; Jatzová, Katarína; Sulo, Pavol

    2015-01-01

    Nucleo-mitochondrial interactions, particularly those determining the primary divergence of biological species, can be studied by means of xenomitochondrial cybrids, which are cells where the original mitochondria are substituted by their counterparts from related species. Saccharomyces cerevisiae cybrids are prepared simply by the mating of the ρ0 strain with impaired karyogamy and germinating spores from other Saccharomyces species and fall into three categories. Cybrids with compatible mitochondrial DNA (mtDNA) from Saccharomyces paradoxus CBS 432 and Saccharomyces cariocanus CBS 7994 are metabolically and genetically similar to cybrids containing mtDNA from various S. cerevisiae. Cybrids with mtDNA from other S. paradoxus strains, S. cariocanus, Saccharomyces kudriavzevii, and Saccharomyces mikatae require a period of adaptation to establish efficient oxidative phosphorylation. They exhibit a temperature-sensitive phenotype, slower growth rate on a non-fermentable carbon source and a long lag phase after the shift from glucose. Their decreased respiration capacity and reduced cytochrome aa3 content is associated with the inefficient splicing of cox1I3β, the intron found in all Saccharomyces species but not in S. cerevisiae. The splicing defect is compensated in cybrids by nuclear gain-of-function and can be alternatively suppressed by overexpression of MRP13 gene for mitochondrial ribosomal protein or the MRS2, MRS3, and MRS4 genes involved in intron splicing. S. cerevisiae with Saccharomyces bayanus mtDNA is unable to respire and the growth on ethanol–glycerol can be restored only after mating to some mit− strains. The nucleo-mitochondrial compatibility limit of S. cerevisiae and other Saccharomyces was set between S. kudriavzevii and S. bayanus at the divergence from S. cerevisiae about 15 MYA. The MRS1-cox1 S. cerevisiae/S. paradoxus cytonuclear Dobzhansky–Muller pair has a neglible impact on the separation of species since its imperfection is

  4. Production of Dengue 2 Envelope Protein in the Yeast Saccharomyces Cerevisiae. Phase 1

    DTIC Science & Technology

    1990-02-15

    PRODUCTION OF DENGUE 2 ENVELOPE PROTEIN IN THE YEAST SACCHAROMYCES CEREVISIAE FINAL, PHASE I REPORT JOHN M. IVY KATHY HOUTCHENS FEBRUARY 15, 1990...SUBTITLE Production of Dengue 2 Envelope Protein in the Yeast Saccharomyces cerevisiae ( 6. AUTHOR(S) John M. Ivy Kathy Houtchens 7 PERFORMING...DISTRIBUTION CODE 13. ABSTRACT (Mammum 200 words) The four serotypes of dengue viruses are a leading cause of morbidity throughout the tropics and subtropics

  5. Water treatment process and system for metals removal using Saccharomyces cerevisiae

    DOEpatents

    Krauter, Paula A. W.; Krauter, Gordon W.

    2002-01-01

    A process and a system for removal of metals from ground water or from soil by bioreducing or bioaccumulating the metals using metal tolerant microorganisms Saccharomyces cerevisiae. Saccharomyces cerevisiae is tolerant to the metals, able to bioreduce the metals to the less toxic state and to accumulate them. The process and the system is useful for removal or substantial reduction of levels of chromium, molybdenum, cobalt, zinc, nickel, calcium, strontium, mercury and copper in water.

  6. Effects of cyclohexane, an industrial solvent, on the yeast Saccharomyces cerevisiae and on isolated yeast mitochondria

    SciTech Connect

    Uribe, S.; Rangel, P.; Espinola, G.; Aguirre, G. )

    1990-07-01

    Little information on the effects of cyclohexane at the cellular or subcellular level is available. In Saccharomyces cerevisiae, cyclohexane inhibited respiration and diverse energy-dependent processes. In mitochondria isolated from S. cerevisiae, oxygen uptake and ATP synthesis were inhibited, although ATPase activity was not affected. Cyclohexane effects were similar to those reported for beta-pinene and limonene, suggesting that the cyclohexane ring in these monoterpenes may be a determinant for their biological activities.

  7. Molecular and enological characterization of a natural Saccharomyces uvarum and Saccharomyces cerevisiae hybrid.

    PubMed

    Pérez-Torrado, Roberto; González, Sara Susana; Combina, Mariana; Barrio, Eladio; Querol, Amparo

    2015-07-02

    Saccharomyces cerevisiae plays a main role in the winemaking process, although other species, like Saccharomyces uvarum or Saccharomyces paradoxus, have been associated with must fermentations. It has been reported in recent years, that yeast hybrids of different Saccharomyces species might be responsible for wine productions. Although S. cerevisiae×Saccharomyces kudriavzevii hybrids have been well studied, very little attention has been paid to S. cerevisiae×S. uvarum hybrids. In this work we characterized the genomic composition of S6U, a widely used commercial S. cerevisiae×S. uvarum yeast hybrid isolated in wine fermentations containing one copy of the genome of each parental species, which suggests a relatively recent hybridization event. We also studied its performance under diverse enological conditions. The results show enhanced performance under low temperature enological conditions, increased glycerol production, lower acetic acid production and increased production of interesting aroma compounds. We also examined the transcriptomic response of the S6U hybrid strain compared with the reference species under enological conditions. The results show that although the hybrid strain transcriptome is more similar to S. uvarum than to S. cerevisiae, it presents specifically regulated genes involved in stress response, lipids and amino acid metabolism. The enological performance and aroma profile of this S. cerevisiae×S. uvarum hybrid makes it a good candidate for participating in winemaking, especially at low temperatures.

  8. Role of Saccharomyces cerevisiae serine O-acetyltransferase in cysteine biosynthesis.

    PubMed

    Takagi, Hiroshi; Yoshioka, Kenji; Awano, Naoki; Nakamori, Shigeru; Ono, Bun ichiro

    2003-01-28

    Some strains of Saccharomyces cerevisiae have detectable activities of L-serine O-acetyltransferase (SATase) and O-acetyl-L-serine/O-acetyl-L-homoserine sulfhydrylase (OAS/OAH-SHLase), but synthesize L-cysteine exclusively via cystathionine by cystathionine beta-synthase and cystathionine gamma-lyase. To untangle this peculiar feature in sulfur metabolism, we introduced Escherichia coli genes encoding SATase and OAS-SHLase into S. cerevisiae L-cysteine auxotrophs. While the cells expressing SATase grew on medium lacking L-cysteine, those expressing OAS-SHLase did not grow at all. The cells expressing both enzymes grew very well without L-cysteine. These results indicate that S. cerevisiae SATase cannot support L-cysteine biosynthesis and that S. cerevisiae OAS/OAH-SHLase produces L-cysteine if enough OAS is provided by E. coli SATase. It appears as if S. cerevisiae SATase does not possess a metabolic role in vivo either because of very low activity or localization. For example, S. cerevisiae SATase may be localized in the nucleus, thus controlling the level of OAS required for regulation of sulfate assimilation, but playing no role in the direct synthesis of L-cysteine.

  9. Enhanced ethanol fermentation by engineered Saccharomyces cerevisiae strains with high spermidine contents.

    PubMed

    Kim, Sun-Ki; Jo, Jung-Hyun; Jin, Yong-Su; Seo, Jin-Ho

    2017-05-01

    Construction of robust and efficient yeast strains is a prerequisite for commercializing a biofuel production process. We have demonstrated that high intracellular spermidine (SPD) contents in Saccharomyces cerevisiae can lead to improved tolerance against various fermentation inhibitors, including furan derivatives and acetic acid. In this study, we examined the potential applicability of the S. cerevisiae strains with high SPD contents under two cases of ethanol fermentation: glucose fermentation in repeated-batch fermentations and xylose fermentation in the presence of fermentation inhibitors. During the sixteen times of repeated-batch fermentations using glucose as a sole carbon source, the S. cerevisiae strains with high SPD contents maintained higher cell viability and ethanol productivities than a control strain with lower SPD contents. Specifically, at the sixteenth fermentation, the ethanol productivity of a S. cerevisiae strain with twofold higher SPD content was 31% higher than that of the control strain. When the SPD content was elevated in an engineered S. cerevisiae capable of fermenting xylose, the resulting S. cerevisiae strain exhibited much 40-50% higher ethanol productivities than the control strain during the fermentations of synthetic hydrolysate containing high concentrations of fermentation inhibitors. These results suggest that the strain engineering strategy to increase SPD content is broadly applicable for engineering yeast strains for robust and efficient production of ethanol.

  10. Redox interactions between Saccharomyces cerevisiae and Saccharomyces uvarum in mixed culture under enological conditions.

    PubMed

    Cheraiti, Naoufel; Guezenec, Stéphane; Salmon, Jean-Michel

    2005-01-01

    Wine yeast starters that contain a mixture of different industrial yeasts with various properties may soon be introduced to the market. The mechanisms underlying the interactions between the different strains in the starter during alcoholic fermentation have never been investigated. We identified and investigated some of these interactions in a mixed culture containing two yeast strains grown under enological conditions. The inoculum contained the same amount (each) of a strain of Saccharomyces cerevisiae and a natural hybrid strain of S. cerevisiae and Saccharomyces uvarum. We identified interactions that affected biomass, by-product formation, and fermentation kinetics, and compared the redox ratios of monocultures of each strain with that of the mixed culture. The redox status of the mixed culture differed from that of the two monocultures, showing that the interactions between the yeast strains involved the diffusion of metabolite(s) within the mixed culture. Since acetaldehyde is a potential effector of fermentation, we investigated the kinetics of acetaldehyde production by the different cultures. The S. cerevisiae-S. uvarum hybrid strain produced large amounts of acetaldehyde for which the S. cerevisiae strain acted as a receiving strain in the mixed culture. Since yeast response to acetaldehyde involves the same mechanisms that participate in the response to other forms of stress, the acetaldehyde exchange between the two strains could play an important role in inhibiting some yeast strains and allowing the growth of others. Such interactions could be of particular importance in understanding the ecology of the colonization of complex fermentation media by S. cerevisiae.

  11. Diversity of Saccharomyces cerevisiae Strains Isolated from Two Italian Wine-Producing Regions

    PubMed Central

    Capece, Angela; Granchi, Lisa; Guerrini, Simona; Mangani, Silvia; Romaniello, Rossana; Vincenzini, Massimo; Romano, Patrizia

    2016-01-01

    Numerous studies, based on different molecular techniques analyzing DNA polymorphism, have provided evidence that indigenous Saccharomyces cerevisiae populations display biogeographic patterns. Since the differentiated populations of S. cerevisiae seem to be responsible for the regional identity of wine, the aim of this work was to assess a possible relationship between the diversity and the geographical origin of indigenous S. cerevisiae isolates from two different Italian wine-producing regions (Tuscany and Basilicata). For this purpose, sixty-three isolates from Aglianico del Vulture grape must (main cultivar in the Basilicata region) and from Sangiovese grape must (main cultivar in the Tuscany region) were characterized genotypically, by mitochondrial DNA restriction analysis and MSP-PCR by using (GTG)5 primers, and phenotypically, by determining technological properties and metabolic compounds of oenological interest after alcoholic fermentation. All the S. cerevisiae isolates from each region were inoculated both in must obtained from Aglianico grape and in must obtained from Sangiovese grape to carry out fermentations at laboratory-scale. Numerical analysis of DNA patterns resulting from both molecular methods and principal component analysis of phenotypic data demonstrated a high diversity among the S. cerevisiae strains. Moreover, a correlation between genotypic and phenotypic groups and geographical origin of the strains was found, supporting the concept that there can be a microbial aspect to terroir. Therefore, exploring the diversity of indigenous S. cerevisiae strains can allow developing tailored strategies to select wine yeast strains better adapted to each viticultural area. PMID:27446054

  12. The distribution of inverted repeat sequences in the Saccharomyces cerevisiae genome

    PubMed Central

    Benson, Gary; Gelfand, Yevgeniy; Benham, Craig J.

    2010-01-01

    Although a variety of possible functions have been proposed for inverted repeat sequences (IRs), it is not known which of them might occur in vivo. We investigate this question by assessing the distributions and properties of IRs in the Saccharomyces cerevisiae (SC) genome. Using the IRFinder algorithm we detect 100,514 IRs having copy length greater than 6 bp and spacer length less than 77 bp. To assess statistical significance we also determine the IR distributions in two types of randomization of the S. cerevisiae genome. We find that the S. cerevisiae genome is significantly enriched in IRs relative to random. The S. cerevisiae IRs are significantly longer and contain fewer imperfections than those from the randomized genomes, suggesting that processes to lengthen and/or correct errors in IRs may be operative in vivo. The S. cerevisiae IRs are highly clustered in intergenic regions, while their occurrence in coding sequences is consistent with random. Clustering is stronger in the 3′ flanks of genes than in their 5′ flanks. However, the S. cerevisiae genome is not enriched in those IRs that would extrude cruciforms, suggesting that this is not a common event. Various explanations for these results are considered. Electronic supplementary material The online version of this article (doi:10.1007/s00294-010-0302-6) contains supplementary material, which is available to authorized users. PMID:20446088

  13. Influence of temperature and nutrient strength on the susceptibility of Saccharomyces cerevisiae to heavy metals

    SciTech Connect

    Hsu, T.; Lee, L.W.; Chang, T.H. )

    1992-09-01

    Saccharomyces cerevisiae is not only a key microorganism in brewing or fermentation processes, it has also been employed for monitoring aquatic pollutants. The major advantage of using Saccharomyces cerevisiae as a bioassay system is that this yeast can be easily obtained as dry pellets from commercial sources at low cost. In addition to its economical aspect, Saccharomyces cerevisiae, like other microorganisms, is easy to handle, grows rapidly, and provides a large number of homogeneous individuals for utilization in toxicity tests. Although cell growth, cell viability, electron transport and mitochondrial respiration of Saccharomyces cerevisiaes have all been selected as parameters for toxicity assessment, measuring cell growth by absorbance is by farm the most convenient and rapid method when large amounts of water samples are to be tested. Mochida et al. (1988), however, reported that Saccharomyces cerevisiae was five to ten times less sensitive than cell culture systems to cadmium, mercury and nickel, when cell growth of both systems was monitored. This relative insensitivity to heavy metals might handicap the practical use of this yeast strain for bioassays. Since previous studies indicated that the susceptibility of microorganisms to environmental toxicants can be influenced by incubation temperature and nutrient strength, we attempted to examine the effect of incubation temperature and nutrient strength on the susceptibility of Saccharomyces cerevisiae to heavy metals in order to obtain the optimum bioassay sensitivity. In this study, we used cadmium and mercury as model toxicants. 9 refs., 2 figs., 1 tab.

  14. Ethanol fermentation from Jerusalem artichoke powder using Saccharomyces cerevisiae KCCM50549 without pretreatment for inulin hydrolysis.

    PubMed

    Lim, Seok-Hwan; Ryu, Ji-Myoung; Lee, Hongweon; Jeon, Jae Heung; Sok, Dai-Eun; Choi, Eui-Sung

    2011-01-01

    A strain of Saccharomyces cerevisiae, KCCM50549, was found to efficiently ferment the inulin-containing carbohydrates in Jerusalem artichoke without acidic or enzymatic pretreatment prior to fermentation. S. cerevisiae KCCM50549 could utilize almost completely the fructo-oligosaccharides present in Jerusalem artichoke (up to degree of polymerization (DP) of 15), in contrast to the other S. cerevisiae strain such as NCYC625 that fermented the fructo-oligosaccharides with DP of up to around six. Inulin-fermenting S. cerevisiae KCCM50549 produced c.a. 1.6 times more ethanol from Jerusalem artichoke compared with S. cerevisiae NCYC625. Direct ethanol fermentation of Jerusalem artichoke flour at 180 g/L without any supplements or pretreatments by S. cerevisiae KCCM50549 in a 5 L jar fermentor yielded 36.2 g/L of ethanol within 36 h. The conversion efficiency of inulin-type sugars to ethanol was 70% of the theoretical ethanol yield. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Diversity of Saccharomyces cerevisiae Strains Isolated from Two Italian Wine-Producing Regions.

    PubMed

    Capece, Angela; Granchi, Lisa; Guerrini, Simona; Mangani, Silvia; Romaniello, Rossana; Vincenzini, Massimo; Romano, Patrizia

    2016-01-01

    Numerous studies, based on different molecular techniques analyzing DNA polymorphism, have provided evidence that indigenous Saccharomyces cerevisiae populations display biogeographic patterns. Since the differentiated populations of S. cerevisiae seem to be responsible for the regional identity of wine, the aim of this work was to assess a possible relationship between the diversity and the geographical origin of indigenous S. cerevisiae isolates from two different Italian wine-producing regions (Tuscany and Basilicata). For this purpose, sixty-three isolates from Aglianico del Vulture grape must (main cultivar in the Basilicata region) and from Sangiovese grape must (main cultivar in the Tuscany region) were characterized genotypically, by mitochondrial DNA restriction analysis and MSP-PCR by using (GTG)5 primers, and phenotypically, by determining technological properties and metabolic compounds of oenological interest after alcoholic fermentation. All the S. cerevisiae isolates from each region were inoculated both in must obtained from Aglianico grape and in must obtained from Sangiovese grape to carry out fermentations at laboratory-scale. Numerical analysis of DNA patterns resulting from both molecular methods and principal component analysis of phenotypic data demonstrated a high diversity among the S. cerevisiae strains. Moreover, a correlation between genotypic and phenotypic groups and geographical origin of the strains was found, supporting the concept that there can be a microbial aspect to terroir. Therefore, exploring the diversity of indigenous S. cerevisiae strains can allow developing tailored strategies to select wine yeast strains better adapted to each viticultural area.

  16. Effect of Saccharomyces cerevisiae strain UFMG A-905 in experimental model of inflammatory bowel disease.

    PubMed

    Tiago, F C P; Porto, B A A; Ribeiro, N S; Moreira, L M C; Arantes, R M E; Vieira, A T; Teixeira, M M; Generoso, S V; Nascimento, V N; Martins, F S; Nicoli, J R

    2015-01-01

    In the present study, the protective potential of Saccharomyces cerevisiae strain UFMG A-905 was evaluated in a murine model of acute ulcerative colitis (UC). Six groups of Balb/c mice were used: not treated with yeast and not challenged with dextran sulphate sodium (DSS) (control); treated with S. cerevisiae UFMG A-905 (905); treated with the non-probiotic S. cerevisiae W303 (W303); challenged with DSS (DSS); treated with S. cerevisiae UFMG A-905 and challenged with DSS (905 + DSS); and treated with S. cerevisiae W303 and challenged with DSS (W303 + DSS). Seven days after induction of UC, mice were euthanised to remove colon for enzymatic, immunological, and histopathological analysis. In vivo intestinal permeability was also evaluated. An improvement of clinical manifestations of experimental UC was observed only in mice of the 905 + DSS group when compared to animals from DSS and W303 + DSS groups. This observation was confirmed by histological and morphometrical data and determination of myeloperoxidase and eosinophil peroxidase activities, intestinal permeability and some pro-inflammatory cytokines. S. cerevisiae UFMG A-905 showed to be a potential alternative treatment for UC when used in an experimental animal model of the disease.

  17. Identification of salt-induced genes of Zygosaccharomyces rouxii by using Saccharomyces cerevisiae GeneFilters.

    PubMed

    Schoondermark-Stolk, Sung Ah; ter Schure, Eelko G; Verrips, C Theo; Verkleij, Arie J; Boonstra, Johannes

    2002-12-01

    Yeast GeneFilters containing all Saccharomyces cerevisiae open reading frame (ORF) sequences were used to elucidate gene activity in the osmotolerant yeast Zygosaccharomyces rouxii. Labelled cDNA derived from Z. rouxii was targeted to spotted S. cerevisiae ORFs. Approximately 90-100% homology of Z. rouxii genes with those of S. cerevisiae was required for definitive identification of the cDNAs hybridised to GeneFilter. Hybridised labelled cDNAs were visualised as small spots on the microarray, providing simultaneous information on homologous genes present in Z. rouxii and on their level of gene activity. Cross-hybridisation of the GeneFilters displayed 155 as yet unidentified genes of Z. rouxii hybridising to S. cerevisiae ORFs. From those 155 genes, the activity of 86 genes was influenced as a result of NaCl stress. In comparison with S. cerevisiae 24% of Z. rouxii genes revealed a different transcription behaviour following NaCl stress. All of these genes had no previously defined function in osmotic-stress response in Z. rouxii. Therefore, cross-hybridisation of GeneFilters proves to be an appropriate and straightforward method for screening transcripts in Z. rouxii, which provides an extension of the knowledge of genes present in a yeast genus other than S. cerevisiae.

  18. [Development of genetically stable recombinant Saccharomyces cerevisiae strains using combinational chromosomal integration].

    PubMed

    Zuo, Qi; Zhao, Xinqing; Liu, Haijun; Hu, Shiyang; Ma, Zhongyi; Bai, Fengwu

    2014-04-01

    Chromosomal integration enables stable phenotype and therefore has become an important strategy for breeding of industrial Saccharomyces cerevisiae strains. pAUR135 is a plasmid that enables recycling use of antibiotic selection marker, and once attached with designated homologous sequences, integration vector for stable expression can be constructed. Development of S. cerevisiae strains by metabolic engineering normally demands overexpression of multiple genes, and employing pAUR135 plasmid, it is possible to construct S. cerevisiae strains by combinational integration of multiple genes in multiple sites, which results in different ratios of expressions of these genes. Xylose utilization pathway was taken as an example, with three pAUR135-based plasmids carrying three xylose assimilation genes constructed in this study. The three genes were sequentially integrated on the chromosome of S. cerevisiae by combinational integration. Xylose utilization rate was improved 24.4%-35.5% in the combinational integration strain comparing with that of the control strain with all the three genes integrated in one location. Strain improvement achieved by combinational integration is a novel method to manipulate multiple genes for genetic engineering of S. cerevisiae, and the recombinant strains are free of foreign sequences and selection markers. In addition, stable phenotype can be maintained, which is important for breeding of industrial strains. Therefore, combinational integration employing pAUR135 is a novel method for metabolic engineering of industrial S. cerevisiae strains.

  19. Early transcriptional response to biotic stress in mixed starter fermentations involving Saccharomyces cerevisiae and Torulaspora delbrueckii.

    PubMed

    Tronchoni, Jordi; Curiel, Jose Antonio; Morales, Pilar; Torres-Pérez, Rafael; Gonzalez, Ramon

    2017-01-16

    Advances in microbial wine biotechnology have led to the recent commercialization of several non-Saccharomyces starter cultures. These are intended to be used in either simultaneous or sequential inoculation with Saccharomyces cerevisiae. The different types of microbial interactions that can be stablished during wine fermentation acquire an increased relevance in the context of these mixed-starter fermentations. We analysed the transcriptional response to co-cultivation of S. cerevisiae and Torulaspora delbrueckii. The study focused in the initial stages of wine fermentation, before S. cerevisiae completely dominates the mixed cultures. Both species showed a clear response to the presence of each other, even though the portion of the genome showing altered transcription levels was relatively small. Changes in the transcription pattern suggested a stimulation of metabolic activity and growth, as a consequence of the presence of competitors in the same medium. The response of S. cerevisiae seems to take place earlier, as compared to T. delbrueckii. Enhanced glycolytic activity of the mixed culture was confirmed by the CO2 production profile during these early stages of fermentation. Interestingly, HSP12 expression appeared induced by co-cultivation for both of S. cerevisiae and Torulaspora delbrueckii in the two time points studied. This might be related with a recently described role of Hsp12 in intercellular communication in yeast. Expression of S. cerevisiae PAU genes was also stimulated in mixed cultures.

  20. Growth of non-Saccharomyces yeasts affects nutrient availability for Saccharomyces cerevisiae during wine fermentation.

    PubMed

    Medina, Karina; Boido, Eduardo; Dellacassa, Eduardo; Carrau, Francisco

    2012-07-02

    Yeast produces numerous secondary metabolites during fermentation that impact final wine quality. Although it is widely recognized that growth of diverse non-Saccharomyces (NS) yeast can positively affect flavor complexity during Saccharomyces cerevisiae wine fermentation, the inability to control spontaneous or co-fermentation processes by NS yeast has restricted their use in winemaking. We selected two NS yeasts from our Uruguayan native collection to study NS-S. cerevisiae interactions during wine fermentation. The selected strains of Hanseniaspora vineae and Metschnikowia pulcherrima had different yeast assimilable nitrogen consumption profiles and had different effects on S. cerevisiae fermentation and growth kinetics. Studies in which we varied inoculum size and using either simultaneous or sequential inoculation of NS yeast and S. cerevisiae suggested that competition for nutrients had a significant effect on fermentation kinetics. Sluggish fermentations were more pronounced when S. cerevisiae was inoculated 24h after the initial stage of fermentation with a NS strain compared to co-inoculation. Monitoring strain populations using differential WL nutrient agar medium and fermentation kinetics of mixed cultures allowed for a better understanding of strain interactions and nutrient addition effects. Limitation of nutrient availability for S. cerevisiae was shown to result in stuck fermentations as well as to reduce sensory desirability of the resulting wine. Addition of diammonium phosphate (DAP) and a vitamin mix to a defined medium allowed for a comparison of nutrient competition between strains. Addition of DAP and the vitamin mix was most effective in preventing stuck fermentations.

  1. Candida zemplinina can reduce acetic acid produced by Saccharomyces cerevisiae in sweet wine fermentations.

    PubMed

    Rantsiou, Kalliopi; Dolci, Paola; Giacosa, Simone; Torchio, Fabrizio; Tofalo, Rosanna; Torriani, Sandra; Suzzi, Giovanna; Rolle, Luca; Cocolin, Luca

    2012-03-01

    In this study we investigated the possibility of using Candida zemplinina, as a partner of Saccharomyces cerevisiae, in mixed fermentations of must with a high sugar content, in order to reduce its acetic acid production. Thirty-five C. zemplinina strains, which were isolated from different geographic regions, were molecularly characterized, and their fermentation performances were determined. Five genetically different strains were selected for mixed fermentations with S. cerevisiae. Two types of inoculation were carried out: coinoculation and sequential inoculation. A balance between the two species was generally observed for the first 6 days, after which the levels of C. zemplinina started to decrease. Relevant differences were observed concerning the consumption of sugars, the ethanol and glycerol content, and acetic acid production, depending on which strain was used and which type of inoculation was performed. Sequential inoculation led to the reduction of about half of the acetic acid content compared to the pure S. cerevisiae fermentation, but the ethanol and glycerol amounts were also low. A coinoculation with selected combinations of S. cerevisiae and C. zemplinina resulted in a decrease of ~0.3 g of acetic acid/liter, while maintaining high ethanol and glycerol levels. This study demonstrates that mixed S. cerevisiae and C. zemplinina fermentation could be applied in sweet wine fermentation to reduce the production of acetic acid, connected to the S. cerevisiae osmotic stress response.

  2. Identification and characterization of a mutation affecting the division arrest signaling of the pheromone response pathway in Saccharomyces cerevisiae

    SciTech Connect

    Fujimura, Hiroaki Hoechst Japan Ltd., Kawagoe )

    1990-02-01

    Mating pheromones, a- and {alpha}-factors, arrest the division of cells of opposite mating types, {alpha} and a cells, respectively. The author has isolated a sterile mutant of Saccharomyces cerevisiae using EMS that is defective in division arrest in response to {alpha}-factor but not defective in morphological changes and agglutinin induction. The mutation was designated dac2 for division arrest control by mating pheromones. The dac2 mutation was closely linked to gal1 and was different from the previously identified cell type nonspecific sterile mutations (ste4, ste5, ste7, ste11, ste12, ste18, and dac1). Although dac2 cells had no phenotype in the absence of pheromones, they showed morphological alterations and divided continuously in the presence of pheromones. As a result, dac2 cells had a mating defect. The dac2 mutation could suppress the lethality caused by the disruption of the GPA1 gene. These results suggest that the DAC2 product may control the signal for G-protein-mediated cell-cycle arrest and indicate that the synchronization of haploid yeast cell cycles by mating pheromones is essential for cell fusion during conjugation.

  3. The Interaction between Saccharomyces cerevisiae and Non-Saccharomyces Yeast during Alcoholic Fermentation Is Species and Strain Specific.

    PubMed

    Wang, Chunxiao; Mas, Albert; Esteve-Zarzoso, Braulio

    2016-01-01

    The present study analyzes the lack of culturability of different non-Saccharomyces strains due to interaction with Saccharomyces cerevisiae during alcoholic fermentation. Interaction was followed in mixed fermentations with 1:1 inoculation of S. cerevisiae and ten non-Saccharomyces strains. Starmerella bacillaris, and Torulaspora delbrueckii indicated longer coexistence in mixed fermentations compared with Hanseniaspora uvarum and Metschnikowia pulcherrima. Strain differences in culturability and nutrient consumption (glucose, alanine, ammonium, arginine, or glutamine) were found within each species in mixed fermentation with S. cerevisiae. The interaction was further analyzed using cell-free supernatant from S. cerevisiae and synthetic media mimicking both single fermentations with S. cerevisiae and using mixed fermentations with the corresponding non-Saccharomyces species. Cell-free S. cerevisiae supernatants induced faster culturability loss than synthetic media corresponding to the same fermentation stage. This demonstrated that some metabolites produced by S. cerevisiae played the main role in the decreased culturability of the other non-Saccharomyces yeasts. However, changes in the concentrations of main metabolites had also an effect. Culturability differences were observed among species and strains in culture assays and thus showed distinct tolerance to S. cerevisiae metabolites and fermentation environment. Viability kit and recovery analyses on non-culturable cells verified the existence of viable but not-culturable status. These findings are discussed in the context of interaction between non-Saccharomyces and S. cerevisiae.

  4. The Interaction between Saccharomyces cerevisiae and Non-Saccharomyces Yeast during Alcoholic Fermentation Is Species and Strain Specific

    PubMed Central

    Wang, Chunxiao; Mas, Albert; Esteve-Zarzoso, Braulio

    2016-01-01

    The present study analyzes the lack of culturability of different non-Saccharomyces strains due to interaction with Saccharomyces cerevisiae during alcoholic fermentation. Interaction was followed in mixed fermentations with 1:1 inoculation of S. cerevisiae and ten non-Saccharomyces strains. Starmerella bacillaris, and Torulaspora delbrueckii indicated longer coexistence in mixed fermentations compared with Hanseniaspora uvarum and Metschnikowia pulcherrima. Strain differences in culturability and nutrient consumption (glucose, alanine, ammonium, arginine, or glutamine) were found within each species in mixed fermentation with S. cerevisiae. The interaction was further analyzed using cell-free supernatant from S. cerevisiae and synthetic media mimicking both single fermentations with S. cerevisiae and using mixed fermentations with the corresponding non-Saccharomyces species. Cell-free S. cerevisiae supernatants induced faster culturability loss than synthetic media corresponding to the same fermentation stage. This demonstrated that some metabolites produced by S. cerevisiae played the main role in the decreased culturability of the other non-Saccharomyces yeasts. However, changes in the concentrations of main metabolites had also an effect. Culturability differences were observed among species and strains in culture assays and thus showed distinct tolerance to S. cerevisiae metabolites and fermentation environment. Viability kit and recovery analyses on non-culturable cells verified the existence of viable but not-culturable status. These findings are discussed in the context of interaction between non-Saccharomyces and S. cerevisiae. PMID:27148191

  5. GENOME-WIDE ASSOCIATION ANALYSIS OF CLINICAL VERSUS NON-CLINICAL ORIGIN PROVIDES INSIGHTS INTO SACCHAROMYCES CEREVISIAE PATHOGENESIS

    PubMed Central

    Muller, Ludo A. H.; Lucas, Joseph E.; Georgianna, D. Ryan; McCusker, John H.

    2011-01-01

    Because domesticated Saccharomyces cerevisiae strains have been used to produce fermented food and beverages for centuries without apparent health implications, S. cerevisiae has always been considered a Generally Recognized As Safe (GRAS) microorganism. However, the number of reported mucosal and systemic S. cerevisiae infections in the human population has increased and fatal infections have occured even in relatively healthy individuals. In order to gain insight into the pathogenesis of S. cerevisiae and improve our understanding of the emergence of fungal pathogens, we performed a population-based genome-wide environmental association analysis of clinical versus non-clinical origin in S. cerevisiae. Using tiling array-based, high density genotypes of 44 clinical and 44 non-clinical S. cerevisiae strains from diverse geographical origins and source substrates, we identified several genetic loci associated with clinical background in S. cerevisiae. Associated polymorphisms within the coding sequences of VRP1, KIC1, SBE22 and PDR5, and the 5′ upstream region of YGR146C indicate the importance of pseudohyphal formation, robust cell wall maintenance and cellular detoxification for S. cerevisiae pathogenesis, and constitute good candidates for follow-up verification of virulence and virulence-related factors underlying the pathogenicity of S. cerevisiae. PMID:21880084

  6. Accumulation and chemical states of radiocesium by fungus Saccharomyces cerevisiae

    NASA Astrophysics Data System (ADS)

    Ohnuki, Toshihiko; Sakamoto, Fuminori; Kozai, Naofumi; Yamasaki, Shinya; Yu, Qianqian

    2014-05-01

    After accident of Fukushima Daiichi Nuclear Power Plant, the fall-out radiocesium was deposited on the ground. Filamentous fungus is known to accumulate radiocesium in environment, even though many minerals are involved in soil. These facts suggest that fungus affect the migration behavior of radiocesium in the environment. However, accumulation mechanism of radiocesium by fungus is not understood. In the present study, accumulation and chemical states change of Cs by unicellular fungus of Saccharomyces cerevisiae have been studied to elucidate the role of microorganisms in the migration of radiocesium in the environment. Two different experimental conditions were employed; one is the accumulation experiments of radiocesium by S. cerevisiae from the agar medium containing 137Cs and a mineral of zeolite, vermiculite, smectite, mica, or illite. The other is the experiments using stable cesium to examine the chemical states change of Cs. In the former experiment, the cells were grown on membrane filter of 0.45 μm installed on the agar medium. After the grown cells were weighed, radioactivity in the cells was measured by an autoradiography technique. The mineral weight contents were changed from 0.1% to 1% of the medium. In the latter experiment, the cells were grown in the medium containing stable Cs between 1 mM and 10mM. The Cs accumulated cells were analyzed by SEM-EDS and EXAFS. The adsorption experiments of cesium by the cells under resting condition were also conducted to test the effect of cells metabolic activity. Without mineral in the medium, cells of S. cerevisiae accumulated 1.5x103 Bq/g from the medium containing 137Cs of 2.6x102 Bq/g. When mineral was added in the medium, concentration of 137Cs in the cells decreased. The concentration of 137Cs in the cells from the medium containing different minerals were in the following order; smectite, illite, mica > vermiculite > zeolite. This order was nearly the same as the inverse of distribution coefficient of

  7. Metabolism of extracellular inositol hexaphosphate (phytate) by Saccharomyces cerevisiae.

    PubMed

    Andlid, Thomas A; Veide, Jenny; Sandberg, Ann-Sofie

    2004-12-15

    Iron and zinc deficiencies are global problems, frequently leading to severe illness in vulnerable human populations. Addition of phytases can improve the bioavailability of iron and zinc in food. Saccharomyces cerevisiae would be an ideal candidate as a bioavailability improving food additive if it demonstrates significant phytase activity. The purpose of the paper was to study yeast phytase activity to obtain information required to improve strains. All yeasts tested readily degraded extracellular inositol hexaphosphate (phytate; IP6) in media with IP6 as the sole phosphorous source. Phosphate (Pi) addition yielded repression consistent with the PHO system. However, repression of IP6-degrading enzymes was not only dependent on level of Pi, but also on pH and medium composition. In complex medium, containing Pi at a concentration previously suggested to yield full repression of the secretory acid phosphatases (SAPs; e.g., [Mol. Biol. Cell 11 (2000) 4309]), and at relatively high pH, repression of phytate-degrading enzymes was weak. The capacity to degrade phytate, irrespective of Pi addition or not, was highest at the pH most distant from the pH optimum of the SAPs [Microbiol. Res. 151 (1996) 291], suggesting that expression rather than enzyme activity was affected by pH. In synthetic medium, repression was strong and pH-independent (no IP6 degradation within the range tested). The distinct difference between media shows that, in addition to known regulatory role of Pi for the PHO system, additional factors may be involved. Using a deletion strain, we further demonstrate that the main secretory acid phosphatase Pho5p is not essential for intact phytate-degrading capacity and growth without Pi, neither is Pho3p. However, when constitutively overexpressing PHO5 an increased net phytase activity was obtained, in repressing and non-repressing conditions. This proves that, although redundant in a wild type, Pho5p can catalyze hydrolysis of IP6 and that at least one

  8. Rapid and efficient galactose fermentation by engineered Saccharomyces cerevisiae.

    PubMed

    Quarterman, Josh; Skerker, Jeffrey M; Feng, Xueyang; Liu, Ian Y; Zhao, Huimin; Arkin, Adam P; Jin, Yong-Su

    2016-07-10

    In the important industrial yeast Saccharomyces cerevisiae, galactose metabolism requires energy production by respiration; therefore, this yeast cannot metabolize galactose under strict anaerobic conditions. While the respiratory dependence of galactose metabolism provides benefits in terms of cell growth and population stability, it is not advantageous for producing fuels and chemicals since a substantial fraction of consumed galactose is converted to carbon dioxide. In order to force S. cerevisiae to use galactose without respiration, a subunit (COX9) of a respiratory enzyme was deleted, but the resulting deletion mutant (Δcox9) was impaired in terms of galactose assimilation. Interestingly, after serial sub-cultures on galactose, the mutant evolved rapidly and was able to use galactose via fermentation only. The evolved strain (JQ-G1) produced ethanol from galactose with a 94% increase in yield and 6.9-fold improvement in specific productivity as compared to the wild-type strain. (13)C-metabolic flux analysis demonstrated a three-fold reduction in carbon flux through the TCA cycle of the evolved mutant with redirection of flux toward the fermentation pathway. Genome sequencing of the JQ-G1 strain revealed a loss of function mutation in a master negative regulator of the Leloir pathway (Gal80p). The mutation (Glu348*) in Gal80p was found to act synergistically with deletion of COX9 for efficient galactose fermentation, and thus the double deletion mutant Δcox9Δgal80 produced ethanol 2.4 times faster and with 35% higher yield than a single knockout mutant with deletion of GAL80 alone. When we introduced a functional COX9 cassette back into the JQ-G1 strain, the JQ-G1-COX9 strain showed a 33% reduction in specific galactose uptake rate and a 49% reduction in specific ethanol production rate as compared to JQ-G1. The wild-type strain was also subjected to serial sub-cultures on galactose but we failed to isolate a mutant capable of utilizing galactose without

  9. Ethanol fermentation in an immobilized cell reactor using Saccharomyces cerevisiae.

    PubMed

    Najafpour, Ghasem; Younesi, Habibollah; Syahidah Ku Ismail, Ku

    2004-05-01

    Fermentation of sugar by Saccharomyces cerevisiae, for production of ethanol in an immobilized cell reactor (ICR) was successfully carried out to improve the performance of the fermentation process. The fermentation set-up was comprised of a column packed with beads of immobilized cells. The immobilization of S. cerevisiae was simply performed by the enriched cells cultured media harvested at exponential growth phase. The fixed cell loaded ICR was carried out at initial stage of operation and the cell was entrapped by calcium alginate. The production of ethanol was steady after 24 h of operation. The concentration of ethanol was affected by the media flow rates and residence time distribution from 2 to 7 h. In addition, batch fermentation was carried out with 50 g/l glucose concentration. Subsequently, the ethanol productions and the reactor productivities of batch fermentation and immobilized cells were compared. In batch fermentation, sugar consumption and ethanol production obtained were 99.6% and 12.5% v/v after 27 h while in the ICR, 88.2% and 16.7% v/v were obtained with 6 h retention time. Nearly 5% ethanol production was achieved with high glucose concentration (150 g/l) at 6 h retention time. A yield of 38% was obtained with 150 g/l glucose. The yield was improved approximately 27% on ICR and a 24 h fermentation time was reduced to 7 h. The cell growth rate was based on the Monod rate equation. The kinetic constants (K(s) and mu(m)) of batch fermentation were 2.3 g/l and 0.35 g/lh, respectively. The maximum yield of biomass on substrate (Y(X-S)) and the maximum yield of product on substrate (Y(P-S)) in batch fermentations were 50.8% and 31.2% respectively. Productivity of the ICR were 1.3, 2.3, and 2.8 g/lh for 25, 35, 50 g/l of glucose concentration, respectively. The productivity of ethanol in batch fermentation with 50 g/l glucose was calculated as 0.29 g/lh. Maximum production of ethanol in ICR when compared to batch reactor has shown to increase

  10. EMS in the pueblos.

    PubMed

    Vigil, M A

    1994-02-01

    Imagine creating a movie by excerpting scenes from "Dances With Wolves," splicing it with footage from "Code 3" or "Emergency Response" and then flavoring the script with the mystery of a Tony Hillerman novel. A film producer would probably find it quite difficult to choreograph a finished product from such a compilation of material. To hundreds of Native American EMS providers, however, such a movie is played out every day in Indian country. And with this movie come some real-life problems, including trauma, which is the number-one cause of premature death among Native Americans. But a high trauma rate is just one of the challenges facing tribal EMS responders. There's also prolonged response and transport, the problems involved in maintaining the unique culture and standard of care, the challenges of tribal EMS administration and EMS education of Native American students, and the unsure future of Native American EMS. Beyond that, there's the fact that EMS is a s unique to each Indian reservation as are the cultures of the native peoples who reside on these lands. Yet while no two systems are alike, most tribal EMS providers face similar challenges.

  11. Fermentation profile of Saccharomyces cerevisiae and Candida tropicalis as starter cultures on barley malt medium.

    PubMed

    Alloue-Boraud, Wazé Aimée Mireille; N'Guessan, Kouadio Florent; Djeni, N'Dédé Théodore; Hiligsmann, Serge; Djè, Koffi Marcellin; Delvigne, Franck

    2015-08-01

    Saccharomyces cerevisiae C8-5 and Candida tropicalis F0-5 isolated from traditional sorghum beer were tested for kinetic parameters on barley malt extract, YPD (863 medium) and for alcohol production. The results showed that C. tropicalis has the highest maximum growth rate and the lowest doubling time. Values were 0.22 and 0.32 h(-1) for maximum growth rate, 3 h 09 min and 2 h 09 min for doubling time respectively on barley malt extract and YPD. On contrary, glucose consumption was the fastest with S. cerevisiae (-0.36 and -0.722 g/l/h respectively on barley malt extract and YPD). When these two yeasts were used as starters in pure culture and co-culture at proportion of 1:1 and 2:1 (cell/cell) for barley malt extract fermentation, we noticed that maltose content increased first from 12.12 g/l to 13.62-16.46 g/l and then decreased. The highest increase was obtained with starter C. tropicalis + S. cerevisiae 2:1. On contrary, glucose content decreased throughout all the fermentation process. For all the starters used, the major part of the ethanol was produced at 16 h of fermentation. Values obtained in the final beers were 11.4, 11.6, 10.4 and 10.9 g/l for fermentation conducted with S. cerevisiae, C. tropicalis, C. tropicalis + S. cerevisiae 1:1 and C. tropicalis + S. cerevisiae 2:1. Cell viability measurement during the fermentation by using flow cytometry revealed that the lowest mean channel fluorescence for FL3 (yeast rate of death) was obtained with C. tropicalis + S. cerevisiae 2:1 after 48 h of fermentation.

  12. Simultaneously improving xylose fermentation and tolerance to lignocellulosic inhibitors through evolutionary engineering of recombinant Saccharomyces cerevisiae harbouring xylose isomerase

    PubMed Central

    2014-01-01

    Background Yeasts tolerant to toxic inhibitors from steam-pretreated lignocellulose with xylose co-fermentation capability represent an appealing approach for 2nd generation ethanol production. Whereas rational engineering, mutagenesis and evolutionary engineering are established techniques for either improved xylose utilisation or enhancing yeast tolerance, this report focuses on the simultaneous enhancement of these attributes through mutagenesis and evolutionary engineering of Saccharomyces cerevisiae harbouring xylose isomerase in anoxic chemostat culture using non-detoxified pretreatment liquor from triticale straw. Results Following ethyl methanesulfonate (EMS) mutagenesis, Saccharomyces cerevisiae strain D5A+ (ATCC 200062 strain platform), harbouring the xylose isomerase (XI) gene for pentose co-fermentation was grown in anoxic chemostat culture for 100 generations at a dilution rate of 0.10 h-1 in a medium consisting of 60% (v/v) non-detoxified hydrolysate liquor from steam-pretreated triticale straw, supplemented with 20 g/L xylose as carbon source. In semi-aerobic batch cultures in the same medium, the isolated strain D5A+H exhibited a slightly lower maximum specific growth rate (μmax = 0.12 ± 0.01 h-1) than strain TMB3400, with no ethanol production observed by the latter strain. Strain D5A+H also exhibited a shorter lag phase (4 h vs. 30 h) and complete removal of HMF, furfural and acetic acid from the fermentation broth within 24 h, reaching an ethanol concentration of 1.54 g/L at a yield (Yp/s) of 0.06 g/g xylose and a specific productivity of 2.08 g/gh. Evolutionary engineering profoundly affected the yeast metabolism, given that parental strain D5A+ exhibited an oxidative metabolism on xylose prior to strain development. Conclusions Physiological adaptations confirm improvements in the resistance to and conversion of inhibitors from pretreatment liquor with simultaneous enhancement of xylose to ethanol fermentation. These data

  13. Regulation of lysine transport by feedback inhibition in Saccharomyces cerevisiae.

    PubMed Central

    Morrison, C E; Lichstein, H C

    1976-01-01

    A steady-state level of about 240 nmol/mg (dry wt) occurs during lysine transport in Saccharomyces cerevisiae. No subsequent efflux of the accumulated amino acid was detected. Two transport systems mediate lysine transport, a high-affinity, lysine-specific system and an arginine-lysine system for which lysine exhibits a lower affinity. Preloading with lysine, arginine, glutamic acid, or aspartic acid inhibited lysine transport activity; preloading with glutamine, glycine, methionine, phenylalanine, or valine had little effect; however, preloading with histidine stimulated lysine transport activity. These preloading effects correlated with fluctuations in the intracellular lysine and/or arginine pool: lysine transport activity was inhibited when increases in the lysine and/or arginine pool occurred and was stimulated when decreases in the lysine and/or arginine pool occurred. After addition of lysine to a growing culture, lysine transport activity was inhibited more than threefold in one-third of the doubling time of the culture. These results indicate that the lysine-specific and arginine-lysine transport systems are regulated by feedback inhibition that may be mediated by intracellular lysine and arginine. PMID:767329

  14. Distribution and regulation of stochasticity and plasticity in Saccharomyces cerevisiae

    SciTech Connect

    Dar, R. D.; Karig, D. K.; Cooke, J. F.; Cox, C. D.; Simpson, M. L.

    2010-09-01

    Stochasticity is an inherent feature of complex systems with nanoscale structure. In such systems information is represented by small collections of elements (e.g. a few electrons on a quantum dot), and small variations in the populations of these elements may lead to big uncertainties in the information. Unfortunately, little is known about how to work within this inherently noisy environment to design robust functionality into complex nanoscale systems. Here, we look to the biological cell as an intriguing model system where evolution has mediated the trade-offs between fluctuations and function, and in particular we look at the relationships and trade-offs between stochastic and deterministic responses in the gene expression of budding yeast (Saccharomyces cerevisiae). We find gene regulatory arrangements that control the stochastic and deterministic components of expression, and show that genes that have evolved to respond to stimuli (stress) in the most strongly deterministic way exhibit the most noise in the absence of the stimuli. We show that this relationship is consistent with a bursty 2-state model of gene expression, and demonstrate that this regulatory motif generates the most uncertainty in gene expression when there is the greatest uncertainty in the optimal level of gene expression.

  15. Septin-Associated Protein Kinases in the Yeast Saccharomyces cerevisiae

    PubMed Central

    Perez, Adam M.; Finnigan, Gregory C.; Roelants, Françoise M.; Thorner, Jeremy

    2016-01-01

    Septins are a family of eukaryotic GTP-binding proteins that associate into linear rods, which, in turn, polymerize end-on-end into filaments, and further assemble into other, more elaborate super-structures at discrete subcellular locations. Hence, septin-based ensembles are considered elements of the cytoskeleton. One function of these structures that has been well-documented in studies conducted in budding yeast Saccharomyces cerevisiae is to serve as a scaffold that recruits regulatory proteins, which dictate the spatial and temporal control of certain aspects of the cell division cycle. In particular, septin-associated protein kinases couple cell cycle progression with cellular morphogenesis. Thus, septin-containing structures serve as signaling platforms that integrate a multitude of signals and coordinate key downstream networks required for cell cycle passage. This review summarizes what we currently understand about how the action of septin-associated protein kinases and their substrates control information flow to drive the cell cycle into and out of mitosis, to regulate bud growth, and especially to direct timely and efficient execution of cytokinesis and cell abscission. Thus, septin structures represent a regulatory node at the intersection of many signaling pathways. In addition, and importantly, the activities of certain septin-associated protein kinases also regulate the state of organization of the septins themselves, creating a complex feedback loop. PMID:27847804

  16. Degradation signals for ubiquitin system proteolysis in Saccharomyces cerevisiae.

    PubMed Central

    Gilon, T; Chomsky, O; Kulka, R G

    1998-01-01

    Combinations of different ubiquitin-conjugating (Ubc) enzymes and other factors constitute subsidiary pathways of the ubiquitin system, each of which ubiquitinates a specific subset of proteins. There is evidence that certain sequence elements or structural motifs of target proteins are degradation signals which mark them for ubiquitination by a particular branch of the ubiquitin system and for subsequent degradation. Our aim was to devise a way of searching systematically for degradation signals and to determine to which ubiquitin system subpathways they direct the proteins. We have constructed two reporter gene libraries based on the lacZ or URA3 genes which, in Saccharomyces cerevisiae, express fusion proteins with a wide variety of C-terminal extensions. From these, we have isolated clones producing unstable fusion proteins which are stabilized in various ubc mutants. Among these are 10 clones whose products are stabilized in ubc6, ubc7 or ubc6ubc7 double mutants. The C-terminal extensions of these clones, which vary in length from 16 to 50 amino acid residues, are presumed to contain degradation signals channeling proteins for degradation via the UBC6 and/or UBC7 subpathways of the ubiquitin system. Some of these C-terminal tails share similar sequence motifs, and a feature common to almost all of these sequences is a highly hydrophobic region such as is usually located inside globular proteins or inserted into membranes. PMID:9582269

  17. Anti-Saccharomyces cerevisiae as unusual antibodies in autoimmune hepatitis.

    PubMed

    Fagoonee, S; De Luca, L; De Angelis, C; Castelli, A; Rizzetto, M; Pellicano, R

    2009-03-01

    Autoantibodies are disease markers of autoimmune hepatitis (AIH). Antinuclear antibodies, smooth muscle antibodies, antibodies to liver/kidney microsome type 1, and perinuclear antibodies to neutrophil cytoplasm constitute the ''conventional'' battery of autoantibodies, while an emerging interest to evaluate new autoantibodies as diagnostic or prognostic markers, such as the anti-Saccharomyces cerevisiae antibodies, is detectable (ASCA). This paper focuses mainly on the findings and the potential role of ASCA in AIH. These antibodies are present in 5-6.3% of blood donors and in the gastrointestinal setting, ASCA have been found most often in Crohn's disease and with lower frequency in the course of ulcerative colitis and celiac disease. Furthermore, they have been described, to a lesser extent, in patients with primary sclerosing cholangitis and primary biliary cirrhosis and in AIH. ASCA occur in 20-30% of patients suffering from AIH with a statistically significant increase observed only for IgG ASCA in type 1 AIH. This probably indicates collateral immune reactivities to the primary pathogenic process. The outcome of hepatitis is not influenced by the presence of ASCA. In conclusion, ASCA positivity does not imply that there exists a distinct subgroup of patients with AIH and these autoantibodies are not involved in the pathogenetic mechanism of AIH.

  18. Lipid droplet autophagy in the yeast Saccharomyces cerevisiae.

    PubMed

    van Zutphen, Tim; Todde, Virginia; de Boer, Rinse; Kreim, Martin; Hofbauer, Harald F; Wolinski, Heimo; Veenhuis, Marten; van der Klei, Ida J; Kohlwein, Sepp D

    2014-01-01

    Cytosolic lipid droplets (LDs) are ubiquitous organelles in prokaryotes and eukaryotes that play a key role in cellular and organismal lipid homeostasis. Triacylglycerols (TAGs) and steryl esters, which are stored in LDs, are typically mobilized in growing cells or upon hormonal stimulation by LD-associated lipases and steryl ester hydrolases. Here we show that in the yeast Saccharomyces cerevisiae, LDs can also be turned over in vacuoles/lysosomes by a process that morphologically resembles microautophagy. A distinct set of proteins involved in LD autophagy is identified, which includes the core autophagic machinery but not Atg11 or Atg20. Thus LD autophagy is distinct from endoplasmic reticulum-autophagy, pexophagy, or mitophagy, despite the close association between these organelles. Atg15 is responsible for TAG breakdown in vacuoles and is required to support growth when de novo fatty acid synthesis is compromised. Furthermore, none of the core autophagy proteins, including Atg1 and Atg8, is required for LD formation in yeast.

  19. Phosphatidylcholine Supply to Peroxisomes of the Yeast Saccharomyces cerevisiae.

    PubMed

    Flis, Vid V; Fankl, Ariane; Ramprecht, Claudia; Zellnig, Günther; Leitner, Erich; Hermetter, Albin; Daum, Günther

    2015-01-01

    In the yeast Saccharomyces cerevisiae, phosphatidylcholine (PC), the major phospholipid (PL) of all organelle membranes, is synthesized via two different pathways. Methylation of phosphatidylethanolamine (PE) catalyzed by the methyl transferases Cho2p/Pem1p and Opi3p/Pem2p as well as incorporation of choline through the CDP (cytidine diphosphate)-choline branch of the Kennedy pathway lead to PC formation. To determine the contribution of these two pathways to the supply of PC to peroxisomes (PX), yeast mutants bearing defects in the two pathways were cultivated under peroxisome inducing conditions, i.e. in the presence of oleic acid, and subjected to biochemical and cell biological analyses. Phenotype studies revealed compromised growth of both the cho20Δopi3Δ (mutations in the methylation pathway) and the cki1Δdpl1Δeki1Δ (mutations in the CDP-choline pathway) mutant when grown on oleic acid. Analysis of peroxisomes from the two mutant strains showed that both pathways produce PC for the supply to peroxisomes, although the CDP-choline pathway seemed to contribute with higher efficiency than the methylation pathway. Changes in the peroxisomal lipid pattern of mutants caused by defects in the PC biosynthetic pathways resulted in changes of membrane properties as shown by anisotropy measurements with fluorescent probes. In summary, our data define the origin of peroxisomal PC and demonstrate the importance of PC for peroxisome membrane formation and integrity.

  20. Tor1 regulates protein solubility in Saccharomyces cerevisiae.

    PubMed

    Peters, Theodore W; Rardin, Matthew J; Czerwieniec, Gregg; Evani, Uday S; Reis-Rodrigues, Pedro; Lithgow, Gordon J; Mooney, Sean D; Gibson, Bradford W; Hughes, Robert E

    2012-12-01

    Accumulation of insoluble protein in cells is associated with aging and aging-related diseases; however, the roles of insoluble protein in these processes are uncertain. The nature and impact of changes to protein solubility during normal aging are less well understood. Using quantitative mass spectrometry, we identify 480 proteins that become insoluble during postmitotic aging in Saccharomyces cerevisiae and show that this ensemble of insoluble proteins is similar to those that accumulate in aging nematodes. SDS-insoluble protein is present exclusively in a nonquiescent subpopulation of postmitotic cells, indicating an asymmetrical distribution of this protein. In addition, we show that nitrogen starvation of young cells is sufficient to cause accumulation of a similar group of insoluble proteins. Although many of the insoluble proteins identified are known to be autophagic substrates, induction of macroautophagy is not required for insoluble protein formation. However, genetic or chemical inhibition of the Tor1 kinase is sufficient to promote accumulation of insoluble protein. We conclude that target of rapamycin complex 1 regulates accumulation of insoluble proteins via mechanisms acting upstream of macroautophagy. Our data indicate that the accumulation of proteins in an SDS-insoluble state in postmitotic cells represents a novel autophagic cargo preparation process that is regulated by the Tor1 kinase.

  1. Tor1 regulates protein solubility in Saccharomyces cerevisiae

    PubMed Central

    Peters, Theodore W.; Rardin, Matthew J.; Czerwieniec, Gregg; Evani, Uday S.; Reis-Rodrigues, Pedro; Lithgow, Gordon J.; Mooney, Sean D.; Gibson, Bradford W.; Hughes, Robert E.

    2012-01-01

    Accumulation of insoluble protein in cells is associated with aging and aging-related diseases; however, the roles of insoluble protein in these processes are uncertain. The nature and impact of changes to protein solubility during normal aging are less well understood. Using quantitative mass spectrometry, we identify 480 proteins that become insoluble during postmitotic aging in Saccharomyces cerevisiae and show that this ensemble of insoluble proteins is similar to those that accumulate in aging nematodes. SDS-insoluble protein is present exclusively in a nonquiescent subpopulation of postmitotic cells, indicating an asymmetrical distribution of this protein. In addition, we show that nitrogen starvation of young cells is sufficient to cause accumulation of a similar group of insoluble proteins. Although many of the insoluble proteins identified are known to be autophagic substrates, induction of macroautophagy is not required for insoluble protein formation. However, genetic or chemical inhibition of the Tor1 kinase is sufficient to promote accumulation of insoluble protein. We conclude that target of rapamycin complex 1 regulates accumulation of insoluble proteins via mechanisms acting upstream of macroautophagy. Our data indicate that the accumulation of proteins in an SDS-insoluble state in postmitotic cells represents a novel autophagic cargo preparation process that is regulated by the Tor1 kinase. PMID:23097491

  2. Fredericamycin A affects mitochondrial inheritance and morphology in Saccharomyces cerevisiae.

    PubMed

    Imamura, Yuko; Yukawa, Masashi; Kimura, Ken-ichi; Takahashi, Hidetoshi; Suzuki, Yoshihiro; Ojika, Makoto; Sakagami, Youji; Tsuchiya, Eiko

    2005-11-01

    Fredericamycin A (FMA) is an antibiotic product of Streptomyces griseus that exhibits modest antitumor activity in vivo and in vitro, but, its functions in vivo are poorly understood. We identified this compound as an inducer of G1 arrest in the yeast, Saccharomyces cerevisiae. FMA exhibits an IC50 of 24 nM towards the growth of a disruptant of multi-drug resistance genes, W303-MLC30, and its cytotoxicity is a function of the time of exposure as well as drug dose. Addition of 0.8 microM of FMA caused aggregation of mitochondria within 10 min of incubation and the drug induced petites at high frequency after 4 h of incubation. Rho(-) cells were about 20 times more resistant to FMA than isogenic rho(+) cells. Overexpression of topoisomerase I, a previously suggested target of the drug, did not alleviate the sensitivity of the cells to FMA or the aggregation of mitochondria. Our results suggest that mitochondria are the primary target site of FMA.

  3. A role for ubiquitination in mitochondrial inheritance in Saccharomyces cerevisiae.

    PubMed

    Fisk, H A; Yaffe, M P

    1999-06-14

    The smm1 mutation suppresses defects in mitochondrial distribution and morphology caused by the mdm1-252 mutation in the yeast Saccharomyces cerevisiae. Cells harboring only the smm1 mutation themselves display temperature-sensitive growth and aberrant mitochondrial inheritance and morphology at the nonpermissive temperature. smm1 maps to RSP5, a gene encoding an essential ubiquitin-protein ligase. The smm1 defects are suppressed by overexpression of wild-type ubiquitin but not by overexpression of mutant ubiquitin in which lysine-63 is replaced by arginine. Furthermore, overexpression of this mutant ubiquitin perturbs mitochondrial distribution and morphology in wild-type cells. Site-directed mutagenesis revealed that the ubiquitin ligase activity of Rsp5p is essential for its function in mitochondrial inheritance. A second mutation, smm2, which also suppressed mdm1-252 defects, but did not cause aberrant mitochondrial distribution and morphology, mapped to BUL1, encoding a protein interacting with Rsp5p. These results indicate that protein ubiquitination mediated by Rsp5p plays an essential role in mitochondrial inheritance, and reveal a novel function for protein ubiquitination.

  4. Rapid identification of chemical genetic interactions in Saccharomyces cerevisiae.

    PubMed

    Dilworth, David; Nelson, Christopher J

    2015-04-05

    Determining the mode of action of bioactive chemicals is of interest to a broad range of academic, pharmaceutical, and industrial scientists. Saccharomyces cerevisiae, or budding yeast, is a model eukaryote for which a complete collection of ~6,000 gene deletion mutants and hypomorphic essential gene mutants are commercially available. These collections of mutants can be used to systematically detect chemical-gene interactions, i.e. genes necessary to tolerate a chemical. This information, in turn, reports on the likely mode of action of the compound. Here we describe a protocol for the rapid identification of chemical-genetic interactions in budding yeast. We demonstrate the method using the chemotherapeutic agent 5-fluorouracil (5-FU), which has a well-defined mechanism of action. Our results show that the nuclear TRAMP RNA exosome and DNA repair enzymes are needed for proliferation in the presence of 5-FU, which is consistent with previous microarray based bar-coding chemical genetic approaches and the knowledge that 5-FU adversely affects both RNA and DNA metabolism. The required validation protocols of these high-throughput screens are also described.

  5. Response of Saccharomyces cerevisiae to stress-free acidification.

    PubMed

    Chen, Allen Kuan-Liang; Gelling, Cristy; Rogers, Peter L; Dawes, Ian W; Rosche, Bettina

    2009-02-01

    Genome-wide transcriptional analysis of a Saccharomyces cerevisiae batch culture revealed that more than 829 genes were regulated in response to an environmental shift from pH 6 to pH 3 by added sulfuric acid. This shift in pH was not detrimental to the rate of growth compared to a control culture that was maintained at pH 6 and the transcriptional changes most strikingly implicated not up- but down-regulation of stress responses. In addition, the transcriptional changes upon acid addition indicated remodeling of the cell wall and central carbon metabolism. The overall trend of changes was similar for the pH-shift experiment and the pH 6 control. However, the changes in the pH 6 control were much weaker and occurred 2.5 h later than in the pH-shift experiment. Thus, the reaction to the steep pH decrease was an immediate response within the normal repertoire of adaptation shown in later stages of fermentation at pH 6. Artificially preventing the yeast from acidifying the medium may be considered physiologically stressful under the tested conditions.

  6. Molecular analysis of the PHO81 gene of Saccharomyces cerevisiae.

    PubMed Central

    Creasy, C L; Madden, S L; Bergman, L W

    1993-01-01

    The PHO81 gene product is a positive regulatory factor required for the synthesis of the phosphate repressible acid phosphatase (encoded by the PHO5 gene) in Saccharomyces cerevisiae. Genetic analysis has suggested that PHO81 may be the signal acceptor molecule; however, the biochemical function of the PHO81 gene product is not known. We have cloned the PHO81 gene and sequenced the promoter. A PHO81-LacZ fusion was shown to be a valid reporter since its expression is regulated by the level of inorganic phosphate and is controlled by the same regulatory factors that regulate PHO5 expression. To elucidate the mechanism by which PHO81 functions, we have isolated and cloned dominant mutations in the PHO81 gene which confer constitutive synthesis of acid phosphatase. We have demonstrated that overexpression of the negative regulatory factor, PHO80, but not the negative regulatory factor PHO85, partially blocks the constitutive acid phosphatase synthesis in a strain containing a dominant constitutive allele of PHO81. This suggests that PHO81 may function by interacting with PHO80 or that these molecules compete for the same target. Images PMID:8493108

  7. Coordinated regulation of growth genes in Saccharomyces cerevisiae.

    PubMed

    Slattery, Matthew G; Heideman, Warren

    2007-05-15

    It is imperative that quiescent Saccharomyces cerevisiae cells respond rapidly to fresh medium: the cell that initiates growth and division soonest has the most progeny. Several laboratories have used DNA microarrays to identify transcripts that are altered when fresh medium is added to quiescent cells. We combined published data with our own to address several questions: Do these experiments taken together identify a core set of genes that is reproducibly affected when quiescent cells are stimulated by nutrient repletion? Is this gene set coregulated in response to other environmental challenges? Does promoter histone occupancy correlate with the mRNA data? Despite diverse experimental designs, the data were highly correlated, generating a set of nutrient repletion transcripts. Glucose addition accounted for the response. These transcripts were also coregulated in response to diverse stresses. Promoters were associated with increased histone acetylation and decreased histone occupancy when induced, and high histone occupancy with low acetylation when repressed. The presence of RRPE and PAC promoter elements correlated with nutrient responsiveness and a dynamic pattern of histone occupancy and acetylation. Correlative evidence supports the idea that some mRNAs may be upregulated by release from sequestration in RNA-protein complexes.

  8. MAP kinase pathways in the yeast Saccharomyces cerevisiae

    NASA Technical Reports Server (NTRS)

    Gustin, M. C.; Albertyn, J.; Alexander, M.; Davenport, K.; McIntire, L. V. (Principal Investigator)

    1998-01-01

    A cascade of three protein kinases known as a mitogen-activated protein kinase (MAPK) cascade is commonly found as part of the signaling pathways in eukaryotic cells. Almost two decades of genetic and biochemical experimentation plus the recently completed DNA sequence of the Saccharomyces cerevisiae genome have revealed just five functionally distinct MAPK cascades in this yeast. Sexual conjugation, cell growth, and adaptation to stress, for example, all require MAPK-mediated cellular responses. A primary function of these cascades appears to be the regulation of gene expression in response to extracellular signals or as part of specific developmental processes. In addition, the MAPK cascades often appear to regulate the cell cycle and vice versa. Despite the success of the gene hunter era in revealing these pathways, there are still many significant gaps in our knowledge of the molecular mechanisms for activation of these cascades and how the cascades regulate cell function. For example, comparison of different yeast signaling pathways reveals a surprising variety of different types of upstream signaling proteins that function to activate a MAPK cascade, yet how the upstream proteins actually activate the cascade remains unclear. We also know that the yeast MAPK pathways regulate each other and interact with other signaling pathways to produce a coordinated pattern of gene expression, but the molecular mechanisms of this cross talk are poorly understood. This review is therefore an attempt to present the current knowledge of MAPK pathways in yeast and some directions for future research in this area.

  9. Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae

    PubMed Central

    Conrad, Michaela; Schothorst, Joep; Kankipati, Harish Nag; Van Zeebroeck, Griet; Rubio-Texeira, Marta; Thevelein, Johan M

    2014-01-01

    The yeast Saccharomyces cerevisiae has been a favorite organism for pioneering studies on nutrient-sensing and signaling mechanisms. Many specific nutrient responses have been elucidated in great detail. This has led to important new concepts and insight into nutrient-controlled cellular regulation. Major highlights include the central role of the Snf1 protein kinase in the glucose repression pathway, galactose induction, the discovery of a G-protein-coupled receptor system, and role of Ras in glucose-induced cAMP signaling, the role of the protein synthesis initiation machinery in general control of nitrogen metabolism, the cyclin-controlled protein kinase Pho85 in phosphate regulation, nitrogen catabolite repression and the nitrogen-sensing target of rapamycin pathway, and the discovery of transporter-like proteins acting as nutrient sensors. In addition, a number of cellular targets, like carbohydrate stores, stress tolerance, and ribosomal gene expression, are controlled by the presence of multiple nutrients. The protein kinase A signaling pathway plays a major role in this general nutrient response. It has led to the discovery of nutrient transceptors (transporter receptors) as nutrient sensors. Major shortcomings in our knowledge are the relationship between rapid and steady-state nutrient signaling, the role of metabolic intermediates in intracellular nutrient sensing, and the identity of the nutrient sensors controlling cellular growth. PMID:24483210

  10. Architecture and Biosynthesis of the Saccharomyces cerevisiae Cell Wall

    PubMed Central

    Orlean, Peter

    2012-01-01

    The wall gives a Saccharomyces cerevisiae cell its osmotic integrity; defines cell shape during budding growth, mating, sporulation, and pseudohypha formation; and presents adhesive glycoproteins to other yeast cells. The wall consists of β1,3- and β1,6-glucans, a small amount of chitin, and many different proteins that may bear N- and O-linked glycans and a glycolipid anchor. These components become cross-linked in various ways to form higher-order complexes. Wall composition and degree of cross-linking vary during growth and development and change in response to cell wall stress. This article reviews wall biogenesis in vegetative cells, covering the structure of wall components and how they are cross-linked; the biosynthesis of N- and O-linked glycans, glycosylphosphatidylinositol membrane anchors, β1,3- and β1,6-linked glucans, and chitin; the reactions that cross-link wall components; and the possible functions of enzymatic and nonenzymatic cell wall proteins. PMID:23135325

  11. Transcriptional changes associated with ethanol tolerance in Saccharomyces cerevisiae.

    PubMed

    Stanley, Dragana; Chambers, Paul J; Stanley, Grant A; Borneman, Anthony; Fraser, Sarah

    2010-09-01

    Saccharomyces spp. are widely used for ethanol production; however, fermentation productivity is negatively affected by the impact of ethanol accumulation on yeast metabolic rate and viability. This study used microarray and statistical two-way ANOVA analysis to compare and evaluate gene expression profiles of two previously generated ethanol-tolerant mutants, CM1 and SM1, with their parent, Saccharomyces cerevisiae W303-1A, in the presence and absence of ethanol stress. Although sharing the same parentage, the mutants were created differently: SM1 by adaptive evolution involving long-term exposure to ethanol stress and CM1 using chemical mutagenesis followed by adaptive evolution-based screening. Compared to the parent, differences in the expression levels of genes associated with a number of gene ontology categories in the mutants suggest that their improved ethanol stress response is a consequence of increased mitochondrial and NADH oxidation activities, stimulating glycolysis and other energy-yielding pathways. This leads to increased activity of energy-demanding processes associated with the production of proteins and plasma membrane components, which are necessary for acclimation to ethanol stress. It is suggested that a key function of the ethanol stress response is restoration of the NAD(+)/NADH redox balance, which increases glyceraldehyde-3-phosphate dehydrogenase activity, and higher glycolytic flux in the ethanol-stressed cell. Both mutants achieved this by a constitutive increase in carbon flux in the glycerol pathway as a means of increasing NADH oxidation.

  12. Factors involved in anaerobic growth of Saccharomyces cerevisiae.

    PubMed

    Ishtar Snoek, I S; Yde Steensma, H

    2007-01-01

    Life in the absence of molecular oxygen requires several adaptations. Traditionally, the switch from respiratory metabolism to fermentation has attracted much attention in Saccharomyces cerevisiae, as this is the basis for the use of this yeast in the production of alcohol and in baking. It has also been clear that under anaerobic conditions the yeast is not able to synthesize sterols and unsaturated fatty acids and that for anaerobic growth these have to be added to the media. More recently it has been found that many more factors play a role. Several other biosynthetic reactions also require molecular oxygen and the yeast must have alternatives for these. In addition, the composition of the cell wall and cell membrane show major differences when aerobic and anaerobic cells are compared. All these changes are reflected by the observation that the transcription of more than 500 genes changes significantly between aerobically and anaerobically growing cultures. In this review we will give an overview of the factors that play a role in the survival in the absence of molecular oxygen.

  13. Dimethyl sulfoxide induces oxidative stress in the yeast Saccharomyces cerevisiae.

    PubMed

    Sadowska-Bartosz, Izabela; Pączka, Aleksandra; Mołoń, Mateusz; Bartosz, Grzegorz

    2013-12-01

    Dimethyl sulfoxide (DMSO) is used as a cryoprotectant for the preservation of cells, including yeast, and as a solvent for chemical compounds. We report that DMSO induces oxidative stress in the yeast. Saccharomyces cerevisiae wt strain EG-103 and its mutants Δsod1, Δsod2, and Δsod1 Δsod2 were used. Yeast were subjected to the action of 1-14% DMSO for 1 h at 28 °C. DMSO induced a concentration-dependent inhibition of yeast growth, the effect being more pronounced for mutants devoid of SOD (especially Δsod1 Δsod2). Cell viability was compromised. DMSO-concentration-dependent activity loss of succinate dehydrogenase, a FeS enzyme sensitive to oxidative stress, was observed. DMSO enhanced formation of reactive oxygen species, estimated with dihydroethidine in a concentration-dependent manner, the effect being again more pronounced in mutants devoid of superoxide dismutases. The content of cellular glutathione was increased with increasing DMSO concentrations, which may represent a compensatory response. Membrane fluidity, estimated by fluorescence polarization of DPH, was decreased by DMSO. These results demonstrate that DMSO, although generally considered to be antioxidant, induces oxidative stress in yeast cells.

  14. Distribution and regulation of stochasticity and plasticity in Saccharomyces cerevisiae

    DOE PAGES

    Dar, R. D.; Karig, D. K.; Cooke, J. F.; ...

    2010-09-01

    Stochasticity is an inherent feature of complex systems with nanoscale structure. In such systems information is represented by small collections of elements (e.g. a few electrons on a quantum dot), and small variations in the populations of these elements may lead to big uncertainties in the information. Unfortunately, little is known about how to work within this inherently noisy environment to design robust functionality into complex nanoscale systems. Here, we look to the biological cell as an intriguing model system where evolution has mediated the trade-offs between fluctuations and function, and in particular we look at the relationships and trade-offsmore » between stochastic and deterministic responses in the gene expression of budding yeast (Saccharomyces cerevisiae). We find gene regulatory arrangements that control the stochastic and deterministic components of expression, and show that genes that have evolved to respond to stimuli (stress) in the most strongly deterministic way exhibit the most noise in the absence of the stimuli. We show that this relationship is consistent with a bursty 2-state model of gene expression, and demonstrate that this regulatory motif generates the most uncertainty in gene expression when there is the greatest uncertainty in the optimal level of gene expression.« less

  15. Recycling Carbon Dioxide during Xylose Fermentation by Engineered Saccharomyces cerevisiae.

    PubMed

    Xia, Peng-Fei; Zhang, Guo-Chang; Walker, Berkley; Seo, Seung-Oh; Kwak, Suryang; Liu, Jing-Jing; Kim, Heejin; Ort, Donald R; Wang, Shu-Guang; Jin, Yong-Su

    2017-02-17

    Global climate change caused by the emission of anthropogenic greenhouse gases (GHGs) is a grand challenge to humanity. To alleviate the trend, the consumption of fossil fuels needs to be largely reduced and alternative energy technologies capable of controlling GHG emissions are anticipated. In this study, we introduced a synthetic reductive pentose phosphate pathway (rPPP) into a xylose-fermenting Saccharomyces cerevisiae strain SR8 to achieve simultaneous lignocellulosic bioethanol production and carbon dioxide recycling. Specifically, ribulose-1,5-bisphosphate carboxylase/oxygenase from Rhodospirillum rubrum and phosphoribulokinase from Spinacia oleracea were introduced into the SR8 strain. The resulting strain with the synthetic rPPP was able to exhibit a higher yield of ethanol and lower yields of byproducts (xylitol and glycerol) than a control strain. In addition, the reduced release of carbon dioxide by the engineered strain was observed during xylose fermentation, suggesting that the carbon dioxide generated by pyruvate decarboxylase was partially reassimilated through the synthetic rPPP. These results demonstrated that recycling of carbon dioxide from the ethanol fermentation pathway in yeast can be achieved during lignocellulosic bioethanol production through a synthetic carbon conservative metabolic pathway. This strategy has a great potential to alleviate GHG emissions during the production of second-generation ethanol.

  16. Tolerance of budding yeast Saccharomyces cerevisiae to ultra high pressure

    NASA Astrophysics Data System (ADS)

    Ono, Fumihisa; Shibata, Michiko; Torigoe, Motoki; Matsumoto, Yuta; Yamamoto, Shinsuke; Takizawa, Noboru; Hada, Yoshio; Mori, Yoshihisa; Takarabe, Kenichi

    2013-06-01

    In our previous studies on the tolerance of small plants and animals to the high hydrostatic pressure of 7.5 GPa, it was shown that all the living samples could be borne at this high pressure, which is more than one order of magnitude higher than the proteinic denaturation pressure. To make this inconsistency clear, we have extended these studies to a smaller sized fungus, budding yeast Saccharomyces cerevisiae. A several pieces of budding yeast (dry yeast) were sealed in a small teflon capsule with a liquid pressure medium fluorinate (PC72, Sumitomo 3M), and exposed to 7.5 GPa by using a cubic anvil press. The pressure was kept constant for various duration of time from 2 to 24 h. After the pressure was released, the specimens were brought out from the teflon capsule, and they were cultivated on a potato dextrose agar (PDA). It was found that the budding yeast exposed to 7.5 GPa for up to 6 h showed multiplication. However, those exposed to 7.5 GPa for 12 and 24 h were found dead. The high pressure tolerance of budding yeast is weaker than that of tardigrades.

  17. Anti-Saccharomyces cerevisiae antibodies in primary biliary cirrhosis.

    PubMed

    Sakly, Wahiba; Jeddi, Moncef; Ghedira, Ibtissem

    2008-07-01

    The aim of this study was to evaluate, retrospectively, the frequency of anti-Saccharomyces cerevisiae antibodies (ASCA) in patients with primary biliary cirrhosis (PBC). ASCA, IgG, and IgA, were determined by ELISA in sera of 95 PBC patients; 80 healthy blood donors served as controls. The frequency of ASCA (IgG or IgA) was significantly higher in PBC patients than in the control group (24.2% vs 3.7%, P = 0.0001). The frequency of ASCA IgG and ASCA IgA in PBC patients was also significantly higher than that found in the control group (18.9% vs 2.5%, P = 0.0006 and 11.6% vs 1.2%, P = 0.007, respectively). Six patients out of 95 (6.3%) had both ASCA IgG and ASCA IgA; in contrast, none of the control group had both isotypes (P = 0.02). There was no correlation between ASCA levels and mitochondrial autoantibodies (AMA) titres in PBC patients. We conclude that ASCA are common in patients with PBC.

  18. Dynamics of the Saccharomyces cerevisiae Transcriptome during Bread Dough Fermentation

    PubMed Central

    Aslankoohi, Elham; Zhu, Bo; Rezaei, Mohammad Naser; Voordeckers, Karin; De Maeyer, Dries; Marchal, Kathleen; Dornez, Emmie

    2013-01-01

    The behavior of yeast cells during industrial processes such as the production of beer, wine, and bioethanol has been extensively studied. In contrast, our knowledge about yeast physiology during solid-state processes, such as bread dough, cheese, or cocoa fermentation, remains limited. We investigated changes in the transcriptomes of three genetically distinct Saccharomyces cerevisiae strains during bread dough fermentation. Our results show that regardless of the genetic background, all three strains exhibit similar changes in expression patterns. At the onset of fermentation, expression of glucose-regulated genes changes dramatically, and the osmotic stress response is activated. The middle fermentation phase is characterized by the induction of genes involved in amino acid metabolism. Finally, at the latest time point, cells suffer from nutrient depletion and activate pathways associated with starvation and stress responses. Further analysis shows that genes regulated by the high-osmolarity glycerol (HOG) pathway, the major pathway involved in the response to osmotic stress and glycerol homeostasis, are among the most differentially expressed genes at the onset of fermentation. More importantly, deletion of HOG1 and other genes of this pathway significantly reduces the fermentation capacity. Together, our results demonstrate that cells embedded in a solid matrix such as bread dough suffer severe osmotic stress and that a proper induction of the HOG pathway is critical for optimal fermentation. PMID:24056467

  19. Biochemical basis of mitochondrial acetaldehyde dismutation in Saccharomyces cerevisiae.

    PubMed Central

    Thielen, J; Ciriacy, M

    1991-01-01

    As reported previously, Saccharomyces cerevisiae cells deficient in all four known genes coding for alcohol dehydrogenases (ADH1 through ADH4) produce considerable amounts of ethanol during aerobic growth on glucose. It has been suggested that ethanol production in such adh0 cells is a corollary of acetaldehyde dismutation in mitochondria. This could be substantiated further by showing that mitochondrial ethanol formation requires functional electron transport, while the proton gradient or oxidative phosphorylation does not interfere with reduction of acetaldehyde in isolated mitochondria. This acetaldehyde-reducing activity is different from classical alcohol dehydrogenases in that it is associated with the inner mitochondrial membrane and also is unable to carry out ethanol oxidation. The putative cofactor is NADH + H+ generated by a soluble, matrix-located aldehyde dehydrogenase upon acetaldehyde oxidation to acetate. This enzyme has been purified from mitochondria of glucose-grown cells. It is clearly different from the known mitochondrial aldehyde dehydrogenase, which is absent in glucose-grown cells. Both acetaldehyde-reducing and acetaldehyde-oxidizing activities are also present in the mitochondrial fraction of fermentation-proficient (ADH+) cells. Mitochondrial acetaldehyde dismutation may have some significance in the removal of surplus acetaldehyde and in the formation of acetate in mitochondria during aerobic glucose fermentation. Images FIG. 4 PMID:1938903

  20. The mannoprotein of Saccharomyces cerevisiae is an effective bioemulsifier.

    PubMed

    Cameron, D R; Cooper, D G; Neufeld, R J

    1988-06-01

    The mannoprotein which is a major component of the cell wall of Saccharomyces cerevisiae is an effective bioemulsifier. Mannoprotein emulsifier was extracted in a high yield from whole cells of fresh bakers' yeast by two methods, by autoclaving in neutral citrate buffer and by digestion with Zymolase (Miles Laboratories; Toronto, Ontario, Canada), a beta-1,3-glucanase. Heat-extracted emulsifier was purified by ultrafiltration and contained approximately 44% carbohydrate (mannose) and 17% protein. Treatment of the emulsifier with protease eliminated emulsification. Kerosene-in-water emulsions were stabilized over a broad range of conditions, from pH 2 to 11, with up to 5% sodium chloride or up to 50% ethanol in the aqueous phase. In the presence of a low concentration of various solutes, emulsions were stable to three cycles of freezing and thawing. An emulsifying agent was extracted from each species or strain of yeast tested, including 13 species of genera other than Saccharomyces. Spent yeast from the manufacture of beer and wine was demonstrated to be a possible source for the large-scale production of this bioemulsifier.

  1. Domestication and Divergence of Saccharomyces cerevisiae Beer Yeasts.

    PubMed

    Gallone, Brigida; Steensels, Jan; Prahl, Troels; Soriaga, Leah; Saels, Veerle; Herrera-Malaver, Beatriz; Merlevede, Adriaan; Roncoroni, Miguel; Voordeckers, Karin; Miraglia, Loren; Teiling, Clotilde; Steffy, Brian; Taylor, Maryann; Schwartz, Ariel; Richardson, Toby; White, Christopher; Baele, Guy; Maere, Steven; Verstrepen, Kevin J

    2016-09-08

    Whereas domestication of livestock, pets, and crops is well documented, it is still unclear to what extent microbes associated with the production of food have also undergone human selection and where the plethora of industrial strains originates from. Here, we present the genomes and phenomes of 157 industrial Saccharomyces cerevisiae yeasts. Our analyses reveal that today's industrial yeasts can be divided into five sublineages that are genetically and phenotypically separated from wild strains and originate from only a few ancestors through complex patterns of domestication and local divergence. Large-scale phenotyping and genome analysis further show strong industry-specific selection for stress tolerance, sugar utilization, and flavor production, while the sexual cycle and other phenotypes related to survival in nature show decay, particularly in beer yeasts. Together, these results shed light on the origins, evolutionary history, and phenotypic diversity of industrial yeasts and provide a resource for further selection of superior strains. PAPERCLIP. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. Reversal of PCNA Ubiquitylation by Ubp10 in Saccharomyces cerevisiae

    PubMed Central

    Gallego-Sánchez, Alfonso; Andrés, Sonia; Conde, Francisco; San-Segundo, Pedro A.; Bueno, Avelino

    2012-01-01

    Regulation of PCNA ubiquitylation plays a key role in the tolerance to DNA damage in eukaryotes. Although the evolutionary conserved mechanism of PCNA ubiquitylation is well understood, the deubiquitylation of ubPCNA remains poorly characterized. Here, we show that the histone H2BK123 ubiquitin protease Ubp10 also deubiquitylates ubPCNA in Saccharomyces cerevisiae. Our results sustain that Ubp10-dependent deubiquitylation of the sliding clamp PCNA normally takes place during S phase, likely in response to the simple presence of ubPCNA. In agreement with this, we show that Ubp10 forms a complex with PCNA in vivo. Interestingly, we also show that deletion of UBP10 alters in different ways the interaction of PCNA with DNA polymerase ζ–associated protein Rev1 and with accessory subunit Rev7. While deletion of UBP10 enhances PCNA–Rev1 interaction, it decreases significantly Rev7 binding to the sliding clamp. Finally, we report that Ubp10 counteracts Rad18 E3-ubiquitin ligase activity on PCNA at lysine 164 in such a manner that deregulation of Ubp10 expression causes tolerance impairment and MMS hypersensitivity. PMID:22829782

  3. Generation of henipavirus nucleocapsid proteins in yeast Saccharomyces cerevisiae.

    PubMed

    Juozapaitis, Mindaugas; Serva, Andrius; Zvirbliene, Aurelija; Slibinskas, Rimantas; Staniulis, Juozas; Sasnauskas, Kestutis; Shiell, Brian J; Wang, Lin-Fa; Michalski, Wojtek P

    2007-03-01

    Hendra and Nipah viruses are newly emerged, zoonotic viruses and their genomes have nucleotide and predicted amino acid homologies placing them in the family Paramyxoviridae. Currently these viruses are classified in the new genus Henipavirus, within the subfamily Paramyxovirinae, family Paramyxoviridae. The genes encoding HeV and NiV nucleocapsid proteins were cloned into the yeast Saccharomyces cerevisiae expression vector pFGG3 under control of GAL7 promoter. A high level of expression of these proteins (18-20 mg l(-1) of yeast culture) was obtained. Mass spectrometric analysis confirmed the primary structure of both proteins with 92% sequence coverage obtained using MS/MS analysis. Electron microscopy demonstrated the assembly of typical herring-bone structures of purified recombinant nucleocapsid proteins, characteristic for other paramyxoviruses. The nucleocapsid proteins revealed stability in yeast and can be easily purified by cesium chloride gradient ultracentrifugation. HeV nucleocapsid protein was detected by sera derived from fruit bats, humans, horses infected with HeV, and NiV nucleocapsid protein was immunodetected with sera from, fruit bats, humans and pigs. The development of an efficient and cost-effective system for generation of henipavirus nucleocapsid proteins might help to improve reagents for diagnosis of viruses.

  4. Host Factors That Affect Ty3 Retrotransposition in Saccharomyces cerevisiae

    PubMed Central

    Aye, Michael; Irwin, Becky; Beliakova-Bethell, Nadejda; Chen, Eric; Garrus, Jennifer; Sandmeyer, Suzanne

    2004-01-01

    The retrovirus-like element Ty3 of Saccharomyces cerevisiae integrates at the transcription initiation region of RNA polymerase III. To identify host genes that affect transposition, a collection of insertion mutants was screened using a genetic assay in which insertion of Ty3 activates expression of a tRNA suppressor. Fifty-three loci were identified in this screen. Corresponding knockout mutants were tested for the ability to mobilize a galactose-inducible Ty3, marked with the HIS3 gene. Of 42 mutants tested, 22 had phenotypes similar to those displayed in the original assay. The proteins encoded by the defective genes are involved in chromatin dynamics, transcription, RNA processing, protein modification, cell cycle regulation, nuclear import, and unknown functions. These mutants were induced for Ty3 expression and assayed for Gag3p protein, integrase, cDNA, and Ty3 integration upstream of chromosomal tDNAVal(AAC) genes. Most mutants displayed differences from the wild type in one or more intermediates, although these were typically not as severe as the genetic defect. Because a relatively large number of genes affecting retrotransposition can be identified in yeast and because the majority of these genes have mammalian homologs, this approach provides an avenue for the identification of potential antiviral targets. PMID:15579677

  5. Asparaginyl deamidation in two glutamate dehydrogenase isoenzymes from Saccharomyces cerevisiae.

    PubMed

    DeLuna, Alexander; Quezada, Héctor; Gómez-Puyou, Armando; González, Alicia

    2005-03-25

    The non-enzymatic deamidation of asparaginyl residues is a major source of spontaneous damage of several proteins under physiological conditions. In many cases, deamidation and isoaspartyl formation alters the biological activity or stability of the native polypeptide. Rates of deamidation of particular residues depend on many factors including protein structure and solvent exposure. Here, we investigated the spontaneous deamidation of the two NADP-glutamate dehydrogenase isoenzymes from Saccharomyces cerevisiae, which have different kinetic properties and are differentially expressed in this yeast. Our results show that Asn54, present in Gdh3p but missing in the GDH1-encoded homologue, is readily deamidated in vitro under alkaline conditions. Relative to the native enzyme, deamidated Gdh3p shows reduced protein stability. The different deamidation rates of the two isoenzymes could explain to some extent, the relative in vivo instability of the allosteric Gdh3p enzyme, compared to that of Gdh1p. It is thus possible that spontaneous asparaginyl modification could play a role in the metabolic regulation of ammonium assimilation and glutamate biosynthesis.

  6. Phylogenetic Portrait of the Saccharomyces cerevisiae Functional Genome

    PubMed Central

    Gibney, Patrick A.; Hickman, Mark J.; Bradley, Patrick H.; Matese, John C.; Botstein, David

    2013-01-01

    The genome of budding yeast (Saccharomyces cerevisiae) contains approximately 5800 protein-encoding genes, the majority of which are associated with some known biological function. Yet the extent of amino acid sequence conservation of these genes over all phyla has only been partially examined. Here we provide a more comprehensive overview and visualization of the conservation of yeast genes and a means for browsing and exploring the data in detail, down to the individual yeast gene, at http://yeast-phylogroups.princeton.edu. We used data from the OrthoMCL database, which has defined orthologs from approximately 150 completely sequenced genomes, including diverse representatives of the archeal, bacterial, and eukaryotic domains. By clustering genes based on similar patterns of conservation, we organized and visualized all the protein-encoding genes in yeast as a single heat map. Most genes fall into one of eight major clusters, called “phylogroups.” Gene ontology analysis of the phylogroups revealed that they were associated with specific, distinct trends in gene function, generalizations likely to be of interest to a wide range of biologists. PMID:23749449

  7. Proteomic Profiling of Autophagosome Cargo in Saccharomyces cerevisiae

    PubMed Central

    Morimoto, Mayumi; Fujii, Kiyonaga; Noda, Nobuo N.; Inagaki, Fuyuhiko; Ohsumi, Yoshinori

    2014-01-01

    Macroautophagy (autophagy) is a bulk protein-degradation system ubiquitously conserved in eukaryotic cells. During autophagy, cytoplasmic components are enclosed in a membrane compartment, called an autophagosome. The autophagosome fuses with the vacuole/lysosome and is degraded together with its cargo. Because autophagy is important for the maintenance of cellular homeostasis by degrading unwanted proteins and organelles, identification of autophagosome cargo proteins (i.e., the targets of autophagy) will aid in understanding the physiological roles of autophagy. In this study, we developed a method for monitoring intact autophagosomes ex vivo by detecting the fluorescence of GFP-fused aminopeptidase I, the best-characterized selective cargo of autophagosomes in Saccharomyces cerevisiae. This method facilitated optimization of a biochemical procedure to fractionate autophagosomes. A combination of LC-MS/MS with subsequent statistical analyses revealed a list of autophagosome cargo proteins; some of these are selectively enclosed in autophagosomes and delivered to the vacuole in an Atg11-independent manner. The methods we describe will be useful for analyzing the mechanisms and physiological significance of Atg11-independent selective autophagy. PMID:24626240

  8. Regulation by ammonium of glutamate dehydrogenase (NADP+) from Saccharomyces cerevisiae.

    PubMed

    Bogonez, E; Satrústegui, J; Machado, A

    1985-06-01

    The activity of glutamate dehydrogenase (NADP+) (EC 1.4.1.4; NADP-GDH) of Saccharomyces cerevisiae is decreased under conditions in which intracellular ammonia concentrations increases. A high internal ammonia concentration can be obtained (a) by increasing the ammonium sulphate concentration in the culture medium, and (b) by growing the yeast either in acetate + ammonia media, where the pH of the medium rises during growth, or in heavily buffered glucose + ammonia media at pH 7.5. Under these conditions cellular oxoglutarate concentrations do not vary and changes in NADP-GDH activity appear to provide a constant rate of oxoglutarate utilization. The following results suggest that the decrease in NADP-GDH activity in ammonia-accumulating yeast cells is brought about by repression of synthesis: (i) after a shift to high ammonium sulphate concentrations, the number of units of activity per cell decreased as the inverse of cell doubling; and (ii) the rate of degradation of labelled NADP-GDH was essentially the same in ammonia-accumulating yeast cells and in controls, whereas the synthesis constant was much lower in the ammonia-accumulating cells than in the controls.

  9. RNA–DNA sequence differences in Saccharomyces cerevisiae

    PubMed Central

    Wang, Isabel X.; Grunseich, Christopher; Chung, Youree G.; Kwak, Hojoong; Ramrattan, Girish; Zhu, Zhengwei; Cheung, Vivian G.

    2016-01-01

    Alterations of RNA sequences and structures, such as those from editing and alternative splicing, result in two or more RNA transcripts from a DNA template. It was thought that in yeast, RNA editing only occurs in tRNAs. Here, we found that Saccharomyces cerevisiae have all 12 types of RNA–DNA sequence differences (RDDs) in the mRNA. We showed these sequence differences are propagated to proteins, as we identified peptides encoded by the RNA sequences in addition to those by the DNA sequences at RDD sites. RDDs are significantly enriched at regions with R-loops. A screen of yeast mutants showed that RDD formation is affected by mutations in genes regulating R-loops. Loss-of-function mutations in ribonuclease H, senataxin, and topoisomerase I that resolve RNA–DNA hybrids lead to increases in RDD frequency. Our results demonstrate that RDD is a conserved process that diversifies transcriptomes and proteomes and provide a mechanistic link between R-loops and RDDs. PMID:27638543

  10. Kinetic and Morphological Observations on Saccharomyces cerevisiae During Spheroplast Formation

    PubMed Central

    Darling, Sven; Theilade, Jørgen; Birch-Andersen, Aksel

    1969-01-01

    A strain of Saccharomyces cerevisiae which produced elongated cells under our growth conditions was investigated. By digestion of the cell walls with snail enzyme, the cells became spheroplasts after a transient state which we termed “prospheroplast.” The prospheroplast could be lysed like the spheroplast, but it retained the shape of the original yeast cell if osmotically protected. Prospheroplasts and spheroplasts were prepared, and thin sections of samples taken throughout the process of wall removal were studied in the electron microscope, at regular intervals up to the time of complete conversion to spheroplasts. In addition, cell wall remnants recovered from spheroplast preparations were shadow cast for electron microscopy. This material revealed structures resembling bud scars with attached membranous matter. The kinetic studies showed that after a certain period of time all cells were transformed into prospheroplasts, whereas spheroplast formation started later, depending on the enzyme concentration. In sections, the prospheroplasts appeared to be formed by detachment of the cell walls. Both the prospheroplasts and the spheroplasts showed asymmetric cytoplasmic membranes in which the outer leaflets appeared coated with a dense fibrillar layer. The experiments suggest that, after enzyme digestion, the cytoplasmic membrane retains a coating which is rigid in the prospheroplast but which loses rigidity when the cell is transformed into a spheroplast. Images PMID:5784226

  11. Dynamics of the Saccharomyces cerevisiae transcriptome during bread dough fermentation.

    PubMed

    Aslankoohi, Elham; Zhu, Bo; Rezaei, Mohammad Naser; Voordeckers, Karin; De Maeyer, Dries; Marchal, Kathleen; Dornez, Emmie; Courtin, Christophe M; Verstrepen, Kevin J

    2013-12-01

    The behavior of yeast cells during industrial processes such as the production of beer, wine, and bioethanol has been extensively studied. In contrast, our knowledge about yeast physiology during solid-state processes, such as bread dough, cheese, or cocoa fermentation, remains limited. We investigated changes in the transcriptomes of three genetically distinct Saccharomyces cerevisiae strains during bread dough fermentation. Our results show that regardless of the genetic background, all three strains exhibit similar changes in expression patterns. At the onset of fermentation, expression of glucose-regulated genes changes dramatically, and the osmotic stress response is activated. The middle fermentation phase is characterized by the induction of genes involved in amino acid metabolism. Finally, at the latest time point, cells suffer from nutrient depletion and activate pathways associated with starvation and stress responses. Further analysis shows that genes regulated by the high-osmolarity glycerol (HOG) pathway, the major pathway involved in the response to osmotic stress and glycerol homeostasis, are among the most differentially expressed genes at the onset of fermentation. More importantly, deletion of HOG1 and other genes of this pathway significantly reduces the fermentation capacity. Together, our results demonstrate that cells embedded in a solid matrix such as bread dough suffer severe osmotic stress and that a proper induction of the HOG pathway is critical for optimal fermentation.

  12. Effect of calcofluor white on chitin synthases from Saccharomyces cerevisiae.

    PubMed Central

    Roncero, C; Valdivieso, M H; Ribas, J C; Durán, A

    1988-01-01

    The growths of Saccharomyces cerevisiae wild-type strain and another strain containing a disrupted structural gene for chitin synthase (chs1::URA3), defective in chitin synthase 1 (Chs1) but showing a new chitin synthase activity (Chs2), were affected by Calcofluor. To be effective, the interaction of Calcofluor with growing cells had to occur at around pH 6. Treatment of growing cells from these strains with the fluorochrome led to an increase in the total levels of Chs1 and Chs2 activities measured on permeabilized cells. During treatment, basal levels (activities expressed in the absence of exogenous proteolytic activation) of Chs1 and Chs2 increased nine- and fourfold, respectively, through a mechanism dependent on protein synthesis, since the effect was abolished by cycloheximide. During alpha-factor treatment, both Chs1 and Chs2 levels increased; however, as opposed to what occurred during the mitotic cell cycle, there was no further increase in Chs1 or Chs2 activities by Calcofluor treatment. Images PMID:2965145

  13. Identification of genes affecting vacuole membrane fragmentation in Saccharomyces cerevisiae.

    PubMed

    Michaillat, Lydie; Mayer, Andreas

    2013-01-01

    The equilibrium of membrane fusion and fission influences the volume and copy number of organelles. Fusion of yeast vacuoles has been well characterized but their fission and the mechanisms determining vacuole size and abundance remain poorly understood. We therefore attempted to systematically characterize factors necessary for vacuole fission. Here, we present results of an in vivo screening for deficiencies in vacuolar fragmentation activity of an ordered collection deletion mutants, representing 4881 non-essential genes of the yeast Saccharomyces cerevisiae. The screen identified 133 mutants with strong defects in vacuole fragmentation. These comprise numerous known fragmentation factors, such as the Fab1p complex, Tor1p, Sit4p and the V-ATPase, thus validating the approach. The screen identified many novel factors promoting vacuole fragmentation. Among those are 22 open reading frames of unknown function and three conspicuous clusters of proteins with known function. The clusters concern the ESCRT machinery, adaptins, and lipases, which influence the production of diacylglycerol and phosphatidic acid. A common feature of these factors of known function is their capacity to change membrane curvature, suggesting that they might promote vacuole fragmentation via this property.

  14. Xylose Fermentation by Saccharomyces cerevisiae: Challenges and Prospects.

    PubMed

    Moysés, Danuza Nogueira; Reis, Viviane Castelo Branco; de Almeida, João Ricardo Moreira; de Moraes, Lidia Maria Pepe; Torres, Fernando Araripe Gonçalves

    2016-02-25

    Many years have passed since the first genetically modified Saccharomyces cerevisiae strains capable of fermenting xylose were obtained with the promise of an environmentally sustainable solution for the conversion of the abundant lignocellulosic biomass to ethanol. Several challenges emerged from these first experiences, most of them related to solving redox imbalances, discovering new pathways for xylose utilization, modulation of the expression of genes of the non-oxidative pentose phosphate pathway, and reduction of xylitol formation. Strategies on evolutionary engineering were used to improve fermentation kinetics, but the resulting strains were still far from industrial application. Lignocellulosic hydrolysates proved to have different inhibitors derived from lignin and sugar degradation, along with significant amounts of acetic acid, intrinsically related with biomass deconstruction. This, associated with pH, temperature, high ethanol, and other stress fluctuations presented on large scale fermentations led the search for yeasts with more robust backgrounds, like industrial strains, as engineering targets. Some promising yeasts were obtained both from studies of stress tolerance genes and adaptation on hydrolysates. Since fermentation times on mixed-substrate hydrolysates were still not cost-effective, the more selective search for new or engineered sugar transporters for xylose are still the focus of many recent studies. These challenges, as well as under-appreciated process strategies, will be discussed in this review.

  15. Xylose Fermentation by Saccharomyces cerevisiae: Challenges and Prospects

    PubMed Central

    Moysés, Danuza Nogueira; Reis, Viviane Castelo Branco; de Almeida, João Ricardo Moreira; de Moraes, Lidia Maria Pepe; Torres, Fernando Araripe Gonçalves

    2016-01-01

    Many years have passed since the first genetically modified Saccharomyces cerevisiae strains capable of fermenting xylose were obtained with the promise of an environmentally sustainable solution for the conversion of the abundant lignocellulosic biomass to ethanol. Several challenges emerged from these first experiences, most of them related to solving redox imbalances, discovering new pathways for xylose utilization, modulation of the expression of genes of the non-oxidative pentose phosphate pathway, and reduction of xylitol formation. Strategies on evolutionary engineering were used to improve fermentation kinetics, but the resulting strains were still far from industrial application. Lignocellulosic hydrolysates proved to have different inhibitors derived from lignin and sugar degradation, along with significant amounts of acetic acid, intrinsically related with biomass deconstruction. This, associated with pH, temperature, high ethanol, and other stress fluctuations presented on large scale fermentations led the search for yeasts with more robust backgrounds, like industrial strains, as engineering targets. Some promising yeasts were obtained both from studies of stress tolerance genes and adaptation on hydrolysates. Since fermentation times on mixed-substrate hydrolysates were still not cost-effective, the more selective search for new or engineered sugar transporters for xylose are still the focus of many recent studies. These challenges, as well as under-appreciated process strategies, will be discussed in this review. PMID:26927067

  16. Bread, beer and wine: Saccharomyces cerevisiae diversity reflects human history.

    PubMed

    Legras, Jean-Luc; Merdinoglu, Didier; Cornuet, Jean-Marie; Karst, Francis

    2007-05-01

    Fermented beverages and foods have played a significant role in most societies worldwide for millennia. To better understand how the yeast species Saccharomyces cerevisiae, the main fermenting agent, evolved along this historical and expansion process, we analysed the genetic diversity among 651 strains from 56 different geographical origins, worldwide. Their genotyping at 12 microsatellite loci revealed 575 distinct genotypes organized in subgroups of yeast types, i.e. bread, beer, wine, sake. Some of these groups presented unexpected relatedness: Bread strains displayed a combination of alleles intermediate between beer and wine strains, and strains used for rice wine and sake were most closely related to beer and bread strains. However, up to 28% of genetic diversity between these technological groups was associated with geographical differences which suggests local domestications. Focusing on wine yeasts, a group of Lebanese strains were basal in an F(ST) tree, suggesting a Mesopotamia-based origin of most wine strains. In Europe, migration of wine strains occurred through the Danube Valley, and around the Mediterranean Sea. An approximate Bayesian computation approach suggested a postglacial divergence (most probable period 10,000-12,000 bp). As our results suggest intimate association between man and wine yeast across centuries, we hypothesize that yeast followed man and vine migrations as a commensal member of grapevine flora.

  17. Peroxisomal fatty acid uptake mechanism in Saccharomyces cerevisiae.

    PubMed

    van Roermund, Carlo W T; Ijlst, Lodewijk; Majczak, Wiktor; Waterham, Hans R; Folkerts, Hendrik; Wanders, Ronald J A; Hellingwerf, Klaas J

    2012-06-08

    Peroxisomes play a major role in human cellular lipid metabolism, including fatty acid β-oxidation. The most frequent peroxisomal disorder is X-linked adrenoleukodystrophy, which is caused by mutations in ABCD1. The biochemical hallmark of X-linked adrenoleukodystrophy is the accumulation of very long chain fatty acids (VLCFAs) due to impaired peroxisomal β-oxidation. Although this suggests a role of ABCD1 in VLCFA import into peroxisomes, no direct experimental evidence is available to substantiate this. To unravel the mechanism of peroxisomal VLCFA transport, we use Saccharomyces cerevisiae as a model organism. Here we provide evidence that in this organism very long chain acyl-CoA esters are hydrolyzed by the Pxa1p-Pxa2p complex prior to the actual transport of their fatty acid moiety into the peroxisomes with the CoA presumably being released into the cytoplasm. The Pxa1p-Pxa2p complex functionally interacts with the acyl-CoA synthetases Faa2p and/or Fat1p on the inner surface of the peroxisomal membrane for subsequent re-esterification of the VLCFAs. Importantly, the Pxa1p-Pxa2p complex shares this molecular mechanism with HsABCD1 and HsABCD2.

  18. Peroxisomal Fatty Acid Uptake Mechanism in Saccharomyces cerevisiae*

    PubMed Central

    van Roermund, Carlo W. T.; IJlst, Lodewijk; Majczak, Wiktor; Waterham, Hans R.; Folkerts, Hendrik; Wanders, Ronald J. A.; Hellingwerf, Klaas J.

    2012-01-01

    Peroxisomes play a major role in human cellular lipid metabolism, including fatty acid β-oxidation. The most frequent peroxisomal disorder is X-linked adrenoleukodystrophy, which is caused by mutations in ABCD1. The biochemical hallmark of X-linked adrenoleukodystrophy is the accumulation of very long chain fatty acids (VLCFAs) due to impaired peroxisomal β-oxidation. Although this suggests a role of ABCD1 in VLCFA import into peroxisomes, no direct experimental evidence is available to substantiate this. To unravel the mechanism of peroxisomal VLCFA transport, we use Saccharomyces cerevisiae as a model organism. Here we provide evidence that in this organism very long chain acyl-CoA esters are hydrolyzed by the Pxa1p-Pxa2p complex prior to the actual transport of their fatty acid moiety into the peroxisomes with the CoA presumably being released into the cytoplasm. The Pxa1p-Pxa2p complex functionally interacts with the acyl-CoA synthetases Faa2p and/or Fat1p on the inner surface of the peroxisomal membrane for subsequent re-esterification of the VLCFAs. Importantly, the Pxa1p-Pxa2p complex shares this molecular mechanism with HsABCD1 and HsABCD2. PMID:22493507

  19. Cellular memory of acquired stress resistance in Saccharomyces cerevisiae.

    PubMed

    Guan, Qiaoning; Haroon, Suraiya; Bravo, Diego González; Will, Jessica L; Gasch, Audrey P

    2012-10-01

    Cellular memory of past experiences has been observed in several organisms and across a variety of experiences, including bacteria "remembering" prior nutritional status and amoeba "learning" to anticipate future environmental conditions. Here, we show that Saccharomyces cerevisiae maintains a multifaceted memory of prior stress exposure. We previously demonstrated that yeast cells exposed to a mild dose of salt acquire subsequent tolerance to severe doses of H(2)O(2). We set out to characterize the retention of acquired tolerance and in the process uncovered two distinct aspects of cellular memory. First, we found that H(2)O(2) resistance persisted for four to five generations after cells were removed from the prior salt treatment and was transmitted to daughter cells that never directly experienced the pretreatment. Maintenance of this memory did not require nascent protein synthesis after the initial salt pretreatment, but rather required long-lived cytosolic catalase Ctt1p that was synthesized during salt exposure and then distributed to daughter cells during subsequent cell divisions. In addition to and separable from the memory of H(2)O(2) resistance, these cells also displayed a faster gene-expression response to subsequent stress at >1000 genes, representing transcriptional memory. The faster gene-expression response requires the nuclear pore component Nup42p and serves an important function by facilitating faster reacquisition of H(2)O(2) tolerance after a second cycle of salt exposure. Memory of prior stress exposure likely provides a significant advantage to microbial populations living in ever-changing environments.

  20. Assembly of evolved ligninolytic genes in Saccharomyces cerevisiae

    PubMed Central

    Gonzalez-Perez, David; Alcalde, Miguel

    2014-01-01

    The ligninolytic enzymatic consortium produced by white-rot fungi is one of the most efficient oxidative systems found in nature, with many potential applications that range from the production of 2nd generation biofuels to chemicals synthesis. In the current study, two high redox potential oxidoreductase fusion genes (laccase -Lac- and versatile peroxidase -Vp-) that had been evolved in the laboratory were re-assembled in Saccharomyces cerevisiae. First, cell viability and secretion were assessed after co-transforming the Lac and Vp genes into yeast. Several expression cassettes were inserted in vivo into episomal bi-directional vectors in order to evaluate inducible promoter and/or terminator pairs of different strengths in an individual and combined manner. The synthetic white-rot yeast model harboring Vp(GAL1/CYC1)-Lac(GAL10/ADH1) displayed up to 1000 and 100 Units per L of peroxidase and laccase activity, respectively, representing a suitable point of departure for future synthetic biology studies. PMID:24830983

  1. Four Acyltransferases Uniquely Contribute to Phospholipid Heterogeneity in Saccharomyces cerevisiae

    PubMed Central

    Oelkers, Peter; Pokhrel, Keshav

    2016-01-01

    Diverse acyl-CoA species and acyltransferase isoenzymes are components of a complex system that synthesizes glycerophospholipids and triacylglycerols. Saccharomyces cerevisiae has four main acyl-CoA species, two main glycerol-3-phosphate 1-O-acyltransferases (Gat1p, Gat2p), and two main 1-acylglycerol-3-phosphate O-acyltransferases (Lpt1p, Slc1p). The in vivo contribution of these isoenzymes to phospholipid heterogeneity was determined using haploids with compound mutations: gat1Δlpt1Δ, gat2Δlpt1Δ, gat1Δslc1Δ, and gat2Δslc1Δ. All mutations mildly reduced [3H]palmitic acid incorporation into phospholipids relative to triacylglycerol. Electrospray ionization tandem mass spectrometry identified few differences from wild type in gat1Δlpt1Δ, dramatic differences in gat2Δslc1Δ, and intermediate changes in gat2Δlpt1Δ and gat1Δslc1Δ. Yeast expressing Gat1p and Lpt1p had phospholipids enriched with acyl chains that were unsaturated, 18 carbons long, and paired for length. These alterations prevented growth at 18.5°C and in 10% ethanol. Therefore, Gat2p and Slc1p dictate phospholipid acyl chain composition in rich media at 30°C. Slc1p selectively pairs acyl chains of different lengths. PMID:27920551

  2. Metabolic engineering of Saccharomyces cerevisiae for production of ginsenosides.

    PubMed

    Dai, Zhubo; Liu, Yi; Zhang, Xianan; Shi, Mingyu; Wang, Beibei; Wang, Dong; Huang, Luqi; Zhang, Xueli

    2013-11-01

    Ginsenosides are the primary bioactive components of ginseng, which is a popular medicinal herb and exhibits diverse pharmacological activities. Protopanaxadiol is the aglycon of several dammarane-type ginsenosides, which also has anticancer activity. For microbial production of protopanaxadiol, dammarenediol-II synthase and protopanaxadiol synthase genes of Panax ginseng, together with a NADPH-cytochrome P450 reductase gene of Arabidopsis thaliana, were introduced into Saccharomyces cerevisiae, resulting in production of 0.05 mg/g DCW protopanaxadiol. Increasing squalene and 2,3-oxidosqualene supplies through overexpressing truncated 3-hydroxyl-3-methylglutaryl-CoA reductase, farnesyl diphosphate synthase, squalene synthase and 2,3-oxidosqualene synthase genes, together with increasing protopanaxadiol synthase activity through codon optimization, led to 262-fold increase of protopanaxadiol production. Finally, using two-phase extractive fermentation resulted in production of 8.40 mg/g DCW protopanaxadiol (1189 mg/L), together with 10.94 mg/g DCW dammarenediol-II (1548 mg/L). The yeast strains engineered in this work can serve as the basis for creating an alternative way for production of ginsenosides in place of extraction from plant sources.

  3. Biotransformation of malachite green by Saccharomyces cerevisiae MTCC 463.

    PubMed

    Jadhav, J P; Govindwar, S P

    2006-03-01

    In recent years, use of microbial biomass for decolourization of textile industry wastewater is becoming a promising alternative in which some bacteria and fungi are used to replace present treatment processes. Saccharomyces cerevisiae MTCC 463 decolourized the triphenylmethane dyes (malachite green, cotton blue, methyl violet and crystal violet) by biosorption, showing different decolourization patterns. However, malachite green decolourized by biosorption at the initial stage and further biodegradation occurred, about 85% in plain distilled water within 7 h, and about 95.5% in 5% glucose medium within 4 h, under aerobic conditions and at room temperature. Decolourization of malachite green depends on various conditions, such as concentration of dye, concentration of cells, composition of medium and agitation. HPLC, UV-VIS, FTIR and TLC analysis of samples extracted with ethyl acetate from decolourized culture flasks confirmed the biodegradation of malachite green into several metabolites. A study of the enzymes responsible for the biodegradation of malachite green in the control and cells obtained after decolourization showed the activities of laccase, lignin peroxidase, NADH-DCIP reductase, malachite green reductase and aminopyrine N-demethylase in control cells. A significant increase in the activities of NADH-DCIP reductase and MG reductase was observed in the cells obtained after decolourization, indicating a major involvement of reductases in malachite green degradation.

  4. Membrane engineering of S. cerevisiae targeting sphingolipid metabolism

    PubMed Central

    Lindahl, Lina; Santos, Aline X. S.; Olsson, Helén; Olsson, Lisbeth; Bettiga, Maurizio

    2017-01-01

    The sustainable production of fuels and chemicals using microbial cell factories is now well established. However, many microbial production processes are still limited in scale due to inhibition from compounds that are present in the feedstock or are produced during fermentation. Some of these inhibitors interfere with cellular membranes and change the physicochemical properties of the membranes. Another group of molecules is dependent on their permeation rate through the membrane for their inhibition. We have investigated the use of membrane engineering to counteract the negative effects of inhibitors on the microorganism with focus on modulating the abundance of complex sphingolipids in the cell membrane of Saccharomyces cerevisiae. Overexpression of ELO3, involved in fatty acid elongation, and AUR1, which catalyses the formation of complex sphingolipids, had no effect on the membrane lipid profile or on cellular physiology. Deletion of the genes ORM1 and ORM2, encoding negative regulators of sphingolipid biosynthesis, decreased cell viability and considerably reduced phosphatidylinositol and complex sphingolipids. Additionally, combining ELO3 and AUR1 overexpression with orm1/2Δ improved cell viability and increased fatty acyl chain length compared with only orm1/2Δ. These findings can be used to further study the sphingolipid metabolism, as well as giving guidance in membrane engineering. PMID:28145511

  5. Carboxylic Acids Plasma Membrane Transporters in Saccharomyces cerevisiae.

    PubMed

    Casal, Margarida; Queirós, Odília; Talaia, Gabriel; Ribas, David; Paiva, Sandra

    2016-01-01

    This chapter covers the functionally characterized plasma membrane carboxylic acids transporters Jen1, Ady2, Fps1 and Pdr12 in the yeast Saccharomyces cerevisiae, addressing also their homologues in other microorganisms, as filamentous fungi and bacteria. Carboxylic acids can either be transported into the cells, to be used as nutrients, or extruded in response to acid stress conditions. The secondary active transporters Jen1 and Ady2 can mediate the uptake of the anionic form of these substrates by a H(+)-symport mechanism. The undissociated form of carboxylic acids is lipid-soluble, crossing the plasma membrane by simple diffusion. Furthermore, acetic acid can also be transported by facilitated diffusion via Fps1 channel. At the cytoplasmic physiological pH, the anionic form of the acid prevails and it can be exported by the Pdr12 pump. This review will highlight the mechanisms involving carboxylic acids transporters, and the way they operate according to the yeast cell response to environmental changes, as carbon source availability, extracellular pH and acid stress conditions.

  6. Trehalose: Its role in germination of Saccharomyces cerevisiae.

    PubMed

    Panek, A D; Bernardes, E J

    1983-09-01

    Mutants with specific lesions were used to differentiate between the functions of glycogen and trehalose in S. cerevisiae. Diploids which harbor the glc1/glc1 mutation depend upon the phosphorylated, less active form of glycogen synthase and show a more active, phosphorylated form, of the enzyme trehalase. These conditions are due to a lesion in the regulating subunit of the cAMP-dependent protein kinase. Such cells are unable to sporulate. Diploids which contain the sst1/sst1 mutation have normal glycogen metabolism but their trehalose-6-phosphate synthase is not active. Such strains sporulate but germination is poor and only one-spore tetrads are formed. These results confirm that glycogen is needed to trigger sporulation while trehalose plays a role in the germination process. Different systems, I and II, of trehalose accumulation were proposed. System I would require the UDPG-linked trehalose synthase, whereas system II would constitute an alternative pathway, specifically induced or activated by the expression of a MAL gene. The presence of system II in its constitutive form in the constructed diploids would favour trehalose synthesis during growth on glucose, however, it did not overcome the glycogen deficiency during sporulation nor the lack of trehalose for germination. It seems that only system I, namely trehalose 6-P-synthase, plays a role in the germination process.

  7. Phosphatidylcholine Supply to Peroxisomes of the Yeast Saccharomyces cerevisiae

    PubMed Central

    Ramprecht, Claudia; Zellnig, Günther; Leitner, Erich; Hermetter, Albin; Daum, Günther

    2015-01-01

    In the yeast Saccharomyces cerevisiae, phosphatidylcholine (PC), the major phospholipid (PL) of all organelle membranes, is synthesized via two different pathways. Methylation of phosphatidylethanolamine (PE) catalyzed by the methyl transferases Cho2p/Pem1p and Opi3p/Pem2p as well as incorporation of choline through the CDP (cytidine diphosphate)-choline branch of the Kennedy pathway lead to PC formation. To determine the contribution of these two pathways to the supply of PC to peroxisomes (PX), yeast mutants bearing defects in the two pathways were cultivated under peroxisome inducing conditions, i.e. in the presence of oleic acid, and subjected to biochemical and cell biological analyses. Phenotype studies revealed compromised growth of both the cho20Δopi3Δ (mutations in the methylation pathway) and the cki1Δdpl1Δeki1Δ (mutations in the CDP-choline pathway) mutant when grown on oleic acid. Analysis of peroxisomes from the two mutant strains showed that both pathways produce PC for the supply to peroxisomes, although the CDP-choline pathway seemed to contribute with higher efficiency than the methylation pathway. Changes in the peroxisomal lipid pattern of mutants caused by defects in the PC biosynthetic pathways resulted in changes of membrane properties as shown by anisotropy measurements with fluorescent probes. In summary, our data define the origin of peroxisomal PC and demonstrate the importance of PC for peroxisome membrane formation and integrity. PMID:26241051

  8. Lipid droplet autophagy in the yeast Saccharomyces cerevisiae

    PubMed Central

    van Zutphen, Tim; Todde, Virginia; de Boer, Rinse; Kreim, Martin; Hofbauer, Harald F.; Wolinski, Heimo; Veenhuis, Marten; van der Klei, Ida J.; Kohlwein, Sepp D.

    2014-01-01

    Cytosolic lipid droplets (LDs) are ubiquitous organelles in prokaryotes and eukaryotes that play a key role in cellular and organismal lipid homeostasis. Triacylglycerols (TAGs) and steryl esters, which are stored in LDs, are typically mobilized in growing cells or upon hormonal stimulation by LD-associated lipases and steryl ester hydrolases. Here we show that in the yeast Saccharomyces cerevisiae, LDs can also be turned over in vacuoles/lysosomes by a process that morphologically resembles microautophagy. A distinct set of proteins involved in LD autophagy is identified, which includes the core autophagic machinery but not Atg11 or Atg20. Thus LD autophagy is distinct from endoplasmic reticulum–autophagy, pexophagy, or mitophagy, despite the close association between these organelles. Atg15 is responsible for TAG breakdown in vacuoles and is required to support growth when de novo fatty acid synthesis is compromised. Furthermore, none of the core autophagy proteins, including Atg1 and Atg8, is required for LD formation in yeast. PMID:24258026

  9. Influence of culture conditions on glutathione production by Saccharomyces cerevisiae.

    PubMed

    Santos, Lucielen Oliveira; Gonzales, Tatiane Araujo; Ubeda, Beatriz Torsani; Monte Alegre, Ranulfo

    2007-12-01

    A strategy of experimental design using a fractional factorial design (FFD) and a central composite rotatable design (CCRD) were carried out with the aim to obtain the best conditions of temperature (20-30 degrees C), agitation rate (100-300 rpm), initial pH (5.0-7.0), inoculum concentration (5-15%), and glucose concentration (30-70 g/l) for glutathione (GSH) production in shake-flask culture by Saccharomyces cerevisiae ATCC 7754. By a FFD (2(5-2)), the agitation rate, temperature, and pH were found to be significant factors for GSH production. In CCRD (2(2)) was obtained a second-order model equation, and the percent of variation explained by the model was 95%. The results showed that the optimal culture conditions were agitation rate, 300 rpm; temperature, 20 degrees C; initial pH, 5; glucose, 54 g/l; and inoculum concentration, 5%. The highest GSH concentration (154.5 mg/l) was obtained after 72 h of fermentation.

  10. Pediococcus cerevisiae mutant with altered transport of folates.

    PubMed

    Mandelbaum-Shavit, F; Grossowicz, N

    1975-08-01

    A Pediococcus cerevisiae mutant that actively accumulated folate (PteGlu), in contrast to the wild-type, was also found to exhibit changes in the pattern of uptake of 5-methyl-tetrahydrofolate (5-CH3-H4PteGlu) and amethopterin. Most of the 5-CH3-H4PteGlue accumulated through a glucose- and temperature-dependent process, and a concentrative uptake was also found in gluocse-starved cells and in cells incubated at OC. About 75% of the accumulated 5-CH3-H4PteGlu exchanged with amethopterin. In contrast to the wild type, the mutant accumulated both diastereoisomers of 5-CH3-H4PteGlue by glucose-dependent and glucose-independent processes. Amethopterin and PteGlue competitively inhibited the uptake in both processes, with an apparent lower affinity of the carrier for PteGlu than for the analogue. p-Chloromercuribenzoate strongly inhibited the uptake (75%). The p-chloromercuribenzoate-nonsusceptible and temperature-independent uptake was also competed by amethopterin. Metabolic poisons like sodium azide, potassium fluoride, iodoacetate, and 2,4-dimitrophenol inhibited the glucose-dependent process. Uptake, in the absence of glucose, was enhanced by sodium azide and potassium fluoride.

  11. A quantitative assay for telomere protection in Saccharomyces cerevisiae.

    PubMed Central

    DuBois, Michelle L; Haimberger, Zara W; McIntosh, Martin W; Gottschling, Daniel E

    2002-01-01

    Telomeres are the protective ends of linear chromosomes. Telomeric components have been identified and described by their abilities to bind telomeric DNA, affect telomere repeat length, participate in telomeric DNA replication, or modulate transcriptional silencing of telomere-adjacent genes; however, their roles in chromosome end protection are not as well defined. We have developed a genetic, quantitative assay in Saccharomyces cerevisiae to measure whether various telomeric components protect chromosome ends from homologous recombination. This "chromosomal cap" assay has revealed that the telomeric end-binding proteins, Cdc13p and Ku, both protect the chromosome end from homologous recombination, as does the ATM-related kinase, Tel1p. We propose that Cdc13p and Ku structurally inhibit recombination at telomeres and that Tel1p regulates the chromosomal cap, acting through Cdc13p. Analysis with recombination mutants indicated that telomeric homologous recombination events proceeded by different mechanisms, depending on which capping component was compromised. Furthermore, we found that neither telomere repeat length nor telomeric silencing correlated with chromosomal capping efficiency. This capping assay provides a sensitive in vivo approach for identifying the components of chromosome ends and the mechanisms by which they are protected. PMID:12136006

  12. MAP kinase pathways in the yeast Saccharomyces cerevisiae

    NASA Technical Reports Server (NTRS)

    Gustin, M. C.; Albertyn, J.; Alexander, M.; Davenport, K.; McIntire, L. V. (Principal Investigator)

    1998-01-01

    A cascade of three protein kinases known as a mitogen-activated protein kinase (MAPK) cascade is commonly found as part of the signaling pathways in eukaryotic cells. Almost two decades of genetic and biochemical experimentation plus the recently completed DNA sequence of the Saccharomyces cerevisiae genome have revealed just five functionally distinct MAPK cascades in this yeast. Sexual conjugation, cell growth, and adaptation to stress, for example, all require MAPK-mediated cellular responses. A primary function of these cascades appears to be the regulation of gene expression in response to extracellular signals or as part of specific developmental processes. In addition, the MAPK cascades often appear to regulate the cell cycle and vice versa. Despite the success of the gene hunter era in revealing these pathways, there are still many significant gaps in our knowledge of the molecular mechanisms for activation of these cascades and how the cascades regulate cell function. For example, comparison of different yeast signaling pathways reveals a surprising variety of different types of upstream signaling proteins that function to activate a MAPK cascade, yet how the upstream proteins actually activate the cascade remains unclear. We also know that the yeast MAPK pathways regulate each other and interact with other signaling pathways to produce a coordinated pattern of gene expression, but the molecular mechanisms of this cross talk are poorly understood. This review is therefore an attempt to present the current knowledge of MAPK pathways in yeast and some directions for future research in this area.

  13. Endomitotic effect of a cell cycle mutation of Saccharomyces cerevisiae

    SciTech Connect

    Schild, D.; Ananthaswamy, H.N.; Mortimer, R.K.

    1981-03-01

    A recessive temperature-sensitive mutation of Saccharomyces cerevisiae has been isolated and shown to cause an increase in ploidy in both haploids and diploids. Genetic analysis revealed that the strain carrying the mutation was an aa diploid, although MNNG mutagenesis had been done on an a haploid strain. When the mutant strain was crossed with an ..cap alpha cap alpha.. diploid and the resultant tetraploid sporulated, some of the meiotic progeny of this tetraploid were themselves tetraploid, as shown by both genetic analysis and DNA measurements, instead of diploid as expected of tetraploid meiosis. The ability of these tetraploids to continue to produce tetraploid meiotic progeny was followed for four generations. It was found that tetraploidization was independent of sporulation temperature, but was dependent on the temperature of germination and the growth of the spores. Increase in ploidy occurred when the spores were germinated and grown at 30/sup 0/, but did not occur at 23/sup 0/. Two cycles of sporulation and growth at 23/sup 0/ resulted in haploids, which were shown to diploidize within 24 hr when grown at 30/sup 0/.

  14. Metabolically engineered Saccharomyces cerevisiae for enhanced isoamyl alcohol production.

    PubMed

    Yuan, Jifeng; Chen, Xue; Mishra, Pranjul; Ching, Chi-Bun

    2017-01-01

    Higher chain alcohols have gained much attention as next generation transport fuels because of their higher energy density and low moisture absorption capacity compared to ethanol. In the present study, we attempted to engineer Saccharomyces cerevisiae for the synthesis of isoamyl alcohol via de novo leucine biosynthetic pathway coupled with Ehrlich degradation pathway. To achieve high-level production of isoamyl alcohol, two strategies are used in the current study: (1) reconstruction of a chromosome-based leucine biosynthetic pathway under the control of galactose-inducible promoters; (2) overexpression of the mitochondrial 2-isopropylmalate (α-IPM) transporter to boost the transportation of α-IPM from mitochondria to the cytosol. We found engineered yeast cells with a combinatorially assembled leucine biosynthetic pathway coupled with the Ehrlich degradation pathway resulted in high-level production of isoamyl alcohol; however, there was still a significant amount of isobutanol co-formed during the fermentation process. Further introducing an α-IPM transporter not only boosted the isoamyl alcohol biosynthetic pathway activity but also reduced isobutanol to a much lower level. Taken together, our work represents the first study to construct a chromosome-based leucine biosynthetic pathway for isoamyl alcohol production. Furthermore, the utilization of the mitochondrial compartment coupled with the transporter engineering serves as an effective approach to minimize the by-product formation and to improve the isoamyl alcohol production.

  15. D-lactic acid production by metabolically engineered Saccharomyces cerevisiae.

    PubMed

    Ishida, Nobuhiro; Suzuki, Tomiko; Tokuhiro, Kenro; Nagamori, Eiji; Onishi, Toru; Saitoh, Satoshi; Kitamoto, Katsuhiko; Takahashi, Haruo

    2006-02-01

    Poly D-lactic acid is an important polymer because it improves the thermostability of poly L-lactic acid by the stereo complex formation. We constructed a metabolically engineered Saccharomyces cerevisiae that produces D-lactic acid efficiently. In this recombinant, the coding region of pyruvate decarboxylase 1 (PDC1) was completely deleted, and two copies of the D-lactate dehydrogenase (D-LDH) gene from Leuconostoc mesenteroides subsp. mesenteroides strain NBRC3426 were introduced into the genome. The D-lactate production reached 61.5 g/l, the amount of glucose being transformed into D-lactic acid being 61.2% under neutralizing conditions. Additionally, the yield of free D-lactic acid was also shown to be 53.0% under non-neutralizing conditions. It was confirmed that D-lactic acid of extremely high optical purity of 99.9% or higher. Our finding obtained the possibility of a new approach for pure d-lactic acid production without a neutralizing process compared with other techniques involving lactic acid bacteria and transgenic Escherichia coli.

  16. Characterization of two telomeric DNA processing reactions in Saccharomyces cerevisiae.

    PubMed Central

    Murray, A W; Claus, T E; Szostak, J W

    1988-01-01

    We have investigated two reactions that occur on telomeric sequences introduced into Saccharomyces cerevisiae cells by transformation. The elongation reaction added repeats of the yeast telomeric sequence C1-3A to telomeric sequences at the end of linear DNA molecules. The reaction worked on the Tetrahymena telomeric sequence C4A2 and also on the simple repeat CA. The reaction was orientation specific: it occurred only when the GT-rich strand ran 5' to 3' towards the end of the molecule. Telomere elongation occurred by non-template-directed DNA synthesis rather than any type of recombination with chromosomal telomeres, because C1-3A repeats could be added to unrelated DNA sequences between the CA-rich repeats and the terminus of the transforming DNA. The elongation reaction was very efficient, and we believe that it was responsible for maintaining an average telomere length despite incomplete replication by template-directed DNA polymerase. The resolution reaction processed a head-to-head inverted repeat of telomeric sequences into two new telomeres at a frequency of 10(-2) per cell division. Images PMID:3062364

  17. Polyphosphates as an energy source for growth of Saccharomyces cerevisiae.

    PubMed

    Trilisenko, L V; Kulakovskaya, T V

    2014-05-01

    Cells of the yeast Saccharomyces cerevisiae with a low content of polyphosphates (polyP) are characterized by disturbance of growth in medium with 0.5% glucose. The parent strain with polyP level reduced by phosphate starvation had a longer lag phase. The growth rate of strains with genetically determined low content of polyP due to their enhanced hydrolysis (CRN/pMB1_PPN1 Sc is a superproducer of exopolyphosphatase PPN1) or reduced synthesis (the BY4741 vma2Δ mutant with impaired vacuolar membrane energization) was lower in the exponential phase. The growth of cells with high content of polyP was accompanied by polyP consumption. In cells of strains with low content of polyP, CRN/pMB1_PPN1 Sc and BY4741 vma2Δ, their consumption was insignificant. These findings provide more evidence indicating the use of polyP as an extra energy source for maintaining high growth rate.

  18. Post-translational processing of urea amidolyase in Saccharomyces cerevisiae.

    PubMed Central

    Sumrada, R A; Chisholm, G; Cooper, T G

    1982-01-01

    Urea amidolyase catalyzes the two reactions (urea carboxylase and a allophanate hydrolase) associated with urea degradation in Saccharomyces cerevisiae. Past work has shown that both reactions are catalyzed by a 204-kilodalton, multifunctional protein. In view of these observations, it was surprising to find that on induction at 22 degrees C, approximately 2 to 6 min elapsed between the appearance of allophanate hydrolase and urea carboxylase activities. In search of an explanation for this apparent paradox, we determined whether or not a detectable period of time elapsed between the appearance of allophanate hydrolase activity and activation of the urea carboxylase domain by the addition of biotin. We found that a significant portion of the protein produced immediately after the onset of induction lacked the prosthetic group. A steady-state level of biotin-free enzyme was reached 16 min after induction and persisted indefinitely thereafter. These data are consistent with the suggestion that sequential induction of allophanate hydrolase and urea carboxylase activities results from the time required to covalently bind biotin to the latter domain of the protein. PMID:6152837

  19. TOR and RAS pathways regulate desiccation tolerance in Saccharomyces cerevisiae

    PubMed Central

    Welch, Aaron Z.; Gibney, Patrick A.; Botstein, David; Koshland, Douglas E.

    2013-01-01

    Tolerance to desiccation in cultures of Saccharomyces cerevisiae is inducible; only one in a million cells from an exponential culture survive desiccation compared with one in five cells in stationary phase. Here we exploit the desiccation sensitivity of exponentially dividing cells to understand the stresses imposed by desiccation and their stress response pathways. We found that induction of desiccation tolerance is cell autonomous and that there is an inverse correlation between desiccation tolerance and growth rate in glucose-, ammonia-, or phosphate-limited continuous cultures. A transient heat shock induces a 5000–fold increase in desiccation tolerance, whereas hyper-ionic, -reductive, -oxidative, or -osmotic stress induced much less. Furthermore, we provide evidence that the Sch9p-regulated branch of the TOR and Ras-cAMP pathway inhibits desiccation tolerance by inhibiting the stress response transcription factors Gis1p, Msn2p, and Msn4p and by activating Sfp1p, a ribosome biogenesis transcription factor. Among 41 mutants defective in ribosome biogenesis, a subset defective in 60S showed a dramatic increase in desiccation tolerance independent of growth rate. We suggest that reduction of a specific intermediate in 60S biogenesis, resulting from conditions such as heat shock and nutrient deprivation, increases desiccation tolerance. PMID:23171550

  20. Dissection of Filamentous Growth by Transposon Mutagenesis in Saccharomyces Cerevisiae

    PubMed Central

    Mosch, H. U.; Fink, G. R.

    1997-01-01

    Diploid Saccharomyces cerevisiae strains starved for nitrogen undergo a developmental transition from growth as single yeast form (YF) cells to a multicellular form consisting of filaments of pseudohyphal (PH) cells. Filamentous growth is regulated by an evolutionarily conserved signaling pathway that includes the small GTP-binding proteins Ras2p and Cdc42p, the protein kinases Ste20p, Ste11p and Ste7p, and the transcription factor Ste12p. Here, we designed a genetic screen for mutant strains defective for filamentous growth (dfg) to identify novel targets of the filamentation signaling pathway, and we thereby identified 16 different genes, CDC39, STE12, TEC1, WHI3, NAB1, DBR1, CDC55, SRV2, TPM1, SPA2, BNI1, DFG5, DFG9, DFG10, BUD8 and DFG16, mutations that block filamentous growth. Phenotypic analysis of dfg mutant strains genetically dissects filamentous growth into the cellular processes of signal transduction, bud site selection, cell morphogenesis and invasive growth. Epistasis tests between dfg mutant alleles and dominant activated alleles of the RAS2 and STE11 genes, RAS2(Val19) and STE11-4, respectively, identify putative targets for the filamentation signaling pathway. Several of the genes described here have homologues in filamentous fungi, where they also regulate fungal development. PMID:9055077

  1. Transcriptional response of Saccharomyces cerevisiae to desiccation and rehydration.

    PubMed

    Singh, Jatinder; Kumar, Deept; Ramakrishnan, Naren; Singhal, Vibha; Jervis, Jody; Garst, James F; Slaughter, Stephen M; DeSantis, Andrea M; Potts, Malcolm; Helm, Richard F

    2005-12-01

    A transcriptional analysis of the response of Saccharomyces cerevisiae strain BY4743 to controlled air-drying (desiccation) and subsequent rehydration under minimal glucose conditions was performed. Expression of genes involved in fatty acid oxidation and the glyoxylate cycle was observed to increase during drying and remained in this state during the rehydration phase. When the BY4743 expression profile for the dried sample was compared to that of a commercially prepared dry active yeast, strikingly similar expression changes were observed. The fact that these two samples, dried by different means, possessed very similar transcriptional profiles supports the hypothesis that the response to desiccation is a coordinated event independent of the particular conditions involved in water removal. Similarities between "stationary-phase-essential genes" and those upregulated during desiccation were also noted, suggesting commonalities in different routes to reduced metabolic states. Trends in extracellular and intracellular glucose and trehalose levels suggested that the cells were in a "holding pattern" during the rehydration phase, a concept that was reinforced by cell cycle analyses. Application of a "redescription mining" algorithm suggested that sulfur metabolism is important for cell survival during desiccation and rehydration.

  2. Purification and biochemical properties of calmodulin from Saccharomyces cerevisiae.

    PubMed

    Ohya, Y; Uno, I; Ishikawa, T; Anraku, Y

    1987-10-01

    Calmodulin from the yeast Saccharomyces cerevisiae was purified to complete homogeneity by hydrophobic interaction chromatography and HPLC gel filtration. The biochemical properties of the purified protein as calmodulin were examined under various criteria and its similarity and dissimilarity to other calmodulins have been described. Like other calmodulins, yeast calmodulin activated bovine phosphodiesterase and pea NAD kinase in a Ca2+-dependent manner, but its concentration for half-maximal activation was 8-10 times that of bovine calmodulin. The amino acid composition of yeast calmodulin was different from those of calmodulins from other lower eukaryotes in that it contained no tyrosine, but more leucine and had a high ratio of serine to threonine. Yeast calmodulin did not contain tryptophanyl or tyrosyl residues, so its ultraviolet spectrum reflected the absorbance of phenylalanyl residues, and had a molar absorption coefficient at 259 nm of 1900 M-1 cm-1. Ca2+ ions changed the secondary structure of yeast calmodulin, causing a 3% decrease in the alpha-helical content, unlike its effect on other calmodulins. Antibody against yeast calmodulin did not cross-react with bovine calmodulin, and antibody against bovine calmodulin did not cross-react with yeast calmodulin, presumably due to differences in the amino acid sequences of the antigenic sites. It is concluded that the molecular structure of yeast calmodulin differs from those of calmodulins from other sources, but that its Ca2+-dependent regulatory functions are highly conserved and essentially similar to those of calmodulins of higher eukaryotes.

  3. Redundant Regulation of Cdk1 Tyrosine Dephosphorylation in Saccharomyces cerevisiae.

    PubMed

    Kennedy, Erin K; Dysart, Michael; Lianga, Noel; Williams, Elizabeth C; Pilon, Sophie; Doré, Carole; Deneault, Jean-Sebastien; Rudner, Adam D

    2016-03-01

    Cdk1 activity drives both mitotic entry and the metaphase-to-anaphase transition in all eukaryotes. The kinase Wee1 and the phosphatase Cdc25 regulate the mitotic activity of Cdk1 by the reversible phosphorylation of a conserved tyrosine residue. Mutation of cdc25 in Schizosaccharomyces pombe blocks Cdk1 dephosphorylation and causes cell cycle arrest. In contrast, deletion of MIH1, the cdc25 homolog in Saccharomyces cerevisiae, is viable. Although Cdk1-Y19 phosphorylation is elevated during mitosis in mih1∆ cells, Cdk1 is dephosphorylated as cells progress into G1, suggesting that additional phosphatases regulate Cdk1 dephosphorylation. Here we show that the phosphatase Ptp1 also regulates Cdk1 dephosphorylation in vivo and can directly dephosphorylate Cdk1 in vitro. Using a novel in vivo phosphatase assay, we also show that PP2A bound to Rts1, the budding yeast B56-regulatory subunit, regulates dephosphorylation of Cdk1 independently of a function regulating Swe1, Mih1, or Ptp1, suggesting that PP2A(Rts1) either directly dephosphorylates Cdk1-Y19 or regulates an unidentified phosphatase.

  4. Redundant Regulation of Cdk1 Tyrosine Dephosphorylation in Saccharomyces cerevisiae

    PubMed Central

    Kennedy, Erin K.; Dysart, Michael; Lianga, Noel; Williams, Elizabeth C.; Pilon, Sophie; Doré, Carole; Deneault, Jean-Sebastien; Rudner, Adam D.

    2016-01-01

    Cdk1 activity drives both mitotic entry and the metaphase-to-anaphase transition in all eukaryotes. The kinase Wee1 and the phosphatase Cdc25 regulate the mitotic activity of Cdk1 by the reversible phosphorylation of a conserved tyrosine residue. Mutation of cdc25 in Schizosaccharomyces pombe blocks Cdk1 dephosphorylation and causes cell cycle arrest. In contrast, deletion of MIH1, the cdc25 homolog in Saccharomyces cerevisiae, is viable. Although Cdk1-Y19 phosphorylation is elevated during mitosis in mih1∆ cells, Cdk1 is dephosphorylated as cells progress into G1, suggesting that additional phosphatases regulate Cdk1 dephosphorylation. Here we show that the phosphatase Ptp1 also regulates Cdk1 dephosphorylation in vivo and can directly dephosphorylate Cdk1 in vitro. Using a novel in vivo phosphatase assay, we also show that PP2A bound to Rts1, the budding yeast B56-regulatory subunit, regulates dephosphorylation of Cdk1 independently of a function regulating Swe1, Mih1, or Ptp1, suggesting that PP2ARts1 either directly dephosphorylates Cdk1-Y19 or regulates an unidentified phosphatase. PMID:26715668

  5. Regulation of phospholipid synthesis in Saccharomyces cerevisiae by zinc depletion

    PubMed Central

    Carman, George M.; Han, Gil-Soo

    2007-01-01

    The synthesis of phospholipids in the yeast Saccharomyces cerevisiae is regulated by zinc, an essential mineral required for growth and metabolism. Cells depleted of zinc contain increased levels of phosphatidylinositol and decreased levels of phosphatidylethanolamine. In addition to the major phospholipids, the levels of the minor phospholipids phosphatidate and diacylglycerol pyrophosphate decrease in the vacuole membrane of zinc-depleted cells. Alterations in phosphatidylinositol and phosphatidylethanolamine can be ascribed to an increase in PIS1-encoded phosphatidylinositol synthase activity and to decreases in the activities of CDP-diacylglycerol pathway enzymes including the CHO1-encoded phosphatidylserine synthase, respectively. Alterations in the minor vacuole membrane phospholipids are due to the induction of the DPP1-encoded diacylglycerol pyrophosphate phosphatase. These changes in the activities of phospholipid biosynthetic enzymes result from differential regulation of gene expression at the level of transcription. Under zinc-deplete conditions, the positive transcription factor Zap1p stimulates the expression of the DPP1 and PIS1 genes through the cis-acting element UASZRE. In contrast, the negative regulatory protein Opi1p, which is involved in inositol-mediated regulation of phospholipid synthesis, represses the expression of the CHO1 gene through the cis-acting element UASINO. Regulation of phospholipid synthesis may provide an important mechanism by which cells cope with the stress of zinc depletion, given the roles that phospholipids play in the structure and function of cellular membranes. PMID:16807089

  6. Regulation of profilin localization in Saccharomyces cerevisiae by phosphoinositide metabolism.

    PubMed

    Ostrander, D B; Gorman, J A; Carman, G M

    1995-11-10

    Profilin is an actin- and phosphatidylinositol 4,5-bisphosphate-binding protein that plays a role in the organization of the cytoskeleton and may be involved in growth factor signaling pathways. The subcellular localization of profilin was examined in the yeast Saccharomyces cerevisiae. Immunoblot analysis showed that profilin was localized in both the plasma membrane and cytosolic fractions of the cell. Actin was bound to the profilin localized in the cytosol. The association of profilin with the membrane was peripheral and mediated through interaction with phospholipid. The phospholipid dependence of profilin for membrane binding was examined in vitro using pure profilin and defined unilamellar phospholipid vesicles. The presence of phosphatidylinositol 4,5-bisphosphate in phospholipid vesicles was required for maximum profilin binding. Moreover, the binding of profilin to phospholipid vesicles was dependent on the surface concentration of phosphatidylinositol 4,5-bisphosphate. The subcellular localization of profilin was examined in vivo under growth conditions (i.e. inositol starvation of ino1 cells and glucose starvation of respiratory deficient cells) where plasma membrane levels of phosphatidylinositol 4,5-bisphosphate were depleted. Depletion of plasma membrane phosphatidylinositol 4,5-bisphosphate levels resulted in a translocation of profilin from the plasma membrane to the cytosolic fraction. Profilin translocated back to the membrane fraction from the cytosol under growth conditions where plasma membrane levels of phosphatidylinositol 4,5-bisphosphate were replenished. These results suggested that phosphoinositide metabolism played a role in the localization of profilin.

  7. Regulation of phospholipid synthesis in Saccharomyces cerevisiae by zinc.

    PubMed

    Iwanyshyn, Wendy M; Han, Gil-Soo; Carman, George M

    2004-05-21

    Zinc is an essential nutrient required for the growth and metabolism of eukaryotic cells. In this work, we examined the effects of zinc depletion on the regulation of phospholipid synthesis in the yeast Saccharomyces cerevisiae. Zinc depletion resulted in a decrease in the activity levels of the CDP-diacylglycerol pathway enzymes phosphatidylserine synthase, phosphatidylserine decarboxylase, phosphatidylethanolamine methyltransferase, and phospholipid methyltransferase. In contrast, the activity of phosphatidylinositol synthase was elevated in response to zinc depletion. The level of Aut7p, a marker for the induction of autophagy, was also elevated in zinc-depleted cells. For the CHO1-encoded phosphatidylserine synthase, the reduction in activity in response to zinc depletion was controlled at the level of transcription. This regulation was mediated through the UAS(INO) element and by the transcription factors Ino2p, Ino4p, and Opi1p that are responsible for the inositol-mediated regulation of UAS(INO)-containing genes involved in phospholipid synthesis. Analysis of the cellular composition of the major membrane phospholipids showed that zinc depletion resulted in a 66% decrease in phosphatidylethanolamine and a 29% increase in phosphatidylinositol. A zrt1Delta zrt2Delta mutant (defective in the plasma membrane zinc transporters Zrt1p and Zrt2p) grown in the presence of zinc exhibited a phospholipid composition similar to that of wild type cells depleted for zinc. These results indicated that a decrease in the cytoplasmic levels of zinc was responsible for the alterations in phospholipid composition.

  8. Ubiquitin regulates TORC1 in yeast Saccharomyces cerevisiae.

    PubMed

    Hu, Kejin; Guo, Shuguang; Yan, Gonghong; Yuan, Wenjie; Zheng, Yin; Jiang, Yu

    2016-04-01

    In the yeast Saccharomyces cerevisiae the TOR complex 1 (TORC1) controls many growth-related cellular processes and is essential for cell growth and proliferation. Macrolide antibiotic rapamycin, in complex with a cytosol protein named FKBP12, specifically inhibits TORC1, causing growth arrest. The FKBP12-rapamycin complex interferes with TORC1 function by binding to the FRB domain of the TOR proteins. In an attempt to understand the role of the FRB domain in TOR function, we identified a single point mutation (Tor2(W2041R) ) in the FRB domain of Tor2 that renders yeast cells rapamycin resistant and temperature sensitive. At the permissive temperature, the Tor2 mutant protein is partially defective for binding with Kog1 and TORC1 is impaired for membrane association. At the restrictive temperature, Kog1 but not the Tor2 mutant protein, is rapidly degraded. Overexpression of ubiquitin stabilizes Kog1 and suppresses the growth defect associated with the tor2 mutant at the nonpremissive temperature. We find that ubiquitin binds non-covalently to Kog1, prevents Kog1 from degradation and stabilizes TORC1. Our data reveal a unique role for ubiquitin in regulation of TORC1 and suggest that Kog1 requires association with the Tor proteins for stabilization. © 2016 John Wiley & Sons Ltd.

  9. Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae.

    PubMed

    Conrad, Michaela; Schothorst, Joep; Kankipati, Harish Nag; Van Zeebroeck, Griet; Rubio-Texeira, Marta; Thevelein, Johan M

    2014-03-01

    The yeast Saccharomyces cerevisiae has been a favorite organism for pioneering studies on nutrient-sensing and signaling mechanisms. Many specific nutrient responses have been elucidated in great detail. This has led to important new concepts and insight into nutrient-controlled cellular regulation. Major highlights include the central role of the Snf1 protein kinase in the glucose repression pathway, galactose induction, the discovery of a G-protein-coupled receptor system, and role of Ras in glucose-induced cAMP signaling, the role of the protein synthesis initiation machinery in general control of nitrogen metabolism, the cyclin-controlled protein kinase Pho85 in phosphate regulation, nitrogen catabolite repression and the nitrogen-sensing target of rapamycin pathway, and the discovery of transporter-like proteins acting as nutrient sensors. In addition, a number of cellular targets, like carbohydrate stores, stress tolerance, and ribosomal gene expression, are controlled by the presence of multiple nutrients. The protein kinase A signaling pathway plays a major role in this general nutrient response. It has led to the discovery of nutrient transceptors (transporter receptors) as nutrient sensors. Major shortcomings in our knowledge are the relationship between rapid and steady-state nutrient signaling, the role of metabolic intermediates in intracellular nutrient sensing, and the identity of the nutrient sensors controlling cellular growth. © 2014 The Authors. FEMS Microbiology Reviews published by John Wiley & Sons Ltd on behalf of Federation of European Microbiological Societies.

  10. Calcium dependence of eugenol tolerance and toxicity in Saccharomyces cerevisiae.

    PubMed

    Roberts, Stephen K; McAinsh, Martin; Cantopher, Hanna; Sandison, Sean

    2014-01-01

    Eugenol is a plant-derived phenolic compound which has recognised therapeutical potential as an antifungal agent. However little is known of either its fungicidal activity or the mechanisms employed by fungi to tolerate eugenol toxicity. A better exploitation of eugenol as a therapeutic agent will therefore depend on addressing this knowledge gap. Eugenol initiates increases in cytosolic Ca2+ in Saccharomyces cerevisiae which is partly dependent on the plasma membrane calcium channel, Cch1p. However, it is unclear whether a toxic cytosolic Ca2+elevation mediates the fungicidal activity of eugenol. In the present study, no significant difference in yeast survival was observed following transient eugenol treatment in the presence or absence of extracellular Ca2+. Furthermore, using yeast expressing apoaequorin to report cytosolic Ca2+ and a range of eugenol derivatives, antifungal activity did not appear to be coupled to Ca2+ influx or cytosolic Ca2+ elevation. Taken together, these results suggest that eugenol toxicity is not dependent on a toxic influx of Ca2+. In contrast, careful control of extracellular Ca2+ (using EGTA or BAPTA) revealed that tolerance of yeast to eugenol depended on Ca2+ influx via Cch1p. These findings expose significant differences between the antifungal activity of eugenol and that of azoles, amiodarone and carvacrol. This study highlights the potential to use eugenol in combination with other antifungal agents that exhibit differing modes of action as antifungal agents to combat drug resistant infections.

  11. Dual effects of plant steroidal alkaloids on Saccharomyces cerevisiae.

    PubMed

    Simons, Veronika; Morrissey, John P; Latijnhouwers, Maita; Csukai, Michael; Cleaver, Adam; Yarrow, Carol; Osbourn, Anne

    2006-08-01

    Many plant species accumulate sterols and triterpenes as antimicrobial glycosides. These secondary metabolites (saponins) provide built-in chemical protection against pest and pathogen attack and can also influence induced defense responses. In addition, they have a variety of important pharmacological properties, including anticancer activity. The biological mechanisms underpinning the varied and diverse effects of saponins on microbes, plants, and animals are only poorly understood despite the ecological and pharmaceutical importance of this major class of plant secondary metabolites. Here we have exploited budding yeast (Saccharomyces cerevisiae) to investigate the effects of saponins on eukaryotic cells. The tomato steroidal glycoalkaloid alpha-tomatine has antifungal activity towards yeast, and this activity is associated with membrane permeabilization. Removal of a single sugar from the tetrasaccharide chain of alpha-tomatine results in a substantial reduction in antimicrobial activity. Surprisingly, the complete loss of sugars leads to enhanced antifungal activity. Experiments with alpha-tomatine and its aglycone tomatidine indicate that the mode of action of tomatidine towards yeast is distinct from that of alpha-tomatine and does not involve membrane permeabilization. Investigation of the effects of tomatidine on yeast by gene expression and sterol analysis indicate that tomatidine inhibits ergosterol biosynthesis. Tomatidine-treated cells accumulate zymosterol rather than ergosterol, which is consistent with inhibition of the sterol C(24) methyltransferase Erg6p. However, erg6 and erg3 mutants (but not erg2 mutants) have enhanced resistance to tomatidine, suggesting a complex interaction of erg mutations, sterol content, and tomatidine resistance.

  12. Reconstruction of cytosolic fumaric acid biosynthetic pathways in Saccharomyces cerevisiae

    PubMed Central

    2012-01-01

    Background Fumaric acid is a commercially important component of foodstuffs, pharmaceuticals and industrial materials, yet the current methods of production are unsustainable and ecologically destructive. Results In this study, the fumarate biosynthetic pathway involving reductive reactions of the tricarboxylic acid cycle was exogenously introduced in S. cerevisiae by a series of simple genetic modifications. First, the Rhizopus oryzae genes for malate dehydrogenase (RoMDH) and fumarase (RoFUM1) were heterologously expressed. Then, expression of the endogenous pyruvate carboxylase (PYC2) was up-regulated. The resultant yeast strain, FMME-001 ↑PYC2 + ↑RoMDH, was capable of producing significantly higher yields of fumarate in the glucose medium (3.18 ± 0.15 g liter-1) than the control strain FMME-001 empty vector. Conclusions The results presented here provide a novel strategy for fumarate biosynthesis, which represents an important advancement in producing high yields of fumarate in a sustainable and ecologically-friendly manner. PMID:22335940

  13. Regulation of the Saccharomyces cerevisiae DNA repair gene RAD16.

    PubMed Central

    Bang, D D; Timmermans, V; Verhage, R; Zeeman, A M; van de Putte, P; Brouwer, J

    1995-01-01

    The RAD16 gene product has been shown to be essential for the repair of the silenced mating type loci [Bang et al. (1992) Nucleic Acids Res. 20, 3925-3931]. More recently we demonstrated that the RAD16 and RAD7 proteins are also required for repair of non-transcribed strands of active genes in Saccharomyces cerevisiae [Waters et al. (1993) Mol. Gen. Genet. 239, 28-32]. We have studied the regulation of the RAD16 gene and found that the RAD16 transcript levels increased up to 7-fold upon UV irradiation. Heat shock at 42 degrees C also results in elevated levels of RAD16 mRNA. In sporulating MAT alpha/MATa diploid cells RAD16 mRNA is also induced. The basal level of the RAD16 transcript is constant during the mitotic cell cycle. G1-arrested cells show normal induction of RAD16 mRNA upon UV irradiation demonstrating that the induction is not a secondary consequence of G2 cell cycle arrest following UV irradiation. However, in cells arrested in G1 the induction of RAD16 mRNA after UV irradiation is not followed by a rapid decline as occurs in normal growing cells suggesting that the down regulation of RAD16 transcription is dependent on progression into the cell cycle. Images PMID:7784171

  14. Genes Required for Vacuolar Acidity in Saccharomyces Cerevisiae

    PubMed Central

    Preston, R. A.; Reinagel, P. S.; Jones, E. W.

    1992-01-01

    Mutations that cause loss of acidity in the vacuole (lysosome) of Saccharomyces cerevisiae were identified by screening colonies labeled with the fluorescent, pH-sensitive, vacuolar labeling agent, 6-carboxyfluorescein. Thirty nine vacuolar pH (Vph(-)) mutants were identified. Four of these contained mutant alleles of the previously described PEP3, PEP5, PEP6 and PEP7 genes. The remaining mutants defined eight complementation groups of vph mutations. No alleles of the VAT2 or TFP1 genes (known to encode subunits of the vacuolar H(+)-ATPase) were identified in the Vph(-) screen. Strains bearing mutations in any of six of the VPH genes failed to grow on medium buffered at neutral pH; otherwise, none of the vph mutations caused notable growth inhibition on standard yeast media. Expression of the vacuolar protease, carboxypeptidase Y, was defective in strains bearing vph4 mutations but was apparently normal in strains bearing any of the other vph mutations. Defects in vacuolar morphology at the light microscope level were evident in all Vph(-) mutants. Strains that contained representative mutant alleles of the 17 previously described PEP genes were assayed for vacuolar pH; mutations in seven of the PEP genes (including PEP3, PEP5, PEP6 and PEP7) caused loss of vacuolar acidity. PMID:1628805

  15. Repair of Oxidative DNA Damage in Saccharomyces cerevisiae.

    PubMed

    Chalissery, Jisha; Jalal, Deena; Al-Natour, Zeina; Hassan, Ahmed H

    2017-03-01

    Malfunction of enzymes that detoxify reactive oxygen species leads to oxidative attack on biomolecules including DNA and consequently activates various DNA repair pathways. The nature of DNA damage and the cell cycle stage at which DNA damage occurs determine the appropriate repair pathway to rectify the damage. Oxidized DNA bases are primarily repaired by base excision repair and nucleotide incision repair. Nucleotide excision repair acts on lesions that distort DNA helix, mismatch repair on mispaired bases, and homologous recombination and non-homologous end joining on double stranded breaks. Post-replication repair that overcomes replication blocks caused by DNA damage also plays a crucial role in protecting the cell from the deleterious effects of oxidative DNA damage. Mitochondrial DNA is also prone to oxidative damage and is efficiently repaired by the cellular DNA repair machinery. In this review, we discuss the DNA repair pathways in relation to the nature of oxidative DNA damage in Saccharomyces cerevisiae. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Assessing compensation for loss of vacuolar function in Saccharomyces cerevisiae.

    PubMed

    Marshall, Pamela A; Netzel, Nicholas; Guintchev, Jillian Wisby

    2012-02-01

    We analyzed how Saccharomyces cerevisiae cells compensate for the lack of a functional vacuole, an acidic membrane-bound degradative and ion storage compartment. We hypothesized that cells lacking a functional vacuole would compensate for the loss of the functions of the vacuole by altering gene expression and (or) metabolic flux. We used gene expression profiling and Biolog phenotype microarray analysis to determine the compensatory mechanisms of cells lacking vacuolar function. In steady state, vps33 and vps41 cells changed the transcriptional profile of some genes, but no complete pathways were upregulated or downregulated. We treated vps41 cells with calcium to tease out cellular compensation for loss of vacuole function under ionic stress; however, changes in gene expression were not utilized to compensate for loss of vacuole function under stress either, as genes whose transcriptional profiles were changed did not function together in any one cellular process. Phenotype microarray analysis indicated that logarithmically growing vps33 or vps41 cells did not seem to compensate for loss of vacuolar function but instead demonstrated additional pleiotropic phenotypes due to the function of the vacuole. Under rich media conditions, yeast utilize the vacuole to regulate stress, ion response, and peptide degradation. However, loss of the vacuole does not lead to observable compensation mechanisms.

  17. A Novel Inositol Pyrophosphate Phosphatase in Saccharomyces cerevisiae

    PubMed Central

    Steidle, Elizabeth A.; Chong, Lucy S.; Wu, Mingxuan; Crooke, Elliott; Fiedler, Dorothea; Resnick, Adam C.; Rolfes, Ronda J.

    2016-01-01

    Inositol pyrophosphates are high energy signaling molecules involved in cellular processes, such as energetic metabolism, telomere maintenance, stress responses, and vesicle trafficking, and can mediate protein phosphorylation. Although the inositol kinases underlying inositol pyrophosphate biosynthesis are well characterized, the phosphatases that selectively regulate their cellular pools are not fully described. The diphosphoinositol phosphate phosphohydrolase enzymes of the Nudix protein family have been demonstrated to dephosphorylate inositol pyrophosphates; however, the Saccharomyces cerevisiae homolog Ddp1 prefers inorganic polyphosphate over inositol pyrophosphates. We identified a novel phosphatase of the recently discovered atypical dual specificity phosphatase family as a physiological inositol pyrophosphate phosphatase. Purified recombinant Siw14 hydrolyzes the β-phosphate from 5-diphosphoinositol pentakisphosphate (5PP-IP5 or IP7) in vitro. In vivo, siw14Δ yeast mutants possess increased IP7 levels, whereas heterologous SIW14 overexpression eliminates IP7 from cells. IP7 levels increased proportionately when siw14Δ was combined with ddp1Δ or vip1Δ, indicating independent activity by the enzymes encoded by these genes. We conclude that Siw14 is a physiological phosphatase that modulates inositol pyrophosphate metabolism by dephosphorylating the IP7 isoform 5PP-IP5 to IP6. PMID:26828065

  18. Post-Transcriptional Regulation of Iron Homeostasis in Saccharomyces cerevisiae

    PubMed Central

    Martínez-Pastor, María Teresa; de Llanos, Rosa; Romero, Antonia María; Puig, Sergi

    2013-01-01

    Iron is an essential micronutrient for all eukaryotic organisms because it participates as a redox cofactor in a wide variety of biological processes. Recent studies in Saccharomyces cerevisiae have shown that in response to iron deficiency, an RNA-binding protein denoted Cth2 coordinates a global metabolic rearrangement that aims to optimize iron utilization. The Cth2 protein contains two Cx8Cx5Cx3H tandem zinc fingers (TZFs) that specifically bind to adenosine/uridine-rich elements within the 3′ untranslated region of many mRNAs to promote their degradation. The Cth2 protein shuttles between the nucleus and the cytoplasm. Once inside the nucleus, Cth2 binds target mRNAs and stimulates alternative 3′ end processing. A Cth2/mRNA-containing complex is required for export to the cytoplasm, where the mRNA is degraded by the 5′ to 3′ degradation pathway. This post-transcriptional regulatory mechanism limits iron utilization in nonessential pathways and activates essential iron-dependent enzymes such as ribonucleotide reductase, which is required for DNA synthesis and repair. Recent findings indicate that the TZF-containing tristetraprolin protein also functions in modulating human iron homeostasis. Elevated iron concentrations can also be detrimental for cells. The Rnt1 RNase III exonuclease protects cells from excess iron by promoting the degradation of a subset of the Fe acquisition system when iron levels rise. PMID:23903042

  19. Temperature-sensitive glucosamine auxotroph of Saccharomyces cerevisiae.

    PubMed Central

    Ballou, L; Grove, J R; Roon, R J; Wiggs, J; Ballou, C E

    1981-01-01

    Temperature-sensitive revertants were isolated from Saccharomyces cerevisiae D-glucosamine auxotrophs previously obtained in this laboratory (W. L. Whelan and C. E. Ballou, J. Bacteriol. 124:1545-1557, 1975). The auxotrophs lack the enzyme 2-amino-2-deoxy-D-glucose-6-phosphate ketol-isomerase (EC 5.3.1.19), and the revertants appear to be temperature sensitive in the formation of enzyme activity. The enzyme they produce under permissive conditions decays in activity at a rate comparable to that of the wild-type enzyme, and it has similar kinetic properties. The homozygous diploid mutant fails to sporulate at the nonpermissive temperature. Temperature shift experiments were carried out in an effort to determine what effect glucosamine deficiency had on mannoprotein secretion as reflected in the formation of external asparaginase. Although the results were complicated by the slow decay of the residual ketol-isomerase activity, they did show that mannoprotein synthesis or secretion was altered when the internal pool of D-glucosamine was depleted. PMID:6765596

  20. Mating-type genes and MAT switching in Saccharomyces cerevisiae.

    PubMed

    Haber, James E

    2012-05-01

    Mating type in Saccharomyces cerevisiae is determined by two nonhomologous alleles, MATa and MATα. These sequences encode regulators of the two different haploid mating types and of the diploids formed by their conjugation. Analysis of the MATa1, MATα1, and MATα2 alleles provided one of the earliest models of cell-type specification by transcriptional activators and repressors. Remarkably, homothallic yeast cells can switch their mating type as often as every generation by a highly choreographed, site-specific homologous recombination event that replaces one MAT allele with different DNA sequences encoding the opposite MAT allele. This replacement process involves the participation of two intact but unexpressed copies of mating-type information at the heterochromatic loci, HMLα and HMRa, which are located at opposite ends of the same chromosome-encoding MAT. The study of MAT switching has yielded important insights into the control of cell lineage, the silencing of gene expression, the formation of heterochromatin, and the regulation of accessibility of the donor sequences. Real-time analysis of MAT switching has provided the most detailed description of the molecular events that occur during the homologous recombinational repair of a programmed double-strand chromosome break.

  1. Metabolically engineered Saccharomyces cerevisiae for branched-chain ester productions.

    PubMed

    Yuan, Jifeng; Mishra, Pranjul; Ching, Chi Bun

    2016-12-10

    Medium branched-chain esters can be used not only as a biofuel but are also useful chemicals with various industrial applications. The development of economically feasible and environment friendly bio-based fuels requires efficient cell factories capable of producing desired products in high yield. Herein, we sought to use a number of strategies to engineer Saccharomyces cerevisiae for high-level production of branched-chain esters. Mitochondrion-based expression of ATF1 gene in a base strain with an overexpressed valine biosynthetic pathway together with expression of mitochondrion-relocalized α-ketoacid decarboxylase (encoded by ARO10) and alcohol dehydrogenase (encoded by ADH7) not only produced isobutyl acetate, but also 3-methyl-1-butyl acetate and 2-methyl-1-butyl acetate. Further segmentation of the downstream esterification step into the cytosol to utilize the cytosolic acetyl-CoA pool for acetyltransferase (ATF)-mediated condensation enabled an additional fold improvement of ester productions. The best titre attained in the present study is 260.2mg/L isobutyl acetate, 296.1mg/L 3-methyl-1-butyl acetate and 289.6mg/L 2-methyl-1-butyl acetate. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. A novel selection system for chromosome translocations in Saccharomyces cerevisiae.

    PubMed Central

    Tennyson, Rachel B; Ebran, Nathalie; Herrera, Anissa E; Lindsley, Janet E

    2002-01-01

    Chromosomal translocations are common genetic abnormalities found in both leukemias and solid tumors. While much has been learned about the effects of specific translocations on cell proliferation, much less is known about what causes these chromosome rearrangements. This article describes the development and use of a system that genetically selects for rare translocation events using the yeast Saccharomyces cerevisiae. A translocation YAC was created that contains the breakpoint cluster region from the human MLL gene, a gene frequently involved in translocations in leukemia patients, flanked by positive and negative selection markers. A translocation between the YAC and a yeast chromosome, whose breakpoint falls within the MLL DNA, physically separates the markers and forms the basis for the selection. When RAD52 is deleted, essentially all of the selected and screened cells contain simple translocations. The detectable translocation rates are the same in haploids and diploids, although the mechanisms involved and true translocation rates may be distinct. A unique double-strand break induced within the MLL sequences increases the number of detectable translocation events 100- to 1000-fold. This novel system provides a tractable assay for answering basic mechanistic questions about the development of chromosomal translocations. PMID:11973293

  3. Kem Mutations Affect Nuclear Fusion in Saccharomyces Cerevisiae

    PubMed Central

    Kim, J.; Ljungdahl, P. O.; Fink, G. R.

    1990-01-01

    We have identified mutations in three genes of Saccharomyces cerevisiae, KEM1, KEM2 and KEM3, that enhance the nuclear fusion defect of kar1-1 yeast during conjugation. The KEM1 and KEM3 genes are located on the left arm of chromosome VII. Kem mutations reduce nuclear fusion whether the kem and the kar1-1 mutations are in the same or in different parents (i.e., in both kem kar1-1 X wild-type and kem X kar1-1 crosses). kem1 X kem1 crosses show a defect in nuclear fusion, but kem1 X wild-type crosses do not. Mutant kem1 strains are hypersensitive to benomyl, lose chromosomes at a rate 10-20-fold higher than KEM(+) strains, and lose viability upon nitrogen starvation. In addition, kem1/kem1 diploids are unable to sporulate. Cells containing a kem1 null allele grow very poorly, have an elongated rod-shape and are defective in spindle pole body duplication and/or separation. The KEM1 gene, which is expressed as a 5.5-kb mRNA transcript, contains a 4.6-kb open reading frame encoding a 175-kD protein. PMID:2076815

  4. Respiratory Development in Saccharomyces cerevisiae Grown at Controlled Oxygen Tension

    PubMed Central

    Rogers, P. J.; Stewart, P. R.

    1973-01-01

    Saccharomyces cerevisiae was grown in batch culture over a wide range of oxygen concentrations, varying from the anaerobic condition to a maximal dissolved oxygen concentration of 3.5 μM. The development of cells was assayed by measuring amounts of the aerobic cytochromes aa3, b, c, and c1, the cellular content of unsaturated fatty acids and ergosterol, and the activity of respiratory enzyme complexes. The half-maximal levels of membrane-bound cytochromes aa3, b, and c1, were reached in cells grown in O2 concentrations around 0.1 μM; this was similar to the oxygen concentration required for half-maximal levels of unsaturated fatty acid and sterol. However, the synthesis of ubiquinone and cytochrome c and the increase in fumarase activity were essentially linear functions of the dissolved oxygen concentration up to 3.5 μM oxygen. The synthesis of the succinate dehydrogenase, succinate cytochrome c reductase, and cytochrome c oxidase complexes showed different responses to changes in O2 concentration in the growth medium. Cyanide-insensitive respiration and P450 cytochrome content were maximal at 0.25 μM oxygen and declined in both more anaerobic and aerobic conditions. Cytochrome c peroxidase and catalase activities in cell-free homogenates were high in all but the most strictly anaerobic cells. PMID:4352179

  5. Identification of new cell size control genes in S. cerevisiae

    PubMed Central

    2012-01-01

    Cell size homeostasis is a conserved attribute in many eukaryotic species involving a tight regulation between the processes of growth and proliferation. In budding yeast S. cerevisiae, growth to a “critical cell size” must be achieved before a cell can progress past START and commit to cell division. Numerous studies have shown that progression past START is actively regulated by cell size control genes, many of which have implications in cell cycle control and cancer. Two initial screens identified genes that strongly modulate cell size in yeast. Since a second generation yeast gene knockout collection has been generated, we screened an additional 779 yeast knockouts containing 435 new ORFs (~7% of the yeast genome) to supplement previous cell size screens. Upon completion, 10 new strong size mutants were identified: nine in log-phase cells and one in saturation-phase cells, and 97% of the yeast genome has now been screened for cell size mutations. The majority of the logarithmic phase size mutants have functions associated with translation further implicating the central role of growth control in the cell division process. Genetic analyses suggest ECM9 is directly associated with the START transition. Further, the small (whi) mutants mrpl49Δ and cbs1Δ are dependent on CLN3 for cell size effects. In depth analyses of new size mutants may facilitate a better understanding of the processes that govern cell size homeostasis. PMID:23234503

  6. Rapid Identification of Chemical Genetic Interactions in Saccharomyces cerevisiae

    PubMed Central

    Dilworth, David; Nelson, Christopher J.

    2015-01-01

    Determining the mode of action of bioactive chemicals is of interest to a broad range of academic, pharmaceutical, and industrial scientists. Saccharomyces cerevisiae, or budding yeast, is a model eukaryote for which a complete collection of ~6,000 gene deletion mutants and hypomorphic essential gene mutants are commercially available. These collections of mutants can be used to systematically detect chemical-gene interactions, i.e. genes necessary to tolerate a chemical. This information, in turn, reports on the likely mode of action of the compound. Here we describe a protocol for the rapid identification of chemical-genetic interactions in budding yeast. We demonstrate the method using the chemotherapeutic agent 5-fluorouracil (5-FU), which has a well-defined mechanism of action. Our results show that the nuclear TRAMP RNA exosome and DNA repair enzymes are needed for proliferation in the presence of 5-FU, which is consistent with previous microarray based bar-coding chemical genetic approaches and the knowledge that 5-FU adversely affects both RNA and DNA metabolism. The required validation protocols of these high-throughput screens are also described. PMID:25867090

  7. Mating-Type Genes and MAT Switching in Saccharomyces cerevisiae

    PubMed Central

    Haber, James E.

    2012-01-01

    Mating type in Saccharomyces cerevisiae is determined by two nonhomologous alleles, MATa and MATα. These sequences encode regulators of the two different haploid mating types and of the diploids formed by their conjugation. Analysis of the MATa1, MATα1, and MATα2 alleles provided one of the earliest models of cell-type specification by transcriptional activators and repressors. Remarkably, homothallic yeast cells can switch their mating type as often as every generation by a highly choreographed, site-specific homologous recombination event that replaces one MAT allele with different DNA sequences encoding the opposite MAT allele. This replacement process involves the participation of two intact but unexpressed copies of mating-type information at the heterochromatic loci, HMLα and HMRa, which are located at opposite ends of the same chromosome-encoding MAT. The study of MAT switching has yielded important insights into the control of cell lineage, the silencing of gene expression, the formation of heterochromatin, and the regulation of accessibility of the donor sequences. Real-time analysis of MAT switching has provided the most detailed description of the molecular events that occur during the homologous recombinational repair of a programmed double-strand chromosome break. PMID:22555442

  8. Genetic Analysis of Default Mating Behavior in Saccharomyces Cerevisiae

    PubMed Central

    Dorer, R.; Boone, C.; Kimbrough, T.; Kim, J.; Hartwell, L. H.

    1997-01-01

    Haploid Saccharomyces cerevisiae cells find each other during conjugation by orienting their growth toward each other along pheromone gradients (chemotropism). However, when their receptors are saturated for pheromone binding, yeast cells must select a mate by executing a default pathway in which they choose a mating partner at random. We previously demonstrated that this default pathway requires the SPA2 gene. In this report we show that the default mating pathway also requires the AXL1, FUS1, FUS2, FUS3, PEA2, RVS161, and BNI1 genes. These genes, including SPA2, are also important for efficient cell fusion during chemotropic mating. Cells containing null mutations in these genes display defects in cell fusion that subtly affect mating efficiency. In addition, we found that the defect in default mating caused by mutations in SPA2 is partially suppressed by multiple copies of two genes, FUS2 and MFA2. These findings uncover a molecular relationship between default mating and cell fusion. Moreover, because axl1 mutants secrete reduced levels of a-factor and are defective at both cell fusion and default mating, these results reveal an important role for a-factor in cell fusion and default mating. We suggest that default mating places a more stringent requirement on some aspects of cell fusion than does chemotropic mating. PMID:9135999

  9. Defects arising from whole-genome duplications in Saccharomyces cerevisiae.

    PubMed Central

    Andalis, Alex A; Storchova, Zuzana; Styles, Cora; Galitski, Timothy; Pellman, David; Fink, Gerald R

    2004-01-01

    Comparisons among closely related species have led to the proposal that the duplications found in many extant genomes are the remnants of an ancient polyploidization event, rather than a result of successive duplications of individual chromosomal segments. If this interpretation is correct, it would support Ohno's proposal that polyploidization drives evolution by generating the genetic material necessary for the creation of new genes. Paradoxically, analysis of contemporary polyploids suggests that increased ploidy is an inherently unstable state. To shed light on this apparent contradiction and to determine the effects of nascent duplications of the entire genome, we generated isogenic polyploid strains of the budding yeast Saccharomyces cerevisiae. Our data show that an increase in ploidy results in a marked decrease in a cell's ability to survive during stationary phase in growth medium. Tetraploid cells die rapidly, whereas isogenic haploids remain viable for weeks. Unlike haploid cells, which arrest growth as unbudded cells, tetraploid cells continue to bud and form mitotic spindles in stationary phase. The stationary-phase death of tetraploids can be prevented by mutations or conditions that result in growth arrest. These data show that whole-genome duplications are accompanied by defects that affect viability and subsequent survival of the new organism. PMID:15280227

  10. Biotransformation of mogrosides from Siraitia grosvenorii Swingle by Saccharomyces cerevisiae.

    PubMed

    Chiu, Chun-Hui; Wang, Reuben; Lee, Cho-Ching; Lo, Yi-Chen; Lu, Ting-Jang

    2013-07-24

    Mogrosides are a group of triterpenoidal saponins from the fruit of Siraitia grosvenorii Swingle; they are intensely sweet and have consequently been used as a substitute for sugar by the food industry. The lack of efficient methods to produce specific mogrosides has hindered investigation of the relationship between their structure and bioactivity, e.g., down-regulation of blood glucose levels, anti-inflammation, and antiviral infection. Here, we attempt to selectively convert the major saponin mogroside V, a mogrol pentaglucoside, into mogroside III E, a triglucoside, via the β-glucosidases of the budding yeast Saccharomyces cerevisiae. We report that the β-glucopyranosyl and β-glucopyranosyl-(1→2)-β-d-glucopyranosyl attached on C-3 and -24 of mogrol, respectively, were resistant to hydrolysis by yeast β-d-glucosidases. We further screened 16 mutants bearing single defective glucanase or glucosidase genes, thereby demonstrating that Exg1 is a major enzyme of the initiation of mogroside V conversion. Deletion of the KRE6 gene unexpectedly facilitated the production of mogroside III E in yeast culture. This paper demonstrates that yeast knockout mutants are a valuable tool for saponin modification and for studying the specificity of glucosidase function.

  11. Cell cycle regulation of homologous recombination in Saccharomyces cerevisiae.

    PubMed

    Mathiasen, David P; Lisby, Michael

    2014-03-01

    Homologous recombination (HR) contributes to maintaining genome integrity by facilitating error-free repair of DNA double-strand breaks (DSBs) primarily during the S and G2 phases of the mitotic cell cycle, while nonhomologous end joining (NHEJ) is the preferred pathway for DSB repair in G1 phase. The decision to repair a DSB by NHEJ or HR is made primarily at the level of DSB end resection, which is inhibited by the Ku complex in G1 and promoted by the Sae2 and Mre11 nucleases in S/G2 . The cell cycle regulation of HR is accomplished both at the transcription level and at the protein level through post-translational modification, degradation and subcellular localization. Cyclin-dependent kinase Cdc28 plays an established key role in these events, while the role of transcriptional regulation and protein degradation are less well understood. Here, the cell cycle regulatory mechanisms for mitotic HR in Saccharomyces cerevisiae are reviewed, and evolutionarily conserved principles are highlighted. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  12. d-Xylulose Fermentation to Ethanol by Saccharomyces cerevisiae.

    PubMed

    Chiang, L C; Gong, C S; Chen, L F; Tsao, G T

    1981-08-01

    We used commercial bakers' yeast (Saccharomyces cerevisiae) to study the conversion of d-xylulose to ethanol in the presence of d-xylose. The rate of ethanol production increased with an increase in yeast cell density. The optimal temperature for d-xylulose fermentation was 35 degrees C, and the optimal pH range was 4 to 6. The fermentation of d-xylulose by yeast resulted in the production of ethanol as the major product; small amounts of xylitol and glycerol were also produced. The production of xylitol was influenced by pH as well as temperature. High pH values and low temperatures enhanced xylitol production. The rate of d-xylulose fermentation decreased when the production of ethanol yielded concentrations of 4% or more. The slow conversion rate of d-xylulose to ethanol was increased by increasing the yeast cell density. The overall production of ethanol from d-xylulose by yeast cells under optimal conditions was 90% of the theoretical yield.

  13. Protective Effects of Arginine on Saccharomyces cerevisiae Against Ethanol Stress

    PubMed Central

    Cheng, Yanfei; Du, Zhaoli; Zhu, Hui; Guo, Xuena; He, Xiuping

    2016-01-01

    Yeast cells are challenged by various environmental stresses in the process of industrial fermentation. As the currently main organism for bio-ethanol production, Saccharomyces cerevisiae suffers from ethanol stress. Some amino acids have been reported to be related to yeast tolerance to stresses. Here the relationship between arginine and yeast response to ethanol stress was investigated. Marked inhibitions of ethanol on cell growth, expression of genes involved in arginine biosynthesis and intracellular accumulation of arginine were observed. Furthermore, extracellular addition of arginine can abate the ethanol damage largely. To further confirm the protective effects of arginine on yeast cells, yeast strains with different levels of arginine content were constructed by overexpression of ARG4 involved in arginine biosynthesis or CAR1 encoding arginase. Intracellular arginine was increased by 18.9% or 13.1% respectively by overexpression of ARG4 or disruption of CAR1, which enhanced yeast tolerance to ethanol stress. Moreover, a 41.1% decrease of intracellular arginine was observed in CAR1 overexpressing strain, which made yeast cells keenly sensitive to ethanol. Further investigations indicated that arginine protected yeast cells from ethanol damage by maintaining the integrity of cell wall and cytoplasma membrane, stabilizing the morphology and function of organellae due to low ROS generation. PMID:27507154

  14. Symmetric cell division in pseudohyphae of the yeast Saccharomyces cerevisiae.

    PubMed Central

    Kron, S J; Styles, C A; Fink, G R

    1994-01-01

    Laboratory strains of Saccharomyces cerevisiae are dimorphic; in response to nitrogen starvation they switch from a yeast form (YF) to a filamentous pseudohyphal (PH) form. Time-lapse video microscopy of dividing cells reveals that YF and PH cells differ in their cell cycles and budding polarity. The YF cell cycle is controlled at the G1/S transition by the cell-size checkpoint Start. YF cells divide asymmetrically, producing small daughters from full-sized mothers. As a result, mothers and daughters bud asynchronously. Mothers bud immediately but daughters grow in G1 until they achieve a critical cell size. By contrast, PH cells divide symmetrically, restricting mitosis until the bud grows to the size of the mother. Thus, mother and daughter bud synchronously in the next cycle, without a G1 delay before Start. YF and PH cells also exhibit distinct bud-site selection patterns. YF cells are bipolar, producing their second and subsequent buds at either pole. PH cells are unipolar, producing their second and subsequent buds only from the end opposite the junction with their mother. We propose that in PH cells a G2 cell-size checkpoint delays mitosis until bud size reaches that of the mother cell. We conclude that yeast and PH forms are distinct cell types each with a unique cell cycle, budding pattern, and cell shape. Images PMID:7841518

  15. Membrane engineering of S. cerevisiae targeting sphingolipid metabolism.

    PubMed

    Lindahl, Lina; Santos, Aline X S; Olsson, Helén; Olsson, Lisbeth; Bettiga, Maurizio

    2017-02-01

    The sustainable production of fuels and chemicals using microbial cell factories is now well established. However, many microbial production processes are still limited in scale due to inhibition from compounds that are present in the feedstock or are produced during fermentation. Some of these inhibitors interfere with cellular membranes and change the physicochemical properties of the membranes. Another group of molecules is dependent on their permeation rate through the membrane for their inhibition. We have investigated the use of membrane engineering to counteract the negative effects of inhibitors on the microorganism with focus on modulating the abundance of complex sphingolipids in the cell membrane of Saccharomyces cerevisiae. Overexpression of ELO3, involved in fatty acid elongation, and AUR1, which catalyses the formation of complex sphingolipids, had no effect on the membrane lipid profile or on cellular physiology. Deletion of the genes ORM1 and ORM2, encoding negative regulators of sphingolipid biosynthesis, decreased cell viability and considerably reduced phosphatidylinositol and complex sphingolipids. Additionally, combining ELO3 and AUR1 overexpression with orm1/2Δ improved cell viability and increased fatty acyl chain length compared with only orm1/2Δ. These findings can be used to further study the sphingolipid metabolism, as well as giving guidance in membrane engineering.

  16. Sulfate assimilation mediates tellurite reduction and toxicity in Saccharomyces cerevisiae.

    PubMed

    Ottosson, Lars-Göran; Logg, Katarina; Ibstedt, Sebastian; Sunnerhagen, Per; Käll, Mikael; Blomberg, Anders; Warringer, Jonas

    2010-10-01

    Despite a century of research and increasing environmental and human health concerns, the mechanistic basis of the toxicity of derivatives of the metalloid tellurium, Te, in particular the oxyanion tellurite, Te(IV), remains unsolved. Here, we provide an unbiased view of the mechanisms of tellurium metabolism in the yeast Saccharomyces cerevisiae by measuring deviations in Te-related traits of a complete collection of gene knockout mutants. Reduction of Te(IV) and intracellular accumulation as metallic tellurium strongly correlated with loss of cellular fitness, suggesting that Te(IV) reduction and toxicity are causally linked. The sulfate assimilation pathway upstream of Met17, in particular, the sulfite reductase and its cofactor siroheme, was shown to be central to tellurite toxicity and its reduction to elemental tellurium. Gene knockout mutants with altered Te(IV) tolerance also showed a similar deviation in tolerance to both selenite and, interestingly, selenomethionine, suggesting that the toxicity of these agents stems from a common mechanism. We also show that Te(IV) reduction and toxicity in yeast is partially mediated via a mitochondrial respiratory mechanism that does not encompass the generation of substantial oxidative stress. The results reported here represent a robust base from which to attack the mechanistic details of Te(IV) toxicity and reduction in a eukaryotic organism.

  17. Comparative Genomics of Saccharomyces cerevisiae Natural Isolates for Bioenergy Production

    PubMed Central

    Wohlbach, Dana J.; Rovinskiy, Nikolay; Lewis, Jeffrey A.; Sardi, Maria; Schackwitz, Wendy S.; Martin, Joel A.; Deshpande, Shweta; Daum, Christopher G.; Lipzen, Anna; Sato, Trey K.; Gasch, Audrey P.

    2014-01-01

    Lignocellulosic plant material is a viable source of biomass to produce alternative energy including ethanol and other biofuels. However, several factors—including toxic byproducts from biomass pretreatment and poor fermentation of xylose and other pentose sugars—currently limit the efficiency of microbial biofuel production. To begin to understand the genetic basis of desirable traits, we characterized three strains of Saccharomyces cerevisiae with robust growth in a pretreated lignocellulosic hydrolysate or tolerance to stress conditions relevant to industrial biofuel production, through genome and transcriptome sequencing analysis. All stress resistant strains were highly mosaic, suggesting that genetic admixture may contribute to novel allele combinations underlying these phenotypes. Strain-specific gene sets not found in the lab strain were functionally linked to the tolerances of particular strains. Furthermore, genes with signatures of evolutionary selection were enriched for functional categories important for stress resistance and included stress-responsive signaling factors. Comparison of the strains’ transcriptomic responses to heat and ethanol treatment—two stresses relevant to industrial bioethanol production—pointed to physiological processes that were related to particular stress resistance profiles. Many of the genotype-by-environment expression responses occurred at targets of transcription factors with signatures of positive selection, suggesting that these strains have undergone positive selection for stress tolerance. Our results generate new insights into potential mechanisms of tolerance to stresses relevant to biofuel production, including ethanol and heat, present a backdrop for further engineering, and provide glimpses into the natural variation of stress tolerance in wild yeast strains. PMID:25364804

  18. Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation

    PubMed Central

    Ha, Suk-Jin; Galazka, Jonathan M.; Rin Kim, Soo; Choi, Jin-Ho; Yang, Xiaomin; Seo, Jin-Ho; Louise Glass, N.; Cate, Jamie H. D.; Jin, Yong-Su

    2011-01-01

    The use of plant biomass for biofuel production will require efficient utilization of the sugars in lignocellulose, primarily glucose and xylose. However, strains of Saccharomyces cerevisiae presently used in bioethanol production ferment glucose but not xylose. Yeasts engineered to ferment xylose do so slowly, and cannot utilize xylose until glucose is completely consumed. To overcome these bottlenecks, we engineered yeasts to coferment mixtures of xylose and cellobiose. In these yeast strains, hydrolysis of cellobiose takes place inside yeast cells through the action of an intracellular β-glucosidase following import by a high-affinity cellodextrin transporter. Intracellular hydrolysis of cellobiose minimizes glucose repression of xylose fermentation allowing coconsumption of cellobiose and xylose. The resulting yeast strains, cofermented cellobiose and xylose simultaneously and exhibited improved ethanol yield when compared to fermentation with either cellobiose or xylose as sole carbon sources. We also observed improved yields and productivities from cofermentation experiments performed with simulated cellulosic hydrolyzates, suggesting this is a promising cofermentation strategy for cellulosic biofuel production. The successful integration of cellobiose and xylose fermentation pathways in yeast is a critical step towards enabling economic biofuel production. PMID:21187422

  19. Oxygen requirements of yeasts. [Saccharomyces cerevisiae; Candida tropicalis

    SciTech Connect

    Visser, W.; Scheffers, W.A.; Batenburg-Van Der Vegte, W.H.; Van Dijken, J.P. )

    1990-12-01

    Type species of 75 yeast genera were examined for their ability to grow anaerobically in complex and mineral media. To define anaerobic conditions, we added a redox indicator, resazurin, to the media to determine low redox potentials. All strains tested were capable of fermenting glucose to ethanol in oxygen-limited shake-flask cultures, even those of species generally regarded as nonfermentative. However, only 23% of the yeast species tested grew under anaerobic conditions. A comparative study with a number of selected strains revealed that Saccharomyces cerevisiae stands out as a yeast capable of rapid growth at low redox potentials. Other yeasts, such as Torulaspora delbrueckii and Candida tropicalis, grew poorly ({mu}{sub max}, 0.03 and 0.05 h{sup {minus}1}, respectively) under anaerobic conditions in mineral medium supplemented with Tween 80 and ergosterol. The latter organisms grew rapidly under oxygen limitation and then displayed a high rate of alcoholic fermentation. It can be concluded that these yeasts have hitherto-unidentified oxygen requirements for growth.

  20. Brazilian propolis protects Saccharomyces cerevisiae cells against oxidative stress

    PubMed Central

    de Sá, Rafael A.; de Castro, Frederico A.V.; Eleutherio, Elis C.A.; de Souza, Raquel M.; da Silva, Joaquim F.M.; Pereira, Marcos D.

    2013-01-01

    Propolis is a natural product widely used for humans. Due to its complex composition, a number of applications (antimicrobial, antiinflammatory, anesthetic, cytostatic and antioxidant) have been attributed to this substance. Using Saccharomyces cerevisiae as a eukaryotic model we investigated the mechanisms underlying the antioxidant effect of propolis from Guarapari against oxidative stress. Submitting a wild type (BY4741) and antioxidant deficient strains (ctt1Δ, sod1Δ, gsh1Δ, gtt1Δ and gtt2Δ) either to 15 mM menadione or to 2 mM hydrogen peroxide during 60 min, we observed that all strains, except the mutant sod1Δ, acquired tolerance when previously treated with 25 μg/mL of alcoholic propolis extract. Such a treatment reduced the levels of ROS generation and of lipid peroxidation, after oxidative stress. The increase in Cu/Zn-Sod activity by propolis suggests that the protection might be acting synergistically with Cu/Zn-Sod. PMID:24516431

  1. Protein disorder reduced in Saccharomyces cerevisiae to survive heat shock

    PubMed Central

    Vicedo, Esmeralda; Gasik, Zofia; Dong, Yu-An; Goldberg, Tatyana; Rost, Burkhard

    2015-01-01

    Recent experiments established that a culture of Saccharomyces cerevisiae (baker’s yeast) survives sudden high temperatures by specifically duplicating the entire chromosome III and two chromosomal fragments (from IV and XII). Heat shock proteins (HSPs) are not significantly over-abundant in the duplication. In contrast, we suggest a simple algorithm to “ postdict ” the experimental results: Find a small enough chromosome with minimal protein disorder and duplicate this region. This algorithm largely explains all observed duplications. In particular, all regions duplicated in the experiment reduced the overall content of protein disorder. The differential analysis of the functional makeup of the duplication remained inconclusive. Gene Ontology (GO) enrichment suggested over-representation in processes related to reproduction and nutrient uptake. Analyzing the protein-protein interaction network (PPI) revealed that few network-central proteins were duplicated. The predictive hypothesis hinges upon the concept of reducing proteins with long regions of disorder in order to become less sensitive to heat shock attack. PMID:26673203

  2. Hed1 Promotes Meiotic Crossover Formation in Saccharomyces cerevisiae.

    PubMed

    Kong, Yoon-Ju; Joo, Jeong-Hwan; Kim, Keun Pil; Hong, Soogil

    2017-02-28

    Homologous recombination occurs between homologous chromosomes and is significantly involved in programmed double-strand break (DSB) repair. Activation of two recombinases, Rad51 and Dmc1, is essential for an interhomolog bias during meiosis. Rad51 participates in both mitotic and meiotic recombination, and its strand exchange activity is regulated by an inhibitory factor during meiosis. Thus, activities of Rad51 and Dmc1 are coordinated to promote homolog bias. It has been reported that Hed1, a meiosis-specific protein in budding yeast, regulates Rad51-dependent recombination activity. Here, we investigated the role of Hed1 in meiotic recombination by ectopic expression of the protein after pre-meiotic replication in Saccharomyces cerevisiae. DNA physical analysis revealed that the overexpression of Hed1 delays the DSB-to-joint molecule (JM) transition and promotes interhomolog JM formation. The study indicates a possible role of Hed1 in controlling the strand exchange activity of Rad51 and, eventually, meiotic crossover formation.

  3. Distribution and regulation of stochasticity and plasticity in Saccharomyces cerevisiae

    SciTech Connect

    Dar, Roy D.; Karig, David K; Cooke, John F; Cox, Chris D.; Simpson, Michael L

    2010-01-01

    Stochasticity is an inherent feature of complex systems with nanoscale structure. In such systems information is represented by small collections of elements (e.g. a few electrons on a quantum dot), and small variations in the populations of these elements may lead to big uncertainties in the information. Unfortunately, little is known about how to work within this inherently noisy environment to design robust functionality into complex nanoscale systems. Here, we look to the biological cell as an intriguing model system where evolution has mediated the trade-offs between fluctuations and function, and in particular we look at the relationships and trade-offs between stochastic and deterministic responses in the gene expression of budding yeast (Saccharomyces cerevisiae). We find gene regulatory arrangements that control the stochastic and deterministic components of expression, and show that genes that have evolved to respond to stimuli (stress) in the most strongly deterministic way exhibit the most noise in the absence of the stimuli. We show that this relationship is consistent with a bursty 2-state model of gene expression, and demonstrate that this regulatory motif generates the most uncertainty in gene expression when there is the greatest uncertainty in the optimal level of gene expression.

  4. Calcium signaling and copper toxicity in Saccharomyces cerevisiae cells.

    PubMed

    Ruta, Lavinia L; Popa, Claudia V; Nicolau, Ioana; Farcasanu, Ileana C

    2016-12-01

    To respond to metal surpluses, cells have developed intricate ways of defense against the excessive metallic ions. To understand the ways in which cells sense the presence of toxic concentration in the environment, the role of Ca(2+) in mediating the cell response to high Cu(2+) was investigated in Saccharomyces cerevisiae cells. It was found that the cell exposure to high Cu(2+) was accompanied by elevations in cytosolic Ca(2+) with patterns that were influenced not only by Cu(2+) concentration but also by the oxidative state of the cell. When Ca(2+) channel deletion mutants were used, it was revealed that the main contributor to the cytosolic Ca(2+) pool under Cu(2+) stress was the vacuolar Ca(2+) channel, Yvc1, also activated by the Cch1-mediated Ca(2+) influx. Using yeast mutants defective in the Cu(2+) transport across the plasma membrane, it was found that the Cu(2+)-dependent Ca(2+) elevation could correlate not only with the accumulated metal, but also with the overall oxidative status. Moreover, it was revealed that Cu(2+) and H2O2 acted in synergy to induce Ca(2+)-mediated responses to external stress.

  5. D-xylulose fermentation to ethanol by Saccharomyces cerevisiae

    SciTech Connect

    Chiang, L.C.; Gong, C.S.; Chen, L.F.; Tsao, G.T.

    1981-08-01

    Commercial bakers' yeast (Saccharomyces cerevisiae) was used to study the conversion of D-xylulose to ethanol in the presence of D-xylose. The rate of ethanol production increased with an increase in yeast cell density. The optimal temperature for D-xylulose fermentation was 35 degrees Celcius, and the optimal pH range was 4 to 6. The fermentation of D-xylulose by yeast resulted in the production of ethanol as the major product; small amounts of xylitol and glycerol were also produced. The production of xylitol was influenced by pH as well as temperature. High pH values and low temperatures enhanced xylitol production. The rate of D-xylulose fermentation decreased when the production of ethanol yielded concentrations of 4% or more. The slow conversion rate of D-xylulose to ethanol was increased by increasing the yeast cell density. The overall production of ethanol from D-xylulose by yeast cells under optimal conditions was 90% of the theoretical yield. (Refs. 21).

  6. D-xylulose fermentation to ethanol by Saccharomyces cerevisiae

    SciTech Connect

    Chiang, L.C.; Gong, C.S. Chen, L.F.; Tsao, G.T.

    1981-01-01

    Commercial bakers' yeast (S. cerevisiae) was used to study the conversion of D-xylulose to ethanol in the presence of D-xylose. The rate of ethanol production increased with an increase in yeast cell density. The optimal temperature for D-xylulose fermentation was 35 degrees, and the optimal pH range was 4-6. The fermentation of D-xylulose by yeast resulted in the production of ethanol as the major product; small amounts of xylitol and glycerol were also produced. The production of xylitol was influenced by pH as well as by temperature. High pH values and low temperatures enhanced xylitol production. The rate of D-xylulose fermentation decreased when the production of ethanol yielded concentrations of greater than 4%. The slow conversion rate of C-xylulose to ethanol was increased by increasing the yeast cell density. The overall production of ethanol from D-xylulose by yeast cells under optimal conditions was 90% of the theoretical yield.

  7. Dynamics of cell wall structure in Saccharomyces cerevisiae.

    PubMed

    Klis, Frans M; Mol, Pieternella; Hellingwerf, Klaas; Brul, Stanley

    2002-08-01

    The cell wall of Saccharomyces cerevisiae is an elastic structure that provides osmotic and physical protection and determines the shape of the cell. The inner layer of the wall is largely responsible for the mechanical strength of the wall and also provides the attachment sites for the proteins that form the outer layer of the wall. Here we find among others the sexual agglutinins and the flocculins. The outer protein layer also limits the permeability of the cell wall, thus shielding the plasma membrane from attack by foreign enzymes and membrane-perturbing compounds. The main features of the molecular organization of the yeast cell wall are now known. Importantly, the molecular composition and organization of the cell wall may vary considerably. For example, the incorporation of many cell wall proteins is temporally and spatially controlled and depends strongly on environmental conditions. Similarly, the formation of specific cell wall protein-polysaccharide complexes is strongly affected by external conditions. This points to a tight regulation of cell wall construction. Indeed, all five mitogen-activated protein kinase pathways in bakers' yeast affect the cell wall, and additional cell wall-related signaling routes have been identified. Finally, some potential targets for new antifungal compounds related to cell wall construction are discussed.

  8. Codon recognition during frameshift suppression in Saccharomyces cerevisiae.

    PubMed Central

    Gaber, R F; Culbertson, M R

    1984-01-01

    A genetic approach has been used to establish the molecular basis of 4-base codon recognition by frameshift suppressor tRNA containing an extra nucleotide in the anticodon. We have isolated all possible base substitution mutations at the position 4 (N) in the 3'-CCCN-5' anticodon of a Saccharomyces cerevisiae frameshift suppressor glycine tRNA encoded by the SUF16 gene. Base substitutions at +1 frameshift sites in the his4 gene have also been obtained such that all possible 4-base 5'-GGGN-3' codons have been identified. By testing for suppression in different strains that collectively represent all 16 possible combinations of position 4 nucleotides, we show that frameshift suppression does not require position 4 base pairing. Nonetheless, position 4 interactions influence the efficiency of suppression. Our results suggest a model in which 4-base translocation of mRNA on the ribosome is directed primarily by the number of nucleotides in the anticodon loop, whereas the resulting efficiency of suppression is dependent on the nature of position 4 nucleotides. Images PMID:6390183

  9. Genotoxicity assessment of amaranth and allura red using Saccharomyces cerevisiae.

    PubMed

    Jabeen, Hafiza Sumara; ur Rahman, Sajjad; Mahmood, Shahid; Anwer, Sadaf

    2013-01-01

    Amaranth (E123) and Allura red (E129), very important food azo dyes used in food, drug, paper, cosmetic and textile industries, were assessed for their genotoxic potential through comet assay in yeast cells. Comet assay was standardized by with different concentration of H(2)O(2). Concentrations of Amaranth and Allura red were maintained in sorbitol buffer starting from 9.76 to 5,000 μg/mL and 1 × 10(4) cells were incubated at two different incubation temperatures 28 and 37°C. Amaranth (E123) and Allura red (E129) were found to exhibit their genotoxic effect directly in Saccharomyces cerevisiae. No significant genotoxic activity was observed for Amaranth and Allura red at 28°C but at 37°C direct relation of Amaranth concentration with comet tail was significant and no positive relation was seen with time exposure factor. At 37°C the minimum concentration of Amaranth and Allura red at which significant DNA damage observed through comet assay was 1,250 μg/mL in 2nd h post exposure time. The results indicated that food colors should be carefully used in baking products as heavy concentration of food colors could affect the fermentation process of baking.

  10. Tanshinones extend chronological lifespan in budding yeast Saccharomyces cerevisiae.

    PubMed

    Wu, Ziyun; Song, Lixia; Liu, Shao Quan; Huang, Dejian

    2014-10-01

    Natural products with anti-aging property have drawn great attention recently but examples of such compounds are exceedingly scarce. By applying a high-throughput assay based on yeast chronological lifespan measurement, we screened the anti-aging activity of 144 botanical materials and found that dried roots of Salvia miltiorrhiza Bunge have significant anti-aging activity. Tanshinones isolated from the plant including cryptotanshione, tanshinone I, and tanshinone IIa, are the active components. Among them, cryptotanshinone can greatly extend the budding yeast Saccharomyces cerevisiae chronological lifespan (up to 2.5 times) in a dose- and the-time-of-addition-dependent manner at nanomolar concentrations without disruption of cell growth. We demonstrate that cryptotanshinone prolong chronological lifespan via a nutrient-dependent regime, especially essential amino acid sensing, and three conserved protein kinases Tor1, Sch9, and Gcn2 are required for cryptotanshinone-induced lifespan extension. In addition, cryptotanshinone significantly increases the lifespan of SOD2-deleted mutants. Altogether, those data suggest that cryptotanshinone might be involved in the regulation of, Tor1, Sch9, Gcn2, and Sod2, these highly conserved longevity proteins modulated by nutrients from yeast to humans.

  11. Identification of Genes Affecting Vacuole Membrane Fragmentation in Saccharomyces cerevisiae

    PubMed Central

    Michaillat, Lydie; Mayer, Andreas

    2013-01-01

    The equilibrium of membrane fusion and fission influences the volume and copy number of organelles. Fusion of yeast vacuoles has been well characterized but their fission and the mechanisms determining vacuole size and abundance remain poorly understood. We therefore attempted to systematically characterize factors necessary for vacuole fission. Here, we present results of an in vivo screening for deficiencies in vacuolar fragmentation activity of an ordered collection deletion mutants, representing 4881 non-essential genes of the yeast Saccharomyces cerevisiae. The screen identified 133 mutants with strong defects in vacuole fragmentation. These comprise numerous known fragmentation factors, such as the Fab1p complex, Tor1p, Sit4p and the V-ATPase, thus validating the approach. The screen identified many novel factors promoting vacuole fragmentation. Among those are 22 open reading frames of unknown function and three conspicuous clusters of proteins with known function. The clusters concern the ESCRT machinery, adaptins, and lipases, which influence the production of diacylglycerol and phosphatidic acid. A common feature of these factors of known function is their capacity to change membrane curvature, suggesting that they might promote vacuole fragmentation via this property. PMID:23383298

  12. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae.

    PubMed

    Krogan, Nevan J; Cagney, Gerard; Yu, Haiyuan; Zhong, Gouqing; Guo, Xinghua; Ignatchenko, Alexandr; Li, Joyce; Pu, Shuye; Datta, Nira; Tikuisis, Aaron P; Punna, Thanuja; Peregrín-Alvarez, José M; Shales, Michael; Zhang, Xin; Davey, Michael; Robinson, Mark D; Paccanaro, Alberto; Bray, James E; Sheung, Anthony; Beattie, Bryan; Richards, Dawn P; Canadien, Veronica; Lalev, Atanas; Mena, Frank; Wong, Peter; Starostine, Andrei; Canete, Myra M; Vlasblom, James; Wu, Samuel; Orsi, Chris; Collins, Sean R; Chandran, Shamanta; Haw, Robin; Rilstone, Jennifer J; Gandi, Kiran; Thompson, Natalie J; Musso, Gabe; St Onge, Peter; Ghanny, Shaun; Lam, Mandy H Y; Butland, Gareth; Altaf-Ul, Amin M; Kanaya, Shigehiko; Shilatifard, Ali; O'Shea, Erin; Weissman, Jonathan S; Ingles, C James; Hughes, Timothy R; Parkinson, John; Gerstein, Mark; Wodak, Shoshana J; Emili, Andrew; Greenblatt, Jack F

    2006-03-30

    Identification of protein-protein interactions often provides insight into protein function, and many cellular processes are performed by stable protein complexes. We used tandem affinity purification to process 4,562 different tagged proteins of the yeast Saccharomyces cerevisiae. Each preparation was analysed by both matrix-assisted laser desorption/ionization-time of flight mass spectrometry and liquid chromatography tandem mass spectrometry to increase coverage and accuracy. Machine learning was used to integrate the mass spectrometry scores and assign probabilities to the protein-protein interactions. Among 4,087 different proteins identified with high confidence by mass spectrometry from 2,357 successful purifications, our core data set (median precision of 0.69) comprises 7,123 protein-protein interactions involving 2,708 proteins. A Markov clustering algorithm organized these interactions into 547 protein complexes averaging 4.9 subunits per complex, about half of them absent from the MIPS database, as well as 429 additional interactions between pairs of complexes. The data (all of which are available online) will help future studies on individual proteins as well as functional genomics and systems biology.

  13. Proteasome dynamics between proliferation and quiescence stages of Saccharomyces cerevisiae.

    PubMed

    Yedidi, Ravikiran S; Fatehi, Amatullah K; Enenkel, Cordula

    The ubiquitin-proteasome system (UPS) plays a critical role in cellular protein homeostasis and is required for the turnover of short-lived and unwanted proteins, which are targeted by poly-ubiquitination for degradation. Proteasome is the key protease of UPS and consists of multiple subunits, which are organized into a catalytic core particle (CP) and a regulatory particle (RP). In Saccharomyces cerevisiae, proteasome holo-enzymes are engaged in degrading poly-ubiquitinated substrates and are mostly localized in the nucleus during cell proliferation. While in quiescence, the RP and CP are sequestered into motile and reversible storage granules in the cytoplasm, called proteasome storage granules (PSGs). The reversible nature of PSGs allows the proteasomes to be transported back into the nucleus upon exit from quiescence. Nuclear import of RP and CP through nuclear pores occurs via the canonical pathway that includes the importin-αβ heterodimer and takes advantage of the Ran-GTP gradient across the nuclear membrane. Dependent on the growth stage, either inactive precursor complexes or mature holo-enzymes are imported into the nucleus. The present review discusses the dynamics of proteasomes including their assembly, nucleo-cytoplasmic transport during proliferation and the sequestration of proteasomes into PSGs during quiescence. [Formula: see text].

  14. The mannoprotein of Saccharomyces cerevisiae is an effective bioemulsifier.

    PubMed Central

    Cameron, D R; Cooper, D G; Neufeld, R J

    1988-01-01

    The mannoprotein which is a major component of the cell wall of Saccharomyces cerevisiae is an effective bioemulsifier. Mannoprotein emulsifier was extracted in a high yield from whole cells of fresh bakers' yeast by two methods, by autoclaving in neutral citrate buffer and by digestion with Zymolase (Miles Laboratories; Toronto, Ontario, Canada), a beta-1,3-glucanase. Heat-extracted emulsifier was purified by ultrafiltration and contained approximately 44% carbohydrate (mannose) and 17% protein. Treatment of the emulsifier with protease eliminated emulsification. Kerosene-in-water emulsions were stabilized over a broad range of conditions, from pH 2 to 11, with up to 5% sodium chloride or up to 50% ethanol in the aqueous phase. In the presence of a low concentration of various solutes, emulsions were stable to three cycles of freezing and thawing. An emulsifying agent was extracted from each species or strain of yeast tested, including 13 species of genera other than Saccharomyces. Spent yeast from the manufacture of beer and wine was demonstrated to be a possible source for the large-scale production of this bioemulsifier. PMID:3046488

  15. Water-Transfer Slows Aging in Saccharomyces cerevisiae

    PubMed Central

    Cohen, Aviv; Weindling, Esther; Rabinovich, Efrat; Nachman, Iftach; Fuchs, Shai; Chuartzman, Silvia; Gal, Lihi; Schuldiner, Maya; Bar-Nun, Shoshana

    2016-01-01

    Transferring Saccharomyces cerevisiae cells to water is known to extend their lifespan. However, it is unclear whether this lifespan extension is due to slowing the aging process or merely keeping old yeast alive. Here we show that in water-transferred yeast, the toxicity of polyQ proteins is decreased and the aging biomarker 47Q aggregates at a reduced rate and to a lesser extent. These beneficial effects of water-transfer could not be reproduced by diluting the growth medium and depended on de novo protein synthesis and proteasomes levels. Interestingly, we found that upon water-transfer 27 proteins are downregulated, 4 proteins are upregulated and 81 proteins change their intracellular localization, hinting at an active genetic program enabling the lifespan extension. Furthermore, the aging-related deterioration of the heat shock response (HSR), the unfolded protein response (UPR) and the endoplasmic reticulum-associated protein degradation (ERAD), was largely prevented in water-transferred yeast, as the activities of these proteostatic network pathways remained nearly as robust as in young yeast. The characteristics of young yeast that are actively maintained upon water-transfer indicate that the extended lifespan is the outcome of slowing the rate of the aging process. PMID:26862897

  16. In vivo Reconstitution of Algal Triacylglycerol Production in Saccharomyces cerevisiae

    PubMed Central

    Hung, Chun-Hsien; Kanehara, Kazue; Nakamura, Yuki

    2016-01-01

    The current fascination with algal biofuel production stems from a high lipid biosynthetic capacity and little conflict with land plant cultivation. However, the mechanisms which enable algae to accumulate massive oil remain elusive. An enzyme for triacylglycerol (TAG) biosynthesis in Chlamydomonas reinhardtii, CrDGTT2, can produce a large amount of TAG when expressed in yeast or higher plants, suggesting a unique ability of CrDGTT2 to enhance oil production in a heterologous system. Here, we performed metabolic engineering in Saccharomyces cerevisiae by taking advantage of CrDGTT2. We suppressed membrane phospholipid biosynthesis at the log phase by mutating OPI3, enhanced TAG biosynthetic pathway at the stationary phase by overexpressing PAH1 and CrDGTT2, and suppressed TAG hydrolysis on growth resumption from the stationary phase by knocking out DGK1. The resulting engineered yeast cells accumulated about 70-fold of TAG compared with wild type cells. Moreover, TAG production was sustainable. Our results demonstrated the enhanced and sustainable TAG production in the yeast synthetic platform. PMID:26913021

  17. Effects of Saccharomyces cerevisiae or boulardii yeasts on acute stress induced intestinal dysmotility

    PubMed Central

    West, Christine; Stanisz, Andrew M; Wong, Annette; Kunze, Wolfgang A

    2016-01-01

    AIM To investigate the capacity of Saccharomyces cerevisiae (S. cerevisiae) and Saccharomyces boulardii (S. boulardii) yeasts to reverse or to treat acute stress-related intestinal dysmotility. METHODS Adult Swiss Webster mice were stressed for 1 h in a wire-mesh restraint to induce symptoms of intestinal dysmotility and were subsequently killed by cervical dislocation. Jejunal and colon tissue were excised and placed within a tissue perfusion bath in which S. cerevisiae, S. boulardii, or their supernatants were administered into the lumen. Video recordings of contractility and gut diameter changes were converted to spatiotemporal maps and the velocity, frequency, and amplitude of propagating contractile clusters (PCC) were measured. Motility pre- and post-treatment was compared between stressed animals and unstressed controls. RESULTS S. boulardii and S. cerevisiae helped to mediate the effects of stress on the small and large intestine. Restraint stress reduced jejunal transit velocity (mm/s) from 2.635 ± 0.316 to 1.644 ± 0.238, P < 0.001 and jejunal transit frequency (Hz) from 0.032 ± 0.008 to 0.016 ± 0.005, P < 0.001. Restraint stress increased colonic transit velocity (mm/s) from 0.864 ± 0.183 to 1.432 ± 0.329, P < 0.001 and frequency to a lesser degree. Luminal application of S. boulardii helped to restore jejunal and colonic velocity towards the unstressed controls; 1.833 ± 0.688 to 2.627 ± 0.664, P < 0.001 and 1.516 ± 0.263 to 1.036 ± 0.21, P < 0.001, respectively. S. cerevisiae also had therapeutic effects on the stressed gut, but was most apparent in the jejunum. S. cerevisiae increased PCC velocity in the stressed jejunum from 1.763 ± 0.397 to 2.017 ± 0.48, P = 0.0031 and PCC frequency from 0.016 ± 0.009 to 0.027 ± 0.007, P < 0.001. S. cerevisiae decreased colon PCC velocity from 1.647 ± 0.187 to 1.038 ± 0.222, P < 0.001. Addition of S. boulardii or S. cerevisiae supernatants also helped to restore motility to unstressed values in similar

  18. Effects of Saccharomyces cerevisiae or boulardii yeasts on acute stress induced intestinal dysmotility.

    PubMed

    West, Christine; Stanisz, Andrew M; Wong, Annette; Kunze, Wolfgang A

    2016-12-28

    To investigate the capacity of Saccharomyces cerevisiae (S. cerevisiae) and Saccharomyces boulardii (S. boulardii) yeasts to reverse or to treat acute stress-related intestinal dysmotility. Adult Swiss Webster mice were stressed for 1 h in a wire-mesh restraint to induce symptoms of intestinal dysmotility and were subsequently killed by cervical dislocation. Jejunal and colon tissue were excised and placed within a tissue perfusion bath in which S. cerevisiae, S. boulardii, or their supernatants were administered into the lumen. Video recordings of contractility and gut diameter changes were converted to spatiotemporal maps and the velocity, frequency, and amplitude of propagating contractile clusters (PCC) were measured. Motility pre- and post-treatment was compared between stressed animals and unstressed controls. S. boulardii and S. cerevisiae helped to mediate the effects of stress on the small and large intestine. Restraint stress reduced jejunal transit velocity (mm/s) from 2.635 ± 0.316 to 1.644 ± 0.238, P < 0.001 and jejunal transit frequency (Hz) from 0.032 ± 0.008 to 0.016 ± 0.005, P < 0.001. Restraint stress increased colonic transit velocity (mm/s) from 0.864 ± 0.183 to 1.432 ± 0.329, P < 0.001 and frequency to a lesser degree. Luminal application of S. boulardii helped to restore jejunal and colonic velocity towards the unstressed controls; 1.833 ± 0.688 to 2.627 ± 0.664, P < 0.001 and 1.516 ± 0.263 to 1.036 ± 0.21, P < 0.001, respectively. S. cerevisiae also had therapeutic effects on the stressed gut, but was most apparent in the jejunum. S. cerevisiae increased PCC velocity in the stressed jejunum from 1.763 ± 0.397 to 2.017 ± 0.48, P = 0.0031 and PCC frequency from 0.016 ± 0.009 to 0.027 ± 0.007, P < 0.001. S. cerevisiae decreased colon PCC velocity from 1.647 ± 0.187 to 1.038 ± 0.222, P < 0.001. Addition of S. boulardii or S. cerevisiae supernatants also helped to restore motility to unstressed values in similar capacity. There is

  19. S. cerevisiae × S. eubayanus interspecific hybrid, the best of both worlds and beyond.

    PubMed

    Hebly, Marit; Brickwedde, Anja; Bolat, Irina; Driessen, Maureen R M; de Hulster, Erik A F; van den Broek, Marcel; Pronk, Jack T; Geertman, Jan-Maarten; Daran, Jean-Marc; Daran-Lapujade, Pascale

    2015-05-01

    Saccharomyces pastorianus lager-brewing yeasts have descended from natural hybrids of S. cerevisiae and S. eubayanus. Their alloploidy has undoubtedly contributed to successful domestication and industrial exploitation. To understand the early events that have led to the predominance of S. pastorianus as lager-brewing yeast, an interspecific hybrid between S. cerevisiae and S. eubayanus was experimentally constructed. Alloploidy substantially improved the performance of the S. cerevisiae × S. eubayanus hybrid as compared to either parent regarding two cardinal features of brewing yeasts: tolerance to low temperature and oligosaccharide utilization. The hybrid's S. eubayanus subgenome conferred better growth rates and biomass yields at low temperature, both on glucose and on maltose. Conversely, the ability of the hybrid to consume maltotriose, which was absent in the S. eubayanus CBS12357 type strain, was inherited from its S. cerevisiae parent. The S. cerevisiae × S. eubayanus hybrid even outperformed its parents, a phenomenon known as transgression, suggesting that fast growth at low temperature and oligosaccharide utilization may have been key selective advantages of the natural hybrids in brewing environments. To enable sequence comparisons of the parental and hybrid strains, the genome of S. eubayanus CBS12357 type strain (Patagonian isolate) was resequenced, resulting in an improved publicly available sequence assembly.

  20. Saccharomyces cerevisiae: Population Divergence and Resistance to Oxidative Stress in Clinical, Domesticated and Wild Isolates

    PubMed Central

    Diezmann, Stephanie; Dietrich, Fred S.

    2009-01-01

    Background Saccharomyces cerevisiae has been associated with human life for millennia in the brewery and bakery. Recently it has been recognized as an emerging opportunistic pathogen. To study the evolutionary history of S. cerevisiae, the origin of clinical isolates and the importance of a virulence-associated trait, population genetics and phenotypic assays have been applied to an ecologically diverse set of 103 strains isolated from clinics, breweries, vineyards, fruits, soil, commercial supplements and insect guts. Methodology/Principal Findings DNA sequence data from five nuclear DNA loci were analyzed for population structure and haplotype distribution. Additionally, all strains were tested for survival of oxidative stress, a trait associated with microbial pathogenicity. DNA sequence analyses identified three genetic subgroups within the recombining S. cerevisiae strains that are associated with ecology, geography and virulence. Shared alleles suggest that the clinical isolates contain genetic contribution from the fruit isolates. Clinical and fruit isolates exhibit high levels of recombination, unlike the genetically homogenous soil isolates in which no recombination was detected. However, clinical and soil isolates were more resistant to oxidative stress than any other population, suggesting a correlation between survival in oxidative stress and yeast pathogenicity. Conclusions/Significance Population genetic analyses of S. cerevisiae delineated three distinct groups, comprising primarily the (i) human-associated brewery and vineyard strains, (ii) clinical and fruit isolates (iii) and wild soil isolates from eastern U.S. The interactions between S. cerevisiae and humans potentiate yeast evolution and the development of genetically, ecologically and geographically divergent groups. PMID:19390633

  1. Mixing of vineyard and oak-tree ecotypes of Saccharomyces cerevisiae in North American vineyards.

    PubMed

    Hyma, Katie E; Fay, Justin C

    2013-06-01

    Humans have had a significant impact on the distribution and abundance of Saccharomyces cerevisiae through its widespread use in beer, bread and wine production. Yet, similar to other Saccharomyces species, S. cerevisiae has also been isolated from habitats unrelated to fermentations. Strains of S. cerevisiae isolated from grapes, wine must and vineyards worldwide are genetically differentiated from strains isolated from oak-tree bark, exudate and associated soil in North America. However, the causes and consequences of this differentiation have not yet been resolved. Historical differentiation of these two groups may have been influenced by geographic, ecological or human-associated barriers to gene flow. Here, we make use of the relatively recent establishment of vineyards across North America to identify and characterize any active barriers to gene flow between these two groups. We examined S. cerevisiae strains isolated from grapes and oak trees within three North American vineyards and compared them to those isolated from oak trees outside of vineyards. Within vineyards, we found evidence of migration between grapes and oak trees and potential gene flow between the divergent oak-tree and vineyard groups. Yet, we found no vineyard genotypes on oak trees outside of vineyards. In contrast, Saccharomyces paradoxus isolated from the same sources showed population structure characterized by isolation by distance. The apparent absence of ecological or genetic barriers between sympatric vineyard and oak-tree populations of S. cerevisiae implies that vineyards play an important role in the mixing between these two groups. © 2013 John Wiley & Sons Ltd.

  2. Metabolic-flux profiling of the yeasts Saccharomyces cerevisiae and Pichia stipitis.

    PubMed

    Fiaux, Jocelyne; Cakar, Z Petek; Sonderegger, Marco; Wüthrich, Kurt; Szyperski, Thomas; Sauer, Uwe

    2003-02-01

    The so far largely uncharacterized central carbon metabolism of the yeast Pichia stipitis was explored in batch and glucose-limited chemostat cultures using metabolic-flux ratio analysis by nuclear magnetic resonance. The concomitantly characterized network of active metabolic pathways was compared to those identified in Saccharomyces cerevisiae, which led to the following conclusions. (i) There is a remarkably low use of the non-oxidative pentose phosphate (PP) pathway for glucose catabolism in S. cerevisiae when compared to P. stipitis batch cultures. (ii) Metabolism of P. stipitis batch cultures is fully respirative, which contrasts with the predominantly respiro-fermentative metabolic state of S. cerevisiae. (iii) Glucose catabolism in chemostat cultures of both yeasts is primarily oxidative. (iv) In both yeasts there is significant in vivo malic enzyme activity during growth on glucose. (v) The amino acid biosynthesis pathways are identical in both yeasts. The present investigation thus demonstrates the power of metabolic-flux ratio analysis for comparative profiling of central carbon metabolism in lower eukaryotes. Although not used for glucose catabolism in batch culture, we demonstrate that the PP pathway in S. cerevisiae has a generally high catabolic capacity by overexpressing the Escherichia coli transhydrogenase UdhA in phosphoglucose isomerase-deficient S. cerevisiae.

  3. Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status.

    PubMed

    van Maris, Antonius J A; Abbott, Derek A; Bellissimi, Eleonora; van den Brink, Joost; Kuyper, Marko; Luttik, Marijke A H; Wisselink, H Wouter; Scheffers, W Alexander; van Dijken, Johannes P; Pronk, Jack T

    2006-11-01

    Fuel ethanol production from plant biomass hydrolysates by Saccharomyces cerevisiae is of great economic and environmental significance. This paper reviews the current status with respect to alcoholic fermentation of the main plant biomass-derived monosaccharides by this yeast. Wild-type S. cerevisiae strains readily ferment glucose, mannose and fructose via the Embden-Meyerhof pathway of glycolysis, while galactose is fermented via the Leloir pathway. Construction of yeast strains that efficiently convert other potentially fermentable substrates in plant biomass hydrolysates into ethanol is a major challenge in metabolic engineering. The most abundant of these compounds is xylose. Recent metabolic and evolutionary engineering studies on S. cerevisiae strains that express a fungal xylose isomerase have enabled the rapid and efficient anaerobic fermentation of this pentose. L: -Arabinose fermentation, based on the expression of a prokaryotic pathway in S. cerevisiae, has also been established, but needs further optimization before it can be considered for industrial implementation. In addition to these already investigated strategies, possible approaches for metabolic engineering of galacturonic acid and rhamnose fermentation by S. cerevisiae are discussed. An emerging and major challenge is to achieve the rapid transition from proof-of-principle experiments under 'academic' conditions (synthetic media, single substrates or simple substrate mixtures, absence of toxic inhibitors) towards efficient conversion of complex industrial substrate mixtures that contain synergistically acting inhibitors.

  4. Metabolomic analysis of antimicrobial mechanisms of ε-poly-L-lysine on Saccharomyces cerevisiae.

    PubMed

    Bo, Tao; Liu, Miao; Zhong, Cheng; Zhang, Qian; Su, Qin-Zhi; Tan, Zhi-Lei; Han, Pei-Pei; Jia, Shi-Ru

    2014-05-14

    ε-Poly-L-lysine (ε-PL), a naturally occurring amino acid homopolymer, has been widely used as a food preservative. However, its antimicrobial mechanism has not been fully understood. This study investigated the antimicrobial mode of action of ε-PL on a yeast, Saccharomyces cerevisiae. When treated with ε-PL at the concentration of 500 μg/mL, cell mortality was close to 100% and the phospholipid bilayer curvature, pores, and micelles on the surface of S. cerevisiae were clearly observed by scanning electron microscopy (SEM). At the level of 200 μg/mL, ε-PL significantly inhibited the cell growth of S. cerevisiae. When treated with 50 μg/mL ε-PL, the yeast cell was able to grow but the cell cycle was prolonged. A significant increase in cell membrane permeability was induced by ε-PL at higher concentrations. Metabolomics analysis revealed that the ε-PL stress led to the inhibition of primary metabolic pathways through the suppression of the tricarboxylic acid cycle and glycolysis. It is therefore proposed that the microbiostatic effect of ε-PL at lower levels on S. cerevisiae is achieved by inducing intracellular metabolic imbalance via disruption of cell membrane functions. Moreover, the results suggested that the antimicrobial mechanism of ε-PL on S. cerevisiae can in fact change from microbiostatic to microbicidal when the concentration of ε-PL increased, and the mechanisms of these two modes of action were completely different.

  5. Engineering Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: reflections and perspectives.

    PubMed

    Cai, Zhen; Zhang, Bo; Li, Yin

    2012-01-01

    Conversion of the abundant lignocellulosic biomass into ethanol is an environmentally sustainable solution to the energy crisis. Fermentation of lignocellulosic hydrolysates by Saccharomyces cerevisiae is not cost-effective yet as substantial amounts of xylose in the hydrolysates cannot be utilized by native S. cerevisiae strains. Extensive studies including both metabolic and evolutionary engineering have been carried out to develop an efficient xylose-fermenting S. cerevisiae strain, yet the ethanol yield and productivity from xylose fermentation of the best one are still far below expectation. This review compares the engineering approaches and resulted anaerobic xylose fermentation performance of recently reported xylose-utilizing S. cerevisiae strains, with the aim to understand the intrinsic reason for their low xylose fermentation capabilities. These comparative analyses revealed that some of the current engineering targets and the so-called "hot issues" might be overrated. Our opinions on the underrated parts and future efforts in this field are also presented. Overall, this review serves as a comprehensive reference to understanding xylose fermentation by S. cerevisiae.

  6. Engineering of Saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of L-arabinose.

    PubMed

    Wisselink, H Wouter; Toirkens, Maurice J; del Rosario Franco Berriel, M; Winkler, Aaron A; van Dijken, Johannes P; Pronk, Jack T; van Maris, Antonius J A

    2007-08-01

    For cost-effective and efficient ethanol production from lignocellulosic fractions of plant biomass, the conversion of not only major constituents, such as glucose and xylose, but also less predominant sugars, such as l-arabinose, is required. Wild-type strains of Saccharomyces cerevisiae, the organism used in industrial ethanol production, cannot ferment xylose and arabinose. Although metabolic and evolutionary engineering has enabled the efficient alcoholic fermentation of xylose under anaerobic conditions, the conversion of l-arabinose into ethanol by engineered S. cerevisiae strains has previously been demonstrated only under oxygen-limited conditions. This study reports the first case of fast and efficient anaerobic alcoholic fermentation of l-arabinose by an engineered S. cerevisiae strain. This fermentation was achieved by combining the expression of the structural genes for the l-arabinose utilization pathway of Lactobacillus plantarum, the overexpression of the S. cerevisiae genes encoding the enzymes of the nonoxidative pentose phosphate pathway, and extensive evolutionary engineering. The resulting S. cerevisiae strain exhibited high rates of arabinose consumption (0.70 g h(-1) g [dry weight](-1)) and ethanol production (0.29 g h(-1) g [dry weight](-1)) and a high ethanol yield (0.43 g g(-1)) during anaerobic growth on l-arabinose as the sole carbon source. In addition, efficient ethanol production from sugar mixtures containing glucose and arabinose, which is crucial for application in industrial ethanol production, was achieved.

  7. Effects of sequential mixed cultures of Wickerhamomyces anomalus and Saccharomyces cerevisiae on apple cider fermentation.

    PubMed

    Ye, Mengqi; Yue, Tianli; Yuan, Yahong

    2014-09-01

    The fermentation of cider by mixed cultures of Wickerhamomyces anomalus and Saccharomyces cerevisiae was carried out to study their effect on the cider quality. The results showed that growth of W. anomalus and S. cerevisiae was affected by each other during co-fermentation process. All the mixed cultures produced statistically the same level of ethanol as S. cerevisiae monoculture. The mixed fermentation could produce more variety and higher amounts of acetate esters, ethyl esters, higher alcohols, aldehydes, and ketones. Sensory evaluation demonstrated that ciders obtained from co-fermentation with W. anomalus gained higher scores than ciders fermented by pure S. cerevisiae, especially the co-fermentation cultures WS3, WS4, WS6, and WS8. Only 3 days of fermentation with W. anomalus in sequential mixtures were enough to improve the quality of cider. Wickerhamomyces anomalus could be used in association with S. cerevisiae to improve the quality of cider. The modulation of inoculation time may provide an effective means of manipulating cider aroma for different characteristics. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  8. Bioethanol production from Gracilaria verrucosa using Saccharomyces cerevisiae adapted to NaCl or galactose.

    PubMed

    Nguyen, Trung Hau; Ra, Chae Hun; Sunwoo, InYung; Jeong, Gwi-Taek; Kim, Sung-Koo

    2016-12-18

    This study examined the pretreatment, enzymatic saccharification, and fermentation of the red macroalgae Gracilaria verrucosa using adapted saccharomyces cerevisiae to galactose or NaCl for the increase of bioethanol yield. Pretreatment with thermal acid hydrolysis to obtain galactose was carried out with 11.7% (w/v) seaweed slurry and 373 mM H2SO4 at 121 °C for 59 min. Glucose was obtained from enzymatic hydrolysis. Enzymatic saccharification was performed with a mixture of 16 U/mL Celluclast 1.5L and Viscozyme L at 45 °C for 48 h. Ethanol fermentation in 11.7% (w/v) seaweed hydrolysate was carried out using Saccharomyces cerevisiae KCTC 1126 adapted or non-adapted to high concentrations of galactose or NaCl. When non-adapted S. cerevisiae KCTC 1126 was used, the ethanol productivity was 0.09 g/(Lh) with an ethanol yield of 0.25. Ethanol productivity of 0.16 and 0.19 g/(Lh) with ethanol yields of 0.43 and 0.48 was obtained using S. cerevisiae KCTC 1126 adapted to high concentrations of galactose and NaCl, respectively. Adaptation of S. cerevisiae KCTC 1126 to galactose or NaCl increased the ethanol yield via adaptive evolution of the yeast.

  9. Label-Free Proteomic Analysis of Flavohemoglobin Deleted Strain of Saccharomyces cerevisiae

    PubMed Central

    Panja, Chiranjit; Setty, Rakesh K. S.; Vaidyanathan, Gopal; Ghosh, Sanjay

    2016-01-01

    Yeast flavohemoglobin, YHb, encoded by the nuclear gene YHB1, has been implicated in the nitrosative stress responses in Saccharomyces cerevisiae. It is still unclear how S. cerevisiae can withstand this NO level in the absence of flavohemoglobin. To better understand the physiological function of flavohemoglobin in yeast, in the present study a label-free differential proteomics study has been carried out in wild-type and YHB1 deleted strains of S. cerevisiae grown under fermentative conditions. From the analysis, 417 proteins in Y190 and 392 proteins in ΔYHB1 were identified with high confidence. Interestingly, among the differentially expressed identified proteins, 40 proteins were found to be downregulated whereas 41 were found to be upregulated in ΔYHB1 strain of S. cerevisiae (p value < 0.05). The differentially expressed proteins were also classified according to gene ontology (GO) terms. The most enriched and significant GO terms included nitrogen compound biosynthesis, amino acid biosynthesis, translational regulation, and protein folding. Interactions of differentially expressed proteins were generated using Search Tool for the Retrieval of Interacting Genes (STRING) database. This is the first report which offers a more complete view of the proteome changes in S. cerevisiae in the absence of flavohemoglobin. PMID:26881076

  10. Continuous co-fermentation of cellobiose and xylose by engineered Saccharomyces cerevisiae.

    PubMed

    Ha, Suk-Jin; Kim, Soo Rin; Kim, Heejin; Du, Jing; Cate, Jamie H D; Jin, Yong-Su

    2013-12-01

    Simultaneous fermentation of cellobiose and xylose by an engineered Saccharomyces cerevisiae has been demonstrated in batch fermentation, suggesting the feasibility of continuous co-fermentation of cellulosic sugars. As industrial S. cerevisiae strains have known to possess higher ethanol productivity and robustness compared to laboratory S. cerevisiae strains, xylose and cellobiose metabolic pathways were introduced into a haploid strain derived from an industrial S. cerevisiae. The resulting strain (JX123-BTT) was able to ferment a mixture of cellobiose and xylose simultaneously in batch fermentation with a high ethanol yield (0.38 g/g) and productivity (2.00 g/L · h). Additionally, the JX123-BTT strain co-consumed glucose, cellobiose, and xylose under continuous culture conditions at a dilution rate of 0.05 h(-1) and produced ethanol resulting in 0.38 g/g of ethanol yield and 0.96 g/L · h of productivity. This is the first demonstration of co-fermentation of cellobiose and xylose by an engineered S. cerevisiae under continuous culture conditions.

  11. Rapid Identification and Enumeration of Saccharomyces cerevisiae Cells in Wine by Real-Time PCR

    PubMed Central

    Martorell, P.; Querol, A.; Fernández-Espinar, M. T.

    2005-01-01

    Despite the beneficial role of Saccharomyces cerevisiae in the food industry for food and beverage production, it is able to cause spoilage in wines. We have developed a real-time PCR method to directly detect and quantify this yeast species in wine samples to provide winemakers with a rapid and sensitive method to detect and prevent wine spoilage. Specific primers were designed for S. cerevisiae using the sequence information obtained from a cloned random amplified polymorphic DNA band that differentiated S. cerevisiae from its sibling species Saccharomyces bayanus, Saccharomyces pastorianus, and Saccharomyces paradoxus. The specificity of the primers was demonstrated for typical wine spoilage yeast species. The method was useful for estimating the level of S. cerevisiae directly in sweet wines and red wines without preenrichment when yeast is present in concentrations as low as 3.8 and 5 CFU per ml. This detection limit is in the same order as that obtained from glucose-peptone-yeast growth medium (GPY). Moreover, it was possible to quantify S. cerevisiae in artificially contaminated samples accurately. Limits for accurate quantification in wine were established, from 3.8 × 105 to 3.8 CFU/ml in sweet wine and from 5 × 106 to 50 CFU/ml in red wine. PMID:16269715

  12. Divergence in wine characteristics produced by wild and domesticated strains of Saccharomyces cerevisiae.

    PubMed

    Hyma, Katie E; Saerens, Sofie M; Verstrepen, Kevin J; Fay, Justin C

    2011-11-01

    The budding yeast Saccharomyces cerevisiae is the primary species used by wine makers to convert sugar into alcohol during wine fermentation. Saccharomyces cerevisiae is found in vineyards, but is also found in association with oak trees and other natural sources. Although wild strains of S. cerevisiae as well as other Saccharomyces species are also capable of wine fermentation, a genetically distinct group of S. cerevisiae strains is primarily used to produce wine, consistent with the idea that wine making strains have been domesticated for wine production. In this study, we demonstrate that humans can distinguish between wines produced using wine strains and wild strains of S. cerevisiae as well as its sibling species, Saccharomyces paradoxus. Wine strains produced wine with fruity and floral characteristics, whereas wild strains produced wine with earthy and sulfurous characteristics. The differences that we observe between wine and wild strains provides further evidence that wine strains have evolved phenotypes that are distinct from their wild ancestors and relevant to their use in wine production.

  13. Effect of fermented sea tangle on the alcohol dehydrogenase and acetaldehyde dehydrogenase in Saccharomyces cerevisiae.

    PubMed

    Cha, Jae-Young; Jeong, Jae-Jun; Yang, Hyun-Ju; Lee, Bae-Jin; Cho, Young-Su

    2011-08-01

    Sea tangle, a kind of brown seaweed, was fermented with Lactobacillus brevis BJ-20. The gamma-aminobutyric acid (GABA) content in fermented sea tangle (FST) was 5.56% (w/w) and GABA in total free amino acid of FST was 49.5%. The effect of FST on the enzyme activities and mRNA protein expression of alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) involved in alcohol metabolism in Saccharomyces cerevisiae was investigated. Yeast was cultured in YPD medium supplemented with different concentrations of FST powder [0, 0.4, 0.8, and 1.0% (w/v)] for 18 h. FST had no cytotoxic effect on the yeast growth. The highest activities and protein expressions of ADH and ALDH from the cell-free extracts of S. cerevisiae were evident with the 0.4% and 0.8% (w/v) FST-supplemented concentrations, respectively. The highest concentrations of GABA as well as minerals (Zn, Ca, and Mg) were found in the cell-free extracts of S. cerevisiae cultured in medium supplemented with 0.4% (w/v) FST. The levels of GABA, Zn, Ca, and Mg in S. cerevisiae were strongly correlated with the enzyme activities of ADH and ALDH in yeast. These results indicate that FST can enhance the enzyme activities and protein expression of ADH and ALDH in S. cerevisiae.

  14. Invertase Suc2-mediated inulin catabolism is regulated at the transcript level in Saccharomyces cerevisiae.

    PubMed

    Yang, Fan; Liu, Zhi-Cheng; Wang, Xue; Li, Li-Li; Yang, Lan; Tang, Wen-Zhu; Yu, Zhi-Min; Li, Xianzhen

    2015-04-17

    Invertase Suc2 was recently identified as a key hydrolase for inulin catabolism in Saccharomyces cerevisiae, whereas the Suc2 activity degrading inulin varies greatly in different S. cerevisiae strains. The molecular mechanism causing such variation remained obscure. The aim of this study is to investigate how Suc2 activity is regulated in S. cerevisiae. The effect of SUC2 expression level on inulin hydrolysis was investigated by introducing different SUC2 genes or their corresponding promoters in S. cerevisiae strain BY4741 that can only weakly catabolize inulin. Both inulinase and invertase activities were increased with the rising SUC2 expression level. Variation in the promoter sequence has an obvious effect on the transcript level of the SUC2 gene. It was also found that the high expression level of SUC2 was beneficial to inulin degradation and ethanol yield. Suc2-mediated inulin catabolism is regulated at transcript level in S. cerevisiae. Our work should be valuable for engineering advanced yeast strains in application of inulin for ethanol production.

  15. Engineering of Saccharomyces cerevisiae for Efficient Anaerobic Alcoholic Fermentation of l-Arabinose▿

    PubMed Central

    Wisselink, H. Wouter; Toirkens, Maurice J.; del Rosario Franco Berriel, M.; Winkler, Aaron A.; van Dijken, Johannes P.; Pronk, Jack T.; van Maris, Antonius J. A.

    2007-01-01

    For cost-effective and efficient ethanol production from lignocellulosic fractions of plant biomass, the conversion of not only major constituents, such as glucose and xylose, but also less predominant sugars, such as l-arabinose, is required. Wild-type strains of Saccharomyces cerevisiae, the organism used in industrial ethanol production, cannot ferment xylose and arabinose. Although metabolic and evolutionary engineering has enabled the efficient alcoholic fermentation of xylose under anaerobic conditions, the conversion of l-arabinose into ethanol by engineered S. cerevisiae strains has previously been demonstrated only under oxygen-limited conditions. This study reports the first case of fast and efficient anaerobic alcoholic fermentation of l-arabinose by an engineered S. cerevisiae strain. This fermentation was achieved by combining the expression of the structural genes for the l-arabinose utilization pathway of Lactobacillus plantarum, the overexpression of the S. cerevisiae genes encoding the enzymes of the nonoxidative pentose phosphate pathway, and extensive evolutionary engineering. The resulting S. cerevisiae strain exhibited high rates of arabinose consumption (0.70 g h−1 g [dry weight]−1) and ethanol production (0.29 g h−1 g [dry weight]−1) and a high ethanol yield (0.43 g g−1) during anaerobic growth on l-arabinose as the sole carbon source. In addition, efficient ethanol production from sugar mixtures containing glucose and arabinose, which is crucial for application in industrial ethanol production, was achieved. PMID:17545317

  16. Screening of Non- Saccharomyces cerevisiae Strains for Tolerance to Formic Acid in Bioethanol Fermentation.

    PubMed

    Oshoma, Cyprian E; Greetham, Darren; Louis, Edward J; Smart, Katherine A; Phister, Trevor G; Powell, Chris; Du, Chenyu

    2015-01-01

    Formic acid is one of the major inhibitory compounds present in hydrolysates derived from lignocellulosic materials, the presence of which can significantly hamper the efficiency of converting available sugars into bioethanol. This study investigated the potential for screening formic acid tolerance in non-Saccharomyces cerevisiae yeast strains, which could be used for the development of advanced generation bioethanol processes. Spot plate and phenotypic microarray methods were used to screen the formic acid tolerance of 7 non-Saccharomyces cerevisiae yeasts. S. kudriavzeii IFO1802 and S. arboricolus 2.3319 displayed a higher formic acid tolerance when compared to other strains in the study. Strain S. arboricolus 2.3319 was selected for further investigation due to its genetic variability among the Saccharomyces species as related to Saccharomyces cerevisiae and availability of two sibling strains: S. arboricolus 2.3317 and 2.3318 in the lab. The tolerance of S. arboricolus strains (2.3317, 2.3318 and 2.3319) to formic acid was further investigated by lab-scale fermentation analysis, and compared with S. cerevisiae NCYC2592. S. arboricolus 2.3319 demonstrated improved formic acid tolerance and a similar bioethanol synthesis capacity to S. cerevisiae NCYC2592, while S. arboricolus 2.3317 and 2.3318 exhibited an overall inferior performance. Metabolite analysis indicated that S. arboricolus strain 2.3319 accumulated comparatively high concentrations of glycerol and glycogen, which may have contributed to its ability to tolerate high levels of formic acid.

  17. Integrative proteomics and biochemical analyses define Ptc6p as the Saccharomyces cerevisiae pyruvate dehydrogenase phosphatase.

    PubMed

    Guo, Xiao; Niemi, Natalie M; Coon, Joshua J; Pagliarini, David J

    2017-07-14

    The pyruvate dehydrogenase complex (PDC) is the primary metabolic checkpoint connecting glycolysis and mitochondrial oxidative phosphorylation and is important for maintaining cellular and organismal glucose homeostasis. Phosphorylation of the PDC E1 subunit was identified as a key inhibitory modification in bovine tissue ∼50 years ago, and this regulatory process is now known to be conserved throughout evolution. Although Saccharomyces cerevisiae is a pervasive model organism for investigating cellular metabolism and its regulation by signaling processes, the phosphatase(s) responsible for activating the PDC in S. cerevisiae has not been conclusively defined. Here, using comparative mitochondrial phosphoproteomics, analyses of protein-protein interactions by affinity enrichment-mass spectrometry, and in vitro biochemistry, we define Ptc6p as the primary PDC phosphatase in S. cerevisiae Our analyses further suggest additional substrates for related S. cerevisiae phosphatases and describe the overall phosphoproteomic changes that accompany mitochondrial respiratory dysfunction. In summary, our quantitative proteomics and biochemical analyses have identified Ptc6p as the primary-and likely sole-S. cerevisiae PDC phosphatase, closing a key knowledge gap about the regulation of yeast mitochondrial metabolism. Our findings highlight the power of integrative omics and biochemical analyses for annotating the functions of poorly characterized signaling proteins. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Screening of Non- Saccharomyces cerevisiae Strains for Tolerance to Formic Acid in Bioethanol Fermentation

    PubMed Central

    Oshoma, Cyprian E.; Greetham, Darren; Louis, Edward J.; Smart, Katherine A.; Phister, Trevor G.; Powell, Chris; Du, Chenyu

    2015-01-01

    Formic acid is one of the major inhibitory compounds present in hydrolysates derived from lignocellulosic materials, the presence of which can significantly hamper the efficiency of converting available sugars into bioethanol. This study investigated the potential for screening formic acid tolerance in non-Saccharomyces cerevisiae yeast strains, which could be used for the development of advanced generation bioethanol processes. Spot plate and phenotypic microarray methods were used to screen the formic acid tolerance of 7 non-Saccharomyces cerevisiae yeasts. S. kudriavzeii IFO1802 and S. arboricolus 2.3319 displayed a higher formic acid tolerance when compared to other strains in the study. Strain S. arboricolus 2.3319 was selected for further investigation due to its genetic variability among the Saccharomyces species as related to Saccharomyces cerevisiae and availability of two sibling strains: S. arboricolus 2.3317 and 2.3318 in the lab. The tolerance of S. arboricolus strains (2.3317, 2.3318 and 2.3319) to formic acid was further investigated by lab-scale fermentation analysis, and compared with S. cerevisiae NCYC2592. S. arboricolus 2.3319 demonstrated improved formic acid tolerance and a similar bioethanol synthesis capacity to S. cerevisiae NCYC2592, while S. arboricolus 2.3317 and 2.3318 exhibited an overall inferior performance. Metabolite analysis indicated that S. arboricolus strain 2.3319 accumulated comparatively high concentrations of glycerol and glycogen, which may have contributed to its ability to tolerate high levels of formic acid. PMID:26284784

  19. Dominance of Saccharomyces cerevisiae in alcoholic fermentation processes: role of physiological fitness and microbial interactions.

    PubMed

    Albergaria, Helena; Arneborg, Nils

    2016-03-01

    Winemaking, brewing and baking are some of the oldest biotechnological processes. In all of them, alcoholic fermentation is the main biotransformation and Saccharomyces cerevisiae the primary microorganism. Although a wide variety of microbial species may participate in alcoholic fermentation and contribute to the sensory properties of end-products, the yeast S. cerevisiae invariably dominates the final stages of fermentation. The ability of S. cerevisiae to outcompete other microbial species during alcoholic fermentation processes, such as winemaking, has traditionally been ascribed to its high fermentative power and capacity to withstand the harsh environmental conditions, i.e. high levels of ethanol and organic acids, low pH values, scarce oxygen availability and depletion of certain nutrients. However, in recent years, several studies have raised evidence that S. cerevisiae, beyond its remarkable fitness for alcoholic fermentation, also uses defensive strategies mediated by different mechanisms, such as cell-to-cell contact and secretion of antimicrobial peptides, to combat other microorganisms. In this paper, we review the main physiological features underlying the special aptitude of S. cerevisiae for alcoholic fermentation and discuss the role of microbial interactions in its dominance during alcoholic fermentation, as well as its relevance for winemaking.

  20. Mixing of vineyard and oak-tree ecotypes of Saccharomyces cerevisiae in North American vineyards

    PubMed Central

    Hyma, Katie E.; Fay, Justin C.

    2012-01-01

    Humans have had a significant impact on the distribution and abundance of Saccharomyces cerevisiae through its widespread use in beer, bread and wine production. Yet, similar to other Saccharomyces species, S. cerevisiae has also been isolated from habitats unrelated to fermentations. Strains of S. cerevisiae isolated from grapes, wine must and vineyards worldwide are genetically differentiated from strains isolated from oak-tree bark, exudate and associated soil in North America. However, the causes and consequences of this differentiation have not yet been resolved. Historical differentiation of these two groups may have been influenced by geographic, ecological or human-associated barriers to gene flow. Here, we make use of the relatively recent establishment of vineyards across North America to identify and characterize any active barriers to gene flow between these two groups. We examined S. cerevisiae strains isolated from grapes and oak-trees within three North American vineyards and compared them to those isolated from oak-trees outside of vineyards. Within vineyards we found evidence of migration between grapes and oak-trees and potential gene flow between the divergent oak-tree and vineyard groups. Yet, we found no vineyard genotypes on oak-trees outside of vineyards. In contrast, S. paradoxus isolated from the same sources showed population structure characterized by isolation by distance. The apparent absence of ecological or genetic barriers between sympatric vineyard and oak-tree populations of S. cerevisiae implies that vineyards play an important role in the mixing between these two groups. PMID:23286354

  1. Therapeutic activity of a Saccharomyces cerevisiae-based probiotic and inactivated whole yeast on vaginal candidiasis.

    PubMed

    Pericolini, Eva; Gabrielli, Elena; Ballet, Nathalie; Sabbatini, Samuele; Roselletti, Elena; Cayzeele Decherf, Amélie; Pélerin, Fanny; Luciano, Eugenio; Perito, Stefano; Jüsten, Peter; Vecchiarelli, Anna

    2017-01-02

    Vulvovaginal candidiasis is the most prevalent vaginal infection worldwide and Candida albicans is its major agent. Vulvovaginal candidiasis is characterized by disruption of the vaginal microbiota composition, as happens following large spectrum antibiotic usage. Recent studies support the effectiveness of oral and local probiotic treatment for prevention of recurrent vulvovaginal candidiasis. Saccharomyces cerevisiae is a safe yeast used as, or for, the production of ingredients for human nutrition and health. Here, we demonstrate that vaginal administration of probiotic Saccharomyces cerevisiae live yeast (GI) and, in part, inactivated whole yeast Saccharomyces cerevisiae (IY), used as post-challenge therapeutics, was able to positively influence the course of vaginal candidiasis by accelerating the clearance of the fungus. This effect was likely due to multiple interactions of Saccharomyces cerevisiae with Candida albicans. Both live and inactivated yeasts induced coaggregation of Candida and consequently inhibited its adherence to epithelial cells. However, only the probiotic yeast was able to suppress some major virulence factors of Candida albicans such as the ability to switch from yeast to mycelial form and the capacity to express several aspartyl proteases. The effectiveness of live yeast was higher than that of inactivated whole yeast suggesting that the synergy between mechanical effects and biological effects were dominant over purely mechanical effects. The protection of epithelial cells to Candida-induced damage was also observed. Overall, our data show for the first time that Saccharomyces cerevisiae-based ingredients, particularly the living cells, can exert beneficial therapeutic effects on a widespread vaginal mucosal infection.

  2. Divergence in wine characteristics produced by wild and domesticated strains of Saccharomyces cerevisiae

    PubMed Central

    Hyma, Katie E; Saerens, Sofie M; Verstrepen, Kevin J; Fay, Justin C

    2011-01-01

    The budding yeast Saccharomyces cerevisiae is the primary species used by wine makers to convert sugar into alcohol during wine fermentation. Saccharomyces cerevisiae is found in vineyards, but is also found in association with oak trees and other natural sources. Although wild strains of S. cerevisiae as well as other Saccharomyces species are also capable of wine fermentation, a genetically distinct group of S. cerevisiae strains is primarily used to produce wine, consistent with the idea that wine making strains have been domesticated for wine production. In this study, we demonstrate that humans can distinguish between wines produced using wine strains and wild strains of S. cerevisiae as well as its sibling species, Saccharomyces paradoxus. Wine strains produced wine with fruity and floral characteristics, whereas wild strains produced wine with earthy and sulfurous characteristics. The differences that we observe between wine and wild strains provides further evidence that wine strains have evolved phenotypes that are distinct from their wild ancestors and relevant to their use in wine production. PMID:22093681

  3. Malo-ethanolic fermentation in grape must by recombinant strains of Saccharomyces cerevisiae.

    PubMed

    Volschenk, H; Viljoen-Bloom, M; Subden, R E; van Vuuren, H J

    2001-07-01

    Recombinant strains of Saccharomyces cerevisiae with the ability to reduce wine acidity could have a significant influence on the future production of quality wines, especially in cool climate regions. L-Malic acid and L-tartaric acid contribute largely to the acid content of grapes and wine. The wine yeast S. cerevisiae is unable to effectively degrade L-malic acid, whereas the fission yeast Schizosaccharomyces pombe efficiently degrades high concentrations of L-malic acid by means of a malo-ethanolic fermentation. However, strains of Sz. pombe are not suitable for vinification due to the production of undesirable off-flavours. Heterologous expression of the Sz. pombe malate permease (mae1) and malic enzyme (mae2) genes on plasmids in S. cerevisiae resulted in a recombinant strain of S. cerevisiae that efficiently degraded up to 8 g/l L-malic acid in synthetic grape must and 6.75 g/l L-malic acid in Chardonnay grape must. Furthermore, a strain of S. cerevisiae containing the mae1 and mae2 genes integrated in the genome efficiently degraded 5 g/l of L-malic acid in synthetic and Chenin Blanc grape musts. Furthermore, the malo-alcoholic strains produced higher levels of ethanol during fermentation, which is important for the production of distilled beverages.

  4. Regulation of Lactobacillus plantarum contamination on the carbohydrate and energy related metabolisms of Saccharomyces cerevisiae during bioethanol fermentation.

    PubMed

    Dong, Shi-Jun; Lin, Xiang-Hua; Li, Hao

    2015-11-01

    During the industrial bioethanol fermentation, Saccharomyces cerevisiae cells are often stressed by bacterial contaminants, especially lactic acid bacteria. Generally, lactic acid bacteria contamination can inhibit S. cerevisiae cell growth through secreting lactic acid and competing with yeast cells for micronutrients and living space. However, whether are there still any other influences of lactic acid bacteria on yeast or not? In this study, Lactobacillus plantarum ATCC 8014 was co-cultivated with S. cerevisiae S288c to mimic the L. plantarum contamination in industrial bioethanol fermentation. The contaminative L. plantarum-associated expression changes of genes involved in carbohydrate and energy related metabolisms in S. cerevisiae cells were determined by quantitative real-time polymerase chain reaction to evaluate the influence of L. plantarum on carbon source utilization and energy related metabolism in yeast cells during bioethanol fermentation. Contaminative L. plantarum influenced the expression of most of genes which are responsible for encoding key enzymes involved in glucose related metabolisms in S. cerevisiae. Specific for, contaminated L. plantarum inhibited EMP pathway but promoted TCA cycle, glyoxylate cycle, HMP, glycerol synthesis pathway, and redox pathway in S. cerevisiae cells. In the presence of L. plantarum, the carbon flux in S. cerevisiae cells was redistributed from fermentation to respiratory and more reducing power was produced to deal with the excess NADH. Moreover, L. plantarum contamination might confer higher ethanol tolerance to yeast cells through promoting accumulation of glycerol. These results also highlighted our knowledge about relationship between contaminative lactic acid bacteria and S. cerevisiae during bioethanol fermentation.

  5. A septin from the filamentous fungus A. nidulans induces atypical pseudohyphae in the budding yeast S. cerevisiae

    USDA-ARS?s Scientific Manuscript database

    Septins were first discovered in Saccharomyces cerevisiae where they form a scaffold that organizes the bud site and are a component of the morphogenesis checkpoint that coordinates budding with mitosis. Five of the seven S. cerevisiae septins (Cdc3, Cdc10, Cdc11, Cdc12 and Shs1) colocalize as a rin...

  6. Combined effect of the Saccharomyces cerevisiae lag phase and the non-Saccharomyces consortium to enhance wine fruitiness and complexity.

    PubMed

    Albertin, Warren; Zimmer, Adrien; Miot-Sertier, Cécile; Bernard, Margaux; Coulon, Joana; Moine, Virginie; Colonna-Ceccaldi, Benoit; Bely, Marina; Marullo, Philippe; Masneuf-Pomarede, Isabelle

    2017-09-14

    Non-Saccharomyces (NS) species that are either naturally present in grape must or added in mixed fermentation with S. cerevisiae may impact the wine's chemical composition and sensory properties. NS yeasts are prevailing during prefermentation and early stages of alcoholic fermentation. However, obtaining the correct balance between S. cerevisiae and NS species is still a critical issue: if S. cerevisiae outcompetes the non-Saccharomyces, it may minimize their impact, while conversely if NS take over S. cerevisiae, it may result in stuck or sluggish fermentations. Here, we propose an original strategy to promote the non-Saccharomyces consortium during the prefermentation stage while securing fermentation completion: the use of a long lag phase S. cerevisiae. Various fermentations in a Sauvignon Blanc with near isogenic S. cerevisiae displaying short or long lag phase were compared. Fermentations were performed with or without a consortium of five non-Saccharomyces yeasts (Hanseniaspora uvarum, Candida zemplinina, Metschnikowia spp., Torulaspora delbrueckii, and Pichia kluyveri), mimicking the composition of natural NS community in grape must. The sensorial analysis highlighted the positive impact of the long lag phase on the wine fruitiness and complexity. Surprisingly, the presence of NS modified only marginally the wine composition but significantly impacted the lag phase of S. cerevisiae. The underlying mechanisms are still unclear, but it is the first time that a study suggests that the wine composition can be affected by the lag phase duration per se. Further experiments should address the suitability of the use of long lag phase S. cerevisiae in winemaking.

  7. Cocktail δ-integration of xylose assimilation genes for efficient ethanol production from xylose in Saccharomyces cerevisiae.

    PubMed

    Kato, Hiroko; Matsuda, Fumio; Yamada, Ryosuke; Nagata, Kento; Shirai, Tomokazu; Hasunuma, Tomohisa; Kondo, Akihiko

    2013-09-01

    Cocktail δ-integration was applied to improve ethanol production from xylose in Saccharomyces cerevisiae. Two hundred of recombinant S. cerevisiae strains possessing various copies of XYL1, XYL2, and XKS1 genes were constructed by cocktail δ-integration. Efficient strains with efficient ethanol production from xylose were successfully obtained by the fermentation test.

  8. Finding of thiosulfate pathway for synthesis of organic sulfur compounds in Saccharomyces cerevisiae and improvement of ethanol production.

    PubMed

    Funahashi, Eri; Saiki, Kyohei; Honda, Kurara; Sugiura, Yuki; Kawano, Yusuke; Ohtsu, Iwao; Watanabe, Daisuke; Wakabayashi, Yukari; Abe, Tetsuya; Nakanishi, Tsuyoshi; Suematsu, Makoto; Takagi, Hiroshi

    2015-12-01

    We found that Saccharomyces cerevisiae utilizes thiosulfate as a sole sulfur source. The energetically-favored thiosulfate rather than sulfate as sulfur sources is also more effective for improving growth and ethanol-production rate in S. cerevisiae due to high levels of intracellular NADPH during thiosulfate utilization.

  9. Integrated phospholipidomics and transcriptomics analysis of Saccharomyces cerevisiae with enhanced tolerance to a mixture of acetic acid, furfural, and phenol

    USDA-ARS?s Scientific Manuscript database

    A mixture of acetic acid, furfural and phenol (AFP), three representative lignocellulose derived inhibitors, significantly inhibited the growth and bioethanol production of Saccharomyces cerevisiae. In order to uncover mechanisms behind the enhanced tolerance of an inhibitor-tolerant S.cerevisiae s...

  10. Air-liquid biofilm formation is dependent on ammonium depletion in a Saccharomyces cerevisiae flor strain.

    PubMed

    Zara, Giacomo; Budroni, Marilena; Mannazzu, Ilaria; Zara, Severino

    2011-12-01

    Air-liquid biofilm formation appears to be an adaptive mechanism that promotes foraging of Saccharomyces cerevisiae flor strains in response to nutrient starvation. The FLO11 gene plays a central role in this phenotype as its expression allows yeast cells to rise to the liquid surface. Here, we investigated the role of ammonium depletion in air-liquid biofilm formation and FLO11 expression in a S. cerevisiae flor strain. The data obtained show that increasing ammonium concentrations from 0 to 450 m m reduce air-liquid biofilm in terms of biomass and velum formation and correlate with a reduction of FLO11 expression. Rapamycin inhibition of the TOR pathway and deletion of RAS2 gene significantly reduced biofilm formation and FLO11 expression. Taken together, these data suggest that ammonium depletion is a key factor in the induction of air-liquid biofilm formation and FLO11 expression in S. cerevisiae flor strains.

  11. Two programmed replicative lifespans of Saccharomyces cerevisiae formed by the endogenous molecular-cellular network.

    PubMed

    Hu, Jie; Zhu, Xiaomei; Wang, Xinan; Yuan, Ruoshi; Zheng, Wei; Xu, Minjuan; Ao, Ping

    2014-12-07

    Cellular replicative capacity is a therapeutic target for regenerative medicine as well as cancer treatment. The mechanism of replicative senescence and cell immortality is still unclear. We investigated the diauxic growth of Saccharomyces cerevisiae and demonstrate that the replicative capacity revealed by the yeast growth curve can be understood by using the dynamical property of the molecular-cellular network regulating S. cerevisiae. The endogenous network we proposed has a limit cycle when pheromone signaling is disabled, consistent with the exponential growth phase with an infinite replicative capacity. In the post-diauxic phase, the cooperative effect of the pheromone activated mitogen-activated protein kinase (MAPK) signaling pathway with the cell cycle leads to a fixed point attractor instead of the limit cycle. The cells stop dividing after several generations counting from the beginning of the post-diauxic growth. By tuning the MAPK pathway, S. cerevisiae therefore programs the number of offsprings it replicates.

  12. Improve carbon metabolic flux in Saccharomyces cerevisiae at high temperature by overexpressed TSL1 gene.

    PubMed

    Ge, Xiang-Yang; Xu, Yan; Chen, Xiang

    2013-04-01

    This study describes a novel strategy to improve the glycolysis flux of Saccharomyces cerevisiae at high temperature. The TSL1 gene-encoding regulatory subunit of the trehalose synthase complex was overexpressed in S. cerevisiae Z-06, which increased levels of trehalose synthase activity in extracts, enhanced stress tolerance and glucose consuming rate of the yeast cells. As a consequence, the final ethanol concentration of 185.5 g/L was obtained at 38 °C for 36 h (with productivity up to 5.2 g/L/h) in 7-L fermentor, and the ethanol productivity was 92.7 % higher than that of the parent strain. The results presented here provide a novel way to enhance the carbon metabolic flux at high temperature, which will be available for the purposes of producing other primary metabolites of commercial interest using S. cerevisiae as a host.

  13. The golden root, Rhodiola rosea, prolongs lifespan but decreases oxidative stress resistance in yeast Saccharomyces cerevisiae.

    PubMed

    Bayliak, Maria M; Lushchak, Volodymyr I

    2011-11-15

    The effect of aqueous extract from R. rosea root on lifespan and the activity of antioxidant enzymes in budding yeast Saccharomyces cerevisiae have been studied. The supplementation of the growth medium with R. rosea extract decreased survival of exponentially growing S. cerevisiae cells under H(2)O(2)-induced oxidative stress, but increased viability and reproduction success of yeast cells in stationary phase. The extract did not significantly affect catalase activity and decreased SOD activity in chronologically aged yeast population. These results suggest that R. rosea acts as a stressor for S. cerevisiae cells, what sensitizes yeast cells to oxidative stress at exponential phase, but induces adaptation in stationary phase cells demonstrating the positive effect on yeast survival without activation of major antioxidant enzymes.

  14. Deletion of JJJ1 improves acetic acid tolerance and bioethanol fermentation performance of Saccharomyces cerevisiae strains.

    PubMed

    Wu, Xuechang; Zhang, Lijie; Jin, Xinna; Fang, Yahong; Zhang, Ke; Qi, Lei; Zheng, Daoqiong

    2016-07-01

    To improve tolerance to acetic acid that is present in lignocellulosic hydrolysates and affects bioethanol production by Saccharomyces cerevisiae. Saccharomyces cerevisiae strains with improved tolerance to acetic acid were obtained through deletion of the JJJ1 gene. The lag phase of the JJJ1 deletion mutant BYΔJJJ1 was ~16 h shorter than that of the parent strain, BY4741, when the fermentation medium contained 4.5 g acetic acid/l. Additionally, the specific ethanol production rate of BYΔJJJ1 was increased (0.057 g/g h) compared to that of the parent strain (0.051 g/g h). Comparative transcription and physiological analyses revealed higher long chain fatty acid, trehalose, and catalase contents might be critical factors responsible for the acetic acid resistance of JJJ1 knockout strains. JJJ1 deletion improves acetic acid tolerance and ethanol fermentation performance of S. cerevisiae.

  15. Metabolic engineering of Saccharomyces cerevisiae for 2,3-butanediol production.

    PubMed

    Kim, Soo-Jung; Kim, Jin-Woo; Lee, Ye-Gi; Park, Yong-Cheol; Seo, Jin-Ho

    2017-03-01

    Saccharomyces cerevisiae is a work horse for production of valuable biofuels and biochemicals including 2,3-butanediol (2,3-BDO), a platform chemical with wide industrial applications for synthetic rubber, biosolvents and food additives. Recently, a cutting-edge technology of metabolic engineering has enabled S. cerevisiae to produce 2,3-BDO with high yield and productivity. These include (i) amplification of the 2,3-BDO biosynthetic pathway, (ii) redirection of carbon flux from ethanol or glycerol toward 2,3-BDO, and (iii) 2,3-BDO production from sugars derived from renewable biomass. These breakthroughs enforced S. cerevisiae to become a promising microbial host for production of 2,3-BDO.

  16. Homologous recombination between single-stranded DNA and chromosomal genes in Saccharomyces cerevisiae.

    PubMed Central

    Simon, J R; Moore, P D

    1987-01-01

    Transformation of Saccharomyces cerevisiae strains was examined by using the URA3 and TRP1 genes cloned into M13 vectors in the absence of sequences capable of promoting autonomous replication. These constructs transform S. cerevisiae cells to prototrophy by homologous recombination with the resident mutant gene. Single-stranded DNA was found to transform S. cerevisiae cells at efficiencies greater than that of double-stranded DNA. No conversion of single-stranded transforming DNA into duplex forms could be detected during the transformation process, and we conclude that single-stranded DNA may participate directly in recombination with chromosomal sequences. Transformation with single-stranded DNA gave rise to both gene conversion and reciprocal exchange events. Cotransformation with competing heterologous single-stranded DNA specifically inhibited transformation by single-stranded DNA, suggesting that one of the components in the transformation-recombination process has a preferential affinity for single-stranded DNA. Images PMID:3302673

  17. Parameter Optimization for Enhancement of Ethanol Yield by Atmospheric Pressure DBD-Treated Saccharomyces cerevisiae

    NASA Astrophysics Data System (ADS)

    Dong, Xiaoyu; Yuan, Yulian; Tang, Qian; Dou, Shaohua; Di, Lanbo; Zhang, Xiuling

    2014-01-01

    In this study, Saccharomyces cerevisiae (S. cerevisiae) was exposed to dielectric barrier discharge plasma (DBD) to improve its ethanol production capacity during fermentation. Response surface methodology (RSM) was used to optimize the discharge-associated parameters of DBD for the purpose of maximizing the ethanol yield achieved by DBD-treated S. cerevisiae. According to single factor experiments, a mathematical model was established using Box-Behnken central composite experiment design, with plasma exposure time, power supply voltage, and exposed-sample volume as impact factors and ethanol yield as the response. This was followed by response surface analysis. Optimal experimental parameters for plasma discharge-induced enhancement in ethanol yield were plasma exposure time of 1 min, power voltage of 26 V, and an exposed sample volume of 9 mL. Under these conditions, the resulting yield of ethanol was 0.48 g/g, representing an increase of 33% over control.

  18. Development of a system for multicopy gene integration in Saccharomyces cerevisiae.

    PubMed

    Semkiv, Marta V; Dmytruk, Kostyantyn V; Sibirny, Andriy A

    2016-01-01

    In this study we describe construction and evaluation of a vector for multicopy integration in yeast Saccharomyces cerevisiae. In this vector a modified selective marker and a reporter gene PHO8 (encoding alkaline phosphatase) were flanked with delta sequences of the Ty1 transposon. Modified by error-prone PCR version of selection marker kanMX4 was obtained from Escherichia coli clone with impaired geneticin (G418) resistance. The attenuation of kanMX4 gene provides an opportunity to select for explicitly multicopy integration of the module in S. cerevisiae using moderate (200 mg L(-1)) antibiotic concentrations. The developed system provided integration of 3-10 copies of the module in the genome of S. cerevisiae. High copy integration events were confirmed by qRT-PCR, Southern hybridization and reporter enzyme activity measurements. Copyright © 2015. Published by Elsevier B.V.

  19. Role of thioredoxin peroxidase in aging of stationary cultures of Saccharomyces cerevisiae.

    PubMed

    Lee, Jin Hyup; Park, Jeen-Woo

    2004-03-01

    A soluble protein from Saccharomyces cerevisiae acts as a peroxidase but requires a NADPH-dependent thioredoxin system and was named thioredoxin peroxidase (TPx). The role of TPx in aging of stationary cultures of S. cerevisiae was investigated in a wild-type strain and a mutant yeast strain in which the tsa gene that encodes TPx was disrupted by homologous recombination. The occurrence of oxidative stress during aging of stationary cultures of the yeast has been proposed. Comparison of 5-day-old (young) stationary cultures of S. cerevisiae and of cultures aged for 3 months (old) revealed decreased viability, increased generation of reactive oxygen species, modulation of cellular redox status, and increased cellular oxidative damage reflected by increased protein carbonyl content and lipid peroxidation. The magnitude of this stress was augmented in yeast mutant lacking TPx. These results suggest that TPx may play a direct role in cellular defense against aging of stationary cultures presumably, functioning as an antioxidant enzyme.

  20. Simultaneous saccharification and fermentation of enzyme pretreated Lantana camara using S. cerevisiae.

    PubMed

    Kuila, Arindam; Banerjee, Rintu

    2014-10-01

    Lantana camara, an abundantly available non-edible lignocellulosic biomass has been found to be a potential feedstock for ethanol production. The substrate was first pretreated with laccase followed by simultaneous saccharification and fermentation using cellulase and Saccharomyces cerevisiae, respectively. Laccase was produced from Pleurotus sp. and carbohydratases (cellulase and xylanase) were produced from Trichoderma reesei Rut C30. Using pretreated substrate simultaneous saccharification and fermentation was optimized through central composite design-based response surface methodology. Maximum bioethanol concentration of 5.14 % (v/v) was obtained at optimum process conditions of substrate concentration 17 % (w/v), inoculum volume 9 % (v/v), inoculum age 60 and 144 h of incubation time. To enhance ethanol yield, S. cerevisiae was treated with ethyl methane sulfonate, a chemical mutagenic agent which induced mutagenesis. A maximum bioethanol concentration of 6.01 % (v/v) was obtained using the mutated strain of S. cerevisiae (CM5).