Science.gov

Sample records for cerevisiae pkc1 mutation

  1. Saccharomyces Cerevisiae Hoc1, a Suppressor of Pkc1, Encodes a Putative Glycosyltransferase

    PubMed Central

    Neiman, A. M.; Mhaiskar, V.; Manus, V.; Galibert, F.; Dean, N.

    1997-01-01

    The Saccharomyces cerevisiae gene PKC1 encodes a protein kinase C isozyme that regulates cell wall synthesis. Here we describe the characterization of HOC1, a gene identified by its ability to suppress the cell lysis phenotype of pkc1-371 cells. The HOC1 gene (Homologous to OCH1) is predicted to encode a type II integral membrane protein that strongly resembles Och1p, an α-1,6-mannosyltransferase. Immunofluorescence studies localized Hoc1p to the Golgi apparatus. While overexpression of HOC1 rescued the pkc1-371 temperature-sensitive cell lysis phenotype, disruption of HOC1 lowered the restrictive temperature of the pkc1-371 allele. Disruption of HOC1 also resulted in hypersensitivity to Calcofluor White and hygromycin B, phenotypes characteristic of defects in cell wall integrity and protein glycosylation, respectively. The function of HOC1 appears to be distinct from that of OCH1. Taken together, these results suggest that HOC1 encodes a Golgi-localized putative mannosyltransferase required for the proper construction of the cell wall. PMID:9055074

  2. The synthetic genetic network around PKC1 identifies novel modulators and components of protein kinase C signaling in Saccharomyces cerevisiae.

    PubMed

    Krause, Sue A; Xu, Hong; Gray, Joseph V

    2008-11-01

    Budding yeast Saccharomyces cerevisiae contains one protein kinase C (PKC) isozyme encoded by the essential gene PKC1. Pkc1 is activated by the small GTPase Rho1 and plays a central role in the cell wall integrity (CWI) signaling pathway. This pathway acts primarily to remodel the cell surface throughout the normal life cycle and upon various environmental stresses. The pathway is heavily branched, with multiple nonessential branches feeding into and out of the central essential Rho1-Pkc1 module. In an attempt to identify novel components and modifiers of CWI signaling, we determined the synthetic lethal genetic network around PKC1 by using dominant-negative synthetic genetic array analysis. The resulting mutants are hypersensitive to lowered Pkc1 activity. The corresponding 21 nonessential genes are closely related to CWI function: 14 behave in a chemical-genetic epistasis test as acting in the pathway, and 6 of these genes encode known components. Twelve of the 21 null mutants display elevated CWI reporter activity, consistent with the idea that the pathway is activated by and compensates for loss of the gene products. Four of the 21 mutants display low CWI reporter activity, consistent with the idea that the pathway is compromised in these mutants. One of the latter group of mutants lacks Ack1(Ydl203c), an uncharacterized SEL-1 domain-containing protein that we find modulates pathway activity. Epistasis analysis places Ack1 upstream of Pkc1 in the CWI pathway and dependent on the upstream Rho1 GTP exchange factors Rom2 and Tus1. Overall, the synthetic genetic network around PKC1 directly and efficiently identifies known and novel components of PKC signaling in yeast.

  3. BRO1, a novel gene that interacts with components of the Pkc1p-mitogen-activated protein kinase pathway in Saccharomyces cerevisiae.

    PubMed Central

    Nickas, M E; Yaffe, M P

    1996-01-01

    Yeast cells with mutations in BRO1 display phenotypes similar to those caused by deletion of BCK1, a gene encoding a MEK kinase that functions in a mitogen-activated protein kinase pathway mediating maintenance of cell integrity. bro1 cells exhibit a temperature-sensitive growth defect that is suppressed by the addition of osmotic stabilizers or Ca2+ to the growth medium or by additional copies of the BCK1 gene. At permissive temperatures, bro1 mutants are sensitive to caffeine and respond abnormally to nutrient limitation. A null mutation in BRO1 is synthetically lethal with null mutations in BCK1, MPK1, which encodes a mitogen-activated protein kinase that functions downstream of Bck1p, or PKC1, a gene encoding a protein kinase C homolog that activates Bck1p. Analysis of the isolated BRO1 gene revealed that it encodes a novel, 97-kDa polypeptide which contains a putative SH3 domain-binding motif and is homologous to a protein of unknown function in Caenorhabditis elegans. PMID:8649366

  4. Genome destabilizing mutator alleles drive specific mutational trajectories in Saccharomyces cerevisiae.

    PubMed

    Stirling, Peter C; Shen, Yaoqing; Corbett, Richard; Jones, Steven J M; Hieter, Philip

    2014-02-01

    In addition to environmental factors and intrinsic variations in base substitution rates, specific genome-destabilizing mutations can shape the mutational trajectory of genomes. How specific alleles influence the nature and position of accumulated mutations in a genomic context is largely unknown. Understanding the impact of genome-destabilizing alleles is particularly relevant to cancer genomes where biased mutational signatures are identifiable. We first created a more complete picture of cellular pathways that impact mutation rate using a primary screen to identify essential Saccharomyces cerevisiae gene mutations that cause mutator phenotypes. Drawing primarily on new alleles identified in this resource, we measure the impact of diverse mutator alleles on mutation patterns directly by whole-genome sequencing of 68 mutation-accumulation strains derived from wild-type and 11 parental mutator genotypes. The accumulated mutations differ across mutator strains, displaying base-substitution biases, allele-specific mutation hotspots, and break-associated mutation clustering. For example, in mutants of POLα and the Cdc13-Stn1-Ten1 complex, we find a distinct subtelomeric bias for mutations that we show is independent of the target sequence. Together our data suggest that specific genome-instability mutations are sufficient to drive discrete mutational signatures, some of which share properties with mutation patterns seen in tumors. Thus, in a population of cells, genome-instability mutations could influence clonal evolution by establishing discrete mutational trajectories for genomes.

  5. Mutations in Ran system affected telomere silencing in Saccharomyces cerevisiae

    SciTech Connect

    Hayashi, Naoyuki Kobayashi, Masahiko; Shimizu, Hiroko; Yamamoto, Ken-ichi; Murakami, Seishi; Nishimoto, Takeharu

    2007-11-23

    The Ran GTPase system regulates the direction and timing of several cellular events, such as nuclear-cytosolic transport, centrosome formation, and nuclear envelope assembly in telophase. To gain insight into the Ran system's involvement in chromatin formation, we investigated gene silencing at the telomere in several mutants of the budding yeast Saccharomyces cerevisiae, which had defects in genes involved in the Ran system. A mutation of the RanGAP gene, rna1-1, caused reduced silencing at the telomere, and partial disruption of the nuclear Ran binding factor, yrb2-{delta}2, increased this silencing. The reduced telomere silencing in rna1-1 cells was suppressed by a high dosage of the SIR3 gene or the SIT4 gene. Furthermore, hyperphosphorylated Sir3 protein accumulated in the rna1-1 mutant. These results suggest that RanGAP is required for the heterochromatin structure at the telomere in budding yeast.

  6. Kem Mutations Affect Nuclear Fusion in Saccharomyces Cerevisiae

    PubMed Central

    Kim, J.; Ljungdahl, P. O.; Fink, G. R.

    1990-01-01

    We have identified mutations in three genes of Saccharomyces cerevisiae, KEM1, KEM2 and KEM3, that enhance the nuclear fusion defect of kar1-1 yeast during conjugation. The KEM1 and KEM3 genes are located on the left arm of chromosome VII. Kem mutations reduce nuclear fusion whether the kem and the kar1-1 mutations are in the same or in different parents (i.e., in both kem kar1-1 X wild-type and kem X kar1-1 crosses). kem1 X kem1 crosses show a defect in nuclear fusion, but kem1 X wild-type crosses do not. Mutant kem1 strains are hypersensitive to benomyl, lose chromosomes at a rate 10-20-fold higher than KEM(+) strains, and lose viability upon nitrogen starvation. In addition, kem1/kem1 diploids are unable to sporulate. Cells containing a kem1 null allele grow very poorly, have an elongated rod-shape and are defective in spindle pole body duplication and/or separation. The KEM1 gene, which is expressed as a 5.5-kb mRNA transcript, contains a 4.6-kb open reading frame encoding a 175-kD protein. PMID:2076815

  7. Specific DNA replication mutations affect telomere length in Saccharomyces cerevisiae.

    PubMed Central

    Adams, A K; Holm, C

    1996-01-01

    To investigate the relationship between the DNA replication apparatus and the control of telomere length, we examined the effects of several DNA replication mutations on telomere length in Saccharomyces cerevisiae. We report that a mutation in the structural gene for the large subunit of DNA replication factor C (cdc44/rfc1) causes striking increases in telomere length. A similar effect is seen with mutations in only one other DNA replication gene: the structural gene for DNA polymerase alpha (cdc17/pol1) (M.J. Carson and L. Hartwell, Cell 42:249-257, 1985). For both genes, the telomere elongation phenotype is allele specific and appears to correlate with the penetrance of the mutations. Furthermore, fluorescence-activated cell sorter analysis reveals that those alleles that cause elongation also exhibit a slowing of DNA replication. To determine whether elongation is mediated by telomerase or by slippage of the DNA polymerase, we created cdc17-1 mutants carrying deletions of the gene encoding the RNA component of telomerase (TLC1). cdc17-1 strains that would normally undergo telomere elongation failed to do so in the absence of telomerase activity. This result implies that telomere elongation in cdc17-1 mutants is mediated by the action of telomerase. Since DNA replication involves transfer of the nascent strand from polymerase alpha to replication factor C (T. Tsurimoto and B. Stillman, J. Biol. Chem. 266:1950-1960, 1991; T. Tsurimoto and B. Stillman, J. Biol. Chem. 266:1961-1968, 1991; S. Waga and B. Stillman, Nature [London] 369:207-212, 1994), one possibility is that this step affects the regulation of telomere length. PMID:8756617

  8. Endomitotic effect of a cell cycle mutation of Saccharomyces cerevisiae

    SciTech Connect

    Schild, D.; Ananthaswamy, H.N.; Mortimer, R.K.

    1981-03-01

    A recessive temperature-sensitive mutation of Saccharomyces cerevisiae has been isolated and shown to cause an increase in ploidy in both haploids and diploids. Genetic analysis revealed that the strain carrying the mutation was an aa diploid, although MNNG mutagenesis had been done on an a haploid strain. When the mutant strain was crossed with an ..cap alpha cap alpha.. diploid and the resultant tetraploid sporulated, some of the meiotic progeny of this tetraploid were themselves tetraploid, as shown by both genetic analysis and DNA measurements, instead of diploid as expected of tetraploid meiosis. The ability of these tetraploids to continue to produce tetraploid meiotic progeny was followed for four generations. It was found that tetraploidization was independent of sporulation temperature, but was dependent on the temperature of germination and the growth of the spores. Increase in ploidy occurred when the spores were germinated and grown at 30/sup 0/, but did not occur at 23/sup 0/. Two cycles of sporulation and growth at 23/sup 0/ resulted in haploids, which were shown to diploidize within 24 hr when grown at 30/sup 0/.

  9. Signaling through Lrg1, Rho1 and Pkc1 Governs Candida albicans Morphogenesis in Response to Diverse Cues

    PubMed Central

    Leach, Michelle D.; Hogan, Deborah A.; Robbins, Nicole; Cowen, Leah E.

    2016-01-01

    The capacity to transition between distinct morphological forms is a key virulence trait for diverse fungal pathogens. A poignant example of a leading opportunistic fungal pathogen of humans for which an environmentally responsive developmental program underpins virulence is Candida albicans. C. albicans mutants that are defective in the transition between yeast and filamentous forms typically have reduced virulence. Although many positive regulators of C. albicans filamentation have been defined, there are fewer negative regulators that have been implicated in repression of filamentation in the absence of inducing cues. To discover novel negative regulators of filamentation, we screened a collection of 1,248 C. albicans homozygous transposon insertion mutants to identify those that were filamentous in the absence of inducing cues. We identified the Rho1 GAP Lrg1, which represses filamentous growth by stimulating Rho1 GTPase activity and converting Rho1 to its inactive, GDP-bound form. Deletion of LRG1 or introduction of a RHO1 mutation that locks Rho1 in constitutively active, GTP-bound state, leads to filamentation in the absence of inducing cues. Deletion of the Rho1 downstream effector PKC1 results in defective filamentation in response to diverse host-relevant inducing cues, including serum. We further established that Pkc1 is not required to sense filament-inducing cues, but its kinase activity is critical for the initiation of filamentous growth. Our genetic analyses revealed that Pkc1 regulates filamentation independent of the canonical MAP kinase cascade. Further, although Ras1 activation is not impaired in a pkc1Δ/pkc1Δ mutant, adenylyl cyclase activity is reduced, consistent with a model in which Pkc1 functions in parallel with Ras1 in regulating Cyr1 activation. Thus, our findings delineate a signaling pathway comprised of Lrg1, Rho1 and Pkc1 with a core role in C. albicans morphogenesis, and illuminate functional relationships that govern activation

  10. Mating-defective ste mutations are suppressed by cell division cycle start mutations in Saccharomyces cerevisiae.

    PubMed Central

    Shuster, J R

    1982-01-01

    Temperature-sensitive mutants which arrest in the G1 phase of the cell cycle have been described for the yeast Saccharomyces cerevisiae. One class of these mutants (carrying cdc28, cdc36, cdc37, or cdc39) forms a shmoo morphology at restrictive temperature, characteristic of mating pheromone-arrested wild-type cells. Therefore, one hypothesis to explain the control of cell division by mating factors states that mating pheromones arrest wild-type cells by inactivating one or more of these CDC gene products. A class of mutants (carrying ste4, ste5, ste7, ste11, or ste12) which is insensitive to mating pheromone and sterile has also been described. One possible function of the STE gene products is the inactivation of the CDC gene products in the presence of a mating pheromone. A model incorporating these two hypotheses predicts that such STE gene products will not be required for mating in strains carrying an appropriate cdc lesion. This prediction was tested by assaying the mating abilities of double mutants for all of the pairwise combinations of cdc and ste mutations. Lesions in either cdc36 or cdc39 suppressed the mating defect due to ste4 and ste5. Allele specificity was observed in the suppression of both ste4 and ste5. The results indicate that the CDC36, CDC39, STE4, and STE5 gene products interact functionally or physically or both in the regulation of cell division mediated by the presence or absence of mating pheromones. The cdc36 and cdc39 mutations did not suppress ste7, ste11, or ste12. Lesions in cdc28 or cdc37 did not suppress any of the ste mutations. Other models of CDC and STE gene action which predicted that some of the cdc and ste mutations would be alleles of the same locus were tested. None of the cdc mutations was allelic to the ste mutations and, therefore, these models were eliminated. PMID:6757719

  11. Asparaginase II of Saccharomyces cerevisiae: selection of four mutations that cause derepressed enzyme synthesis.

    PubMed

    Kamerud, J Q; Roon, R J

    1986-01-01

    A positive selection method was used to isolate four Saccharomyces cerevisiae mutations that cause derepressed synthesis of asparaginase II. The four mutations (and1, and2, and3, and4) were neither closely linked to each other nor linked to previously characterized mutations (asp3, asp6) which cause the complete loss of asparaginase II activity. One of the new mutations (and4) was shown to be allelic to gdh-CR, a pleiotropic mutation which causes derepressed synthesis of a number of enzymes of nitrogen catabolism.

  12. Mapping small effect mutations in Saccharomyces cerevisiae: impacts of experimental design and mutational properties.

    PubMed

    Duveau, Fabien; Metzger, Brian P H; Gruber, Jonathan D; Mack, Katya; Sood, Natasha; Brooks, Tiffany E; Wittkopp, Patricia J

    2014-04-29

    Genetic variants identified by mapping are biased toward large phenotypic effects because of methodologic challenges for detecting genetic variants with small phenotypic effects. Recently, bulk segregant analysis combined with next-generation sequencing (BSA-seq) was shown to be a powerful and cost-effective way to map small effect variants in natural populations. Here, we examine the power of BSA-seq for efficiently mapping small effect mutations isolated from a mutagenesis screen. Specifically, we determined the impact of segregant population size, intensity of phenotypic selection to collect segregants, number of mitotic generations between meiosis and sequencing, and average sequencing depth on power for mapping mutations with a range of effects on the phenotypic mean and standard deviation as well as relative fitness. We then used BSA-seq to map the mutations responsible for three ethyl methanesulfonate-induced mutant phenotypes in Saccharomyces cerevisiae. These mutants display small quantitative variation in the mean expression of a fluorescent reporter gene (-3%, +7%, and +10%). Using a genetic background with increased meiosis rate, a reliable mating type marker, and fluorescence-activated cell sorting to efficiently score large segregating populations and isolate cells with extreme phenotypes, we successfully mapped and functionally confirmed a single point mutation responsible for the mutant phenotype in all three cases. Our simulations and experimental data show that the effects of a causative site not only on the mean phenotype, but also on its standard deviation and relative fitness should be considered when mapping genetic variants in microorganisms such as yeast that require population growth steps for BSA-seq.

  13. A pathway in the yeast cell division cycle linking protein kinase C (Pkc1) to activation of Cdc28 at START.

    PubMed Central

    Marini, N J; Meldrum, E; Buehrer, B; Hubberstey, A V; Stone, D E; Traynor-Kaplan, A; Reed, S I

    1996-01-01

    In an effort to study further the mechanism of Cdc28 function and cell cycle commitment, we describe here a genetic approach to identify components of pathways downstream of the Cdc28 kinase at START by screening for mutations that decrease the effectiveness of signaling by Cdc28. The first locus to be characterized in detail using this approach was PKC1 which encodes a homolog of the Ca(2+)-dependent isozymes of the mammalian protein kinase C (PKC) superfamily (Levin et al., 1990). By several genetic criteria, we show a functional interaction between CDC28 and PKC1 with PKC1 apparently functioning with respect to bud emergence downstream of START. Consistent with this, activity of the MAP kinase homolog Mpk1 (a putative Pkc1 effector) is stimulated by activation of Cdc28. Furthermore, we demonstrate a cell cycle-dependent hydrolysis of phosphatidylcholine to diacylglycerol (a PKC activator) and choline phosphate at START. Diacylglycerol production is stimulated by Cdc28 in cycling cells and is closely associated with Cdc28 activation at START. These results imply that the activation of Pkc1, which is known to be necessary during bud morphogenesis, is mediated via the CDC28-dependent stimulation of PC-PLC activity in a novel cell cycle-regulated signaling pathway. Images PMID:8670805

  14. The effects of microgravity on induced mutation in Escherichia coli and Saccharomyces cerevisiae.

    PubMed

    Takahashi, A; Ohnishi, K; Takahashi, S; Masukawa, M; Sekikawa, K; Amano, T; Nakano, T; Nagaoka, S; Ohnishi, T

    2001-01-01

    We examined whether microgravity influences the induced-mutation frequencies through in vivo experiments during space flight aboard the space shuttle Discovery (STS-91). We prepared dried samples of repair-deficient strains and parental strains of Escherichia (E.) coli and Saccharomyces (S.) cerevisiae given DNA damage treatment. After culture in space, we measured the induced-mutation frequencies and SOS-responses under microgravity. The experimental findings indicate that almost the same induced-mutation frequencies and SOS-responses of space samples were observed in both strains compared with the ground control samples. It is suggested that microgravity might not influence induced-mutation frequencies and SOS-responses at the stages of DNA replication and/or DNA repair. In addition, we developed a new experimental apparatus for space experiments to culture and freeze stocks of E. coli and S. cerevisiae cells.

  15. Elevated mutation rate during meiosis in Saccharomyces cerevisiae.

    PubMed

    Rattray, Alison; Santoyo, Gustavo; Shafer, Brenda; Strathern, Jeffrey N

    2015-01-01

    Mutations accumulate during all stages of growth, but only germ line mutations contribute to evolution. While meiosis contributes to evolution by reassortment of parental alleles, we show here that the process itself is inherently mutagenic. We have previously shown that the DNA synthesis associated with repair of a double-strand break is about 1000-fold less accurate than S-phase synthesis. Since the process of meiosis involves many programmed DSBs, we reasoned that this repair might also be mutagenic. Indeed, in the early 1960's Magni and Von Borstel observed elevated reversion of recessive alleles during meiosis, and found that the revertants were more likely to be associated with a crossover than non-revertants, a process that they called "the meiotic effect." Here we use a forward mutation reporter (CAN1 HIS3) placed at either a meiotic recombination coldspot or hotspot near the MAT locus on Chromosome III. We find that the increased mutation rate at CAN1 (6 to 21 -fold) correlates with the underlying recombination rate at the locus. Importantly, we show that the elevated mutation rate is fully dependent upon Spo11, the protein that introduces the meiosis specific DSBs. To examine associated recombination we selected for random spores with or without a mutation in CAN1. We find that the mutations isolated this way show an increased association with recombination (crossovers, loss of crossover interference and/or increased gene conversion tracts). Polζ appears to contribute about half of the mutations induced during meiosis, but is not the only source of mutations for the meiotic effect. We see no difference in either the spectrum or distribution of mutations between mitosis and meiosis. The correlation of hotspots with elevated mutagenesis provides a mechanism for organisms to control evolution rates in a gene specific manner.

  16. Mutator Activity of Petite Strains of SACCHAROMYCES CEREVISIAE

    PubMed Central

    Flury, Fred; von Borstel, R. C.; Williamson, D. H.

    1976-01-01

    Petite strains in Saccharomyces exhibit enhanced spontaneous mutation rates of nuclear genes regardless of whether they are cytoplasmically or nuclearly inherited, or whether or not the cytoplasmic petite strains have mitochondrial DNA. In petite strains, the mutation rate for the nonsense allele lys1-1 is enhanced by a factor of 3-6 and for the missense allele his1-7 by a factor of 2 as compared with their grande counterparts. The reversion of a third allele, the putative frameshift mutation, hom3-10 , is not enhanced in a petite background. The results indicate that the spontaneous mutation rate of an organism can be altered by indirect intracellular influences. PMID:786779

  17. Mutator activity of petite strains of Saccharomyces cerevisiae.

    PubMed

    Flury, F; von Borstel, R C; Williamson, D H

    1976-08-01

    Petite strains in Saccharomyces exhibit enhanced spontaneous mutation rates of nuclear genes regardless of whether they are cytoplasmically or nuclearly inherited, or whether or not the cytoplasmic petite strains have mitochondrial DNA. In petite strains, the mutation rate for the nonsense allele lys1-1 is enhanced by a factor of 3-6 and for the missense allele his1-7 by a factor of 2 as compared with their grande counterparts. The reversion of a third allele, the putative frameshift mutation, hom3-10, is not enhanced in a petite background. The results indicate that the spontaneous mutation rate of an organism can be altered by indirect intracellular influences.

  18. Kinetics of petite mutation and thermal death in Saccharomyces cerevisiae growing at superoptimal temperatures.

    PubMed

    Simões-Mendes, B; Madeira-Lopes, A; van Uden, N

    1978-01-01

    Mass formation of petite mutants took place in a strain of Saccharomyces cerevisiae when grown at superoptimal temperatures. After an initial period of exponential growth, a second period followed during which exponential death and net exponential petite mutation concurred with exponential growth. The specific rates of the three exponential processes were of the same order of magnitude and varied with the temperature. Net exponential petite mutation did not occur during the deathless first period of growth at superoptimal temperatures nor at any time during growth at suboptimal temperatures. Mitochondria are discussed as possible targets of thermal death in mesophilic yeasts.

  19. Genetic analysis of transcription-associated mutation in Saccharomyces cerevisiae.

    PubMed

    Morey, N J; Greene, C N; Jinks-Robertson, S

    2000-01-01

    High levels of transcription are associated with elevated mutation rates in yeast, a phenomenon referred to as transcription-associated mutation (TAM). The transcription-associated increase in mutation rates was previously shown to be partially dependent on the Rev3p translesion bypass pathway, thus implicating DNA damage in TAM. In this study, we use reversion of a pGAL-driven lys2DeltaBgl allele to further examine the genetic requirements of TAM. We find that TAM is increased by disruption of the nucleotide excision repair or recombination pathways. In contrast, elimination of base excision repair components has only modest effects on TAM. In addition to the genetic studies, the lys2DeltaBgl reversion spectra of repair-proficient low and high transcription strains were obtained. In the low transcription spectrum, most of the frameshift events correspond to deletions of AT base pairs whereas in the high transcription strain, deletions of GC base pairs predominate. These results are discussed in terms of transcription and its role in DNA damage and repair.

  20. Thiol Peroxidase Deficiency Leads to Increased Mutational Load and Decreased Fitness in Saccharomyces cerevisiae

    PubMed Central

    Kaya, Alaattin; Lobanov, Alexei V.; Gerashchenko, Maxim V.; Koren, Amnon; Fomenko, Dmitri E.; Koc, Ahmet; Gladyshev, Vadim N.

    2014-01-01

    Thiol peroxidases are critical enzymes in the redox control of cellular processes that function by reducing low levels of hydroperoxides and regulating redox signaling. These proteins were also shown to regulate genome stability, but how their dysfunction affects the actual mutations in the genome is not known. Saccharomyces cerevisiae has eight thiol peroxidases of glutathione peroxidase and peroxiredoxin families, and the mutant lacking all these genes (∆8) is viable. In this study, we employed two independent ∆8 isolates to analyze the genome-wide mutation spectrum that results from deficiency in these enzymes. Deletion of these genes was accompanied by a dramatic increase in point mutations, many of which clustered in close proximity and scattered throughout the genome, suggesting strong mutational bias. We further subjected multiple lines of wild-type and ∆8 cells to long-term mutation accumulation, followed by genome sequencing and phenotypic characterization. ∆8 lines showed a significant increase in nonrecurrent point mutations and indels. The original ∆8 cells exhibited reduced growth rate and decreased life span, which were further reduced in all ∆8 mutation accumulation lines. Although the mutation spectrum of the two independent isolates was different, similar patterns of gene expression were observed, suggesting the direct contribution of thiol peroxidases to the observed phenotypes. Expression of a single thiol peroxidase could partially restore the growth phenotype of ∆8 cells. This study shows how deficiency in nonessential, yet critical and conserved oxidoreductase function, leads to increased mutational load and decreased fitness. PMID:25173844

  1. Evidence that mutation accumulation does not cause aging in Saccharomyces cerevisiae.

    PubMed

    Kaya, Alaattin; Lobanov, Alexei V; Gladyshev, Vadim N

    2015-06-01

    The concept that mutations cause aging phenotypes could not be directly tested previously due to inability to identify age-related mutations in somatic cells and determine their impact on organismal aging. Here, we subjected Saccharomyces cerevisiae to multiple rounds of replicative aging and assessed de novo mutations in daughters of mothers of different age. Mutations did increase with age, but their low numbers, < 1 per lifespan, excluded their causal role in aging. Structural genome changes also had no role. A mutant lacking thiol peroxidases had the mutation rate well above that of wild-type cells, but this did not correspond to the aging pattern, as old wild-type cells with few or no mutations were dying, whereas young mutant cells with many more mutations continued dividing. In addition, wild-type cells lost mitochondrial DNA during aging, whereas shorter-lived mutant cells preserved it, excluding a causal role of mitochondrial mutations in aging. Thus, DNA mutations do not cause aging in yeast. These findings may apply to other damage types, suggesting a causal role of cumulative damage, as opposed to individual damage types, in organismal aging.

  2. Treacher Collins syndrome mutations in Saccharomyces cerevisiae destabilizes RNA polymerase I and III complex integrity.

    PubMed

    Walker-Kopp, Nancy; Jackobel, Ashleigh J; Pannafino, Gianno N; Morocho, Paola A; Xu, Xia; Knutson, Bruce A

    2017-08-14

    Treacher Collins syndrome (TCS) is a craniofacial disorder that is characterized by the malformation of the facial bones. Mutations in three genes (TCOF1, POLR1C, and POLR1D) involved in RNA polymerase I (Pol I) transcription account for more than 90% of disease cases. Two of these TCS-associated genes, POLR1C and POLR1D, encode for essential Pol I/III subunits that form a heterodimer necessary for Pol I/III assembly, and many TCS mutations lie along their evolutionarily conserved dimerization interface. Here we elucidate the molecular basis of TCS mutations in S. cerevisiae, and present a new model for how TCS mutations may disrupt Pol I and III complex integrity. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. STT10, a novel class-D VPS yeast gene required for osmotic integrity related to the PKC1/STT1 protein kinase pathway.

    PubMed

    Yoshida, S; Ohya, Y; Hirose, R; Nakano, A; Anraku, Y

    1995-07-04

    We report the genetic and biochemical properties of a staurosporine (ST)- and temperature-sensitive mutant, stt10, of Saccharomyces cerevisiae. The stt10 mutant shows an osmoremedial phenotype in a medium with 1 M sorbitol. ST sensitivity of the stt10 mutant was suppressed by overexpression of PKC1/STT1, showing the genetic interactions of STT10 with the PKC1/STT1 pathway. The nucleotide sequence of STT10 predicts a hydrophilic protein composed of 577 amino acids that possesses 20-25% sequence similarity with yeast Slp1/Vam5p, Sec1p and Sly1p, and nematode Unc-18. The stt10 deletion mutant is viable and shows a typical class-D vacuolar protein sorting defective (vps) phenotype. Vacuoles from stt10 cells have a normal vacuolar H(+)-ATPase activity, but are defective in vacuolar acidification. Genetic studies of yeast mutants carrying delta stt10, delta bck1, stt1/pkc1 or stt4 have revealed that their functions are phenotypically related to maintenance of cellular osmotic integrity.

  4. Glucose starvation as a selective tool for the study of adaptive mutations in Saccharomyces cerevisiae.

    PubMed

    Heidenreich, Erich; Steinboeck, Ferdinand

    2017-01-01

    Mutations not only arise in proliferating cells but also in resting - thus non-replicating - cells. Such stationary-phase mutations may occasionally enable an escape from growth repression and e.g. contribute to cancerogenesis or development of drug resistance. The most widely used condition for the study of such adaptive mutations in the eukaryotic model organism Saccharomyces cerevisiae is the starvation for a single amino acid. To overcome some limitations of this experimental setup we developed a new adaptive mutation assay that allows a screening for mutagenic processes during a more regular cell cycle arrest induced by the lack of a fermentable carbon source. We blocked one essential step of gluconeogenesis by inactivation of the FBP1 gene. This drives the cells into a cell cycle arrest when glucose is not available in the medium although a non-fermentable carbon source is present. As another component of the new mutation assay, we established a custom-designed test allele that contains a microsatellite sequence as a target for mutations. We demonstrated the feasibility and validity of this novel experimental setup by the observation and characterization of adaptive mutants.

  5. Alpha mating type-specific expression of mutations leading to constitutive agglutinability in Saccharomyces cerevisiae.

    PubMed Central

    Doi, S; Yoshimura, M

    1985-01-01

    Two mutants of Saccharomyces cerevisiae have been isolated and characterized. The mutants were constitutively agglutinable at 36 degrees C, the temperature at which wild-type cells agglutinate only after induction by mating pheromone. The mutant cells had other properties specific for the normal alpha cell type, i.e., conjugation with a cells, response to a mating pheromone, and production of alpha mating pheromone. The two mutations, cag1 and cag2, were recessive and expressed only in alpha cells. cag1 is linked very closely to the MAT locus, but cag2 is unlinked to the MAT locus. These cag mutations complemented ste3-1. These results indicate that CAG genes are novel alpha-specific genes involved in the regulation of sex agglutinin synthesis. PMID:3881403

  6. Mutations in nucleolar proteins lead to nucleolar accumulation of polyA+ RNA in Saccharomyces cerevisiae.

    PubMed Central

    Kadowaki, T; Schneiter, R; Hitomi, M; Tartakoff, A M

    1995-01-01

    Synthesis of mRNA and rRNA occur in the chromatin-rich nucleoplasm and the nucleolus, respectively. Nevertheless, we here report that a Saccharomyces cerevisiae gene, MTR3, previously implicated in mRNA transport, codes for a novel essential 28-kDa nucleolar protein. Moreover, in mtr3-1 the accumulated polyA+ RNA actually colocalizes with nucleolar antigens, the nucleolus becomes somewhat disorganized, and rRNA synthesis and processing are inhibited. A strain with a ts conditional mutation in RNA polymerase I also shows nucleolar accumulation of polyA+ RNA, whereas strains with mutations in the nucleolar protein Nop1p do not. Thus, in several mutant backgrounds, when mRNA cannot be exported i concentrates in the nucleolus. mRNA may normally encounter nucleolar components before export and proteins such as Mtr3p may be critical for export of both mRNA and ribosomal subunits. Images PMID:8534909

  7. Suppressors of Saccharomyces cerevisiae his3 promoter mutations lacking the upstream element.

    PubMed Central

    Oettinger, M A; Struhl, K

    1985-01-01

    Transcription of the Saccharomyces cerevisiae his3 gene requires an upstream promoter element and a TATA element. A strain containing his3-delta 13, an allele which deletes the upstream promoter element but contains the TATA box and intact structural gene, fails to express the gene and consequently is unable to grow in medium lacking histidine. In this paper we characterize His+ revertants of his3-delta 13 which are due to unlinked suppressor mutations. Recessive suppressors in three different ope genes allow his3-delta 13 to be expressed at wild-type levels. In all cases, the suppression is due to increased his3 transcription. However, unlike the wild-type his3 gene, whose transcripts are initiated about equally from two different sites (+1 and +12), transcription due to the ope mutations is initiated only from the +12 site, ope-mediated transcription is regulated in a novel manner; it is observed in minimal medium, but not in rich broth. Although ope mutations restore wild-type levels of transcription, his3 chromatin structure, as assayed by micrococcal nuclease sensitivity of the TATA box, resembles that found in the his3-delta 13 parent rather than in the wild-type strain. This provides further evidence that TATA box sensitivity is not correlated with transcriptional activation. ope mutations are pleiotropic in that cells have a crunchy colony morphology and lyse at 37 degrees C in conditions of normal osmolarity. ope mutations are allele specific because they fail to suppress five other his3 promoter mutations. We discuss implications concerning upstream promoter elements and propose some models for ope suppression. Images PMID:3018536

  8. A constitutive thiamine metabolism mutation, thi80, causing reduced thiamine pyrophosphokinase activity in Saccharomyces cerevisiae.

    PubMed Central

    Nishimura, H; Kawasaki, Y; Nosaka, K; Kaneko, Y; Iwashima, A

    1991-01-01

    We identified a strain carrying a recessive constitutive mutation (thi80-1) with an altered thiamine transport system, thiamine-repressible acid phosphatase, and several enzymes of thiamine synthesis from 2-methyl-4-amino-5-hydroxymethylpyrimidine and 4-methyl-5-beta-hydroxyethylthiazole. The mutant shows markedly reduced activity of thiamine pyrophosphokinase (EC 2.7.6.2) and high resistance to oxythiamine, a thiamine antagonist whose potency depends on thiamine pyrophosphokinase activity. The intracellular thiamine pyrophosphate content of the mutant cells grown with exogenous thiamine (2 x 10(-7) M) was found to be about half that of the wild-type strain under the same conditions. These results suggest that the utilization and synthesis of thiamine in Saccharomyces cerevisiae is controlled negatively by the intracellular thiamine pyrophosphate level. PMID:1849514

  9. Nucleosome alterations caused by mutations at modifiable histone residues in Saccharomyces cerevisiae

    PubMed Central

    Liu, Hongde; Wang, Pingyan; Liu, Lingjie; Min, Zhu; Luo, Kun; Wan, Yakun

    2015-01-01

    Nucleosome organization exhibits dynamic properties depending on the cell state and environment. Histone proteins, fundamental components of nucleosomes, are subject to chemical modifications on particular residues. We examined the effect of substituting modifiable residues of four core histones with the non-modifiable residue alanine on nucleosome dynamics. We mapped the genome-wide nucleosomes in 22 histone mutants of Saccharomyces cerevisiae and compared the nucleosome alterations relative to the wild-type strain. Our results indicated that different types of histone mutation resulted in different phenotypes and a distinct reorganization of nucleosomes. Nucleosome occupancy was altered at telomeres, but not at centromeres. The first nucleosomes upstream (−1) and downstream (+1) of the transcription start site (TSS) were more dynamic than other nucleosomes. Mutations in histones affected the nucleosome array downstream of the TSS. Highly expressed genes, such as ribosome genes and genes involved in glycolysis, showed increased nucleosome occupancy in many types of histone mutant. In particular, the H3K56A mutant exhibited a high percentage of dynamic genomic regions, decreased nucleosome occupancy at telomeres, increased occupancy at the +1 and −1 nucleosomes, and a slow growth phenotype under stress conditions. Our findings provide insight into the influence of histone mutations on nucleosome dynamics. PMID:26498326

  10. Mutational and in vitro protein-binding studies on centromere DNA from Saccharomyces cerevisiae.

    PubMed Central

    Ng, R; Carbon, J

    1987-01-01

    Centromeres on chromosomes in the yeast Saccharomyces cerevisiae contain approximately 140 base pairs (bp) of DNA. The functional centromere (CEN) region contains three important sequence elements (I, PuTCACPuTG; II, 78 to 86 bp of high-AT DNA; and III, a conserved 25-bp sequence with internal bilateral symmetry). Various point mutations or deletions in the element III region have a profound effect on CEN function in vivo, indicating that this DNA region is a key protein-binding site. This has been confirmed by the use of two in vitro assays to detect binding of yeast proteins to DNA fragments containing wild-type or mutationally altered CEN3 sequences. An exonuclease III protection assay was used to demonstrate specific binding of proteins to the element III region of CEN3. In addition, a gel DNA fragment mobility shift assay was used to characterize the binding reaction parameters. Sequence element III mutations that inactivate CEN function in vivo also prevent binding of proteins in the in vitro assays. The mobility shift assay indicates that double-stranded DNAs containing sequence element III efficiently bind proteins in the absence of sequence elements I and II, although the latter sequences are essential for optimal CEN function in vivo. Images PMID:2830498

  11. Nucleosome alterations caused by mutations at modifiable histone residues in Saccharomyces cerevisiae.

    PubMed

    Liu, Hongde; Wang, Pingyan; Liu, Lingjie; Min, Zhu; Luo, Kun; Wan, Yakun

    2015-10-26

    Nucleosome organization exhibits dynamic properties depending on the cell state and environment. Histone proteins, fundamental components of nucleosomes, are subject to chemical modifications on particular residues. We examined the effect of substituting modifiable residues of four core histones with the non-modifiable residue alanine on nucleosome dynamics. We mapped the genome-wide nucleosomes in 22 histone mutants of Saccharomyces cerevisiae and compared the nucleosome alterations relative to the wild-type strain. Our results indicated that different types of histone mutation resulted in different phenotypes and a distinct reorganization of nucleosomes. Nucleosome occupancy was altered at telomeres, but not at centromeres. The first nucleosomes upstream (-1) and downstream (+1) of the transcription start site (TSS) were more dynamic than other nucleosomes. Mutations in histones affected the nucleosome array downstream of the TSS. Highly expressed genes, such as ribosome genes and genes involved in glycolysis, showed increased nucleosome occupancy in many types of histone mutant. In particular, the H3K56A mutant exhibited a high percentage of dynamic genomic regions, decreased nucleosome occupancy at telomeres, increased occupancy at the +1 and -1 nucleosomes, and a slow growth phenotype under stress conditions. Our findings provide insight into the influence of histone mutations on nucleosome dynamics.

  12. Interactions between mutations for sensitivity to psoralen photoaddition (PSO) and to radiation (rad) in Saccharomyces cerevisiae

    SciTech Connect

    Henriques, J.A.P.; Moustacchi, E.

    1981-10-01

    The mode of interaction in haploid Saccharomyces cerevisiae of two PSO mutations with each other and with rad mutations affected in their excision resynthesis (rad3), error-prone (rad6), and deoxyribonucleic acid double-strand break (rad52) repair pathways was determined for various double mutant combinations. Survival data for 8-methoxypsoralen photoaddition, 254-nm ultraviolet light and gamma rays are presented. For 8-methoxypsoralen photoaddition, which induces both deoxyribonucleic acid interstrand cross-links and monoadditions, is synergistic to rad3. The PSO2 mutation, which is specifically sensitive to photoaddition of psoralens, is epistatic to rad3 and demonstrates a nonepistatic interaction with rad6 and rad52. rad3 and rad6, as well as rad6 and rad52, show synergistic interactions with each other, whereas rad3 is epistatic to rad52. Consequently, it is proposed that PSO1 and RAD3 genes govern steps in two independent pathways, the PSO1 activity leading to an intermediate which is repaired via the three independent pathways controlled by RAD6, RAD52, and PSO2 genes. Since pso1 interacts synergistically with rad3 and rad52 and epistatically with rad6 after uv radiation, the PSO1 gene appears to belong to the RAD6 group. For gamma ray sensitivity, pso1 is epistatic to rad6 and rad52, which suggests that this gene controls a step which is common to the two other independent pathways.

  13. Induction of the cytoplasmic 'petite' mutation by chemical and physical agents in Saccharomyces cerevisiae.

    PubMed

    Ferguson, L R; von Borstel, R C

    1992-01-01

    A range of physical and chemical agents induce the mitochondrial 'petite' mutation in the yeast Saccharomyces cerevisiae. DNA intercalating agents as well as chemicals which can interfere with DNA synthesis induce this mutation, but only in growing cells. Many chemical or physical agents that produce a DNA lesion which is not simply reversed can induce various levels of the petite mutation, and may be more effective in non-growing cells. A limited number of chemicals act like ethidium bromide, inducing a high frequency of petites which is partially reversible with increasing concentration or time. The ability of a specific compound to be transported into mitochondria or its affinity for AT base pairs in DNA may determine whether it acts primarily as a nuclear or mitochondrial mutagen. In mammalian cells, some neoplastic changes occur at the mitochondrial level. Analogies between yeast and mammalian mitochondria suggest that agents which increase petite mutagenesis in yeast may have some carcinogenic potential. Although some types of petite inducer may have potential as antitumour drugs, those which are very effective antimitochondrial agents appear to be too toxic for therapeutic use. A process comparable to early stages in petite mutagensis occurs in human degenerative diseases and it seems possible that a consequence of exposure to petite mutagens could be an increase in the rate of degenerative diseases or of the aging process.

  14. An Endomitotic Effect of a Cell Cycle Mutation of SACCHAROMYCES CEREVISIAE

    PubMed Central

    Schild, David; Ananthaswamy, Honnavara N.; Mortimer, Robert K.

    1981-01-01

    A recessive temperature-sensitive mutation of Saccharomyces cerevisiae has been isolated and shown to cause an increase in ploidy in both haploids and diploids. Genetic analysis revealed that the strain carrying the mutation was an aa diploid, although MNNG mutagenesis had been done on an a haploid strain. When the mutant strain was crossed with an αα diploid and the resultant tetraploid sporulated, some of the meiotic progeny of this tetraploid were themselves tetraploid, as shown by both genetic analysis and DNA measurements, instead of diploid as expected of tetraploid meiosis. The ability of these tetraploids to continue to produce tetraploid meiotic progeny was followed for four generations. Homothallism was excluded as a cause of the increase in ploidy; visual pedigree analysis of spore clones to about the 32-cell stage failed to reveal any zygotes, and haploids that diploidized retained their mating type. An extra round of meiotic DNA synthesis was also considered and excluded. It was found that tetraploidization was independent of sporulation temperature, but was dependent on the temperature of germination and the growth of the spores. Increase in ploidy occurred when the spores were germinated and grown at 30°, but did not occur at 23°. Two cycles of sporulation and growth at 23° resulted in haploids, which were shown to diploidize within 24 hr when grown at 30°. Visual observation of the haploid cells incubated at 36° revealed a cell-division-cycle phenotype characteristic of mutations that affect nuclear division; complementation analysis demonstrated that the mutation, cdc31–2, is allelic to cdc31–1, a mutation isolated by Hartwell et al. (1973) and characterized as causing a temperature-sensitive arrest during late nuclear division. The segregation of cdc31–2 in heterozygous diploids was 2:2 and characteristic of a noncentromere-linked gene. PMID:7028565

  15. Induction of petite mutations during germination and outgrowth of Saccharomyces cerevisiae ascospores.

    PubMed Central

    Redshaw, R A

    1975-01-01

    The germination and outgrowth of Saccharomyces cerevisiae ascospores were studied by determining the sensitivity of the ascospores to the action of chemical mutagens. Survival of the ascospores after N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) treatment was low during the first 2 h of germination and then increased and remained constant. Survival of the ascospores after 2-methoxy-6-chloro-9-(3-[ethyl-2-chloroethyl]aminopropylamino)acridine-2HC1 (ICR-170) treatment was constant from 0 to 5 h, but as the ascospores completed outgrowth at 6 h they became more sensitive to killing by ICR-170. Survival of the ascospores remained high during treatment with 2-methoxy-6-chloro-9-(3-[ethyl-2-hydroxyethyl]aminopropylamino)acridine-2HC1 (ICR-170-OH) or 2,7-diamino-10-ethyl-9-phenyl-phenanthridinium bromide. The main classes of mutations screened for were petites and auxotrophs. The induction of petites and auxotrophs by MNNG was independent of the stage of germination and outgrowth treated. Petite induction by ICR-170 was dependent upon the stage of germination and outgrowth treated. The early hours of germination (0 to 3 h) were not sensitive to petite induction. However, there was maximal petite induction at 5 h into germination and outgrowth, followed by a decline. During this same time period, ICR-170 induced less than 1% auxotrophic colonies. This finding is very unusual because ICR-170 induced 15% auxotrophic colonies in starved log-phase cultures of S. cerevisiae. The acridine ICR-170-OH induced no mutations during germination and outgrowth of the ascospores. Ethidium bromide induced petites, and the petite frequency became maximal at 5 h of germination and outgrowth, a result similar to that obtained with ICR-170. PMID:53231

  16. Loss of nonsense mediated decay suppresses mutations in Saccharomyces cerevisiae TRA1

    PubMed Central

    2012-01-01

    Background Tra1 is an essential protein in Saccharomyces cerevisiae. It was first identified in the SAGA and NuA4 complexes, both with functions in multiple aspects of gene regulation and DNA repair, and recently found in the ASTRA complex. Tra1 belongs to the PIKK family of proteins with a C-terminal PI3K domain followed by a FATC domain. Previously we found that mutation of leucine to alanine at position 3733 in the FATC domain of Tra1 (tra1-L3733A) results in transcriptional changes and slow growth under conditions of stress. To further define the regulatory interactions of Tra1 we isolated extragenic suppressors of the tra1-L3733A allele. Results We screened for suppressors of the ethanol sensitivity caused by tra1-L3733A. Eleven extragenic recessive mutations, belonging to three complementation groups, were identified that partially suppressed a subset of the phenotypes caused by tra1-L3733A. Using whole genome sequencing we identified one of the mutations as an opal mutation at tryptophan 165 of UPF1/NAM7. Partial suppression of the transcriptional defect resulting from tra1-L3733A was observed at GAL10, but not at PHO5. Suppression was due to loss of nonsense mediated decay (NMD) since deletion of any one of the three NMD surveillance components (upf1/nam7, upf2/nmd2, or upf3) mediated the effect. Deletion of upf1 suppressed a second FATC domain mutation, tra1-F3744A, as well as a mutation to the PIK3 domain. In contrast, deletions of SAGA or NuA4 components were not suppressed. Conclusions We have demonstrated a genetic interaction between TRA1 and genes of the NMD pathway. The suppression is specific for mutations in TRA1. Since NMD and Tra1 generally act reciprocally to control gene expression, and the FATC domain mutations do not directly affect NMD, we suggest that suppression occurs as the result of overlap and/or crosstalk in these two broad regulatory networks. PMID:22439631

  17. Genome duplication and mutations in ACE2 cause multicellular, fast-sedimenting phenotypes in evolved Saccharomyces cerevisiae

    PubMed Central

    Oud, Bart; Guadalupe-Medina, Victor; Nijkamp, Jurgen F.; de Ridder, Dick; Pronk, Jack T.; van Maris, Antonius J. A.; Daran, Jean-Marc

    2013-01-01

    Laboratory evolution of the yeast Saccharomyces cerevisiae in bioreactor batch cultures yielded variants that grow as multicellular, fast-sedimenting clusters. Knowledge of the molecular basis of this phenomenon may contribute to the understanding of natural evolution of multicellularity and to manipulating cell sedimentation in laboratory and industrial applications of S. cerevisiae. Multicellular, fast-sedimenting lineages obtained from a haploid S. cerevisiae strain in two independent evolution experiments were analyzed by whole genome resequencing. The two evolved cell lines showed different frameshift mutations in a stretch of eight adenosines in ACE2, which encodes a transcriptional regulator involved in cell cycle control and mother-daughter cell separation. Introduction of the two ace2 mutant alleles into the haploid parental strain led to slow-sedimenting cell clusters that consisted of just a few cells, thus representing only a partial reconstruction of the evolved phenotype. In addition to single-nucleotide mutations, a whole-genome duplication event had occurred in both evolved multicellular strains. Construction of a diploid reference strain with two mutant ace2 alleles led to complete reconstruction of the multicellular-fast sedimenting phenotype. This study shows that whole-genome duplication and a frameshift mutation in ACE2 are sufficient to generate a fast-sedimenting, multicellular phenotype in S. cerevisiae. The nature of the ace2 mutations and their occurrence in two independent evolution experiments encompassing fewer than 500 generations of selective growth suggest that switching between unicellular and multicellular phenotypes may be relevant for competitiveness of S. cerevisiae in natural environments. PMID:24145419

  18. Saccharomyces cerevisiae RAD27 complements its Escherichia coli homolog in damage repair but not mutation avoidance.

    PubMed

    Ohnishi, Gaku; Daigaku, Yasukazu; Nagata, Yuki; Ihara, Makoto; Yamamoto, Kazuo

    2004-06-01

    In eukaryotes, the flap endonuclease of Rad27/Fen-1 is thought to play a critical role in lagging-strand DNA replication by removing ribonucleotides present at the 5' ends of Okazaki fragments, and in base excision repair by cleaving a 5' flap structure that may result during base excision repair. Saccharomyces cerevisiae rad27Delta mutants further display a repeat tract instability phenotype and a high rate of forward mutations to canavanine resistance that result from duplications of DNA sequence, indicating a role in mutation avoidance. Two conserved motifs in Rad27/Fen-1 show homology to the 5' --> 3' exonuclease domain of Escherichia coli DNA polymerase I. The strain defective in the 5' --> 3' exonuclease domain in DNA polymerase I shows essentially the same phenotype as the yeast rad27Delta strain. In this study, we expressed the yeast RAD27 gene in an E. coli strain lacking the 5' --> 3' exonuclease domain in DNA polymerase I in order to test whether eukaryotic RAD27/FEN-1 can complement the defect of its bacterial homolog. We found that the yeast Rad27 protein complements sensitivity to methyl methanesulfonate in an E. coli mutant. On the other hand, Rad27 protein did not reduce the high rate of spontaneous mutagenesis in the E. coli tonB gene which results from duplication of DNA. These results indicate that the yeast Rad27 and E. coli 5' --> 3' exonuclease act on the same substrate. We argue that the lack of mutation avoidance of yeast RAD27 in E. coli results from a lack of interaction between the yeast Rad27 protein and the E. coli replication clamp (beta-clamp).

  19. Mutational analysis of the C-terminal FATC domain of Saccharomyces cerevisiae Tra1

    PubMed Central

    Hoke, Stephen M. T.; Irina Mutiu, A.; Genereaux, Julie; Kvas, Stephanie; Buck, Michael; Yu, Michael; Gloor, Gregory B.

    2010-01-01

    Tra1 is a component of the Saccharomyces cerevisiae SAGA and NuA4 complexes and a member of the PIKK family, which contain a C-terminal phosphatidylinositol 3-kinase-like (PI3K) domain followed by a 35-residue FATC domain. Single residue changes of L3733A and F3744A, within the FATC domain, resulted in transcriptional changes and phenotypes that were similar but not identical to those caused by mutations in the PI3K domain or deletions of other SAGA or NuA4 components. The distinct nature of the FATC mutations was also apparent from the additive effect of tra1-L3733A with SAGA, NuA4, and tra1 PI3K domain mutations. Tra1-L3733A associates with SAGA and NuA4 components and with the Gal4 activation domain, to the same extent as wild-type Tra1; however, steady-state levels of Tra1-L3733A were reduced. We suggest that decreased stability of Tra1-L3733A accounts for the phenotypes since intragenic suppressors of tra1-L3733A restored Tra1 levels, and reducing wild-type Tra1 led to comparable growth defects. Also supporting a key role for the FATC domain in the structure/function of Tra1, addition of a C-terminal glycine residue resulted in decreased association with Spt7 and Esa1, and loss of cellular viability. These findings demonstrate the regulatory potential of mechanisms targeting the FATC domains of PIKK proteins. Electronic supplementary material The online version of this article (doi:10.1007/s00294-010-0313-3) contains supplementary material, which is available to authorized users. PMID:20635087

  20. The Saccharomyces cerevisiae start mutant carrying the cdc25 mutation is defective in activation of plasma membrane ATPase by glucose.

    PubMed Central

    Portillo, F; Mazón, M J

    1986-01-01

    Activation of plasma membrane ATPase by the addition of glucose was examined in several cell division cycle mutants of Saccharomyces cerevisiae. The start mutant carrying the cdc25 mutation was shown to be defective in ATPase activation at the restrictive temperature. Genetic analysis showed that lack of growth and defective activation of ATPase at the restrictive temperature were caused by the same mutation. It was also found that CDC25 does not map at the same locus as the structural gene of plasma membrane ATPase (PMA1). We conclude that the product of CDC25 controls the activation of ATPase. PMID:2877973

  1. Methylglyoxal Activates the Target of Rapamycin Complex 2-Protein Kinase C Signaling Pathway in Saccharomyces cerevisiae

    PubMed Central

    Nomura, Wataru

    2015-01-01

    Methylglyoxal is a typical 2-oxoaldehyde derived from glycolysis. We show here that methylglyoxal activates the Pkc1-Mpk1 mitogen-activated protein (MAP) kinase cascade in a target of rapamycin complex 2 (TORC2)-dependent manner in the budding yeast Saccharomyces cerevisiae. We demonstrate that TORC2 phosphorylates Pkc1 at Thr1125 and Ser1143. Methylglyoxal enhanced the phosphorylation of Pkc1 at Ser1143, which transmitted the signal to the downstream Mpk1 MAP kinase cascade. We found that the phosphorylation status of Pkc1T1125 affected the phosphorylation of Pkc1 at Ser1143, in addition to its protein levels. Methylglyoxal activated mammalian TORC2 signaling, which, in turn, phosphorylated Akt at Ser473. Our results suggest that methylglyoxal is a conserved initiator of TORC2 signaling among eukaryotes. PMID:25624345

  2. Methylglyoxal activates the target of rapamycin complex 2-protein kinase C signaling pathway in Saccharomyces cerevisiae.

    PubMed

    Nomura, Wataru; Inoue, Yoshiharu

    2015-04-01

    Methylglyoxal is a typical 2-oxoaldehyde derived from glycolysis. We show here that methylglyoxal activates the Pkc1-Mpk1 mitogen-activated protein (MAP) kinase cascade in a target of rapamycin complex 2 (TORC2)-dependent manner in the budding yeast Saccharomyces cerevisiae. We demonstrate that TORC2 phosphorylates Pkc1 at Thr(1125) and Ser(1143). Methylglyoxal enhanced the phosphorylation of Pkc1 at Ser(1143), which transmitted the signal to the downstream Mpk1 MAP kinase cascade. We found that the phosphorylation status of Pkc1(T1125) affected the phosphorylation of Pkc1 at Ser(1143), in addition to its protein levels. Methylglyoxal activated mammalian TORC2 signaling, which, in turn, phosphorylated Akt at Ser(473). Our results suggest that methylglyoxal is a conserved initiator of TORC2 signaling among eukaryotes.

  3. GPA1Val-50 mutation in the mating-factor signaling pathway in Saccharomyces cerevisiae.

    PubMed Central

    Miyajima, I; Arai, K; Matsumoto, K

    1989-01-01

    The GPA1 gene of Saccharomyces cerevisiae encodes a protein that is highly homologous to the alpha subunit of mammalian hetrotrimeric G proteins and is essential for haploid cell growth. A mutation of the GPA1 protein, GPA1Val-50, in which Gly-50 was replaced by valine, could complement the growth defect of a GPA1 disruption, gpal::HIS3. However, cells with gpa1::HIS3 expressing the GPA1Val-50 protein were supersensitive to alpha-factor in a short-term incubation but resumed growth after long-term incubation even after exposure to high concentrations of alpha-factor. The former phenotype associated with GPA1Val-50 is recessive, and the latter phenotype is dominant to GPA1+. The supersensitivity of GPA1Val-50 to alpha-factor was dependent on STE2 and STE4, which demonstrates that this GPA1Val-50-produced phenotype requires the mating-factor receptor and the beta subunit of the G protein. The double mutant of sst2-1 GPA1Val-50 recovered from division arrest, which suggested that SST2 is not required for recovery of the GPA1Val-50 mutant. Images PMID:2548076

  4. A Mutation in a Purported Regulatory Gene Affects Control of Sterol Uptake in Saccharomyces cerevisiae

    PubMed Central

    Crowley, James H.; Leak, Frank W.; Shianna, Kevin V.; Tove, Shirley; Parks, Leo W.

    1998-01-01

    Aerobically growing wild-type strains of Saccharomyces cerevisiae are unable to take exogenously supplied sterols from media. This aerobic sterol exclusion is vitiated under anaerobic conditions, in heme-deficient strains, and under some conditions of impaired sterol synthesis. Mutants which can take up sterols aerobically in heme-competent cells have been selected. One of these mutations, designated upc2-1, gives a pleiotropic phenotype in characteristics as diverse as aerobic accumulation of sterols, total lipid storage, sensitivity to metabolic inhibitors, response to altered sterol structures, and cation requirements. During experiments designed to ascertain the effects of various cations on yeast with sterol alterations, it was observed that upc2-1 was hypersensitive to Ca2+. Using resistance to Ca2+ as a screening vehicle, we cloned UPC2 and showed that it is YDR213W, an open reading frame on chromosome IV. This belongs to a fungal regulatory family containing the Zn(II)2Cys6 binuclear cluster DNA binding domain. The single guanine-to-adenine transition in upc2-1 gives a predicted amino acid change from glycine to aspartic acid. The regulatory defect explains the semidominance and pleiotropic effects of upc2-1. PMID:9696767

  5. Mutations Affecting Donor Preference during Mating Type Interconversion in Saccharomyces Cerevisiae

    PubMed Central

    Weiler, K. S.; Szeto, L.; Broach, J. R.

    1995-01-01

    Homothallic strains of Saccharomyces cerevisiae can convert mating type from a to α or α to a as often as every generation, by replacing genetic information specifying one mating type at the expressor locus, MAT, with information specifying the opposite mating type. The cryptic mating type information that is copied and inserted at MAT is contained in either of two loci, HML or HMR. The particular locus selected as donor during mating type interconversion is regulated by the allele expressed at MAT. MATa cells usually select HML, and MATα cells usually select HMR, a process referred to as donor preference. To identify factors required for donor preference, we isolated and characterized a number of mutants that frequently selected the nonpreferred donor locus during mating type interconversion. Many of these mutants were found to harbor chromosome rearrangements or mutations at MAT or HML that interfered with the switching process. However, one mutant carried a recessive allele of CHL1, a gene previously shown to be required for efficient chromosome segregation during mitosis. Homothallic strains of yeast containing a null allele of CHL1 exhibited almost random selection of the donor locus in a MATa background but were normal in their ability to select HMR in a MATα background. Our results indicate that Chl1p participates in the process of donor selection and are consistent with a model in which Chl1p helps establish an intrinsic bias in donor preference. PMID:7789755

  6. Auxotrophic Mutations Reduce Tolerance of Saccharomyces cerevisiae to Very High Levels of Ethanol Stress

    PubMed Central

    Swinnen, Steve; Goovaerts, Annelies; Schaerlaekens, Kristien; Dumortier, Françoise; Verdyck, Pieter; Souvereyns, Kris; Van Zeebroeck, Griet; Foulquié-Moreno, María R.

    2015-01-01

    Very high ethanol tolerance is a distinctive trait of the yeast Saccharomyces cerevisiae with notable ecological and industrial importance. Although many genes have been shown to be required for moderate ethanol tolerance (i.e., 6 to 12%) in laboratory strains, little is known of the much higher ethanol tolerance (i.e., 16 to 20%) in natural and industrial strains. We have analyzed the genetic basis of very high ethanol tolerance in a Brazilian bioethanol production strain by genetic mapping with laboratory strains containing artificially inserted oligonucleotide markers. The first locus contained the ura3Δ0 mutation of the laboratory strain as the causative mutation. Analysis of other auxotrophies also revealed significant linkage for LYS2, LEU2, HIS3, and MET15. Tolerance to only very high ethanol concentrations was reduced by auxotrophies, while the effect was reversed at lower concentrations. Evaluation of other stress conditions showed that the link with auxotrophy is dependent on the type of stress and the type of auxotrophy. When the concentration of the auxotrophic nutrient is close to that limiting growth, more stress factors can inhibit growth of an auxotrophic strain. We show that very high ethanol concentrations inhibit the uptake of leucine more than that of uracil, but the 500-fold-lower uracil uptake activity may explain the strong linkage between uracil auxotrophy and ethanol sensitivity compared to leucine auxotrophy. Since very high concentrations of ethanol inhibit the uptake of auxotrophic nutrients, the active uptake of scarce nutrients may be a major limiting factor for growth under conditions of ethanol stress. PMID:26116212

  7. Auxotrophic Mutations Reduce Tolerance of Saccharomyces cerevisiae to Very High Levels of Ethanol Stress.

    PubMed

    Swinnen, Steve; Goovaerts, Annelies; Schaerlaekens, Kristien; Dumortier, Françoise; Verdyck, Pieter; Souvereyns, Kris; Van Zeebroeck, Griet; Foulquié-Moreno, María R; Thevelein, Johan M

    2015-09-01

    Very high ethanol tolerance is a distinctive trait of the yeast Saccharomyces cerevisiae with notable ecological and industrial importance. Although many genes have been shown to be required for moderate ethanol tolerance (i.e., 6 to 12%) in laboratory strains, little is known of the much higher ethanol tolerance (i.e., 16 to 20%) in natural and industrial strains. We have analyzed the genetic basis of very high ethanol tolerance in a Brazilian bioethanol production strain by genetic mapping with laboratory strains containing artificially inserted oligonucleotide markers. The first locus contained the ura3Δ0 mutation of the laboratory strain as the causative mutation. Analysis of other auxotrophies also revealed significant linkage for LYS2, LEU2, HIS3, and MET15. Tolerance to only very high ethanol concentrations was reduced by auxotrophies, while the effect was reversed at lower concentrations. Evaluation of other stress conditions showed that the link with auxotrophy is dependent on the type of stress and the type of auxotrophy. When the concentration of the auxotrophic nutrient is close to that limiting growth, more stress factors can inhibit growth of an auxotrophic strain. We show that very high ethanol concentrations inhibit the uptake of leucine more than that of uracil, but the 500-fold-lower uracil uptake activity may explain the strong linkage between uracil auxotrophy and ethanol sensitivity compared to leucine auxotrophy. Since very high concentrations of ethanol inhibit the uptake of auxotrophic nutrients, the active uptake of scarce nutrients may be a major limiting factor for growth under conditions of ethanol stress.

  8. The tRNA-Tyr gene family of Saccharomyces cerevisiae: agents of phenotypic variation and position effects on mutation frequency.

    PubMed Central

    Ito-Harashima, Sayoko; Hartzog, Phillip E; Sinha, Himanshu; McCusker, John H

    2002-01-01

    Extensive phenotypic diversity or variation exists in clonal populations of microorganisms and is thought to play a role in adaptation to novel environments. This phenotypic variation or instability, which occurs by multiple mechanisms, may be a form of cellular differentiation and a stochastic means for modulating gene expression. This work dissects a case of phenotypic variation in a clinically derived Saccharomyces cerevisiae strain involving a cox15 ochre mutation, which acts as a reporter. The ochre mutation reverts to sense at a low frequency while tRNA-Tyr ochre suppressors (SUP-o) arise at a very high frequency to produce this phenotypic variation. The SUP-o mutations are highly pleiotropic. In addition, although all SUP-o mutations within the eight-member tRNA-Tyr gene family suppress the ochre mutation reporter, there are considerable phenotypic differences among the different SUP-o mutants. Finally, and of particular interest, there is a strong position effect on mutation frequency within the eight-member tRNA-Tyr gene family, with one locus, SUP6, mutating at a much higher than average frequency and two other loci, SUP2 and SUP8, mutating at much lower than average frequencies. Mechanisms for the position effect on mutation frequency are evaluated. PMID:12196388

  9. Mutations in Elongation Factor Ef-1α Affect the Frequency of Frameshifting and Amino Acid Misincorporation in Saccharomyces Cerevisiae

    PubMed Central

    Sandbaken, M. G.; Culbertson, M. R.

    1988-01-01

    A mutational analysis of the eukaryotic elongation factor EF-1α indicates that this protein functions to limit the frequency of errors during genetic code translation. We found that both amino acid misincorporation and reading frame errors are controlled by EF-1α. In order to examine the function of this protein, the TEF2 gene, which encodes EF-1α in Saccharomyces cerevisiae, was mutagenized in vitro with hydroxylamine. Sixteen independent TEF2 alleles were isolated by their ability to suppress frameshift mutations. DNA sequence analysis identified eight different sites in the EF-1α protein that elevate the frequency of mistranslation when mutated. These sites are located in two different regions of the protein. Amino acid substitutions located in or near the GTP-binding and hydrolysis domain of the protein cause suppression of frameshift and nonsense mutations. These mutations may effect mistranslation by altering the binding or hydrolysis of GTP. Amino acid substitutions located adjacent to a putative aminoacyl-tRNA binding region also suppress frameshift and nonsense mutations. These mutations may alter the binding of aminoacyl-tRNA by EF-1α. The identification of frameshift and nonsense suppressor mutations in EF-1α indicates a role for this protein in limiting amino acid misincorporation and reading frame errors. We suggest that these types of errors are controlled by a common mechanism or closely related mechanisms. PMID:3066688

  10. [Induction of Hsp104 synthesis in Saccharomyces cerevisiae is inhibited by the petite mutation in the stationary growth phase].

    PubMed

    Fedoseeva, I V; Rikhanov, E G; Varakina, N N; Rusaleva, T M; Pyatrikas, D V; Stepanov, A V; Fedyaeva, A V

    2014-03-01

    The elevation of Hsp104 (heat shock protein) content under heat shock plays a key role in yeast (Saccharomyces cerevisiae) cells. Hsp104 synthesis is increased under heat stress in the stationary growth phase. As shown, the loss of mitochondrial DNA (petite mutation) inhibited the induction of the Hsp104 synthesis under heat stress (39 degrees C) during the transition to the stationary growth phase. Also, the petite mutation suppressed the activity of antioxidant enzymes in the same phase, which led to lower thermotolerance. At the same time, the mutation inhibited production of the reactive oxygen species and prevented cell death under heat shock in the logarithmic growth phase. The results of this study suggest that disruption of the mitochondrial functional state suppresses the expression level of yeast nuclear genes upon transitioning to the stationary growth phase.

  11. Suppression of mutations in two Saccharomyces cerevisiae genes by the adenovirus E1A protein.

    PubMed Central

    Zieler, H A; Walberg, M; Berg, P

    1995-01-01

    The protein products of the adenoviral E1A gene are implicated in a variety of transcriptional and cell cycle events, involving interactions with several proteins present in human cells, including parts of the transcriptional machinery and negative regulators of cell division such as the Rb gene product and p107. To determine if there are functional homologs of E1A in Saccharomyces cerevisiae, we have developed a genetic screen for mutants that depend on E1A for growth. The screen is based on a colony color sectoring assay which allows the identification of mutants dependent on the maintenance and expression of an E1A-containing plasmid. Using this screen, we have isolated five mutants that depend on expression of the 12S or 13S cDNA of E1A for growth. A plasmid shuffle assay confirms that the plasmid-dependent phenotype is due to the presence of either the 12S or the 13S E1A cDNA and that both forms of E1A rescue growth of all mutants equally well. The five mutants fall into two classes that were named web1 and web2 (for "wants E1A badly"). Plasmid shuffle assays with mutant forms of E1A show that conserved region 1 (CR1) is required for rescue of the growth of the web1 and web2 E1A-dependent yeast mutants, while the N-terminal 22 amino acids are only partially required; conserved region 2 (CR2) and the C terminus are dispensable. The phenotypes of mutants in both the web1 and the web2 groups are due to a single gene defect, and the yeast genes that fully complement the mutant phenotypes of both groups were cloned. The WEB1 gene sequence encodes a 1,273-amino-acid protein that is identical to SEC31, a protein involved in the budding of transport vesicles from the endoplasmic reticulum. The WEB2 gene encodes a 1,522-amino-acid protein with homology to nucleic acid-dependent ATPases. Deletion of either WEB1 or WEB2 is lethal. Expression of E1A is not able to rescue the lethality of either the web1 or the web2 null allele, implying allele-specific mutations that lead

  12. Isolation and characterization of temperature-sensitive mutations in the RAS2 and CYR1 genes of Saccharomyces cerevisiae

    SciTech Connect

    Mitsuzawa, Hiroshi; Uno, Isao; Ishikawa, Tatsuo ); Oshima, Takehiro )

    1989-12-01

    The yeast Saccharomyces cerevisiae contains two ras homologues, RAS1 and RAS2, whose products have been shown to modulate the activity of adenylate cyclase encoded by the CYR1 gene. To isolate temperature-sensitive mutations in the RAS2 gene, the authors constructed a plasmid carrying a RAS2 gene whose expression is under the control of the galactose-inducible GAL1 promoter. A ras1 strain transformed with this plasmid was subjected to ethyl methanesfulfonate mutagenesis and nystatin enrichment. Screening of approximately 13,000 mutagenized colonies for galactose-dependent growth at a high temperature (37{degree}) yielded six temperature-sensitive ras2(ras2{sup ts}) mutations and one temperature-sensitive cry1 (cyr1{sup ts}) mutation than can be suppressed by overexpression or increased dosage of RAS2. Some ras2{sup ts} mutations were shown to be suppressed by an extra copy of CYR1. Therefore increased dosage of either RAS2 or CYR1 can suppress the temperature sensitivity caused by a mutation in the other.

  13. A Mutational Analysis Identifies Three Functional Regions of the Spindle Pole Component Spc110p in Saccharomyces cerevisiae

    PubMed Central

    Sundberg, Holly A.; Davis, Trisha N.

    1997-01-01

    The central coiled coil of the essential spindle pole component Spc110p spans the distance between the central and inner plaques of the Saccharomyces cerevisiae spindle pole body (SPB). The carboxy terminus of Spc110p, which binds calmodulin, resides at the central plaque, and the amino terminus resides at the inner plaque from which nuclear microtubules originate. To dissect the functions of Spc110p, we created temperature-sensitive mutations in the amino and carboxy termini. Analysis of the temperature-sensitive spc110 mutations and intragenic complementation analysis of the spc110 alleles defined three functional regions of Spc110p. Region I is located at the amino terminus. Region II is located at the carboxy-terminal end of the coiled coil, and region III is the previously defined calmodulin-binding site. Overexpression of SPC98 suppresses the temperature sensitivity conferred by mutations in region I but not the phenotypes conferred by mutations in the other two regions, suggesting that the amino terminus of Spc110p is involved in an interaction with the γ-tubulin complex composed of Spc97p, Spc98p, and Tub4p. Mutations in region II lead to loss of SPB integrity during mitosis, suggesting that this region is required for the stable attachment of Spc110p to the central plaque. Our results strongly argue that Spc110p links the γ-tubulin complex to the central plaque of the SPB. PMID:9398677

  14. Quantification of mutation-derived bias for alternate mating functionalities of the Saccharomyces cerevisiae Ste2p pheromone receptor.

    PubMed

    Choudhary, Pooja; Loewen, Michele C

    2016-01-01

    Although well documented for mammalian G-protein-coupled receptors, alternate functionalities and associated alternate signalling remain to be unequivocally established for the Saccharomyces cerevisiae pheromone Ste2p receptor. Here, evidence supporting alternate functionalities for Ste2p is re-evaluated, extended and quantified. In particular, strong mating and constitutive signalling mutations, focusing on residues S254, P258 and S259 in TM6 of Ste2p, are stacked and investigated in terms of their effects on classical G-protein-mediated signal transduction associated with cell cycle arrest, and alternatively, their impact on downstream mating projection and zygote formation events. In relative dose response experiments, accounting for systemic and observational bias, mutational-derived functional differences were observed, validating the S254L-derived bias for downstream mating responses and highlighting complex relationships between TM6-mutation derived constitutive signalling and ligand-induced functionalities. Mechanistically, localization studies suggest that alterations to receptor trafficking may contribute to mutational bias, in addition to expected receptor conformational stabilization effects. Overall, these results extend previous observations and quantify the contributions of Ste2p variants to mediating cell cycle arrest versus downstream mating functionalities.

  15. Identification and Characterization of a Mutation Affecting the Division Arrest Signaling of the Pheromone Response Pathway in Saccharomyces Cerevisiae

    PubMed Central

    Fujimura, H. A.

    1990-01-01

    Mating pheromones, a- and α-factors, arrest the division of cells of opposite mating types, α and a cells, respectively. I have isolated a sterile mutant of Saccharomyces cerevisiae that is defective in division arrest in response to α-factor but not defective in morphological changes and agglutinin induction. The mutation was designated dac2 for division arrest control by mating pheromones. The dac2 mutation was closely linked to gal1 and was different from the previously identified cell type nonspecific sterile mutations (ste4, ste5, ste7, ste11, ste12, ste18 and dac1). Although dac2 cells had no phenotype in the absence of pheromones, they showed morphological alterations and divided continuously in the presence of pheromones. As a result, dac2 cells had a mating defect. The dac2 mutation could suppress the lethality caused by the disruption of the GPA1 gene (previously shown to encode a protein with similarity to the α subunit of mammalian G proteins). In addition, dac2 cells formed prezygotes with wild-type cells of opposite mating types, although they could not undergo cell fusion. These results suggest that the DAC2 product may control the signal for G-protein-mediated cell-cycle arrest and indicate that the synchronization of haploid yeast cell cycles by mating pheromones is essential for cell fusion during conjugation. PMID:2407613

  16. Identification and characterization of a mutation affecting the division arrest signaling of the pheromone response pathway in Saccharomyces cerevisiae

    SciTech Connect

    Fujimura, Hiroaki Hoechst Japan Ltd., Kawagoe )

    1990-02-01

    Mating pheromones, a- and {alpha}-factors, arrest the division of cells of opposite mating types, {alpha} and a cells, respectively. The author has isolated a sterile mutant of Saccharomyces cerevisiae using EMS that is defective in division arrest in response to {alpha}-factor but not defective in morphological changes and agglutinin induction. The mutation was designated dac2 for division arrest control by mating pheromones. The dac2 mutation was closely linked to gal1 and was different from the previously identified cell type nonspecific sterile mutations (ste4, ste5, ste7, ste11, ste12, ste18, and dac1). Although dac2 cells had no phenotype in the absence of pheromones, they showed morphological alterations and divided continuously in the presence of pheromones. As a result, dac2 cells had a mating defect. The dac2 mutation could suppress the lethality caused by the disruption of the GPA1 gene. These results suggest that the DAC2 product may control the signal for G-protein-mediated cell-cycle arrest and indicate that the synchronization of haploid yeast cell cycles by mating pheromones is essential for cell fusion during conjugation.

  17. Mutations in WSC genes for putative stress receptors result in sensitivity to multiple stress conditions and impairment of Rlm1-dependent gene expression in Saccharomyces cerevisiae.

    PubMed

    Zu, T; Verna, J; Ballester, R

    2001-09-01

    Intracellular signaling by mitogen-activated protein (MAP) kinase cascades plays an essential role in the cellular response to environmental stress. In the yeast Saccharomyces cerevisiae, the PKC1-regulated, stress-activated MAP kinase pathway, the MPK1 cascade, is activated by heat and by a decrease in osmolarity. The genes WSC1, WSC2 and WSC3 encode putative receptors that maintain cell wall integrity under conditions of heat stress. Genetic studies place the function of the WSC genes upstream of the MPK1 kinase cascade. To further define the role of the WSC family in the stress response we determined whether: (1) the wscdelta mutants are sensitive to other environmental stress conditions, in addition to heat shock; (2) expression from four transcriptional control elements, known to be activated by stress, is impaired in wscdelta mutants; and (3) Wsc4, a Wsc homolog, has functions that overlap with those of the other Wsc family members. We report here that deletion of WSC and PKC1 causes hypersensitivity to ethanol, hydrogen peroxide and DNA-damaging drugs. In wscdelta mutants expression of beta-galactosidase from the AP-1 response element (ARE), the heat shock response element (HSE) or the stress response element (STRE) is not reduced. In contrast, expression of a reporter gene placed under the control of the Rlm1 (transcription factor)-dependent response element is significantly reduced in wscdelta mutants. This suggests that the lysis defect of wscdelta mutants is at least in part caused by a defect in transcriptional regulation by Rlm1. Phenotypic analysis of the effect of deleting WSC4 in a wsc1delta mutant show that, unlike WSC2 or WSC3, deletion of WSC4 does not exacerbate the lysis defect of a wsc1delta strain. In contrast, deletion of WSC4 enhances the sensitivity of the wsc1delta mutant to heat shock, ethanol, and a DNA-damaging drug, suggesting that WSC4 plays a role in the response to environmental stress but that its function may differ from those of

  18. Heterologous complementation of the Klaac null mutation of Kluyveromyces lactis by the Saccharomyces cerevisiae AAC3 gene encoding the ADP/ATP carrier.

    PubMed

    Fontanesi, Flavia; Viola, Anna Maria; Ferrero, Iliana

    2006-05-01

    The KlAAC gene, encoding the ADP/ATP carrier, has been assumed to be a single gene in Kluyveromyces lactis, an aerobic, petite-negative yeast species. The Klaac null mutation, which causes a respiratory-deficient phenotype, was fully complemented by AAC2, the Saccharomyces cerevisiae major gene for the ADP/ATP carrier and also by AAC1, a gene that is poorly expressed in S. cerevisiae. In this study, we demonstrate that the Klaac null mutation is partially complemented by the ScAAC3 gene, encoding the hypoxic ADP/ATP carrier isoform, whose expression in S. cerevisiae is prevented by oxygen. Once introduced into K. lactis, the AAC3 gene was expressed both under aerobic and under partial anaerobic conditions but did not support the growth of K. lactis under strict anaerobic conditions.

  19. Widespread Genetic Incompatibilities between First-Step Mutations during Parallel Adaptation of Saccharomyces cerevisiae to a Common Environment

    PubMed Central

    Otto, Sarah P.

    2017-01-01

    Independently evolving populations may adapt to similar selection pressures via different genetic changes. The interactions between such changes, such as in a hybrid individual, can inform us about what course adaptation may follow and allow us to determine whether gene flow would be facilitated or hampered following secondary contact. We used Saccharomyces cerevisiae to measure the genetic interactions between first-step mutations that independently evolved in the same biosynthetic pathway following exposure to the fungicide nystatin. We found that genetic interactions are prevalent and predominantly negative, with the majority of mutations causing lower growth when combined in a double mutant than when alone as a single mutant (sign epistasis). The prevalence of sign epistasis is surprising given the small number of mutations tested and runs counter to expectations for mutations arising in a single biosynthetic pathway in the face of a simple selective pressure. Furthermore, in one third of pairwise interactions, the double mutant grew less well than either single mutant (reciprocal sign epistasis). The observation of reciprocal sign epistasis among these first adaptive mutations arising in the same genetic background indicates that partial postzygotic reproductive isolation could evolve rapidly between populations under similar selective pressures, even with only a single genetic change in each. The nature of the epistatic relationships was sensitive, however, to the level of drug stress in the assay conditions, as many double mutants became fitter than the single mutants at higher concentrations of nystatin. We discuss the implications of these results both for our understanding of epistatic interactions among beneficial mutations in the same biochemical pathway and for speciation. PMID:28114370

  20. rDNA Copy Number Variants Are Frequent Passenger Mutations in Saccharomyces cerevisiae Deletion Collections and de Novo Transformants.

    PubMed

    Kwan, Elizabeth X; Wang, Xiaobin S; Amemiya, Haley M; Brewer, Bonita J; Raghuraman, M K

    2016-09-08

    The Saccharomyces cerevisiae ribosomal DNA (rDNA) locus is known to exhibit greater instability relative to the rest of the genome. However, wild-type cells preferentially maintain a stable number of rDNA copies, suggesting underlying genetic control of the size of this locus. We performed a screen of a subset of the Yeast Knock-Out (YKO) single gene deletion collection to identify genetic regulators of this locus and to determine if rDNA copy number correlates with yeast replicative lifespan. While we found no correlation between replicative lifespan and rDNA size, we identified 64 candidate strains with significant rDNA copy number differences. However, in the process of validating candidate rDNA variants, we observed that independent isolates of our de novo gene deletion strains had unsolicited but significant changes in rDNA copy number. Moreover, we were not able to recapitulate rDNA phenotypes from the YKO yeast deletion collection. Instead, we found that the standard lithium acetate transformation protocol is a significant source of rDNA copy number variation, with lithium acetate exposure being the treatment causing variable rDNA copy number events after transformation. As the effects of variable rDNA copy number are being increasingly reported, our finding that rDNA is affected by lithium acetate exposure suggested that rDNA copy number variants may be influential passenger mutations in standard strain construction in S. cerevisiae. Copyright © 2016 Kwan et al.

  1. rDNA Copy Number Variants Are Frequent Passenger Mutations in Saccharomyces cerevisiae Deletion Collections and de Novo Transformants

    PubMed Central

    Kwan, Elizabeth X.; Wang, Xiaobin S.; Amemiya, Haley M.; Brewer, Bonita J.; Raghuraman, M. K.

    2016-01-01

    The Saccharomyces cerevisiae ribosomal DNA (rDNA) locus is known to exhibit greater instability relative to the rest of the genome. However, wild-type cells preferentially maintain a stable number of rDNA copies, suggesting underlying genetic control of the size of this locus. We performed a screen of a subset of the Yeast Knock-Out (YKO) single gene deletion collection to identify genetic regulators of this locus and to determine if rDNA copy number correlates with yeast replicative lifespan. While we found no correlation between replicative lifespan and rDNA size, we identified 64 candidate strains with significant rDNA copy number differences. However, in the process of validating candidate rDNA variants, we observed that independent isolates of our de novo gene deletion strains had unsolicited but significant changes in rDNA copy number. Moreover, we were not able to recapitulate rDNA phenotypes from the YKO yeast deletion collection. Instead, we found that the standard lithium acetate transformation protocol is a significant source of rDNA copy number variation, with lithium acetate exposure being the treatment causing variable rDNA copy number events after transformation. As the effects of variable rDNA copy number are being increasingly reported, our finding that rDNA is affected by lithium acetate exposure suggested that rDNA copy number variants may be influential passenger mutations in standard strain construction in S. cerevisiae. PMID:27449518

  2. A new laboratory evolution approach to select for constitutive acetic acid tolerance in Saccharomyces cerevisiae and identification of causal mutations.

    PubMed

    González-Ramos, Daniel; Gorter de Vries, Arthur R; Grijseels, Sietske S; van Berkum, Margo C; Swinnen, Steve; van den Broek, Marcel; Nevoigt, Elke; Daran, Jean-Marc G; Pronk, Jack T; van Maris, Antonius J A

    2016-01-01

    Acetic acid, released during hydrolysis of lignocellulosic feedstocks for second generation bioethanol production, inhibits yeast growth and alcoholic fermentation. Yeast biomass generated in a propagation step that precedes ethanol production should therefore express a high and constitutive level of acetic acid tolerance before introduction into lignocellulosic hydrolysates. However, earlier laboratory evolution strategies for increasing acetic acid tolerance of Saccharomyces cerevisiae, based on prolonged cultivation in the presence of acetic acid, selected for inducible rather than constitutive tolerance to this inhibitor. Preadaptation in the presence of acetic acid was shown to strongly increase the fraction of yeast cells that could initiate growth in the presence of this inhibitor. Serial microaerobic batch cultivation, with alternating transfers to fresh medium with and without acetic acid, yielded evolved S. cerevisiae cultures with constitutive acetic acid tolerance. Single-cell lines isolated from five such evolution experiments after 50-55 transfers were selected for further study. An additional constitutively acetic acid tolerant mutant was selected after UV-mutagenesis. All six mutants showed an increased fraction of growing cells upon a transfer from a non-stressed condition to a medium containing acetic acid. Whole-genome sequencing identified six genes that contained (different) mutations in multiple acetic acid-tolerant mutants. Haploid segregation studies and expression of the mutant alleles in the unevolved ancestor strain identified causal mutations for the acquired acetic acid tolerance in four genes (ASG1, ADH3, SKS1 and GIS4). Effects of the mutations in ASG1, ADH3 and SKS1 on acetic acid tolerance were additive. A novel laboratory evolution strategy based on alternating cultivation cycles in the presence and absence of acetic acid conferred a selective advantage to constitutively acetic acid-tolerant mutants and may be applicable for

  3. Rho1- and Pkc1-dependent phosphorylation of the F-BAR protein Syp1 contributes to septin ring assembly

    PubMed Central

    Merlini, Laura; Bolognesi, Alessio; Juanes, Maria Angeles; Vandermoere, Franck; Courtellemont, Thibault; Pascolutti, Roberta; Séveno, Martial; Barral, Yves; Piatti, Simonetta

    2015-01-01

    In many cell types, septins assemble into filaments and rings at the neck of cellular appendages and/or at the cleavage furrow to help compartmentalize the plasma membrane and support cytokinesis. How septin ring assembly is coordinated with membrane remodeling and controlled by mechanical stress at these sites is unclear. Through a genetic screen, we uncovered an unanticipated link between the conserved Rho1 GTPase and its effector protein kinase C (Pkc1) with septin ring stability in yeast. Both Rho1 and Pkc1 stabilize the septin ring, at least partly through phosphorylation of the membrane-associated F-BAR protein Syp1, which colocalizes asymmetrically with the septin ring at the bud neck. Syp1 is displaced from the bud neck upon Pkc1-dependent phosphorylation at two serines, thereby affecting the rigidity of the new-forming septin ring. We propose that Rho1 and Pkc1 coordinate septin ring assembly with membrane and cell wall remodeling partly by controlling Syp1 residence at the bud neck. PMID:26179915

  4. Estimates of the rate and distribution of fitness effects of spontaneous mutation in Saccharomyces cerevisiae.

    PubMed

    Zeyl, C; DeVisser, J A

    2001-01-01

    The per-genome, per-generation rate of spontaneous mutation affecting fitness (U) and the mean fitness cost per mutation (s) are important parameters in evolutionary genetics, but have been estimated for few species. We estimated U and sh (the heterozygous effect of mutations) for two diploid yeast strains differing only in the DNA mismatch-repair deficiency used to elevate the mutation rate in one (mutator) strain. Mutations were allowed to accumulate in 50 replicate lines of each strain, during 36 transfers of randomly chosen single colonies (approximately 600 generations). Among wild-type lines, fitnesses were bimodal, with one mode showing no change in mean fitness. The other mode showed a mean 29.6% fitness decline and the petite phenotype, usually caused by partial deletion of the mitochondrial genome. Excluding petites, maximum-likelihood estimates adjusted for the effect of selection were U = 9.5 x 10(-5) and sh = 0.217 for the wild type. Among the mutator lines, the best fit was obtained with 0.005 < or = U < or = 0.94 and 0.049 > or = sh > or = 0.0003. Like other recently tested model organisms, wild-type yeast have low mutation rates, with high mean fitness costs per mutation. Inactivation of mismatch repair increases the frequency of slightly deleterious mutations by approximately two orders of magnitude.

  5. Dissection of upstream regulatory components of the Rho1p effector, 1,3-beta-glucan synthase, in Saccharomyces cerevisiae.

    PubMed Central

    Sekiya-Kawasaki, Mariko; Abe, Mitsuhiro; Saka, Ayaka; Watanabe, Daisuke; Kono, Keiko; Minemura-Asakawa, Masayo; Ishihara, Satoru; Watanabe, Takahide; Ohya, Yoshikazu

    2002-01-01

    In the budding yeast Saccharomyces cerevisiae, one of the main structural components of the cell wall is 1,3-beta-glucan produced by 1,3-beta-glucan synthase (GS). Yeast GS is composed of a putative catalytic subunit encoded by FKS1 and FKS2 and a regulatory subunit encoded by RHO1. A combination of amino acid alterations in the putative catalytic domain of Fks1p was found to result in a loss of the catalytic activity. To identify upstream regulators of 1,3-beta-glucan synthesis, we isolated multicopy suppressors of the GS mutation. We demonstrate that all of the multicopy suppressors obtained (WSC1, WSC3, MTL1, ROM2, LRE1, ZDS1, and MSB1) and the constitutively active RHO1 mutations tested restore 1,3-beta-glucan synthesis in the GS mutant. A deletion of either ROM2 or WSC1 leads to a significant defect of 1,3-beta-glucan synthesis. Analyses of the degree of Mpk1p phosphorylation revealed that among the multicopy suppressors, WSC1, ROM2, LRE1, MSB1, and MTL1 act positively on the Pkc1p-MAPK pathway, another signaling pathway regulated by Rho1p, while WSC3 and ZDS1 do not. We have also found that MID2 acts positively on Pkc1p without affecting 1,3-beta-glucan synthesis. These results suggest that distinct networks regulate the two effector proteins of Rho1p, Fks1p and Pkc1p. PMID:12399379

  6. Extremely Rare Polymorphisms in Saccharomyces cerevisiae Allow Inference of the Mutational Spectrum

    PubMed Central

    Zhu, Yuan O.; Petrov, Dmitri A.

    2017-01-01

    The characterization of mutational spectra is usually carried out in one of three ways–by direct observation through mutation accumulation (MA) experiments, through parent-offspring sequencing, or by indirect inference from sequence data. Direct observations of spontaneous mutations with MA experiments are limited, given (i) the rarity of spontaneous mutations, (ii) applicability only to laboratory model species with short generation times, and (iii) the possibility that mutational spectra under lab conditions might be different from those observed in nature. Trio sequencing is an elegant solution, but it is not applicable in all organisms. Indirect inference, usually from divergence data, faces no such technical limitations, but rely upon critical assumptions regarding the strength of natural selection that are likely to be violated. Ideally, new mutational events would be directly observed before the biased filter of selection, and without the technical limitations common to lab experiments. One approach is to identify very young mutations from population sequencing data. Here we do so by leveraging two characteristics common to all new mutations—new mutations are necessarily rare in the population, and absent in the genomes of immediate relatives. From 132 clinical yeast strains, we were able to identify 1,425 putatively new mutations and show that they exhibit extremely low signatures of selection, as well as display a mutational spectrum that is similar to that identified by a large scale MA experiment. We verify that population sequencing data are a potential wealth of information for inferring mutational spectra, and should be considered for analysis where MA experiments are infeasible or especially tedious. PMID:28046117

  7. Identification of an Hsp90 mutation that selectively disrupts cAMP/PKA signaling in Saccharomyces cerevisiae.

    PubMed

    Flom, Gary A; Langner, Ewa; Johnson, Jill L

    2012-06-01

    The molecular chaperone Hsp90 cooperates with multiple cochaperone proteins as it promotes the folding and activation of diverse client proteins. Some cochaperones regulate the ATPase activity of Hsp90, while others appear to promote Hsp90 interaction with specific types of client proteins. Through its interaction with the adenylate cyclase Cyr1, the Sgt1 cochaperone modulates the activity of the cAMP pathway in Saccharomyces cerevisiae. A specific mutation in yeast Hsp90, hsc82-W296A, or a mutation in Sgt1, sgt1-K360E, resulted in altered transcription patterns genetically linked to the cAMP pathway. Hsp90 interacted with Cyr1 in vivo and the hsc82-W296A mutation resulted in reduced accumulation of Cyr1. Hsp90-Sgt1 interaction was altered by either the hsc82-W296A or sgt1-K360E mutation, suggesting defective Hsp90-Sgt1 cooperation leads to reduced Cyr1 activity. Microarray analysis of hsc82-W296A cells indicated that over 80 % of all transcriptional changes in this strain may be attributed to altered cAMP signaling. This suggests that a majority of the cellular defects observed in hsc82-W296A cells are due to altered interaction with one specific essential cochaperone, Sgt1 and one essential client, Cyr1. Together our results indicate that specific interaction of Hsp90 and Sgt1 with Cyr1 plays a key role in regulating gene expression, including genes involved in polarized morphogenesis.

  8. Mutations in XRS2 and RAD50 delay but do not prevent mating-type switching in Saccharomyces cerevisiae.

    PubMed Central

    Ivanov, E L; Sugawara, N; White, C I; Fabre, F; Haber, J E

    1994-01-01

    In Saccharomyces cerevisiae, a large number of genes in the RAD52 epistasis group has been implicated in the repair of chromosomal double-strand breaks and in both mitotic and meiotic homologous recombination. While most of these genes are essential for yeast mating-type (MAT) gene switching, neither RAD50 nor XRS2 is required to complete this specialized mitotic gene conversion process. Using a galactose-inducible HO endonuclease gene to initiate MAT switching, we have examined the effect of null mutations of RAD50 and of XRS2 on intermediate steps of this recombination event. Both rad50 and xrs2 mutants exhibit a marked delay in the completion of switching. Both mutations reduce the extent of 5'-to-3' degradation from the end of the HO-created double-strand break. The steps of initial strand invasion and new DNA synthesis are delayed by approximately 30 min in mutant cells. However, later events are still further delayed, suggesting that XRS2 and RAD50 affect more than one step in the process. In the rad50 xrs2 double mutant, the completion of MAT switching is delayed more than in either single mutant, without reducing the overall efficiency of the process. The XRS2 gene encodes an 854-amino-acid protein with no obvious similarity to the Rad50 protein or to any other protein in the database. Overexpression of RAD50 does not complement the defects in xrs2 or vice versa. Images PMID:8164689

  9. Spontaneous frameshift mutations in Saccharomyces cerevisiae: accumulation during DNA replication and removal by proofreading and mismatch repair activities.

    PubMed Central

    Greene, C N; Jinks-Robertson, S

    2001-01-01

    The accumulation of frameshift mutations during DNA synthesis is determined by the rate at which frameshift intermediates are generated during DNA polymerization and the efficiency with which frameshift intermediates are removed by DNA polymerase-associated exonucleolytic proofreading activity and/or the postreplicative mismatch repair machinery. To examine the relative contributions of these factors to replication fidelity in Saccharomyces cerevisiae, we determined the reversion rates and spectra of the lys2 Delta Bgl +1 frameshift allele. Wild-type and homozygous mutant diploid strains with all possible combinations of defects in the exonuclease activities of DNA polymerases delta and epsilon (conferred by the pol3-01 and pol2-4 alleles, respectively) and in mismatch repair (deletion of MSH2) were analyzed. Although there was no direct correlation between homopolymer run length and frameshift accumulation in the wild-type strain, such a correlation was evident in the triple mutant strain lacking all repair capacity. Furthermore, examination of strains defective in one or two repair activities revealed distinct biases in the removal of the corresponding frameshift intermediates by exonucleolytic proofreading and/or mismatch repair. Finally, these analyses suggest that the mismatch repair machinery may be important for generating some classes of frameshift mutations in yeast. PMID:11560887

  10. Determining the effects of inositol supplementation and the opi1 mutation on ethanol tolerance of Saccharomyces cerevisiae.

    PubMed

    Krause, Erin L; Villa-García, Manuel J; Henry, Susan A; Walker, Larry P

    2007-11-07

    The yeast Saccharomyces cerevisiae is an important microorganism for the ethanol fuel industry. As with many microorganisms, the production and accumulation of certain metabolites, such as ethanol, can have a detrimental effect on cell growth and productivity. Yeast cells containing a higher concentration of phosphatidylinositol (PI) in the cellular membrane, due to inositol supplementation in the growth media, have been shown to tolerate and produce higher concentrations of ethanol. The specific goal of our research was to assess the effects of inositol supplementation in the growth media as well as to compare the ethanol tolerance of the wild-type S. cerevisiae to a mutant, the opi1 strain (opi=overproduction of inositol). The OPI1 gene product is a negative regulatory factor that controls the transcription of the INO1 structural gene, which encodes the enzyme catalyzing the limiting step in the biosynthesis of inositol, that is, the conversion of glucose-6-phosphate to inositol-3-phosphate. Upon the deletion of the OPI1 gene, the cell will constitutively produce inositol, regardless of the extracellular inositol concentration. Inositol supplementation in cultures of wild-type cells increased ethanol tolerance in terms of cell viability. Cells grown in -I media had a 20% higher specific death rate than cells grown in +I media when exposed to 15% ethanol. The opi1 strain, with the ability to constitutively produce inositol regardless of media composition, showed less inhibition of cell growth in the presence of ethanol than did the wild-type strain, particularly in inositol-free media. We conclude that the introduction of an opi1 mutation in yeast results in an inherent increase in PI levels and constitutive biosynthesis of inositol that, in turn, will reduce the cost of supplementing inositol into the media to achieve a higher ethanol tolerance.

  11. Mutation at a distance caused by homopolymeric guanine repeats in Saccharomyces cerevisiae.

    PubMed

    McDonald, Michael J; Yu, Yen-Hsin; Guo, Jheng-Fen; Chong, Shin Yen; Kao, Cheng-Fu; Leu, Jun-Yi

    2016-05-01

    Mutation provides the raw material from which natural selection shapes adaptations. The rate at which new mutations arise is therefore a key factor that determines the tempo and mode of evolution. However, an accurate assessment of the mutation rate of a given organism is difficult because mutation rate varies on a fine scale within a genome. A central challenge of evolutionary genetics is to determine the underlying causes of this variation. In earlier work, we had shown that repeat sequences not only are prone to a high rate of expansion and contraction but also can cause an increase in mutation rate (on the order of kilobases) of the sequence surrounding the repeat. We perform experiments that show that simple guanine repeats 13 bp (base pairs) in length or longer (G 13+ ) increase the substitution rate 4- to 18-fold in the downstream DNA sequence, and this correlates with DNA replication timing (R = 0.89). We show that G 13+ mutagenicity results from the interplay of both error-prone translesion synthesis and homologous recombination repair pathways. The mutagenic repeats that we study have the potential to be exploited for the artificial elevation of mutation rate in systems biology and synthetic biology applications.

  12. Mutations of the TATA-binding protein confer enhanced tolerance to hyperosmotic stress in Saccharomyces cerevisiae.

    PubMed

    Kim, Na-Rae; Yang, Jungwoo; Kwon, Hyeji; An, Jieun; Choi, Wonja; Kim, Wankee

    2013-09-01

    Previously, it was shown that overexpression of either of two SPT15 mutant alleles, SPT15-M2 and SPT15-M3, which encode mutant TATA-binding proteins, confer enhanced ethanol tolerance in Saccharomyces cerevisiae. In this study, we demonstrated that strains overexpressing SPT15-M2 or SPT15-M3 were tolerant to hyperosmotic stress caused by high concentrations of glucose, salt, and sorbitol. The enhanced tolerance to high glucose concentrations in particular improved ethanol production from very high gravity (VHG) ethanol fermentations. The strains displayed constitutive and sustained activation of Hog1, a central kinase in the high osmolarity glycerol (HOG) signal transduction pathway of S. cerevisiae. However, the cell growth defect known to be caused by constitutive and sustained activation of Hog1 was not observed. We also found that reactive oxygen species (ROS) were accumulated to a less extent upon exposure to high glucose concentration in our osmotolerant strains. We identified six new genes (GPH1, HSP12, AIM17, SSA4, USV1, and IGD1), the individual deletion of which renders cells sensitive to 50 % glucose. In spite of the presence of multiple copies of stress response element in their promoters, it was apparent that those genes were not controlled at the transcriptional level by the HOG pathway under the high glucose conditions. Combined with previously published results, overexpression of SPT15-M2 or SPT15-M3 clearly provides a basis for improved tolerance to ethanol and osmotic stress, which enables construction of strains of any genetic background that need enhanced tolerance to high concentrations of ethanol and glucose, promoting the feasibility for VHG ethanol fermentation.

  13. Increased diuron resistance in the joint expression of mutations located at the DIU2, DIU3 and DIU4 loci of Saccharomyces cerevisiae.

    PubMed

    Meunier, B; Colson, A M

    1989-02-01

    In Saccharomyces cerevisiae, diuron blocks the respiratory pathway at the level of the bc1 complex. Two mitochondrially inherited loci, DIU1 and DIU2, located in the cytochrome b gene, and two nuclearly inherited loci, DIU3 and DIU4, have previously been identified. The present work genetically characterizes two double mutants. One mutant, Diu-217, carries two nuclearly inherited mutations, diu3-217a and diu-217b; the second mutant, Diu-783, carries the previously described nuclear mutation diu3-783 and a mitochondrial mutation diu2-783. Each mutation, independent of its location, exhibits a weak diuron resistance. The joint expression of two or three mutations leads to a cumulative or a cooperative enhanced diuron-resistant phenotype.

  14. Heteroduplex formation and mismatch repair of the "stuck" mutation during mating-type switching in Saccharomyces cerevisiae.

    PubMed Central

    Ray, B L; White, C I; Haber, J E

    1991-01-01

    We sequenced two alleles of the MATa locus of Saccharomyces cerevisiae that reduce homothallic switching and confer viability to HO rad52 strains. Both the MATa-stk (J. E. Haber, W. T. Savage, S. M. Raposa, B. Weiffenbach, and L. B. Rowe, Proc. Natl. Acad. Sci. USA 77:2824-2828, 1980) and MATa-survivor (R. E. Malone and D. Hyman, Curr. Genet. 7:439-447, 1983) alleles result from a T----A base change at position Z11 of the MAT locus. These strains also contain identical base substitutions at HMRa, so that the mutation is reintroduced when MAT alpha switches to MATa. Mating-type switching in a MATa-stk strain relative to a MATa Z11T strain is reduced at least 50-fold but can be increased by expression of HO from a galactose-inducible promoter. We confirmed by Southern analysis that the Z11A mutation reduced the efficiency of double-strand break formation compared with the Z11T variant; the reduction was more severe in MAT alpha than in MATa. In MAT alpha, the Z11A mutation also creates a mat alpha 1 (sterile) mutation that distinguishes switches of MATa-stk to either MAT alpha or mat alpha 1-stk. Pedigree analysis of cells induced to switch in G1 showed that MATa-stk switched frequently (23% of the time) to produce one mat alpha 1-stk and one MAT alpha progeny. This postswitching segregation suggests that Z11 was often present in heteroduplex DNA that was not mismatch repaired. When mismatch repair was prevented by deletion of the PMS1 gene, there was an increase in the proportion of mat alpha 1-stk/MAT alpha sectors (59%) and in pairs of switched cells that both retained the stk mutation (27%). We conclude that at least one strand of DNA only 4 bp from the HO cut site is not degraded in most of the gene conversion events that accompany MAT switching. Images PMID:1922052

  15. Heteroduplex formation and mismatch repair of the "stuck" mutation during mating-type switching in Saccharomyces cerevisiae.

    PubMed

    Ray, B L; White, C I; Haber, J E

    1991-10-01

    We sequenced two alleles of the MATa locus of Saccharomyces cerevisiae that reduce homothallic switching and confer viability to HO rad52 strains. Both the MATa-stk (J. E. Haber, W. T. Savage, S. M. Raposa, B. Weiffenbach, and L. B. Rowe, Proc. Natl. Acad. Sci. USA 77:2824-2828, 1980) and MATa-survivor (R. E. Malone and D. Hyman, Curr. Genet. 7:439-447, 1983) alleles result from a T----A base change at position Z11 of the MAT locus. These strains also contain identical base substitutions at HMRa, so that the mutation is reintroduced when MAT alpha switches to MATa. Mating-type switching in a MATa-stk strain relative to a MATa Z11T strain is reduced at least 50-fold but can be increased by expression of HO from a galactose-inducible promoter. We confirmed by Southern analysis that the Z11A mutation reduced the efficiency of double-strand break formation compared with the Z11T variant; the reduction was more severe in MAT alpha than in MATa. In MAT alpha, the Z11A mutation also creates a mat alpha 1 (sterile) mutation that distinguishes switches of MATa-stk to either MAT alpha or mat alpha 1-stk. Pedigree analysis of cells induced to switch in G1 showed that MATa-stk switched frequently (23% of the time) to produce one mat alpha 1-stk and one MAT alpha progeny. This postswitching segregation suggests that Z11 was often present in heteroduplex DNA that was not mismatch repaired. When mismatch repair was prevented by deletion of the PMS1 gene, there was an increase in the proportion of mat alpha 1-stk/MAT alpha sectors (59%) and in pairs of switched cells that both retained the stk mutation (27%). We conclude that at least one strand of DNA only 4 bp from the HO cut site is not degraded in most of the gene conversion events that accompany MAT switching.

  16. NOD2 mutations and anti-Saccharomyces cerevisiae antibodies are risk factors for Crohn’s disease in African Americans

    PubMed Central

    Dassopoulos, Themistocles; Nguyen, Geoffrey C.; Talor, Monica Vladut; Datta, Lisa Wu; Isaacs, Kim L.; Lewis, James D.; Gold, Michael S.; Valentine, John F.; Smoot, Duane T.; Harris, Mary L.; Oliva-Hemker, Maria; Bayless, Theodore M.; Burek, C. Lynne; Brant, Steven R.

    2012-01-01

    Background NOD2 mutations and anti-Saccharomyces cerevisiae antibodies (ASCA) are associated with Crohn’s disease (CD), ileal involvement and complicated disease behavior in whites. ASCA and the three common NOD2 mutations have not been assessed in African American (AA) adults with CD. Methods AA patients with CD and controls were recruited by the Mid-Atlantic African American IBD Study (Johns Hopkins Hospital and satellite centers at Howard University, University of Florida, University of North Carolina, University of Pennsylvania, and the Washington Hospital Center, Washington, DC) as part of the NIDDK IBD Genetics Consortium. Genotyping for the three common CD associated NOD2 mutations (Leu1007fsinsC, G908R/2722g>c, and R702W/2104c>t) and ASCA ELISA assays were performed in 183 AA CD patients and 143 controls. Positive ASCA was based on either IgA or IgG above threshold. CD phenotyping was performed using the NIDDK IBD Genetics Consortium guidelines. Logistic regression was used to calculate adjusted odds ratios (OR) for the association between ASCA and disease phenotype. Results ASCA sensitivity and specificity in this AA population were 70.5% and 70.4% respectively. On univariate analysis, ASCA was associated with younger mean age at diagnosis (25.0±11.8 vs. 32.1±14.2 yrs, p<0.001), ileal involvement (73.0% vs. 48.0%, p=0.002), and complicated (stricturing/ penetrating) behavior (60.3% vs. 41.7%, p=0.03). On multivariate analysis, ASCA titer (/25U) was associated with ileal involvement (OR 1.18, 95% CI 1.04-1.34), complicated behavior (OR 1.13, 95% CI 1.01-1.28) and surgery (hazard ratio 1.11, 95% CI 1.02-1.21). Risks for surgery also included smoking (hazard ratio 1.50, 95% CI 1.14-1.99) and CD family history (hazard ratio 2.39, 95% CI 1.11-5.14). NOD2 carriers (all heterozygotes) were more common among CD cases than controls (8.2 vs. 2.1%; OR 4.17, 95% CI: 1.18 - 14.69). NOD2 mutation population attributable risk was 6.2%. Conclusions In comparison to

  17. The phylogenetically invariant ACAGAGA and AGC sequences of U6 small nuclear RNA are more tolerant of mutation in human cells than in Saccharomyces cerevisiae.

    PubMed Central

    Datta, B; Weiner, A M

    1993-01-01

    U6 small nuclear RNA (snRNA) is the most highly conserved of the five spliceosomal snRNAs that participate in nuclear mRNA splicing. The proposal that U6 snRNA plays a key catalytic role in splicing [D. Brow and C. Guthrie, Nature (London) 337:14-15, 1989] is supported by the phylogenetic conservation of U6, the sensitivity of U6 to mutation, cross-linking of U6 to the vicinity of the 5' splice site, and genetic evidence for extensive base pairing between U2 and U6 snRNAs. We chose to mutate the phylogenetically invariant 41-ACAGAGA-47 and 53-AGC-55 sequences of human U6 because certain point mutations within the homologous regions of Saccharomyces cerevisiae U6 selectively block the first or second step of mRNA splicing. We found that both sequences are more tolerant to mutation in human cells (assayed by transient expression in vivo) than in S. cerevisiae (assayed by effects on growth or in vitro splicing). These differences may reflect different rate-limiting steps in the particular assays used or differential reliance on redundant RNA-RNA or RNA-protein interactions. The ability of mutations in U6 nucleotides A-45 and A-53 to selectively block step 2 of splicing in S. cerevisiae had previously been construed as evidence that these residues might participate directly in the second chemical step of splicing; an indirect, structural role seems more likely because the equivalent mutations have no obvious phenotype in the human transient expression assay. Images PMID:8355689

  18. Saccharomyces cerevisiae Elongator mutations confer resistance to the Kluyveromyces lactis zymocin

    PubMed Central

    Frohloff, Frank; Fichtner, Lars; Jablonowski, Daniel; Breunig, Karin D.; Schaffrath, Raffael

    2001-01-01

    Kluyveromyces lactis killer strains secrete a zymocin complex that inhibits proliferation of sensitive yeast genera including Saccharomyces cerevisiae. In search of the putative toxin target (TOT), we used mTn3:: tagging to isolate zymocin-resistant tot mutants from budding yeast. Of these we identified the TOT1, TOT2 and TOT3 genes (isoallelic with ELP1, ELP2 and ELP3, respectively) coding for the histone acetyltransferase (HAT)-associated Elongator complex of RNA polymerase II holoenzyme. Other than the typical elp ts-phenotype, tot phenocopies hypersensitivity towards caffeine and Calcofluor White as well as slow growth and a G1 cell cycle delay. In addition, TOT4 and TOT5 (isoallelic with KTI12 and IKI1, respectively) code for components that associate with Elongator. Intriguingly, strains lacking non-Elongator HATs (gcn5Δ, hat1Δ, hpa3Δ and sas3Δ) or non-Elongator transcription elongation factors TFIIS (dst1Δ) and Spt4p (spt4Δ) cannot confer resistance towards the K.lactis zymocin, thus providing evidence that Elongator equals TOT and that Elongator plays an important role in signalling toxicity of the K.lactis zymocin. PMID:11296232

  19. A new human p34 protein kinase, CDK2, identified by complementation of a cdc28 mutation in Saccharomyces cerevisiae, is a homolog of Xenopus Eg1.

    PubMed

    Elledge, S J; Spottswood, M R

    1991-09-01

    The onset of S-phase and M-phase in both Schizosaccharomyces pombe and Saccharomyces cerevisiae requires the function of the cdc2/CDC28 gene product, p34, a serine-threonine protein kinase. A human homolog, p34cdc2, was identified by functional complementation of the S.pombe cdc2 mutation (Lee and Nurse, 1987). Using a human cDNA expression library to search for suppressors of cdc28 mutations in S. cerevisiae, we have identified a second functional p34 homolog, CDK2 cell division kinase). This gene is expressed as a 2.1 kb transcript encoding a polypeptide of 298 amino acids. This protein retains nearly all of the amino acids highly conserved among previously identified p34 homologs from other species, but is considerably divergent from all previous p34cdc2 homologs, approximately 65% identity. This gene encodes the human homolog of the Xenopus Eg1 gene, sharing 89% amino acid identity, and defines a second sub-family of CDC2 homologs. A second chromosomal mutation which arose spontaneously was required to allow complementation of the cdc28-4 mutation by CDK2. This mutation blocked the ability of this strain to mate. These results suggest that the machinery controlling the human cell cycle is more complex than that for fission and budding yeast.

  20. Characterization of mutations that suppress the temperature-sensitive growth of the hpr1 delta mutant of Saccharomyces cerevisiae.

    PubMed

    Fan, H Y; Klein, H L

    1994-08-01

    The hpr1 delta 3 mutant of Saccharomyces cerevisiae is temperature-sensitive for growth at 37 degrees and has a 1000-fold increase in deletion of tandem direct repeats. The hyperrecombination phenotype, measured by deletion of a leu2 direct repeat, is partially dependent on the RAD1 and RAD52 gene products, but mutations in these RAD genes do not suppress the temperature-sensitive growth phenotype. Extragenic suppressors of the temperature-sensitive growth have been isolated and characterized. The 14 soh (suppressor of hpr1) mutants recovered represent eight complementation groups, with both dominant and recessive soh alleles. Some of the soh mutants suppress hpr1 hyperrecombination and are distinct from the rad mutants that suppress hpr1 hyperrecombination. Comparisons between the SOH genes and the RAD genes are presented as well as the requirement of RAD genes for the Soh phenotypes. Double soh mutants have been analyzed and reveal three classes of interactions: epistatic suppression of hpr1 hyperrecombination, synergistic suppression of hpr1 hyperrecombination and synthetic lethality. The SOH1 gene has been cloned and sequenced. The null allele is 10-fold increased for recombination as measured by deletion of a leu2 direct repeat.

  1. Potential RNA Binding Proteins in Saccharomyces Cerevisiae Identified as Suppressors of Temperature-Sensitive Mutations in Npl3

    PubMed Central

    Henry, M.; Borland, C. Z.; Bossie, M.; Silver, P. A.

    1996-01-01

    The NPL3 gene of the yeast Saccharomyces cerevisiae encodes a protein with similarity to heterogeneous nuclear ribonucleoproteins (hnRNPs). Npl3p has been implicated in many nuclear-related events including RNA export, protein import, and rRNA processing. Several temperature-sensitive alleles of NPL3 have been isolated. We now report the sequence of these alleles. For one allele, npl3-1, four complementation groups of suppressors have been isolated. The cognate genes for the two recessive mutants were cloned. One of these is the previously known RNA15, which, like NPL3, also encodes a protein with similarity to the vertebrate hnRNP A/B protein family. The other suppressor corresponds to a newly defined gene we term HRP1, which also encodes a protein with similarity to the hnRNP A/B proteins of vertebrates. Mutations in HRP1 suppress all npl3 temperature-sensitive alleles but do not bypass an npl3 null allele. We show that HRP1 is essential for cell growth and that the corresponding protein is located in the nucleus. The discovery of two hnRNP homologues that can partially suppress the function of Np13p, also an RNA binding protein, will be discussed in terms of the possible roles for Npl3p in RNA metabolism. PMID:8770588

  2. Induction of the cytoplasmic 'petite' mutation in pso mutants of Saccharomyces cerevisiae by photoaddition of furocoumarins or by ultraviolet radiation.

    PubMed

    Da Silva, K V; Henriques, J A

    1987-05-01

    The induction of the cytoplasmic 'petite' mutation (or rho-) after photoaddition of either 8-methoxypsoralen (8-MOP) or 3-carbethoxypsoralen (3-CPs), after 254 nm u.v. and after 6-N-hydroxyaminopurine treatment was examined in three pso mutants in comparison to wild-type Saccharomyces cerevisiae. In three pso mutants which are defective in the induction of nuclear reverse and forward mutations, the photoaddition of 8-MOP enhanced the induction of rho-. This was true for cells in both exponential and stationary phases of growth. After photoaddition of 3-CPs in both growth phases the frequency of rho- was enhanced in pso3-1 whereas pso1-1 showed the same response as the wild-type. In pso2-1 the frequency of rho- was reduced. After treatment with 254 nm u.v. in the stationary phase of growth, rho- induction was increased in pso1-1 and pso3-1 cells as compared to wild-type cells. However, when treated in the exponential phase of growth all three pso mutants showed reduced rho- frequency. The data indicate that the defect in the repair of furocoumarins plus light-induced lesions controlled by nuclear genes (pso) interferes to various extents with the fate of mitochondrial lesions. The frequency of rho- mutants induced in the pso mutants by an analogue of adenine, 6-N-hydroxyaminopurine, was similar to that observed in the wild-type strain, suggesting that this drug may also act at the mitochondrial level as a direct mutagen in yeast.

  3. Advanced method for high-throughput expression of mutated eukaryotic membrane proteins in Saccharomyces cerevisiae

    SciTech Connect

    Ito, Keisuke; Sugawara, Taishi; Shiroishi, Mitsunori; Tokuda, Natsuko; Kurokawa, Azusa; Misaka, Takumi; Makyio, Hisayoshi; Yurugi-Kobayashi, Takami; Shimamura, Tatsuro; Nomura, Norimichi; Murata, Takeshi; Abe, Keiko; Iwata, So

    2008-07-11

    Crystallization of eukaryotic membrane proteins is a challenging, iterative process. The protein of interest is often modified in an attempt to improve crystallization and diffraction results. To accelerate this process, we took advantage of a GFP-fusion yeast expression system that uses PCR to direct homologous recombination and gene cloning. We explored the possibility of employing more than one PCR fragment to introduce various mutations in a single step, and found that when up to five PCR fragments were co-transformed into yeast, the recombination frequency was maintained as the number of fragments was increased. All transformants expressed the model membrane protein, while the resulting plasmid from each clone contained the designed mutations only. Thus, we have demonstrated a technique allowing the expression of mutant membrane proteins within 5 days, combining a GFP-fusion expression system and yeast homologous recombination.

  4. The Dominant Pnm2(-) Mutation Which Eliminates the ψ Factor of Saccharomyces Cerevisiae Is the Result of a Missense Mutation in the Sup35 Gene

    PubMed Central

    Doel, S. M.; McCready, S. J.; Nierras, C. R.; Cox, B. S.

    1994-01-01

    The PNM2(-) mutation of Saccharomyces cerevisiae eliminates the extrachromosomal element ψ. PNM2 is closely linked to the omnipotent suppressor gene SUP35 (also previously identified as SUP2, SUF12, SAL3 and GST1). We cloned PNM2(-) and showed that PNM2 and SUP35 are the same gene. We sequenced the PNM2(-) mutant allele and found a single G -> A transition within the N-terminal domain of the protein. We tested the effects of various constructs of SUP35 and PNM2(-) on ψ inheritance and on allosuppressor and antisuppressor functions of the gene. We found that the C-terminal domain of SUP35 protein (SUP35p) could be independently expressed; expression produced dominant antisuppression. Disruption of the N-terminal domain of PNM2(-) destroyed the ability to eliminate ψ. These results imply that the domains of SUP35p act in an antagonistic manner: the N-terminal domain decreases chain-termination fidelity, while the C-terminal domain imposes fidelity. Two transcripts were observed for SUP35, a major band at 2.4 kb and a minor band at 1.3 kb; the minor band corresponds to 3' sequences only. We propose a model for the function of SUP35, in which comparative levels of N- and C-terminal domains of SUP35p at the ribosome modulate translation fidelity. PMID:8088511

  5. Mutations that affect vacuole biogenesis inhibit proliferation of the endoplasmic reticulum in Saccharomyces cerevisiae.

    PubMed Central

    Koning, Ann J; Larson, Lynnelle L; Cadera, Emily J; Parrish, Mark L; Wright, Robin L

    2002-01-01

    In yeast, increased levels of the sterol biosynthetic enzyme, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase isozyme, Hmg1p, induce assembly of nuclear-associated ER membranes called karmellae. To identify additional genes involved in karmellae assembly, we screened temperature-sensitive mutants for karmellae assembly defects. Two independently isolated, temperature-sensitive strains that were also defective for karmellae biogenesis carried mutations in VPS16, a gene involved in vacuolar protein sorting. Karmellae biogenesis was defective in all 13 other vacuole biogenesis mutants tested, although the severity of the karmellae assembly defect varied depending on the particular mutation. The hypersensitivity of 14 vacuole biogenesis mutants to tunicamycin was well correlated with pronounced defects in karmellae assembly, suggesting that the karmellae assembly defect reflected alteration of ER structure or function. Consistent with this hypothesis, seven of eight mutations causing defects in secretion also affected karmellae assembly. However, the vacuole biogenesis mutants were able to proliferate their ER in response to Hmg2p, indicating that the mutants did not have a global defect in the process of ER biogenesis. PMID:11973291

  6. Effects of GSH1 and GSH2 Gene Mutation on Glutathione Synthetases Activity of Saccharomyces cerevisiae.

    PubMed

    Xu, Wen; Jia, Haiyan; Zhang, Longmei; Wang, Haiyan; Tang, Hui; Zhang, Liping

    2017-08-01

    In this paper, three mutants from wild Saccharomyces cerevisiae HBU2.558, called U2.558, UN2.558, and UNA2.558, were screened by UV, sodium nitrite, Atmospheric and room temperature plasma, respectively. Glutathione production of the three mutants increased by 41.86, 72.09 and 56.76%, respectively. We detected the activity of glutathione synthetases and found that its activity was improved. Amino acid sequences of three mutant colonies were compared with HBU2.558. Four mutants: Leu51→Pro51 (L51P), Glu62→Val62 (E62V), Ala332→Glu332 (A332E) and Ser653→Gly653 (S653G) were found in the analysis of γ-glutamylcysteine ligase. L51 is located adjacently to the two active sites of GCL/E/Mg(2+)/ADP complex in the overall GCL structure. L51P mutant spread distortion on the β-sheet due to the fact that the φ was changed from -50.4° to -40.2°. A mutant Leu54→Pro54 (L54P) was found in the analysis of glutathione synthetase, and L54 was an amino acid located between an α-helix and a β-sheet. The results confirm that introduction of proline located at the middle of the β-sheet or at the N- or C-terminal between α-helix and β-sheet or, i.e., L51P and L54P, changed the φ, rigidity, hydrophobicity and conformational entropy, thus increased protein stability and improved the enzyme activity.

  7. Expression of a mutated SPT15 gene in Saccharomyces cerevisiae enhances both cell growth and ethanol production in microaerobic batch, fed-batch, and simultaneous saccharification and fermentations.

    PubMed

    Seong, Yeong-Je; Park, Haeseong; Yang, Jungwoo; Kim, Soo-Jung; Choi, Wonja; Kim, Kyoung Heon; Park, Yong-Cheol

    2017-05-01

    The SPT15 gene encodes a Saccharomyces cerevisiae TATA-binding protein, which is able to globally control the transcription levels of various metabolic and regulatory genes. In this study, a SPT15 gene mutant (S42N, S78R, S163P, and I212N) was expressed in S. cerevisiae BY4741 (BSPT15-M3), of which effects on fermentative yeast properties were evaluated in a series of culture types. By applying different nitrogen sources and air supply conditions in batch culture, organic nitrogen sources and microaerobic condition were decided to be more favorable for both cell growth and ethanol production of the BSPT15-M3 strain than the control S. cerevisiae BY4741 strain expressing the SPT15 gene (BSPT15wt). Microaerobic fed-batch cultures of BSPT15-M3 with glucose shock in the presence of high ethanol content resulted in a 9.5-13.4% higher glucose consumption rate and ethanol productivity than those for the BSPT15wt strain. In addition, BSPT15-M3 showed 4.5 and 3.9% increases in ethanol productivity from cassava hydrolysates and corn starch in simultaneous saccharification and fermentation processes, respectively. It was concluded that overexpression of the mutated SPT15 gene would be a potent strategy to develop robust S. cerevisiae strains with enhanced cell growth and ethanol production abilities.

  8. Effect of intron mutations on processing and function of Saccharomyces cerevisiae SUP53 tRNA in vitro and in vivo.

    PubMed Central

    Strobel, M C; Abelson, J

    1986-01-01

    The Saccharomyces cerevisiae leucine-inserting amber suppressor tRNA gene SUP53 (a tRNALeu3 allele) was used to investigate the relationship between precursor tRNA structure and mature tRNA function. This gene encodes a pre-tRNA which contains a 32-base intron. The mature tRNASUP53 contains a 5-methylcytosine modification of the anticodon wobble base. Mutations were made in the SUP53 intron. These mutant genes were transcribed in an S. cerevisiae nuclear extract preparation. In this extract, primary tRNA gene transcripts are end-processed and base modified after addition of cofactors. The base modifications made in vitro were examined, and the mutant pre-tRNAs were analyzed for their ability to serve as substrates for partially purified S. cerevisiae tRNA endonuclease and ligase. Finally, the suppressor function of these mutant tRNA genes was assayed after their integration into the S. cerevisiae genome. Mutant analysis showed that the totally intact precursor tRNA, rather than any specific sequence or structure of the intron, was necessary for efficient nonsense suppression by tRNASUP53. Less efficient suppressor activity correlated with the absence of the 5-methylcytosine modification. Most of the intron-altered precursor tRNAs were successfully spliced in vitro, indicating that modifications are not critical for recognition by the tRNA endonuclease and ligase. Images PMID:3537724

  9. Effect of the petite mutation on maltose and alpha-methylgucoside fermentation inSaccharomyces cerevisiae.

    PubMed

    Khan, N A; Greener, A

    1977-01-07

    Several hundred petite mutants were isolated from yeast strains of different genotype to examine the effect of the petite mutation on maltose and alpha-methylglucoside fermentation. In most cases petite mutants isolated retain the ability to ferment maltose and alpha-methylglucoside, although at a slower rate. In one strain (1403-7A), however, the ability to ferment alpha-methylglucoside is completely lost in all petite mutants isolated from this strain. It is suggested that mitochondrial factors may be involved in the utilization of alpha-methylglucoside in strain 1403-7A.

  10. Mutations of EXOSC3/Rrp40p associated with neurological diseases impact ribosomal RNA processing functions of the exosome in S. cerevisiae.

    PubMed

    Gillespie, Abby; Gabunilas, Jason; Jen, Joanna C; Chanfreau, Guillaume F

    2017-04-01

    The RNA exosome is a conserved multiprotein complex that achieves a large number of processive and degradative functions in eukaryotic cells. Recently, mutations have been mapped to the gene encoding one of the subunits of the exosome, EXOSC3 (yeast Rrp40p), which results in pontocerebellar hypoplasia with motor neuron degeneration in human patients. However, the molecular impact of these mutations in the pathology of these diseases is not well understood. To investigate the molecular consequences of mutations in EXOSC3 that lead to neurological diseases, we analyzed the effect of three of the mutations that affect conserved residues of EXOSC3/Rrp40p (G31A, G191C, and W238R; G8A, G148C, and W195R, respectively, in human and yeast) in S. cerevisiae We show that the severity of the phenotypes of these mutations in yeast correlate with that of the disease in human patients, with the W195R mutant showing the strongest growth and RNA processing phenotypes. Furthermore, we show that these mutations affect more severely pre-ribosomal RNA processing functions of the exosome rather than other nuclear processing or surveillance functions. These results suggest that delayed or defective pre-rRNA processing might be the primary defect responsible for the pathologies detected in patients with mutations affecting EXOSC3 function in residues conserved throughout eukaryotes. © 2017 Gillespie et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  11. Mutations of EXOSC3/Rrp40p associated with neurological diseases impact ribosomal RNA processing functions of the exosome in S. cerevisiae

    PubMed Central

    Gillespie, Abby; Gabunilas, Jason; Jen, Joanna C.; Chanfreau, Guillaume F.

    2017-01-01

    The RNA exosome is a conserved multiprotein complex that achieves a large number of processive and degradative functions in eukaryotic cells. Recently, mutations have been mapped to the gene encoding one of the subunits of the exosome, EXOSC3 (yeast Rrp40p), which results in pontocerebellar hypoplasia with motor neuron degeneration in human patients. However, the molecular impact of these mutations in the pathology of these diseases is not well understood. To investigate the molecular consequences of mutations in EXOSC3 that lead to neurological diseases, we analyzed the effect of three of the mutations that affect conserved residues of EXOSC3/Rrp40p (G31A, G191C, and W238R; G8A, G148C, and W195R, respectively, in human and yeast) in S. cerevisiae. We show that the severity of the phenotypes of these mutations in yeast correlate with that of the disease in human patients, with the W195R mutant showing the strongest growth and RNA processing phenotypes. Furthermore, we show that these mutations affect more severely pre-ribosomal RNA processing functions of the exosome rather than other nuclear processing or surveillance functions. These results suggest that delayed or defective pre-rRNA processing might be the primary defect responsible for the pathologies detected in patients with mutations affecting EXOSC3 function in residues conserved throughout eukaryotes. PMID:28053271

  12. Point mutation of H3/H4 histones affects acetic acid tolerance in Saccharomyces cerevisiae.

    PubMed

    Liu, Xiangyong; Zhang, Xiaohua; Zhang, Zhaojie

    2014-10-10

    The molecular mechanism of acetic acid tolerance in yeast remains unclear despite of its importance for efficient cellulosic ethanol production. In this study, we examined the effects of histone H3/H4 point mutations on yeast acetic acid tolerance by comprehensively screening a histone H3/H4 mutant library. A total of 24 histone H3/H4 mutants (six acetic acid resistant and 18 sensitive) were identified. Compared to the wild-type strain, the histone acetic acid-resistant mutants exhibited improved ethanol fermentation performance under acetic acid stress. Genome-wide transcriptome analysis revealed that changes in the gene expression in the acetic acid-resistant mutants H3 K37A and H4 K16Q were mainly related to energy production, antioxidative stress. Our results provide novel insights into yeast acetic acid tolerance on the basis of histone, and suggest a novel approach to improve ethanol production by altering the histone H3/H4 sequences.

  13. Mutational analysis reveals a role for the C terminus of the proteasome subunit Rpt4p in spindle pole body duplication in Saccharomyces cerevisiae.

    PubMed Central

    McDonald, Heather B; Helfant, Astrid Hoes; Mahony, Erin M; Khosla, Shaun K; Goetsch, Loretta

    2002-01-01

    The ubiquitin/proteasome pathway plays a key role in regulating cell cycle progression. Previously, we reported that a conditional mutation in the Saccharomyces cerevisiae gene RPT4/PCS1, which encodes one of six ATPases in the proteasome 19S cap complex/regulatory particle (RP), causes failure of spindle pole body (SPB) duplication. To improve our understanding of Rpt4p, we created 58 new mutations, 53 of which convert clustered, charged residues to alanine. Virtually all mutations that affect the N-terminal region, which contains a putative nuclear localization signal and coiled-coil motif, result in a wild-type phenotype. Nine mutations that affect the central ATPase domain and the C-terminal region confer recessive lethality. The two conditional mutations identified, rpt4-145 and rpt4-150, affect the C terminus. After shift to high temperature, these mutations generally cause cells to progress slowly through the first cell cycle and to arrest in the second cycle with large buds, a G2 content of DNA, and monopolar spindles, although this phenotype can vary depending on the medium. Additionally, we describe a genetic interaction between RPT4 and the naturally polymorphic gene SSD1, which in wild-type form modifies the rpt4-145 phenotype such that cells arrest in G2 of the first cycle with complete bipolar spindles. PMID:12399382

  14. Turbidostat culture of Saccharomyces cerevisiae W303-1A under selective pressure elicited by ethanol selects for mutations in SSD1 and UTH1.

    PubMed

    Avrahami-Moyal, Liat; Engelberg, David; Wenger, Jared W; Sherlock, Gavin; Braun, Sergei

    2012-08-01

    We investigated the genetic causes of ethanol tolerance by characterizing mutations selected in Saccharomyces cerevisiae W303-1A under the selective pressure of ethanol. W303-1A was subjected to three rounds of turbidostat, in a medium supplemented with increasing amounts of ethanol. By the end of selection, the growth rate of the culture has increased from 0.029 to 0.32 h(-1) . Unlike the progenitor strain, all yeast cells isolated from this population were able to form colonies on medium supplemented with 7% ethanol within 6 days, our definition of ethanol tolerance. Several clones selected from all three stages of selection were able to form dense colonies within 2 days on solid medium supplemented with 9% ethanol. We sequenced the whole genomes of six clones and identified mutations responsible for ethanol tolerance. Thirteen additional clones were tested for the presence of similar mutations. In 15 of 19 tolerant clones, the stop codon in ssd1-d was replaced with an amino acid-encoding codon. Three other clones contained one of two mutations in UTH1, and one clone did not contain mutations in either SSD1 or UTH1. We showed that the mutations in SSD1 and UTH1 increased tolerance of the cell wall to zymolyase and conclude that stability of the cell wall is a major factor in increased tolerance to ethanol. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  15. Turbidostat Culture of Saccharomyces cerevisiae W303-1A under Selective Pressure Elicited by Ethanol Selects for Mutations in SSD1 and UTH1

    PubMed Central

    Avrahami-Moyal, Liat; Engelberg, David; Wenger, Jared. W.; Sherlock, Gavin; Braun, Sergei

    2012-01-01

    We investigated the genetic causes of ethanol tolerance by characterizing mutations selected in Saccharomyces cerevisiae W303-1A under the selective pressure of ethanol. W303-1A was subjected to three rounds of turbidostat, in medium supplemented with increasing amounts of ethanol. By the end of selection, the growth rate of the culture has increased from 0.029 h-1 to 0.32 h-1. Unlike the progenitor strain, all yeast cells isolated from this population were able to form colonies on medium supplemented with 7% ethanol within six days, our definition of ethanol tolerance. Several clones selected from all three stages of selection were able to form dense colonies within two days on solid medium supplemented with 9% ethanol. We sequenced the whole genomes of 6 clones and identified mutations responsible for ethanol tolerance. Thirteen additional clones were tested for the presence of similar mutations. In 15 out of 19 tolerant clones the stop-codon in ssd1-d was replaced with an aminoacid-encoding codon. Three other clones contained one of two mutations in UTH1, and one clone did not contain mutations in either SSD1 or UTH1. We showed that the mutations in SSD1 and UTH1 increased tolerance of the cell wall to zymolyase and conclude that stability of the cell wall is a major factor in increased tolerance to ethanol. PMID:22443114

  16. Isolation and Characterization of Conditional-Lethal Mutations in the Tub1 α-Tubulin Gene of the Yeast Saccharomyces Cerevisiae

    PubMed Central

    Schatz, P. J.; Solomon, F.; Botstein, D.

    1988-01-01

    Microtubules in yeast are functional components of the mitotic and meiotic spindles and are essential for nuclear movement during cell division and mating. We have isolated 70 conditional-lethal mutations in the TUB1 α-tubulin gene of the yeast Saccharomyces cerevisiae using a plasmid replacement technique. Of the 70 mutations isolated, 67 resulted in cold-sensitivity, one resulted in temperature-sensitivity, and two resulted in both. Fine-structure mapping revealed that the mutations were located throughout the TUB1 gene. We characterized the phenotypes caused by 38 of the mutations after shifts of mutants to the nonpermissive temperature. Populations of temperature-shifted mutant cells contained an excess of large-budded cells with undivided nuclei, consistent with the previously determined role of microtubules in yeast mitosis. Several of the mutants arrested growth with a sufficiently uniform morphology to indicate that TUB1 has at least one specific role in the progression of the yeast cell cycle. A number of the mutants had gross defects in microtubule assembly at the restrictive temperature, some with no microtubules and some with excess microtubules. Other mutants contained disorganized microtubules and nuclei. There were no obvious correlations between these phenotypes and the map positions of the mutations. Greater than 90% of the mutants examined were hypersensitive to the antimicrotubule drug benomyl. Mutations that suppressed the cold-sensitive phenotypes of two of the TUB1 alleles occurred in TUB2, the single structural gene specifying β-tubulin. PMID:3066684

  17. Pathogenic potential of SLC25A15 mutations assessed by transport assays and complementation of Saccharomyces cerevisiae ORT1 null mutant.

    PubMed

    Marobbio, Carlo M T; Punzi, Giuseppe; Pierri, Ciro L; Palmieri, Luigi; Calvello, Rosa; Panaro, Maria A; Palmieri, Ferdinando

    2015-05-01

    HHH syndrome is an autosomal recessive urea cycle disorder caused by alterations in the SLC25A15 gene encoding the mitochondrial ornithine carrier 1, which catalyzes the transport of cytosolic ornithine into the mitochondria in exchange for intramitochondrial citrulline. In this study the functional effects of several SLC25A15 missense mutations p.G27R, p.M37R, p.N74A, p.F188L, p.F188Y, p.S200K, p.R275Q and p.R275K have been tested by transport assays in reconstituted liposomes and complementation of Saccharomyces cerevisiae ORT1 null mutant in arginine-less synthetic complete medium. The HHH syndrome-causing mutations p.G27R, p.M37R, p.F188L and p.R275Q had impaired transport and did not complement ORT1∆ cells (except p.M37R slightly after 5 days in solid medium). The experimentally produced mutations p.N74A, p.S200K and p.R275K exhibited normal or considerable transport activity and complemented ORT1∆ cells after 3 days (p.N74A, p.S200K) or 5 days (p.R275K) incubation. Furthermore, the experimentally produced p.F188Y mutation displayed a substantial transport activity but did not complement the ORT1∆ cells in both liquid and solid media. In view of the disagreement in the results obtained between the two methods, it is recommended that the method of complementing the S. cerevisiae ORT1 knockout strain is used complimentary with the measurement of the catalytic activity, in order to distinguish HHH syndrome-causing mutations from isomorphisms.

  18. Expression of the ROAM mutations in Saccharomyces cerevisiae: involvement of trans-acting regulatory elements and relation with the Ty1 transcription.

    PubMed

    Dubois, E; Jacobs, E; Jauniaux, J C

    1982-01-01

    The regulatory mutations in Saccharomyces cerevisiae designated cargA + Oh, cargB + Oh, and durOh are alterations in the control regions of the respective structural genes. The alteration causing the cargA + Oh mutation has been shown to be an insertion of a Ty1 element in the 5' noncoding region of the CAR1 ( cargA ) locus. All three mutations cause overproduction of their corresponding gene products and belong to the ROAM family of mutations (Regulated Overproducing Allele responding to Mating signals) in yeast. The amount of overproduction in ROAM mutants is determined, at least in part, by signals that control mating functions in yeast. We report the identification of two genetic loci that regulate Oh mutant gene expression but that do not affect mating ability. These loci are defined by the recessive roc mutations ( ROAM mutation control) that reduce the amount of overproduction caused by the cargA + Oh, cargB + Oh, and durOh mutations. RNAs homologous to CAR1 ( cargA ), DUR1 ,2 and Ty1 DNA probes were analyzed by the Northern hybridization technique. In comparison with wild-type strains, cargA + Oh and durOh mutant strains grown on ammonia medium contain increased amounts of CAR1 and DUR1 ,2 RNA. This RNA overproduction is diminished in MATa/MAT alpha diploid strains as well as in haploid strains that also carry the ste7 mutation which prevents mating or that carry either of the roc1 or roc2 mutant alleles. The amount of RNA homologous to Ty1 DNA is also reduced in ste7 , roc1 , and roc2 mutant strains. This reduction is not observed in a strain with the ste5 mutation, which prevents mating but has no effect on overproduction of ROAM mutant gene products.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Expression of the ROAM mutations in Saccharomyces cerevisiae: involvement of trans-acting regulatory elements and relation with the Ty1 transcription.

    PubMed Central

    Dubois, E; Jacobs, E; Jauniaux, J C

    1982-01-01

    The regulatory mutations in Saccharomyces cerevisiae designated cargA + Oh, cargB + Oh, and durOh are alterations in the control regions of the respective structural genes. The alteration causing the cargA + Oh mutation has been shown to be an insertion of a Ty1 element in the 5' noncoding region of the CAR1 ( cargA ) locus. All three mutations cause overproduction of their corresponding gene products and belong to the ROAM family of mutations (Regulated Overproducing Allele responding to Mating signals) in yeast. The amount of overproduction in ROAM mutants is determined, at least in part, by signals that control mating functions in yeast. We report the identification of two genetic loci that regulate Oh mutant gene expression but that do not affect mating ability. These loci are defined by the recessive roc mutations ( ROAM mutation control) that reduce the amount of overproduction caused by the cargA + Oh, cargB + Oh, and durOh mutations. RNAs homologous to CAR1 ( cargA ), DUR1 ,2 and Ty1 DNA probes were analyzed by the Northern hybridization technique. In comparison with wild-type strains, cargA + Oh and durOh mutant strains grown on ammonia medium contain increased amounts of CAR1 and DUR1 ,2 RNA. This RNA overproduction is diminished in MATa/MAT alpha diploid strains as well as in haploid strains that also carry the ste7 mutation which prevents mating or that carry either of the roc1 or roc2 mutant alleles. The amount of RNA homologous to Ty1 DNA is also reduced in ste7 , roc1 , and roc2 mutant strains. This reduction is not observed in a strain with the ste5 mutation, which prevents mating but has no effect on overproduction of ROAM mutant gene products.(ABSTRACT TRUNCATED AT 250 WORDS) Images Fig. 1. Fig. 2. Fig. 3. PMID:6145588

  20. Mutations in a gene encoding the. cap alpha. subunit of a Saccharomyces cerevisiae G protein indicate a role in mating pheromone signaling

    SciTech Connect

    Jahng, K.Y.; Ferguson, J.; Reed, S.I.

    1988-06-01

    Mutations which allowed conjugation by Saccharomyces cerevisiae cells lacking a mating pheromone receptor gene were selected. One of the genes defined by such mutations was isolated from a yeast genomic library by complementation of a temperature-sensitive mutation and is identically to the gene GPA1 (also known as SCG1), recently shown to be highly homologous to gene encoding the ..cap alpha.. subunits of mammalian G proteins. Physiological analysis of temperature-sensitive gpal mutations suggests that the encoded G protein is involved in signaling in response to mating pheromones. Mutational disruption of G-protein activity causes cell-cycle arrest in G/sub 1/, deposition of mating-specific cell surface aggultinins, and induction of pheromone-specific mRNa, all of which are responses to pheromone in wild-type cells. In addition, mutants can conjugate without the benefit of mating pheromone or pheromone receptor. A model is presented where the activated G protein has a negative impact on a constitutive signal which normally keeps the pheromone response repressed.

  1. Boost in bioethanol production using recombinant Saccharomyces cerevisiae with mutated strictly NADPH-dependent xylose reductase and NADP(+)-dependent xylitol dehydrogenase.

    PubMed

    Khattab, Sadat Mohammad Rezq; Saimura, Masayuki; Kodaki, Tsutomu

    2013-06-10

    The xylose-fermenting recombinant Saccharomyces cerevisiae and its improvement have been studied extensively. The redox balance between xylose reductase (XR) and xylitol dehydrogenase (XDH) is thought to be an important factor in effective xylose fermentation. Using protein engineering, we previously successfully reduced xylitol accumulation and improved ethanol production by reversing the dependency of XDH from NAD(+) to NADP(+). We also constructed a set of novel strictly NADPH-dependent XR from Pichia stipitis by site-directed mutagenesis. In the present study, we constructed a set of recombinant S. cerevisiae carrying a novel set of mutated strictly NADPH-dependent XR and NADP(+)-dependent XDH genes with overexpression of endogenous xylulokinase (XK) to study the effects of complete NADPH/NADP(+) recycling on ethanol fermentation and xylitol accumulation. All mutated strains demonstrated reduced xylitol accumulation, ranging 34.4-54.7% compared with the control strain. Moreover, compared with the control strain, the two strains showed 20% and 10% improvement in ethanol production.

  2. NAM9 nuclear suppressor of mitochondrial ochre mutations in Saccharomyces cerevisiae codes for a protein homologous to S4 ribosomal proteins from chloroplasts, bacteria, and eucaryotes.

    PubMed Central

    Boguta, M; Dmochowska, A; Borsuk, P; Wrobel, K; Gargouri, A; Lazowska, J; Slonimski, P P; Szczesniak, B; Kruszewska, A

    1992-01-01

    We report the genetic characterization, molecular cloning, and sequencing of a novel nuclear suppressor, the NAM9 gene from Saccharomyces cerevisiae, which acts on mutations of mitochondrial DNA. The strain NAM9-1 was isolated as a respiration-competent revertant of a mitochondrial mit mutant which carries the V25 ochre mutation in the oxi1 gene. Genetic characterization of the NAM9-1 mutation has shown that it is a nuclear dominant omnipotent suppressor alleviating several mutations in all four mitochondrial genes tested and has suggested its informational, and probably ribosomal, character. The NAM9 gene was cloned by transformation of the recipient oxi1-V25 mutant to respiration competence by using a gene bank from the NAM9-1 rho o strain. Orthogonal-field alternation gel electrophoresis analysis and genetic mapping localized the NAM9 gene on the right arm of chromosome XIV. Sequence analysis of the NAM9 gene showed that it encodes a basic protein of 485 amino acids with a presequence that could target the protein to the mitochondrial matrix. The N-terminal sequence of 200 amino acids of the deduced NAM9 product strongly resembles the S4 ribosomal proteins from chloroplasts and bacteria. Significant although less extensive similarity was found with ribosomal cytoplasmic proteins from lower eucaryotes, including S. cerevisiae. Chromosomal inactivation of the NAM9+ gene is not lethal to the cell but leads to respiration deficiency and loss of mitochondrial DNA integrity. We conclude that the NAM9 gene product is a mitochondrial ribosomal counterpart of S4 ribosomal proteins found in other systems and that the suppressor acts through decreasing the fidelity of translation. Images PMID:1729612

  3. A Mutation in a Saccharomyces Cerevisiae Gene (Rad3) Required for Nucleotide Excision Repair and Transcription Increases the Efficiency of Mismatch Correction

    PubMed Central

    Yang, Y.; Johnson, A. L.; Johnston, L. H.; Siede, W.; Friedberg, E. C.; Ramachandran, K.; Kunz, B. A.

    1996-01-01

    RAD3 functions in DNA repair and transcription in Saccharomyces cerevisiae and particular rad3 alleles confer a mutator phenotype, possibly as a consequence of defective mismatch correction. We assessed the potential involvement of the Rad3 protein in mismatch correction by comparing heteroduplex repair in isogenic rad3-1 and wild-type strains. The rad3-1 allele increased the spontaneous mutation rate but did not prevent heteroduplex repair or bias its directionality. Instead, the efficiency of mismatch correction was enhanced in the rad3-1 strain. This surprising result prompted us to examine expression of yeast mismatch repair genes. We determined that MSH2, but not MLH1, is transcriptionally regulated during the cell-cycle like PMS1, and that rad3-1 does not increase the transcript levels for these genes in log phase cells. These observations suggest that the rad3-1 mutation gives rise to an enhanced efficiency of mismatch correction via a process that does not involve transcriptional regulation of mismatch repair. Interestingly, mismatch repair also was more efficient when error-editing by yeast DNA polymerase δ was eliminated. We discuss our results in relation to possible mechanisms that may link the rad3-1 mutation to mismatch correction efficiency. PMID:8889512

  4. Mating-Type Effect on CIS Mutations Leading to Constitutivity of Ornithine Transaminase in Diploid Cells of SACCHAROMYCES CEREVISIAE

    PubMed Central

    Deschamps, Jacqueline; Wiame, Jean-Marie

    1979-01-01

    Cis-acting regulatory mutations have been isolated that affect L-ornithine transaminase (OTAse), an enzyme catalyzing the second step of arginine breakdown in yeast. These mutations lead to constitutive synthesis of OTAse at various levels. Two different types of mutations have been recovered, both of which are tightly linked to the structural gene (cargB) for this enzyme. One type behaves as a classical operator-constitutive mutation similar to the cargB+O-—1 mutation previously described (Dubois et al. 1978).—The second type is peculiar in two respects: the higher level of constitutive OTAse synthesis and the expression of constitutivity in diploid cells. These mutations are designated cargB+Oh. They behave as usual operator-constitutive mutations in diploid strains homozygous for mating type (a/a or α/α), but the constitutivity is strongly reduced in a/α diploid cells. PMID:395019

  5. A novel specificity protein 1 (SP1)-like gene regulating protein kinase C-1 (Pkc1)-dependent cell wall integrity and virulence factors in Cryptococcus neoformans.

    PubMed

    Adler, Amos; Park, Yoon-Dong; Larsen, Peter; Nagarajan, Vijayaraj; Wollenberg, Kurt; Qiu, Jin; Myers, Timothy G; Williamson, Peter R

    2011-06-10

    Eukaryotic cells utilize complex signaling systems to detect their environments, responding and adapting as new conditions arise during evolution. The basidiomycete fungus Cryptococcus neoformans is a leading cause of AIDS-related death worldwide and utilizes the calcineurin and protein kinase C-1 (Pkc1) signaling pathways for host adaptation and expression of virulence. In the present studies, a C-terminal zinc finger transcription factor, homologous both to the calcineurin-responsive zinc fingers (Crz1) of ascomycetes and to the Pkc1-dependent specificity protein-1 (Sp1) transcription factors of metazoans, was identified and named SP1 because of its greater similarity to the metazoan factors. Structurally, the Cryptococcus neoformans Sp1 (Cn Sp1) protein was found to have acquired an additional zinc finger motif from that of Crz1 and showed Pkc1-dependent phosphorylation, nuclear localization, and whole genome epistatic associations under starvation conditions. Transcriptional targets of Cn Sp1 shared functional similarities with Crz1 factors, such as cell wall synthesis, but gained the regulation of processes involved in carbohydrate metabolism, including trehalose metabolism, and lost others, such as the induction of autophagy. In addition, overexpression of Cn Sp1 in a pkc1Δ mutant showed restoration of altered phenotypes involved in virulence, including cell wall stability, nitrosative stress, and extracellular capsule production. Cn Sp1 was also found to be important for virulence of the fungus using a mouse model. In summary, these data suggest an evolutionary shift in C-terminal zinc finger proteins during fungal evolution, transforming them from calcineurin-dependent to PKC1-dependent transcription factors, helping to shape the role of fungal pathogenesis of C. neoformans.

  6. Multicopy suppression of oxidant-sensitive eos1 mutation by IZH2 in Saccharomyces cerevisiae and the involvement of Eos1 in zinc homeostasis.

    PubMed

    Nakamura, Toshihide; Takahashi, Shunsuke; Takagi, Hiroshi; Shima, Jun

    2010-05-01

    EOS1 is required for tolerance to oxidative stress in Saccharomyces cerevisiae; mutants are defective in the gene sensitive to hydrogen peroxide and tolerant to tunicamycin. To clarify the function of Eos1, we screened yeast genomic DNA libraries for heterologous genes that, when overexpressed from a plasmid, can suppress the hydrogen peroxide-sensitive eos1 mutation. We identified one such gene, IZH2, which has previously been reported to be a Zap1-regulated gene. However, the EOS1 and IZH2 genes do not themselves appear to be functionally interchangeable. Double disruption of the EOS1 and IZH2 genes yielded a slow-growth phenotype, suggesting that the two proteins are involved in related cellular processes. DNA microarray analysis revealed decreased expression of Zap1-regulated genes in the eos1-deletion mutant (Deltaeos1). Thus, it is likely that Eos1 is involved in zinc homeostasis.

  7. Dispersed mutations in histone H3 that affect transcriptional repression and chromatin structure of the CHA1 promoter in Saccharomyces cerevisiae.

    PubMed

    He, Qiye; Yu, Cailin; Morse, Randall H

    2008-10-01

    The histone H3 amino terminus, but not that of H4, is required to prevent the constitutively bound activator Cha4 from remodeling chromatin and activating transcription at the CHA1 gene in Saccharomyces cerevisiae. Here we show that neither the modifiable lysine residues nor any specific region of the H3 tail is required for repression of CHA1. We then screened for histone H3 mutations that cause derepression of the uninduced CHA1 promoter and identified six mutants, three of which are also temperature-sensitive mutants and four of which exhibit a sin(-) phenotype. Histone mutant levels were similar to that of wild-type H3, and the mutations did not cause gross alterations in nucleosome structure. One specific and strongly derepressing mutation, H3 A111G, was examined in depth and found to cause a constitutively active chromatin configuration at the uninduced CHA1 promoter as well as at the ADH2 promoter. Transcriptional derepression and altered chromatin structure of the CHA1 promoter depend on the activator Cha4. These results indicate that modest perturbations in distinct regions of the nucleosome can substantially affect the repressive function of chromatin, allowing activation in the absence of a normal inducing signal (at CHA1) or of Swi/Snf (resulting in a sin(-) phenotype).

  8. Molecular cloning, DNA structure, and RNA analysis of the arginase gene in Saccharomyces cerevisiae. A study of cis-dominant regulatory mutations.

    PubMed Central

    Jauniaux, J C; Dubois, E; Vissers, S; Crabeel, M; Wiame, J M

    1982-01-01

    The Saccharomyces cerevisiae gene cargA + or CAR1 , encoding arginase has been cloned by recovering function in transformed yeast cells. It was used to analyse RNA and chromosomal DNA from six strains bearing cis-dominant regulatory mutations leading to constitutive arginase synthesis. The DNA from the four cargA + O- strains in which constitutive arginase synthesis was independent of the mating-type functions showed no detectable differences with the wild- typye . The cargA + O- mutations were, therefore, small alterations, possibly single base substitutions. On the other hand, the cargA + Oh-1 and cargA + Oh-2 mutations, leading to a constitutive and mating-type dependent arginase synthesis, were identified as insertions. Their size and restriction pattern strongly suggested that they were induced by the Ty1 yeast transposable element. This was confirmed by cloning and analysis of the cargA + Oh-1 mutant gene. The concentration of arginase RNA was significantly increased in the mutants, indicating that the regulation of arginase synthesis was exerted, at least in part, at the level of RNA synthesis or stability. In the cargA + Oh-2 strain the Ty1 element was located at a distance of approximately 600 base pairs from the insertion present in the cargA + Oh-1 strain. This result suggests either a surprisingly large arginase regulatory region or an indirect influence of the Ty1 element on gene expression over long distances. Images Fig. 2. Fig. 3. Fig. 4. PMID:6329729

  9. Molecular cloning, DNA structure, and RNA analysis of the arginase gene in Saccharomyces cerevisiae. A study of cis-dominant regulatory mutations.

    PubMed

    Jauniaux, J C; Dubois, E; Vissers, S; Crabeel, M; Wiame, J M

    1982-01-01

    The Saccharomyces cerevisiae gene cargA + or CAR1 , encoding arginase has been cloned by recovering function in transformed yeast cells. It was used to analyse RNA and chromosomal DNA from six strains bearing cis-dominant regulatory mutations leading to constitutive arginase synthesis. The DNA from the four cargA + O- strains in which constitutive arginase synthesis was independent of the mating-type functions showed no detectable differences with the wild- typye . The cargA + O- mutations were, therefore, small alterations, possibly single base substitutions. On the other hand, the cargA + Oh-1 and cargA + Oh-2 mutations, leading to a constitutive and mating-type dependent arginase synthesis, were identified as insertions. Their size and restriction pattern strongly suggested that they were induced by the Ty1 yeast transposable element. This was confirmed by cloning and analysis of the cargA + Oh-1 mutant gene. The concentration of arginase RNA was significantly increased in the mutants, indicating that the regulation of arginase synthesis was exerted, at least in part, at the level of RNA synthesis or stability. In the cargA + Oh-2 strain the Ty1 element was located at a distance of approximately 600 base pairs from the insertion present in the cargA + Oh-1 strain. This result suggests either a surprisingly large arginase regulatory region or an indirect influence of the Ty1 element on gene expression over long distances.

  10. The N- and C-terminal mutations in tryptophan permease Tat2 confer cell growth in Saccharomyces cerevisiae under high-pressure and low-temperature conditions.

    PubMed

    Nagayama, Ai; Kato, Chiaki; Abe, Fumiyoshi

    2004-04-01

    Tryptophan uptake appears to be the limiting factor in growth of tryptophan auxotrophic Saccharomyces cerevisiae strains under the conditions of high hydrostatic pressure and low temperature. When the cells are subjected to a pressure of 25 MPa, tryptophan permease Tat2 is degraded in a manner dependent on ubiquitination by Rsp5. One of the high-pressure growth-conferring genes, HPG2, was shown to be allelic to TAT2. The HPG2-1 (Tat2(E27F)) mutation site is located within the ExKS motif in the N-terminus, and the HPG2-2 (Tat2(D563N)) and HPG2-3 (Tat2(E570K)) mutation sites are located at the KQEIAE sequence in the C-terminus. The HPG2 mutations enhance the stability of Tat2 during high-pressure or low-temperature incubation, leading to cell growth under these stressful conditions. These results suggest that the cytoplasmic tails are involved in Rsp5-mediated ubiquitination of Tat2 under high-pressure or low-temperature conditions.

  11. [Ultraviolet irradiation of Saccharomyces cerevisia: variations during meiosis in survival and in the induction of the cytoplasmic "petite" mutation].

    PubMed

    Hottinger-de Margerie, H; Moustacchi, E

    1975-06-09

    Cyclic variations in sensitivity to killing and cytoplasmic "petite' (p-) induction by ultraviolet light occur during the meiosis of Saccharomyces cerevisiae. Maximal sensitivity to killing coincides with the period of meiotic nuclear DNA synthesis. Cyclic fluctuations in p- induction could not be correlated with known meiotic events and the pattern could vary temporarily from batch to batch. A dark liquid holding of irradiated cells aided the repair of lethal lesions but on the other hand an enhancement of "petite" induction was observed at all meiotic stages.

  12. Intragenic and Extragenic Suppressors of Mutations in the Heptapeptide Repeat Domain of Saccharomyces Cerevisiae RNA Polymerase II

    PubMed Central

    Nonet, M. L.; Young, R. A.

    1989-01-01

    The largest subunit of RNA polymerase II contains a repeated heptapeptide sequence at its carboxy terminus. Yeast mutants with certain partial deletions of the carboxy-terminal repeat (CTR) domain are temperature-sensitive, cold-sensitive and are inositol auxotrophs. Intragenic and extragenic suppressors of the cold-sensitive phenotype of CTR domain deletion mutants were isolated and studied to investigate the function of this domain. Two types of intragenic suppressing mutations suppress the temperature-sensitivity, cold-sensitivity and inositol auxotrophy of CTR domain deletion mutants. Most intragenic mutations enlarge the repeat domain by duplicating various portions of the repeat coding sequence. Other intragenic suppressing mutations are point mutations in a conserved segment of the large subunit. An extragenic suppressing mutation (SRB2-1) was isolated that strongly suppresses the conditional and auxotrophic phenotypes of CTR domain mutations. The SRB2 gene was isolated and mapped, and an SRB2 partial deletion mutation (srb2Δ10) was constructed. The srb2Δ10 mutants are temperature-sensitive, cold-sensitive and are inositol auxotrophs. These phenotypes are characteristic of mutations in genes encoding components of the transcription apparatus. We propose that the SRB2 gene encodes a factor that is involved in RNA synthesis and may interact with the CTR domain of the large subunit of RNA polymerase II. PMID:2693207

  13. Evidence that an endo-exonuclease controlled by the NUC2 gene functions in the induction of 'petite' mutations in Saccharomyces cerevisiae.

    PubMed

    Chow, T Y; Kunz, B A

    1991-07-01

    Defects in the RAD52 gene of the yeast Saccharomyces cerevisiae reduce the levels of the NUC2 endo-exonuclease by approximately 90% compared to the levels in wild-type strains. To examine the potential role of this nuclease in the induction of mitochondrial 'petite' mutations, congenic RAD52 and rad52-1 haploids were subjected to treatment with ethidium bromide, a well-known inducer of these mutations. The rad52 strain showed a much higher resistance to ethidium bromide-induced petite formation than the corresponding wild-type strain. Two approaches were taken to confirm that this finding reflected the nuclease deficiency, and not some other effect attributable to the rad52-1 mutation. First, a multicopy plasmid (YEp213-10) carrying NUC2 was transformed into a RAD52 strain. This resulted in an increased fraction of spontaneous petite mutations relative to that seen for the same strain without the plasmid and sensitized the strain carrying the plasmid to petite induction by ethidium bromide treatment. Second, a strain having a nuc2 allele that encodes a temperature-sensitive nuclease was treated with ethidium bromide at the restrictive and permissive temperatures. Petite induction was reduced under restrictive conditions. Enzyme assays revealed that the RAD52 (YEp213-10) strain had the highest level of antibody-precipitable NUC2 endo-exonuclease whereas the nuc2 and rad52 mutants had the lowest levels. Furthermore, addition of ethidium bromide to the reaction mixture stimulated the activity of the nuclease on double-stranded DNA. Petite induction by antifolate-mediated thymine nucleotide depletion was also inhibited by inactivation of RAD52 indicating that the effect of reduced NUC2 endo-exonuclease was not restricted to ethidium bromide treatment.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Structure-function analysis of small G proteins from Volvox and Chlamydomonas by complementation of Saccharomyces cerevisiae YPT/SEC mutations.

    PubMed

    Fabry, S; Steigerwald, R; Bernklau, C; Dietmaier, W; Schmitt, R

    1995-05-10

    cDNAs representing nine small G protein genes encoding Ypt proteins from the green algae Volvox carteri (YptV) and Chlamydomonas reinhardtii (YptC) were tested for their ability to complement mutations in the YPT1, SEC4, and YPT7 genes of Saccharomyces cerevisiae strains defective in different steps of intracellular vesicle transport. None of the heterologously expressed algal genes was able to complement mutations in SEC4 or YPT7, but three of them, yptV1, yptC1, and yptV2, restored a YPT1 null mutation. On the amino acid sequence level, and particularly with respect to known small G protein specificity domains, YptV1p and YptC1p are the closest algal analogs of yeast Ypt1p, with 70% overall identity and identical effector regions, but YptV2p is only 55% identical to Ypt1p, and its effector domain resembles that of Sec4p. To define more precisely the regions that supply Ypt1p function, six chimeras were constructed by reciprocal exchange of 68/72-, 122/123-, and 162/163-amino acid segments of the C-terminal regions between YptV1p (complementing) and YptV3p (non-complementing). Segments containing 68 amino acids of the hypervariable C-terminal, and 41 residues of the N-terminal region including the effector region, of YptV1p could be replaced by the corresponding parts of YptV3p without loss of function in yeast, but exchanges within the central core destroyed the ability to rescue the YPT1 mutation. Sequence analysis of ypt1-complementing and -noncomplementing Ypt types suggests that surface loop3 represents a novel specificity domain of small G proteins.

  15. The Saccharomyces cerevisiae mevalonate diphosphate decarboxylase is essential for viability, and a single Leu-to-Pro mutation in a conserved sequence leads to thermosensitivity.

    PubMed Central

    Bergès, T; Guyonnet, D; Karst, F

    1997-01-01

    The mevalonate diphosphate decarboxylase is an enzyme which converts mevalonate diphosphate to isopentenyl diphosphate, the building block of isoprenoids. We used the Saccharomyces cerevisiae temperature-sensitive mutant defective for mevalonate diphosphate decarboxylase previously described (C. Chambon, V. Ladeveve, M. Servouse, L. Blanchard, C. Javelot, B. Vladescu, and F. Karst, Lipids 26:633-636, 1991) to characterize the mutated allele. We showed that a single change in a conserved amino acid accounts for the temperature-sensitive phenotype of the mutant. Complementation experiments were done both in the erg19-mutated background and in a strain in which the ERG19 gene, which was shown to be an essential gene for yeast, was disrupted. Epitope tagging of the wild-type mevalonate diphosphate decarboxylase allowed us to isolate the enzyme in an active form by a versatile one-step immunoprecipitation procedure. Furthermore, during the course of this study, we observed that a high level of expression of the wild-type ERG19 gene led to a lower sterol steady-state accumulation compared to that of a wild-type strain, suggesting that this enzyme may be a key enzyme in mevalonate pathway regulation. PMID:9244250

  16. Loss of Function of Saccharomyces Cerevisiae Kinesin-Related Cin8 and Kip1 Is Suppressed by Kar3 Motor Domain Mutations

    PubMed Central

    Hoyt, M. A.; He, L.; Totis, L.; Saunders, W. S.

    1993-01-01

    The kinesin-related products of the CIN8 and KIP1 genes of Saccharomyces cerevisiae redundantly perform an essential function in mitosis. The action of either gene-product is required for an outwardly directed force that acts upon the spindle poles. We have selected mutations that suppress the temperature-sensitivity of a cin8-temperature-sensitive kip1-δ strain. The extragenic suppressors analyzed were all found to be alleles of the KAR3 gene. KAR3 encodes a distinct kinesin-related protein whose action antagonizes Cin8p/Kip1p function. All seven alleles analyzed were altered within the region of KAR3 that encodes the putative force-generating (or ``motor'') domain. These mutations also suppressed the inviability associated with the cin8-δ kip1-δ genotype, a property not shared by a deletion of KAR3. Other properties of the suppressing alleles revealed that they were not null for function. Six of the seven were unaffected for the essential karyogamy and meiosis properties of KAR3 and the seventh was dominant for the suppressing trait. Our findings suggest that despite an antagonistic relationship between Cin8p/Kip1p and Kar3p, aspects of their mitotic roles may be similar. PMID:8224825

  17. Identification of Destabilizing and Stabilizing Mutations of Ste2p, a G Protein Coupled Receptor in Saccharomyces cerevisiae

    PubMed Central

    Zuber, Jeffrey; Danial, Shairy Azmy; Connelly, Sara M.; Naider, Fred; Dumont, Mark E.

    2015-01-01

    The isolation of mutations affecting the stabilities of transmembrane proteins is useful for enhancing the suitability of proteins for structural characterization and for identification of determinants of membrane protein stability. We have pursued a strategy for identification of stabilized variants of the yeast α-factor receptor Ste2p. Because it was not possible to screen directly for mutations providing thermal stabilization, we first isolated a battery of destabilized temperature sensitive variants, based on loss of signaling function and decreased binding of fluorescent ligand, then screened for intragenic second-site suppressors of these phenotypes. The initial screens recovered singly and multiply substituted mutations conferring temperature sensitivity throughout the predicted transmembrane helices of the receptor. All of the singly-substituted variants exhibit decreases in cell-surface expression. We then screened randomly mutagenized libraries of clones expressing temperature sensitive variants for second-site suppressors that restore elevated levels of binding sites for fluorescent ligand. To determine whether any of these were global suppressors, and thus likely stabilizing mutations, they were combined with different temperature sensitive mutations. Eight of the suppressors exhibited the ability to reverse the defect in ligand binding of multiple temperature sensitive mutations. Combining certain of the suppressors into a single allele resulted in greater levels of suppression than was seen with either suppressor alone. Solubilized receptors containing suppressor mutations in the absence of temperature sensitive mutations exhibit a reduced tendency to aggregate during immobilization on an affinity matrix. Several of the suppressors also exhibit allele-specific behavior indicative of specific intramolecular interactions in the receptor. PMID:25647246

  18. Mitochondrial DNA defects in Saccharomyces cerevisiae caused by functional interactions between DNA polymerase gamma mutations associated with disease in human.

    PubMed

    Baruffini, Enrico; Ferrero, Iliana; Foury, Françoise

    2007-12-01

    The yeast mitochondrial DNA (mtDNA) replicase Mip1 has been used as a model to generate five mutations equivalent to POLG mutations associated with a broad spectrum of diseases in human. All mip1 mutations, alone or in combination in cis or in trans, increase mtDNA instability as measured by petite frequency and Ery(R) mutant accumulation. This phenotype is associated with decreased Mip1 levels in mitochondrial extracts and/or decreased polymerase activity. We have demonstrated that (1) in the mip1(G651S) (hG848S) mutant the high mtDNA instability and increased frequency of point Ery(R) mutations is associated with low Mip1 levels and polymerase activity; (2) in the mip1(A692T-E900G) (hA889T-hE1143G) mutant, A692T is the major contributor to mtDNA instability by decreasing polymerase activity, and E900G acts synergistically by decreasing Mip1 levels; (3) in the mip1(H734Y)/mip1(G807R) (hH932Y/hG1051R) mutant, H734Y is the most deleterious mutation and acts synergistically with G807R as a result of its dominant character; (4) the mip1(E900G) (h1143G) mutation is not neutral but results in a temperature-sensitive phenotype associated with decreased Mip1 levels, a property explaining its synergistic effect with mutations impairing the polymerase activity. Thus, the human E1143G mutation is not a true polymorphism.

  19. Small fitness effects and weak genetic interactions between deleterious mutations in heterozygous loci of the yeast Saccharomyces cerevisiae.

    PubMed

    Szafraniec, Krzysztof; Wloch, Dominika M; Sliwa, Piotr; Borts, Rhona H; Korona, Ryszard

    2003-08-01

    Rare, random mutations were induced in budding yeast by ethyl methanesulfonate (EMS). Clones known to bear a single non-neutral mutation were used to obtain mutant heterozygotes and mutant homozygotes that were later compared with wild-type homozygotes. The average homozygous effect of mutation was an approximately 2% decrease in the growth rate. In heterozygotes, the harmful effect of these relatively mild mutations was reduced approximately fivefold. In a test of epistasis, two heterozygous mutant loci were paired at random. Fitness of the double mutants was best explained by multiplicative action of effects at single loci, with little evidence for epistasis and essentially excluding synergism. In other experiments, the same mutations in haploid and heterozygous diploid clones were compared. Regardless of the haploid phenotypes, mildly deleterious or lethal, fitness of the heterozygotes was decreased by less than half a per cent on average. In general, the results presented here suggest that most mutations tend to exhibit small and weakly interacting effects in heterozygous loci regardless of how harmful they are in haploids or homozygotes.

  20. Improved ethanol production by engineered Saccharomyces cerevisiae expressing a mutated cellobiose transporter during simultaneous saccharification and fermentation.

    PubMed

    Lee, Won-Heong; Jin, Yong-Su

    2017-03-10

    Although simultaneous saccharification and fermentation (SSF) of cellulosic biomass can offer efficient hydrolysis of cellulose through alleviating feed-back inhibition of cellulases by glucose, supplementation of β-glucosidase is necessary because most fermenting microorganisms cannot utilize cellobiose. Previously, we observed that SSF of cellulose by an engineered Saccharomyces cerevisiae expressing a cellobiose transporter (CDT-1) and an intracellular β-glucosidase (GH1-1) without β-glucosidase could not be performed as efficiently as the traditional SSF with extracellular β-glucosidase. However, we improved the ethanol production from SSF of cellulose by employing a further engineered S. cerevisiae expressing a mutant cellobiose transporter [CDT-1 (F213L) exhibiting higher VMAX than CDT-1] and GH1-1 in this study. Furthermore, limitation of cellobiose formation by reducing the amounts of cellulases mixture in SSF could lead the further engineered strain to produce ethanol considerably better than the parental strain with β-glucosidase. Probably, better production of ethanol by the further engineered strain seemed to be due to a higher affinity to cellobiose, which might be attributed to not only 2-times lower Monod constant (KS) for cellobiose than KS of the parental strain for glucose but also 5-times lower KS than Michaelis-Menten constant (KM) of the extracellular β-glucosidase for glucose. Our results suggest that modification of the cellobiose transporter in the engineered yeast to transport lower level of cellobiose enables a more efficient SSF for producing ethanol from cellulose. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Defining the Pathogenesis of the Human Atp12p W94R Mutation Using a Saccharomyces cerevisiae Yeast Model*

    PubMed Central

    Meulemans, Ann; Seneca, Sara; Pribyl, Thomas; Smet, Joel; Alderweirldt, Valerie; Waeytens, Anouk; Lissens, Willy; Van Coster, Rudy; De Meirleir, Linda; di Rago, Jean-Paul; Gatti, Domenico L.; Ackerman, Sharon H.

    2010-01-01

    Studies in yeast have shown that a deficiency in Atp12p prevents assembly of the extrinsic domain (F1) of complex V and renders cells unable to make ATP through oxidative phosphorylation. De Meirleir et al. (De Meirleir, L., Seneca, S., Lissens, W., De Clercq, I., Eyskens, F., Gerlo, E., Smet, J., and Van Coster, R. (2004) J. Med. Genet. 41, 120–124) have reported that a homozygous missense mutation in the gene for human Atp12p (HuAtp12p), which replaces Trp-94 with Arg, was linked to the death of a 14-month-old patient. We have investigated the impact of the pathogenic W94R mutation on Atp12p structure/function. Plasmid-borne wild type human Atp12p rescues the respiratory defect of a yeast ATP12 deletion mutant (Δatp12). The W94R mutation alters the protein at the most highly conserved position in the Pfam sequence and renders HuAtp12p insoluble in the background of Δatp12. In contrast, the yeast protein harboring the corresponding mutation, ScAtp12p(W103R), is soluble in the background of Δatp12 but not in the background of Δatp12Δfmc1, a strain that also lacks Fmc1p. Fmc1p is a yeast mitochondrial protein not found in higher eukaryotes. Tryptophan 94 (human) or 103 (yeast) is located in a positively charged region of Atp12p, and hence its mutation to arginine does not alter significantly the electrostatic properties of the protein. Instead, we provide evidence that the primary effect of the substitution is on the dynamic properties of Atp12p. PMID:19933271

  2. Defining the pathogenesis of the human Atp12p W94R mutation using a Saccharomyces cerevisiae yeast model.

    PubMed

    Meulemans, Ann; Seneca, Sara; Pribyl, Thomas; Smet, Joel; Alderweirldt, Valerie; Waeytens, Anouk; Lissens, Willy; Van Coster, Rudy; De Meirleir, Linda; di Rago, Jean-Paul; Gatti, Domenico L; Ackerman, Sharon H

    2010-02-05

    Studies in yeast have shown that a deficiency in Atp12p prevents assembly of the extrinsic domain (F(1)) of complex V and renders cells unable to make ATP through oxidative phosphorylation. De Meirleir et al. (De Meirleir, L., Seneca, S., Lissens, W., De Clercq, I., Eyskens, F., Gerlo, E., Smet, J., and Van Coster, R. (2004) J. Med. Genet. 41, 120-124) have reported that a homozygous missense mutation in the gene for human Atp12p (HuAtp12p), which replaces Trp-94 with Arg, was linked to the death of a 14-month-old patient. We have investigated the impact of the pathogenic W94R mutation on Atp12p structure/function. Plasmid-borne wild type human Atp12p rescues the respiratory defect of a yeast ATP12 deletion mutant (Deltaatp12). The W94R mutation alters the protein at the most highly conserved position in the Pfam sequence and renders HuAtp12p insoluble in the background of Deltaatp12. In contrast, the yeast protein harboring the corresponding mutation, ScAtp12p(W103R), is soluble in the background of Deltaatp12 but not in the background of Deltaatp12Deltafmc1, a strain that also lacks Fmc1p. Fmc1p is a yeast mitochondrial protein not found in higher eukaryotes. Tryptophan 94 (human) or 103 (yeast) is located in a positively charged region of Atp12p, and hence its mutation to arginine does not alter significantly the electrostatic properties of the protein. Instead, we provide evidence that the primary effect of the substitution is on the dynamic properties of Atp12p.

  3. Enhanced thermotolerance and ethanol tolerance in Saccharomyces cerevisiae mutated by high-energy pulse electron beam and protoplast fusion.

    PubMed

    Zhang, Min; Xiao, Yu; Zhu, Rongrong; Zhang, Qin; Wang, Shi-Long

    2012-11-01

    To increase thermotolerance and ethanol tolerance in Saccharomyces cerevisiae strain YZ1, the strategies of high-energy pulse electron beam (HEPE) and three rounds of protoplast fusion were explored. The YF31 strain had the characteristics of resistant to high-temperature, high-ethanol tolerance, rapid growth and high yield. The YF31 could grow on plate cultures up to 47 °C, containing 237.5 g L(-1) of ethanol. In particular, the mutant strain YF31 generated 94.2 ± 4.8 g L(-1) ethanol from 200 g glucose L(-1) at 42 °C, which was 2.48 times the production of the wild strain YZ1. Results demonstrated that the variant phenotypes from the strains screening by HEPE irradiation could be used as parent stock for yeast regeneration and the protoplast fusion technology is sufficiently powerful in combining suitable characteristics in a single strain for ethanol fermentation.

  4. Mutational analysis of the Saccharomyces cerevisiae SNF1 protein kinase and evidence for functional interaction with the SNF4 protein.

    PubMed Central

    Celenza, J L; Carlson, M

    1989-01-01

    The SNF1 gene of Saccharomyces cerevisiae encodes a protein-serine/threonine kinase that is required for derepression of gene expression in response to glucose limitation. We present evidence that the protein kinase activity is essential for SNF1 function: substitution of Arg for Lys in the putative ATP-binding site results in a mutant phenotype. A polyhistidine tract near the N terminus was found to be dispensable. Deletion of the large region C terminal to the kinase domain only partially impaired SNF1 function, causing expression of invertase to be somewhat reduced but still glucose repressible. The function of the SNF4 gene, another component of the regulatory system, was required for maximal in vitro activity of the SNF1 protein kinase. Increased SNF1 gene dosage partially alleviated the requirement for SNF4. C-terminal deletions of SNF1 also reduced dependence on SNF4. Our findings suggest that SNF4 acts as a positive effector of the kinase but does not serve a regulatory function in signaling glucose availability. Images PMID:2557546

  5. Effects of Saccharomyces cerevisiae mec1, tel1, and mre11 mutations on spontaneous and methylmethane sulfonate-induced genome instability.

    PubMed

    Suetomi, Kazuhiro; Mochizuki, Mai; Suzuki, Shiori; Yamamoto, Hiroaki; Yamamoto, Kazuo

    2010-02-01

    In eukaryotes, together with the Mre11/Rad50/Xrs2 (or Nbs1) complex, a family of related protein kinases (the ATM family) is involved in checkpoint activation in response to DNA double-strand breaks. In Saccharomyces cerevisiae, two members of this family, MEC1 and TEL1, have functionally redundant roles in DNA damage repair. Strains with mutations in their mec1 as well as mre11 genes are very sensitive to DNA damaging agents, show defective induction of damage-induced cell-cycle checkpoints, and defective damage-induced homologous recombination. However, the fact that both the mec1Delta and mre11Delta strains exhibit the spontaneous hyper-recombination phenotype is paradoxical in light of the homologous recombination defects in these strains. In this study, we constructed yeast mec1, tel1, and mre11 null mutations and characterized their genome stability properties. Spontaneous and methylmethane sulfonate (MMS)-induced point mutations, base-substitutions, and frameshifts occurred to an almost equal extent in the wild-type, mec1Delta, tel1Delta, and mre11Delta strains. Thus, Mec1, Tel1, and Mre11 do not play roles in the point mutation response. We then found that the mec1Delta, mre11Delta, and mec1Delta tel1Delta strains demonstrated increased rates of spontaneous loss of heterozygosity (LOH), which includes crossover, gene conversion, and chromosome loss, compared with the wild-type strain. In the tel1Delta strain, the rate of spontaneous LOH was as low as that in the wild-type strain. Finally, no induction of LOH by MMS was observed in the mec1Delta, mre11Delta, or mec1Delta tel1Delta strain; however, it was detected in the wild-type and tel1Delta strains upon exposure to MMS. The elevated level of spontaneous LOH but not MMS-induced LOH in the mec1Delta, mre11Delta, and mec1Delta tel1Delta strains suggests the presence of high levels of spontaneous recombinogenic DNA damage, which differs from the damage induced by MMS treatment, in these strains.

  6. SPO14 separation-of-function mutations define unique roles for phospholipase D in secretion and cellular differentiation in Saccharomyces cerevisiae.

    PubMed Central

    Rudge, S A; Pettitt, T R; Zhou, C; Wakelam, M J; Engebrecht, J A

    2001-01-01

    In Saccharomyces cerevisiae, phospholipase D (PLD), encoded by the SPO14 gene, catalyzes the hydrolysis of phosphatidylcholine, producing choline and phosphatidic acid. SPO14 is essential for cellular differentiation during meiosis and is required for Golgi function when the normal secretory apparatus is perturbed (Sec14-independent secretion). We isolated specific alleles of SPO14 that support Sec14-independent secretion but not sporulation. Identification of these separation-of-function alleles indicates that the role of PLD in these two physiological processes is distinct. Analyses of the mutants reveal that the corresponding proteins are stable, phosphorylated, catalytically active in vitro, and can localize properly within the cell during meiosis. Surprisingly, the separation-of-function mutations map to the conserved catalytic region of the PLD protein. Choline and phosphatidic acid molecular species profiles during Sec14-independent secretion and meiosis reveal that while strains harboring one of these alleles, spo14S-11, hydrolyze phosphatidylcholine in Sec14-independent secretion, they fail to do so during sporulation or normal vegetative growth. These results demonstrate that Spo14 PLD catalytic activity and cellular function can be differentially regulated at the level of phosphatidylcholine hydrolysis. PMID:11514437

  7. Mutations in the Saccharomyces Cerevisiae Type 2a Protein Phosphatase Catalytic Subunit Reveal Roles in Cell Wall Integrity, Actin Cytoskeleton Organization and Mitosis

    PubMed Central

    Evans, DRH.; Stark, MJR.

    1997-01-01

    Temperature-sensitive mutations were generated in the Saccharomyces cerevisiae PPH22 gene that, together with its homologue PPH21, encode the catalytic subunit of type 2A protein phosphatase (PP2A). At the restrictive temperature (37°), cells dependent solely on pph22(ts) alleles for PP2A function displayed a rapid arrest of proliferation. Ts(-) pph22 mutant cells underwent lysis at 37°, showing an accompanying viability loss that was suppressed by inclusion of 1 M sorbitol in the growth medium. Ts(-) pph22 mutant cells also displayed defects in bud morphogenesis and polarization of the cortical actin cytoskeleton at 37°. PP2A is therefore required for maintenance of cell integrity and polarized growth. On transfer from 24° to 37°, Ts(-) pph22 mutant cells accumulated a 2N DNA content indicating a cell cycle block before completion of mitosis. However, during prolonged incubation at 37°, many Ts(-) pph22 mutant cells progressed through an aberrant nuclear division and accumulated multiple nuclei. Ts(-) pph22 mutant cells also accumulated aberrant microtubule structures at 37°, while under semi-permissive conditions they were sensitive to the microtubule-destabilizing agent benomyl, suggesting that PP2A is required for normal microtubule function. Remarkably, the multiple defects of Ts(-) pph22 mutant cells were suppressed by a viable allele (SSD1-v1) of the polymorphic SSD1 gene. PMID:9071579

  8. Mutations in PMR1 stimulate xylose isomerase activity and anaerobic growth on xylose of engineered Saccharomyces cerevisiae by influencing manganese homeostasis

    PubMed Central

    Verhoeven, Maarten D.; Lee, Misun; Kamoen, Lycka; van den Broek, Marcel; Janssen, Dick B.; Daran, Jean-Marc G.; van Maris, Antonius J. A.; Pronk, Jack T.

    2017-01-01

    Combined overexpression of xylulokinase, pentose-phosphate-pathway enzymes and a heterologous xylose isomerase (XI) is required but insufficient for anaerobic growth of Saccharomyces cerevisiae on d-xylose. Single-step Cas9-assisted implementation of these modifications yielded a yeast strain expressing Piromyces XI that showed fast aerobic growth on d-xylose. However, anaerobic growth required a 12-day adaptation period. Xylose-adapted cultures carried mutations in PMR1, encoding a Golgi Ca2+/Mn2+ ATPase. Deleting PMR1 in the parental XI-expressing strain enabled instantaneous anaerobic growth on d-xylose. In pmr1 strains, intracellular Mn2+ concentrations were much higher than in the parental strain. XI activity assays in cell extracts and reconstitution experiments with purified XI apoenzyme showed superior enzyme kinetics with Mn2+ relative to other divalent metal ions. This study indicates engineering of metal homeostasis as a relevant approach for optimization of metabolic pathways involving metal-dependent enzymes. Specifically, it identifies metal interactions of heterologous XIs as an underexplored aspect of engineering xylose metabolism in yeast. PMID:28401919

  9. Anti-Saccharomyces cerevisiae antibodies (ASCA) in Crohn's disease are associated with disease severity but not NOD2/CARD15 mutations

    PubMed Central

    WALKER, L J; ALDHOUS, M C; DRUMMOND, H E; SMITH, B R K; NIMMO, E R; ARNOTT, I D R; SATSANGI, J

    2004-01-01

    Anti-Saccharomyces cerevisiae antibodies (ASCAs) have been proposed as serological markers, which may differentiate Crohn's disease (CD) from ulcerative colitis (UC) and predict disease phenotype. Their importance in pathogenesis is unproven. We investigated the relationship between ASCAs, disease phenotype and NOD2/CARD15 genotype in CD and whether ASCAs were related to antibodies to other fungal proteins. Serum from 228 patients [143 CD, 75 UC, 10 with indeterminate colitis (IC)] and 78 healthy controls (HC) were assayed for ASCA. Antibodies (IgA, IgG) to other fungal proteins (Fusarium species ATC20334, Mycoprotein) were measured in the same samples using an in-house enzyme-linked immunosorbent assay (ELISA) assay. ASCAs were present in 57% of CD, 19% of UC, 30% of IC and 8% of HCs. ASCA-positive status was a predictor for CD with sensitivity of 57%, specificity of 87%, positive predictive value of 78% and negative predictive value of 68%. ASCA was associated with proximal (gastroduodenal and small bowel involvement) rather than purely colonic disease (P < 0·001) and with a more severe disease phenotype and requirement for surgery over a median follow-up time of 9 years (P < 0·0001). No associations with NOD2/CARD15 mutations were seen. There was no association between ASCA and antibodies to MP (IgA or IgG). These data implicate ASCA as a specific marker of disease location and progression in CD, emphasizing the heterogeneity within IBD. PMID:15008984

  10. Anti-Saccharomyces cerevisiae antibodies (ASCA) in Crohn's disease are associated with disease severity but not NOD2/CARD15 mutations.

    PubMed

    Walker, L J; Aldhous, M C; Drummond, H E; Smith, B R K; Nimmo, E R; Arnott, I D R; Satsangi, J

    2004-03-01

    Anti-Saccharomyces cerevisiae antibodies (ASCAs) have been proposed as serological markers, which may differentiate Crohn's disease (CD) from ulcerative colitis (UC) and predict disease phenotype. Their importance in pathogenesis is unproven. We investigated the relationship between ASCAs, disease phenotype and NOD2/CARD15 genotype in CD and whether ASCAs were related to antibodies to other fungal proteins. Serum from 228 patients [143 CD, 75 UC, 10 with indeterminate colitis (IC)] and 78 healthy controls (HC) were assayed for ASCA. Antibodies (IgA, IgG) to other fungal proteins (Fusarium species ATC20334, Mycoprotein) were measured in the same samples using an in-house enzyme-linked immunosorbent assay (ELISA) assay. ASCAs were present in 57% of CD, 19% of UC, 30% of IC and 8% of HCs. ASCA-positive status was a predictor for CD with sensitivity of 57%, specificity of 87%, positive predictive value of 78% and negative predictive value of 68%. ASCA was associated with proximal (gastroduodenal and small bowel involvement) rather than purely colonic disease (P < 0.001) and with a more severe disease phenotype and requirement for surgery over a median follow-up time of 9 years (P < 0.0001). No associations with NOD2/CARD15 mutations were seen. There was no association between ASCA and antibodies to MP (IgA or IgG). These data implicate ASCA as a specific marker of disease location and progression in CD, emphasizing the heterogeneity within IBD.

  11. Antimutagenic effect of essential oil of sage (Salvia officinalis L.) and its monoterpenes against UV-induced mutations in Escherichia coli and Saccharomyces cerevisiae.

    PubMed

    Vuković-Gacić, B; Nikcević, S; Berić-Bjedov, T; Knezević-Vukcević, J; Simić, D

    2006-10-01

    Mutagenic and antimutagenic potential of essential oil (EO) of cultivated sage (S. officinalis L.) and its monoterpenes: thujone, 1,8-cineole, camphor and limonene against UVC-induced mutations was studied with Salmonella/microsome, E. coli WP2, E. coli K12 [Simić, D., Vuković-Gacić, B., Knezević-Vukcević, J., 1998. Detection of natural bioantimutagens and their mechanisms of action with bacterial assay-system. Mutat. Res. 402, 51-57] and S. cerevisiae D7 reversion assays. The toxicity of EO differed, depending on the strain used. The most sensitive were permeable strains TA100, TA102, E. coli K12 IB112 and non-permeable WP2. Mutagenic potential of EO and monoterpenes was not detected, with or without S9. EO reduced the number of UV-induced revertants in a concentration-dependent manner, reaching 50-70% of inhibition at the maximum non-toxic concentrations: 3 microl/plate (TA102), 5 microl/plate (WP2), 7.5 microl/plate (IB112), 30 microl/plate (E. coli K12 SY252) and 60 microl/plate (D7). The metabolic activation had no effect on antimutagenic potential of EO. Similar toxicity of monoterpenes was observed in TA100, E. coli SY252 and D7, with the exception of limonene (less toxic to D7). Reduction of UV-induced revertants by non-toxic concentrations of monoterpenes, tested with SY252 and D7, reached 40-50% at 15-20 microl/plate of thujone, 10 microl/plate of cineole and 1-10 microg/plate of camphor. Limonene showed antimutagenic effect only in D7. Our data recommend sage monoterpenes for further chemoprevention studies.

  12. Reduced Dosage of Genes Encoding Ribosomal Protein S18 Suppresses a Mitochondrial Initiation Codon Mutation in Saccharomyces Cerevisiae

    PubMed Central

    Folley, L. S.; Fox, T. D.

    1994-01-01

    A yeast mitochondrial translation initiation codon mutation affecting the gene for cytochrome oxidase subunit III (COX3) was partially suppressed by a spontaneous nuclear mutation. The suppressor mutation also caused cold-sensitive fermentative growth on glucose medium. Suppression and cold sensitivity resulted from inactivation of the gene product of RPS18A, one of two unlinked genes that code the essential cytoplasmic small subunit ribosomal protein termed S18 in yeast. The two S18 genes differ only by 21 silent substitutions in their exons; both are interrupted by a single intron after the 15th codon. Yeast S18 is homologous to the human S11 (70% identical) and the Escherichia coli S17 (35% identical) ribosomal proteins. This highly conserved family of ribosomal proteins has been implicated in maintenance of translational accuracy and is essential for assembly of the small ribosomal subunit. Characterization of the original rps18a-1 missense mutant and rps18aΔ and rps18bΔ null mutants revealed that levels of suppression, cold sensitivity and paromomycin sensitivity all varied directly with a limitation of small ribosomal subunits. The rps18a-1 mutant was most affected, followed by rps18aΔ then rps18bΔ. Mitochondrial mutations that decreased COX3 expression without altering the initiation codon were not suppressed. This allele specificity implicates mitochondrial translation in the mechanism of suppression. We could not detect an epitope-tagged variant of S18 in mitochondria. Thus, it appears that suppression of the mitochondrial translation initiation defect is caused indirectly by reduced levels of cytoplasmic small ribosomal subunits, leading to changes in either cytoplasmic translational accuracy or the relative levels of cytoplasmic translation products. PMID:8070651

  13. Constitutive Mutations of the Saccharomyces Cerevisiae Mal-Activator Genes Mal23, Mal43, Mal63, and Mal64

    PubMed Central

    Gibson, A. W.; Wojciechowicz, L. A.; Danzi, S. E.; Zhang, B.; Kim, J. H.; Hu, Z.; Michels, C. A.

    1997-01-01

    We report the sequence of several MAL-activator genes, including inducible, constitutive, and noninducible alleles of MAL23, MAL43, MAL63, and mal64. Constitutive alleles of MAL23 and MAL43 vary considerably from inducible alleles in their C-terminal domain, with many of the alterations clustered and common to both alleles. The 27 alterations from residues 238-461 of Mal43-C protein are sufficient for constitutivity, but the minimal number of alterations needed for the constitutive phenotype could not be determined. The sequence of mal64, a nonfunctional homologue of MAL63, revealed that Mal64p is 85% identical to Mal63p. Two mutations that activate mal64 and cause constitutivity are nonsense mutations resulting in truncated proteins of 306 and 282 residues. We conclude that the C-terminal region of the MAL-activator, from residues 283-470, contains a maltose-responsive negative regulatory domain, and that extensive mutation or deletion of the entire region causes loss of the negative regulatory function. Additionally, certain sequence elements in the region appear to be necessary for efficient induction of the full-length Mal63 activator protein. These studies highlight the role of ectopic recombination as an important mechanism of mutagenesis of the telomere-associated family of MAL loci. PMID:9258674

  14. Characterization of Insertion Mutations in the Saccharomyces Cerevisiae Msh1 and Msh2 Genes: Evidence for Separate Mitochondrial and Nuclear Functions

    PubMed Central

    Reenan, RAG.; Kolodner, R. D.

    1992-01-01

    The MSH1 and MSH2 genes of Saccharomyces cerevisiae are predicted to encode proteins that are homologous to the Escherichia coli MutS and Streptococcus pneumoniae HexA proteins and their homologs. Disruption of the MSH1 gene caused a petite phenotype which was established rapidly. A functional MSH1 gene present on a single-copy centromere plasmid was incapable of rescuing the established msh1 petite phenotype. Analysis of msh1 strains demonstrated that mutagenesis and large-scale rearrangement of mitochondrial DNA had occurred. 4',6-Diamidino-2-phenylindole (DAPI) staining of msh1 yeast revealed an aberrant distribution of mtDNA. Haploid msh2 mutants displayed an increase of 85-fold in the rate of spontaneous mutation to canavanine resistance. Sporulation of homozygous msh2/msh2 diploids gave rise to a high level of lethality which was compounded during increased vegetative growth prior to sporulation. msh2 mutations also affected gene conversion of two HIS4 alleles. The his4x mutation, lying near the 5' end of the gene, was converted with equal frequency in both wild-type and msh2 strains. However, many of the events in the msh2 background were post-meiotic segregation (PMS) events (46.4%) while none (<0.25%) of the aberrant segregations in wild type were PMS events. The his4b allele, lying 1.6 kb downstream of his4x, was converted at a 10-fold higher frequency in the msh2 background than in the corresponding wild-type strain. Like the his4x allele, his4b showed a high level of PMS (30%) in the msh2 background compared to the corresponding wild-type strain where no (<0.26%) PMS events were observed. These results indicate that MSH1 plays a role in repair or stability of mtDNA and MSH2 plays a role in repair of 4-bp insertion/deletion mispairs in the nucleus. PMID:1334021

  15. Mutation in MTO1 involved in tRNA modification impairs mitochondrial RNA metabolism in the yeast Saccharomyces cerevisiae.

    PubMed

    Wang, Xinjian; Yan, Qingfeng; Guan, Min-Xin

    2009-06-01

    The yeast MTO1 gene encodes an evolutionarily conserved protein for the biosynthesis of the 5-carboxymethylaminomethyl group of cmnm(5)s(2)U in the wobble position of mitochondrial tRNA. However, mto1 null mutant expressed the respiratory deficient phenotype only when coupled with the C1409G mutation of mitochondrial 15S rRNA. To further understand the role of MTO1 in mitochondrial RNA metabolism, the yeast mto1 null mutants carrying either wild-type (P(S)) or 15S rRNA C1409G allele (P(R)) have been characterized by examining the steady-state levels, aminoacylation capacity of mitochondrial tRNA, mitochondrial gene expression and petite formation. The steady-state levels of tRNA(Lys), tRNA(Glu), tRNA(Gln), tRNA(Leu), tRNA(Gly), tRNA(Arg) and tRNA(Phe) were decreased significantly while those of tRNA(Met) and tRNA(His) were not affected in the mto1 strains carrying the P(S) allele. Strikingly, the combination of the mto1 and C1409G mutations gave rise to the synthetic phenotype for some of the tRNAs, especially in tRNA(Lys), tRNA(Met) and tRNA(Phe). Furthermore, the mto1 strains exhibited a marked reduction in the aminoacylation levels of mitochondrial tRNA(Lys), tRNA(Leu), tRNA(Arg) but almost no effect in those of tRNA(His). In addition, the steady-state levels of mitochondrial COX1, COX2, COX3, ATP6 and ATP9 mRNA were markedly decreased in mto1 strains. These data strongly indicate that unmodified tRNA caused by the deletion of MTO1 gene caused the instability of mitochondrial tRNAs and mRNAs and an impairment of aminoacylation of mitochondrial tRNAs. Consequently, the deletion of MTO1 gene acts in synergy with the 15S rRNA C1409G mutation, leading to the loss of COX1 synthesis and subsequent respiratory deficient phenotype.

  16. cps1+, a Schizosaccharomyces pombe gene homolog of Saccharomyces cerevisiae FKS genes whose mutation confers hypersensitivity to cyclosporin A and papulacandin B.

    PubMed Central

    Ishiguro, J; Saitou, A; Durán, A; Ribas, J C

    1997-01-01

    The Schizosaccharomyces pombe cps1-12 (for chlorpropham supersensitive) mutant strain was originally isolated as hypersensitive to the spindle poison isopropyl N-3-chlorophenyl carbamate (chlorpropham) (J. Ishiguro and Y. Uhara, Jpn. J. Genet. 67:97-109, 1992). We have found that the cps1-12 mutation also confers (i) hypersensitivity to the immunosuppressant cyclosporin A (CsA), (ii) hypersensitivity to the drug papulacandin B, which specifically inhibits 1,3-beta-D-glucan synthesis both in vivo and in vitro, and (iii) thermosensitive growth at 37 degrees C. Under any of these restrictive treatments, cells swell up and finally lyse. With an osmotic stabilizer, cells do not lyse, but at 37 degrees C they become multiseptated and multibranched. The cps1-12 mutant, grown at a restrictive temperature, showed an increase in sensitivity to lysis by enzymatic cell wall degradation, in in vitro 1,3-beta-D-glucan synthase activity (173% in the absence of GTP in the reaction), and in cell wall biosynthesis (130% of the wild-type amount). Addition of Ca2+ suppresses hypersensitivity to papulacandin B and septation and branching phenotypes. All of these data suggest a relationship between the cps1+ gene and cell wall synthesis. A DNA fragment containing the cps1+ gene was cloned, and sequence analysis indicated that it encodes a predicted membrane protein of 1,729 amino acids with 15 to 16 transmembrane domains. S. pombe cps1p has overall 55% sequence identity with Fks1p or Fks2p, proposed to be catalytic or associated subunits of Saccharomyces cerevisiae 1,3-beta-D-glucan synthase. Thus, the cps1+ product might be a catalytic or an associated copurifying subunit of the fission yeast 1,3-beta-D-glucan synthase that plays an essential role in cell wall synthesis. PMID:9401022

  17. Nuclear transport defects and nuclear envelope alterations are associated with mutation of the Saccharomyces cerevisiae NPL4 gene.

    PubMed Central

    DeHoratius, C; Silver, P A

    1996-01-01

    To identify components involved in nuclear protein import, we used a genetic selection to isolate mutants that mislocalized a nuclear-targeted protein. We identified temperature-sensitive mutants that accumulated several different nuclear proteins in the cytoplasm when shifted to the semipermissive temperature of 30 degrees C; these were termed npl (nuclear protein localization) mutants. We now present the properties of yeast strains bearing mutations in the NPL4 gene and report the cloning of the NPL4 gene and the characterization of the Np14 protein. The npl4-1 mutant was isolated by the previously described selection scheme. The second allele, npl4-2, was identified from an independently derived collection of temperature-sensitive mutants. The npl4-1 and npl4-2 strains accumulate nuclear-targeted proteins in the cytoplasm at the nonpermissive temperature consistent with a defect in nuclear protein import. Using an in vitro nuclear import assay, we show that nuclei prepared from temperature-shifted npl4 mutant cells are unable to import nuclear-targeted proteins, even in the presence of cytosol prepared from wild-type cells. In addition, npl4-2 cells accumulate poly(A)+ RNA in the nucleus at the nonpermissive temperature, consistent with a failure to export mRNA from the nucleus. The npl4-1 and npl4-2 cells also exhibit distinct, temperature-sensitive structural defects: npl4-1 cells project extra nuclear envelope into the cytoplasm, whereas npl4-2 cells from nuclear envelope herniations that appear to be filled with poly(A)+ RNA. The NPL4 gene encodes an essential M(r) 64,000 protein that is located at the nuclear periphery and localizes in a pattern similar to nuclear pore complex proteins. Taken together, these results indicate that this gene encodes a novel nuclear pore complex or nuclear pore complex-associated component required for nuclear membrane integrity and nuclear transport. Images PMID:8930904

  18. Mutation breeding of Saccharomyces cerevisiae with lower methanol content and the effects of pectinase, cellulase and glycine in sugar cane spirits.

    PubMed

    Liang, Ming-Hua; Liang, Ying-Jie; Wu, Xiao-Na; Zhou, Shi-Shui; Jiang, Jian-Guo

    2015-07-01

    To decrease the methanol content of the sugar cane sprits, mutagenesis of ultraviolet (UV) coupled with diethyl sulfate (DES) was used to generate a mutant of Saccharomyces cerevisiae with lower methanol content. Meanwhile, the effects of the additions of pectinase, cellulase and glycine on the production of methanol in sugar cane spirits were evaluated. After mutagenesis of UV coupled with DES, a mutant S. cerevisiae DU9 with low production of methanol (97.3 ± 1.7 mg/L) was selected, with a 12.3% decrease of that of S. cerevisiae D4 only with DES treatment, and with a 27.8% reduction of that of the strain without any treatment. Pectinase and cellulase significantly increased the methanol levels of the sugar cane spirits. The results showed that there was linear relationship between glycine (concentration within 0∼0.9 g/L) and methanol in sugar cane sprits and the linear equation was y = 104.7 × -4.79 with the conversion rate of glycine conversion to methanol as 24.56%. Mutagenesis of UV coupled with DES is an efficient way to generate a mutant of S. cerevisiae with lower methanol content. Also, it is necessary to control the additions of pectinase, cellulase and glycine in the fermentation medium, and other unknown ways to generate methanol metabolic pathway in yeasts may need further study. © 2014 Society of Chemical Industry.

  19. A loss-of-function mutation in the PAS kinase Rim15p is related to defective quiescence entry and high fermentation rates of Saccharomyces cerevisiae sake yeast strains.

    PubMed

    Watanabe, Daisuke; Araki, Yuya; Zhou, Yan; Maeya, Naoki; Akao, Takeshi; Shimoi, Hitoshi

    2012-06-01

    Sake yeast cells have defective entry into the quiescent state, allowing them to sustain high fermentation rates. To reveal the underlying mechanism, we investigated the PAS kinase Rim15p, which orchestrates initiation of the quiescence program in Saccharomyces cerevisiae. We found that Rim15p is truncated at the carboxyl terminus in modern sake yeast strains as a result of a frameshift mutation. Introduction of this mutation or deletion of the full-length RIM15 gene in a laboratory strain led to a defective stress response, decreased synthesis of the storage carbohydrates trehalose and glycogen, and impaired G(1) arrest, which together closely resemble the characteristic phenotypes of sake yeast. Notably, expression of a functional RIM15 gene in a modern sake strain suppressed all of these phenotypes, demonstrating that dysfunction of Rim15p prevents sake yeast cells from entering quiescence. Moreover, loss of Rim15p or its downstream targets Igo1p and Igo2p remarkably improved the fermentation rate in a laboratory strain. This finding verified that Rim15p-mediated entry into quiescence plays pivotal roles in the inhibition of ethanol fermentation. Taken together, our results suggest that the loss-of-function mutation in the RIM15 gene may be the key genetic determinant of the increased ethanol production rates in modern sake yeast strains.

  20. A Loss-of-Function Mutation in the PAS Kinase Rim15p Is Related to Defective Quiescence Entry and High Fermentation Rates of Saccharomyces cerevisiae Sake Yeast Strains

    PubMed Central

    Watanabe, Daisuke; Araki, Yuya; Zhou, Yan; Maeya, Naoki; Akao, Takeshi

    2012-01-01

    Sake yeast cells have defective entry into the quiescent state, allowing them to sustain high fermentation rates. To reveal the underlying mechanism, we investigated the PAS kinase Rim15p, which orchestrates initiation of the quiescence program in Saccharomyces cerevisiae. We found that Rim15p is truncated at the carboxyl terminus in modern sake yeast strains as a result of a frameshift mutation. Introduction of this mutation or deletion of the full-length RIM15 gene in a laboratory strain led to a defective stress response, decreased synthesis of the storage carbohydrates trehalose and glycogen, and impaired G1 arrest, which together closely resemble the characteristic phenotypes of sake yeast. Notably, expression of a functional RIM15 gene in a modern sake strain suppressed all of these phenotypes, demonstrating that dysfunction of Rim15p prevents sake yeast cells from entering quiescence. Moreover, loss of Rim15p or its downstream targets Igo1p and Igo2p remarkably improved the fermentation rate in a laboratory strain. This finding verified that Rim15p-mediated entry into quiescence plays pivotal roles in the inhibition of ethanol fermentation. Taken together, our results suggest that the loss-of-function mutation in the RIM15 gene may be the key genetic determinant of the increased ethanol production rates in modern sake yeast strains. PMID:22447585

  1. The sua8 suppressors of Saccharomyces cerevisiae encode replacements of conserved residues within the largest subunit of RNA polymerase II and affect transcription start site selection similarly to sua7 (TFIIB) mutations.

    PubMed Central

    Berroteran, R W; Ware, D E; Hampsey, M

    1994-01-01

    Mutations in the Saccharomyces cerevisiae sua8 gene were found to be suppressors of an aberrant ATG translation initiation codon in the leader region of the cyc1 gene. Analysis of cyc1 transcripts from sua8 mutants revealed that suppression is a consequence of diminished transcription initiation at the normal start sites in favor of initiation at downstream sites, including a site between the aberrant and normal ATG start codons. This effect is not cyc1 gene specific since initiation at other genes, including ADH1, CYC7, and HIS4, was similarly affected, although initiation at HIS3 and SPT15 was unaffected. The SUA8 gene was cloned and partially sequenced, revealing identity to RPB1, which encodes the largest subunit of RNA polymerase II. The sua8 suppressors are the result of single amino acid replacements of highly conserved residues. Three replacements were found either within or immediately preceding homology block D, and a fourth was found adjacent to homology block H, indicating that these regions play a role in defining start sites in vivo. Nearly identical effects on start site selection were observed for sua7 suppressors, which encode altered forms of TFIIB. Synthetic lethality was associated with double sua7 sua8 suppressor mutations, and recessive sua7 mutants failed to fully complement recessive sua8 mutants in heterozygous diploids (nonallelic noncomplementation). These data indicate that the largest subunit of RNA polymerase II and TFIIB are important determinants of transcription start site selection in S. cerevisiae and suggest that this function might be conferred by interaction between these two proteins. Images PMID:8264591

  2. Structural changes induced by L50P and I61T single mutations of ubiquitin affect cell cycle progression while impairing its regulatory and degradative functions in Saccharomyces cerevisiae.

    PubMed

    Doshi, Ankita; Sharma, Mrinal; Prabha, C Ratna

    2017-06-01

    Posttranslational conjugation of ubiquitin to proteins either regulates their function directly or concentration through ubiquitination dependent degradation. High degree of conservation of ubiquitin's sequence implies structural and functional importance of the conserved residues. Ubiquitin gene of Saccharomyces cerevisiae was evolved in vitro by us to study the significance of conserved residues. Present study investigates the structural changes in the protein resulting from the single mutations UbS20F, UbA46S, UbL50P, UbI61T and their functional consequences in the SUB60 strain of S. cerevisiae. Expression of UbL50P and UbI61T decreased Cdc28 protein kinase, enhanced Fus3 levels, caused dosage dependent lethality and at sublethal level produced drastic effects on stress tolerance, protein sorting, protein degradation by ubiquitin fusion degradation pathway and by lysosomes. UbS20F and UbA46S produced insignificant effects over the cells. All four mutations of ubiquitin were incorporated into polyubiquitin. However, polyubiquitination with K63 linkage decreased significantly in cells expressing UbL50P and UbI61T. Structural studies on UbL50P and UbI61T revealed distorted structure with greatly reduced α-helical and elevated β-sheet contents, while UbS20F and UbA46S show mild structural alterations. Our results on functional efficacy of ubiquitin in relation to structural integrity may be useful for designing inhibitors to investigate and modulate eukaryotic cellular dynamics. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Phosphoproteomic Analysis of Protein Kinase C Signaling in Saccharomyces cerevisiae Reveals Slt2 Mitogen-activated Protein Kinase (MAPK)-dependent Phosphorylation of Eisosome Core Components*

    PubMed Central

    Mascaraque, Victoria; Hernáez, María Luisa; Jiménez-Sánchez, María; Hansen, Rasmus; Gil, Concha; Martín, Humberto; Cid, Víctor J.; Molina, María

    2013-01-01

    The cell wall integrity (CWI) pathway of the model organism Saccharomyces cerevisiae has been thoroughly studied as a paradigm of the mitogen-activated protein kinase (MAPK) pathway. It consists of a classic MAPK module comprising the Bck1 MAPK kinase kinase, two redundant MAPK kinases (Mkk1 and Mkk2), and the Slt2 MAPK. This module is activated under a variety of stimuli related to cell wall homeostasis by Pkc1, the only member of the protein kinase C family in budding yeast. Quantitative phosphoproteomics based on stable isotope labeling of amino acids in cell culture is a powerful tool for globally studying protein phosphorylation. Here we report an analysis of the yeast phosphoproteome upon overexpression of a PKC1 hyperactive allele that specifically activates CWI MAPK signaling in the absence of external stimuli. We found 82 phosphopeptides originating from 43 proteins that showed enhanced phosphorylation in these conditions. The MAPK S/T-P target motif was significantly overrepresented in these phosphopeptides. Hyperphosphorylated proteins provide putative novel targets of the Pkc1–cell wall integrity pathway involved in diverse functions such as the control of gene expression, protein synthesis, cytoskeleton maintenance, DNA repair, and metabolism. Remarkably, five components of the plasma-membrane-associated protein complex known as eisosomes were found among the up-regulated proteins. We show here that Pkc1-induced phosphorylation of the eisosome core components Pil1 and Lsp1 was not exerted directly by Pkc1, but involved signaling through the Slt2 MAPK module. PMID:23221999

  4. Screens for Extragenic Mutations That Fail to Complement Act1 Alleles Identify Genes That Are Important for Actin Function in Saccharomyces Cerevisiae

    PubMed Central

    Welch, M. D.; Vinh, DBN.; Okamura, H. H.; Drubin, D. G.

    1993-01-01

    Null mutations in SAC6 and ABP1, genes that encode actin-binding proteins, failed to complement the temperature-sensitive phenotype caused by a mutation in the ACT1 gene. To identify novel genes whose protein products interact with actin, mutations that fail to complement act1-1 or act1-4, two temperature-sensitive alleles of ACT1, were isolated. A total of 14 extragenic noncomplementing mutations and 12 new alleles of ACT1 were identified in two independent screens. The 14 extragenic noncomplementing mutations represent alleles of at least four different genes, ANC1, ANC2, ANC3 and ANC4 (Actin NonComplementing). Mutations in the ANC1 gene were shown to cause osmosensitivity and defects in actin organization; phenotypes that are similar to those caused by act1 mutations. We conclude that the ANC1 gene product plays an important role in actin cytoskeletal function. The 12 new alleles of ACT1 will be useful for further elucidation of the functions of actin in yeast. PMID:8243992

  5. [Genetic effects of the decay in Saccharomyces cerevisiae yeast cells of the radionuclide products of nuclear fuel fission. II. Lethal mutagenic effects and the nature of mutations induced by an equilibrium mixture of 90Sr-90Y and 89Sr].

    PubMed

    Gracheva, L M; Shanshiashvili, T A

    1983-04-01

    The lethal and mutagenic effects and the nature of mutations induced by 90Sr-90Y and 89Sr in cells of the yeast Saccharomyces cerevisiae were studied. The lethal efficiency was determined for 89Sr as (7,6 +/- 1,05) X 10(-5) decay-1, for 90Sr-90Y-(3,3 +/- 1,6) X 10(-4) decay-1. The mutagenic efficiency for ade1 and ade2 genes was determined for 89Sr as (8,3 +/- 2,5) X 10(-9) decay-1, for 90Sr-90Y-(2,9 +/- 1,5) X 10(-8) decay-1. For ade2 locus, the spectrum of mutations induced by 89Sr was a follows: one deletion, 17% of frameshifts and 83% of base pair substitutions--51% of transversions, 22% of GC-AT transitions and 10% of AT-GC transitions. The data of the present work suggest that 90Sr-90Y and 89Sr are very efficient physical mutagens. The relative mutagenic efficiency (RME) was estimated for radionuclides studied.

  6. Saccharomyces cerevisiae aldolase mutants.

    PubMed Central

    Lobo, Z

    1984-01-01

    Six mutants lacking the glycolytic enzyme fructose 1,6-bisphosphate aldolase have been isolated in the yeast Saccharomyces cerevisiae by inositol starvation. The mutants grown on gluconeogenic substrates, such as glycerol or alcohol, and show growth inhibition by glucose and related sugars. The mutations are recessive, segregate as one gene in crosses, and fall in a single complementation group. All of the mutants synthesize an antigen cross-reacting to the antibody raised against yeast aldolase. The aldolase activity in various mutant alleles measured as fructose 1,6-bisphosphate cleavage is between 1 to 2% and as condensation of triose phosphates to fructose 1,6-bisphosphate is 2 to 5% that of the wild-type. The mutants accumulate fructose 1,6-bisphosphate from glucose during glycolysis and dihydroxyacetone phosphate during gluconeogenesis. This suggests that the aldolase activity is absent in vivo. PMID:6384192

  7. A mutation in PLC1, a candidate phosphoinositide-specific phospholipase C gene from Saccharomyces cerevisiae, causes aberrant mitotic chromosome segregation.

    PubMed Central

    Payne, W E; Fitzgerald-Hayes, M

    1993-01-01

    We identified a putative Saccharomyces cerevisiae homolog of a phosphoinositide-specific phospholipase C (PI-PLC) gene, PLC1, which encodes a protein most similar to the delta class of PI-PLC enzymes. The PLC1 gene was isolated during a study of yeast strains that exhibit defects in chromosome segregation. plc1-1 cells showed a 10-fold increase in aberrant chromosome segregation compared with the wild type. Molecular analysis revealed that PLC1 encodes a predicted protein of 101 kDa with approximately 50 and 26% identity to the highly conserved X and Y domains of PI-PLC isozymes from humans, bovines, rats, and Drosophila melanogaster. The putative yeast protein also contains a consensus EF-hand domain that is predicted to bind calcium. Interestingly, the temperature-sensitive and chromosome missegregation phenotypes exhibited by plc1-1 cells were partially suppressed by exogenous calcium. Images PMID:8391635

  8. Saccharomyces cerevisiae strain improvement using selection, mutation, and adaptation for the resistance to lignocellulose-derived fermentation inhibitor for ethanol production.

    PubMed

    Jang, Youri; Lim, Younghoon; Kim, Keun

    2014-05-01

    Twenty-five Saccharomyces cerevisiae strains were screened for the highest sugar tolerance, ethanol-tolerance, ethanol production, and inhibitor resistance, and S. cerevisiae KL5 was selected as the best strain. Inhibitor cocktail (100%) was composed of 75 mM formic acid, 75 mM acetic acid, 30 mM furfural, 30 mM hydroxymethyl furfural (HMF), and 2.7 mM vanillin. The cells of strain KL5 were treated with γ-irradiation, and among the survivals, KL5- G2 with improved inhibitor resistance and the highest ethanol yield in the presence of inhibitor cocktail was selected. The KL5-G2 strain was adapted to inhibitor cocktail by sequential transfer of cultures to a minimal YNB medium containing increasing concentrations of inhibitor cocktail. After 10 times of adaptation, most of the isolated colonies could grow in YNB with 80% inhibitor cocktail, whereas the parental KL5 strain could not grow at all. Among the various adapted strains, the best strain (KL5-G2-A9) producing the highest ethanol yield in the presence of inhibitor cocktail was selected. In a complex YP medium containing 60% inhibitor cocktail and 5% glucose, the theoretical yield and productivity (at 48 h) of KL5- G2-A9 were 81.3% and 0.304 g/l/h, respectively, whereas those of KL5 were 20.8% and 0.072 g/l/h, respectively. KL5-G2-A9 reduced the concentrations of HMF, furfural, and vanillin in the medium in much faster rates than KL5.

  9. end5, end6, and end7: mutations that cause actin delocalization and block the internalization step of endocytosis in Saccharomyces cerevisiae.

    PubMed Central

    Munn, A L; Stevenson, B J; Geli, M I; Riezman, H

    1995-01-01

    Four mutants defective in endocytosis were isolated by screening a collection of temperature-sensitive yeast mutants. Three mutations define new END genes: end5-1, end6-1, and end7-1. The fourth mutation is in END4, a gene identified previously. The end5-1, end6-1, and end7-1 mutations do not affect vacuolar protein localization, indicating that the defect in each mutant is specific for internalization at the plasma membrane. Interestingly, localization of actin patches on the plasma membrane is affected in each of the mutants. end5-1, end6-1, and end7-1 are allelic to VRP1, RVS161, and ACT1, respectively. VRP1 and RVS161 are required for correct actin localization and ACT1 encodes actin. To our surprise, the end6-1 mutation fails to complement the act1-1 mutation. Disruption of the RVS167 gene, which is homologous to END6/RVS161 and which is also required for correct actin localization, also blocks endocytosis. The end7-1 mutant allele has a glycine 48 to aspartic acid substitution in the DNase I-binding loop of actin. We propose that Vrp1p, Rvs161p, and Rvs167p are components of a cytoskeletal structure that contains actin and fimbrin and that is required for formation of endocytic vesicles at the plasma membrane. Images PMID:8590801

  10. Temperature-sensitive mutations in the Saccharomyces cerevisiae MRT4, GRC5, SLA2 and THS1 genes result in defects in mRNA turnover.

    PubMed Central

    Zuk, D; Belk, J P; Jacobson, A

    1999-01-01

    In a screen for factors involved in mRNA turnover, four temperature-sensitive yeast strains (ts1189, ts942, ts817, and ts1100) exhibited defects in the decay of several mRNAs. Complementation of the growth and mRNA decay defects, and genetic experiments, revealed that ts1189 is mutated in the previously unknown MRT4 gene, ts942 is mutated in GRC5 (encoding the L9 ribosomal protein), ts817 contains a mutation in SLA2 (encoding a membrane protein), and ts1100 contains a mutation in THS1 (encoding the threonyl-tRNA synthetase). Three of the four mutants (mrt4, grc5, and sla2) were not defective in protein synthesis, suggesting that these strains contain mutations in factors that may play a specific role in mRNA decay. The mRNA stabilization observed in the ths1 strain, however, could be due to the significant drop in translation observed in this mutant at 37 degrees. While the three interesting mutants appear to encode novel mRNA decay factors, at least one could be linked to a previously characterized mRNA decay pathway. The growth and mRNA decay defects of ts942 (grc5) cells were suppressed by overexpression of the NMD3 gene, encoding a protein shown to participate in a two-hybrid interaction with the nonsense-mediated decay protein Upf1p. PMID:10471698

  11. Effect of mutation of the tetratricopeptide repeat and asparatate-proline 2 domains of Sti1 on Hsp90 signaling and interaction in Saccharomyces cerevisiae.

    PubMed

    Flom, Gary; Weekes, Janae; Williams, Julia J; Johnson, Jill L

    2006-01-01

    Through simultaneous interactions with Hsp70 and Hsp90 via separate tetratricopeptide repeat (TPR) domains, the cochaperone protein Hop/Sti1 has been proposed to play a critical role in the transfer of client proteins from Hsp70 to Hsp90. However, no prior mutational analysis demonstrating a critical in vivo role for the TPR domains of Sti1 has been reported. We used site-directed mutagenesis of the TPR domains combined with a genetic screen to isolate mutations that disrupt Sti1 function. A single amino acid alteration in TPR2A disrupted Hsp90 interaction in vivo but did not significantly affect function. However, deletion of a conserved residue in TPR2A or mutations in the carboxy-terminal DP2 domain completely disrupted Sti1 function. Surprisingly, mutations in TPR1, previously shown to interact with Hsp70, were not sufficient to disrupt in vivo functions unless combined with mutations in TPR2B, suggesting that TPR1 and TPR2B have redundant or overlapping in vivo functions. We further examined the genetic and physical interaction of Sti1 with a mutant form of Hsp90, providing insight into the importance of the TPR2A domain of Sti1 in regulating Hsp90 function.

  12. Higher-order septin assembly is driven by GTP-promoted conformational changes: evidence from unbiased mutational analysis in Saccharomyces cerevisiae.

    PubMed

    Weems, Andrew D; Johnson, Courtney R; Argueso, Juan Lucas; McMurray, Michael A

    2014-03-01

    Septin proteins bind GTP and heterooligomerize into filaments with conserved functions across a wide range of eukaryotes. Most septins hydrolyze GTP, altering the oligomerization interfaces; yet mutations designed to abolish nucleotide binding or hydrolysis by yeast septins perturb function only at high temperatures. Here, we apply an unbiased mutational approach to this problem. Mutations causing defects at high temperature mapped exclusively to the oligomerization interface encompassing the GTP-binding pocket, or to the pocket itself. Strikingly, cold-sensitive defects arise when certain of these same mutations are coexpressed with a wild-type allele, suggestive of a novel mode of dominance involving incompatibility between mutant and wild-type molecules at the septin-septin interfaces that mediate filament polymerization. A different cold-sensitive mutant harbors a substitution in an unstudied but highly conserved region of the septin Cdc12. A homologous domain in the small GTPase Ran allosterically regulates GTP-binding domain conformations, pointing to a possible new functional domain in some septins. Finally, we identify a mutation in septin Cdc3 that restores the high-temperature assembly competence of a mutant allele of septin Cdc10, likely by adopting a conformation more compatible with nucleotide-free Cdc10. Taken together, our findings demonstrate that GTP binding and hydrolysis promote, but are not required for, one-time events--presumably oligomerization-associated conformational changes--during assembly of the building blocks of septin filaments. Restrictive temperatures impose conformational constraints on mutant septin proteins, preventing new assembly and in certain cases destabilizing existing assemblies. These insights from yeast relate directly to disease-causing mutations in human septins.

  13. Mutational Analysis of Ste5 in the Yeast Saccharomyces Cerevisiae: Application of a Differential Interaction Trap Assay for Examining Protein-Protein Interactions

    PubMed Central

    Inouye, C.; Dhillon, N.; Durfee, T.; Zambryski, P. C.; Thorner, J.

    1997-01-01

    Ste5 is essential for the yeast mating pheromone response pathway and is thought to function as a scaffold that organizes the components of the mitogen-activated protein kinase (MAPK) cascade. A new method was developed to isolate missense mutations in Ste5 that differentially affect the ability of Ste5 to interact with either of two MAPK cascade constituents, the MEKK (Ste11) and the MEK (Ste7). Mutations that affect association with Ste7 or with Ste11 delineate discrete regions of Ste5 that are critical for each interaction. Co-immunoprecipitation analysis, examining the binding in vitro of Ste5 to Ste11, Ste7, Ste4 (G protein β subunit), and Fus3 (MAPK), confirmed that each mutation specifically affects the interaction of Ste5 with only one protein. When expressed in a ste5Δ cell, mutant Ste5 proteins that are defective in their ability to interact with either Ste11 or Ste7 result in a markedly reduced mating proficiency. One mutation that clearly weakened (but did not eliminate) interaction of Ste5 with Ste7 permitted mating at wild-type efficiency, indicating that an efficacious signal is generated even when Ste5 associates with only a small fraction of (or only transiently with) Ste7. Ste5 mutants defective in association with Ste11 or Ste7 showed strong interallelic complementation when co-expressed, suggesting that the functional form of Ste5 in vivo is an oligomer. PMID:9335587

  14. Running on empty: does mitochondrial DNA mutation limit replicative lifespan in yeast?: Mutations that increase the division rate of cells lacking mitochondrial DNA also extend replicative lifespan in Saccharomyces cerevisiae.

    PubMed

    Dunn, Cory D

    2011-10-01

    Mitochondrial DNA (mtDNA) mutations escalate with increasing age in higher organisms. However, it has so far been difficult to experimentally determine whether mtDNA mutation merely correlates with age or directly limits lifespan. A recent study shows that budding yeast can also lose functional mtDNA late in life. Interestingly, independent studies of replicative lifespan (RLS) and of mtDNA-deficient cells show that the same mutations can increase both RLS and the division rate of yeast lacking the mitochondrial genome. These exciting, parallel findings imply a potential causal relationship between mtDNA mutation and replicative senescence. Furthermore, these results suggest more efficient methods for discovering genes that determine lifespan.

  15. Hts1 Encodes Both the Cytoplasmic and Mitochondrial Histidyl-Trna Synthetase of Saccharomyces Cerevisiae: Mutations Alter the Specificity of Compartmentation

    PubMed Central

    Chiu, M. I.; Mason, T. L.; Fink, G. R.

    1992-01-01

    Genetic and biochemical evidence shows that a single nuclear gene HTS1 encodes both the mitochondrial and cytoplasmic histidyl-tRNA synthetases (Hts). The gene specifies two messages, one with two in-frame ATGs (-60 and +1) and another with only the downstream ATG (+1). We have made a new set of mutations that enables us to express only the mitochondrial or the cytoplasmic form and compared the subcellular distribution of the Hts1 protein in these mutants and wild type, using an antibody that interacts with both the mitochondrial and cytoplasmic Hts1 as well as Hts1::LacZ fusions. Mutations in the upstream ATG (-60) or frameshift mutations in the presequence affect only the mitochondrial enzyme and not the cytoplasmic enzyme. Mutations in the downstream ATG (+1 ATG to ATC) destroy the function of the cytosolic enzyme, but do not affect the function of the mitochondrial enzyme. Overexpression of this construct restores cytoplasmic function. Cells expressing a truncated form of Hts containing a deletion of the first 20 amino-terminal residues (Htsc) produce a functional cytoplasmic enzyme, which does not provide mitochondrial function. Overexpression of this truncated cytoplasmic protein provides mitochondrial function and produces detectable levels of the synthetase in the mitochondrion. These experiments suggest that Hts1 contains two domains that together allow efficient localization of Htsm to the mitochondrion: an amino-terminal presequence in the mitochondrial precursor that is likely cleaved upon delivery to the mitochondrion and a second amino-terminal sequence (residues 21-53) present in both the precursor and the cytoplasmic form. Neither one by itself is sufficient to act as an efficient mitochondrial targeting signal. Using our antibody we have been able to detect a protein of increased molecular mass that corresponds to that of the predicted precursor. Taken together these studies show that the specificity of compartmentation of the Hts protein depends

  16. Saccharomyces cerevisiae-based mutational analysis of the bc1 complex Qo site residue 279 to study the trade-off between atovaquone resistance and function.

    PubMed

    Song, Zehua; Clain, Jérôme; Iorga, Bogdan I; Yi, Zhou; Fisher, Nicholas; Meunier, Brigitte

    2015-07-01

    The bc1 complex is central to mitochondrial bioenergetics and the target of the antimalarial drug atovaquone that binds in the quinol oxidation (Qo) site of the complex. Structural analysis has shown that the Qo site residue Y279 (Y268 in Plasmodium falciparum) is key for atovaquone binding. Consequently, atovaquone resistance can be acquired by mutation of that residue. In addition to the probability of amino acid substitution, the level of atovaquone resistance and the loss of bc1 complex activity that are associated with the novel amino acid would restrict the nature of resistance-driven mutations occurring on atovaquone exposure in native parasite populations. Using the yeast model, we characterized the effect of all the amino acid replacements resulting from a single nucleotide substitution at codon 279: Y279C, Y279D, Y279F, Y279H, Y279N, and Y279S (Y279C, D, F, H, N, and S). Two residue changes that required a double nucleotide substitution, Y279A and W, were added to the series. We found that mutations Y279A, C, and S conferred high atovaquone resistance but decreased the catalytic activity. Y279F had wild-type enzymatic activity and sensitivity to atovaquone, while the other substitutions caused a dramatic respiratory defect. The results obtained with the yeast model were examined in regard to atomic structure and compared to the reported data on the evolution of acquired atovaquone resistance in P. falciparum.

  17. Enhancement of malate-production and increase in sensitivity to dimethyl succinate by mutation of the VID24 gene in Saccharomyces cerevisiae.

    PubMed

    Negoro, Hiroaki; Kotaka, Atsushi; Matsumura, Kengo; Tsutsumi, Hiroko; Hata, Yoji

    2016-06-01

    Malate in sake (a Japanese alcoholic beverage) is an important component for taste that is produced by yeasts during alcoholic fermentation. To date, many researchers have developed methods for breeding high-malate-producing yeasts; however, genes responsible for the high-acidity phenotype are not known. We determined the mutated gene involved in high malate production in yeast, isolated as a sensitive mutant to dimethyl succinate. In the comparative whole genome analysis between high-malate-producing strain and its parent strain, one of the non-synonymous substitutions was identified in the VID24 gene. The mutation of VID24 resulted in enhancement of malate-productivity and sensitivity to dimethyl succinate. The mutation appeared to lead to a deficiency in Vid24p function. Furthermore, disruption of cytoplasmic malate dehydrogenase (Mdh2p) gene in the VID24 mutant inhibited the high-malate-producing phenotype. Vid24p is known as a component of the multisubunit ubiquitin ligase and participates in the degradation of gluconeogenic enzymes such as Mdh2p. We suggest that the enhancement of malate-productivity results from an accumulation of Mdh2p due to the loss of Vid24p function. These findings propose a novel mechanism for the regulation of organic acid production in yeast cells by the component of ubiquitin ligase, Vid24p. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  18. Mutations in Mtr4 Structural Domains Reveal Their Important Role in Regulating tRNAiMet Turnover in Saccharomyces cerevisiae and Mtr4p Enzymatic Activities In Vitro.

    PubMed

    Li, Yan; Burclaff, Joseph; Anderson, James T

    2016-01-01

    RNA processing and turnover play important roles in the maturation, metabolism and quality control of a large variety of RNAs thereby contributing to gene expression and cellular health. The TRAMP complex, composed of Air2p, Trf4p and Mtr4p, stimulates nuclear exosome-dependent RNA processing and degradation in Saccharomyces cerevisiae. The Mtr4 protein structure is composed of a helicase core and a novel so-called arch domain, which protrudes from the core. The helicase core contains highly conserved helicase domains RecA-1 and 2, and two structural domains of unclear functions, winged helix domain (WH) and ratchet domain. How the structural domains (arch, WH and ratchet domain) coordinate with the helicase domains and what roles they are playing in regulating Mtr4p helicase activity are unknown. We created a library of Mtr4p structural domain mutants for the first time and screened for those defective in the turnover of TRAMP and exosome substrate, hypomodified tRNAiMet. We found these domains regulate Mtr4p enzymatic activities differently through characterizing the arch domain mutants K700N and P731S, WH mutant K904N, and ratchet domain mutant R1030G. Arch domain mutants greatly reduced Mtr4p RNA binding, which surprisingly did not lead to significant defects on either in vivo tRNAiMet turnover, or in vitro unwinding activities. WH mutant K904N and Ratchet domain mutant R1030G showed decreased tRNAiMet turnover in vivo, as well as reduced RNA binding, ATPase and unwinding activities of Mtr4p in vitro. Particularly, K904 was found to be very important for steady protein levels in vivo. Overall, we conclude that arch domain plays a role in RNA binding but is largely dispensable for Mtr4p enzymatic activities, however the structural domains in the helicase core significantly contribute to Mtr4p ATPase and unwinding activities.

  19. Double mutation of Saccharomyces cerevisiae for enhanced β-d-fructofuranosidase fructohydrolase productivity and application of growth kinetics for parametric significance analysis

    PubMed Central

    Ali, Sikander; Aslam, Aafia; Hayyat, Muhammad Umar

    2016-01-01

    The kinetics of an extracellular β-d-fructofuranosidase fructohydrolase production by Saccharomyces cerevisiae in a chemically defined medium, i.e., sucrose peptone agar yeast extract at pH 6, was investigated. The wild-type was treated with a chemical mutagen, methyl methane sulfonate. Among the six mutants isolated, methyl methane sulfonate-V was found to be a better enzyme producing strain (52 ± 2.4a U/mL). The maximum production (74 ± 3.1a U/mL) was accomplished after at 48 h (68 ± 2.7a mg/mL protein). The mutants were stabilized at low levels of 5-fluoro-cytocine and the viable ones were further processed for optimization of cultural conditions and nutritional requirements. The sucrose concentration, incubation period and pH were optimized to be 30 g/L, 28 °C, and 6.5, respectively. The methyl methane sulfonate-V exhibited an improvement of over 10 folds in enzyme production when 5 g/L ammonium sulfate was used as a nitrogen source. Thin layer chromatography and high-performance liquid chromatography analysis illustrated the optimal enzyme activity supported by the higher rate of hydrolysis of sucrose into monosaccharides, particularly α-d-glucose and β-d-fructose. The values for Qp (2 ± 0.12c U/mL/h) and Yp/s (4 ± 1.24b U/g) of the mutant were considerably increased in comparison with other yeast strains (both isolates and viable mutants). The mutant could be exploited for enzyme production over a wider temperature range (26–34 °C), with significantly high enzyme activity (LSD 0.048, HS) at the optimal temperature. PMID:26887236

  20. Double mutation of Saccharomyces cerevisiae for enhanced β-d-fructofuranosidase fructohydrolase productivity and application of growth kinetics for parametric significance analysis.

    PubMed

    Ali, Sikander; Aslam, Aafia; Hayyat, Muhammad Umar

    2016-01-01

    The kinetics of an extracellular β-d-fructofuranosidase fructohydrolase production by Saccharomyces cerevisiae in a chemically defined medium, i.e., sucrose peptone agar yeast extract at pH 6, was investigated. The wild-type was treated with a chemical mutagen, methyl methane sulfonate. Among the six mutants isolated, methyl methane sulfonate-V was found to be a better enzyme producing strain (52±2.4(a)U/mL). The maximum production (74±3.1(a)U/mL) was accomplished after at 48h (68±2.7(a)mg/mL protein). The mutants were stabilized at low levels of 5-fluoro-cytocine and the viable ones were further processed for optimization of cultural conditions and nutritional requirements. The sucrose concentration, incubation period and pH were optimized to be 30g/L, 28°C, and 6.5, respectively. The methyl methane sulfonate-V exhibited an improvement of over 10 folds in enzyme production when 5g/L ammonium sulfate was used as a nitrogen source. Thin layer chromatography and high-performance liquid chromatography analysis illustrated the optimal enzyme activity supported by the higher rate of hydrolysis of sucrose into monosaccharides, particularly α-d-glucose and β-d-fructose. The values for Qp (2±0.12(c)U/mL/h) and Yp/s (4±1.24(b)U/g) of the mutant were considerably increased in comparison with other yeast strains (both isolates and viable mutants). The mutant could be exploited for enzyme production over a wider temperature range (26-34°C), with significantly high enzyme activity (LSD 0.048, HS) at the optimal temperature. Copyright © 2015 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  1. [The ABC transporters of Saccharomyces cerevisiae].

    PubMed

    Wawrzycka, Donata

    2011-01-01

    The ABC transporters (ATP Binding Cassette) compose one of the bigest protein family with the great medical, industrial and economical impact. They are found in all organism from bacteria to man. ABC proteins are responsible for resistance of microorganism to antibiotics and fungicides and multidrug resistance of cancer cells. Mutations in ABC transporters genes cause seriuos deseases like cystic fibrosis, adrenoleucodystrophy or ataxia. Transport catalized by ABC proteins is charged with energy from the ATP hydrolysis. The ABC superfamily contains transporters, canals, receptors. Analysis of the Saccharomyces cerevisiae genome allowed to distinguish 30 potential ABC proteins which are classified into 6 subfamilies. The structural and functional similarity of the yeast and human ABC proteins allowes to use the S. cerevisiae as a model organism for ABC transporters characterisation. In this work the present state of knowleadge on yeast S. cerevisiae ABC proteins was summarised.

  2. Mitochondrial Genetics. VI the Petite Mutation in SACCHAROMYCES CEREVISIAE: Interrelations between the Loss of the ρ+ Factor and the Loss of the Drug Resistance Mitochondrial Genetic Markers

    PubMed Central

    Deutsch, J.; Dujon, B.; Netter, P.; Petrochilo, E.; Slonimski, P. P.; Bolotin-Fukuhara, M.; Coen, D.

    1974-01-01

    The survival of the ρ+ factor and of DrugR mitochondrial genetic markers after exposure to ethidium bromide has been studied. A technique allowing the determination of DrugR genetic markers among a great number of both grande and petite colonies has been developed. The results have been analyzed by the target theory. The survival of the ρ+ factor is always less than the survival of any DrugR genetic marker. The survivals of CR and ER are similar to each other, while that of OR is greater than that of the other two DrugR markers. All possible combinations of DrugR markers have been found among the ρ- petite cells induced, while the only type found among the grande colonies is the preexisting one. The loss of the CR and ER genetic markers was found to be the most frequently concomitant, while the correlation between the loss of the OR marker and the other two DrugR markers is less strong. Similar results have been obtained after U.V. irradiation. Interpretations concerning the structure of the yeast mitochondrial genome are given and hypotheses on the mechanism of petite mutation discussed. PMID:4595642

  3. Mitochondrial genetics. VI. The petite mutation in Saccharomyces cerevisiae: interrelations between the loss of the p+ factor and the loss of the drug resistance mitochondrial genetic markers.

    PubMed

    Deutsch, J; Dujon, B; Netter, P; Petrochilo, E; Slonimski, P P; Bolotin-Fukuhara, M; Coen, D

    1974-02-01

    The survival of the rho(+) factor and of Drug(R) mitochondrial genetic markers after exposure to ethidium bromide has been studied. A technique allowing the determination of Drug(R) genetic markers among a great number of both grande and petite colonies has been developed. The results have been analyzed by the target theory. The survival of the rho(+) factor is always less than the survival of any Drug(R) genetic marker. The survivals of C(R) and E(R) are similar to each other, while that of O(R) is greater than that of the other two Drug(R) markers. All possible combinations of Drug(R) markers have been found among the rho(-) petite cells induced, while the only type found among the grande colonies is the preexisting one. The loss of the C(R) and E(R) genetic markers was found to be the most frequently concomitant, while the correlation between the loss of the O(R) marker and the other two Drug(R) markers is less strong. Similar results have been obtained after U.V. irradiation. Interpretations concerning the structure of the yeast mitochondrial genome are given and hypotheses on the mechanism of petite mutation discussed.

  4. Subcellular relocalization of a long-chain fatty acid CoA ligase by a suppressor mutation alleviates a respiration deficiency in Saccharomyces cerevisiae.

    PubMed Central

    Harington, A; Schwarz, E; Slonimski, P P; Herbert, C J

    1994-01-01

    We have isolated an extragenic suppressor, FAM1-1, which is able to restore respiratory growth to a deletion of the CEM1 gene (mitochondrial beta-keto-acyl synthase). The sequence of the suppressor strongly suggests that it encodes a long-chain fatty acid CoA ligase (fatty-acyl-CoA synthetase). We have also cloned and sequenced the wild-type FAM1 gene, which is devoid of suppressor activity. The comparison of the two sequences shows that the suppressor mutation is an A-->T transversion, which creates a new initiation codon and adds 18 amino acids to the N-terminus of the protein. This extension has all the characteristics of a mitochondrial targeting sequence, whilst the N-terminus of the wild-type protein has none of these characteristics. In vitro mitochondrial import experiments show that the N-terminal half of the suppressor protein, but not of the wild-type, is transported into mitochondria. Thus, we hypothesize that the suppressor acts by changing the subcellular localization of the protein and relocating at least some of the enzyme from the cytosol to the mitochondria. These results support the hypothesis that some form of fatty acid synthesis, specific for the mitochondria, is essential for the function of the organelle. Images PMID:7988550

  5. Use of ade1 and ade2 mutations for development of a versatile red/white colour assay of amyloid-induced oxidative stress in saccharomyces cerevisiae.

    PubMed

    Bharathi, Vidhya; Girdhar, Amandeep; Prasad, Archana; Verma, Meenkshi; Taneja, Vibha; Patel, Basant K

    2016-12-01

    Mutations in adenine biosynthesis pathway genes ADE1 and ADE2 have been conventionally used to score for prion [PSI(+) ] in yeast. If ade1-14 mutant allele is present, which contains a premature stop codon, [psi(-) ] yeast appear red on YPD medium owing to accumulation of a red intermediate compound in vacuoles. In [PSI(+) ] yeast, partial inactivation of the translation termination factor, Sup35 protein, owing to its amyloid aggregation allows for read-through of the ade1-14 stop codon and the yeast appears white as the red intermediate pigment is not accumulated. The red colour development in ade1 and ade2 mutant yeast requires reduced-glutathione, which helps in transport of the intermediate metabolite P-ribosylaminoimidazole carboxylate into vacuoles, which develops the red colour. Here, we hypothesize that amyloid-induced oxidative stress would deplete reduced-glutathione levels and thus thwart the development of red colour in ade1 or ade2 yeast. Indeed, when we overexpressed amyloid-forming human proteins TDP-43, Aβ-42 and Poly-Gln-103 and the yeast prion protein Rnq1, the otherwise red ade1 yeast yielded some white colonies. Further, the white colour eventually reverted back to red upon turning off the amyloid protein's expression. Also, the aggregate-bearing yeast have increased oxidative stress and white phenotype yeast revert to red when grown on media with reducing agent. Furthermore, the red/white assay could also be emulated in ade2-1, ade2Δ, and ade1Δ mutant yeast and also in an ade1-14 mutant with erg6 gene deletion that increases cell-wall permeability. This model would be useful tool for drug-screening against general amyloid-induced oxidative stress and toxicity. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Suppression of chromosomal mutations affecting M/sub 1/ virus replication in Saccharomyces cerevisiae by a variant of a viral RNA segment (L-A) that encodes coat protein

    SciTech Connect

    Uemura, H.; Wickner, R.B.

    1988-02-01

    For the maintenance of ''killer'' M/sub 1/ double-stranded RNA in Saccharomyces cerevisiae, more than 30 chromosomal genes are required. The requirement for some of these genes can be completely suppressed by a cytoplasmic element, (B) (for bypass). The authors isolated a mutant unable to maintain (B) (mab) and found that it is allelic to MAK10, one of the three chromosomal MAK genes required for the maintenance of L-A. The heat curing of (B) always coincided with the loss of L-A. To confirm that (B) is located on L-A, the authors purified viral particles containing either L-A or M/sub 1/ from strains with or without (B) activity and transfected these purified particles into a strain which did not have either L-A or M/sub 1/. The transfectants harboring L-A and M/sub 1/ from a (B) strain showed the (B) phenotype, but the transfectants with L-A and M/sub 1/ from a (B-o) strain did not show the (B) phenotype. Furthermore, the transfectants having L-A from a (B) strain and M/sub 1/ from a (B-o) strain also showed the (B) phenotype. Therefore, they concluded that (B) is a property of a variant of L-A. In the transfection experiment, the authors also proved that the superkiller phenotype of the (B) strain is a property of L-A and that L-A wit (B) activity can maintain a higher copy number of M/sub 1/ regardless of the source M/sub 1/ viruslike particles. These data suggest the MAK genes whose mutations are suppressed by (B) are concerned with the protection of M/sub 1/ (+) single-stranded RNA or the formation of M/sub 1/ viruslike particles and that an L-A with more efficient production of M/sub 1/ viruslike particles can completely dispense with the requirement for those MAK genes.

  7. Yeast (Saccharomyces cerevisiae).

    PubMed

    Hooykaas, Paul J J; den Dulk-Ras, Amke; Bundock, Paul; Soltani, Jalal; van Attikum, Haico; van Heusden, G Paul H

    2006-01-01

    The yeast Saccharomyces cerevisiae is one of the best characterized eukaryotic organisms. This species has enabled a detailed study of the (genetic) requirements for Agrobacterium-mediated DNA transformation. For instance research with this yeast has led to the recognition that the transforming DNA molecules integrate into the eukaryotic chromosomes either by homologous recombination, which is the preferred pathway in S. cerevisiae, or by nonhomologous end-joining. Based on the protocol for Agrobacterium-mediated transformation of S. cerevisiae methodology has been developed for the transformation of many other yeast and fungal species.

  8. Increase in chitin as an essential response to defects in assembly of cell wall polymers in the ggp1delta mutant of Saccharomyces cerevisiae.

    PubMed Central

    Popolo, L; Gilardelli, D; Bonfante, P; Vai, M

    1997-01-01

    The GGP1/GAS1 gene codes for a glycosylphosphatidylinositol-anchored plasma membrane glycoprotein of Saccharomyces cerevisiae. The ggp1delta mutant shows morphogenetic defects which suggest changes in the cell wall matrix. In this work, we have investigated cell wall glucan levels and the increase of chitin in ggp1delta mutant cells. In these cells, the level of alkali-insoluble 1,6-beta-D-glucan was found to be 50% of that of wild-type cells and was responsible for the observed decrease in the total alkali-insoluble glucan. Moreover, the ratio of alkali-soluble to alkali-insoluble glucan almost doubled, suggesting a change in glucan solubility. The increase of chitin in ggp1delta cells was found to be essential since the chs3delta ggp1delta mutations determined a severe reduction in the growth rate and in cell viability. Electron microscopy analysis showed the loss of the typical structure of yeast cell walls. Furthermore, in the chs3delta ggp1delta cells, the level of alkali-insoluble glucan was 57% of that of wild-type cells and the alkali-soluble/alkali-insoluble glucan ratio was doubled. We tested the effect of inhibition of chitin synthesis also by a different approach. The ggp1delta cells were treated with nikkomycin Z, a well-known inhibitor of chitin synthesis, and showed a hypersensitivity to this drug. In addition, studies of genetic interactions with genes related to the construction of the cell wall indicate a synthetic lethal effect of the ggp1delta kre6delta and the ggp1delta pkc1delta combined mutations. Our data point to an involvement of the GGP1 gene product in the cross-links between cell wall glucans (1,3-beta-D-glucans with 1,6-beta-D-glucans and with chitin). Chitin is essential to compensate for the defects due to the lack of Ggp1p. Moreover, the activities of Ggp1p and Chs3p are essential to the formation of the organized structure of the cell wall in vegetative cells. PMID:8990299

  9. 21 CFR 866.5785 - Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test systems.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Anti-Saccharomyces cerevisiae (S. cerevisiae... Immunological Test Systems § 866.5785 Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test systems. (a) Identification. The Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test system is...

  10. 21 CFR 866.5785 - Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test systems.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Anti-Saccharomyces cerevisiae (S. cerevisiae... Immunological Test Systems § 866.5785 Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test systems. (a) Identification. The Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test system is...

  11. 21 CFR 866.5785 - Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test systems.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Anti-Saccharomyces cerevisiae (S. cerevisiae... Immunological Test Systems § 866.5785 Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test systems. (a) Identification. The Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test system is...

  12. 21 CFR 866.5785 - Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test systems.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Anti-Saccharomyces cerevisiae (S. cerevisiae... Immunological Test Systems § 866.5785 Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test systems. (a) Identification. The Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test system is...

  13. Saccharomyces cerevisiae Shuttle vectors.

    PubMed

    Gnügge, Robert; Rudolf, Fabian

    2017-01-10

    Yeast shuttle vectors are indispensable tools in yeast research. They enable cloning of defined DNA sequences in Escherichia coli and their direct transfer into Saccharomyces cerevisiae cells. There are three types of commonly used yeast shuttle vectors: centromeric plasmids, episomal plasmids and integrating plasmids. In this review, we discuss the different plasmid systems and their characteristic features. We focus on their segregational stability and copy number and indicate how to modify these properties. Copyright © 2017 John Wiley & Sons, Ltd.

  14. DsdA (D-serine deaminase): a new heterologous MX cassette for gene disruption and selection in Saccharomyces cerevisiae.

    PubMed

    Vorachek-Warren, Mara K; McCusker, John H

    2004-01-30

    Dominant drug resistance markers offer experimental flexibility in the study of Saccharomyces cerevisiae by eliminating the dependence on auxotrophic mutations and, because they are phenotypically neutral, avoid the deleterious effects of auxotrophic mutations. We have developed a new dominant resistance marker, dsdAMX4, for use in the genetic manipulation of S. cerevisiae. The dsdA gene, which is derived from Escherichia coli and encodes a D-serine deaminase, confers to S. cerevisiae resistance to D-serine and the ability to use D-serine as a nitrogen source. Here we describe the construction of a dsdAMX4 cassette, capable of expression in S. cerevisiae, and the characterization of this new marker for use in chromosomal gene disruption. The unique selection properties of the dsdAMX4 cassette make it an important addition to the existing array of S. cerevisiae genetic tools. Copyright 2004 John Wiley & Sons, Ltd.

  15. Genotoxicity of 4-nonylphenol and nonylphenol ethoxylate mixtures by the use of Saccharomyces cerevisiae D7 mutation assay and use of this text to evaluate the efficiency of biodegradation treatments.

    PubMed

    Frassinetti, Stefania; Barberio, Claudia; Caltavuturo, Leonardo; Fava, Fabio; Di Gioia, Diana

    2011-03-01

    Nonylphenol ethoxylates (NPnEOs, where n is the number of ethoxylic units in the molecule) are non-ionic surfactants widely used for domestic and industrial purposes. 4-Nonylphenol (4-NP), the main product of NPnEO biodegradation, is a toxic xenobiotic compound classified as endocrine disrupter. While numerous studies reported the toxicity and oestrogenic activity of nonylphenols, little is known about the mutagenicity of these compounds. In this paper, the genotoxicity of 4-NP and NPnEO mixtures was evaluated by using the D7 strain of Saccharomyces cerevisiae as experimental model. The same genotoxicity tests were applied to effluents deriving from experimental packed-bed bioreactors, developed for the treatment of NPnEO contaminated wastewater, in order to evaluate the residual genotoxic potential with respect to the influent waste. The target compounds fed to the bioreactors were 4-NP and NPnEO mixtures possessing an average of 5 or 1.5 ethoxylic units (Igepal CO-520 and Igepal CO-210, respectively). The results showed that 4-NP induced significant cytotoxic effect on S. cerevisiae cells at 50 mg/L, as well as mutagenic effects at the lowest tested concentrations (12 and 25 mg/L). 4-NP was the most genotoxic compound among those assayed, followed by Igepal CO-210, whereas Igepal CO-520 did not induce genotoxicity at any of the assayed concentrations. The genotoxic effects of 4-NP on yeast cells disappeared after the treatment of 4-NP artificially contaminated water in the bioreactor. This indicates that the biological treatment is capable of removing not only the pollutant, but also the toxicity associated to the compound and its degradation metabolites. This study represents, to the best of our knowledge, the first report that evaluates the genotoxicity of both 4-NP, NPnEOs and their potential aerobic degradation products on an eukaryotic organism. The obtained results suggest that the S. cerevisiae D7 strain is a very effective model microorganism to study the

  16. Single point mutations in various domains of a plant plasma membrane H(+)-ATPase expressed in Saccharomyces cerevisiae increase H(+)-pumping and permit yeast growth at low pH.

    PubMed Central

    Morsomme, P; de Kerchove d'Exaerde, A; De Meester, S; Thinès, D; Goffeau, A; Boutry, M

    1996-01-01

    In plants, the proton pump-ATPase (H(+)-ATPase) of the plasma membrane is encoded by a multigene family. The PMA2 (plasma membrane H(+)-ATPase) isoform from Nicotiana plumbaginifolia was previously shown to be capable of functionally replacing the yeast H(+)-ATPase, provided that the external pH was kept above pH 5.5. In this study, we used a positive selection to isolate 19 single point mutations of PMA2 which permit the growth of yeast cells at pH 4.0. Thirteen mutations were restricted to the C-terminus region, but another six mutations were found in four other regions of the enzyme. Kinetic studies determined on nine mutated PMA2 compared with the wild-type PMA2 revealed an activated enzyme characterized by an alkaline shift of the optimum pH and a slightly higher specific ATPase activity. However, the most striking difference was a 2- to 3-fold increase of H(+)-pumping in both reconstituted vesicles and intact cells. These results indicate that point mutations in various domains of the plant H(+)-ATPase improve the coupling between H(+)-pumping and ATP hydrolysis, resulting in better growth at low pH. Moreover, the yeast cells expressing the mutated PMA2 showed a marked reduction in the frequency of internal membrane proliferation seen with the strain expressing the wild-type PMA2, indicating a relationship between H(+)-ATPase activity and perturbations of the secretory pathway. Images PMID:8896445

  17. TOR2 is part of two related signaling pathways coordinating cell growth in Saccharomyces cerevisiae.

    PubMed Central

    Helliwell, S B; Howald, I; Barbet, N; Hall, M N

    1998-01-01

    The Saccharomyces cerevisiae genes TOR1 and TOR2 encode phosphatidylinositol kinase homologs. TOR2 has two essential functions. One function overlaps with TOR1 and mediates protein synthesis and cell cycle progression. The second essential function of TOR2 is unique to TOR2 and mediates the cell-cycle-dependent organization of the actin cytoskeleton. We have isolated temperature-sensitive mutants that are defective for either one or both of the two TOR2 functions. The three classes of mutants were as follows. Class A mutants, lacking only the TOR2-unique function, are defective in actin cytoskeleton organization and arrest within two to three generations as small-budded cells in the G2/M phase of the cell cycle. Class B mutants, lacking only the TOR-shared function, and class C mutants, lacking both functions, exhibit a rapid loss of protein synthesis and a G1 arrest within one generation. To define further the two functions of TOR2, we isolated multicopy suppressors that rescue the class A or B mutants. Overexpression of MSS4, PKC1, PLC1, RHO2, ROM2, or SUR1 suppressed the growth defect of a class A mutant. Surprisingly, overexpression of PLC1 and MSS4 also suppressed the growth defect of a class B mutant. These genes encode proteins that are involved in phosphoinositide metabolism and signaling. Thus, the two functions (readouts) of TOR2 appear to involve two related signaling pathways controlling cell growth. PMID:9475724

  18. Interaction of Prions Causes Heritable Traits in Saccharomyces cerevisiae

    PubMed Central

    Ryzhova, Tatyana A.; Inge-Vechtomov, Sergey G.; Galkin, Alexey P.

    2016-01-01

    The concept of "protein-based inheritance" defines prions as epigenetic determinants that cause several heritable traits in eukaryotic microorganisms, such as Saccharomyces cerevisiae and Podospora anserina. Previously, we discovered a non-chromosomal factor, [NSI+], which possesses the main features of yeast prions, including cytoplasmic infectivity, reversible curability, dominance, and non-Mendelian inheritance in meiosis. This factor causes omnipotent suppression of nonsense mutations in strains of S. cerevisiae bearing a deleted or modified Sup35 N-terminal domain. In this work, we identified protein determinants of [NSI+] using an original method of proteomic screening for prions. The suppression of nonsense mutations in [NSI+] strains is determined by the interaction between [SWI+] and [PIN+] prions. Using genetic and biochemical methods, we showed that [SWI+] is the key determinant of this nonsense suppression, whereas [PIN+] does not cause nonsense suppression by itself but strongly enhances the effect of [SWI+]. We demonstrated that interaction of [SWI+] and [PIN+] causes inactivation of SUP45 gene that leads to nonsense suppression. Our data show that prion interactions may cause heritable traits in Saccharomyces cerevisiae. PMID:28027291

  19. Interaction of Prions Causes Heritable Traits in Saccharomyces cerevisiae.

    PubMed

    Nizhnikov, Anton A; Ryzhova, Tatyana A; Volkov, Kirill V; Zadorsky, Sergey P; Sopova, Julia V; Inge-Vechtomov, Sergey G; Galkin, Alexey P

    2016-12-01

    The concept of "protein-based inheritance" defines prions as epigenetic determinants that cause several heritable traits in eukaryotic microorganisms, such as Saccharomyces cerevisiae and Podospora anserina. Previously, we discovered a non-chromosomal factor, [NSI+], which possesses the main features of yeast prions, including cytoplasmic infectivity, reversible curability, dominance, and non-Mendelian inheritance in meiosis. This factor causes omnipotent suppression of nonsense mutations in strains of S. cerevisiae bearing a deleted or modified Sup35 N-terminal domain. In this work, we identified protein determinants of [NSI+] using an original method of proteomic screening for prions. The suppression of nonsense mutations in [NSI+] strains is determined by the interaction between [SWI+] and [PIN+] prions. Using genetic and biochemical methods, we showed that [SWI+] is the key determinant of this nonsense suppression, whereas [PIN+] does not cause nonsense suppression by itself but strongly enhances the effect of [SWI+]. We demonstrated that interaction of [SWI+] and [PIN+] causes inactivation of SUP45 gene that leads to nonsense suppression. Our data show that prion interactions may cause heritable traits in Saccharomyces cerevisiae.

  20. Diploids heterozygous for a vma13Delta mutation in Saccharomyces cerevisiae highlight the importance of V-ATPase subunit balance in supporting vacuolar acidification and silencing cytosolic V1-ATPase activity.

    PubMed

    Rizzo, Jason M; Tarsio, Maureen; Martínez-Muñoz, Gloria A; Kane, Patricia M

    2007-03-16

    The V-ATPase H subunit (encoded by the VMA13 gene) activates ATP-driven proton pumping in intact V-ATPase complexes and inhibits MgATPase activity in cytosolic V1 sectors (Parra, K. J., Keenan, K. L., and Kane, P. M. (2000) J. Biol. Chem. 275, 21761-21767). Yeast diploids heterozygous for a vma13Delta mutation show the pH- and calcium-dependent conditional lethality characteristic of mutants lacking V-ATPase activity, although they still contain one wild-type copy of VMA13. Vacuolar vesicles from this strain have approximately 50% of the ATPase activity of those from a wild-type diploid but do not support formation of a proton gradient. Compound heterozygotes with a second heterozygous deletion in another V1 subunit gene exhibit improved growth, vacuolar acidification, and ATP-driven proton transport in vacuolar vesicles. In contrast, compound heterozygotes with a second deletion in a Vo subunit grow even more poorly than the vma13Delta heterozygote, have very little vacuolar acidification, and have very low levels of V-ATPase subunits in isolated vacuoles. In addition, cytosolic V1 sectors from this strain and from the strain containing only the heterozygous vma13Delta mutation have elevated MgATPase activity. The results suggest that balancing levels of subunit H with those of other V-ATPase subunits is critical, both for allowing organelle acidification and for preventing unproductive hydrolysis of cytosolic ATP.

  1. Pathways and Mechanisms that Prevent Genome Instability in Saccharomyces cerevisiae.

    PubMed

    Putnam, Christopher D; Kolodner, Richard D

    2017-07-01

    Genome rearrangements result in mutations that underlie many human diseases, and ongoing genome instability likely contributes to the development of many cancers. The tools for studying genome instability in mammalian cells are limited, whereas model organisms such as Saccharomyces cerevisiae are more amenable to these studies. Here, we discuss the many genetic assays developed to measure the rate of occurrence of Gross Chromosomal Rearrangements (called GCRs) in S. cerevisiae These genetic assays have been used to identify many types of GCRs, including translocations, interstitial deletions, and broken chromosomes healed by de novo telomere addition, and have identified genes that act in the suppression and formation of GCRs. Insights from these studies have contributed to the understanding of pathways and mechanisms that suppress genome instability and how these pathways cooperate with each other. Integrated models for the formation and suppression of GCRs are discussed. Copyright © 2017 by the Genetics Society of America.

  2. Pathways and Mechanisms that Prevent Genome Instability in Saccharomyces cerevisiae

    PubMed Central

    Putnam, Christopher D.; Kolodner, Richard D.

    2017-01-01

    Genome rearrangements result in mutations that underlie many human diseases, and ongoing genome instability likely contributes to the development of many cancers. The tools for studying genome instability in mammalian cells are limited, whereas model organisms such as Saccharomyces cerevisiae are more amenable to these studies. Here, we discuss the many genetic assays developed to measure the rate of occurrence of Gross Chromosomal Rearrangements (called GCRs) in S. cerevisiae. These genetic assays have been used to identify many types of GCRs, including translocations, interstitial deletions, and broken chromosomes healed by de novo telomere addition, and have identified genes that act in the suppression and formation of GCRs. Insights from these studies have contributed to the understanding of pathways and mechanisms that suppress genome instability and how these pathways cooperate with each other. Integrated models for the formation and suppression of GCRs are discussed. PMID:28684602

  3. CDC64 Encodes Cytoplasmic Alanyl-tRNA Synthetase, Ala1p, of Saccharomyces cerevisiae

    PubMed Central

    Wrobel, Carolyn; Schmidt, Emmett V.; Polymenis, Michael

    1999-01-01

    The cdc64-1 mutation causes G1 arrest in Saccharomyces cerevisiae corresponding to a type II Start phenotype. We report that CDC64 encodes Ala1p, an alanyl-tRNA synthetase. Thus, cdc64-1 might affect charging of tRNAAla and thereby initiation of cell division. PMID:10601222

  4. Genes Required for Vacuolar Acidity in Saccharomyces Cerevisiae

    PubMed Central

    Preston, R. A.; Reinagel, P. S.; Jones, E. W.

    1992-01-01

    Mutations that cause loss of acidity in the vacuole (lysosome) of Saccharomyces cerevisiae were identified by screening colonies labeled with the fluorescent, pH-sensitive, vacuolar labeling agent, 6-carboxyfluorescein. Thirty nine vacuolar pH (Vph(-)) mutants were identified. Four of these contained mutant alleles of the previously described PEP3, PEP5, PEP6 and PEP7 genes. The remaining mutants defined eight complementation groups of vph mutations. No alleles of the VAT2 or TFP1 genes (known to encode subunits of the vacuolar H(+)-ATPase) were identified in the Vph(-) screen. Strains bearing mutations in any of six of the VPH genes failed to grow on medium buffered at neutral pH; otherwise, none of the vph mutations caused notable growth inhibition on standard yeast media. Expression of the vacuolar protease, carboxypeptidase Y, was defective in strains bearing vph4 mutations but was apparently normal in strains bearing any of the other vph mutations. Defects in vacuolar morphology at the light microscope level were evident in all Vph(-) mutants. Strains that contained representative mutant alleles of the 17 previously described PEP genes were assayed for vacuolar pH; mutations in seven of the PEP genes (including PEP3, PEP5, PEP6 and PEP7) caused loss of vacuolar acidity. PMID:1628805

  5. Stationary phase in the yeast Saccharomyces cerevisiae.

    PubMed Central

    Werner-Washburne, M; Braun, E; Johnston, G C; Singer, R A

    1993-01-01

    Growth and proliferation of microorganisms such as the yeast Saccharomyces cerevisiae are controlled in part by the availability of nutrients. When proliferating yeast cells exhaust available nutrients, they enter a stationary phase characterized by cell cycle arrest and specific physiological, biochemical, and morphological changes. These changes include thickening of the cell wall, accumulation of reserve carbohydrates, and acquisition of thermotolerance. Recent characterization of mutant cells that are conditionally defective only for the resumption of proliferation from stationary phase provides evidence that stationary phase is a unique developmental state. Strains with mutations affecting entry into and survival during stationary phase have also been isolated, and the mutations have been shown to affect at least seven different cellular processes: (i) signal transduction, (ii) protein synthesis, (iii) protein N-terminal acetylation, (iv) protein turnover, (v) protein secretion, (vi) membrane biosynthesis, and (vii) cell polarity. The exact nature of the relationship between these processes and survival during stationary phase remains to be elucidated. We propose that cell cycle arrest coordinated with the ability to remain viable in the absence of additional nutrients provides a good operational definition of starvation-induced stationary phase. PMID:8393130

  6. Metabolic Engineering of Saccharomyces cerevisiae

    PubMed Central

    Ostergaard, Simon; Olsson, Lisbeth; Nielsen, Jens

    2000-01-01

    Comprehensive knowledge regarding Saccharomyces cerevisiae has accumulated over time, and today S. cerevisiae serves as a widley used biotechnological production organism as well as a eukaryotic model system. The high transformation efficiency, in addition to the availability of the complete yeast genome sequence, has facilitated genetic manipulation of this microorganism, and new approaches are constantly being taken to metabolicially engineer this organism in order to suit specific needs. In this paper, strategies and concepts for metabolic engineering are discussed and several examples based upon selected studies involving S. cerevisiae are reviewed. The many different studies of metabolic engineering using this organism illustrate all the categories of this multidisciplinary field: extension of substrate range, improvements of producitivity and yield, elimination of byproduct formation, improvement of process performance, improvements of cellular properties, and extension of product range including heterologous protein production. PMID:10704473

  7. Post-zygotic sterility and cytonuclear compatibility limits in S. cerevisiae xenomitochondrial cybrids

    PubMed Central

    Špírek, Mário; Poláková, Silvia; Jatzová, Katarína; Sulo, Pavol

    2015-01-01

    Nucleo-mitochondrial interactions, particularly those determining the primary divergence of biological species, can be studied by means of xenomitochondrial cybrids, which are cells where the original mitochondria are substituted by their counterparts from related species. Saccharomyces cerevisiae cybrids are prepared simply by the mating of the ρ0 strain with impaired karyogamy and germinating spores from other Saccharomyces species and fall into three categories. Cybrids with compatible mitochondrial DNA (mtDNA) from Saccharomyces paradoxus CBS 432 and Saccharomyces cariocanus CBS 7994 are metabolically and genetically similar to cybrids containing mtDNA from various S. cerevisiae. Cybrids with mtDNA from other S. paradoxus strains, S. cariocanus, Saccharomyces kudriavzevii, and Saccharomyces mikatae require a period of adaptation to establish efficient oxidative phosphorylation. They exhibit a temperature-sensitive phenotype, slower growth rate on a non-fermentable carbon source and a long lag phase after the shift from glucose. Their decreased respiration capacity and reduced cytochrome aa3 content is associated with the inefficient splicing of cox1I3β, the intron found in all Saccharomyces species but not in S. cerevisiae. The splicing defect is compensated in cybrids by nuclear gain-of-function and can be alternatively suppressed by overexpression of MRP13 gene for mitochondrial ribosomal protein or the MRS2, MRS3, and MRS4 genes involved in intron splicing. S. cerevisiae with Saccharomyces bayanus mtDNA is unable to respire and the growth on ethanol–glycerol can be restored only after mating to some mit− strains. The nucleo-mitochondrial compatibility limit of S. cerevisiae and other Saccharomyces was set between S. kudriavzevii and S. bayanus at the divergence from S. cerevisiae about 15 MYA. The MRS1-cox1 S. cerevisiae/S. paradoxus cytonuclear Dobzhansky–Muller pair has a neglible impact on the separation of species since its imperfection is

  8. Accelerating Mutational Load Is Not Due to Synergistic Epistasis or Mutator Alleles in Mutation Accumulation Lines of Yeast

    PubMed Central

    Jasmin, Jean-Nicolas; Lenormand, Thomas

    2016-01-01

    Much of our knowledge about the fitness effects of new mutations has been gained from mutation accumulation (MA) experiments. Yet the fitness effect of single mutations is rarely measured in MA experiments. This raises several issues, notably for inferring epistasis for fitness. The acceleration of fitness decline in MA lines has been taken as evidence for synergistic epistasis, but establishing the role of epistasis requires measuring the fitness of genotypes carrying known numbers of mutations. Otherwise, accelerating fitness loss could be explained by increased genetic mutation rates. Here we segregated mutations accumulated over 4800 generations in haploid and diploid MA lines of the yeast Saccharomyces cerevisiae. We found no correspondence between an accelerated fitness decline and synergistic epistasis among deleterious mutations in haploid lines. Pairs of mutations showed no overall epistasis. Furthermore, several lines of evidence indicate that genetic mutation rates did not increase in the MA lines. Crucially, segregant fitness analyses revealed that MA accelerated in both haploid and diploid lines, even though the fitness of diploid lines was nearly constant during the MA experiment. This suggests that the accelerated fitness decline in haploids was caused by cryptic environmental factors that increased mutation rates in all lines during the last third of the lines’ transfers. In addition, we provide new estimates of deleterious mutation rates, including lethal mutations, and highlight that nearly all the mutational load we observed was due to one or two mutations having a large effect on fitness. PMID:26596348

  9. Accelerating Mutational Load Is Not Due to Synergistic Epistasis or Mutator Alleles in Mutation Accumulation Lines of Yeast.

    PubMed

    Jasmin, Jean-Nicolas; Lenormand, Thomas

    2016-02-01

    Much of our knowledge about the fitness effects of new mutations has been gained from mutation accumulation (MA) experiments. Yet the fitness effect of single mutations is rarely measured in MA experiments. This raises several issues, notably for inferring epistasis for fitness. The acceleration of fitness decline in MA lines has been taken as evidence for synergistic epistasis, but establishing the role of epistasis requires measuring the fitness of genotypes carrying known numbers of mutations. Otherwise, accelerating fitness loss could be explained by increased genetic mutation rates. Here we segregated mutations accumulated over 4800 generations in haploid and diploid MA lines of the yeast Saccharomyces cerevisiae. We found no correspondence between an accelerated fitness decline and synergistic epistasis among deleterious mutations in haploid lines. Pairs of mutations showed no overall epistasis. Furthermore, several lines of evidence indicate that genetic mutation rates did not increase in the MA lines. Crucially, segregant fitness analyses revealed that MA accelerated in both haploid and diploid lines, even though the fitness of diploid lines was nearly constant during the MA experiment. This suggests that the accelerated fitness decline in haploids was caused by cryptic environmental factors that increased mutation rates in all lines during the last third of the lines' transfers. In addition, we provide new estimates of deleterious mutation rates, including lethal mutations, and highlight that nearly all the mutational load we observed was due to one or two mutations having a large effect on fitness. Copyright © 2016 by the Genetics Society of America.

  10. Isolation and characterization of a Saccharomyces cerevisiae mutant with impaired glutamate synthase activity.

    PubMed

    Folch, J L; Antaramián, A; Rodríguez, L; Bravo, A; Brunner, A; González, A

    1989-12-01

    A mutant of Saccharomyces cerevisiae that lacks glutamate synthase (GOGAT) activity has been isolated. This mutant was obtained after chemical mutagenesis of a NADP-glutamate dehydrogenase-less mutant strain. The gdh gus mutant is a glutamate auxotroph. The genetic analysis of the gus mutant showed that the GOGAT-less phenotype is due to the presence of two loosely linked mutations. Evidence is presented which suggests the possibility that S. cerevisiae has two GOGAT activities, designated GOGAT A and GOGAT B. These activities can be distinguished by their pH optima and by their regulation by glutamate. Furthermore, one of the mutations responsible for the GOGAT-less phenotype affected GOGAT A activity, while the other mutation affected GOGAT B activity.

  11. Isolation and characterization of a Saccharomyces cerevisiae mutant with impaired glutamate synthase activity.

    PubMed Central

    Folch, J L; Antaramián, A; Rodríguez, L; Bravo, A; Brunner, A; González, A

    1989-01-01

    A mutant of Saccharomyces cerevisiae that lacks glutamate synthase (GOGAT) activity has been isolated. This mutant was obtained after chemical mutagenesis of a NADP-glutamate dehydrogenase-less mutant strain. The gdh gus mutant is a glutamate auxotroph. The genetic analysis of the gus mutant showed that the GOGAT-less phenotype is due to the presence of two loosely linked mutations. Evidence is presented which suggests the possibility that S. cerevisiae has two GOGAT activities, designated GOGAT A and GOGAT B. These activities can be distinguished by their pH optima and by their regulation by glutamate. Furthermore, one of the mutations responsible for the GOGAT-less phenotype affected GOGAT A activity, while the other mutation affected GOGAT B activity. PMID:2687252

  12. Organelle-specific expression of subunit ND5 of human complex I (NADH dehydrogenase) alters cation homeostasis in Saccharomyces cerevisiae.

    PubMed

    Steffen, Wojtek; Gemperli, Anja C; Cvetesic, Nevena; Steuber, Julia

    2010-09-01

    The ND5 component of the respiratory complex I is a large, hydrophobic subunit encoded by the mitochondrial genome. Its bacterial homologue, the NDH-1 subunit NuoL, acts as a cation transporter in the absence of other NDH-1 subunits. Mutations in human ND5 are frequently observed in neurodegenerative diseases. Wild type and mutant variants of ND5 fused to GFP or a FLAG peptide were targeted to the endoplasmatic reticulum (ER) or the inner mitochondrial membrane of Saccharomyces cerevisiae, which lacks an endogenous complex I. The localization of ND5 fusion proteins was confirmed by microscopic analyses of S. cerevisiae cells, followed by cellular fractionation and immunostaining. The impact of the expression of ND5 fusion proteins on the growth of S. cerevisiae in the presence and absence of added salts was studied. ER-resident ND5 conferred Li(+) sensitivity to S. cerevisiae, which was lost when the E145V variant of ND5 was expressed. All variants of ND5 tested led to increased resistance of S. cerevisiae at high external concentrations of Na(+) or K(+). The data seem to indicate that ND5 influences the salt homeostasis of S. cerevisiae independent of other complex I subunits, and paves the way for functional studies of mutations found in mitochondrially encoded complex I genes.

  13. Increased ethanol productivity in xylose-utilizing Saccharomyces cerevisiae via a randomly mutagenized xylose reductase.

    PubMed

    Runquist, David; Hahn-Hägerdal, Bärbel; Bettiga, Maurizio

    2010-12-01

    Baker's yeast (Saccharomyces cerevisiae) has been genetically engineered to ferment the pentose sugar xylose present in lignocellulose biomass. One of the reactions controlling the rate of xylose utilization is catalyzed by xylose reductase (XR). In particular, the cofactor specificity of XR is not optimized with respect to the downstream pathway, and the reaction rate is insufficient for high xylose utilization in S. cerevisiae. The current study describes a novel approach to improve XR for ethanol production in S. cerevisiae. The cofactor binding region of XR was mutated by error-prone PCR, and the resulting library was expressed in S. cerevisiae. The S. cerevisiae library expressing the mutant XR was selected in sequential anaerobic batch cultivation. At the end of the selection process, a strain (TMB 3420) harboring the XR mutations N272D and P275Q was enriched from the library. The V(max) of the mutated enzyme was increased by an order of magnitude compared to that of the native enzyme, and the NADH/NADPH utilization ratio was increased significantly. The ethanol productivity from xylose in TMB 3420 was increased ∼40 times compared to that of the parent strain (0.32 g/g [dry weight {DW}] × h versus 0.007 g/g [DW] × h), and the anaerobic growth rate was increased from ∼0 h(-1) to 0.08 h(-1). The improved traits of TMB 3420 were readily transferred to the parent strain by reverse engineering of the mutated XR gene. Since integrative vectors were employed in the construction of the library, transfer of the improved phenotype does not require multicopy expression from episomal plasmids.

  14. Acquisition of the ability to assimilate mannitol by Saccharomyces cerevisiae through dysfunction of the general corepressor Tup1-Cyc8.

    PubMed

    Chujo, Moeko; Yoshida, Shiori; Ota, Anri; Murata, Kousaku; Kawai, Shigeyuki

    2015-01-01

    Saccharomyces cerevisiae normally cannot assimilate mannitol, a promising brown macroalgal carbon source for bioethanol production. The molecular basis of this inability remains unknown. We found that cells capable of assimilating mannitol arose spontaneously from wild-type S. cerevisiae during prolonged culture in mannitol-containing medium. Based on microarray data, complementation analysis, and cell growth data, we demonstrated that acquisition of mannitol-assimilating ability was due to spontaneous mutations in the genes encoding Tup1 or Cyc8, which constitute a general corepressor complex that regulates many kinds of genes. We also showed that an S. cerevisiae strain carrying a mutant allele of CYC8 exhibited superior salt tolerance relative to other ethanologenic microorganisms; this characteristic would be highly beneficial for the production of bioethanol from marine biomass. Thus, we succeeded in conferring the ability to assimilate mannitol on S. cerevisiae through dysfunction of Tup1-Cyc8, facilitating production of ethanol from mannitol.

  15. Loss-of-heterozygosity facilitates passage through Haldane's sieve for Saccharomyces cerevisiae undergoing adaptation.

    PubMed

    Gerstein, A C; Kuzmin, A; Otto, S P

    2014-05-07

    Haldane's sieve posits that the majority of beneficial mutations that contribute to adaptation should be dominant, as these are the mutations most likely to establish and spread when rare. It has been argued, however, that if the dominance of mutations in their current and previous environments are correlated, Haldane's sieve could be eliminated. We constructed heterozygous lines of Saccharomyces cerevisiae containing single adaptive mutations obtained during exposure to the fungicide nystatin. Here we show that no clear dominance relationship exists across environments: mutations exhibited a range of dominance levels in a rich medium, yet were exclusively recessive under nystatin stress. Surprisingly, heterozygous replicates exhibited variable-onset rapid growth when exposed to nystatin. Targeted Sanger sequencing demonstrated that loss-of-heterozygosity (LOH) accounted for these growth patterns. Our experiments demonstrate that recessive beneficial mutations can avoid Haldane's sieve in clonal organisms through rapid LOH and thus contribute to rapid evolutionary adaptation.

  16. Simultaneous saccharification and fermentation of enzyme pretreated Lantana camara using S. cerevisiae.

    PubMed

    Kuila, Arindam; Banerjee, Rintu

    2014-10-01

    Lantana camara, an abundantly available non-edible lignocellulosic biomass has been found to be a potential feedstock for ethanol production. The substrate was first pretreated with laccase followed by simultaneous saccharification and fermentation using cellulase and Saccharomyces cerevisiae, respectively. Laccase was produced from Pleurotus sp. and carbohydratases (cellulase and xylanase) were produced from Trichoderma reesei Rut C30. Using pretreated substrate simultaneous saccharification and fermentation was optimized through central composite design-based response surface methodology. Maximum bioethanol concentration of 5.14 % (v/v) was obtained at optimum process conditions of substrate concentration 17 % (w/v), inoculum volume 9 % (v/v), inoculum age 60 and 144 h of incubation time. To enhance ethanol yield, S. cerevisiae was treated with ethyl methane sulfonate, a chemical mutagenic agent which induced mutagenesis. A maximum bioethanol concentration of 6.01 % (v/v) was obtained using the mutated strain of S. cerevisiae (CM5).

  17. Overexpressed ribosomal proteins suppress defective chaperonins in Saccharomyces cerevisiae.

    PubMed

    Kabir, M Anaul; Sherman, Fred

    2008-12-01

    The chaperonin Cct complex of the yeast Saccharomyces cerevisiae is composed of eight different subunits encoded by eight essential genes, CCT1-CCT8. This Cct complex is responsible for the folding of a number of proteins including actin and tubulin. We have isolated and characterized 22 multicopy suppressors of the temperature-sensitive allele, cct4-1, which encodes an altered protein with a G345D replacement that diminishes ATP hydrolysis. Fourteen of the suppressors encode ribosomal proteins, four have roles in ribosome biogenesis, two have phosphatase activities, one is involved in protein synthesis and one of the suppressors corresponded to Cct4p. Some of the suppressors also acted on certain cct1, cct2, cct3 and cct6 mutations. We suggest that certain overexpressed ribosomal and other proteins can act as weak chaperones, phenotypically alleviating the partial defects of mutationally altered Cct subunits.

  18. Mutants of Saccharomyces cerevisiae with defective vacuolar function

    SciTech Connect

    Kitamoto, K.; Yoshizawa, K.; Ohsumi, Y.; Anraku, Y.

    1988-06-01

    Mutants of the yeast Saccharomyces cerevisiae that have a small vacuolar lysine pool were isolated and characterized. Mutant KL97 (lys1 slp1-1) and strain KL197-1A (slp1-1), a prototrophic derivative of KL97, did not grow well in synthetic medium supplemented with 10 mM lysine. Genetic studies indicated that the slp1-1mutation (for small lysine pool) is recessive and is due to a single chromosomal mutation. Mutant KL97 shows the following pleiotropic defects in vacuolar functions. (i) It has small vacuolar pools for lysine, arginine, and histidine. (ii) Its growth is sensitive to lysine, histidine, Ca/sup 2 +/, heavy metal ions, and antibiotics. (iii) It has many small vesicles but no large central vacuole. (iv) It has a normal amount of the vacuolar membrane marker ..cap alpha..-mannosidase but shows reduced activities of the vacuole sap markers proteinase A, proteinase B, and carboxypeptidase Y.

  19. Pyruvate metabolism in Saccharomyces cerevisiae.

    PubMed

    Pronk, J T; Yde Steensma, H; Van Dijken, J P

    1996-12-01

    In yeasts, pyruvate is located at a major junction of assimilatory and dissimilatory reactions as well as at the branch-point between respiratory dissimilation of sugars and alcoholic fermentation. This review deals with the enzymology, physiological function and regulation of three key reactions occurring at the pyruvate branch-point in the yeast Saccharomyces cerevisiae: (i) the direct oxidative decarboxylation of pyruvate to acetyl-CoA, catalysed by the pyruvate dehydrogenase complex, (ii) decarboxylation of pyruvate to acetaldehyde, catalysed by pyruvate decarboxylase, and (iii) the anaplerotic carboxylation of pyruvate to oxaloacetate, catalysed by pyruvate carboxylase. Special attention is devoted to physiological studies on S. cerevisiae strains in which structural genes encoding these key enzymes have been inactivated by gene disruption.

  20. 21 CFR 866.5785 - Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test systems.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test systems. 866.5785 Section 866.5785 Food and Drugs FOOD AND DRUG ADMINISTRATION... techniques, antibodies to S. cerevisiae (baker's or brewer's yeast) in human serum or plasma. Detection of S...

  1. PET genes of Saccharomyces cerevisiae.

    PubMed Central

    Tzagoloff, A; Dieckmann, C L

    1990-01-01

    We describe a collection of nuclear respiratory-defective mutants (pet mutants) of Saccharomyces cerevisiae consisting of 215 complementation groups. This set of mutants probably represents a substantial fraction of the total genetic information of the nucleus required for the maintenance of functional mitochondria in S. cerevisiae. The biochemical lesions of mutants in approximately 50 complementation groups have been related to single enzymes or biosynthetic pathways, and the corresponding wild-type genes have been cloned and their structures have been determined. The genes defined by an additional 20 complementation groups were identified by allelism tests with mutants characterized in other laboratories. Mutants representative of the remaining complementation groups have been assigned to one of the following five phenotypic classes: (i) deficiency in cytochrome oxidase, (ii) deficiency in coenzyme QH2-cytochrome c reductase, (iii) deficiency in mitochondrial ATPase, (iv) absence of mitochondrial protein synthesis, and (v) normal composition of respiratory-chain complexes and of oligomycin-sensitive ATPase. In addition to the genes identified through biochemical and genetic analyses of the pet mutants, we have cataloged PET genes not matched to complementation groups in the mutant collection and other genes whose products function in the mitochondria but are not necessary for respiration. Together, this information provides an up-to-date list of the known genes coding for mitochondrial constituents and for proteins whose expression is vital for the respiratory competence of S. cerevisiae. PMID:2215420

  2. Rim15p-mediated regulation of sucrose utilization during molasses fermentation using Saccharomyces cerevisiae strain PE-2.

    PubMed

    Inai, Tomomi; Watanabe, Daisuke; Zhou, Yan; Fukada, Rie; Akao, Takeshi; Shima, Jun; Takagi, Hiroshi; Shimoi, Hitoshi

    2013-11-01

    Inherited loss-of-function mutations in the Rim15p-mediated stress-response pathway contribute to the high fermentation rate of sake yeast strains. In the present study, we found that disruption of the RIM15 gene in ethanol-producing Saccharomyces cerevisiae strain PE-2 accelerated molasses fermentation through enhanced sucrose utilization following glucose starvation.

  3. Fatal Saccharomyces Cerevisiae Aortic Graft Infection

    NASA Technical Reports Server (NTRS)

    Meyer, Michael (Technical Monitor); Smith, Davey; Metzgar, David; Wills, Christopher; Fierer, Joshua

    2002-01-01

    Saccharomyces cerevisiae is a yeast commonly used in baking and a frequent colonizer of human mucosal surfaces. It is considered relatively nonpathogenic in immunocompetent adults. We present a case of S. cerevisiae fungemia and aortic graft infection in an immunocompetent adult. This is the first reported case of S. cerevisiue fungemia where the identity of the pathogen was confirmed by rRNA sequencing.

  4. Fatal Saccharomyces Cerevisiae Aortic Graft Infection

    NASA Technical Reports Server (NTRS)

    Meyer, Michael (Technical Monitor); Smith, Davey; Metzgar, David; Wills, Christopher; Fierer, Joshua

    2002-01-01

    Saccharomyces cerevisiae is a yeast commonly used in baking and a frequent colonizer of human mucosal surfaces. It is considered relatively nonpathogenic in immunocompetent adults. We present a case of S. cerevisiae fungemia and aortic graft infection in an immunocompetent adult. This is the first reported case of S. cerevisiue fungemia where the identity of the pathogen was confirmed by rRNA sequencing.

  5. In vivo analysis of the Saccharomyces cerevisiae HO nuclease recognition site by site-directed mutagenesis.

    PubMed Central

    Nickoloff, J A; Singer, J D; Heffron, F

    1990-01-01

    HO nuclease introduces a specific double-strand break in the mating-type locus (MAT) of Saccharomyces cerevisiae, initiating mating-type interconversion. To define the sequence recognized by HO nuclease, random mutations were produced in a 30-base-pair region homologous to either MAT alpha or MATa by a chemical synthesis procedure. The mutant sites were introduced into S. cerevisiae on a shuttle vector and tested for the ability to stimulate recombination in an assay that mimics mating-type interconversion. The results suggest that a core of 8 noncontiguous bases near the Y-Z junction of MAT is essential for HO nuclease to bind and cleave its recognition site. Other contacts must be required because substrates that contain several mutations outside an intact core reduce or eliminate cleavage in vivo. The results show that HO site recognition is a complex phenomenon, similar to promoter-polymerase interactions. Images PMID:2406563

  6. A role for ubiquitination in mitochondrial inheritance in Saccharomyces cerevisiae.

    PubMed

    Fisk, H A; Yaffe, M P

    1999-06-14

    The smm1 mutation suppresses defects in mitochondrial distribution and morphology caused by the mdm1-252 mutation in the yeast Saccharomyces cerevisiae. Cells harboring only the smm1 mutation themselves display temperature-sensitive growth and aberrant mitochondrial inheritance and morphology at the nonpermissive temperature. smm1 maps to RSP5, a gene encoding an essential ubiquitin-protein ligase. The smm1 defects are suppressed by overexpression of wild-type ubiquitin but not by overexpression of mutant ubiquitin in which lysine-63 is replaced by arginine. Furthermore, overexpression of this mutant ubiquitin perturbs mitochondrial distribution and morphology in wild-type cells. Site-directed mutagenesis revealed that the ubiquitin ligase activity of Rsp5p is essential for its function in mitochondrial inheritance. A second mutation, smm2, which also suppressed mdm1-252 defects, but did not cause aberrant mitochondrial distribution and morphology, mapped to BUL1, encoding a protein interacting with Rsp5p. These results indicate that protein ubiquitination mediated by Rsp5p plays an essential role in mitochondrial inheritance, and reveal a novel function for protein ubiquitination.

  7. Mutational specificity analysis: assay for mutations in the yeast SUP4-o gene.

    PubMed

    Kunz, Bernard A

    2014-01-01

    Mutational specificity analysis can yield valuable insights into processes that generate genetic change or maintain genetic stability. Powerful diagnostic tools for such analysis have been created by combining genetic assays for mutation with DNA sequencing. Here, steps for isolating spontaneous mutations in the yeast (Saccharomyces cerevisiae) suppressor tRNA gene SUP4-o as a prelude to sequence characterization are described (modifications of this protocol can be used to study induction of mutations by various physical or chemical agents). Mutations in SUP4-o are selected on drug-containing medium by virtue of their inactivation of suppressor activity. The small size, detailed knowledge of detectably mutable sites, and other features of the target gene facilitate subsequent analysis of these mutations.

  8. Mutagenic Inverted Repeats Assisted Genome Engineering (MIRAGE) in Saccharomyces cerevisiae: deletion of gal7.

    PubMed

    Nair, Nikhil U; Zhao, Huimin

    2012-01-01

    MIRAGE is a unique in vivo genome editing technique that exploits the inherent instability of inverted repeats (palindromes) in the Saccharomyces cerevisiae chromosome. As a technique able to quickly create deletions as well as precise point mutations, it is valuable in applications that require creation of designer strains of this yeast. In particular, it has various potential applications in metabolic engineering, systems biology, synthetic biology, and molecular genetics.

  9. [Thermoresistance in Saccharomyces cerevisiae yeasts].

    PubMed

    Kaliuzhin, V A

    2011-01-01

    Under natural conditions, yeast Saccharomyces cerevisiae reproduce, as a rule, on the surface of solid or liquid medium. Thus, life cycle of yeast populations is substantially influenced by diurnal changes in ambient temperature. The pattern in the response of unrestricted yeast S. cerevisiae culture to changes in the temperature of cultivation is revealed experimentally. Yeast population, in the absence of environmental constraints on the functioning of cell chemosmotic bioenergetic system, demonstrates the ability of thermoresistance when the temperature of cultivation switches from the range of 12-36 degrees C to 37.5-40 degrees C. During the transient period that is associated with the temperature switching and lasts from 1 to 4 turnover cycles, yeast reproduction rate remains 1.5-2 times higher than under stationary conditions. This is due to evolutionary acquired adaptive activity of cell chemosmotic system. After the adaptive resources exhausting, yeast thermoresistance fully recovers at the temperature range of 12-36 degrees C within one generation time under conditions of both restricted and unrestricted nourishment. Adaptive significance of such thermoresistance seems obvious enough--it allows maintaining high reproduction rate in yeast when ambient temperature is reaching a brief maximum shortly after noon.

  10. Translational thermotolerance in Saccharomyces cerevisiae

    PubMed Central

    Hallberg, Elizabeth M.; Hallberg, Richard L.

    1996-01-01

    While protein synthesis is rapidly inactivated in Saccharomyces cerevisiae, cells shifted from log growth at 30°C to 43°C, a 1-h 37°C treatment given to cells just prior to the shift to 43°C partially blocks this inactivation. By contrast, such a pre-heat shock treament has no protective effect on translational inactivation at 45°C or higher. Cells allowed to approach stationary phase not only develop an enhanced thermotolerance relative to log cells but also exhibit a pronounced resistance to inactivation of protein synthesis at 43°C as well as at 45°C. We have found that this ‘translational thermotolerance’ can also be induced in S. cerevisiae by briefly treating log phase cells at 30°C with cycloheximide. Using such a procedure to induce stabilization of protein synthesis at 43°C, we have been able to show that heat shock-induced proteins are not responsible for the establishment of this protective effect. This work shows that enhanced thermotolerance can be induced in log cells even after a shift to 43°C, as long as a prior translational thermotolerance has been established. Futhermore, we show that the capacity of plateau cells to maintain translation at 43°C contributes significantly to their state of enhanced thermotolerance. PMID:9222591

  11. Cytoplasmic “Petite” Induction in Recombination-Deficient Mutants of Saccharomyces cerevisiae

    PubMed Central

    Moustacchi, Ethel

    1973-01-01

    As compared to the original wild type, the induction of the cytoplasmic “petite” mutation by ultraviolet light and by the intercalating dye, ethidium bromide, is reduced in two mutants (rec4 and rec5) of Saccharomyces cerevisiae. These mutants are blocked in X rays or ultraviolet light-induced intragenic recombination. It then appears that the products of nuclear genes necessary for the completion of nuclear intragenic recombination events are also involved in steps of the metabolic chain which leads to the mitochondrial mutation, ρ−. PMID:4580568

  12. The sphingoid long chain base phytosphingosine activates AGC-type protein kinases in Saccharomyces cerevisiae including Ypk1, Ypk2, and Sch9.

    PubMed

    Liu, Ke; Zhang, Xiping; Lester, Robert L; Dickson, Robert C

    2005-06-17

    The Pkh1 protein kinase of Saccharomyces cerevisiae, a homolog of the mammalian 3-phosphoinositide-dependent kinase (PDK1), regulates downstream AGC-type protein kinases including Ypk1/2 and Pkc1, which control cell wall integrity, growth, and other processes. Phytosphingosine (PHS), a sphingoid long chain base, is hypothesized to be a lipid activator of Pkh1 and thereby controls the activity of Ypk1/2. Here we present biochemical evidence supporting this hypothesis, and in addition we demonstrate that PHS also stimulates autophosphorylation and activation of Ypk1/2. Greatest stimulation of Ypk1/2 phosphorylation and activity are achieved by inclusion of both PHS and Pkh1 in an in vitro kinase reaction. We also demonstrate for the first time that Pkh1 phosphorylates the Sch9 protein kinase in vitro and that such phosphorylation is stimulated by PHS. This is the first biochemical demonstration of Sch9 activators, and the results further support roles for long chain bases in heat stress resistance in addition to implying roles in chronological aging and cell size determination, since Sch9 functions in these processes. Thus, our data support a model in which PHS, rather than simply being an upstream activator of Pkh1, also activates kinases that are downstream targets of Pkh1 including Ypk1/2 and Sch9.

  13. Modulation of efficiency of translation termination in Saccharomyces cerevisiae.

    PubMed

    Nizhnikov, Anton A; Antonets, Kirill S; Inge-Vechtomov, Sergey G; Derkatch, Irina L

    2014-01-01

    Nonsense suppression is a readthrough of premature termination codons. It typically occurs either due to the recognition of stop codons by tRNAs with mutant anticodons, or due to a decrease in the fidelity of translation termination. In the latter case, suppressors usually promote the readthrough of different types of nonsense codons and are thus called omnipotent nonsense suppressors. Omnipotent nonsense suppressors were identified in yeast Saccharomyces cerevisiae in 1960s, and most of subsequent studies were performed in this model organism. Initially, omnipotent suppressors were localized by genetic analysis to different protein- and RNA-encoding genes, mostly the components of translational machinery. Later, nonsense suppression was found to be caused not only by genomic mutations, but also by epigenetic elements, prions. Prions are self-perpetuating protein conformations usually manifested by infectious protein aggregates. Modulation of translational accuracy by prions reflects changes in the activity of their structural proteins involved in different aspects of protein synthesis. Overall, nonsense suppression can be seen as a "phenotypic mirror" of events affecting the accuracy of the translational machine. However, the range of proteins participating in the modulation of translation termination fidelity is not fully elucidated. Recently, the list has been expanded significantly by findings that revealed a number of weak genetic and epigenetic nonsense suppressors, the effect of which can be detected only in specific genetic backgrounds. This review summarizes the data on the nonsense suppressors decreasing the fidelity of translation termination in S. cerevisiae, and discusses the functional significance of the modulation of translational accuracy.

  14. Localization of nuclear retained mRNAs in Saccharomyces cerevisiae

    PubMed Central

    THOMSEN, RUNE; LIBRI, DOMENICO; BOULAY, JOCELYNE; ROSBASH, MICHAEL; JENSEN, TORBEN HEICK

    2003-01-01

    In the yeast Saccharomyces cerevisiae, a common conditional phenotype associated with deletion or mutation of genes encoding mRNA export factors is the rapid accumulation of mRNAs in intranuclear foci, suggested to be near transcription sites. The nuclear RNA exosome has been implicated in retaining RNAs in these foci; on deletion of the exosome component Rrp6p, the RNA is released. To determine the exact nuclear location of retained as well as released mRNAs, we have used mRNA export mutant strains to analyze the spatial relationship between newly synthesized heat shock mRNA, the chromosomal site of transcription, and known S. cerevisiae nuclear structures such as the nucleolus and the nucleolar body. Our results show that retained SSA4 RNA localizes to an area in close proximity to the SSA4 locus. On deletion of Rrp6p and release from the genomic locus, heat shock mRNAs produced in the rat7–1 strain colocalize predominantly with nucleolar antigens. Bulk poly(A)+ RNA, on the other hand, is localized primarily to the nuclear rim. Interestingly, the RNA binding nucleocytoplasmic shuttle protein Npl3p shows strong colocalization with bulk poly(A)+ RNA, regardless of its nuclear location. Taken together, our data show that retention occurs close to the gene and indicate distinct nuclear fates of different mRNAs. PMID:12923254

  15. Omnipotent Suppressors Effective in psi Strains of SACCHAROMYCES CEREVISIAE: Recessiveness and Dominance.

    PubMed

    Ono, B; Moriga, N; Ishihara, K; Ishiguro, J; Ishino, Y; Shinoda, S

    1984-06-01

    We have characterized recessive and dominant omnipotent suppressor mutations obtained by conversion of the leu2-1 UAA mutation and the met8-UAG mutation in a psi(+) strain of Saccharomyces cerevisiae. The suppressors that act recessively upon these markers fell into two complementation groups; the sup47 and sup36 suppressors show linkage to the tyr1 locus and the aro1 locus, respectively. Of the suppressors acting dominantly upon both markers, those linked to the tyr1 locus are alleles of the SUP46 ribosomal mutation. The sup47 suppressors differ from the SUP46 suppressors not only in their suppressor activities in heterozygous diploids but also in their map positions relative to the tyr1 locus and their effects on the S11 ribosomal protein. The remaining dominant suppressors are not alleles of sup36 as judged by linkage analysis. The recessive suppressors and the dominant suppressors also differ in their effects on cell growth.

  16. Chromosome Duplication in Saccharomyces cerevisiae

    PubMed Central

    Bell, Stephen P.; Labib, Karim

    2016-01-01

    The accurate and complete replication of genomic DNA is essential for all life. In eukaryotic cells, the assembly of the multi-enzyme replisomes that perform replication is divided into stages that occur at distinct phases of the cell cycle. Replicative DNA helicases are loaded around origins of DNA replication exclusively during G1 phase. The loaded helicases are then activated during S phase and associate with the replicative DNA polymerases and other accessory proteins. The function of the resulting replisomes is monitored by checkpoint proteins that protect arrested replisomes and inhibit new initiation when replication is inhibited. The replisome also coordinates nucleosome disassembly, assembly, and the establishment of sister chromatid cohesion. Finally, when two replisomes converge they are disassembled. Studies in Saccharomyces cerevisiae have led the way in our understanding of these processes. Here, we review our increasingly molecular understanding of these events and their regulation. PMID:27384026

  17. Postreplication repair in Saccharomyces cerevisiae

    SciTech Connect

    Resnick, M.A.; Boyce, J.; Cox, B.

    1981-04-01

    Postreplication events in logarithmically growing excision-defective mutants of Saccharomyces cerevisiae were examined after low doses of ultraviolet light. Pulse-labeled deoxyribonucleic acid had interruptions, and when the cells were chased, the interruptions were no longer detected. Since the loss of interruptions was not associated with an exchange of pyrimidine dimers at a detection level of 10 to 20% of the induced dimers, it was concluded that postreplication repair in excision-defective mutants does not involve molecular recombination. Pyrimidine dimers were assayed by utilizing the ultraviolet-endonuclease activity in extracts of Micrococcus luteus and newly developed alkaline sucrose gradient techniques, which yielded chromosomal-size deoxyribonucleic acid after treatment of irradiated cells.

  18. Glucose repression in Saccharomyces cerevisiae

    PubMed Central

    Kayikci, Ömur; Nielsen, Jens

    2015-01-01

    Glucose is the primary source of energy for the budding yeast Saccharomyces cerevisiae. Although yeast cells can utilize a wide range of carbon sources, presence of glucose suppresses molecular activities involved in the use of alternate carbon sources as well as it represses respiration and gluconeogenesis. This dominant effect of glucose on yeast carbon metabolism is coordinated by several signaling and metabolic interactions that mainly regulate transcriptional activity but are also effective at post-transcriptional and post-translational levels. This review describes effects of glucose repression on yeast carbon metabolism with a focus on roles of the Snf3/Rgt2 glucose-sensing pathway and Snf1 signal transduction in establishment and relief of glucose repression. PMID:26205245

  19. Nucleosome Positioning in Saccharomyces cerevisiae

    PubMed Central

    Jansen, An; Verstrepen, Kevin J.

    2011-01-01

    Summary: The DNA of eukaryotic cells is spooled around large histone protein complexes, forming nucleosomes that make up the basis for a high-order packaging structure called chromatin. Compared to naked DNA, nucleosomal DNA is less accessible to regulatory proteins and regulatory processes. The exact positions of nucleosomes therefore influence several cellular processes, including gene expression, chromosome segregation, recombination, replication, and DNA repair. Here, we review recent technological advances enabling the genome-wide mapping of nucleosome positions in the model eukaryote Saccharomyces cerevisiae. We discuss the various parameters that determine nucleosome positioning in vivo, including cis factors like AT content, variable tandem repeats, and poly(dA:dT) tracts that function as chromatin barriers and trans factors such as chromatin remodeling complexes, transcription factors, histone-modifying enzymes, and RNA polymerases. In the last section, we review the biological role of chromatin in gene transcription, the evolution of gene regulation, and epigenetic phenomena. PMID:21646431

  20. Metabolism of sulfur amino acids in Saccharomyces cerevisiae.

    PubMed Central

    Thomas, D; Surdin-Kerjan, Y

    1997-01-01

    Sulfur amino acid biosynthesis in Saccharomyces cerevisiae involves a large number of enzymes required for the de novo biosynthesis of methionine and cysteine and the recycling of organic sulfur metabolites. This review summarizes the details of these processes and analyzes the molecular data which have been acquired in this metabolic area. Sulfur biochemistry appears not to be unique through terrestrial life, and S. cerevisiae is one of the species of sulfate-assimilatory organisms possessing a larger set of enzymes for sulfur metabolism. The review also deals with several enzyme deficiencies that lead to a nutritional requirement for organic sulfur, although they do not correspond to defects within the biosynthetic pathway. In S. cerevisiae, the sulfur amino acid biosynthetic pathway is tightly controlled: in response to an increase in the amount of intracellular S-adenosylmethionine (AdoMet), transcription of the coregulated genes is turned off. The second part of the review is devoted to the molecular mechanisms underlying this regulation. The coordinated response to AdoMet requires two cis-acting promoter elements. One centers on the sequence TCACGTG, which also constitutes a component of all S. cerevisiae centromeres. Situated upstream of the sulfur genes, this element is the binding site of a transcription activation complex consisting of a basic helix-loop-helix factor, Cbf1p, and two basic leucine zipper factors, Met4p and Met28p. Molecular studies have unraveled the specific functions for each subunit of the Cbf1p-Met4p-Met28p complex as well as the modalities of its assembly on the DNA. The Cbf1p-Met4p-Met28p complex contains only one transcription activation module, the Met4p subunit. Detailed mutational analysis of Met4p has elucidated its functional organization. In addition to its activation and bZIP domains, Met4p contains two regulatory domains, called the inhibitory region and the auxiliary domain. When the level of intracellular AdoMet increases

  1. Genomic structural variation contributes to phenotypic change of industrial bioethanol yeast Saccharomyces cerevisiae.

    PubMed

    Zhang, Ke; Zhang, Li-Jie; Fang, Ya-Hong; Jin, Xin-Na; Qi, Lei; Wu, Xue-Chang; Zheng, Dao-Qiong

    2016-03-01

    Genomic structural variation (GSV) is a ubiquitous phenomenon observed in the genomes of Saccharomyces cerevisiae strains with different genetic backgrounds; however, the physiological and phenotypic effects of GSV are not well understood. Here, we first revealed the genetic characteristics of a widely used industrial S. cerevisiae strain, ZTW1, by whole genome sequencing. ZTW1 was identified as an aneuploidy strain and a large-scale GSV was observed in the ZTW1 genome compared with the genome of a diploid strain YJS329. These GSV events led to copy number variations (CNVs) in many chromosomal segments as well as one whole chromosome in the ZTW1 genome. Changes in the DNA dosage of certain functional genes directly affected their expression levels and the resultant ZTW1 phenotypes. Moreover, CNVs of large chromosomal regions triggered an aneuploidy stress in ZTW1. This stress decreased the proliferation ability and tolerance of ZTW1 to various stresses, while aneuploidy response stress may also provide some benefits to the fermentation performance of the yeast, including increased fermentation rates and decreased byproduct generation. This work reveals genomic characters of the bioethanol S. cerevisiae strain ZTW1 and suggests that GSV is an important kind of mutation that changes the traits of industrial S. cerevisiae strains.

  2. Production of pyruvate from mannitol by mannitol-assimilating pyruvate decarboxylase-negative Saccharomyces cerevisiae

    PubMed Central

    Yoshida, Shiori; Tanaka, Hideki; Hirayama, Makoto; Murata, Kousaku; Kawai, Shigeyuki

    2015-01-01

    Mannitol is contained in brown macroalgae up to 33% (w/w, dry weight), and thus is a promising carbon source for white biotechnology. However, Saccharomyces cerevisiae, a key cell factory, is generally regarded to be unable to assimilate mannitol for growth. We have recently succeeded in producing S. cerevisiae that can assimilate mannitol through spontaneous mutations of Tup1-Cyc8, each of which constitutes a general corepressor complex. In this study, we demonstrate production of pyruvate from mannitol using this mannitol-assimilating S. cerevisiae through deletions of all 3 pyruvate decarboxylase genes. The resultant mannitol-assimilating pyruvate decarboxylase-negative strain produced 0.86 g/L pyruvate without use of acetate after cultivation for 4 days, with an overall yield of 0.77 g of pyruvate per g of mannitol (the theoretical yield was 79%). Although acetate was not needed for growth of this strain in mannitol-containing medium, addition of acetate had a significant beneficial effect on production of pyruvate. This is the first report of production of a valuable compound (other than ethanol) from mannitol using S. cerevisiae, and is an initial platform from which the productivity of pyruvate from mannitol can be improved. PMID:26588105

  3. Production of pyruvate from mannitol by mannitol-assimilating pyruvate decarboxylase-negative Saccharomyces cerevisiae.

    PubMed

    Yoshida, Shiori; Tanaka, Hideki; Hirayama, Makoto; Murata, Kousaku; Kawai, Shigeyuki

    2015-01-01

    Mannitol is contained in brown macroalgae up to 33% (w/w, dry weight), and thus is a promising carbon source for white biotechnology. However, Saccharomyces cerevisiae, a key cell factory, is generally regarded to be unable to assimilate mannitol for growth. We have recently succeeded in producing S. cerevisiae that can assimilate mannitol through spontaneous mutations of Tup1-Cyc8, each of which constitutes a general corepressor complex. In this study, we demonstrate production of pyruvate from mannitol using this mannitol-assimilating S. cerevisiae through deletions of all 3 pyruvate decarboxylase genes. The resultant mannitol-assimilating pyruvate decarboxylase-negative strain produced 0.86 g/L pyruvate without use of acetate after cultivation for 4 days, with an overall yield of 0.77 g of pyruvate per g of mannitol (the theoretical yield was 79%). Although acetate was not needed for growth of this strain in mannitol-containing medium, addition of acetate had a significant beneficial effect on production of pyruvate. This is the first report of production of a valuable compound (other than ethanol) from mannitol using S. cerevisiae, and is an initial platform from which the productivity of pyruvate from mannitol can be improved.

  4. Mutagenic effect of freezing on mitochondrial DNA of Saccharomyces cerevisiae.

    PubMed

    Stoycheva, T; Venkov, P; Tsvetkov, Ts

    2007-06-01

    Although suggested in some studies, the mutagenic effect of freezing has not been proved by induction and isolation of mutants. Using a well-defined genetic model, we supply in this communication evidence for the mutagenic effect of freezing on mitochondrial DNA (mtDNA) of the yeast Saccharomyces cerevisiae. The cooling for 2 h at +4 degrees C, followed by freezing for 1 h at -10 degrees C and 16 h at -20 degrees C resulted in induction of respiratory mutations. The immediate freezing in liquid nitrogen was without mutagenic effect. The study of the stepwise procedure showed that the induction of respiratory mutants takes place during the freezing at -10 and -20 degrees C of cells pre-cooled at +4 degrees C. The genetic crosses of freeze-induced mutants evidenced their mitochondrial rho- origin. The freeze-induced rho- mutants are most likely free of simultaneous nuclear mutations. The extracellular presence of cryoprotectants did not prevent the mutagenic effect of freezing while accumulation of cryoprotectors inside cells completely escaped mtDNA from cryodamage. Although the results obtained favor the notion that the mutagenic effect of freezing on yeast mtDNA is due to formation and growth of intracellular ice crystals, other reasons, such as impairment of mtDNA replication or elevated levels of ROS production are discussed as possible explanations of the mutagenic effect of freezing. It is concluded that: (i) freezing can be used as a method for isolation of mitochondrial mutants in S. cerevisiae and (ii) given the substantial development in cryopreservation of cells and tissues, special precautions should be made to avoid mtDNA damage during the cryopreservation procedures.

  5. Histone Deacetylases with Antagonistic Roles in Saccharomyces cerevisiae Heterochromatin Formation.

    PubMed

    Thurtle-Schmidt, Deborah M; Dodson, Anne E; Rine, Jasper

    2016-09-01

    As the only catalytic member of the Sir-protein gene-silencing complex, Sir2's catalytic activity is necessary for silencing. The only known role for Sir2's catalytic activity in Saccharomyces cerevisiae silencing is to deacetylate N-terminal tails of histones H3 and H4, creating high-affinity binding sites for the Sir-protein complex, resulting in association of Sir proteins across the silenced domain. This histone deacetylation model makes the simple prediction that preemptively removing Sir2's H3 and H4 acetyl substrates, by mutating these lysines to unacetylatable arginines, or removing the acetyl transferase responsible for their acetylation, should restore silencing in the Sir2 catalytic mutant. However, this was not the case. We conducted a genetic screen to explore what aspect of Sir2's catalytic activity has not been accounted for in silencing. Mutation of a nonsirtuin histone deacetylase, Rpd3, restored Sir-protein-based silencing in the absence of Sir2's catalytic activity. Moreover, this antagonism could be mediated by either the large or the small Rpd3-containing complex. Interestingly, this restoration of silencing appeared independent of any known histone H3 or H4 substrates of Rpd3 Investigation of Sir-protein association in the Rpd3 mutant revealed that the restoration of silencing was correlated with an increased association of Sir proteins at the silencers, suggesting that Rpd3 was an antagonist of Sir2's function in nucleation of Sir proteins to the silencer. Additionally, restoration of silencing by Rpd3 was dependent on another sirtuin family member, Hst3, indicating multiple antagonistic roles for deacetylases in S. cerevisiae silencing. Copyright © 2016 by the Genetics Society of America.

  6. Complementation of temperature tolerance by rat Rgl-1 recessive oncogene in the absence of Saccharomyces cerevisiae Sop genes.

    PubMed

    Kim, Yu-Kyung; Kim, Yong-Soo; Chung, Hyung-Min; Baek, Kwang-Hyun

    2004-11-01

    It has been demonstrated that homozygous mutations at the L(2)gl locus in Drosophila result in the development of tumor in the presumptive adult optic centers of the larval brain and of the imaginal discs. We previously cloned an L(2)gl homologue, Rgl-1, in the rat brain. In this study, we analyzed the capability of Rgl-1 in recovering temperature tolerance in the absence of Saccharomyces cerevisiae Sop genes, yeast homologues of the Drosophila recessive oncogene Lethal (2) giant larvae. The expression of Rgl-1 revealed the recovery of temperature tolerance at 20 degrees C in the absence of Sop genes in Saccharomyces cerevisiae. This indicates that the Rgl-1 cDNA we isolated from the rat brain is highly homologous to Lgl family members and can also substitute the function of Sop proteins for temperature tolerance in Saccharomyces cerevisiae.

  7. Screening and evolution of a novel protist xylose isomerase from the termite Reticulitermes speratus for efficient xylose fermentation in Saccharomyces cerevisiae.

    PubMed

    Katahira, Satoshi; Muramoto, Nobuhiko; Moriya, Shigeharu; Nagura, Risa; Tada, Nobuki; Yasutani, Noriko; Ohkuma, Moriya; Onishi, Toru; Tokuhiro, Kenro

    2017-01-01

    The yeast Saccharomyces cerevisiae, a promising host for lignocellulosic bioethanol production, is unable to metabolize xylose. In attempts to confer xylose utilization ability in S. cerevisiae, a number of xylose isomerase (XI) genes have been expressed heterologously in this yeast. Although several of these XI encoding genes were functionally expressed in S. cerevisiae, the need still exists for a S. cerevisiae strain with improved xylose utilization ability for use in the commercial production of bioethanol. Although currently much effort has been devoted to achieve the objective, one of the solutions is to search for a new XI gene that would confer superior xylose utilization in S. cerevisiae. Here, we searched for novel XI genes from the protists residing in the hindgut of the termite Reticulitermes speratus. Eight novel XI genes were obtained from a cDNA library, prepared from the protists of the R. speratus hindgut, by PCR amplification using degenerated primers based on highly conserved regions of amino acid sequences of different XIs. Phylogenetic analysis classified these cloned XIs into two groups, one showed relatively high similarities to Bacteroidetes and the other was comparatively similar to Firmicutes. The growth rate and the xylose consumption rate of the S. cerevisiae strain expressing the novel XI, which exhibited highest XI activity among the eight XIs, were superior to those exhibited by the strain expressing the XI gene from Piromyces sp. E2. Substitution of the asparagine residue at position 337 of the novel XI with a cysteine further improved the xylose utilization ability of the yeast strain. Interestingly, introducing point mutations in the corresponding asparagine residues in XIs originated from other organisms, such as Piromyces sp. E2 or Clostridium phytofermentans, similarly improved xylose utilization in S. cerevisiae. A novel XI gene conferring superior xylose utilization in S. cerevisiae was successfully isolated from the protists

  8. GAL3 gene product is required for maintenance of the induced state of the GAL cluster genes in Saccharomyces cerevisiae.

    PubMed

    Nogi, Y

    1986-01-01

    The activities of the first three enzymes for galactose catabolism normally become detectable within 15 min after the addition of galactose into a culture of the yeast Saccharomyces cerevisiae. In S. cerevisiae with a recessive mutation termed gal3, a longer-than-normal lag is observed before the appearance of the enzyme activities (O. Winge and C. Roberts, C. R. Trav. Lab. Carlsberg Ser. Physiol. 24:263-315, 1948). I isolated two S. cerevisiae mutants with temperature-sensitive defects in the GAL3 gene. Temperature shift experiments with one of those mutants led to the conclusion that the GAL3 function is required not only for the initiation of enzyme induction but also for the maintenance of the induced state in galactose-nonfermenting S. cerevisiae because of a defect in any of the genes for the galactose-catabolizing enzymes, such as gal1 or gal10. In contrast, the GAL3 function is phenotypically dispensable in galactose-metabolizing S. cerevisiae. Thus, the normal catabolism of galactose can substitute for the GAL3 function.

  9. Combining magnetic sorting of mother cells and fluctuation tests to analyze genome instability during mitotic cell aging in Saccharomyces cerevisiae.

    PubMed

    Patterson, Melissa N; Maxwell, Patrick H

    2014-10-16

    Saccharomyces cerevisiae has been an excellent model system for examining mechanisms and consequences of genome instability. Information gained from this yeast model is relevant to many organisms, including humans, since DNA repair and DNA damage response factors are well conserved across diverse species. However, S. cerevisiae has not yet been used to fully address whether the rate of accumulating mutations changes with increasing replicative (mitotic) age due to technical constraints. For instance, measurements of yeast replicative lifespan through micromanipulation involve very small populations of cells, which prohibit detection of rare mutations. Genetic methods to enrich for mother cells in populations by inducing death of daughter cells have been developed, but population sizes are still limited by the frequency with which random mutations that compromise the selection systems occur. The current protocol takes advantage of magnetic sorting of surface-labeled yeast mother cells to obtain large enough populations of aging mother cells to quantify rare mutations through phenotypic selections. Mutation rates, measured through fluctuation tests, and mutation frequencies are first established for young cells and used to predict the frequency of mutations in mother cells of various replicative ages. Mutation frequencies are then determined for sorted mother cells, and the age of the mother cells is determined using flow cytometry by staining with a fluorescent reagent that detects bud scars formed on their cell surfaces during cell division. Comparison of predicted mutation frequencies based on the number of cell divisions to the frequencies experimentally observed for mother cells of a given replicative age can then identify whether there are age-related changes in the rate of accumulating mutations. Variations of this basic protocol provide the means to investigate the influence of alterations in specific gene functions or specific environmental conditions on

  10. Chromosome VIII disomy influences the nonsense suppression efficiency and transition metal tolerance of the yeast Saccharomyces cerevisiae.

    PubMed

    Zadorsky, S P; Sopova, Y V; Andreichuk, D Y; Startsev, V A; Medvedeva, V P; Inge-Vechtomov, S G

    2015-06-01

    The SUP35 gene of the yeast Saccharomyces cerevisiae encodes the translation termination factor eRF3. Mutations in this gene lead to the suppression of nonsense mutations and a number of other pleiotropic phenotypes, one of which is impaired chromosome segregation during cell division. Similar effects result from replacing the S. cerevisiae SUP35 gene with its orthologues. A number of genetic and epigenetic changes that occur in the sup35 background result in partial compensation for this suppressor effect. In this study we showed that in S. cerevisiae strains in which the SUP35 orthologue from the yeast Pichia methanolica replaces the S. cerevisiae SUP35 gene, chromosome VIII disomy results in decreased efficiency of nonsense suppression. This antisuppressor effect is not associated with decreased stop codon read-through. We identified SBP1, a gene that localizes to chromosome VIII, as a dosage-dependent antisuppressor that strongly contributes to the overall antisuppressor effect of chromosome VIII disomy. Disomy of chromosome VIII also leads to a change in the yeast strains' tolerance of a number of transition metal salts.

  11. Candida albicans INT1-Induced Filamentation in Saccharomyces cerevisiae Depends on Sla2p

    PubMed Central

    Asleson, Catherine M.; Bensen, Eric S.; Gale, Cheryl A.; Melms, A.-S.; Kurischko, Cornelia; Berman, Judith

    2001-01-01

    The Candida albicans INT1 gene is important for hyphal morphogenesis, adherence, and virulence (C. Gale, C. Bendel, M. McClellan, M. Hauser, J. M. Becker, J. Berman, and M. Hostetter, Science 279:1355–1358, 1998). The ability to switch between yeast and hyphal morphologies is an important virulence factor in this fungal pathogen. When INT1 is expressed in Saccharomyces cerevisiae, cells grow with a filamentous morphology that we exploited to gain insights into how C. albicans regulates hyphal growth. In S. cerevisiae, INT1-induced filamentous growth was affected by a small subset of actin mutations and a limited set of actin-interacting proteins including Sla2p, an S. cerevisiae protein with similarity in its C terminus to mouse talin. Interestingly, while SLA2 was required for INT1-induced filamentous growth, it was not required for polarized growth in response to several other conditions, suggesting that Sla2p is not required for polarized growth per se. The morphogenesis checkpoint, mediated by Swe1p, contributes to INT1-induced filamentous growth; however, epistasis analysis suggests that Sla2p and Swe1p contribute to INT1-induced filamentous growth through independent pathways. The C. albicans SLA2 homolog (CaSLA2) complements S. cerevisiae sla2Δ mutants for growth at 37°C and INT1-induced filamentous growth. Furthermore, in a C. albicans Casla2/Casla2 strain, hyphal growth did not occur in response to either nutrient deprivation or to potent stimuli, such as mammalian serum. Thus, through analysis of INT1-induced filamentous growth in S. cerevisiae, we have identified a C. albicans gene, SLA2, that is required for hyphal growth in C. albicans. PMID:11158313

  12. Dissection of Saccharomyces cerevisiae asci.

    PubMed

    Morin, Audrey; Moores, Adrian W; Sacher, Michael

    2009-05-19

    Yeast is a highly tractable model system that is used to study many different cellular processes. The common laboratory strain Saccharomyces cerevisiae exists in either a haploid or diploid state. The ability to combine alleles from two haploids and the ability to introduce modifications to the genome requires the production and dissection of asci. Asci production from haploid cells begins with the mating of two yeast haploid strains with compatible mating types to produce a diploid strain. This can be accomplished in a number of ways either on solid medium or in liquid. It is advantageous to select for the diploids in medium that selectively promotes their growth compared to either of the haploid strains. The diploids are then allowed to sporulate on nutrient-poor medium to form asci, a bundle of four haploid daughter cells resulting from meiotic reproduction of the diploid. A mixture of vegetative cells and asci is then treated with the enzyme zymolyase to digest away the membrane sac surrounding the ascospores of the asci. Using micromanipulation with a microneedle under a dissection microscope one can pick up individual asci and separate and relocate the four ascopores. Dissected asci are grown for several days and tested for the markers or alleles of interest by replica plating onto appropriate selective media.

  13. Lead toxicity in Saccharomyces cerevisiae.

    PubMed

    Van der Heggen, Maarten; Martins, Sara; Flores, Gisela; Soares, Eduardo V

    2010-12-01

    The effect of Pb on Saccharomyces cerevisiae cell structure and function was examined. Membrane integrity was assessed by the release of UV-absorbing compounds and by the intracellular K(+) efflux. No leakage of UV(260)-absorbing compounds or loss of K(+) were observed in Pb (until 1,000 μmol/l) treated cells up to 30 min; these results suggest that plasma membrane seems not to be the immediate and primary target of Pb toxicity. The effect of Pb on yeast metabolism was examined using the fluorescent probe FUN-1 and compared with the ability to reproduce, evaluated by colony-forming units counting. The exposition of yeast cells, during 60 min to 1,000 μmol/l Pb, induces a decrease in the ability to process FUN-1 although the cells retain its proliferation capacity. A more prolonged contact time (120 min) of yeast cells with Pb induces a marked (> 50%) loss of yeast cells metabolic activity and replication competence through a mechanism which most likely requires protein synthesis.

  14. Proteomics of Saccharomyces cerevisiae Organelles*

    PubMed Central

    Wiederhold, Elena; Veenhoff, Liesbeth M.; Poolman, Bert; Slotboom, Dirk Jan

    2010-01-01

    Knowledge of the subcellular localization of proteins is indispensable to understand their physiological roles. In the past decade, 18 studies have been performed to analyze the protein content of isolated organelles from Saccharomyces cerevisiae. Here, we integrate the data sets and compare them with other large scale studies on protein localization and abundance. We evaluate the completeness and reliability of the organelle proteomics studies. Reliability depends on the purity of the organelle preparations, which unavoidably contain (small) amounts of contaminants from different locations. Quantitative proteomics methods can be used to distinguish between true organellar constituents and contaminants. Completeness is compromised when loosely or dynamically associated proteins are lost during organelle preparation and also depends on the sensitivity of the analytical methods for protein detection. There is a clear trend in the data from the 18 organelle proteomics studies showing that proteins of low abundance frequently escape detection. Proteins with unknown function or cellular abundance are also infrequently detected, indicating that these proteins may not be expressed under the conditions used. We discuss that the yeast organelle proteomics studies provide powerful lead data for further detailed studies and that methodological advances in organelle preparation and in protein detection may help to improve the completeness and reliability of the data. PMID:19955081

  15. Rsp5 ubiquitin ligase affects isoprenoid pathway and cell wall organization in S. cerevisiae.

    PubMed

    Kamińska, Joanna; Kwapisz, Marta; Grabińska, Kariona; Orłowski, Jacek; Boguta, Magdalena; Palamarczyk, Grazyna; Zoładek, Teresa

    2005-01-01

    Dimethylallyl diphosphate, an isomer of isopentenyl diphosphate, is a common substrate of Mod5p, a tRNA modifying enzyme, and the farnesyl diphosphate synthase Erg20p, the key enzyme of the isoprenoid pathway. rsp5 mutants, defective in the Rsp5 ubiquitin-protein ligase, were isolated and characterized as altering the mitochondrial/cytosolic distribution of Mod5p. To understand better how competition for the substrate determines the regulation at the molecular level, we analyzed the effect of the rsp5-13 mutation on Erg20p expression. The level of Erg20p was three times lower in rsp5-13 compared to the wild type strain and this effect was dependent on active Mod5p. Northern blot analysis indicated a regulatory role of Rsp5p in ERG20 transcription. ERG20 expression was also impaired in pkc1Delta lacking a component of the cell wall integrity signaling pathway. Low expression of Erg20p in rsp5 cells was accompanied by low level of ergosterol, the main end product of the isoprenoid pathway. Additionally, rsp5 strains were resistant to nystatin, which binds to ergosterol present in the plasma membrane, and sensitive to calcofluor white, a drug destabilizing cell wall integrity by binding to chitin. Furthermore, the cell wall structure appeared abnormal in most rsp5-13 cells investigated by electron microscopy and chitin level in the cell wall was increased two-fold. These results indicate that Rsp5p affects the isoprenoid pathway which has important roles in ergosterol biosynthesis, protein glycosylation and transport and in this way may influence the composition of the plasma membrane and cell wall.

  16. Saccharomyces cerevisiae engineered for xylose metabolism exhibits a respiratory response

    Treesearch

    Yong-Su Jin; Jose M. Laplaza; Thomas W. Jeffries

    2004-01-01

    Native strains of Saccharomyces cerevisiae do not assimilate xylose. S. cerevisiae engineered for D-xylose utilization through the heterologous expression of genes for aldose reductase ( XYL1), xylitol dehydrogenase (XYL2), and D-xylulokinase ( XYL3 or XKS1) produce only limited amounts of ethanol in xylose medium. In recombinant S. cerevisiae expressing XYL1, XYL2,...

  17. The selection of S. cerevisiae mutants defective in the start event of cell division.

    PubMed

    Reed, S I

    1980-07-01

    Thirty-three temperature-sensitive mutations defective in the start event of the cell division cycle of Saccharomyces cerevisiae were isolated and subjected to preliminary characterization. Complementation studies assigned thes mutations to four complementation groups, one of which, cdc28, has been described previously. Genetic analysis revealed that these complementation groups define single nuclear genes, unlinked to one another. One of the three newly identified genes, cdc37, has been located in the yeast linkage map on chromosome IV, two meiotic map units distal to hom2.--Each mutation produces stage-specific arrest of cell division at start, the same point where mating pheromone interrupts division. After synchronization at start by incubation at the restrictive temperature, the mutants retain the capacity to enlarge and to conjugate.

  18. A genetic network that suppresses genome rearrangements in Saccharomyces cerevisiae and contains defects in cancers

    PubMed Central

    Putnam, Christopher D.; Srivatsan, Anjana; Nene, Rahul V.; Martinez, Sandra L.; Clotfelter, Sarah P.; Bell, Sara N.; Somach, Steven B.; E.S. de Souza, Jorge; Fonseca, André F.; de Souza, Sandro J.; Kolodner, Richard D.

    2016-01-01

    Gross chromosomal rearrangements (GCRs) play an important role in human diseases, including cancer. The identity of all Genome Instability Suppressing (GIS) genes is not currently known. Here multiple Saccharomyces cerevisiae GCR assays and query mutations were crossed into arrays of mutants to identify progeny with increased GCR rates. One hundred eighty two GIS genes were identified that suppressed GCR formation. Another 438 cooperatively acting GIS genes were identified that were not GIS genes, but suppressed the increased genome instability caused by individual query mutations. Analysis of TCGA data using the human genes predicted to act in GIS pathways revealed that a minimum of 93% of ovarian and 66% of colorectal cancer cases had defects affecting one or more predicted GIS gene. These defects included loss-of-function mutations, copy-number changes associated with reduced expression, and silencing. In contrast, acute myeloid leukaemia cases did not appear to have defects affecting the predicted GIS genes. PMID:27071721

  19. The FACT Histone Chaperone Guides Histone H4 Into Its Nucleosomal Conformation in Saccharomyces cerevisiae

    PubMed Central

    McCullough, Laura; Poe, Bryan; Connell, Zaily; Xin, Hua; Formosa, Tim

    2013-01-01

    The pob3-Q308K mutation alters the small subunit of the Saccharomyces cerevisiae histone/nucleosome chaperone Facilitates Chromatin Transactions (FACT), causing defects in both transcription and DNA replication. We describe histone mutations that suppress some of these defects, providing new insight into the mechanism of FACT activity in vivo. FACT is primarily known for its ability to promote reorganization of nucleosomes into a more open form, but neither the pob3-Q308K mutation nor the compensating histone mutations affect this activity. Instead, purified mutant FACT complexes fail to release from nucleosomes efficiently, and the histone mutations correct this flaw. We confirm that pob3-T252E also suppresses pob3-Q308K and show that combining two suppressor mutations can be detrimental, further demonstrating the importance of balance between association and dissociation for efficient FACT:nucleosome interactions. To explain our results, we propose that histone H4 can adopt multiple conformations, most of which are incompatible with nucleosome assembly. FACT guides H4 to adopt appropriate conformations, and this activity can be enhanced or diminished by mutations in Pob3 or histones. FACT can therefore destabilize nucleosomes by favoring the reorganized state, but it can also promote assembly by tethering histones and DNA together and maintaining them in conformations that promote canonical nucleosome formation. PMID:23833181

  20. Phosphatidylcholine Supply to Peroxisomes of the Yeast Saccharomyces cerevisiae.

    PubMed

    Flis, Vid V; Fankl, Ariane; Ramprecht, Claudia; Zellnig, Günther; Leitner, Erich; Hermetter, Albin; Daum, Günther

    2015-01-01

    In the yeast Saccharomyces cerevisiae, phosphatidylcholine (PC), the major phospholipid (PL) of all organelle membranes, is synthesized via two different pathways. Methylation of phosphatidylethanolamine (PE) catalyzed by the methyl transferases Cho2p/Pem1p and Opi3p/Pem2p as well as incorporation of choline through the CDP (cytidine diphosphate)-choline branch of the Kennedy pathway lead to PC formation. To determine the contribution of these two pathways to the supply of PC to peroxisomes (PX), yeast mutants bearing defects in the two pathways were cultivated under peroxisome inducing conditions, i.e. in the presence of oleic acid, and subjected to biochemical and cell biological analyses. Phenotype studies revealed compromised growth of both the cho20Δopi3Δ (mutations in the methylation pathway) and the cki1Δdpl1Δeki1Δ (mutations in the CDP-choline pathway) mutant when grown on oleic acid. Analysis of peroxisomes from the two mutant strains showed that both pathways produce PC for the supply to peroxisomes, although the CDP-choline pathway seemed to contribute with higher efficiency than the methylation pathway. Changes in the peroxisomal lipid pattern of mutants caused by defects in the PC biosynthetic pathways resulted in changes of membrane properties as shown by anisotropy measurements with fluorescent probes. In summary, our data define the origin of peroxisomal PC and demonstrate the importance of PC for peroxisome membrane formation and integrity.

  1. RNA–DNA sequence differences in Saccharomyces cerevisiae

    PubMed Central

    Wang, Isabel X.; Grunseich, Christopher; Chung, Youree G.; Kwak, Hojoong; Ramrattan, Girish; Zhu, Zhengwei; Cheung, Vivian G.

    2016-01-01

    Alterations of RNA sequences and structures, such as those from editing and alternative splicing, result in two or more RNA transcripts from a DNA template. It was thought that in yeast, RNA editing only occurs in tRNAs. Here, we found that Saccharomyces cerevisiae have all 12 types of RNA–DNA sequence differences (RDDs) in the mRNA. We showed these sequence differences are propagated to proteins, as we identified peptides encoded by the RNA sequences in addition to those by the DNA sequences at RDD sites. RDDs are significantly enriched at regions with R-loops. A screen of yeast mutants showed that RDD formation is affected by mutations in genes regulating R-loops. Loss-of-function mutations in ribonuclease H, senataxin, and topoisomerase I that resolve RNA–DNA hybrids lead to increases in RDD frequency. Our results demonstrate that RDD is a conserved process that diversifies transcriptomes and proteomes and provide a mechanistic link between R-loops and RDDs. PMID:27638543

  2. Four Acyltransferases Uniquely Contribute to Phospholipid Heterogeneity in Saccharomyces cerevisiae

    PubMed Central

    Oelkers, Peter; Pokhrel, Keshav

    2016-01-01

    Diverse acyl-CoA species and acyltransferase isoenzymes are components of a complex system that synthesizes glycerophospholipids and triacylglycerols. Saccharomyces cerevisiae has four main acyl-CoA species, two main glycerol-3-phosphate 1-O-acyltransferases (Gat1p, Gat2p), and two main 1-acylglycerol-3-phosphate O-acyltransferases (Lpt1p, Slc1p). The in vivo contribution of these isoenzymes to phospholipid heterogeneity was determined using haploids with compound mutations: gat1Δlpt1Δ, gat2Δlpt1Δ, gat1Δslc1Δ, and gat2Δslc1Δ. All mutations mildly reduced [3H]palmitic acid incorporation into phospholipids relative to triacylglycerol. Electrospray ionization tandem mass spectrometry identified few differences from wild type in gat1Δlpt1Δ, dramatic differences in gat2Δslc1Δ, and intermediate changes in gat2Δlpt1Δ and gat1Δslc1Δ. Yeast expressing Gat1p and Lpt1p had phospholipids enriched with acyl chains that were unsaturated, 18 carbons long, and paired for length. These alterations prevented growth at 18.5°C and in 10% ethanol. Therefore, Gat2p and Slc1p dictate phospholipid acyl chain composition in rich media at 30°C. Slc1p selectively pairs acyl chains of different lengths. PMID:27920551

  3. Trehalose: Its role in germination of Saccharomyces cerevisiae.

    PubMed

    Panek, A D; Bernardes, E J

    1983-09-01

    Mutants with specific lesions were used to differentiate between the functions of glycogen and trehalose in S. cerevisiae. Diploids which harbor the glc1/glc1 mutation depend upon the phosphorylated, less active form of glycogen synthase and show a more active, phosphorylated form, of the enzyme trehalase. These conditions are due to a lesion in the regulating subunit of the cAMP-dependent protein kinase. Such cells are unable to sporulate. Diploids which contain the sst1/sst1 mutation have normal glycogen metabolism but their trehalose-6-phosphate synthase is not active. Such strains sporulate but germination is poor and only one-spore tetrads are formed. These results confirm that glycogen is needed to trigger sporulation while trehalose plays a role in the germination process. Different systems, I and II, of trehalose accumulation were proposed. System I would require the UDPG-linked trehalose synthase, whereas system II would constitute an alternative pathway, specifically induced or activated by the expression of a MAL gene. The presence of system II in its constitutive form in the constructed diploids would favour trehalose synthesis during growth on glucose, however, it did not overcome the glycogen deficiency during sporulation nor the lack of trehalose for germination. It seems that only system I, namely trehalose 6-P-synthase, plays a role in the germination process.

  4. Phosphatidylcholine Supply to Peroxisomes of the Yeast Saccharomyces cerevisiae

    PubMed Central

    Ramprecht, Claudia; Zellnig, Günther; Leitner, Erich; Hermetter, Albin; Daum, Günther

    2015-01-01

    In the yeast Saccharomyces cerevisiae, phosphatidylcholine (PC), the major phospholipid (PL) of all organelle membranes, is synthesized via two different pathways. Methylation of phosphatidylethanolamine (PE) catalyzed by the methyl transferases Cho2p/Pem1p and Opi3p/Pem2p as well as incorporation of choline through the CDP (cytidine diphosphate)-choline branch of the Kennedy pathway lead to PC formation. To determine the contribution of these two pathways to the supply of PC to peroxisomes (PX), yeast mutants bearing defects in the two pathways were cultivated under peroxisome inducing conditions, i.e. in the presence of oleic acid, and subjected to biochemical and cell biological analyses. Phenotype studies revealed compromised growth of both the cho20Δopi3Δ (mutations in the methylation pathway) and the cki1Δdpl1Δeki1Δ (mutations in the CDP-choline pathway) mutant when grown on oleic acid. Analysis of peroxisomes from the two mutant strains showed that both pathways produce PC for the supply to peroxisomes, although the CDP-choline pathway seemed to contribute with higher efficiency than the methylation pathway. Changes in the peroxisomal lipid pattern of mutants caused by defects in the PC biosynthetic pathways resulted in changes of membrane properties as shown by anisotropy measurements with fluorescent probes. In summary, our data define the origin of peroxisomal PC and demonstrate the importance of PC for peroxisome membrane formation and integrity. PMID:26241051

  5. Genetic Analysis of Default Mating Behavior in Saccharomyces Cerevisiae

    PubMed Central

    Dorer, R.; Boone, C.; Kimbrough, T.; Kim, J.; Hartwell, L. H.

    1997-01-01

    Haploid Saccharomyces cerevisiae cells find each other during conjugation by orienting their growth toward each other along pheromone gradients (chemotropism). However, when their receptors are saturated for pheromone binding, yeast cells must select a mate by executing a default pathway in which they choose a mating partner at random. We previously demonstrated that this default pathway requires the SPA2 gene. In this report we show that the default mating pathway also requires the AXL1, FUS1, FUS2, FUS3, PEA2, RVS161, and BNI1 genes. These genes, including SPA2, are also important for efficient cell fusion during chemotropic mating. Cells containing null mutations in these genes display defects in cell fusion that subtly affect mating efficiency. In addition, we found that the defect in default mating caused by mutations in SPA2 is partially suppressed by multiple copies of two genes, FUS2 and MFA2. These findings uncover a molecular relationship between default mating and cell fusion. Moreover, because axl1 mutants secrete reduced levels of a-factor and are defective at both cell fusion and default mating, these results reveal an important role for a-factor in cell fusion and default mating. We suggest that default mating places a more stringent requirement on some aspects of cell fusion than does chemotropic mating. PMID:9135999

  6. Progress in metabolic engineering of Saccharomyces cerevisiae.

    PubMed

    Nevoigt, Elke

    2008-09-01

    The traditional use of the yeast Saccharomyces cerevisiae in alcoholic fermentation has, over time, resulted in substantial accumulated knowledge concerning genetics, physiology, and biochemistry as well as genetic engineering and fermentation technologies. S. cerevisiae has become a platform organism for developing metabolic engineering strategies, methods, and tools. The current review discusses the relevance of several engineering strategies, such as rational and inverse metabolic engineering, evolutionary engineering, and global transcription machinery engineering, in yeast strain improvement. It also summarizes existing tools for fine-tuning and regulating enzyme activities and thus metabolic pathways. Recent examples of yeast metabolic engineering for food, beverage, and industrial biotechnology (bioethanol and bulk and fine chemicals) follow. S. cerevisiae currently enjoys increasing popularity as a production organism in industrial ("white") biotechnology due to its inherent tolerance of low pH values and high ethanol and inhibitor concentrations and its ability to grow anaerobically. Attention is paid to utilizing lignocellulosic biomass as a potential substrate.

  7. [Urinary infection by Saccharomyces cerevisiae: Emerging yeast?].

    PubMed

    Elkhihal, B; Elhalimi, M; Ghfir, B; Mostachi, A; Lyagoubi, M; Aoufi, S

    2015-12-01

    Saccharomyces cerevisiae is a commensal yeast of the digestive, respiratory and genito-urinary tract. It is widely used as a probiotic for the treatment of post-antibiotic diarrhea. It most often occurs in immunocompromised patients frequently causing fungemia. We report the case of an adult diabetic patient who had a urinary tract infection due to S. cerevisiae. The disease started with urination associated with urinary frequency burns without fever. The diagnosis was established by the presence of yeasts on direct examination and positivity of culture on Sabouraud-chloramphenicol three times. The auxanogramme gallery (Auxacolor BioRad(®)) allowed the identification of S. cerevisiae. The patient was put on fluconazole with good outcome. This observation points out that this is an opportunistic yeast in immunocompromised patients. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  8. Saccharomyces cerevisiae metabolism in ecological context.

    PubMed

    Jouhten, Paula; Ponomarova, Olga; Gonzalez, Ramon; Patil, Kiran R

    2016-11-01

    The architecture and regulation of Saccharomyces cerevisiae metabolic network are among the best studied owing to its widespread use in both basic research and industry. Yet, several recent studies have revealed notable limitations in explaining genotype-metabolic phenotype relations in this yeast, especially when concerning multiple genetic/environmental perturbations. Apparently unexpected genotype-phenotype relations may originate in the evolutionarily shaped cellular operating principles being hidden in common laboratory conditions. Predecessors of laboratory S. cerevisiae strains, the wild and the domesticated yeasts, have been evolutionarily shaped by highly variable environments, very distinct from laboratory conditions, and most interestingly by social life within microbial communities. Here we present a brief review of the genotypic and phenotypic peculiarities of S. cerevisiae in the context of its social lifestyle beyond laboratory environments. Accounting for this ecological context and the origin of the laboratory strains in experimental design and data analysis would be essential in improving the understanding of genotype-environment-phenotype relationships.

  9. Integral Membrane Protein Expression in Saccharomyces cerevisiae.

    PubMed

    Boswell-Casteel, Rebba C; Johnson, Jennifer M; Stroud, Robert M; Hays, Franklin A

    2016-01-01

    Eukaryotic integral membrane proteins are challenging targets for crystallography or functional characterization in a purified state. Since expression is often a limiting factor when studying this difficult class of biological macromolecules, the intent of this chapter is to focus on the expression of eukaryotic integral membrane proteins (IMPs) using the model organism Saccharomyces cerevisiae. S. cerevisiae is a prime candidate for the expression of eukaryotic IMPs because it offers the convenience of using episomal expression plasmids, selection of positive transformants, posttranslational modifications, and it can properly fold and target IMPs. Here we present a generalized protocol and insights based on our collective knowledge as an aid to overcoming the challenges faced when expressing eukaryotic IMPs in S. cerevisiae.

  10. Mobilomics in Saccharomyces cerevisiae strains

    PubMed Central

    2013-01-01

    Background Mobile Genetic Elements (MGEs) are selfish DNA integrated in the genomes. Their detection is mainly based on consensus–like searches by scanning the investigated genome against the sequence of an already identified MGE. Mobilomics aims at discovering all the MGEs in a genome and understanding their dynamic behavior: The data for this kind of investigation can be provided by comparative genomics of closely related organisms. The amount of data thus involved requires a strong computational effort, which should be alleviated. Results Our approach proposes to exploit the high similarity among homologous chromosomes of different strains of the same species, following a progressive comparative genomics philosophy. We introduce a software tool based on our new fast algorithm, called regender, which is able to identify the conserved regions between chromosomes. Our case study is represented by a unique recently available dataset of 39 different strains of S.cerevisiae, which regender is able to compare in few minutes. By exploring the non–conserved regions, where MGEs are mainly retrotransposons called Tys, and marking the candidate Tys based on their length, we are able to locate a priori and automatically all the already known Tys and map all the putative Tys in all the strains. The remaining putative mobile elements (PMEs) emerging from this intra–specific comparison are sharp markers of inter–specific evolution: indeed, many events of non–conservation among different yeast strains correspond to PMEs. A clustering based on the presence/absence of the candidate Tys in the strains suggests an evolutionary interconnection that is very similar to classic phylogenetic trees based on SNPs analysis, even though it is computed without using phylogenetic information. Conclusions The case study indicates that the proposed methodology brings two major advantages: (a) it does not require any template sequence for the wanted MGEs and (b) it can be applied to

  11. Sterol methylation in Saccharomyces cerevisiae.

    PubMed Central

    McCammon, M T; Hartmann, M A; Bottema, C D; Parks, L W

    1984-01-01

    Various nystatin-resistant mutants defective in S-adenosylmethionine: delta 24-sterol-C-methyltransferase (EC 2.1.1.41) were shown to possess alleles of the same gene, erg6. The genetic map location of erg6 was shown to be close to trp1 on chromosome 4. Despite the single locus for erg6, S-adenosylmethionine: delta 24-sterol-C-methyltransferase enzyme activity was found in three separate fractions: mitochondria, microsomes, and the "floating lipid layer." The amount of activity in each fraction could be manipulated by assay conditions. The lipids and lipid synthesis of mutants of Saccharomyces cerevisiae defective in the delta 24-sterol-C-methyltransferase were compared with a C5(6) desaturase mutant and parental wild types. No ergosterol (C28 sterol) could be detected in whole-cell sterol extracts of the erg6 mutants, the limits of detection being less than 10(-11) mol of ergosterol per 10(8) cells. The distribution of accumulated sterols by these mutants varied with growth phase and between free and esterified fractions. The steryl ester concentrations of the mutants were eight times higher than those of the wild type from exponential growth samples. However, the concentration of the ester accumulated by the mutants was not as great in stationary-phase cells. Whereas the head group phospholipid composition was the same between parental and mutant strains, strain-dependent changes in fatty acids were observed, most notably a 40% increase in the oleic acid content of phosphatidylethanolamine of one erg6 mutant, JR5. PMID:6363386

  12. Mapping of Trichodermin Resistance in SACCHAROMYCES CEREVISIAE : A Genetic Locus for a Component of the 60s Ribsomal Subunit

    PubMed Central

    Grant, Paul G.; Schindler, Daniel; Davies, Julian E.

    1976-01-01

    Resistance to the protein synthesis inhibitor trichodermin in Saccharomyces cerevisiae has been studied. A single recessive nuclear gene was responsible for resistance. The resistance locus, tcm1 was found to be closely linked (1 centimorgan) to the locus pet 17 on the right arm of chromosome XV. The mutation to trichodermin resistance conferred resistance to other 12,13-epoxytrichothecenes and to the structurally unrelated antibiotic anisomycin. PMID:786781

  13. Replicative and chronological aging in Saccharomyces cerevisiae.

    PubMed

    Longo, Valter D; Shadel, Gerald S; Kaeberlein, Matt; Kennedy, Brian

    2012-07-03

    Saccharomyces cerevisiae has directly or indirectly contributed to the identification of arguably more mammalian genes that affect aging than any other model organism. Aging in yeast is assayed primarily by measurement of replicative or chronological life span. Here, we review the genes and mechanisms implicated in these two aging model systems and key remaining issues that need to be addressed for their optimization. Because of its well-characterized genome that is remarkably amenable to genetic manipulation and high-throughput screening procedures, S. cerevisiae will continue to serve as a leading model organism for studying pathways relevant to human aging and disease.

  14. Biotechnological implications of filamentation in Saccharomyces cerevisiae.

    PubMed

    Ceccato-Antonini, Sandra Regina

    2008-07-01

    The genetics governing the morphological switch from round or ovoid cells to filamentous growth in Saccharomyces cerevisiae has received significant interest in relation to sensing and signaling pathways as well as the control of cell processes including budding, elongation and adhesion. Little is known about the environmental signals which trigger these morphological changes from a biotechnological point of view. This review aims to highlight the main causes of filamentous growth in S. cerevisiae in its industrial setting with the purpose of stimulating additional studies within this field.

  15. Biosynthesis of silver nanoparticles using Saccharomyces cerevisiae.

    PubMed

    Korbekandi, Hassan; Mohseni, Soudabeh; Mardani Jouneghani, Rasoul; Pourhossein, Meraj; Iravani, Siavash

    2016-01-01

    The objectives of this study were the biosynthesis of silver nanoparticles (NPs) by biotransformations using Saccharomyces cerevisiae and analysis of the sizes and shapes of the NPs produced. Dried and freshly cultured S. cerevisiae were used as the biocatalyst. Dried yeast synthesized few NPs, but freshly cultured yeast produced a large amount of them. Silver NPs were spherical, 2-20 nm in diameter, and the NPs with the size of 5.4 nm were the most frequent ones. NPs were seen inside the cells, within the cell membrane, attached to the cell membrane during the exocytosis, and outside of the cells.

  16. Adaptive Evolution of a Lactose-Consuming Saccharomyces cerevisiae Recombinant▿

    PubMed Central

    Guimarães, Pedro M. R.; François, Jean; Parrou, Jean Luc; Teixeira, José A.; Domingues, Lucília

    2008-01-01

    The construction of Saccharomyces cerevisiae strains that ferment lactose has biotechnological interest, particularly for cheese whey fermentation. A flocculent lactose-consuming S. cerevisiae recombinant expressing the LAC12 (lactose permease) and LAC4 (β-galactosidase) genes of Kluyveromyces lactis was constructed previously but showed poor efficiency in lactose fermentation. This strain was therefore subjected to an evolutionary engineering process (serial transfer and dilution in lactose medium), which yielded an evolved recombinant strain that consumed lactose twofold faster, producing 30% more ethanol than the original recombinant. We identified two molecular events that targeted the LAC construct in the evolved strain: a 1,593-bp deletion in the intergenic region (promoter) between LAC4 and LAC12 and a decrease of the plasmid copy number by about 10-fold compared to that in the original recombinant. The results suggest that the intact promoter was unable to mediate the induction of the transcription of LAC4 and LAC12 by lactose in the original recombinant and that the deletion established the transcriptional induction of both genes in the evolved strain. We propose that the tuning of the expression of the heterologous LAC genes in the evolved recombinant was accomplished by the interplay between the decreased copy number of both genes and the different levels of transcriptional induction for LAC4 and LAC12 resulting from the changed promoter structure. Nevertheless, our results do not exclude other possible mutations that may have contributed to the improved lactose fermentation phenotype. This study illustrates the usefulness of simple evolutionary engineering approaches in strain improvement. The evolved strain efficiently fermented threefold-concentrated cheese whey, providing an attractive alternative for the fermentation of lactose-based media. PMID:18245248

  17. Adaptive evolution of a lactose-consuming Saccharomyces cerevisiae recombinant.

    PubMed

    Guimarães, Pedro M R; François, Jean; Parrou, Jean Luc; Teixeira, José A; Domingues, Lucília

    2008-03-01

    The construction of Saccharomyces cerevisiae strains that ferment lactose has biotechnological interest, particularly for cheese whey fermentation. A flocculent lactose-consuming S. cerevisiae recombinant expressing the LAC12 (lactose permease) and LAC4 (beta-galactosidase) genes of Kluyveromyces lactis was constructed previously but showed poor efficiency in lactose fermentation. This strain was therefore subjected to an evolutionary engineering process (serial transfer and dilution in lactose medium), which yielded an evolved recombinant strain that consumed lactose twofold faster, producing 30% more ethanol than the original recombinant. We identified two molecular events that targeted the LAC construct in the evolved strain: a 1,593-bp deletion in the intergenic region (promoter) between LAC4 and LAC12 and a decrease of the plasmid copy number by about 10-fold compared to that in the original recombinant. The results suggest that the intact promoter was unable to mediate the induction of the transcription of LAC4 and LAC12 by lactose in the original recombinant and that the deletion established the transcriptional induction of both genes in the evolved strain. We propose that the tuning of the expression of the heterologous LAC genes in the evolved recombinant was accomplished by the interplay between the decreased copy number of both genes and the different levels of transcriptional induction for LAC4 and LAC12 resulting from the changed promoter structure. Nevertheless, our results do not exclude other possible mutations that may have contributed to the improved lactose fermentation phenotype. This study illustrates the usefulness of simple evolutionary engineering approaches in strain improvement. The evolved strain efficiently fermented threefold-concentrated cheese whey, providing an attractive alternative for the fermentation of lactose-based media.

  18. The resistance of the yeast Saccharomyces cerevisiae to the biocide polyhexamethylene biguanide: involvement of cell wall integrity pathway and emerging role for YAP1

    PubMed Central

    2011-01-01

    Background Polyhexamethylene biguanide (PHMB) is an antiseptic polymer that is mainly used for cleaning hospitals and pools and combating Acantamoeba infection. Its fungicide activity was recently shown by its lethal effect on yeasts that contaminate the industrial ethanol process, and on the PE-2 strain of Saccharomyces cerevisiae, one of the main fermenting yeasts in Brazil. This pointed to the need to know the molecular mechanism that lay behind the cell resistance to this compound. In this study, we examined the factors involved in PHMB-cell interaction and the mechanisms that respond to the damage caused by this interaction. To achieve this, two research strategies were employed: the expression of some genes by RT-qPCR and the analysis of mutant strains. Results Cell Wall integrity (CWI) genes were induced in the PHMB-resistant Saccharomyces cerevisiae strain JP-1, although they are poorly expressed in the PHMB-sensitive Saccharomyces cerevisiae PE2 strain. This suggested that PHMB damages the glucan structure on the yeast cell wall. It was also confirmed by the observed sensitivity of the yeast deletion strains, Δslg1, Δrom2, Δmkk2, Δslt2, Δknr4, Δswi4 and Δswi4, which showed that the protein kinase C (PKC) regulatory mechanism is involved in the response and resistance to PHMB. The sensitivity of the Δhog1 mutant was also observed. Furthermore, the cytotoxicity assay and gene expression analysis showed that the part played by YAP1 and CTT1 genes in cell resistance to PHMB is unrelated to oxidative stress response. Thus, we suggested that Yap1p can play a role in cell wall maintenance by controlling the expression of the CWI genes. Conclusion The PHMB treatment of the yeast cells activates the PKC1/Slt2 (CWI) pathway. In addition, it is suggested that HOG1 and YAP1 can play a role in the regulation of CWI genes. PMID:21854579

  19. HIM1, a new yeast Saccharomyces cerevisiae gene playing a role in control of spontaneous and induced mutagenesis.

    PubMed

    Kelberg, Ekaterina P; Kovaltsova, Svetlana V; Alekseev, Sergey Yu; Fedorova, Irina V; Gracheva, Ludmila M; Evstukhina, Tatiana A; Korolev, Vladimir G

    2005-10-15

    We have identified a new Saccharomyces cerevisiae gene, HIM1, mapped on the right arm of the chromosome IV (ORF YDR317w), mutations in which led to an increase in spontaneous mutation rate and elevated the frequencies of mutations, induced by UV-light, nitrous acid, ethylmethane sulfonate and methylmethane sulfonate. At the same time, him1 mutation did not result in the increase of the sensitivity to the lethal action of these DNA-damaging agents. We tested the induced mutagenesis in double mutants carrying him1 mutation and mutations in other repair genes: apn1, blocking base excision repair; rad2, rev3, and rad54, blocking three principal DNA repair pathways; pms1, blocking mismatch repair; hsm2 and hsm3 mutations, which lead to a mutator effect. Epistatic analysis showed a synergistic interaction of him1 with pms1, apn1, and rad2 mutations, and epistasis with the rev3, the rad54, the hsm2, and the hsm3. To elucidate the role of the HIM1 in control of spontaneous mutagenesis, we checked the repair of DNA mispaired bases in the him1 mutant and discovered that it was not altered in comparison to the wild-type strain. In our opinion, our results suggest that HIM1 gene participates in the control of processing of mutational intermediates appearing during error-prone bypass of DNA damage.

  20. Role for Fks1 in the intrinsic echinocandin resistance of Fusarium solani as evidenced by hybrid expression in Saccharomyces cerevisiae.

    PubMed

    Katiyar, Santosh K; Edlind, Thomas D

    2009-05-01

    The opportunistic mold Fusarium solani is intrinsically resistant to cell wall synthesis-inhibiting echinocandins (ECs), including caspofungin and micafungin. Mutations that confer acquired EC resistance in Saccharomyces cerevisiae and other normally susceptible yeast species have been mapped to the Fks1 gene; among these is the mutation of residue 639 from Phe to Tyr (F639Y) within a region designated hot spot 1. Fks1 sequence analysis identified the equivalent of Y639 in F. solani as well as in Scedosporium prolificans, another intrinsically EC-resistant mold. To test its role in intrinsic EC resistance, we constructed Fks1 hybrids in S. cerevisiae that incorporate F. solani hot spot 1 and flanking residues. Hybrid construction was accomplished by a PCR-based method that was validated by studies with Fks1 sequences from EC-susceptible Aspergillus fumigatus and paired EC-susceptible and -resistant Candida glabrata isolates. In support of our hypothesis, hybrid Fks1 incorporating F. solani hot spot 1 conferred significantly reduced EC susceptibility, 4- to 8-fold less than that of wild-type S. cerevisiae and 8- to 32-fold less than that of the same hybrid with an F639 mutation. We propose that Fks1 sequences represent determinants of intrinsic EC resistance in Fusarium and Scedosporium species and, potentially, other fungi.

  1. Deletion of the Saccharomyces cerevisiae ARO8 gene, encoding an aromatic amino acid transaminase, enhances phenylethanol production from glucose.

    PubMed

    Romagnoli, Gabriele; Knijnenburg, Theo A; Liti, Gianni; Louis, Edward J; Pronk, Jack T; Daran, Jean-Marc

    2015-01-01

    Phenylethanol has a characteristic rose-like aroma that makes it a popular ingredient in foods, beverages and cosmetics. Microbial production of phenylethanol currently relies on whole-cell bioconversion of phenylalanine with yeasts that harbour an Ehrlich pathway for phenylalanine catabolism. Complete biosynthesis of phenylethanol from a cheap carbon source, such as glucose, provides an economically attractive alternative for phenylalanine bioconversion. In this study, synthetic genetic array (SGA) screening was applied to identify genes involved in regulation of phenylethanol synthesis in Saccharomyces cerevisiae. The screen focused on transcriptional regulation of ARO10, which encodes the major decarboxylase involved in conversion of phenylpyruvate to phenylethanol. A deletion in ARO8, which encodes an aromatic amino acid transaminase, was found to underlie the transcriptional upregulation of ARO10 during growth, with ammonium sulphate as the sole nitrogen source. Physiological characterization revealed that the aro8Δ mutation led to substantial changes in the absolute and relative intracellular concentrations of amino acids. Moreover, deletion of ARO8 led to de novo production of phenylethanol during growth on a glucose synthetic medium with ammonium as the sole nitrogen source. The aro8Δ mutation also stimulated phenylethanol production when combined with other, previously documented, mutations that deregulate aromatic amino acid biosynthesis in S. cerevisiae. The resulting engineered S. cerevisiae strain produced >3 mm phenylethanol from glucose during growth on a simple synthetic medium. The strong impact of a transaminase deletion on intracellular amino acid concentrations opens new possibilities for yeast-based production of amino acid-derived products.

  2. MSI1, a negative regulator of the RAS-cAMP pathway in Saccharomyces cerevisiae.

    PubMed Central

    Ruggieri, R; Tanaka, K; Nakafuku, M; Kaziro, Y; Toh-e, A; Matsumoto, K

    1989-01-01

    We have previously demonstrated that the IRA1-encoded protein inhibits the function of the RAS protein in a fashion antagonistic to the function of the CDC25 protein in the RAS-cAMP pathway in Saccharomyces cerevisiae. In an attempt to identify genes involved in the regulation of this pathway, high-copy-number plasmid suppressors of the heat shock sensitivity of the ira1 mutation were isolated. One such suppressor, MSI1, was found to encode a putative protein of 422 amino acids that shows homology to the beta subunit of the mammalian guanine nucleotide-binding regulatory proteins. Overexpression of the MSI1 gene could suppress the heat shock sensitivity and the defect in sporulation caused by the ira1 and RAS2Val19 mutations but not those of the bcy1 mutation. Furthermore, the high level of intracellular cAMP in ira1 and RAS2Val19 cells was reduced by the MSI1 gene carried on a YEp-based plasmid. These results suggest that the MSI1 protein is a negative regulator of the RAS-mediated induction of cAMP in S. cerevisiae. Images PMID:2554329

  3. Haploidy, diploidy and evolution of antifungal drug resistance in Saccharomyces cerevisiae.

    PubMed

    Anderson, James B; Sirjusingh, Caroline; Ricker, Nicole

    2004-12-01

    We tested the hypothesis that the time course of the evolution of antifungal drug resistance depends on the ploidy of the fungus. The experiments were designed to measure the initial response to the selection imposed by the antifungal drug fluconazole up to and including the fixation of the first resistance mutation in populations of Saccharomyces cerevisiae. Under conditions of low drug concentration, mutations in the genes PDR1 and PDR3, which regulate the ABC transporters implicated in resistance to fluconazole, are favored. In this environment, diploid populations of defined size consistently became fixed for a resistance mutation sooner than haploid populations. Experiments manipulating population sizes showed that this advantage of diploids was due to increased mutation availability relative to that of haploids; in effect, diploids have twice the number of mutational targets as haploids and hence have a reduced waiting time for mutations to occur. Under conditions of high drug concentration, recessive mutations in ERG3, which result in resistance through altered sterol synthesis, are favored. In this environment, haploids consistently achieved resistance much sooner than diploids. When 29 haploid and 29 diploid populations were evolved for 100 generations in low drug concentration, the mutations fixed in diploid populations were all dominant, while the mutations fixed in haploid populations were either recessive (16 populations) or dominant (13 populations). Further, the spectrum of the 53 nonsynonymous mutations identified at the sequence level was different between haploids and diploids. These results fit existing theory on the relative abilities of haploids and diploids to adapt and suggest that the ploidy of the fungal pathogen has a strong impact on the evolution of fluconazole resistance.

  4. Rationally designed, heterologous S. cerevisiae transcripts expose novel expression determinants.

    PubMed

    Ben-Yehezkel, Tuval; Atar, Shimshi; Zur, Hadas; Diament, Alon; Goz, Eli; Marx, Tzipy; Cohen, Rafael; Dana, Alexandra; Feldman, Anna; Shapiro, Ehud; Tuller, Tamir

    2015-01-01

    Deducing generic causal relations between RNA transcript features and protein expression profiles from endogenous gene expression data remains a major unsolved problem in biology. The analysis of gene expression from heterologous genes contributes significantly to solving this problem, but has been heavily biased toward the study of the effect of 5' transcript regions and to prokaryotes. Here, we employ a synthetic biology driven approach that systematically differentiates the effect of different regions of the transcript on gene expression up to 240 nucleotides into the ORF. This enabled us to discover new causal effects between features in previously unexplored regions of transcripts, and gene expression in natural regimes. We rationally designed, constructed, and analyzed 383 gene variants of the viral HRSVgp04 gene ORF, with multiple synonymous mutations at key positions along the transcript in the eukaryote S. cerevisiae. Our results show that a few silent mutations at the 5'UTR can have a dramatic effect of up to 15 fold change on protein levels, and that even synonymous mutations in positions more than 120 nucleotides downstream from the ORF 5'end can modulate protein levels up to 160%-300%. We demonstrate that the correlation between protein levels and folding energy increases with the significance of the level of selection of the latter in endogenous genes, reinforcing the notion that selection for folding strength in different parts of the ORF is related to translation regulation. Our measured protein abundance correlates notably(correlation up to r = 0.62 (p=0.0013)) with mean relative codon decoding times, based on ribosomal densities (Ribo-Seq) in endogenous genes, supporting the conjecture that translation elongation and adaptation to the tRNA pool can modify protein levels in a causal/direct manner. This report provides an improved understanding of transcript evolution, design principles of gene expression regulation, and suggests simple rules for

  5. Rationally designed, heterologous S. cerevisiae transcripts expose novel expression determinants

    PubMed Central

    Ben-Yehezkel, Tuval; Atar, Shimshi; Zur, Hadas; Diament, Alon; Goz, Eli; Marx, Tzipy; Cohen, Rafael; Dana, Alexandra; Feldman, Anna; Shapiro, Ehud; Tuller, Tamir

    2015-01-01

    Deducing generic causal relations between RNA transcript features and protein expression profiles from endogenous gene expression data remains a major unsolved problem in biology. The analysis of gene expression from heterologous genes contributes significantly to solving this problem, but has been heavily biased toward the study of the effect of 5′ transcript regions and to prokaryotes. Here, we employ a synthetic biology driven approach that systematically differentiates the effect of different regions of the transcript on gene expression up to 240 nucleotides into the ORF. This enabled us to discover new causal effects between features in previously unexplored regions of transcripts, and gene expression in natural regimes. We rationally designed, constructed, and analyzed 383 gene variants of the viral HRSVgp04 gene ORF, with multiple synonymous mutations at key positions along the transcript in the eukaryote S. cerevisiae. Our results show that a few silent mutations at the 5′UTR can have a dramatic effect of up to 15 fold change on protein levels, and that even synonymous mutations in positions more than 120 nucleotides downstream from the ORF 5′end can modulate protein levels up to 160%–300%. We demonstrate that the correlation between protein levels and folding energy increases with the significance of the level of selection of the latter in endogenous genes, reinforcing the notion that selection for folding strength in different parts of the ORF is related to translation regulation. Our measured protein abundance correlates notably(correlation up to r = 0.62 (p=0.0013)) with mean relative codon decoding times, based on ribosomal densities (Ribo-Seq) in endogenous genes, supporting the conjecture that translation elongation and adaptation to the tRNA pool can modify protein levels in a causal/direct manner. This report provides an improved understanding of transcript evolution, design principles of gene expression regulation, and suggests simple

  6. Tangential Ultrafiltration of Aqueous "Saccharomyces Cerevisiae" Suspensions

    ERIC Educational Resources Information Center

    Silva, Carlos M.; Neves, Patricia S.; Da Silva, Francisco A.; Xavier, Ana M. R. B.; Eusebio, M. F. J.

    2008-01-01

    Experimental work on ultrafiltration is presented to illustrate the practical and theoretical principles of this separation technique. The laboratory exercise comprises experiments with pure water and with aqueous "Saccharomyces cerevisiae" (from commercial Baker's yeast) suspensions. With this work students detect the characteristic phenomena…

  7. Regulation of Mitotic Exit in Saccharomyces cerevisiae.

    PubMed

    Baro, Bàrbara; Queralt, Ethel; Monje-Casas, Fernando

    2017-01-01

    The Mitotic Exit Network (MEN) is an essential signaling pathway, closely related to the Hippo pathway in mammals, which promotes mitotic exit and initiates cytokinesis in the budding yeast Saccharomyces cerevisiae. Here, we summarize the current knowledge about the MEN components and their regulation.

  8. Mechanisms of Ethanol Tolerance in Saccharomyces cerevisiae

    USDA-ARS?s Scientific Manuscript database

    Saccharomyces cerevisiae is a superb ethanol producer, yet is also sensitive to higher ethanol concentrations especially under high gravity or very high gravity fermentation conditions. Ethanol tolerance is associated with interplay of complex networks at the genome level. Although significant eff...

  9. Tangential Ultrafiltration of Aqueous "Saccharomyces Cerevisiae" Suspensions

    ERIC Educational Resources Information Center

    Silva, Carlos M.; Neves, Patricia S.; Da Silva, Francisco A.; Xavier, Ana M. R. B.; Eusebio, M. F. J.

    2008-01-01

    Experimental work on ultrafiltration is presented to illustrate the practical and theoretical principles of this separation technique. The laboratory exercise comprises experiments with pure water and with aqueous "Saccharomyces cerevisiae" (from commercial Baker's yeast) suspensions. With this work students detect the characteristic phenomena…

  10. A halotolerant mutant of Saccharomyces cerevisiae.

    PubMed Central

    Gaxiola, R; Corona, M; Zinker, S

    1996-01-01

    FRD, a nuclear and dominant spontaneous mutant of Saccharomyces cerevisiae capable of growing in up to 2 M NaCl, was isolated. Compared with parental cells, the mutant cells have a lower intracellular Na+/K+ ratio, shorter generation times in the presence of 1 M NaCl, and alterations in gene expression. PMID:8631691

  11. Engineer Sccharomyces cerevisiae for consolidated bioprocessing

    USDA-ARS?s Scientific Manuscript database

    The current commercial biofuel production is based on a two-stage process of enzymatic treatment to degrade starch to fermentable sugar, followed by yeast fermentation of the sugar to ethanol. An attractive alternative would be to engineer Saccharomyces cerevisiae for cell-based saccharification an...

  12. The Saccharomyces Cerevisiae Spt7 Gene Encodes a Very Acidic Protein Important for Transcription in Vivo

    PubMed Central

    Gansheroff, L. J.; Dollard, C.; Tan, P.; Winston, F.

    1995-01-01

    Mutations in the SPT7 gene of Saccharomyces cerevisiae originally were identified as suppressors of Ty and {delta small} insertion mutations in the 5' regions of the HIS4 and LYS2 genes. Other genes that have been identified in mutant hunts of this type have been shown to play a role in transcription. In this work we show that SPT7 is also important for proper transcription in vivo. We have cloned and sequenced the SPT7 gene and have shown that it encodes a large, acidic protein that is localized to the nucleus. The SPT7 protein contains a bromodomain sequence; a deletion that removes the bromodomain from the SPT7 protein causes no detectable mutant phenotype. Strains that contain an spt7 null mutation are viable but grow very slowly and have transcriptional defects at many loci including insertion mutations, Ty elements, the INO1 gene and the MFA1 gene. These transcriptional defects and other mutant phenotypes are similar to those caused by certain mutations in SPT15, which encodes the TATA binding protein (TBP). The similarity of the phenotypes of spt7 and spt15 mutants, including effects of spt7 mutations on the transcription start site of certain genes, suggests that SPT7 plays an important role in transcription initiation in vivo. PMID:7713415

  13. Improved xylose and arabinose utilization by an industrial recombinant Saccharomyces cerevisiae strain using evolutionary engineering

    PubMed Central

    2010-01-01

    Background Cost-effective fermentation of lignocellulosic hydrolysate to ethanol by Saccharomyces cerevisiae requires efficient mixed sugar utilization. Notably, the rate and yield of xylose and arabinose co-fermentation to ethanol must be enhanced. Results Evolutionary engineering was used to improve the simultaneous conversion of xylose and arabinose to ethanol in a recombinant industrial Saccharomyces cerevisiae strain carrying the heterologous genes for xylose and arabinose utilization pathways integrated in the genome. The evolved strain TMB3130 displayed an increased consumption rate of xylose and arabinose under aerobic and anaerobic conditions. Improved anaerobic ethanol production was achieved at the expense of xylitol and glycerol but arabinose was almost stoichiometrically converted to arabitol. Further characterization of the strain indicated that the selection pressure during prolonged continuous culture in xylose and arabinose medium resulted in the improved transport of xylose and arabinose as well as increased levels of the enzymes from the introduced fungal xylose pathway. No mutation was found in any of the genes from the pentose converting pathways. Conclusion To the best of our knowledge, this is the first report that characterizes the molecular mechanisms for improved mixed-pentose utilization obtained by evolutionary engineering of a recombinant S. cerevisiae strain. Increased transport of pentoses and increased activities of xylose converting enzymes contributed to the improved phenotype. PMID:20550651

  14. Expression and processing of human ornithine-delta-aminotransferase in Saccharomyces cerevisiae.

    PubMed

    Dougherty, K M; Swanson, D A; Brody, L C; Valle, D

    1993-11-01

    Ornithine-delta-aminotransferase catalyzes the conversion of ornithine to glutamate-gamma-semialdehyde. In humans, deficiency of this mitochondrial matrix enzyme results in the progressive blinding disorder, gyrate atrophy of the choroid and retina. To explore yeast as an expression system, we introduced a cDNA encoding human ornithine-delta-aminotransferase into an ornithine aminotransferase-deficient strain of Saccharomyces cerevisiae. The human enzyme was expressed at high levels, with activity 20-fold greater than that of wild-type yeast and 10-fold higher than in human fibroblasts. Although the normal location of ornithine-delta-aminotransferase in S. cerevisiae is cytosolic, human ornithine-delta-aminotransferase expressed in S. cerevisiae was localized to the mitochondrial matrix with correct proteolytic processing of its mitochondrial leader sequence. Despite this anomalous location in yeast, human ornithine-delta-aminotransferase complemented the phenotype of the mutant strain, restoring its ability to utilize ornithine as a sole nitrogen source. We also expressed a vitamin B6-responsive missense allele of ornithine-delta-aminotransferase (V332M) and showed that the biochemical phenotype of this allele is easily demonstrated confirming the usefulness of this system for examining mutations causing gyrate atrophy.

  15. Construction of a Saccharomyces cerevisiae strain with a high level of RNA.

    PubMed

    Chuwattanakul, Varesa; Kim, Yeon-Hee; Sugiyama, Minetaka; Nishiuchi, Hiroaki; Miwa, Haruhumi; Kaneko, Yoshinobu; Harashima, Satoshi

    2011-07-01

    A strategy has been developed for creating Saccharomyces cerevisiae strains with a high RNA content by following a three-step breeding procedure. In the first step, an S. cerevisiae disruptant of the RRN10 gene, one of the components of the UAF (upstream activation factor) complex of rRNA transcription, was constructed and showed severely slow growth. In the second step, seven suppressors were isolated that restored the slow growth of the Δrrn10 disruptant. Genetic analysis revealed that each of the seven suppressors that were isolated appeared to have dominant and multiple mutations. The specific growth rate of those suppressors was increased approximately two-fold as compared with the Δrrn10 parental strain. The absolute RNA content showed that the suppressors had an RNA content 32-56% higher than that of the Δrrn10 parental strain. In the last step, the RRN10 wild-type gene was integrated into chromosome V of each of the original suppressors. The total RNA content of the integrants was also 1.4- to 2.3-fold higher than the wild-type strain. In conclusion, since yeast RNA is the source of 5'-IMP and 5'-GMP that enhance the delicious taste in certain types of food, like soups and sauces, the strategy taken in this study provides effective approach to breed S. cerevisiae strains producing a higher content of RNA that will contribute to yeast food biotechnology.

  16. CTP synthetase and its role in phospholipid synthesis in the yeast Saccharomyces cerevisiae

    PubMed Central

    Chang, Yu-Fang; Carman, George M.

    2008-01-01

    CTP synthetase is a cytosolic-associated glutamine amidotransferase enzyme that catalyzes the ATP-dependent transfer of the amide nitrogen from glutamine to the C-4 position of UTP to form CTP. In the yeast Saccharomyces cerevisiae, the reaction product CTP is an essential precursor of all membrane phospholipids that are synthesized via the Kennedy (CDP-choline and CDP-ethanolamine branches) and CDP-diacylglycerol pathways. The URA7 and URA8 genes encode CTP synthetase in S. cerevisiae, and the URA7 gene is responsible for the majority of CTP synthesized in vivo. The CTP synthetase enzymes are allosterically regulated by CTP product inhibition. Mutations that alleviate this regulation result in an elevated cellular level of CTP and an increase in phospholipid synthesis via the Kennedy pathway. The URA7-encoded enzyme is phosphorylated by protein kinases A and C, and these phosphorylations stimulate CTP synthetase activity and increase cellular CTP levels and the utilization of the Kennedy pathway. The CTPS1 and CTPS2 genes that encode human CTP synthetase enzymes are functionally expressed in S. cerevisiae, and rescue the lethal phenotype of the ura7Δ ura8Δ double mutant that lacks CTP synthetase activity. The expression in yeast has revealed that the human CTPS1-encoded enzyme is also phosphorylated and regulated by protein kinases A and C. PMID:18439916

  17. The Saccharomyces cerevisiae Lipin Homolog is a Mg2+-dependent Phosphatidate Phosphatase Enzyme*

    PubMed Central

    Han, Gil-Soo; Wu, Wen-I; Carman, George M.

    2006-01-01

    Mg2+-dependent phosphatidate (PA) phosphatase (3-sn-phosphatidate phosphohydrolase, EC 3.1.3.4) catalyzes the dephosphorylation of PA to yield diacylglycerol and Pi. In this work, we identified the Saccharomyces cerevisiae PAH1 (previously known as SMP2) gene that encodes Mg2+-dependent PA phosphatase using amino acid sequence information derived from a purified preparation of the enzyme (Lin, Y.-P., and Carman, G.M. (1989) J. Biol. Chem. 264, 8641–8645). Overexpression of PAH1 in S. cerevisiae directed elevated levels of Mg2+-dependent PA phosphatase activity, whereas the pah1Δ mutation caused reduced levels of enzyme activity. Heterologous expression of PAH1 in Escherichia coli confirmed that Pah1p is a Mg2+-dependent PA phosphatase enzyme, and showed that its enzymological properties were very similar to those of the enzyme purified from S. cerevisiae. The PAH1-encoded enzyme activity was associated with both the membrane and cytosolic fractions of the cell, and the membrane-bound form of the enzyme was salt-extractable. Lipid analysis showed that mutants lacking PAH1 accumulated PA, and had reduced amounts of diacylglycerol and its derivative triacylglycerol. The PAH1-encoded Mg2+-dependent PA phosphatase shows homology to mammalian lipin, a fat-regulating protein whose molecular function is unknown. Heterologous expression of human LPIN1 in E. coli showed that lipin 1 is also a Mg2+-dependent PA phosphatase enzyme. PMID:16467296

  18. A role for Saccharomyces cerevisiae Tpa1 protein in direct alkylation repair.

    PubMed

    Shivange, Gururaj; Kodipelli, Naveena; Monisha, Mohan; Anindya, Roy

    2014-12-26

    Alkylating agents induce cytotoxic DNA base adducts. In this work, we provide evidence to suggest, for the first time, that Saccharomyces cerevisiae Tpa1 protein is involved in DNA alkylation repair. Little is known about Tpa1 as a repair protein beyond the initial observation from a high-throughput analysis indicating that deletion of TPA1 causes methyl methane sulfonate sensitivity in S. cerevisiae. Using purified Tpa1, we demonstrate that Tpa1 repairs both single- and double-stranded methylated DNA. Tpa1 is a member of the Fe(II) and 2-oxoglutarate-dependent dioxygenase family, and we show that mutation of the amino acid residues involved in cofactor binding abolishes the Tpa1 DNA repair activity. Deletion of TPA1 along with the base excision repair pathway DNA glycosylase MAG1 renders the tpa1Δmag1Δ double mutant highly susceptible to methylation-induced toxicity. We further demonstrate that the trans-lesion synthesis DNA polymerase Polζ (REV3) plays a key role in tolerating DNA methyl-base lesions and that tpa1Δmag1revΔ3 triple mutant is extremely susceptible to methylation-induced toxicity. Our results indicate a synergism between the base excision repair pathway and direct alkylation repair by Tpa1 in S. cerevisiae. We conclude that Tpa1 is a hitherto unidentified DNA repair protein in yeast and that it plays a crucial role in reverting alkylated DNA base lesions and cytotoxicity.

  19. A Role for Saccharomyces cerevisiae Tpa1 Protein in Direct Alkylation Repair*

    PubMed Central

    Shivange, Gururaj; Kodipelli, Naveena; Monisha, Mohan; Anindya, Roy

    2014-01-01

    Alkylating agents induce cytotoxic DNA base adducts. In this work, we provide evidence to suggest, for the first time, that Saccharomyces cerevisiae Tpa1 protein is involved in DNA alkylation repair. Little is known about Tpa1 as a repair protein beyond the initial observation from a high-throughput analysis indicating that deletion of TPA1 causes methyl methane sulfonate sensitivity in S. cerevisiae. Using purified Tpa1, we demonstrate that Tpa1 repairs both single- and double-stranded methylated DNA. Tpa1 is a member of the Fe(II) and 2-oxoglutarate-dependent dioxygenase family, and we show that mutation of the amino acid residues involved in cofactor binding abolishes the Tpa1 DNA repair activity. Deletion of TPA1 along with the base excision repair pathway DNA glycosylase MAG1 renders the tpa1Δmag1Δ double mutant highly susceptible to methylation-induced toxicity. We further demonstrate that the trans-lesion synthesis DNA polymerase Polζ (REV3) plays a key role in tolerating DNA methyl-base lesions and that tpa1Δmag1revΔ3 triple mutant is extremely susceptible to methylation-induced toxicity. Our results indicate a synergism between the base excision repair pathway and direct alkylation repair by Tpa1 in S. cerevisiae. We conclude that Tpa1 is a hitherto unidentified DNA repair protein in yeast and that it plays a crucial role in reverting alkylated DNA base lesions and cytotoxicity. PMID:25381260

  20. A positive regulatory gene, THI3, is required for thiamine metabolism in Saccharomyces cerevisiae.

    PubMed Central

    Nishimura, H; Kawasaki, Y; Kaneko, Y; Nosaka, K; Iwashima, A

    1992-01-01

    We have isolated a thiamine auxotrophic mutant carrying a recessive mutation which lacks the positive regulatory gene, THI3, which differs in the regulation of thiamine transport from the THI2 (PHO6) gene described previously (Y. Kawasaki, K. Nosaka, Y. Kaneko, H. Nishimura, and A. Iwashima, J. Bacteriol. 172:6145-6147, 1990) for expression of thiamine metabolism in Saccharomyces cerevisiae. The mutant (thi3) had a markedly reduced thiamine transport system as well as reduced activity of thiamine-repressible acid phosphatase and of several enzymes for thiamine synthesis from 2-methyl-4-amino-5-hydroxymethylpyrimidine and 4-methyl-5-beta-hydroxyethylthiazole. These results suggest that thiamine metabolism in S. cerevisiae is subject to two positive regulatory genes, THI2 (PHO6) and THI3. We have also isolated a hybrid plasmid, pTTR1, containing a 6.2-kb DNA fragment from an S. cerevisiae genomic library which complements thiamine auxotrophy in the thi3 mutant. This gene was localized on a 3.0-kb ClaI-BglII fragment in the subclone pTTR5. Complementation of the activities for thiamine metabolism in the thi3 mutant transformed by some plasmids with the THI3 gene was also examined. PMID:1624458

  1. Organization of specific genomic regions of Zygosaccharomyces rouxii and Pichia sorbitophila: comparison with Saccharomyces cerevisiae.

    PubMed

    Sychrova, H; Braun, V; Potier, S; Souciet, J L

    2000-11-01

    The genomes of Zygosaccharomyces rouxii and Pichia sorbitophila were partially explored. The genome of Z. rouxii CBS 732 consists of seven chromosomes with an approximate size of 1.0-2.75 Mb, 12.8 Mb in total. Five of the chromosomes were labelled with specific probes. Three Z. rouxii genomic DNA fragments were sequenced; all 10 ORFs found were without introns and they have homologues in S. cerevisiae. Gene order comparison revealed that the organization is partially conserved in both species. The genome of P. sorbitophila CBS 7064 consists of seven chromosomes with an approximate size of 1.0-2.9 Mb, 13.9 Mb in total. Three of the chromosomes were labelled with specific probes. The sequencing of a 5.2 kb genomic DNA fragment revealed three ORFs, but no conservation of their organization was found, although all of them have their respective homologues in S. cerevisiae. According to our results, the presence of two overlapping ORFs in S. cerevisiae (YJL107c-YJL108c) could be interpreted as the result of a frameshift mutation.

  2. Effect of a water soluble derivative of alpha-tocopherol on radiation response of Saccharomyces cerevisiae.

    PubMed

    Singh, R K; Verma, N C; Kagiya, V T

    2001-12-01

    The radioprotection conferred by a highly water soluble glucose derivative of alpha-tocopherol, namely, 2-(alpha-D-glucopyranosyl) methyl-2,5,7,8-tetramethylchroman-6-ol (TMG) in Saccharomyces cerevisiae was studied. Cells grown in standard YEPD-agar medium and irradiated in the presence of TMG showed a concentration dependent higher survival up to 10 mM of TMG in comparison to cells irradiated in distilled water. Treatment of TMG to cells given either before or immediately after irradiation but not during irradiation, had no effect on their radiation response. S. cerevisiae strain LP1383 (rad52) which is defective in recombination repair showed enhanced radioresistance only when subjected to irradiation in presence of TMG. Cells of rad52 strain grown in the medium containing TMG showed a radiation response similar to that of cells grown in the medium without TMG. The nature of TMG dependent enhanced radioresistance was studied by scoring the mutations in the strain D-7, which behaved like wild type strain in complete medium, at trp and ilv loci. Our study indicated that TMG confers radioresistance in S. cerevisiae possibly by two mechanisms viz. (i), by eliminating radiation induced reactive free radicals when the irradiation is carried out in the presence of TMG and (ii), by activating an error prone repair process involving RAD52 gene, when the cells are grown in the medium containing TMG.

  3. Rapid and efficient galactose fermentation by engineered Saccharomyces cerevisiae.

    PubMed

    Quarterman, Josh; Skerker, Jeffrey M; Feng, Xueyang; Liu, Ian Y; Zhao, Huimin; Arkin, Adam P; Jin, Yong-Su

    2016-07-10

    In the important industrial yeast Saccharomyces cerevisiae, galactose metabolism requires energy production by respiration; therefore, this yeast cannot metabolize galactose under strict anaerobic conditions. While the respiratory dependence of galactose metabolism provides benefits in terms of cell growth and population stability, it is not advantageous for producing fuels and chemicals since a substantial fraction of consumed galactose is converted to carbon dioxide. In order to force S. cerevisiae to use galactose without respiration, a subunit (COX9) of a respiratory enzyme was deleted, but the resulting deletion mutant (Δcox9) was impaired in terms of galactose assimilation. Interestingly, after serial sub-cultures on galactose, the mutant evolved rapidly and was able to use galactose via fermentation only. The evolved strain (JQ-G1) produced ethanol from galactose with a 94% increase in yield and 6.9-fold improvement in specific productivity as compared to the wild-type strain. (13)C-metabolic flux analysis demonstrated a three-fold reduction in carbon flux through the TCA cycle of the evolved mutant with redirection of flux toward the fermentation pathway. Genome sequencing of the JQ-G1 strain revealed a loss of function mutation in a master negative regulator of the Leloir pathway (Gal80p). The mutation (Glu348*) in Gal80p was found to act synergistically with deletion of COX9 for efficient galactose fermentation, and thus the double deletion mutant Δcox9Δgal80 produced ethanol 2.4 times faster and with 35% higher yield than a single knockout mutant with deletion of GAL80 alone. When we introduced a functional COX9 cassette back into the JQ-G1 strain, the JQ-G1-COX9 strain showed a 33% reduction in specific galactose uptake rate and a 49% reduction in specific ethanol production rate as compared to JQ-G1. The wild-type strain was also subjected to serial sub-cultures on galactose but we failed to isolate a mutant capable of utilizing galactose without

  4. Diploid yeast cells yield homozygous spontaneous mutations

    NASA Technical Reports Server (NTRS)

    Esposito, M. S.; Bruschi, C. V.; Brushi, C. V. (Principal Investigator)

    1993-01-01

    A leucine-requiring hybrid of Saccharomyces cerevisiae, homoallelic at the LEU1 locus (leu1-12/leu1-12) and heterozygous for three chromosome-VII genetic markers distal to the LEU1 locus, was employed to inquire: (1) whether spontaneous gene mutation and mitotic segregation of heterozygous markers occur in positive nonrandom association and (2) whether homozygous LEU1/LEU1 mutant diploids are generated. The results demonstrate that gene mutation of leu1-12 to LEU1 and mitotic segregation of heterozygous chromosome-VII markers occur in strong positive nonrandom association, suggesting that the stimulatory DNA lesion is both mutagenic and recombinogenic. In addition, genetic analysis of diploid Leu+ revertants revealed that approximately 3% of mutations of leu1-12 to LEU1 result in LEU1/LEU1 homozygotes. Red-white sectored Leu+ colonies exhibit genotypes that implicate post-replicational chromatid breakage and exchange near the site of leu1-12 reversion, chromosome loss, and subsequent restitution of diploidy, in the sequence of events leading to mutational homozygosis. By analogy, diploid cell populations can yield variants homozygous for novel recessive gene mutations at biologically significant rates. Mutational homozygosis may be relevant to both carcinogenesis and the evolution of asexual diploid organisms.

  5. Diploid yeast cells yield homozygous spontaneous mutations

    NASA Technical Reports Server (NTRS)

    Esposito, M. S.; Bruschi, C. V.; Brushi, C. V. (Principal Investigator)

    1993-01-01

    A leucine-requiring hybrid of Saccharomyces cerevisiae, homoallelic at the LEU1 locus (leu1-12/leu1-12) and heterozygous for three chromosome-VII genetic markers distal to the LEU1 locus, was employed to inquire: (1) whether spontaneous gene mutation and mitotic segregation of heterozygous markers occur in positive nonrandom association and (2) whether homozygous LEU1/LEU1 mutant diploids are generated. The results demonstrate that gene mutation of leu1-12 to LEU1 and mitotic segregation of heterozygous chromosome-VII markers occur in strong positive nonrandom association, suggesting that the stimulatory DNA lesion is both mutagenic and recombinogenic. In addition, genetic analysis of diploid Leu+ revertants revealed that approximately 3% of mutations of leu1-12 to LEU1 result in LEU1/LEU1 homozygotes. Red-white sectored Leu+ colonies exhibit genotypes that implicate post-replicational chromatid breakage and exchange near the site of leu1-12 reversion, chromosome loss, and subsequent restitution of diploidy, in the sequence of events leading to mutational homozygosis. By analogy, diploid cell populations can yield variants homozygous for novel recessive gene mutations at biologically significant rates. Mutational homozygosis may be relevant to both carcinogenesis and the evolution of asexual diploid organisms.

  6. Polymorphisms in DNA polymerase γ affect the mtDNA stability and the NRTI-induced mitochondrial toxicity in Saccharomyces cerevisiae

    PubMed Central

    Baruffini, Enrico; Ferrari, Jessica; Dallabona, Cristina; Donnini, Claudia; Lodi, Tiziana

    2015-01-01

    Several pathological mutations have been identified in human POLG gene, encoding for the catalytic subunit of Pol γ, the solely mitochondrial replicase in animals and fungi. However, little is known regarding non-pathological polymorphisms found in this gene. Here we studied, in the yeast model Saccharomyces cerevisiae, eight human polymorphisms. We found that most of them are not neutral but enhanced both mtDNA extended mutability and the accumulation of mtDNA point mutations, either alone or in combination with a pathological mutation. In addition, we found that the presence of some SNPs increased the stavudine and/or zalcitabine-induced mtDNA mutability and instability. PMID:25462018

  7. A genetic overhaul of Saccharomyces cerevisiae 424A(LNH-ST) to improve xylose fermentation.

    PubMed

    Bera, Aloke K; Ho, Nancy W Y; Khan, Aftab; Sedlak, Miroslav

    2011-05-01

    Robust microorganisms are necessary for economical bioethanol production. However, such organisms must be able to effectively ferment both hexose and pentose sugars present in lignocellulosic hydrolysate to ethanol. Wild type Saccharomyces cerevisiae can rapidly ferment hexose, but cannot ferment pentose sugars. Considerable efforts were made to genetically engineer S. cerevisiae to ferment xylose. Our genetically engineered S cerevisiae yeast, 424A(LNH-ST), expresses NADPH/NADH xylose reductase (XR) that prefer NADPH and NAD(+)-dependent xylitol dehydrogenase (XD) from Pichia stipitis, and overexpresses endogenous xylulokinase (XK). This strain is able to ferment glucose and xylose, as well as other hexose sugars, to ethanol. However, the preference for different cofactors by XR and XD might lead to redox imbalance, xylitol excretion, and thus might reduce ethanol yield and productivity. In the present study, genes responsible for the conversion of xylose to xylulose with different cofactor specificity (1) XR from N. crassa (NADPH-dependent) and C. parapsilosis (NADH-dependent), and (2) mutant XD from P. stipitis (containing three mutations D207A/I208R/F209S) were overexpressed in wild type yeast. To increase the NADPH pool, the fungal GAPDH enzyme from Kluyveromyces lactis was overexpressed in the 424A(LNH-ST) strain. Four pentose phosphate pathway (PPP) genes, TKL1, TAL1, RKI1 and RPE1 from S. cerevisiae, were also overexpressed in 424A(LNH-ST). Overexpression of GAPDH lowered xylitol production by more than 40%. However, other strains carrying different combinations of XR and XD, as well as new strains containing the overexpressed PPP genes, did not yield any significant improvement in xylose fermentation.

  8. Alpha and beta subunits of F1-ATPase are required for survival of petite mutants in Saccharomyces cerevisiae.

    PubMed

    Chen, X J; Clark-Walker, G D

    1999-12-01

    Although Saccharomyces cerevisiae can form petite mutants with deletions in mitochondrial DNA (mtDNA) (rho-) and can survive complete loss of the organellar genome (rho(o)), the genetic factor(s) that permit(s) survival of rho- and rho(o) mutants remain(s) unknown. In this report we show that a function associated with the F1-ATPase, which is distinct from its role in energy transduction, is required for the petite-positive phenotype of S. cerevisiae. Inactivation of either the alpha or beta subunit, but not the gamma, delta, or epsilon subunit of F1, renders cells petite-negative. The F1 complex, or a subcomplex composed of the alpha and beta subunits only, is essential for survival of rho(o) cells and those impaired in electron transport. The activity of F1 that suppresses rho(o) lethality is independent of the membrane Fo complex, but is associated with an intrinsic ATPase activity. A further demonstration of the ability of F1 subunits to suppress rho(o) lethality has been achieved by simultaneous expression of S. cerevisiae F1 alpha and gamma subunit genes in Kluyveromyces lactis - which allows this petite-negative yeast to survive the loss of its mtDNA. Consequently, ATP1 and ATP2, in addition to the previously identified AAC2, YME1 and PEL1/PGS1 genes, are required for establishment of rho- or rho(o) mutations in S. cerevisiae.

  9. Conditional mutations occur predominantly in highly conserved residues of RNA polymerase II subunits.

    PubMed Central

    Scafe, C; Martin, C; Nonet, M; Podos, S; Okamura, S; Young, R A

    1990-01-01

    Conditional mutations in the Saccharomyces cerevisiae RNA polymerase II large subunit, RPB1, were obtained by introducing a mutagenized RPB1 plasmid into yeast cells, selecting for loss of the wild-type RPB1 gene, and screening the cells for heat or cold sensitivity. Sequence analysis of 10 conditional RPB1 mutations and 10 conditional RPB2 mutations revealed that the amino acid residues altered by these distinct mutations are nearly always invariant among eucaryotic RPB1 and RPB2 homologs. These results suggest that RNA polymerase mutants might be obtained in other eucaryotic organisms by alteration of these invariant residues. Images PMID:2406567

  10. The rate and effects of spontaneous mutation on fitness traits in the social amoeba, Dictyostelium discoideum.

    PubMed

    Hall, David W; Fox, Sara; Kuzdzal-Fick, Jennie J; Strassmann, Joan E; Queller, David C

    2013-07-08

    We performed a mutation accumulation (MA) experiment in the social amoeba Dictyostelium discoideum to estimate the rate and distribution of effects of spontaneous mutations affecting eight putative fitness traits. We found that the per-generation mutation rate for most fitness components is 0.0019 mutations per haploid genome per generation or larger. This rate is an order of magnitude higher than estimates for fitness components in the unicellular eukaryote Saccharomyces cerevisiae, even though the base-pair substitution rate is two orders of magnitude lower. The high rate of fitness-altering mutations observed in this species may be partially explained by a large mutational target relative to S. cerevisiae. Fitness-altering mutations also may occur primarily at simple sequence repeats, which are common throughout the genome, including in coding regions, and may represent a target that is particularly likely to give fitness effects upon mutation. The majority of mutations had deleterious effects on fitness, but there was evidence for a substantial fraction, up to 40%, being beneficial for some of the putative fitness traits. Competitive ability within the multicellular slug appears to be under weak directional selection, perhaps reflecting the fact that slugs are sometimes, but not often, comprised of multiple clones in nature. Evidence for pleiotropy among fitness components across MA lines was absent, suggesting that mutations tend to act on single fitness components.

  11. Strain-specific nuclear genetic background differentially affects mitochondria-related phenotypes in Saccharomyces cerevisiae.

    PubMed

    Montanari, Arianna; Francisci, Silvia; Fazzi D'Orsi, Mario; Bianchi, Michele Maria

    2014-06-01

    In the course of our studies on mitochondrial defects, we have observed important phenotypic variations in Saccharomyces cerevisiae strains suggesting that a better characterization of the genetic variability will be essential to define the relationship between the mitochondrial efficiency and the presence of different nuclear backgrounds. In this manuscript, we have extended the study of such relations by comparing phenotypic assays related to mitochondrial functions of three wild-type laboratory strains. In addition to the phenotypic variability among the wild-type strains, important differences have been observed among strains bearing identical mitochondrial tRNA mutations that could be related only to the different nuclear background of the cells. Results showed that strains exhibited an intrinsic variability in the severity of the effects of the mitochondrial mutations and that specific strains might be used preferentially to evaluate the phenotypic effect of mitochondrial mutations on carbon metabolism, stress responses, and mitochondrial DNA stability. In particular, while W303-1B and MCC123 strains should be used to study the effect of severe mitochondrial tRNA mutations, D273-10B/A1 strain is rather suitable for studying the effects of milder mutations.

  12. The vacuolar compartment is required for sulfur amino acid homeostasis in Saccharomyces cerevisiae.

    PubMed

    Jacquemin-Faure, I; Thomas, D; Laporte, J; Cibert, C; Surdin-Kerjan, Y

    1994-09-01

    In order to isolate new mutations impairing transcriptional regulation of sulfur metabolism in Saccharomyces cerevisiae, we used a potent genetic screen based on a gene fusion expressing XylE (from Pseudomonas putida) under the control of the promoter region of MET25. This selection yielded strains mutated in various different genes. We describe in this paper the properties of one of them, MET27. Mutation or disruption of MET27 leads to a methionine requirement and affects S-adenosylmethionine (AdoMet)-mediated transcriptional control of genes involved in sulfur metabolism. The cloning and sequencing of MET27 showed that it is identical to VPS33. Disruptions or mutations of gene VPS33 are well known to impair the biogenesis and inheritance of the vacuolar compartment. However, the methionine requirement of vps33 mutants has not been reported previously. We show here, moreover, that other vps mutants of class C (no apparent vacuoles) also require methionine for growth. Northern blotting experiments revealed that the met27-1 mutation delayed derepression of the transcription of genes involved in sulfur metabolism. By contrast, this delay was not observed in a met27 disrupted strain. Physiological and morphological analyses of met27-1 and met27 disrupted strains showed that these results could be explained by alterations in the ability of the vacuole to transport or store AdoMet, the physiological effector of the transcriptional regulation of sulfur metabolism.

  13. Sporulation in the Budding Yeast Saccharomyces cerevisiae

    PubMed Central

    Neiman, Aaron M.

    2011-01-01

    In response to nitrogen starvation in the presence of a poor carbon source, diploid cells of the yeast Saccharomyces cerevisiae undergo meiosis and package the haploid nuclei produced in meiosis into spores. The formation of spores requires an unusual cell division event in which daughter cells are formed within the cytoplasm of the mother cell. This process involves the de novo generation of two different cellular structures: novel membrane compartments within the cell cytoplasm that give rise to the spore plasma membrane and an extensive spore wall that protects the spore from environmental insults. This article summarizes what is known about the molecular mechanisms controlling spore assembly with particular attention to how constitutive cellular functions are modified to create novel behaviors during this developmental process. Key regulatory points on the sporulation pathway are also discussed as well as the possible role of sporulation in the natural ecology of S. cerevisiae. PMID:22084423

  14. Transformation of Saccharomyces cerevisiae and other fungi

    PubMed Central

    Kawai, Shigeyuki; Hashimoto, Wataru

    2010-01-01

    Transformation (i.e., genetic modification of a cell by the incorporation of exogenous DNA) is indispensable for manipulating fungi. Here, we review the transformation methods for Saccharomyces cerevisiae, Schizosaccharomyces pombe, Candida albicans, Pichia pastoris and Aspergillus species and discuss some common modifications to improve transformation efficiency. We also present a model of the mechanism underlying S. cerevisiae transformation, based on recent reports and the mechanism of transfection in mammalian systems. This model predicts that DNA attaches to the cell wall and enters the cell via endocytotic membrane invagination, although how DNA reaches the nucleus is unknown. Polyethylene glycol is indispensable for successful transformation of intact cells and the attachment of DNA and also possibly acts on the membrane to increase the transformation efficiency. Both lithium acetate and heat shock, which enhance the transformation efficiency of intact cells but not that of spheroplasts, probably help DNA to pass through the cell wall. PMID:21468206

  15. Cell Wall Assembly in Saccharomyces cerevisiae

    PubMed Central

    Lesage, Guillaume; Bussey, Howard

    2006-01-01

    An extracellular matrix composed of a layered meshwork of β-glucans, chitin, and mannoproteins encapsulates cells of the yeast Saccharomyces cerevisiae. This organelle determines cellular morphology and plays a critical role in maintaining cell integrity during cell growth and division, under stress conditions, upon cell fusion in mating, and in the durable ascospore cell wall. Here we assess recent progress in understanding the molecular biology and biochemistry of cell wall synthesis and its remodeling in S. cerevisiae. We then review the regulatory dynamics of cell wall assembly, an area where functional genomics offers new insights into the integration of cell wall growth and morphogenesis with a polarized secretory system that is under cell cycle and cell type program controls. PMID:16760306

  16. Molecular analysis of the PHO81 gene of Saccharomyces cerevisiae.

    PubMed Central

    Creasy, C L; Madden, S L; Bergman, L W

    1993-01-01

    The PHO81 gene product is a positive regulatory factor required for the synthesis of the phosphate repressible acid phosphatase (encoded by the PHO5 gene) in Saccharomyces cerevisiae. Genetic analysis has suggested that PHO81 may be the signal acceptor molecule; however, the biochemical function of the PHO81 gene product is not known. We have cloned the PHO81 gene and sequenced the promoter. A PHO81-LacZ fusion was shown to be a valid reporter since its expression is regulated by the level of inorganic phosphate and is controlled by the same regulatory factors that regulate PHO5 expression. To elucidate the mechanism by which PHO81 functions, we have isolated and cloned dominant mutations in the PHO81 gene which confer constitutive synthesis of acid phosphatase. We have demonstrated that overexpression of the negative regulatory factor, PHO80, but not the negative regulatory factor PHO85, partially blocks the constitutive acid phosphatase synthesis in a strain containing a dominant constitutive allele of PHO81. This suggests that PHO81 may function by interacting with PHO80 or that these molecules compete for the same target. Images PMID:8493108

  17. Peroxisomal fatty acid uptake mechanism in Saccharomyces cerevisiae.

    PubMed

    van Roermund, Carlo W T; Ijlst, Lodewijk; Majczak, Wiktor; Waterham, Hans R; Folkerts, Hendrik; Wanders, Ronald J A; Hellingwerf, Klaas J

    2012-06-08

    Peroxisomes play a major role in human cellular lipid metabolism, including fatty acid β-oxidation. The most frequent peroxisomal disorder is X-linked adrenoleukodystrophy, which is caused by mutations in ABCD1. The biochemical hallmark of X-linked adrenoleukodystrophy is the accumulation of very long chain fatty acids (VLCFAs) due to impaired peroxisomal β-oxidation. Although this suggests a role of ABCD1 in VLCFA import into peroxisomes, no direct experimental evidence is available to substantiate this. To unravel the mechanism of peroxisomal VLCFA transport, we use Saccharomyces cerevisiae as a model organism. Here we provide evidence that in this organism very long chain acyl-CoA esters are hydrolyzed by the Pxa1p-Pxa2p complex prior to the actual transport of their fatty acid moiety into the peroxisomes with the CoA presumably being released into the cytoplasm. The Pxa1p-Pxa2p complex functionally interacts with the acyl-CoA synthetases Faa2p and/or Fat1p on the inner surface of the peroxisomal membrane for subsequent re-esterification of the VLCFAs. Importantly, the Pxa1p-Pxa2p complex shares this molecular mechanism with HsABCD1 and HsABCD2.

  18. Peroxisomal Fatty Acid Uptake Mechanism in Saccharomyces cerevisiae*

    PubMed Central

    van Roermund, Carlo W. T.; IJlst, Lodewijk; Majczak, Wiktor; Waterham, Hans R.; Folkerts, Hendrik; Wanders, Ronald J. A.; Hellingwerf, Klaas J.

    2012-01-01

    Peroxisomes play a major role in human cellular lipid metabolism, including fatty acid β-oxidation. The most frequent peroxisomal disorder is X-linked adrenoleukodystrophy, which is caused by mutations in ABCD1. The biochemical hallmark of X-linked adrenoleukodystrophy is the accumulation of very long chain fatty acids (VLCFAs) due to impaired peroxisomal β-oxidation. Although this suggests a role of ABCD1 in VLCFA import into peroxisomes, no direct experimental evidence is available to substantiate this. To unravel the mechanism of peroxisomal VLCFA transport, we use Saccharomyces cerevisiae as a model organism. Here we provide evidence that in this organism very long chain acyl-CoA esters are hydrolyzed by the Pxa1p-Pxa2p complex prior to the actual transport of their fatty acid moiety into the peroxisomes with the CoA presumably being released into the cytoplasm. The Pxa1p-Pxa2p complex functionally interacts with the acyl-CoA synthetases Faa2p and/or Fat1p on the inner surface of the peroxisomal membrane for subsequent re-esterification of the VLCFAs. Importantly, the Pxa1p-Pxa2p complex shares this molecular mechanism with HsABCD1 and HsABCD2. PMID:22493507

  19. Dissection of Filamentous Growth by Transposon Mutagenesis in Saccharomyces Cerevisiae

    PubMed Central

    Mosch, H. U.; Fink, G. R.

    1997-01-01

    Diploid Saccharomyces cerevisiae strains starved for nitrogen undergo a developmental transition from growth as single yeast form (YF) cells to a multicellular form consisting of filaments of pseudohyphal (PH) cells. Filamentous growth is regulated by an evolutionarily conserved signaling pathway that includes the small GTP-binding proteins Ras2p and Cdc42p, the protein kinases Ste20p, Ste11p and Ste7p, and the transcription factor Ste12p. Here, we designed a genetic screen for mutant strains defective for filamentous growth (dfg) to identify novel targets of the filamentation signaling pathway, and we thereby identified 16 different genes, CDC39, STE12, TEC1, WHI3, NAB1, DBR1, CDC55, SRV2, TPM1, SPA2, BNI1, DFG5, DFG9, DFG10, BUD8 and DFG16, mutations that block filamentous growth. Phenotypic analysis of dfg mutant strains genetically dissects filamentous growth into the cellular processes of signal transduction, bud site selection, cell morphogenesis and invasive growth. Epistasis tests between dfg mutant alleles and dominant activated alleles of the RAS2 and STE11 genes, RAS2(Val19) and STE11-4, respectively, identify putative targets for the filamentation signaling pathway. Several of the genes described here have homologues in filamentous fungi, where they also regulate fungal development. PMID:9055077

  20. Redundant Regulation of Cdk1 Tyrosine Dephosphorylation in Saccharomyces cerevisiae.

    PubMed

    Kennedy, Erin K; Dysart, Michael; Lianga, Noel; Williams, Elizabeth C; Pilon, Sophie; Doré, Carole; Deneault, Jean-Sebastien; Rudner, Adam D

    2016-03-01

    Cdk1 activity drives both mitotic entry and the metaphase-to-anaphase transition in all eukaryotes. The kinase Wee1 and the phosphatase Cdc25 regulate the mitotic activity of Cdk1 by the reversible phosphorylation of a conserved tyrosine residue. Mutation of cdc25 in Schizosaccharomyces pombe blocks Cdk1 dephosphorylation and causes cell cycle arrest. In contrast, deletion of MIH1, the cdc25 homolog in Saccharomyces cerevisiae, is viable. Although Cdk1-Y19 phosphorylation is elevated during mitosis in mih1∆ cells, Cdk1 is dephosphorylated as cells progress into G1, suggesting that additional phosphatases regulate Cdk1 dephosphorylation. Here we show that the phosphatase Ptp1 also regulates Cdk1 dephosphorylation in vivo and can directly dephosphorylate Cdk1 in vitro. Using a novel in vivo phosphatase assay, we also show that PP2A bound to Rts1, the budding yeast B56-regulatory subunit, regulates dephosphorylation of Cdk1 independently of a function regulating Swe1, Mih1, or Ptp1, suggesting that PP2A(Rts1) either directly dephosphorylates Cdk1-Y19 or regulates an unidentified phosphatase.

  1. Redundant Regulation of Cdk1 Tyrosine Dephosphorylation in Saccharomyces cerevisiae

    PubMed Central

    Kennedy, Erin K.; Dysart, Michael; Lianga, Noel; Williams, Elizabeth C.; Pilon, Sophie; Doré, Carole; Deneault, Jean-Sebastien; Rudner, Adam D.

    2016-01-01

    Cdk1 activity drives both mitotic entry and the metaphase-to-anaphase transition in all eukaryotes. The kinase Wee1 and the phosphatase Cdc25 regulate the mitotic activity of Cdk1 by the reversible phosphorylation of a conserved tyrosine residue. Mutation of cdc25 in Schizosaccharomyces pombe blocks Cdk1 dephosphorylation and causes cell cycle arrest. In contrast, deletion of MIH1, the cdc25 homolog in Saccharomyces cerevisiae, is viable. Although Cdk1-Y19 phosphorylation is elevated during mitosis in mih1∆ cells, Cdk1 is dephosphorylated as cells progress into G1, suggesting that additional phosphatases regulate Cdk1 dephosphorylation. Here we show that the phosphatase Ptp1 also regulates Cdk1 dephosphorylation in vivo and can directly dephosphorylate Cdk1 in vitro. Using a novel in vivo phosphatase assay, we also show that PP2A bound to Rts1, the budding yeast B56-regulatory subunit, regulates dephosphorylation of Cdk1 independently of a function regulating Swe1, Mih1, or Ptp1, suggesting that PP2ARts1 either directly dephosphorylates Cdk1-Y19 or regulates an unidentified phosphatase. PMID:26715668

  2. Ubiquitin regulates TORC1 in yeast Saccharomyces cerevisiae.

    PubMed

    Hu, Kejin; Guo, Shuguang; Yan, Gonghong; Yuan, Wenjie; Zheng, Yin; Jiang, Yu

    2016-04-01

    In the yeast Saccharomyces cerevisiae the TOR complex 1 (TORC1) controls many growth-related cellular processes and is essential for cell growth and proliferation. Macrolide antibiotic rapamycin, in complex with a cytosol protein named FKBP12, specifically inhibits TORC1, causing growth arrest. The FKBP12-rapamycin complex interferes with TORC1 function by binding to the FRB domain of the TOR proteins. In an attempt to understand the role of the FRB domain in TOR function, we identified a single point mutation (Tor2(W2041R) ) in the FRB domain of Tor2 that renders yeast cells rapamycin resistant and temperature sensitive. At the permissive temperature, the Tor2 mutant protein is partially defective for binding with Kog1 and TORC1 is impaired for membrane association. At the restrictive temperature, Kog1 but not the Tor2 mutant protein, is rapidly degraded. Overexpression of ubiquitin stabilizes Kog1 and suppresses the growth defect associated with the tor2 mutant at the nonpremissive temperature. We find that ubiquitin binds non-covalently to Kog1, prevents Kog1 from degradation and stabilizes TORC1. Our data reveal a unique role for ubiquitin in regulation of TORC1 and suggest that Kog1 requires association with the Tor proteins for stabilization. © 2016 John Wiley & Sons Ltd.

  3. Dual effects of plant steroidal alkaloids on Saccharomyces cerevisiae.

    PubMed

    Simons, Veronika; Morrissey, John P; Latijnhouwers, Maita; Csukai, Michael; Cleaver, Adam; Yarrow, Carol; Osbourn, Anne

    2006-08-01

    Many plant species accumulate sterols and triterpenes as antimicrobial glycosides. These secondary metabolites (saponins) provide built-in chemical protection against pest and pathogen attack and can also influence induced defense responses. In addition, they have a variety of important pharmacological properties, including anticancer activity. The biological mechanisms underpinning the varied and diverse effects of saponins on microbes, plants, and animals are only poorly understood despite the ecological and pharmaceutical importance of this major class of plant secondary metabolites. Here we have exploited budding yeast (Saccharomyces cerevisiae) to investigate the effects of saponins on eukaryotic cells. The tomato steroidal glycoalkaloid alpha-tomatine has antifungal activity towards yeast, and this activity is associated with membrane permeabilization. Removal of a single sugar from the tetrasaccharide chain of alpha-tomatine results in a substantial reduction in antimicrobial activity. Surprisingly, the complete loss of sugars leads to enhanced antifungal activity. Experiments with alpha-tomatine and its aglycone tomatidine indicate that the mode of action of tomatidine towards yeast is distinct from that of alpha-tomatine and does not involve membrane permeabilization. Investigation of the effects of tomatidine on yeast by gene expression and sterol analysis indicate that tomatidine inhibits ergosterol biosynthesis. Tomatidine-treated cells accumulate zymosterol rather than ergosterol, which is consistent with inhibition of the sterol C(24) methyltransferase Erg6p. However, erg6 and erg3 mutants (but not erg2 mutants) have enhanced resistance to tomatidine, suggesting a complex interaction of erg mutations, sterol content, and tomatidine resistance.

  4. Identification of new cell size control genes in S. cerevisiae

    PubMed Central

    2012-01-01

    Cell size homeostasis is a conserved attribute in many eukaryotic species involving a tight regulation between the processes of growth and proliferation. In budding yeast S. cerevisiae, growth to a “critical cell size” must be achieved before a cell can progress past START and commit to cell division. Numerous studies have shown that progression past START is actively regulated by cell size control genes, many of which have implications in cell cycle control and cancer. Two initial screens identified genes that strongly modulate cell size in yeast. Since a second generation yeast gene knockout collection has been generated, we screened an additional 779 yeast knockouts containing 435 new ORFs (~7% of the yeast genome) to supplement previous cell size screens. Upon completion, 10 new strong size mutants were identified: nine in log-phase cells and one in saturation-phase cells, and 97% of the yeast genome has now been screened for cell size mutations. The majority of the logarithmic phase size mutants have functions associated with translation further implicating the central role of growth control in the cell division process. Genetic analyses suggest ECM9 is directly associated with the START transition. Further, the small (whi) mutants mrpl49Δ and cbs1Δ are dependent on CLN3 for cell size effects. In depth analyses of new size mutants may facilitate a better understanding of the processes that govern cell size homeostasis. PMID:23234503

  5. Defects arising from whole-genome duplications in Saccharomyces cerevisiae.

    PubMed Central

    Andalis, Alex A; Storchova, Zuzana; Styles, Cora; Galitski, Timothy; Pellman, David; Fink, Gerald R

    2004-01-01

    Comparisons among closely related species have led to the proposal that the duplications found in many extant genomes are the remnants of an ancient polyploidization event, rather than a result of successive duplications of individual chromosomal segments. If this interpretation is correct, it would support Ohno's proposal that polyploidization drives evolution by generating the genetic material necessary for the creation of new genes. Paradoxically, analysis of contemporary polyploids suggests that increased ploidy is an inherently unstable state. To shed light on this apparent contradiction and to determine the effects of nascent duplications of the entire genome, we generated isogenic polyploid strains of the budding yeast Saccharomyces cerevisiae. Our data show that an increase in ploidy results in a marked decrease in a cell's ability to survive during stationary phase in growth medium. Tetraploid cells die rapidly, whereas isogenic haploids remain viable for weeks. Unlike haploid cells, which arrest growth as unbudded cells, tetraploid cells continue to bud and form mitotic spindles in stationary phase. The stationary-phase death of tetraploids can be prevented by mutations or conditions that result in growth arrest. These data show that whole-genome duplications are accompanied by defects that affect viability and subsequent survival of the new organism. PMID:15280227

  6. Codon recognition during frameshift suppression in Saccharomyces cerevisiae.

    PubMed Central

    Gaber, R F; Culbertson, M R

    1984-01-01

    A genetic approach has been used to establish the molecular basis of 4-base codon recognition by frameshift suppressor tRNA containing an extra nucleotide in the anticodon. We have isolated all possible base substitution mutations at the position 4 (N) in the 3'-CCCN-5' anticodon of a Saccharomyces cerevisiae frameshift suppressor glycine tRNA encoded by the SUF16 gene. Base substitutions at +1 frameshift sites in the his4 gene have also been obtained such that all possible 4-base 5'-GGGN-3' codons have been identified. By testing for suppression in different strains that collectively represent all 16 possible combinations of position 4 nucleotides, we show that frameshift suppression does not require position 4 base pairing. Nonetheless, position 4 interactions influence the efficiency of suppression. Our results suggest a model in which 4-base translocation of mRNA on the ribosome is directed primarily by the number of nucleotides in the anticodon loop, whereas the resulting efficiency of suppression is dependent on the nature of position 4 nucleotides. Images PMID:6390183

  7. In vivo Reconstitution of Algal Triacylglycerol Production in Saccharomyces cerevisiae

    PubMed Central

    Hung, Chun-Hsien; Kanehara, Kazue; Nakamura, Yuki

    2016-01-01

    The current fascination with algal biofuel production stems from a high lipid biosynthetic capacity and little conflict with land plant cultivation. However, the mechanisms which enable algae to accumulate massive oil remain elusive. An enzyme for triacylglycerol (TAG) biosynthesis in Chlamydomonas reinhardtii, CrDGTT2, can produce a large amount of TAG when expressed in yeast or higher plants, suggesting a unique ability of CrDGTT2 to enhance oil production in a heterologous system. Here, we performed metabolic engineering in Saccharomyces cerevisiae by taking advantage of CrDGTT2. We suppressed membrane phospholipid biosynthesis at the log phase by mutating OPI3, enhanced TAG biosynthetic pathway at the stationary phase by overexpressing PAH1 and CrDGTT2, and suppressed TAG hydrolysis on growth resumption from the stationary phase by knocking out DGK1. The resulting engineered yeast cells accumulated about 70-fold of TAG compared with wild type cells. Moreover, TAG production was sustainable. Our results demonstrated the enhanced and sustainable TAG production in the yeast synthetic platform. PMID:26913021

  8. Genetic effects of fresh cigarette smoke in Saccharomyces cerevisiae.

    PubMed

    Gairola, C

    1982-09-01

    Ability of fresh cigarette smoke from University of Kentucky reference cigarette 2R1 to induce gene conversion, reverse mutation and mitotic crossing-over in strain D7 of Saccharomyces cerevisiae was examined. A closed cell suspension-recycle system using 2 peristaltic pumps interconnected to a single-port reverse-phase smoking machine was developed to provide complete exposure of cells to smoke within 0.2--10 sec of its generation. The exposed cells showed a dose-dependent increase in the frequency of all the 3 genetic endpoints examined. Cell age was an important factor with younger cells being more sensitive than older. Filtration studies showed that the gas phase possessed as much as 25% of the total whole-smoke activity. Activated charcoal reduced the activity of smoke in direct proportion to its amount in the filter. Acetate filter did not appreciably alter the activity. A comparison of whole smoke from various cigarettes showed that: (1) the nicotine content of a cigarette does not affect the genetic activity of smoke; (2) burley and flue-cured tobaccos have differential activity in gene conversion and reverse mutation systems; and (3) the genetic effects of whole smoke are not peculiar to tobacco pyrolysis because similar effects are produced by smokes from lettuce and other non-tobacco cigarettes. It is concluded that the yeast D7 system can be used effectively for the quantitative evaluation of genetic effects of smoke from different cigarettes, and both whole cigarette smoke and its gas phase possess mutagenic as well as recombinogenic activity that can be modified by the use of filters.

  9. Saccharomyces cerevisiae metabolism in ecological context

    PubMed Central

    Jouhten, Paula; Ponomarova, Olga; Gonzalez, Ramon; Patil, Kiran R.

    2016-01-01

    The architecture and regulation of Saccharomyces cerevisiae metabolic network are among the best studied owing to its widespread use in both basic research and industry. Yet, several recent studies have revealed notable limitations in explaining genotype–metabolic phenotype relations in this yeast, especially when concerning multiple genetic/environmental perturbations. Apparently unexpected genotype–phenotype relations may originate in the evolutionarily shaped cellular operating principles being hidden in common laboratory conditions. Predecessors of laboratory S. cerevisiae strains, the wild and the domesticated yeasts, have been evolutionarily shaped by highly variable environments, very distinct from laboratory conditions, and most interestingly by social life within microbial communities. Here we present a brief review of the genotypic and phenotypic peculiarities of S. cerevisiae in the context of its social lifestyle beyond laboratory environments. Accounting for this ecological context and the origin of the laboratory strains in experimental design and data analysis would be essential in improving the understanding of genotype–environment–phenotype relationships. PMID:27634775

  10. "Malonate uptake and metabolism in Saccharomyces cerevisiae".

    PubMed

    Chen, Wei Ning; Tan, Kee Yang

    2013-09-01

    Malonyl-CoA plays an important role in the synthesis and elongation of fatty acids in yeast Saccharomyces cerevisiae. Malonyl-CoA is at a low concentration inside the cell and is produced mainly from acetyl-CoA through the enzyme acetyl-CoA carboxylase. It would be beneficial to find an alternative source of malonyl-CoA to increase its intracellular concentration and overall synthesis of the fatty acids. MatB gene from the bacteria Rhizobium leguminosarium bv. trifolii encodes for a malonyl-CoA synthetase which catalyzes the formation of the malonyl-CoA directly from malonate and CoA. However, results from high-performance liquid chromatography (HPLC) proved that Saccharomyces cerevisiae itself does not contain enough cytoplasmic malonate within them and is unable to uptake exogenously supplied malonate in the form of malonic acid. A dicarboxylic acid plasma membrane transporter with the ability to uptake exogenous malonic acid was identified from another species of yeast known as Schizosaccharomyces pombe and the gene encoding this transporter is identified as the mae1 gene. From the experiments thus far, the mae1 gene had been successfully cloned and transformed into Saccharomyces cerevisiae. The expression and functional ability of the encoded plasma membrane dicarboxylic acid transporter were also demonstrated and verified using specialized technologies such as RT-PCR, yeast immunofluorescence, HPLC, and LC-MS.

  11. Synthesis of Morphinan Alkaloids in Saccharomyces cerevisiae.

    PubMed

    Fossati, Elena; Narcross, Lauren; Ekins, Andrew; Falgueyret, Jean-Pierre; Martin, Vincent J J

    2015-01-01

    Morphinan alkaloids are the most powerful narcotic analgesics currently used to treat moderate to severe and chronic pain. The feasibility of morphinan synthesis in recombinant Saccharomyces cerevisiae starting from the precursor (R,S)-norlaudanosoline was investigated. Chiral analysis of the reticuline produced by the expression of opium poppy methyltransferases showed strict enantioselectivity for (S)-reticuline starting from (R,S)-norlaudanosoline. In addition, the P. somniferum enzymes salutaridine synthase (PsSAS), salutaridine reductase (PsSAR) and salutaridinol acetyltransferase (PsSAT) were functionally co-expressed in S. cerevisiae and optimization of the pH conditions allowed for productive spontaneous rearrangement of salutaridinol-7-O-acetate and synthesis of thebaine from (R)-reticuline. Finally, we reconstituted a 7-gene pathway for the production of codeine and morphine from (R)-reticuline. Yeast cell feeding assays using (R)-reticuline, salutaridine or codeine as substrates showed that all enzymes were functionally co-expressed in yeast and that activity of salutaridine reductase and codeine-O-demethylase likely limit flux to morphine synthesis. The results of this study describe a significant advance for the synthesis of morphinans in S. cerevisiae and pave the way for their complete synthesis in recombinant microbes.

  12. Progress in Metabolic Engineering of Saccharomyces cerevisiae

    PubMed Central

    Nevoigt, Elke

    2008-01-01

    Summary: The traditional use of the yeast Saccharomyces cerevisiae in alcoholic fermentation has, over time, resulted in substantial accumulated knowledge concerning genetics, physiology, and biochemistry as well as genetic engineering and fermentation technologies. S. cerevisiae has become a platform organism for developing metabolic engineering strategies, methods, and tools. The current review discusses the relevance of several engineering strategies, such as rational and inverse metabolic engineering, evolutionary engineering, and global transcription machinery engineering, in yeast strain improvement. It also summarizes existing tools for fine-tuning and regulating enzyme activities and thus metabolic pathways. Recent examples of yeast metabolic engineering for food, beverage, and industrial biotechnology (bioethanol and bulk and fine chemicals) follow. S. cerevisiae currently enjoys increasing popularity as a production organism in industrial (“white”) biotechnology due to its inherent tolerance of low pH values and high ethanol and inhibitor concentrations and its ability to grow anaerobically. Attention is paid to utilizing lignocellulosic biomass as a potential substrate. PMID:18772282

  13. Synthesis of Morphinan Alkaloids in Saccharomyces cerevisiae

    PubMed Central

    Fossati, Elena; Narcross, Lauren; Ekins, Andrew; Falgueyret, Jean-Pierre; Martin, Vincent J. J.

    2015-01-01

    Morphinan alkaloids are the most powerful narcotic analgesics currently used to treat moderate to severe and chronic pain. The feasibility of morphinan synthesis in recombinant Saccharomyces cerevisiae starting from the precursor (R,S)-norlaudanosoline was investigated. Chiral analysis of the reticuline produced by the expression of opium poppy methyltransferases showed strict enantioselectivity for (S)-reticuline starting from (R,S)-norlaudanosoline. In addition, the P. somniferum enzymes salutaridine synthase (PsSAS), salutaridine reductase (PsSAR) and salutaridinol acetyltransferase (PsSAT) were functionally co-expressed in S. cerevisiae and optimization of the pH conditions allowed for productive spontaneous rearrangement of salutaridinol-7-O-acetate and synthesis of thebaine from (R)-reticuline. Finally, we reconstituted a 7-gene pathway for the production of codeine and morphine from (R)-reticuline. Yeast cell feeding assays using (R)-reticuline, salutaridine or codeine as substrates showed that all enzymes were functionally co-expressed in yeast and that activity of salutaridine reductase and codeine-O-demethylase likely limit flux to morphine synthesis. The results of this study describe a significant advance for the synthesis of morphinans in S. cerevisiae and pave the way for their complete synthesis in recombinant microbes. PMID:25905794

  14. SPT5, an essential gene important for normal transcription in Saccharomyces cerevisiae, encodes an acidic nuclear protein with a carboxy-terminal repeat.

    PubMed Central

    Swanson, M S; Malone, E A; Winston, F

    1991-01-01

    Mutations in the SPT5 gene of Saccharomyces cerevisiae were isolated previously as suppressors of delta insertion mutations at HIS4 and LYS2. In this study we have shown that spt5 mutations suppress the his4-912 delta and lys2-128 delta alleles by altering transcription. We cloned the SPT5 gene and found that either an increase or a decrease in the copy number of the wild-type SPT5 gene caused an Spt- phenotype. Construction and analysis of an spt5 null mutation demonstrated that SPT5 is essential for growth, suggesting that SPT5 may be required for normal transcription of a large number of genes. The SPT5 DNA sequence was determined; it predicted a 116-kDa protein with an extremely acidic amino terminus and a novel six-amino-acid repeat at the carboxy terminus (consensus = S-T/A-W-G-G-A/Q). By indirect immunofluorescence microscopy we showed that a bifunctional SPT5-beta-galactosidase protein was located in the yeast nucleus. This molecular analysis of the SPT5 gene revealed a number of interesting similarities to the previously characterized SPT6 gene of S. cerevisiae. These results suggest that SPT5 and SPT6 act in a related fashion to influence essential transcriptional processes in S. cerevisiae. Images PMID:1840633

  15. Nucleotide sequence of the wild-type RAD4 gene of Saccharomyces cerevisiae and characterization of mutant rad4 alleles.

    PubMed Central

    Couto, L B; Friedberg, E C

    1989-01-01

    Shuttle plasmids carrying the wild-type RAD4 gene of Saccharomyces cerevisiae cannot be propagated in Escherichia coli (R. Fleer, W. Siede, and E. C. Friedberg, J. Bacteriol. 169:4884-4892, 1987). In order to determine the nucleotide sequence of the cloned gene, we used a plasmid carrying a mutant allele that allows plasmid propagation in E. coli. The wild-type sequence in the region of this mutation was determined from a second plasmid carrying a different mutant rad4 allele. We established the locations and characteristics of a number of spontaneously generated plasmid-borne RAD4 mutations that alleviate the toxicity of the wild-type gene in E. coli and of several mutagen-induced chromosomal mutations that inactivate the excision repair function of RAD4. These mutations are situated in very close proximity to each other, and all are expected to result in the expression of truncated polypeptides missing the carboxy-terminal one-third of the Rad4 polypeptide. This region of the gene may be important both for the toxic effect of the Rad4 protein in E. coli and for its role in DNA repair in S. cerevisiae. PMID:2649477

  16. High-Throughput Identification of Adaptive Mutations in Experimentally Evolved Yeast Populations

    PubMed Central

    Payen, Celia; Ong, Giang T.; Pogachar, Jamie L.; Zhao, Wei

    2016-01-01

    High-throughput sequencing has enabled genetic screens that can rapidly identify mutations that occur during experimental evolution. The presence of a mutation in an evolved lineage does not, however, constitute proof that the mutation is adaptive, given the well-known and widespread phenomenon of genetic hitchhiking, in which a non-adaptive or even detrimental mutation can co-occur in a genome with a beneficial mutation and the combined genotype is carried to high frequency by selection. We approximated the spectrum of possible beneficial mutations in Saccharomyces cerevisiae using sets of single-gene deletions and amplifications of almost all the genes in the S. cerevisiae genome. We determined the fitness effects of each mutation in three different nutrient-limited conditions using pooled competitions followed by barcode sequencing. Although most of the mutations were neutral or deleterious, ~500 of them increased fitness. We then compared those results to the mutations that actually occurred during experimental evolution in the same three nutrient-limited conditions. On average, ~35% of the mutations that occurred during experimental evolution were predicted by the systematic screen to be beneficial. We found that the distribution of fitness effects depended on the selective conditions. In the phosphate-limited and glucose-limited conditions, a large number of beneficial mutations of nearly equivalent, small effects drove the fitness increases. In the sulfate-limited condition, one type of mutation, the amplification of the high-affinity sulfate transporter, dominated. In the absence of that mutation, evolution in the sulfate-limited condition involved mutations in other genes that were not observed previously—but were predicted by the systematic screen. Thus, gross functional screens have the potential to predict and identify adaptive mutations that occur during experimental evolution. PMID:27727276

  17. Engineering and Two-Stage Evolution of a Lignocellulosic Hydrolysate-Tolerant Saccharomyces cerevisiae Strain for Anaerobic Fermentation of Xylose from AFEX Pretreated Corn Stover

    PubMed Central

    Parreiras, Lucas S.; Breuer, Rebecca J.; Avanasi Narasimhan, Ragothaman; Higbee, Alan J.; La Reau, Alex; Tremaine, Mary; Qin, Li; Willis, Laura B.; Bice, Benjamin D.; Bonfert, Brandi L.; Pinhancos, Rebeca C.; Balloon, Allison J.; Uppugundla, Nirmal; Liu, Tongjun; Li, Chenlin; Tanjore, Deepti; Ong, Irene M.; Li, Haibo; Pohlmann, Edward L.; Serate, Jose; Withers, Sydnor T.; Simmons, Blake A.; Hodge, David B.; Westphall, Michael S.; Coon, Joshua J.; Dale, Bruce E.; Balan, Venkatesh; Keating, David H.; Zhang, Yaoping; Landick, Robert; Gasch, Audrey P.; Sato, Trey K.

    2014-01-01

    The inability of the yeast Saccharomyces cerevisiae to ferment xylose effectively under anaerobic conditions is a major barrier to economical production of lignocellulosic biofuels. Although genetic approaches have enabled engineering of S. cerevisiae to convert xylose efficiently into ethanol in defined lab medium, few strains are able to ferment xylose from lignocellulosic hydrolysates in the absence of oxygen. This limited xylose conversion is believed to result from small molecules generated during biomass pretreatment and hydrolysis, which induce cellular stress and impair metabolism. Here, we describe the development of a xylose-fermenting S. cerevisiae strain with tolerance to a range of pretreated and hydrolyzed lignocellulose, including Ammonia Fiber Expansion (AFEX)-pretreated corn stover hydrolysate (ACSH). We genetically engineered a hydrolysate-resistant yeast strain with bacterial xylose isomerase and then applied two separate stages of aerobic and anaerobic directed evolution. The emergent S. cerevisiae strain rapidly converted xylose from lab medium and ACSH to ethanol under strict anaerobic conditions. Metabolomic, genetic and biochemical analyses suggested that a missense mutation in GRE3, which was acquired during the anaerobic evolution, contributed toward improved xylose conversion by reducing intracellular production of xylitol, an inhibitor of xylose isomerase. These results validate our combinatorial approach, which utilized phenotypic strain selection, rational engineering and directed evolution for the generation of a robust S. cerevisiae strain with the ability to ferment xylose anaerobically from ACSH. PMID:25222864

  18. Engineering and two-stage evolution of a lignocellulosic hydrolysate-tolerant Saccharomyces cerevisiae strain for anaerobic fermentation of xylose from AFEX pretreated corn stover.

    PubMed

    Parreiras, Lucas S; Breuer, Rebecca J; Avanasi Narasimhan, Ragothaman; Higbee, Alan J; La Reau, Alex; Tremaine, Mary; Qin, Li; Willis, Laura B; Bice, Benjamin D; Bonfert, Brandi L; Pinhancos, Rebeca C; Balloon, Allison J; Uppugundla, Nirmal; Liu, Tongjun; Li, Chenlin; Tanjore, Deepti; Ong, Irene M; Li, Haibo; Pohlmann, Edward L; Serate, Jose; Withers, Sydnor T; Simmons, Blake A; Hodge, David B; Westphall, Michael S; Coon, Joshua J; Dale, Bruce E; Balan, Venkatesh; Keating, David H; Zhang, Yaoping; Landick, Robert; Gasch, Audrey P; Sato, Trey K

    2014-01-01

    The inability of the yeast Saccharomyces cerevisiae to ferment xylose effectively under anaerobic conditions is a major barrier to economical production of lignocellulosic biofuels. Although genetic approaches have enabled engineering of S. cerevisiae to convert xylose efficiently into ethanol in defined lab medium, few strains are able to ferment xylose from lignocellulosic hydrolysates in the absence of oxygen. This limited xylose conversion is believed to result from small molecules generated during biomass pretreatment and hydrolysis, which induce cellular stress and impair metabolism. Here, we describe the development of a xylose-fermenting S. cerevisiae strain with tolerance to a range of pretreated and hydrolyzed lignocellulose, including Ammonia Fiber Expansion (AFEX)-pretreated corn stover hydrolysate (ACSH). We genetically engineered a hydrolysate-resistant yeast strain with bacterial xylose isomerase and then applied two separate stages of aerobic and anaerobic directed evolution. The emergent S. cerevisiae strain rapidly converted xylose from lab medium and ACSH to ethanol under strict anaerobic conditions. Metabolomic, genetic and biochemical analyses suggested that a missense mutation in GRE3, which was acquired during the anaerobic evolution, contributed toward improved xylose conversion by reducing intracellular production of xylitol, an inhibitor of xylose isomerase. These results validate our combinatorial approach, which utilized phenotypic strain selection, rational engineering and directed evolution for the generation of a robust S. cerevisiae strain with the ability to ferment xylose anaerobically from ACSH.

  19. High vanillin tolerance of an evolved Saccharomyces cerevisiae strain owing to its enhanced vanillin reduction and antioxidative capacity.

    PubMed

    Shen, Yu; Li, Hongxing; Wang, Xinning; Zhang, Xiaoran; Hou, Jin; Wang, Linfeng; Gao, Nan; Bao, Xiaoming

    2014-11-01

    The phenolic compounds present in hydrolysates pose significant challenges for the sustainable lignocellulosic materials refining industry. Three Saccharomyces cerevisiae strains with high tolerance to lignocellulose hydrolysate were obtained through ethyl methanesulfonate mutation and adaptive evolution. Among them, strain EMV-8 exhibits specific tolerance to vanillin, a phenolic compound common in lignocellulose hydrolysate. The EMV-8 maintains a specific growth rate of 0.104 h(-1) in 2 g L(-1) vanillin, whereas the reference strain cannot grow. Physiological studies revealed that the vanillin reduction rate of EMV-8 is 1.92-fold higher than its parent strain, and the Trolox equivalent antioxidant capacity of EMV-8 is 15 % higher than its parent strain. Transcriptional analysis results confirmed an up-regulated oxidoreductase activity and antioxidant activity in this strain. Our results suggest that enhancing the antioxidant capacity and oxidoreductase activity could be a strategy to engineer S. cerevisiae for improved vanillin tolerance.

  20. Identification of the archaeal alg7 gene homolog (encoding N-acetylglucosamine-1-phosphate transferase) of the N-linked glycosylation system by cross-domain complementation in Saccharomyces cerevisiae.

    PubMed

    Shams-Eldin, Hosam; Chaban, Bonnie; Niehus, Sebastian; Schwarz, Ralph T; Jarrell, Ken F

    2008-03-01

    The Mv1751 gene product is thought to catalyze the first step in the N-glycosylation pathway in Methanococcus voltae. Here, we show that a conditional lethal mutation in the alg7 gene (N-acetylglucosamine-1-phosphate transferase) in Saccharomyces cerevisiae was successfully complemented with Mv1751, highlighting a rare case of cross-domain complementation.

  1. Genome-Wide Estimates of Mutation Rates and Spectrum in Schizosaccharomyces pombe Indicate CpG Sites are Highly Mutagenic Despite the Absence of DNA Methylation

    PubMed Central

    Behringer, Megan G.; Hall, David W.

    2015-01-01

    We accumulated mutations for 1952 generations in 79 initially identical, haploid lines of the fission yeast Schizosaccharomyces pombe, and then performed whole-genome sequencing to determine the mutation rates and spectrum. We captured 696 spontaneous mutations across the 79 mutation accumulation (MA) lines. We compared the mutation spectrum and rate to a recently published equivalent experiment on the same species, and to another model ascomycetous yeast, the budding yeast Saccharomyces cerevisiae. While the two species are approximately 600 million years diverged from each other, they share similar life histories, genome size and genomic G/C content. We found that Sc. pombe and S. cerevisiae have similar mutation rates, but Sc. pombe exhibits a stronger insertion bias. Intriguingly, we observed an increased mutation rate at cytosine nucleotides, specifically CpG nucleotides, which is also seen in S. cerevisiae. However, the absence of methylation in Sc. pombe and the pattern of mutation at these sites, primarily C → A as opposed to C → T, strongly suggest that the increased mutation rate is not caused by deamination of methylated cytosines. This result implies that the high mutability of CpG dinucleotides in other species may be caused in part by a methylation-independent mechanism. Many of our findings mirror those seen in the recent study, despite the use of different passaging conditions, indicating that MA is a reliable method for estimating mutation rates and spectra. PMID:26564949

  2. Genome-Wide Estimates of Mutation Rates and Spectrum in Schizosaccharomyces pombe Indicate CpG Sites are Highly Mutagenic Despite the Absence of DNA Methylation.

    PubMed

    Behringer, Megan G; Hall, David W

    2015-11-12

    We accumulated mutations for 1952 generations in 79 initially identical, haploid lines of the fission yeast Schizosaccharomyces pombe, and then performed whole-genome sequencing to determine the mutation rates and spectrum. We captured 696 spontaneous mutations across the 79 mutation accumulation (MA) lines. We compared the mutation spectrum and rate to a recently published equivalent experiment on the same species, and to another model ascomycetous yeast, the budding yeast Saccharomyces cerevisiae. While the two species are approximately 600 million years diverged from each other, they share similar life histories, genome size and genomic G/C content. We found that Sc. pombe and S. cerevisiae have similar mutation rates, but Sc. pombe exhibits a stronger insertion bias. Intriguingly, we observed an increased mutation rate at cytosine nucleotides, specifically CpG nucleotides, which is also seen in S. cerevisiae. However, the absence of methylation in Sc. pombe and the pattern of mutation at these sites, primarily C → A as opposed to C → T, strongly suggest that the increased mutation rate is not caused by deamination of methylated cytosines. This result implies that the high mutability of CpG dinucleotides in other species may be caused in part by a methylation-independent mechanism. Many of our findings mirror those seen in the recent study, despite the use of different passaging conditions, indicating that MA is a reliable method for estimating mutation rates and spectra.

  3. Genome-scale analyses of butanol tolerance in Saccharomyces cerevisiae reveal an essential role of protein degradation

    PubMed Central

    2013-01-01

    Background n-Butanol and isobutanol produced from biomass-derived sugars are promising renewable transport fuels and solvents. Saccharomyces cerevisiae has been engineered for butanol production, but its high butanol sensitivity poses an upper limit to product titers that can be reached by further pathway engineering. A better understanding of the molecular basis of butanol stress and tolerance of S. cerevisiae is important for achieving improved tolerance. Results By combining a screening of the haploid S. cerevisiae knock-out library, gene overexpression, and genome analysis of evolutionary engineered n-butanol-tolerant strains, we established that protein degradation plays an essential role in tolerance. Strains deleted in genes involved in the ubiquitin-proteasome system and in vacuolar degradation of damaged proteins showed hypersensitivity to n-butanol. Overexpression of YLR224W, encoding the subunit responsible for the recognition of damaged proteins of an ubiquitin ligase complex, resulted in a strain with a higher n-butanol tolerance. Two independently evolved n-butanol-tolerant strains carried different mutations in both RPN4 and RTG1, which encode transcription factors involved in the expression of proteasome and peroxisomal genes, respectively. Introduction of these mutated alleles in the reference strain increased butanol tolerance, confirming their relevance in the higher tolerance phenotype. The evolved strains, in addition to n-butanol, were also more tolerant to 2-butanol, isobutanol and 1-propanol, indicating a common molecular basis for sensitivity and tolerance to C3 and C4 alcohols. Conclusions This study shows that maintenance of protein integrity plays an essential role in butanol tolerance and demonstrates new promising targets to engineer S. cerevisiae for improved tolerance. PMID:23552365

  4. Mutants of Saccharomyces cerevisiae unresponsive to cell division control by polypeptide mating hormone

    PubMed Central

    1980-01-01

    Temperature-sensitive mutations that produce insensitivity to division arrest by alpha-factor, a mating pheromone, were isolated in an MATa strain of Saccharomyces cerevisiae and shown by complementation studies to difine eight genes. All of these mutations (designated ste) produce sterility at the restrictive temperature in MATa cells, and mutations in seven of the genes produce sterility in MAT alpha cells. In no case was the sterility associated with these mutations coorectible by including wild-type cells of the same mating type in the mating test nor did nay of the mutants inhibit mating of the wild-type cells; the defect appears to be intrinsic to the cell for mutations in each of the genes. Apparently, none of the mutants is defective exclusively in division arrest by alpha-factor, as the sterility of none is suppressed by a temperature-sensitive cdc 28 mutation (the latter imposes division arrest at the correct cell cycle stage for mating). The mutants were examined for features that are inducible in MATa cells by alpha-factor (agglutinin synthesis as well as division arrest) and for the characteristics that constitutively distinguish MATa from MAT alpha cells (a-factor production, alpha-factor destruction). ste2 Mutants are defective specifically in the two inducible properties, whereas ste4, 5, 7, 8, 9, 11, and 12 mutants are defective, to varying degrees, in constitutive as well as inducible aspects. Mutations in ste8 and 9 assume a polar budding pattern unlike either MATa or MAT alpha cells but characteristic of MATa/alpha cells. This study defines seven genes that function in two cell types (MATa and alpha) to control the differentiation of cell type and one gene, ste2, that functions exclusively in MATa cells to mediate responsiveness to polypeptide hormone. PMID:6993497

  5. Contrasting Frequencies and Effects of cis- and trans-Regulatory Mutations Affecting Gene Expression

    PubMed Central

    Metzger, Brian P. H.; Duveau, Fabien; Yuan, David C.; Tryban, Stephen; Yang, Bing; Wittkopp, Patricia J.

    2016-01-01

    Heritable differences in gene expression are caused by mutations in DNA sequences encoding cis-regulatory elements and trans-regulatory factors. These two classes of regulatory change differ in their relative contributions to expression differences in natural populations because of the combined effects of mutation and natural selection. Here, we investigate how new mutations create the regulatory variation upon which natural selection acts by quantifying the frequencies and effects of hundreds of new cis- and trans-acting mutations altering activity of the TDH3 promoter in the yeast Saccharomyces cerevisiae in the absence of natural selection. We find that cis-regulatory mutations have larger effects on expression than trans-regulatory mutations and that while trans-regulatory mutations are more common overall, cis- and trans-regulatory changes in expression are equally abundant when only the largest changes in expression are considered. In addition, we find that cis-regulatory mutations are skewed toward decreased expression while trans-regulatory mutations are skewed toward increased expression. We also measure the effects of cis- and trans-regulatory mutations on the variability in gene expression among genetically identical cells, a property of gene expression known as expression noise, finding that trans-regulatory mutations are much more likely to decrease expression noise than cis-regulatory mutations. Because new mutations are the raw material upon which natural selection acts, these differences in the frequencies and effects of cis- and trans-regulatory mutations should be considered in models of regulatory evolution. PMID:26782996

  6. Stoichiometric network constraints on xylose metabolism by recombinant Saccharomyces cerevisiae

    Treesearch

    Yong-Su Jin; Thomas W. Jeffries

    2004-01-01

    Metabolic pathway engineering is constrained by the thermodynamic and stoichiometric feasibility of enzymatic activities of introduced genes. Engineering of xylose metabolism in Saccharomyces cerevisiae has focused on introducing genes for the initial xylose assimilation steps from Pichia stipitis, a xylose-fermenting yeast, into S. cerevisiae, a yeast raditionally...

  7. Potential immobilized Saccharomyces cerevisiae as heavy metal removal

    NASA Astrophysics Data System (ADS)

    Raffar, Nur Izzati Abdul; Rahman, Nadhratul Nur Ain Abdul; Alrozi, Rasyidah; Senusi, Faraziehan; Chang, Siu Hua

    2015-05-01

    Biosorption of copper ion using treated and untreated immobilized Saccharomyces cerevisiae from aqueous solution was investigate in this study. S.cerevisiae has been choosing as biosorbent due to low cost, easy and continuously available from various industries. In this study, the ability of treated and untreated immobilized S.cerevisiae in removing copper ion influence by the effect of pH solution, and initial concentration of copper ion with contact time. Besides, adsorption isotherm and kinetic model also studied. The result indicated that the copper ion uptake on treated and untreated immobilized S.cerevisiae was increased with increasing of contact time and initial concentration of copper ion. The optimum pH for copper ion uptake on untreated and treated immobilized S.cerevisiae at 4 and 6. From the data obtained of copper ion uptake, the adsorption isotherm was fitted well by Freundlich model for treated immobilized S.cerevisiae and Langmuir model for untreated immobilized S.cerevisiae according to high correlation coefficient. Meanwhile, the pseudo second order was described as suitable model present according to high correlation coefficient. Since the application of biosorption process has been received more attention from numerous researchers as a potential process to be applied in the industry, future study will be conducted to investigate the potential of immobilized S.cerevisiae in continuous process.

  8. [HSM6 gene is identical to PSY4 gene in Saccharomyces cerevisiae yeasts].

    PubMed

    Fedorov, D V; Koval'tsova, S V; Evstukhina, T A; Peshekhonov, V T; Chernenkov, A Iu; Korolev, V G

    2013-03-01

    Previously, we isolated mutant yeasts Saccharomyces cerevisiae with an increased rate of spontaneous mutagenesis. Here, we studied the properties of HSM6 gene, the hsm6-1 mutation of which increased the frequency of UV-induced mutagenesis and decreased the level of UV-induced mitotic crossover at the centromere gene region, ADE2. HSM6 gene was mapped on the left arm of chromosome 11 in the region where the PSY4 gene is located. The epistatic analysis has shown that the hsm6-1 mutation represents an allele of PSY4 gene. Sequencing of hsm6-1 mutant allele has revealed a frameshift mutation, which caused the substitution of Lys218Glu and the generation of a stop codon in the next position. The interactions of hsm6-1 and rad52 mutations were epistatic. Our data show that the PSY4 gene plays a key role in the regulation of cell withdrawal from checkpoint induced by DNA disturbances.

  9. Histone H3K36 methylation regulates pre-mRNA splicing in Saccharomyces cerevisiae

    PubMed Central

    Sorenson, Matthew R.; Jha, Deepak K.; Ucles, Stefanie A.; Flood, Danielle M.; Strahl, Brian D.; Stevens, Scott W.; Kress, Tracy L.

    2016-01-01

    ABSTRACT Co-transcriptional splicing takes place in the context of a highly dynamic chromatin architecture, yet the role of chromatin restructuring in coordinating transcription with RNA splicing has not been fully resolved. To further define the contribution of histone modifications to pre-mRNA splicing in Saccharomyces cerevisiae, we probed a library of histone point mutants using a reporter to monitor pre-mRNA splicing. We found that mutation of H3 lysine 36 (H3K36) – a residue methylated by Set2 during transcription elongation – exhibited phenotypes similar to those of pre-mRNA splicing mutants. We identified genetic interactions between genes encoding RNA splicing factors and genes encoding the H3K36 methyltransferase Set2 and the demethylase Jhd1 as well as point mutations of H3K36 that block methylation. Consistent with the genetic interactions, deletion of SET2, mutations modifying the catalytic activity of Set2 or H3K36 point mutations significantly altered expression of our reporter and reduced splicing of endogenous introns. These effects were dependent on the association of Set2 with RNA polymerase II and H3K36 dimethylation. Additionally, we found that deletion of SET2 reduces the association of the U2 and U5 snRNPs with chromatin. Thus, our study provides the first evidence that H3K36 methylation plays a role in co-transcriptional RNA splicing in yeast. PMID:26821844

  10. Maintenance of mitochondrial morphology is linked to maintenance of the mitochondrial genome in Saccharomyces cerevisiae.

    PubMed Central

    Hanekamp, Theodor; Thorsness, Mary K; Rebbapragada, Indrani; Fisher, Elizabeth M; Seebart, Corrine; Darland, Monica R; Coxbill, Jennifer A; Updike, Dustin L; Thorsness, Peter E

    2002-01-01

    In the yeast Saccharomyces cerevisiae, certain mutant alleles of YME4, YME6, and MDM10 cause an increased rate of mitochondrial DNA migration to the nucleus, carbon-source-dependent alterations in mitochondrial morphology, and increased rates of mitochondrial DNA loss. While single mutants grow on media requiring mitochondrial respiration, any pairwise combination of these mutations causes a respiratory-deficient phenotype. This double-mutant phenotype allowed cloning of YME6, which is identical to MMM1 and encodes an outer mitochondrial membrane protein essential for maintaining normal mitochondrial morphology. Yeast strains bearing null mutations of MMM1 have altered mitochondrial morphology and a slow growth rate on all carbon sources and quantitatively lack mitochondrial DNA. Extragenic suppressors of MMM1 deletion mutants partially restore mitochondrial morphology to the wild-type state and have a corresponding increase in growth rate and mitochondrial DNA stability. A dominant suppressor also suppresses the phenotypes caused by a point mutation in MMM1, as well as by specific mutations in YME4 and MDM10. PMID:12454062

  11. [Identification of new genes that affect [PSI^(+)] prion toxicity in Saccharomyces cerevisiae yeast].

    PubMed

    Matveenko, A G; Belousov, M V; Bondarev, S A; Moskalenko, S E; Zhouravleva, G A

    2016-01-01

    Translation termination is an important step in gene expression. Its correct processing is governed by eRF1 (Sup45) and eRF3 (Sup35) proteins. In Saccharomyces cerevisiae, mutations in the corresponding genes, as well as Sup35 aggregation in [PSI^(+)] cells that propagate the prion form of Sup35 lead to inaccurate stop codon recognition and, consequently, nonsense suppression. The presence of stronger prion variants results in the more efficient suppression of nonsense mutations. Previously, we proposed a synthetic lethality test that enables the identification of genes that may influence either translation termination factors or [PSI^(+)] manifestation. This is based on the fact that the combination of sup45 mutations with the strong [PSI^(+)] prion variant in diploids is lethal. In this work, a set of genes that were previously shown to enhance nonsense suppression was analyzed. It was found that ABF1, FKH2, and REB1 overexpression decreased the growth of strains in a prion-dependent manner and, thus, might influence [PSI^(+)] prion toxicity. It was also shown that the synthetic lethality of [PSI^(+)] and sup45 mutations increased with the overexpression of GLN3 and MOT3 that encode Q/N-rich transcription factors. An analysis of the effects of their expression on the transcription of the release factors genes revealed an increase in SUP35 transcription in both cases. Since SUP35 overexpression is known to be toxic in [PSI^(+)] strains, these genes apparently enhance [PSI^(+)] toxicity via the regulation of SUP35 transcription.

  12. Kinetics of phosphomevalonate kinase from Saccharomyces cerevisiae.

    PubMed

    Garcia, David E; Keasling, Jay D

    2014-01-01

    The mevalonate-based isoprenoid biosynthetic pathway is responsible for producing cholesterol in humans and is used commercially to produce drugs, chemicals, and fuels. Heterologous expression of this pathway in Escherichia coli has enabled high-level production of the antimalarial drug artemisinin and the proposed biofuel bisabolane. Understanding the kinetics of the enzymes in the biosynthetic pathway is critical to optimize the pathway for high flux. We have characterized the kinetic parameters of phosphomevalonate kinase (PMK, EC 2.7.4.2) from Saccharomyces cerevisiae, a previously unstudied enzyme. An E. coli codon-optimized version of the S. cerevisiae gene was cloned into pET-52b+, then the C-terminal 6X His-tagged protein was expressed in E. coli BL21(DE3) and purified on a Ni²⁺ column. The KM of the ATP binding site was determined to be 98.3 µM at 30°C, the optimal growth temperature for S. cerevisiae, and 74.3 µM at 37°C, the optimal growth temperature for E. coli. The K(M) of the mevalonate-5-phosphate binding site was determined to be 885 µM at 30°C and 880 µM at 37°C. The V(max) was determined to be 4.51 µmol/min/mg enzyme at 30°C and 5.33 µmol/min/mg enzyme at 37°C. PMK is Mg²⁺ dependent, with maximal activity achieved at concentrations of 10 mM or greater. Maximum activity was observed at pH = 7.2. PMK was not found to be substrate inhibited, nor feedback inhibited by FPP at concentrations up to 10 µM FPP.

  13. A region of the nucleosome required for multiple types of transcriptional silencing in Saccharomyces cerevisiae.

    PubMed

    Prescott, Eugenia T; Safi, Alexias; Rusche, Laura N

    2011-07-01

    Extended heterochromatin domains, which are repressive to transcription and help define centromeres and telomeres, are formed through specific interactions between silencing proteins and nucleosomes. This study reveals that in Saccharomyces cerevisiae, the same nucleosomal surface is critical for the formation of multiple types of heterochromatin, but not for local repression mediated by a related transcriptional repressor. Thus, this region of the nucleosome may be generally important to long-range silencing. In S. cerevisiae, the Sir proteins perform long-range silencing, whereas the Sum1 complex acts locally to repress specific genes. A mutant form of Sum1p, Sum1-1p, achieves silencing in the absence of Sir proteins. A genetic screen identified mutations in histones H3 and H4 that disrupt Sum1-1 silencing and fall in regions of the nucleosome previously known to disrupt Sir silencing and rDNA silencing. In contrast, no mutations were identified that disrupt wild-type Sum1 repression. Mutations that disrupt silencing fall in two regions of the nucleosome, the tip of the H3 tail and a surface of the nucleosomal core (LRS domain) and the adjacent base of the H4 tail. The LRS/H4 tail region interacts with the Sir3p bromo-adjacent homology (BAH) domain to facilitate Sir silencing. By analogy, this study is consistent with the LRS/H4 tail region interacting with Orc1p, a paralog of Sir3p, to facilitate Sum1-1 silencing. Thus, the LRS/H4 tail region of the nucleosome may be relatively accessible and facilitate interactions between silencing proteins and nucleosomes to stabilize long-range silencing.

  14. [Engineering Saccharomyces cerevisiae for sclareol production].

    PubMed

    Yang, Wei; Zhou, Yongjin; Liu, Wujun; Shen, Hongwei; Zhao, Zongbao K

    2013-08-01

    Sclareol is a member of labdane type diterpenes mostly used as fragrance ingredient. To enable microbial production of sclareol, synthetic pathways were constructed by incorporating labdenediol diphosphate synthase (LPPS) and terpene synthase (TPS) of the plant Salvia sclarea into Saccharomyces cerevisiae. It was found that sclareol production could be benefited by overexpression of key enzyme for precursor biosynthesis, construction of fusion protein for substrate channeling, and removal of signal peptides from LPPS and TPS. Under optimal shake flask culture conditions, strain S6 produced 8.96 mg/L sclareol. These results provided useful information for development of heterologous hosts for production of terpenoids.

  15. Mitochondrial fission facilitates mitophagy in Saccharomyces cerevisiae.

    PubMed

    Mao, Kai; Klionsky, Daniel J

    2013-11-01

    As a highly dynamic organelle, mitochondria undergo constitutive fusion and fission as well as biogenesis and degradation. Mitophagy, selective mitochondrial degradation through autophagy, is a conserved cellular process used for the elimination of excessive and damaged mitochondria in eukaryotes. Despite the significance of mitophagy in cellular physiology and pathophysiologies, the underlying mechanism of this process is far from clear. In this report, we studied the role of mitochondrial fission during mitophagy, and uncover a direct link between the fission complex and mitophagy machinery in Saccharomyces cerevisiae.

  16. Components of microtubular structures in Saccharomyces cerevisiae.

    PubMed Central

    Pillus, L; Solomon, F

    1986-01-01

    Most studies of cytoskeletal organelles have concentrated on molecular analyses of abundant and biochemically accessible structures. In many of the classical cases, however, the nature of the system chosen has precluded a concurrent genetic analysis. The mitotic spindle of the yeast Saccharomyces cerevisiae is one example of an organelle that can be studied by both classical and molecular genetics. We show here that this microtubule structure also can be examined biochemically. The spindle can be isolated by selective extractions of yeast cells by using adaptations of methods successfully applied to animal cells. In this way, microtubule-associated proteins of the yeast spindle are identified. Images PMID:3517870

  17. Fatty Acid Synthetase of Saccharomyces cerevisiae

    PubMed Central

    Klein, Harold P.; Volkmann, Carol M.; Chao, Fu-Chuan

    1967-01-01

    A light particle fraction of Saccharomyces cerevisiae, obtained from the crude ribosomal material, and containing the fatty acid synthetase, consisted primarily of 27S and 47S components. This fraction has a protein-ribonucleic acid ratio of about 13. Electron micrographs showed particles ranging in diameter between 100 and 300 A in this material. By use of density gradient analysis, the fatty acid synthetase was found in the 47S component. This component contained particles which were predominantly 300 A in diameter and which were considerably flatter than ribosomes, and it consisted almost entirely of protein. Images PMID:6025308

  18. The Spontaneous Mutation Rate in the Fission Yeast Schizosaccharomyces pombe.

    PubMed

    Farlow, Ashley; Long, Hongan; Arnoux, Stéphanie; Sung, Way; Doak, Thomas G; Nordborg, Magnus; Lynch, Michael

    2015-10-01

    The rate at which new mutations arise in the genome is a key factor in the evolution and adaptation of species. Here we describe the rate and spectrum of spontaneous mutations for the fission yeast Schizosaccharomyces pombe, a key model organism with many similarities to higher eukaryotes. We undertook an ∼1700-generation mutation accumulation (MA) experiment with a haploid S. pombe, generating 422 single-base substitutions and 119 insertion-deletion mutations (indels) across the 96 replicates. This equates to a base-substitution mutation rate of 2.00 × 10(-10) mutations per site per generation, similar to that reported for the distantly related budding yeast Saccharomyces cerevisiae. However, these two yeast species differ dramatically in their spectrum of base substitutions, the types of indels (S. pombe is more prone to insertions), and the pattern of selection required to counteract a strong AT-biased mutation rate. Overall, our results indicate that GC-biased gene conversion does not play a major role in shaping the nucleotide composition of the S. pombe genome and suggest that the mechanisms of DNA maintenance may have diverged significantly between fission and budding yeasts. Unexpectedly, CpG sites appear to be excessively liable to mutation in both species despite the likely absence of DNA methylation. Copyright © 2015 by the Genetics Society of America.

  19. The Spontaneous Mutation Rate in the Fission Yeast Schizosaccharomyces pombe

    PubMed Central

    Farlow, Ashley; Long, Hongan; Arnoux, Stéphanie; Sung, Way; Doak, Thomas G.; Nordborg, Magnus; Lynch, Michael

    2015-01-01

    The rate at which new mutations arise in the genome is a key factor in the evolution and adaptation of species. Here we describe the rate and spectrum of spontaneous mutations for the fission yeast Schizosaccharomyces pombe, a key model organism with many similarities to higher eukaryotes. We undertook an ∼1700-generation mutation accumulation (MA) experiment with a haploid S. pombe, generating 422 single-base substitutions and 119 insertion-deletion mutations (indels) across the 96 replicates. This equates to a base-substitution mutation rate of 2.00 × 10−10 mutations per site per generation, similar to that reported for the distantly related budding yeast Saccharomyces cerevisiae. However, these two yeast species differ dramatically in their spectrum of base substitutions, the types of indels (S. pombe is more prone to insertions), and the pattern of selection required to counteract a strong AT-biased mutation rate. Overall, our results indicate that GC-biased gene conversion does not play a major role in shaping the nucleotide composition of the S. pombe genome and suggest that the mechanisms of DNA maintenance may have diverged significantly between fission and budding yeasts. Unexpectedly, CpG sites appear to be excessively liable to mutation in both species despite the likely absence of DNA methylation. PMID:26265703

  20. Structural Insights into Saccharomyces cerevisiae Msh4–Msh5 Complex Function Using Homology Modeling

    PubMed Central

    Rakshambikai, Ramaswamy; Srinivasan, Narayanaswamy; Nishant, Koodali Thazath

    2013-01-01

    The Msh4–Msh5 protein complex in eukaryotes is involved in stabilizing Holliday junctions and its progenitors to facilitate crossing over during Meiosis I. These functions of the Msh4–Msh5 complex are essential for proper chromosomal segregation during the first meiotic division. The Msh4/5 proteins are homologous to the bacterial mismatch repair protein MutS and other MutS homologs (Msh2, Msh3, Msh6). Saccharomyces cerevisiae msh4/5 point mutants were identified recently that show two fold reduction in crossing over, compared to wild-type without affecting chromosome segregation. Three distinct classes of msh4/5 point mutations could be sorted based on their meiotic phenotypes. These include msh4/5 mutations that have a) crossover and viability defects similar to msh4/5 null mutants; b) intermediate defects in crossing over and viability and c) defects only in crossing over. The absence of a crystal structure for the Msh4–Msh5 complex has hindered an understanding of the structural aspects of Msh4–Msh5 function as well as molecular explanation for the meiotic defects observed in msh4/5 mutations. To address this problem, we generated a structural model of the S. cerevisiae Msh4–Msh5 complex using homology modeling. Further, structural analysis tailored with evolutionary information is used to predict sites with potentially critical roles in Msh4–Msh5 complex formation, DNA binding and to explain asymmetry within the Msh4–Msh5 complex. We also provide a structural rationale for the meiotic defects observed in the msh4/5 point mutations. The mutations are likely to affect stability of the Msh4/5 proteins and/or interactions with DNA. The Msh4–Msh5 model will facilitate the design and interpretation of new mutational data as well as structural studies of this important complex involved in meiotic chromosome segregation. PMID:24244354

  1. Efficient screening of environmental isolates for Saccharomyces cerevisiae strains that are suitable for brewing.

    PubMed

    Fujihara, Hidehiko; Hino, Mika; Takashita, Hideharu; Kajiwara, Yasuhiro; Okamoto, Keiko; Furukawa, Kensuke

    2014-01-01

    We developed an efficient screening method for Saccharomyces cerevisiae strains from environmental isolates. MultiPlex PCR was performed targeting four brewing S. cerevisiae genes (SSU1, AWA1, BIO6, and FLO1). At least three genes among the four were amplified from all S. cerevisiae strains. The use of this method allowed us to successfully obtain S. cerevisiae strains.

  2. Post-transcriptional regulation in the myo1Δ mutant of Saccharomyces cerevisiae

    PubMed Central

    2010-01-01

    Background Saccharomyces cerevisiae myosin type II-deficient (myo1Δ) strains remain viable and divide, despite the absence of a cytokinetic ring, by activation of the PKC1-dependent cell wall integrity pathway (CWIP). Since the myo1Δ transcriptional fingerprint is a subset of the CWIP fingerprint, the myo1Δ strain may provide a simplified paradigm for cell wall stress survival. Results To explore the post-transcriptional regulation of the myo1Δ stress response, 1,301 differentially regulated ribosome-bound mRNAs were identified by microarray analysis of which 204 were co-regulated by transcription and translation. Four categories of mRNA were significantly affected - protein biosynthesis, metabolism, carbohydrate metabolism, and unknown functions. Nine genes of the 20 CWIP fingerprint genes were post-transcriptionally regulated. Down and up regulation of selected ribosomal protein and cell wall biosynthesis mRNAs was validated by their distribution in polysomes from wild type and myo1Δ strains. Western blot analysis revealed accumulation of the phosphorylated form of eukaryotic translation initiation factor 2 (eIF2α-P) and a reduction in the steady state levels of the translation initiation factor eIF4Gp in myo1Δ strains. Deletion of GCN2 in myo1Δ abolished eIF2αp phosphorylation, and showed a severe growth defect. The presence of P-bodies in myo1Δ strains suggests that the process of mRNA sequestration is active, however, the three representative down regulated RP mRNAs, RPS8A, RPL3 and RPL7B were present at equivalent levels in Dcp2p-mCh-positive immunoprecipitated fractions from myo1Δ and wild type cells. These same RP mRNAs were also selectively co-precipitated with eIF2α-P in myo1Δ strains. Conclusions Quantitative analysis of ribosome-associated mRNAs and their polyribosome distributions suggests selective regulation of mRNA translation efficiency in myo1Δ strains. Inhibition of translation initiation factor eIF2α (eIF2α-P) in these strains

  3. Directed Evolution Reveals Unexpected Epistatic Interactions That Alter Metabolic Regulation and Enable Anaerobic Xylose Use by Saccharomyces cerevisiae

    PubMed Central

    Tremaine, Mary; Hebert, Alexander S.; Myers, Kevin S.; Sardi, Maria; Dickinson, Quinn; Reed, Jennifer L.; Zhang, Yaoping; Coon, Joshua J.; Hittinger, Chris Todd; Gasch, Audrey P.; Landick, Robert

    2016-01-01

    The inability of native Saccharomyces cerevisiae to convert xylose from plant biomass into biofuels remains a major challenge for the production of renewable bioenergy. Despite extensive knowledge of the regulatory networks controlling carbon metabolism in yeast, little is known about how to reprogram S. cerevisiae to ferment xylose at rates comparable to glucose. Here we combined genome sequencing, proteomic profiling, and metabolomic analyses to identify and characterize the responsible mutations in a series of evolved strains capable of metabolizing xylose aerobically or anaerobically. We report that rapid xylose conversion by engineered and evolved S. cerevisiae strains depends upon epistatic interactions among genes encoding a xylose reductase (GRE3), a component of MAP Kinase (MAPK) signaling (HOG1), a regulator of Protein Kinase A (PKA) signaling (IRA2), and a scaffolding protein for mitochondrial iron-sulfur (Fe-S) cluster biogenesis (ISU1). Interestingly, the mutation in IRA2 only impacted anaerobic xylose consumption and required the loss of ISU1 function, indicating a previously unknown connection between PKA signaling, Fe-S cluster biogenesis, and anaerobiosis. Proteomic and metabolomic comparisons revealed that the xylose-metabolizing mutant strains exhibit altered metabolic pathways relative to the parental strain when grown in xylose. Further analyses revealed that interacting mutations in HOG1 and ISU1 unexpectedly elevated mitochondrial respiratory proteins and enabled rapid aerobic respiration of xylose and other non-fermentable carbon substrates. Our findings suggest a surprising connection between Fe-S cluster biogenesis and signaling that facilitates aerobic respiration and anaerobic fermentation of xylose, underscoring how much remains unknown about the eukaryotic signaling systems that regulate carbon metabolism. PMID:27741250

  4. Directed Evolution Reveals Unexpected Epistatic Interactions That Alter Metabolic Regulation and Enable Anaerobic Xylose Use by Saccharomyces cerevisiae.

    PubMed

    Sato, Trey K; Tremaine, Mary; Parreiras, Lucas S; Hebert, Alexander S; Myers, Kevin S; Higbee, Alan J; Sardi, Maria; McIlwain, Sean J; Ong, Irene M; Breuer, Rebecca J; Avanasi Narasimhan, Ragothaman; McGee, Mick A; Dickinson, Quinn; La Reau, Alex; Xie, Dan; Tian, Mingyuan; Reed, Jennifer L; Zhang, Yaoping; Coon, Joshua J; Hittinger, Chris Todd; Gasch, Audrey P; Landick, Robert

    2016-10-01

    The inability of native Saccharomyces cerevisiae to convert xylose from plant biomass into biofuels remains a major challenge for the production of renewable bioenergy. Despite extensive knowledge of the regulatory networks controlling carbon metabolism in yeast, little is known about how to reprogram S. cerevisiae to ferment xylose at rates comparable to glucose. Here we combined genome sequencing, proteomic profiling, and metabolomic analyses to identify and characterize the responsible mutations in a series of evolved strains capable of metabolizing xylose aerobically or anaerobically. We report that rapid xylose conversion by engineered and evolved S. cerevisiae strains depends upon epistatic interactions among genes encoding a xylose reductase (GRE3), a component of MAP Kinase (MAPK) signaling (HOG1), a regulator of Protein Kinase A (PKA) signaling (IRA2), and a scaffolding protein for mitochondrial iron-sulfur (Fe-S) cluster biogenesis (ISU1). Interestingly, the mutation in IRA2 only impacted anaerobic xylose consumption and required the loss of ISU1 function, indicating a previously unknown connection between PKA signaling, Fe-S cluster biogenesis, and anaerobiosis. Proteomic and metabolomic comparisons revealed that the xylose-metabolizing mutant strains exhibit altered metabolic pathways relative to the parental strain when grown in xylose. Further analyses revealed that interacting mutations in HOG1 and ISU1 unexpectedly elevated mitochondrial respiratory proteins and enabled rapid aerobic respiration of xylose and other non-fermentable carbon substrates. Our findings suggest a surprising connection between Fe-S cluster biogenesis and signaling that facilitates aerobic respiration and anaerobic fermentation of xylose, underscoring how much remains unknown about the eukaryotic signaling systems that regulate carbon metabolism.

  5. Directed evolution reveals unexpected epistatic interactions that alter metabolic regulation and enable anaerobic xylose use by Saccharomyces cerevisiae

    DOE PAGES

    Sato, Trey K.; Tremaine, Mary; Parreiras, Lucas S.; ...

    2016-10-14

    The inability of native Saccharomyces cerevisiae to convert xylose from plant biomass into biofuels remains a major challenge for the production of renewable bioenergy. Despite extensive knowledge of the regulatory networks controlling carbon metabolism in yeast, little is known about how to reprogram S. cerevisiae to ferment xylose at rates comparable to glucose. Here we combined genome sequencing, proteomic profiling, and metabolomic analyses to identify and characterize the responsible mutations in a series of evolved strains capable of metabolizing xylose aerobically or anaerobically. We report that rapid xylose conversion by engineered and evolved S. cerevisiae strains depends upon epistatic interactionsmore » among genes encoding a xylose reductase (GRE3), a component of MAP Kinase (MAPK) signaling (HOG1), a regulator of Protein Kinase A (PKA) signaling (IRA2), and a scaffolding protein for mitochondrial iron-sulfur (Fe-S) cluster biogenesis (ISU1). Interestingly, the mutation in IRA2 only impacted anaerobic xylose consumption and required the loss of ISU1 function, indicating a previously unknown connection between PKA signaling, Fe-S cluster biogenesis, and anaerobiosis. Proteomic and metabolomic comparisons revealed that the xylose-metabolizing mutant strains exhibit altered metabolic pathways relative to the parental strain when grown in xylose. Further analyses revealed that interacting mutations in HOG1 and ISU1 unexpectedly elevated mitochondrial respiratory proteins and enabled rapid aerobic respiration of xylose and other non-fermentable carbon substrates. Lastly, our findings suggest a surprising connection between Fe-S cluster biogenesis and signaling that facilitates aerobic respiration and anaerobic fermentation of xylose, underscoring how much remains unknown about the eukaryotic signaling systems that regulate carbon metabolism.« less

  6. Evolving Mistranslating tRNAs Through a Phenotypically Ambivalent Intermediate in Saccharomyces cerevisiae

    PubMed Central

    Berg, Matthew D.; Hoffman, Kyle S.; Genereaux, Julie; Mian, Safee; Trussler, Ryan S.; Haniford, David B.; O’Donoghue, Patrick; Brandl, Christopher J.

    2017-01-01

    The genetic code converts information from nucleic acid into protein. The genetic code was thought to be immutable, yet many examples in nature indicate that variations to the code provide a selective advantage. We used a sensitive selection system involving suppression of a deleterious allele (tti2-L187P) in Saccharomyces cerevisiae to detect mistranslation and identify mechanisms that allow genetic code evolution. Though tRNASer containing a proline anticodon (UGG) is toxic, using our selection system we identified four tRNASer UGG variants, each with a single mutation, that mistranslate at a tolerable level. Mistranslating tRNALeu UGG variants were also obtained, demonstrating the generality of the approach. We characterized two of the tRNASer UGG variants. One contained a G26A mutation, which reduced cell growth to 70% of the wild-type rate, induced a heat shock response, and was lost in the absence of selection. The reduced toxicity of tRNASer UGG-G26A is likely through increased turnover of the tRNA, as lack of methylation at G26 leads to degradation via the rapid tRNA decay pathway. The second tRNASer UGG variant, with a G9A mutation, had minimal effect on cell growth, was relatively stable in cells, and gave rise to less of a heat shock response. In vitro, the G9A mutation decreases aminoacylation and affects folding of the tRNA. Notably, the G26A and G9A mutations were phenotypically neutral in the context of an otherwise wild-type tRNASer. These experiments reveal a model for genetic code evolution in which tRNA anticodon mutations and mistranslation evolve through phenotypically ambivalent intermediates that reduce tRNA function. PMID:28576863

  7. Cell wall construction in Saccharomyces cerevisiae.

    PubMed

    Klis, Frans M; Boorsma, Andre; De Groot, Piet W J

    2006-02-01

    In this review, we discuss new insights in cell wall architecture and cell wall construction in the ascomycetous yeast Saccharomyces cerevisiae. Transcriptional profiling studies combined with biochemical work have provided ample evidence that the cell wall is a highly adaptable organelle. In particular, the protein population that is anchored to the stress-bearing polysaccharides of the cell wall, and forms the interface with the outside world, is highly diverse. This diversity is believed to play an important role in adaptation of the cell to environmental conditions, in growth mode and in survival. Cell wall construction is tightly controlled and strictly coordinated with progression of the cell cycle. This is reflected in the usage of specific cell wall proteins during consecutive phases of the cell cycle and in the recent discovery of a cell wall integrity checkpoint. When the cell is challenged with stress conditions that affect the cell wall, a specific transcriptional response is observed that includes the general stress response, the cell wall integrity pathway and the calcineurin pathway. This salvage mechanism includes increased expression of putative cell wall assemblases and some potential cross-linking cell wall proteins, and crucial changes in cell wall architecture. We discuss some more enzymes involved in cell wall construction and also potential inhibitors of these enzymes. Finally, we use both biochemical and genomic data to infer that the architectural principles used by S. cerevisiae to build its cell wall are also used by many other ascomycetous yeasts and also by some mycelial ascomycetous fungi.

  8. [Mitochondria inheritance in yeast saccharomyces cerevisiae].

    PubMed

    Fizikova, A Iu

    2011-01-01

    The review is devoted to the main mechanisms of mitochondria inheritance in yeast Saccharonmyces cerevisiae. The genetic mechanisms of functionally active mitochondria inheritance in eukaryotic cells is one of the most relevant in modem researches. A great number of genetic diseases are associated with mitochondria dysfunction. Plasticity of eukaryotic cell metabolism according to the environmental changes is ensured by adequate mitochondria functioning by means of ATP synthesis coordination, reactive oxygen species accumulation, apoptosis regulation and is an important factor of cell adaptation to stress. Mitochondria participation in important for cell vitality processes masters the presence of accurate mechanisms of mitochondria functions regulation according to environment fluctuations. The mechanisms of mitochondria division and distribution are highly conserved. Baker yeast S. cerevisiae is an ideal model object for mitochondria researches due to energetic metabolism lability, ability to switch over respiration to fermentation, and petite-positive phenotype. Correction of metabolism according to the environmental changes is necessary for cell vitality. The influence of respiratory, carbon, amino acid and phosphate metabolism on mitochondria functions was shown. As far as the mechanisms that stabilize functions of mitochondria and mtDNA are highly conserve, we can project yeast regularities on higher eukaryotes systems. This makes it possible to approximate understanding the etiology and pathogenesis of a great number of human diseases.

  9. Mechanisms of ethanol tolerance in Saccharomyces cerevisiae.

    PubMed

    Ma, Menggen; Liu, Z Lewis

    2010-07-01

    Saccharomyces cerevisiae is a superb ethanol producer, yet is also sensitive to higher ethanol concentrations especially under high gravity or very high gravity fermentation conditions. Ethanol tolerance is associated with interplay of complex networks at the genome level. Although significant efforts have been made to study ethanol stress response in past decades, mechanisms of ethanol tolerance are not well known. With developments of genome sequencing and genomic technologies, our understanding of yeast biology has been revolutionarily advanced. More evidence of mechanisms of ethanol tolerance have been discovered involving multiple loci, multi-stress, and complex interactions as well as signal transduction pathways and regulatory networks. Transcription dynamics and profiling studies of key gene sets including heat shock proteins provided insight into tolerance mechanisms. A transient gene expression response or a stress response to ethanol does not necessarily lead to ethanol tolerance in yeast. Reprogrammed pathways and interactions of cofactor regeneration and redox balance observed from studies of tolerant yeast demonstrated the significant importance of a time-course study for ethanol tolerance. In this review, we focus on current advances of our understanding for ethanol-tolerance mechanisms of S. cerevisiae including gene expression responses, pathway-based analysis, signal transduction and regulatory networks. A prototype of global system model for mechanisms of ethanol tolerance is presented.

  10. A Saccharomyces cerevisiae mutant with increased virulence.

    PubMed

    Wheeler, Robert T; Kupiec, Martin; Magnelli, Paula; Abeijon, Claudia; Fink, Gerald R

    2003-03-04

    Saccharomyces cerevisiae, bakers' yeast, is not a pathogen in healthy individuals, but is increasingly isolated from immunocompromised patients. The more frequent isolation of S. cerevisiae clinically raises a number of questions concerning the origin, survival, and virulence of this organism in human hosts. Here we compare the virulence of a human isolate, a strain isolated from decaying fruit, and a common laboratory strain in a mouse infection model. We find that the plant isolate is lethal in mice, whereas the laboratory strain is avirulent. A knockout of the SSD1 gene, which alters the composition and cell wall architecture of the yeast cell surface, causes both the clinical and plant isolates to be more virulent in the mouse model of infection. The hypervirulent ssd1 Delta/ssd1 Delta yeast strain is a more potent elicitor of proinflammatory cytokines from macrophages in vitro. Our data suggest that the increased virulence of the mutant strains is a consequence of unique surface characteristics that overstimulate the proinflammatory response.

  11. Killer systems of the yeast Saccharomyces cerevisiae

    SciTech Connect

    Nesterova, G.F.

    1989-01-01

    The killer systems of Saccharomyces cerevisiae are an unusual class of cytoplasmic symbionts of primitive eukaryotes. The genetic material of these symbionts is double-stranded RNA. They are characterized by the linearity of the genome, its fragmentation into a major and a minor fraction, which replicate separately, and their ability to control the synthesis of secretory mycocin proteins possessing a toxic action on closely related strains. The secretion of mycocins at the same time ensures acquiring of resistance to them. Strains containing killer symbionts are toxigenic and resistant to the action of their own toxin, but strains that are free of killer double-stranded RNAs are sensitive to the action of mycocins. The killer systems of S. cerevisiae have retained features relating them to viruses and are apparently the result of evolution of infectious viruses. The occurrences of such systems among monocellular eukaryotic organisms is an example of complication of the genome by means of its assembly from virus-like components. We discuss the unusual features of replication and the expression of killer systems and their utilization in the construction of vector molecules.

  12. Paralogous histidine biosynthetic genes: evolutionary analysis of the Saccharomyces cerevisiae HIS6 and HIS7 genes.

    PubMed

    Fani, R; Tamburini, E; Mori, E; Lazcano, A; Liò, P; Barberio, C; Casalone, E; Cavalieri, D; Perito, B; Polsinelli, M

    1997-09-15

    The HIS6 gene from Saccharomyces cerevisiae strain YNN282 is able to complement both the S. cerevisiae his6 and the Escherichia coli hisA mutations. The cloning and the nucleotide sequence indicated that this gene encodes a putative phosphoribosyl-5-amino-1-phosphoribosyl-4-imidazolecarboxiamide isomerase (5' Pro-FAR isomerase, EC 5.3.1.16) of 261 amino acids, with a molecular weight of 29,554. The HIS6 gene product shares a significant degree of sequence similarity with the prokaryotic HisA proteins and HisF proteins, and with the C-terminal domain of the S. cerevisiae HIS7 protein (homologous to HisF), indicating that the yeast HIS6 and HIS7 genes are paralogous. Moreover, the HIS6 gene is organized into two homologous modules half the size of the entire gene, typical of all the known prokaryotic hisA and hisF genes. The structure of the yeast HIS6 gene supports the two-step evolutionary model suggested by Fani et al. (J. Mol. Evol. 1994; 38: 489-495) to explain the present-day hisA and hisF genes. According to this idea, the hisF gene originated from the duplication of an ancestral hisA gene which, in turn, was the result of an earlier gene elongation event involving an ancestral module half the size of the extant gene. Results reported in this paper also suggest that these two successive paralogous gene duplications took probably place in the early steps of molecular evolution of the histidine pathway, well before the diversification of the three domains, and that this pathway was one of the metabolic activities of the last common ancestor. The molecular evolution of the yeast HIS6 and HIS7 genes is also discussed.

  13. Effect of nitrogen availability on the poly-3-D-hydroxybutyrate accumulation by engineered Saccharomyces cerevisiae.

    PubMed

    Portugal-Nunes, Diogo J; Pawar, Sudhanshu S; Lidén, Gunnar; Gorwa-Grauslund, Marie F

    2017-12-01

    Poly-3-D-hydroxybutyrate (or PHB) is a polyester which can be used in the production of biodegradable plastics from renewable resources. It is naturally produced by several bacteria as a response to nutrient starvation in the excess of a carbon source. The yeast Saccharomyces cerevisiae could be an alternative production host as it offers good inhibitor tolerance towards weak acids and phenolic compounds and does not depolymerize the produced PHB. As nitrogen limitation is known to boost the accumulation of PHB in bacteria, the present study aimed at investigating the effect of nitrogen availability on PHB accumulation in two recombinant S. cerevisiae strains harboring different xylose consuming and PHB producing pathways: TMB4443 expressing an NADPH-dependent acetoacetyl-CoA reductase and a wild-type S. stipitis XR with preferential use of NADPH and TMB4425 which expresses an NADH-dependent acetoacetyl-CoA reductase and a mutated XR with a balanced affinity for NADPH/NADH. TMB4443 accumulated most PHB under aerobic conditions and with glucose as sole carbon source, whereas the highest PHB concentrations were obtained with TMB4425 under anaerobic conditions and xylose as carbon source. In both cases, the highest PHB contents were obtained with high availability of nitrogen. The major impact of nitrogen availability was observed in TMB4425, where a 2.7-fold increase in PHB content was obtained. In contrast to what was observed in natural PHB-producing bacteria, nitrogen deficiency did not improve PHB accumulation in S. cerevisiae. Instead the excess available carbon from xylose was shunted into glycogen, indicating a significant gluconeogenic activity on xylose.

  14. Development of a comprehensive genotype-to-fitness map of adaptation-driving mutations in yeast

    PubMed Central

    Venkataram, Sandeep; Dunn, Barbara; Li, Yuping; Agarwala, Atish; Chang, Jessica; Ebel, Emily; Geiler-Samerotte, Kerry; Herissant, Lucas; Blundell, Jamie; Levy, Sasha F.; Fisher, Daniel S.; Sherlock, Gavin; Petrov, Dmitri A.

    2016-01-01

    Summary Adaptive evolution plays a large role in generating the phenotypic diversity observed in nature, yet current methods are impractical for characterizing the molecular basis and fitness effects of large numbers of individual adaptive mutations. Here we used a DNA barcoding approach to generate the genotype-to-fitness map for adaptation-driving mutations from a Saccharomyces cerevisiae population experimentally evolved by serial transfer under limiting glucose. We isolated and measured the fitness of thousands of independent adaptive clones, and sequenced the genomes of hundreds of clones. We found only two major classes of adaptive mutations: self-diploidization, and mutations in the nutrient-responsive Ras/PKA and TOR/Sch9 pathways. Our large sample size and precision of measurement allowed us to determine that there are significant differences in fitness between mutations in different genes, between different paralogs, and even between different classes of mutations within the same gene. PMID:27594428

  15. Development of a Comprehensive Genotype-to-Fitness Map of Adaptation-Driving Mutations in Yeast.

    PubMed

    Venkataram, Sandeep; Dunn, Barbara; Li, Yuping; Agarwala, Atish; Chang, Jessica; Ebel, Emily R; Geiler-Samerotte, Kerry; Hérissant, Lucas; Blundell, Jamie R; Levy, Sasha F; Fisher, Daniel S; Sherlock, Gavin; Petrov, Dmitri A

    2016-09-08

    Adaptive evolution plays a large role in generating the phenotypic diversity observed in nature, yet current methods are impractical for characterizing the molecular basis and fitness effects of large numbers of individual adaptive mutations. Here, we used a DNA barcoding approach to generate the genotype-to-fitness map for adaptation-driving mutations from a Saccharomyces cerevisiae population experimentally evolved by serial transfer under limiting glucose. We isolated and measured the fitness of thousands of independent adaptive clones and sequenced the genomes of hundreds of clones. We found only two major classes of adaptive mutations: self-diploidization and mutations in the nutrient-responsive Ras/PKA and TOR/Sch9 pathways. Our large sample size and precision of measurement allowed us to determine that there are significant differences in fitness between mutations in different genes, between different paralogs, and even between different classes of mutations within the same gene.

  16. Genetic Analysis of Desiccation Tolerance in Saccharomyces cerevisiae

    PubMed Central

    Calahan, Dean; Dunham, Maitreya; DeSevo, Chris; Koshland, Douglas E.

    2011-01-01

    Desiccation tolerance, the ability to survive nearly total dehydration, is a rare strategy for survival and reproduction observed in all taxa. However, the mechanism and regulation of this phenomenon are poorly understood. Correlations between desiccation tolerance and potential effectors have been reported in many species, but their physiological significance has not been established in vivo. Although the budding yeast Saccharomyces cerevisiae exhibits extreme desiccation tolerance, its usefulness has been hampered by an inability to reduce tolerance more than a few fold by physiological or genetic perturbations. Here we report that fewer than one in a million yeast cells from low-density logarithmic cultures survive desiccation, while 20–40% of cells from saturated cultures survive. Using this greatly expanded metric, we show that mutants defective in trehalose biosynthesis, hydrophilins, responses to hyperosmolarity, and hypersalinity, reactive oxygen species (ROS) scavenging and DNA damage repair nevertheless retain wild-type levels of desiccation tolerance, suggesting that this trait involves a unique constellation of stress factors. A genome-wide screen for mutants that render stationary cells as sensitive as log phase cells identifies only mutations that block respiration. Respiration as a prerequisite for acquiring desiccation tolerance is corroborated by respiration inhibition and by growth on nonfermentable carbon sources. Suppressors bypassing the respiration requirement for desiccation tolerance reveal at least two pathways, one of which, involving the Mediator transcription complex, is associated with the shift from fermentative to respiratory metabolism. Further study of these regulators and their targets should provide important clues to the sensors and effectors of desiccation tolerance. PMID:21840858

  17. Saccharomyces cerevisiae Genes Involved in Survival of Heat Shock

    PubMed Central

    Jarolim, Stefanie; Ayer, Anita; Pillay, Bethany; Gee, Allison C.; Phrakaysone, Alex; Perrone, Gabriel G.; Breitenbach, Michael; Dawes, Ian W.

    2013-01-01

    The heat-shock response in cells, involving increased transcription of a specific set of genes in response to a sudden increase in temperature, is a highly conserved biological response occurring in all organisms. Despite considerable attention to the processes activated during heat shock, less is known about the role of genes in survival of a sudden temperature increase. Saccharomyces cerevisiae genes involved in the maintenance of heat-shock resistance in exponential and stationary phase were identified by screening the homozygous diploid deletants in nonessential genes and the heterozygous diploid mutants in essential genes for survival after a sudden shift in temperature from 30 to 50°. More than a thousand genes were identified that led to altered sensitivity to heat shock, with little overlap between them and those previously identified to affect thermotolerance. There was also little overlap with genes that are activated or repressed during heat-shock, with only 5% of them regulated by the heat-shock transcription factor. The target of rapamycin and protein kinase A pathways, lipid metabolism, vacuolar H+-ATPase, vacuolar protein sorting, and mitochondrial genome maintenance/translation were critical to maintenance of resistance. Mutants affected in l-tryptophan metabolism were heat-shock resistant in both growth phases; those affected in cytoplasmic ribosome biogenesis and DNA double-strand break repair were resistant in stationary phase, and in mRNA catabolic processes in exponential phase. Mutations affecting mitochondrial genome maintenance were highly represented in sensitive mutants. The cell division transcription factor Swi6p and Hac1p involved in the unfolded protein response also play roles in maintenance of heat-shock resistance. PMID:24142923

  18. Genetic analysis of desiccation tolerance in Sachharomyces cerevisiae.

    PubMed

    Calahan, Dean; Dunham, Maitreya; DeSevo, Chris; Koshland, Douglas E

    2011-10-01

    Desiccation tolerance, the ability to survive nearly total dehydration, is a rare strategy for survival and reproduction observed in all taxa. However, the mechanism and regulation of this phenomenon are poorly understood. Correlations between desiccation tolerance and potential effectors have been reported in many species, but their physiological significance has not been established in vivo. Although the budding yeast Saccharomyces cerevisiae exhibits extreme desiccation tolerance, its usefulness has been hampered by an inability to reduce tolerance more than a few fold by physiological or genetic perturbations. Here we report that fewer than one in a million yeast cells from low-density logarithmic cultures survive desiccation, while 20-40% of cells from saturated cultures survive. Using this greatly expanded metric, we show that mutants defective in trehalose biosynthesis, hydrophilins, responses to hyperosmolarity, and hypersalinity, reactive oxygen species (ROS) scavenging and DNA damage repair nevertheless retain wild-type levels of desiccation tolerance, suggesting that this trait involves a unique constellation of stress factors. A genome-wide screen for mutants that render stationary cells as sensitive as log phase cells identifies only mutations that block respiration. Respiration as a prerequisite for acquiring desiccation tolerance is corroborated by respiration inhibition and by growth on nonfermentable carbon sources. Suppressors bypassing the respiration requirement for desiccation tolerance reveal at least two pathways, one of which, involving the Mediator transcription complex, is associated with the shift from fermentative to respiratory metabolism. Further study of these regulators and their targets should provide important clues to the sensors and effectors of desiccation tolerance.

  19. The anatomy of a hypoxic operator in Saccharomyces cerevisiae.

    PubMed Central

    Deckert, J; Torres, A M; Hwang, S M; Kastaniotis, A J; Zitomer, R S

    1998-01-01

    Aerobic repression of the hypoxic genes of Saccharomyces cerevisiae is mediated by the DNA-binding protein Rox1 and the Tup1/Ssn6 general repression complex. To determine the DNA sequence requirements for repression, we carried out a mutational analysis of the consensus Rox1-binding site and an analysis of the arrangement of the Rox1 sites into operators in the hypoxic ANB1 gene. We found that single base pair substitutions in the consensus sequence resulted in lower affinities for Rox1, and the decreased affinity of Rox1 for mutant sites correlated with the ability of these sites to repress expression of the hypoxic ANB1 gene. In addition, there was a general but not complete correlation between the strength of repression of a given hypoxic gene and the compliance of the Rox1 sites in that gene to the consensus sequence. An analysis of the ANB1 operators revealed that the two Rox1 sites within an operator acted synergistically in vivo, but that Rox1 did not bind cooperatively in vitro, suggesting the presence of a higher order repression complex in the cell. In addition, the spacing or helical phasing of the Rox1 sites was not important in repression. The differential repression by the two operators of the ANB1 gene was found to be due partly to the location of the operators and partly to the sequences between the two Rox1-binding sites in each. Finally, while Rox1 repression requires the Tup1/Ssn6 general repression complex and this complex has been proposed to require the aminoterminal regions of histones H3 and H4 for full repression of a number of genes, we found that these regions were dispensable for ANB1 repression and the repression of two other hypoxic genes. PMID:9832521

  20. A study of eukaryotic response mechanisms to atmospheric pressure cold plasma by using Saccharomyces cerevisiae single gene mutants

    SciTech Connect

    Feng Hongqing; Wang Ruixue; Sun Peng; Wu Haiyan; Liu Qi; Li Fangting; Fang Jing; Zhang Jue; Zhu Weidong

    2010-09-27

    The mechanisms of eukaryotic cell response to cold plasma are studied. A series of single gene mutants of eukaryotic model organism Saccharomyces cerevisiae are used to compare their sensitivity to plasma treatment with the wild type. We examined 12 mutants in the oxidative stress pathway and the cell cycle pathway, in which 8 are found to be hypersensitive to plasma processing. The mutated genes' roles in the two pathways are analyzed to understand the biological response mechanisms of plasma treatment. The results demonstrate that genes from both pathways are needed for the eukaryotic cells to survive the complex plasma treatment.

  1. Mutation and the environment

    SciTech Connect

    Mendelsohn, M.L. ); Albertini, R.J. )

    1990-01-01

    This book is covered under the following topics: Somatic Mutation: Animal Model; Somatic Mutation: Human; Heritable Mutation: Animal Model; Heritable Mutation: Approaches to Human Induction Rates; Heritable Mutation: Human Risk; Epidemiology: Population Studies on Genotoxicity; and Epidemiology: Workplace Studies of Genotoxicity.

  2. The AUR1 gene in Saccharomyces cerevisiae encodes dominant resistance to the antifungal agent aureobasidin A (LY295337).

    PubMed Central

    Heidler, S A; Radding, J A

    1995-01-01

    Aureobasidin A (LY295337) is a cyclic depsipeptide antifungal agent with activity against Candida spp. The mechanism of action of LY295337 remains unknown. LY295337 also shows activity against the yeast Saccharomyces cerevisiae. Generation of a mutant of S. cerevisiae resistant to LY295337 is reported. Resistance was found to reside in a dominant mutation of a single gene which has been named AUR1 (aureobasidin resistance). This gene was cloned and sequenced. A search for homologous sequences in GenBank and by BLAST did not elucidate the function of this gene, although sequence homology too an open reading frame from the Saccharomyces genome sequencing project and several other adjacent loci was noted. Deletion of aur1 was accomplished in a diploid S. cerevisiae strain. Subsequent sporulation and dissection of the aur1/aur1 delta diploid resulted in tetrads demonstrating 2:2 segregation of viable and nonviable spores, indicating that deletion of aur1 is lethal. As LY295337 is fungicidal and deletion of aur1 is lethal, aur1 represents a potential candidate for the target of LY295337. PMID:8593016

  3. Modulating betulinic acid production in Saccharomyces cerevisiae by managing the intracellular supplies of the co-factor NADPH and oxygen.

    PubMed

    Li, Jing; Zhang, Yansheng

    2015-01-01

    Betulinic acid is a plant derived triterpenoid with beneficial effects for anti-tumor and anti-human immunodeficiency virus treatments. In Saccharomyces cerevisiae, we previously constructed the betulinic acid biosynthetic pathway, in which several enzymes function in a NADPH or oxygen-dependent manner. To seek whether the intracellular supply of the NADPH/oxygen of S. cerevisiae could be managed for improving betulinic acid production, the expressions of the mutated 2,3-butanediol dehydrogenase (mBDH1) and the yeast codon optimized Vitreoscilla hemoglobin (mvhb) were separately introduced into the betulinic acid forming yeast strain. The effect of these expressions on betulinic acid productivity was evaluated. Our results showed that the expression of mBDH1 and mvhb increased the concentration of betulinic acid to 1.5 and 3.2 times, respectively relative to the controls. Meanwhile, the growth property of these engineered yeast strains was also monitored. Though the mvhb expression greatly improved the production of betulinic acid but exerted a serious inhibition on yeast growth. However, it was possible to keep desirable yeast growth phenotype using an appropriate concentration of acetoin with the expression of mBDH1. The results of this study would provide a general reference to modulate the production of other triterpenoids in S. cerevisiae by managing the supplies of NADPH and oxygen. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Manganese toxicity and Saccharomyces cerevisiae Mam3p, a member of the ACDP (ancient conserved domain protein) family.

    PubMed

    Yang, Mei; Jensen, Laran T; Gardner, Allison J; Culotta, Valeria C

    2005-03-15

    Manganese is an essential, but potentially toxic, trace metal in biological systems. Overexposure to manganese is known to cause neurological deficits in humans, but the pathways that lead to manganese toxicity are largely unknown. We have employed the bakers' yeast Saccharomyces cerevisiae as a model system to identify genes that contribute to manganese-related damage. In a genetic screen for yeast manganese-resistance mutants, we identified S. cerevisiae MAM3 as a gene which, when deleted, would increase cellular tolerance to toxic levels of manganese and also increased the cell's resistance towards cobalt and zinc. By sequence analysis, Mam3p shares strong similarity with the mammalian ACDP (ancient conserved domain protein) family of polypeptides. Mutations in human ACDP1 have been associated with urofacial (Ochoa) syndrome. However, the functions of eukaryotic ACDPs remain unknown. We show here that S. cerevisiae MAM3 encodes an integral membrane protein of the yeast vacuole whose expression levels directly correlate with the degree of manganese toxicity. Surprisingly, Mam3p contributes to manganese toxicity without any obvious changes in vacuolar accumulation of metals. Furthermore, through genetic epistasis studies, we demonstrate that MAM3 operates independently of the well-established manganese-trafficking pathways in yeast, involving the manganese transporters Pmr1p, Smf2p and Pho84p. This is the first report of a eukaryotic ACDP family protein involved in metal homoeostasis.

  5. Network hubs buffer environmental variation in Saccharomyces cerevisiae.

    PubMed

    Levy, Sasha F; Siegal, Mark L

    2008-11-04

    Regulatory and developmental systems produce phenotypes that are robust to environmental and genetic variation. A gene product that normally contributes to this robustness is termed a phenotypic capacitor. When a phenotypic capacitor fails, for example when challenged by a harsh environment or mutation, the system becomes less robust and thus produces greater phenotypic variation. A functional phenotypic capacitor provides a mechanism by which hidden polymorphism can accumulate, whereas its failure provides a mechanism by which evolutionary change might be promoted. The primary example to date of a phenotypic capacitor is Hsp90, a molecular chaperone that targets a large set of signal transduction proteins. In both Drosophila and Arabidopsis, compromised Hsp90 function results in pleiotropic phenotypic effects dependent on the underlying genotype. For some traits, Hsp90 also appears to buffer stochastic variation, yet the relationship between environmental and genetic buffering remains an important unresolved question. We previously used simulations of knockout mutations in transcriptional networks to predict that many gene products would act as phenotypic capacitors. To test this prediction, we use high-throughput morphological phenotyping of individual yeast cells from single-gene deletion strains to identify gene products that buffer environmental variation in Saccharomyces cerevisiae. We find more than 300 gene products that, when absent, increase morphological variation. Overrepresented among these capacitors are gene products that control chromosome organization and DNA integrity, RNA elongation, protein modification, cell cycle, and response to stimuli such as stress. Capacitors have a high number of synthetic-lethal interactions but knockouts of these genes do not tend to cause severe decreases in growth rate. Each capacitor can be classified based on whether or not it is encoded by a gene with a paralog in the genome. Capacitors with a duplicate are highly

  6. The HXT2 gene of Saccharomyces cerevisiae is required for high-affinity glucose transport.

    PubMed Central

    Kruckeberg, A L; Bisson, L F

    1990-01-01

    The HXT2 gene of the yeast Saccharomyces cerevisiae was identified on the basis of its ability to complement the defect in glucose transport of a snf3 mutant when present on the multicopy plasmid pSC2. Analysis of the DNA sequence of HXT2 revealed an open reading frame of 541 codons, capable of encoding a protein of Mr 59,840. The predicted protein displayed high sequence and structural homology to a large family of procaryotic and eucaryotic sugar transporters. These proteins have 12 highly hydrophobic regions that could form transmembrane domains; the spacing of these putative transmembrane domains is also highly conserved. Several amino acid motifs characteristic of this sugar transporter family are also present in the HXT2 protein. An hxt2 null mutant strain lacked a significant component of high-affinity glucose transport when under derepressing (low-glucose) conditions. However, the hxt2 null mutation did not incur a major growth defect on glucose-containing media. Genetic and biochemical analyses suggest that wild-type levels of high-affinity glucose transport require the products of both the HXT2 and SNF3 genes; these genes are not linked. Low-stringency Southern blot analysis revealed a number of other sequences that cross-hybridize with HXT2, suggesting that S. cerevisiae possesses a large family of sugar transporter genes. Images PMID:2233722

  7. Spatial reorganization of Saccharomyces cerevisiae enolase to alter carbon metabolism under hypoxia.

    PubMed

    Miura, Natsuko; Shinohara, Masahiro; Tatsukami, Yohei; Sato, Yasuhiko; Morisaka, Hironobu; Kuroda, Kouichi; Ueda, Mitsuyoshi

    2013-08-01

    Hypoxia has critical effects on the physiology of organisms. In the yeast Saccharomyces cerevisiae, glycolytic enzymes, including enolase (Eno2p), formed cellular foci under hypoxia. Here, we investigated the regulation and biological functions of these foci. Focus formation by Eno2p was inhibited temperature independently by the addition of cycloheximide or rapamycin or by the single substitution of alanine for the Val22 residue. Using mitochondrial inhibitors and an antioxidant, mitochondrial reactive oxygen species (ROS) production was shown to participate in focus formation. Focus formation was also inhibited temperature dependently by an SNF1 knockout mutation. Interestingly, the foci were observed in the cell even after reoxygenation. The metabolic turnover analysis revealed that [U-(13)C]glucose conversion to pyruvate and oxaloacetate was accelerated in focus-forming cells. These results suggest that under hypoxia, S. cerevisiae cells sense mitochondrial ROS and, by the involvement of SNF1/AMPK, spatially reorganize metabolic enzymes in the cytosol via de novo protein synthesis, which subsequently increases carbon metabolism. The mechanism may be important for yeast cells under hypoxia, to quickly provide both energy and substrates for the biosynthesis of lipids and proteins independently of the tricarboxylic acid (TCA) cycle and also to fit changing environments.

  8. Ypq3p-dependent histidine uptake by the vacuolar membrane vesicles of Saccharomyces cerevisiae.

    PubMed

    Manabe, Kunio; Kawano-Kawada, Miyuki; Ikeda, Koichi; Sekito, Takayuki; Kakinuma, Yoshimi

    2016-06-01

    The vacuolar membrane proteins Ypq1p, Ypq2p, and Ypq3p of Saccharomyces cerevisiae are known as the members of the PQ-loop protein family. We found that the ATP-dependent uptake activities of arginine and histidine by the vacuolar membrane vesicles were decreased by ypq2Δ and ypq3Δ mutations, respectively. YPQ1 and AVT1, which are involved in the vacuolar uptake of lysine/arginine and histidine, respectively, were deleted in addition to ypq2Δ and ypq3Δ. The vacuolar membrane vesicles isolated from the resulting quadruple deletion mutant ypq1Δypq2Δypq3Δavt1Δ completely lost the uptake activity of basic amino acids, and that of histidine, but not lysine and arginine, was evidently enhanced by overexpressing YPQ3 in the mutant. These results suggest that Ypq3p is specifically involved in the vacuolar uptake of histidine in S. cerevisiae. The cellular level of Ypq3p-HA(3) was enhanced by depletion of histidine from culture medium, suggesting that it is regulated by the substrate.

  9. Structure of the Saccharomyces cerevisiae Cet1-Ceg1 mRNA Capping Apparatus

    SciTech Connect

    Gu, Meigang; Rajashankar, Kanagalaghatta R.; Lima, Christopher D.

    2010-05-04

    The 5{prime} guanine-N7 cap is the first cotranscriptional modification of messenger RNA. In Saccharomyces cerevisiae, the first two steps in capping are catalyzed by the RNA triphosphatase Cet1 and RNA guanylyltransferase Ceg1, which form a complex that is directly recruited to phosphorylated RNA polymerase II (RNAP IIo), primarily via contacts between RNAP IIo and Ceg1. A 3.0 {angstrom} crystal structure of Cet1-Ceg1 revealed a 176 kDa heterotetrameric complex composed of one Cet1 homodimer that associates with two Ceg1 molecules via interactions between the Ceg1 oligonucleotide binding domain and an extended Cet1 WAQKW amino acid motif. The WAQKW motif is followed by a flexible linker that would allow Ceg1 to achieve conformational changes required for capping while maintaining interactions with both Cet1 and RNAP IIo. The impact of mutations as assessed through genetic analysis in S. cerevisiae is consonant with contacts observed in the Cet1-Ceg1 structure.

  10. Mutation rates and mutational loads in man

    SciTech Connect

    Cavalli-Sforza, L.L.

    1984-01-01

    The following areas of research are discussed: (1) the study of human mutation rates; (2) geography of human genes and its relevance to mutation; (3) sociocultural studies correlated with population genetics; (4) consanguineous marriages; and (5) surnames. (ACR)

  11. The transcriptional control machinery as well as the cell wall integrity and its regulation are involved in the detoxification of the organic solvent dimethyl sulfoxide in Saccharomyces cerevisiae.

    PubMed

    Zhang, Lilin; Liu, Ningning; Ma, Xiao; Jiang, Linghuo

    2013-03-01

    In the present study, we have identified 339 dimethyl sulfoxide (DMSO)-sensitive and nine DMSO-tolerant gene mutations in Saccharomyces cerevisiae through a functional genomics approach. Twelve of these identified DMSO-sensitive mutations are of genes involved in the general control of gene expression mediated by the SWR1 complex and the RNA polymerase II mediator complex, whereas 71 of them are of genes involved in the protein trafficking and vacuolar sorting processes. In addition, twelve of these DMSO-sensitive mutations are of genes involved in the cell wall integrity (CWI) and its regulation. DMSO-tolerant mutations are of genes mainly involved in the metabolism and the gene expression control. Therefore, the transcriptional control machinery, the CWI and its regulation as well as the protein trafficking and sorting process play critical roles in the DMSO detoxification in yeast cells.

  12. Suppressors of Yeast Actin Mutations

    PubMed Central

    Novick, P.; Osmond, B. C.; Botstein, D.

    1989-01-01

    Suppressors of a temperature-sensitive mutation (act1-1) in the single actin gene of Saccharomyces cerevisiae were selected that had simultaneously acquired a cold-sensitive growth phenotype. Five genes, called SAC (suppressor of actin) were defined by complementation tests; both suppression and cold-sensitive phenotypes were recessive. Three of the genes (SAC1, SAC2 and SAC3) were subjected to extensive genetic and phenotypic analysis, including molecular cloning. Suppression was found to be allele-specific with respect to actin alleles. The sac mutants, even in ACT1(+) genetic backgrounds, displayed phenotypes similar to those of actin mutants, notably aberrant organization of intracellular actin and deposition of chitin at the cell surface. These results are interpreted as being consistent with the idea that the SAC genes encode proteins that interact with actin, presumably as components or controllers of the assembly or stability of the yeast actin cytoskeleton. Two unexpected properties of the SAC1 gene were noted. Disruptions of the gene indicated that its function is essential only at temperatures below about 17° and all sac1 alleles are inviable when combined with act1-2. These properties are interpreted in the context of the evolution of the actin cytoskeleton of yeast. PMID:2656401

  13. Microbial mutation studies with tetrachlorvinphos (Gardona)).

    PubMed

    Brooks, T M; Dean, B J; Hutson, D H; Potter, D

    1982-10-01

    The mutagenic activity of tetrachlorvinphos was investigated in agar-layer cultures of Escherichia coli WP2 and WP2 uvrA, Salmonella typhimurium TA1535, TA1538, TA98 and TA100. Assays were carried out both in the presence and in the absence of S9 fractions of liver homogenates from rats and mice, both from untreated animals, and from animals pre-treated with Aroclor 1254. The induction of mitotic gene conversion by tetrachlorvinphos was studied in stationary phase cultures of the yeast Saccharomyces cerevisiae D4. No mutagenic effects, as determined by reverse gene mutation, were detected in vitro in the bacterial/mammalian microsome assay when a range of bacterial tester strains were exposed to tetrachlorvinphos at amounts up to 2000 micrograms per plate, either in the absence or in the presence of S9 fractions from non-induced or Aroclor-induced mouse or rat livers. Tetrachlorvinphos did not increase the mitotic gene conversion frequency in stationary phase cultures of the yeast, Saccharomyces cerevisiae D4.

  14. Transport and cytotoxicity of the anticancer drug 3-bromopyruvate in the yeast Saccharomyces cerevisiae.

    PubMed

    Lis, Paweł; Zarzycki, Marek; Ko, Young H; Casal, Margarida; Pedersen, Peter L; Goffeau, Andre; Ułaszewski, Stanisław

    2012-02-01

    We have investigated the cytotoxicity in Saccharomyces cerevisiae of the novel antitumor agent 3-bromopyruvate (3-BP). 3-BP enters the yeast cells through the lactate/pyruvate H(+) symporter Jen1p and inhibits cell growth at minimal inhibitory concentration of 1.8 mM when grown on non-glucose conditions. It is not submitted to the efflux pumps conferring Pleiotropic Drug Resistance in yeast. Yeast growth is more sensitive to 3-BP than Gleevec (Imatinib methanesulfonate) which in contrast to 3-BP is submitted to the PDR network of efflux pumps. The sensitivity of yeast to 3-BP is increased considerably by mutations or chemical treatment by buthionine sulfoximine that decrease the intracellular concentration of glutathione.

  15. Interactions between chromosomal omnipotent suppressors and extrachromosomal effectors in Saccharomyces cerevisiae.

    PubMed

    Ono, B; Chernoff, Y O; Ishino-Arao, Y; Yamagishi, N; Shinoda, S; Inge-Vechtomov, S G

    1991-04-01

    Chromosomal omnipotent suppressor mutations recovered in psi+ strains of Saccharomyces cerevisiae were brought into psi- cytoplasm. SUP46, SUP138 and SUP139 acted as dominant omnipotent suppressors in the psi- cytoplasm though their suppressor activity was substantially reduced. SUP46 and SUP138 conferred recessive thermosensitivity and antibiotic sensitivity in psi- cytoplasm as in psi+ cytoplasm. On the other hand, sup111 through sup115, which acted as recessive omnipotent suppressors in the psi+ cytoplasm, manifested no, or very low, suppressor activity in the psi- cytoplasm. They, however, still enhanced the efficiency of the SUP29 tRNA suppressor in psi- cytoplasm. A multicopy plasmid carrying the wild-type SUP35 gene enhanced the efficiency of sup111 in psi- cytoplasm.

  16. The Saccharomyces cerevisiae Wss1 protein is only present in mother cells.

    PubMed

    van Heusden, G Paul H; Steensma, H Yde

    2008-05-01

    The Saccharomyces cerevisiae WSS1 (Weak Suppressor of Smt3) gene has initially been identified as a multicopy suppressor of a mutation in SMT3 encoding the small ubiquitin-like modifier. Later, multiple functions related to DNA replication and repair have been found for WSS1. Here, we report the subcellular location of the Wss1 protein. Fluorescence microscopy of strains expressing a Wss1p-green fluorescent protein (GFP) fusion shows that the protein is present in a single sharp spot near the nuclear membrane, distinct from the spindle pole bodies and nucleolus. In dividing cells, the spot is exclusively present in the mother cell, suggesting a mother cell-specific function of WSS1.

  17. [RAD18 gene product of yeast Saccharomyces cerevisiae controls mutagenesis induced by hydrogen peroxide].

    PubMed

    Kozhina, T N; Korolev, V G

    2012-04-01

    Within eukaryotes, tolerance to DNA damage is determined primarily by the repair pathway controlled by the members of the RAD6 epistasis group. Genetic studies on a yeast Saccharomyces cerevisiae model showed that the initial stage of postreplication repair (PRR), i.e., initiation of replication through DNA damage, is controlled by Rad6-Rad18 ubiquitin-conjugating enzyme complex. Mutants of these genes are highly sensitive to various genotoxic agents and reduce the level of induced mutagenesis. In this case, the efficiency of mutagenesis suppression depends on the type of damage. In this study we showed that DNA damage induced by hydrogen peroxide at the same mutagen doses causes significantly more mutations and lethal events in the rad18 mutant cells compared to control wild-type cells.

  18. Accelerated alcoholic fermentation caused by defective gene expression related to glucose derepression in Saccharomyces cerevisiae.

    PubMed

    Watanabe, Daisuke; Hashimoto, Naoya; Mizuno, Megumi; Zhou, Yan; Akao, Takeshi; Shimoi, Hitoshi

    2013-01-01

    Sake yeast strains maintain high fermentation rates, even after the stationary growth phase begins. To determine the molecular mechanisms underlying this advantageous brewing property, we compared the gene expression profiles of sake and laboratory yeast strains of Saccharomyces cerevisiae during the stationary growth phase. DNA microarray analysis revealed that the sake yeast strain examined had defects in expression of the genes related to glucose derepression mediated by transcription factors Adr1p and Cat8p. Furthermore, deletion of the ADR1 and CAT8 genes slightly but statistically significantly improved the fermentation rate of a laboratory yeast strain. We also identified two loss-of-function mutations in the ADR1 gene of existing sake yeast strains. Taken together, these results indicate that the gene expression program associated with glucose derepression for yeast acts as an impediment to effective alcoholic fermentation under glucose-rich fermentative conditions.

  19. Roles of Catalase and Trehalose in the Protection from Hydrogen Peroxide Toxicity in Saccharomyces cerevisiae.

    PubMed

    Nishimoto, Takuto; Watanabe, Takeru; Furuta, Masakazu; Kataoka, Michihiko; Kishida, Masao

    2016-01-01

    The roles of catalase and trehalose in Saccharomyces cerevisiae subject to hydrogen peroxide (H2O2) treatment were examined by measuring the catalase activity and intracellular trehalose levels in mutants lacking catalase or trehalose synthetase. Intracellular trehalose was elevated but the survival rate after H2O2 treatment remained low in mutants with deletion of the Catalase T gene. On the other hand, deletion of the trehalose synthetase gene increased the catalase activity in mutated yeast to levels higher than those in the wild-type strain, and these mutants exhibited some degree of tolerance to H2O2 treatment. These results suggest that Catalase T is critical in the yeast response to oxidative damage caused by H2O2 treatment, but trehalose also plays a role in protection against H2O2 treatment.

  20. Actin Polymerization Driven Mitochondrial Transport in Mating S. cerevisiae by Fourier Imaging Correlation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Senning, Eric; Marcus, Andrew

    2010-03-01

    The dynamic microenvironment of cells depends on macromolecular architecture, equilibrium fluctuations, and non-equilibrium forces generated by cytoskeletal proteins. We studied the influence of these factors on the motions of mitochondria in mating S. cerevisiae using Fourier imaging correlation spectroscopy (FICS). Our measurements provide detailed, length scale dependent information about the dynamic behavior of mitochondria. We investigate the influence of the actin cytoskeleton on mitochondrial motion, and make comparisons between conditions in which actin network assembly and disassembly is varied, either by using disruptive pharmacological agents, or mutations that alter the rates of actin polymerization. We find that non-equilibrium forces associated with actin polymerization lead to a 1.5-fold enhancement of the long-time mitochondrial diffusion coefficient, and a transient sub-diffusive temporal scaling of the mean-square displacement. Our results lend support to an existing model in which these forces are directly coupled to mitochondrial membrane surfaces.

  1. Genetic effects of methyl benzimidazole-2-yl-carbamate on Saccharomyces cerevisiae.

    PubMed Central

    Wood, J S

    1982-01-01

    The genetic effects of the mitotic inhibitor methyl benzimidazole-2-yl-carbamate (MBC) have been studied in Saccharomyces cerevisiae. MBC had little or no effect on the frequency of mutation. In some experiments MBC caused an increase in the frequency of mitotic recombination; however, this effect was small and not reproducible. The primary genetic effect of MBC was to induce mitotic chromosome loss at a high frequency. Chromosome loss occurred at equal frequencies for all chromosomes tested (13 of 16). Cells which had lost multiple chromosomes were found more frequently than predicted if individual chromosome loss events were independent. The probability of loss for a particular chromosome increased with length of time cells were incubated with MBC. MBC treatment also increased the frequency at which polyploid cells were found. These results suggested that MBC acted to disrupt the structure or function of the mitotic spindle and cause chromosome nondisjunction. PMID:6757720

  2. The induction of cytoplasmic petite mutants of Saccharomyces cerevisiae by hydrostatic pressure.

    PubMed

    Rosin, M P; Zimmerman, A M

    1977-08-01

    This study demonstrates that hydrostatic pressure is a potent inductive agent of the petite mutation in cultures of Saccharomyces cerevisiae. The inductive capacity of this mutagen is dependent on the magnitude and the duration of the pressure treatment. Furthermore, the extent of petite induction varies with the growth stage of the culture. Induction occurs in pressure-treated (1-4 X 1-(4) lbf in.-2 or 9-66 X 10(4) kN m-2 for 4 h) log growth cultures but not in stationary or lag phase cultures. Petite induction and cell survival are also dependent on the particular strain of yeast which is pressure-treated. Tetrad analysis and complementation assays demonstrate that pressure-induced petite cells are cytoplasmic in nature. Moreover, induced petite cells show a wide range of suppressivity (2--99%) with a large proportion of the petite cells being highly suppressive.

  3. [Comparison of three approaches to breed industrial Saccharomyces cerevisiae strains with improved ethanol tolerance].

    PubMed

    Li, Qian; Zhao, Xinqing; Kim, Jin-Soo; Bai, Fengwu

    2013-11-01

    Ethanol tolerance is related to the expression of multiple genes, and genome-based engineering approaches are much more efficient than manipulation of single genes. In this study, ultraviolet (UV) mutagenesis, dielectric barrier discharge (DBD) air plasma mutagenesis, and artificial transcription factor (ATF) technology were adopted to treat an industrial yeast strain S. cerevisiae Sc4126 to obtain mutants with improved ethanol tolerance. Mutants with high ethanol tolerance were obtained, and the ratio of positive mutants was compared. Among the three approaches, the rate of positive mutation obtained by ATF technology was 10- to 100-folds of that of the two other methods, with highest genetic stability, suggesting the ATF technology promising for rapid alteration of phenotypes of industry yeast strains for efficient ethanol fermentation.

  4. The Saccharomyces cerevisiae genome contains functional and nonfunctional copies of transposon Ty1

    SciTech Connect

    Boeke, J.D.; Eichinger, D.; Castrillon, D.; Fink, G.R.

    1988-04-01

    Saccharomyces cerevisiae Ty elements are transposons closely related to retroviruses. The DNA sequence of a functional Ty element (TyH3) is presented. The long terminal repeat sequences are different, suggesting that TyH3 is a recombinant Ty element. A chromosomal Ty element near the LYS2 gene, Ty173, was found to be nonfunctional, even though it has no detectable insertions or deletions. The defect in Ty173 transposition is caused by a missense mutation giving rise to a Leu-to-Ile substitution in the TYB (pol) open reading frame. Several chromosomal Ty elements carry this lesion in their DNA, indicating that nonfunctional Ty elements are common in the yeast genome.

  5. [Nuclear mutants of Saccharomyces cerevisiae K2 yeasts with decreased killer activity].

    PubMed

    Filatov, A A; Tuchinskaia, E V; Nesterova, G F

    1984-11-01

    Recessive mutations in two chromosomal unlinked genes kir1 and kir2 of Saccharomyces cerevisiae K2 result in weak killer activity or in complete loss of killer capacity. Kir1 is located on chromosome 7 and is linked to ade7 and ski6. The kir1 and kir2 mutants reveal no alteration of cell membrane. They normally excrete acid phosphatase and have a normal level of mating and sporulation. The analysis of the plasmid nucleic acid in two strains containing the mutant alleles kir1-12 and kir2-23 shows the increased content of L double-stranded DNA, the content of M double-stranded RNA being increased.

  6. Genetic and biochemical study of threonine-overproducing mutants of Saccharomyces cerevisiae.

    PubMed Central

    Delgado, M A; Guerrero, J; Conde, J

    1982-01-01

    Three threonine-overproducing mutants were obtained as prototrophic revertants of a hom3 mutant strain of Saccharomyces cerevisiae. The gene HOM3 codes for aspartokinase (aspartate kinase; EC 2.7.2.4), the first enzyme of the threonine-methionine biosynthetic route, which is subjected to feedback inhibition by threonine. Enzymatic studies indicated that aspartokinase from the revertants has lost the feedback inhibition, resulting in overproduction of threonine. These revertants also bore one or two additional mutations, named tex1-1 and tex2-1, which alone or jointly made possible the excretion of the threonine accumulated. The effect of these two genes on excretion is potentiated by excess inositol in the medium. PMID:6821505

  7. Study on DNA Damage Induced by Neon Beam Irradiation in Saccharomyces Cerevisiae

    NASA Astrophysics Data System (ADS)

    Lu, Dong; Li, Wenjian; Wu, Xin; Wang, Jufang; Ma, Shuang; Liu, Qingfang; He, Jinyu; Jing, Xigang; Ding, Nan; Dai, Zhongying; Zhou, Jianping

    2010-12-01

    Yeast strain Saccharomyces cerevisiae was irradiated with different doses of 85 MeV/u 20Ne10+ to investigate DNA damage induced by heavy ion beam in eukaryotic microorganism. The survival rate, DNA double strand breaks (DSBs) and DNA polymorphic were tested after irradiation. The results showed that there were substantial differences in DNA between the control and irradiated samples. At the dose of 40 Gy, the yeast cell survival rate approached 50%, DNA double-strand breaks were barely detectable, and significant DNA polymorphism was observed. The alcohol dehydrogenase II gene was amplified and sequenced. It was observed that base changes in the mutant were mainly transversions of T→G and T→C. It can be concluded that heavy ion beam irradiation can lead to change in single gene and may be an effective way to induce mutation.

  8. Prohibitin family members interact genetically with mitochondrial inheritance components in Saccharomyces cerevisiae.

    PubMed

    Berger, K H; Yaffe, M P

    1998-07-01

    Phb2p, a homolog of the tumor suppressor protein prohibitin, was identified in a genetic screen for suppressors of the loss of Mdm12p, a mitochondrial outer membrane protein required for normal mitochondrial morphology and inheritance in Saccharomyces cerevisiae. Phb2p and its homolog, prohibitin (Phb1p), were localized to the mitochondrial inner membrane and characterized as integral membrane proteins which depend on each other for their stability. In otherwise wild-type genetic backgrounds, null mutations in PHB1 and PHB2 did not confer any obvious phenotypes. However, loss of function of either PHB1 or PHB2 in cells with mitochondrial DNA deleted led to altered mitochondrial morphology, and phb1 or phb2 mutations were synthetically lethal when combined with a mutation in any of three mitochondrial inheritance components of the mitochondrial outer membrane, Mdm12p, Mdm10p, and Mmm1p. These results provide the first evidence of a role for prohibitin in mitochondrial inheritance and in the regulation of mitochondrial morphology.

  9. Unraveling the genetic basis of xylose consumption in engineered Saccharomyces cerevisiae strains

    PubMed Central

    dos Santos, Leandro Vieira; Carazzolle, Marcelo Falsarella; Nagamatsu, Sheila Tiemi; Sampaio, Nádia Maria Vieira; Almeida, Ludimila Dias; Pirolla, Renan Augusto Siqueira; Borelli, Guilherme; Corrêa, Thamy Lívia Ribeiro; Argueso, Juan Lucas; Pereira, Gonçalo Amarante Guimarães

    2016-01-01

    The development of biocatalysts capable of fermenting xylose, a five-carbon sugar abundant in lignocellulosic biomass, is a key step to achieve a viable production of second-generation ethanol. In this work, a robust industrial strain of Saccharomyces cerevisiae was modified by the addition of essential genes for pentose metabolism. Subsequently, taken through cycles of adaptive evolution with selection for optimal xylose utilization, strains could efficiently convert xylose to ethanol with a yield of about 0.46 g ethanol/g xylose. Though evolved independently, two strains carried shared mutations: amplification of the xylose isomerase gene and inactivation of ISU1, a gene encoding a scaffold protein involved in the assembly of iron-sulfur clusters. In addition, one of evolved strains carried a mutation in SSK2, a member of MAPKKK signaling pathway. In validation experiments, mutating ISU1 or SSK2 improved the ability to metabolize xylose of yeast cells without adaptive evolution, suggesting that these genes are key players in a regulatory network for xylose fermentation. Furthermore, addition of iron ion to the growth media improved xylose fermentation even by non-evolved cells. Our results provide promising new targets for metabolic engineering of C5-yeasts and point to iron as a potential new additive for improvement of second-generation ethanol production. PMID:28000736

  10. Meiotic exchange within and between chromosomes requires a common Rec function in Saccharomyces cerevisiae.

    PubMed Central

    Wagstaff, J E; Klapholz, S; Waddell, C S; Jensen, L; Esposito, R E

    1985-01-01

    We used haploid yeast cells that express both the MATa and MAT alpha mating-type alleles and contain the spo13-1 mutation to characterize meiotic recombination within single, unpaired chromosomes in Rec+ and Rec- Saccharomyces cerevisiae. In Rec+ haploids, as in diploids, intrachromosomal recombination in the ribosomal DNA was detected in 2 to 6% of meiotic divisions, and most events were unequal reciprocal sister chromatid exchange (SCE). By contrast, intrachromosomal recombination between duplicated copies of the his4 locus occurred in approximately 30% of haploid meiotic divisions, a frequency much higher than that reported in diploids; only about one-half of the events were unequal reciprocal SCE. The spo11-1 mutation, which virtually eliminates meiotic exchange between homologs in diploid meiosis, reduced the frequency of intrachromosomal recombination in both the ribosomal DNA and the his4 duplication during meiosis by 10- to greater than 50-fold. This Rec- mutation affected all forms of recombination within chromosomes: unequal reciprocal SCE, reciprocal intrachromatid exchange, and gene conversion. Intrachromosomal recombination in spo11-1 haploids was restored by transformation with a plasmid containing the wild-type SPO11 gene. Mitotic intrachromosomal recombination frequencies were unaffected by spo11-1. This is the first demonstration of a gene product required for recombination between homologs as well as recombination within chromosomes during meiosis. Images PMID:3915779

  11. Positive and negative roles of homologous recombination in the maintenance of genome stability in Saccharomyces cerevisiae.

    PubMed Central

    Yoshida, Jumpei; Umezu, Keiko; Maki, Hisaji

    2003-01-01

    In previous studies of the loss of heterozygosity (LOH), we analyzed a hemizygous URA3 marker on chromosome III in S. cerevisiae and showed that homologous recombination is involved in processes that lead to LOH in multiple ways, including allelic recombination, chromosome size alterations, and chromosome loss. To investigate the role of homologous recombination more precisely, we examined LOH events in rad50 Delta, rad51 Delta, rad52 Delta, rad50 Delta rad52 Delta, and rad51 Delta rad52 Delta mutants. As compared to Rad(+) cells, the frequency of LOH was significantly increased in all mutants, and most events were chromosome loss. Other LOH events were differentially affected in each mutant: the frequencies of all types of recombination were decreased in rad52 mutants and enhanced in rad50 mutants. The rad51 mutation increased the frequency of ectopic but not allelic recombination. Both the rad52 and rad51 mutations increased the frequency of intragenic point mutations approximately 25-fold, suggesting that alternative mutagenic pathways partially substitute for homologous recombination. Overall, these results indicate that all of the genes are required for chromosome maintenance and that they most likely function in homologous recombination between sister chromatids. In contrast, other recombination pathways can occur at a substantial level even in the absence of one of the genes and contribute to generating various chromosome rearrangements. PMID:12750319

  12. dSLAM analysis of genome-wide genetic interactions in Saccharomyces cerevisiae

    PubMed Central

    Pan, Xuewen; Yuan, Daniel S.; Ooi, Siew-Loon; Wang, Xiaoling; Sookhai-Mahadeo, Sharon; Meluh, Pamela; Boeke, Jef D.

    2007-01-01

    Analysis of genetic interactions has been extensively exploited to study gene functions and to dissect pathway structures. One such genetic interaction is synthetic lethality, in which the combination of two non-lethal mutations leads to loss of organism viability. We have developed a dSLAM (heterozygote diploid-based synthetic lethality analysis with microarrays) technology that effectively studies synthetic lethality interactions on a genome-wide scale in the budding yeast Saccharomyces cerevisiae. Typically, a query mutation is introduced en masse into a population of ~6,000 haploid-convertible heterozygote diploid Yeast Knockout (YKO) mutants via integrative transformation. Haploid pools of single and double mutants are freshly generated from the resultant heterozygote diploid double mutant pool after meiosis and haploid selection and studied for potential growth defects of each double mutant combination by microarray analysis of the “molecular barcodes” representing each YKO. This technology has been effectively adapted to study other types of genome-wide genetic interactions including gene-compound synthetic lethality, secondary mutation suppression, dosage-dependent synthetic lethality and suppression. PMID:17189863

  13. Improved Production of a Heterologous Amylase in Saccharomyces cerevisiae by Inverse Metabolic Engineering

    PubMed Central

    Liu, Zihe; Liu, Lifang; Österlund, Tobias; Hou, Jin; Huang, Mingtao; Fagerberg, Linn; Petranovic, Dina; Uhlén, Mathias

    2014-01-01

    The increasing demand for industrial enzymes and biopharmaceutical proteins relies on robust production hosts with high protein yield and productivity. Being one of the best-studied model organisms and capable of performing posttranslational modifications, the yeast Saccharomyces cerevisiae is widely used as a cell factory for recombinant protein production. However, many recombinant proteins are produced at only 1% (or less) of the theoretical capacity due to the complexity of the secretory pathway, which has not been fully exploited. In this study, we applied the concept of inverse metabolic engineering to identify novel targets for improving protein secretion. Screening that combined UV-random mutagenesis and selection for growth on starch was performed to find mutant strains producing heterologous amylase 5-fold above the level produced by the reference strain. Genomic mutations that could be associated with higher amylase secretion were identified through whole-genome sequencing. Several single-point mutations, including an S196I point mutation in the VTA1 gene coding for a protein involved in vacuolar sorting, were evaluated by introducing these to the starting strain. By applying this modification alone, the amylase secretion could be improved by 35%. As a complement to the identification of genomic variants, transcriptome analysis was also performed in order to understand on a global level the transcriptional changes associated with the improved amylase production caused by UV mutagenesis. PMID:24973076

  14. GSF2 deletion increases lactic acid production by alleviating glucose repression in Saccharomyces cerevisiae

    PubMed Central

    Baek, Seung-Ho; Kwon, Eunice Y.; Kim, Seon-Young; Hahn, Ji-Sook

    2016-01-01

    Improving lactic acid (LA) tolerance is important for cost-effective microbial production of LA under acidic fermentation conditions. Previously, we generated LA-tolerant D-LA-producing S. cerevisiae strain JHY5310 by laboratory adaptive evolution of JHY5210. In this study, we performed whole genome sequencing of JHY5310, identifying four loss-of-function mutations in GSF2, SYN8, STM1, and SIF2 genes, which are responsible for the LA tolerance of JHY5310. Among the mutations, a nonsense mutation in GSF2 was identified as the major contributor to the improved LA tolerance and LA production in JHY5310. Deletion of GSF2 in the parental strain JHY5210 significantly improved glucose uptake and D-LA production levels, while derepressing glucose-repressed genes including genes involved in the respiratory pathway. Therefore, more efficient generation of ATP and NAD+ via respiration might rescue the growth defects of the LA-producing strain, where ATP depletion through extensive export of lactate and proton is one of major reasons for the impaired growth. Accordingly, alleviation of glucose repression by deleting MIG1 or HXK2 in JHY5210 also improved D-LA production. GSF2 deletion could be applied to various bioprocesses where increasing biomass yield or respiratory flux is desirable. PMID:27708428

  15. Synthetic lethal interactions suggest a role for the Saccharomyces cerevisiae Rtf1 protein in transcription elongation.

    PubMed Central

    Costa, P J; Arndt, K M

    2000-01-01

    Strong evidence indicates that transcription elongation by RNA polymerase II (pol II) is a highly regulated process. Here we present genetic results that indicate a role for the Saccharomyces cerevisiae Rtf1 protein in transcription elongation. A screen for synthetic lethal mutations was carried out with an rtf1 deletion mutation to identify factors that interact with Rtf1 or regulate the same process as Rtf1. The screen uncovered mutations in SRB5, CTK1, FCP1, and POB3. These genes encode an Srb/mediator component, a CTD kinase, a CTD phosphatase, and a protein involved in the regulation of transcription by chromatin structure, respectively. All of these gene products have been directly or indirectly implicated in transcription elongation, indicating that Rtf1 may also regulate this process. In support of this view, we show that RTF1 functionally interacts with genes that encode known elongation factors, including SPT4, SPT5, SPT16, and PPR2. We also show that a deletion of RTF1 causes sensitivity to 6-azauracil and mycophenolic acid, phenotypes correlated with a transcription elongation defect. Collectively, our results suggest that Rtf1 may function as a novel transcription elongation factor in yeast. PMID:11014804

  16. Viruses and prions of Saccharomyces cerevisiae.

    PubMed

    Wickner, Reed B; Fujimura, Tsutomu; Esteban, Rosa

    2013-01-01

    Saccharomyces cerevisiae has been a key experimental organism for the study of infectious diseases, including dsRNA viruses, ssRNA viruses, and prions. Studies of the mechanisms of virus and prion replication, virus structure, and structure of the amyloid filaments that are the basis of yeast prions have been at the forefront of such studies in these classes of infectious entities. Yeast has been particularly useful in defining the interactions of the infectious elements with cellular components: chromosomally encoded proteins necessary for blocking the propagation of the viruses and prions, and proteins involved in the expression of viral components. Here, we emphasize the L-A dsRNA virus and its killer-toxin-encoding satellites, the 20S and 23S ssRNA naked viruses, and the several infectious proteins (prions) of yeast.

  17. Microautophagy in the yeast Saccharomyces cerevisiae.

    PubMed

    Uttenweiler, Andreas; Mayer, Andreas

    2008-01-01

    Microautophagy involves direct invagination and fission of the vacuolar/lysosomal membrane under nutrient limitation. In Saccharomyces cerevisiae microautophagic uptake of soluble cytosolic proteins occurs via an autophagic tube, a highly specialized vacuolar membrane invagination. At the tip of an autophagic tube vesicles (autophagic bodies) pinch off into thevacuolar lumen for degradation. Formation of autophagic tubes is topologically equivalent to other budding processes directed away from the cytosolic environment, e.g., the invagination of multivesicular endosomes, retroviral budding, piecemeal microautophagy of the nucleus and micropexophagy. This clearly distinguishes microautophagy from other membrane fission events following budding toward the cytosol. Such processes are implicated in transport between organelles like the plasma membrane, the endoplasmic reticulum (ER), and the Golgi. Over many years microautophagy only could be characterized microscopically. Recent studies provided the possibility to study the process in vitro and have identified the first molecules that are involved in microautophagy.

  18. Synchronization of the Budding Yeast Saccharomyces cerevisiae.

    PubMed

    Foltman, Magdalena; Molist, Iago; Sanchez-Diaz, Alberto

    2016-01-01

    A number of model organisms have provided the basis for our understanding of the eukaryotic cell cycle. These model organisms are generally much easier to manipulate than mammalian cells and as such provide amenable tools for extensive genetic and biochemical analysis. One of the most common model organisms used to study the cell cycle is the budding yeast Saccharomyces cerevisiae. This model provides the ability to synchronise cells efficiently at different stages of the cell cycle, which in turn opens up the possibility for extensive and detailed study of mechanisms regulating the eukaryotic cell cycle. Here, we describe methods in which budding yeast cells are arrested at a particular phase of the cell cycle and then released from the block, permitting the study of molecular mechanisms that drive the progression through the cell cycle.

  19. Viruses and prions of Saccharomyces cerevisiae

    PubMed Central

    Wickner, Reed B.; Fujimura, Tsutomu; Esteban, Rosa

    2014-01-01

    Saccharomyces cerevisiae has been a key experimental organism for the study of infectious diseases, including dsRNA viruses, ssRNA viruses and prions. Studies of the mechanisms of virus and prion replication, virus structure and structure of the amyloid filaments that are the basis of yeast prions have been at the forefront of such studies in these classes of infectious entities. Yeast has been particularly useful in defining the interactions of the infectious elements with cellular components: chromosomally encoded proteins necessary for or blocking the propagation of the viruses and prions, and proteins involved in expression of viral components. Here we emphasize the L-A dsRNA virus and its killer-toxin-encoding satellites, the 20S and 23S ssRNA naked viruses, and the several infectious proteins (prions) of yeast. PMID:23498901

  20. An engineered cryptic Hxt11 sugar transporter facilitates glucose-xylose co-consumption in Saccharomyces cerevisiae.

    PubMed

    Shin, Hyun Yong; Nijland, Jeroen G; de Waal, Paul P; de Jong, René M; Klaassen, Paul; Driessen, Arnold J M

    2015-01-01

    The yeast Saccharomyces cerevisiae is unable to ferment pentose sugars like d-xylose. Through the introduction of the respective metabolic pathway, S. cerevisiae is able to ferment xylose but first utilizes d-glucose before the d-xylose can be transported and metabolized. Low affinity d-xylose uptake occurs through the endogenous hexose (Hxt) transporters. For a more robust sugar fermentation, co-consumption of d-glucose and d-xylose is desired as d-xylose fermentation is in particular prone to inhibition by compounds present in pretreated lignocellulosic feedstocks. Evolutionary engineering of a d-xylose-fermenting S. cerevisiae strain lacking the major transporter HXT1-7 and GAL2 genes yielded a derivative that shows improved growth on xylose because of the expression of a normally cryptic HXT11 gene. Hxt11 also supported improved growth on d-xylose by the wild-type strain. Further selection for glucose-insensitive growth on d-xylose employing a quadruple hexokinase deletion yielded mutations at N366 of Hxt11 that reversed the transporter specificity for d-glucose into d-xylose while maintaining high d-xylose transport rates. The Hxt11 mutant enabled the efficient co-fermentation of xylose and glucose at industrially relevant sugar concentrations when expressed in a strain lacking the HXT1-7 and GAL2 genes. Hxt11 is a cryptic sugar transporter of S. cerevisiae that previously has not been associated with effective d-xylose transport. Mutagenesis of Hxt11 yielded transporters that show a better affinity for d-xylose as compared to d-glucose while maintaining high transport rates. d-glucose and d-xylose co-consumption is due to a redistribution of the sugar transport flux while maintaining the total sugar conversion rate into ethanol. This method provides a single transporter solution for effective fermentation on lignocellulosic feedstocks.

  1. Cloning of the RNA8 gene of Saccharomyces cerevisiae, detection of the RNA8 protein, and demonstration that it is essential for nuclear pre-mRNA splicing.

    PubMed Central

    Jackson, S P; Lossky, M; Beggs, J D

    1988-01-01

    Strains of Saccharomyces cerevisiae that bear the temperature-sensitive mutation rna8-1 are defective in nuclear pre-mRNA splicing at the restrictive temperature (36 degrees C), suggesting that the RNA8 gene encodes a component of the splicing machinery. The RNA8 gene was cloned by complementation of the temperature-sensitive growth defect of an rna8-1 mutant strain. Integrative transformation and gene disruption experiments confirmed the identity of the cloned DNA and demonstrated that the RNA8 gene encodes an essential function. The RNA8 gene was shown to be represented once per S. cerevisiae haploid genome and to encode a low-abundance transcript of approximately 7.4 kilobases. By using antisera raised against beta-galactosidase-RNA8 fusion proteins, the RNA8 gene product was identified in S. cerevisiae cell extracts as a low-abundance protein of approximately 260 kilodaltons. Immunodepletion of the RNA8 protein specifically abolished the activity of S. cerevisiae in vitro splicing extracts, confirming that RNA8 plays an essential role in splicing. Images PMID:2835658

  2. Vanadate-resistant mutants of Saccharomyces cerevisiae show alterations in protein phosphorylation and growth control.

    PubMed Central

    Kanik-Ennulat, C; Neff, N

    1990-01-01

    This work describes two spontaneous vanadate-resistant mutants of Saccharomyces cerevisiae with constitutive alterations in protein phosphorylation, growth control, and sporulation. Vanadate has been shown by a number of studies to be an efficient competitor of phosphate in biochemical reactions, especially those that involve phosphoproteins as intermediates or substrates. Resistance to toxic concentrations of vanadate can arise in S. cerevisiae by both recessive and dominant spontaneous mutations in a large number of loci. Mutations in two of the recessive loci, van1-18 and van2-93, resulted in alterations in the phosphorylation of a number of proteins. The mutant van1-18 gene also showed an increase in plasma membrane ATPase activity in vitro and a lowered basal phosphatase activity under alkaline conditions. Cells containing the van2-93 mutant allele had normal levels of plasma membrane ATPase activity, but this activity was not inhibited by vanadate. Both of these mutants failed to enter stationary phase, were heat shock sensitive, showed lowered long-term viability, and sporulated on rich medium in the presence of 2% glucose. The wild-type VAN1 gene was isolated and sequenced. The open reading frame predicts a protein of 522 amino acids, with no significant homology to any genes that have been identified. Diploid cells that contained two mutant alleles of this gene demonstrated defects in spore viability. These data suggest that the VAN1 gene product is involved in regulation of the phosphorylation of a number of proteins, some of which appear to be important in cell growth control. Images PMID:2137555

  3. A global topology map of the Saccharomyces cerevisiae membrane proteome

    NASA Astrophysics Data System (ADS)

    Kim, Hyun; Melén, Karin; Österberg, Marie; von Heijne, Gunnar

    2006-07-01

    The yeast Saccharomyces cerevisiae is, arguably, the best understood eukaryotic model organism, yet comparatively little is known about its membrane proteome. Here, we report the cloning and expression of 617 S. cerevisiae membrane proteins as fusions to a C-terminal topology reporter and present experimentally constrained topology models for 546 proteins. By homology, the experimental topology information can be extended to 15,000 membrane proteins from 38 fully sequenced eukaryotic genomes. membrane proteins | membrane proteomics | yeast

  4. Saccharomyces cerevisiae var. boulardii fungemia following probiotic treatment.

    PubMed

    Appel-da-Silva, Marcelo C; Narvaez, Gabriel A; Perez, Leandro R R; Drehmer, Laura; Lewgoy, Jairo

    2017-12-01

    Probiotics are commonly prescribed as an adjuvant in the treatment of antibiotic-associated diarrhea caused by Clostridium difficile. We report the case of an immunocompromised 73-year-old patient on chemotherapy who developed Saccharomyces cerevisiae var. boulardii fungemia in a central venous catheter during treatment of antibiotic-associated pseudomembranous colitis with the probiotic Saccharomyces cerevisiae var. boulardii. Fungemia was resolved after interruption of probiotic administration without the need to replace the central venous line.

  5. Saccharomyces cerevisiae vaginitis: microbiology and in vitro antifungal susceptibility.

    PubMed

    Echeverría-Irigoyen, María Julia; Eraso, Elena; Cano, Josep; Gomáriz, María; Guarro, Josep; Quindós, Guillermo

    2011-09-01

    Genitourinary infections by Saccharomyces cerevisiae are rare. Here, we describe eight S. cerevisiae vulvovaginitis episodes where molecular (Affirm VPIII) and conventional microbiological methods (culture and carbohydrate assimilation) have proven to be inadequate for diagnostic purposes. DNA sequencing allowed the correct identification of the pathogen. All isolates were susceptible to most antifungal agents, with two of them also found to be susceptible-dose-dependent to itraconazole.

  6. Isolation, identification and characterization of regional indigenous Saccharomyces cerevisiae strains.

    PubMed

    Šuranská, Hana; Vránová, Dana; Omelková, Jiřina

    2016-01-01

    In the present work we isolated and identified various indigenous Saccharomyces cerevisiae strains and screened them for the selected oenological properties. These S. cerevisiae strains were isolated from berries and spontaneously fermented musts. The grape berries (Sauvignon blanc and Pinot noir) were grown under the integrated and organic mode of farming in the South Moravia (Czech Republic) wine region. Modern genotyping techniques such as PCR-fingerprinting and interdelta PCR typing were employed to differentiate among indigenous S. cerevisiae strains. This combination of the methods provides a rapid and relatively simple approach for identification of yeast of S. cerevisiae at strain level. In total, 120 isolates were identified and grouped by molecular approaches and 45 of the representative strains were tested for selected important oenological properties including ethanol, sulfur dioxide and osmotic stress tolerance, intensity of flocculation and desirable enzymatic activities. Their ability to produce and utilize acetic/malic acid was examined as well; in addition, H2S production as an undesirable property was screened. The oenological characteristics of indigenous isolates were compared to a commercially available S. cerevisiae BS6 strain, which is commonly used as the starter culture. Finally, some indigenous strains coming from organically treated grape berries were chosen for their promising oenological properties and these strains will be used as the starter culture, because application of a selected indigenous S. cerevisiae strain can enhance the regional character of the wines.

  7. Isolation, identification and characterization of regional indigenous Saccharomyces cerevisiae strains

    PubMed Central

    Šuranská, Hana; Vránová, Dana; Omelková, Jiřina

    2016-01-01

    In the present work we isolated and identified various indigenous Saccharomyces cerevisiae strains and screened them for the selected oenological properties. These S. cerevisiae strains were isolated from berries and spontaneously fermented musts. The grape berries (Sauvignon blanc and Pinot noir) were grown under the integrated and organic mode of farming in the South Moravia (Czech Republic) wine region. Modern genotyping techniques such as PCR-fingerprinting and interdelta PCR typing were employed to differentiate among indigenous S. cerevisiae strains. This combination of the methods provides a rapid and relatively simple approach for identification of yeast of S. cerevisiae at strain level. In total, 120 isolates were identified and grouped by molecular approaches and 45 of the representative strains were tested for selected important oenological properties including ethanol, sulfur dioxide and osmotic stress tolerance, intensity of flocculation and desirable enzymatic activities. Their ability to produce and utilize acetic/malic acid was examined as well; in addition, H2S production as an undesirable property was screened. The oenological characteristics of indigenous isolates were compared to a commercially available S. cerevisiae BS6 strain, which is commonly used as the starter culture. Finally, some indigenous strains coming from organically treated grape berries were chosen for their promising oenological properties and these strains will be used as the starter culture, because application of a selected indigenous S. cerevisiae strain can enhance the regional character of the wines. PMID:26887243

  8. [Saccharomyces cerevisiae invasive infection: The first reported case in Morocco].

    PubMed

    Maleb, A; Sebbar, E; Frikh, M; Boubker, S; Moussaoui, A; El Mekkaoui, A; Khannoussi, W; Kharrasse, G; Belefquih, B; Lemnouer, A; Ismaili, Z; Elouennass, M

    2017-02-07

    Saccharomyces cerevisiae is a cosmopolitan yeast, widely used in agro-alimentary and pharmaceutical industry. Its impact in human pathology is rare, but maybe still underestimated compared to the real situation. This yeast is currently considered as an emerging and opportunistic pathogen. Risk factors are immunosuppression and intravascular device carrying. Fungemias are the most frequent clinical forms. We report the first case of S. cerevisiae invasive infection described in Morocco, and to propose a review of the literature cases of S. cerevisiae infections described worldwide. A 77-year-old patient, with no notable medical history, who was hospitalized for a upper gastrointestinal stenosis secondary to impassable metastatic gastric tumor. Its history was marked by the onset of septic shock, with S. cerevisiae in his urine and in his blood, with arguments for confirmation of invasion: the presence of several risk factors in the patient, positive direct microbiological examination, abundant and exclusive culture of S. cerevisiae from clinical samples. Species identification was confirmed by the study of biochemical characteristics of the isolated yeast. Confirmation of S. cerevisiae infection requires a clinical suspicion in patients with risk factors, but also a correct microbiological diagnosis.

  9. Glycerol stress in Saccharomyces cerevisiae: Cellular responses and evolved adaptations.

    PubMed

    Mattenberger, Florian; Sabater-Muñoz, Beatriz; Hallsworth, John E; Fares, Mario A

    2017-03-01

    Glycerol synthesis is key to central metabolism and stress biology in Saccharomyces cerevisiae, yet the cellular adjustments needed to respond and adapt to glycerol stress are little understood. Here, we determined impacts of acute and chronic exposures to glycerol stress in S. cerevisiae. Glycerol stress can result from an increase of glycerol concentration in the medium due to the S. cerevisiae fermenting activity or other metabolic activities. Acute glycerol-stress led to a 50% decline in growth rate and altered transcription of more than 40% of genes. The increased genetic diversity in S. cerevisiae population, which had evolved in the standard nutrient medium for hundreds of generations, led to an increase in growth rate and altered transcriptome when such population was transferred to stressful media containing a high concentration of glycerol; 0.41 M (0.990 water activity). Evolution of S. cerevisiae populations during a 10-day period in the glycerol-containing medium led to transcriptome changes and readjustments to improve control of glycerol flux across the membrane, regulation of cell cycle, and more robust stress response; and a remarkable increase of growth rate under glycerol stress. Most of the observed regulatory changes arose in duplicated genes. These findings elucidate the physiological mechanisms, which underlie glycerol-stress response, and longer-term adaptations, in S. cerevisiae; they also have implications for enigmatic aspects of the ecology of this otherwise well-characterized yeast.

  10. Human peroxiredoxin PrxI is an orthologue of yeast Tsa1, capable of suppressing genome instability in Saccharomyces cerevisiae.

    PubMed

    Iraqui, Ismail; Faye, Gérard; Ragu, Sandrine; Masurel-Heneman, Amélie; Kolodner, Richard D; Huang, Meng-Er

    2008-02-15

    The peroxiredoxins (Prx) are conserved antioxidant proteins that use cysteine as the primary site of oxidation during the reduction of peroxides. Many organisms have more than one isoform of Prx. Deletion of TSA1, one of five Prxs in yeast Saccharomyces cerevisiae, results in accumulation of a broad spectrum of mutations including gross chromosomal rearrangements. Deletion of TSA1 is synthetically lethal with mutations in RAD6 and several key genes involved in DNA double-strand break repair. Here, we have examined the function of human PrxI and PrxII, which share a high degree of sequence identity with Tsa1, by expressing them in S. cerevisiae cells under the control of the native TSA1 promoter. We found that expression of PrxI, but not PrxII, was capable of complementing a tsa1Delta mutant for a variety of defects including genome instability, the synthetic lethality observed in rad6 Delta tsa1Delta and rad51 Delta tsa1Delta double mutants, and mutagen sensitivity. Moreover, expression of either Tsa1 or PrxI prevented Bax-induced cell death. These data indicate that PrxI is an orthologue of Tsa1. PrxI and Tsa1 seem to act on the same substrates in vivo and share similar mechanisms of function. The observation that PrxI is involved in suppressing genome instability and protecting against cell death potentially provides a better understanding of the consequences of PrxI dysfunction in human cells. The S. cerevisiae system described here could provide a sensitive tool to uncover the mechanisms that underlie the function of human Prxs.

  11. crl mutants of Saccharomyces cerevisiae resemble both mutants affecting general control of amino acid biosynthesis and omnipotent translational suppressor mutants.

    PubMed

    McCusker, J H; Haber, J E

    1988-06-01

    Cyocloheximide resistant lethal (crl) mutants of Saccharomyces cerevisiae, defining 22 unlinked complementation groups, are unable to grow at 37 degrees. They are also highly pleiotropic at their permissive temperature of 25 degrees. The mutants are all unable to arrest at the G1 stage of the cell cycle when grown to stationary phase or when starved for a single amino acid, though they do arrest at G1 when deprived of all nitrogen. The crl mutants are also hypersensitive to various amino acid analogs and to 3-aminotriazole. These mutants also "tighten" leaky auxotrophic mutations that permit wild-type cells to grow in the absence of the appropriate amino acid. All of these phenotypes are also exhibited by gcn mutants affecting general control of amino acid biosynthesis. In addition, the crl mutants are all hypersensitive to hygromycin B, an aminoglycoside antibiotic that stimulates translational misreading. The crl mutations also suppress one nonsense mutation which is phenotypically suppressed by hygromycin B. Many crl mutants are also osmotically sensitive. These are phenotypes which the crl mutations have in common with previously isolated omnipotent suppressors. We suggest that the the crl mutations all affect the fidelity of protein translation.

  12. Variants of the Sir4 Coiled-Coil Domain Improve Binding to Sir3 for Heterochromatin Formation in Saccharomyces cerevisiae

    PubMed Central

    Samel, Anke; Rudner, Adam; Ehrenhofer-Murray, Ann E.

    2017-01-01

    Heterochromatin formation in the yeast Saccharomyces cerevisiae is characterized by the assembly of the Silent Information Regulator (SIR) complex, which consists of the histone deacetylase Sir2 and the structural components Sir3 and Sir4, and binds to unmodified nucleosomes to provide gene silencing. Sir3 contains an AAA+ ATPase-like domain, and mutations in an exposed loop on the surface of this domain abrogate Sir3 silencing function in vivo, as well in vitro binding to the Sir2/Sir4 subcomplex. Here, we found that the removal of a single methyl group in the C-terminal coiled-coil domain (mutation T1314S) of Sir4 was sufficient to restore silencing at the silent mating-type loci HMR and HML to a Sir3 version with a mutation in this loop. Restoration of telomeric silencing required further mutations of Sir4 (E1310V and K1325R). Significantly, these mutations in Sir4 restored in vitro complex formation between Sir3 and the Sir4 coiled-coil, indicating that the improved affinity between Sir3 and Sir4 is responsible for the restoration of silencing. Altogether, these observations highlight remarkable properties of selected amino-acid changes at the Sir3-Sir4 interface that modulate the affinity of the two proteins. PMID:28188183

  13. Roles for the Saccharomyces cerevisiae SDS3, CBK1 and HYM1 genes in transcriptional repression by SIN3.

    PubMed Central

    Dorland, S; Deegenaars, M L; Stillman, D J

    2000-01-01

    The Saccharomyces cerevisiae Sin3 transcriptional repressor is part of a large multiprotein complex that includes the Rpd3 histone deacetylase. A LexA-Sin3 fusion protein represses transcription of promoters with LexA binding sites. To identify genes involved in repression by Sin3, we conducted a screen for mutations that reduce repression by LexA-Sin3. One of the mutations identified that reduces LexA-Sin3 repression is in the RPD3 gene, consistent with the known roles of Rpd3 in transcriptional repression. Mutations in CBK1 and HYM1 reduce repression by LexA-Sin3 and also cause defects in cell separation and altered colony morphology. cbk1 and hym1 mutations affect some but not all genes regulated by SIN3 and RPD3, but the effect on transcription is much weaker. Genetic analysis suggests that CBK1 and HYM1 function in the same pathway, but this genetic pathway is separable from that of SIN3 and RPD3. The remaining gene from this screen described in this report is SDS3, previously identified in a screen for mutations that increase silencing at HML, HMR, and telomere-linked genes, a phenotype also seen in sin3 and rpd3 mutants. Genetic analysis demonstrates that SDS3 functions in the same genetic pathway as SIN3 and RPD3, and coimmunoprecipitation experiments show that Sds3 is physically present in the Sin3 complex. PMID:10655212

  14. Variants of the Sir4 Coiled-Coil Domain Improve Binding to Sir3 for Heterochromatin Formation in Saccharomyces cerevisiae.

    PubMed

    Samel, Anke; Rudner, Adam; Ehrenhofer-Murray, Ann E

    2017-04-03

    Heterochromatin formation in the yeast Saccharomyces cerevisiae is characterized by the assembly of the Silent Information Regulator (SIR) complex, which consists of the histone deacetylase Sir2 and the structural components Sir3 and Sir4, and binds to unmodified nucleosomes to provide gene silencing. Sir3 contains an AAA(+) ATPase-like domain, and mutations in an exposed loop on the surface of this domain abrogate Sir3 silencing function in vivo, as well in vitro binding to the Sir2/Sir4 subcomplex. Here, we found that the removal of a single methyl group in the C-terminal coiled-coil domain (mutation T1314S) of Sir4 was sufficient to restore silencing at the silent mating-type loci HMR and HML to a Sir3 version with a mutation in this loop. Restoration of telomeric silencing required further mutations of Sir4 (E1310V and K1325R). Significantly, these mutations in Sir4 restored in vitro complex formation between Sir3 and the Sir4 coiled-coil, indicating that the improved affinity between Sir3 and Sir4 is responsible for the restoration of silencing. Altogether, these observations highlight remarkable properties of selected amino-acid changes at the Sir3-Sir4 interface that modulate the affinity of the two proteins.

  15. Evolutionary engineering of a glycerol-3-phosphate dehydrogenase-negative, acetate-reducing Saccharomyces cerevisiae strain enables anaerobic growth at high glucose concentrations.

    PubMed

    Guadalupe-Medina, Víctor; Metz, Benjamin; Oud, Bart; van Der Graaf, Charlotte M; Mans, Robert; Pronk, Jack T; van Maris, Antonius J A

    2014-01-01

    Glycerol production by Saccharomyces cerevisiae, which is required for redox-cofactor balancing in anaerobic cultures, causes yield reduction in industrial bioethanol production. Recently, glycerol formation in anaerobic S. cerevisiae cultures was eliminated by expressing Escherichia coli (acetylating) acetaldehyde dehydrogenase (encoded by mhpF) and simultaneously deleting the GPD1 and GPD2 genes encoding glycerol-3-phosphate dehydrogenase, thus coupling NADH reoxidation to reduction of acetate to ethanol. Gpd⁻ strains are, however, sensitive to high sugar concentrations, which complicates industrial implementation of this metabolic engineering concept. In this study, laboratory evolution was used to improve osmotolerance of a Gpd⁻ mhpF-expressing S. cerevisiae strain. Serial batch cultivation at increasing osmotic pressure enabled isolation of an evolved strain that grew anaerobically at 1 M glucose, at a specific growth rate of 0.12 h⁻¹. The evolved strain produced glycerol at low concentrations (0.64 ± 0.33 g l⁻¹). However, these glycerol concentrations were below 10% of those observed with a Gpd⁺ reference strain. Consequently, the ethanol yield on sugar increased from 79% of the theoretical maximum in the reference strain to 92% for the evolved strains. Genetic analysis indicated that osmotolerance under aerobic conditions required a single dominant chromosomal mutation, and one further mutation in the plasmid-borne mhpF gene for anaerobic growth.

  16. Identification of auxotrophic mutants of the yeast Kluyveromyces marxianus by non-homologous end joining-mediated integrative transformation with genes from Saccharomyces cerevisiae.

    PubMed

    Yarimizu, Tohru; Nonklang, Sanom; Nakamura, Junpei; Tokuda, Shuya; Nakagawa, Takaaki; Lorreungsil, Sasithorn; Sutthikhumpha, Surasit; Pukahuta, Charida; Kitagawa, Takao; Nakamura, Mikiko; Cha-Aim, Kamonchai; Limtong, Savitree; Hoshida, Hisashi; Akada, Rinji

    2013-12-01

    The isolation and application of auxotrophic mutants for gene manipulations, such as genetic transformation, mating selection and tetrad analysis, form the basis of yeast genetics. For the development of these genetic methods in the thermotolerant fermentative yeast Kluyveromyces marxianus, we isolated a series of auxotrophic mutants with defects in amino acid or nucleic acid metabolism. To identify the mutated genes, linear DNA fragments of nutrient biosynthetic pathway genes were amplified from Saccharomyces cerevisiae chromosomal DNA and used to directly transform the K. marxianus auxotrophic mutants by random integration into chromosomes through non-homologous end joining (NHEJ). The appearance of transformant colonies indicated that the specific S. cerevisiae gene complemented the K. marxianus mutant. Using this interspecific complementation approach with linear PCR-amplified DNA, we identified auxotrophic mutations of ADE2, ADE5,7, ADE6, HIS2, HIS3, HIS4, HIS5, HIS6, HIS7, LYS1, LYS2, LYS4, LYS9, LEU1, LEU2, MET2, MET6, MET17, TRP3, TRP4 and TRP5 without the labour-intensive requirement of plasmid construction. Mating, sporulation and tetrad analysis techniques for K. marxianus were also established. With the identified auxotrophic mutant strains and S. cerevisiae genes as selective markers, NHEJ-mediated integrative transformation with PCR-amplified DNA is an attractive system for facilitating genetic analyses in the yeast K. marxianus.

  17. Ethanol formation in adh0 mutants reveals the existence of a novel acetaldehyde-reducing activity in Saccharomyces cerevisiae.

    PubMed Central

    Drewke, C; Thielen, J; Ciriacy, M

    1990-01-01

    A strain of Saccharomyces cerevisiae has been constructed which is deficient in the four alcohol dehydrogenase (ADH) isozymes known at present. This strain (adh0), being irreversibly mutated in the genes ADH1, ADH3, and ADH4 and carrying a point mutation in the gene ADH2 coding for the glucose-repressible isozyme ADHII, still produces up to one third of the theoretical maximum yield of ethanol in a homofermentative conversion of glucose to ethanol. Analysis of the glucose metabolism of adh0 cells shows that the lack of all known ADH isozymes results in the formation of glycerol as a major fermentation product, accompanied by a significant production of acetaldehyde and acetate. Treatment of glucose-growing adh0 cells with the respiratory-chain inhibitor antimycin A leads to an immediate cessation of ethanol production, demonstrating that ethanol production in adh0 cells is dependent on mitochondrial electron transport. Reduction of acetaldehyde to ethanol in isolated mitochondria could also be demonstrated. This reduction is apparently linked to the oxidation of acetaldehyde to acetate. Preliminary data suggest that this novel type of ethanol formation in S. cerevisiae is associated with the inner mitochondrial membrane. Images PMID:2193925

  18. Petite Mutation in Yeast

    PubMed Central

    Goldring, Elizabeth S.; Grossman, Lawrence I.; Marmur, Julius

    1971-01-01

    A series of petite mutants of Saccharomyces cerevisiae, generated after treatment for various times with ethidium bromide, was isolated, and the mitochondrial deoxyribonucleic acid size for each member was estimated. It was found that, as the treatment time with ethidium bromide was increased, the mitochondrial deoxyribonucleic acid isolated from the petite series was increasingly reduced in size. PMID:5563875

  19. The petite mutation in yeasts: 50 years on.

    PubMed

    Chen, X J; Clark-Walker, G D

    2000-01-01

    Fifty years ago it was reported that baker's yeast, Saccharomyces cerevisiae, can form "petite colonie" mutants when treated with the DNA-targeting drug acriflavin. To mark the jubilee of studies on cytoplasmic inheritance, a review of the early work will be presented together with some observations on current developments. The primary emphasis is to address the questions of how loss of mtDNA leads to lethality (rho 0-lethality) in petite-negative yeasts and how S. cerevisiae tolerates elimination of mtDNA. Recent investigation have revealed that rho 0-lethality can be suppressed by specific mutations in the alpha, beta, and gamma subunits of the mitochondrial F1-ATPase of the petite-negative yeast Kluyveromyces lactis and by the nuclear ptp alleles in Schizosaccharomyces pombe. In contrast, inactivation of genes coding for F1-ATPase alpha and beta subunits and disruption of AAC2, PGS1/PEL1, and YME1 genes in S. cerevisiae convert this petite-positive yeast into a petite-negative form. Studies on nuclear genes affecting dependence on mtDNA have provided important insight into the functions provided by the mitochondrial genome and the maintenance of structural and functional integrity of the mitochondrial inner membrane.

  20. Relation between cell death progression, reactive oxygen species production and mitochondrial membrane potential in fermenting Saccharomyces cerevisiae cells under heat-shock conditions.

    PubMed

    Pyatrikas, Darya V; Fedoseeva, Irina V; Varakina, Nina N; Rusaleva, Tatyana M; Stepanov, Alexei V; Fedyaeva, Anna V; Borovskii, Gennadii B; Rikhvanov, Eugene G

    2015-06-01

    Moderate heat shock increased reactive oxygen species (ROS) production that led to cell death in glucose-grown Saccharomyces cerevisiae cells. Conditions that disturb mitochondrial functions such as treatment by uncouplers and petite mutation were shown to inhibit ROS production and protects cell from thermal death. Hence, mitochondria are responsible for ROS production and play an active role in cell death. An increase in ROS production was accompanied by hyperpolarization of inner mitochondrial membrane. All agents suppressing hyperpolarization also suppressed heat-induced ROS production. It was supposed that generation of ROS under moderate heat shock in glucose-grown S. cerevisiae cells is driven by the mitochondrial membrane potential. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Cisplatin-modification of DNA repair and ionizing radiation lethality in yeast, Saccharomyces cerevisiae.

    PubMed

    Dolling, J A; Boreham, D R; Brown, D L; Raaphorst, G P; Mitchel, R E

    1999-03-10

    Cis-diamminedichloroplatinum II (cisplatin) is a DNA inter- and intrastrand crosslinking agent which can sensitize prokaryotic and eukaryotic cells to killing by ionizing radiation. The mechanism of radiosensitization is unknown but may involve cisplatin inhibition of repair of DNA damage caused by radiation. Repair proficient wild type and repair deficient (rad52, recombinational repair or rad3, excision repair) strains of the yeast Saccharomyces cerevisiae were used to determine whether defects in DNA repair mechanisms would modify the radiosensitizing effect of cisplatin. We report that cisplatin exposure could sensitize yeast cells with a competent recombinational repair mechanism (wild type or rad3), but could not sensitize cells defective in recombinational repair (rad52), indicating that the radiosensitizing effect of cisplatin was due to inhibition of DNA repair processes involving error free RAD52-dependent recombinational repair. The presence or absence of oxygen during irradiation did not alter this radiosensitization. Consistent with this result, cisplatin did not sensitize cells to mutation that results from lesion processing by an error prone DNA repair system. However, under certain circumstances, cisplatin exposure did not cause radiosensitization to killing by radiation in repair competent wild type cells. Within 2 h after a sublethal cisplatin treatment, wild type yeast cells became both thermally tolerant and radiation resistant. Cisplatin pretreatment also suppressed mutations caused by exposure to N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), a response previously shown in wild type yeast cells following radiation pretreatment. Like radiation, the cisplatin-induced stress response did not confer radiation resistance or suppress MNNG mutations in a recombinational repair deficient mutant (rad52), although thermal tolerance was still induced. These results support the idea that cisplatin adducts in DNA interfere with RAD52-dependent

  2. Genome-Wide Screen Reveals sec21 Mutants of Saccharomyces cerevisiae Are Methotrexate-Resistant

    PubMed Central

    Wong, Lai H.; Flibotte, Stephane; Sinha, Sunita; Chiang, Jennifer; Giaever, Guri; Nislow, Corey

    2017-01-01

    Drug resistance is a consequence of how most modern medicines work. Drugs exert pressure on cells that causes death or the evolution of resistance. Indeed, highly specific drugs are rendered ineffective by a single DNA mutation. In this study, we apply the drug methotrexate, which is widely used in cancer and rheumatoid arthritis, and perform evolution experiments on Baker’s yeast to ask the different ways in which cells become drug resistant. Because of the conserved nature of biological pathways between yeast and man, our results can inform how the same mechanism may operate to render human cells resistant to treatment. Exposure of cells to small molecules and drug therapies imposes a strong selective pressure. As a result, cells rapidly acquire mutations in order to survive. These include resistant variants of the drug target as well as those that modulate drug transport and detoxification. To systematically explore how cells acquire drug resistance in an unbiased manner, rapid cost-effective approaches are required. Methotrexate, as one of the first rationally designed anticancer drugs, has served as a prototypic example of such acquired resistance. Known methotrexate resistance mechanisms include mutations that increase expression of the dihydrofolate reductase (DHFR) target as well as those that maintain function yet reduce the drug’s binding affinity. Recent evidence suggests that target-independent, epistatic mutations can also result in resistance to methotrexate. Currently, however, the relative contribution of such unlinked resistance mutations is not well understood. To address this issue, we took advantage of Saccharomyces cerevisiae as a model eukaryotic system that combined with whole-genome sequencing and a rapid screening methodology, allowed the identification of causative mutations that modulate resistance to methotrexate. We found a recurrent missense mutation in SEC21 (orthologous to human COPG1), which we confirmed in 10 de novo

  3. Functional profiling of the Saccharomyces cerevisiae genome.

    PubMed

    Giaever, Guri; Chu, Angela M; Ni, Li; Connelly, Carla; Riles, Linda; Véronneau, Steeve; Dow, Sally; Lucau-Danila, Ankuta; Anderson, Keith; André, Bruno; Arkin, Adam P; Astromoff, Anna; El-Bakkoury, Mohamed; Bangham, Rhonda; Benito, Rocio; Brachat, Sophie; Campanaro, Stefano; Curtiss, Matt; Davis, Karen; Deutschbauer, Adam; Entian, Karl-Dieter; Flaherty, Patrick; Foury, Francoise; Garfinkel, David J; Gerstein, Mark; Gotte, Deanna; Güldener, Ulrich; Hegemann, Johannes H; Hempel, Svenja; Herman, Zelek; Jaramillo, Daniel F; Kelly, Diane E; Kelly, Steven L; Kötter, Peter; LaBonte, Darlene; Lamb, David C; Lan, Ning; Liang, Hong; Liao, Hong; Liu, Lucy; Luo, Chuanyun; Lussier, Marc; Mao, Rong; Menard, Patrice; Ooi, Siew Loon; Revuelta, Jose L; Roberts, Christopher J; Rose, Matthias; Ross-Macdonald, Petra; Scherens, Bart; Schimmack, Greg; Shafer, Brenda; Shoemaker, Daniel D; Sookhai-Mahadeo, Sharon; Storms, Reginald K; Strathern, Jeffrey N; Valle, Giorgio; Voet, Marleen; Volckaert, Guido; Wang, Ching-yun; Ward, Teresa R; Wilhelmy, Julie; Winzeler, Elizabeth A; Yang, Yonghong; Yen, Grace; Youngman, Elaine; Yu, Kexin; Bussey, Howard; Boeke, Jef D; Snyder, Michael; Philippsen, Peter; Davis, Ronald W; Johnston, Mark

    2002-07-25

    Determining the effect of gene deletion is a fundamental approach to understanding gene function. Conventional genetic screens exhibit biases, and genes contributing to a phenotype are often missed. We systematically constructed a nearly complete collection of gene-deletion mutants (96% of annotated open reading frames, or ORFs) of the yeast Saccharomyces cerevisiae. DNA sequences dubbed 'molecular bar codes' uniquely identify each strain, enabling their growth to be analysed in parallel and the fitness contribution of each gene to be quantitatively assessed by hybridization to high-density oligonucleotide arrays. We show that previously known and new genes are necessary for optimal growth under six well-studied conditions: high salt, sorbitol, galactose, pH 8, minimal medium and nystatin treatment. Less than 7% of genes that exhibit a significant increase in messenger RNA expression are also required for optimal growth in four of the tested conditions. Our results validate the yeast gene-deletion collection as a valuable resource for functional genomics.

  4. Regulation of Phosphatidylcholine Biosynthesis in Saccharomyces cerevisiae

    PubMed Central

    Waechter, Charles J.; Lester, Robert L.

    1971-01-01

    Evidence is presented which indicates that the biosynthesis of phosphatidylcholine by the methylation pathway in growing cultures of Saccharomyces cerevisiae is repressed by the presence of choline in the growth medium. This result, obtained previously for glucose-grown cells, was also observed for lactate-grown cells, of which half of the phosphatidylcholine is mitochondrial. A respiration-deficient mutant of the parent wild-type strain has been studied, and its inability to form functional mitochondria cannot be due to an impaired methylation pathway, as it has been shown to incorporate 14C-CH3-methionine into all of the methylated glycerophosphatides. The incorporation rate is depressed by the inclusion of 1 mm choline in the growth medium, suggesting a regulatory effect similar to that demonstrated for the wild-type strain. The effects of choline on the glycerophospholipid composition of lactate and glucose-grown cells is presented. The repressive effects of the two related bases, mono- and dimethylethanolamine, were examined, and reduced levels of 14C-CH3-methionine incorporation were found for cells grown in the presence of these bases. The effect of choline on the methylation rates is reversible and glucosegrown cells regain the nonrepressed level of methylation activity in 60 to 80 min after removal of choline from the growth medium. Images PMID:5547992

  5. Acetylation dynamics and stoichiometry in Saccharomyces cerevisiae.

    PubMed

    Weinert, Brian T; Iesmantavicius, Vytautas; Moustafa, Tarek; Schölz, Christian; Wagner, Sebastian A; Magnes, Christoph; Zechner, Rudolf; Choudhary, Chunaram

    2014-01-01

    Lysine acetylation is a frequently occurring posttranslational modification; however, little is known about the origin and regulation of most sites. Here we used quantitative mass spectrometry to analyze acetylation dynamics and stoichiometry in Saccharomyces cerevisiae. We found that acetylation accumulated in growth-arrested cells in a manner that depended on acetyl-CoA generation in distinct subcellular compartments. Mitochondrial acetylation levels correlated with acetyl-CoA concentration in vivo and acetyl-CoA acetylated lysine residues nonenzymatically in vitro. We developed a method to estimate acetylation stoichiometry and found that the vast majority of mitochondrial and cytoplasmic acetylation had a very low stoichiometry. However, mitochondrial acetylation occurred at a significantly higher basal level than cytoplasmic acetylation, consistent with the distinct acetylation dynamics and higher acetyl-CoA concentration in mitochondria. High stoichiometry acetylation occurred mostly on histones, proteins present in histone acetyltransferase and deacetylase complexes, and on transcription factors. These data show that a majority of acetylation occurs at very low levels in exponentially growing yeast and is uniformly affected by exposure to acetyl-CoA.

  6. A biochemically structured model for Saccharomyces cerevisiae.

    PubMed

    Lei, F; Rotbøll, M; Jørgensen, S B

    2001-07-12

    A biochemically structured model for the aerobic growth of Saccharomyces cerevisiae on glucose and ethanol is presented. The model focuses on the pyruvate and acetaldehyde branch points where overflow metabolism occurs when the growth changes from oxidative to oxido-reductive. The model is designed to describe the onset of aerobic alcoholic fermentation during steady-state as well as under dynamical conditions, by triggering an increase in the glycolytic flux using a key signalling component which is assumed to be closely related to acetaldehyde. An investigation of the modelled process dynamics in a continuous cultivation revealed multiple steady states in a region of dilution rates around the transition between oxidative and oxido-reductive growth. A bifurcation analysis using the two external variables, the dilution rate, D, and the inlet concentration of glucose, S(f), as parameters, showed that a fold bifurcation occurs close to the critical dilution rate resulting in multiple steady-states. The region of dilution rates within which multiple steady states may occur depends strongly on the substrate feed concentration. Consequently a single steady state may prevail at low feed concentrations, whereas multiple steady states may occur over a relatively wide range of dilution rates at higher feed concentrations.

  7. Cold Osmotic Shock in Saccharomyces cerevisiae

    PubMed Central

    Patching, J. W.; Rose, A. H.

    1971-01-01

    Saccharomyces cerevisiae NCYC 366 is susceptible to cold osmotic shock. Exponentially growing cells from batch cultures grown in defined medium at 30 C, after being suspended in 0.8 m mannitol containing 10 mm ethylenedia-minetetraacetic acid and then resuspended in ice-cold 0.5 mm MgCl2, accumulated the nonmetabolizable solutes d-glucosamine-hydrochloride and 2-aminoisobutyrate at slower rates than unshocked cells; shocked cells retained their viability. Storage of unshocked batch-grown cells in buffer at 10 C led to an increase in ability to accumulate glucosamine, and further experiments were confined to cells grown in a chemostat under conditions of glucose limitation, thereby obviating the need for storing cells before use. A study was made of the effect of the different stages in the cold osmotic shock procedure, including the osmotic stress, the chelating agent, and the cold Mg2+-containing diluent, on viability and solute-accumulating ability. Growth of shocked cells in defined medium resembled that of unshocked cells; however, in malt extract-yeast extract-glucose-peptone medium, the shocked cells had a longer lag phase of growth and initially grew at a slower rate. Cold osmotic shock caused the release of low-molecular-weight compounds and about 6 to 8% of the cell protein. Neither the cell envelope enzymes, invertase, acid phosphatase and l-leucine-β-naphthylamidase, nor the cytoplasmic enzyme, alkaline phosphatase, were released when yeast cells were subjected to cold osmotic shock. PMID:5001201

  8. Methylamine and ammonia transport in Saccharomyces cerevisiae.

    PubMed Central

    Roon, R J; Even, H L; Dunlop, P; Larimore, F L

    1975-01-01

    Methylamine (methylammonium ion) entered Saccharomyces cerevisiae X2180-A by means of a specific active transport system. Methylamine uptake was pH dependent (maximum rate between pH 6.0 and 6.5) and temperature dependent (increasing up to 35 C) and required the presence of a fermentable or oxidizable energy source in the growth medium. At 23 C the vmax for methylamine transport was similar 17 nmol/min per mg of cells (dry weight) and the apparent Km was 220 muM. The transport system exhibited maximal activity in ammonia-grown cells and was repressed 60 to 70 percent when glutamine or asparagine was added to the growth medium. There was no significant derepression of the transport system during nitrogen starvation. Ammonia (ammonium ion) was a strong competitive inhibitor of methylamine uptake, whereas other amines inhibited to a much lesser extent. Mutants selected on the basis of their reduced ability to transport methylamine (Mea-R) simultaneously exhibited a decreased ability to transport ammonia. PMID:236281

  9. Limited proteolysis of Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase.

    PubMed

    Herrera, L; Encinas, M V; Jabalquinto, A M; Cardemil, E

    1993-08-01

    Incubation of Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase with trypsin under native conditions cases a time-dependent loss of activity and the production of protein fragments. Cleavage sites determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis and sequence analyses identified protease-sensitive peptide bonds between amino acid residues at positions 9-10 and 76-77. Additional fragmentation sites were also detected in a region approximately 70-80 amino acids before the carboxyl end of the protein. These results suggest that the enzyme is formed by a central compact domain comprising more than two thirds of the whole protein structure. From proteolysis experiments carried out in the presence of substrates, it could be inferred that CO2 binding specifically protects position 76-77 from trypsin action. Intrinsic fluorescence measurements demonstrated that CO2 binding induces a protein conformational change, and a dissociation constant for the enzyme CO2 complex of 8.2 +/- 0.6 mM was determined.

  10. Ultrastructural changes of Saccharomyces cerevisiae in response to ethanol stress.

    PubMed

    Ma, Manli; Han, Pei; Zhang, Ruimin; Li, Hao

    2013-09-01

    In the fermentative process using Saccharomyces cerevisiae to produce bioethanol, the performance of cells is often compromised by the accumulation of ethanol. However, the mechanism of how S. cerevisiae responds against ethanol stress remains elusive. In the current study, S. cerevisiae cells were cultured in YPD (yeast extract - peptone - dextrose) medium containing various concentrations of ethanol (0%, 2.5%, 5%, 7.5%, 10%, and 15% (v/v)). Compared with the control group without ethanol, the mean cell volume of S. cerevisiae decreased significantly in the presence of 7.5% and 10% ethanol after incubation for 16 h (P < 0.05), and in the presence of 15% ethanol at all 3 sampling time points (1, 8, and 16 h) (P < 0.05). The exposure of S. cerevisiae cells to ethanol also led to an increase in malonyldialdehyde content (P < 0.05) and a decrease in sulfhydryl group content (P < 0.05). Moreover, the observations through transmission electron microscopy enabled us to relate ultrastructural changes elicited by ethanol with the cellular stress physiology. Under ethanol stress, the integrity of the cell membrane was compromised. The swelling or distortion of mitochondria together with the occurrence of a single and large vacuole was correlated with the addition of ethanol. These results suggested that the cell membrane is one of the targets of ethanol, and the degeneration of mitochondria promoted the accumulation of intracellular reactive oxygen species.

  11. Saccharomyces cerevisiae S288C genome annotation: a working hypothesis

    PubMed Central

    Fisk, Dianna G.; Ball, Catherine A.; Dolinski, Kara; Engel, Stacia R.; Hong, Eurie L.; Issel-Tarver, Laurie; Schwartz, Katja; Sethuraman, Anand; Botstein, David; Cherry, J. Michael

    2011-01-01

    The S. cerevisiae genome is the most well-characterized eukaryotic genome and one of the simplest in terms of identifying open reading frames (ORFs), yet its primary annotation has been updated continually in the decade since its initial release in 1996 (Goffeau et al., 1996). The Saccharomyces Genome Database (SGD; www.yeastgenome.org) (Hirschman et al., 2006), the community-designated repository for this reference genome, strives to ensure that the S. cerevisiae annotation is as accurate and useful as possible. At SGD, the S. cerevisiae genome sequence and annotation are treated as a working hypothesis, which must be repeatedly tested and refined. In this paper, in celebration of the tenth anniversary of the completion of the S. cerevisiae genome sequence, we discuss the ways in which the S. cerevisiae sequence and annotation have changed, consider the multiple sources of experimental and comparative data on which these changes are based, and describe our methods for evaluating, incorporating and documenting these new data. PMID:17001629

  12. Saccharomyces cerevisiae: a nomadic yeast with no niche?

    PubMed Central

    Goddard, Matthew R.; Greig, Duncan

    2015-01-01

    Different species are usually thought to have specific adaptations, which allow them to occupy different ecological niches. But recent neutral ecology theory suggests that species diversity can simply be the result of random sampling, due to finite population sizes and limited dispersal. Neutral models predict that species are not necessarily adapted to specific niches, but are functionally equivalent across a range of habitats. Here, we evaluate the ecology of Saccharomyces cerevisiae, one of the most important microbial species in human history. The artificial collection, concentration and fermentation of large volumes of fruit for alcohol production produce an environment in which S. cerevisiae thrives, and therefore it is assumed that fruit is the ecological niche that S. cerevisiae inhabits and has adapted to. We find very little direct evidence that S. cerevisiae is adapted to fruit, or indeed to any other specific niche. We propose instead a neutral nomad model for S. cerevisiae, which we believe should be used as the starting hypothesis in attempting to unravel the ecology of this important microbe. PMID:25725024

  13. Saccharomyces cerevisiae as a starter culture in Mycella.

    PubMed

    Hansen, T K; Tempel, T V; Cantor, M D; Jakobsen, M

    2001-09-19

    The potential use of Saccharomyces cerevisiae FB7 as an additional starter culture for the production of Mycella, a Danish Gorgonzola type cheese, was investigated. Two dairy productions of Mycella, each containing batches of experimental cheeses with S. cerevisiae added and reference cheeses without yeast added were carried out. For both experimental and reference cheeses, chemical analysis (pH, a(w), NaCl, water and fat content) were carried out during the ripening period, but no significant differences were found. The evolution of lactic acid bacteria was almost identical in both the experimental and reference cheeses and similar results were found for the number of yeast. S. cerevisiae FB7 was found to be predominant in the core of the experimental cheeses throughout the ripening period, while Debaryomyces hansenii dominated in the reference cheese and on the surface of the experimental cheeses. In the cheeses with S. cerevisiae FB7, an earlier sporulation and an improved growth of Penicillium roqueforti was observed compared to the reference cheeses. Furthermore, in the experimental cheese, synergistic interactions were also found in the aroma analysis, the degradation of casein and by the sensory analysis. The observed differences indicate a positive contribution to the overall quality of Mycella by S. cerevisiae FB7.

  14. Genetic mapping of quantitative phenotypic traits in Saccharomyces cerevisiae.

    PubMed

    Swinnen, Steve; Thevelein, Johan M; Nevoigt, Elke

    2012-03-01

    Saccharomyces cerevisiae has become a favorite production organism in industrial biotechnology presenting new challenges to yeast engineers in terms of introducing advantageous traits such as stress tolerances. Exploring subspecies diversity of S. cerevisiae has identified strains that bear industrially relevant phenotypic traits. Provided that the genetic basis of such phenotypic traits can be identified inverse engineering allows the targeted modification of production strains. Most phenotypic traits of interest in S. cerevisiae strains are quantitative, meaning that they are controlled by multiple genetic loci referred to as quantitative trait loci (QTL). A straightforward approach to identify the genetic basis of quantitative traits is QTL mapping which aims at the allocation of the genetic determinants to regions in the genome. The application of high-density oligonucleotide arrays and whole-genome re-sequencing to detect genetic variations between strains has facilitated the detection of large numbers of molecular markers thus allowing high-resolution QTL mapping over the entire genome. This review focuses on the basic principle and state of the art of QTL mapping in S. cerevisiae. Furthermore we discuss several approaches developed during the last decade that allow down-scaling of the regions identified by QTL mapping to the gene level. We also emphasize the particular challenges of QTL mapping in nonlaboratory strains of S. cerevisiae.

  15. Identification of Two Saccharomyces cerevisiae Cell Wall Mannan Chemotypes

    PubMed Central

    Cawley, T. N.; Ballou, Clinton E.

    1972-01-01

    We have obtained evidence for two structurally and antigenically different Saccharomyces cerevisiae cell wall mannans. One, which occurs widely and is found in S. cerevisiae strain 238C, is already known to be a neutral mannan which yields mannose, mannobiose, mannotriose, and mannotetraose on acetolysis of the (1 → 6)-linked backbone. The other, which was found in S. cerevisiae brewer's strains, is a phosphomannan with a structure very similar to that of Kloeckera brevis mannan. S. cerevisiae (brewer's yeast strain) was agglutinated by antiserum prepared against Kloeckera brevis cells. The mannan, isolated from a proteolytic digest of the cell wall of the former, did not react with S. cerevisiae 238C antiserum, whereas it cross-reacted strongly with K. brevis antiserum. Controlled acetolysis cleaved the (1 → 6)-linkages in the polysaccharide backbone and released mannose, mannobiose, mannotriose, and mannotriose phosphate. Mild acid treatment of the phosphomannan hydrolyzed the phosphodiester linkage, yielding phosphomonoester mannan and mannose. The resulting phosphomonoester mannan reacted with antiserum prepared against K. brevis possessing monoester phosphate groups on the cell surface. α-d-Mannose-1-phosphate completely inhibited the precipitin reaction between brewer's yeast mannan and the homologous antiserum. Flocculent and nonflocculent strains of this yeast were shown to have similar structural and immunological properties. PMID:4559821

  16. [Effects of the gas phase of cigarette smoke on the induction of the petite colony mitochondrial mutation by ethidium bromide in yeast].

    PubMed

    Fayeulle, J P

    1985-01-01

    The induction of the mitochondrial 'petite' mutation (rho-) in haploid yeast (Saccharomyces cerevisiae) by ethidium bromide is reduced or even abolished if cells are also treated with the gas phase of cigarette smoke. This is observed not only in the case of simultaneous treatments but also when the two drugs are applied in succession.

  17. Glucose uptake and catabolite repression in dominant HTR1 mutants of Saccharomyces cerevisiae.

    PubMed Central

    Ozcan, S; Freidel, K; Leuker, A; Ciriacy, M

    1993-01-01

    Growth and carbon metabolism in triosephosphate isomerase (delta tpi1) mutants of Saccharomyces cerevisiae are severely inhibited by glucose. By using this feature, we selected for secondary site revertants on glucose. We defined five complementation groups, some of which have previously been identified as glucose repression mutants. The predominant mutant type, HTR1 (hexose transport regulation), is dominant and causes various glucose-specific metabolic and regulatory defects in TPI1 wild-type cells. HTR1 mutants are deficient in high-affinity glucose uptake and have reduced low-affinity transport. Transcription of various known glucose transporter genes (HXT1, HXT3, and HXT4) was defective in HTR1 mutants, leading us to suggest that HTR mutations affect a negative factor of HXT gene expression. By contrast, transcript levels for SNF3, which encodes a component of high-affinity glucose uptake, were unaffected. We presume that HTR1 mutations affect a negative factor of HXT gene expression. Multicopy expression of HXT genes or parts of their regulatory sequences suppresses the metabolic defects of HTR1 mutants but not their derepressed phenotype at high glucose concentrations. This suggests that the glucose repression defect is not a direct result of the metabolically relevant defect in glucose transport. Alternatively, some unidentified regulatory components of the glucose transport system may be involved in the generation or transmission of signals for glucose repression. Images PMID:8366037

  18. DAL82, a second gene required for induction of allantoin system gene transcription in Saccharomyces cerevisiae.

    PubMed Central

    Olive, M G; Daugherty, J R; Cooper, T G

    1991-01-01

    Several highly inducible enzyme activities are required for the degradation of allantoin in Saccharomyces cerevisiae. Induction of these pathway enzymes has been shown to be regulated at transcription, and response to inducer is lost in dal81 and dal82/durM mutants. The similar phenotypes generated by dal81 and dal82 mutations prompted the question of whether they were allelic. We demonstrated that the DAL81 and DAL82 loci are distinct, unlinked genes situated on chromosomes IX and XIV. DAL82 gene expression did not respond to induction by the allantoin pathway inducer or to nitrogen catabolite repression. Expression was also not significantly affected by mutation of the dal80 locus. From the nucleotide sequence of the DAL82 gene, we deduced that it encodes a protein with a mass of 29,079 Da that may possess the structural motifs expected of a regulatory protein. This protein was shown to be required for the function mediated by the cis-acting upstream induction sequence situated in the 5'-flanking regions of the inducible allantoin pathway genes. Images PMID:1898922

  19. Thermosensitivity of a barosensitive Saccharomyces cerevisiae mutant obtained by UV mutagenesis

    NASA Astrophysics Data System (ADS)

    Shigematsu, Toru; Nomura, Kazuki; Nasuhara, Yusuke; Ikarashi, Kenta; Nagai, Gen; Hirayama, Masao; Hayashi, Mayumi; Ueno, Shigeaki; Fujii, Tomoyuki

    2010-12-01

    Using UV mutagenesis, a high pressure (HP)-sensitive (barosensitive) mutant of Saccharomyces cerevisiae was obtained. The mutant strain a924E1 showed a significant loss of viability at HP levels of 175 to 250 MPa at 20 °C compared with the parent strain. This strain also showed a significant loss of viability following heat treatment at 50-58 °C at 0.1 MPa. These results showed that the mutation caused a significant thermosensitivity as well as barosensitivity. The activation volume and activation energy values for the inactivation of strain a924E1 were equivalent to those of the parent strain. This suggested that the mechanism for the HP and thermal inactivation reaction of strain a924E1 was basically the same as that of the parent strain. Strain a924E1 showed no deficiency in growth and fermentation ability as well as auxotrophic property. Although the identification of the genetic sites of mutation introduced is underway, these phenotypes are favorable for the application of HP treatment and heat-assisted HP treatment on fermentation control.

  20. Identification of essential elements in U14 RNA of Saccharomyces cerevisiae.

    PubMed Central

    Jarmolowski, A; Zagorski, J; Li, H V; Fournier, M J

    1990-01-01

    The U14 RNA of Saccharomyces cerevisiae is a small nucleolar RNA (snoRNA) required for normal production of 18S rRNA. Depletion of U14 results in impaired processing of pre-rRNA, deficiency in 18S-containing intermediates and marked under-accumulation of mature 18S RNA. The present report describes results of functional mapping of U14, by a variety of mutagenic approaches. Special attention was directed at assessing the importance of sequence elements conserved between yeast and mouse U14 as well as other snoRNA species. Functionality was assessed in a test strain containing a galactose dependent U14 gene. The results show portions of three U14 conserved regions to be required for U14 accumulation or function. These regions include bases in: (i) the 5'-proximal box C region, (ii) the 3'-distal box D region, and (iii) a 13 base domain complementary to 18S rRNA. Point and multi-base substitution mutations in the snoRNA conserved box C and box D regions prevent U14 accumulation. Mutations in the essential 18S related domain do not effect U14 levels, but do disrupt synthesis of 18S RNA, indicating that this region is required for function. Taken together, the results suggest that the box C and box D regions influence U14 expression or stability and that U14 function might involve direct interaction with 18S RNA. Images Fig. 3. Fig. 5. PMID:2265615

  1. The Role of Sas2, an Acetyltransferase Homologue of Saccharomyces Cerevisiae, in Silencing and Orc Function

    PubMed Central

    Ehrenhofer-Murray, A. E.; Rivier, D. H.; Rine, J.

    1997-01-01

    Silencing at the cryptic mating-type loci HML and HMR of Saccharomyces cerevisiae requires regulatory sites called silencers. Mutations in the Rap1 and Abf1 binding sites of the HMR-E silencer (HMRa-e**) cause the silencer to be nonfunctional, and hence, cause derepression of HMR. Here, we have isolated and characterized mutations in SAS2 as second-site suppressors of the silencing defect of HMRa-e**. Silencing conferred by the removal of SAS2 (sas2Δ) depended upon the integrity of the ARS consensus sequence of the HMR-E silencer, thus arguing for an involvement of the origin recognition complex (ORC). Restoration of silencing by sas2Δ required ORC2 and ORC5, but not SIR1 or RAP1. Furthermore, sas2Δ suppressed the temperature sensitivity, but not the silencing defect of orc2-1 and orc5-1. Moreover, sas2Δ had opposing effects on silencing of HML and HMR. The putative Sas2 protein bears similarities to known protein acetyltransferases. Several models for the role of Sas2 in silencing are discussed. PMID:9093847

  2. Functional Validation of Rare Human Genetic Variants Involved in Homologous Recombination Using Saccharomyces cerevisiae.

    PubMed

    Lee, Min-Soo; Yu, Mi; Kim, Kyoung-Yeon; Park, Geun-Hee; Kwack, KyuBum; Kim, Keun P

    2015-01-01

    Systems for the repair of DNA double-strand breaks (DSBs) are necessary to maintain genome integrity and normal functionality of cells in all organisms. Homologous recombination (HR) plays an important role in repairing accidental and programmed DSBs in mitotic and meiotic cells, respectively. Failure to repair these DSBs causes genome instability and can induce tumorigenesis. Rad51 and Rad52 are two key proteins in homologous pairing and strand exchange during DSB-induced HR; both are highly conserved in eukaryotes. In this study, we analyzed pathogenic single nucleotide polymorphisms (SNPs) in human RAD51 and RAD52 using the Polymorphism Phenotyping (PolyPhen) and Sorting Intolerant from Tolerant (SIFT) algorithms and observed the effect of mutations in highly conserved domains of RAD51 and RAD52 on DNA damage repair in a Saccharomyces cerevisiae-based system. We identified a number of rad51 and rad52 alleles that exhibited severe DNA repair defects. The functionally inactive SNPs were located near ATPase active site of Rad51 and the DNA binding domain of Rad52. The rad51-F317I, rad52-R52W, and rad52-G107C mutations conferred hypersensitivity to methyl methane sulfonate (MMS)-induced DNA damage and were defective in HR-mediated DSB repair. Our study provides a new approach for detecting functional and loss-of-function genetic polymorphisms and for identifying causal variants in human DNA repair genes that contribute to the initiation or progression of cancer.

  3. Physiological effects of unassembled chaperonin Cct subunits in the yeast Saccharomyces cerevisiae.

    PubMed

    Kabir, M Anaul; Kaminska, Joanna; Segel, George B; Bethlendy, Gabor; Lin, Paul; Della Seta, Flavio; Blegen, Casey; Swiderek, Kristine M; Zoładek, Teresa; Arndt, Kim T; Sherman, Fred

    2005-02-01

    Eukaryotic chaperonins, the Cct complexes, are assembled into two rings, each of which is composed of a stoichiometric array of eight different subunits, which are denoted Cct1p-Cct8p. Overexpression of a single CCT gene in Saccharomyces cerevisiae causes an increase of the corresponding Cct subunit, but not of the Cct complex. Nevertheless, overexpression of certain Cct subunits, especially CCT6, suppresses a wide range of abnormal phenotypes, including those caused by the diverse types of conditional mutations tor2-21, lst8-2 and rsp5-9 and those caused by the concomitant overexpression of Sit4p and Sap155p. The examination of 73 altered forms of Cct6p revealed that the cct6-24 mutation, containing GDGTT --> AAAAA replacements of the conserved ATP-binding motif, was unable to suppress any of these traits, although the cct6-24 allele was completely functional for growth. These results provide evidence for functional differences among Cct subunits and for physiological properties of unassembled subunits. We suggest that the suppression is due to the competition of specific Cct subunits for activities that normally modify various cellular components. Furthermore, we also suggest that the Cct subunits can act as suppressors only in certain states, such as when associated with ATP.

  4. Participation of translesion synthesis DNA polymerases in the maintenance of chromosome integrity in yeast Saccharomyces cerevisiae.

    PubMed

    Kochenova, O V; Soshkina, J V; Stepchenkova, E I; Inge-Vechtomov, S G; Shcherbakova, P V

    2011-01-01

    We employed a genetic assay based on illegitimate hybridization of heterothallic Saccharomyces cerevisiae strains (the α-test) to analyze the consequences for genome stability of inactivating translesion synthesis (TLS) DNA polymerases. The α-test is the only assay that measures the frequency of different types of mutational changes (point mutations, recombination, chromosome or chromosome arm loss) and temporary changes in genetic material simultaneously. All these events are manifested as illegitimate hybridization and can be distinguished by genetic analysis of the hybrids and cytoductants. We studied the effect of Polζ, Polη, and Rev1 deficiency on the genome stability in the absence of genotoxic treatment and in UV-irradiated cells. We show that, in spite of the increased percent of accurately repaired primary lesions, chromosome fragility, rearrangements, and loss occur in the absence of Polζ and Polη. Our findings contribute to further refinement of the current models of translesion synthesis and the organization of eukaryotic replication fork.

  5. Heterosis is prevalent among domesticated but not wild strains of Saccharomyces cerevisiae.

    PubMed

    Plech, Marcin; de Visser, J Arjan G M; Korona, Ryszard

    2014-02-19

    Crosses between inbred but unrelated individuals often result in an increased fitness of the progeny. This phenomenon is known as heterosis and has been reported for wild and domesticated populations of plants and animals. Analysis of heterosis is often hindered by the fact that the genetic relatedness between analyzed organisms is only approximately known. We studied a collection of Saccharomyces cerevisiae isolates from wild and human-created habitats whose genomes were sequenced and thus their relatedness was fully known. We reasoned that if these strains accumulated different deleterious mutations at an approximately constant rate, then heterosis should be most visible in F1 heterozygotes from the least related parents. We found that heterosis was substantial and positively correlated with sequence divergence, but only in domesticated strains. More than 80% of the heterozygous hybrids were more fit than expected from the mean of their homozygous parents, and approximately three-quarters of those exceeded even the fittest parent. Our results support the notion that domestication brings about relaxation of selection and accumulation of deleterious mutations. However, other factors may have contributed as well. In particular, the observed build-up of genetic load might be facilitated by a decrease, and not increase, in the rate of inbreeding.

  6. Functional Validation of Rare Human Genetic Variants Involved in Homologous Recombination Using Saccharomyces cerevisiae

    PubMed Central

    Lee, Min-Soo; Yu, Mi; Kim, Kyoung-Yeon; Park, Geun-Hee; Kwack, KyuBum; Kim, Keun P.

    2015-01-01

    Systems for the repair of DNA double-strand breaks (DSBs) are necessary to maintain genome integrity and normal functionality of cells in all organisms. Homologous recombination (HR) plays an important role in repairing accidental and programmed DSBs in mitotic and meiotic cells, respectively. Failure to repair these DSBs causes genome instability and can induce tumorigenesis. Rad51 and Rad52 are two key proteins in homologous pairing and strand exchange during DSB-induced HR; both are highly conserved in eukaryotes. In this study, we analyzed pathogenic single nucleotide polymorphisms (SNPs) in human RAD51 and RAD52 using the Polymorphism Phenotyping (PolyPhen) and Sorting Intolerant from Tolerant (SIFT) algorithms and observed the effect of mutations in highly conserved domains of RAD51 and RAD52 on DNA damage repair in a Saccharomyces cerevisiae-based system. We identified a number of rad51 and rad52 alleles that exhibited severe DNA repair defects. The functionally inactive SNPs were located near ATPase active site of Rad51 and the DNA binding domain of Rad52. The rad51-F317I, rad52-R52W, and rad52-G107C mutations conferred hypersensitivity to methyl methane sulfonate (MMS)-induced DNA damage and were defective in HR-mediated DSB repair. Our study provides a new approach for detecting functional and loss-of-function genetic polymorphisms and for identifying causal variants in human DNA repair genes that contribute to the initiation or progression of cancer. PMID:25938495

  7. Replicative age induces mitotic recombination in the ribosomal RNA gene cluster of Saccharomyces cerevisiae.

    PubMed

    Lindstrom, Derek L; Leverich, Christina K; Henderson, Kiersten A; Gottschling, Daniel E

    2011-03-01

    Somatic mutations contribute to the development of age-associated disease. In earlier work, we found that, at high frequency, aging Saccharomyces cerevisiae diploid cells produce daughters without mitochondrial DNA, leading to loss of respiration competence and increased loss of heterozygosity (LOH) in the nuclear genome. Here we used the recently developed Mother Enrichment Program to ask whether aging cells that maintain the ability to produce respiration-competent daughters also experience increased genomic instability. We discovered that this population exhibits a distinct genomic instability phenotype that primarily affects the repeated ribosomal RNA gene array (rDNA array). As diploid cells passed their median replicative life span, recombination rates between rDNA arrays on homologous chromosomes progressively increased, resulting in mutational events that generated LOH at >300 contiguous open reading frames on the right arm of chromosome XII. We show that, while these recombination events were dependent on the replication fork block protein Fob1, the aging process that underlies this phenotype is Fob1-independent. Furthermore, we provide evidence that this aging process is not driven by mechanisms that modulate rDNA recombination in young cells, including loss of cohesion within the rDNA array or loss of Sir2 function. Instead, we suggest that the age-associated increase in rDNA recombination is a response to increasing DNA replication stress generated in aging cells.

  8. Identification of New Genes Required for Meiotic Recombination in Saccharomyces Cerevisiae

    PubMed Central

    Ajimura, M.; Leem, S. H.; Ogawa, H.

    1993-01-01

    Mutants defective in meiotic recombination were isolated from a disomic haploid strain of Saccharomyces cerevisiae by examining recombination within the leu2 and his4 heteroalleles located on chromosome III. The mutants were classified into two new complementation groups (MRE2 and MRE11) and eight previously identified groups, which include SPO11, HOP1, REC114, MRE4/MEK1 and genes in the RAD52 epistasis group. All of the mutants, in which the mutations in the new complementation groups are homozygous and diploid, can undergo premeiotic DNA synthesis and produce spores. The spores are, however, not viable. The mre2 and mre11 mutants produce viable spores in a spo13 background, in which meiosis I is bypassed, suggesting that these mutants are blocked at an early step in meiotic recombination. The mre2 mutant does not exhibit any unusual phenotype during mitosis and it is, thus, considered to have a mutation in a meiosis-specific gene. By contrast, the mre11 mutant is sensitive to damage to DNA by methyl methanesulfonate and exhibits a hyperrecombination phenotype in mitosis. Among six alleles of HOP1 that were isolated, an unusual pattern of intragenic complementation was observed. PMID:8417989

  9. Identification of the structural gene for dipeptidyl aminopeptidase yscV (DAP2) of Saccharomyces cerevisiae.

    PubMed Central

    Suárez Rendueles, P; Wolf, D H

    1987-01-01

    Mutants of Saccharomyces cerevisiae lacking dipeptidyl aminopeptidase yscV were isolated from a strain already defective in dipeptidyl aminopeptidase yscIV, an enzyme with overlapping substrate specificity. The mutants were identified by a staining technique with the chromogenic substrate Ala-Pro-4-methoxy-beta-naphthylamide to screen colonies for the absence of the enzyme. One of the mutants had a thermolabile activity, indicating that it contained a structural gene mutation. The 53 mutants analyzed fell into one complementation group that corresponded to the yscV structural gene, DAP2. The defect segregated 2:2 in meiotic tetrads, indicating a single chromosomal gene mutation, which was shown to be recessive. Diploids heterozygous for DAP2 displayed gene dosage effects with respect to yscV enzyme activity. The absence of dipeptidyl aminopeptidase yscV or the combined loss of both dipeptidyl aminopeptidases yscIV and yscV did not affect mitotic growth under rich or poor growth conditions. In contrast to the dipeptidyl aminopeptidase yscIV lesion (ste13), which leads to alpha sterility because strains secrete incompletely processed forms of the alpha-factor pheromone, the dipeptidyl aminopeptidase yscV lesion did not affect mating, and strains produced fully active alpha-factor pheromone. dap2 mutants did not show any obvious phenotype under a variety of conditions tested. PMID:3305478

  10. High-throughput transformation of Saccharomyces cerevisiae using liquid handling robots

    PubMed Central

    Lanham, Clayton; Buchan, J. Ross; Kaplan, Matthew E.

    2017-01-01

    Saccharomyces cerevisiae (budding yeast) is a powerful eukaryotic model organism ideally suited to high-throughput genetic analyses, which time and again has yielded insights that further our understanding of cell biology processes conserved in humans. Lithium Acetate (LiAc) transformation of yeast with DNA for the purposes of exogenous protein expression (e.g., plasmids) or genome mutation (e.g., gene mutation, deletion, epitope tagging) is a useful and long established method. However, a reliable and optimized high throughput transformation protocol that runs almost no risk of human error has not been described in the literature. Here, we describe such a method that is broadly transferable to most liquid handling high-throughput robotic platforms, which are now commonplace in academic and industry settings. Using our optimized method, we are able to comfortably transform approximately 1200 individual strains per day, allowing complete transformation of typical genomic yeast libraries within 6 days. In addition, use of our protocol for gene knockout purposes also provides a potentially quicker, easier and more cost-effective approach to generating collections of double mutants than the popular and elegant synthetic genetic array methodology. In summary, our methodology will be of significant use to anyone interested in high throughput molecular and/or genetic analysis of yeast. PMID:28319150

  11. Involvement of Sac1 phosphoinositide phosphatase in the metabolism of phosphatidylserine in the yeast Saccharomyces cerevisiae.

    PubMed

    Tani, Motohiro; Kuge, Osamu

    2014-04-01

    Sac1 is a phosphoinositide phosphatase that preferentially dephosphorylates phosphatidylinositol 4-phosphate. Mutation of SAC1 causes not only the accumulation of phosphoinositides but also reduction of the phosphatidylserine (PS) level in the yeast Saccharomyces cerevisiae. In this study, we characterized the mechanism underlying the PS reduction in SAC1-deleted cells. Incorporation of (32) P into PS was significantly delayed in sac1∆ cells. Such a delay was also observed in SAC1- and PS decarboxylase gene-deleted cells, suggesting that the reduction in the PS level is caused by a reduction in the rate of biosynthesis of PS. A reduction in the PS level was also observed with repression of STT4 encoding phosphatidylinositol 4-kinase or deletion of VPS34 encoding phophatidylinositol 3-kinase. However, the combination of mutations of SAC1 and STT4 or VPS34 did not restore the reduced PS level, suggesting that both the synthesis and degradation of phosphoinositides are important for maintenance of the PS level. Finally, we observed an abnormal PS distribution in sac1∆ cells when a specific probe for PS was expressed. Collectively, these results suggested that Sac1 is involved in the maintenance of a normal rate of biosynthesis and distribution of PS.

  12. Overproduction of threonine by Saccharomyces cerevisiae mutants resistant to hydroxynorvaline.

    PubMed Central

    Ramos, C; Calderon, I L

    1992-01-01

    In this work, we isolated and characterized mutants that overproduce threonine from Saccharomyces cerevisiae. The mutants were selected for resistance to the threonine analog alpha-amino-beta-hydroxynorvalerate (hydroxynorvaline), and, of these, the ones able to excrete threonine to the medium were chosen. The mutant strains produce between 15 and 30 times more threonine than the wild type does, and, to a lesser degree, they also accumulate isoleucine. Genetic and biochemical studies have revealed that the threonine overproduction is, in all cases studied, associated with the presence in the strain of a HOM3 allele coding for a mutant aspartate kinase that is totally or partially insensitive to feedback inhibition by threonine. This enzyme seems, therefore, to be crucial in the regulation of threonine biosynthesis in S. cerevisiae. The results obtained suggest that this strategy could be efficiently applied to the isolation of threonine-overproducing strains of yeasts other than S. cerevisiae, even those used industrially. PMID:1622238

  13. Antimutagenic and antioxidant activity of Lisosan G in Saccharomyces cerevisiae.

    PubMed

    Frassinetti, Stefania; Della Croce, Clara Maria; Caltavuturo, Leonardo; Longo, Vincenzo

    2012-12-01

    In the present study the antimutagenic and antioxidant effects of a powder of grain (Lisosan G) in yeast Saccharomyces cerevisiae were studied. Results showed that Lisosan G treatment decreased significantly the intracellular ROS concentration and mutagenesis induced by hydrogen peroxide in S. cerevisiae D7 strain. The effect of Lisosan G was then evaluated by using superoxide dismutase (SOD) proficient and deficient strains of S. cerevisiae. Lisosan G showed protective activity in sod1Δ and sod2Δ mutant strains, indicating an in vivo antioxidant effect. A high radical scavenging activity of Lisosan G was also demonstrated in vitro using the oxygen radical absorbance capacity (ORAC) assay. The obtained results showed a protective effect of Lisosan G in yeast cells, indicating that its antioxidant capacity contributes to its antimutagenic action.

  14. Alternative Splicing in Next Generation Sequencing Data of Saccharomyces cerevisiae

    PubMed Central

    Schreiber, Konrad; Csaba, Gergely; Haslbeck, Martin; Zimmer, Ralf

    2015-01-01

    mRNA splicing is required in about 4% of protein coding genes in Saccharomyces cerevisiae. The gene structure of those genes is simple, generally comprising two exons and one intron. In order to characterize the impact of alternative splicing on the S. cerevisiae transcriptome, we perform a systematic analysis of mRNA sequencing data. We find evidence of a pervasive use of alternative splice sites and detect several novel introns both within and outside protein coding regions. We also find a predominance of alternative splicing on the 3’ side of introns, a finding which is consistent with existing knowledge on conservation of exon-intron boundaries in S. cerevisiae. Some of the alternatively spliced transcripts allow for a translation into different protein products. PMID:26469855

  15. Genetic engineering of industrial strains of Saccharomyces cerevisiae.

    PubMed

    Le Borgne, Sylvie

    2012-01-01

    Genetic engineering has been successfully applied to Saccharomyces cerevisiae laboratory strains for different purposes: extension of substrate range, improvement of productivity and yield, elimination of by-products, improvement of process performance and cellular properties, and extension of product range. The potential of genetically engineered yeasts for the massive production of biofuels as bioethanol and other nonfuel products from renewable resources as lignocellulosic biomass hydrolysates has been recognized. For such applications, robust industrial strains of S. cerevisiae have to be used. Here, some relevant genetic and genomic characteristics of industrial strains are discussed in relation to the problematic of the genetic engineering of such strains. General molecular tools applicable to the manipulation of S. cerevisiae industrial strains are presented and examples of genetically engineered industrial strains developed for the production of bioethanol from lignocellulosic biomass are given.

  16. Metabolic engineering of Saccharomyces cerevisiae for lactose/whey fermentation

    PubMed Central

    Guimarães, Pedro MR; Oliveira, Carla

    2010-01-01

    Lactose is an interesting carbon source for the production of several bio-products by fermentation, primarily because it is the major component of cheese whey, the main by-product of dairy activities. However, the microorganism more widely used in industrial fermentation processes, the yeast Saccharomyces cerevisiae, does not have a lactose metabolization system. Therefore, several metabolic engineering approaches have been used to construct lactose-consuming S. cerevisiae strains, particularly involving the expression of the lactose genes of the phylogenetically related yeast Kluyveromyces lactis, but also the lactose genes from Escherichia coli and Aspergillus niger, as reviewed here. Due to the existing large amounts of whey, the production of bio-ethanol from lactose by engineered S. cerevisiae has been considered as a possible route for whey surplus. Emphasis is given in the present review on strain improvement for lactose-to-ethanol bioprocesses, namely flocculent yeast strains for continuous high-cell-density systems with enhanced ethanol productivity. PMID:21326922

  17. Metabolic engineering of Saccharomyces cerevisiae for lactose/whey fermentation.

    PubMed

    Domingues, Lucília; Guimarães, Pedro M R; Oliveira, Carla

    2010-01-01

    Lactose is an interesting carbon source for the production of several bio-products by fermentation, primarily because it is the major component of cheese whey, the main by-product of dairy activities. However, the microorganism more widely used in industrial fermentation processes, the yeast Saccharomyces cerevisiae, does not have a lactose metabolization system. Therefore, several metabolic engineering approaches have been used to construct lactose-consuming S. cerevisiae strains, particularly involving the expression of the lactose genes of the phylogenetically related yeast Kluyveromyces lactis, but also the lactose genes from Escherichia coli and Aspergillus niger, as reviewed here. Due to the existing large amounts of whey, the production of bio-ethanol from lactose by engineered S. cerevisiae has been considered as a possible route for whey surplus. Emphasis is given in the present review on strain improvement for lactose-to-ethanol bioprocesses, namely flocculent yeast strains for continuous high-cell-density systems with enhanced ethanol productivity.

  18. Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae.

    PubMed

    van Zyl, Willem H; Lynd, Lee R; den Haan, Riaan; McBride, John E

    2007-01-01

    Consolidated bioprocessing (CBP) of lignocellulose to bioethanol refers to the combining of the four biological events required for this conversion process (production of saccharolytic enzymes, hydrolysis of the polysaccharides present in pretreated biomass, fermentation of hexose sugars, and fermentation of pentose sugars) in one reactor. CBP is gaining increasing recognition as a potential breakthrough for low-cost biomass processing. Although no natural microorganism exhibits all the features desired for CBP, a number of microorganisms, both bacteria and fungi, possess some of the desirable properties. This review focuses on progress made toward the development of baker's yeast (Saccharomyces cerevisiae) for CBP. The current status of saccharolytic enzyme (cellulases and hemicellulases) expression in S. cerevisiae to complement its natural fermentative ability is highlighted. Attention is also devoted to the challenges ahead to integrate all required enzymatic activities in an industrial S. cerevisiae strain(s) and the need for molecular and selection strategies pursuant to developing a yeast capable of CBP.

  19. Mechanisms of viral mutation.

    PubMed

    Sanjuán, Rafael; Domingo-Calap, Pilar

    2016-12-01

    The remarkable capacity of some viruses to adapt to new hosts and environments is highly dependent on their ability to generate de novo diversity in a short period of time. Rates of spontaneous mutation vary amply among viruses. RNA viruses mutate faster than DNA viruses, single-stranded viruses mutate faster than double-strand virus, and genome size appears to correlate negatively with mutation rate. Viral mutation rates are modulated at different levels, including polymerase fidelity, sequence context, template secondary structure, cellular microenvironment, replication mechanisms, proofreading, and access to post-replicative repair. Additionally, massive numbers of mutations can be introduced by some virus-encoded diversity-generating elements, as well as by host-encoded cytidine/adenine deaminases. Our current knowledge of viral mutation rates indicates that viral genetic diversity is determined by multiple virus- and host-dependent processes, and that viral mutation rates can evolve in response to specific selective pressures.

  20. CF Mutation Panel

    MedlinePlus

    ... AACC products and services. Advertising & Sponsorship: Policy | Opportunities CF Gene Mutations Testing Share this page: Was this page helpful? Also known as: Cystic Fibrosis Genotyping; CF DNA Analysis; CF Gene Mutation Panel; ...

  1. Identification of essential nucleotides in an upstream repressing sequence of Saccharomyces cerevisiae by selection for increased expression of TRK2.

    PubMed Central

    Vidal, M; Buckley, A M; Yohn, C; Hoeppner, D J; Gaber, R F

    1995-01-01

    The TRK2 gene in Saccharomyces cerevisiae encodes a membrane protein involved in potassium transport and is expressed at extremely low levels. Dominant cis-acting mutations (TRK2D), selected by their ability to confer TRK2-dependent growth on low-potassium medium, identified an upstream repressor element (URS1-TRK2) in the TRK2 promoter. The URS1-TRK2 sequence (5'-AGCCGCACG-3') shares six nucleotides with the ubiquitous URS1 element (5'-AGCCGCCGA-3'), and the protein species binding URS1-CAR1 (URSF) is capable of binding URS1-TRK2 in vitro. Sequence analysis of 17 independent repression-defective TRK2D mutations identified three adjacent nucleotides essential for URS1-mediated repression in vivo. Our results suggest a role for context effects with regard to URS1-related sequences: several mutant alleles of the URS1 element previously reported to have little or no effect when analyzed within the context of a heterologous promoter (CYC1) [Luche, R.M., Sumrada, R. & Cooper, T.G. (1990) Mol. Cell. Biol. 10, 3884-3895] have major effects on repression in the context of their native promoters (TRK2 and CAR1). TRK2D mutations that abolish repression also reveal upstream activating sequence activity either within or adjacent to URS1. Additivity between TRK2D and sin3 delta mutations suggest that SIN3-mediated repression is independent of that mediated by URS1. Images Fig. 1 Fig. 4 PMID:7892273

  2. Regulation of Cation Balance in Saccharomyces cerevisiae

    PubMed Central

    Cyert, Martha S.; Philpott, Caroline C.

    2013-01-01

    All living organisms require nutrient minerals for growth and have developed mechanisms to acquire, utilize, and store nutrient minerals effectively. In the aqueous cellular environment, these elements exist as charged ions that, together with protons and hydroxide ions, facilitate biochemical reactions and establish the electrochemical gradients across membranes that drive cellular processes such as transport and ATP synthesis. Metal ions serve as essential enzyme cofactors and perform both structural and signaling roles within cells. However, because these ions can also be toxic, cells have developed sophisticated homeostatic mechanisms to regulate their levels and avoid toxicity. Studies in Saccharomyces cerevisiae have characterized many of the gene products and processes responsible for acquiring, utilizing, storing, and regulating levels of these ions. Findings in this model organism have often allowed the corresponding machinery in humans to be identified and have provided insights into diseases that result from defects in ion homeostasis. This review summarizes our current understanding of how cation balance is achieved and modulated in baker’s yeast. Control of intracellular pH is discussed, as well as uptake, storage, and efflux mechanisms for the alkali metal cations, Na+ and K+, the divalent cations, Ca2+ and Mg2+, and the trace metal ions, Fe2+, Zn2+, Cu2+, and Mn2+. Signal transduction pathways that are regulated by pH and Ca2+ are reviewed, as well as the mechanisms that allow cells to maintain appropriate intracellular cation concentrations when challenged by extreme conditions, i.e., either limited availability or toxic levels in the environment. PMID:23463800

  3. Directed evolution of xylose isomerase for improved xylose catabolism and fermentation in the yeast Saccharomyces cerevisiae.

    PubMed

    Lee, Sun-Mi; Jellison, Taylor; Alper, Hal S

    2012-08-01

    The heterologous expression of a highly functional xylose isomerase pathway in Saccharomyces cerevisiae would have significant advantages for ethanol yield, since the pathway bypasses cofactor requirements found in the traditionally used oxidoreductase pathways. However, nearly all reported xylose isomerase-based pathways in S. cerevisiae suffer from poor ethanol productivity, low xylose consumption rates, and poor cell growth compared with an oxidoreductase pathway and, additionally, often require adaptive strain evolution. Here, we report on the directed evolution of the Piromyces sp. xylose isomerase (encoded by xylA) for use in yeast. After three rounds of mutagenesis and growth-based screening, we isolated a variant containing six mutations (E15D, E114G, E129D, T142S, A177T, and V433I) that exhibited a 77% increase in enzymatic activity. When expressed in a minimally engineered yeast host containing a gre3 knockout and tal1 and XKS1 overexpression, the strain expressing this mutant enzyme improved its aerobic growth rate by 61-fold and both ethanol production and xylose consumption rates by nearly 8-fold. Moreover, the mutant enzyme enabled ethanol production by these yeasts under oxygen-limited fermentation conditions, unlike the wild-type enzyme. Under microaerobic conditions, the ethanol production rates of the strain expressing the mutant xylose isomerase were considerably higher than previously reported values for yeast harboring a xylose isomerase pathway and were also comparable to those of the strains harboring an oxidoreductase pathway. Consequently, this study shows the potential to evolve a xylose isomerase pathway for more efficient xylose utilization.

  4. The ADA Complex Is a Distinct Histone Acetyltransferase Complex in Saccharomyces cerevisiae

    PubMed Central

    Eberharter, Anton; Sterner, David E.; Schieltz, David; Hassan, Ahmed; Yates, John R.; Berger, Shelley L.; Workman, Jerry L.

    1999-01-01

    We have identified two Gcn5-dependent histone acetyltransferase (HAT) complexes from Saccharomyces cerevisiae, the 0.8-MDa ADA complex and the 1.8-MDa SAGA complex. The SAGA (Spt-Ada-Gcn5-acetyltransferase) complex contains several subunits which also function as part of other protein complexes, including a subset of TATA box binding protein-associated factors (TAFIIs) and Tra1. These observations raise the question of whether the 0.8-MDa ADA complex is a subcomplex of SAGA or whether it is a distinct HAT complex that also shares subunits with SAGA. To address this issue, we sought to determine if the ADA complex contained subunits that are not present in the SAGA complex. In this study, we report the purification of the ADA complex over 10 chromatographic steps. By a combination of mass spectrometry analysis and immunoblotting, we demonstrate that the adapter proteins Ada2, Ada3, and Gcn5 are indeed integral components of ADA. Furthermore, we identify the product of the S. cerevisiae gene YOR023C as a novel subunit of the ADA complex and name it Ahc1 for ADA HAT complex component 1. Biochemical functions of YOR023C have not been reported. However, AHC1 in high copy numbers suppresses the cold sensitivity caused by particular mutations in HTA1 (I. Pinto and F. Winston, personal communication), which encodes histone H2A (J. N. Hirschhorn et al., Mol. Cell. Biol. 15:1999–2009, 1995). Deletion of AHC1 disrupted the integrity of the ADA complex but did not affect SAGA or give rise to classic Ada− phenotypes. These results indicate that Gcn5, Ada2, and Ada3 function as part of a unique HAT complex (ADA) and represent shared subunits between this complex and SAGA. PMID:10490601

  5. Alterations in DNA replication and histone levels promote histone gene amplification in Saccharomyces cerevisiae.

    PubMed

    Libuda, Diana E; Winston, Fred

    2010-04-01

    Gene amplification, a process that increases the copy number of a gene or a genomic region to two or more, is utilized by many organisms in response to environmental stress or decreased levels of a gene product. Our previous studies in Saccharomyces cerevisiae identified the amplification of a histone H2A-H2B gene pair, HTA2-HTB2, in response to the deletion of the other H2A-H2B gene pair, HTA1-HTB1. This amplification arises from a recombination event between two flanking Ty1 elements to form a new, stable circular chromosome and occurs at a frequency higher than has been observed for other Ty1-Ty1 recombination events. To understand the regulation of this amplification event, we screened the S. cerevisiae nonessential deletion set for mutations that alter the amplification frequency. Among the deletions that increase HTA2-HTB2 amplification frequency, we identified those that either decrease DNA replication fork progression (rrm3Delta, dpb3Delta, dpb4Delta, and clb5Delta) or that reduce histone H3-H4 levels (hht2-hhf2Delta). These two classes are related because reduced histone H3-H4 levels increase replication fork pauses, and impaired replication forks cause a reduction in histone levels. Consistent with our mutant screen, we found that the introduction of DNA replication stress by hydroxyurea induces the HTA2-HTB2 amplification event. Taken together, our results suggest that either reduced histone levels or slowed replication forks stimulate the HTA2-HTB2 amplification event, contributing to the restoration of normal chromatin structure.

  6. The Saccharomyces cerevisiae Actin Patch Protein App1p Is a Phosphatidate Phosphatase Enzyme*♦

    PubMed Central

    Chae, Minjung; Han, Gil-Soo; Carman, George M.

    2012-01-01

    Phosphatidate phosphatase (PAP) catalyzes the dephosphorylation of phosphatidate to yield diacylglycerol. In the yeast Saccharomyces cerevisiae, PAP is encoded by PAH1, DPP1, and LPP1. The presence of PAP activity in the pah1Δ dpp1Δ lpp1Δ triple mutant indicated another gene(s) encoding the enzyme. We purified PAP from the pah1Δ dpp1Δ lpp1Δ triple mutant by salt extraction of mitochondria followed by chromatography with DE52, Affi-Gel Blue, phenyl-Sepharose, MonoQ, and Superdex 200. Liquid chromatography/tandem mass spectrometry analysis of a PAP-enriched sample revealed multiple putative phosphatases. By analysis of PAP activity in mutants lacking each of the proteins, we found that APP1, a gene whose molecular function has been unknown, confers ∼30% PAP activity of wild type cells. The overexpression of APP1 in the pah1Δ dpp1Δ lpp1Δ mutant exhibited a 10-fold increase in PAP activity. The PAP activity shown by App1p heterologously expressed in Escherichia coli confirmed that APP1 is the structural gene for the enzyme. Introduction of the app1Δ mutation into the pah1Δ dpp1Δ lpp1Δ triple mutant resulted in a complete loss of PAP activity, indicating that distinct PAP enzymes in S. cerevisiae are encoded by APP1, PAH1, DPP1, and LPP1. Lipid analysis of cells lacking the PAP genes, singly or in combination, showed that Pah1p is the only PAP involved in the synthesis of triacylglycerol as well as in the regulation of phospholipid synthesis. App1p, which shows interactions with endocytic proteins, may play a role in vesicular trafficking through its PAP activity. PMID:23071111

  7. Effect of l-Proline on Sake Brewing and Ethanol Stress in Saccharomyces cerevisiae

    PubMed Central

    Takagi, Hiroshi; Takaoka, Miki; Kawaguchi, Akari; Kubo, Yoshito

    2005-01-01

    During the fermentation of sake, cells of Saccharomyces cerevisiae are exposed to high concentrations of ethanol, thereby damaging the cell membrane and functional proteins. l-Proline protects yeast cells from damage caused by freezing or oxidative stress. In this study, we evaluated the role of intracellular l-proline in cells of S. cerevisiae grown under ethanol stress. An l-proline-accumulating laboratory strain carries a mutant allele of PRO1, pro1D154N, which encodes the Asp154Asn mutant γ-glutamyl kinase. This mutation increases the activity of γ-glutamyl kinase and γ-glutamyl phosphate reductase, which catalyze the first two steps of l-proline synthesis and which together may form a complex in vivo. When cultured in liquid medium in the presence of 9% and 18% ethanol under static conditions, the cell viability of the l-proline-accumulating laboratory strain is greater than the cell viability of the parent strain. This result suggests that intracellular accumulation of l-proline may confer tolerance to ethanol stress. We constructed a novel sake yeast strain by disrupting the PUT1 gene, which is required for l-proline utilization, and replacing the wild-type PRO1 allele with the pro1D154N allele. The resultant strain accumulated l-proline and was more tolerant to ethanol stress than was the control strain. We used the strain that could accumulate l-proline to brew sake containing five times more l-proline than what is found in sake brewed with the control strain, without affecting the fermentation profiles. PMID:16332860

  8. Dependence of ORC silencing function on NatA-mediated Nalpha acetylation in Saccharomyces cerevisiae.

    PubMed

    Geissenhöner, Antje; Weise, Christoph; Ehrenhofer-Murray, Ann E

    2004-12-01

    N(alpha) acetylation is one of the most abundant protein modifications in eukaryotes and is catalyzed by N-terminal acetyltransferases (NATs). NatA, the major NAT in Saccharomyces cerevisiae, consists of the subunits Nat1p, Ard1p, and Nat5p and is necessary for the assembly of repressive chromatin structures. Here, we found that Orc1p, the large subunit of the origin recognition complex (ORC), required NatA acetylation for its role in telomeric silencing. NatA functioned genetically through the ORC binding site of the HMR-E silencer. Furthermore, tethering Orc1p directly to the silencer circumvented the requirement for NatA in silencing. Orc1p was N(alpha) acetylated in vivo by NatA. Mutations that abrogated its ability to be acetylated caused strong telomeric derepression. Thus, N(alpha) acetylation of Orc1p represents a protein modification that modulates chromatin function in S. cerevisiae. Genetic evidence further supported a functional link between NatA and ORC: (i) nat1Delta was synthetically lethal with orc2-1 and (ii) the synthetic lethality between nat1Delta and SUM1-1 required the Orc1 N terminus. We also found Sir3p to be acetylated by NatA. In summary, we propose a model by which N(alpha) acetylation is required for the binding of silencing factors to the N terminus of Orc1p and Sir3p to recruit heterochromatic factors and establish repression.

  9. Genetic and biochemical characterization of a phosphatidylinositol-specific phospholipase C in Saccharomyces cerevisiae.

    PubMed Central

    Flick, J S; Thorner, J

    1993-01-01

    Hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) by phosphatidylinositol-specific phospholipase C (PI-PLC) generates two second messengers, inositol 1,4,5-trisphosphate and 1,2-diacylglycerol. The polymerase chain reaction was used to isolate a Saccharomyces cerevisiae gene (PLC1) that encodes a protein of 869 amino acids (designated Plc1p) that bears greatest resemblance to the delta isoforms of mammalian PI-PLC in terms of overall sequence similarity and domain arrangement. Plc1p contains the conserved X and Y domains found in all higher eukaryotic PI-PLCs (51 and 29% identity, respectively, to the corresponding domains of rat delta 1 PI-PLC) and also contains a presumptive Ca(2+)-binding site (an E-F hand motif). Plc1p, modified by in-frame insertion of a His6 tract and a c-myc epitope near its amino terminus, was overexpressed from the GAL1 promoter, partially purified by nickel chelate affinity chromatography, and shown to be an active PLC enzyme in vitro with properties similar to those of its mammalian counterparts. Plc1p activity was strictly Ca2+ dependent: at a high Ca2+ concentration (0.1 mM), the enzyme hydrolyzed PIP2 at a faster rate than phosphatidylinositol, and at a low Ca2+ concentration (0.5 microM), it hydrolyzed PIP2 exclusively. Cells carrying either of two different deletion-insertion mutations (plc1 delta 1::HIS3 and plc1 delta 2::LEU2) were viable but displayed several distinctive phenotypes, including temperature-sensitive growth (inviable above 35 degrees C), osmotic sensitivity, and defects in the utilization of galactose, raffinose, and glycerol at permissive temperatures (23 to 30 degrees C). The findings reported here suggest that hydrolysis of PIP2 in S. cerevisiae is required for a number of nutritional and stress-related responses. Images PMID:8395015

  10. The eukaryote chaperonin CCT is a cold shock protein in Saccharomyces cerevisiae

    PubMed Central

    Somer, Lilach; Shmulman, Oshrit; Dror, Tali; Hashmueli, Sharon; Kashi, Yechezkel

    2002-01-01

    The eukaryotic Hsp60 cytoplasmic chaperonin CCT (chaperonin containing the T-complex polypeptide–1) is essential for growth in budding yeast, and mutations in individual CCT subunits have been shown to affect assembly of tubulin and actin. The present research focused mainly on the expression of the CCT subunits, CCTα and CCTβ, in yeast (Saccharomyces cerevisiae). Previous studies showed that, unlike most other chaperones, CCT in yeast does not undergo induction following heat shock. In this study, messenger ribonucleic acid (mRNA) and protein levels of CCT subunits following exposure to low temperatures, were examined. The Northern blot analysis indicated a 3- to 4-fold increase in mRNA levels of CCTα and CCTβ genes after cold shock at 4°C. Interestingly, Western blot analysis showed that cold shock induces an increase in the CCTα protein, which is expressed at 10°C, but not at 4°C. Transfer of 4°C cold-shocked cells to 10°C induced a 5-fold increase in the CCTα protein level. By means of fluorescent immunostaining and confocal microscopy, we found CCTα to be localized in the cortex and the cell cytoplasm of S. cerevisiae. Localization of CCTα was not affected at low temperatures. Co-localization of CCT and filaments of actin and tubulin was not observed by microscopy. The induction pattern of the CCTα protein suggests that expression of the chaperonin may be primarily important during the recovery from low temperatures and the transition to growth at higher temperatures, as found for other Hsps during the recovery phase from heat shock. PMID:11892987

  11. The DNA polymerase activity of Saccharomyces cerevisiae Rev1 is biologically significant.

    PubMed

    Wiltrout, Mary Ellen; Walker, Graham C

    2011-01-01

    A cell's ability to tolerate DNA damage is directly connected to the human development of diseases and cancer. To better understand the processes underlying mutagenesis, we studied the cell's reliance on the potentially error-prone translesion synthesis (TLS), and an error-free, template-switching pathway in Saccharomyces cerevisiae. The primary proteins mediating S. cerevisiae TLS are three DNA polymerases (Pols): Rev1, Pol ζ (Rev3/7), and Pol η (Rad30), all with human homologs. Rev1's noncatalytic role in recruiting other DNA polymerases is known to be important for TLS. However, the biological significance of Rev1's unusual conserved DNA polymerase activity, which inserts dC, is much less well understood. Here, we demonstrate that inactivating Rev1's DNA polymerase function sensitizes cells to both chronic and acute exposure to 4-nitroquinoline-1-oxide (4-NQO) but not to UV or cisplatin. Full Rev1-dependent resistance to 4-NQO, however, also requires the additional Rev1 functions. When error-free tolerance is disrupted through deletion of MMS2, Rev1's catalytic activity is more vital for 4-NQO resistance, possibly explaining why the biological significance of Rev1's catalytic activity has been elusive. In the presence or absence of Mms2-dependent error-free tolerance, the catalytic dead strain of Rev1 exhibits a lower 4-NQO-induced mutation frequency than wild type. Furthermore, Pol ζ, but not Pol η, also contributes to 4-NQO resistance. These results show that Rev1's catalytic activity is important in vivo when the cell has to cope with specific DNA lesions, such as N(2)-dG.

  12. Biogenesis of the Saccharomyces cerevisiae Pheromone a-Factor, from Yeast Mating to Human Disease

    PubMed Central

    Barrowman, Jemima

    2012-01-01

    Summary: The mating pheromone a-factor secreted by Saccharomyces cerevisiae is a farnesylated and carboxylmethylated peptide and is unusually hydrophobic compared to other extracellular signaling molecules. Mature a-factor is derived from a precursor with a C-terminal CAAX motif that directs a series of posttranslational reactions, including prenylation, endoproteolysis, and carboxylmethylation. Historically, a-factor has served as a valuable model for the discovery and functional analysis of CAAX-processing enzymes. In this review, we discuss the three modules comprising the a-factor biogenesis pathway: (i) the C-terminal CAAX-processing steps carried out by Ram1/Ram2, Ste24 or Rce1, and Ste14; (ii) two sequential N-terminal cleavage steps, mediated by Ste24 and Axl1; and (iii) export by a nonclassical mechanism, mediated by the ATP binding cassette (ABC) transporter Ste6. The small size and hydrophobicity of a-factor present both challenges and advantages for biochemical analysis, as discussed here. The enzymes involved in a-factor biogenesis are conserved from yeasts to mammals. Notably, studies of the zinc metalloprotease Ste24 in S. cerevisiae led to the discovery of its mammalian homolog ZMPSTE24, which cleaves the prenylated C-terminal tail of the nuclear scaffold protein lamin A. Mutations that alter ZMPSTE24 processing of lamin A in humans cause the premature-aging disease progeria and related progeroid disorders. Intriguingly, recent evidence suggests that the entire a-factor pathway, including all three biogenesis modules, may be used to produce a prenylated, secreted signaling molecule involved in germ cell migration in Drosophila. Thus, additional prenylated signaling molecules resembling a-factor, with as-yet-unknown roles in metazoan biology, may await discovery. PMID:22933563

  13. Transcriptional responses to glucose in Saccharomyces cerevisiae strains lacking a functional protein kinase A.

    PubMed

    Livas, Daniela; Almering, Marinka Jh; Daran, Jean-Marc; Pronk, Jack T; Gancedo, Juana M

    2011-08-09

    The pattern of gene transcripts in the yeast Saccharomyces cerevisiae is strongly affected by the presence of glucose. An increased activity of protein kinase A (PKA), triggered by a rise in the intracellular concentration of cAMP, can account for many of the effects of glucose on transcription. In S. cerevisiae three genes, TPK1, TPK2, and TPK3, encode catalytic subunits of PKA. The lack of viability of tpk1 tpk2 tpk3 triple mutants may be suppressed by mutations such as yak1 or msn2/msn4. To investigate the requirement for PKA in glucose control of gene expression, we have compared the effects of glucose on global transcription in a wild-type strain and in two strains devoid of PKA activity, tpk1 tpk2 tpk3 yak1 and tpk1 tpk2 tpk3 msn2 msn4. We have identified different classes of genes that can be induced -or repressed- by glucose in the absence of PKA. Representative examples are genes required for glucose utilization and genes involved in the metabolism of other carbon sources, respectively. Among the genes responding to glucose in strains devoid of PKA some are also controlled by a redundant signalling pathway involving PKA activation, while others are not affected when PKA is activated through an increase in cAMP concentration. On the other hand, among genes that do not respond to glucose in the absence of PKA, some give a full response to increased cAMP levels, even in the absence of glucose, while others appear to require the cooperation of different signalling pathways. We show also that, for a number of genes controlled by glucose through a PKA-dependent pathway, the changes in mRNA levels are transient. We found that, in cells grown in gluconeogenic conditions, expression of a small number of genes, mainly connected with the response to stress, is reduced in the strains lacking PKA. In S. cerevisiae, the transcriptional responses to glucose are triggered by a variety of pathways, alone or in combination, in which PKA is often involved. Redundant

  14. Genomic and transcriptome analyses reveal that MAPK- and phosphatidylinositol-signaling pathways mediate tolerance to 5-hydroxymethyl-2-furaldehyde for industrial yeast Saccharomyces cerevisiae

    PubMed Central

    Zhou, Qian; Liu, Z. Lewis; Ning, Kang; Wang, Anhui; Zeng, Xiaowei; Xu, Jian

    2014-01-01

    The industrial yeast Saccharomyces cerevisiae is a traditional ethanologenic agent and a promising biocatalyst for advanced biofuels production using lignocellulose mateials. Here we present the genomic background of type strain NRRL Y-12632 and its transcriptomic response to 5-hydroxymethyl-2-furaldehyde (HMF), a commonly encountered toxic compound liberated from lignocellulosic-biomass pretreatment, in dissecting the genomic mechanisms of yeast tolerance. Compared with the genome of laboratory model strain S288C, we identified more than 32,000 SNPs in Y-12632 with 23,000 missense and nonsense SNPs. Enriched sequence mutations occurred for genes involved in MAPK- and phosphatidylinositol (PI)- signaling pathways in strain Y-12632, with 41 and 13 genes containing non-synonymous SNPs, respectively. Many of these mutated genes displayed consistent up-regulated signature expressions in response to challenges of 30 mM HMF. Analogous single-gene deletion mutations of these genes showed significantly sensitive growth response on a synthetic medium containing 20 mM HMF. Our results suggest at least three MAPK-signaling pathways, especially for the cell-wall integrity pathway, and PI-signaling pathways to be involved in mediation of yeast tolerance against HMF in industrial yeast Saccharomyces cerevisiae. Higher levels of sequence variations were also observed for genes involved in purine and pyrimidine metabolism pathways. PMID:25296911

  15. Cytoplasmic DNA from petite colonies of Saccharomyces cerevisiae: a hypothesis on the nature of the mutation.

    PubMed

    Carnevali, F; Morpurgo, G; Tecce, G

    1969-03-21

    The density of the cytoplasmic DNA of two strains of "petite" mutants of yeast, obtained by treatment with acriflavin and with ultraviolet light, was examined in cesium chloride density-gradient centrifugation and in all cases appeared to be less than that of the wild type. A cytoplasmic respiratory-deficient strain, treated with additional acriflavin, can show a further shift of the position of the satellite band, always in the direction of reduction of density. Also, from the p(+) x p(-) cross, p(-) strains can be recovered in which the density of the satellite DNA is different from the density of the parent p(-) strain. This finding suggests the existence of recombination i