Science.gov

Sample records for cerevisiae prm1 homolog

  1. The Saccharomyces cerevisiae PRM1 homolog in Neurospora crassa is involved in vegetative and sexual cell fusion events but also has postfertilization functions.

    PubMed

    Fleissner, André; Diamond, Spencer; Glass, N Louise

    2009-02-01

    Cell-cell fusion is essential for a variety of developmental steps in many eukaryotic organisms, during both fertilization and vegetative cell growth. Although the molecular mechanisms associated with intracellular membrane fusion are well characterized, the molecular mechanisms of plasma membrane merger between cells are poorly understood. In the filamentous fungus Neurospora crassa, cell fusion events occur during both vegetative and sexual stages of its life cycle, thus making it an attractive model for studying the molecular basis of cell fusion during vegetative growth vs. sexual reproduction. In the unicellular yeast Saccharomyces cerevisiae, one of the few proteins implicated in plasma membrane merger during mating is Prm1p; prm1Delta mutants show an approximately 50% reduction in mating cell fusion. Here we report on the role of the PRM1 homolog in N. crassa. N. crassa strains with deletions of a Prm1-like gene (Prm1) showed an approximately 50% reduction in both vegetative and sexual cell fusion events, suggesting that PRM1 is part of the general cell fusion machinery. However, unlike S. cerevisiae, N. crassa strains carrying a Prm1 deletion exhibited complete sterility as either a male or female mating partner, a phenotype that was not complemented in a heterokaryon with wild type (WT). Crosses with DeltaPrm1 strains were blocked early in sexual development, well before development of ascogenous hyphae. The DeltaPrm1 sexual defect in N. crassa was not suppressed by mutations in Sad-1, which is required for meiotic silencing of unpaired DNA (MSUD). However, mutations in Sad-1 increased the number of progeny obtained in crosses with a DeltaPrm1 (Prm1-gfp) complemented strain. These data indicate multiple roles for PRM1 during sexual development.

  2. Viable offspring obtained from Prm1-deficient sperm in mice

    PubMed Central

    Takeda, Naoki; Yoshinaga, Kazuya; Furushima, Kenryo; Takamune, Kazufumi; Li, Zhenghua; Abe, Shin-ichi; Aizawa, Shin-ichi; Yamamura, Ken-ichi

    2016-01-01

    Protamines are expressed in the spermatid nucleus and allow denser packaging of DNA compared with histones. Disruption of the coding sequence of one allele of either protamine 1 (Prm1) or Prm2 results in failure to produce offspring, although sperm with disrupted Prm1 or Prm2 alleles are produced. Here, we produced Prm1-deficient female chimeric mice carrying Prm1-deficient oocytes. These mice successfully produced Prm1+/− male mice. Healthy Prm1+/− offspring were then produced by transferring blastocysts obtained via in vitro fertilization using zona-free oocytes and sperm from Prm1+/− mice. This result suggests that sperm lacking Prm1 can generate offspring despite being abnormally shaped and having destabilised DNA, decondensed chromatin and a reduction in mitochondrial membrane potential. Nevertheless, these mice showed little derangement of expression profiles. PMID:27250771

  3. Viable offspring obtained from Prm1-deficient sperm in mice.

    PubMed

    Takeda, Naoki; Yoshinaga, Kazuya; Furushima, Kenryo; Takamune, Kazufumi; Li, Zhenghua; Abe, Shin-Ichi; Aizawa, Shin-Ichi; Yamamura, Ken-Ichi

    2016-06-02

    Protamines are expressed in the spermatid nucleus and allow denser packaging of DNA compared with histones. Disruption of the coding sequence of one allele of either protamine 1 (Prm1) or Prm2 results in failure to produce offspring, although sperm with disrupted Prm1 or Prm2 alleles are produced. Here, we produced Prm1-deficient female chimeric mice carrying Prm1-deficient oocytes. These mice successfully produced Prm1(+/-) male mice. Healthy Prm1(+/-) offspring were then produced by transferring blastocysts obtained via in vitro fertilization using zona-free oocytes and sperm from Prm1(+/-) mice. This result suggests that sperm lacking Prm1 can generate offspring despite being abnormally shaped and having destabilised DNA, decondensed chromatin and a reduction in mitochondrial membrane potential. Nevertheless, these mice showed little derangement of expression profiles.

  4. Cell cycle regulation of homologous recombination in Saccharomyces cerevisiae.

    PubMed

    Mathiasen, David P; Lisby, Michael

    2014-03-01

    Homologous recombination (HR) contributes to maintaining genome integrity by facilitating error-free repair of DNA double-strand breaks (DSBs) primarily during the S and G2 phases of the mitotic cell cycle, while nonhomologous end joining (NHEJ) is the preferred pathway for DSB repair in G1 phase. The decision to repair a DSB by NHEJ or HR is made primarily at the level of DSB end resection, which is inhibited by the Ku complex in G1 and promoted by the Sae2 and Mre11 nucleases in S/G2 . The cell cycle regulation of HR is accomplished both at the transcription level and at the protein level through post-translational modification, degradation and subcellular localization. Cyclin-dependent kinase Cdc28 plays an established key role in these events, while the role of transcriptional regulation and protein degradation are less well understood. Here, the cell cycle regulatory mechanisms for mitotic HR in Saccharomyces cerevisiae are reviewed, and evolutionarily conserved principles are highlighted. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  5. Prm1 Functions as a Disulfide-linked Complex in Yeast Mating*

    PubMed Central

    Olmo, Valerie N.; Grote, Eric

    2010-01-01

    Prm1 is a pheromone-induced membrane glycoprotein that promotes plasma membrane fusion in yeast mating pairs. HA-Prm1 migrates at twice its expected molecular weight on non-reducing SDS-PAGE gels and coprecipitates with Prm1-TAP, indicating that Prm1 is a disulfide-linked homodimer. The N terminus of a plasma membrane-localized GFP-Prm1 endocytic mutant projects into the cytoplasm, where it is protected from low pH quenching in live cells and from external protease in spheroplasts. In a revised topological map, Prm1 has four transmembrane domains and two large extracellular loops. Mutation of all four cysteines in the extracellular loops blocked disulfide bond formation and destabilized the Prm1 homodimer without preventing Prm1 transport to contact sites in mating pairs. Cys120 in loop 1 and Cys545 in loop 2 form disulfide cross-links in the Prm1 homodimer and are required for fusion activity. Cys120 lies between a hydrophobic segment formerly thought to be a transmembrane domain and an amphipathic helix. An interaction between either of these regions and the opposing membrane could promote fusion. PMID:19933274

  6. Homologous versus heterologous gene expression in the yeast, Saccharomyces cerevisiae.

    PubMed Central

    Chen, C Y; Oppermann, H; Hitzeman, R A

    1984-01-01

    DNA sequences normally flanking the highly expressed yeast 3-phosphoglycerate kinase (PGK) gene have been placed adjacent to heterologous mammalian genes on high copy number plasmid vectors and used for expression experiments in yeast. For many genes thus far expressed with this system, expression has been 15-50 times lower than the expression of the natural homologous PGK gene on the same plasmid. We have extensively investigated this dramatic difference and have found that in most cases it is directly proportional to the steady-state levels of mRNAs. We demonstrate this phenomenon and suggest possible causes for this effect on mRNA levels. Images PMID:6096814

  7. Homologous recombination between single-stranded DNA and chromosomal genes in Saccharomyces cerevisiae.

    PubMed Central

    Simon, J R; Moore, P D

    1987-01-01

    Transformation of Saccharomyces cerevisiae strains was examined by using the URA3 and TRP1 genes cloned into M13 vectors in the absence of sequences capable of promoting autonomous replication. These constructs transform S. cerevisiae cells to prototrophy by homologous recombination with the resident mutant gene. Single-stranded DNA was found to transform S. cerevisiae cells at efficiencies greater than that of double-stranded DNA. No conversion of single-stranded transforming DNA into duplex forms could be detected during the transformation process, and we conclude that single-stranded DNA may participate directly in recombination with chromosomal sequences. Transformation with single-stranded DNA gave rise to both gene conversion and reciprocal exchange events. Cotransformation with competing heterologous single-stranded DNA specifically inhibited transformation by single-stranded DNA, suggesting that one of the components in the transformation-recombination process has a preferential affinity for single-stranded DNA. Images PMID:3302673

  8. The Saccharomyces cerevisiae Lipin Homolog is a Mg2+-dependent Phosphatidate Phosphatase Enzyme*

    PubMed Central

    Han, Gil-Soo; Wu, Wen-I; Carman, George M.

    2006-01-01

    Mg2+-dependent phosphatidate (PA) phosphatase (3-sn-phosphatidate phosphohydrolase, EC 3.1.3.4) catalyzes the dephosphorylation of PA to yield diacylglycerol and Pi. In this work, we identified the Saccharomyces cerevisiae PAH1 (previously known as SMP2) gene that encodes Mg2+-dependent PA phosphatase using amino acid sequence information derived from a purified preparation of the enzyme (Lin, Y.-P., and Carman, G.M. (1989) J. Biol. Chem. 264, 8641–8645). Overexpression of PAH1 in S. cerevisiae directed elevated levels of Mg2+-dependent PA phosphatase activity, whereas the pah1Δ mutation caused reduced levels of enzyme activity. Heterologous expression of PAH1 in Escherichia coli confirmed that Pah1p is a Mg2+-dependent PA phosphatase enzyme, and showed that its enzymological properties were very similar to those of the enzyme purified from S. cerevisiae. The PAH1-encoded enzyme activity was associated with both the membrane and cytosolic fractions of the cell, and the membrane-bound form of the enzyme was salt-extractable. Lipid analysis showed that mutants lacking PAH1 accumulated PA, and had reduced amounts of diacylglycerol and its derivative triacylglycerol. The PAH1-encoded Mg2+-dependent PA phosphatase shows homology to mammalian lipin, a fat-regulating protein whose molecular function is unknown. Heterologous expression of human LPIN1 in E. coli showed that lipin 1 is also a Mg2+-dependent PA phosphatase enzyme. PMID:16467296

  9. Positive and negative roles of homologous recombination in the maintenance of genome stability in Saccharomyces cerevisiae.

    PubMed Central

    Yoshida, Jumpei; Umezu, Keiko; Maki, Hisaji

    2003-01-01

    In previous studies of the loss of heterozygosity (LOH), we analyzed a hemizygous URA3 marker on chromosome III in S. cerevisiae and showed that homologous recombination is involved in processes that lead to LOH in multiple ways, including allelic recombination, chromosome size alterations, and chromosome loss. To investigate the role of homologous recombination more precisely, we examined LOH events in rad50 Delta, rad51 Delta, rad52 Delta, rad50 Delta rad52 Delta, and rad51 Delta rad52 Delta mutants. As compared to Rad(+) cells, the frequency of LOH was significantly increased in all mutants, and most events were chromosome loss. Other LOH events were differentially affected in each mutant: the frequencies of all types of recombination were decreased in rad52 mutants and enhanced in rad50 mutants. The rad51 mutation increased the frequency of ectopic but not allelic recombination. Both the rad52 and rad51 mutations increased the frequency of intragenic point mutations approximately 25-fold, suggesting that alternative mutagenic pathways partially substitute for homologous recombination. Overall, these results indicate that all of the genes are required for chromosome maintenance and that they most likely function in homologous recombination between sister chromatids. In contrast, other recombination pathways can occur at a substantial level even in the absence of one of the genes and contribute to generating various chromosome rearrangements. PMID:12750319

  10. Functional Validation of Rare Human Genetic Variants Involved in Homologous Recombination Using Saccharomyces cerevisiae.

    PubMed

    Lee, Min-Soo; Yu, Mi; Kim, Kyoung-Yeon; Park, Geun-Hee; Kwack, KyuBum; Kim, Keun P

    2015-01-01

    Systems for the repair of DNA double-strand breaks (DSBs) are necessary to maintain genome integrity and normal functionality of cells in all organisms. Homologous recombination (HR) plays an important role in repairing accidental and programmed DSBs in mitotic and meiotic cells, respectively. Failure to repair these DSBs causes genome instability and can induce tumorigenesis. Rad51 and Rad52 are two key proteins in homologous pairing and strand exchange during DSB-induced HR; both are highly conserved in eukaryotes. In this study, we analyzed pathogenic single nucleotide polymorphisms (SNPs) in human RAD51 and RAD52 using the Polymorphism Phenotyping (PolyPhen) and Sorting Intolerant from Tolerant (SIFT) algorithms and observed the effect of mutations in highly conserved domains of RAD51 and RAD52 on DNA damage repair in a Saccharomyces cerevisiae-based system. We identified a number of rad51 and rad52 alleles that exhibited severe DNA repair defects. The functionally inactive SNPs were located near ATPase active site of Rad51 and the DNA binding domain of Rad52. The rad51-F317I, rad52-R52W, and rad52-G107C mutations conferred hypersensitivity to methyl methane sulfonate (MMS)-induced DNA damage and were defective in HR-mediated DSB repair. Our study provides a new approach for detecting functional and loss-of-function genetic polymorphisms and for identifying causal variants in human DNA repair genes that contribute to the initiation or progression of cancer.

  11. Functional Validation of Rare Human Genetic Variants Involved in Homologous Recombination Using Saccharomyces cerevisiae

    PubMed Central

    Lee, Min-Soo; Yu, Mi; Kim, Kyoung-Yeon; Park, Geun-Hee; Kwack, KyuBum; Kim, Keun P.

    2015-01-01

    Systems for the repair of DNA double-strand breaks (DSBs) are necessary to maintain genome integrity and normal functionality of cells in all organisms. Homologous recombination (HR) plays an important role in repairing accidental and programmed DSBs in mitotic and meiotic cells, respectively. Failure to repair these DSBs causes genome instability and can induce tumorigenesis. Rad51 and Rad52 are two key proteins in homologous pairing and strand exchange during DSB-induced HR; both are highly conserved in eukaryotes. In this study, we analyzed pathogenic single nucleotide polymorphisms (SNPs) in human RAD51 and RAD52 using the Polymorphism Phenotyping (PolyPhen) and Sorting Intolerant from Tolerant (SIFT) algorithms and observed the effect of mutations in highly conserved domains of RAD51 and RAD52 on DNA damage repair in a Saccharomyces cerevisiae-based system. We identified a number of rad51 and rad52 alleles that exhibited severe DNA repair defects. The functionally inactive SNPs were located near ATPase active site of Rad51 and the DNA binding domain of Rad52. The rad51-F317I, rad52-R52W, and rad52-G107C mutations conferred hypersensitivity to methyl methane sulfonate (MMS)-induced DNA damage and were defective in HR-mediated DSB repair. Our study provides a new approach for detecting functional and loss-of-function genetic polymorphisms and for identifying causal variants in human DNA repair genes that contribute to the initiation or progression of cancer. PMID:25938495

  12. Structural Insights into Saccharomyces cerevisiae Msh4–Msh5 Complex Function Using Homology Modeling

    PubMed Central

    Rakshambikai, Ramaswamy; Srinivasan, Narayanaswamy; Nishant, Koodali Thazath

    2013-01-01

    The Msh4–Msh5 protein complex in eukaryotes is involved in stabilizing Holliday junctions and its progenitors to facilitate crossing over during Meiosis I. These functions of the Msh4–Msh5 complex are essential for proper chromosomal segregation during the first meiotic division. The Msh4/5 proteins are homologous to the bacterial mismatch repair protein MutS and other MutS homologs (Msh2, Msh3, Msh6). Saccharomyces cerevisiae msh4/5 point mutants were identified recently that show two fold reduction in crossing over, compared to wild-type without affecting chromosome segregation. Three distinct classes of msh4/5 point mutations could be sorted based on their meiotic phenotypes. These include msh4/5 mutations that have a) crossover and viability defects similar to msh4/5 null mutants; b) intermediate defects in crossing over and viability and c) defects only in crossing over. The absence of a crystal structure for the Msh4–Msh5 complex has hindered an understanding of the structural aspects of Msh4–Msh5 function as well as molecular explanation for the meiotic defects observed in msh4/5 mutations. To address this problem, we generated a structural model of the S. cerevisiae Msh4–Msh5 complex using homology modeling. Further, structural analysis tailored with evolutionary information is used to predict sites with potentially critical roles in Msh4–Msh5 complex formation, DNA binding and to explain asymmetry within the Msh4–Msh5 complex. We also provide a structural rationale for the meiotic defects observed in the msh4/5 point mutations. The mutations are likely to affect stability of the Msh4/5 proteins and/or interactions with DNA. The Msh4–Msh5 model will facilitate the design and interpretation of new mutational data as well as structural studies of this important complex involved in meiotic chromosome segregation. PMID:24244354

  13. Saccharomyces cerevisiae RAD27 complements its Escherichia coli homolog in damage repair but not mutation avoidance.

    PubMed

    Ohnishi, Gaku; Daigaku, Yasukazu; Nagata, Yuki; Ihara, Makoto; Yamamoto, Kazuo

    2004-06-01

    In eukaryotes, the flap endonuclease of Rad27/Fen-1 is thought to play a critical role in lagging-strand DNA replication by removing ribonucleotides present at the 5' ends of Okazaki fragments, and in base excision repair by cleaving a 5' flap structure that may result during base excision repair. Saccharomyces cerevisiae rad27Delta mutants further display a repeat tract instability phenotype and a high rate of forward mutations to canavanine resistance that result from duplications of DNA sequence, indicating a role in mutation avoidance. Two conserved motifs in Rad27/Fen-1 show homology to the 5' --> 3' exonuclease domain of Escherichia coli DNA polymerase I. The strain defective in the 5' --> 3' exonuclease domain in DNA polymerase I shows essentially the same phenotype as the yeast rad27Delta strain. In this study, we expressed the yeast RAD27 gene in an E. coli strain lacking the 5' --> 3' exonuclease domain in DNA polymerase I in order to test whether eukaryotic RAD27/FEN-1 can complement the defect of its bacterial homolog. We found that the yeast Rad27 protein complements sensitivity to methyl methanesulfonate in an E. coli mutant. On the other hand, Rad27 protein did not reduce the high rate of spontaneous mutagenesis in the E. coli tonB gene which results from duplication of DNA. These results indicate that the yeast Rad27 and E. coli 5' --> 3' exonuclease act on the same substrate. We argue that the lack of mutation avoidance of yeast RAD27 in E. coli results from a lack of interaction between the yeast Rad27 protein and the E. coli replication clamp (beta-clamp).

  14. RAD26, the functional S. cerevisiae homolog of the Cockayne syndrome B gene ERCC6.

    PubMed Central

    van Gool, A J; Verhage, R; Swagemakers, S M; van de Putte, P; Brouwer, J; Troelstra, C; Bootsma, D; Hoeijmakers, J H

    1994-01-01

    Transcription-coupled repair (TCR) is a universal sub-pathway of the nucleotide excision repair (NER) system that is limited to the transcribed strand of active structural genes. It accomplishes the preferential elimination of transcription-blocking DNA lesions and permits rapid resumption of the vital process of transcription. A defect in TCR is responsible for the rare hereditary disorder Cockayne syndrome (CS). Recently we found that mutations in the ERCC6 repair gene, encoding a putative helicase, underly the repair defect of CS complementation group B. Here we report the cloning and characterization of the Saccharomyces cerevisiae homolog of CSB/ERCC6, which we designate RAD26. A rad26 disruption mutant appears viable and grows normally, indicating that the gene does not have an essential function. In analogy with CS, preferential repair of UV-induced cyclobutane pyrimidine dimers in the transcribed strand of the active RBP2 gene is severely impaired. Surprisingly, in contrast to the human CS mutant, yeast RAD26 disruption does not induce any UV-, cisPt- or X-ray sensitivity, explaining why it was not isolated as a mutant before. Recovery of growth after UV exposure was somewhat delayed in rad26. These findings suggest that TCR in lower eukaryotes is not very important for cell survival and that the global genome repair pathway of NER is the major determinant of cellular resistance to genotoxicity. Images PMID:7957102

  15. Biochemical and functional studies on the regulation of the Saccharomyces cerevisiae AMPK homolog SNF1

    PubMed Central

    Amodeo, Gabriele A.; Momcilovic, Milica; Carlson, Marian; Tong, Liang

    2010-01-01

    Summary AMP-activated protein kinase (AMPK) is a master metabolic regulator for controlling cellular energy homeostasis. Its homolog in yeast, SNF1, is activated in response to glucose depletion and other stresses. The catalytic (α) subunit of AMPK/SNF1, Snf1 in yeast, contains a protein Ser/Thr kinase domain (KD), an auto-inhibitory domain (AID), and a region that mediates interactions with the two regulatory (β and γ) subunits. Previous studies suggested that Snf1 contains an additional segment, a regulatory sequence (RS, corresponding to residues 392-518), which may also have an important role in regulating the activity of the enzyme. The crystal structure of the heterotrimer core of S. cerevisiae SNF1 showed interactions between a part of the RS (residues 460-498) and the γ subunit Snf4. Here we report biochemical and functional studies on the regulation of SNF1 by the RS. GST pulldown experiments demonstrate strong and direct interactions between residues 450-500 of the RS and the heterotrimer core, and single-site mutations in the RS-Snf4 interface can greatly reduce these interactions in vitro. On the other hand, functional studies appear to show only small effects of the RS-Snf4 interactions on the activity of SNF1 in vivo. This suggests that residues 450–500 may be constitutively associated with Snf4, and the remaining segments of the RS, as well as the AID, may be involved in regulating SNF1 activity. PMID:20529674

  16. Homology-integrated CRISPR-Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae.

    PubMed

    Bao, Zehua; Xiao, Han; Liang, Jing; Zhang, Lu; Xiong, Xiong; Sun, Ning; Si, Tong; Zhao, Huimin

    2015-05-15

    One-step multiple gene disruption in the model organism Saccharomyces cerevisiae is a highly useful tool for both basic and applied research, but it remains a challenge. Here, we report a rapid, efficient, and potentially scalable strategy based on the type II Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR associated proteins (Cas) system to generate multiple gene disruptions simultaneously in S. cerevisiae. A 100 bp dsDNA mutagenizing homologous recombination donor is inserted between two direct repeats for each target gene in a CRISPR array consisting of multiple donor and guide sequence pairs. An ultrahigh copy number plasmid carrying iCas9, a variant of wild-type Cas9, trans-encoded RNA (tracrRNA), and a homology-integrated crRNA cassette is designed to greatly increase the gene disruption efficiency. As proof of concept, three genes, CAN1, ADE2, and LYP1, were simultaneously disrupted in 4 days with an efficiency ranging from 27 to 87%. Another three genes involved in an artificial hydrocortisone biosynthetic pathway, ATF2, GCY1, and YPR1, were simultaneously disrupted in 6 days with 100% efficiency. This homology-integrated CRISPR (HI-CRISPR) strategy represents a powerful tool for creating yeast strains with multiple gene knockouts.

  17. Molecular cloning and characterization of a rat homolog of CAP, the adenylyl cyclase-associated protein from Saccharomyces cerevisiae.

    PubMed

    Zelicof, A; Gatica, J; Gerst, J E

    1993-06-25

    We have isolated a rat cDNA whose expression suppresses the physiological consequences of the chromosomal disruption of CAP, the gene encoding the adenylyl cyclase-associated protein of Saccharomyces cerevisiae. Yeast CAP is a bifunctional protein: the NH2 terminus is necessary and sufficient for cellular responsiveness to activated RAS proteins, while the COOH terminus is required for normal cellular morphology and growth control. The rat MCH1 cDNA encodes a protein of 474 amino acids that is 36% identical to S. cerevisiae CAP and is capable of suppressing the loss of the COOH-terminal functions of CAP when expressed in yeast. The MCH1 protein therefore appears to be a structural and functional homolog of the yeast cyclase-associated proteins. Northern analysis of MCH1 gene expression shows it to be constitutively expressed in all cell and tissue types examined. The cloning of a rat homolog of CAP, in addition to the cloning of a human CAP homolog by Matviw et al. (Matviw, H., Yu, G., and Young, D. (1992) Mol. Cell. Biol. 12, 5033-5040), demonstrates that both cyclase-associated proteins and their functions may have evolved with mammalian cells.

  18. Shu1 Promotes Homolog Bias of Meiotic Recombination in Saccharomyces cerevisiae

    PubMed Central

    Hong, Soogil; Kim, Keun Pil

    2013-01-01

    Homologous recombination occurs closely between homologous chromatids with highly ordered recombinosomes through RecA homologs and mediators. The present study demonstrates this relationship during the period of “partner choice” in yeast meiotic recombination. We have examined the formation of recombination intermediates in the absence or presence of Shu1, a member of the PCSS complex, which also includes Psy3, Csm2, and Shu2. DNA physical analysis indicates that Shu1 is essential for promoting the establishment of homolog bias during meiotic homologous recombination, and the partner choice is switched by Mek1 kinase activity. Furthermore, Shu1 promotes both crossover (CO) and non-crossover (NCO) pathways of meiotic recombination. The inactivation of Mek1 kinase allows for meiotic recombination to progress efficiently, but is lost in homolog bias where most double-strand breaks (DSBs) are repaired via stable intersister joint molecules. Moreover, the Srs2 helicase deletion cells in the budding yeast show slightly reduced COs and NCOs, and Shu1 promotes homolog bias independent of Srs2. Our findings reveal that Shu1 and Mek1 kinase activity have biochemically distinct roles in partner choice, which in turn enhances the understanding of the mechanism associated with the precondition for homolog bias. PMID:24213600

  19. Alleles of the homologous recombination gene, RAD59, identify multiple responses to disrupted DNA replication in Saccharomyces cerevisiae.

    PubMed

    Liddell, Lauren C; Manthey, Glenn M; Owens, Shannon N; Fu, Becky X H; Bailis, Adam M

    2013-10-14

    In Saccharomyces cerevisiae, Rad59 is required for multiple homologous recombination mechanisms and viability in DNA replication-defective rad27 mutant cells. Recently, four rad59 missense alleles were found to have distinct effects on homologous recombination that are consistent with separation-of-function mutations. The rad59-K166A allele alters an amino acid in a conserved α-helical domain, and, like the rad59 null allele diminishes association of Rad52 with double-strand breaks. The rad59-K174A and rad59-F180A alleles alter amino acids in the same domain and have genetically similar effects on homologous recombination. The rad59-Y92A allele alters a conserved amino acid in a separate domain, has genetically distinct effects on homologous recombination, and does not diminish association of Rad52 with double-strand breaks. In this study, rad59 mutant strains were crossed with a rad27 null mutant to examine the effects of the rad59 alleles on the link between viability, growth and the stimulation of homologous recombination in replication-defective cells. Like the rad59 null allele, rad59-K166A was synthetically lethal in combination with rad27. The rad59-K174A and rad59-F180A alleles were not synthetically lethal in combination with rad27, had effects on growth that coincided with decreased ectopic gene conversion, but did not affect mutation, unequal sister-chromatid recombination, or loss of heterozygosity. The rad59-Y92A allele was not synthetically lethal when combined with rad27, stimulated ectopic gene conversion and heteroallelic recombination independently from rad27, and was mutually epistatic with srs2. Unlike rad27, the stimulatory effect of rad59-Y92A on homologous recombination was not accompanied by effects on growth rate, cell cycle distribution, mutation, unequal sister-chromatid recombination, or loss of heterozygosity. The synthetic lethality conferred by rad59 null and rad59-K166A alleles correlates with their inhibitory effect on association

  20. Genetic vasectomy-overexpression of Prm1-EGFP fusion protein in elongating spermatids causes dominant male sterility in mice.

    PubMed

    Haueter, Sabine; Kawasumi, Miyuri; Asner, Igor; Brykczynska, Urszula; Cinelli, Paolo; Moisyadi, Stefan; Bürki, Kurt; Peters, Antoine H F M; Pelczar, Pawel

    2010-03-01

    Transgenic mice are vital tools in both basic and applied research. Unfortunately, the transgenesis process as well as many other assisted reproductive techniques involving embryo transfer rely on vasectomized males to induce pseudopregnancy in surrogate mothers. Vasectomy is a surgical procedure associated with moderate pain and must be carried out under full anaesthesia by qualified personnel. Eliminating the need for vasectomy would be beneficial from the economic and animal welfare point of view. Our aim was to develop a transgene-based alternative to the surgical vasectomy procedure. We generated several transgenic mouse lines expressing a Protamine-1 (Prm1) EGFP fusion protein under the transcriptional and translational regulatory control of Prm1. Male mice from lines showing moderate transgene expression were fully fertile whereas strong overexpression of the Prm1-EGFP fusion protein resulted in complete and dominant male sterility without affecting the ability to mate and to produce copulatory plugs. Sterility was due to impaired spermatid maturation affecting sperm viability and motility. Furthermore, sperm having high Prm1-EGFP levels failed to support preimplantation embryonic development following Intracytoplasmic Sperm Injection (ICSI). The "genetic vasectomy system" was further improved by genetically linking the dominant male sterility to ubiquitous EGFP expression in the soma as an easy phenotypic marker enabling rapid genotyping of transgenic males and females. This double transgenic approach represents a reliable and cost-effective "genetic vasectomy" procedure making the conventional surgical vasectomy methodology obsolete. (c) 2010 Wiley-Liss, Inc.

  1. Molecular Analysis of the Candida albicans Homolog of Saccharomyces cerevisiae MNN9, Required for Glycosylation of Cell Wall Mannoproteins

    PubMed Central

    Southard, Susan B.; Specht, Charles A.; Mishra, Chitra; Chen-Weiner, Joan; Robbins, Phillips W.

    1999-01-01

    The fungal cell wall has generated interest as a potential target for developing antifungal drugs, and the genes encoding glucan and chitin in fungal pathogens have been studied to this end. Mannoproteins, the third major component of the cell wall, contain mannose in either O- or N-glycosidic linkages. Here we describe the molecular analysis of the Candida albicans homolog of Saccharomyces cerevisiae MNN9, a gene required for the synthesis of N-linked outer-chain mannan in yeast, and the phenotypes associated with its disruption. CaMNN9 has significant homology with S. cerevisiae MNN9, including a putative N-terminal transmembrane domain, and represents a member of a similar gene family in Candida. CaMNN9 resides on chromosome 3 and is expressed at similar levels in both yeast and hyphal cells. Disruption of both copies of CaMNN9 leads to phenotypic effects characteristic of cell wall defects including poor growth in liquid media and on solid media, formation of aggregates in liquid culture, osmotic sensitivity, aberrant hyphal formation, and increased sensitivity to lysis after treatment with β-1,3-glucanase. Like all members of the S. cerevisiae MNN9 gene family the Camnn9Δ strain is resistant to sodium orthovanadate and sensitive to hygromycin B. Analysis of cell wall-associated carbohydrates showed the Camnn9Δ strain to contain half the amount of mannan present in cell walls derived from the wild-type parent strain. Reverse transcription-PCR and Northern analysis of the expression of MNN9 gene family members CaVAN1 and CaANP1 in the Camnn9Δ strain showed that transcription of those genes is not affected in the absence of CaMNN9 transcription. Our results suggest that, while the role MNN9 plays in glycosylation in both Candida and Saccharomyces is conserved, loss of MNN9 function in C. albicans leads to phenotypes that are inconsistent with the pathogenicity of the organism and thus identify CaMnn9p as a potential drug target. PMID:10601199

  2. A Saccharomyces cerevisiae homolog of the human adrenoleukodystrophy transporter is a heterodimer of two half ATP-binding cassette transporters.

    PubMed Central

    Shani, N; Valle, D

    1996-01-01

    The adrenoleukodystrophy protein (ALDP) and the 70-kDa peroxisomal membrane protein (PMP70) are half ATP-binding cassette (ABC) transporters in the human peroxisome membrane. ALDP and PMP70 share sequence homology and both are implicated in genetic diseases. PXA1 and YKL741 are Saccharomyces cerevisiae genes that encode homologs of ALDP and PMP70. Pxa1p, a putative ortholog of ALDP, is involved in peroxisomal beta-oxidation of fatty acids while YKL741 is an open reading frame found by the yeast genome sequencing project. Here we designate YKL741 as PXA2 and show that its protein product, Pxa2p, like Pxa1p, is associated with peroxisomes but not required for their assembly. Yeast strains carrying gene disruption of PXA1, PXA2, or both have similar and, in the case of the latter, nonadditive phenotypes. We also find that the stability of Pxa1p, but not Pxa2p, is markedly reduced in the absence of the other. Finally, we find that Pxa1p and Pxa2p coimmuno-precipitate. These genetic and physical data suggest that Pxa1p and Pxa2p heterodimerize to form a complete peroxisomal ABC transporter involved in fatty acid beta-oxidation. This result predicts the presence of similar heterodimeric ABC transporters in the mammalian peroxisome membrane. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:8876235

  3. Calcineurin-dependent growth control in Saccharomyces cerevisiae mutants lacking PMC1, a homolog of plasma membrane Ca2+ ATPases.

    PubMed

    Cunningham, K W; Fink, G R

    1994-02-01

    Ca2+ ATPases deplete the cytosol of Ca2+ ions and are crucial to cellular Ca2+ homeostasis. The PMC1 gene of Saccharomyces cerevisiae encodes a vacuole membrane protein that is 40% identical to the plasma membrane Ca2+ ATPases (PMCAs) of mammalian cells. Mutants lacking PMC1 grow well in standard media, but sequester Ca2+ into the vacuole at 20% of the wild-type levels. pmc1 null mutants fail to grow in media containing high levels of Ca2+, suggesting a role of PMC1 in Ca2+ tolerance. The growth inhibitory effect of added Ca2+ requires activation of calcineurin, a Ca2+ and calmodulin-dependent protein phosphatase. Mutations in calcineurin A or B subunits or the inhibitory compounds FK506 and cyclosporin A restore growth of pmc1 mutants in high Ca2+ media. Also, growth is restored by recessive mutations that inactivate the high-affinity Ca(2+)-binding sites in calmodulin. This mutant calmodulin has apparently lost the ability to activate calcineurin in vivo. These results suggest that activation of calcineurin by Ca2+ and calmodulin can negatively affect yeast growth. A second Ca2+ ATPase homolog encoded by the PMR1 gene acts together with PMC1 to prevent lethal activation of calcineurin even in standard (low Ca2+) conditions. We propose that these Ca2+ ATPase homologs are essential in yeast to deplete the cytosol of Ca2+ ions which, at elevated concentrations, inhibits yeast growth through inappropriate activation of calcineurin.

  4. Dynamics of Homology Searching During Gene Conversion in Saccharomyces cerevisiae Revealed by Donor Competition

    PubMed Central

    Coïc, Eric; Martin, Joshua; Ryu, Taehyun; Tay, Sue Yen; Kondev, Jané; Haber, James E.

    2011-01-01

    One of the least understood aspects of homologous recombination is the process by which the ends of a double-strand break (DSB) search the entire genome for homologous templates that can be used to repair the break. We took advantage of the natural competition between the alternative donors HML and HMR employed during HO endonuclease-induced switching of the budding yeast MAT locus. The strong mating-type-dependent bias in the choice of the donors is enforced by the recombination enhancer (RE), which lies 17 kb proximal to HML. We investigated factors that improve the use of the disfavored donor. We show that the normal heterochromatic state of the donors does not impair donor usage, as donor choice is not affected by removing this epigenetic silencing. In contrast, increasing the length of homology shared by the disfavored donor increases its use. This result shows that donor choice is not irrevocable and implies that there are several encounters between the DSB ends and even the favored donor before recombination is accomplished. The increase by adding more homology is not linear; these results can be explained by a thermodynamic model that determines the energy cost of using one donor over the other. An important inference from this analysis is that when HML is favored as the donor, RE causes a reduction in its effective genomic distance from MAT from 200 kb to ∼20 kb, which we hypothesize occurs after the DSB is created, by epigenetic chromatin modifications around MAT. PMID:21954161

  5. Dynamics of homology searching during gene conversion in Saccharomyces cerevisiae revealed by donor competition.

    PubMed

    Coïc, Eric; Martin, Joshua; Ryu, Taehyun; Tay, Sue Yen; Kondev, Jané; Haber, James E

    2011-12-01

    One of the least understood aspects of homologous recombination is the process by which the ends of a double-strand break (DSB) search the entire genome for homologous templates that can be used to repair the break. We took advantage of the natural competition between the alternative donors HML and HMR employed during HO endonuclease-induced switching of the budding yeast MAT locus. The strong mating-type-dependent bias in the choice of the donors is enforced by the recombination enhancer (RE), which lies 17 kb proximal to HML. We investigated factors that improve the use of the disfavored donor. We show that the normal heterochromatic state of the donors does not impair donor usage, as donor choice is not affected by removing this epigenetic silencing. In contrast, increasing the length of homology shared by the disfavored donor increases its use. This result shows that donor choice is not irrevocable and implies that there are several encounters between the DSB ends and even the favored donor before recombination is accomplished. The increase by adding more homology is not linear; these results can be explained by a thermodynamic model that determines the energy cost of using one donor over the other. An important inference from this analysis is that when HML is favored as the donor, RE causes a reduction in its effective genomic distance from MAT from 200 kb to ∼20 kb, which we hypothesize occurs after the DSB is created, by epigenetic chromatin modifications around MAT.

  6. Construction of recombinant industrial Saccharomyces cerevisiae strain with bglS gene insertion into PEP4 locus by homologous recombination*

    PubMed Central

    Zhang, Qiang; Chen, Qi-he; Fu, Ming-liang; Wang, Jin-ling; Zhang, Hong-bo; He, Guo-qing

    2008-01-01

    The bglS gene encoding endo-l,3-1,4-β-glucanase from Bacillus subtilis was cloned and sequenced in this study. The bglS expression cassette, including PGK1 promoter, bglS gene fused to the signal sequence of the yeast mating pheromone α-factor (MFα1S), and ADH1 terminator with G418-resistance as the selected marker, was constructed. Then one of the PEP4 allele of Saccharomyces cerevisiae WZ65 strain was replaced by bglS expression cassette using chromosomal integration of polymerase chain reaction (PCR)-mediated homologous recombination, and the bglS gene was expressed simultaneously. The recombinant strain S. cerevisiae (SC-βG) was preliminarily screened by the clearing hydrolysis zone formed after the barley β-glucan was hydrolyzed in the plate and no proteinase A (PrA) activity was measured in fermenting liquor. The results of PCR analysis of genome DNA showed that one of the PEP4 allele had been replaced and bglS gene had been inserted into the locus of PEP4 gene in recombinant strains. Different endo-l,3-1,4-β-glucanase assay methods showed that the recombinant strain SC-βG had high endo-l,3-1,4-β-glucanase expression level with the maximum of 69.3 U/(h·ml) after 60 h of incubation. Meanwhile, the Congo Red method was suitable for the determination of endo-l,3-1,4-β-glucanase activity during the actual brewing process. The current research implies that the constructed yeast strain could be utilized to improve the industrial brewing property of beer. PMID:18600782

  7. A new human p34 protein kinase, CDK2, identified by complementation of a cdc28 mutation in Saccharomyces cerevisiae, is a homolog of Xenopus Eg1.

    PubMed

    Elledge, S J; Spottswood, M R

    1991-09-01

    The onset of S-phase and M-phase in both Schizosaccharomyces pombe and Saccharomyces cerevisiae requires the function of the cdc2/CDC28 gene product, p34, a serine-threonine protein kinase. A human homolog, p34cdc2, was identified by functional complementation of the S.pombe cdc2 mutation (Lee and Nurse, 1987). Using a human cDNA expression library to search for suppressors of cdc28 mutations in S. cerevisiae, we have identified a second functional p34 homolog, CDK2 cell division kinase). This gene is expressed as a 2.1 kb transcript encoding a polypeptide of 298 amino acids. This protein retains nearly all of the amino acids highly conserved among previously identified p34 homologs from other species, but is considerably divergent from all previous p34cdc2 homologs, approximately 65% identity. This gene encodes the human homolog of the Xenopus Eg1 gene, sharing 89% amino acid identity, and defines a second sub-family of CDC2 homologs. A second chromosomal mutation which arose spontaneously was required to allow complementation of the cdc28-4 mutation by CDK2. This mutation blocked the ability of this strain to mate. These results suggest that the machinery controlling the human cell cycle is more complex than that for fission and budding yeast.

  8. PXA1, a putative S. cerevisiae homolog of the human adrenoleukyodystrophy gene

    SciTech Connect

    Shani, N.; Watkins, P.A.; Valle, D.

    1994-09-01

    The adrenoleukodystrophy protein (ALDP) and the 70 kD peroxisomal membrane protein (PMP70) are ATP-binding cassette transporters in the peroxisome membrane. The former is defective in X-linked adrenoleukodystrophy (ALD), a neurodegenerative disorder with defective peroxisome oxidation of very long chain fatty acids; the latter is implicated in Zellweger syndrome, a defect in peroxisome biogenesis. The functions and interactions of ALDP and PMP70 in the peroxisomal membrane are not known. To develop a system in which these questions could be addressed, we sought to clone their yeast homologs. Using RT/PCR with degenerate primers and oleic acid (C18:1) induced yeast RNA as template, we amplified a cDNA segment corresponding to a conserved region of ALDP and PMP70. By sequencing amplified products, we found one with homology to both proteins and used it to clone the corresponding full length yeast gene (PXA1). PXA1 encodes a 758 amino acid protein with 28% and 21% overall identity to ALDP and PMP70, respectively which increases to 47% and 39% in a C terminal region of 178 amino acids. The PXA1 protein precipitates with peroxisomes as shown by immunoblot analysis of cell fractionation gradients. Disruption of PXA1 by homologous recombination results in impaired growth on oleic acid and reduced ability to oxidize oleate. The growth phenotype can be corrected by expression of the wild type PXA1 in the mutant strain. Peroxisomes in the PXA1 mutant yeast strain are intact as judged by catalase distribution and electron microscopy. Given the amino acid similarity, fatty acid oxidation defect and lack of an effect on peroxisomal integrity, we hypothesize that PXA1 may be the yeast ortholog of ALDP. Complementation studies to examine this hypothesis are in progress.

  9. Telomerase Deficiency Affects the Formation of Chromosomal Translocations by Homologous Recombination in Saccharomyces cerevisiae

    PubMed Central

    Meyer, Damon H.; Bailis, Adam M.

    2008-01-01

    Telomerase is a ribonucleoprotein complex required for the replication and protection of telomeric DNA in eukaryotes. Cells lacking telomerase undergo a progressive loss of telomeric DNA that results in loss of viability and a concomitant increase in genome instability. We have used budding yeast to investigate the relationship between telomerase deficiency and the generation of chromosomal translocations, a common characteristic of cancer cells. Telomerase deficiency increased the rate of formation of spontaneous translocations by homologous recombination involving telomere proximal sequences during crisis. However, telomerase deficiency also decreased the frequency of translocation formation following multiple HO-endonuclease catalyzed DNA double-strand breaks at telomere proximal or distal sequences before, during and after crisis. This decrease correlated with a sequestration of the central homologous recombination factor, Rad52, to telomeres determined by chromatin immuno-precipitation. This suggests that telomerase deficiency results in the sequestration of Rad52 to telomeres, limiting the capacity of the cell to repair double-strand breaks throughout the genome. Increased spontaneous translocation formation in telomerase-deficient yeast cells undergoing crisis is consistent with the increased incidence of cancer in elderly humans, as the majority of our cells lack telomerase. Decreased translocation formation by recombinational repair of double-strand breaks in telomerase-deficient yeast suggests that the reemergence of telomerase expression observed in many human tumors may further stimulate genome rearrangement. Thus, telomerase may exert a substantial effect on global genome stability, which may bear significantly on the appearance and progression of cancer in humans. PMID:18830407

  10. The Saccharomyces cerevisiae Mre11-Rad50-Xrs2 complex promotes trinucleotide repeat expansions independently of homologous recombination.

    PubMed

    Ye, Yanfang; Kirkham-McCarthy, Lucy; Lahue, Robert S

    2016-07-01

    Trinucleotide repeats (TNRs) are tandem arrays of three nucleotides that can expand in length to cause at least 17 inherited human diseases. Somatic expansions in patients can occur in differentiated tissues where DNA replication is limited and cannot be a primary source of somatic mutation. Instead, mouse models of TNR diseases have shown that both inherited and somatic expansions can be suppressed by the loss of certain DNA repair factors. It is generally believed that these repair factors cause misprocessing of TNRs, leading to expansions. Here we extend this idea to show that the Mre11-Rad50-Xrs2 (MRX) complex of Saccharomyces cerevisiae is a causative factor in expansions of short TNRs. Mutations that eliminate MRX subunits led to significant suppression of expansions whereas mutations that inactivate Rad51 had only a minor effect. Coupled with previous evidence, this suggests that MRX drives expansions of short TNRs through a process distinct from homologous recombination. The nuclease function of Mre11 was dispensable for expansions, suggesting that expansions do not occur by Mre11-dependent nucleolytic processing of the TNR. Epistasis between MRX and post-replication repair (PRR) was tested. PRR protects against expansions, so a rad5 mutant gave a high expansion rate. In contrast, the mre11 rad5 double mutant gave a suppressed expansion rate, indistinguishable from the mre11 single mutant. This suggests that MRX creates a TNR substrate for PRR. Protein acetylation was also tested as a mechanism regulating MRX activity in expansions. Six acetylation sites were identified in Rad50. Mutation of all six lysine residues to arginine gave partial bypass of a sin3 HDAC mutant, suggesting that Rad50 acetylation is functionally important for Sin3-mediated expansions. Overall we conclude that yeast MRX helps drive expansions of short TNRs by a mechanism distinct from its role in homologous recombination and independent of the nuclease function of Mre11. Copyright

  11. A human homolog of the Saccharomyces cerevisiae REV3 gene, which encodes the catalytic subunit of DNA polymerase ζ

    PubMed Central

    Gibbs, Peter E. M.; McGregor, W. Glenn; Maher, Veronica M.; Nisson, Paul; Lawrence, Christopher W.

    1998-01-01

    To get a better understanding of mutagenic mechanisms in humans, we have cloned and sequenced the human homolog of the Saccharomyces cerevisiae REV3 gene. The yeast gene encodes the catalytic subunit of DNA polymerase ζ, a nonessential enzyme that is thought to carry out translesion replication and is responsible for virtually all DNA damage-induced mutagenesis and the majority of spontaneous mutagenesis. The human gene encodes an expected protein of 3,130 residues, about twice the size of the yeast protein (1,504 aa). The two proteins are 29% identical in an amino-terminal region of ≈340 residues, 39% identical in a carboxyl-terminal region of ≈850 residues, and 29% identical in a 55-residue region in the middle of the two genes. The sequence of the expected protein strongly predicts that it is the catalytic subunit of a DNA polymerase of the pol ζ type; the carboxyl-terminal domain possesses, in the right order, the six motifs characteristic of eukaryotic DNA polymerases, most closely resembles yeast pol ζ among all polymerases in the GenBank database, and is different from the human α, δ, and ɛ enzymes. Human cells expressing high levels of an hsREV3 antisense RNA fragment grow normally, but show little or no UV-induced mutagenesis and are slightly more sensitive to killing by UV. The human gene therefore appears to carry out a function similar to that of its yeast counterpart. PMID:9618506

  12. Rad5-dependent DNA repair functions of the Saccharomyces cerevisiae FANCM protein homolog Mph1.

    PubMed

    Daee, Danielle L; Ferrari, Elisa; Longerich, Simonne; Zheng, Xiao-feng; Xue, Xiaoyu; Branzei, Dana; Sung, Patrick; Myung, Kyungjae

    2012-08-03

    Interstrand cross-links (ICLs) covalently link complementary DNA strands, block DNA replication, and transcription and must be removed to allow cell survival. Several pathways, including the Fanconi anemia (FA) pathway, can faithfully repair ICLs and maintain genomic integrity; however, the precise mechanisms of most ICL repair processes remain enigmatic. In this study we genetically characterized a conserved yeast ICL repair pathway composed of the yeast homologs (Mph1, Chl1, Mhf1, Mhf2) of four FA proteins (FANCM, FANCJ, MHF1, MHF2). This pathway is epistatic with Rad5-mediated DNA damage bypass and distinct from the ICL repair pathways mediated by Rad18 and Pso2. In addition, consistent with the FANCM role in stabilizing ICL-stalled replication forks, we present evidence that Mph1 prevents ICL-stalled replication forks from collapsing into double-strand breaks. This unique repair function of Mph1 is specific for ICL damage and does not extend to other types of damage. These studies reveal the functional conservation of the FA pathway and validate the yeast model for future studies to further elucidate the mechanism of the FA pathway.

  13. Interaction of a Swi3 homolog with Sth1 provides evidence for a Swi/Snf-related complex with an essential function in Saccharomyces cerevisiae.

    PubMed Central

    Treich, I; Carlson, M

    1997-01-01

    The Saccharomyces cerevisiae Swi/Snf complex has a role in remodeling chromatin structure to facilitate transcriptional activation. The complex has 11 components, including Swi1/Adr6, Swi2/Snf2, Swi3, Snf5, Snf6, Snf11, Swp73/Snf12, and Tfg3. Mammalian homologs of these proteins have been shown to form multiple Swi/Snf-related complexes. Here we characterize an S. cerevisiae Swi3 homolog (Swh3) and present evidence that it associates in a complex with a Snf2 homolog, Sthl. We identified Swh3 as a protein that interacts with the N terminus of Snf2 in the two-hybrid system. Swh3 and Swi3 are functionally distinct, and overexpression of one does not compensate for loss of the other. Swh3 is essential for viability and does not activate transcription of reporters. The Snf2 sequence that interacts with Swh3 was mapped to a region conserved in Sth1. We show that Swh3 and Sth1 fusion proteins interact in the two-hybrid system and coimmunoprecipitate from yeast cell extracts. We also map interactions between Swh3 and Sth1 and examine the role of a leucine zipper motif in self-association of Swh3. These findings, together with previous analysis of Sth1, indicate that Swh3 and Sth1 are associated in a complex that is functionally distinct from the Swi/Snf complex and essential for viability. PMID:9121424

  14. Yeast ribosomal proteins: XIII. Saccharomyces cerevisiae YL8A gene, interrupted with two introns, encodes a homolog of mammalian L7.

    PubMed Central

    Mizuta, K; Hashimoto, T; Otaka, E

    1992-01-01

    We isolated and sequenced a gene, YL8A, encoding ribosomal protein YL8 of Saccharomyces cerevisiae. It is one of the two duplicated genes encoding YL8 and is located on chromosome VII while the other is on chromosome XVI. The haploid strains carrying disrupted YL8A grew more slowly than the parent strain. The open reading frame is interrupted with two introns. The predicted amino acid sequence reveals that yeast YL8 is a homolog of mammalian ribosomal protein L7, E.coli L30 and others. Images PMID:1549461

  15. Identification of auxotrophic mutants of the yeast Kluyveromyces marxianus by non-homologous end joining-mediated integrative transformation with genes from Saccharomyces cerevisiae.

    PubMed

    Yarimizu, Tohru; Nonklang, Sanom; Nakamura, Junpei; Tokuda, Shuya; Nakagawa, Takaaki; Lorreungsil, Sasithorn; Sutthikhumpha, Surasit; Pukahuta, Charida; Kitagawa, Takao; Nakamura, Mikiko; Cha-Aim, Kamonchai; Limtong, Savitree; Hoshida, Hisashi; Akada, Rinji

    2013-12-01

    The isolation and application of auxotrophic mutants for gene manipulations, such as genetic transformation, mating selection and tetrad analysis, form the basis of yeast genetics. For the development of these genetic methods in the thermotolerant fermentative yeast Kluyveromyces marxianus, we isolated a series of auxotrophic mutants with defects in amino acid or nucleic acid metabolism. To identify the mutated genes, linear DNA fragments of nutrient biosynthetic pathway genes were amplified from Saccharomyces cerevisiae chromosomal DNA and used to directly transform the K. marxianus auxotrophic mutants by random integration into chromosomes through non-homologous end joining (NHEJ). The appearance of transformant colonies indicated that the specific S. cerevisiae gene complemented the K. marxianus mutant. Using this interspecific complementation approach with linear PCR-amplified DNA, we identified auxotrophic mutations of ADE2, ADE5,7, ADE6, HIS2, HIS3, HIS4, HIS5, HIS6, HIS7, LYS1, LYS2, LYS4, LYS9, LEU1, LEU2, MET2, MET6, MET17, TRP3, TRP4 and TRP5 without the labour-intensive requirement of plasmid construction. Mating, sporulation and tetrad analysis techniques for K. marxianus were also established. With the identified auxotrophic mutant strains and S. cerevisiae genes as selective markers, NHEJ-mediated integrative transformation with PCR-amplified DNA is an attractive system for facilitating genetic analyses in the yeast K. marxianus.

  16. Polyphosphates and exopolyphosphatase activities in the yeast Saccharomyces cerevisiae under overexpression of homologous and heterologous PPN1 genes.

    PubMed

    Eldarov, M A; Baranov, M V; Dumina, M V; Shgun, A A; Andreeva, N A; Trilisenko, L V; Kulakovskaya, T V; Ryasanova, L P; Kulaev, I S

    2013-08-01

    The role of exopolyphosphatase PPN1 in polyphosphate metabolism in fungi has been studied in strains of Saccharomyces cerevisiae transformed by the yeast PPN1 gene and its ortholog of the fungus Acremonium chrysogenum producing cephalosporin C. The PPN1 genes were expressed under a strong constitutive promoter of the gene of glycerol aldehyde-triphosphate dehydrogenase of S. cerevisiae in the vector pMB1. The yeast strain with inactivated PPN1 gene was transformed by the above vectors containing the PPN1 genes of S. cerevisiae and A. chrysogenum. Exopolyphosphatase activity in the transformant with the yeast PPN1 increased 28- and 11-fold compared to the mutant and parent PPN1 strains. The amount of polyphosphate in this transformant decreased threefold. Neither the increase in exopolyphosphatase activity nor the decrease in polyphosphate content was observed in the transformant with the orthologous PPN1 gene of A. chrysogenum, suggesting the absence of the active form of PPN1 in this transformant.

  17. Schizosaccharomyces pombe homologs of the Saccharomyces cerevisiae mitochondrial proteins Cbp6 and Mss51 function at a post-translational step of respiratory complex biogenesis

    PubMed Central

    Kühl, Inge; Fox, Thomas D.; Bonnefoy, Nathalie

    2012-01-01

    Complexes III and IV of the mitochondrial respiratory chain contain a few key subunits encoded by the mitochondrial genome. In Saccharomyces cerevisiae, fifteen mRNA-specific translational activators control mitochondrial translation, of which five are conserved in Schizosaccharomyces pombe. These include homologs of Cbp3, Cbp6 and Mss51 that participate in translation and the post-translational steps leading to the assembly of respiratory complexes III and IV. In this study we show that in contrast to budding yeast, Cbp3, Cbp6 and Mss51 from S. pombe are not required for the translation of mitochondrial mRNAs, but fulfill post-translational functions, thus probably accounting for their conservation. PMID:22349564

  18. Requirement of POL3 and POL4 on non-homologous and microhomology-mediated end joining in rad50/xrs2 mutants of Saccharomyces cerevisiae

    PubMed Central

    Galli, Alvaro; Chan, Cecilia Y.; Parfenova, Liubov; Cervelli, Tiziana; Schiestl, Robert H.

    2015-01-01

    Non-homologous end joining (NHEJ) directly joins two broken DNA ends without sequence homology. A distinct pathway called microhomology-mediated end joining (MMEJ) relies on a few base pairs of homology between the recombined DNA. The majority of DNA double-strand breaks caused by endogenous oxygen species or ionizing radiation contain damaged bases that hinder direct religation. End processing is required to remove mismatched nucleotides and fill in gaps during end joining of incompatible ends. POL3 in Saccharomyces cerevisiae encodes polymerase δ that is required for DNA replication and other DNA repair processes. Our previous results have shown that POL3 is involved in gap filling at 3′ overhangs in POL4-independent NHEJ. Here, we studied the epistatic interaction between POL3, RAD50, XRS2 and POL4 in NHEJ using a plasmid-based endjoining assay in yeast. We demonstrated that either rad50 or xrs2 mutation is epistatic for end joining of compatible ends in the rad50 pol3-t or xrs2 pol3-t double mutants. However, the pol3-t and rad50 or pol3-t and xrs2 mutants caused an additive decrease in the end-joining efficiency of incompatible ends, suggesting that POL3 and RAD50 or POL3 and XRS2 exhibit independent functions in NHEJ. In the rad50 pol4 mutant, end joining of incompatible ends was not detected. In the rad50 or xrs2 mutants, NHEJ events did not contain any microhomology at the rejoined junctions. The pol3-t mutation restored MMEJ in the rad50 or xrs2 mutant backgrounds. Moreover, we demonstrated that NHEJ of incompatible ends required RAD50 and POL4 more than POL3. In conclusion, POL3 and POL4 have differential functions in NHEJ, independent of the RAD50-mediated repair pathway. PMID:26122113

  19. Removal of petroleum-crude oil from aqueous solution by Saccharomyces cerevisiae SHSY strain necessitates at least an inducible CYP450ALK homolog gene.

    PubMed

    Hanano, Abdulsamie; Al-Arfi, Malek; Shaban, Mouhnad; Daher, Amal; Shamma, Motassim

    2014-05-01

    Petroleum crude-oil (PCO) components are known to be mutagenic or carcinogenic, and their contamination in soil and aquifer is of great environmental concern. PCO could be degraded by bacteria, fungi, and yeast. In yeast, the family CYP52 (P450ALKs) of Cytochrome P450 was described as n-alkane-degrading enzymes. In this study, we isolated a new strain SHSY of Saccharomyces able to grow on hydrocarbons compounds. Morphological and molecular characterization led to identify the isolated yeast SHSY as a Saccharomyces cerevisiae. SHSY strain had a remarkable ability to tolerate a high concentration of PCO and use it as a carbon source. A significant relationship was established between the increase in biomass (42.46 ± 1.01-fold) and the disappearance of the crude oil (72.34%) in an aqueous solution. A 690-bp amplicon corresponding to a high conserved region of known CYP450ALK genes was amplified in the genomic DNA of SHSY strain. The sequence of the amplified fragment shared a high identity (71.8%) with CYP52A3 gene of Pichia stipites. The expression of CYP52A3 homolog gene was induced and the expression of both InoP2/InoP4 transcription factor genes in SHSY was stimulated in the presence of PCO. The identified strain SHSY of S. cerevisiae presents an interesting model to minimize the mixed toxicity of PCO in polluted environmental sites. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Regulation of dimorphism in Saccharomyces cerevisiae: involvement of the novel protein kinase homolog Elm1p and protein phosphatase 2A.

    PubMed Central

    Blacketer, M J; Koehler, C M; Coats, S G; Myers, A M; Madaule, P

    1993-01-01

    The Saccharomyces cerevisiae genes ELM1, ELM2, and ELM3 were identified on the basis of the phenotype of constitutive cell elongation. Mutations in any of these genes cause a dimorphic transition to a pseudohyphal growth state characterized by formation of expanded, branched chains of elongated cells. Furthermore, elm1, elm2, and elm3 mutations cause cells to grow invasively under the surface of agar medium. S. cerevisiae is known to be a dimorphic organism that grows either as a unicellular yeast or as filamentous cells termed pseudohyphae; although the yeast-like form usually prevails, pseudohyphal growth may occur during conditions of nitrogen starvation. The morphologic and physiological properties caused by elm1, elm2, and elm3 mutations closely mimic pseudohyphal growth occurring in conditions of nitrogen starvation. Therefore, we propose that absence of ELM1, ELM2, or ELM3 function causes constitutive execution of the pseudohyphal differentiation pathway that occurs normally in conditions of nitrogen starvation. Supporting this hypothesis, heterozygosity at the ELM2 or ELM3 locus significantly stimulated the ability to form pseudohyphae in response to nitrogen starvation. ELM1 was isolated and shown to code for a novel protein kinase homolog. Gene dosage experiments also showed that pseudohyphal differentiation in response to nitrogen starvation is dependent on the product of CDC55, a putative B regulatory subunit of protein phosphatase 2A, and a synthetic phenotype was observed in elm1 cdc55 double mutants. Thus, protein phosphorylation is likely to regulate differentiation into the pseudohyphal state. Images PMID:8395007

  1. Functional Complementation Analyses Reveal that the Single PRAT Family Protein of Trypanosoma brucei Is a Divergent Homolog of Tim17 in Saccharomyces cerevisiae

    PubMed Central

    Weems, Ebony; Singha, Ujjal K.; Hamilton, VaNae; Smith, Joseph T.; Waegemann, Karin; Mokranjac, Dejana

    2015-01-01

    Trypanosoma brucei, a parasitic protozoan that causes African trypanosomiasis, possesses a single member of the presequence and amino acid transporter (PRAT) protein family, which is referred to as TbTim17. In contrast, three homologous proteins, ScTim23, ScTim17, and ScTim22, are found in Saccharomyces cerevisiae and higher eukaryotes. Here, we show that TbTim17 cannot rescue Tim17, Tim23, or Tim22 mutants of S. cerevisiae. We expressed S. cerevisiae Tim23, Tim17, and Tim22 in T. brucei. These heterologous proteins were properly imported into mitochondria in the parasite. Further analysis revealed that although ScTim23 and ScTim17 were integrated into the mitochondrial inner membrane and assembled into a protein complex similar in size to TbTim17, only ScTim17 was stably associated with TbTim17. In contrast, ScTim22 existed as a protease-sensitive soluble protein in the T. brucei mitochondrion. In addition, the growth defect caused by TbTim17 knockdown in T. brucei was partially restored by the expression of ScTim17 but not by the expression of either ScTim23 or ScTim22, whereas the expression of TbTim17 fully complemented the growth defect caused by TbTim17 knockdown, as anticipated. Similar to the findings for cell growth, the defect in the import of mitochondrial proteins due to depletion of TbTim17 was in part restored by the expression of ScTim17 but was not complemented by the expression of either ScTim23 or ScTim22. Together, these results suggest that TbTim17 is divergent compared to ScTim23 but that its function is closer to that of ScTim17. In addition, ScTim22 could not be sorted properly in the T. brucei mitochondrion and thus failed to complement the function of TbTim17. PMID:25576485

  2. Enhancing CRISPR/Cas9-mediated homology-directed repair in mammalian cells by expressing Saccharomyces cerevisiae Rad52.

    PubMed

    Shao, Simin; Ren, Chonghua; Liu, Zhongtian; Bai, Yichun; Chen, Zhilong; Wei, Zehui; Wang, Xin; Zhang, Zhiying; Xu, Kun

    2017-09-18

    Precise genome editing with desired point mutations can be generated by CRISPR/Cas9-mediated homology-directed repair (HDR) and is of great significance for gene function study, gene therapy and animal breeding. However, HDR efficiency is inherently low and improvements are necessitated. Herein, we determined that the HDR efficiency could be enhanced by expressing Rad52, a gene that is involved in the homologous recombination process. Both the Rad52 co-expression and Rad52-Cas9 fusion strategies yielded approximately 3-fold increase in HDR during the surrogate reporter assays in human HEK293T cells, as well as in the genome editing assays. Moreover, the enhancement effects of the Rad52-Cas9 fusion on HDR mediated by different (plasmid, PCR and ssDNA) donor templates were confirmed. We found that the HDR efficiency could be significantly improved to about 40% by the combined usage of Rad52 and Scr7. In addition, we also applied the fusion strategy for modifying the IGF2 gene of porcine PK15 cells, which further demonstrated a 2.2-fold increase in HDR frequency. In conclusion, our data suggests that Rad52-Cas9 fusion is a good option for enhancing CRISPR/Cas9-mediated HDR, which may be of use in future studies involving precise genome editing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Two putative MAP kinase genes, ZrHOG1 and ZrHOG2, cloned from the salt-tolerant yeast Zygosaccharomyces rouxii are functionally homologous to the Saccharomyces cerevisiae HOG1 gene.

    PubMed

    Iwaki, T; Tamai, Y; Watanabe, Y

    1999-01-01

    The salt-tolerant yeast Zygosaccharomyces rouxii can adjust its osmotic balance when responding to osmotic shock by accumulating glycerol as the compatible osmolyte. However, the mechanism of glycerol production in Z. rouxii cells and its genetic regulation remain to be elucidated. Two putative mitogen-activated protein (MAP) kinase genes, ZrHOG1 and ZrHOG2, were cloned from Z. rouxii by their homology with HOG1 from Saccharomyces cerevisiae. The deduced amino acid sequences of ZrHog1p and ZrHog2p indicated close homology to that of Hog1p and contained a TGY motif for phosphorylation by MAP kinase kinase. When ZrHOG1 or ZrHOG2 was expressed in an S. cerevisiae hog1delta null mutant, the salt tolerance and osmotic tolerance characteristics of wild-type S. cerevisiae were restored. In addition, the aberrant cell morphology and low glycerol content of the hog1delta null mutant were corrected, indicating that ZrHog1p and ZrHog2p have functions similar to Hog1p. While the transcription of the glycerol-3-phosphate dehydrogenase gene (GPD1) of the ZrHOG1-harbouring S. cerevisiae mutant was similar to that of wild-type S. cerevisiae, the ZrHOG2-harbouring strain showed prolonged GPD1 transcription. Both Zrhog1delta and Zrhog2delta Z. rouxii null mutants showed a decrease in salt tolerance compared to the wild-type strain. The present study suggested the presence of a high-osmolarity glycerol response (HOG) pathway in Z. rouxii similar to that elucidated in S. cerevisiae. Two putative MAP kinase genes in Z. rouxii appeared to be significant in either osmotic regulation or ion homeostasis.

  4. A human homolog of the S. cerevisiae HIR1 and HIR2 transcriptional repressors cloned from the DiGeorge syndrome critical region.

    PubMed

    Lamour, V; Lécluse, Y; Desmaze, C; Spector, M; Bodescot, M; Aurias, A; Osley, M A; Lipinski, M

    1995-05-01

    The DiGeorge syndrome (DGS) is a developmental disorder affecting derivatives of the third and fourth pharyngeal pouches. DGS patients present an interstitial deletion in one of their two chromosomes 22. Cosmid DAC30 was mapped to the DGS smallest critical region. Iterative cDNA library screening initiated with a DAC30 gene fragment candidate yielded a cDNA contig whose assembled nucleotide sequence is consistent with the widely transcribed, 4.2-4.4 kb long, messengers detected by northern analysis. The deduced protein sequence, 1017 amino acids in length, entirely encompasses the 766 amino acids previously designated as TUPLE1. The completed protein has been renamed HIRA because it contains various features matching those found in HIR1 and HIR2, two repressors of histone gene transcription characterized in the yeast Saccharomyces cerevisiae. Strikingly alike in their N-terminal third, HIRA and HIR1 contain seven copies of the WD repeat, a motif implicated in protein-protein interactions, suggesting that they might define a new subfamily of functionally homologous proteins. The remainder of the human polypeptide highly resembles a corresponding fragment in HIR2. We propose that HIRA, alone, could have a part in mechanisms of transcriptional regulation similar to that played by HIR1 and HIR2 together. The presence of a single copy of the HIRA gene in DGS patients possibly accounts for some of the abnormalities associated with this syndrome.

  5. Effect of the expression of BRCA2 on spontaneous homologous recombination and DNA damage-induced nuclear foci in Saccharomyces cerevisiae.

    PubMed

    Spugnesi, Laura; Balia, Cristina; Collavoli, Anita; Falaschi, Elisabetta; Quercioli, Valentina; Caligo, Maria Adelaide; Galli, Alvaro

    2013-03-01

    The tumour-suppressor gene BRCA2 has been demonstrated to be involved in maintenance of genome integrity by affecting DNA double-strand break repair and homologous recombination. Protein-truncating mutations in BRCA2 predispose women to early onset breast and ovarian cancers and account for 15-30% of familial breast cancer risk. In contrast, the human cancer risk due to missense mutations, intronic variants, and in-frame deletions and insertions in the BRCA2 gene, called unclassified variants, has not been determined. Here, we want to define if the yeast Saccharomyces cerevisiae is a good model to study the role of BRCA2 in DNA recombination and repair and to characterise the unclassified BRCA2 missense variants. Therefore, we expressed the wild-type BRCA2 in yeast and determined the effect of BRCA2 on yeast homologous recombination, methyl methanesulphonate (MMS)-induced Rad51 and Rad52 foci and MMS sensitivity. The expression of BRCA2 induces a high increase in both intra- and inter-recombination events and confers a higher MMS resistance as compared with the negative control. This may suggest that BRCA2 gets involved in DNA repair pathways in yeast. Moreover, the expression of BRCA2 did not affect the number of cells carrying Rad51 or Rad52 nuclear foci. Finally, we aimed to investigate if yeast could be reliable system to set up a functional assay to distinguish a mutated protein from a neutral polymorphism. Therefore, we have expressed two neutral (M1915T and A2951T) and one pathogenic variant (G2748D) in yeast and checked the effect on recombination. The neutral M1915T variant increased intra-chromosomal recombination by almost 2-fold and the other neutral A2975T variant increased intra-chromosomal recombination 2.5-fold as compared with the control. On the other end, the pathogenic variant G2748D did not increase intra- and inter-chromosomal recombination in yeast and, consequently, confers a phenotype very different from the wild-type BRCA2. Moreover, we

  6. The WHI1+ gene of Saccharomyces cerevisiae tethers cell division to cell size and is a cyclin homolog.

    PubMed Central

    Nash, R; Tokiwa, G; Anand, S; Erickson, K; Futcher, A B

    1988-01-01

    WHI1-1 is a dominant mutation that reduces cell volume by allowing cells to commit to division at abnormally small sizes, shortening the G1 phase of the cell cycle. The gene was cloned, and dosage studies indicated that the normal gene activated commitment to division in a dose-dependent manner, and that the mutant gene had a hyperactive but qualitatively similar function. Mild over-expression of the mutant gene eliminated G1 phase, apparently entirely relaxing the normal G1 size control, but revealing hitherto cryptic controls. Sequence analysis showed that the hyperactivity of the mutant was caused by the loss of the C-terminal third of the wild-type protein. This portion of the protein contained PEST regions, which may be signals for protein degradation. The WHI1 protein had sequence similarity to clam cyclin A, to sea urchin cyclin and to Schizosaccharomyces pombe cdc13, a cyclin homolog. Since cyclins are inducers of mitosis, WHI1 may be a direct regulator of commitment to division. A probable accessory function of the WHI1 activator is to assist recovery from alpha factor arrest; WHI1-1 mutant cells could not be permanently arrested by pheromone, consistent with a hyperactivation of division. Images PMID:2907481

  7. Rapid modification of the pET-28 expression vector for ligation independent cloning using homologous recombination in Saccharomyces cerevisiae.

    PubMed

    Gay, Glen; Wagner, Drew T; Keatinge-Clay, Adrian T; Gay, Darren C

    2014-11-01

    The ability to rapidly customize an expression vector of choice is a valuable tool for any researcher involved in high-throughput molecular cloning for protein overexpression. Unfortunately, it is common practice to amend or neglect protein targets if the gene that encodes the protein of interest is incompatible with the multiple-cloning region of a preferred expression vector. To address this issue, a method was developed to quickly exchange the multiple-cloning region of the popular expression plasmid pET-28 with a ligation-independent cloning cassette, generating pGAY-28. This cassette contains dual inverted restriction sites that reduce false positive clones by generating a linearized plasmid incapable of self-annealing after a single restriction-enzyme digest. We also establish that progressively cooling the vector and insert leads to a significant increase in ligation-independent transformation efficiency, demonstrated by the incorporation of a 10.3 kb insert into the vector. The method reported to accomplish plasmid reconstruction is uniquely versatile yet simple, relying on the strategic placement of primers combined with homologous recombination of PCR products in yeast.

  8. BTN1, the Saccharomyces cerevisiae homolog to the human Batten disease gene, is involved in phospholipid distribution

    PubMed Central

    Padilla-López, Sergio; Langager, Deanna; Chan, Chun-Hung; Pearce, David A.

    2012-01-01

    SUMMARY BTN1, the yeast homolog to human CLN3 (which is defective in Batten disease), has been implicated in the regulation of vacuolar pH, potentially by modulating vacuolar-type H+-ATPase (V-ATPase) activity. However, we report that Btn1p and the V-ATPase complex do not physically interact, suggesting that any influence that Btn1p has on V-ATPase is indirect. Because membrane lipid environment plays a crucial role in the activity and function of membrane proteins, we investigated whether cells lacking BTN1 have altered membrane phospholipid content. Deletion of BTN1 (btn1-Δ) led to a decreased level of phosphatidylethanolamine (PtdEtn) in both mitochondrial and vacuolar membranes. In yeast there are two phosphatidylserine (PtdSer) decarboxylases, Psd1p and Psd2p, and these proteins are responsible for the synthesis of PtdEtn in mitochondria and Golgi-endosome, respectively. Deletion of both BTN1 and PSD1 (btn1-Δ psd1-Δ) led to a further decrease in levels of PtdEtn in ER membranes associated to mitochondria (MAMs), with a parallel increase in PtdSer. Fluorescent-labeled PtdSer (NBD-PtdSer) transport assays demonstrated that transport of NBD-PtdSer from the ER to both mitochondria and endosomes and/or vacuole is affected in btn1-Δ cells. Moreover, btn1-Δ affects the synthesis of PtdEtn by the Kennedy pathway and impairs the ability of psd1-Δ cells to restore PtdEtn to normal levels in mitochondria and vacuoles by ethanolamine addition. In summary, lack of Btn1p alters phospholipid levels and might play a role in regulating their subcellular distribution. PMID:22107873

  9. Sgs1 RecQ helicase inhibits survival of Saccharomyces cerevisiae cells lacking telomerase and homologous recombination.

    PubMed

    Lee, Julia Y; Mogen, Jonathan L; Chavez, Alejandro; Johnson, F Brad

    2008-10-31

    In yeast telomerase mutants, the Sgs1 RecQ helicase slows the rate of senescence and also facilitates the appearance of certain types of survivors of critical telomere shortening via mechanisms dependent on Rad52-dependent homologous recombination (HR). Here we describe a third function for Sgs1 in telomerase-deficient cells, inhibition of survivors that grow independent of Rad52. Unlike tlc1 rad52 double mutants, which do not form survivors of telomere dysfunction, tlc1 rad52 sgs1 triple mutants readily generated survivors. After emerging from growth crisis, the triple mutants progressively lost telomeric and subtelomeric sequences, yet grew for more than 1 year. Analysis of cloned chromosome termini and of copy number changes of loci genome-wide using tiling arrays revealed terminal deletions extending up to 57 kb, as well as changes in Ty retrotransposon copy numbers. Amplification of the remaining terminal sequences generated large palindromes at some chromosome termini. Sgs1 helicase activity but not checkpoint function was essential for inhibiting the appearance of the survivors, and the continued absence of Sgs1 was required for the growth of the established survivors. Thus, in addition to facilitating the maintenance of telomere repeat sequences via HR-dependent mechanisms, a RecQ helicase can prevent the adoption of HR-independent mechanisms that stabilize chromosome termini without the use of natural telomere sequences. This provides a novel mechanism by which RecQ helicases may help maintain genome integrity and thus prevent age-related diseases and cancer.

  10. The human homolog of S. cerevisiae CDC27, CDC27 Hs, is encoded by a highly conserved intronless gene present in multiple copies in the human genome

    SciTech Connect

    Devor, E.J.; Dill-Devor, R.M.

    1994-09-01

    We have obtained a number of unique sequences via PCR amplification of human genomic DNA using degenerate primers under low stringency (42{degrees}C). One of these, an 853 bp product, has been identified as a partial genomic sequence of the human homolog of the S. cerevisiae CDC27 gene, CDC27Hs (GenBank No. U00001). This gene, reported by Turgendreich et al. is also designated EST00556 from Adams et al. We have undertaken a more detailed examination of our sequence, MCP34N, and have found that: 1. the genomic sequence is nearly identical to CDC27Hs over its entire 853 bp length; 2. an MCP34N-specific PCR assay of several non-human primate species reveals amplification products in chimpanzee and gorilla genomes having greater than 90% sequence identity with CDC27Hs; and 3. an MCP34N-specific PCR assay of the BIOS hybrid cell line panel gives a discordancy pattern suggesting multiple loci. Based upon these data, we present the following initial characterization: 1. the complete MCP34N sequence identity with CDC27Hs indicates that the latter is encoded by an intronless gene; 2. CDC27Hs is highly conserved among higher primates; and 3. CDC27Hs is present in multiple copies in the human genome. These characteristics, taken together with those initially reported for CDC27Hs, suggest that this is an old gene that carries out an important but, as yet, unknown function in the human brain.

  11. Characterization of rco-1 of Neurospora crassa, a pleiotropic gene affecting growth and development that encodes a homolog of Tup1 of Saccharomyces cerevisiae.

    PubMed Central

    Yamashiro, C T; Ebbole, D J; Lee, B U; Brown, R E; Bourland, C; Madi, L; Yanofsky, C

    1996-01-01

    The filamentous fungus Neurospora crassa undergoes a well-defined developmental program, conidiation, that culminates in the production of numerous asexual spores, conidia. Several cloned genes, including con-10, are expressed during conidiation but not during mycelial growth. Using a previously described selection strategy, we isolated mutants that express con-10 during mycelial growth. Selection was based on expression of an integrated DNA fragment containing the con-10 promoter-regulatory region followed by the initial segment of the con-10 open reading frame fused in frame with the bacterial hygromycin B phosphotransferase structural gene (con10'-'hph). Resistance to hygromycin results from mutational alterations that allow mycelial expression of the con-10'-'hph gene fusion. A set of drug-resistant mutants were isolated; several of these had abnormal conidiation phenotypes and were trans-acting, i.e., they allowed mycelial expression of the endogenous con-10 gene. Four of these had alterations at a single locus, designated rco-1 (regulation of conidiation). Strains with the rco-1 mutant alleles were aconidial, female sterile, had reduced growth rates, and formed hyphae that coiled in a counterclockwise direction, opposite that of the wild type. The four rco-1 mutants had distinct conidiation morphologies, suggesting that conidiation was blocked at different stages. Wild-type rco-1 was cloned by a novel procedure employing heterokaryon-assisted transformation and ligation-mediated PCR. The predicted RCO1 polypeptide is a homolog of Tup1 of Saccharomyces cerevisiae, a multidomain protein that mediates transcriptional repression of genes concerned with a variety of processes. Like tup1 mutants, null mutants of rco-1 are viable and pleiotropic. A promoter element was identified that could be responsible for RCO1-mediated vegetative repression of con-10 and other conidiation genes. PMID:8887652

  12. WdChs4p, a Homolog of Chitin Synthase 3 in Saccharomyces cerevisiae, Alone Cannot Support Growth of Wangiella (Exophiala) dermatitidis at the Temperature of Infection

    PubMed Central

    Wang, Zheng; Zheng, Li; Hauser, Melinda; Becker, Jeffery M.; Szaniszlo, Paul J.

    1999-01-01

    By using improved transformation methods for Wangiella dermatitidis, and a cloned fragment of its chitin synthase 4 structural gene (WdCHS4) as a marking sequence, the full-length gene was rescued from the genome of this human pathogenic fungus. The encoded chitin synthase product (WdChs4p) showed high homology with Chs3p of Saccharomyces cerevisiae and other class IV chitin synthases, and Northern blotting showed that WdCHS4 was expressed at constitutive levels under all conditions tested. Reduced chitin content, abnormal yeast clumpiness and budding kinetics, and increased melanin secretion resulted from the disruption of WdCHS4 suggesting that WdChs4p influences cell wall structure, cellular reproduction, and melanin deposition, respectively. However, no significant loss of virulence was detected when the wdchs4Δ strain was tested in an acute mouse model. Using a wdchs1Δ wdchs2Δ wdchs3Δ triple mutant of W. dermatitidis, which grew poorly but adequately at 25°C, we assayed WdChs4p activity in the absence of activities contributed by its three other WdChs proteins. Maximal activity required trypsin activation, suggesting a zymogenic nature. The activity also had a pH optimum of 7.5, was most stimulated by Mg2+, and was more inhibited by polyoxin D than by nikkomycin Z. Although the WdChs4p activity had a broad temperature optimum between 30 to 45°C in vitro, this activity alone did not support the growth of the wdchs1Δ wdchs2Δ wdchs3Δ triple mutant at 37°C, a temperature commensurate with infection. PMID:10569783

  13. Involvement of rhp23, a Schizosaccharomyces pombe homolog of the human HHR23A and Saccharomyces cerevisiae RAD23 nucleotide excision repair genes, in cell cycle control and protein ubiquitination.

    PubMed

    Elder, Robert T; Song, Xiang-qian; Chen, Mingzhong; Hopkins, Kevin M; Lieberman, Howard B; Zhao, Yuqi

    2002-01-15

    A functional homolog (rhp23) of human HHR23A and Saccharomyces cerevisiae RAD23 was cloned from the fission yeast Schizosaccharomyces pombe and characterized. Consistent with the role of Rad23 homologs in nucleotide excision repair, rhp23 mutant cells are moderately sensitive to UV light but demonstrate wild-type resistance to gamma-rays and hydroxyurea. Expression of the rhp23, RAD23 or HHR23A cDNA restores UV resistance to the mutant, indicating that rhp23 is a functional homolog of the human and S.cerevisiae genes. The rhp23::ura4 mutation also causes a delay in the G2 phase of the cell cycle which is corrected when rhp23, RAD23 or HHR23A cDNA is expressed. Rhp23 is present throughout the cell but is located predominantly in the nucleus, and the nuclear levels of Rhp23 decrease around the time of S phase in the cell cycle. Rhp23 is ubiquitinated at low levels, but overexpression of the rhp23 cDNA induces a large increase in ubiquitination of other proteins. Consistent with a role in protein ubiquitination, Rhp23 binds ubiquitin, as determined by two-hybrid analysis. Thus, the rhp23 gene plays a role not only in nucleotide excision repair but also in cell cycle regulation and the ubiquitination pathways.

  14. Positive regulation of the beta-galactosidase gene from Kluyveromyces lactis is mediated by an upstream activation site that shows homology to the GAL upstream activation site of Saccharomyces cerevisiae.

    PubMed Central

    Ruzzi, M; Breunig, K D; Ficca, A G; Hollenberg, C P

    1987-01-01

    In contrast to the Escherichia coli lac operon, the yeast beta-galactosidase gene is positively regulated. In the 5'-noncoding region of the Kluyveromyces lactis LAC4 gene, we mapped an upstream activation site (UAS) that is required for induction. This sequence, located between positions -435 and -326 from the start of translation, functions irrespective of its orientation and can confer lactose regulation to the heterologous CYC1 promoter. It is composed of at least two subsequences that must act in concert. One of these subsequences showed a strong homology to the UAS consensus sequence of the Saccharomyces cerevisiae GAL genes (E. Giniger, S. M. Varnum, and M. Ptashne, Cell 40:767-774, 1985). We propose that this region of homology located at about position -426 is a binding site for the product of the regulatory gene LAC9 which probably induces transcription of the LAC4 gene in a manner analogous to that of the GAL4 protein. PMID:3104772

  15. Yeast (Saccharomyces cerevisiae).

    PubMed

    Hooykaas, Paul J J; den Dulk-Ras, Amke; Bundock, Paul; Soltani, Jalal; van Attikum, Haico; van Heusden, G Paul H

    2006-01-01

    The yeast Saccharomyces cerevisiae is one of the best characterized eukaryotic organisms. This species has enabled a detailed study of the (genetic) requirements for Agrobacterium-mediated DNA transformation. For instance research with this yeast has led to the recognition that the transforming DNA molecules integrate into the eukaryotic chromosomes either by homologous recombination, which is the preferred pathway in S. cerevisiae, or by nonhomologous end-joining. Based on the protocol for Agrobacterium-mediated transformation of S. cerevisiae methodology has been developed for the transformation of many other yeast and fungal species.

  16. Sequence of the pckA gene of Escherichia coli K-12: relevance to genetic and allosteric regulation and homology of E. coli phosphoenolpyruvate carboxykinase with the enzymes from Trypanosoma brucei and Saccharomyces cerevisiae.

    PubMed

    Medina, V; Pontarollo, R; Glaeske, D; Tabel, H; Goldie, H

    1990-12-01

    The sequence of the pckA gene coding for phosphoenolpyruvate carboxykinase in Escherichia coli K-12 and previous molecular weight determinations indicate that this allosteric enzyme is a monomer of Mr 51,316. The protein is homologous to ATP-dependent phosphoenolpyruvate carboxykinases from Trypanosoma brucei and Saccharomyces cerevisiae. A potential ATP binding site was conserved in all three sequences. A potential binding site for the allosteric activator, calcium, identified in the E. coli enzyme, was only partially conserved in T. brucei and S. cerevisiae, consistent with the observation that the enzymes from the latter organisms were not activated by calcium. The published sequence of the ompR and envZ genes from Salmonella typhimurium is followed by a partial sequence that is highly homologous to pckA from E. coli. The order of these genes and the direction of transcription of the presumptive S. typhimurium pckA gene are the same as those in E. coli. The potential calcium binding site of the E. coli enzyme is conserved in the partial predicted sequence of the S. typhimurium phosphoenolpyruvate carboxykinase, consistent with the observation that calcium activation of the S. typhimurium phosphoenolpyruvate carboxykinase is very similar to that observed for the E. coli enzyme. A pckA mRNA transcript was observed in stationary-phase cells but not in logarithmically growing cells. The mRNA start site was mapped relative to the sequence of the pckA structural gene.

  17. The non-homologous end-joining pathway of S. cerevisiae works effectively in G1-phase cells, and religates cognate ends correctly and non-randomly.

    PubMed

    Gao, Shujuan; Honey, Sangeet; Futcher, Bruce; Grollman, Arthur P

    2016-06-01

    DNA double-strand breaks (DSBs) are potentially lethal lesions repaired by two major pathways: homologous recombination (HR) and non-homologous end-joining (NHEJ). Homologous recombination preferentially reunites cognate broken ends. In contrast, non-homologous end-joining could ligate together any two ends, possibly generating dicentric or acentric fragments, leading to inviability. Here, we characterize the yeast NHEJ pathway in populations of pure G1 phase cells, where there is no possibility of repair using a homolog. We show that in G1 yeast cells, NHEJ is a highly effective repair pathway for gamma-ray induced breaks, even when many breaks are present. Pulsed-field gel analysis showed chromosome karyotypes following NHEJ repair of cells from populations with multiple breaks. The number of reciprocal translocations was surprisingly low, perhaps zero, suggesting that NHEJ preferentially re-ligates the "correct" broken ends instead of randomly-chosen ends. Although we do not know the mechanism, the preferential correct ligation is consistent with the idea that broken ends are continuously held together by protein-protein interactions or by larger scale chromatin structure.

  18. The non-homologous end-joining pathway of S. cerevisiae works effectively in G1-phase cells, and religates cognate ends correctly and non-randomly

    PubMed Central

    Gao, Shujuan; Honey, Sangeet; Futcher, Bruce; Grollman, Arthur P.

    2016-01-01

    DNA double-strand breaks (DSBs) are potentially lethal lesions repaired by two major pathways: homologous recombination (HR) and non-homologous end-joining (NHEJ). Homologous recombination preferentially reunites cognate broken ends. In contrast, non-homologous end-joining could ligate together any two ends, possibly generating dicentric or acentric fragments, leading to inviability. Here, we characterize the yeast NHEJ pathway in populations of pure G1 phase cells, where there is no possibility of repair using a homolog. We show that in G1 yeast cells, NHEJ is a highly effective repair pathway for gamma-ray induced breaks, even when many breaks are present. Pulsed-field gel analysis showed chromosome karyotypes following NHEJ repair of cells from populations with multiple breaks. The number of reciprocal translocations was surprisingly low, perhaps zero, suggesting that NHEJ preferentially re-ligates the “correct” broken ends instead of randomly-chosen ends. Although we do not know the mechanism, the preferential correct ligation is consistent with the idea that broken ends are continuously held together by protein-protein interactions or by larger scale chromatin structure. PMID:27130982

  19. A New Saccharomyces cerevisiae Strain with a Mutant Smt3-Deconjugating Ulp1 Protein Is Affected in DNA Replication and Requires Srs2 and Homologous Recombination for Its Viability

    PubMed Central

    Soustelle, Christine; Vernis, Laurence; Fréon, Karine; Reynaud-Angelin, Anne; Chanet, Roland; Fabre, Francis; Heude, Martine

    2004-01-01

    The Saccharomyces cerevisiae Srs2 protein is involved in DNA repair and recombination. In order to gain better insight into the roles of Srs2, we performed a screen to identify mutations that are synthetically lethal with an srs2 deletion. One of them is a mutated allele of the ULP1 gene that encodes a protease specifically cleaving Smt3-protein conjugates. This allele, ulp1-I615N, is responsible for an accumulation of Smt3-conjugated proteins. The mutant is unable to grow at 37°C. At permissive temperatures, it still shows severe growth defects together with a strong hyperrecombination phenotype and is impaired in meiosis. Genetic interactions between ulp1 and mutations that affect different repair pathways indicated that the RAD51-dependent homologous recombination mechanism, but not excision resynthesis, translesion synthesis, or nonhomologous end-joining processes, is required for the viability of the mutant. Thus, both Srs2, believed to negatively control homologous recombination, and the process of recombination per se are essential for the viability of the ulp1 mutant. Upon replication, mutant cells accumulate single-stranded DNA interruptions. These structures are believed to generate different recombination intermediates. Some of them are fixed by recombination, and others require Srs2 to be reversed and fixed by an alternate pathway. PMID:15169880

  20. Mouse homolog of Saccharomyces cerevisiae spo11 is induced in normal mu(+)B-cells by stimuli that cause germline C(H) transcription and subsequent class switch recombination.

    PubMed

    Tokuyama, H; Tokuyama, Y

    2000-05-25

    The first step of Ig heavy chain class switch recombination (CSR) is considered to be DNA double strand break (DSB) formation in the two switch (S) regions (S(mu) and downstream S(H)), although the underlying mechanism is unknown. Recently, it has been demonstrated that at least Spo11, a homolog of the novel type II topoisomerase (topo VI) that catalyzes DSB formation, is involved in the initiation of meiotic recombination of Saccaromyces cerevisiae. In the present study, we examined whether the mouse homolog of Spo11 is induced in normal mouse mu(+)B-cells by stimuli that cause an early step of CSR, germline C(H) transcription, and subsequent CSR. Two CSR systems were used: IgA CSR induced by all-trans retinoic acid, IL-5, and LPS, and IgG1 CSR induced by IL-4 and LPS. Germline transcript and mouse Spo11 expression were analyzed by RT-PCR. In both systems, first germline transcripts were clearly detected on day 2 and then Spo11 was detected on day 3, increasing thereafter with time. The time course of changes in Spo11 expression coincided with that of CSR. Spo11 seems to be induced by CSR-inducing stimuli, regardless of the direction of CSR. These results suggested that mouse Spo11 might participate in the initiation step of CSR.

  1. Isolation of Candida glabrata Homologs of the Saccharomyces cerevisiae KRE9 and KNH1 Genes and Their Involvement in Cell Wall β-1,6-Glucan Synthesis

    PubMed Central

    Nagahashi, Shigehisa; Lussier, Marc; Bussey, Howard

    1998-01-01

    The Candida glabrata KRE9 (CgKRE9) and KNH1 (CgKNH1) genes have been isolated as multicopy suppressors of the tetracycline-sensitive growth of a Saccharomyces cerevisiae mutant with the disrupted KNH1 locus and the KRE9 gene placed under the control of a tetracycline-responsive promoter. Although a cgknh1Δ mutant showed no phenotype beyond slightly increased sensitivity to the K1 killer toxin, disruption of CgKRE9 resulted in several phenotypes similar to those of the S. cerevisiae kre9Δ null mutant: a severe growth defect on glucose medium, resistance to the K1 killer toxin, a 50% reduction of β-1,6-glucan, and the presence of aggregates of cells with abnormal morphology on glucose medium. Replacement in C. glabrata of the cognate CgKRE9 promoter with the tetracycline-responsive promoter in a cgknh1Δ background rendered cell growth tetracycline sensitive on media containing glucose or galactose. cgkre9Δ cells were shown to be sensitive to calcofluor white specifically on glucose medium. In cgkre9 mutants grown on glucose medium, cellular chitin levels were massively increased. PMID:9748432

  2. NAM9 nuclear suppressor of mitochondrial ochre mutations in Saccharomyces cerevisiae codes for a protein homologous to S4 ribosomal proteins from chloroplasts, bacteria, and eucaryotes.

    PubMed Central

    Boguta, M; Dmochowska, A; Borsuk, P; Wrobel, K; Gargouri, A; Lazowska, J; Slonimski, P P; Szczesniak, B; Kruszewska, A

    1992-01-01

    We report the genetic characterization, molecular cloning, and sequencing of a novel nuclear suppressor, the NAM9 gene from Saccharomyces cerevisiae, which acts on mutations of mitochondrial DNA. The strain NAM9-1 was isolated as a respiration-competent revertant of a mitochondrial mit mutant which carries the V25 ochre mutation in the oxi1 gene. Genetic characterization of the NAM9-1 mutation has shown that it is a nuclear dominant omnipotent suppressor alleviating several mutations in all four mitochondrial genes tested and has suggested its informational, and probably ribosomal, character. The NAM9 gene was cloned by transformation of the recipient oxi1-V25 mutant to respiration competence by using a gene bank from the NAM9-1 rho o strain. Orthogonal-field alternation gel electrophoresis analysis and genetic mapping localized the NAM9 gene on the right arm of chromosome XIV. Sequence analysis of the NAM9 gene showed that it encodes a basic protein of 485 amino acids with a presequence that could target the protein to the mitochondrial matrix. The N-terminal sequence of 200 amino acids of the deduced NAM9 product strongly resembles the S4 ribosomal proteins from chloroplasts and bacteria. Significant although less extensive similarity was found with ribosomal cytoplasmic proteins from lower eucaryotes, including S. cerevisiae. Chromosomal inactivation of the NAM9+ gene is not lethal to the cell but leads to respiration deficiency and loss of mitochondrial DNA integrity. We conclude that the NAM9 gene product is a mitochondrial ribosomal counterpart of S4 ribosomal proteins found in other systems and that the suppressor acts through decreasing the fidelity of translation. Images PMID:1729612

  3. Atmospheric-pressure plasma jet induces DNA double-strand breaks that require a Rad51-mediated homologous recombination for repair in Saccharomyces cerevisiae.

    PubMed

    Lee, Yoonna; Kim, Kangil; Kang, Kyu-Tae; Lee, Jong-Soo; Yang, Sang Sik; Chung, Woo-Hyun

    2014-10-15

    Non-thermal plasma generated under atmospheric pressure produces a mixture of chemically reactive molecules and has been developed for a number of biomedical applications. Recently, plasma jet has been proposed as novel cancer therapies based on the observation that free radicals generated by plasma jet induce mitochondria-mediated apoptotic cell death. We show here that air plasma jet induces DNA double-strand breaks (DSBs) in yeast chromosomes leading to genomic instability and loss of viability, which are alleviated by Rad51, the yeast homolog of Escherichiacoli RecA recombinase, through DNA damage repair by a homologous recombination (HR) process. Hypersensitivity of rad51 mutant to air plasma was not restored by antioxidant treatment unlike sod1 mutant that was highly sensitive to reactive oxygen species (ROS) challenge, suggesting that plasma jet induces DSB-mediated cell death independent of ROS generation. These results may provide a new insight into the mechanism of air plasma jet-induced cell death.

  4. FigA, a Putative Homolog of Low-Affinity Calcium System Member Fig1 in Saccharomyces cerevisiae, Is Involved in Growth and Asexual and Sexual Development in Aspergillus nidulans

    PubMed Central

    Zhang, Shizhu; Zheng, Hailin; Long, Nanbiao; Carbó, Natalia; Chen, Peiying; Aguilar, Pablo S.

    2014-01-01

    Calcium-mediated signaling pathways are widely employed in eukaryotes and are implicated in the regulation of diverse biological processes. In Saccharomyces cerevisiae, at least two different calcium uptake systems have been identified: the high-affinity calcium influx system (HACS) and the low-affinity calcium influx system (LACS). Compared to the HACS, the LACS in fungi is not well known. In this study, FigA, a homolog of the LACS member Fig1 from S. cerevisiae, was functionally characterized in the filamentous fungus Aspergillus nidulans. Loss of figA resulted in retardant hyphal growth and a sharp reduction of conidial production. Most importantly, FigA is essential for the homothallic mating (self-fertilization) process; further, FigA is required for heterothallic mating (outcrossing) in the absence of HACS midA. Interestingly, in a figA deletion mutant, adding extracellular Ca2+ rescued the hyphal growth defects but could not restore asexual and sexual reproduction. Furthermore, quantitative PCR results revealed that figA deletion sharply decreased the expression of brlA and nsdD, which are known as key regulators during asexual and sexual development, respectively. In addition, green fluorescent protein (GFP) tagging at the C terminus of FigA (FigA::GFP) showed that FigA localized to the center of the septum in mature hyphal cells, to the location between vesicles and metulae, and between the junctions of metulae and phialides in conidiophores. Thus, our findings suggest that FigA, apart from being a member of a calcium uptake system in A. nidulans, may play multiple unexplored roles during hyphal growth and asexual and sexual development. PMID:24376003

  5. FigA, a putative homolog of low-affinity calcium system member Fig1 in Saccharomyces cerevisiae, is involved in growth and asexual and sexual development in Aspergillus nidulans.

    PubMed

    Zhang, Shizhu; Zheng, Hailin; Long, Nanbiao; Carbó, Natalia; Chen, Peiying; Aguilar, Pablo S; Lu, Ling

    2014-02-01

    Calcium-mediated signaling pathways are widely employed in eukaryotes and are implicated in the regulation of diverse biological processes. In Saccharomyces cerevisiae, at least two different calcium uptake systems have been identified: the high-affinity calcium influx system (HACS) and the low-affinity calcium influx system (LACS). Compared to the HACS, the LACS in fungi is not well known. In this study, FigA, a homolog of the LACS member Fig1 from S. cerevisiae, was functionally characterized in the filamentous fungus Aspergillus nidulans. Loss of figA resulted in retardant hyphal growth and a sharp reduction of conidial production. Most importantly, FigA is essential for the homothallic mating (self-fertilization) process; further, FigA is required for heterothallic mating (outcrossing) in the absence of HACS midA. Interestingly, in a figA deletion mutant, adding extracellular Ca(2+) rescued the hyphal growth defects but could not restore asexual and sexual reproduction. Furthermore, quantitative PCR results revealed that figA deletion sharply decreased the expression of brlA and nsdD, which are known as key regulators during asexual and sexual development, respectively. In addition, green fluorescent protein (GFP) tagging at the C terminus of FigA (FigA::GFP) showed that FigA localized to the center of the septum in mature hyphal cells, to the location between vesicles and metulae, and between the junctions of metulae and phialides in conidiophores. Thus, our findings suggest that FigA, apart from being a member of a calcium uptake system in A. nidulans, may play multiple unexplored roles during hyphal growth and asexual and sexual development.

  6. The Schizosaccharomyces pombe mam2 gene encodes a putative pheromone receptor which has a significant homology with the Saccharomyces cerevisiae Ste2 protein.

    PubMed Central

    Kitamura, K; Shimoda, C

    1991-01-01

    The fission yeast Schizosaccharomyces pombe has two mating-types, h+ (P) and h- (M). The mam2 mutant exhibits an h(-)-specific sterile phenotype. Nucleotide sequencing of the mam2 gene isolated from an S. pombe genomic library revealed an open reading frame composed of 348 amino acids. The deduced mam2 product is a hydrophobic protein of 39 kDa that has significant sequence similarity (26.3% for identical amino acids) with the transmembrane domains of the Saccharomyces cerevisiae STE2 product, the alpha-pheromone receptor. Hydropathicity analysis suggests that the Mam2 protein contains seven possible membrane-spanning domains and a carboxy-terminal hydrophilic region. The mam2 gene was disrupted and found to be non-essential for growth. An h- haploid strain harbouring this disrupted null allele failed to respond to the pheromone of h+ cells, P-factor. These observations imply that the mam2 gene encodes a receptor for P-factor. Transcription of mam2 was induced only when strains containing functional mat1-M allele were cultured under conditions of nitrogen starvation. The mam2 gene was also transcribed in h+/h- diploid strains. The fact that the map1/mam2 homozygous diploid cells are incapable of sporulation implies that the pheromone signalling system is necessary for sporulation in diploid cells. Images PMID:1657593

  7. Members of the RAD52 Epistasis Group Contribute to Mitochondrial Homologous Recombination and Double-Strand Break Repair in Saccharomyces cerevisiae

    PubMed Central

    Stein, Alexis; Kalifa, Lidza; Sia, Elaine A.

    2015-01-01

    Mitochondria contain an independently maintained genome that encodes several proteins required for cellular respiration. Deletions in the mitochondrial genome have been identified that cause several maternally inherited diseases and are associated with certain cancers and neurological disorders. The majority of these deletions in human cells are flanked by short, repetitive sequences, suggesting that these deletions may result from recombination events. Our current understanding of the maintenance and repair of mtDNA is quite limited compared to our understanding of similar events in the nucleus. Many nuclear DNA repair proteins are now known to also localize to mitochondria, but their function and the mechanism of their action remain largely unknown. This study investigated the contribution of the nuclear double-strand break repair (DSBR) proteins Rad51p, Rad52p and Rad59p in mtDNA repair. We have determined that both Rad51p and Rad59p are localized to the matrix of the mitochondria and that Rad51p binds directly to mitochondrial DNA. In addition, a mitochondrially-targeted restriction endonuclease (mtLS-KpnI) was used to produce a unique double-strand break (DSB) in the mitochondrial genome, which allowed direct analysis of DSB repair in vivo in Saccharomyces cerevisiae. We find that loss of these three proteins significantly decreases the rate of spontaneous deletion events and the loss of Rad51p and Rad59p impairs the repair of induced mtDNA DSBs. PMID:26540255

  8. cps1+, a Schizosaccharomyces pombe gene homolog of Saccharomyces cerevisiae FKS genes whose mutation confers hypersensitivity to cyclosporin A and papulacandin B.

    PubMed Central

    Ishiguro, J; Saitou, A; Durán, A; Ribas, J C

    1997-01-01

    The Schizosaccharomyces pombe cps1-12 (for chlorpropham supersensitive) mutant strain was originally isolated as hypersensitive to the spindle poison isopropyl N-3-chlorophenyl carbamate (chlorpropham) (J. Ishiguro and Y. Uhara, Jpn. J. Genet. 67:97-109, 1992). We have found that the cps1-12 mutation also confers (i) hypersensitivity to the immunosuppressant cyclosporin A (CsA), (ii) hypersensitivity to the drug papulacandin B, which specifically inhibits 1,3-beta-D-glucan synthesis both in vivo and in vitro, and (iii) thermosensitive growth at 37 degrees C. Under any of these restrictive treatments, cells swell up and finally lyse. With an osmotic stabilizer, cells do not lyse, but at 37 degrees C they become multiseptated and multibranched. The cps1-12 mutant, grown at a restrictive temperature, showed an increase in sensitivity to lysis by enzymatic cell wall degradation, in in vitro 1,3-beta-D-glucan synthase activity (173% in the absence of GTP in the reaction), and in cell wall biosynthesis (130% of the wild-type amount). Addition of Ca2+ suppresses hypersensitivity to papulacandin B and septation and branching phenotypes. All of these data suggest a relationship between the cps1+ gene and cell wall synthesis. A DNA fragment containing the cps1+ gene was cloned, and sequence analysis indicated that it encodes a predicted membrane protein of 1,729 amino acids with 15 to 16 transmembrane domains. S. pombe cps1p has overall 55% sequence identity with Fks1p or Fks2p, proposed to be catalytic or associated subunits of Saccharomyces cerevisiae 1,3-beta-D-glucan synthase. Thus, the cps1+ product might be a catalytic or an associated copurifying subunit of the fission yeast 1,3-beta-D-glucan synthase that plays an essential role in cell wall synthesis. PMID:9401022

  9. The VPS1 protein, a homolog of dynamin required for vacuolar protein sorting in Saccharomyces cerevisiae, is a GTPase with two functionally separable domains.

    PubMed

    Vater, C A; Raymond, C K; Ekena, K; Howald-Stevenson, I; Stevens, T H

    1992-11-01

    The product of the VPS1 gene, Vps1p, is required for the sorting of soluble vacuolar proteins in the yeast Saccharomyces cerevisiae. We demonstrate here that Vps1p, which contains a consensus tripartite motif for guanine nucleotide binding, is capable of binding and hydrolyzing GTP. Vps1p is a member of a subfamily of large GTP-binding proteins whose members include the vertebrate Mx proteins, the yeast MGM1 protein, the Drosophila melanogaster shibire protein, and dynamin, a bovine brain protein that bundles microtubules in vitro. Disruption of microtubules did not affect the fidelity or kinetics of vacuolar protein sorting, indicating that Vps1p function is not dependent on microtubules. Based on mutational analyses, we propose a two-domain model for Vps1p function. When VPS1 was treated with hydroxylamine, half of all mutations isolated were found to be dominant negative with respect to vacuolar protein sorting. All of the dominant-negative mutations analyzed further mapped to the amino-terminal half of Vps1p and gave rise to full-length protein products. In contrast, recessive mutations gave rise to truncated or unstable protein products. Two large deletion mutations in VPS1 were created to further investigate Vps1p function. A mutant form of Vps1p lacking the carboxy-terminal half of the protein retained the capacity to bind GTP and did not interfere with sorting in a wild-type background. A mutant form of Vps1p lacking the entire GTP-binding domain interfered with vacuolar protein sorting in wild-type cells. We suggest that the amino-terminal domain of Vps1p provides a GTP-binding and hydrolyzing activity required for vacuolar protein sorting, and the carboxy-terminal domain mediates Vps1p association with an as yet unidentified component of the sorting apparatus.

  10. Expression of human poly (ADP-ribose) polymerase 1 in Saccharomyces cerevisiae: Effect on survival, homologous recombination and identification of genes involved in intracellular localization.

    PubMed

    La Ferla, Marco; Mercatanti, Alberto; Rocchi, Giulia; Lodovichi, Samuele; Cervelli, Tiziana; Pignata, Luca; Caligo, Maria Adelaide; Galli, Alvaro

    2015-04-01

    The poly (ADP-ribose) polymerase 1 (PARP-1) actively participates in a series of functions within the cell that include: mitosis, intracellular signaling, cell cycle regulation, transcription and DNA damage repair. Therefore, inhibition of PARP1 has a great potential for use in cancer therapy. As resistance to PARP inhibitors is starting to be observed in patients, thus the function of PARP-1 needs to be studied in depth in order to find new therapeutic targets. To gain more information on the PARP-1 activity, we expressed PARP-1 in yeast and investigated its effect on cell growth and UV induced homologous recombination. To identify candidate genes affecting PARP-1 activity and cellular localization, we also developed a yeast genome wide genetic screen. We found that PARP-1 strongly inhibited yeast growth, but when yeast was exposed to the PARP-1 inhibitor 6(5-H) phenantridinone (PHE), it recovered from the growth suppression. Moreover, we showed that PARP-1 produced PAR products in yeast and we demonstrated that PARP-1 reduced UV-induced homologous recombination. By genome wide screening, we identified 99 mutants that suppressed PARP-1 growth inhibition. Orthologues of human genes were found for 41 of these yeast genes. We determined whether the PARP-1 protein level was altered in strains which are deleted for the transcription regulator GAL3, the histone H1 gene HHO1, the HUL4 gene, the deubiquitination enzyme gene OTU1, the nuclear pore protein POM152 and the SNT1 that encodes for the Set3C subunit of the histone deacetylase complex. In these strains the PARP-1 level was roughly the same as in the wild type. PARP-1 localized in the nucleus more in the snt1Δ than in the wild type strain; after UV radiation, PARP-1 localized in the nucleus more in hho1 and pom152 deletion strains than in the wild type indicating that these functions may have a role on regulating PARP-1 level and activity in the nucleus. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Phosphatase complex Pph3/Psy2 is involved in regulation of efficient non-homologous end-joining pathway in the yeast Saccharomyces cerevisiae.

    PubMed

    Omidi, Katayoun; Hooshyar, Mohsen; Jessulat, Matthew; Samanfar, Bahram; Sanders, Megan; Burnside, Daniel; Pitre, Sylvain; Schoenrock, Andrew; Xu, Jianhua; Babu, Mohan; Golshani, Ashkan

    2014-01-01

    One of the main mechanisms for double stranded DNA break (DSB) repair is through the non-homologous end-joining (NHEJ) pathway. Using plasmid and chromosomal repair assays, we showed that deletion mutant strains for interacting proteins Pph3p and Psy2p had reduced efficiencies in NHEJ. We further observed that this activity of Pph3p and Psy2p appeared linked to cell cycle Rad53p and Chk1p checkpoint proteins. Pph3/Psy2 is a phosphatase complex, which regulates recovery from the Rad53p DNA damage checkpoint. Overexpression of Chk1p checkpoint protein in a parallel pathway to Rad53p compensated for the deletion of PPH3 or PSY2 in a chromosomal repair assay. Double mutant strains Δpph3/Δchk1 and Δpsy2/Δchk1 showed additional reductions in the efficiency of plasmid repair, compared to both single deletions which is in agreement with the activity of Pph3p and Psy2p in a parallel pathway to Chk1p. Genetic interaction analyses also supported a role for Pph3p and Psy2p in DNA damage repair, the NHEJ pathway, as well as cell cycle progression. Collectively, we report that the activity of Pph3p and Psy2p further connects NHEJ repair to cell cycle progression.

  12. Enhanced dependency of KRAS-mutant colorectal cancer cells on RAD51-dependent homologous recombination repair identified from genetic interactions in Saccharomyces cerevisiae.

    PubMed

    Kalimutho, Murugan; Bain, Amanda L; Mukherjee, Bipasha; Nag, Purba; Nanayakkara, Devathri M; Harten, Sarah K; Harris, Janelle L; Subramanian, Goutham N; Sinha, Debottam; Shirasawa, Senji; Srihari, Sriganesh; Burma, Sandeep; Khanna, Kum Kum

    2017-02-07

    Activating KRAS mutations drive colorectal cancer tumorigenesis and influence response to anti-EGFR-targeted therapy. Despite recent advances in understanding Ras signaling biology and the revolution in therapies for melanoma using BRAF inhibitors, no targeted agents have been effective in KRAS-mutant cancers, mainly due to activation of compensatory pathways. Here, by leveraging the largest synthetic lethal genetic interactome in yeast, we identify that KRAS-mutated colorectal cancer cells have augmented homologous recombination repair (HRR) signaling. We found that KRAS mutation resulted in slowing and stalling of the replication fork and accumulation of DNA damage. Moreover, we found that KRAS-mutant HCT116 cells have an increase in MYC-mediated RAD51 expression with a corresponding increase in RAD51 recruitment to irradiation-induced DNA double-strand breaks (DSBs) compared to genetically complemented isogenic cells. MYC depletion using RNA interference significantly reduced IR-induced RAD51 foci formation and HRR. On the contrary, overexpression of either HA-tagged wild-type (WT) MYC or phospho-mutant S62A increased RAD51 protein levels and hence IR-induced RAD51 foci. Likewise, depletion of RAD51 selectively induced apoptosis in HCT116-mutant cells by increasing DSBs. Pharmacological inhibition targeting HRR signaling combined with PARP inhibition selectivity killed KRAS-mutant cells. Interestingly, these differences were not seen in a second isogenic pair of KRAS WT and mutant cells (DLD-1), likely due to their nondependency on the KRAS mutation for survival. Our data thus highlight a possible mechanism by which KRAS-mutant-dependent cells drive HRR in vitro by upregulating MYC-RAD51 expression. These data may offer a promising therapeutic vulnerability in colorectal cancer cells harboring otherwise nondruggable KRAS mutations, which warrants further investigation in vivo.

  13. Identification of the archaeal alg7 gene homolog (encoding N-acetylglucosamine-1-phosphate transferase) of the N-linked glycosylation system by cross-domain complementation in Saccharomyces cerevisiae.

    PubMed

    Shams-Eldin, Hosam; Chaban, Bonnie; Niehus, Sebastian; Schwarz, Ralph T; Jarrell, Ken F

    2008-03-01

    The Mv1751 gene product is thought to catalyze the first step in the N-glycosylation pathway in Methanococcus voltae. Here, we show that a conditional lethal mutation in the alg7 gene (N-acetylglucosamine-1-phosphate transferase) in Saccharomyces cerevisiae was successfully complemented with Mv1751, highlighting a rare case of cross-domain complementation.

  14. Alcohol homologation

    DOEpatents

    Wegman, R.W.; Moloy, K.G.

    1988-02-23

    A process is described for the homologation of an alkanol by reaction with synthesis gas in contact with a system containing rhodium atom, ruthenium atom, iodine atom and a bis(diorganophosphino) alkane to selectivity produce the next higher homologue.

  15. Alcohol homologation

    DOEpatents

    Wegman, Richard W.; Moloy, Kenneth G.

    1988-01-01

    A process for the homologation of an alkanol by reaction with synthesis gas in contact with a system containing rhodium atom, ruthenium atom, iodine atom and a bis(diorganophosphino) alkane to selectivity produce the next higher homologue.

  16. Increased chromosome mobility facilitates homology search during recombination.

    PubMed

    Miné-Hattab, Judith; Rothstein, Rodney

    2012-04-08

    Homologous recombination, an essential process for preserving genomic integrity, uses intact homologous sequences to repair broken chromosomes. To explore the mechanism of homologous pairing in vivo, we tagged two homologous loci in diploid yeast Saccharomyces cerevisiae cells and investigated their dynamic organization in the absence and presence of DNA damage. When neither locus is damaged, homologous loci occupy largely separate regions, exploring only 2.7% of the nuclear volume. Following the induction of a double-strand break, homologous loci co-localize ten times more often. The mobility of the cut chromosome markedly increases, allowing it to explore a nuclear volume that is more than ten times larger. Interestingly, the mobility of uncut chromosomes also increases, allowing them to explore a four times larger volume. We propose a model for homology search in which increased chromosome mobility facilitates homologous pairing. Finally, we find that the increase in DNA dynamics is dependent on early steps of homologous recombination.

  17. Expression of the DAL80 gene, whose product is homologous to the GATA factors and is a negative regulator of multiple nitrogen catabolic genes in Saccharomyces cerevisiae, is sensitive to nitrogen catabolite repression.

    PubMed Central

    Cunningham, T S; Cooper, T G

    1991-01-01

    We have cloned the negative regulatory gene (DAL80) of the allantoin catabolic pathway, characterized its structure, and determined the physiological conditions that control DAL80 expression and its influence on the expression of nitrogen catabolic genes. Disruption of the DAL80 gene demonstrated that it regulates multiple nitrogen catabolic pathways. Inducer-independent expression was observed for the allantoin pathway genes DAL7 and DUR1,2, as well as the UGA1 gene required for gamma-aminobutyrate catabolism in the disruption mutant. DAL80 transcription was itself highly sensitive to nitrogen catabolite repression (NCR), and its promoter contained 12 sequences homologous to the NCR-sensitive UASNTR. The deduced DAL80 protein structure contains zinc finger and coiled-coil motifs. The DAL80 zinc finger motif possessed high homology to the transcriptional activator proteins required for expression of NCR-sensitive genes in fungi and the yeast GLN3 gene product required for functioning of the NCR-sensitive DAL UASNTR. It was also homologous to the three GATAA-binding proteins reported to be transcriptional activators in avian and mammalian tissues. The latter correlations raise the possibility that both positive and negative regulators of allantoin pathway transcription may bind to similar sequences. Images PMID:1944286

  18. A global topology map of the Saccharomyces cerevisiae membrane proteome

    NASA Astrophysics Data System (ADS)

    Kim, Hyun; Melén, Karin; Österberg, Marie; von Heijne, Gunnar

    2006-07-01

    The yeast Saccharomyces cerevisiae is, arguably, the best understood eukaryotic model organism, yet comparatively little is known about its membrane proteome. Here, we report the cloning and expression of 617 S. cerevisiae membrane proteins as fusions to a C-terminal topology reporter and present experimentally constrained topology models for 546 proteins. By homology, the experimental topology information can be extended to 15,000 membrane proteins from 38 fully sequenced eukaryotic genomes. membrane proteins | membrane proteomics | yeast

  19. Sth1p, a Saccharomyces cerevisiae Snf2p/Swi2p homolog, is an essential ATPase in RSC and differs from Snf/Swi in its interactions with histones and chromatin-associated proteins.

    PubMed Central

    Du, J; Nasir, I; Benton, B K; Kladde, M P; Laurent, B C

    1998-01-01

    The essential Sth1p is the protein most closely related to the conserved Snf2p/Swi2p in Saccharomyces cerevisiae. Sth1p purified from yeast has a DNA-stimulated ATPase activity required for its function in vivo. The finding that Sth1p is a component of a multiprotein complex capable of ATP-dependent remodeling of the structure of chromatin (RSC) in vitro, suggests that it provides RSC with ATP hydrolysis activity. Three sth1 temperature-sensitive mutations map to the highly conserved ATPase/helicase domain and have cell cycle and non-cell cycle phenotypes, suggesting multiple essential roles for Sth1p. The Sth1p bromodomain is required for wild-type function; deletion mutants lacking portions of this region are thermosensitive and arrest with highly elongated buds and 2C DNA content, indicating perturbation of a unique function. The pleiotropic growth defects of sth1-ts mutants imply a requirement for Sth1p in a general cellular process that affects several metabolic pathways. Significantly, an sth1-ts allele is synthetically sick or lethal with previously identified mutations in histones and chromatin assembly genes that suppress snf/swi, suggesting that RSC interacts differently with chromatin than Snf/Swi. These results provide a framework for understanding the ATP-dependent RSC function in modeling chromatin and its connection to the cell cycle. PMID:9799253

  20. Efficient Assembly of DNA Using Yeast Homologous Recombination (YHR).

    PubMed

    Chandran, Sunil; Shapland, Elaine

    2017-01-01

    The assembly of multiple DNA parts into a larger DNA construct is a requirement in most synthetic biology laboratories. Here we describe a method for the efficient, high-throughput, assembly of DNA utilizing the yeast homologous recombination (YHR). The YHR method utilizes overlapping DNA parts that are assembled together by Saccharomyces cerevisiae via homologous recombination between designed overlapping regions. Using this method, we have successfully assembled up to 12 DNA parts in a single reaction.

  1. Homology and causes.

    PubMed

    Van Valen, L M

    1982-09-01

    Homology is resemblance caused by a continuity of information. In biology it is a unified developmental phenomenon. Homologies among and within individuals intergrade in several ways, so historical homology cannot be separated sharply from repetitive homology. Nevertheless, the consequences of historical and repetitive homologies can be mutually contradictory. A detailed discussion of the rise and fall of the "premolar-analogy" theory of homologies of mammalian molar-tooth cusps exemplifies such a contradiction. All other hypotheses of historical homology which are based on repetitive homology, such as the foliar theory of the flower considered phyletically, are suspect.

  2. Homology, Analogy, and Ethology.

    ERIC Educational Resources Information Center

    Beer, Colin G.

    1984-01-01

    Because the main criterion of structural homology (the principle of connections) does not exist for behavioral homology, the utility of the ethological concept of homology has been questioned. The confidence with which behavioral homologies can be claimed varies inversely with taxonomic distance. Thus, conjectures about long-range phylogenetic…

  3. Homology, Analogy, and Ethology.

    ERIC Educational Resources Information Center

    Beer, Colin G.

    1984-01-01

    Because the main criterion of structural homology (the principle of connections) does not exist for behavioral homology, the utility of the ethological concept of homology has been questioned. The confidence with which behavioral homologies can be claimed varies inversely with taxonomic distance. Thus, conjectures about long-range phylogenetic…

  4. Identification of Two Saccharomyces cerevisiae Cell Wall Mannan Chemotypes

    PubMed Central

    Cawley, T. N.; Ballou, Clinton E.

    1972-01-01

    We have obtained evidence for two structurally and antigenically different Saccharomyces cerevisiae cell wall mannans. One, which occurs widely and is found in S. cerevisiae strain 238C, is already known to be a neutral mannan which yields mannose, mannobiose, mannotriose, and mannotetraose on acetolysis of the (1 → 6)-linked backbone. The other, which was found in S. cerevisiae brewer's strains, is a phosphomannan with a structure very similar to that of Kloeckera brevis mannan. S. cerevisiae (brewer's yeast strain) was agglutinated by antiserum prepared against Kloeckera brevis cells. The mannan, isolated from a proteolytic digest of the cell wall of the former, did not react with S. cerevisiae 238C antiserum, whereas it cross-reacted strongly with K. brevis antiserum. Controlled acetolysis cleaved the (1 → 6)-linkages in the polysaccharide backbone and released mannose, mannobiose, mannotriose, and mannotriose phosphate. Mild acid treatment of the phosphomannan hydrolyzed the phosphodiester linkage, yielding phosphomonoester mannan and mannose. The resulting phosphomonoester mannan reacted with antiserum prepared against K. brevis possessing monoester phosphate groups on the cell surface. α-d-Mannose-1-phosphate completely inhibited the precipitin reaction between brewer's yeast mannan and the homologous antiserum. Flocculent and nonflocculent strains of this yeast were shown to have similar structural and immunological properties. PMID:4559821

  5. Nitrogenase and Homologs

    PubMed Central

    2014-01-01

    Nitrogenase catalyzes biological nitrogen fixation, a key step in the global nitrogen cycle. Three homologous nitrogenases have been identified to date, along with several structural and/or functional homologs of this enzyme that are involved in nitrogenase assembly, bacteriochlorophyll biosynthesis and methanogenic process, respectively. In this article, we provide an overview of the structures and functions of nitrogenase and its homologs, which highlights the similarity and disparity of this uniquely versatile group of enzymes. PMID:25491285

  6. 21 CFR 866.5785 - Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test systems.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Anti-Saccharomyces cerevisiae (S. cerevisiae... Immunological Test Systems § 866.5785 Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test systems. (a) Identification. The Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test system is...

  7. 21 CFR 866.5785 - Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test systems.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Anti-Saccharomyces cerevisiae (S. cerevisiae... Immunological Test Systems § 866.5785 Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test systems. (a) Identification. The Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test system is...

  8. 21 CFR 866.5785 - Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test systems.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Anti-Saccharomyces cerevisiae (S. cerevisiae... Immunological Test Systems § 866.5785 Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test systems. (a) Identification. The Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test system is...

  9. 21 CFR 866.5785 - Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test systems.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Anti-Saccharomyces cerevisiae (S. cerevisiae... Immunological Test Systems § 866.5785 Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test systems. (a) Identification. The Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test system is...

  10. Homological stabilizer codes

    SciTech Connect

    Anderson, Jonas T.

    2013-03-15

    In this paper we define homological stabilizer codes on qubits which encompass codes such as Kitaev's toric code and the topological color codes. These codes are defined solely by the graphs they reside on. This feature allows us to use properties of topological graph theory to determine the graphs which are suitable as homological stabilizer codes. We then show that all toric codes are equivalent to homological stabilizer codes on 4-valent graphs. We show that the topological color codes and toric codes correspond to two distinct classes of graphs. We define the notion of label set equivalencies and show that under a small set of constraints the only homological stabilizer codes without local logical operators are equivalent to Kitaev's toric code or to the topological color codes. - Highlights: Black-Right-Pointing-Pointer We show that Kitaev's toric codes are equivalent to homological stabilizer codes on 4-valent graphs. Black-Right-Pointing-Pointer We show that toric codes and color codes correspond to homological stabilizer codes on distinct graphs. Black-Right-Pointing-Pointer We find and classify all 2D homological stabilizer codes. Black-Right-Pointing-Pointer We find optimal codes among the homological stabilizer codes.

  11. Identification of salt-induced genes of Zygosaccharomyces rouxii by using Saccharomyces cerevisiae GeneFilters.

    PubMed

    Schoondermark-Stolk, Sung Ah; ter Schure, Eelko G; Verrips, C Theo; Verkleij, Arie J; Boonstra, Johannes

    2002-12-01

    Yeast GeneFilters containing all Saccharomyces cerevisiae open reading frame (ORF) sequences were used to elucidate gene activity in the osmotolerant yeast Zygosaccharomyces rouxii. Labelled cDNA derived from Z. rouxii was targeted to spotted S. cerevisiae ORFs. Approximately 90-100% homology of Z. rouxii genes with those of S. cerevisiae was required for definitive identification of the cDNAs hybridised to GeneFilter. Hybridised labelled cDNAs were visualised as small spots on the microarray, providing simultaneous information on homologous genes present in Z. rouxii and on their level of gene activity. Cross-hybridisation of the GeneFilters displayed 155 as yet unidentified genes of Z. rouxii hybridising to S. cerevisiae ORFs. From those 155 genes, the activity of 86 genes was influenced as a result of NaCl stress. In comparison with S. cerevisiae 24% of Z. rouxii genes revealed a different transcription behaviour following NaCl stress. All of these genes had no previously defined function in osmotic-stress response in Z. rouxii. Therefore, cross-hybridisation of GeneFilters proves to be an appropriate and straightforward method for screening transcripts in Z. rouxii, which provides an extension of the knowledge of genes present in a yeast genus other than S. cerevisiae.

  12. Saccharomyces cerevisiae Shuttle vectors.

    PubMed

    Gnügge, Robert; Rudolf, Fabian

    2017-01-10

    Yeast shuttle vectors are indispensable tools in yeast research. They enable cloning of defined DNA sequences in Escherichia coli and their direct transfer into Saccharomyces cerevisiae cells. There are three types of commonly used yeast shuttle vectors: centromeric plasmids, episomal plasmids and integrating plasmids. In this review, we discuss the different plasmid systems and their characteristic features. We focus on their segregational stability and copy number and indicate how to modify these properties. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Mobilomics in Saccharomyces cerevisiae strains

    PubMed Central

    2013-01-01

    Background Mobile Genetic Elements (MGEs) are selfish DNA integrated in the genomes. Their detection is mainly based on consensus–like searches by scanning the investigated genome against the sequence of an already identified MGE. Mobilomics aims at discovering all the MGEs in a genome and understanding their dynamic behavior: The data for this kind of investigation can be provided by comparative genomics of closely related organisms. The amount of data thus involved requires a strong computational effort, which should be alleviated. Results Our approach proposes to exploit the high similarity among homologous chromosomes of different strains of the same species, following a progressive comparative genomics philosophy. We introduce a software tool based on our new fast algorithm, called regender, which is able to identify the conserved regions between chromosomes. Our case study is represented by a unique recently available dataset of 39 different strains of S.cerevisiae, which regender is able to compare in few minutes. By exploring the non–conserved regions, where MGEs are mainly retrotransposons called Tys, and marking the candidate Tys based on their length, we are able to locate a priori and automatically all the already known Tys and map all the putative Tys in all the strains. The remaining putative mobile elements (PMEs) emerging from this intra–specific comparison are sharp markers of inter–specific evolution: indeed, many events of non–conservation among different yeast strains correspond to PMEs. A clustering based on the presence/absence of the candidate Tys in the strains suggests an evolutionary interconnection that is very similar to classic phylogenetic trees based on SNPs analysis, even though it is computed without using phylogenetic information. Conclusions The case study indicates that the proposed methodology brings two major advantages: (a) it does not require any template sequence for the wanted MGEs and (b) it can be applied to

  14. [Effects of overexpression of NADH kinase gene on ethanol fermentation by Saccharomyces cerevisiae].

    PubMed

    Wang, Han; Zhang, Liang; Shi, Guiyang

    2014-09-01

    Glycerol is the main byproduct in ethanol production by Saccharomyces cerevisiae. In order to improve ethanol yield and the substrate conversion, a cassette about 4.5 kb for gene homologous recombination, gpd2Δ::PGK1(PT)-POS5-HyBR, was constructed and transformed into the haploid strain S. cerevisiae S1 (MATa) to replace the GPD2 gene by POS5 gene. The NADH kinase gene POS5 was successfully over expressed in the recombinant strain S. cerevisiae S3. Comparing with the parent strain, the recombinant strain S. cerevisiae S3 exhibited an 8% increase in ethanol production and a 33.64% decrease in glycerol production in the conical flask fermentation with an initiatory glucose concentration of 150 g/L. Overexpression of NADH kinase gene seems effective in reducing glycerol production and increasing ethanol yield.

  15. Restricting the ligation step of non-homologous end-joining

    PubMed Central

    Chovanec, Miroslav; Wilson, Thomas E.

    2007-01-01

    Non-homologous end-joining is an important pathway for repairing DNA double-strand breaks. The budding yeast Saccharomyces cerevisiae possesses two proteins, Nej1/Lif2 and Ntr1/Spp382, which play a role in restricting the activity of Dnl4-Lif1, the complex that executes the final ligation step of this process. PMID:17977804

  16. Homology, convergence and parallelism.

    PubMed

    Ghiselin, Michael T

    2016-01-05

    Homology is a relation of correspondence between parts of parts of larger wholes. It is used when tracking objects of interest through space and time and in the context of explanatory historical narratives. Homologues can be traced through a genealogical nexus back to a common ancestral precursor. Homology being a transitive relation, homologues remain homologous however much they may come to differ. Analogy is a relationship of correspondence between parts of members of classes having no relationship of common ancestry. Although homology is often treated as an alternative to convergence, the latter is not a kind of correspondence: rather, it is one of a class of processes that also includes divergence and parallelism. These often give rise to misleading appearances (homoplasies). Parallelism can be particularly hard to detect, especially when not accompanied by divergences in some parts of the body. © 2015 The Author(s).

  17. Homology, convergence and parallelism

    PubMed Central

    Ghiselin, Michael T.

    2016-01-01

    Homology is a relation of correspondence between parts of parts of larger wholes. It is used when tracking objects of interest through space and time and in the context of explanatory historical narratives. Homologues can be traced through a genealogical nexus back to a common ancestral precursor. Homology being a transitive relation, homologues remain homologous however much they may come to differ. Analogy is a relationship of correspondence between parts of members of classes having no relationship of common ancestry. Although homology is often treated as an alternative to convergence, the latter is not a kind of correspondence: rather, it is one of a class of processes that also includes divergence and parallelism. These often give rise to misleading appearances (homoplasies). Parallelism can be particularly hard to detect, especially when not accompanied by divergences in some parts of the body. PMID:26598721

  18. Conserved pattern of antisense overlapping transcription in the homologous human ERCC-1 and yeast RAD10 DNA repair gene regions.

    PubMed Central

    van Duin, M; van Den Tol, J; Hoeijmakers, J H; Bootsma, D; Rupp, I P; Reynolds, P; Prakash, L; Prakash, S

    1989-01-01

    We report that the genes for the homologous Saccharomyces cerevisiae RAD10 and human ERCC-1 DNA excision repair proteins harbor overlapping antisense transcription units in their 3' regions. Since naturally occurring antisense transcription is rare in S. cerevisiae and humans (this is the first example in human cells), our findings indicate that antisense transcription in the ERCC-1-RAD10 gene regions represents an evolutionarily conserved feature. Images PMID:2471070

  19. Braid Floer homology

    NASA Astrophysics Data System (ADS)

    van den Berg, J. B.; Ghrist, R.; Vandervorst, R. C.; Wójcik, W.

    2015-09-01

    Area-preserving diffeomorphisms of a 2-disc can be regarded as time-1 maps of (non-autonomous) Hamiltonian flows on R / Z ×D2. The periodic flow-lines define braid (conjugacy) classes, up to full twists. We examine the dynamics relative to such braid classes and define a new invariant for such classes, the BRAID FLOER HOMOLOGY. This refinement of Floer homology, originally used for the Arnol'd Conjecture, yields a Morse-type forcing theory for periodic points of area-preserving diffeomorphisms of the 2-disc based on braiding. Contributions of this paper include (1) a monotonicity lemma for the behavior of the nonlinear Cauchy-Riemann equations with respect to algebraic lengths of braids; (2) establishment of the topological invariance of the resulting braid Floer homology; (3) a shift theorem describing the effect of twisting braids in terms of shifting the braid Floer homology; (4) computation of examples; and (5) a forcing theorem for the dynamics of Hamiltonian disc maps based on braid Floer homology.

  20. Homology modeling of yeast cyclin-dependent protein kinase

    NASA Astrophysics Data System (ADS)

    Selwyne, R. A.; Kholmurodov, Kh. T.; Koltovaya, N. A.

    2007-07-01

    The important functions that CDKs perform in cell division and cell cycle regulation made central protein kinase of Saccharomyces cerevisiae CDC28 a target model for structural and functional analysis. The 3D models of CDC28 protein kinase using molecular modeling techniques will enlarge our understanding of the phosphorylation mechanism and the structural changes of mutant kinases. The structural template for S. cerevisiae CDC28 was identified from PDB (Protein Databank) using BLASTP (basic local alignment search tool for proteins). Template-target alignments were generated for homology modeling and checked manually for errors. The models were then generated using MODELLER and validated using PROCHECK followed by energy minimization and molecular dynamics calculations in AMBER force field.

  1. Versatile genetic assembly system (VEGAS) to assemble pathways for expression in S. cerevisiae.

    PubMed

    Mitchell, Leslie A; Chuang, James; Agmon, Neta; Khunsriraksakul, Chachrit; Phillips, Nick A; Cai, Yizhi; Truong, David M; Veerakumar, Ashan; Wang, Yuxuan; Mayorga, María; Blomquist, Paul; Sadda, Praneeth; Trueheart, Joshua; Boeke, Jef D

    2015-07-27

    We have developed a method for assembling genetic pathways for expression in Saccharomyces cerevisiae. Our pathway assembly method, called VEGAS (Versatile genetic assembly system), exploits the native capacity of S. cerevisiae to perform homologous recombination and efficiently join sequences with terminal homology. In the VEGAS workflow, terminal homology between adjacent pathway genes and the assembly vector is encoded by 'VEGAS adapter' (VA) sequences, which are orthogonal in sequence with respect to the yeast genome. Prior to pathway assembly by VEGAS in S. cerevisiae, each gene is assigned an appropriate pair of VAs and assembled using a previously described technique called yeast Golden Gate (yGG). Here we describe the application of yGG specifically to building transcription units for VEGAS assembly as well as the VEGAS methodology. We demonstrate the assembly of four-, five- and six-gene pathways by VEGAS to generate S. cerevisiae cells synthesizing β-carotene and violacein. Moreover, we demonstrate the capacity of yGG coupled to VEGAS for combinatorial assembly. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Versatile genetic assembly system (VEGAS) to assemble pathways for expression in S. cerevisiae

    PubMed Central

    Mitchell, Leslie A.; Chuang, James; Agmon, Neta; Khunsriraksakul, Chachrit; Phillips, Nick A.; Cai, Yizhi; Truong, David M.; Veerakumar, Ashan; Wang, Yuxuan; Mayorga, María; Blomquist, Paul; Sadda, Praneeth; Trueheart, Joshua; Boeke, Jef D.

    2015-01-01

    We have developed a method for assembling genetic pathways for expression in Saccharomyces cerevisiae. Our pathway assembly method, called VEGAS (Versatile genetic assembly system), exploits the native capacity of S. cerevisiae to perform homologous recombination and efficiently join sequences with terminal homology. In the VEGAS workflow, terminal homology between adjacent pathway genes and the assembly vector is encoded by ‘VEGAS adapter’ (VA) sequences, which are orthogonal in sequence with respect to the yeast genome. Prior to pathway assembly by VEGAS in S. cerevisiae, each gene is assigned an appropriate pair of VAs and assembled using a previously described technique called yeast Golden Gate (yGG). Here we describe the application of yGG specifically to building transcription units for VEGAS assembly as well as the VEGAS methodology. We demonstrate the assembly of four-, five- and six-gene pathways by VEGAS to generate S. cerevisiae cells synthesizing β-carotene and violacein. Moreover, we demonstrate the capacity of yGG coupled to VEGAS for combinatorial assembly. PMID:25956652

  3. Identification of the mitochondrial pyruvate carrier in Saccharomyces cerevisiae.

    PubMed Central

    Hildyard, John C W; Halestrap, Andrew P

    2003-01-01

    Mitochondrial pyruvate transport is fundamental for metabolism and mediated by a specific inhibitable carrier. We have identified the yeast mitochondrial pyruvate carrier by measuring inhibitor-sensitive pyruvate uptake into mitochondria from 18 different Saccharomyces cerevisiae mutants, each lacking an unattributed member of the mitochondrial carrier family (MCF). Only mitochondria from the YIL006w deletion mutant exhibited no inhibitor-sensitive pyruvate transport, but otherwise behaved normally. YIL006w encodes a 41.9 kDa MCF member with homologous proteins present in both the human and mouse genomes. PMID:12887330

  4. Saccharomyces cerevisiae aldolase mutants.

    PubMed Central

    Lobo, Z

    1984-01-01

    Six mutants lacking the glycolytic enzyme fructose 1,6-bisphosphate aldolase have been isolated in the yeast Saccharomyces cerevisiae by inositol starvation. The mutants grown on gluconeogenic substrates, such as glycerol or alcohol, and show growth inhibition by glucose and related sugars. The mutations are recessive, segregate as one gene in crosses, and fall in a single complementation group. All of the mutants synthesize an antigen cross-reacting to the antibody raised against yeast aldolase. The aldolase activity in various mutant alleles measured as fructose 1,6-bisphosphate cleavage is between 1 to 2% and as condensation of triose phosphates to fructose 1,6-bisphosphate is 2 to 5% that of the wild-type. The mutants accumulate fructose 1,6-bisphosphate from glucose during glycolysis and dihydroxyacetone phosphate during gluconeogenesis. This suggests that the aldolase activity is absent in vivo. PMID:6384192

  5. Homology recognition funnel

    NASA Astrophysics Data System (ADS)

    Lee, Dominic; Kornyshev, Alexei A.

    2009-10-01

    The recognition of homologous sequences of DNA before strand exchange is considered to be the most puzzling stage of homologous recombination. A mechanism for two homologous dsDNAs to recognize each other from a distance in electrolytic solution without unzipping had been proposed in an earlier paper [A. A. Kornyshev and S. Leikin, Phys. Rev. Lett. 86, 366 (2001)]. In that work, the difference in the electrostatic interaction energy between homologous duplexes and between nonhomologous duplexes, termed the recognition energy, has been calculated. That calculation was later extended in a series of papers to account for torsional elasticity of the molecules. A recent paper [A. A. Kornyshev and A. Wynveen, Proc. Natl. Acad. Sci. U.S.A. 106, 4683 (2009)] investigated the form of the potential well that homologous DNA molecules may feel when sliding along each other. A simple formula for the shape of the well was obtained. However, this latter study was performed under the approximation that the sliding molecules are torsionally rigid. Following on from this work, in the present article we investigate the effect of torsional flexibility of the molecules on the shape of the well. A variational approach to this problem results in a transcendental equation that is easily solved numerically. Its solutions show that at large interaxial separations the recognition well becomes wider and shallower, whereas at closer distances further unexpected features arise related to an abrupt change in the mean azimuthal alignment of the molecules. The energy surface as a function of interaxial separation and the axial shift defines what we call the recognition funnel. We show that it depends dramatically on the patterns of adsorption of counterions on DNA.

  6. [Development of genetically stable recombinant Saccharomyces cerevisiae strains using combinational chromosomal integration].

    PubMed

    Zuo, Qi; Zhao, Xinqing; Liu, Haijun; Hu, Shiyang; Ma, Zhongyi; Bai, Fengwu

    2014-04-01

    Chromosomal integration enables stable phenotype and therefore has become an important strategy for breeding of industrial Saccharomyces cerevisiae strains. pAUR135 is a plasmid that enables recycling use of antibiotic selection marker, and once attached with designated homologous sequences, integration vector for stable expression can be constructed. Development of S. cerevisiae strains by metabolic engineering normally demands overexpression of multiple genes, and employing pAUR135 plasmid, it is possible to construct S. cerevisiae strains by combinational integration of multiple genes in multiple sites, which results in different ratios of expressions of these genes. Xylose utilization pathway was taken as an example, with three pAUR135-based plasmids carrying three xylose assimilation genes constructed in this study. The three genes were sequentially integrated on the chromosome of S. cerevisiae by combinational integration. Xylose utilization rate was improved 24.4%-35.5% in the combinational integration strain comparing with that of the control strain with all the three genes integrated in one location. Strain improvement achieved by combinational integration is a novel method to manipulate multiple genes for genetic engineering of S. cerevisiae, and the recombinant strains are free of foreign sequences and selection markers. In addition, stable phenotype can be maintained, which is important for breeding of industrial strains. Therefore, combinational integration employing pAUR135 is a novel method for metabolic engineering of industrial S. cerevisiae strains.

  7. Homologous recombination is required for recovery from oxidative DNA damage.

    PubMed

    Hayashi, Michio; Umezu, Keiko

    2017-04-03

    We have been studying the genetic events, including chromosome loss, chromosome rearrangements and intragenic point mutations, that are responsible for the deletion of a URA3 marker in a loss of heterozygosity (LOH) assay in the yeast Saccharomycess cerevisiae. With this assay, we previously showed that homologous recombination plays an important role in genome maintenance in response to DNA lesions that occur spontaneously in normally growing cells. Here, to investigate DNA lesions capable of triggering homologous recombination, we examined the effects of oxidative stress, a prominent cause of endogenous DNA damage, on LOH events. Treatment of log-phase cells with H2O2 first caused growth arrest and then, during the subsequent recovery, chromosome loss and various chromosome rearrangements were induced more than 10-fold. Further analysis of the rearrangements showed that gene conversion was strongly induced, approximately 100 times more frequently than in untreated cells. Consistent with these results, two diploid strains deficient for homologous recombination, rad52Δ/rad52Δ and rad51Δ/rad51Δ, were sensitive to H2O2 treatment. In addition, chromosome DNA breaks were detected in H2O2-treated cells using pulsed-field gel electrophoresis. Altogether, these results suggest that oxidative stress induced recombinogenic lesions on chromosomes, which then triggered homologous recombination leading to chromosome rearrangements, and that this response contributed to the survival of cells afflicted by oxidative DNA damage. We therefore conclude that homologous recombination is required for the recovery of cells from oxidative stress.

  8. Mechanisms and Regulation of Mitotic Recombination in Saccharomyces cerevisiae

    PubMed Central

    Symington, Lorraine S.; Rothstein, Rodney; Lisby, Michael

    2014-01-01

    Homology-dependent exchange of genetic information between DNA molecules has a profound impact on the maintenance of genome integrity by facilitating error-free DNA repair, replication, and chromosome segregation during cell division as well as programmed cell developmental events. This chapter will focus on homologous mitotic recombination in budding yeast Saccharomyces cerevisiae. However, there is an important link between mitotic and meiotic recombination (covered in the forthcoming chapter by Hunter et al. 2015) and many of the functions are evolutionarily conserved. Here we will discuss several models that have been proposed to explain the mechanism of mitotic recombination, the genes and proteins involved in various pathways, the genetic and physical assays used to discover and study these genes, and the roles of many of these proteins inside the cell. PMID:25381364

  9. Modulation of meiotic homologous recombination by DNA helicases.

    PubMed

    Lorenz, Alexander

    2017-05-01

    DNA helicases are ATP-driven motor proteins which translocate along DNA capable of dismantling DNA-DNA interactions and/or removing proteins bound to DNA. These biochemical capabilities make DNA helicases main regulators of crucial DNA metabolic processes, including DNA replication, DNA repair, and genetic recombination. This budding topic will focus on reviewing the function of DNA helicases important for homologous recombination during meiosis, and discuss recent advances in how these modulators of meiotic recombination are themselves regulated. The emphasis is placed on work in the two model yeasts, Saccharomyces cerevisiae and Schizosaccharomyces pombe, which has vastly expanded our understanding of meiotic homologous recombination, a process whose correct execution is instrumental for healthy gamete formation, and thus functioning sexual reproduction. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Role of thioredoxin peroxidase in aging of stationary cultures of Saccharomyces cerevisiae.

    PubMed

    Lee, Jin Hyup; Park, Jeen-Woo

    2004-03-01

    A soluble protein from Saccharomyces cerevisiae acts as a peroxidase but requires a NADPH-dependent thioredoxin system and was named thioredoxin peroxidase (TPx). The role of TPx in aging of stationary cultures of S. cerevisiae was investigated in a wild-type strain and a mutant yeast strain in which the tsa gene that encodes TPx was disrupted by homologous recombination. The occurrence of oxidative stress during aging of stationary cultures of the yeast has been proposed. Comparison of 5-day-old (young) stationary cultures of S. cerevisiae and of cultures aged for 3 months (old) revealed decreased viability, increased generation of reactive oxygen species, modulation of cellular redox status, and increased cellular oxidative damage reflected by increased protein carbonyl content and lipid peroxidation. The magnitude of this stress was augmented in yeast mutant lacking TPx. These results suggest that TPx may play a direct role in cellular defense against aging of stationary cultures presumably, functioning as an antioxidant enzyme.

  11. Metabolic Engineering of Saccharomyces cerevisiae

    PubMed Central

    Ostergaard, Simon; Olsson, Lisbeth; Nielsen, Jens

    2000-01-01

    Comprehensive knowledge regarding Saccharomyces cerevisiae has accumulated over time, and today S. cerevisiae serves as a widley used biotechnological production organism as well as a eukaryotic model system. The high transformation efficiency, in addition to the availability of the complete yeast genome sequence, has facilitated genetic manipulation of this microorganism, and new approaches are constantly being taken to metabolicially engineer this organism in order to suit specific needs. In this paper, strategies and concepts for metabolic engineering are discussed and several examples based upon selected studies involving S. cerevisiae are reviewed. The many different studies of metabolic engineering using this organism illustrate all the categories of this multidisciplinary field: extension of substrate range, improvements of producitivity and yield, elimination of byproduct formation, improvement of process performance, improvements of cellular properties, and extension of product range including heterologous protein production. PMID:10704473

  12. Rearrangements of highly polymorphic regions near telomeres of Saccharomyces cerevisiae.

    PubMed Central

    Horowitz, H; Thorburn, P; Haber, J E

    1984-01-01

    We have examined the mitotic and meiotic properties of telomeric regions in various laboratory strains of yeast. Using a sequence (Y probe) derived from a cloned yeast telomere (J. Szostak and E. Blackburn, Cell 29:245-255, 1982), we found that various strains of Saccharomyces cerevisiae show extensive polymorphisms of restriction endonuclease fragment length. Some of the variation in the lengths of telomeric fragments appears to be under the control of a small number of genes. When DNA from various strains was digested with endonuclease KpnI, nearly all of the fragments homologous to the Y probe were found to be of different size. The pattern of fragments in different strains was extremely variable, with a greater degree of polymorphism than that observed for fragments containing the mobile TY1 element. Tetrad analysis of haploid meiotic segregants from diploids heterozygous for many different Y-homologous KpnI fragments revealed that most of them exhibited Mendelian (2:0) segregation. However, only a small proportion of these fragments displayed the obligate 2:2 parental segregation expected of simple allelic variants at the same chromosome end. From the segregations of these fragments, we concluded that some yeast telomeres lack a Y-homologous sequence and that the chromosome arms containing a Y-homologous sequence are different among various yeast strains. Regions near yeast telomeres frequently undergo rearrangement. Among eight tetrads from three different diploids, we have found three novel Y-homologous restriction fragments that appear to have arisen during meiosis. In all three cases, the appearance of a new fragment was accompanied by the loss of another band. In one of these cases, the rearrangement leading to a novel fragment arose in an isogenic diploid, in which both homologous chromosomes should have been identical. Among these same tetrads we also found examples of apparent mitotic gene conversions and mitotic recombination involving telemetric

  13. Field homology: a meaningful definition.

    PubMed

    Cookson, K

    2001-02-01

    Field homology refers to populations of cells that derive from evolutionarily conserved regions of embryos but are distributed across sets of adult morphological structures that cannot be placed in one-to-one correspondance. The concept of field homology has proven especially attractive to comparative neurologists because it allows them to deal with the fact that sets of nuclei or nuclear subdivisions often cannot be compared on a one-to-one basis across phyletic groups. However, the concept of field homology has recently come under criticism. It has been argued that field homology is theoretically impossible because it requires sequences of developmental stages to be both evolutionarily conserved and evolutionarily modified. It has also been argued that field homology allows overly vague comparisons of adult morphological structures, fails to account for homologous structures that derive from non-homologous embryonic sources, and establishes overly rigid links between embryonic and adult morphology. All of these criticisms may be adequately addressed by explaining field homology in terms of differentiation. The present paper explains field homology in terms of differentiation using the amniote dorsal thalamus to illustrate major points. It is concluded that field homology is a meaningful concept when defined in terms of differentiation, applied to appropriate cases, and properly limited in its comparisons of adult structures.

  14. Rhythmical bimanual force production: homologous and non-homologous muscles.

    PubMed

    Kennedy, Deanna M; Boyle, Jason B; Rhee, Joohyun; Shea, Charles H

    2015-01-01

    The experiment was designed to determine participants' ability to coordinate a bimanual multifrequency pattern of isometric forces using homologous or non-homologous muscles. Lissajous feedback was provided to reduce perceptual and attentional constraints. The primary purpose was to determine whether the activation of homologous and non-homologous muscles resulted in different patterns of distortions in the left limb forces that are related to the forces produced by the right limb. The task was to rhythmically produce a 1:2 pattern of isometric forces by exerting isometric forces on the left side force transducer with the left arm that was coordinated with the pattern of isometric forces produced on the right side force transducer with the right arm. The results indicated that participants were able to 'tune-in' a 1:2 coordination patterns using homologous (triceps muscles of the left and right limbs) and using non-homologous muscles (biceps left limb and triceps right limb) when provided Lissajous feedback. However, distinct but consistent and identifiable distortions in the left limb force traces were observed for both the homologous and non-homologous tasks. For the homologous task, the interference occurred in the left limb when the right limb was initiating and releasing force. For the non-homologous task, the interference in the left limb force occurred only when the right limb was releasing force. In both conditions, the interference appeared to continue from the point of force initiation and/or release to peak force velocity. The overall results are consistent with the notion that neural crosstalk manifests differently during the coordination of the limbs depending upon whether homologous or non-homologous muscles are activated.

  15. DNA replication meets genetic exchange: chromosomal damage and its repair by homologous recombination.

    PubMed

    Kuzminov, A

    2001-07-17

    Proceedings of the National Academy of Sciences Colloquium on the roles of homologous recombination in DNA replication are summarized. Current findings in experimental systems ranging from bacteriophages to mammalian cell lines substantiate the idea that homologous recombination is a system supporting DNA replication when either the template DNA is damaged or the replication machinery malfunctions. There are several lines of supporting evidence: (i) DNA replication aggravates preexisting DNA damage, which then blocks subsequent replication; (ii) replication forks abandoned by malfunctioning replisomes become prone to breakage; (iii) mutants with malfunctioning replisomes or with elevated levels of DNA damage depend on homologous recombination; and (iv) homologous recombination primes DNA replication in vivo and can restore replication fork structures in vitro. The mechanisms of recombinational repair in bacteriophage T4, Escherichia coli, and Saccharomyces cerevisiae are compared. In vitro properties of the eukaryotic recombinases suggest a bigger role for single-strand annealing in the eukaryotic recombinational repair.

  16. Homology, homoplasy, novelty, and behavior.

    PubMed

    Hall, Brian K

    2013-01-01

    Richard Owen coined the modern definition of homology in 1843. Owen's conception of homology was pre-evolutionary, nontransformative (homology maintained basic plans or archetypes), and applied to the fully formed structures of animals. I sketch out the transition to an evolutionary approach to homology in which all classes of similarity are interpreted against the single branching tree of life, and outline the evidence for the application of homology across all levels and features of the biological hierarchy, including behavior. Owen contrasted homology with analogy. While this is not incorrect it is a pre-evolutionary contrast. Lankester [Lankester [1870] Journal of Natural History, 6 (31), 34-43] proposed homoplasy as the class of homology applicable to features formed by independent evolution. Today we identify homology, convergence, parallelism, and novelties as patterns of evolutionary change. A central issue in homology [Owen [1843] Lectures on comparative anatomy and physiology of the invertebrate animals, delivered at the Royal College of Surgeons in 1843. London: Longman, Brown, Green & Longmans] has been whether homology of features-the "same" portion of the brain in different species, for example-depends upon those features sharing common developmental pathways. Owen did not require this criterion, although he observed that homologues often do share developmental pathways (and we now know, often share gene pathways). A similar situation has been explored in the study of behavior, especially whether behaviors must share a common structural, developmental, neural, or genetic basis to be classified as homologous. However, and importantly, development and genes evolve. As shown with both theory and examples, morphological and behavioral features of the phenotype can be homologized as structural or behavioral homologues, respectively, even when their developmental or genetic bases differ (are not homologous). Copyright © 2012 Wiley Periodicals, Inc.

  17. Homological Computation Using Spanning Trees

    NASA Astrophysics Data System (ADS)

    Molina-Abril, H.; Real, P.

    We introduce here a new mathbb{F}_2 homology computation algorithm based on a generalization of the spanning tree technique on a finite 3-dimensional cell complex K embedded in ℝ3. We demonstrate that the complexity of this algorithm is linear in the number of cells. In fact, this process computes an algebraic map φ over K, called homology gradient vector field (HGVF), from which it is possible to infer in a straightforward manner homological information like Euler characteristic, relative homology groups, representative cycles for homology generators, topological skeletons, Reeb graphs, cohomology algebra, higher (co)homology operations, etc. This process can be generalized to others coefficients, including the integers, and to higher dimension.

  18. Evolving the Concept of Homology

    ERIC Educational Resources Information Center

    Naples, Virginia L.; Miller, Jon S.

    2009-01-01

    Understanding homology is fundamental to learning about evolution. The present study shows an exercise that can be varied in complexity, for which students compile research illustrating the fate of homologous fish skull elements, and assemble a mural to serve as a learning aid. The skull of the most primitive living Actinopterygian (bony fish),…

  19. A quantitative assay for telomere protection in Saccharomyces cerevisiae.

    PubMed Central

    DuBois, Michelle L; Haimberger, Zara W; McIntosh, Martin W; Gottschling, Daniel E

    2002-01-01

    Telomeres are the protective ends of linear chromosomes. Telomeric components have been identified and described by their abilities to bind telomeric DNA, affect telomere repeat length, participate in telomeric DNA replication, or modulate transcriptional silencing of telomere-adjacent genes; however, their roles in chromosome end protection are not as well defined. We have developed a genetic, quantitative assay in Saccharomyces cerevisiae to measure whether various telomeric components protect chromosome ends from homologous recombination. This "chromosomal cap" assay has revealed that the telomeric end-binding proteins, Cdc13p and Ku, both protect the chromosome end from homologous recombination, as does the ATM-related kinase, Tel1p. We propose that Cdc13p and Ku structurally inhibit recombination at telomeres and that Tel1p regulates the chromosomal cap, acting through Cdc13p. Analysis with recombination mutants indicated that telomeric homologous recombination events proceeded by different mechanisms, depending on which capping component was compromised. Furthermore, we found that neither telomere repeat length nor telomeric silencing correlated with chromosomal capping efficiency. This capping assay provides a sensitive in vivo approach for identifying the components of chromosome ends and the mechanisms by which they are protected. PMID:12136006

  20. Hed1 Promotes Meiotic Crossover Formation in Saccharomyces cerevisiae.

    PubMed

    Kong, Yoon-Ju; Joo, Jeong-Hwan; Kim, Keun Pil; Hong, Soogil

    2017-02-28

    Homologous recombination occurs between homologous chromosomes and is significantly involved in programmed double-strand break (DSB) repair. Activation of two recombinases, Rad51 and Dmc1, is essential for an interhomolog bias during meiosis. Rad51 participates in both mitotic and meiotic recombination, and its strand exchange activity is regulated by an inhibitory factor during meiosis. Thus, activities of Rad51 and Dmc1 are coordinated to promote homolog bias. It has been reported that Hed1, a meiosis-specific protein in budding yeast, regulates Rad51-dependent recombination activity. Here, we investigated the role of Hed1 in meiotic recombination by ectopic expression of the protein after pre-meiotic replication in Saccharomyces cerevisiae. DNA physical analysis revealed that the overexpression of Hed1 delays the DSB-to-joint molecule (JM) transition and promotes interhomolog JM formation. The study indicates a possible role of Hed1 in controlling the strand exchange activity of Rad51 and, eventually, meiotic crossover formation.

  1. Phenylbutyrate inhibits homologous recombination induced by camptothecin and methyl methanesulfonate.

    PubMed

    Kaiser, Gitte S; Germann, Susanne M; Westergaard, Tine; Lisby, Michael

    2011-08-01

    Homologous recombination is accompanied by extensive changes to chromatin organization at the site of DNA damage. Some of these changes are mediated through acetylation/deacetylation of histones. Here, we show that recombinational repair of DNA damage induced by the anti-cancer drug camptothecin (CPT) and the alkylating agent methyl methanesulfonate (MMS) is blocked by sodium phenylbutyrate (PBA) in the budding yeast Saccharomyces cerevisiae. In particular, PBA suppresses CPT- and MMS-induced genetic recombination as well as DNA double-strand break repair during mating-type interconversion. Treatment with PBA is accompanied by a dramatic reduction in histone H4 lysine 8 acetylation. Live cell imaging of homologous recombination proteins indicates that repair of CPT-induced DNA damage is redirected to a non-recombinogenic pathway in the presence of PBA without loss in cell viability. In contrast, the suppression of MMS-induced recombination by PBA is accompanied by a dramatic loss in cell viability. Taken together, our results demonstrate that PBA inhibits DNA damage-induced homologous recombination likely by mediating changes in chromatin acetylation. Moreover, the combination of PBA with genotoxic agents can lead to different cell fates depending on the type of DNA damage inflicted. 2011 Elsevier B.V. All rights reserved.

  2. Requirement for the SRS2 DNA helicase gene in non-homologous end joining in yeast

    PubMed Central

    Hegde, Vijay; Klein, Hannah

    2000-01-01

    Mitotic cells experience double-strand breaks (DSBs) from both exogenous and endogenous sources. Since unrepaired DSBs can result in genome rearrangements or cell death, cells mobilize multiple pathways to repair the DNA damage. In the yeast Saccharomyces cerevisiae, mitotic cells preferentially use a homologous recombination repair pathway. However, when no significant homology to the DSB ends is available, cells utilize a repair process called non-homologous end joining (NHEJ), which can join ends with no homology through resection to uncover microhomologies of a few nucleotides. Although components of the homologous recombination repair system are also involved in NHEJ, the rejoining does not involve all of the homologous recombination repair genes. The SRS2 DNA helicase has been shown to be required for DSB repair when the homologous single-stranded regions are short. Here it is shown that SRS2 is also required for NHEJ, regardless of the cell mating type. Efficient NHEJ of sticky ends requires the Ku70 and Ku80 proteins and the silencing genes SIR2, SIR3 and SIR4. However, NHEJ of blunt ends, while very inefficient, is not further reduced by mutations in YKU70, SIR2, SIR3, SIR4 or SRS2, suggesting that this rejoining process occurs by a different mechanism. PMID:10908335

  3. Pyruvate metabolism in Saccharomyces cerevisiae.

    PubMed

    Pronk, J T; Yde Steensma, H; Van Dijken, J P

    1996-12-01

    In yeasts, pyruvate is located at a major junction of assimilatory and dissimilatory reactions as well as at the branch-point between respiratory dissimilation of sugars and alcoholic fermentation. This review deals with the enzymology, physiological function and regulation of three key reactions occurring at the pyruvate branch-point in the yeast Saccharomyces cerevisiae: (i) the direct oxidative decarboxylation of pyruvate to acetyl-CoA, catalysed by the pyruvate dehydrogenase complex, (ii) decarboxylation of pyruvate to acetaldehyde, catalysed by pyruvate decarboxylase, and (iii) the anaplerotic carboxylation of pyruvate to oxaloacetate, catalysed by pyruvate carboxylase. Special attention is devoted to physiological studies on S. cerevisiae strains in which structural genes encoding these key enzymes have been inactivated by gene disruption.

  4. 21 CFR 866.5785 - Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test systems.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test systems. 866.5785 Section 866.5785 Food and Drugs FOOD AND DRUG ADMINISTRATION... techniques, antibodies to S. cerevisiae (baker's or brewer's yeast) in human serum or plasma. Detection of S...

  5. PET genes of Saccharomyces cerevisiae.

    PubMed Central

    Tzagoloff, A; Dieckmann, C L

    1990-01-01

    We describe a collection of nuclear respiratory-defective mutants (pet mutants) of Saccharomyces cerevisiae consisting of 215 complementation groups. This set of mutants probably represents a substantial fraction of the total genetic information of the nucleus required for the maintenance of functional mitochondria in S. cerevisiae. The biochemical lesions of mutants in approximately 50 complementation groups have been related to single enzymes or biosynthetic pathways, and the corresponding wild-type genes have been cloned and their structures have been determined. The genes defined by an additional 20 complementation groups were identified by allelism tests with mutants characterized in other laboratories. Mutants representative of the remaining complementation groups have been assigned to one of the following five phenotypic classes: (i) deficiency in cytochrome oxidase, (ii) deficiency in coenzyme QH2-cytochrome c reductase, (iii) deficiency in mitochondrial ATPase, (iv) absence of mitochondrial protein synthesis, and (v) normal composition of respiratory-chain complexes and of oligomycin-sensitive ATPase. In addition to the genes identified through biochemical and genetic analyses of the pet mutants, we have cataloged PET genes not matched to complementation groups in the mutant collection and other genes whose products function in the mitochondria but are not necessary for respiration. Together, this information provides an up-to-date list of the known genes coding for mitochondrial constituents and for proteins whose expression is vital for the respiratory competence of S. cerevisiae. PMID:2215420

  6. Saccharomyces cerevisiae-based system for studying clustered DNA damages

    SciTech Connect

    Moscariello, M.M.; Sutherland, B.

    2010-08-01

    DNA-damaging agents can induce clustered lesions or multiply damaged sites (MDSs) on the same or opposing DNA strands. In the latter, attempts to repair MDS can generate closely opposed single-strand break intermediates that may convert non-lethal or mutagenic base damage into double-strand breaks (DSBs). We constructed a diploid S. cerevisiae yeast strain with a chromosomal context targeted by integrative DNA fragments carrying different damages to determine whether closely opposed base damages are converted to DSBs following the outcomes of the homologous recombination repair pathway. As a model of MDS, we studied clustered uracil DNA damages with a known location and a defined distance separating the lesions. The system we describe might well be extended to assessing the repair of MDSs with different compositions, and to most of the complex DNA lesions induced by physical and chemical agents.

  7. CRISPR-PCS: a powerful new approach to inducing multiple chromosome splitting in Saccharomyces cerevisiae

    PubMed Central

    Sasano, Yu; Nagasawa, Koki; Kaboli, Saeed; Sugiyama, Minetaka; Harashima, Satoshi

    2016-01-01

    PCR-mediated chromosome splitting (PCS) was developed in the yeast Saccharomyces cerevisiae. It is based on homologous recombination and enables division of a chromosome at any point to form two derived and functional chromosomes. However, because of low homologous recombination activity, PCS is limited to a single site at a time, which makes the splitting of multiple loci laborious and time-consuming. Here we have developed a highly efficient and versatile chromosome engineering technology named CRISPR-PCS that integrates PCS with the novel genome editing CRISPR/Cas9 system. This integration allows PCS to utilize induced double strand breaks to activate homologous recombination. CRISPR-PCS enhances the efficiency of chromosome splitting approximately 200-fold and enables generation of simultaneous multiple chromosome splits. We propose that CRISPR-PCS will be a powerful tool for breeding novel yeast strains with desirable traits for specific industrial applications and for investigating genome function. PMID:27530680

  8. The unusual UBZ domain of Saccharomyces cerevisiae polymerase η

    PubMed Central

    Woodruff, Rachel V.; Bomar, Martha G.; D’Souza, Sanjay; Zhou, Pei; Walker, Graham C.

    2010-01-01

    Recent research has revealed the presence of ubiquitin-binding domains in the Y family polymerases. The ubiquitin-binding zinc finger (UBZ) domain of human polymerase η is vital for its regulation, localization, and function. Here, we elucidate structural and functional features of the non-canonical UBZ motif of S. cerevisiae pol η. Characterization of pol η mutants confirms the importance of the UBZ motif and implies that its function is independent of zinc binding. Intriguingly, we demonstrate that zinc does bind to and affect the structure of the purified UBZ domain, but is not required for its ubiquitin-binding activity. Our finding that this unusual zinc finger is able to interact with ubiquitin even in its apo form adds support to the model that ubiquitin binding is the primary and functionally important activity of the UBZ domain in S. cerevisiae polymerase η. Putative ubiquitin-binding domains, primarily UBZs, are identified in the majority of known pol η homologs. We discuss the implications of our observations for zinc finger structure and pol η regulation. PMID:20837403

  9. MPR1 as a novel selection marker in Saccharomyces cerevisiae.

    PubMed

    Ogawa-Mitsuhashi, Kaoru; Sagane, Koji; Kuromitsu, Junro; Takagi, Hiroshi; Tsukahara, Kappei

    2009-11-01

    L-Azetidine-2-carboxylic acid (AZC) is a toxic four-membered ring analogue of L-proline that is transported into cells by proline transporters. AZC and L-proline in the cells are competitively incorporated into nascent proteins. When AZC is present in a minimum medium, misfolded proteins are synthesized in the cells, thereby inhibiting cell growth. The MPR1 gene has been isolated from the budding yeast Saccharomyces cerevisiae Sigma1278b as a multicopy suppressor of AZC-induced growth inhibition. MPR1 encodes a novel acetyltransferase that detoxifies AZC via N-acetylation. Since MPR1 is absent in the laboratory strain of S. cerevisiae S288C, it could be a positive selection marker that confers AZC resistance in the S288C background strains. To examine the usefulness of MPR1, we constructed some plasmid vectors that harboured MPR1 under the control of various promoters and introduced them into the S288C-derived strains. The expression of MPR1 conferred AZC resistance that was largely dependent on the expression level of MPR1. In an additional experiment, the galactose-inducible MPR1 and ppr1(+), the fission yeast Schizosaccharomyces pombe homologue of MPR1, were used for gene disruption by homologous recombination, and here AZC-resistant colonies were also successfully selected. We concluded that our MPR1-AZC system provides a powerful tool for yeast transformation. Copyright (c) 2009 John Wiley & Sons, Ltd.

  10. CrEdit: CRISPR mediated multi-loci gene integration in Saccharomyces cerevisiae.

    PubMed

    Ronda, Carlotta; Maury, Jérôme; Jakočiunas, Tadas; Jacobsen, Simo Abdessamad Baallal; Germann, Susanne Manuela; Harrison, Scott James; Borodina, Irina; Keasling, Jay D; Jensen, Michael Krogh; Nielsen, Alex Toftgaard

    2015-07-07

    One of the bottlenecks in production of biochemicals and pharmaceuticals in Saccharomyces cerevisiae is stable and homogeneous expression of pathway genes. Integration of genes into the genome of the production organism is often a preferred option when compared to expression from episomal vectors. Existing approaches for achieving stable simultaneous genome integrations of multiple DNA fragments often result in relatively low integration efficiencies and furthermore rely on the use of selection markers. Here, we have developed a novel method, CrEdit (CRISPR/Cas9 mediated genome Editing), which utilizes targeted double strand breaks caused by CRISPR/Cas9 to significantly increase the efficiency of homologous integration in order to edit and manipulate genomic DNA. Using CrEdit, the efficiency and locus specificity of targeted genome integrations reach close to 100% for single gene integration using short homology arms down to 60 base pairs both with and without selection. This enables direct and cost efficient inclusion of homology arms in PCR primers. As a proof of concept, a non-native β-carotene pathway was reconstructed in S. cerevisiae by simultaneous integration of three pathway genes into individual intergenic genomic sites. Using longer homology arms, we demonstrate highly efficient and locus-specific genome integration even without selection with up to 84% correct clones for simultaneous integration of three gene expression cassettes. The CrEdit approach enables fast and cost effective genome integration for engineering of S. cerevisiae. Since the choice of the targeting sites is flexible, CrEdit is a powerful tool for diverse genome engineering applications.

  11. Molecular Basis for Strain Variation in the Saccharomyces cerevisiae Adhesin Flo11p

    PubMed Central

    Li, Li; Lipke, Peter N.; Dranginis, Anne M.

    2016-01-01

    ABSTRACT FLO11 encodes a yeast cell wall flocculin that mediates a variety of adhesive phenotypes in Saccharomyces cerevisiae. Flo11p is implicated in many developmental processes, including flocculation, formation of pseudohyphae, agar invasion, and formation of microbial mats and biofilms. However, Flo11p mediates different processes in different yeast strains. To investigate the mechanisms by which FLO11 determines these differences in colony morphology, flocculation, and invasion, we studied gene structure, function, and expression levels. Nonflocculent Saccharomyces cerevisiae Σ1278b cells exhibited significantly higher FLO11 mRNA expression, especially in the stationary phase, than highly flocculent S. cerevisiae var. diastaticus. The two strains varied in cell surface hydrophobicity, and Flo11p contributed significantly to surface hydrophobicity in S. cerevisiae var. diastaticus but not in strain Σ1278b. Sequencing of the FLO11 gene in S. cerevisiae var. diastaticus revealed strain-specific differences, including a 15-amino-acid insertion in the adhesion domain. Flo11p adhesion domains from strain Σ1278b and S. cerevisiae var. diastaticus were expressed and used to coat magnetic beads. The adhesion domain from each strain bound preferentially to homologous cells, and the preferences were independent of the cells in which the adhesion domains were produced. These results are consistent with the idea that strain-specific variations in the amino acid sequences in the adhesion domains cause different Flo11p flocculation activities. The results also imply that strain-specific differences in expression levels, posttranslational modifications, and allelic differences outside the adhesion domains have little effect on flocculation. IMPORTANCE As a nonmotile organism, Saccharomyces cerevisiae employs the cell surface flocculin Flo11/Muc1 as an important means of adapting to environmental change. However, there is a great deal of strain variation in the

  12. Fivebranes and 3-manifold homology

    NASA Astrophysics Data System (ADS)

    Gukov, Sergei; Putrov, Pavel; Vafa, Cumrun

    2017-07-01

    Motivated by physical constructions of homological knot invariants, we study their analogs for closed 3-manifolds. We show that fivebrane compactifications provide a universal description of various old and new homological invariants of 3-manifolds. In terms of 3d/3d correspondence, such invariants are given by the Q-cohomology of the Hilbert space of partially topologically twisted 3d N=2 theory T[ M 3] on a Riemann surface with defects. We demonstrate this by concrete and explicit calculations in the case of monopole/Heegaard Floer homology and a 3-manifold analog of Khovanov-Rozansky link homology. The latter gives a categorification of Chern-Simons partition function. Some of the new key elements include the explicit form of the S-transform and a novel connection between categorification and a previously mysterious role of Eichler integrals in Chern-Simons theory.

  13. Abelian link invariants and homology

    SciTech Connect

    Guadagnini, Enore; Mancarella, Francesco

    2010-06-15

    We consider the link invariants defined by the quantum Chern-Simons field theory with compact gauge group U(1) in a closed oriented 3-manifold M. The relation of the Abelian link invariants with the homology group of the complement of the links is discussed. We prove that, when M is a homology sphere or when a link--in a generic manifold M--is homologically trivial, the associated observables coincide with the observables of the sphere S{sup 3}. Finally, we show that the U(1) Reshetikhin-Turaev surgery invariant of the manifold M is not a function of the homology group only, nor a function of the homotopy type of M alone.

  14. Fivebranes and 3-manifold homology

    DOE PAGES

    Gukov, Sergei; Putrov, Pavel; Vafa, Cumrun

    2017-07-14

    Motivated by physical constructions of homological knot invariants, we study their analogs for closed 3-manifolds. We show that vebrane compacti cations provide a universal description of various old and new homological invariants of 3-manifolds. In terms of 3d/3d correspondence, such invariants are given by the Q-cohomology of the Hilbert space of partially topologically twisted 3d N = 2 theory T[M3] on a Riemann surface with defects. We demonstrate this by concrete and explicit calculations in the case of monopole/Heegaard Floer homology and a 3-manifold analog of Khovanov-Rozansky link homology. The latter gives a categori cation of Chern-Simons partition function. Finally,more » some of the new key elements include the explicit form of the S-transform and a novel connection between categori cation and a previously mysterious role of Eichler integrals in Chern-Simons theory.« less

  15. Complementation of temperature tolerance by rat Rgl-1 recessive oncogene in the absence of Saccharomyces cerevisiae Sop genes.

    PubMed

    Kim, Yu-Kyung; Kim, Yong-Soo; Chung, Hyung-Min; Baek, Kwang-Hyun

    2004-11-01

    It has been demonstrated that homozygous mutations at the L(2)gl locus in Drosophila result in the development of tumor in the presumptive adult optic centers of the larval brain and of the imaginal discs. We previously cloned an L(2)gl homologue, Rgl-1, in the rat brain. In this study, we analyzed the capability of Rgl-1 in recovering temperature tolerance in the absence of Saccharomyces cerevisiae Sop genes, yeast homologues of the Drosophila recessive oncogene Lethal (2) giant larvae. The expression of Rgl-1 revealed the recovery of temperature tolerance at 20 degrees C in the absence of Sop genes in Saccharomyces cerevisiae. This indicates that the Rgl-1 cDNA we isolated from the rat brain is highly homologous to Lgl family members and can also substitute the function of Sop proteins for temperature tolerance in Saccharomyces cerevisiae.

  16. Fatal Saccharomyces Cerevisiae Aortic Graft Infection

    NASA Technical Reports Server (NTRS)

    Meyer, Michael (Technical Monitor); Smith, Davey; Metzgar, David; Wills, Christopher; Fierer, Joshua

    2002-01-01

    Saccharomyces cerevisiae is a yeast commonly used in baking and a frequent colonizer of human mucosal surfaces. It is considered relatively nonpathogenic in immunocompetent adults. We present a case of S. cerevisiae fungemia and aortic graft infection in an immunocompetent adult. This is the first reported case of S. cerevisiue fungemia where the identity of the pathogen was confirmed by rRNA sequencing.

  17. Fatal Saccharomyces Cerevisiae Aortic Graft Infection

    NASA Technical Reports Server (NTRS)

    Meyer, Michael (Technical Monitor); Smith, Davey; Metzgar, David; Wills, Christopher; Fierer, Joshua

    2002-01-01

    Saccharomyces cerevisiae is a yeast commonly used in baking and a frequent colonizer of human mucosal surfaces. It is considered relatively nonpathogenic in immunocompetent adults. We present a case of S. cerevisiae fungemia and aortic graft infection in an immunocompetent adult. This is the first reported case of S. cerevisiue fungemia where the identity of the pathogen was confirmed by rRNA sequencing.

  18. Object-oriented Persistent Homology.

    PubMed

    Wang, Bao; Wei, Guo-Wei

    2016-01-15

    Persistent homology provides a new approach for the topological simplification of big data via measuring the life time of intrinsic topological features in a filtration process and has found its success in scientific and engineering applications. However, such a success is essentially limited to qualitative data classification and analysis. Indeed, persistent homology has rarely been employed for quantitative modeling and prediction. Additionally, the present persistent homology is a passive tool, rather than a proactive technique, for classification and analysis. In this work, we outline a general protocol to construct object-oriented persistent homology methods. By means of differential geometry theory of surfaces, we construct an objective functional, namely, a surface free energy defined on the data of interest. The minimization of the objective functional leads to a Laplace-Beltrami operator which generates a multiscale representation of the initial data and offers an objective oriented filtration process. The resulting differential geometry based object-oriented persistent homology is able to preserve desirable geometric features in the evolutionary filtration and enhances the corresponding topological persistence. The cubical complex based homology algorithm is employed in the present work to be compatible with the Cartesian representation of the Laplace-Beltrami flow. The proposed Laplace-Beltrami flow based persistent homology method is extensively validated. The consistence between Laplace-Beltrami flow based filtration and Euclidean distance based filtration is confirmed on the Vietoris-Rips complex for a large amount of numerical tests. The convergence and reliability of the present Laplace-Beltrami flow based cubical complex filtration approach are analyzed over various spatial and temporal mesh sizes. The Laplace-Beltrami flow based persistent homology approach is utilized to study the intrinsic topology of proteins and fullerene molecules. Based on a

  19. Object-oriented Persistent Homology

    PubMed Central

    Wang, Bao; Wei, Guo-Wei

    2015-01-01

    Persistent homology provides a new approach for the topological simplification of big data via measuring the life time of intrinsic topological features in a filtration process and has found its success in scientific and engineering applications. However, such a success is essentially limited to qualitative data classification and analysis. Indeed, persistent homology has rarely been employed for quantitative modeling and prediction. Additionally, the present persistent homology is a passive tool, rather than a proactive technique, for classification and analysis. In this work, we outline a general protocol to construct object-oriented persistent homology methods. By means of differential geometry theory of surfaces, we construct an objective functional, namely, a surface free energy defined on the data of interest. The minimization of the objective functional leads to a Laplace-Beltrami operator which generates a multiscale representation of the initial data and offers an objective oriented filtration process. The resulting differential geometry based object-oriented persistent homology is able to preserve desirable geometric features in the evolutionary filtration and enhances the corresponding topological persistence. The cubical complex based homology algorithm is employed in the present work to be compatible with the Cartesian representation of the Laplace-Beltrami flow. The proposed Laplace-Beltrami flow based persistent homology method is extensively validated. The consistence between Laplace-Beltrami flow based filtration and Euclidean distance based filtration is confirmed on the Vietoris-Rips complex for a large amount of numerical tests. The convergence and reliability of the present Laplace-Beltrami flow based cubical complex filtration approach are analyzed over various spatial and temporal mesh sizes. The Laplace-Beltrami flow based persistent homology approach is utilized to study the intrinsic topology of proteins and fullerene molecules. Based on a

  20. Object-oriented persistent homology

    NASA Astrophysics Data System (ADS)

    Wang, Bao; Wei, Guo-Wei

    2016-01-01

    Persistent homology provides a new approach for the topological simplification of big data via measuring the life time of intrinsic topological features in a filtration process and has found its success in scientific and engineering applications. However, such a success is essentially limited to qualitative data classification and analysis. Indeed, persistent homology has rarely been employed for quantitative modeling and prediction. Additionally, the present persistent homology is a passive tool, rather than a proactive technique, for classification and analysis. In this work, we outline a general protocol to construct object-oriented persistent homology methods. By means of differential geometry theory of surfaces, we construct an objective functional, namely, a surface free energy defined on the data of interest. The minimization of the objective functional leads to a Laplace-Beltrami operator which generates a multiscale representation of the initial data and offers an objective oriented filtration process. The resulting differential geometry based object-oriented persistent homology is able to preserve desirable geometric features in the evolutionary filtration and enhances the corresponding topological persistence. The cubical complex based homology algorithm is employed in the present work to be compatible with the Cartesian representation of the Laplace-Beltrami flow. The proposed Laplace-Beltrami flow based persistent homology method is extensively validated. The consistence between Laplace-Beltrami flow based filtration and Euclidean distance based filtration is confirmed on the Vietoris-Rips complex for a large amount of numerical tests. The convergence and reliability of the present Laplace-Beltrami flow based cubical complex filtration approach are analyzed over various spatial and temporal mesh sizes. The Laplace-Beltrami flow based persistent homology approach is utilized to study the intrinsic topology of proteins and fullerene molecules. Based on a

  1. Integration of an insertion-type transferred DNA vector from Agrobacterium tumefaciens into the Saccharomyces cerevisiae genome by gap repair.

    PubMed Central

    Risseeuw, E; Franke-van Dijk, M E; Hooykaas, P J

    1996-01-01

    Recently, it was shown that Agrobacterium tumefaciens can transfer transferred DNA (T-DNA) to Saccharomyces cerevisiae and that this T-DNA, when used as a replacement vector, is integrated via homologous recombination into the yeast genome. To test whether T-DNA can be a suitable substrate for integration via the gap repair mechanism as well, a model system developed for detection of homologous recombination events in plants was transferred to S. cerevisiae. Analysis of the yeast transformants revealed that an insertion type T-DNA vector can indeed be integrated via gap repair. Interestingly, the transformation frequency and the type of recombination events turned out to depend strongly on the orientation of the insert between the borders in such an insertion type T-DNA vector. PMID:8816506

  2. The semaphorontic view of homology

    PubMed Central

    Assis, Leandro C.S.; Rieppel, Olivier

    2015-01-01

    ABSTRACT The relation of homology is generally characterized as an identity relation, or alternatively as a correspondence relation, both of which are transitive. We use the example of the ontogenetic development and evolutionary origin of the gnathostome jaw to discuss identity and transitivity of the homology relation under the transformationist and emergentist paradigms respectively. Token identity and consequent transitivity of homology relations are shown to be requirements that are too strong to allow the origin of genuine evolutionary novelties. We consequently introduce the concept of compositional identity that is grounded in relations prevailing between parts (organs and organ systems) of a whole (organism). We recognize an ontogenetic identity of parts within a whole throughout the sequence of successive developmental stages of those parts: this is an intra‐organismal character identity maintained throughout developmental trajectory. Correspondingly, we recognize a phylogenetic identity of homologous parts within two or more organisms of different species: this is an inter‐species character identity maintained throughout evolutionary trajectory. These different dimensions of character identity—ontogenetic (through development) and phylogenetic (via shared evolutionary history)—break the transitivity of homology relations. Under the transformationist paradigm, the relation of homology reigns over the entire character (‐state) transformation series, and thus encompasses the plesiomorphic as well as the apomorphic condition of form. In contrast, genuine evolutionary novelties originate not through transformation of ancestral characters (‐states), but instead through deviating developmental trajectories that result in alternate characters. Under the emergentist paradigm, homology is thus synonymous with synapomorphy. J. Exp. Zool. (Mol. Dev. Evol.) 324B: 578–587, 2015. © 2015 The Authors. Journal of Experimental Zoology Part B: Molecular and

  3. The semaphorontic view of homology.

    PubMed

    Havstad, Joyce C; Assis, Leandro C S; Rieppel, Olivier

    2015-11-01

    The relation of homology is generally characterized as an identity relation, or alternatively as a correspondence relation, both of which are transitive. We use the example of the ontogenetic development and evolutionary origin of the gnathostome jaw to discuss identity and transitivity of the homology relation under the transformationist and emergentist paradigms respectively. Token identity and consequent transitivity of homology relations are shown to be requirements that are too strong to allow the origin of genuine evolutionary novelties. We consequently introduce the concept of compositional identity that is grounded in relations prevailing between parts (organs and organ systems) of a whole (organism). We recognize an ontogenetic identity of parts within a whole throughout the sequence of successive developmental stages of those parts: this is an intra-organismal character identity maintained throughout developmental trajectory. Correspondingly, we recognize a phylogenetic identity of homologous parts within two or more organisms of different species: this is an inter-species character identity maintained throughout evolutionary trajectory. These different dimensions of character identity--ontogenetic (through development) and phylogenetic (via shared evolutionary history)--break the transitivity of homology relations. Under the transformationist paradigm, the relation of homology reigns over the entire character (-state) transformation series, and thus encompasses the plesiomorphic as well as the apomorphic condition of form. In contrast, genuine evolutionary novelties originate not through transformation of ancestral characters (-states), but instead through deviating developmental trajectories that result in alternate characters. Under the emergentist paradigm, homology is thus synonymous with synapomorphy. © 2015 The Authors. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution Published by Wiley Periodicals, Inc.

  4. In vivo analysis of the Saccharomyces cerevisiae HO nuclease recognition site by site-directed mutagenesis.

    PubMed Central

    Nickoloff, J A; Singer, J D; Heffron, F

    1990-01-01

    HO nuclease introduces a specific double-strand break in the mating-type locus (MAT) of Saccharomyces cerevisiae, initiating mating-type interconversion. To define the sequence recognized by HO nuclease, random mutations were produced in a 30-base-pair region homologous to either MAT alpha or MATa by a chemical synthesis procedure. The mutant sites were introduced into S. cerevisiae on a shuttle vector and tested for the ability to stimulate recombination in an assay that mimics mating-type interconversion. The results suggest that a core of 8 noncontiguous bases near the Y-Z junction of MAT is essential for HO nuclease to bind and cleave its recognition site. Other contacts must be required because substrates that contain several mutations outside an intact core reduce or eliminate cleavage in vivo. The results show that HO site recognition is a complex phenomenon, similar to promoter-polymerase interactions. Images PMID:2406563

  5. [Thermoresistance in Saccharomyces cerevisiae yeasts].

    PubMed

    Kaliuzhin, V A

    2011-01-01

    Under natural conditions, yeast Saccharomyces cerevisiae reproduce, as a rule, on the surface of solid or liquid medium. Thus, life cycle of yeast populations is substantially influenced by diurnal changes in ambient temperature. The pattern in the response of unrestricted yeast S. cerevisiae culture to changes in the temperature of cultivation is revealed experimentally. Yeast population, in the absence of environmental constraints on the functioning of cell chemosmotic bioenergetic system, demonstrates the ability of thermoresistance when the temperature of cultivation switches from the range of 12-36 degrees C to 37.5-40 degrees C. During the transient period that is associated with the temperature switching and lasts from 1 to 4 turnover cycles, yeast reproduction rate remains 1.5-2 times higher than under stationary conditions. This is due to evolutionary acquired adaptive activity of cell chemosmotic system. After the adaptive resources exhausting, yeast thermoresistance fully recovers at the temperature range of 12-36 degrees C within one generation time under conditions of both restricted and unrestricted nourishment. Adaptive significance of such thermoresistance seems obvious enough--it allows maintaining high reproduction rate in yeast when ambient temperature is reaching a brief maximum shortly after noon.

  6. Translational thermotolerance in Saccharomyces cerevisiae

    PubMed Central

    Hallberg, Elizabeth M.; Hallberg, Richard L.

    1996-01-01

    While protein synthesis is rapidly inactivated in Saccharomyces cerevisiae, cells shifted from log growth at 30°C to 43°C, a 1-h 37°C treatment given to cells just prior to the shift to 43°C partially blocks this inactivation. By contrast, such a pre-heat shock treament has no protective effect on translational inactivation at 45°C or higher. Cells allowed to approach stationary phase not only develop an enhanced thermotolerance relative to log cells but also exhibit a pronounced resistance to inactivation of protein synthesis at 43°C as well as at 45°C. We have found that this ‘translational thermotolerance’ can also be induced in S. cerevisiae by briefly treating log phase cells at 30°C with cycloheximide. Using such a procedure to induce stabilization of protein synthesis at 43°C, we have been able to show that heat shock-induced proteins are not responsible for the establishment of this protective effect. This work shows that enhanced thermotolerance can be induced in log cells even after a shift to 43°C, as long as a prior translational thermotolerance has been established. Futhermore, we show that the capacity of plateau cells to maintain translation at 43°C contributes significantly to their state of enhanced thermotolerance. PMID:9222591

  7. Expression of varied GFPs in Saccharomyces cerevisiae: codon optimization yields stronger than expected expression and fluorescence intensity

    PubMed Central

    Kaishima, Misato; Ishii, Jun; Matsuno, Toshihide; Fukuda, Nobuo; Kondo, Akihiko

    2016-01-01

    Green fluorescent protein (GFP), which was originally isolated from jellyfish, is a widely used tool in biological research, and homologs from other organisms are available. However, researchers must determine which GFP is the most suitable for a specific host. Here, we expressed GFPs from several sources in codon-optimized and non-codon-optimized forms in the yeast Saccharomyces cerevisiae, which represents an ideal eukaryotic model. Surprisingly, codon-optimized mWasabi and mNeonGreen, which are typically the brightest GFPs, emitted less green fluorescence than did the other five codon-optimized GFPs tested in S. cerevisiae. Further, commercially available GFPs that have been optimized for mammalian codon usage (e.g., EGFP, AcGFP1 and TagGFP2) unexpectedly exhibited extremely low expression levels in S. cerevisiae. In contrast, codon-optimization of the GFPs for S. cerevisiae markedly increased their expression levels, and the fluorescence intensity of the cells increased by a maximum of 101-fold. Among the tested GFPs, the codon-optimized monomeric mUkG1 from soft coral showed the highest levels of both expression and fluorescence. Finally, the expression of this protein as a fusion-tagged protein successfully improved the reporting system’s ability to sense signal transduction and protein–protein interactions in S. cerevisiae and increased the detection rates of target cells using flow cytometry. PMID:27782154

  8. Repair of Oxidative DNA Damage in Saccharomyces cerevisiae.

    PubMed

    Chalissery, Jisha; Jalal, Deena; Al-Natour, Zeina; Hassan, Ahmed H

    2017-03-01

    Malfunction of enzymes that detoxify reactive oxygen species leads to oxidative attack on biomolecules including DNA and consequently activates various DNA repair pathways. The nature of DNA damage and the cell cycle stage at which DNA damage occurs determine the appropriate repair pathway to rectify the damage. Oxidized DNA bases are primarily repaired by base excision repair and nucleotide incision repair. Nucleotide excision repair acts on lesions that distort DNA helix, mismatch repair on mispaired bases, and homologous recombination and non-homologous end joining on double stranded breaks. Post-replication repair that overcomes replication blocks caused by DNA damage also plays a crucial role in protecting the cell from the deleterious effects of oxidative DNA damage. Mitochondrial DNA is also prone to oxidative damage and is efficiently repaired by the cellular DNA repair machinery. In this review, we discuss the DNA repair pathways in relation to the nature of oxidative DNA damage in Saccharomyces cerevisiae. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Mating-type genes and MAT switching in Saccharomyces cerevisiae.

    PubMed

    Haber, James E

    2012-05-01

    Mating type in Saccharomyces cerevisiae is determined by two nonhomologous alleles, MATa and MATα. These sequences encode regulators of the two different haploid mating types and of the diploids formed by their conjugation. Analysis of the MATa1, MATα1, and MATα2 alleles provided one of the earliest models of cell-type specification by transcriptional activators and repressors. Remarkably, homothallic yeast cells can switch their mating type as often as every generation by a highly choreographed, site-specific homologous recombination event that replaces one MAT allele with different DNA sequences encoding the opposite MAT allele. This replacement process involves the participation of two intact but unexpressed copies of mating-type information at the heterochromatic loci, HMLα and HMRa, which are located at opposite ends of the same chromosome-encoding MAT. The study of MAT switching has yielded important insights into the control of cell lineage, the silencing of gene expression, the formation of heterochromatin, and the regulation of accessibility of the donor sequences. Real-time analysis of MAT switching has provided the most detailed description of the molecular events that occur during the homologous recombinational repair of a programmed double-strand chromosome break.

  10. Mating-Type Genes and MAT Switching in Saccharomyces cerevisiae

    PubMed Central

    Haber, James E.

    2012-01-01

    Mating type in Saccharomyces cerevisiae is determined by two nonhomologous alleles, MATa and MATα. These sequences encode regulators of the two different haploid mating types and of the diploids formed by their conjugation. Analysis of the MATa1, MATα1, and MATα2 alleles provided one of the earliest models of cell-type specification by transcriptional activators and repressors. Remarkably, homothallic yeast cells can switch their mating type as often as every generation by a highly choreographed, site-specific homologous recombination event that replaces one MAT allele with different DNA sequences encoding the opposite MAT allele. This replacement process involves the participation of two intact but unexpressed copies of mating-type information at the heterochromatic loci, HMLα and HMRa, which are located at opposite ends of the same chromosome-encoding MAT. The study of MAT switching has yielded important insights into the control of cell lineage, the silencing of gene expression, the formation of heterochromatin, and the regulation of accessibility of the donor sequences. Real-time analysis of MAT switching has provided the most detailed description of the molecular events that occur during the homologous recombinational repair of a programmed double-strand chromosome break. PMID:22555442

  11. Genomic homologous recombination in planta.

    PubMed Central

    Gal, S; Pisan, B; Hohn, T; Grimsley, N; Hohn, B

    1991-01-01

    A system for monitoring intrachromosomal homologous recombination in whole plants is described. A multimer of cauliflower mosaic virus (CaMV) sequences, arranged such that CaMV could only be produced by recombination, was integrated into Brassica napus nuclear DNA. This set-up allowed scoring of recombination events by the appearance of viral symptoms. The repeated homologous regions were derived from two different strains of CaMV so that different recombinant viruses (i.e. different recombination events) could be distinguished. In most of the transgenic plants, a single major virus species was detected. About half of the transgenic plants contained viruses of the same type, suggesting a hotspot for recombination. The remainder of the plants contained viruses with cross-over sites distributed throughout the rest of the homologous sequence. Sequence analysis of two recombinant molecules suggest that mismatch repair is linked to the recombination process. Images PMID:2026150

  12. Presynaptic Filament Dynamics in Homologous Recombination and DNA Repair

    PubMed Central

    Liu, Jie; Ehmsen, Kirk T.; Heyer, Wolf-Dietrich; Morrical, Scott W.

    2014-01-01

    Homologous Recombination (HR) is an essential genome stability mechanism used for high-fidelity repair of DNA double-strand breaks and for the recovery of stalled or collapsed DNA replication forks. The crucial homology search and DNA strand exchange steps of HR are catalyzed by presynaptic filaments—helical filaments of a recombinase enzyme bound to single-stranded DNA. Presynaptic filaments are fundamentally dynamic structures, the assembly, catalytic turnover, and disassembly of which must be closely coordinated with other elements of the DNA recombination, repair, and replication machinery in order for genome maintenance functions to be effective. Here, we review the major dynamic elements controlling the assembly, activity, and disassembly of presynaptic filaments: some intrinsic such as recombinase ATP binding and hydrolytic activities, others extrinsic such as ssDNA-binding proteins, mediator proteins, and DNA motor proteins. We examine dynamic behavior on multiple levels, including atomic- and filament-level structural changes associated with ATP binding and hydrolysis as evidenced in crystal structures, as well as subunit binding and dissociation events driven by intrinsic and extrinsic factors. We examine the biochemical properties of recombination proteins from four model systems (T4 phage, E. coli, S. cerevisiae, and H. sapiens), demonstrating how their properties are tailored for the context-specific requirements in these diverse species. We propose that the presynaptic filament has evolved to rely on multiple external factors for increased multi-level regulation of HR processes in genomes with greater structural and sequence complexity. PMID:21599536

  13. Candida albicans INT1-Induced Filamentation in Saccharomyces cerevisiae Depends on Sla2p

    PubMed Central

    Asleson, Catherine M.; Bensen, Eric S.; Gale, Cheryl A.; Melms, A.-S.; Kurischko, Cornelia; Berman, Judith

    2001-01-01

    The Candida albicans INT1 gene is important for hyphal morphogenesis, adherence, and virulence (C. Gale, C. Bendel, M. McClellan, M. Hauser, J. M. Becker, J. Berman, and M. Hostetter, Science 279:1355–1358, 1998). The ability to switch between yeast and hyphal morphologies is an important virulence factor in this fungal pathogen. When INT1 is expressed in Saccharomyces cerevisiae, cells grow with a filamentous morphology that we exploited to gain insights into how C. albicans regulates hyphal growth. In S. cerevisiae, INT1-induced filamentous growth was affected by a small subset of actin mutations and a limited set of actin-interacting proteins including Sla2p, an S. cerevisiae protein with similarity in its C terminus to mouse talin. Interestingly, while SLA2 was required for INT1-induced filamentous growth, it was not required for polarized growth in response to several other conditions, suggesting that Sla2p is not required for polarized growth per se. The morphogenesis checkpoint, mediated by Swe1p, contributes to INT1-induced filamentous growth; however, epistasis analysis suggests that Sla2p and Swe1p contribute to INT1-induced filamentous growth through independent pathways. The C. albicans SLA2 homolog (CaSLA2) complements S. cerevisiae sla2Δ mutants for growth at 37°C and INT1-induced filamentous growth. Furthermore, in a C. albicans Casla2/Casla2 strain, hyphal growth did not occur in response to either nutrient deprivation or to potent stimuli, such as mammalian serum. Thus, through analysis of INT1-induced filamentous growth in S. cerevisiae, we have identified a C. albicans gene, SLA2, that is required for hyphal growth in C. albicans. PMID:11158313

  14. A Computational Approach to Estimating Nondisjunction Frequency in Saccharomyces cerevisiae

    PubMed Central

    Chu, Daniel B.; Burgess, Sean M.

    2016-01-01

    Errors segregating homologous chromosomes during meiosis result in aneuploid gametes and are the largest contributing factor to birth defects and spontaneous abortions in humans. Saccharomyces cerevisiae has long served as a model organism for studying the gene network supporting normal chromosome segregation. Measuring homolog nondisjunction frequencies is laborious, and involves dissecting thousands of tetrads to detect missegregation of individually marked chromosomes. Here we describe a computational method (TetFit) to estimate the relative contributions of meiosis I nondisjunction and random-spore death to spore inviability in wild type and mutant strains. These values are based on finding the best-fit distribution of 4, 3, 2, 1, and 0 viable-spore tetrads to an observed distribution. Using TetFit, we found that meiosis I nondisjunction is an intrinsic component of spore inviability in wild-type strains. We show proof-of-principle that the calculated average meiosis I nondisjunction frequency determined by TetFit closely matches empirically determined values in mutant strains. Using these published data sets, TetFit uncovered two classes of mutants: Class A mutants skew toward increased nondisjunction death, and include those with known defects in establishing pairing, recombination, and/or synapsis of homologous chromosomes. Class B mutants skew toward random spore death, and include those with defects in sister-chromatid cohesion and centromere function. Epistasis analysis using TetFit is facilitated by the low numbers of tetrads (as few as 200) required to compare the contributions to spore death in different mutant backgrounds. TetFit analysis does not require any special strain construction, and can be applied to previously observed tetrad distributions. PMID:26747203

  15. Mediators of homologous DNA pairing.

    PubMed

    Zelensky, Alex; Kanaar, Roland; Wyman, Claire

    2014-10-09

    Homologous DNA pairing and strand exchange are at the core of homologous recombination. These reactions are promoted by a DNA-strand-exchange protein assembled into a nucleoprotein filament comprising the DNA-pairing protein, ATP, and single-stranded DNA. The catalytic activity of this molecular machine depends on control of its dynamic instability by accessory factors. Here we discuss proteins known as recombination mediators that facilitate formation and functional activation of the DNA-strand-exchange protein filament. Although the basics of homologous pairing and DNA-strand exchange are highly conserved in evolution, differences in mediator function are required to cope with differences in how single-stranded DNA is packaged by the single-stranded DNA-binding protein in different species, and the biochemical details of how the different DNA-strand-exchange proteins nucleate and extend into a nucleoprotein filament. The set of (potential) mediator proteins has apparently expanded greatly in evolution, raising interesting questions about the need for additional control and coordination of homologous recombination in more complex organisms. Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved.

  16. Mediators of Homologous DNA Pairing

    PubMed Central

    Zelensky, Alex; Kanaar, Roland; Wyman, Claire

    2014-01-01

    Homologous DNA pairing and strand exchange are at the core of homologous recombination. These reactions are promoted by a DNA-strand-exchange protein assembled into a nucleoprotein filament comprising the DNA-pairing protein, ATP, and single-stranded DNA. The catalytic activity of this molecular machine depends on control of its dynamic instability by accessory factors. Here we discuss proteins known as recombination mediators that facilitate formation and functional activation of the DNA-strand-exchange protein filament. Although the basics of homologous pairing and DNA-strand exchange are highly conserved in evolution, differences in mediator function are required to cope with differences in how single-stranded DNA is packaged by the single-stranded DNA-binding protein in different species, and the biochemical details of how the different DNA-strand-exchange proteins nucleate and extend into a nucleoprotein filament. The set of (potential) mediator proteins has apparently expanded greatly in evolution, raising interesting questions about the need for additional control and coordination of homologous recombination in more complex organisms. PMID:25301930

  17. Synthesis of ribosomes in Saccharomyces cerevisiae.

    PubMed Central

    Warner, J R

    1989-01-01

    The assembly of a eucaryotic ribosome requires the synthesis of four ribosomal ribonucleic acid (RNA) molecules and more than 75 ribosomal proteins. It utilizes all three RNA polymerases; it requires the cooperation of the nucleus and the cytoplasm, the processing of RNA, and the specific interaction of RNA and protein molecules. It is carried out efficiently and is exquisitely sensitive to the needs of the cell. Our current understanding of this process in the genetically tractable yeast Saccharomyces cerevisiae is reviewed. The ribosomal RNA genes are arranged in a tandem array of 100 to 200 copies. This tandem array has led to unique ways of carrying out a number of functions. Replication is asymmetric and does not initiate from every autonomously replicating sequence. Recombination is suppressed. Transcription of the major ribosomal RNA appears to involve coupling between adjacent transcription units, which are separated by the 5S RNA transcription unit. Genes for many ribosomal proteins have been cloned and sequenced. Few are linked; most are duplicated; most have an intron. There is extensive homology between yeast ribosomal proteins and those of other species. Most, but not all, of the ribosomal protein genes have one or two sites that are essential for their transcription and that bind a common transcription factor. This factor binds also to many other places in the genome, including the telomeres. There is coordinated transcription of the ribosomal protein genes under a variety of conditions. However, the cell seems to possess no mechanism for regulating the transcription of individual ribosomal protein genes in response either to a deficiency or an excess of a particular ribosomal protein. A deficiency causes slow growth. Any excess ribosomal protein is degraded very rapidly, with a half-life of 1 to 5 min. Unlike most types of cells, yeast cells appear not to regulate the translation of ribosomal proteins. However, in the case of ribosomal protein L32

  18. Increase of ethanol tolerance of Saccharomyces cerevisiae by error-prone whole genome amplification.

    PubMed

    Luhe, Annette Lin; Tan, Lily; Wu, Jinchuan; Zhao, Hua

    2011-05-01

    Saccharomyces cerevisiae was transformed for higher ethanol tolerance by error-prone whole genome amplification. The resulting PCR products were transformed back to the parental strain for homologous recombination to create a library of mutants with the perturbed genomic networks. A few rounds of transformation led to the isolation of mutants that grew in 9% (v/v) ethanol and 100 g glucose l(-1) compared to untransformed yeast which grew only at 6% (v/v) ethanol and 100 g glucose l(-1). © Springer Science+Business Media B.V. 2011

  19. The pentafunctional arom enzyme of Saccharomyces cerevisiae is a mosaic of monofunctional domains.

    PubMed Central

    Duncan, K; Edwards, R M; Coggins, J R

    1987-01-01

    The nucleotide sequence of the Saccharomyces cerevisiae ARO1 gene which encodes the arom multifunctional enzyme has been determined. The protein sequence deduced for the pentafunctional arom polypeptide is 1588 amino acids in length and has a calculated Mr of 174555. Functional regions within the polypeptide chain have been identified by comparison with the sequences of the five monofunctional Escherichia coli enzymes whose activities correspond with those of the arom multifunctional enzyme. The observed homologies demonstrate that the arom polypeptide is a mosaic of functional domains and are consistent with the hypothesis that the ARO1 gene evolved by the linking of ancestral E. coli-like genes. PMID:2825635

  20. Chromosome Duplication in Saccharomyces cerevisiae

    PubMed Central

    Bell, Stephen P.; Labib, Karim

    2016-01-01

    The accurate and complete replication of genomic DNA is essential for all life. In eukaryotic cells, the assembly of the multi-enzyme replisomes that perform replication is divided into stages that occur at distinct phases of the cell cycle. Replicative DNA helicases are loaded around origins of DNA replication exclusively during G1 phase. The loaded helicases are then activated during S phase and associate with the replicative DNA polymerases and other accessory proteins. The function of the resulting replisomes is monitored by checkpoint proteins that protect arrested replisomes and inhibit new initiation when replication is inhibited. The replisome also coordinates nucleosome disassembly, assembly, and the establishment of sister chromatid cohesion. Finally, when two replisomes converge they are disassembled. Studies in Saccharomyces cerevisiae have led the way in our understanding of these processes. Here, we review our increasingly molecular understanding of these events and their regulation. PMID:27384026

  1. Postreplication repair in Saccharomyces cerevisiae

    SciTech Connect

    Resnick, M.A.; Boyce, J.; Cox, B.

    1981-04-01

    Postreplication events in logarithmically growing excision-defective mutants of Saccharomyces cerevisiae were examined after low doses of ultraviolet light. Pulse-labeled deoxyribonucleic acid had interruptions, and when the cells were chased, the interruptions were no longer detected. Since the loss of interruptions was not associated with an exchange of pyrimidine dimers at a detection level of 10 to 20% of the induced dimers, it was concluded that postreplication repair in excision-defective mutants does not involve molecular recombination. Pyrimidine dimers were assayed by utilizing the ultraviolet-endonuclease activity in extracts of Micrococcus luteus and newly developed alkaline sucrose gradient techniques, which yielded chromosomal-size deoxyribonucleic acid after treatment of irradiated cells.

  2. Glucose repression in Saccharomyces cerevisiae

    PubMed Central

    Kayikci, Ömur; Nielsen, Jens

    2015-01-01

    Glucose is the primary source of energy for the budding yeast Saccharomyces cerevisiae. Although yeast cells can utilize a wide range of carbon sources, presence of glucose suppresses molecular activities involved in the use of alternate carbon sources as well as it represses respiration and gluconeogenesis. This dominant effect of glucose on yeast carbon metabolism is coordinated by several signaling and metabolic interactions that mainly regulate transcriptional activity but are also effective at post-transcriptional and post-translational levels. This review describes effects of glucose repression on yeast carbon metabolism with a focus on roles of the Snf3/Rgt2 glucose-sensing pathway and Snf1 signal transduction in establishment and relief of glucose repression. PMID:26205245

  3. Nucleosome Positioning in Saccharomyces cerevisiae

    PubMed Central

    Jansen, An; Verstrepen, Kevin J.

    2011-01-01

    Summary: The DNA of eukaryotic cells is spooled around large histone protein complexes, forming nucleosomes that make up the basis for a high-order packaging structure called chromatin. Compared to naked DNA, nucleosomal DNA is less accessible to regulatory proteins and regulatory processes. The exact positions of nucleosomes therefore influence several cellular processes, including gene expression, chromosome segregation, recombination, replication, and DNA repair. Here, we review recent technological advances enabling the genome-wide mapping of nucleosome positions in the model eukaryote Saccharomyces cerevisiae. We discuss the various parameters that determine nucleosome positioning in vivo, including cis factors like AT content, variable tandem repeats, and poly(dA:dT) tracts that function as chromatin barriers and trans factors such as chromatin remodeling complexes, transcription factors, histone-modifying enzymes, and RNA polymerases. In the last section, we review the biological role of chromatin in gene transcription, the evolution of gene regulation, and epigenetic phenomena. PMID:21646431

  4. Cell cycle-dependent control of homologous recombination.

    PubMed

    Zhao, Xin; Wei, Chengwen; Li, Jingjing; Xing, Poyuan; Li, Jingyao; Zheng, Sihao; Chen, Xuefeng

    2017-08-01

    DNA double-strand breaks (DSBs) are among the most deleterious type of DNA lesions threatening genome integrity. Homologous recombination (HR) and non-homologous end joining (NHEJ) are two major pathways to repair DSBs. HR requires a homologous template to direct DNA repair, and is generally recognized as a high-fidelity pathway. In contrast, NHEJ directly seals broken ends, but the repair product is often accompanied by sequence alterations. The choice of repair pathways is strictly controlled by the cell cycle. The occurrence of HR is restricted to late S to G2 phases while NHEJ operates predominantly in G1 phase, although it can act throughout most of the cell cycle. Deregulation of repair pathway choice can result in genotoxic consequences associated with cancers. How the cell cycle regulates the choice of HR and NHEJ has been extensively studied in the past decade. In this review, we will focus on the current progresses on how HR is controlled by the cell cycle in both Saccharomyces cerevisiae and mammals. Particular attention will be given to how cyclin-dependent kinases modulate DSB end resection, DNA damage checkpoint signaling, repair and processing of recombination intermediates. In addition, we will discuss recent findings on how HR is repressed in G1 and M phases by the cell cycle. © The Author 2017. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Protein disulfide isomerase is essential for viability in Saccharomyces cerevisiae.

    PubMed

    Farquhar, R; Honey, N; Murant, S J; Bossier, P; Schultz, L; Montgomery, D; Ellis, R W; Freedman, R B; Tuite, M F

    1991-12-01

    Protein disulfide isomerase (PDI) is an enzyme involved in the catalysis of disulfide bond formation in secretory and cell-surface proteins. Using an oligodeoxyribonucleotide designed to detect the conserved 'thioredoxin-like' active site of vertebrate PDIs, we have isolated a gene encoding PDI from the lower eukaryote, Saccharomyces cerevisiae. The nucleotide sequence and deduced open reading frame of the cloned gene predict a 530-amino-acid (aa) protein of Mr 59,082 and a pI of 4.1, physical properties characteristic of mammalian PDIs. Furthermore, the aa sequence shows 30-32% identity with mammalian and avian PDI sequences and has a very similar overall organisation, namely the presence of two approx. 100-aa segments, each of which is repeated, with the most significant homologies to mammalian and avian PDIs being in the regions (a, a') that contain the conserved 'thioredoxin-like' active site. The N-terminal region has the characteristics of a cleavable secretory signal sequence and the C-terminal four aa (-His-Asp-Glu-Leu) are consistent with the protein being a component of the S. cerevisiae endoplasmic reticulum. Transformants carrying multiple copies of this gene (designated PDI1) have tenfold higher levels of PDI activity and overproduce a protein of the predicted Mr. The PDI1 gene is unique in the yeast genome and encodes a single 1.8-kb transcript that is not found in stationary phase cells. Disruption of the PDI1 gene is haplo-lethal indicating that the product of this gene is essential for viability.

  6. Chromosomes XIV and XVII of Saccharomyces cerevisiae constitute a single linkage group.

    PubMed Central

    Klapholz, S; Esposito, R E

    1982-01-01

    We present several lines of evidence that chromosomes XIV and XVII of Saccharomyces cerevisiae are not independent chromosomes, but rather constitute a single linkage group. Studies which made use of a new mapping method based on the haploidization-without-recombination meiotic phenotype of the spoll mutant initially indicated that markers on chromosomes XIV and XVII were linked. Tetrad analysis was used to establish gene-gene distances, and a new chromosome XIV map incorporating markers originally assigned to chromosome XVII was derived. During the course of trisomic segregation studies, we discovered that a 2n + 2 homothallic diploid, originally believed to be tetrasomic for chromosome XVII (now XIV), carries two normal chromosome XIV homologs and two aberrant homologs which appear to be deficient for a large portion of the right arm of XIV. The previous evidence that established chromosome XVII as an independent linkage group is discussed in the light of these findings. PMID:6761582

  7. Ntg2 of Saccharomyces cerevisiae repairs the oxidation products of 8-hydroxyguanine.

    PubMed

    Kim, J E; You, H J; Choi, J Y; Doetsch, P W; Kim, J S; Chung, M H

    2001-08-03

    In Escherichia coli, endonuclease III (endo III) repairs the oxidation products of 8-OHGua. However, the corresponding repair enzymes in eukaryotes have not been identified. Here we report that 8-hydroxyguanine (8-OHGua) is highly sensitive to further oxidation. We also show that Ntg2, a functional homolog of endo III in Saccharomyces cerevisiae, is capable of nicking the irradiated duplex DNA containing 8-OHGua. Moreover, Ntg2 formed a stable complex with the DNA upon incubation with NaBH(4). In contrast, Ntg1, another functional homolog of endo III, showed no such activities. These findings indicate that Ntg2 is, at least in part, responsible for repairing the oxidation products of 8-OHGua in eukaryotic cells.

  8. A Fine-Structure Map of Spontaneous Mitotic Crossovers in the Yeast Saccharomyces cerevisiae

    PubMed Central

    Lee, Phoebe S.; Greenwell, Patricia W.; Dominska, Margaret; Gawel, Malgorzata; Hamilton, Monica; Petes, Thomas D.

    2009-01-01

    Homologous recombination is an important mechanism for the repair of DNA damage in mitotically dividing cells. Mitotic crossovers between homologues with heterozygous alleles can produce two homozygous daughter cells (loss of heterozygosity), whereas crossovers between repeated genes on non-homologous chromosomes can result in translocations. Using a genetic system that allows selection of daughter cells that contain the reciprocal products of mitotic crossing over, we mapped crossovers and gene conversion events at a resolution of about 4 kb in a 120-kb region of chromosome V of Saccharomyces cerevisiae. The gene conversion tracts associated with mitotic crossovers are much longer (averaging about 12 kb) than the conversion tracts associated with meiotic recombination and are non-randomly distributed along the chromosome. In addition, about 40% of the conversion events have patterns of marker segregation that are most simply explained as reflecting the repair of a chromosome that was broken in G1 of the cell cycle. PMID:19282969

  9. Detection of homologous blood transfusion.

    PubMed

    Voss, S C; Thevis, M; Schinkothe, T; Schänzer, W

    2007-08-01

    The aim of the present study was to improve and validate a flow cytometric method for the detection of homologous blood transfusion in doping control analysis. A panel of eight different primary antibodies and two different phycoerythrin-conjugated secondary antibodies was used for the detection of different blood populations. The flow cytometer used in this study was the BD FACSArray instrument. Mixed red blood cell populations were prepared from phenotype known donors. Linearity, specificity, recovery, precision, robustness and interday-precision were tested for every primary antibody used in the presented assay. The technique of signal amplification was utilized for an improved separation of antigens with weak or heterozygous expression to improve the interpretation of histograms. The resulting method allowed to clearly identify mixed red blood cell populations in homologous blood transfusion samples containing 0.3 - 2.0 % of donor blood.

  10. Homologies in Physics and Astrophysics

    NASA Astrophysics Data System (ADS)

    Bartlett, David F.; Cumalat, J. P.

    2012-01-01

    The genes of humans and chimpanzees are homologs. These genes are - in large measure - identical. From this detailed observation, we naturally suppose that both species evolved from a common ancestor. In particle physics the ordinary observed particles and their superymmetric partners are thought to be homologs, generated by a common "ancestor” , the Higgs particle. Experiments at CERN currently are testing this comfortable analogy of physics with biology. Neither the Higgs boson nor any supersymmetric particle has yet been found. We speculate that a variety of objects are homologs - evidence of an as yet undeveloped quantum theory of gravity to replace Dark Matter. A purely astronomical homology is the Vc - σ o relation which places nearly spherical elliptical galaxies just above well-formed spirals (SA & SB). Here the asymptotically- flat, circular velocity Vc is observed to be between 1 and 2 times the central bulge velocity dispersion σo over the range 60 km/s< σo <400 km/s (Ferrarese 2002, Fig 3). The Vc - σ o relation is difficult to explain with self-consistent equilibrium galaxy models (Courteau et al 2007). Here we give an explanation based on the Sinusoidal Potential, a non-Newtonian potential in which φ =-GM Cos[ko r]/r and ko=2 π /400 pc. We relate the lower limit of 60 km/s to the thermal velocity of protons at the” Broadhurst/Hirano & Hartnett” lookback redshift Z=105.6. This is the redshift where what was 400 pc then expands to 128 h-1 Mpc today. Further, at this Z the temperature of the universe was close to the Hartree Energy of 2 times 13.6 eV, an energy where protons have an rms speed of about 60 km/s.

  11. Deep homology: a view from systematics.

    PubMed

    Scotland, Robert W

    2010-05-01

    Over the past decade, it has been discovered that disparate aspects of morphology - often of distantly related groups of organisms - are regulated by the same genetic regulatory mechanisms. Those discoveries provide a new perspective on morphological evolutionary change. A conceptual framework for exploring these research findings is termed 'deep homology'. A comparative framework for morphological relations of homology is provided that distinguishes analogy, homoplasy, plesiomorphy and synapomorphy. Four examples - three from plants and one from animals - demonstrate that homologous developmental mechanisms can regulate a range of morphological relations including analogy, homoplasy and examples of uncertain homology. Deep homology is part of a much wider range of phenomena in which biological (genes, regulatory mechanisms, morphological traits) and phylogenetic levels of homology can both be disassociated. Therefore, to understand homology, precise, comparative, independent statements of both biological and phylogenetic levels of homology are necessary.

  12. DNA End Resection: Nucleases Team Up with the Right Partners to Initiate Homologous Recombination.

    PubMed

    Cejka, Petr

    2015-09-18

    The repair of DNA double-strand breaks by homologous recombination commences by nucleolytic degradation of the 5'-terminated strand of the DNA break. This leads to the formation of 3'-tailed DNA, which serves as a substrate for the strand exchange protein Rad51. The nucleoprotein filament then invades homologous DNA to drive template-directed repair. In this review, I discuss mainly the mechanisms of DNA end resection in Saccharomyces cerevisiae, which includes short-range resection by Mre11-Rad50-Xrs2 and Sae2, as well as processive long-range resection by Sgs1-Dna2 or Exo1 pathways. Resection mechanisms are highly conserved between yeast and humans, and analogous machineries are found in prokaryotes as well.

  13. Transformation-associated recombination between diverged and homologous DNA repeats is induced by strand breaks

    SciTech Connect

    Larionov, V.; Kouprina, N. |; Edlarov, M. |; Perkins, E.; Porter, G.; Resnick, M.A.

    1993-12-31

    Rearrangement and deletion within plasmid DNA is commonly observed during transformation. We have examined the mechanisms of transformation-associated recombination in the yeast Saccharomyces cerevisiae using a plasmid system which allowed the effects of physical state and/or extent of homology on recombination to be studied. The plasmid contains homologous or diverged (19%) DNA repeats separated by a genetically detectable color marker. Recombination during transformation for covalently closed circular plasmids was over 100-fold more frequent than during mitotic growth. The frequency of recombination is partly dependent on the method of transformation in that procedures involving lithium acetate or spheroplasting yield higher frequencies than electroporation. When present in the repeats, unique single-strand breaks that are ligatable, as well as double-strand breaks, lead to high levels of recombination between diverged and identical repeats. The transformation-associated recombination between repeat DNA`s is under the influence of the RADS2, RADI and the RNCI genes,

  14. Differential gene expression of mammalian SPO11/TOP6A homologs during meiosis.

    PubMed

    Shannon, M; Richardson, L; Christian, A; Handel, M A; Thelen, M P

    1999-12-03

    As the initiator of DNA double-strand breaks during meiosis in Saccharomyces cerevisiae, the SPO11 protein is essential for recombination. Similarity between SPO11 and archaebacterial TOP6A proteins points to evolutionary specialization of a DNA cleavage function for meiotic recombination. To determine whether this extends to mammals, we isolated and characterized mouse and human SPO11 cDNAs. Mammalian SPO11 genes were found to be expressed at high levels only in testis, wherein mouse Spo11 transcript is restricted primarily to meiotic germ cells and is maximally expressed at midpachynema. Mouse Spo11 is located near the distal end of chromosome 2, while human SPO11 is found in the homologous position of chromosome 20q13.2-13.3, a region that is amplified in some breast cancers. Sequence homology and differential expression together support a highly conserved role for SPO11 in the enzymatic cleavage of DNA that accompanies meiotic recombination.

  15. Heterologous expression of Candida albicans Pma1p in Saccharomyces cerevisiae

    PubMed Central

    Keniya, Mikhail V.; Cannon, Richard D.; Nguyễn, ẤnBình; Tyndall, Joel D. A.; Monk, Brian C.

    2015-01-01

    Candida albicans is a major cause of opportunistic and life-threatening systemic fungal infections, especially in the immunocompromised. The plasma membrane proton pumping ATPase (Pma1p) is an essential enzyme that generates the electrochemical gradient required for cell growth. We expressed C. albicans Pma1p (CaPma1p) in Saccharomyces cerevisiae to facilitate screening for inhibitors. Replacement of S. cerevisiae PMA1 with C. albicans PMA1 gave clones expressing CaPma1p that grew slowly at low pH. CaPma1p was expressed at significantly lower levels and had lower specific activity than the native Pma1p. It also conferred pH sensitivity, hygromycin B resistance and low levels of glucose-dependent proton pumping. Recombination between CaPMA1 and the homologous non-essential ScPMA2 resulted in chimeric suppressor mutants that expressed functional CaPma1p with improved H+-ATPase activity and growth rates at low pH. Molecular models of suppressor mutants identified specific amino acids (between 531-595 in CaPma1p) that may affect regulation of the activity of Pma1p oligomers in S. cerevisiae. A modified CaPma1p chimeric construct containing only 5 amino acids from ScPma2p enabled the expression of a fully functional enzyme for drug screens and structural resolution. PMID:23374681

  16. Comprehensive structural and substrate specificity classification of the Saccharomyces cerevisiae methyltransferome.

    PubMed

    Wlodarski, Tomasz; Kutner, Jan; Towpik, Joanna; Knizewski, Lukasz; Rychlewski, Leszek; Kudlicki, Andrzej; Rowicka, Maga; Dziembowski, Andrzej; Ginalski, Krzysztof

    2011-01-01

    Methylation is one of the most common chemical modifications of biologically active molecules and it occurs in all life forms. Its functional role is very diverse and involves many essential cellular processes, such as signal transduction, transcriptional control, biosynthesis, and metabolism. Here, we provide further insight into the enzymatic methylation in S. cerevisiae by conducting a comprehensive structural and functional survey of all the methyltransferases encoded in its genome. Using distant homology detection and fold recognition, we found that the S. cerevisiae methyltransferome comprises 86 MTases (53 well-known and 33 putative with unknown substrate specificity). Structural classification of their catalytic domains shows that these enzymes may adopt nine different folds, the most common being the Rossmann-like. We also analyzed the domain architecture of these proteins and identified several new domain contexts. Interestingly, we found that the majority of MTase genes are periodically expressed during yeast metabolic cycle. This finding, together with calculated isoelectric point, fold assignment and cellular localization, was used to develop a novel approach for predicting substrate specificity. Using this approach, we predicted the general substrates for 24 of 33 putative MTases and confirmed these predictions experimentally in both cases tested. Finally, we show that, in S. cerevisiae, methylation is carried out by 34 RNA MTases, 32 protein MTases, eight small molecule MTases, three lipid MTases, and nine MTases with still unknown substrate specificity.

  17. FPG1, a gene involved in foam formation in Saccharomyces cerevisiae.

    PubMed

    Blasco, Lucía; Veiga-Crespo, Patricia; Villa, Tomás G

    2011-06-01

    Foam formation in fermentations conducted by Saccharomyces cerevisiae, either at the beginning of the fermentation process or at the end in the case of sparkling wines, is due, to a large extent, to cell wall mannoproteins, which provide hydrophobicity to the yeast cells and favour their floating index as well as stabilization of the foam. The foam may be an undesirable by-product if it accumulates on top of the fermentation tanks, but its formation is a good property in either beer or sparkling wines. It is therefore important to know the yeast genes involved in foam formation, in order to suppress or potentiate their expression according to the end product to be obtained. The present study identified and characterized, for the first time in an oenological S. cerevisiae strain, a gene involved in foam formation, named FPG1 (foam-promoting gene). The protein encoded by FPG1 is a mannoprotein precursor present in the cell wall and somewhat homologous to Awa1p, a foaming protein described in a sake S. cerevisiae strain. A foamless strain was prepared by FPG1 deletion, and a foam hyper-producing strain was also constructed, thus allowing the conclusion that Fpg1p is a mannoprotein involved in yeast frothing.

  18. Improvement of lactic acid production in Saccharomyces cerevisiae by a deletion of ssb1.

    PubMed

    Lee, Jinsuk J; Crook, Nathan; Sun, Jie; Alper, Hal S

    2016-01-01

    Polylactic acid (PLA) is an important renewable polymer, but current processes for producing its precursor, lactic acid, suffer from process inefficiencies related to the use of bacterial hosts. Therefore, improving the capacity of Saccharomyces cerevisiae to produce lactic acid is a promising approach to improve industrial production of lactic acid. As one such improvement required, the lactic acid tolerance of yeast must be significantly increased. To enable improved tolerance, we employed an RNAi-mediated genome-wide expression knockdown approach as a means to rapidly identify potential genetic targets. In this approach, several gene knockdown targets were identified which confer increased acid tolerance to S. cerevisiae BY4741, of which knockdown of the ribosome-associated chaperone SSB1 conferred the highest increase (52%). This target was then transferred into a lactic acid-overproducing strain of S. cerevisiae CEN.PK in the form of a knockout and the resulting strain demonstrated up to 33% increased cell growth, 58% increased glucose consumption, and 60% increased L-lactic acid production. As SSB1 contains a close functional homolog SSB2 in yeast, this result was counterintuitive and may point to as-yet-undefined functional differences between SSB1 and SSB2 related to lactic acid production. The final strain produced over 50 g/L of lactic acid in under 60 h of fermentation.

  19. Cloning and expression of two chitin deacetylase genes of Saccharomyces cerevisiae.

    PubMed

    Mishra, C; Semino, C E; McCreath, K J; de la Vega, H; Jones, B J; Specht, C A; Robbins, P W

    1997-03-30

    Chitin deacetylase (EC 3.5.1.41), which hydrolyses the N-acetamido groups of N-acetyl-D-glucosamine residues in chitin, has been demonstrated in crude extracts from sporulating Saccharomyces cerevisiae. Two S. cerevisiae open reading frames (ORFs), identified by the Yeast Genome Project, have protein sequence homology to a chitin deacetylase from Mucor rouxii. Northern blot hybridizations show each ORF was transcribed in diploid cells after transfer to sporulation medium and prior to formation of asci. Each ORF was cloned in a vector under transcriptional control of the GAL 1, 10 promoter and introduced back into haploid strains of S. cerevisiae. Chitin deacetylase activity was detected by in vitro assays from vegetative cells grown in galactose. Chemical analysis of these cells also demonstrated the synthesis of chitosam in vivo. Both recombinant chitin deacetylases showed similar qualitative and quantitative activities toward chitooligosaccharides in vitro. A diploid strain deleted to both ORFs, when sporulated, did not show deacetylase activity. The mutant spores were hypersensitive to lytic enzymes (Glusulase or Zymolyase).

  20. Dissection of Saccharomyces cerevisiae asci.

    PubMed

    Morin, Audrey; Moores, Adrian W; Sacher, Michael

    2009-05-19

    Yeast is a highly tractable model system that is used to study many different cellular processes. The common laboratory strain Saccharomyces cerevisiae exists in either a haploid or diploid state. The ability to combine alleles from two haploids and the ability to introduce modifications to the genome requires the production and dissection of asci. Asci production from haploid cells begins with the mating of two yeast haploid strains with compatible mating types to produce a diploid strain. This can be accomplished in a number of ways either on solid medium or in liquid. It is advantageous to select for the diploids in medium that selectively promotes their growth compared to either of the haploid strains. The diploids are then allowed to sporulate on nutrient-poor medium to form asci, a bundle of four haploid daughter cells resulting from meiotic reproduction of the diploid. A mixture of vegetative cells and asci is then treated with the enzyme zymolyase to digest away the membrane sac surrounding the ascospores of the asci. Using micromanipulation with a microneedle under a dissection microscope one can pick up individual asci and separate and relocate the four ascopores. Dissected asci are grown for several days and tested for the markers or alleles of interest by replica plating onto appropriate selective media.

  1. Lead toxicity in Saccharomyces cerevisiae.

    PubMed

    Van der Heggen, Maarten; Martins, Sara; Flores, Gisela; Soares, Eduardo V

    2010-12-01

    The effect of Pb on Saccharomyces cerevisiae cell structure and function was examined. Membrane integrity was assessed by the release of UV-absorbing compounds and by the intracellular K(+) efflux. No leakage of UV(260)-absorbing compounds or loss of K(+) were observed in Pb (until 1,000 μmol/l) treated cells up to 30 min; these results suggest that plasma membrane seems not to be the immediate and primary target of Pb toxicity. The effect of Pb on yeast metabolism was examined using the fluorescent probe FUN-1 and compared with the ability to reproduce, evaluated by colony-forming units counting. The exposition of yeast cells, during 60 min to 1,000 μmol/l Pb, induces a decrease in the ability to process FUN-1 although the cells retain its proliferation capacity. A more prolonged contact time (120 min) of yeast cells with Pb induces a marked (> 50%) loss of yeast cells metabolic activity and replication competence through a mechanism which most likely requires protein synthesis.

  2. Proteomics of Saccharomyces cerevisiae Organelles*

    PubMed Central

    Wiederhold, Elena; Veenhoff, Liesbeth M.; Poolman, Bert; Slotboom, Dirk Jan

    2010-01-01

    Knowledge of the subcellular localization of proteins is indispensable to understand their physiological roles. In the past decade, 18 studies have been performed to analyze the protein content of isolated organelles from Saccharomyces cerevisiae. Here, we integrate the data sets and compare them with other large scale studies on protein localization and abundance. We evaluate the completeness and reliability of the organelle proteomics studies. Reliability depends on the purity of the organelle preparations, which unavoidably contain (small) amounts of contaminants from different locations. Quantitative proteomics methods can be used to distinguish between true organellar constituents and contaminants. Completeness is compromised when loosely or dynamically associated proteins are lost during organelle preparation and also depends on the sensitivity of the analytical methods for protein detection. There is a clear trend in the data from the 18 organelle proteomics studies showing that proteins of low abundance frequently escape detection. Proteins with unknown function or cellular abundance are also infrequently detected, indicating that these proteins may not be expressed under the conditions used. We discuss that the yeast organelle proteomics studies provide powerful lead data for further detailed studies and that methodological advances in organelle preparation and in protein detection may help to improve the completeness and reliability of the data. PMID:19955081

  3. The AUR1 gene in Saccharomyces cerevisiae encodes dominant resistance to the antifungal agent aureobasidin A (LY295337).

    PubMed Central

    Heidler, S A; Radding, J A

    1995-01-01

    Aureobasidin A (LY295337) is a cyclic depsipeptide antifungal agent with activity against Candida spp. The mechanism of action of LY295337 remains unknown. LY295337 also shows activity against the yeast Saccharomyces cerevisiae. Generation of a mutant of S. cerevisiae resistant to LY295337 is reported. Resistance was found to reside in a dominant mutation of a single gene which has been named AUR1 (aureobasidin resistance). This gene was cloned and sequenced. A search for homologous sequences in GenBank and by BLAST did not elucidate the function of this gene, although sequence homology too an open reading frame from the Saccharomyces genome sequencing project and several other adjacent loci was noted. Deletion of aur1 was accomplished in a diploid S. cerevisiae strain. Subsequent sporulation and dissection of the aur1/aur1 delta diploid resulted in tetrads demonstrating 2:2 segregation of viable and nonviable spores, indicating that deletion of aur1 is lethal. As LY295337 is fungicidal and deletion of aur1 is lethal, aur1 represents a potential candidate for the target of LY295337. PMID:8593016

  4. Primers-4-Yeast: a comprehensive web tool for planning primers for Saccharomyces cerevisiae.

    PubMed

    Yofe, Ido; Schuldiner, Maya

    2014-02-01

    The budding yeast Saccharomyces cerevisiae is a key model organism of functional genomics, due to its ease and speed of genetic manipulations. In fact, in this yeast, the requirement for homologous sequences for recombination purposes is so small that 40 base pairs (bp) are sufficient. Hence, an enormous variety of genetic manipulations can be performed by simply planning primers with the correct homology, using a defined set of transformation plasmids. Although designing primers for yeast transformations and for the verification of their correct insertion is a common task in all yeast laboratories, primer planning is usually done manually and a tool that would enable easy, automated primer planning for the yeast research community is still lacking. Here we introduce Primers-4-Yeast, a web tool that allows primers to be designed in batches for S. cerevisiae gene-targeting transformations, and for the validation of correct insertions. This novel tool enables fast, automated, accurate primer planning for large sets of genes, introduces consistency in primer planning and is therefore suggested to serve as a standard in yeast research. Primers-4-Yeast is available at: http://www.weizmann.ac.il/Primers-4-Yeast

  5. Definition and identification of homology domains.

    PubMed

    Lawrence, C B; Goldman, D A

    1988-03-01

    A method is described for identifying and evaluating regions of significant similarity between two sequences. The notion of a 'homology domain' is employed which defines the boundaries of a region of sequence homology containing no insertions or deletions. The relative significance of different potential homology domains is evaluated using a non-linear similarity score related to the probability of finding the observed level of similarity in the region by chance. The sensitivity of the method is demonstrated by simulating the evolution of homology domains and applying the method to their detection. Several examples of the use of homology domain identification are given.

  6. Nonrandom distribution of interhomolog recombination events induced by breakage of a dicentric chromosome in Saccharomyces cerevisiae.

    PubMed

    Song, Wei; Gawel, Malgorzata; Dominska, Margaret; Greenwell, Patricia W; Hazkani-Covo, Einat; Bloom, Kerry; Petes, Thomas D

    2013-05-01

    Dicentric chromosomes undergo breakage in mitosis, resulting in chromosome deletions, duplications, and translocations. In this study, we map chromosome break sites of dicentrics in Saccharomyces cerevisiae by a mitotic recombination assay. The assay uses a diploid strain in which one homolog has a conditional centromere in addition to a wild-type centromere, and the other homolog has only the wild-type centromere; the conditional centromere is inactive when cells are grown in galactose and is activated when the cells are switched to glucose. In addition, the two homologs are distinguishable by multiple single-nucleotide polymorphisms (SNPs). Under conditions in which the conditional centromere is activated, the functionally dicentric chromosome undergoes double-stranded DNA breaks (DSBs) that can be repaired by mitotic recombination with the homolog. Such recombination events often lead to loss of heterozygosity (LOH) of SNPs that are centromere distal to the crossover. Using a PCR-based assay, we determined the position of LOH in multiple independent recombination events to a resolution of ∼4 kb. This analysis shows that dicentric chromosomes have recombination breakpoints that are broadly distributed between the two centromeres, although there is a clustering of breakpoints within 10 kb of the conditional centromere.

  7. Establishing homologies in protein sequences

    NASA Technical Reports Server (NTRS)

    Dayhoff, M. O.; Barker, W. C.; Hunt, L. T.

    1983-01-01

    Computer-based statistical techniques used to determine homologies between proteins occurring in different species are reviewed. The technique is based on comparison of two protein sequences, either by relating all segments of a given length in one sequence to all segments of the second or by finding the best alignment of the two sequences. Approaches discussed include selection using printed tabulations, identification of very similar sequences, and computer searches of a database. The use of the SEARCH, RELATE, and ALIGN programs (Dayhoff, 1979) is explained; sample data are presented in graphs, diagrams, and tables and the construction of scoring matrices is considered.

  8. Establishing homologies in protein sequences

    NASA Technical Reports Server (NTRS)

    Dayhoff, M. O.; Barker, W. C.; Hunt, L. T.

    1983-01-01

    Computer-based statistical techniques used to determine homologies between proteins occurring in different species are reviewed. The technique is based on comparison of two protein sequences, either by relating all segments of a given length in one sequence to all segments of the second or by finding the best alignment of the two sequences. Approaches discussed include selection using printed tabulations, identification of very similar sequences, and computer searches of a database. The use of the SEARCH, RELATE, and ALIGN programs (Dayhoff, 1979) is explained; sample data are presented in graphs, diagrams, and tables and the construction of scoring matrices is considered.

  9. Saccharomyces cerevisiae engineered for xylose metabolism exhibits a respiratory response

    Treesearch

    Yong-Su Jin; Jose M. Laplaza; Thomas W. Jeffries

    2004-01-01

    Native strains of Saccharomyces cerevisiae do not assimilate xylose. S. cerevisiae engineered for D-xylose utilization through the heterologous expression of genes for aldose reductase ( XYL1), xylitol dehydrogenase (XYL2), and D-xylulokinase ( XYL3 or XKS1) produce only limited amounts of ethanol in xylose medium. In recombinant S. cerevisiae expressing XYL1, XYL2,...

  10. Paralogous histidine biosynthetic genes: evolutionary analysis of the Saccharomyces cerevisiae HIS6 and HIS7 genes.

    PubMed

    Fani, R; Tamburini, E; Mori, E; Lazcano, A; Liò, P; Barberio, C; Casalone, E; Cavalieri, D; Perito, B; Polsinelli, M

    1997-09-15

    The HIS6 gene from Saccharomyces cerevisiae strain YNN282 is able to complement both the S. cerevisiae his6 and the Escherichia coli hisA mutations. The cloning and the nucleotide sequence indicated that this gene encodes a putative phosphoribosyl-5-amino-1-phosphoribosyl-4-imidazolecarboxiamide isomerase (5' Pro-FAR isomerase, EC 5.3.1.16) of 261 amino acids, with a molecular weight of 29,554. The HIS6 gene product shares a significant degree of sequence similarity with the prokaryotic HisA proteins and HisF proteins, and with the C-terminal domain of the S. cerevisiae HIS7 protein (homologous to HisF), indicating that the yeast HIS6 and HIS7 genes are paralogous. Moreover, the HIS6 gene is organized into two homologous modules half the size of the entire gene, typical of all the known prokaryotic hisA and hisF genes. The structure of the yeast HIS6 gene supports the two-step evolutionary model suggested by Fani et al. (J. Mol. Evol. 1994; 38: 489-495) to explain the present-day hisA and hisF genes. According to this idea, the hisF gene originated from the duplication of an ancestral hisA gene which, in turn, was the result of an earlier gene elongation event involving an ancestral module half the size of the extant gene. Results reported in this paper also suggest that these two successive paralogous gene duplications took probably place in the early steps of molecular evolution of the histidine pathway, well before the diversification of the three domains, and that this pathway was one of the metabolic activities of the last common ancestor. The molecular evolution of the yeast HIS6 and HIS7 genes is also discussed.

  11. Competitive repair by naturally dispersed repetitive DNA during non-allelic homologous recombination

    SciTech Connect

    Hoang, Margaret L.; Tan, Frederick J.; Lai, David C.; Celniker, Sue E.; Hoskins, Roger A.; Dunham, Maitreya J.; Zheng, Yixian; Koshland, Douglas

    2010-08-27

    Genome rearrangements often result from non-allelic homologous recombination (NAHR) between repetitive DNA elements dispersed throughout the genome. Here we systematically analyze NAHR between Ty retrotransposons using a genome-wide approach that exploits unique features of Saccharomyces cerevisiae purebred and Saccharomyces cerevisiae/Saccharomyces bayanus hybrid diploids. We find that DNA double-strand breaks (DSBs) induce NAHR-dependent rearrangements using Ty elements located 12 to 48 kilobases distal to the break site. This break-distal recombination (BDR) occurs frequently, even when allelic recombination can repair the break using the homolog. Robust BDR-dependent NAHR demonstrates that sequences very distal to DSBs can effectively compete with proximal sequences for repair of the break. In addition, our analysis of NAHR partner choice between Ty repeats shows that intrachromosomal Ty partners are preferred despite the abundance of potential interchromosomal Ty partners that share higher sequence identity. This competitive advantage of intrachromosomal Tys results from the relative efficiencies of different NAHR repair pathways. Finally, NAHR generates deleterious rearrangements more frequently when DSBs occur outside rather than within a Ty repeat. These findings yield insights into mechanisms of repeat-mediated genome rearrangements associated with evolution and cancer.

  12. Expression of monellin in a food-grade delivery system in Saccharomyces cerevisiae.

    PubMed

    Liu, Jun; Yan, Da-zhong; Zhao, Sheng-jun

    2015-10-01

    Genetically modified (GM) foods have caused much controversy. Construction of a food-grade delivery system is a desirable technique with presumptive impact on industrial applications from the perspective of bio-safety. The aim of this study was to construct a food-grade delivery system for Saccharomyces cerevisiae and to study the expression of monellin from the berries of the West African forest plant Dioscoreophyllum cumminsii in this system. A food-grade system for S. cerevisiae was constructed based on ribosomal DNA (rDNA)-mediated homologous recombination to enable high-copy-number integration of the expression cassette inserted into the rDNA locus. A copper resistance gene (CUP1) was used as the selection marker for yeast transformation. Because variants of transformants containing different copy numbers at the CUP1 locus can be readily selected after growth in the presence of elevated copper levels, we suggest that this system would prove useful in the generation of tandemly iterated gene clusters. Using this food-grade system, a single-chain monellin gene was heterologously expressed. The yield of monellin reached a maximum of 675 mg L(-1) . This system harbors exclusively S. cerevisiae DNA with no antibiotic resistance genes, and it should therefore be appropriate for safe use in the food industry. Monellin was shown to be expressed in this food-grade delivery system. To our knowledge, this is the first report so far on expression of monellin in a food-grade expression system in S. cerevisiae. © 2014 Society of Chemical Industry.

  13. Progress in metabolic engineering of Saccharomyces cerevisiae.

    PubMed

    Nevoigt, Elke

    2008-09-01

    The traditional use of the yeast Saccharomyces cerevisiae in alcoholic fermentation has, over time, resulted in substantial accumulated knowledge concerning genetics, physiology, and biochemistry as well as genetic engineering and fermentation technologies. S. cerevisiae has become a platform organism for developing metabolic engineering strategies, methods, and tools. The current review discusses the relevance of several engineering strategies, such as rational and inverse metabolic engineering, evolutionary engineering, and global transcription machinery engineering, in yeast strain improvement. It also summarizes existing tools for fine-tuning and regulating enzyme activities and thus metabolic pathways. Recent examples of yeast metabolic engineering for food, beverage, and industrial biotechnology (bioethanol and bulk and fine chemicals) follow. S. cerevisiae currently enjoys increasing popularity as a production organism in industrial ("white") biotechnology due to its inherent tolerance of low pH values and high ethanol and inhibitor concentrations and its ability to grow anaerobically. Attention is paid to utilizing lignocellulosic biomass as a potential substrate.

  14. [The ABC transporters of Saccharomyces cerevisiae].

    PubMed

    Wawrzycka, Donata

    2011-01-01

    The ABC transporters (ATP Binding Cassette) compose one of the bigest protein family with the great medical, industrial and economical impact. They are found in all organism from bacteria to man. ABC proteins are responsible for resistance of microorganism to antibiotics and fungicides and multidrug resistance of cancer cells. Mutations in ABC transporters genes cause seriuos deseases like cystic fibrosis, adrenoleucodystrophy or ataxia. Transport catalized by ABC proteins is charged with energy from the ATP hydrolysis. The ABC superfamily contains transporters, canals, receptors. Analysis of the Saccharomyces cerevisiae genome allowed to distinguish 30 potential ABC proteins which are classified into 6 subfamilies. The structural and functional similarity of the yeast and human ABC proteins allowes to use the S. cerevisiae as a model organism for ABC transporters characterisation. In this work the present state of knowleadge on yeast S. cerevisiae ABC proteins was summarised.

  15. [Urinary infection by Saccharomyces cerevisiae: Emerging yeast?].

    PubMed

    Elkhihal, B; Elhalimi, M; Ghfir, B; Mostachi, A; Lyagoubi, M; Aoufi, S

    2015-12-01

    Saccharomyces cerevisiae is a commensal yeast of the digestive, respiratory and genito-urinary tract. It is widely used as a probiotic for the treatment of post-antibiotic diarrhea. It most often occurs in immunocompromised patients frequently causing fungemia. We report the case of an adult diabetic patient who had a urinary tract infection due to S. cerevisiae. The disease started with urination associated with urinary frequency burns without fever. The diagnosis was established by the presence of yeasts on direct examination and positivity of culture on Sabouraud-chloramphenicol three times. The auxanogramme gallery (Auxacolor BioRad(®)) allowed the identification of S. cerevisiae. The patient was put on fluconazole with good outcome. This observation points out that this is an opportunistic yeast in immunocompromised patients. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  16. Saccharomyces cerevisiae metabolism in ecological context.

    PubMed

    Jouhten, Paula; Ponomarova, Olga; Gonzalez, Ramon; Patil, Kiran R

    2016-11-01

    The architecture and regulation of Saccharomyces cerevisiae metabolic network are among the best studied owing to its widespread use in both basic research and industry. Yet, several recent studies have revealed notable limitations in explaining genotype-metabolic phenotype relations in this yeast, especially when concerning multiple genetic/environmental perturbations. Apparently unexpected genotype-phenotype relations may originate in the evolutionarily shaped cellular operating principles being hidden in common laboratory conditions. Predecessors of laboratory S. cerevisiae strains, the wild and the domesticated yeasts, have been evolutionarily shaped by highly variable environments, very distinct from laboratory conditions, and most interestingly by social life within microbial communities. Here we present a brief review of the genotypic and phenotypic peculiarities of S. cerevisiae in the context of its social lifestyle beyond laboratory environments. Accounting for this ecological context and the origin of the laboratory strains in experimental design and data analysis would be essential in improving the understanding of genotype-environment-phenotype relationships.

  17. Integral Membrane Protein Expression in Saccharomyces cerevisiae.

    PubMed

    Boswell-Casteel, Rebba C; Johnson, Jennifer M; Stroud, Robert M; Hays, Franklin A

    2016-01-01

    Eukaryotic integral membrane proteins are challenging targets for crystallography or functional characterization in a purified state. Since expression is often a limiting factor when studying this difficult class of biological macromolecules, the intent of this chapter is to focus on the expression of eukaryotic integral membrane proteins (IMPs) using the model organism Saccharomyces cerevisiae. S. cerevisiae is a prime candidate for the expression of eukaryotic IMPs because it offers the convenience of using episomal expression plasmids, selection of positive transformants, posttranslational modifications, and it can properly fold and target IMPs. Here we present a generalized protocol and insights based on our collective knowledge as an aid to overcoming the challenges faced when expressing eukaryotic IMPs in S. cerevisiae.

  18. Base pair switching by interconversion of sugar puckers in DNA extended by proteins of RecA-family: A model for homology search in homologous genetic recombination

    PubMed Central

    Nishinaka, Taro; Shinohara, Akira; Ito, Yutaka; Yokoyama, Shigeyuki; Shibata, Takehiko

    1998-01-01

    Escherichia coli RecA is a representative of proteins from the RecA family, which promote homologous pairing and strand exchange between double-stranded DNA and single-stranded DNA. These reactions are essential for homologous genetic recombination in various organisms. From NMR studies, we previously reported a novel deoxyribose-base stacking interaction between adjacent residues on the extended single-stranded DNA bound to RecA protein. In this study, we found that the same DNA structure was induced by the binding to Saccharomyces cerevisiae Rad51 protein, indicating that the unique DNA structure induced by the binding to RecA-homologs was conserved from prokaryotes to eukaryotes. On the basis of this structure, we have formulated the structure of duplex DNA within filaments formed by RecA protein and its homologs. Two types of molecular structures are presented. One is the duplex structure that has the N-type sugar pucker. Its helical pitch is ≈95 Å (18.6 bp/turn), corresponding to that of an active, or ATP-form of the RecA filament. The other is one that has the S-type sugar pucker. Its helical pitch is ≈64 Å (12.5 bp/turn), corresponding to that of an inactive, or ADP-form of the RecA filament. During this modeling, we found that the interconversion of sugar puckers between the N-type and the S-type rotates bases horizontally, while maintaining the deoxyribose-base stacking interaction. We propose that this base rotation enables base pair switching between double-stranded DNA and single-stranded DNA to take place, facilitating homologous pairing and strand exchange. A possible mechanism for strand exchange involving DNA rotation also is discussed. PMID:9736691

  19. Structural homologies among the hemopoietins.

    PubMed Central

    Schrader, J W; Ziltener, H J; Leslie, K B

    1986-01-01

    A group of cytokines characterized by a common set of target cells--namely, the pluripotential hemopoietic stem cells or their cellular derivatives--share similarities in the amino acid sequence at their N terminus or in the putative signal peptide immediately prior to the published N terminus. Murine P-cell-stimulating factor (PSF), murine and human interleukin 2 (IL-2), murine and human granulocyte-macrophage colony-stimulating factor (GM-CSF), human erythropoietin, and human interleukin 1 beta all share alanine as the N-terminal amino acid and have some similarities in the succeeding three or four amino acids. In the case of murine PSF and GM-CSF, the six N-terminal amino acids are readily cleaved from mature molecules and are lacking from the N-terminal amino acid sequences reported initially. A sixth cytokine, colony-stimulating factor 1, has an alanine followed by a similar pattern of five amino acids at the end of the putative signal peptide. GM-CSF and IL-2 have more extensive homology, about 25% of residues being identical in three regions that comprise about 70% of the molecules. Only minor similarities of uncertain significance were found among the complete amino acid sequences of the other cytokines. Although its evolutionary origin is uncertain, the homology around the N terminus may provide a structural marker for a group of cytokines active on the pluripotential hemopoietic stem cell and its derivatives. PMID:3085095

  20. Orientation Dependence in Homologous Recombination

    PubMed Central

    Yamamoto, K.; Takahashi, N.; Fujitani, Y.; Yoshikura, H.; Kobayashi, I.

    1996-01-01

    Homologous recombination was investigated in Escherichia coli with two plasmids, each carrying the homologous region (two defective neo genes, one with an amino-end deletion and the other with a carboxyl-end deletion) in either direct or inverted orientation. Recombination efficiency was measured in recBC sbcBC and recBC sbcA strains in three ways. First, we measured the frequency of cells carrying neo(+) recombinant plasmids in stationary phase. Recombination between direct repeats was much more frequent than between inverted repeats in the recBC sbcBC strain but was equally frequent in the two substrates in the recBC sbcA strain. Second, the fluctuation test was used to exclude bias by a rate difference between the recombinant and parental plasmids and led to the same conclusion. Third, direct selection for recombinants just after transformation with or without substrate double-strand breaks yielded essentially the same results. Double-strand breaks elevated recombination in both the strains and in both substrates. These results are consistant with our previous findings that the major route of recombination in recBC sbcBC strains generates only one recombinant DNA from two DNAs and in recBC sbcA strains generates two recombinant DNAs from two DNAs. PMID:8722759

  1. A Phenomenological and Dynamic View of Homology: Homologs as Persistently Reproducible Modules.

    PubMed

    Suzuki, Daichi G; Tanaka, Senji

    2017-01-01

    Homology is a fundamental concept in biology. However, the metaphysical status of homology, especially whether a homolog is a part of an individual or a member of a natural kind, is still a matter of intense debate. The proponents of the individuality view of homology criticize the natural kind view of homology by pointing out that homologs are subject to evolutionary transformation, and natural kinds do not change in the evolutionary process. Conversely, some proponents of the natural kind view of homology argue that a homolog can be construed both as a part of an individual and a member of a natural kind. They adopt the Homeostatic Property Cluster (HPC) theory of natural kinds, and the theory seems to strongly support their construal. Note that this construal implies the acceptance of essentialism. However, looking back on the history of the concept of homology, we should not overlook the fact that the individuality view was proposed to reject the essentialist interpretation of homology. Moreover, the essentialist notions of natural kinds can, in our view, mislead biologists about the phenomena of homology. Consequently, we need a non-essentialist view of homology, which we name the "persistently reproducible module" (PRM) view. This view highlights both the individual-like and kind-like aspects of homologs while stripping down both essentialist and anti-essentialist interpretations of homology. In this article, we articulate the PRM view of homology and explain why it is recommended over the other two views.

  2. Homology Requirements and Competition between Gene Conversion and Break-Induced Replication during Double-Strand Break Repair.

    PubMed

    Mehta, Anuja; Beach, Annette; Haber, James E

    2017-02-02

    Saccharomyces cerevisiae mating-type switching is initiated by a double-strand break (DSB) at MATa, leaving one cut end perfectly homologous to the HMLα donor, while the second end must be processed to remove a non-homologous tail before completing repair by gene conversion (GC). When homology at the matched end is ≤150 bp, efficient repair depends on the recombination enhancer, which tethers HMLα near the DSB. Thus, homology shorter than an apparent minimum efficient processing segment can be rescued by tethering the donor near the break. When homology at the second end is ≤150 bp, second-end capture becomes inefficient and repair shifts from GC to break-induced replication (BIR). But when pol32 or pif1 mutants block BIR, GC increases 3-fold, indicating that the steps blocked by these mutations are reversible. With short second-end homology, absence of the RecQ helicase Sgs1 promotes gene conversion, whereas deletion of the FANCM-related Mph1 helicase promotes BIR.

  3. Sterol methylation in Saccharomyces cerevisiae.

    PubMed Central

    McCammon, M T; Hartmann, M A; Bottema, C D; Parks, L W

    1984-01-01

    Various nystatin-resistant mutants defective in S-adenosylmethionine: delta 24-sterol-C-methyltransferase (EC 2.1.1.41) were shown to possess alleles of the same gene, erg6. The genetic map location of erg6 was shown to be close to trp1 on chromosome 4. Despite the single locus for erg6, S-adenosylmethionine: delta 24-sterol-C-methyltransferase enzyme activity was found in three separate fractions: mitochondria, microsomes, and the "floating lipid layer." The amount of activity in each fraction could be manipulated by assay conditions. The lipids and lipid synthesis of mutants of Saccharomyces cerevisiae defective in the delta 24-sterol-C-methyltransferase were compared with a C5(6) desaturase mutant and parental wild types. No ergosterol (C28 sterol) could be detected in whole-cell sterol extracts of the erg6 mutants, the limits of detection being less than 10(-11) mol of ergosterol per 10(8) cells. The distribution of accumulated sterols by these mutants varied with growth phase and between free and esterified fractions. The steryl ester concentrations of the mutants were eight times higher than those of the wild type from exponential growth samples. However, the concentration of the ester accumulated by the mutants was not as great in stationary-phase cells. Whereas the head group phospholipid composition was the same between parental and mutant strains, strain-dependent changes in fatty acids were observed, most notably a 40% increase in the oleic acid content of phosphatidylethanolamine of one erg6 mutant, JR5. PMID:6363386

  4. Replicative and chronological aging in Saccharomyces cerevisiae.

    PubMed

    Longo, Valter D; Shadel, Gerald S; Kaeberlein, Matt; Kennedy, Brian

    2012-07-03

    Saccharomyces cerevisiae has directly or indirectly contributed to the identification of arguably more mammalian genes that affect aging than any other model organism. Aging in yeast is assayed primarily by measurement of replicative or chronological life span. Here, we review the genes and mechanisms implicated in these two aging model systems and key remaining issues that need to be addressed for their optimization. Because of its well-characterized genome that is remarkably amenable to genetic manipulation and high-throughput screening procedures, S. cerevisiae will continue to serve as a leading model organism for studying pathways relevant to human aging and disease.

  5. Biotechnological implications of filamentation in Saccharomyces cerevisiae.

    PubMed

    Ceccato-Antonini, Sandra Regina

    2008-07-01

    The genetics governing the morphological switch from round or ovoid cells to filamentous growth in Saccharomyces cerevisiae has received significant interest in relation to sensing and signaling pathways as well as the control of cell processes including budding, elongation and adhesion. Little is known about the environmental signals which trigger these morphological changes from a biotechnological point of view. This review aims to highlight the main causes of filamentous growth in S. cerevisiae in its industrial setting with the purpose of stimulating additional studies within this field.

  6. Biosynthesis of silver nanoparticles using Saccharomyces cerevisiae.

    PubMed

    Korbekandi, Hassan; Mohseni, Soudabeh; Mardani Jouneghani, Rasoul; Pourhossein, Meraj; Iravani, Siavash

    2016-01-01

    The objectives of this study were the biosynthesis of silver nanoparticles (NPs) by biotransformations using Saccharomyces cerevisiae and analysis of the sizes and shapes of the NPs produced. Dried and freshly cultured S. cerevisiae were used as the biocatalyst. Dried yeast synthesized few NPs, but freshly cultured yeast produced a large amount of them. Silver NPs were spherical, 2-20 nm in diameter, and the NPs with the size of 5.4 nm were the most frequent ones. NPs were seen inside the cells, within the cell membrane, attached to the cell membrane during the exocytosis, and outside of the cells.

  7. Generation of henipavirus nucleocapsid proteins in yeast Saccharomyces cerevisiae.

    PubMed

    Juozapaitis, Mindaugas; Serva, Andrius; Zvirbliene, Aurelija; Slibinskas, Rimantas; Staniulis, Juozas; Sasnauskas, Kestutis; Shiell, Brian J; Wang, Lin-Fa; Michalski, Wojtek P

    2007-03-01

    Hendra and Nipah viruses are newly emerged, zoonotic viruses and their genomes have nucleotide and predicted amino acid homologies placing them in the family Paramyxoviridae. Currently these viruses are classified in the new genus Henipavirus, within the subfamily Paramyxovirinae, family Paramyxoviridae. The genes encoding HeV and NiV nucleocapsid proteins were cloned into the yeast Saccharomyces cerevisiae expression vector pFGG3 under control of GAL7 promoter. A high level of expression of these proteins (18-20 mg l(-1) of yeast culture) was obtained. Mass spectrometric analysis confirmed the primary structure of both proteins with 92% sequence coverage obtained using MS/MS analysis. Electron microscopy demonstrated the assembly of typical herring-bone structures of purified recombinant nucleocapsid proteins, characteristic for other paramyxoviruses. The nucleocapsid proteins revealed stability in yeast and can be easily purified by cesium chloride gradient ultracentrifugation. HeV nucleocapsid protein was detected by sera derived from fruit bats, humans, horses infected with HeV, and NiV nucleocapsid protein was immunodetected with sera from, fruit bats, humans and pigs. The development of an efficient and cost-effective system for generation of henipavirus nucleocapsid proteins might help to improve reagents for diagnosis of viruses.

  8. Host Factors That Affect Ty3 Retrotransposition in Saccharomyces cerevisiae

    PubMed Central

    Aye, Michael; Irwin, Becky; Beliakova-Bethell, Nadejda; Chen, Eric; Garrus, Jennifer; Sandmeyer, Suzanne

    2004-01-01

    The retrovirus-like element Ty3 of Saccharomyces cerevisiae integrates at the transcription initiation region of RNA polymerase III. To identify host genes that affect transposition, a collection of insertion mutants was screened using a genetic assay in which insertion of Ty3 activates expression of a tRNA suppressor. Fifty-three loci were identified in this screen. Corresponding knockout mutants were tested for the ability to mobilize a galactose-inducible Ty3, marked with the HIS3 gene. Of 42 mutants tested, 22 had phenotypes similar to those displayed in the original assay. The proteins encoded by the defective genes are involved in chromatin dynamics, transcription, RNA processing, protein modification, cell cycle regulation, nuclear import, and unknown functions. These mutants were induced for Ty3 expression and assayed for Gag3p protein, integrase, cDNA, and Ty3 integration upstream of chromosomal tDNAVal(AAC) genes. Most mutants displayed differences from the wild type in one or more intermediates, although these were typically not as severe as the genetic defect. Because a relatively large number of genes affecting retrotransposition can be identified in yeast and because the majority of these genes have mammalian homologs, this approach provides an avenue for the identification of potential antiviral targets. PMID:15579677

  9. Redundant Regulation of Cdk1 Tyrosine Dephosphorylation in Saccharomyces cerevisiae.

    PubMed

    Kennedy, Erin K; Dysart, Michael; Lianga, Noel; Williams, Elizabeth C; Pilon, Sophie; Doré, Carole; Deneault, Jean-Sebastien; Rudner, Adam D

    2016-03-01

    Cdk1 activity drives both mitotic entry and the metaphase-to-anaphase transition in all eukaryotes. The kinase Wee1 and the phosphatase Cdc25 regulate the mitotic activity of Cdk1 by the reversible phosphorylation of a conserved tyrosine residue. Mutation of cdc25 in Schizosaccharomyces pombe blocks Cdk1 dephosphorylation and causes cell cycle arrest. In contrast, deletion of MIH1, the cdc25 homolog in Saccharomyces cerevisiae, is viable. Although Cdk1-Y19 phosphorylation is elevated during mitosis in mih1∆ cells, Cdk1 is dephosphorylated as cells progress into G1, suggesting that additional phosphatases regulate Cdk1 dephosphorylation. Here we show that the phosphatase Ptp1 also regulates Cdk1 dephosphorylation in vivo and can directly dephosphorylate Cdk1 in vitro. Using a novel in vivo phosphatase assay, we also show that PP2A bound to Rts1, the budding yeast B56-regulatory subunit, regulates dephosphorylation of Cdk1 independently of a function regulating Swe1, Mih1, or Ptp1, suggesting that PP2A(Rts1) either directly dephosphorylates Cdk1-Y19 or regulates an unidentified phosphatase.

  10. Redundant Regulation of Cdk1 Tyrosine Dephosphorylation in Saccharomyces cerevisiae

    PubMed Central

    Kennedy, Erin K.; Dysart, Michael; Lianga, Noel; Williams, Elizabeth C.; Pilon, Sophie; Doré, Carole; Deneault, Jean-Sebastien; Rudner, Adam D.

    2016-01-01

    Cdk1 activity drives both mitotic entry and the metaphase-to-anaphase transition in all eukaryotes. The kinase Wee1 and the phosphatase Cdc25 regulate the mitotic activity of Cdk1 by the reversible phosphorylation of a conserved tyrosine residue. Mutation of cdc25 in Schizosaccharomyces pombe blocks Cdk1 dephosphorylation and causes cell cycle arrest. In contrast, deletion of MIH1, the cdc25 homolog in Saccharomyces cerevisiae, is viable. Although Cdk1-Y19 phosphorylation is elevated during mitosis in mih1∆ cells, Cdk1 is dephosphorylated as cells progress into G1, suggesting that additional phosphatases regulate Cdk1 dephosphorylation. Here we show that the phosphatase Ptp1 also regulates Cdk1 dephosphorylation in vivo and can directly dephosphorylate Cdk1 in vitro. Using a novel in vivo phosphatase assay, we also show that PP2A bound to Rts1, the budding yeast B56-regulatory subunit, regulates dephosphorylation of Cdk1 independently of a function regulating Swe1, Mih1, or Ptp1, suggesting that PP2ARts1 either directly dephosphorylates Cdk1-Y19 or regulates an unidentified phosphatase. PMID:26715668

  11. A Novel Inositol Pyrophosphate Phosphatase in Saccharomyces cerevisiae

    PubMed Central

    Steidle, Elizabeth A.; Chong, Lucy S.; Wu, Mingxuan; Crooke, Elliott; Fiedler, Dorothea; Resnick, Adam C.; Rolfes, Ronda J.

    2016-01-01

    Inositol pyrophosphates are high energy signaling molecules involved in cellular processes, such as energetic metabolism, telomere maintenance, stress responses, and vesicle trafficking, and can mediate protein phosphorylation. Although the inositol kinases underlying inositol pyrophosphate biosynthesis are well characterized, the phosphatases that selectively regulate their cellular pools are not fully described. The diphosphoinositol phosphate phosphohydrolase enzymes of the Nudix protein family have been demonstrated to dephosphorylate inositol pyrophosphates; however, the Saccharomyces cerevisiae homolog Ddp1 prefers inorganic polyphosphate over inositol pyrophosphates. We identified a novel phosphatase of the recently discovered atypical dual specificity phosphatase family as a physiological inositol pyrophosphate phosphatase. Purified recombinant Siw14 hydrolyzes the β-phosphate from 5-diphosphoinositol pentakisphosphate (5PP-IP5 or IP7) in vitro. In vivo, siw14Δ yeast mutants possess increased IP7 levels, whereas heterologous SIW14 overexpression eliminates IP7 from cells. IP7 levels increased proportionately when siw14Δ was combined with ddp1Δ or vip1Δ, indicating independent activity by the enzymes encoded by these genes. We conclude that Siw14 is a physiological phosphatase that modulates inositol pyrophosphate metabolism by dephosphorylating the IP7 isoform 5PP-IP5 to IP6. PMID:26828065

  12. Isolation and sequence of the gene encoding ornithine decarboxylase, SPE1, from Candida albicans by complementation of a spe1 delta strain of Saccharomyces cerevisiae.

    PubMed

    McNemar, M D; Gorman, J A; Buckley, H R

    1997-11-01

    The gene encoding ornithine decarboxylase, SPE1, from the pathogenic yeast Candida albicans has been isolated by complementation of an ornithine decarboxylase-negative (spe1 delta) strain of Saccharomyces cerevisiae. Four transformants, three of which contain plasmids with the SPE1 gene, were isolated by selection on polyamine-free medium. The C. albicans ornithine decarboxylase (ODC) showed high homology with other eukaryotic ODCs at both the amino acid and nucleic acid levels.

  13. Khovanov homology of links and graphs

    NASA Astrophysics Data System (ADS)

    Stosic, Marko

    2006-05-01

    In this thesis we work with Khovanov homology of links and its generalizations, as well as with the homology of graphs. Khovanov homology of links consists of graded chain complexes which are link invariants, up to chain homotopy, with graded Euler characteristic equal to the Jones polynomial of the link. Hence, it can be regarded as the "categorification" of the Jones polynomial. We prove that the first homology group of positive braid knots is trivial. Futhermore, we prove that non-alternating torus knots are homologically thick. In addition, we show that we can decrease the number of full twists of torus knots without changing low-degree homology and consequently that there exists stable homology for torus knots. We also prove most of the above properties for Khovanov-Rozansky homology. Concerning graph homology, we categorify the dichromatic (and consequently Tutte) polynomial for graphs, by categorifying an infinite set of its one-variable specializations. We categorify explicitly the one-variable specialization that is an analog of the Jones polynomial of an alternating link corresponding to the initial graph. Also, we categorify explicitly the whole two-variable dichromatic polynomial of graphs by using Koszul complexes. textbf{Key-words:} Khovanov homology, Jones polynomial, link, torus knot, graph, dichromatic polynomial

  14. Characterization of Fluorescent Proteins for Three- and Four-Color Live-Cell Imaging in S. cerevisiae

    PubMed Central

    Higuchi-Sanabria, Ryo; Garcia, Enrique J.; Tomoiaga, Delia; Munteanu, Emilia L.; Feinstein, Paul; Pon, Liza A.

    2016-01-01

    Saccharomyces cerevisiae are widely used for imaging fluorescently tagged protein fusions. Fluorescent proteins can easily be inserted into yeast genes at their chromosomal locus, by homologous recombination, for expression of tagged proteins at endogenous levels. This is especially useful for incorporation of multiple fluorescent protein fusions into a single strain, which can be challenging in organisms where genetic manipulation is more complex. However, the availability of optimal fluorescent protein combinations for 3-color imaging is limited. Here, we have characterized a combination of fluorescent proteins, mTFP1/mCitrine/mCherry for multicolor live cell imaging in S. cerevisiae. This combination can be used with conventional blue dyes, such as DAPI, for potential four-color live cell imaging. PMID:26727004

  15. Nucleotide sequence of the GDH gene coding for the NADP-specific glutamate dehydrogenase of Saccharomyces cerevisiae.

    PubMed

    Nagasu, T; Hall, B D

    1985-01-01

    The isolation of the Saccharomyces cerevisiae gene for NADP-dependent glutamate dehydrogenase (NADP-GDH) by cross hybridization to the Neurospora crassa am gene, known to encode for NADP-GDH is described. Two DNA fragments selected from a yeast genomic library in phage lambda gt11 were shown by restriction analysis to share 2.5 kb of common sequence. A yeast shuttle vector (CV13) carrying either to the cloned fragments complements the gdh- strain of S. cerevisiae and directs substantial overproduction of NADP-GDH. One of the cloned fragments was sequenced, and the deduced amino acid (aa) sequence of the yeast NADP-GDH is 64% homologous to N. crassa, 51% to Escherichia coli and 24% to bovine NADP-GDHs.

  16. Rmt1 catalyzes zinc-finger independent arginine methylation of ribosomal protein Rps2 in Saccharomyces cerevisiae.

    PubMed

    Lipson, Rebecca S; Webb, Kristofor J; Clarke, Steven G

    2010-01-22

    Rps2/rpS2 is a well conserved protein of the eukaryotic ribosomal small subunit. Rps2 has previously been shown to contain asymmetric dimethylarginine residues, the addition of which is catalyzed by zinc-finger-containing arginine methyltransferase 3 (Rmt3) in the fission yeast Schizosaccharomyces pombe and protein arginine methyltransferase 3 (PRMT3) in mammalian cells. Here, we demonstrate that despite the lack of a zinc-finger-containing homolog of Rmt3/PRMT3 in the budding yeast Saccharomyces cerevisiae, Rps2 is partially modified to generate asymmetric dimethylarginine and monomethylarginine residues. We find that this modification of Rps2 is dependent upon the major arginine methyltransferase 1 (Rmt1) in S. cerevisiae. These results are suggestive of a role for Rmt1 in modifying the function of Rps2 in a manner distinct from that occurring in S. pombe and mammalian cells. Copyright 2009 Elsevier Inc. All rights reserved.

  17. EasyClone 2.0: expanded toolkit of integrative vectors for stable gene expression in industrial Saccharomyces cerevisiae strains.

    PubMed

    Stovicek, Vratislav; Borja, Gheorghe M; Forster, Jochen; Borodina, Irina

    2015-11-01

    Saccharomyces cerevisiae is one of the key cell factories for production of chemicals and active pharmaceuticals. For large-scale fermentations, particularly in biorefinery applications, it is desirable to use stress-tolerant industrial strains. However, such strains are less amenable for metabolic engineering than the standard laboratory strains. To enable easy delivery and overexpression of genes in a wide range of industrial S. cerevisiae strains, we constructed a set of integrative vectors with long homology arms and dominant selection markers. The vectors integrate into previously validated chromosomal locations via double cross-over and result in homogenous stable expression of the integrated genes, as shown for several unrelated industrial strains. Cre-mediated marker rescue is possible for removing markers positioned on different chromosomes. To demonstrate the applicability of the presented vector set for metabolic engineering of industrial yeast, we constructed xylose-utilizing strains overexpressing xylose isomerase, xylose transporter and five genes of the pentose phosphate pathway.

  18. Characterization of Fluorescent Proteins for Three- and Four-Color Live-Cell Imaging in S. cerevisiae.

    PubMed

    Higuchi-Sanabria, Ryo; Garcia, Enrique J; Tomoiaga, Delia; Munteanu, Emilia L; Feinstein, Paul; Pon, Liza A

    2016-01-01

    Saccharomyces cerevisiae are widely used for imaging fluorescently tagged protein fusions. Fluorescent proteins can easily be inserted into yeast genes at their chromosomal locus, by homologous recombination, for expression of tagged proteins at endogenous levels. This is especially useful for incorporation of multiple fluorescent protein fusions into a single strain, which can be challenging in organisms where genetic manipulation is more complex. However, the availability of optimal fluorescent protein combinations for 3-color imaging is limited. Here, we have characterized a combination of fluorescent proteins, mTFP1/mCitrine/mCherry for multicolor live cell imaging in S. cerevisiae. This combination can be used with conventional blue dyes, such as DAPI, for potential four-color live cell imaging.

  19. Saccharomyces cerevisiae STR3 and yeast cystathionine β-lyase enzymes: The potential for engineering increased flavor release.

    PubMed

    Holt, Sylvester; Cordente, Antonio G; Curtin, Chris

    2012-01-01

    Selected Saccharomyces cerevisiae strains are used for wine fermentation. Based on several criteria, winemakers often use a specific yeast to improve the flavor, mouth feel, decrease the alcohol content and desired phenolic content, just to name a few properties. Scientists at the AWRI previously illustrated the potential for increased flavor release from grape must via overexpression of the Escherichia coli Tryptophanase enzyme in wine yeast. To pursue a self-cloning approach for improving the aroma production, we recently characterized the S. cerevisiae cystathionine β-lyase STR3, and investigated its flavor releasing capabilities. Here, we continue with a phylogenetic investigation of STR3 homologs from non-Saccharomyces yeasts to map the potential for using natural variation to engineer new strains.

  20. Rmt1 catalyzes zinc-finger independent arginine methylation of the small ribosomal protein Rps2 in Saccharomyces cerevisiae

    PubMed Central

    Lipson, Rebecca S.; Webb, Kristofor J.; Clarke, Steven G.

    2010-01-01

    Rps2/rpS2 is a well conserved protein of the eukaryotic ribosomal small subunit. Rps2 has previously been shown to contain asymmetric dimethylarginine residues, the addition of which is catalyzed by zinc-finger-containing arginine methyltransferase 3 (Rmt3) in the fission yeast Schizosaccharomyces pombe and protein arginine methyltransferase 3 (PRMT3) in mammalian cells. Here we demonstrate that despite the lack of a zinc-finger-containing homolog of Rmt3/PRMT3 in the budding yeast Saccharomyces cerevisiae, Rps2 is partially modified to generate asymmetric dimethylarginine and monomethylarginine residues. We find that this modification of Rps2 is dependent upon the major arginine methyltransferase 1 (Rmt1) in S. cerevisiae. These results are suggestive of a role for Rmt1 in modifying the function of Rps2 in a manner distinct from that occurring in S. pombe and mammalian cells. PMID:20035717

  1. Rmt1 catalyzes zinc-finger independent arginine methylation of ribosomal protein Rps2 in Saccharomyces cerevisiae

    SciTech Connect

    Lipson, Rebecca S.; Webb, Kristofor J.; Clarke, Steven G.

    2010-01-22

    Rps2/rpS2 is a well conserved protein of the eukaryotic ribosomal small subunit. Rps2 has previously been shown to contain asymmetric dimethylarginine residues, the addition of which is catalyzed by zinc-finger-containing arginine methyltransferase 3 (Rmt3) in the fission yeast Schizosaccharomyces pombe and protein arginine methyltransferase 3 (PRMT3) in mammalian cells. Here, we demonstrate that despite the lack of a zinc-finger-containing homolog of Rmt3/PRMT3 in the budding yeast Saccharomyces cerevisiae, Rps2 is partially modified to generate asymmetric dimethylarginine and monomethylarginine residues. We find that this modification of Rps2 is dependent upon the major arginine methyltransferase 1 (Rmt1) in S. cerevisiae. These results are suggestive of a role for Rmt1 in modifying the function of Rps2 in a manner distinct from that occurring in S. pombe and mammalian cells.

  2. Development of a Tightly Controlled Off Switch for Saccharomyces cerevisiae Regulated by Camphor, a Low-Cost Natural Product

    PubMed Central

    Ikushima, Shigehito; Zhao, Yu; Boeke, Jef D.

    2015-01-01

    Here we describe the engineering of a distant homolog of the Tet repressor, CamR, isolated from Pseudomonas putida, that is regulated by camphor, a very inexpensive small molecule (at micromolar concentrations) for use in Saccharomyces cerevisiae. The repressor was engineered by expression from a constitutive yeast promoter, fusion to a viral activator protein cassette, and codon optimization. A suitable promoter responsive to the CamR fusion protein was engineered by embedding a P. putida operator binding sequence within an upstream activating sequence (UAS)-less CYC1 promoter from S. cerevisiae. The switch, named the Camphor-Off switch, activates expression of a reporter gene in camphor-free media and represses it with micromolar concentrations of camphor. PMID:26206350

  3. Characterization and mutagenesis of the gene encoding the A49 subunit of RNA polymerase A in Saccharomyces cerevisiae.

    PubMed Central

    Liljelund, P; Mariotte, S; Buhler, J M; Sentenac, A

    1992-01-01

    The gene encoding the 49-kDa subunit of RNA polymerase A in Saccharomyces cerevisiae has been identified by formation of a hybrid enzyme between the S. cerevisiae A49 subunit and Saccharomyces douglasii subunits based on a polymorphism existing between the subunits of RNA polymerase A in these two species. The sequence of the gene reveals a basic protein with an unusually high lysine content, which may account for the affinity for DNA shown by the subunit. No appreciable homology with any polymerase subunits, enzymes, or transcription factors is found. Complete deletion of the single-copy RPA49 gene leads to viable but slowly growing colonies. Insertion of the HIS3 gene halfway into the RPA49 coding region results in synthesis of a truncated A49 subunit that is incorporated into the polymerase. The truncated and wild-type subunits compete equally for assembly in the heterozygous diploid, although the wild type is phenotypically dominant. Images PMID:1409638

  4. General method for plasmid construction using homologous recombination.

    PubMed

    Raymond, C K; Pownder, T A; Sexson, S L

    1999-01-01

    We describe a general method for plasmid assembly that uses yeast and extends beyond yeast-specific research applications. This technology exploits the homologous recombination, double-stranded break repair pathway in Saccharomyces cerevisiae to join DNA fragments. Synthetic, double-stranded "recombination linkers" were used to "subclone" a DNA fragment into a plasmid with > 80% efficiency. Quantitative data on the influence of DNA concentration and overlap length on the efficiency of recombination are presented. Using a simple procedure, plasmids were shuttled from yeast into E. coli for subsequent screening and large-scale plasmid preps. This simple method for plasmid construction has several advantages. (i) It bypasses the need for extensive PCR amplification and for purification, modification and/or ligation techniques routinely used for plasmid constructions. (ii) The method does not rely on available restriction sites, thus fragment and vector DNA can be joined within any DNA sequence. This enables the use of multifunctional cloning vectors for protein expression in mammalian cells, other yeast species, E. coli and other expression systems as discussed. (iii) Finally, the technology exploits yeast strains, plasmids and microbial techniques that are inexpensive and readily available.

  5. Nonsense-mediated decay regulates key components of homologous recombination

    PubMed Central

    Janke, Ryan; Kong, Jeremy; Braberg, Hannes; Cantin, Greg; Yates, John R.; Krogan, Nevan J.; Heyer, Wolf-Dietrich

    2016-01-01

    Cells frequently experience DNA damage that requires repair by homologous recombination (HR). Proteins involved in HR are carefully coordinated to ensure proper and efficient repair without interfering with normal cellular processes. In Saccharomyces cerevisiae, Rad55 functions in the early steps of HR and is regulated in response to DNA damage through phosphorylation by the Mec1 and Rad53 kinases of the DNA damage response. To further identify regulatory processes that target HR, we performed a high-throughput genetic interaction screen with RAD55 phosphorylation site mutants. Genes involved in the mRNA quality control process, nonsense-mediated decay (NMD), were found to genetically interact with rad55 phospho-site mutants. Further characterization revealed that RAD55 transcript and protein levels are regulated by NMD. Regulation of HR by NMD extends to multiple targets beyond RAD55, including RAD51, RAD54 and RAD57. Finally, we demonstrate that loss of NMD results in an increase in recombination rates and resistance to the DNA damaging agent methyl methanesulfonate, suggesting this pathway negatively regulates HR under normal growth conditions. PMID:27001511

  6. Homologous recombination and its regulation

    PubMed Central

    Krejci, Lumir; Altmannova, Veronika; Spirek, Mario; Zhao, Xiaolan

    2012-01-01

    Homologous recombination (HR) is critical both for repairing DNA lesions in mitosis and for chromosomal pairing and exchange during meiosis. However, some forms of HR can also lead to undesirable DNA rearrangements. Multiple regulatory mechanisms have evolved to ensure that HR takes place at the right time, place and manner. Several of these impinge on the control of Rad51 nucleofilaments that play a central role in HR. Some factors promote the formation of these structures while others lead to their disassembly or the use of alternative repair pathways. In this article, we review these mechanisms in both mitotic and meiotic environments and in different eukaryotic taxa, with an emphasis on yeast and mammal systems. Since mutations in several proteins that regulate Rad51 nucleofilaments are associated with cancer and cancer-prone syndromes, we discuss how understanding their functions can lead to the development of better tools for cancer diagnosis and therapy. PMID:22467216

  7. Interspecies homology of nitrogenase genes.

    PubMed Central

    Ruvkun, G B; Ausubel, F M

    1980-01-01

    Cloned nitrogen fixation (nif) genes from Klebsiella pneumoniae hybridize to DNA from 19 out of 19 widely divergent nitrogen-fixing bacterial strains but do not hybridize to DNA from 10 different non-nitrogen-fixing species. K. pneumoniae nif DNA fragments that hybridize to DNA from other species contain part of the three structural genes that code for nitrogenase polypeptides. We have utilized this homology to clone an EcoRI restriction endonuclease fragment from Rhizobium meliloti that hybridizes to the K. pneumoniae nif structural genes. Some of the species whose DNA hybridizes with K. pneumoniae nif DNA have been postulated to have diverged from K. pneumoniae 3 x 10(9) years ago. Nitrogenase genes are the only known example of such highly conserved prokaryotic translated genes. Nitrogenase genes are either extraordinarily conserved in evolution or have been exchanged between different nitrogen-fixing species relatively recently in evolutionary time. Images PMID:6987649

  8. Homologous artificial insemination and oligospermia.

    PubMed

    Speichinger, J P; Mattox, J H

    1976-02-01

    Of approximately 339 patients evaluated at a private infertility service over a 5-year period, 24 couples underwent homologous artificial insemination (AIH). Nineteen of these were performed to circumvent the problem of oligospermia, and only one pregancy was achieved in this group; conceivably this pregnancy could have occurred by chance. The difficulty in controlling the numerous variables in a clinical fertility study and the limitations of the present methodology are also discussed. It would appear that the use of AIH to circumvent oligospermia has not been successful. However, the present series is rather small. AIH should continue to be offered to couples who have a well-defined indication such as impotence, premature ejaculation, or any anatomical defect which prevents successful intromission. The use of AIH for patients with mild oligospermia but excellent sperm motility probably deserves a limited trial, since it is less expensive and may offer some chance for success.

  9. Saccharomyces cerevisiae Forms D-2-Hydroxyglutarate and Couples Its Degradation to D-Lactate Formation via a Cytosolic Transhydrogenase.

    PubMed

    Becker-Kettern, Julia; Paczia, Nicole; Conrotte, Jean-François; Kay, Daniel P; Guignard, Cédric; Jung, Paul P; Linster, Carole L

    2016-03-18

    The D or L form of 2-hydroxyglutarate (2HG) accumulates in certain rare neurometabolic disorders, and high D-2-hydroxyglutarate (D-2HG) levels are also found in several types of cancer. Although 2HG has been detected in Saccharomyces cerevisiae, its metabolism in yeast has remained largely unexplored. Here, we show that S. cerevisiae actively forms the D enantiomer of 2HG. Accordingly, the S. cerevisiae genome encodes two homologs of the human D-2HG dehydrogenase: Dld2, which, as its human homolog, is a mitochondrial protein, and the cytosolic protein Dld3. Intriguingly, we found that a dld3Δ knock-out strain accumulates millimolar levels of D-2HG, whereas a dld2Δ knock-out strain displayed only very moderate increases in D-2HG. Recombinant Dld2 and Dld3, both currently annotated as D-lactate dehydrogenases, efficiently oxidized D-2HG to α-ketoglutarate. Depletion of D-lactate levels in the dld3Δ, but not in the dld2Δ mutant, led to the discovery of a new type of enzymatic activity, carried by Dld3, to convert D-2HG to α-ketoglutarate, namely an FAD-dependent transhydrogenase activity using pyruvate as a hydrogen acceptor. We also provide evidence that Ser3 and Ser33, which are primarily known for oxidizing 3-phosphoglycerate in the main serine biosynthesis pathway, in addition reduce α-ketoglutarate to D-2HG using NADH and represent major intracellular sources of D-2HG in yeast. Based on our observations, we propose that D-2HG is mainly formed and degraded in the cytosol of S. cerevisiae cells in a process that couples D-2HG metabolism to the shuttling of reducing equivalents from cytosolic NADH to the mitochondrial respiratory chain via the D-lactate dehydrogenase Dld1. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Homology and the hierarchy of biological systems.

    PubMed

    Sommer, Ralf J

    2008-07-01

    Homology is the similarity between organisms due to common ancestry. Introduced by Richard Owen in 1843 in a paper entitled "Lectures on comparative anatomy and physiology of the invertebrate animals", the concept of homology predates Darwin's "Origin of Species" and has been very influential throughout the history of evolutionary biology. Although homology is the central concept of all comparative biology and provides a logical basis for it, the definition of the term and the criteria of its application remain controversial. Here, I will discuss homology in the context of the hierarchy of biological organization. I will provide insights gained from an exemplary case study in evolutionary developmental biology that indicates the uncoupling of homology at different levels of biological organization. I argue that continuity and hierarchy are separate but equally important issues of homology. (c) 2008 Wiley Periodicals, Inc.

  11. Tangential Ultrafiltration of Aqueous "Saccharomyces Cerevisiae" Suspensions

    ERIC Educational Resources Information Center

    Silva, Carlos M.; Neves, Patricia S.; Da Silva, Francisco A.; Xavier, Ana M. R. B.; Eusebio, M. F. J.

    2008-01-01

    Experimental work on ultrafiltration is presented to illustrate the practical and theoretical principles of this separation technique. The laboratory exercise comprises experiments with pure water and with aqueous "Saccharomyces cerevisiae" (from commercial Baker's yeast) suspensions. With this work students detect the characteristic phenomena…

  12. Regulation of Mitotic Exit in Saccharomyces cerevisiae.

    PubMed

    Baro, Bàrbara; Queralt, Ethel; Monje-Casas, Fernando

    2017-01-01

    The Mitotic Exit Network (MEN) is an essential signaling pathway, closely related to the Hippo pathway in mammals, which promotes mitotic exit and initiates cytokinesis in the budding yeast Saccharomyces cerevisiae. Here, we summarize the current knowledge about the MEN components and their regulation.

  13. Mechanisms of Ethanol Tolerance in Saccharomyces cerevisiae

    USDA-ARS?s Scientific Manuscript database

    Saccharomyces cerevisiae is a superb ethanol producer, yet is also sensitive to higher ethanol concentrations especially under high gravity or very high gravity fermentation conditions. Ethanol tolerance is associated with interplay of complex networks at the genome level. Although significant eff...

  14. Tangential Ultrafiltration of Aqueous "Saccharomyces Cerevisiae" Suspensions

    ERIC Educational Resources Information Center

    Silva, Carlos M.; Neves, Patricia S.; Da Silva, Francisco A.; Xavier, Ana M. R. B.; Eusebio, M. F. J.

    2008-01-01

    Experimental work on ultrafiltration is presented to illustrate the practical and theoretical principles of this separation technique. The laboratory exercise comprises experiments with pure water and with aqueous "Saccharomyces cerevisiae" (from commercial Baker's yeast) suspensions. With this work students detect the characteristic phenomena…

  15. A halotolerant mutant of Saccharomyces cerevisiae.

    PubMed Central

    Gaxiola, R; Corona, M; Zinker, S

    1996-01-01

    FRD, a nuclear and dominant spontaneous mutant of Saccharomyces cerevisiae capable of growing in up to 2 M NaCl, was isolated. Compared with parental cells, the mutant cells have a lower intracellular Na+/K+ ratio, shorter generation times in the presence of 1 M NaCl, and alterations in gene expression. PMID:8631691

  16. Engineer Sccharomyces cerevisiae for consolidated bioprocessing

    USDA-ARS?s Scientific Manuscript database

    The current commercial biofuel production is based on a two-stage process of enzymatic treatment to degrade starch to fermentable sugar, followed by yeast fermentation of the sugar to ethanol. An attractive alternative would be to engineer Saccharomyces cerevisiae for cell-based saccharification an...

  17. Persistent homology analysis of craze formation

    NASA Astrophysics Data System (ADS)

    Ichinomiya, Takashi; Obayashi, Ippei; Hiraoka, Yasuaki

    2017-01-01

    We apply a persistent homology analysis to investigate the behavior of nanovoids during the crazing process of glassy polymers. We carry out a coarse-grained molecular dynamics simulation of the uniaxial deformation of an amorphous polymer and analyze the results with persistent homology. Persistent homology reveals the void coalescence during craze formation, and the results suggest that the yielding process is regarded as the percolation of nanovoids created by deformation.

  18. Homology-independent metrics for comparative genomics.

    PubMed

    Coutinho, Tarcisio José Domingos; Franco, Glória Regina; Lobo, Francisco Pereira

    2015-01-01

    A mainstream procedure to analyze the wealth of genomic data available nowadays is the detection of homologous regions shared across genomes, followed by the extraction of biological information from the patterns of conservation and variation observed in such regions. Although of pivotal importance, comparative genomic procedures that rely on homology inference are obviously not applicable if no homologous regions are detectable. This fact excludes a considerable portion of "genomic dark matter" with no significant similarity - and, consequently, no inferred homology to any other known sequence - from several downstream comparative genomic methods. In this review we compile several sequence metrics that do not rely on homology inference and can be used to compare nucleotide sequences and extract biologically meaningful information from them. These metrics comprise several compositional parameters calculated from sequence data alone, such as GC content, dinucleotide odds ratio, and several codon bias metrics. They also share other interesting properties, such as pervasiveness (patterns persist on smaller scales) and phylogenetic signal. We also cite examples where these homology-independent metrics have been successfully applied to support several bioinformatics challenges, such as taxonomic classification of biological sequences without homology inference. They where also used to detect higher-order patterns of interactions in biological systems, ranging from detecting coevolutionary trends between the genomes of viruses and their hosts to characterization of gene pools of entire microbial communities. We argue that, if correctly understood and applied, homology-independent metrics can add important layers of biological information in comparative genomic studies without prior homology inference.

  19. Improvement of xylose uptake and ethanol production in recombinant Saccharomyces cerevisiae through an inverse metabolic engineering approach.

    PubMed

    Jin, Yong-Su; Alper, Hal; Yang, Yea-Tyng; Stephanopoulos, Gregory

    2005-12-01

    We used an inverse metabolic engineering approach to identify gene targets for improved xylose assimilation in recombinant Saccharomyces cerevisiae. Specifically, we created a genomic fragment library from Pichia stipitis and introduced it into recombinant S. cerevisiae expressing XYL1 and XYL2. Through serial subculturing enrichment of the transformant library, 16 transformants were identified and confirmed to have a higher growth rate on xylose. Sequencing of the 16 plasmids isolated from these transformants revealed that the majority of the inserts (10 of 16) contained the XYL3 gene, thus confirming the previous finding that XYL3 is the consensus target for increasing xylose assimilation. Following a sequential search for gene targets, we repeated the complementation enrichment process in a XYL1 XYL2 XYL3 background and identified 15 fast-growing transformants, all of which harbored the same plasmid. This plasmid contained an open reading frame (ORF) designated PsTAL1 based on a high level of homology with S. cerevisiae TAL1. To further investigate whether the newly identified PsTAL1 ORF is responsible for the enhanced-growth phenotype, we constructed an expression cassette containing the PsTAL1 ORF under the control of a constitutive promoter and transformed it into an S. cerevisiae recombinant expressing XYL1, XYL2, and XYL3. The resulting recombinant strain exhibited a 100% increase in the growth rate and a 70% increase in ethanol production (0.033 versus 0.019 g ethanol/g cells . h) on xylose compared to the parental strain. Interestingly, overexpression of PsTAL1 did not cause growth inhibition when cells were grown on glucose, unlike overexpression of the ScTAL1 gene. These results suggest that PsTAL1 is a better gene target for engineering of the pentose phosphate pathway in recombinant S. cerevisiae.

  20. Equivalence of Heegaard Floer homology and embedded contact homology via open book decompositions

    PubMed Central

    Colin, Vincent; Ghiggini, Paolo; Honda, Ko

    2011-01-01

    We sketch the proof of the equivalence between the hat versions of Heegaard Floer homology and embedded contact homology (ECH). The key point is to express these two Floer homology theories in terms of an open book decomposition of the ambient manifold. PMID:21525415

  1. Buoyancy instability of homologous implosions

    NASA Astrophysics Data System (ADS)

    Johnson, Bryan

    2015-11-01

    Hot spot turbulence is a potential contributor to yield degradation in inertial confinement fusion (ICF) capsules, although its origin, if present, remains unclear. In this work, a perturbation analysis is performed of an analytical homologous solution that mimics the hot spot and surrounding cold fuel during the late stages of an ICF implosion. It is shown that the flow is governed by the Schwarzschild criterion for buoyant stability, and that during stagnation, short wavelength entropy and vorticity fluctuations amplify by a factor exp (π |N0 | ts) , where N0 is the buoyancy frequency at stagnation and ts is the stagnation time scale. This amplification factor is exponentially sensitive to mean flow gradients and varies from 103-107 for realistic gradients. Comparisons are made with a Lagrangian hydrodynamics code, and it is found that a numerical resolution of ~ 30 zones per wavelength is required to capture the evolution of vorticity accurately. This translates to an angular resolution of ~(12 / l) ∘ , or ~ 0 .1° to resolve the fastest growing modes (Legendre mode l > 100).

  2. [Symmetries and homologies of Geomerida].

    PubMed

    Zarenkov, N A

    2005-01-01

    The symmetry of Earths life cover (Geomerida) was described generally by L.A. Zenkevich (1948). It coincides with the symmetry of geographic cover. Its symmetry elements are equatorial plane and three meridonal planes corresponded to oceans and continents. The hypsographic curve with point of inflection (symmetry element) on 3 km depth line should be added to these elements. The plankton and benthos communities as well as fauna of taxons are distributed symmetrically according these symmetry elements. Zenkevich model was successfully extrapolated to plankton by K.V. Beklemishev (1967, 1969) and to abyssal benthos by Sokolova M.N. (1986). The plankton communities inhabiting symmetrically located macrocirculations are considered as homologous. The character of circulation determines the trophic structure of plankton and benthos. In the case of high productivity of plankton, benthic grazing animals feed on sedimented particles have bilateral symmetric mouthpart. Otherwise they have to acquire food from water column and use cyclomeric mouthpart. Thus, the symmetry of macrocirculations determines the symmetry distribution of benthic animals with two major symmetries of mouthparts. The peculiarities of organisms' symmetry are discussed in the context of Pierre Curie principle and the ideas of K.V. Beklemishev concerning evolution of morphological axes.

  3. Homology in classical and molecular biology.

    PubMed

    Patterson, C

    1988-11-01

    Hypotheses of homology are the basis of comparative morphology and comparative molecular biology. The kinds of homologous and nonhomologous relations in classical and molecular biology are explored through the three tests that may be applied to a hypothesis of homology: congruence, conjunction, and similarity. The same three tests apply in molecular comparisons and in morphology, and in each field they differentiate eight kinds of relation. These various relations are discussed and compared. The unit or standard of comparison differs in morphology and in molecular biology; in morphology it is the adult or life cycle, but with molecules it is the haploid genome. In morphology the congruence test is decisive in separating homology and nonhomology, whereas with molecular sequence data similarity is the decisive test. Consequences of this difference are that the boundary between homology and nonhomology is not the same in molecular biology as in morphology, that homology and synapomorphy can be equated in morphology but not in all molecular comparisons, and that there is no detected molecular equivalent of convergence. Since molecular homology may reflect either species phylogeny or gene phylogeny, there are more kinds of homologous relation between molecular sequences than in morphology. The terms paraxenology and plerology are proposed for two of these kinds--respectively, the consequence of multiple xenology and of gene conversion.

  4. GENE SEQUENCE HOMOLOGY OF CHEMOKINES ACROSS SPECIES

    USDA-ARS?s Scientific Manuscript database

    The abundance of expressed gene and protein sequences available in the biological information databases facilitates comparison of protein homologies. A high degree of sequence similarity typically implies homology regarding structure and function and may provide clues to antibody cross-react...

  5. DNA Sequence Alignment during Homologous Recombination*

    PubMed Central

    Greene, Eric C.

    2016-01-01

    Homologous recombination allows for the regulated exchange of genetic information between two different DNA molecules of identical or nearly identical sequence composition, and is a major pathway for the repair of double-stranded DNA breaks. A key facet of homologous recombination is the ability of recombination proteins to perfectly align the damaged DNA with homologous sequence located elsewhere in the genome. This reaction is referred to as the homology search and is akin to the target searches conducted by many different DNA-binding proteins. Here I briefly highlight early investigations into the homology search mechanism, and then describe more recent research. Based on these studies, I summarize a model that includes a combination of intersegmental transfer, short-distance one-dimensional sliding, and length-specific microhomology recognition to efficiently align DNA sequences during the homology search. I also suggest some future directions to help further our understanding of the homology search. Where appropriate, I direct the reader to other recent reviews describing various issues related to homologous recombination. PMID:27129270

  6. DNA Sequence Alignment during Homologous Recombination.

    PubMed

    Greene, Eric C

    2016-05-27

    Homologous recombination allows for the regulated exchange of genetic information between two different DNA molecules of identical or nearly identical sequence composition, and is a major pathway for the repair of double-stranded DNA breaks. A key facet of homologous recombination is the ability of recombination proteins to perfectly align the damaged DNA with homologous sequence located elsewhere in the genome. This reaction is referred to as the homology search and is akin to the target searches conducted by many different DNA-binding proteins. Here I briefly highlight early investigations into the homology search mechanism, and then describe more recent research. Based on these studies, I summarize a model that includes a combination of intersegmental transfer, short-distance one-dimensional sliding, and length-specific microhomology recognition to efficiently align DNA sequences during the homology search. I also suggest some future directions to help further our understanding of the homology search. Where appropriate, I direct the reader to other recent reviews describing various issues related to homologous recombination. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Random-walk model of homologous recombination

    NASA Astrophysics Data System (ADS)

    Fujitani, Youhei; Kobayashi, Ichizo

    1995-12-01

    Interaction between two homologous (i.e., identical or nearly identical) DNA sequences leads to their homologous recombination in the cell. We present the following stochastic model to explain the dependence of the frequency of homologous recombination on the length of the homologous region. The branch point connecting the two DNAs in a reaction intermediate follows the random-walk process along the homology (N base-pairs). If the branch point reaches either of the homology ends, it bounds back to the homologous region at a probability of γ (reflection coefficient) and is destroyed at a probability of 1-γ. When γ is small, the frequency of homologous recombination is found to be proportional to N3 for smaller N and a linear function of N for larger N. The exponent of the nonlinear dependence for smaller N decreases from three as γ increases. When γ=1, only the linear dependence is left. These theoretical results can explain many experimental data in various systems. (c) 1995 The American Physical Society

  8. Inferring homologous protein-protein interactions through pair position specific scoring matrix

    PubMed Central

    2013-01-01

    Background The protein-protein interaction (PPI) is one of the most important features to understand biological processes. For a PPI, the physical domain-domain interaction (DDI) plays the key role for biology functions. In the post-genomic era, to rapidly identify homologous PPIs for analyzing the contact residue pairs of their interfaces within DDIs on a genomic scale is essential to determine PPI networks and the PPI interface evolution across multiple species. Results In this study, we proposed "pair Position Specific Scoring Matrix (pairPSSM)" to identify homologous PPIs. The pairPSSM can successfully distinguish the true protein complexes from unreasonable protein pairs with about 90% accuracy. For the test set including 1,122 representative heterodimers and 2,708,746 non-interacting protein pairs, the mean average precision and mean false positive rate of pairPSSM were 0.42 and 0.31, respectively. Moreover, we applied pairPSSM to identify ~450,000 homologous PPIs with their interacting domains and residues in seven common organisms (e.g. Homo sapiens, Mus musculus, Saccharomyces cerevisiae and Escherichia coli). Conclusions Our pairPSSM is able to provide statistical significance of residue pairs using evolutionary profiles and a scoring system for inferring homologous PPIs. According to our best knowledge, the pairPSSM is the first method for searching homologous PPIs across multiple species using pair position specific scoring matrix and a 3D dimer as the template to map interacting domain pairs of these PPIs. We believe that pairPSSM is able to provide valuable insights for the PPI evolution and networks across multiple species. PMID:23367879

  9. Computational methods for remote homolog identification.

    PubMed

    Wan, Xiu-Feng; Xu, Dong

    2005-12-01

    As more and more protein sequences are available, homolog identification becomes increasingly important for functional, structural, and evolutional studies of proteins. Many homologous proteins were separated a very long time ago in their evolutionary history and thus their sequences share low sequence identity. These remote homologs have become a research focus in bioinformatics over the past decade, and some significant advances have been achieved. In this paper, we provide a comprehensive review on computational techniques used in remote homolog identification based on different methods, including sequence-sequence comparison, and sequence-structure comparison, and structure-structure comparison. Other miscellaneous approaches are also summarized. Pointers to the online resources of these methods and their related databases are provided. Comparisons among different methods in terms of their technical approaches, their strengths, and limitations are followed. Studies on proteins in SARS-CoV are shown as an example for remote homolog identification application.

  10. Identification of a functional homolog of the yeast copper homeostasis gene ATX1 from Arabidopsis

    SciTech Connect

    Himelblau, E.; Amasino, R.M.; Mira, H.; Penarrubia, L.; Lin, S.J.; Culotta, V.C.

    1998-08-01

    A cDNA clone encoding a homolog of the yeast (Saccharomyces cerevisiae) gene Anti-oxidant 1 (ATX1) has been identified from Arabidopsis. This gene, referred to as Copper CHaperone (CCH), encodes a protein that is 36% identical to the amino acid sequence of ATX1 and has a 48-amino acid extension at the C-terminal end, which is absent from ATX1 homologs identified in animals. ATX1-deficient yeast (atx1) displayed a loss of high-affinity iron uptake. Expression of CCH in the atx1 strain restored high-affinity iron uptake, demonstrating that CCH is a functional homolog of ATX1. When overexpressed in yeast lacking the superoxide dismutase gene SOD1, both ATX1 and CCH protected the cell from the reactive oxygen toxicity that results from superoxide dismutase deficiency. CCH was unable to rescue the sod1 phenotype in the absence of copper, indicating that CCH function is copper dependent. In Arabidopsis CCH mRNA is present in the root, leaf, and in fluorescence and is up-regulated 7-fold in leaves undergoing senescence. In plants treated with 800 nL/L ozone for 30 min, CCH mRNA levels increased by 30%. In excised leaves and whole plants treated with high levels of exogenous CuSO{sub 4}, CCH mRNA levels decreased, indicating that CCH is regulated differently than characterized metallothionein proteins in Arabidopsis.

  11. Identification of a Functional Homolog of the Yeast Copper Homeostasis Gene ATX1 from Arabidopsis1

    PubMed Central

    Himelblau, Edward; Mira, Helena; Lin, Su-Ju; Cizewski Culotta, Valeria; Peñarrubia, Lola; Amasino, Richard M.

    1998-01-01

    A cDNA clone encoding a homolog of the yeast (Saccharomyces cerevisiae) gene Anti-oxidant 1 (ATX1) has been identified from Arabidopsis. This gene, referred to as Copper CHaperone (CCH), encodes a protein that is 36% identical to the amino acid sequence of ATX1 and has a 48-amino acid extension at the C-terminal end, which is absent from ATX1 homologs identified in animals. ATX1-deficient yeast (atx1) displayed a loss of high-affinity iron uptake. Expression of CCH in the atx1 strain restored high-affinity iron uptake, demonstrating that CCH is a functional homolog of ATX1. When overexpressed in yeast lacking the superoxide dismutase gene SOD1, both ATX1 and CCH protected the cell from the reactive oxygen toxicity that results from superoxide dismutase deficiency. CCH was unable to rescue the sod1 phenotype in the absence of copper, indicating that CCH function is copper dependent. In Arabidopsis CCH mRNA is present in the root, leaf, and inflorescence and is up-regulated 7-fold in leaves undergoing senescence. In plants treated with 800 nL/L ozone for 30 min, CCH mRNA levels increased by 30%. In excised leaves and whole plants treated with high levels of exogenous CuSO4, CCH mRNA levels decreased, indicating that CCH is regulated differently than characterized metallothionein proteins in Arabidopsis. PMID:9701579

  12. Sporulation in the Budding Yeast Saccharomyces cerevisiae

    PubMed Central

    Neiman, Aaron M.

    2011-01-01

    In response to nitrogen starvation in the presence of a poor carbon source, diploid cells of the yeast Saccharomyces cerevisiae undergo meiosis and package the haploid nuclei produced in meiosis into spores. The formation of spores requires an unusual cell division event in which daughter cells are formed within the cytoplasm of the mother cell. This process involves the de novo generation of two different cellular structures: novel membrane compartments within the cell cytoplasm that give rise to the spore plasma membrane and an extensive spore wall that protects the spore from environmental insults. This article summarizes what is known about the molecular mechanisms controlling spore assembly with particular attention to how constitutive cellular functions are modified to create novel behaviors during this developmental process. Key regulatory points on the sporulation pathway are also discussed as well as the possible role of sporulation in the natural ecology of S. cerevisiae. PMID:22084423

  13. Transformation of Saccharomyces cerevisiae and other fungi

    PubMed Central

    Kawai, Shigeyuki; Hashimoto, Wataru

    2010-01-01

    Transformation (i.e., genetic modification of a cell by the incorporation of exogenous DNA) is indispensable for manipulating fungi. Here, we review the transformation methods for Saccharomyces cerevisiae, Schizosaccharomyces pombe, Candida albicans, Pichia pastoris and Aspergillus species and discuss some common modifications to improve transformation efficiency. We also present a model of the mechanism underlying S. cerevisiae transformation, based on recent reports and the mechanism of transfection in mammalian systems. This model predicts that DNA attaches to the cell wall and enters the cell via endocytotic membrane invagination, although how DNA reaches the nucleus is unknown. Polyethylene glycol is indispensable for successful transformation of intact cells and the attachment of DNA and also possibly acts on the membrane to increase the transformation efficiency. Both lithium acetate and heat shock, which enhance the transformation efficiency of intact cells but not that of spheroplasts, probably help DNA to pass through the cell wall. PMID:21468206

  14. Cell Wall Assembly in Saccharomyces cerevisiae

    PubMed Central

    Lesage, Guillaume; Bussey, Howard

    2006-01-01

    An extracellular matrix composed of a layered meshwork of β-glucans, chitin, and mannoproteins encapsulates cells of the yeast Saccharomyces cerevisiae. This organelle determines cellular morphology and plays a critical role in maintaining cell integrity during cell growth and division, under stress conditions, upon cell fusion in mating, and in the durable ascospore cell wall. Here we assess recent progress in understanding the molecular biology and biochemistry of cell wall synthesis and its remodeling in S. cerevisiae. We then review the regulatory dynamics of cell wall assembly, an area where functional genomics offers new insights into the integration of cell wall growth and morphogenesis with a polarized secretory system that is under cell cycle and cell type program controls. PMID:16760306

  15. Isolation of a second yeast Saccharomyces cerevisiae gene (GPA2) coding for guanine nucleotide-binding regulatory protein: studies on its structure and possible functions.

    PubMed Central

    Nakafuku, M; Obara, T; Kaibuchi, K; Miyajima, I; Miyajima, A; Itoh, H; Nakamura, S; Arai, K; Matsumoto, K; Kaziro, Y

    1988-01-01

    In a previous paper, we demonstrated that a gene coding for a protein homologous to the alpha subunit of mammalian guanine nucleotide-binding regulatory (G) proteins occurs in Saccharomyces cerevisiae. The gene, designated GPA1, encodes a protein (GP1 alpha) of 472 amino acids with a calculated Mr of 54,075. Here we report the isolation of another G-protein-homologous gene, GPA2, which encodes an amino acid sequence of 449 amino acid residues with a Mr of 50,516. The predicted primary structure of the GPA2-encoded protein (GP2 alpha) is homologous to mammalian G proteins [inhibitory and stimulatory G proteins (Gi and Gs, respectively), a G protein of unknown function (Go), and transducins (Gt)] as well as yeast GP1 alpha. When aligned with the alpha subunit of Gi (Gi alpha) to obtain maximal homology, GP2 alpha was found to contain a stretch of 83 additional amino acid residues near the NH2 terminus. The gene was mapped in chromosome V, close to the centromere. Haploid cells carrying a disrupted GPA2 gene are viable. Cells carrying a high copy number of plasmid GPA2 (YEpGPA2) had markedly elevated levels of cAMP and could suppress a temperature-sensitive mutation of RAS2. These results suggest that GPA2 may be involved in the regulation of cAMP levels in S. cerevisiae. Images PMID:2830616

  16. Homology--history of a concept.

    PubMed

    Panchen, A L

    1999-01-01

    The concept of homology is traceable to Aristotle, but Belon's comparison in 1555 of a human skeleton with that of a bird expressed it overtly. Before the late 18th century, the dominant view of the pattern of organisms was the scala naturae--even Linnaeus with his divergent hierarchical classification did not necessarily see the resulting taxonomic pattern as a natural phenomenon. The divergent hierarchy, rather than the acceptance of phylogeny, was the necessary spur to discussion of homology and the concept of analogy. Lamarck, despite his proposal of evolution, attributed homology to his escalator naturae and analogy to convergent acquired characters. Significantly, it was the concept of serial homology that emerged at the end of the 18th century, although comparison between organisms became popular soon after, and was boosted by the famous Cuvier/Geoffroy Saint-Hilaire debate of the 1830s. The concepts of homology and analogy were well understood by the pre- (or anti-) evolutionary comparative anatomists before the general acceptance of phylogeny, and they were defined by Owen in 1843. The acceptance of evolution led to the idea that homology should be defined by common ancestry, and to the confusion between definition and explanation. The term 'homoplasy', introduced by Lankester in 1870, also arose from a phylogenetic explanation of homology.

  17. Saccharomyces cerevisiae metabolism in ecological context

    PubMed Central

    Jouhten, Paula; Ponomarova, Olga; Gonzalez, Ramon; Patil, Kiran R.

    2016-01-01

    The architecture and regulation of Saccharomyces cerevisiae metabolic network are among the best studied owing to its widespread use in both basic research and industry. Yet, several recent studies have revealed notable limitations in explaining genotype–metabolic phenotype relations in this yeast, especially when concerning multiple genetic/environmental perturbations. Apparently unexpected genotype–phenotype relations may originate in the evolutionarily shaped cellular operating principles being hidden in common laboratory conditions. Predecessors of laboratory S. cerevisiae strains, the wild and the domesticated yeasts, have been evolutionarily shaped by highly variable environments, very distinct from laboratory conditions, and most interestingly by social life within microbial communities. Here we present a brief review of the genotypic and phenotypic peculiarities of S. cerevisiae in the context of its social lifestyle beyond laboratory environments. Accounting for this ecological context and the origin of the laboratory strains in experimental design and data analysis would be essential in improving the understanding of genotype–environment–phenotype relationships. PMID:27634775

  18. "Malonate uptake and metabolism in Saccharomyces cerevisiae".

    PubMed

    Chen, Wei Ning; Tan, Kee Yang

    2013-09-01

    Malonyl-CoA plays an important role in the synthesis and elongation of fatty acids in yeast Saccharomyces cerevisiae. Malonyl-CoA is at a low concentration inside the cell and is produced mainly from acetyl-CoA through the enzyme acetyl-CoA carboxylase. It would be beneficial to find an alternative source of malonyl-CoA to increase its intracellular concentration and overall synthesis of the fatty acids. MatB gene from the bacteria Rhizobium leguminosarium bv. trifolii encodes for a malonyl-CoA synthetase which catalyzes the formation of the malonyl-CoA directly from malonate and CoA. However, results from high-performance liquid chromatography (HPLC) proved that Saccharomyces cerevisiae itself does not contain enough cytoplasmic malonate within them and is unable to uptake exogenously supplied malonate in the form of malonic acid. A dicarboxylic acid plasma membrane transporter with the ability to uptake exogenous malonic acid was identified from another species of yeast known as Schizosaccharomyces pombe and the gene encoding this transporter is identified as the mae1 gene. From the experiments thus far, the mae1 gene had been successfully cloned and transformed into Saccharomyces cerevisiae. The expression and functional ability of the encoded plasma membrane dicarboxylic acid transporter were also demonstrated and verified using specialized technologies such as RT-PCR, yeast immunofluorescence, HPLC, and LC-MS.

  19. Synthesis of Morphinan Alkaloids in Saccharomyces cerevisiae.

    PubMed

    Fossati, Elena; Narcross, Lauren; Ekins, Andrew; Falgueyret, Jean-Pierre; Martin, Vincent J J

    2015-01-01

    Morphinan alkaloids are the most powerful narcotic analgesics currently used to treat moderate to severe and chronic pain. The feasibility of morphinan synthesis in recombinant Saccharomyces cerevisiae starting from the precursor (R,S)-norlaudanosoline was investigated. Chiral analysis of the reticuline produced by the expression of opium poppy methyltransferases showed strict enantioselectivity for (S)-reticuline starting from (R,S)-norlaudanosoline. In addition, the P. somniferum enzymes salutaridine synthase (PsSAS), salutaridine reductase (PsSAR) and salutaridinol acetyltransferase (PsSAT) were functionally co-expressed in S. cerevisiae and optimization of the pH conditions allowed for productive spontaneous rearrangement of salutaridinol-7-O-acetate and synthesis of thebaine from (R)-reticuline. Finally, we reconstituted a 7-gene pathway for the production of codeine and morphine from (R)-reticuline. Yeast cell feeding assays using (R)-reticuline, salutaridine or codeine as substrates showed that all enzymes were functionally co-expressed in yeast and that activity of salutaridine reductase and codeine-O-demethylase likely limit flux to morphine synthesis. The results of this study describe a significant advance for the synthesis of morphinans in S. cerevisiae and pave the way for their complete synthesis in recombinant microbes.

  20. Progress in Metabolic Engineering of Saccharomyces cerevisiae

    PubMed Central

    Nevoigt, Elke

    2008-01-01

    Summary: The traditional use of the yeast Saccharomyces cerevisiae in alcoholic fermentation has, over time, resulted in substantial accumulated knowledge concerning genetics, physiology, and biochemistry as well as genetic engineering and fermentation technologies. S. cerevisiae has become a platform organism for developing metabolic engineering strategies, methods, and tools. The current review discusses the relevance of several engineering strategies, such as rational and inverse metabolic engineering, evolutionary engineering, and global transcription machinery engineering, in yeast strain improvement. It also summarizes existing tools for fine-tuning and regulating enzyme activities and thus metabolic pathways. Recent examples of yeast metabolic engineering for food, beverage, and industrial biotechnology (bioethanol and bulk and fine chemicals) follow. S. cerevisiae currently enjoys increasing popularity as a production organism in industrial (“white”) biotechnology due to its inherent tolerance of low pH values and high ethanol and inhibitor concentrations and its ability to grow anaerobically. Attention is paid to utilizing lignocellulosic biomass as a potential substrate. PMID:18772282

  1. Synthesis of Morphinan Alkaloids in Saccharomyces cerevisiae

    PubMed Central

    Fossati, Elena; Narcross, Lauren; Ekins, Andrew; Falgueyret, Jean-Pierre; Martin, Vincent J. J.

    2015-01-01

    Morphinan alkaloids are the most powerful narcotic analgesics currently used to treat moderate to severe and chronic pain. The feasibility of morphinan synthesis in recombinant Saccharomyces cerevisiae starting from the precursor (R,S)-norlaudanosoline was investigated. Chiral analysis of the reticuline produced by the expression of opium poppy methyltransferases showed strict enantioselectivity for (S)-reticuline starting from (R,S)-norlaudanosoline. In addition, the P. somniferum enzymes salutaridine synthase (PsSAS), salutaridine reductase (PsSAR) and salutaridinol acetyltransferase (PsSAT) were functionally co-expressed in S. cerevisiae and optimization of the pH conditions allowed for productive spontaneous rearrangement of salutaridinol-7-O-acetate and synthesis of thebaine from (R)-reticuline. Finally, we reconstituted a 7-gene pathway for the production of codeine and morphine from (R)-reticuline. Yeast cell feeding assays using (R)-reticuline, salutaridine or codeine as substrates showed that all enzymes were functionally co-expressed in yeast and that activity of salutaridine reductase and codeine-O-demethylase likely limit flux to morphine synthesis. The results of this study describe a significant advance for the synthesis of morphinans in S. cerevisiae and pave the way for their complete synthesis in recombinant microbes. PMID:25905794

  2. Tbf1 and Vid22 promote resection and non-homologous end joining of DNA double-strand break ends.

    PubMed

    Bonetti, Diego; Anbalagan, Savani; Lucchini, Giovanna; Clerici, Michela; Longhese, Maria Pia

    2013-01-23

    The repair of DNA double-strand breaks (DSBs) is crucial for maintaining genome stability. The Saccharomyces cerevisiae protein Tbf1, which is characterized by a Myb domain and is related to mammalian TRF1 and TRF2, has been proposed to act as a transcriptional activator. Here, we show that Tbf1 and its interacting protein Vid22 are new players in the response to DSBs. Inactivation of either TBF1 or VID22 causes hypersensitivity to DSB-inducing agents and shows strong negative interactions with mutations affecting homologous recombination. Furthermore, Tbf1 and Vid22 are recruited to an HO-induced DSB, where they promote both resection of DNA ends and repair by non-homologous end joining. Finally, inactivation of either Tbf1 or Vid22 impairs nucleosome eviction around the DSB, suggesting that these proteins promote efficient repair of the break by influencing chromatin identity in its surroundings.

  3. [Modification of carbon flux in Sacchromyces cerevisiae to improve L-lactic acid production].

    PubMed

    Zhao, Liangliang; Wang, Jun; Zhou, Jingwen; Liu, Liming; Du, Guocheng; Chen, Jian

    2011-01-01

    We developed an engineered Sacchromyces cerevisiae strain to produce L-lactic acid efficiently by using glucose as carbon source. For construction of the strain CEN. PK2-1C [LDH], we integrated an LDH gene coding L-lactic acid dehydrogenase from bovine into the genome of S. cerevisiae via homologous recombination and meanwhile knocked out a PDC1 gene coding pyruvate decarboxylase. The carbon fluxes were led into L-Lactic acid. We analyzed the Km value of these key enzymes to NADH and over-expressed an NADH oxidase (nox) from Streptococcus pneumoniae into the cytoplasm for the construction of S. cerevisiae CEN. PK2-1C [LDH] -nox. Compared to the initial strain, the yield of L-lactic acid in CEN. PK2-1C [LDH] fermentation broth increased from 0 g/L to 15 g/L and the concentration of ethanol decreased from 27.3 g/L to 16.2 g/L. Compared to CEN. PK2-1C [LDH], the yield of L-lactic acid in CEN. PK2-1C [LDH] -nox fermentation broth increased from 15 g/L to 20 g/L and the concentration of ethanol decreased from 16.2 g/L to 8.2 g/L. The carbon metabolic flux was redistributed to efficient accumulation of L-lactic acid through two-sided control that heterologous expression of the gene LDH and decreasing the ratio of NADH/NAD+.

  4. Genome sequencing and genetic breeding of a bioethanol Saccharomyces cerevisiae strain YJS329.

    PubMed

    Zheng, Dao-Qiong; Wang, Pin-Mei; Chen, Jie; Zhang, Ke; Liu, Tian-Zhe; Wu, Xue-Chang; Li, Yu-Dong; Zhao, Yu-Hua

    2012-09-15

    Environmental stresses and inhibitors encountered by Saccharomyces cerevisiae strains are the main limiting factors in bioethanol fermentation. Strains with different genetic backgrounds usually show diverse stress tolerance responses. An understanding of the mechanisms underlying these phenotypic diversities within S. cerevisiae populations could guide the construction of strains with desired traits. We explored the genetic characteristics of the bioethanol S. cerevisiae strain YJS329 and elucidated how genetic variations in its genome were correlated with specified traits compared to similar traits in the S288c-derived strain, BYZ1. Karyotypic electrophoresis combined with array-comparative genomic hybridization indicated that YJS329 was a diploid strain with a relatively constant genome as a result of the fewer Ty elements and lack of structural polymorphisms between homologous chromosomes that it contained. By comparing the sequence with the S288c genome, a total of 64,998 SNPs, 7,093 indels and 11 unique genes were identified in the genome of YJS329-derived haploid strain YJSH1 through whole-genome sequencing. Transcription comparison using RNA-Seq identified which of the differentially expressed genes were the main contributors to the phenotypic differences between YJS329 and BYZ1. By combining the results obtained from the genome sequences and the transcriptions, we predicted how the SNPs, indels and chromosomal copy number variations may affect the mRNA expression profiles and phenotypes of the yeast strains. Furthermore, some genetic breeding strategies to improve the adaptabilities of YJS329 were designed and experimentally verified. Through comparative functional genomic analysis, we have provided some insights into the mechanisms underlying the specific traits of the bioenthanol strain YJS329. The work reported here has not only enriched the available genetic resources of yeast but has also indicated how functional genomic studies can be used to improve

  5. Identification and Characterization of a Novel Biotin Biosynthesis Gene in Saccharomyces cerevisiae

    PubMed Central

    Wu, Hong; Ito, Kiyoshi; Shimoi, Hitoshi

    2005-01-01

    Yeast Saccharomyces cerevisiae cells generally cannot synthesize biotin, a vitamin required for many carboxylation reactions. Although sake yeasts, which are used for Japanese sake brewing, are classified as S. cerevisiae, they do not require biotin for their growth. In this study, we identified a novel open reading frame (ORF) in the genome of one strain of sake yeast that we speculated to be involved in biotin synthesis. Homologs of this gene are widely distributed in the genomes of sake yeasts. However, they are not found in many laboratory strains and strains used for wine making and beer brewing. This ORF was named BIO6 because it has 52% identity with BIO3, a biotin biosynthesis gene of a laboratory strain. Further research showed that yeasts without the BIO6 gene are auxotrophic for biotin, whereas yeasts holding the BIO6 gene are prototrophic for biotin. The BIO6 gene was disrupted in strain A364A, which is a laboratory strain with one copy of the BIO6 gene. Although strain A364A is prototrophic for biotin, a BIO6 disrupted mutant was found to be auxotrophic for biotin. The BIO6 disruptant was able to grow in biotin-deficient medium supplemented with 7-keto-8-amino-pelargonic acid (KAPA), while the bio3 disruptant was not able to grow in this medium. These results suggest that Bio6p acts in an unknown step of biotin synthesis before KAPA synthesis. Furthermore, we demonstrated that expression of the BIO6 gene, like that of other biotin synthesis genes, was upregulated by depletion of biotin. We conclude that the BIO6 gene is a novel biotin biosynthesis gene of S. cerevisiae. PMID:16269718

  6. Buoyancy instability of homologous implosions

    DOE PAGES

    Johnson, B. M.

    2015-06-15

    With this study, I consider the hydrodynamic stability of imploding ideal gases as an idealized model for inertial confinement fusion capsules, sonoluminescent bubbles and the gravitational collapse of astrophysical gases. For oblate modes (short-wavelength incompressive modes elongated in the direction of the mean flow), a second-order ordinary differential equation is derived that can be used to assess the stability of any time-dependent flow with planar, cylindrical or spherical symmetry. Upon further restricting the analysis to homologous flows, it is shown that a monatomic gas is governed by the Schwarzschild criterion for buoyant stability. Under buoyantly unstable conditions, both entropy andmore » vorticity fluctuations experience power-law growth in time, with a growth rate that depends upon mean flow gradients and, in the absence of dissipative effects, is independent of mode number. If the flow accelerates throughout the implosion, oblate modes amplify by a factor (2C)|N0|ti, where C is the convergence ratio of the implosion, N0 is the initial buoyancy frequency and ti is the implosion time scale. If, instead, the implosion consists of a coasting phase followed by stagnation, oblate modes amplify by a factor exp(π|N0|ts), where N0 is the buoyancy frequency at stagnation and ts is the stagnation time scale. Even under stable conditions, vorticity fluctuations grow due to the conservation of angular momentum as the gas is compressed. For non-monatomic gases, this additional growth due to compression results in weak oscillatory growth under conditions that would otherwise be buoyantly stable; this over-stability is consistent with the conservation of wave action in the fluid frame. The above analytical results are verified by evolving the complete set of linear equations as an initial value problem, and it is demonstrated that oblate modes are the fastest-growing modes and that high mode numbers are required to reach this limit (Legendre mode ℓ ≳ 100

  7. Buoyancy instability of homologous implosions

    SciTech Connect

    Johnson, B. M.

    2015-06-15

    With this study, I consider the hydrodynamic stability of imploding ideal gases as an idealized model for inertial confinement fusion capsules, sonoluminescent bubbles and the gravitational collapse of astrophysical gases. For oblate modes (short-wavelength incompressive modes elongated in the direction of the mean flow), a second-order ordinary differential equation is derived that can be used to assess the stability of any time-dependent flow with planar, cylindrical or spherical symmetry. Upon further restricting the analysis to homologous flows, it is shown that a monatomic gas is governed by the Schwarzschild criterion for buoyant stability. Under buoyantly unstable conditions, both entropy and vorticity fluctuations experience power-law growth in time, with a growth rate that depends upon mean flow gradients and, in the absence of dissipative effects, is independent of mode number. If the flow accelerates throughout the implosion, oblate modes amplify by a factor (2C)|N0|ti, where C is the convergence ratio of the implosion, N0 is the initial buoyancy frequency and ti is the implosion time scale. If, instead, the implosion consists of a coasting phase followed by stagnation, oblate modes amplify by a factor exp(π|N0|ts), where N0 is the buoyancy frequency at stagnation and ts is the stagnation time scale. Even under stable conditions, vorticity fluctuations grow due to the conservation of angular momentum as the gas is compressed. For non-monatomic gases, this additional growth due to compression results in weak oscillatory growth under conditions that would otherwise be buoyantly stable; this over-stability is consistent with the conservation of wave action in the fluid frame. The above analytical results are verified by evolving the complete set of linear equations as an initial value problem, and it is demonstrated that oblate modes are the fastest

  8. Conservation of a portion of the S. cerevisiae Ure2p prion domain that interacts with the full-length protein

    PubMed Central

    Edskes, Herman K.; Wickner, Reed B.

    2002-01-01

    The [URE3] prion of Saccharomyces cerevisiae is a self-propagating inactive amyloid form of the Ure2 protein. Ure2p residues 1–65 constitute the prion domain, and the remaining C-terminal portion regulates nitrogen catabolism. We have examined the URE2 genes of wild-type isolates of S. cerevisiae and those of several pathogenic yeasts and a filamentous fungus. We find that the normal function of the S. cerevisiae Ure2p in nitrogen regulation is fully complemented by the Ure2p of Candida albicans, Candida glabrata, Candida kefyr, Candida maltosa, Saccharomyces bayanus, and Saccharomyces paradoxus, all of which have high homology in the C-terminal nitrogen regulation domain. However, there is considerable divergence of their N-terminal domains from that of Ure2p of S. cerevisiae. [URE3Sc] showed efficient transmission into S. cerevisiae ure2Δ cells if expressing a Ure2p of species within Saccharomyces. However, [URE3Sc] did not seed self-propagating inactivation of the Ure2p's from the other yeasts. When overexpressed as a fusion with green fluorescent protein, residues 5–47 of the S. cerevisiae prion domain are necessary for curing the [URE3] prion. Residues 11–39 are necessary for an inactivating interaction with the full-length Ure2p. A nearly identical region is highly conserved among many of the yeasts examined in this study, despite the wide divergence of sequences found in other parts of the N-terminal domains. PMID:12177423

  9. Interaction between Mismatch Repair and Genetic Recombination in Saccharomyces Cerevisiae

    PubMed Central

    Alani, E.; Reenan, RAG.; Kolodner, R. D.

    1994-01-01

    The yeast Saccharomyces cerevisiae encodes a set of genes that show strong amino acid sequence similarity to MutS and MutL, proteins required for mismatch repair in Escherichia coli. We examined the role of MSH2 and PMS1, yeast homologs of mutS and mutL, respectively, in the repair of base pair mismatches formed during meiotic recombination. By using specifically marked HIS4 and ARG4 alleles, we showed that msh2 mutants displayed a severe defect in the repair of all base pair mismatches as well as 1-, 2- and 4-bp insertion/deletion mispairs. The msh2 and pms1 phenotypes were indistinguishable, suggesting that the wild-type gene products act in the same repair pathway. A comparison of gene conversion events in wild-type and msh2 mutants indicated that mismatch repair plays an important role in genetic recombination. (1) Tetrad analysis at five different loci revealed that, in msh2 mutants, the majority of aberrant segregants displayed a sectored phenotype, consistent with a failure to repair mismatches created during heteroduplex formation. In wild type, base pair mismatches were almost exclusively repaired toward conversion rather than restoration. (2) In msh2 strains 10-19% of the aberrant tetrads were Ab4:4. (3) Polarity gradients at HIS4 and ARG4 were nearly abolished in msh2 mutants. The frequency of gene conversion at the 3' end of these genes was increased and was nearly the frequency observed at the 5' end. (4) Co-conversion studies were consistent with mismatch repair acting to regulate heteroduplex DNA tract length. We favor a model proposing that recombination events occur through the formation and resolution of heteroduplex intermediates and that mismatch repair proteins specifically interact with recombination enzymes to regulate the length of symmetric heteroduplex DNA. PMID:8056309

  10. Mating-type Gene Switching in Saccharomyces cerevisiae.

    PubMed

    Lee, Cheng-Sheng; Haber, James E

    2015-04-01

    The budding yeast Saccharomyces cerevisiae has two alternative mating types designated MATa and MATα. These are distinguished by about 700 bp of unique sequences, Ya or Yα, including divergent promoter sequences and part of the open reading frames of genes that regulate mating phenotype. Homothallic budding yeast, carrying an active HO endonuclease gene, HO, can switch mating type through a recombination process known as gene conversion, in which a site-specific double-strand break (DSB) created immediately adjacent to the Y region results in replacement of the Y sequences with a copy of the opposite mating type information, which is harbored in one of two heterochromatic donor loci, HMLα or HMRa. HO gene expression is tightly regulated to ensure that only half of the cells in a lineage switch to the opposite MAT allele, thus promoting conjugation and diploid formation. Study of the silencing of these loci has provided a great deal of information about the role of the Sir2 histone deacetylase and its associated Sir3 and Sir4 proteins in creating heterochromatic regions. MAT switching has been examined in great detail to learn about the steps in homologous recombination. MAT switching is remarkably directional, with MATa recombining preferentially with HMLα and MATα using HMRa. Donor preference is controlled by a cis-acting recombination enhancer located near HML. RE is turned off in MATα cells but in MATa binds multiple copies of the Fkh1 transcription factor whose forkhead-associated phosphothreonine binding domain localizes at the DSB, bringing HML into conjunction with MATa.

  11. Telomere Recombination Accelerates Cellular Aging in Saccharomyces cerevisiae

    PubMed Central

    Chen, Xiao-Fen; Meng, Fei-Long; Zhou, Jin-Qiu

    2009-01-01

    Telomeres are nucleoprotein structures located at the linear ends of eukaryotic chromosomes. Telomere integrity is required for cell proliferation and survival. Although the vast majority of eukaryotic species use telomerase as a primary means for telomere maintenance, a few species can use recombination or retrotransposon-mediated maintenance pathways. Since Saccharomyces cerevisiae can use both telomerase and recombination to replicate telomeres, budding yeast provides a useful system with which to examine the evolutionary advantages of telomerase and recombination in preserving an organism or cell under natural selection. In this study, we examined the life span in telomerase-null, post-senescent type II survivors that have employed homologous recombination to replicate their telomeres. Type II recombination survivors stably maintained chromosomal integrity but exhibited a significantly reduced replicative life span. Normal patterns of cell morphology at the end of a replicative life span and aging-dependent sterility were observed in telomerase-null type II survivors, suggesting the type II survivors aged prematurely in a manner that is phenotypically consistent with that of wild-type senescent cells. The shortened life span of type II survivors was extended by calorie restriction or TOR1 deletion, but not by Fob1p inactivation or Sir2p over-expression. Intriguingly, rDNA recombination was decreased in type II survivors, indicating that the premature aging of type II survivors was not caused by an increase in extra-chromosomal rDNA circle accumulation. Reintroduction of telomerase activity immediately restored the replicative life span of type II survivors despite their heterogeneous telomeres. These results suggest that telomere recombination accelerates cellular aging in telomerase-null type II survivors and that telomerase is likely a superior telomere maintenance pathway in sustaining yeast replicative life span. PMID:19557187

  12. Multiple Pathways of Recombination Induced by Double-Strand Breaks in Saccharomyces cerevisiae

    PubMed Central

    Pâques, Frédéric; Haber, James E.

    1999-01-01

    The budding yeast Saccharomyces cerevisiae has been the principal organism used in experiments to examine genetic recombination in eukaryotes. Studies over the past decade have shown that meiotic recombination and probably most mitotic recombination arise from the repair of double-strand breaks (DSBs). There are multiple pathways by which such DSBs can be repaired, including several homologous recombination pathways and still other nonhomologous mechanisms. Our understanding has also been greatly enriched by the characterization of many proteins involved in recombination and by insights that link aspects of DNA repair to chromosome replication. New molecular models of DSB-induced gene conversion are presented. This review encompasses these different aspects of DSB-induced recombination in Saccharomyces and attempts to relate genetic, molecular biological, and biochemical studies of the processes of DNA repair and recombination. PMID:10357855

  13. SPO73 and SPO71 Function Cooperatively in Prospore Membrane Elongation During Sporulation in Saccharomyces cerevisiae.

    PubMed

    Parodi, Emily M; Roesner, Joseph M; Huang, Linda S

    2015-01-01

    In the yeast Saccharomyces cerevisiae, cells undergoing sporulation form prospore membranes to surround their meiotic nuclei. The prospore membranes ultimately become the plasma membranes of the new cells. The putative phospholipase Spo1 and the tandem Pleckstrin Homology domain protein Spo71 have previously been shown to be required for prospore membrane development, along with the constitutively expressed Vps13 involved in vacuolar sorting. Here, we utilize genetic analysis, and find that SPO73 is required for proper prospore membrane shape and, like SPO71, is necessary for prospore membrane elongation. Additionally, similar to SPO71, loss of SPO73 partially suppresses spo1Δ. Spo73 localizes to prospore membranes and complexes with Spo71. We also find that phosphatidylserine localizes to the prospore membrane. Our results suggest a model where SPO71 and SPO73 act in opposition to SPO1 to form and elongate prospore membranes, while VPS13 plays a distinct role in prospore membrane development.

  14. Mitotic Recombination and Genetic Changes in Saccharomyces cerevisiae during Wine Fermentation

    PubMed Central

    Puig, Sergi; Querol, Amparo; Barrio, Eladio; Pérez-Ortín, José E.

    2000-01-01

    Natural strains of Saccharomyces cerevisiae are prototrophic homothallic yeasts that sporulate poorly, are often heterozygous, and may be aneuploid. This genomic constitution may confer selective advantages in some environments. Different mechanisms of recombination, such as meiosis or mitotic rearrangement of chromosomes, have been proposed for wine strains. We studied the stability of the URA3 locus of a URA3/ura3 wine yeast in consecutive grape must fermentations. ura3/ura3 homozygotes were detected at a rate of 1 × 10−5 to 3 × 10−5 per generation, and mitotic rearrangements for chromosomes VIII and XII appeared after 30 mitotic divisions. We used the karyotype as a meiotic marker and determined that sporulation was not involved in this process. Thus, we propose a hypothesis for the genome changes in wine yeasts during vinification. This putative mechanism involves mitotic recombination between homologous sequences and does not necessarily imply meiosis. PMID:10788381

  15. Delete and repeat: a comprehensive toolkit for sequential gene knockout in the budding yeast Saccharomyces cerevisiae.

    PubMed

    Hegemann, Johannes H; Heick, Sven Boris

    2011-01-01

    Gene inactivation is an essential step in the molecular dissection of gene function. In the yeast Saccharomyces cerevisiae, many tools for gene disruption are available. Gene disruption cassettes comprising completely heterologous marker genes flanked by short DNA segments homologous to the regions to the left and right of the gene to be deleted mediate highly efficient one-step gene disruption events. Routinely, in more than 50% of analyzed clones, the marker cassette is integrated in the targeted location. The inclusion of loxP sites flanking the disruption marker gene allows sequence-specific Cre recombinase-mediated marker rescue so that the marker can be reused to disrupt another gene. Here, we describe a comprehensive toolbox for multiple gene disruptions comprising a set of seven heterologous marker genes including four dominant resistance markers for gene disruption, plus a set of Cre expression plasmids carrying eight different selection markers, four of them dominant.

  16. Evaluation of Brachypodium distachyon L-Tyrosine Decarboxylase Using L-Tyrosine Over-Producing Saccharomyces cerevisiae.

    PubMed

    Noda, Shuhei; Shirai, Tomokazu; Mochida, Keiichi; Matsuda, Fumio; Oyama, Sachiko; Okamoto, Mami; Kondo, Akihiko

    2015-01-01

    To demonstrate that herbaceous biomass is a versatile gene resource, we focused on the model plant Brachypodium distachyon, and screened the B. distachyon for homologs of tyrosine decarboxylase (TDC), which is involved in the modification of aromatic compounds. A total of 5 candidate genes were identified in cDNA libraries of B. distachyon and were introduced into Saccharomyces cerevisiae to evaluate TDC expression and tyramine production. It is suggested that two TDCs encoded in the transcripts Bradi2g51120.1 and Bradi2g51170.1 have L-tyrosine decarboxylation activity. Bradi2g51170.1 was introduced into the L-tyrosine over-producing strain of S. cerevisiae that was constructed by the introduction of mutant genes that promote deregulated feedback inhibition. The amount of tyramine produced by the resulting transformant was 6.6-fold higher (approximately 200 mg/L) than the control strain, indicating that B. distachyon TDC effectively converts L-tyrosine to tyramine. Our results suggest that B. distachyon possesses enzymes that are capable of modifying aromatic residues, and that S. cerevisiae is a suitable host for the production of L-tyrosine derivatives.

  17. The HXT2 gene of Saccharomyces cerevisiae is required for high-affinity glucose transport.

    PubMed Central

    Kruckeberg, A L; Bisson, L F

    1990-01-01

    The HXT2 gene of the yeast Saccharomyces cerevisiae was identified on the basis of its ability to complement the defect in glucose transport of a snf3 mutant when present on the multicopy plasmid pSC2. Analysis of the DNA sequence of HXT2 revealed an open reading frame of 541 codons, capable of encoding a protein of Mr 59,840. The predicted protein displayed high sequence and structural homology to a large family of procaryotic and eucaryotic sugar transporters. These proteins have 12 highly hydrophobic regions that could form transmembrane domains; the spacing of these putative transmembrane domains is also highly conserved. Several amino acid motifs characteristic of this sugar transporter family are also present in the HXT2 protein. An hxt2 null mutant strain lacked a significant component of high-affinity glucose transport when under derepressing (low-glucose) conditions. However, the hxt2 null mutation did not incur a major growth defect on glucose-containing media. Genetic and biochemical analyses suggest that wild-type levels of high-affinity glucose transport require the products of both the HXT2 and SNF3 genes; these genes are not linked. Low-stringency Southern blot analysis revealed a number of other sequences that cross-hybridize with HXT2, suggesting that S. cerevisiae possesses a large family of sugar transporter genes. Images PMID:2233722

  18. Ady2p is essential for the acetate permease activity in the yeast Saccharomyces cerevisiae.

    PubMed

    Paiva, Sandra; Devaux, Frederic; Barbosa, Sonia; Jacq, Claude; Casal, Margarida

    2004-02-01

    To identify new genes involved in acetate uptake in Saccharomyces cerevisiae, an analysis of the gene expression profiles of cells shifted from glucose to acetic acid was performed. The gene expression reprogramming of yeast adapting to a poor non-fermentable carbon source was observed, including dramatic metabolic changes, global activation of translation machinery, mitochondria biogenesis and the induction of known or putative transporters. Among them, the gene ADY2/YCR010c was identified as a new key element for acetate transport, being homologous to the Yarrowia lipolytica GPR1 gene, which has a role in acetic acid sensitivity. Disruption of ADY2 in S. cerevisiae abolished the active transport of acetate. Microarray analyses of ady2Delta strains showed that this gene is not a critical regulator of acetate response and that its role is directly connected to acetate transport. Ady2p is predicted to be a membrane protein and is a valuable acetate transporter candidate. Copyright 2004 John Wiley & Sons, Ltd.

  19. Resection is responsible for loss of transcription around a double-strand break in Saccharomyces cerevisiae.

    PubMed

    Manfrini, Nicola; Clerici, Michela; Wery, Maxime; Colombo, Chiara Vittoria; Descrimes, Marc; Morillon, Antonin; d'Adda di Fagagna, Fabrizio; Longhese, Maria Pia

    2015-07-31

    Emerging evidence indicate that the mammalian checkpoint kinase ATM induces transcriptional silencing in cis to DNA double-strand breaks (DSBs) through a poorly understood mechanism. Here we show that in Saccharomyces cerevisiae a single DSB causes transcriptional inhibition of proximal genes independently of Tel1/ATM and Mec1/ATR. Since the DSB ends undergo nucleolytic degradation (resection) of their 5'-ending strands, we investigated the contribution of resection in this DSB-induced transcriptional inhibition. We discovered that resection-defective mutants fail to stop transcription around a DSB, and the extent of this failure correlates with the severity of the resection defect. Furthermore, Rad9 and generation of γH2A reduce this DSB-induced transcriptional inhibition by counteracting DSB resection. Therefore, the conversion of the DSB ends from double-stranded to single-stranded DNA, which is necessary to initiate DSB repair by homologous recombination, is responsible for loss of transcription around a DSB in S. cerevisiae.

  20. Expression and Subcellular Distribution of GFP-Tagged Human Tetraspanin Proteins in Saccharomyces cerevisiae

    PubMed Central

    Skaar, Karin; Korza, Henryk J.; Tarry, Michael; Sekyrova, Petra; Högbom, Martin

    2015-01-01

    Tetraspanins are integral membrane proteins that function as organizers of multimolecular complexes and modulate function of associated proteins. Mammalian genomes encode approximately 30 different members of this family and remotely related eukaryotic species also contain conserved tetraspanin homologs. Tetraspanins are involved in a number of fundamental processes such as regulation of cell migration, fusion, immunity and signaling. Moreover, they are implied in numerous pathological states including mental disorders, infectious diseases or cancer. Despite the great interest in tetraspanins, the structural and biochemical basis of their activity is still largely unknown. A major bottleneck lies in the difficulty of obtaining stable and homogeneous protein samples in large quantities. Here we report expression screening of 15 members of the human tetraspanin superfamily and successful protocols for the production in S. cerevisiae of a subset of tetraspanins involved in human cancer development. We have demonstrated the subcellular localization of overexpressed tetraspanin-green fluorescent protein fusion proteins in S. cerevisiae and found that despite being mislocalized, the fusion proteins are not degraded. The recombinantly produced tetraspanins are dispersed within the endoplasmic reticulum membranes or localized in granule-like structures in yeast cells. The recombinantly produced tetraspanins can be extracted from the membrane fraction and purified with detergents or the poly (styrene-co-maleic acid) polymer technique for use in further biochemical or biophysical studies. PMID:26218426

  1. The Mei5-Sae3 protein complex mediates Dmc1 activity in Saccharomyces cerevisiae.

    PubMed

    Ferrari, Susan R; Grubb, Jennifer; Bishop, Douglas K

    2009-05-01

    During homologous recombination, a number of proteins cooperate to catalyze the loading of recombinases onto single-stranded DNA. Single-stranded DNA-binding proteins stimulate recombination by coating single-stranded DNA and keeping it free of secondary structure; however, in order for recombinases to load on single-stranded-DNA-binding protein-coated DNA, the activity of a class of proteins known as recombination mediators is required. Mediator proteins coordinate the handoff of single-stranded DNA from single-stranded DNA-binding protein to recombinase. Here we show that a complex of Mei5 and Sae3 from Saccharomyces cerevisiae preferentially binds single-stranded DNA and relieves the inhibition of the strand assimilation and DNA binding abilities of the meiotic recombinase Dmc1 imposed by the single-stranded DNA-binding protein replication protein A. Additionally, we demonstrate the physical interaction of Mei5-Sae3 with replication protein A. Our results, together with previous in vivo studies, indicate that Mei5-Sae3 is a mediator of Dmc1 assembly during meiotic recombination in S. cerevisiae.

  2. Engineering Saccharomyces cerevisiae for improvement in ethanol tolerance by accumulation of trehalose.

    PubMed

    Divate, Nileema R; Chen, Gen-Hung; Wang, Pei-Ming; Ou, Bor-Rung; Chung, Yun-Chin

    2016-11-01

    A genetic recombinant Saccharomyces cerevisiae starter with high ethanol tolerance capacities was constructed. In this study, the gene of trehalose-6-phosphate synthase (encoded by tps1), which catalyzes the first step in trehalose synthesis, was cloned and overexpressed in S. cerevisiae. Moreover, the gene of neutral trehalase (encoded by nth1, trehalose degrading enzyme) was deleted by using a disruption cassette, which contained long flanking homology regions of nth1 gene (the upstream 0.26 kb and downstream 0.4 kb). The engineered strain increased its tolerance against ethanol and glucose stress. The growth of the wild strain was inhibited when the medium contained 6 % or more ethanol, whereas growth of the engineered strain was affected when the medium contained 10 % or more ethanol. There was no significant difference in the ethanol yield between the wild strain and the engineered strain when the fermentation broth contained 10 % glucose (p > 0.05). The engineered strain showed greater ethanol yield than the wild type strain when the medium contained more than 15 % glucose (p < 0.05). Higher intracellular trehalose accumulation by overexpression of tps1 and deletion of nth1 might provide the ability for yeast to protect against environmental stress.

  3. Engineering Saccharomyces cerevisiae for improvement in ethanol tolerance by accumulation of trehalose

    PubMed Central

    Divate, Nileema R.; Chen, Gen-Hung; Wang, Pei-Ming; Ou, Bor-Rung; Chung, Yun-Chin

    2016-01-01

    ABSTRACT A genetic recombinant Saccharomyces cerevisiae starter with high ethanol tolerance capacities was constructed. In this study, the gene of trehalose-6-phosphate synthase (encoded by tps1), which catalyzes the first step in trehalose synthesis, was cloned and overexpressed in S. cerevisiae. Moreover, the gene of neutral trehalase (encoded by nth1, trehalose degrading enzyme) was deleted by using a disruption cassette, which contained long flanking homology regions of nth1 gene (the upstream 0.26 kb and downstream 0.4 kb). The engineered strain increased its tolerance against ethanol and glucose stress. The growth of the wild strain was inhibited when the medium contained 6 % or more ethanol, whereas growth of the engineered strain was affected when the medium contained 10 % or more ethanol. There was no significant difference in the ethanol yield between the wild strain and the engineered strain when the fermentation broth contained 10 % glucose (p > 0.05). The engineered strain showed greater ethanol yield than the wild type strain when the medium contained more than 15 % glucose (p < 0.05). Higher intracellular trehalose accumulation by overexpression of tps1 and deletion of nth1 might provide the ability for yeast to protect against environmental stress. PMID:27484300

  4. MSI1, a negative regulator of the RAS-cAMP pathway in Saccharomyces cerevisiae.

    PubMed Central

    Ruggieri, R; Tanaka, K; Nakafuku, M; Kaziro, Y; Toh-e, A; Matsumoto, K

    1989-01-01

    We have previously demonstrated that the IRA1-encoded protein inhibits the function of the RAS protein in a fashion antagonistic to the function of the CDC25 protein in the RAS-cAMP pathway in Saccharomyces cerevisiae. In an attempt to identify genes involved in the regulation of this pathway, high-copy-number plasmid suppressors of the heat shock sensitivity of the ira1 mutation were isolated. One such suppressor, MSI1, was found to encode a putative protein of 422 amino acids that shows homology to the beta subunit of the mammalian guanine nucleotide-binding regulatory proteins. Overexpression of the MSI1 gene could suppress the heat shock sensitivity and the defect in sporulation caused by the ira1 and RAS2Val19 mutations but not those of the bcy1 mutation. Furthermore, the high level of intracellular cAMP in ira1 and RAS2Val19 cells was reduced by the MSI1 gene carried on a YEp-based plasmid. These results suggest that the MSI1 protein is a negative regulator of the RAS-mediated induction of cAMP in S. cerevisiae. Images PMID:2554329

  5. The homologous recombination system of Ustilago maydis.

    PubMed

    Holloman, William K; Schirawski, Jan; Holliday, Robin

    2008-08-01

    Homologous recombination is a high fidelity, template-dependent process that is used in repair of damaged DNA, recovery of broken replication forks, and disjunction of homologous chromosomes in meiosis. Much of what is known about recombination genes and mechanisms comes from studies on baker's yeast. Ustilago maydis, a basidiomycete fungus, is distant evolutionarily from baker's yeast and so offers the possibility of gaining insight into recombination from an alternative perspective. Here we have surveyed the genome of U. maydis to determine the composition of its homologous recombination system. Compared to baker's yeast, there are fundamental differences in the function as well as in the repertoire of dedicated components. These include the use of a BRCA2 homolog and its modifier Dss1 rather than Rad52 as a mediator of Rad51, the presence of only a single Rad51 paralog, and the absence of Dmc1 and auxiliary meiotic proteins.

  6. The homologous recombination system of Ustilago maydis

    PubMed Central

    Holloman, William K.; Schirawski, Jan; Holliday, Robin

    2008-01-01

    Homologous recombination is a high fidelity, template-dependent process that is used in repair of damaged DNA, recovery of broken replication forks, and disjunction of homologous chromosomes in meiosis. Much of what is known about recombination genes and mechanisms comes from studies on baker's yeast. Ustilago maydis, a basidiomycete fungus, is distant evolutionarily from baker's yeast and so offers the possibility of gaining insight into recombination from an alternative perspective. Here we have surveyed the genome of Ustilago maydis to determine the composition of its homologous recombination system. Compared to baker's yeast, there are fundamental differences in the function as well as in the repertoire of dedicated components. These include the use of a BRCA2 homolog and its modifier Dss1 rather than Rad52 as a mediator of Rad51, the presence of only a single Rad51 paralog, and the absence of Dmc1 and auxiliary meiotic proteins. PMID:18502156

  7. Homology class of a Lagrangian Klein bottle

    NASA Astrophysics Data System (ADS)

    Nemirovski, Stefan Yu

    2009-08-01

    It is shown that an embedded Lagrangian Klein bottle realises a non-zero mod 2 homology class in a compact symplectic four-manifold (X,\\omega) such that c_1(X,\\omega)\\cdot \\lbrack \\omega \\rbrack > 0.

  8. Persistent homology analysis of phase transitions

    NASA Astrophysics Data System (ADS)

    Donato, Irene; Gori, Matteo; Pettini, Marco; Petri, Giovanni; De Nigris, Sarah; Franzosi, Roberto; Vaccarino, Francesco

    2016-05-01

    Persistent homology analysis, a recently developed computational method in algebraic topology, is applied to the study of the phase transitions undergone by the so-called mean-field XY model and by the ϕ4 lattice model, respectively. For both models the relationship between phase transitions and the topological properties of certain submanifolds of configuration space are exactly known. It turns out that these a priori known facts are clearly retrieved by persistent homology analysis of dynamically sampled submanifolds of configuration space.

  9. Dualities in Persistent (Co)Homology

    SciTech Connect

    de Silva, Vin; Morozov, Dmitriy; Vejdemo-Johansson, Mikael

    2011-09-16

    We consider sequences of absolute and relative homology and cohomology groups that arise naturally for a filtered cell complex. We establishalgebraic relationships between their persistence modules, and show that they contain equivalent information. We explain how one can use the existingalgorithm for persistent homology to process any of the four modules, and relate it to a recently introduced persistent cohomology algorithm. Wepresent experimental evidence for the practical efficiency of the latter algorithm.

  10. Persistent homology analysis of phase transitions.

    PubMed

    Donato, Irene; Gori, Matteo; Pettini, Marco; Petri, Giovanni; De Nigris, Sarah; Franzosi, Roberto; Vaccarino, Francesco

    2016-05-01

    Persistent homology analysis, a recently developed computational method in algebraic topology, is applied to the study of the phase transitions undergone by the so-called mean-field XY model and by the ϕ^{4} lattice model, respectively. For both models the relationship between phase transitions and the topological properties of certain submanifolds of configuration space are exactly known. It turns out that these a priori known facts are clearly retrieved by persistent homology analysis of dynamically sampled submanifolds of configuration space.

  11. Preserved irradiated homologous cartilage for orbital reconstruction

    SciTech Connect

    Linberg, J.V.; Anderson, R.L.; Edwards, J.J.; Panje, W.R.; Bardach, J.

    1980-07-01

    Human costal cartilage is an excellent implant material for orbital and periorbital reconstruction because of its light weight, strength, homogeneous consistency and the ease with which it can be carved. Its use has been limited by the necessity of a separate surgical procedure to obtain the material. Preserved irradiated homologous cartilage has been shown to have almost all the autogenous cartilage and is convenient to use. Preserved irradiated homologous cartilage transplants do not elicit rejection reactions, resist infection and rarely undergo absorption.

  12. Roles of DNA helicases in the mediation and regulation of homologous recombination.

    PubMed

    Daley, James M; Niu, Hengyao; Sung, Patrick

    2013-01-01

    Homologous recombination (HR) is an evolutionarily conserved process that eliminates DNA double-strand breaks from chromosomes, repairs injured DNA replication forks, and helps orchestrate meiotic chromosome segregation. Recent studies have shown that DNA helicases play multifaceted roles in HR mediation and regulation. In particular, the S. cerevisiae Sgs1 helicase and its human ortholog BLM helicase are involved in not only the resection of the primary lesion to generate single-stranded DNA to prompt the assembly of the HR machinery, but they also function in somatic cells to suppress the formation of chromosome arm crossovers during HR. On the other hand, the S. cerevisiae Mph1 and Srs2 helicases, and their respective functional equivalents in other eukaryotes, suppress spurious HR events and favor the formation of noncrossovers via distinct mechanisms. Thus, the functional integrity of the HR process and HR outcomes are dependent upon these helicase enzymes. Since mutations in some of these helicases lead to cancer predisposition in humans and mice, studies on them have clear relevance to human health and disease.

  13. Cloning and characterisation of the S. pombe rad15 gene, a homologue to the S. cerevisiae RAD3 and human ERCC2 genes.

    PubMed Central

    Murray, J M; Doe, C L; Schenk, P; Carr, A M; Lehmann, A R; Watts, F Z

    1992-01-01

    The RAD3 gene of Saccharomyces cerevisiae encodes an ATP-dependent 5'-3' DNA helicase, which is involved in excision repair of ultraviolet radiation damage. By hybridisation of a Schizosaccharomyces pombe genomic library with a RAD3 gene probe we have isolated the S. pombe homologue of RAD3. We have also cloned the rad15 gene of S. pombe by complementation of radiation-sensitive phenotype of the rad15 mutant. Comparison of the restriction map and DNA sequence, shows that the S. pombe rad15 gene is identical to the gene homologous to S. cerevisiae RAD3, identified by hybridisation. The S. pombe rad15.P mutant is highly sensitive to UV radiation, but only slightly sensitive to ionising radiation, as expected for a mutant defective in excision repair. DNA sequence analysis of the rad15 gene indicates an open reading frame of 772 amino acids, and this is consistent with a transcript size of 2.6 kb as detected by Northern analysis. The predicted rad15 protein has 65% identity to RAD3 and 55% identity to the human homologue ERCC2. This homology is particularly striking in the regions identified as being conserved in a group of DNA helicases. Gene deletion experiments indicate that, like the S. cerevisiae RAD3 gene, the S. pombe rad15 gene is essential for viability, suggesting that the protein product has a role in cell proliferation and not solely in DNA repair. Images PMID:1319571

  14. Hypotonic stress-induced calcium signaling in Saccharomyces cerevisiae involves TRP-like transporters on the endoplasmic reticulum membrane.

    PubMed

    Rigamonti, M; Groppi, S; Belotti, F; Ambrosini, R; Filippi, G; Martegani, E; Tisi, R

    2015-02-01

    Saccharomyces cerevisiae cells respond to hypotonic stress (HTS) by a cytosolic calcium rise, either generated by an influx of calcium from extracellular medium, when calcium is available, or by a release from intracellular stores in scarcity of extracellular calcium. Calcium release from intracellular compartments is peculiarly inhibited by external calcium in a calcineurin-independent and Cch1-, but not Mid1-, driven manner. HTS-induced calcium release is also negatively regulated by the ER protein Cls2 and involves a poorly characterized protein, FLC2/YAL053W gene product, previously proposed to be required for FAD transport in the ER, albeit, due to its molecular features, it was also previously classified as an ion transporter. A computational analysis revealed that this gene and its three homologs in S. cerevisiae, together with previously identified Schizosaccharomyces pombe pkd2 and Neurospora crassa calcium-related spray protein, belong to a fungal branch of TRP-like ion transporters related to human mucolipin and polycystin 2 calcium transporters. Moreover, disruption of FLC2 gene confers severe sensitivity to Calcofluor white and hyper-activation of the cell wall integrity MAPK cascade, suggesting a role in cell wall maintenance as previously suggested for the fission yeast homolog. Perturbation in cytosolic resting calcium concentration and hyper-activation of calcineurin in exponentially growing cells suggest a role for this transporter in calcium homeostasis in yeast. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. On the hodological criterion for homology.

    PubMed

    Faunes, Macarena; Francisco Botelho, João; Ahumada Galleguillos, Patricio; Mpodozis, Jorge

    2015-01-01

    Owen's pre-evolutionary definition of a homolog as "the same organ in different animals under every variety of form and function" and its redefinition after Darwin as "the same trait in different lineages due to common ancestry" entail the same heuristic problem: how to establish "sameness."Although different criteria for homology often conflict, there is currently a generalized acceptance of gene expression as the best criterion. This gene-centered view of homology results from a reductionist and preformationist concept of living beings. Here, we adopt an alternative organismic-epigenetic viewpoint, and conceive living beings as systems whose identity is given by the dynamic interactions between their components at their multiple levels of composition. We posit that there cannot be an absolute homology criterion, and instead, homology should be inferred from comparisons at the levels and developmental stages where the delimitation of the compared trait lies. In this line, we argue that neural connectivity, i.e., the hodological criterion, should prevail in the determination of homologies between brain supra-cellular structures, such as the vertebrate pallium.

  16. Homolog pairing and segregation in Drosophila meiosis.

    PubMed

    McKee, B D

    2009-01-01

    Pairing of homologous chromosomes is fundamental to their reliable segregation during meiosis I and thus underlies sexual reproduction. In most eukaryotes homolog pairing is confined to prophase of meiosis I and is accompanied by frequent exchanges, known as crossovers, between homologous chromatids. Crossovers give rise to chiasmata, stable interhomolog connectors that are required for bipolar orientation (orientation to opposite poles) of homologs during meiosis I. Drosophila is unique among model eukaryotes in exhibiting regular homolog pairing in mitotic as well as meiotic cells. I review the results of recent molecular studies of pairing in both mitosis and meiosis in Drosophila. These studies show that homolog pairing is continuous between pre-meiotic mitosis and meiosis but that pairing frequencies and patterns are altered during the mitotic-meiotic transition. They also show that, with the exception of X-Y pairing in male meiosis, which is mediated specifically by the 240-bp rDNA spacer repeats, chromosome pairing is not restricted to specific sites in either mitosis or meiosis. Instead, virtually all chromosome regions, both heterochromatic and euchromatic, exhibit autonomous pairing capacity. Mutations that reduce the frequencies of both mitotic and meiotic pairing have been recently described, but no mutations that abolish pairing completely have been discovered, and the genetic control of pairing in Drosophila remains to be elucidated.

  17. On the hodological criterion for homology

    PubMed Central

    Faunes, Macarena; Francisco Botelho, João; Ahumada Galleguillos, Patricio; Mpodozis, Jorge

    2015-01-01

    Owen's pre-evolutionary definition of a homolog as “the same organ in different animals under every variety of form and function” and its redefinition after Darwin as “the same trait in different lineages due to common ancestry” entail the same heuristic problem: how to establish “sameness.”Although different criteria for homology often conflict, there is currently a generalized acceptance of gene expression as the best criterion. This gene-centered view of homology results from a reductionist and preformationist concept of living beings. Here, we adopt an alternative organismic-epigenetic viewpoint, and conceive living beings as systems whose identity is given by the dynamic interactions between their components at their multiple levels of composition. We posit that there cannot be an absolute homology criterion, and instead, homology should be inferred from comparisons at the levels and developmental stages where the delimitation of the compared trait lies. In this line, we argue that neural connectivity, i.e., the hodological criterion, should prevail in the determination of homologies between brain supra-cellular structures, such as the vertebrate pallium. PMID:26157357

  18. Stoichiometric network constraints on xylose metabolism by recombinant Saccharomyces cerevisiae

    Treesearch

    Yong-Su Jin; Thomas W. Jeffries

    2004-01-01

    Metabolic pathway engineering is constrained by the thermodynamic and stoichiometric feasibility of enzymatic activities of introduced genes. Engineering of xylose metabolism in Saccharomyces cerevisiae has focused on introducing genes for the initial xylose assimilation steps from Pichia stipitis, a xylose-fermenting yeast, into S. cerevisiae, a yeast raditionally...

  19. Potential immobilized Saccharomyces cerevisiae as heavy metal removal

    NASA Astrophysics Data System (ADS)

    Raffar, Nur Izzati Abdul; Rahman, Nadhratul Nur Ain Abdul; Alrozi, Rasyidah; Senusi, Faraziehan; Chang, Siu Hua

    2015-05-01

    Biosorption of copper ion using treated and untreated immobilized Saccharomyces cerevisiae from aqueous solution was investigate in this study. S.cerevisiae has been choosing as biosorbent due to low cost, easy and continuously available from various industries. In this study, the ability of treated and untreated immobilized S.cerevisiae in removing copper ion influence by the effect of pH solution, and initial concentration of copper ion with contact time. Besides, adsorption isotherm and kinetic model also studied. The result indicated that the copper ion uptake on treated and untreated immobilized S.cerevisiae was increased with increasing of contact time and initial concentration of copper ion. The optimum pH for copper ion uptake on untreated and treated immobilized S.cerevisiae at 4 and 6. From the data obtained of copper ion uptake, the adsorption isotherm was fitted well by Freundlich model for treated immobilized S.cerevisiae and Langmuir model for untreated immobilized S.cerevisiae according to high correlation coefficient. Meanwhile, the pseudo second order was described as suitable model present according to high correlation coefficient. Since the application of biosorption process has been received more attention from numerous researchers as a potential process to be applied in the industry, future study will be conducted to investigate the potential of immobilized S.cerevisiae in continuous process.

  20. Functional analysis of recombinant human and Yarrowia lipolytica O-GlcNAc transferases expressed in Saccharomyces cerevisiae.

    PubMed

    Oh, Hye Ji; Moon, Hye Yun; Cheon, Seon Ah; Hahn, Yoonsoo; Kang, Hyun Ah

    2016-10-01

    O-linked β-N-acetylglucosamine (O-GlcNAc) glycosylation is an important post-translational modification in many cellular processes. It is mediated by O-GlcNAc transferases (OGTs), which catalyze the addition of O-GlcNAc to serine or threonine residues of the target proteins. In this study, we expressed a putative Yarrowia lipolytica OGT (YlOGT), the only homolog identified in the subphylum Saccharomycotina through bioinformatics analysis, and the human OGT (hOGT) as recombinant proteins in Saccharomyces cerevisiae, and performed their functional characterization. Immunoblotting assays using antibody against O-GlcNAc revealed that recombinant hOGT (rhOGT), but not the recombinant YlOGT (rYlOGT), undergoes auto-O-GlcNAcylation in the heterologous host S. cerevisiae. Moreover, the rhOGT expressed in S. cerevisiae showed a catalytic activity during in vitro assays using casein kinase II substrates, whereas no such activity was obtained in rYlOGT. However, the chimeric human-Y. lipolytica OGT, carrying the human tetratricopeptide repeat (TPR) domain along with the Y. lipolytica catalytic domain (CTD), mediated the transfer of O-GlcNAc moiety during the in vitro assays. Although the overexpression of full-length OGTs inhibited the growth of S. cerevisiae, no such inhibition was obtained upon overexpression of only the CTD fragment, indicating the role of TPR domain in growth inhibition. This is the first report on the functional analysis of the fungal OGT, indicating that the Y. lipolytica OGT retains its catalytic activity, although the physiological role and substrates of YlOGT remain to be elucidated.

  1. Reconstruction of the High-Osmolarity Glycerol (HOG) Signaling Pathway from the Halophilic Fungus Wallemia ichthyophaga in Saccharomyces cerevisiae

    PubMed Central

    Konte, Tilen; Terpitz, Ulrich; Plemenitaš, Ana

    2016-01-01

    The basidiomycetous fungus Wallemia ichthyophaga grows between 1.7 and 5.1 M NaCl and is the most halophilic eukaryote described to date. Like other fungi, W. ichthyophaga detects changes in environmental salinity mainly by the evolutionarily conserved high-osmolarity glycerol (HOG) signaling pathway. In Saccharomyces cerevisiae, the HOG pathway has been extensively studied in connection to osmotic regulation, with a valuable knock-out strain collection established. In the present study, we reconstructed the architecture of the HOG pathway of W. ichthyophaga in suitable S. cerevisiae knock-out strains, through heterologous expression of the W. ichthyophaga HOG pathway proteins. Compared to S. cerevisiae, where the Pbs2 (ScPbs2) kinase of the HOG pathway is activated via the SHO1 and SLN1 branches, the interactions between the W. ichthyophaga Pbs2 (WiPbs2) kinase and the W. ichthyophaga SHO1 branch orthologs are not conserved: as well as evidence of poor interactions between the WiSho1 Src-homology 3 (SH3) domain and the WiPbs2 proline-rich motif, the absence of a considerable part of the osmosensing apparatus in the genome of W. ichthyophaga suggests that the SHO1 branch components are not involved in HOG signaling in this halophilic fungus. In contrast, the conserved activation of WiPbs2 by the S. cerevisiae ScSsk2/ScSsk22 kinase and the sensitivity of W. ichthyophaga cells to fludioxonil, emphasize the significance of two-component (SLN1-like) signaling via Group III histidine kinase. Combined with protein modeling data, our study reveals conserved and non-conserved protein interactions in the HOG signaling pathway of W. ichthyophaga and therefore significantly improves the knowledge of hyperosmotic signal processing in this halophilic fungus. PMID:27379041

  2. Kinetics of phosphomevalonate kinase from Saccharomyces cerevisiae.

    PubMed

    Garcia, David E; Keasling, Jay D

    2014-01-01

    The mevalonate-based isoprenoid biosynthetic pathway is responsible for producing cholesterol in humans and is used commercially to produce drugs, chemicals, and fuels. Heterologous expression of this pathway in Escherichia coli has enabled high-level production of the antimalarial drug artemisinin and the proposed biofuel bisabolane. Understanding the kinetics of the enzymes in the biosynthetic pathway is critical to optimize the pathway for high flux. We have characterized the kinetic parameters of phosphomevalonate kinase (PMK, EC 2.7.4.2) from Saccharomyces cerevisiae, a previously unstudied enzyme. An E. coli codon-optimized version of the S. cerevisiae gene was cloned into pET-52b+, then the C-terminal 6X His-tagged protein was expressed in E. coli BL21(DE3) and purified on a Ni²⁺ column. The KM of the ATP binding site was determined to be 98.3 µM at 30°C, the optimal growth temperature for S. cerevisiae, and 74.3 µM at 37°C, the optimal growth temperature for E. coli. The K(M) of the mevalonate-5-phosphate binding site was determined to be 885 µM at 30°C and 880 µM at 37°C. The V(max) was determined to be 4.51 µmol/min/mg enzyme at 30°C and 5.33 µmol/min/mg enzyme at 37°C. PMK is Mg²⁺ dependent, with maximal activity achieved at concentrations of 10 mM or greater. Maximum activity was observed at pH = 7.2. PMK was not found to be substrate inhibited, nor feedback inhibited by FPP at concentrations up to 10 µM FPP.

  3. Investigating Homology between Proteins using Energetic Profiles

    PubMed Central

    Wrabl, James O.; Hilser, Vincent J.

    2010-01-01

    Accumulated experimental observations demonstrate that protein stability is often preserved upon conservative point mutation. In contrast, less is known about the effects of large sequence or structure changes on the stability of a particular fold. Almost completely unknown is the degree to which stability of different regions of a protein is generally preserved throughout evolution. In this work, these questions are addressed through thermodynamic analysis of a large representative sample of protein fold space based on remote, yet accepted, homology. More than 3,000 proteins were computationally analyzed using the structural-thermodynamic algorithm COREX/BEST. Estimated position-specific stability (i.e., local Gibbs free energy of folding) and its component enthalpy and entropy were quantitatively compared between all proteins in the sample according to all-vs.-all pairwise structural alignment. It was discovered that the local stabilities of homologous pairs were significantly more correlated than those of non-homologous pairs, indicating that local stability was indeed generally conserved throughout evolution. However, the position-specific enthalpy and entropy underlying stability were less correlated, suggesting that the overall regional stability of a protein was more important than the thermodynamic mechanism utilized to achieve that stability. Finally, two different types of statistically exceptional evolutionary structure-thermodynamic relationships were noted. First, many homologous proteins contained regions of similar thermodynamics despite localized structure change, suggesting a thermodynamic mechanism enabling evolutionary fold change. Second, some homologous proteins with extremely similar structures nonetheless exhibited different local stabilities, a phenomenon previously observed experimentally in this laboratory. These two observations, in conjunction with the principal conclusion that homologous proteins generally conserved local stability, may

  4. Investigating homology between proteins using energetic profiles.

    PubMed

    Wrabl, James O; Hilser, Vincent J

    2010-03-26

    Accumulated experimental observations demonstrate that protein stability is often preserved upon conservative point mutation. In contrast, less is known about the effects of large sequence or structure changes on the stability of a particular fold. Almost completely unknown is the degree to which stability of different regions of a protein is generally preserved throughout evolution. In this work, these questions are addressed through thermodynamic analysis of a large representative sample of protein fold space based on remote, yet accepted, homology. More than 3,000 proteins were computationally analyzed using the structural-thermodynamic algorithm COREX/BEST. Estimated position-specific stability (i.e., local Gibbs free energy of folding) and its component enthalpy and entropy were quantitatively compared between all proteins in the sample according to all-vs.-all pairwise structural alignment. It was discovered that the local stabilities of homologous pairs were significantly more correlated than those of non-homologous pairs, indicating that local stability was indeed generally conserved throughout evolution. However, the position-specific enthalpy and entropy underlying stability were less correlated, suggesting that the overall regional stability of a protein was more important than the thermodynamic mechanism utilized to achieve that stability. Finally, two different types of statistically exceptional evolutionary structure-thermodynamic relationships were noted. First, many homologous proteins contained regions of similar thermodynamics despite localized structure change, suggesting a thermodynamic mechanism enabling evolutionary fold change. Second, some homologous proteins with extremely similar structures nonetheless exhibited different local stabilities, a phenomenon previously observed experimentally in this laboratory. These two observations, in conjunction with the principal conclusion that homologous proteins generally conserved local stability, may

  5. Homologs of Breast Cancer Genes in Plants

    PubMed Central

    Trapp, Oliver; Seeliger, Katharina; Puchta, Holger

    2011-01-01

    Since the initial discovery of genes involved in hereditary breast cancer in humans, a vast wealth of information has been published. Breast cancer proteins were shown to work as tumor suppressors primarily through their involvement in DNA-damage repair. Surprisingly, homologs of these genes can be found in plant genomes, as well. Here, we want to give an overview of the identification and characterization of the biological roles of these proteins, in plants. In addition to the conservation of their function in DNA repair, new plant-specific characteristics have been revealed. BRCA1 is required for the efficient repair of double strand breaks (DSB) by homologous recombination in somatic cells of the model plant Arabidopsis thaliana. Bioinformatic analysis indicates that, whereas most homologs of key components of the different mammalian BRCA1 complexes are present in plant genomes, homologs of most factors involved in the recruitment of BRCA1 to the DSB cannot be identified. Thus, it is not clear at the moment whether differences exist between plants and animals at this important step. The most conserved region of BRCA1 and BARD1 homologs in plants is a PHD domain which is absent in mammals and which, in AtBARD1, might be involved in the transcriptional regulation of plant development. The presence of a plant-specific domain prompted us to reevaluate the current model for the evolution of BRCA1 homologs and to suggest a new hypothesis, in which we postulate that plant BRCA1 and BARD1 have one common predecessor that gained a PHD domain before duplication. Furthermore, work in Arabidopsis demonstrates that – as in animals – BRCA2 homologs are important for meiotic DNA recombination. Surprisingly, recent research has revealed that AtBRCA2 also has an important role in systemic acquired resistance. In Arabidopsis, BRCA2 is involved in the transcriptional regulation of pathogenesis-related (PR) genes via its interaction with the strand exchange protein RAD51. PMID

  6. Multiple Pairwise Analysis of Non-homologous Centromere Coupling Reveals Preferential Chromosome Size-Dependent Interactions and a Role for Bouquet Formation in Establishing the Interaction Pattern

    PubMed Central

    Lefrançois, Philippe; Rockmill, Beth; Xie, Pingxing; Roeder, G. Shirleen; Snyder, Michael

    2016-01-01

    During meiosis, chromosomes undergo a homology search in order to locate their homolog to form stable pairs and exchange genetic material. Early in prophase, chromosomes associate in mostly non-homologous pairs, tethered only at their centromeres. This phenomenon, conserved through higher eukaryotes, is termed centromere coupling in budding yeast. Both initiation of recombination and the presence of homologs are dispensable for centromere coupling (occurring in spo11 mutants and haploids induced to undergo meiosis) but the presence of the synaptonemal complex (SC) protein Zip1 is required. The nature and mechanism of coupling have yet to be elucidated. Here we present the first pairwise analysis of centromere coupling in an effort to uncover underlying rules that may exist within these non-homologous interactions. We designed a novel chromosome conformation capture (3C)-based assay to detect all possible interactions between non-homologous yeast centromeres during early meiosis. Using this variant of 3C-qPCR, we found a size-dependent interaction pattern, in which chromosomes assort preferentially with chromosomes of similar sizes, in haploid and diploid spo11 cells, but not in a coupling-defective mutant (spo11 zip1 haploid and diploid yeast). This pattern is also observed in wild-type diploids early in meiosis but disappears as meiosis progresses and homologous chromosomes pair. We found no evidence to support the notion that ancestral centromere homology plays a role in pattern establishment in S. cerevisiae post-genome duplication. Moreover, we found a role for the meiotic bouquet in establishing the size dependence of centromere coupling, as abolishing bouquet (using the bouquet-defective spo11 ndj1 mutant) reduces it. Coupling in spo11 ndj1 rather follows telomere clustering preferences. We propose that a chromosome size preference for centromere coupling helps establish efficient homolog recognition. PMID:27768699

  7. Multiple Pairwise Analysis of Non-homologous Centromere Coupling Reveals Preferential Chromosome Size-Dependent Interactions and a Role for Bouquet Formation in Establishing the Interaction Pattern.

    PubMed

    Lefrançois, Philippe; Rockmill, Beth; Xie, Pingxing; Roeder, G Shirleen; Snyder, Michael

    2016-10-01

    During meiosis, chromosomes undergo a homology search in order to locate their homolog to form stable pairs and exchange genetic material. Early in prophase, chromosomes associate in mostly non-homologous pairs, tethered only at their centromeres. This phenomenon, conserved through higher eukaryotes, is termed centromere coupling in budding yeast. Both initiation of recombination and the presence of homologs are dispensable for centromere coupling (occurring in spo11 mutants and haploids induced to undergo meiosis) but the presence of the synaptonemal complex (SC) protein Zip1 is required. The nature and mechanism of coupling have yet to be elucidated. Here we present the first pairwise analysis of centromere coupling in an effort to uncover underlying rules that may exist within these non-homologous interactions. We designed a novel chromosome conformation capture (3C)-based assay to detect all possible interactions between non-homologous yeast centromeres during early meiosis. Using this variant of 3C-qPCR, we found a size-dependent interaction pattern, in which chromosomes assort preferentially with chromosomes of similar sizes, in haploid and diploid spo11 cells, but not in a coupling-defective mutant (spo11 zip1 haploid and diploid yeast). This pattern is also observed in wild-type diploids early in meiosis but disappears as meiosis progresses and homologous chromosomes pair. We found no evidence to support the notion that ancestral centromere homology plays a role in pattern establishment in S. cerevisiae post-genome duplication. Moreover, we found a role for the meiotic bouquet in establishing the size dependence of centromere coupling, as abolishing bouquet (using the bouquet-defective spo11 ndj1 mutant) reduces it. Coupling in spo11 ndj1 rather follows telomere clustering preferences. We propose that a chromosome size preference for centromere coupling helps establish efficient homolog recognition.

  8. [Engineering Saccharomyces cerevisiae for sclareol production].

    PubMed

    Yang, Wei; Zhou, Yongjin; Liu, Wujun; Shen, Hongwei; Zhao, Zongbao K

    2013-08-01

    Sclareol is a member of labdane type diterpenes mostly used as fragrance ingredient. To enable microbial production of sclareol, synthetic pathways were constructed by incorporating labdenediol diphosphate synthase (LPPS) and terpene synthase (TPS) of the plant Salvia sclarea into Saccharomyces cerevisiae. It was found that sclareol production could be benefited by overexpression of key enzyme for precursor biosynthesis, construction of fusion protein for substrate channeling, and removal of signal peptides from LPPS and TPS. Under optimal shake flask culture conditions, strain S6 produced 8.96 mg/L sclareol. These results provided useful information for development of heterologous hosts for production of terpenoids.

  9. Mitochondrial fission facilitates mitophagy in Saccharomyces cerevisiae.

    PubMed

    Mao, Kai; Klionsky, Daniel J

    2013-11-01

    As a highly dynamic organelle, mitochondria undergo constitutive fusion and fission as well as biogenesis and degradation. Mitophagy, selective mitochondrial degradation through autophagy, is a conserved cellular process used for the elimination of excessive and damaged mitochondria in eukaryotes. Despite the significance of mitophagy in cellular physiology and pathophysiologies, the underlying mechanism of this process is far from clear. In this report, we studied the role of mitochondrial fission during mitophagy, and uncover a direct link between the fission complex and mitophagy machinery in Saccharomyces cerevisiae.

  10. Components of microtubular structures in Saccharomyces cerevisiae.

    PubMed Central

    Pillus, L; Solomon, F

    1986-01-01

    Most studies of cytoskeletal organelles have concentrated on molecular analyses of abundant and biochemically accessible structures. In many of the classical cases, however, the nature of the system chosen has precluded a concurrent genetic analysis. The mitotic spindle of the yeast Saccharomyces cerevisiae is one example of an organelle that can be studied by both classical and molecular genetics. We show here that this microtubule structure also can be examined biochemically. The spindle can be isolated by selective extractions of yeast cells by using adaptations of methods successfully applied to animal cells. In this way, microtubule-associated proteins of the yeast spindle are identified. Images PMID:3517870

  11. Fatty Acid Synthetase of Saccharomyces cerevisiae

    PubMed Central

    Klein, Harold P.; Volkmann, Carol M.; Chao, Fu-Chuan

    1967-01-01

    A light particle fraction of Saccharomyces cerevisiae, obtained from the crude ribosomal material, and containing the fatty acid synthetase, consisted primarily of 27S and 47S components. This fraction has a protein-ribonucleic acid ratio of about 13. Electron micrographs showed particles ranging in diameter between 100 and 300 A in this material. By use of density gradient analysis, the fatty acid synthetase was found in the 47S component. This component contained particles which were predominantly 300 A in diameter and which were considerably flatter than ribosomes, and it consisted almost entirely of protein. Images PMID:6025308

  12. Efficient screening of environmental isolates for Saccharomyces cerevisiae strains that are suitable for brewing.

    PubMed

    Fujihara, Hidehiko; Hino, Mika; Takashita, Hideharu; Kajiwara, Yasuhiro; Okamoto, Keiko; Furukawa, Kensuke

    2014-01-01

    We developed an efficient screening method for Saccharomyces cerevisiae strains from environmental isolates. MultiPlex PCR was performed targeting four brewing S. cerevisiae genes (SSU1, AWA1, BIO6, and FLO1). At least three genes among the four were amplified from all S. cerevisiae strains. The use of this method allowed us to successfully obtain S. cerevisiae strains.

  13. Homological scaffolds of brain functional networks

    PubMed Central

    Petri, G.; Expert, P.; Turkheimer, F.; Carhart-Harris, R.; Nutt, D.; Hellyer, P. J.; Vaccarino, F.

    2014-01-01

    Networks, as efficient representations of complex systems, have appealed to scientists for a long time and now permeate many areas of science, including neuroimaging (Bullmore and Sporns 2009 Nat. Rev. Neurosci. 10, 186–198. (doi:10.1038/nrn2618)). Traditionally, the structure of complex networks has been studied through their statistical properties and metrics concerned with node and link properties, e.g. degree-distribution, node centrality and modularity. Here, we study the characteristics of functional brain networks at the mesoscopic level from a novel perspective that highlights the role of inhomogeneities in the fabric of functional connections. This can be done by focusing on the features of a set of topological objects—homological cycles—associated with the weighted functional network. We leverage the detected topological information to define the homological scaffolds, a new set of objects designed to represent compactly the homological features of the correlation network and simultaneously make their homological properties amenable to networks theoretical methods. As a proof of principle, we apply these tools to compare resting-state functional brain activity in 15 healthy volunteers after intravenous infusion of placebo and psilocybin—the main psychoactive component of magic mushrooms. The results show that the homological structure of the brain's functional patterns undergoes a dramatic change post-psilocybin, characterized by the appearance of many transient structures of low stability and of a small number of persistent ones that are not observed in the case of placebo. PMID:25401177

  14. Homological scaffolds of brain functional networks.

    PubMed

    Petri, G; Expert, P; Turkheimer, F; Carhart-Harris, R; Nutt, D; Hellyer, P J; Vaccarino, F

    2014-12-06

    Networks, as efficient representations of complex systems, have appealed to scientists for a long time and now permeate many areas of science, including neuroimaging (Bullmore and Sporns 2009 Nat. Rev. Neurosci. 10, 186-198. (doi:10.1038/nrn2618)). Traditionally, the structure of complex networks has been studied through their statistical properties and metrics concerned with node and link properties, e.g. degree-distribution, node centrality and modularity. Here, we study the characteristics of functional brain networks at the mesoscopic level from a novel perspective that highlights the role of inhomogeneities in the fabric of functional connections. This can be done by focusing on the features of a set of topological objects-homological cycles-associated with the weighted functional network. We leverage the detected topological information to define the homological scaffolds, a new set of objects designed to represent compactly the homological features of the correlation network and simultaneously make their homological properties amenable to networks theoretical methods. As a proof of principle,we apply these tools to compare resting state functional brain activity in 15 healthy volunteers after intravenous infusion of placebo and psilocybin-the main psychoactive component of magic mushrooms. The results show that the homological structure of the brain's functional patterns undergoes a dramatic change post-psilocybin, characterized by the appearance of many transient structures of low stability and of a small number of persistent ones that are not observed in the case of placebo.

  15. SIR2 and other genes are abundantly expressed in long-lived natural segregants for replicative aging of the budding yeast Saccharomyces cerevisiae.

    PubMed

    Guo, Zhenhua; Adomas, Aleksandra B; Jackson, Erin D; Qin, Hong; Townsend, Jeffrey P

    2011-06-01

    We investigated the mechanism underlying the natural variation in longevity within natural populations using the model budding yeast, Saccharomyces cerevisiae. We analyzed whole-genome gene expression in four progeny of a natural S. cerevisiae strain that display differential replicative aging. Genes with different expression levels in short- and long-lived strains were classified disproportionately into metabolism, transport, development, transcription or cell cycle, and organelle organization (mitochondrial, chromosomal, and cytoskeletal). With several independent validating experiments, we detected 15 genes with consistent differential expression levels between the long- and the short-lived progeny. Among those 15, SIR2, HSP30, and TIM17 were upregulated in long-lived strains, which is consistent with the known effects of gene silencing, stress response, and mitochondrial function on aging. The link between SIR2 and yeast natural life span variation offers some intriguing ties to the allelic association of the human homolog SIRT1 to visceral obesity and metabolic response to lifestyle intervention.

  16. Novel Gbeta Mimic Kelch Proteins (Gpb1 and Gpb2 Connect G-Protein Signaling to Ras via Yeast Neurofibromin Homologs Ira1 and Ira2. A Model for Human NF1

    DTIC Science & Technology

    2007-03-01

    half of Kel1 (Kelch-repeat protein 1) is homologous to S. pombe or C . neoformans Ral2. S. cerevisiae Kel1 is involved in cell morphology and mating...Based on BLAST searches, C . neoformans has genes encoding hypothetical proteins homologous to the kelch-repeat containing amino terminus of...RAL2), KEM2(KEL1), KEL2) in the C . neoformans H99 strain background and found that Kem1 (Ral2) and Kem2 (Kel1), but not Kel2, are in part involved in

  17. Hyper(co)homology for exact left covariant functors and a homology theory for topological spaces

    NASA Astrophysics Data System (ADS)

    Sklyarenko, E. G.

    1995-06-01

    Contents Introduction §1. Strong cohomology of dual complexes §2. Hyperhomology §3. Examples §4. Typical limit relations for Steenrod-Sitnikov homology §5. The strong homology of topological spaces §6. On the special position held by singular theory Bibliography

  18. Cell wall construction in Saccharomyces cerevisiae.

    PubMed

    Klis, Frans M; Boorsma, Andre; De Groot, Piet W J

    2006-02-01

    In this review, we discuss new insights in cell wall architecture and cell wall construction in the ascomycetous yeast Saccharomyces cerevisiae. Transcriptional profiling studies combined with biochemical work have provided ample evidence that the cell wall is a highly adaptable organelle. In particular, the protein population that is anchored to the stress-bearing polysaccharides of the cell wall, and forms the interface with the outside world, is highly diverse. This diversity is believed to play an important role in adaptation of the cell to environmental conditions, in growth mode and in survival. Cell wall construction is tightly controlled and strictly coordinated with progression of the cell cycle. This is reflected in the usage of specific cell wall proteins during consecutive phases of the cell cycle and in the recent discovery of a cell wall integrity checkpoint. When the cell is challenged with stress conditions that affect the cell wall, a specific transcriptional response is observed that includes the general stress response, the cell wall integrity pathway and the calcineurin pathway. This salvage mechanism includes increased expression of putative cell wall assemblases and some potential cross-linking cell wall proteins, and crucial changes in cell wall architecture. We discuss some more enzymes involved in cell wall construction and also potential inhibitors of these enzymes. Finally, we use both biochemical and genomic data to infer that the architectural principles used by S. cerevisiae to build its cell wall are also used by many other ascomycetous yeasts and also by some mycelial ascomycetous fungi.

  19. [Mitochondria inheritance in yeast saccharomyces cerevisiae].

    PubMed

    Fizikova, A Iu

    2011-01-01

    The review is devoted to the main mechanisms of mitochondria inheritance in yeast Saccharonmyces cerevisiae. The genetic mechanisms of functionally active mitochondria inheritance in eukaryotic cells is one of the most relevant in modem researches. A great number of genetic diseases are associated with mitochondria dysfunction. Plasticity of eukaryotic cell metabolism according to the environmental changes is ensured by adequate mitochondria functioning by means of ATP synthesis coordination, reactive oxygen species accumulation, apoptosis regulation and is an important factor of cell adaptation to stress. Mitochondria participation in important for cell vitality processes masters the presence of accurate mechanisms of mitochondria functions regulation according to environment fluctuations. The mechanisms of mitochondria division and distribution are highly conserved. Baker yeast S. cerevisiae is an ideal model object for mitochondria researches due to energetic metabolism lability, ability to switch over respiration to fermentation, and petite-positive phenotype. Correction of metabolism according to the environmental changes is necessary for cell vitality. The influence of respiratory, carbon, amino acid and phosphate metabolism on mitochondria functions was shown. As far as the mechanisms that stabilize functions of mitochondria and mtDNA are highly conserve, we can project yeast regularities on higher eukaryotes systems. This makes it possible to approximate understanding the etiology and pathogenesis of a great number of human diseases.

  20. Mechanisms of ethanol tolerance in Saccharomyces cerevisiae.

    PubMed

    Ma, Menggen; Liu, Z Lewis

    2010-07-01

    Saccharomyces cerevisiae is a superb ethanol producer, yet is also sensitive to higher ethanol concentrations especially under high gravity or very high gravity fermentation conditions. Ethanol tolerance is associated with interplay of complex networks at the genome level. Although significant efforts have been made to study ethanol stress response in past decades, mechanisms of ethanol tolerance are not well known. With developments of genome sequencing and genomic technologies, our understanding of yeast biology has been revolutionarily advanced. More evidence of mechanisms of ethanol tolerance have been discovered involving multiple loci, multi-stress, and complex interactions as well as signal transduction pathways and regulatory networks. Transcription dynamics and profiling studies of key gene sets including heat shock proteins provided insight into tolerance mechanisms. A transient gene expression response or a stress response to ethanol does not necessarily lead to ethanol tolerance in yeast. Reprogrammed pathways and interactions of cofactor regeneration and redox balance observed from studies of tolerant yeast demonstrated the significant importance of a time-course study for ethanol tolerance. In this review, we focus on current advances of our understanding for ethanol-tolerance mechanisms of S. cerevisiae including gene expression responses, pathway-based analysis, signal transduction and regulatory networks. A prototype of global system model for mechanisms of ethanol tolerance is presented.

  1. A Saccharomyces cerevisiae mutant with increased virulence.

    PubMed

    Wheeler, Robert T; Kupiec, Martin; Magnelli, Paula; Abeijon, Claudia; Fink, Gerald R

    2003-03-04

    Saccharomyces cerevisiae, bakers' yeast, is not a pathogen in healthy individuals, but is increasingly isolated from immunocompromised patients. The more frequent isolation of S. cerevisiae clinically raises a number of questions concerning the origin, survival, and virulence of this organism in human hosts. Here we compare the virulence of a human isolate, a strain isolated from decaying fruit, and a common laboratory strain in a mouse infection model. We find that the plant isolate is lethal in mice, whereas the laboratory strain is avirulent. A knockout of the SSD1 gene, which alters the composition and cell wall architecture of the yeast cell surface, causes both the clinical and plant isolates to be more virulent in the mouse model of infection. The hypervirulent ssd1 Delta/ssd1 Delta yeast strain is a more potent elicitor of proinflammatory cytokines from macrophages in vitro. Our data suggest that the increased virulence of the mutant strains is a consequence of unique surface characteristics that overstimulate the proinflammatory response.

  2. Killer systems of the yeast Saccharomyces cerevisiae

    SciTech Connect

    Nesterova, G.F.

    1989-01-01

    The killer systems of Saccharomyces cerevisiae are an unusual class of cytoplasmic symbionts of primitive eukaryotes. The genetic material of these symbionts is double-stranded RNA. They are characterized by the linearity of the genome, its fragmentation into a major and a minor fraction, which replicate separately, and their ability to control the synthesis of secretory mycocin proteins possessing a toxic action on closely related strains. The secretion of mycocins at the same time ensures acquiring of resistance to them. Strains containing killer symbionts are toxigenic and resistant to the action of their own toxin, but strains that are free of killer double-stranded RNAs are sensitive to the action of mycocins. The killer systems of S. cerevisiae have retained features relating them to viruses and are apparently the result of evolution of infectious viruses. The occurrences of such systems among monocellular eukaryotic organisms is an example of complication of the genome by means of its assembly from virus-like components. We discuss the unusual features of replication and the expression of killer systems and their utilization in the construction of vector molecules.

  3. The yeast Hsp70 homolog Ssb: a chaperone for general de novo protein folding and a nanny for specific intrinsically disordered protein domains.

    PubMed

    Hübscher, Volker; Mudholkar, Kaivalya; Rospert, Sabine

    2017-02-01

    Activation of the heterotrimeric kinase SNF1 via phosphorylation of a specific residue within the α subunit is essential for the release from glucose repression in the yeast Saccharomyces cerevisiae. When glucose is available, SNF1 is maintained in the dephosphorylated, inactive state by the phosphatase Glc7-Reg1. Recent findings suggest that Bmh and Ssb combine their unique client-binding properties to interact with the regulatory region of the SNF1 α subunit and by that stabilize a conformation of SNF1, which is accessible for Glc7-Reg1-dependent dephosphorylation. Together, the 14-3-3 protein Bmh and the Hsp70 homolog Ssb comprise a novel chaperone module, which is required to maintain proper glucose repression in the yeast S. cerevisiae.

  4. Flare build-up study: Homologous flares group - Interim report

    NASA Technical Reports Server (NTRS)

    Woodgate, B. E.

    1982-01-01

    When homologous flares are broadly defined as having footpoint structures in common, it is found that a majority of flares fall into homologous sets. Filament eruptions and mass ejection in members of an homologous flare set show that maintainance of the magnetic structure is not a necessary condition for homology.

  5. INVHOGEN: a database of homologous invertebrate genes.

    PubMed

    Paulsen, Ingo; von Haeseler, Arndt

    2006-01-01

    Classification of proteins into families of homologous sequences constitutes the basis of functional analysis or of evolutionary studies. Here we present INVertebrate HOmologous GENes (INVHOGEN), a database combining the available invertebrate protein genes from UniProt (consisting of Swiss-Prot and TrEMBL) into gene families. For each family INVHOGEN provides a multiple protein alignment, a maximum likelihood based phylogenetic tree and taxonomic information about the sequences. It is possible to download the corresponding GenBank flatfiles, the alignment and the tree in Newick format. Sequences and related information have been structured in an ACNUC database under a client/server architecture. Thus, complex selections can be performed. An external graphical tool (FamFetch) allows access to the data to evaluate homology relationships between genes and distinguish orthologous from paralogous sequences. Thus, INVHOGEN complements the well-known HOVERGEN database. The databank is available at http://www.bi.uni-duesseldorf.de/~invhogen/invhogen.html.

  6. Homologous recombination in plants: an antireview.

    PubMed

    Lieberman-Lazarovich, Michal; Levy, Avraham A

    2011-01-01

    Homologous recombination (HR) is a central cellular process involved in many aspects of genome maintenance such as DNA repair, replication, telomere maintenance, and meiotic chromosomal segregation. HR is highly conserved among eukaryotes, contributing to genome stability as well as to the generation of genetic diversity. It has been intensively studied, for almost a century, in plants and in other organisms. In this antireview, rather than reviewing existing knowledge, we wish to underline the many open questions in plant HR. We will discuss the following issues: how do we define homology and how the degree of homology affects HR? Are there any plant-specific HR qualities, how extensive is functional conservation and did HR proteins acquire new functions? How efficient is HR in plants and what are the cis and the trans factors that regulate it? Finally, we will give the prospects for enhancing the rates of gene targeting and meiotic HR for plant breeding purposes.

  7. Irradiated homologous costal cartilage for augmentation rhinoplasty

    SciTech Connect

    Lefkovits, G. )

    1990-10-01

    Although the ideal reconstructive material for augmentation rhinoplasty continues to challenge plastic surgeons, there exists no report in the literature that confines the use of irradiated homologous costal cartilage, first reported by Dingman and Grabb in 1961, to dorsal nasal augmentation. The purpose of this paper is to present a retrospective analysis of the author's experience using irradiated homologous costal cartilage in augmentation rhinoplasty. Twenty-seven dorsal nasal augmentations were performed in 24 patients between 16 and 49 years of age with a follow-up ranging from 1 to 27 months. Good-to-excellent results were achieved in 83.3% (20 of 24). Poor results requiring revision were found in 16.7% (4 of 24). Complication rates included 7.4% infection (2 of 27) and 14.8% warping (4 of 27). The resorption rate was zero. These results compare favorably with other forms of nasal augmentation. Advantages and disadvantages of irradiated homologous costal cartilage are discussed.

  8. Solar core homology, solar neutrinos and helioseismology

    SciTech Connect

    Bludman, S.A.; Kennedy, D.C.

    1995-12-31

    Precise numerical standard solar models (SSMs) now agree with one another and with helioseismological observations in the convective and outer radiative zones. Nevertheless these models obscure how luminosity, neutrino production and g-mode core helioseismology depend on such inputs as opacity and nuclear cross sections. Although the Sun is not homologous, its inner core by itself is chemically evolved and almost homologous, because of its compactness, radiative energy transport, and ppI-dominated luminosity production. We apply luminosity-fixed homology transformations to the core to estimate theoretical uncertainties in the SSM and to obtain a broad class of non-SSMs, parameterized by central temperature and density and purely radiative energy transport in the core. 25 refs., 3 figs., 3 tabs.

  9. Prohibitin family members interact genetically with mitochondrial inheritance components in Saccharomyces cerevisiae.

    PubMed

    Berger, K H; Yaffe, M P

    1998-07-01

    Phb2p, a homolog of the tumor suppressor protein prohibitin, was identified in a genetic screen for suppressors of the loss of Mdm12p, a mitochondrial outer membrane protein required for normal mitochondrial morphology and inheritance in Saccharomyces cerevisiae. Phb2p and its homolog, prohibitin (Phb1p), were localized to the mitochondrial inner membrane and characterized as integral membrane proteins which depend on each other for their stability. In otherwise wild-type genetic backgrounds, null mutations in PHB1 and PHB2 did not confer any obvious phenotypes. However, loss of function of either PHB1 or PHB2 in cells with mitochondrial DNA deleted led to altered mitochondrial morphology, and phb1 or phb2 mutations were synthetically lethal when combined with a mutation in any of three mitochondrial inheritance components of the mitochondrial outer membrane, Mdm12p, Mdm10p, and Mmm1p. These results provide the first evidence of a role for prohibitin in mitochondrial inheritance and in the regulation of mitochondrial morphology.

  10. Meiotic exchange within and between chromosomes requires a common Rec function in Saccharomyces cerevisiae.

    PubMed Central

    Wagstaff, J E; Klapholz, S; Waddell, C S; Jensen, L; Esposito, R E

    1985-01-01

    We used haploid yeast cells that express both the MATa and MAT alpha mating-type alleles and contain the spo13-1 mutation to characterize meiotic recombination within single, unpaired chromosomes in Rec+ and Rec- Saccharomyces cerevisiae. In Rec+ haploids, as in diploids, intrachromosomal recombination in the ribosomal DNA was detected in 2 to 6% of meiotic divisions, and most events were unequal reciprocal sister chromatid exchange (SCE). By contrast, intrachromosomal recombination between duplicated copies of the his4 locus occurred in approximately 30% of haploid meiotic divisions, a frequency much higher than that reported in diploids; only about one-half of the events were unequal reciprocal SCE. The spo11-1 mutation, which virtually eliminates meiotic exchange between homologs in diploid meiosis, reduced the frequency of intrachromosomal recombination in both the ribosomal DNA and the his4 duplication during meiosis by 10- to greater than 50-fold. This Rec- mutation affected all forms of recombination within chromosomes: unequal reciprocal SCE, reciprocal intrachromatid exchange, and gene conversion. Intrachromosomal recombination in spo11-1 haploids was restored by transformation with a plasmid containing the wild-type SPO11 gene. Mitotic intrachromosomal recombination frequencies were unaffected by spo11-1. This is the first demonstration of a gene product required for recombination between homologs as well as recombination within chromosomes during meiosis. Images PMID:3915779

  11. Identification of Putative Mek1 Substrates during Meiosis in Saccharomyces cerevisiae Using Quantitative Phosphoproteomics

    PubMed Central

    Suhandynata, Raymond T.; Wan, Lihong; Zhou, Huilin; Hollingsworth, Nancy M.

    2016-01-01

    Meiotic recombination plays a key role in sexual reproduction as it generates crossovers that, in combination with sister chromatid cohesion, physically connect homologous chromosomes, thereby promoting their proper segregation at the first meiotic division. Meiotic recombination is initiated by programmed double strand breaks (DSBs) catalyzed by the evolutionarily conserved, topoisomerase-like protein Spo11. Repair of these DSBs is highly regulated to create crossovers between homologs that are distributed throughout the genome. This repair requires the presence of the mitotic recombinase, Rad51, as well as the strand exchange activity of the meiosis-specific recombinase, Dmc1. A key regulator of meiotic DSB repair in Saccharomyces cerevisiae is the meiosis-specific kinase Mek1, which promotes interhomolog strand invasion and is required for the meiotic recombination checkpoint and the crossover/noncrossover decision. Understanding how Mek1 regulates meiotic recombination requires the identification of its substrates. Towards that end, an unbiased phosphoproteomic approach utilizing Stable Isotope Labeling by Amino Acids in Cells (SILAC) was utilized to generate a list of potential Mek1 substrates, as well as proteins containing consensus phosphorylation sites for cyclin-dependent kinase, the checkpoint kinases, Mec1/Tel1, and the polo-like kinase, Cdc5. These experiments represent the first global phosphoproteomic dataset for proteins in meiotic budding yeast. PMID:27214570

  12. Identification of the gene encoding scHelI, a DNA helicase from Saccharomyces cerevisiae.

    PubMed

    Bean, D W; Matson, S W

    1997-12-01

    The gene encoding scHelI, a previously characterized DNA helicase from Saccharomyces cerevisiae, has been identified as YER176w, an open reading frame on chromosome V. The gene has been named HEL1 to indicate the DNA helicase activity of the gene product. HEL1 was identified by screening a lambda gt11 yeast protein expression library with antiserum to purified scHelI. Several independent immunopositive clones were isolated and shown to contain portions of HEL1 either by sequencing or by hybridization to a probe containing HEL1 sequences. The HEL1 open reading frame includes the seven conserved helicase motifs, consistent with the DNA helicase activity of scHelI, and the predicted size of the protein is in agreement with the size of purified scHelI. Partially purified cellular extracts from a hel1 deletion mutant strain did not contain scHelI activity. Homology searches revealed protein sequence homology between HEL1 and two previously identified and biochemically characterized yeast helicases, encoded by the DNA2 and UPF1 genes. Haploid hel1 deletion strains were constructed and shown to be viable with growth rates equivalent to those of parental strains. These strains did not differ from the parental strains in ultraviolet light sensitivity or the generation of petite colonies. Furthermore, these haploid deletion strains were capable for mating, the resultant diploid homozygous mutants were viable, capable of sporulation, and the spores displayed no reduction in viability.

  13. Potentiation of gene targeting in human cells by expression of Saccharomyces cerevisiae Rad52

    PubMed Central

    Di Primio, Cristina; Galli, Alvaro; Cervelli, Tiziana; Zoppè, Monica; Rainaldi, Giuseppe

    2005-01-01

    When exogenous DNA is stably introduced in mammalian cells, it is typically integrated in random positions, and only a minor fraction enters a pathway of homologous recombination (HR). The complex Rad51/Rad52 is a major player in the management of exogenous DNA in eukaryotic organisms and plays a critical role in the choice of repair system. In Saccharomyces cerevisiae, the pathway of choice is HR, mediated by Rad52 (ScRad52), which differs slightly from its human homologue. Here, we present an approach that utilizes ScRad52 to enhance HR in human cells containing a specific substrate for recombination. Clones of HeLa cells were produced expressing functional ScRad52. These cells showed enhanced resistance to DNA damaging treatments and revealed a different distribution of Rad51 foci (a marker of recombination complex formation). More significantly, ScRad52 expression resulted in an up to 37-fold increase in gene targeting by HR. In the same cells, random integration of exogenous DNA was significantly reduced, consistent with the view that HR and non-homologous end joining are alternative competing pathways. Expression of ScRad52 could offer a major improvement for experiments requiring gene targeting by HR, both in basic research and in gene therapy studies. PMID:16106043

  14. Evolutionary conservation of excision repair in Schizosaccharomyces pombe: evidence for a family of sequences related to the Saccharomyces cerevisiae RAD2 gene.

    PubMed Central

    Carr, A M; Sheldrick, K S; Murray, J M; al-Harithy, R; Watts, F Z; Lehmann, A R

    1993-01-01

    Cells mutated at the rad13 locus in the fission yeast, Schizosaccharomyces pombe are deficient in excision-repair of UV damage. We have cloned the S.pombe rad13 gene by its ability to complement the UV sensitivity of a rad13 mutant. The gene is not essential for cell proliferation. Sequence analysis of the cloned gene revealed an open reading-frame of 1113 amino acids with structural homology to the RAD2 gene of the distantly related Saccharomyces cerevisiae. The sequence similarity is confined to three domains, two close to the N-terminus of the encoded protein, the third being close to the C-terminus. The central region of about 500 amino acids shows little similarity between the two organisms. The first and third domains are also found in a related yet distinct pair of homologous S.pombe/S.cerevisiae DNA repair genes (rad2/YKL510), which have only a very short region between these two conserved domains. Using the polymerase chain reaction with degenerate primers, we have isolated fragments from a gene homologous to rad13/RAD2 from Aspergillus nidulans. These findings define new functional domains involved in excision-repair, as well as identifying a conserved family of genes related to RAD2. Images PMID:8464724

  15. The ZbYME2 gene from the food spoilage yeast Zygosaccharomyces bailii confers not only YME2 functions in Saccharomyces cerevisiae, but also the capacity for catabolism of sorbate and benzoate, two major weak organic acid preservatives.

    PubMed

    Mollapour, M; Piper, P W

    2001-11-01

    A factor influencing resistances of food spoilage microbes to sorbate and benzoate is whether these organisms are able to catalyse the degradation of these preservative compounds. Several fungi metabolize benzoic acid by the beta-ketoadipate pathway, involving the hydroxylation of benzoate to 4-hydroxybenzoate. Saccharomyces cerevisiae is unable to use benzoate as a sole carbon source, apparently through the lack of benzoate-4-hydroxylase activity. However a single gene from the food spoilage yeast Zygosaccharomyces bailii, heterologously expressed in S. cerevisiae cells, can enable growth of the latter on benzoate, sorbate and phenylalanine. Although this ZbYME2 gene is essential for benzoate utilization by Z. bailii, its ZbYme2p product has little homology to other fungal benzoate-4-hydroxylases studied to date, all of which appear to be microsomal cytochrome P450s. Instead, ZbYme2p has strong similarity to the matrix domain of the S. cerevisiae mitochondrial protein Yme2p/Rna12p/Prp12p and, when expressed as a functional fusion to green fluorescent protein in S. cerevisiae growing on benzoate, is largely localized to mitochondria. The phenotypes associated with loss of the native Yme2p from S. cerevisiae, mostly apparent in yme1,yme2 cells, may relate to increased detrimental effects of endogenous oxidative stress. Heterologous expression of ZbYME2 complements these phenotypes, yet it also confers a potential for weak acid preservative catabolism that the native S. cerevisiae Yme2p is unable to provide. Benzoate utilization by S. cerevisiae expressing ZbYME2 requires a functional mitochondrial respiratory chain, but not the native Yme1p and Yme2p of the mitochondrion.

  16. Saccharomyces cerevisiae Forms d-2-Hydroxyglutarate and Couples Its Degradation to d-Lactate Formation via a Cytosolic Transhydrogenase*♦

    PubMed Central

    Becker-Kettern, Julia; Paczia, Nicole; Conrotte, Jean-François; Kay, Daniel P.; Guignard, Cédric; Jung, Paul P.; Linster, Carole L.

    2016-01-01

    The d or l form of 2-hydroxyglutarate (2HG) accumulates in certain rare neurometabolic disorders, and high d-2-hydroxyglutarate (d-2HG) levels are also found in several types of cancer. Although 2HG has been detected in Saccharomyces cerevisiae, its metabolism in yeast has remained largely unexplored. Here, we show that S. cerevisiae actively forms the d enantiomer of 2HG. Accordingly, the S. cerevisiae genome encodes two homologs of the human d-2HG dehydrogenase: Dld2, which, as its human homolog, is a mitochondrial protein, and the cytosolic protein Dld3. Intriguingly, we found that a dld3Δ knock-out strain accumulates millimolar levels of d-2HG, whereas a dld2Δ knock-out strain displayed only very moderate increases in d-2HG. Recombinant Dld2 and Dld3, both currently annotated as d-lactate dehydrogenases, efficiently oxidized d-2HG to α-ketoglutarate. Depletion of d-lactate levels in the dld3Δ, but not in the dld2Δ mutant, led to the discovery of a new type of enzymatic activity, carried by Dld3, to convert d-2HG to α-ketoglutarate, namely an FAD-dependent transhydrogenase activity using pyruvate as a hydrogen acceptor. We also provide evidence that Ser3 and Ser33, which are primarily known for oxidizing 3-phosphoglycerate in the main serine biosynthesis pathway, in addition reduce α-ketoglutarate to d-2HG using NADH and represent major intracellular sources of d-2HG in yeast. Based on our observations, we propose that d-2HG is mainly formed and degraded in the cytosol of S. cerevisiae cells in a process that couples d-2HG metabolism to the shuttling of reducing equivalents from cytosolic NADH to the mitochondrial respiratory chain via the d-lactate dehydrogenase Dld1. PMID:26774271

  17. mei-W68 in Drosophila melanogaster encodes a Spo11 homolog: evidence that the mechanism for initiating meiotic recombination is conserved.

    PubMed

    McKim, K S; Hayashi-Hagihara, A

    1998-09-15

    Meiotic recombination requires the action of several gene products in both Saccharomyces cerevisiae and Drosophila melanogaster. Genetic studies in D. melanogaster have shown that the mei-W68 gene is required for all meiotic gene conversion and crossing-over. We cloned mei-W68 using a new genetic mapping method in which P elements are used to promote crossing-over at their insertion sites. This resulted in the high-resolution mapping of mei-W68 to a <18-kb region that contains a homolog of the S. cerevisiae spo11 gene. Molecular analysis of several mutants confirmed that mei-W68 encodes an spo11 homolog. Spo11 and MEI-W68 are members of a family of proteins similar to a novel type II topoisomerase. On the basis of this and other lines of evidence, Spo11 has been proposed to be the enzymatic activity that creates the double-strand breaks needed to initiate meiotic recombination. This raises the possibility that recombination in Drosophila is also initiated by double-strand breaks. Although these homologous genes are required absolutely for recombination in both species, their roles differ in other respects. In contrast to spo11, mei-W68 is not required for synaptonemal complex formation and does have a mitotic role.

  18. Connectivity Homology Enables Inter-Species Network Models of Synthetic Lethality

    PubMed Central

    Jacunski, Alexandra; Dixon, Scott J.; Tatonetti, Nicholas P.

    2015-01-01

    Synthetic lethality is a genetic interaction wherein two otherwise nonessential genes cause cellular inviability when knocked out simultaneously. Drugs can mimic genetic knock-out effects; therefore, our understanding of promiscuous drugs, polypharmacology-related adverse drug reactions, and multi-drug therapies, especially cancer combination therapy, may be informed by a deeper understanding of synthetic lethality. However, the colossal experimental burden in humans necessitates in silico methods to guide the identification of synthetic lethal pairs. Here, we present SINaTRA (Species-INdependent TRAnslation), a network-based methodology that discovers genome-wide synthetic lethality in translation between species. SINaTRA uses connectivity homology, defined as biological connectivity patterns that persist across species, to identify synthetic lethal pairs. Importantly, our approach does not rely on genetic homology or structural and functional similarity, and it significantly outperforms models utilizing these data. We validate SINaTRA by predicting synthetic lethality in S. pombe using S. cerevisiae data, then identify over one million putative human synthetic lethal pairs to guide experimental approaches. We highlight the translational applications of our algorithm for drug discovery by identifying clusters of genes significantly enriched for single- and multi-drug cancer therapies. PMID:26451775

  19. What Evidence Is There for the Homology of Protein-Protein Interactions?

    PubMed Central

    Lewis, Anna C. F.; Jones, Nick S.; Porter, Mason A.; Deane, Charlotte M.

    2012-01-01

    The notion that sequence homology implies functional similarity underlies much of computational biology. In the case of protein-protein interactions, an interaction can be inferred between two proteins on the basis that sequence-similar proteins have been observed to interact. The use of transferred interactions is common, but the legitimacy of such inferred interactions is not clear. Here we investigate transferred interactions and whether data incompleteness explains the lack of evidence found for them. Using definitions of homology associated with functional annotation transfer, we estimate that conservation rates of interactions are low even after taking interactome incompleteness into account. For example, at a blastp -value threshold of , we estimate the conservation rate to be about between S. cerevisiae and H. sapiens. Our method also produces estimates of interactome sizes (which are similar to those previously proposed). Using our estimates of interaction conservation we estimate the rate at which protein-protein interactions are lost across species. To our knowledge, this is the first such study based on large-scale data. Previous work has suggested that interactions transferred within species are more reliable than interactions transferred across species. By controlling for factors that are specific to within-species interaction prediction, we propose that the transfer of interactions within species might be less reliable than transfers between species. Protein-protein interactions appear to be very rarely conserved unless very high sequence similarity is observed. Consequently, inferred interactions should be used with care. PMID:23028270

  20. Mutagenic Organized Recombination Process by Homologous IN vivo Grouping (MORPHING) for directed enzyme evolution.

    PubMed

    Gonzalez-Perez, David; Molina-Espeja, Patricia; Garcia-Ruiz, Eva; Alcalde, Miguel

    2014-01-01

    Approaches that depend on directed evolution require reliable methods to generate DNA diversity so that mutant libraries can focus on specific target regions. We took advantage of the high frequency of homologous DNA recombination in Saccharomyces cerevisiae to develop a strategy for domain mutagenesis aimed at introducing and in vivo recombining random mutations in defined segments of DNA. Mutagenic Organized Recombination Process by Homologous IN vivo Grouping (MORPHING) is a one-pot random mutagenic method for short protein regions that harnesses the in vivo recombination apparatus of yeast. Using this approach, libraries can be prepared with different mutational loads in DNA segments of less than 30 amino acids so that they can be assembled into the remaining unaltered DNA regions in vivo with high fidelity. As a proof of concept, we present two eukaryotic-ligninolytic enzyme case studies: i) the enhancement of the oxidative stability of a H2O2-sensitive versatile peroxidase by independent evolution of three distinct protein segments (Leu28-Gly57, Leu149-Ala174 and Ile199-Leu268); and ii) the heterologous functional expression of an unspecific peroxygenase by exclusive evolution of its native 43-residue signal sequence.

  1. Repairing a double-strand chromosome break by homologous recombination: revisiting Robin Holliday's model.

    PubMed Central

    Haber, James E; Ira, Gregorz; Malkova, Anna; Sugawara, Neal

    2004-01-01

    Since the pioneering model for homologous recombination proposed by Robin Holliday in 1964, there has been great progress in understanding how recombination occurs at a molecular level. In the budding yeast Saccharomyces cerevisiae, one can follow recombination by physically monitoring DNA after the synchronous induction of a double-strand break (DSB) in both wild-type and mutant cells. A particularly well-studied system has been the switching of yeast mating-type (MAT) genes, where a DSB can be induced synchronously by expression of the site-specific HO endonuclease. Similar studies can be performed in meiotic cells, where DSBs are created by the Spo11 nuclease. There appear to be at least two competing mechanisms of homologous recombination: a synthesis-dependent strand annealing pathway leading to noncrossovers and a two-end strand invasion mechanism leading to formation and resolution of Holliday junctions (HJs), leading to crossovers. The establishment of a modified replication fork during DSB repair links gene conversion to another important repair process, break-induced replication. Despite recent revelations, almost 40 years after Holliday's model was published, the essential ideas he proposed of strand invasion and heteroduplex DNA formation, the formation and resolution of HJs, and mismatch repair, remain the basis of our thinking. PMID:15065659

  2. Repairing a double-strand chromosome break by homologous recombination: revisiting Robin Holliday's model.

    PubMed

    Haber, James E; Ira, Gregorz; Malkova, Anna; Sugawara, Neal

    2004-01-29

    Since the pioneering model for homologous recombination proposed by Robin Holliday in 1964, there has been great progress in understanding how recombination occurs at a molecular level. In the budding yeast Saccharomyces cerevisiae, one can follow recombination by physically monitoring DNA after the synchronous induction of a double-strand break (DSB) in both wild-type and mutant cells. A particularly well-studied system has been the switching of yeast mating-type (MAT) genes, where a DSB can be induced synchronously by expression of the site-specific HO endonuclease. Similar studies can be performed in meiotic cells, where DSBs are created by the Spo11 nuclease. There appear to be at least two competing mechanisms of homologous recombination: a synthesis-dependent strand annealing pathway leading to noncrossovers and a two-end strand invasion mechanism leading to formation and resolution of Holliday junctions (HJs), leading to crossovers. The establishment of a modified replication fork during DSB repair links gene conversion to another important repair process, break-induced replication. Despite recent revelations, almost 40 years after Holliday's model was published, the essential ideas he proposed of strand invasion and heteroduplex DNA formation, the formation and resolution of HJs, and mismatch repair, remain the basis of our thinking.

  3. Mutagenic Organized Recombination Process by Homologous In Vivo Grouping (MORPHING) for Directed Enzyme Evolution

    PubMed Central

    Gonzalez-Perez, David; Molina-Espeja, Patricia; Garcia-Ruiz, Eva; Alcalde, Miguel

    2014-01-01

    Approaches that depend on directed evolution require reliable methods to generate DNA diversity so that mutant libraries can focus on specific target regions. We took advantage of the high frequency of homologous DNA recombination in Saccharomyces cerevisiae to develop a strategy for domain mutagenesis aimed at introducing and in vivo recombining random mutations in defined segments of DNA. Mutagenic Organized Recombination Process by Homologous IN vivo Grouping (MORPHING) is a one-pot random mutagenic method for short protein regions that harnesses the in vivo recombination apparatus of yeast. Using this approach, libraries can be prepared with different mutational loads in DNA segments of less than 30 amino acids so that they can be assembled into the remaining unaltered DNA regions in vivo with high fidelity. As a proof of concept, we present two eukaryotic-ligninolytic enzyme case studies: i) the enhancement of the oxidative stability of a H2O2-sensitive versatile peroxidase by independent evolution of three distinct protein segments (Leu28-Gly57, Leu149-Ala174 and Ile199-Leu268); and ii) the heterologous functional expression of an unspecific peroxygenase by exclusive evolution of its native 43-residue signal sequence. PMID:24614282

  4. Transformation-associated recombination between diverged and homologous DNA repeats is induced by strand breaks

    SciTech Connect

    Larionov, V.; Kouprina, N. |; Eldarov, M. |; Perkins, E.; Porter, G.; Resnick, M.A.

    1994-10-01

    Rearrangement and deletion within plasmid DNA is commonly observed during transformation. We have examined the mechanisms of transformation-associated recombination in the yeast Saccharomyces cerevisiae using a plasmid system which allowed the effects of physical state and/or extent of homology on recombination to be studied. The plasmid contains homologous or diverged (19%) DNA repeats separated by a genetically detectable color marker. Recombination during transformation for covalently closed circular plasmids was over 100-fold more frequent than during mitotic-growth. The frequency of recombination is partly dependent on the method of transformation In that procedures involving lithium acetate or spheroplasting yield higher frequencies than electroporation. When present in the repeats, unique single-strand breaks that are ligatable, as well as double-strand breaks, lead to high levels of recombination between diverged and identical repeats. The transformation-associated recombination between repeat DNA`s is under the influence of the RAD52, RAD1 and the RNC1 genes.

  5. CasHRA (Cas9-facilitated Homologous Recombination Assembly) method of constructing megabase-sized DNA

    PubMed Central

    Zhou, Jianting; Wu, Ronghai; Xue, Xiaoli; Qin, Zhongjun

    2016-01-01

    Current DNA assembly methods for preparing highly purified linear subassemblies require complex and time-consuming in vitro manipulations that hinder their ability to construct megabase-sized DNAs (e.g. synthetic genomes). We have developed a new method designated ‘CasHRA (Cas9-facilitated Homologous Recombination Assembly)’ that directly uses large circular DNAs in a one-step in vivo assembly process. The large circular DNAs are co-introduced into Saccharomyces cerevisiae by protoplast fusion, and they are cleaved by RNA-guided Cas9 nuclease to release the linear DNA segments for subsequent assembly by the endogenous homologous recombination system. The CasHRA method allows efficient assembly of multiple large DNA segments in vivo; thus, this approach should be useful in the last stage of genome construction. As a proof of concept, we combined CasHRA with an upstream assembly method (Gibson procedure of genome assembly) and successfully constructed a 1.03 Mb MGE-syn1.0 (Minimal Genome of Escherichia coli) that contained 449 essential genes and 267 important growth genes. We expect that CasHRA will be widely used in megabase-sized genome constructions. PMID:27220470

  6. The Aspergillus nidulans Pbp1 homolog is required for normal sexual development and secondary metabolism.

    PubMed

    Soukup, Alexandra A; Fischer, Gregory J; Luo, Jerry; Keller, Nancy P

    2017-03-01

    P bodies and stress granules are RNA-containing structures governing mRNA degradation and translational arrest, respectively. Saccharomyces cerevisiae Pbp1 protein localizes to stress granules and promotes their formation and is involved in proper polyadenylation, suppression of RNA-DNA hybrids, and preventing aberrant rDNA recombination. A genetic screen for Aspergillus nidulans mutants aberrant in secondary metabolism identified the Pbp1 homolog, PbpA. Using Dcp1 (mRNA decapping) as a marker for P-body formation and FabM (Pab1, poly-A binding protein) to track stress granule accumulation, we examine the dynamics of RNA granule formation in A. nidulans cells lacking pub1, edc3, and pbpA. Although PbpA acts as a functional homolog of yeast PBP1, PbpA had little impact on either P-body or stress granule formation in A. nidulans in contrast to Pub1 and Edc3. However, we find that PbpA is critical for sexual development and its loss increases the production of some secondary metabolites including the carcinogen sterigmatocystin.

  7. Expression of a chimeric human/salmon calcitonin gene integrated into the Saccharomyces cerevisiae genome using rDNA sequences as recombination sites.

    PubMed

    Sun, Hengyi; Zang, Xiaonan; Liu, Yuantao; Cao, Xiaofei; Wu, Fei; Huang, Xiaoyun; Jiang, Minjie; Zhang, Xuecheng

    2015-12-01

    Calcitonin participates in controlling homeostasis of calcium and phosphorus and plays an important role in bone metabolism. The aim of this study was to endow an industrial strain of Saccharomyces cerevisiae with the ability to express chimeric human/salmon calcitonin (hsCT) without the use of antibiotics. To do so, a homologous recombination plasmid pUC18-rDNA2-ura3-P pgk -5hsCT-rDNA1 was constructed, which contains two segments of ribosomal DNA of 1.1 kb (rDNA1) and 1.4 kb (rDNA2), to integrate the heterologous gene into host rDNA. A DNA fragment containing five copies of a chimeric human/salmon calcitonin gene (5hsCT) under the control of the promoter for phosphoglycerate kinase (P pgk ) was constructed to express 5hsCT in S. cerevisiae using ura3 as a selectable auxotrophic marker gene. After digestion by restriction endonuclease HpaI, a linear fragment, rDNA2-ura3-P pgk -5hsCT-rDNA1, was obtained and transformed into the △ura3 mutant of S. cerevisiae by the lithium acetate method. The ura3-P pgk -5hsCT sequence was introduced into the genome at rDNA sites by homologous recombination, and the recombinant strain YS-5hsCT was obtained. Southern blot analysis revealed that the 5hsCT had been integrated successfully into the genome of S. cerevisiae. The results of Western blot and ELISA confirmed that the 5hsCT protein had been expressed in the recombinant strain YS-5hsCT. The expression level reached 2.04 % of total proteins. S. cerevisiae YS-5hsCT decreased serum calcium in mice by oral administration and even 0.01 g lyophilized S. cerevisiae YS-5hsCT/kg decreased serum calcium by 0.498 mM. This work has produced a commercial yeast strain potentially useful for the treatment of osteoporosis.

  8. MHP1, an essential gene in Saccharomyces cerevisiae required for microtubule function

    PubMed Central

    1996-01-01

    The gene for a microtubule-associated protein (MAP), termed MHP1 (MAP- Homologous Protein 1), was isolated from Saccharomyces cerevisiae by expression cloning using antibodies specific for the Drosophila 205K MAP. MHP1 encodes an essential protein of 1,398 amino acids that contains near its COOH-terminal end a sequence homologous to the microtubule-binding domain of MAP2, MAP4, and tau. While total disruptions are lethal, NH2-terminal deletion mutations of MHP1 are viable, and the expression of the COOH-terminal two-thirds of the protein is sufficient for vegetative growth. Nonviable deletion- disruption mutations of MHP1 can be partially complemented by the expression of the Drosophila 205K MAP. Mhp1p binds to microtubules in vitro, and it is the COOH-terminal region containing the tau-homologous motif that mediates microtubule binding. Antibodies directed against a COOH-terminal peptide of Mhp1p decorate cytoplasmic microtubules and mitotic spindles as revealed by immunofluorescence microscopy. The overexpression of an NH2-terminal deletion mutation of MHP1 results in an accumulation of large-budded cells with short spindles and disturbed nuclear migration. In asynchronously growing cells that overexpress MHP1 from a multicopy plasmid, the length and number of cytoplasmic microtubules is increased and the proportion of mitotic cells is decreased, while haploid cells in which the expression of MHP1 has been silenced exhibit few microtubules. These results suggest that MHP1 is essential for the formation and/or stabilization of microtubules. PMID:8947554

  9. Single copy DNA homology in sea stars.

    PubMed

    Smith, M J; Nicholson, R; Stuerzl, M; Lui, A

    1982-01-01

    The sequence homology in the single copy DNA of sea stars has been measured. Labeled single copy DNA from Pisaster ochraceus was reannealed with excess genomic DNA from P. brevispinus, Evasterias troschelii, Pycnopodia helianthoides, Solaster stimpsoni, and Dermasterias imbricata. Reassociation reactions were performed under two criteria of salt and temperature. The extent of reassociation and thermal denaturation characteristics of hybrid single copy DNA molecules follow classical taxonomic lines. P. brevispinus DNA contains essentially all of the sequences present in P. ochraceus single copy tracer while Evasterias and Pycnopodia DNAs contain 52% and 46% of such sequences respectively. Reciprocal reassociation reactions with labeled Evasterias single copy DNA confirm the amount and fidelity of the sequence homology. There is a small definite reaction of uncertain homology between P. ochraceus single copy DNA and Solaster or Dermasterias DNA. Similarly Solaster DNA contains sequences homologous to approximately 18% of Dermasterias unique DNA. The thermal denaturation temperatures of heteroduplexes indicate that the genera Pisaster and Evasterias diverged shortly after the divergence of the subfamilies Pycnopodiinae and Asteriinae. The two Pisaster species diverged more recently, probably in the most recent quarter of the interval since the separation of the genera Pisaster and Evasterias.

  10. Cyclic homology for Hom-associative algebras

    NASA Astrophysics Data System (ADS)

    Hassanzadeh, Mohammad; Shapiro, Ilya; Sütlü, Serkan

    2015-12-01

    In the present paper we investigate the noncommutative geometry of a class of algebras, called the Hom-associative algebras, whose associativity is twisted by a homomorphism. We define the Hochschild, cyclic, and periodic cyclic homology and cohomology for this class of algebras generalizing these theories from the associative to the Hom-associative setting.

  11. Biochemistry of homologous recombination in Escherichia coli.

    PubMed Central

    Kowalczykowski, S C; Dixon, D A; Eggleston, A K; Lauder, S D; Rehrauer, W M

    1994-01-01

    Homologous recombination is a fundamental biological process. Biochemical understanding of this process is most advanced for Escherichia coli. At least 25 gene products are involved in promoting genetic exchange. At present, this includes the RecA, RecBCD (exonuclease V), RecE (exonuclease VIII), RecF, RecG, RecJ, RecN, RecOR, RecQ, RecT, RuvAB, RuvC, SbcCD, and SSB proteins, as well as DNA polymerase I, DNA gyrase, DNA topoisomerase I, DNA ligase, and DNA helicases. The activities displayed by these enzymes include homologous DNA pairing and strand exchange, helicase, branch migration, Holliday junction binding and cleavage, nuclease, ATPase, topoisomerase, DNA binding, ATP binding, polymerase, and ligase, and, collectively, they define biochemical events that are essential for efficient recombination. In addition to these needed proteins, a cis-acting recombination hot spot known as Chi (chi: 5'-GCTGGTGG-3') plays a crucial regulatory function. The biochemical steps that comprise homologous recombination can be formally divided into four parts: (i) processing of DNA molecules into suitable recombination substrates, (ii) homologous pairing of the DNA partners and the exchange of DNA strands, (iii) extension of the nascent DNA heteroduplex; and (iv) resolution of the resulting crossover structure. This review focuses on the biochemical mechanisms underlying these steps, with particular emphases on the activities of the proteins involved and on the integration of these activities into likely biochemical pathways for recombination. Images PMID:7968921

  12. Persistent homology in graph power filtrations

    PubMed Central

    Marchette, David J.

    2016-01-01

    The persistence of homological features in simplicial complex representations of big datasets in Rn resulting from Vietoris–Rips or Čech filtrations is commonly used to probe the topological structure of such datasets. In this paper, the notion of homological persistence in simplicial complexes obtained from power filtrations of graphs is introduced. Specifically, the rth complex, r ≥ 1, in such a power filtration is the clique complex of the rth power Gr of a simple graph G. Because the graph distance in G is the relevant proximity parameter, unlike a Euclidean filtration of a dataset where regional scale differences can be an issue, persistence in power filtrations provides a scale-free insight into the topology of G. It is shown that for a power filtration of G, the girth of G defines an r range over which the homology of the complexes in the filtration are guaranteed to persist in all dimensions. The role of chordal graphs as trivial homology delimiters in power filtrations is also discussed and the related notions of ‘persistent triviality’, ‘transient noise’ and ‘persistent periodicity’ in power filtrations are introduced. PMID:27853540

  13. Rad54, the Motor of Homologous Recombination

    PubMed Central

    Mazin, Alexander V.; Mazina, Olga M.; Bugreev, Dmitry V.; Rossi, Matthew J.

    2009-01-01

    Homologous recombination (HR) performs crucial functions including DNA repair, segregation of homologous chromosomes, propagation of genetic diversity, and maintenance of telomeres. HR is responsible for the repair of DNA double-strand breaks and DNA interstrand cross-links. The process of HR is initiated at the site of DNA breaks and gaps and involves a search for homologous sequences promoted by Rad51 and auxiliary proteins followed by the subsequent invasion of broken DNA ends into the homologous duplex DNA that then serves as a template for repair. The invasion produces a cross-stranded structure, known as the Holliday junction. Here, we describe the properties of Rad54, an important and versatile HR protein that is evolutionarily conserved in eukaryotes. Rad54 is a motor protein that translocates along dsDNA and performs several important functions in HR. The current review focuses on the recently identified Rad54 activities which contribute to the late phase of HR, especially the branch migration of Holliday junctions. PMID:20089461

  14. Homology modeling of human muscarinic acetylcholine receptors.

    PubMed

    Thomas, Trayder; McLean, Kimberley C; McRobb, Fiona M; Manallack, David T; Chalmers, David K; Yuriev, Elizabeth

    2014-01-27

    We have developed homology models of the acetylcholine muscarinic receptors M₁R-M₅R, based on the β₂-adrenergic receptor crystal as the template. This is the first report of homology modeling of all five subtypes of acetylcholine muscarinic receptors with binding sites optimized for ligand binding. The models were evaluated for their ability to discriminate between muscarinic antagonists and decoy compounds using virtual screening using enrichment factors, area under the ROC curve (AUC), and an early enrichment measure, LogAUC. The models produce rational binding modes of docked ligands as well as good enrichment capacity when tested against property-matched decoy libraries, which demonstrates their unbiased predictive ability. To test the relative effects of homology model template selection and the binding site optimization procedure, we generated and evaluated a naïve M₂R model, using the M₃R crystal structure as a template. Our results confirm previous findings that binding site optimization using ligand(s) active at a particular receptor, i.e. including functional knowledge into the model building process, has a more pronounced effect on model quality than target-template sequence similarity. The optimized M₁R-M₅R homology models are made available as part of the Supporting Information to allow researchers to use these structures, compare them to their own results, and thus advance the development of better modeling approaches.

  15. Viruses and prions of Saccharomyces cerevisiae.

    PubMed

    Wickner, Reed B; Fujimura, Tsutomu; Esteban, Rosa

    2013-01-01

    Saccharomyces cerevisiae has been a key experimental organism for the study of infectious diseases, including dsRNA viruses, ssRNA viruses, and prions. Studies of the mechanisms of virus and prion replication, virus structure, and structure of the amyloid filaments that are the basis of yeast prions have been at the forefront of such studies in these classes of infectious entities. Yeast has been particularly useful in defining the interactions of the infectious elements with cellular components: chromosomally encoded proteins necessary for blocking the propagation of the viruses and prions, and proteins involved in the expression of viral components. Here, we emphasize the L-A dsRNA virus and its killer-toxin-encoding satellites, the 20S and 23S ssRNA naked viruses, and the several infectious proteins (prions) of yeast.

  16. Microautophagy in the yeast Saccharomyces cerevisiae.

    PubMed

    Uttenweiler, Andreas; Mayer, Andreas

    2008-01-01

    Microautophagy involves direct invagination and fission of the vacuolar/lysosomal membrane under nutrient limitation. In Saccharomyces cerevisiae microautophagic uptake of soluble cytosolic proteins occurs via an autophagic tube, a highly specialized vacuolar membrane invagination. At the tip of an autophagic tube vesicles (autophagic bodies) pinch off into thevacuolar lumen for degradation. Formation of autophagic tubes is topologically equivalent to other budding processes directed away from the cytosolic environment, e.g., the invagination of multivesicular endosomes, retroviral budding, piecemeal microautophagy of the nucleus and micropexophagy. This clearly distinguishes microautophagy from other membrane fission events following budding toward the cytosol. Such processes are implicated in transport between organelles like the plasma membrane, the endoplasmic reticulum (ER), and the Golgi. Over many years microautophagy only could be characterized microscopically. Recent studies provided the possibility to study the process in vitro and have identified the first molecules that are involved in microautophagy.

  17. Synchronization of the Budding Yeast Saccharomyces cerevisiae.

    PubMed

    Foltman, Magdalena; Molist, Iago; Sanchez-Diaz, Alberto

    2016-01-01

    A number of model organisms have provided the basis for our understanding of the eukaryotic cell cycle. These model organisms are generally much easier to manipulate than mammalian cells and as such provide amenable tools for extensive genetic and biochemical analysis. One of the most common model organisms used to study the cell cycle is the budding yeast Saccharomyces cerevisiae. This model provides the ability to synchronise cells efficiently at different stages of the cell cycle, which in turn opens up the possibility for extensive and detailed study of mechanisms regulating the eukaryotic cell cycle. Here, we describe methods in which budding yeast cells are arrested at a particular phase of the cell cycle and then released from the block, permitting the study of molecular mechanisms that drive the progression through the cell cycle.

  18. Viruses and prions of Saccharomyces cerevisiae

    PubMed Central

    Wickner, Reed B.; Fujimura, Tsutomu; Esteban, Rosa

    2014-01-01

    Saccharomyces cerevisiae has been a key experimental organism for the study of infectious diseases, including dsRNA viruses, ssRNA viruses and prions. Studies of the mechanisms of virus and prion replication, virus structure and structure of the amyloid filaments that are the basis of yeast prions have been at the forefront of such studies in these classes of infectious entities. Yeast has been particularly useful in defining the interactions of the infectious elements with cellular components: chromosomally encoded proteins necessary for or blocking the propagation of the viruses and prions, and proteins involved in expression of viral components. Here we emphasize the L-A dsRNA virus and its killer-toxin-encoding satellites, the 20S and 23S ssRNA naked viruses, and the several infectious proteins (prions) of yeast. PMID:23498901

  19. Metazoan Scc4 Homologs Link Sister Chromatid Cohesion to Cell and Axon Migration Guidance

    PubMed Central

    Seitan, Vlad C; Banks, Peter; Laval, Steve; Majid, Nazia A; Dorsett, Dale; Rana, Amer; Smith, Jim; Bateman, Alex; Krpic, Sanja; Hostert, Arnd; Rollins, Robert A; Erdjument-Bromage, Hediye; Tempst, Paul; Benard, Claire Y; Hekimi, Siegfried; Newbury, Sarah F

    2006-01-01

    Saccharomyces cerevisiae Scc2 binds Scc4 to form an essential complex that loads cohesin onto chromosomes. The prevalence of Scc2 orthologs in eukaryotes emphasizes a conserved role in regulating sister chromatid cohesion, but homologs of Scc4 have not hitherto been identified outside certain fungi. Some metazoan orthologs of Scc2 were initially identified as developmental gene regulators, such as Drosophila Nipped-B, a regulator of cut and Ultrabithorax, and delangin, a protein mutant in Cornelia de Lange syndrome. We show that delangin and Nipped-B bind previously unstudied human and fly orthologs of Caenorhabditis elegans MAU-2, a non-axis-specific guidance factor for migrating cells and axons. PSI-BLAST shows that Scc4 is evolutionarily related to metazoan MAU-2 sequences, with the greatest homology evident in a short N-terminal domain, and protein–protein interaction studies map the site of interaction between delangin and human MAU-2 to the N-terminal regions of both proteins. Short interfering RNA knockdown of human MAU-2 in HeLa cells resulted in precocious sister chromatid separation and in impaired loading of cohesin onto chromatin, indicating that it is functionally related to Scc4, and RNAi analyses show that MAU-2 regulates chromosome segregation in C. elegans embryos. Using antisense morpholino oligonucleotides to knock down Xenopus tropicalis delangin or MAU-2 in early embryos produced similar patterns of retarded growth and developmental defects. Our data show that sister chromatid cohesion in metazoans involves the formation of a complex similar to the Scc2-Scc4 interaction in the budding yeast. The very high degree of sequence conservation between Scc4 homologs in complex metazoans is consistent with increased selection pressure to conserve additional essential functions, such as regulation of cell and axon migration during development. PMID:16802858

  20. Archaeal homologs of eukaryotic methylation guide small nucleolar RNAs: lessons from the Pyrococcus genomes.

    PubMed

    Gaspin, C; Cavaillé, J; Erauso, G; Bachellerie, J P

    2000-04-07

    Ribose methylation is a prevalent type of nucleotide modification in rRNA. Eukaryotic rRNAs display a complex pattern of ribose methylations, amounting to 55 in yeast Saccharomyces cerevisiae and about 100 in vertebrates. Ribose methylations of eukaryotic rRNAs are each guided by a cognate small RNA, belonging to the family of box C/D antisense snoRNAs, through transient formation of a specific base-pairing at the rRNA modification site. In prokaryotes, the pattern of rRNA ribose methylations has been fully characterized in a single species so far, Escherichia coli, which contains only four ribose methylated rRNA nucleotides. However, the hyperthermophile archaeon Sulfolobus solfataricus contains, like eukaryotes, a large number of (yet unmapped) rRNA ribose methylations and homologs of eukaryotic box C/D small nucleolar ribonuclear proteins have been identified in archaeal genomes. We have therefore searched archaeal genomes for potential homologs of eukaryotic methylation guide small nucleolar RNAs, by combining searches for structured motifs with homology searches. We have identified a family of 46 small RNAs, conserved in the genomes of three hyperthermophile Pyrococcus species, which we have experimentally characterized in Pyrococcus abyssi. The Pyrococcus small RNAs, the first reported homologs of methylation guide small nucleolar RNAs in organisms devoid of a nucleus, appear as a paradigm of minimalist box C/D antisense RNAs. They differ from their eukaryotic homologs by their outstanding structural homogeneity, extended consensus box motifs and the quasi-systematic presence of two (instead of one) rRNA antisense elements. Remarkably, for each small RNA the two antisense elements always match rRNA sequences close to each other in rRNA structure, suggesting an important role in rRNA folding. Only a few of the predicted P. abyssi rRNA ribose methylations have been detected so far. Further analysis of these archaeal small RNAs could provide new insights into

  1. Saccharomyces cerevisiae var. boulardii fungemia following probiotic treatment.

    PubMed

    Appel-da-Silva, Marcelo C; Narvaez, Gabriel A; Perez, Leandro R R; Drehmer, Laura; Lewgoy, Jairo

    2017-12-01

    Probiotics are commonly prescribed as an adjuvant in the treatment of antibiotic-associated diarrhea caused by Clostridium difficile. We report the case of an immunocompromised 73-year-old patient on chemotherapy who developed Saccharomyces cerevisiae var. boulardii fungemia in a central venous catheter during treatment of antibiotic-associated pseudomembranous colitis with the probiotic Saccharomyces cerevisiae var. boulardii. Fungemia was resolved after interruption of probiotic administration without the need to replace the central venous line.

  2. Saccharomyces cerevisiae vaginitis: microbiology and in vitro antifungal susceptibility.

    PubMed

    Echeverría-Irigoyen, María Julia; Eraso, Elena; Cano, Josep; Gomáriz, María; Guarro, Josep; Quindós, Guillermo

    2011-09-01

    Genitourinary infections by Saccharomyces cerevisiae are rare. Here, we describe eight S. cerevisiae vulvovaginitis episodes where molecular (Affirm VPIII) and conventional microbiological methods (culture and carbohydrate assimilation) have proven to be inadequate for diagnostic purposes. DNA sequencing allowed the correct identification of the pathogen. All isolates were susceptible to most antifungal agents, with two of them also found to be susceptible-dose-dependent to itraconazole.

  3. Short Synthetic Terminators for Assembly of Transcription Units in Vitro and Stable Chromosomal Integration in Yeast S. cerevisiae.

    PubMed

    MacPherson, Murray; Saka, Yasushi

    2017-01-20

    Assembly of synthetic genetic circuits is central to synthetic biology. Yeast S. cerevisiae, in particular, has proven to be an ideal chassis for synthetic genome assemblies by exploiting its efficient homologous recombination. However, this property of efficient homologous recombination poses a problem for multigene assemblies in yeast, since repeated usage of standard parts, such as transcriptional terminators, can lead to rearrangements of the repeats in assembled DNA constructs in vivo. To address this issue in developing a library of orthogonal genetic components for yeast, we designed a set of short synthetic terminators based on a consensus sequence with random linkers to avoid repetitive sequences. We constructed a series of expression vectors with these synthetic terminators for efficient assembly of synthetic genes using Gateway recombination reactions. We also constructed two BAC (bacterial artificial chromosome) vectors for assembling multiple transcription units with the synthetic terminators in vitro and their integration in the yeast genome. The tandem array of synthetic genes integrated in the genome by this method is highly stable because there are few homologous segments in the synthetic constructs. Using this system of assembly and genomic integration of transcription units, we tested the synthetic terminators and their influence on the proximal transcription units. Although all the synthetic terminators have the common consensus with the identical length, they showed different activities and impacts on the neighboring transcription units.

  4. Functional homology between the yeast regulatory proteins GAL4 and LAC9: LAC9-mediated transcriptional activation in Kluyveromyces lactis involves protein binding to a regulatory sequence homologous to the GAL4 protein-binding site.

    PubMed Central

    Breunig, K D; Kuger, P

    1987-01-01

    As shown previously, the beta-galactosidase gene of Kluyveromyces lactis is transcriptionally regulated via an upstream activation site (UASL) which contains a sequence homologous to the GAL4 protein-binding site in Saccharomyces cerevisiae (M. Ruzzi, K.D. Breunig, A.G. Ficca, and C.P. Hollenberg, Mol. Cell. Biol. 7:991-997, 1987). Here we demonstrate that the region of homology specifically binds a K. lactis regulatory protein. The binding activity was detectable in protein extracts from wild-type cells enriched for DNA-binding proteins by heparin affinity chromatography. These extracts could be used directly for DNase I and exonuclease III protection experiments. A lac9 deletion strain, which fails to induce the beta-galactosidase gene, did not contain the binding factor. The homology of LAC9 protein with GAL4 (J.M. Salmeron and S. A. Johnston, Nucleic Acids Res. 14:7767-7781, 1986) strongly suggests that LAC9 protein binds directly to UASL and plays a role similar to that of GAL4 in regulating transcription. Images PMID:2830492

  5. Isolation, identification and characterization of regional indigenous Saccharomyces cerevisiae strains.

    PubMed

    Šuranská, Hana; Vránová, Dana; Omelková, Jiřina

    2016-01-01

    In the present work we isolated and identified various indigenous Saccharomyces cerevisiae strains and screened them for the selected oenological properties. These S. cerevisiae strains were isolated from berries and spontaneously fermented musts. The grape berries (Sauvignon blanc and Pinot noir) were grown under the integrated and organic mode of farming in the South Moravia (Czech Republic) wine region. Modern genotyping techniques such as PCR-fingerprinting and interdelta PCR typing were employed to differentiate among indigenous S. cerevisiae strains. This combination of the methods provides a rapid and relatively simple approach for identification of yeast of S. cerevisiae at strain level. In total, 120 isolates were identified and grouped by molecular approaches and 45 of the representative strains were tested for selected important oenological properties including ethanol, sulfur dioxide and osmotic stress tolerance, intensity of flocculation and desirable enzymatic activities. Their ability to produce and utilize acetic/malic acid was examined as well; in addition, H2S production as an undesirable property was screened. The oenological characteristics of indigenous isolates were compared to a commercially available S. cerevisiae BS6 strain, which is commonly used as the starter culture. Finally, some indigenous strains coming from organically treated grape berries were chosen for their promising oenological properties and these strains will be used as the starter culture, because application of a selected indigenous S. cerevisiae strain can enhance the regional character of the wines.

  6. Isolation, identification and characterization of regional indigenous Saccharomyces cerevisiae strains

    PubMed Central

    Šuranská, Hana; Vránová, Dana; Omelková, Jiřina

    2016-01-01

    In the present work we isolated and identified various indigenous Saccharomyces cerevisiae strains and screened them for the selected oenological properties. These S. cerevisiae strains were isolated from berries and spontaneously fermented musts. The grape berries (Sauvignon blanc and Pinot noir) were grown under the integrated and organic mode of farming in the South Moravia (Czech Republic) wine region. Modern genotyping techniques such as PCR-fingerprinting and interdelta PCR typing were employed to differentiate among indigenous S. cerevisiae strains. This combination of the methods provides a rapid and relatively simple approach for identification of yeast of S. cerevisiae at strain level. In total, 120 isolates were identified and grouped by molecular approaches and 45 of the representative strains were tested for selected important oenological properties including ethanol, sulfur dioxide and osmotic stress tolerance, intensity of flocculation and desirable enzymatic activities. Their ability to produce and utilize acetic/malic acid was examined as well; in addition, H2S production as an undesirable property was screened. The oenological characteristics of indigenous isolates were compared to a commercially available S. cerevisiae BS6 strain, which is commonly used as the starter culture. Finally, some indigenous strains coming from organically treated grape berries were chosen for their promising oenological properties and these strains will be used as the starter culture, because application of a selected indigenous S. cerevisiae strain can enhance the regional character of the wines. PMID:26887243

  7. [Saccharomyces cerevisiae invasive infection: The first reported case in Morocco].

    PubMed

    Maleb, A; Sebbar, E; Frikh, M; Boubker, S; Moussaoui, A; El Mekkaoui, A; Khannoussi, W; Kharrasse, G; Belefquih, B; Lemnouer, A; Ismaili, Z; Elouennass, M

    2017-02-07

    Saccharomyces cerevisiae is a cosmopolitan yeast, widely used in agro-alimentary and pharmaceutical industry. Its impact in human pathology is rare, but maybe still underestimated compared to the real situation. This yeast is currently considered as an emerging and opportunistic pathogen. Risk factors are immunosuppression and intravascular device carrying. Fungemias are the most frequent clinical forms. We report the first case of S. cerevisiae invasive infection described in Morocco, and to propose a review of the literature cases of S. cerevisiae infections described worldwide. A 77-year-old patient, with no notable medical history, who was hospitalized for a upper gastrointestinal stenosis secondary to impassable metastatic gastric tumor. Its history was marked by the onset of septic shock, with S. cerevisiae in his urine and in his blood, with arguments for confirmation of invasion: the presence of several risk factors in the patient, positive direct microbiological examination, abundant and exclusive culture of S. cerevisiae from clinical samples. Species identification was confirmed by the study of biochemical characteristics of the isolated yeast. Confirmation of S. cerevisiae infection requires a clinical suspicion in patients with risk factors, but also a correct microbiological diagnosis.

  8. Glycerol stress in Saccharomyces cerevisiae: Cellular responses and evolved adaptations.

    PubMed

    Mattenberger, Florian; Sabater-Muñoz, Beatriz; Hallsworth, John E; Fares, Mario A

    2017-03-01

    Glycerol synthesis is key to central metabolism and stress biology in Saccharomyces cerevisiae, yet the cellular adjustments needed to respond and adapt to glycerol stress are little understood. Here, we determined impacts of acute and chronic exposures to glycerol stress in S. cerevisiae. Glycerol stress can result from an increase of glycerol concentration in the medium due to the S. cerevisiae fermenting activity or other metabolic activities. Acute glycerol-stress led to a 50% decline in growth rate and altered transcription of more than 40% of genes. The increased genetic diversity in S. cerevisiae population, which had evolved in the standard nutrient medium for hundreds of generations, led to an increase in growth rate and altered transcriptome when such population was transferred to stressful media containing a high concentration of glycerol; 0.41 M (0.990 water activity). Evolution of S. cerevisiae populations during a 10-day period in the glycerol-containing medium led to transcriptome changes and readjustments to improve control of glycerol flux across the membrane, regulation of cell cycle, and more robust stress response; and a remarkable increase of growth rate under glycerol stress. Most of the observed regulatory changes arose in duplicated genes. These findings elucidate the physiological mechanisms, which underlie glycerol-stress response, and longer-term adaptations, in S. cerevisiae; they also have implications for enigmatic aspects of the ecology of this otherwise well-characterized yeast.

  9. Characterisation of a plant 3-phosphoinositide-dependent protein kinase-1 homologue which contains a pleckstrin homology domain.

    PubMed

    Deak, M; Casamayor, A; Currie, R A; Downes, C P; Alessi, D R

    1999-05-28

    A plant homologue of mammalian 3-phosphoinositide-dependent protein kinase-1 (PDK1) has been identified in Arabidopsis and rice which displays 40% overall identity with human 3-phosphoinositide-dependent protein kinase-1. Like the mammalian 3-phosphoinositide-dependent protein kinase-1, Arabidopsis 3-phosphoinositide-dependent protein kinase-1 and rice 3-phosphoinositide-dependent protein kinase-1 possess a kinase domain at N-termini and a pleckstrin homology domain at their C-termini. Arabidopsis 3-phosphoinositide-dependent protein kinase-1 can rescue lethality in Saccharomyces cerevisiae caused by disruption of the genes encoding yeast 3-phosphoinositide-dependent protein kinase-1 homologues. Arabidopsis 3-phosphoinositide-dependent protein kinase-1 interacts via its pleckstrin homology domain with phosphatidic acid, PtdIns3P, PtdIns(3,4,5)P3 and PtdIns(3,4)P2 and to a lesser extent with PtdIns(4,5)P2 and PtdIns4P. Arabidopsis 3-phosphoinositide-dependent protein kinase-1 is able to activate human protein kinase B alpha (PKB/AKT) in the presence of PtdIns(3,4,5)P3. Arabidopsis 3-phosphoinositide-dependent protein kinase-1 is only the second plant protein reported to possess a pleckstrin homology domain and the first plant protein shown to bind 3-phosphoinositides.

  10. Vanadate-resistant mutants of Saccharomyces cerevisiae show alterations in protein phosphorylation and growth control.

    PubMed Central

    Kanik-Ennulat, C; Neff, N

    1990-01-01

    This work describes two spontaneous vanadate-resistant mutants of Saccharomyces cerevisiae with constitutive alterations in protein phosphorylation, growth control, and sporulation. Vanadate has been shown by a number of studies to be an efficient competitor of phosphate in biochemical reactions, especially those that involve phosphoproteins as intermediates or substrates. Resistance to toxic concentrations of vanadate can arise in S. cerevisiae by both recessive and dominant spontaneous mutations in a large number of loci. Mutations in two of the recessive loci, van1-18 and van2-93, resulted in alterations in the phosphorylation of a number of proteins. The mutant van1-18 gene also showed an increase in plasma membrane ATPase activity in vitro and a lowered basal phosphatase activity under alkaline conditions. Cells containing the van2-93 mutant allele had normal levels of plasma membrane ATPase activity, but this activity was not inhibited by vanadate. Both of these mutants failed to enter stationary phase, were heat shock sensitive, showed lowered long-term viability, and sporulated on rich medium in the presence of 2% glucose. The wild-type VAN1 gene was isolated and sequenced. The open reading frame predicts a protein of 522 amino acids, with no significant homology to any genes that have been identified. Diploid cells that contained two mutant alleles of this gene demonstrated defects in spore viability. These data suggest that the VAN1 gene product is involved in regulation of the phosphorylation of a number of proteins, some of which appear to be important in cell growth control. Images PMID:2137555

  11. A Novel Recombinant DNA System for High Efficiency Affinity Purification of Proteins in Saccharomyces cerevisiae

    PubMed Central

    Carrick, Brian H.; Hao, Linxuan; Smaldino, Philip J.; Engelke, David R.

    2015-01-01

    Isolation of endogenous proteins from Saccharomyces cerevisiae has been facilitated by inserting encoding polypeptide affinity tags at the C-termini of chromosomal open reading frames (ORFs) using homologous recombination of DNA fragments. Tagged protein isolation is limited by a number of factors, including high cost of affinity resins for bulk isolation and low concentration of ligands on the resin surface, leading to low isolation efficiencies and trapping of contaminants. To address this, we have created a recombinant “CelTag” DNA construct from which PCR fragments can be created to easily tag C-termini of S. cerevisiae ORFs using selection for a nat1 marker. The tag has a C-terminal cellulose binding module to be used in the first affinity step. Microgranular cellulose is very inexpensive and has an effectively continuous ligand on its surface, allowing rapid, highly efficient purification with minimal background. Cellulose-bound proteins are released by specific cleavage of an included site for TEV protease, giving nearly pure product. The tag can be lifted from the recombinant DNA construct either with or without a 13x myc epitope tag between the target ORF and the TEV protease site. Binding of CelTag protein fusions to cellulose is stable to high salt, nonionic detergents, and 1 M urea, allowing stringent washing conditions to remove loosely associated components, as needed, before specific elution. It is anticipated that this reagent could allow isolation of protein complexes from large quantities of yeast extract, including soluble, membrane-bound, or nucleic acid-associated assemblies. PMID:26715090

  12. A region of the nucleosome required for multiple types of transcriptional silencing in Saccharomyces cerevisiae.

    PubMed

    Prescott, Eugenia T; Safi, Alexias; Rusche, Laura N

    2011-07-01

    Extended heterochromatin domains, which are repressive to transcription and help define centromeres and telomeres, are formed through specific interactions between silencing proteins and nucleosomes. This study reveals that in Saccharomyces cerevisiae, the same nucleosomal surface is critical for the formation of multiple types of heterochromatin, but not for local repression mediated by a related transcriptional repressor. Thus, this region of the nucleosome may be generally important to long-range silencing. In S. cerevisiae, the Sir proteins perform long-range silencing, whereas the Sum1 complex acts locally to repress specific genes. A mutant form of Sum1p, Sum1-1p, achieves silencing in the absence of Sir proteins. A genetic screen identified mutations in histones H3 and H4 that disrupt Sum1-1 silencing and fall in regions of the nucleosome previously known to disrupt Sir silencing and rDNA silencing. In contrast, no mutations were identified that disrupt wild-type Sum1 repression. Mutations that disrupt silencing fall in two regions of the nucleosome, the tip of the H3 tail and a surface of the nucleosomal core (LRS domain) and the adjacent base of the H4 tail. The LRS/H4 tail region interacts with the Sir3p bromo-adjacent homology (BAH) domain to facilitate Sir silencing. By analogy, this study is consistent with the LRS/H4 tail region interacting with Orc1p, a paralog of Sir3p, to facilitate Sum1-1 silencing. Thus, the LRS/H4 tail region of the nucleosome may be relatively accessible and facilitate interactions between silencing proteins and nucleosomes to stabilize long-range silencing.

  13. Identification and Characterization of MAE1, the Saccharomyces cerevisiae Structural Gene Encoding Mitochondrial Malic Enzyme

    PubMed Central

    Boles, Eckhard; de Jong-Gubbels, Patricia; Pronk, Jack T.

    1998-01-01

    Pyruvate, a precursor for several amino acids, can be synthesized from phosphoenolpyruvate by pyruvate kinase. Nevertheless, pyk1 pyk2 mutants of Saccharomyces cerevisiae devoid of pyruvate kinase activity grew normally on ethanol in defined media, indicating the presence of an alternative route for pyruvate synthesis. A candidate for this role is malic enzyme, which catalyzes the oxidative decarboxylation of malate to pyruvate. Disruption of open reading frame YKL029c, which is homologous to malic enzyme genes from other organisms, abolished malic enzyme activity in extracts of glucose-grown cells. Conversely, overexpression of YKL029c/MAE1 from the MET25 promoter resulted in an up to 33-fold increase of malic enzyme activity. Growth studies with mutants demonstrated that presence of either Pyk1p or Mae1p is required for growth on ethanol. Mutants lacking both enzymes could be rescued by addition of alanine or pyruvate to ethanol cultures. Disruption of MAE1 alone did not result in a clear phenotype. Regulation of MAE1 was studied by determining enzyme activities and MAE1 mRNA levels in wild-type cultures and by measuring β-galactosidase activities in a strain carrying a MAE1::lacZ fusion. Both in shake flask cultures and in carbon-limited chemostat cultures, MAE1 was constitutively expressed. A three- to fourfold induction was observed during anaerobic growth on glucose. Subcellular fractionation experiments indicated that malic enzyme in S. cerevisiae is a mitochondrial enzyme. Its regulation and localization suggest a role in the provision of intramitochondrial NADPH or pyruvate under anaerobic growth conditions. However, since null mutants could still grow anaerobically, this function is apparently not essential. PMID:9603875

  14. The DNA polymerase activity of Saccharomyces cerevisiae Rev1 is biologically significant.

    PubMed

    Wiltrout, Mary Ellen; Walker, Graham C

    2011-01-01

    A cell's ability to tolerate DNA damage is directly connected to the human development of diseases and cancer. To better understand the processes underlying mutagenesis, we studied the cell's reliance on the potentially error-prone translesion synthesis (TLS), and an error-free, template-switching pathway in Saccharomyces cerevisiae. The primary proteins mediating S. cerevisiae TLS are three DNA polymerases (Pols): Rev1, Pol ζ (Rev3/7), and Pol η (Rad30), all with human homologs. Rev1's noncatalytic role in recruiting other DNA polymerases is known to be important for TLS. However, the biological significance of Rev1's unusual conserved DNA polymerase activity, which inserts dC, is much less well understood. Here, we demonstrate that inactivating Rev1's DNA polymerase function sensitizes cells to both chronic and acute exposure to 4-nitroquinoline-1-oxide (4-NQO) but not to UV or cisplatin. Full Rev1-dependent resistance to 4-NQO, however, also requires the additional Rev1 functions. When error-free tolerance is disrupted through deletion of MMS2, Rev1's catalytic activity is more vital for 4-NQO resistance, possibly explaining why the biological significance of Rev1's catalytic activity has been elusive. In the presence or absence of Mms2-dependent error-free tolerance, the catalytic dead strain of Rev1 exhibits a lower 4-NQO-induced mutation frequency than wild type. Furthermore, Pol ζ, but not Pol η, also contributes to 4-NQO resistance. These results show that Rev1's catalytic activity is important in vivo when the cell has to cope with specific DNA lesions, such as N(2)-dG.

  15. Biogenesis of the Saccharomyces cerevisiae Pheromone a-Factor, from Yeast Mating to Human Disease

    PubMed Central

    Barrowman, Jemima

    2012-01-01

    Summary: The mating pheromone a-factor secreted by Saccharomyces cerevisiae is a farnesylated and carboxylmethylated peptide and is unusually hydrophobic compared to other extracellular signaling molecules. Mature a-factor is derived from a precursor with a C-terminal CAAX motif that directs a series of posttranslational reactions, including prenylation, endoproteolysis, and carboxylmethylation. Historically, a-factor has served as a valuable model for the discovery and functional analysis of CAAX-processing enzymes. In this review, we discuss the three modules comprising the a-factor biogenesis pathway: (i) the C-terminal CAAX-processing steps carried out by Ram1/Ram2, Ste24 or Rce1, and Ste14; (ii) two sequential N-terminal cleavage steps, mediated by Ste24 and Axl1; and (iii) export by a nonclassical mechanism, mediated by the ATP binding cassette (ABC) transporter Ste6. The small size and hydrophobicity of a-factor present both challenges and advantages for biochemical analysis, as discussed here. The enzymes involved in a-factor biogenesis are conserved from yeasts to mammals. Notably, studies of the zinc metalloprotease Ste24 in S. cerevisiae led to the discovery of its mammalian homolog ZMPSTE24, which cleaves the prenylated C-terminal tail of the nuclear scaffold protein lamin A. Mutations that alter ZMPSTE24 processing of lamin A in humans cause the premature-aging disease progeria and related progeroid disorders. Intriguingly, recent evidence suggests that the entire a-factor pathway, including all three biogenesis modules, may be used to produce a prenylated, secreted signaling molecule involved in germ cell migration in Drosophila. Thus, additional prenylated signaling molecules resembling a-factor, with as-yet-unknown roles in metazoan biology, may await discovery. PMID:22933563

  16. A Novel Recombinant DNA System for High Efficiency Affinity Purification of Proteins in Saccharomyces cerevisiae.

    PubMed

    Carrick, Brian H; Hao, Linxuan; Smaldino, Philip J; Engelke, David R

    2015-12-29

    Isolation of endogenous proteins from Saccharomyces cerevisiae has been facilitated by inserting encoding polypeptide affinity tags at the C-termini of chromosomal open reading frames (ORFs) using homologous recombination of DNA fragments. Tagged protein isolation is limited by a number of factors, including high cost of affinity resins for bulk isolation and low concentration of ligands on the resin surface, leading to low isolation efficiencies and trapping of contaminants. To address this, we have created a recombinant "CelTag" DNA construct from which PCR fragments can be created to easily tag C-termini of S. cerevisiae ORFs using selection for a nat1 marker. The tag has a C-terminal cellulose binding module to be used in the first affinity step. Microgranular cellulose is very inexpensive and has an effectively continuous ligand on its surface, allowing rapid, highly efficient purification with minimal background. Cellulose-bound proteins are released by specific cleavage of an included site for TEV protease, giving nearly pure product. The tag can be lifted from the recombinant DNA construct either with or without a 13x myc epitope tag between the target ORF and the TEV protease site. Binding of CelTag protein fusions to cellulose is stable to high salt, nonionic detergents, and 1 M urea, allowing stringent washing conditions to remove loosely associated components, as needed, before specific elution. It is anticipated that this reagent could allow isolation of protein complexes from large quantities of yeast extract, including soluble, membrane-bound, or nucleic acid-associated assemblies.

  17. Text mining of DNA sequence homology searches.

    PubMed

    McCallum, John; Ganesh, Siva

    2003-01-01

    Primary tasks in analysis and annotation of expressed sequence tag (EST) datasets are to identify similarity among sequences by unsupervised clustering and assign putative function based on BLAST homology searches. We investigated the usefulness of text mining as a simple approach for further higher-level clustering of EST datasets using IBM Intelligent Miner for Text v2.3 tools. Agglomerative and k-means clustering tools were used to cluster BLASTx homology search documents from two onion EST datasets and optimised by pre-processing and pruning. Subjective evaluation confirmed that these tools provided biologically useful and complementary views of the two libraries, provided new insights into their composition and revealed clusters previously identified by human experts. We compared BLASTx textual clusters for two gene families with their DNA sequence-based clusters and confirmed that these shared similar morphology.

  18. Redesigning Aldolase Stereoselectivity by Homologous Grafting

    PubMed Central

    Henßen, Birgit; Metz, Alexander; Gohlke, Holger; Pietruszka, Jörg

    2016-01-01

    The 2-deoxy-d-ribose-5-phosphate aldolase (DERA) offers access to highly desirable building blocks for organic synthesis by catalyzing a stereoselective C-C bond formation between acetaldehyde and certain electrophilic aldehydes. DERA´s potential is particularly highlighted by the ability to catalyze sequential, highly enantioselective aldol reactions. However, its synthetic use is limited by the absence of an enantiocomplementary enzyme. Here, we introduce the concept of homologous grafting to identify stereoselectivity-determining amino acid positions in DERA. We identified such positions by structural analysis of the homologous aldolases 2-keto-3-deoxy-6-phosphogluconate aldolase (KDPG) and the enantiocomplementary enzyme 2-keto-3-deoxy-6-phosphogalactonate aldolase (KDPGal). Mutation of these positions led to a slightly inversed enantiopreference of both aldolases to the same extent. By transferring these sequence motifs onto DERA we achieved the intended change in enantioselectivity. PMID:27327271

  19. Homologation Reaction of Ketones with Diazo Compounds.

    PubMed

    Candeias, Nuno R; Paterna, Roberta; Gois, Pedro M P

    2016-03-09

    This review covers the addition of diazo compounds to ketones to afford homologated ketones, either in the presence or in the absence of promoters or catalysts. Reactions with diazoalkanes, aryldiazomethanes, trimethylsilyldiazomethane, α-diazo esters, and disubstituted diazo compounds are covered, commenting on the complex regiochemistry of the reaction and the nature of the catalysts and promoters. The recent reports on the enantioselective version of ketone homologation reactions are gathered in one section, followed by reports on the use of cyclic ketones ring expansion in total synthesis. Although the first reports of this reaction appeared in the literature almost one century ago, the recent achievements, in particular, for the asymmetric version, forecast the development of new breakthroughs in the synthetically valuable field of diazo chemistry.

  20. Homologous Pairing between Long DNA Double Helices

    NASA Astrophysics Data System (ADS)

    Mazur, Alexey K.

    2016-04-01

    Molecular recognition between two double stranded (ds) DNA with homologous sequences may not seem compatible with the B-DNA structure because the sequence information is hidden when it is used for joining the two strands. Nevertheless, it has to be invoked to account for various biological data. Using quantum chemistry, molecular mechanics, and hints from recent genetics experiments, I show here that direct recognition between homologous dsDNA is possible through the formation of short quadruplexes due to direct complementary hydrogen bonding of major-groove surfaces in parallel alignment. The constraints imposed by the predicted structures of the recognition units determine the mechanism of complexation between long dsDNA. This mechanism and concomitant predictions agree with the available experimental data and shed light upon the sequence effects and the possible involvement of topoisomerase II in the recognition.

  1. Homologous pairing in stretched supercoiled DNA

    PubMed Central

    Strick, T. R.; Croquette, V.; Bensimon, D.

    1998-01-01

    By using elastic measurements on single DNA molecules, we show that stretching a negatively supercoiled DNA activates homologous pairing in physiological conditions. These experiments indicate that a stretched unwound DNA locally denatures to alleviate the force-driven increase in torsional stress. This is detected by hybridization with 1 kb of homologous single-stranded DNA probes. The stretching force involved (≈2 pN) is small compared with those typically developed by molecular motors, suggesting that this process may be relevant to DNA processing in vivo. We used this technique to monitor the progressive denaturation of DNA as it is unwound and found that distinct, stable denaturation bubbles formed, beginning in A+T-rich regions. PMID:9724746

  2. Homology and phylogeny and their automated inference

    NASA Astrophysics Data System (ADS)

    Fuellen, Georg

    2008-06-01

    The analysis of the ever-increasing amount of biological and biomedical data can be pushed forward by comparing the data within and among species. For example, an integrative analysis of data from the genome sequencing projects for various species traces the evolution of the genomes and identifies conserved and innovative parts. Here, I review the foundations and advantages of this “historical” approach and evaluate recent attempts at automating such analyses. Biological data is comparable if a common origin exists (homology), as is the case for members of a gene family originating via duplication of an ancestral gene. If the family has relatives in other species, we can assume that the ancestral gene was present in the ancestral species from which all the other species evolved. In particular, describing the relationships among the duplicated biological sequences found in the various species is often possible by a phylogeny, which is more informative than homology statements. Detecting and elaborating on common origins may answer how certain biological sequences developed, and predict what sequences are in a particular species and what their function is. Such knowledge transfer from sequences in one species to the homologous sequences of the other is based on the principle of ‘my closest relative looks and behaves like I do’, often referred to as ‘guilt by association’. To enable knowledge transfer on a large scale, several automated ‘phylogenomics pipelines’ have been developed in recent years, and seven of these will be described and compared. Overall, the examples in this review demonstrate that homology and phylogeny analyses, done on a large (and automated) scale, can give insights into function in biology and biomedicine.

  3. Khovanov homology of graph-links

    SciTech Connect

    Nikonov, Igor M

    2012-08-31

    Graph-links arise as the intersection graphs of turning chord diagrams of links. Speaking informally, graph-links provide a combinatorial description of links up to mutations. Many link invariants can be reformulated in the language of graph-links. Khovanov homology, a well-known and useful knot invariant, is defined for graph-links in this paper (in the case of the ground field of characteristic two). Bibliography: 14 titles.

  4. Dual submanifolds in rational homology spheres

    NASA Astrophysics Data System (ADS)

    Fang, FuQuan

    2017-09-01

    Let $\\Sigma$ be a simply connected rational homology sphere. A pair of disjoint closed submanifolds $M_+, M_-$ in $\\Sigma$ are called dual to each other if the complement $\\Sigma - M_+$ strongly homotopy retracts onto $M_-$ or vice-versa. In this paper we will give a complete answer of which integral triples $(n; m_+, m_-)$ can appear, where $n=dim \\Sigma -1$, $m_+={codim}M_+ -1$ and $m_-={codim}M_- -1$.

  5. Homology among divergent Paleozoic tetrapod clades.

    PubMed

    Carroll, R L

    1999-01-01

    A stringent definition of homology is necessary to establish phylogenetic relationships among Paleozoic amphibians. Many derived characters exhibited by divergent clades of Carboniferous lepospondyls resemble those achieved convergently among Cenozoic squamates that have elongate bodies and reduced limbs, and by lineages of modern amphibians that have undergone miniaturization. Incongruent character distribution, poorly resolved cladograms and functionally improbable character transformations determined by phylogenetic analysis suggest that convergence was also common among Paleozoic amphibians with a skull length under 3 cm, including lepospondyls, early amniotes and the putative ancestors of modern amphibians. For this reason, it is injudicious to equate apparent synapomorphy (perceived common presence of a particular derived character in two putative sister-taxa) with strict homology of phylogenetic origin. Identification of homology by the similarity of structure, anatomical position and pattern of development is insufficient to establish the synapomorphy of bone and limb loss or precocial ossification of vertebral centra, which are common among small Paleozoic amphibians. The only way in which synapomorphies can be established definitively is through the discovery and recognition of the trait in question in basal members of each of the clades under study, and in their immediate common ancestors.

  6. Faster sequence homology searches by clustering subsequences

    PubMed Central

    Suzuki, Shuji; Kakuta, Masanori; Ishida, Takashi; Akiyama, Yutaka

    2015-01-01

    Motivation: Sequence homology searches are used in various fields. New sequencing technologies produce huge amounts of sequence data, which continuously increase the size of sequence databases. As a result, homology searches require large amounts of computational time, especially for metagenomic analysis. Results: We developed a fast homology search method based on database subsequence clustering, and implemented it as GHOSTZ. This method clusters similar subsequences from a database to perform an efficient seed search and ungapped extension by reducing alignment candidates based on triangle inequality. The database subsequence clustering technique achieved an ∼2-fold increase in speed without a large decrease in search sensitivity. When we measured with metagenomic data, GHOSTZ is ∼2.2–2.8 times faster than RAPSearch and is ∼185–261 times faster than BLASTX. Availability and implementation: The source code is freely available for download at http://www.bi.cs.titech.ac.jp/ghostz/ Contact: akiyama@cs.titech.ac.jp Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25432166

  7. Weak homological dimensions and biflat Koethe algebras

    SciTech Connect

    Pirkovskii, A Yu

    2008-06-30

    The homological properties of metrizable Koethe algebras {lambda}(P) are studied. A criterion for an algebra A={lambda}(P) to be biflat in terms of the Koethe set P is obtained, which implies, in particular, that for such algebras the properties of being biprojective, biflat, and flat on the left are equivalent to the surjectivity of the multiplication operator A otimes-hat A{yields}A. The weak homological dimensions (the weak global dimension w.dg and the weak bidimension w.db) of biflat Koethe algebras are calculated. Namely, it is shown that the conditions w.db {lambda}(P)<=1 and w.dg {lambda}(P)<=1 are equivalent to the nuclearity of {lambda}(P); and if {lambda}(P) is non-nuclear, then w.dg {lambda}(P)=w.db {lambda}(P)=2. It is established that the nuclearity of a biflat Koethe algebra {lambda}(P), under certain additional conditions on the Koethe set P, implies the stronger estimate db {lambda}(P), where db is the (projective) bidimension. On the other hand, an example is constructed of a nuclear biflat Koethe algebra {lambda}(P) such that db {lambda}(P)=2 (while w.db {lambda}(P)=1). Finally, it is shown that many biflat Koethe algebras, while not being amenable, have trivial Hochschild homology groups in positive degrees (with arbitrary coefficients). Bibliography: 37 titles.

  8. PubServer: literature searches by homology

    PubMed Central

    Jaroszewski, Lukasz; Koska, Laszlo; Sedova, Mayya; Godzik, Adam

    2014-01-01

    PubServer, available at http://pubserver.burnham.org/, is a tool to automatically collect, filter and analyze publications associated with groups of homologous proteins. Protein entries in databases such as Entrez Protein database at NCBI contain information about publications associated with a given protein. The scope of these publications varies a lot: they include studies focused on biochemical functions of individual proteins, but also reports from genome sequencing projects that introduce tens of thousands of proteins. Collecting and analyzing publications related to sets of homologous proteins help in functional annotation of novel protein families and in improving annotations of well-studied protein families or individual genes. However, performing such collection and analysis manually is a tedious and time-consuming process. PubServer automatically collects identifiers of homologous proteins using PSI-Blast, retrieves literature references from corresponding database entries and filters out publications unlikely to contain useful information about individual proteins. It also prepares simple vocabulary statistics from titles, abstracts and MeSH terms to identify the most frequently occurring keywords, which may help to quickly identify common themes in these publications. The filtering criteria applied to collected publications are user-adjustable. The results of the server are presented as an interactive page that allows re-filtering and different presentations of the output. PMID:24957597

  9. Dental homologies in lamniform sharks (Chondrichthyes: Elasmobranchii).

    PubMed

    Shimada, Kenshu

    2002-01-01

    The dentitions of lamniform sharks are said to exhibit a unique heterodonty called the "lamnoid tooth pattern." The presence of an inflated hollow "dental bulla" on each jaw cartilage allows the recognition of homologous teeth across most modern macrophagous lamniforms based on topographic correspondence through the "similarity test." In most macrophagous lamniforms, three tooth rows are supported by the upper dental bulla: two rows of large anterior teeth followed by a row of small intermediate teeth. The lower tooth row occluding between the two rows of upper anterior teeth is the first lower anterior tooth row. Like the first and second lower anterior tooth rows, the third lower tooth row is supported by the dental bulla and may be called the first lower intermediate tooth row. The lower intermediate tooth row occludes between the first and second upper lateral tooth rows situated distal to the upper dental bulla, and the rest of the upper and lower tooth rows, all called lateral tooth rows, occlude alternately. Tooth symmetry cannot be used to identify their dental homology. The presence of dental bullae can be regarded as a synapomorphy of Lamniformes and this character is more definable than the "lamnoid tooth pattern." The formation of the tooth pattern appears to be related to the evolution of dental bullae. This study constitutes the first demonstration of supraspecific tooth-to-tooth dental homologies in nonmammalian vertebrates. Copyright 2002 Wiley-Liss, Inc.

  10. PubServer: literature searches by homology.

    PubMed

    Jaroszewski, Lukasz; Koska, Laszlo; Sedova, Mayya; Godzik, Adam

    2014-07-01

    PubServer, available at http://pubserver.burnham.org/, is a tool to automatically collect, filter and analyze publications associated with groups of homologous proteins. Protein entries in databases such as Entrez Protein database at NCBI contain information about publications associated with a given protein. The scope of these publications varies a lot: they include studies focused on biochemical functions of individual proteins, but also reports from genome sequencing projects that introduce tens of thousands of proteins. Collecting and analyzing publications related to sets of homologous proteins help in functional annotation of novel protein families and in improving annotations of well-studied protein families or individual genes. However, performing such collection and analysis manually is a tedious and time-consuming process. PubServer automatically collects identifiers of homologous proteins using PSI-Blast, retrieves literature references from corresponding database entries and filters out publications unlikely to contain useful information about individual proteins. It also prepares simple vocabulary statistics from titles, abstracts and MeSH terms to identify the most frequently occurring keywords, which may help to quickly identify common themes in these publications. The filtering criteria applied to collected publications are user-adjustable. The results of the server are presented as an interactive page that allows re-filtering and different presentations of the output.

  11. Advances in Homology Protein Structure Modeling

    PubMed Central

    Xiang, Zhexin

    2007-01-01

    Homology modeling plays a central role in determining protein structure in the structural genomics project. The importance of homology modeling has been steadily increasing because of the large gap that exists between the overwhelming number of available protein sequences and experimentally solved protein structures, and also, more importantly, because of the increasing reliability and accuracy of the method. In fact, a protein sequence with over 30% identity to a known structure can often be predicted with an accuracy equivalent to a low-resolution X-ray structure. The recent advances in homology modeling, especially in detecting distant homologues, aligning sequences with template structures, modeling of loops and side chains, as well as detecting errors in a model, have contributed to reliable prediction of protein structure, which was not possible even several years ago. The ongoing efforts in solving protein structures, which can be time-consuming and often difficult, will continue to spur the development of a host of new computational methods that can fill in the gap and further contribute to understanding the relationship between protein structure and function. PMID:16787261

  12. Mismatch repair during homologous and homeologous recombination.

    PubMed

    Spies, Maria; Fishel, Richard

    2015-03-02

    Homologous recombination (HR) and mismatch repair (MMR) are inextricably linked. HR pairs homologous chromosomes before meiosis I and is ultimately responsible for generating genetic diversity during sexual reproduction. HR is initiated in meiosis by numerous programmed DNA double-strand breaks (DSBs; several hundred in mammals). A characteristic feature of HR is the exchange of DNA strands, which results in the formation of heteroduplex DNA. Mismatched nucleotides arise in heteroduplex DNA because the participating parental chromosomes contain nonidentical sequences. These mismatched nucleotides may be processed by MMR, resulting in nonreciprocal exchange of genetic information (gene conversion). MMR and HR also play prominent roles in mitotic cells during genome duplication; MMR rectifies polymerase misincorporation errors, whereas HR contributes to replication fork maintenance, as well as the repair of spontaneous DSBs and genotoxic lesions that affect both DNA strands. MMR suppresses HR when the heteroduplex DNA contains excessive mismatched nucleotides, termed homeologous recombination. The regulation of homeologous recombination by MMR ensures the accuracy of DSB repair and significantly contributes to species barriers during sexual reproduction. This review discusses the history, genetics, biochemistry, biophysics, and the current state of studies on the role of MMR in homologous and homeologous recombination from bacteria to humans.

  13. Homologous recombination using bacterial artificial chromosomes.

    PubMed

    Lai, Cary; Fischer, Tobias; Munroe, Elizabeth

    2015-02-02

    This protocol introduces the technique of homologous recombination in bacteria to insert a linear DNA fragment into bacterial artificial chromosomes (BACs). Homologous recombination allows the modification of large DNA molecules, in contrast with conventional restriction endonuclease-based strategies, which cleave large DNAs into numerous fragments and are unlikely to permit the precise targeting afforded by recombination-based approaches. The method uses a phage lambda-derived recombination system (using exo, beta, and gam) as well as other enzymatic activities provided by the host (Escherichia coli). In the method described here, a DNA fragment encoding enhanced cyan fluorescent protein is inserted immediately after the start codon of the gene encoding choline acetyltransferase ("ChAT"), the final enzyme in acetylcholine biosynthesis, using homologous recombination between sequences that are present both on the introduced DNA fragment and in the target BAC. The desired recombination products are identified via positive selection for resistance to kanamycin. In principle, the resulting modified BAC could be used to produce transgenic mice that express this fluorescent protein in cholinergic neurons. The approach described here could be used to insert any DNA fragment.

  14. Mismatch Repair during Homologous and Homeologous Recombination

    PubMed Central

    Spies, Maria; Fishel, Richard

    2015-01-01

    Homologous recombination (HR) and mismatch repair (MMR) are inextricably linked. HR pairs homologous chromosomes before meiosis I and is ultimately responsible for generating genetic diversity during sexual reproduction. HR is initiated in meiosis by numerous programmed DNA double-strand breaks (DSBs; several hundred in mammals). A characteristic feature of HR is the exchange of DNA strands, which results in the formation of heteroduplex DNA. Mismatched nucleotides arise in heteroduplex DNA because the participating parental chromosomes contain nonidentical sequences. These mismatched nucleotides may be processed by MMR, resulting in nonreciprocal exchange of genetic information (gene conversion). MMR and HR also play prominent roles in mitotic cells during genome duplication; MMR rectifies polymerase misincorporation errors, whereas HR contributes to replication fork maintenance, as well as the repair of spontaneous DSBs and genotoxic lesions that affect both DNA strands. MMR suppresses HR when the heteroduplex DNA contains excessive mismatched nucleotides, termed homeologous recombination. The regulation of homeologous recombination by MMR ensures the accuracy of DSB repair and significantly contributes to species barriers during sexual reproduction. This review discusses the history, genetics, biochemistry, biophysics, and the current state of studies on the role of MMR in homologous and homeologous recombination from bacteria to humans. PMID:25731766

  15. Vestiges of Ent3p/Ent5p function in the giardial Epsin homolog

    PubMed Central

    Feliziani, Constanza; Taubas, Javier Valdez; Moyano, Sofía; Quassollo, Gonzalo; Poprawski, Joanna E.; Wendland, Beverly; Touz, Maria C

    2016-01-01

    An accurate way to characterize the functional potential of a protein is to analyze recognized protein domains encoded by the genes in a given group. The epsin N-terminal homology (ENTH) domain is an evolutionarily conserved protein module found primarily in proteins that participate in clathrin-mediated trafficking. In this work, we investigate the function of the single ENTH-containing protein from the protist G. lamblia by testing its function in S. cerevisiae. This protein, named GlENTHp (for G. lamblia ENTH protein), is involved in Giardia in endocytosis and in protein trafficking from the ER to the vacuoles, fulfilling the function of the ENTH proteins epsin and epsinR, respectively. There are two orthologs of epsin, Ent1p and Ent2p, and two orthologs of epsinR, Ent3p and Ent5p in S. cerevisiae. Although the expression of GlENTHp neither complemented growth in the ent1Δent2Δ mutant nor restored the GFP-Cps1 vacuolar trafficking defect in ent3Δent5Δ, it interfered with the normal function of Ent3/5 in the wild-type strain. The phenotype observed is linked to a defect in Cps1 localization and α-factor mating pheromone maturation. The finding that GlENTHp acts as dominant negative epsinR in yeast cells reinforces the phylogenetic data showing that GlENTHp belongs to the epsinR subfamily present in eukaryotes prior to their evolution into different taxa. PMID:26851076

  16. Homology and ontogeny: pattern and process in comparative developmental biology.

    PubMed

    Scholtz, Gerhard

    2005-11-01

    In this article the interface between development and homology is discussed. Development is here interpreted as a sequence of evolutionarily independent stages. Any approach stressing the importance of specific developmental stages is rejected. A homology definition is favoured which includes similarity, and complexity serves as a test for homology. Complexity is seen as the possibility of subdividing a character into evolutionarily independent corresponding substructures. Topology as a test for homology is critically discussed because corresponding positions are not necessarily indicative of homology. Complexity can be used twofold for homology assessments of development: either stages or processes of development are homologized. These two approaches must not be con-flated. This distinction leads to the conclusion that there is no ontogenetic homology "criterion".

  17. Scarless Gene Tagging with One-Step Transformation and Two-Step Selection in Saccharomyces cerevisiae and Schizosaccharomyces pombe

    PubMed Central

    Huh, Dann; Hallacli, Erinc; Lindquist, Susan

    2016-01-01

    Gene tagging with fluorescent proteins is commonly applied to investigate the localization and dynamics of proteins in their cellular environment. Ideally, a fluorescent tag is genetically inserted at the endogenous locus at the N- or C- terminus of the gene of interest without disrupting regulatory sequences including the 5’ and 3’ untranslated region (UTR) and without introducing any extraneous unwanted “scar” sequences, which may create unpredictable transcriptional or translational effects. We present a reliable, low-cost, and highly efficient method for the construction of such scarless C-terminal and N-terminal fusions with fluorescent proteins in yeast. The method relies on sequential positive and negative selection and uses an integration cassette with long flanking regions, which is assembled by two-step PCR, to increase the homologous recombination frequency. The method also enables scarless tagging of essential genes with no need for a complementing plasmid. To further ease high-throughput strain construction, we have computationally automated design of the primers, applied the primer design code to all open reading frames (ORFs) of the budding yeast Saccharomyces cerevisiae (S. cerevisiae) and the fission yeast Schizosaccharomyces pombe (S. pombe), and provide here the computed sequences. To illustrate the scarless N- and C-terminal gene tagging methods in S. cerevisiae, we tagged various genes including the E3 ubiquitin ligase RSP5, the proteasome subunit PRE1, and the eleven Rab GTPases with yeast codon-optimized mNeonGreen or mCherry; several of these represent essential genes. We also implemented the scarless C-terminal gene tagging method in the distantly related organism S. pombe using kanMX6 and HSV1tk as positive and negative selection markers, respectively, as well as ura4. The scarless gene tagging methods presented here are widely applicable to visualize and investigate the functional roles of proteins in living cells. PMID:27736907

  18. Scarless Gene Tagging with One-Step Transformation and Two-Step Selection in Saccharomyces cerevisiae and Schizosaccharomyces pombe.

    PubMed

    Landgraf, Dirk; Huh, Dann; Hallacli, Erinc; Lindquist, Susan

    2016-01-01

    Gene tagging with fluorescent proteins is commonly applied to investigate the localization and dynamics of proteins in their cellular environment. Ideally, a fluorescent tag is genetically inserted at the endogenous locus at the N- or C- terminus of the gene of interest without disrupting regulatory sequences including the 5' and 3' untranslated region (UTR) and without introducing any extraneous unwanted "scar" sequences, which may create unpredictable transcriptional or translational effects. We present a reliable, low-cost, and highly efficient method for the construction of such scarless C-terminal and N-terminal fusions with fluorescent proteins in yeast. The method relies on sequential positive and negative selection and uses an integration cassette with long flanking regions, which is assembled by two-step PCR, to increase the homologous recombination frequency. The method also enables scarless tagging of essential genes with no need for a complementing plasmid. To further ease high-throughput strain construction, we have computationally automated design of the primers, applied the primer design code to all open reading frames (ORFs) of the budding yeast Saccharomyces cerevisiae (S. cerevisiae) and the fission yeast Schizosaccharomyces pombe (S. pombe), and provide here the computed sequences. To illustrate the scarless N- and C-terminal gene tagging methods in S. cerevisiae, we tagged various genes including the E3 ubiquitin ligase RSP5, the proteasome subunit PRE1, and the eleven Rab GTPases with yeast codon-optimized mNeonGreen or mCherry; several of these represent essential genes. We also implemented the scarless C-terminal gene tagging method in the distantly related organism S. pombe using kanMX6 and HSV1tk as positive and negative selection markers, respectively, as well as ura4. The scarless gene tagging methods presented here are widely applicable to visualize and investigate the functional roles of proteins in living cells.

  19. A metacaspase of Trypanosoma brucei causes loss of respiration competence and clonal death in the yeast Saccharomyces cerevisiae.

    PubMed

    Szallies, Alexander; Kubata, Bruno K; Duszenko, Michael

    2002-04-24

    Metacaspases constitute a new group of cysteine proteases homologous to caspases. Heterologous expression of Trypanosoma brucei metacaspase TbMCA4 in the budding yeast Saccharomyces cerevisiae resulted in growth inhibition, mitochondrial dysfunction and clonal death. The metacaspase orthologue of yeast, ScMCA1 (YOR197w), exhibited genetic interaction with WWM1 (YFL010c), which encodes a small WW domain protein. WWM1 overexpression resulted in growth arrest and clonal death, which was suppressed by concomitant overexpression of ScMCA1. GFP-fusion reporters of WWM1, ScMCA1 and TbMCA4 localized to the nucleus. Taken together, we suggest that metacaspases may play a role in nuclear function controlling cellular proliferation coupled to mitochondrial biogenesis.

  20. Multi-protein complexes in the cis Golgi of Saccharomyces cerevisiae with alpha-1,6-mannosyltransferase activity.

    PubMed Central

    Jungmann, J; Munro, S

    1998-01-01

    Anp1p, Van1p and Mnn9p constitute a family of membrane proteins required for proper Golgi function in Saccharomyces cerevisiae. We demonstrate that these proteins colocalize within the cis Golgi, and that they are physically associated in two distinct complexes, both of which contain Mnn9p. Furthermore, we identify two new proteins in the Anp1p-Mnn9p-containing complex which have homology to known glycosyltransferases. Both protein complexes have alpha-1, 6-mannosyltransferase activity, forming a series of poly-mannose structures. These reaction products also contain some alpha-1, 2-linked mannose residues. Our data suggest that these two multi-protein complexes are responsible for the synthesis and initial branching of the long alpha-1,6-linked backbone of the hypermannose structure attached to many yeast glycoproteins. PMID:9430634

  1. One-step assembly and targeted integration of multigene constructs assisted by the I-SceI meganuclease in Saccharomyces cerevisiae.

    PubMed

    Kuijpers, Niels G A; Chroumpi, Soultana; Vos, Tim; Solis-Escalante, Daniel; Bosman, Lizanne; Pronk, Jack T; Daran, Jean-Marc; Daran-Lapujade, Pascale

    2013-12-01

    In vivo assembly of overlapping fragments by homologous recombination in Saccharomyces cerevisiae is a powerful method to engineer large DNA constructs. Whereas most in vivo assembly methods reported to date result in circular vectors, stable integrated constructs are often preferred for metabolic engineering as they are required for large-scale industrial application. The present study explores the potential of combining in vivo assembly of large, multigene expression constructs with their targeted chromosomal integration in S. cerevisiae. Combined assembly and targeted integration of a ten-fragment 22-kb construct to a single chromosomal locus was successfully achieved in a single transformation process, but with low efficiency (5% of the analyzed transformants contained the correctly assembled construct). The meganuclease I-SceI was therefore used to introduce a double-strand break at the targeted chromosomal locus, thus to facilitate integration of the assembled construct. I-SceI-assisted integration dramatically increased the efficiency of assembly and integration of the same construct to 95%. This study paves the way for the fast, efficient, and stable integration of large DNA constructs in S. cerevisiae chromosomes.

  2. Abolishment of N-glycan mannosylphosphorylation in glyco-engineered Saccharomyces cerevisiae by double disruption of MNN4 and MNN14 genes.

    PubMed

    Kim, Yeong Hun; Kang, Ji-Yeon; Gil, Jin Young; Kim, Sang-Yoon; Shin, Keun Koo; Kang, Hyun Ah; Kim, Jeong-Yoon; Kwon, Ohsuk; Oh, Doo-Byoung

    2017-04-01

    Mannosylphosphorylated glycans are found only in fungi, including yeast, and the elimination of mannosylphosphates from glycans is a prerequisite for yeast glyco-engineering to produce human-compatible glycoproteins. In Saccharomyces cerevisiae, MNN4 and MNN6 genes are known to play roles in mannosylphosphorylation, but disruption of these genes does not completely remove the mannosylphosphates in N-glycans. This study was performed to find unknown key gene(s) involved in N-glycan mannosylphosphorylation in S. cerevisiae. For this purpose, each of one MNN4 and five MNN6 homologous genes were deleted from the och1Δmnn1Δmnn4Δmnn6Δ strain, which lacks yeast-specific hyper-mannosylation and the immunogenic α(1,3)-mannose structure. N-glycan profile analysis of cell wall mannoproteins and a secretory recombinant protein produced in mutants showed that the MNN14 gene, an MNN4 paralog with unknown function, is essential for N-glycan mannosylphosphorylation. Double disruption of MNN4 and MNN14 genes was enough to eliminate N-glycan mannosylphosphorylation. Our results suggest that the S. cerevisiae och1Δmnn1Δmnn4Δmnn14Δ strain, in which all yeast-specific N-glycan structures including mannosylphosphorylation are abolished, may have promise as a useful platform for glyco-engineering to produce therapeutic glycoproteins with human-compatible N-glycans.

  3. DNA replication stress-induced loss of reproductive capacity in S. cerevisiae and its inhibition by caloric restriction

    PubMed Central

    Weinberger, Martin; Sampaio-Marques, Belém; Ludovico, Paula; Burhans, William C.

    2013-01-01

    In many organisms, attenuation of growth signaling by caloric restriction or mutational inactivation of growth signaling pathways extends lifespan and protects against cancer and other age-related diseases. The focus of many efforts to understand these effects has been on the induction of oxidative stress defenses that inhibit cellular senescence and cell death. Here we show that in the model organism S. cerevisiae, growth signaling induces entry of cells in stationary phase into S phase in parallel with loss of reproductive capacity, which is enhanced by elevated concentrations of glucose. Overexpression of RNR1 encoding a ribonucleotide reductase subunit required for the synthesis of deoxynucleotide triphosphates and DNA replication suppresses the accelerated loss of reproductive capacity of cells cultured in high glucose. The reduced reproductive capacity of these cells is also suppressed by excess threonine, which buffers dNTP pools when ribonucleotide reductase activity is limiting. Caloric restriction or inactivation of the AKT homolog Sch9p inhibits senescence and death in stationary phase cells caused by the DNA replication inhibitor hydroxyurea or by inactivation of the DNA replication and repair proteins Sgs1p or Rad27p. Inhibition of DNA replication stress represents a novel mechanism by which caloric restriction promotes longevity in S. cerevisiae. A similar mechanism may promote longevity and inhibit cancer and other age-related diseases in humans. PMID:23518504

  4. Identification of antifungal natural products via Saccharomyces cerevisiae bioassay: insights into macrotetrolide drug spectrum, potency and mode of action

    PubMed Central

    Tebbets, Brad; Yu, Zhiguo; Stewart, Douglas; Zhao, Li-Xing; Jiang, Yi; Xu, Li-Hua; Andes, David; Shen, Ben; Klein, Bruce

    2012-01-01

    Since current antifungal drugs have not kept pace with the escalating medical demands of fungal infections, new, effective medications are required. However, antifungal drug discovery is hindered by the evolutionary similarity of mammalian and fungal cells, which results in fungal drug targets having human homologs and drug non-selectivity. The group III hybrid histidine kinases (HHKs) are an attractive drug target since they are conserved in fungi and absent in mammals. We used a Saccharomyces cerevisiae reporter strain that conditionally expresses HHK to establish a high-throughput bioassay to screen microbial extracts natural products for antifungals. We identified macrotetrolides, a group of related ionophores thought to exhibit restricted antifungal activity. In addition to confirming the use of this bioassay for the discovery of antifungal natural products, we demonstrated broader, more potent fungistatic activity of the macrotetrolides against multiple Candida spp., Cryptococcus spp., and Candida albicans in biofilms. Macrotetrolides were also active in an animal model of C. albicans biofilm, but were found to have inconsistent activity against fluconazole-resistant C. albicans, with most isolates resistant to this natural product. The macrotetrolides do not directly target HHKs, but their selective activity against S. cerevisiae grown in galactose (regardless of Drk1 expression) revealed potential new insight into the role of ion transport in the mode of action of these promising antifungal compounds. Thus, this simple, high-throughput bioassay permitted us to screen microbial extracts, identify natural products as antifungal drugs, and expand our understanding of the activity of macrotetrolides. PMID:22928922

  5. Intracellular Na and K distribution in Debaryomyces hansenii. Cloning and expression in Saccharomyces cerevisiae of DhNHX1.

    PubMed

    Montiel, Vera; Ramos, José

    2007-01-01

    Debaryomyces hansenii is a salt-tolerant yeast that contains high amounts of internal Na(+). Debaryomyces hansenii kept more sodium than Saccharomyces cerevisiae in both the cytoplasm and vacuole when grown under a variety of NaCl concentrations. These results indicate a higher tolerance of Debaryomyces to high internal Na(+), and, in addition, suggest the existence of a transporter driving Na(+) into the vacuole. Moreover, a gene encoding a Na(+) (K(+))/H(+) antiporter from D. hansenii was cloned and sequenced. The gene, designated DhNHX1, exhibited significant homology with genes of the NHE/NHX family. DhNHX1 expression was induced neither at low pH nor by extracellular NaCl. A mutant of S. cerevisiae lacking its own Na(+) transporters (ena1-4Delta nha1 Delta nhx1 Delta), when transformed with DhNHX1, partially recovered cation tolerance as well as the ability to accumulate Na(+) and K(+) into the vacuole. Our analysis provides evidence that DhNhx1p transports Na(+) (and K(+)) into the vacuole and that it can play an important role in ion homeostasis and salt tolerance.

  6. Las1 interacts with Grc3 polynucleotide kinase and is required for ribosome synthesis in Saccharomyces cerevisiae

    PubMed Central

    Castle, Christopher D.; Sardana, Richa; Dandekar, Varada; Borgianini, Victoria; Johnson, Arlen W.; Denicourt, Catherine

    2013-01-01

    Ribosome biogenesis is a multi-step process that couples cell growth with cell proliferation. Although several large-scale analysis of pre-ribosomal particles have identified numerous trans-acting factors involved in this process, many proteins involved in pre-rRNA processing and ribosomal subunit maturation have yet to be identified. Las1 was originally identified in Saccharomyces cerevisiae as a protein involved in cell morphogenesis. We previously demonstrated that the human homolog, Las1L, is required for efficient ITS2 rRNA processing and synthesis of the 60S ribosomal subunit. Here, we report that the functions of Las1 in ribosome biogenesis are also conserved in S. cerevisiae. Depletion of Las1 led to the accumulation of both the 27S and 7S rRNA intermediates and impaired the synthesis of the 60S subunit. We show that Las1 co-precipitates mainly with the 27S rRNA and associates with an Nsa1 and Rix1-containing pre-60S particle. We further identify Grc3 as a major Las1-interacting protein. We demonstrate that the kinase activity of Grc3 is required for efficient pre-rRNA processing and that depletion of Grc3 leads to rRNA processing defects similar to the ones observed in Las1-depleted cells. We propose that Las1 and Grc3 function together in a conserved mechanism to modulate rRNA processing and eukaryotic ribosome biogenesis. PMID:23175604

  7. An essential gene, ESR1, is required for mitotic cell growth, DNA repair and meiotic recombination in Saccharomyces cerevisiae.

    PubMed Central

    Kato, R; Ogawa, H

    1994-01-01

    A new mutant, which was sensitive to both methyl-methanesulfonate (MMS) and ultra-violet light (UV) and defective in meiotic recombination, was isolated from Saccharomyces cerevisiae. The gene, ESR1, was cloned by complementation of the MMS sensitivity of the mutant and found to be essential for cell growth, as the deleted haploid strain was lethal. The ESR1 gene was adjacent to the CKS1 gene on chromosome II and encoded a putative 2368-amino acid protein with a molecular weight of 273 k. The ESR1 transcript was 8.0 kb long and was induced during meiosis. The predicted Esr1 protein had a mosaic structure composed of homologous regions and showed amino acid sequence similarities to Schizosaccharomyces pombe rad3+ protein, which monitors completion of DNA repair synthesis, and cut1+ protein, which is required for spindle pole body (SPB) duplication. The Esr1 protein was also similar to phosphatidylinositol (PI) 3-kinases, including Saccharomyces cerevisiae TOR2 (and DRR1), which are involved in G1 progression. These results suggest that ESR1 is multi-functional throughout mitosis and meiosis. Images PMID:8065923

  8. Designed construction of recombinant DNA at the ura3Δ0 locus in the yeast Saccharomyces cerevisiae.

    PubMed

    Fukunaga, Tomoaki; Cha-Aim, Kamonchai; Hirakawa, Yuki; Sakai, Ryota; Kitagawa, Takao; Nakamura, Mikiko; Nonklang, Sanom; Hoshida, Hisashi; Akada, Rinji

    2013-06-01

    Recombinant DNAs are traditionally constructed using Escherichia coli plasmids. In the yeast Saccharomyces cerevisiae, chromosomal gene targeting is a common technique, implying that the yeast homologous recombination system could be applied for recombinant DNA construction. In an attempt to use a S. cerevisiae chromosome for recombinant DNA construction, we selected the single ura3Δ0 locus as a gene targeting site. By selecting this single locus, repeated recombination using the surrounding URA3 sequences can be performed. The recombination system described here has several advantages over the conventional plasmid system, as it provides a method to confirm the selection of correct recombinants because transformation of the same locus replaces the pre-existing selection marker, resulting in the loss of the marker in successful recombinations. In addition, the constructed strains can serve as both PCR templates and hosts for preparing subsequent recombinant strains. Using this method, several yeast strains that contained selection markers, promoters, terminators and target genes at the ura3Δ0 locus were successfully generated. The system described here can potentially be applied for the construction of any recombinant DNA without the requirement for manipulations in E. coli. Interestingly, we unexpectedly found that several G/C-rich sequences used for fusion PCR lowered gene expression when located adjacent to the start codon.

  9. HomologMiner: looking for homologous genomic groups in whole genomes.

    PubMed

    Hou, Minmei; Berman, Piotr; Hsu, Chih-Hao; Harris, Robert S

    2007-04-15

    Complex genomes contain numerous repeated sequences, and genomic duplication is believed to be a main evolutionary mechanism to obtain new functions. Several tools are available for de novo repeat sequence identification, and many approaches exist for clustering homologous protein sequences. We present an efficient new approach to identify and cluster homologous DNA sequences with high accuracy at the level of whole genomes, excluding low-complexity repeats, tandem repeats and annotated interspersed repeats. We also determine the boundaries of each group member so that it closely represents a biological unit, e.g. a complete gene, or a partial gene coding a protein domain. We developed a program called HomologMiner to identify homologous groups applicable to genome sequences that have been properly marked for low-complexity repeats and annotated interspersed repeats. We applied it to the whole genomes of human (hg17), macaque (rheMac2) and mouse (mm8). Groups obtained include gene families (e.g. olfactory receptor gene family, zinc finger families), unannotated interspersed repeats and additional homologous groups that resulted from recent segmental duplications. Our program incorporates several new methods: a new abstract definition of consistent duplicate units, a new criterion to remove moderately frequent tandem repeats, and new algorithmic techniques. We also provide preliminary analysis of the output on the three genomes mentioned above, and show several applications including identifying boundaries of tandem gene clusters and novel interspersed repeat families. All programs and datasets are downloadable from www.bx.psu.edu/miller_lab.

  10. Cloning and characterization of Kluyveromyces lactis SEC14, a gene whose product stimulates Golgi secretory function in Saccharomyces cerevisiae.

    PubMed Central

    Salama, S R; Cleves, A E; Malehorn, D E; Whitters, E A; Bankaitis, V A

    1990-01-01

    The Saccharomyces cerevisiae SEC14 gene encodes a cytosolic factor that is required for secretory protein movement from the Golgi complex. That some conservation of SEC14p function may exist was initially suggested by experiments that revealed immunoreactive polypeptides in cell extracts of the divergent yeasts Kluyveromyces lactis and Schizosaccharomyces pombe. We have cloned and characterized the K. lactis SEC14 gene (SEC14KL). Immunoprecipitation experiments indicated that SEC14KL encoded the K. lactis structural homolog of SEC14p. In agreement with those results, nucleotide sequence analysis of SEC14KL revealed a gene product of 301 residues (Mr, 34,615) and 77% identity to SEC14p. Moreover, a single ectopic copy of SEC14KL was sufficient to render S. cerevisiae sec14-1(Ts) mutants, or otherwise inviable sec14-129::HIS3 mutant strains, completely proficient for secretory pathway function by the criteria of growth, invertase secretion, and kinetics of vacuolar protein localization. This efficient complementation of sec14-129::HIS3 was observed to occur when the rates of SEC14pKL and SEC14p synthesis were reduced by a factor of 7 to 10 with respect to the wild-type rate of SEC14p synthesis. Taken together, these data provide evidence that the high level of structural conservation between SEC14p and SEC14pKL reflects a functional identity between these polypeptides as well. On the basis of the SEC14p and SEC14pKL primary sequence homology to the human retinaldehyde-binding protein, we suggest that the general function of these SEC14p species may be to regulate the delivery of a hydrophobic ligand to Golgi membranes so that biosynthetic secretory traffic can be supported. Images PMID:2198263

  11. Functional profiling of the Saccharomyces cerevisiae genome.

    PubMed

    Giaever, Guri; Chu, Angela M; Ni, Li; Connelly, Carla; Riles, Linda; Véronneau, Steeve; Dow, Sally; Lucau-Danila, Ankuta; Anderson, Keith; André, Bruno; Arkin, Adam P; Astromoff, Anna; El-Bakkoury, Mohamed; Bangham, Rhonda; Benito, Rocio; Brachat, Sophie; Campanaro, Stefano; Curtiss, Matt; Davis, Karen; Deutschbauer, Adam; Entian, Karl-Dieter; Flaherty, Patrick; Foury, Francoise; Garfinkel, David J; Gerstein, Mark; Gotte, Deanna; Güldener, Ulrich; Hegemann, Johannes H; Hempel, Svenja; Herman, Zelek; Jaramillo, Daniel F; Kelly, Diane E; Kelly, Steven L; Kötter, Peter; LaBonte, Darlene; Lamb, David C; Lan, Ning; Liang, Hong; Liao, Hong; Liu, Lucy; Luo, Chuanyun; Lussier, Marc; Mao, Rong; Menard, Patrice; Ooi, Siew Loon; Revuelta, Jose L; Roberts, Christopher J; Rose, Matthias; Ross-Macdonald, Petra; Scherens, Bart; Schimmack, Greg; Shafer, Brenda; Shoemaker, Daniel D; Sookhai-Mahadeo, Sharon; Storms, Reginald K; Strathern, Jeffrey N; Valle, Giorgio; Voet, Marleen; Volckaert, Guido; Wang, Ching-yun; Ward, Teresa R; Wilhelmy, Julie; Winzeler, Elizabeth A; Yang, Yonghong; Yen, Grace; Youngman, Elaine; Yu, Kexin; Bussey, Howard; Boeke, Jef D; Snyder, Michael; Philippsen, Peter; Davis, Ronald W; Johnston, Mark

    2002-07-25

    Determining the effect of gene deletion is a fundamental approach to understanding gene function. Conventional genetic screens exhibit biases, and genes contributing to a phenotype are often missed. We systematically constructed a nearly complete collection of gene-deletion mutants (96% of annotated open reading frames, or ORFs) of the yeast Saccharomyces cerevisiae. DNA sequences dubbed 'molecular bar codes' uniquely identify each strain, enabling their growth to be analysed in parallel and the fitness contribution of each gene to be quantitatively assessed by hybridization to high-density oligonucleotide arrays. We show that previously known and new genes are necessary for optimal growth under six well-studied conditions: high salt, sorbitol, galactose, pH 8, minimal medium and nystatin treatment. Less than 7% of genes that exhibit a significant increase in messenger RNA expression are also required for optimal growth in four of the tested conditions. Our results validate the yeast gene-deletion collection as a valuable resource for functional genomics.

  12. Regulation of Phosphatidylcholine Biosynthesis in Saccharomyces cerevisiae

    PubMed Central

    Waechter, Charles J.; Lester, Robert L.

    1971-01-01

    Evidence is presented which indicates that the biosynthesis of phosphatidylcholine by the methylation pathway in growing cultures of Saccharomyces cerevisiae is repressed by the presence of choline in the growth medium. This result, obtained previously for glucose-grown cells, was also observed for lactate-grown cells, of which half of the phosphatidylcholine is mitochondrial. A respiration-deficient mutant of the parent wild-type strain has been studied, and its inability to form functional mitochondria cannot be due to an impaired methylation pathway, as it has been shown to incorporate 14C-CH3-methionine into all of the methylated glycerophosphatides. The incorporation rate is depressed by the inclusion of 1 mm choline in the growth medium, suggesting a regulatory effect similar to that demonstrated for the wild-type strain. The effects of choline on the glycerophospholipid composition of lactate and glucose-grown cells is presented. The repressive effects of the two related bases, mono- and dimethylethanolamine, were examined, and reduced levels of 14C-CH3-methionine incorporation were found for cells grown in the presence of these bases. The effect of choline on the methylation rates is reversible and glucosegrown cells regain the nonrepressed level of methylation activity in 60 to 80 min after removal of choline from the growth medium. Images PMID:5547992

  13. Acetylation dynamics and stoichiometry in Saccharomyces cerevisiae.

    PubMed

    Weinert, Brian T; Iesmantavicius, Vytautas; Moustafa, Tarek; Schölz, Christian; Wagner, Sebastian A; Magnes, Christoph; Zechner, Rudolf; Choudhary, Chunaram

    2014-01-01

    Lysine acetylation is a frequently occurring posttranslational modification; however, little is known about the origin and regulation of most sites. Here we used quantitative mass spectrometry to analyze acetylation dynamics and stoichiometry in Saccharomyces cerevisiae. We found that acetylation accumulated in growth-arrested cells in a manner that depended on acetyl-CoA generation in distinct subcellular compartments. Mitochondrial acetylation levels correlated with acetyl-CoA concentration in vivo and acetyl-CoA acetylated lysine residues nonenzymatically in vitro. We developed a method to estimate acetylation stoichiometry and found that the vast majority of mitochondrial and cytoplasmic acetylation had a very low stoichiometry. However, mitochondrial acetylation occurred at a significantly higher basal level than cytoplasmic acetylation, consistent with the distinct acetylation dynamics and higher acetyl-CoA concentration in mitochondria. High stoichiometry acetylation occurred mostly on histones, proteins present in histone acetyltransferase and deacetylase complexes, and on transcription factors. These data show that a majority of acetylation occurs at very low levels in exponentially growing yeast and is uniformly affected by exposure to acetyl-CoA.

  14. A biochemically structured model for Saccharomyces cerevisiae.

    PubMed

    Lei, F; Rotbøll, M; Jørgensen, S B

    2001-07-12

    A biochemically structured model for the aerobic growth of Saccharomyces cerevisiae on glucose and ethanol is presented. The model focuses on the pyruvate and acetaldehyde branch points where overflow metabolism occurs when the growth changes from oxidative to oxido-reductive. The model is designed to describe the onset of aerobic alcoholic fermentation during steady-state as well as under dynamical conditions, by triggering an increase in the glycolytic flux using a key signalling component which is assumed to be closely related to acetaldehyde. An investigation of the modelled process dynamics in a continuous cultivation revealed multiple steady states in a region of dilution rates around the transition between oxidative and oxido-reductive growth. A bifurcation analysis using the two external variables, the dilution rate, D, and the inlet concentration of glucose, S(f), as parameters, showed that a fold bifurcation occurs close to the critical dilution rate resulting in multiple steady-states. The region of dilution rates within which multiple steady states may occur depends strongly on the substrate feed concentration. Consequently a single steady state may prevail at low feed concentrations, whereas multiple steady states may occur over a relatively wide range of dilution rates at higher feed concentrations.

  15. Cold Osmotic Shock in Saccharomyces cerevisiae

    PubMed Central

    Patching, J. W.; Rose, A. H.

    1971-01-01

    Saccharomyces cerevisiae NCYC 366 is susceptible to cold osmotic shock. Exponentially growing cells from batch cultures grown in defined medium at 30 C, after being suspended in 0.8 m mannitol containing 10 mm ethylenedia-minetetraacetic acid and then resuspended in ice-cold 0.5 mm MgCl2, accumulated the nonmetabolizable solutes d-glucosamine-hydrochloride and 2-aminoisobutyrate at slower rates than unshocked cells; shocked cells retained their viability. Storage of unshocked batch-grown cells in buffer at 10 C led to an increase in ability to accumulate glucosamine, and further experiments were confined to cells grown in a chemostat under conditions of glucose limitation, thereby obviating the need for storing cells before use. A study was made of the effect of the different stages in the cold osmotic shock procedure, including the osmotic stress, the chelating agent, and the cold Mg2+-containing diluent, on viability and solute-accumulating ability. Growth of shocked cells in defined medium resembled that of unshocked cells; however, in malt extract-yeast extract-glucose-peptone medium, the shocked cells had a longer lag phase of growth and initially grew at a slower rate. Cold osmotic shock caused the release of low-molecular-weight compounds and about 6 to 8% of the cell protein. Neither the cell envelope enzymes, invertase, acid phosphatase and l-leucine-β-naphthylamidase, nor the cytoplasmic enzyme, alkaline phosphatase, were released when yeast cells were subjected to cold osmotic shock. PMID:5001201

  16. Methylamine and ammonia transport in Saccharomyces cerevisiae.

    PubMed Central

    Roon, R J; Even, H L; Dunlop, P; Larimore, F L

    1975-01-01

    Methylamine (methylammonium ion) entered Saccharomyces cerevisiae X2180-A by means of a specific active transport system. Methylamine uptake was pH dependent (maximum rate between pH 6.0 and 6.5) and temperature dependent (increasing up to 35 C) and required the presence of a fermentable or oxidizable energy source in the growth medium. At 23 C the vmax for methylamine transport was similar 17 nmol/min per mg of cells (dry weight) and the apparent Km was 220 muM. The transport system exhibited maximal activity in ammonia-grown cells and was repressed 60 to 70 percent when glutamine or asparagine was added to the growth medium. There was no significant derepression of the transport system during nitrogen starvation. Ammonia (ammonium ion) was a strong competitive inhibitor of methylamine uptake, whereas other amines inhibited to a much lesser extent. Mutants selected on the basis of their reduced ability to transport methylamine (Mea-R) simultaneously exhibited a decreased ability to transport ammonia. PMID:236281

  17. Limited proteolysis of Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase.

    PubMed

    Herrera, L; Encinas, M V; Jabalquinto, A M; Cardemil, E

    1993-08-01

    Incubation of Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase with trypsin under native conditions cases a time-dependent loss of activity and the production of protein fragments. Cleavage sites determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis and sequence analyses identified protease-sensitive peptide bonds between amino acid residues at positions 9-10 and 76-77. Additional fragmentation sites were also detected in a region approximately 70-80 amino acids before the carboxyl end of the protein. These results suggest that the enzyme is formed by a central compact domain comprising more than two thirds of the whole protein structure. From proteolysis experiments carried out in the presence of substrates, it could be inferred that CO2 binding specifically protects position 76-77 from trypsin action. Intrinsic fluorescence measurements demonstrated that CO2 binding induces a protein conformational change, and a dissociation constant for the enzyme CO2 complex of 8.2 +/- 0.6 mM was determined.

  18. Stationary phase in the yeast Saccharomyces cerevisiae.

    PubMed Central

    Werner-Washburne, M; Braun, E; Johnston, G C; Singer, R A

    1993-01-01

    Growth and proliferation of microorganisms such as the yeast Saccharomyces cerevisiae are controlled in part by the availability of nutrients. When proliferating yeast cells exhaust available nutrients, they enter a stationary phase characterized by cell cycle arrest and specific physiological, biochemical, and morphological changes. These changes include thickening of the cell wall, accumulation of reserve carbohydrates, and acquisition of thermotolerance. Recent characterization of mutant cells that are conditionally defective only for the resumption of proliferation from stationary phase provides evidence that stationary phase is a unique developmental state. Strains with mutations affecting entry into and survival during stationary phase have also been isolated, and the mutations have been shown to affect at least seven different cellular processes: (i) signal transduction, (ii) protein synthesis, (iii) protein N-terminal acetylation, (iv) protein turnover, (v) protein secretion, (vi) membrane biosynthesis, and (vii) cell polarity. The exact nature of the relationship between these processes and survival during stationary phase remains to be elucidated. We propose that cell cycle arrest coordinated with the ability to remain viable in the absence of additional nutrients provides a good operational definition of starvation-induced stationary phase. PMID:8393130

  19. The antifungal properties of a 2S albumin-homologous protein from passion fruit seeds involve plasma membrane permeabilization and ultrastructural alterations in yeast cells.

    PubMed

    Agizzio, Ana Paula; Da Cunha, Maura; Carvalho, André O; Oliveira, Marco Antônio; Ribeiro, Suzanna F F; Gomes, Valdirene M

    2006-10-01

    Different types of antimicrobial proteins were purified from plant seeds, including chitinases, β-1,3-glucanases, defensins, thionins, lipid transfer proteins and 2S albumins. It has become clear that these groups of proteins play an important role in the protection of plants from microbial infection. Recent results from our laboratory have shown that the defense-related proteins from passion fruit seeds, named Pf1 and Pf2 (which show sequence homology with 2S albumins), inhibit fungal growth and glucose-stimulated acidification of the medium by Saccharomyces cerevisiae cells. The aim of this study was to determine whether 2S albumins from passion fruit seeds induce plasma membrane permeabilization and cause morphological alterations in yeast cells. Initially, we used an assay based on the uptake of SYTOX Green, an organic compound that fluoresces upon interaction with nucleic acids and penetrates cells with compromised plasma membranes, to investigate membrane permeabilization in S. cerevisiae cells. When viewed with a confocal laser microscope, S. cervisiae cells showed strong SYTOX Green fluorescence in the cytosol, especially in the nuclei. 2S albumins also inhibited glucose-stimulated acidification of the medium by S. cerevisiae cells, which indicates a probable impairment of fungal metabolism. The microscopical analysis of the yeast cells treated with 2S albumins demonstrated several morphological alterations in cell shape, cell surface, cell wall and bud formation, as well as in the organization of intracellular organelles. Copyright © 2006 Elsevier Ireland Ltd. All rights reserved.

  20. Arabidopsis SMALL ORGAN 4, a homolog of yeast NOP53, regulates cell proliferation rate during organ growth.

    PubMed

    Zhang, Xiao-Ran; Qin, Zhixiang; Zhang, Xiao; Hu, Yuxin

    2015-10-01

    Cell proliferation is a fundamental event essential for plant organogenesis and contributes greatly to the final organ size. Although the control of cell proliferation in plants has been extensively studied, how the plant sets the cell number required for a single organ is largely elusive. Here, we describe the Arabidopsis SMALL ORGAN 4 (SMO4) that functions in the regulation of cell proliferation rate and thus final organ size. The smo4 mutant exhibits a reduced size of organs due to the decreased cell number, and further analysis reveals that such phenotype results from a retardation of the cell cycle progression during organ development. SMO4 encodes a homolog of NUCLEOLAR PROTEIN 53 (NOP53) in Saccharomyces cerevisiae and is expressed primarily in tissues undergoing cell proliferation. Nevertheless, further complementation tests show that SMO4 could not rescue the lethal defect of NOP53 mutant of S. cerevisiae. These results define SMO4 as an important regulator of cell proliferation during organ growth and suggest that SMO4 might have been evolutionarily divergent from NOP53.

  1. Cloning, comparative mapping, and RNA expression of the mouse homologues of the Saccharomyces cerevisiae nucleotide excision repair gene RAD23

    SciTech Connect

    Spek, P.J. van der; Visser, C.E.; Bootsma, D.

    1996-01-01

    The Saccharomyces cerevisiae RAD23 gene is involved in nucleotide excision repair (NER). Two human homologs of RAD23, HHR23A and HHR23B (HGMW-approved symbols RAD23A and RAD23B), were previously isolated. The HHR23B protein is complexed with the protein defective in the cancer-prone repair syndrome xeroderma pigmentosum, complementation group C, and is specifically involved in the global genome NER subpathway. The cloning of both mouse homologs (designated MHR23A and MHR23B) and detailed sequence comparison permitted the deduction of the following overall structure for all RAD23 homologs: an ubiquitin-like N-terminus followed by a strongly conserved 50-amino-acid domain that is repeated at the C-terminus. We also found this domain as a specific C-terminal extension of one of the ubiquitin-conjugating enzymes, providing a second link with the ubiquitin pathway. By means of in situ hybridization, MHR23A was assigned to mouse chromosome 8C3 and MHR23B to 4B3. Because of the close chromosomal proximity of human XPC and HHR23B, the mouse XPC chromosomal location was determined (6D). Physical disconnection of the genes in mouse argues against a functional significance of the colocalization of these genes in human. Northern blot analysis revealed constitutive expression of both MHR23 genes in all tissues examined. Elevated RNA expression of both MHR23 genes was observed in testis. Although the RAD23 equivalents are well conserved during evolution, the mammalian genes did not express the UV-inducible phenotype of their yeast counterpart. This may point to a fundamental difference between the UV responses of yeast and human. No stage-specific mRNA expression during the cell cycle was observed for the mammalian RAD23 homologs. 38 refs., 5 figs.

  2. Fungal cytochrome P450 monooxygenases of Fusarium oxysporum for the synthesis of ω-hydroxy fatty acids in engineered Saccharomyces cerevisiae.

    PubMed

    Durairaj, Pradeepraj; Malla, Sailesh; Nadarajan, Saravanan Prabhu; Lee, Pyung-Gang; Jung, Eunok; Park, Hyun Ho; Kim, Byung-Gee; Yun, Hyungdon

    2015-04-02

    Omega hydroxy fatty acids (ω-OHFAs) are multifunctional compounds that act as the basis for the production of various industrial products with broad commercial and pharmaceutical implications. However, the terminal oxygenation of saturated or unsaturated fatty acids for the synthesis of ω-OHFAs is intricate to accomplish through chemocatalysis, due to the selectivity and controlled reactivity in C-H oxygenation reactions. Cytochrome P450, the ubiquitous enzyme is capable of catalyzing the selective terminal omega hydroxylation naturally in biological kingdom. To gain a deep insight on the biochemical role of fungal P450s towards the production of omega hydroxy fatty acids, two cytochrome P450 monooxygenases from Fusarium oxysporum (FoCYP), FoCYP539A7 and FoCYP655C2; were identified, cloned, and heterologously expressed in Saccharomyces cerevisiae. For the efficient production of ω-OHFAs, the S. cerevisiae was engineered to disrupt the acyl-CoA oxidase enzyme and the β-oxidation pathway inactivated (ΔPox1) S. cerevisiae mutant was generated. To elucidate the significance of the interaction of redox mechanism, FoCYPs were reconstituted with the heterologous and homologous reductase systems--S. cerevisiae CPR (ScCPR) and F. oxysporum CPR (FoCPR). To further improve the yield, the effect of pH was analyzed and the homologous FoCYP-FoCPR system efficiently hydroxylated caprylic acid, capric acid and lauric acid into their respective ω-hydroxy fatty acids with 56%, 79% and 67% conversion. Furthermore, based on computational simulations, we identified the key residues (Asn106 of FoCYP539A7 and Arg235 of FoCYP655C2) responsible for the recognition of fatty acids and demonstrated the structural insights of the active site of FoCYPs. Fungal CYP monooxygenases, FoCYP539A7 and FoCYP655C2 with its homologous redox partner, FoCPR constitutes a promising catalyst due to its high regio- and stereo-selectivity in the hydroxylation of fatty acids and in the substantial

  3. Ultrastructural changes of Saccharomyces cerevisiae in response to ethanol stress.

    PubMed

    Ma, Manli; Han, Pei; Zhang, Ruimin; Li, Hao

    2013-09-01

    In the fermentative process using Saccharomyces cerevisiae to produce bioethanol, the performance of cells is often compromised by the accumulation of ethanol. However, the mechanism of how S. cerevisiae responds against ethanol stress remains elusive. In the current study, S. cerevisiae cells were cultured in YPD (yeast extract - peptone - dextrose) medium containing various concentrations of ethanol (0%, 2.5%, 5%, 7.5%, 10%, and 15% (v/v)). Compared with the control group without ethanol, the mean cell volume of S. cerevisiae decreased significantly in the presence of 7.5% and 10% ethanol after incubation for 16 h (P < 0.05), and in the presence of 15% ethanol at all 3 sampling time points (1, 8, and 16 h) (P < 0.05). The exposure of S. cerevisiae cells to ethanol also led to an increase in malonyldialdehyde content (P < 0.05) and a decrease in sulfhydryl group content (P < 0.05). Moreover, the observations through transmission electron microscopy enabled us to relate ultrastructural changes elicited by ethanol with the cellular stress physiology. Under ethanol stress, the integrity of the cell membrane was compromised. The swelling or distortion of mitochondria together with the occurrence of a single and large vacuole was correlated with the addition of ethanol. These results suggested that the cell membrane is one of the targets of ethanol, and the degeneration of mitochondria promoted the accumulation of intracellular reactive oxygen species.

  4. Saccharomyces cerevisiae S288C genome annotation: a working hypothesis

    PubMed Central

    Fisk, Dianna G.; Ball, Catherine A.; Dolinski, Kara; Engel, Stacia R.; Hong, Eurie L.; Issel-Tarver, Laurie; Schwartz, Katja; Sethuraman, Anand; Botstein, David; Cherry, J. Michael

    2011-01-01

    The S. cerevisiae genome is the most well-characterized eukaryotic genome and one of the simplest in terms of identifying open reading frames (ORFs), yet its primary annotation has been updated continually in the decade since its initial release in 1996 (Goffeau et al., 1996). The Saccharomyces Genome Database (SGD; www.yeastgenome.org) (Hirschman et al., 2006), the community-designated repository for this reference genome, strives to ensure that the S. cerevisiae annotation is as accurate and useful as possible. At SGD, the S. cerevisiae genome sequence and annotation are treated as a working hypothesis, which must be repeatedly tested and refined. In this paper, in celebration of the tenth anniversary of the completion of the S. cerevisiae genome sequence, we discuss the ways in which the S. cerevisiae sequence and annotation have changed, consider the multiple sources of experimental and comparative data on which these changes are based, and describe our methods for evaluating, incorporating and documenting these new data. PMID:17001629

  5. Saccharomyces cerevisiae: a nomadic yeast with no niche?

    PubMed Central

    Goddard, Matthew R.; Greig, Duncan

    2015-01-01

    Different species are usually thought to have specific adaptations, which allow them to occupy different ecological niches. But recent neutral ecology theory suggests that species diversity can simply be the result of random sampling, due to finite population sizes and limited dispersal. Neutral models predict that species are not necessarily adapted to specific niches, but are functionally equivalent across a range of habitats. Here, we evaluate the ecology of Saccharomyces cerevisiae, one of the most important microbial species in human history. The artificial collection, concentration and fermentation of large volumes of fruit for alcohol production produce an environment in which S. cerevisiae thrives, and therefore it is assumed that fruit is the ecological niche that S. cerevisiae inhabits and has adapted to. We find very little direct evidence that S. cerevisiae is adapted to fruit, or indeed to any other specific niche. We propose instead a neutral nomad model for S. cerevisiae, which we believe should be used as the starting hypothesis in attempting to unravel the ecology of this important microbe. PMID:25725024

  6. Saccharomyces cerevisiae as a starter culture in Mycella.

    PubMed

    Hansen, T K; Tempel, T V; Cantor, M D; Jakobsen, M

    2001-09-19

    The potential use of Saccharomyces cerevisiae FB7 as an additional starter culture for the production of Mycella, a Danish Gorgonzola type cheese, was investigated. Two dairy productions of Mycella, each containing batches of experimental cheeses with S. cerevisiae added and reference cheeses without yeast added were carried out. For both experimental and reference cheeses, chemical analysis (pH, a(w), NaCl, water and fat content) were carried out during the ripening period, but no significant differences were found. The evolution of lactic acid bacteria was almost identical in both the experimental and reference cheeses and similar results were found for the number of yeast. S. cerevisiae FB7 was found to be predominant in the core of the experimental cheeses throughout the ripening period, while Debaryomyces hansenii dominated in the reference cheese and on the surface of the experimental cheeses. In the cheeses with S. cerevisiae FB7, an earlier sporulation and an improved growth of Penicillium roqueforti was observed compared to the reference cheeses. Furthermore, in the experimental cheese, synergistic interactions were also found in the aroma analysis, the degradation of casein and by the sensory analysis. The observed differences indicate a positive contribution to the overall quality of Mycella by S. cerevisiae FB7.

  7. Genetic mapping of quantitative phenotypic traits in Saccharomyces cerevisiae.

    PubMed

    Swinnen, Steve; Thevelein, Johan M; Nevoigt, Elke

    2012-03-01

    Saccharomyces cerevisiae has become a favorite production organism in industrial biotechnology presenting new challenges to yeast engineers in terms of introducing advantageous traits such as stress tolerances. Exploring subspecies diversity of S. cerevisiae has identified strains that bear industrially relevant phenotypic traits. Provided that the genetic basis of such phenotypic traits can be identified inverse engineering allows the targeted modification of production strains. Most phenotypic traits of interest in S. cerevisiae strains are quantitative, meaning that they are controlled by multiple genetic loci referred to as quantitative trait loci (QTL). A straightforward approach to identify the genetic basis of quantitative traits is QTL mapping which aims at the allocation of the genetic determinants to regions in the genome. The application of high-density oligonucleotide arrays and whole-genome re-sequencing to detect genetic variations between strains has facilitated the detection of large numbers of molecular markers thus allowing high-resolution QTL mapping over the entire genome. This review focuses on the basic principle and state of the art of QTL mapping in S. cerevisiae. Furthermore we discuss several approaches developed during the last decade that allow down-scaling of the regions identified by QTL mapping to the gene level. We also emphasize the particular challenges of QTL mapping in nonlaboratory strains of S. cerevisiae.

  8. Complementary function of mitogen-activated protein kinase Hog1 from Trichosporonoides megachiliensis in Saccharomyces cerevisiae under hyper-osmotic stress.

    PubMed

    Yoshida, Junjiro; Kobayashi, Yosuke; Tanaka, Yosuke; Koyama, Yoshiyuki; Ogihara, Jun; Kato, Jun; Shima, Jun; Kasumi, Takafumi

    2013-02-01

    A (TmHog1) gene encoding a mitogen-activated protein kinase (MAPK) homologous to Saccharomyces cerevisiae Hog1 (ScHog1) involved in hyper-osmotic stress signaling was isolated from Trichosporonoides megachiliensis SN-124A, an erythritol-producing yeast. Although TmHog1, like other Hog1 homologs, encoded a kinase catalytic domain containing TGY motif, it was 50-60 amino acid residues shorter than the ScHog1. A TmHog1 transgene rescued the osmotic sensitivity and glycerol production defect of S. cerevisiae hog1Δ, a highly osmo-sensitive strain that does not produce glycerol, a compatible solute, during osmotic stress. Functional analyses of chimeric Hog1 proteins constructed from ScHog1 and TmHog1 sequences indicated that the C-terminal region of TmHog1 is more effective for glycerol biosynthesis than ScHog1 under osmotic stress. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. Sgs1, a Homologue of the Bloom's and Werner's Syndrome Genes, Is Required for Maintenance of Genome Stability in Saccharomyces Cerevisiae

    PubMed Central

    Watt, P. M.; Hickson, I. D.; Borts, R. H.; Louis, E. J.

    1996-01-01

    The Saccharomyces cerevisiae SGS1 gene is homologous to Escherichia coli RecQ and the human BLM and WRN proteins that are defective in the cancer-prone disorder Bloom's syndrome and the premature aging disorder Werner's syndrome, respectively. While recQ mutants are deficient in conjugational recombination and DNA repair, Bloom's syndrome cell lines show hyperrecombination. Bloom's and Werner's syndrome cell lines both exhibit chromosomal instability. sgs1Δ strains show mitotic hyperrecombination, as do Bloom's cells. This was manifested as an increase in the frequency of interchromosomal homologous recombination, intrachromosomal excision recombination, and ectopic recombination. Hyperrecombination was partially independent of both RAD52 and RAD1. Meiotic recombination was not increased in sgs1Δ mutants, although meiosis I chromosome missegregation has been shown to be elevated. sgs1Δ suppresses the slow growth of a top3Δ strain lacking topoisomerase III. Although there was an increase in subtelomeric Y' instability in sgs1Δ strains due to hyperrecombination, no evidence was found for an increase in the instability of terminal telomeric sequences in a top3Δ or a sgs1Δ strain. This contrasts with the telomere maintenance defects of Werner's patients. We conclude that the SGS1 gene product is involved in the maintenance of genome stability in S. cerevisiae. PMID:8913739

  10. PRIMO: An Interactive Homology Modeling Pipeline.

    PubMed

    Hatherley, Rowan; Brown, David K; Glenister, Michael; Tastan Bishop, Özlem

    2016-01-01

    The development of automated servers to predict the three-dimensional structure of proteins has seen much progress over the years. These servers make calculations simpler, but largely exclude users from the process. In this study, we present the PRotein Interactive MOdeling (PRIMO) pipeline for homology modeling of protein monomers. The pipeline eases the multi-step modeling process, and reduces the workload required by the user, while still allowing engagement from the user during every step. Default parameters are given for each step, which can either be modified or supplemented with additional external input. PRIMO has been designed for users of varying levels of experience with homology modeling. The pipeline incorporates a user-friendly interface that makes it easy to alter parameters used during modeling. During each stage of the modeling process, the site provides suggestions for novice users to improve the quality of their models. PRIMO provides functionality that allows users to also model ligands and ions in complex with their protein targets. Herein, we assess the accuracy of the fully automated capabilities of the server, including a comparative analysis of the available alignment programs, as well as of the refinement levels used during modeling. The tests presented here demonstrate the reliability of the PRIMO server when producing a large number of protein models. While PRIMO does focus on user involvement in the homology modeling process, the results indicate that in the presence of suitable templates, good quality models can be produced even without user intervention. This gives an idea of the base level accuracy of PRIMO, which users can improve upon by adjusting parameters in their modeling runs. The accuracy of PRIMO's automated scripts is being continuously evaluated by the CAMEO (Continuous Automated Model EvaluatiOn) project. The PRIMO site is free for non-commercial use and can be accessed at https://primo.rubi.ru.ac.za/.

  11. PRIMO: An Interactive Homology Modeling Pipeline

    PubMed Central

    Glenister, Michael

    2016-01-01

    The development of automated servers to predict the three-dimensional structure of proteins has seen much progress over the years. These servers make calculations simpler, but largely exclude users from the process. In this study, we present the PRotein Interactive MOdeling (PRIMO) pipeline for homology modeling of protein monomers. The pipeline eases the multi-step modeling process, and reduces the workload required by the user, while still allowing engagement from the user during every step. Default parameters are given for each step, which can either be modified or supplemented with additional external input. PRIMO has been designed for users of varying levels of experience with homology modeling. The pipeline incorporates a user-friendly interface that makes it easy to alter parameters used during modeling. During each stage of the modeling process, the site provides suggestions for novice users to improve the quality of their models. PRIMO provides functionality that allows users to also model ligands and ions in complex with their protein targets. Herein, we assess the accuracy of the fully automated capabilities of the server, including a comparative analysis of the available alignment programs, as well as of the refinement levels used during modeling. The tests presented here demonstrate the reliability of the PRIMO server when producing a large number of protein models. While PRIMO does focus on user involvement in the homology modeling process, the results indicate that in the presence of suitable templates, good quality models can be produced even without user intervention. This gives an idea of the base level accuracy of PRIMO, which users can improve upon by adjusting parameters in their modeling runs. The accuracy of PRIMO’s automated scripts is being continuously evaluated by the CAMEO (Continuous Automated Model EvaluatiOn) project. The PRIMO site is free for non-commercial use and can be accessed at https://primo.rubi.ru.ac.za/. PMID:27855192

  12. Fatal attraction: cytomegalovirus-encoded chemokine homologs.

    PubMed

    Saederup, N; Mocarski, E S

    2002-01-01

    Members of the cytomegalovirus (CMV) subfamily of betaherpesviruses infecting primates and rodents encode divergent proteins with sequence characteristics and activities of chemokines, a class of small, secreted proteins that control leukocyte migration and trafficking behavior. Human CMV genes UL146 and UL147 encode proteins with sequence characteristics of CXC chemokines, whereas, murine CMV encodes a CC chemokine homolog (MCK-2). Human CMV UL146 encodes a neutrophil-attracting chemokine denoted viral CXC chemokine-1 (vCXCL1) that is as potent as host IL-8 and functions via the CXCR2 receptor, one of two human IL-8 receptors. Murine CMV MCK-2 is composed of a chemokine domain derived from open reading frame (ORF) m131 (and denoted MCK-1) as well as a domain derived from m129 that does not have sequence similarity to any known class of proteins. A synthetic version of murine CMV m131 (MCK-1) protein carries out many of the activities of a positive-acting chemokine, including transient release of intracellular calcium stores and cell adhesion of peritoneal macrophage populations. In the context of the viral genome and infection of the mouse host, the m131-m129 (MCK-2) gene product confers increased inflammation, higher levels of viremia, and higher titers of virus in salivary glands, consistent with a role in promoting dissemination by attracting an important mononuclear leukocyte population. Other characterized primate CMVs, but not other primate betaherpesviruses, encode gene products similar to human UL146 and UL147. Other characterized rodent CMVs encode a gene product similar to the murine CMV chemokine homolog, although not as a spliced gene product. Thus chemokines, like viral proteins that downmodulate MHC class I expression or have sequence homology to host MHC class I proteins, have evolved in primate and rodent CMVs to carry out an analogous set of immunomodulatory functions during infection of the host even though they arise from distinct origins.

  13. Impact of homologous and non-homologous recombination in the genomic evolution of Escherichia coli.

    PubMed

    Didelot, Xavier; Méric, Guillaume; Falush, Daniel; Darling, Aaron E

    2012-06-19

    Escherichia coli is an important species of bacteria that can live as a harmless inhabitant of the guts of many animals, as a pathogen causing life-threatening conditions or freely in the non-host environment. This diversity of lifestyles has made it a particular focus of interest for studies of genetic variation, mainly with the aim to understand how a commensal can become a deadly pathogen. Many whole genomes of E. coli have been fully sequenced in the past few years, which offer helpful data to help understand how this important species evolved. We compared 27 whole genomes encompassing four phylogroups of Escherichia coli (A, B1, B2 and E). From the core-genome we established the clonal relationships between the isolates as well as the role played by homologous recombination during their evolution from a common ancestor. We found strong evidence for sexual isolation between three lineages (A+B1, B2, E), which could be explained by the ecological structuring of E. coli and may represent on-going speciation. We identified three hotspots of homologous recombination, one of which had not been previously described and contains the aroC gene, involved in the essential shikimate metabolic pathway. We also described the role played by non-homologous recombination in the pan-genome, and showed that this process was highly heterogeneous. Our analyses revealed in particular that the genomes of three enterohaemorrhagic (EHEC) strains within phylogroup B1 have converged from originally separate backgrounds as a result of both homologous and non-homologous recombination. Recombination is an important force shaping the genomic evolution and diversification of E. coli, both by replacing fragments of genes with an homologous sequence and also by introducing new genes. In this study, several non-random patterns of these events were identified which correlated with important changes in the lifestyle of the bacteria, and therefore provide additional evidence to explain the

  14. Evolution of the RECQ family of helicases: A drosophila homolog, Dmblm, is similar to the human bloom syndrome gene.

    PubMed Central

    Kusano, K; Berres, M E; Engels, W R

    1999-01-01

    Several eukaryotic homologs of the Escherichia coli RecQ DNA helicase have been found. These include the human BLM gene, whose mutation results in Bloom syndrome, and the human WRN gene, whose mutation leads to Werner syndrome resembling premature aging. We cloned a Drosophila melanogaster homolog of the RECQ helicase family, Dmblm (Drosophila melanogaster Bloom), which encodes a putative 1487-amino-acid protein. Phylogenetic and dot plot analyses for the RECQ family, including 10 eukaryotic and 3 prokaryotic genes, indicate Dmblm is most closely related to the Homo sapiens BLM gene, suggesting functional similarity. Also, we found that Dmblm cDNA partially rescued the sensitivity to methyl methanesulfonate of Saccharomyces cerevisiae sgs1 mutant, demonstrating the presence of a functional similarity between Dmblm and SGS1. Our analyses identify four possible subfamilies in the RECQ family: (1) the BLM subgroup (H. sapiens Bloom, D. melanogaster Dmblm, and Caenorhabditis elegans T04A11.6); (2) the yeast RECQ subgroup (S. cerevisiae SGS1 and Schizosaccharomyces pombe rqh1/rad12); (3) the RECQL/Q1 subgroup (H. sapiens RECQL/Q1 and C. elegans K02F3.1); and (4) the WRN subgroup (H. sapiens Werner and C. elegans F18C5.2). This result may indicate that metazoans hold at least three RECQ genes, each of which may have a different function, and that multiple RECQ genes diverged with the generation of multicellular organisms. We propose that invertebrates such as nematodes and insects are useful as model systems of human genetic diseases. PMID:10049920

  15. Identification of plant microRNA homologs.

    PubMed

    Dezulian, Tobias; Remmert, Michael; Palatnik, Javier F; Weigel, Detlef; Huson, Daniel H

    2006-02-01

    MicroRNAs (miRNAs) are a recently discovered class of non-coding RNAs that regulate gene and protein expression in plants and animals. MiRNAs have so far been identified mostly by specific cloning of small RNA molecules, complemented by computational methods. We present a computational identification approach that is able to identify candidate miRNA homologs in any set of sequences, given a query miRNA. The approach is based on a sequence similarity search step followed by a set of structural filters.

  16. Genetic Homologies Among Streptomyces violaceoruber Strains

    PubMed Central

    Monson, A. M.; Bradley, S. G.; Enquist, L. W.; Cruces, Griselda

    1969-01-01

    Most of the genetic studies on streptomycetes have been done with cultures erroneously designated as Streptomyces coelicolor. To determine whether these cultures are genetically homologous with the S. violaceoruber nominifer, their deoxyribonucleic acids (DNA) were analyzed, and selected pairs of mutants were crossed. The four cultures used in genetic studies, and called S. coelicolor in the literature, were found to constitute a genospecies, based upon DNA hybridization and recombination tests. In addition, DNA from Actinopycnidium caeruleum formed extensive duplexes with S. violaceoruber DNA. S. violaceoruber cultures and A. caeruleum were distinctly different from the S. coelicolor nominifer. PMID:5370275

  17. Railway vehicle performance optimisation using virtual homologation

    NASA Astrophysics Data System (ADS)

    Magalhães, H.; Madeira, J. F. A.; Ambrósio, J.; Pombo, J.

    2016-09-01

    Unlike regular automotive vehicles, which are designed to travel in different types of roads, railway vehicles travel mostly in the same route during their life cycle. To accept the operation of a railway vehicle in a particular network, a homologation process is required according to local standard regulations. In Europe, the standards EN 14363 and UIC 518, which are used for railway vehicle acceptance, require on-track tests and/or numerical simulations. An important advantage of using virtual homologation is the reduction of the high costs associated with on-track tests by studying the railway vehicle performance in different operation conditions. This work proposes a methodology for the improvement of railway vehicle design with the objective of its operation in selected railway tracks by using optimisation. The analyses required for the vehicle improvement are performed under control of the optimisation method global and local optimisation using direct search. To quantify the performance of the vehicle, a new objective function is proposed, which includes: a Dynamic Performance Index, defined as a weighted sum of the indices obtained from the virtual homologation process; the non-compensated acceleration, which is related to the operational velocity; and a penalty associated with cases where the vehicle presents an unacceptable dynamic behaviour according to the standards. Thus, the optimisation process intends not only to improve the quality of the vehicle in terms of running safety and ride quality, but also to increase the vehicle availability via the reduction of the time for a journey while ensuring its operational acceptance under the standards. The design variables include the suspension characteristics and the operational velocity of the vehicle, which are allowed to vary in an acceptable range of variation. The results of the optimisation lead to a global minimum of the objective function in which the suspensions characteristics of the vehicle are

  18. Saccharomyces cerevisiae Dmc1 and Rad51 proteins preferentially function with Tid1 and Rad54 proteins, respectively, to promote DNA strand invasion during genetic recombination.

    PubMed

    Nimonkar, Amitabh V; Dombrowski, Christopher C; Siino, Joseph S; Stasiak, Alicja Z; Stasiak, Andrzej; Kowalczykowski, Stephen C

    2012-08-17

    The Saccharomyces cerevisiae Dmc1 and Tid1 proteins are required for the pairing of homologous chromosomes during meiotic recombination. This pairing is the precursor to the formation of crossovers between homologs, an event that is necessary for the accurate segregation of chromosomes. Failure to form crossovers can have serious consequences and may lead to chromosomal imbalance. Dmc1, a meiosis-specific paralog of Rad51, mediates the pairing of homologous chromosomes. Tid1, a Rad54 paralog, although not meiosis-specific, interacts with Dmc1 and promotes crossover formation between homologs. In this study, we show that purified Dmc1 and Tid1 interact physically and functionally. Dmc1 forms stable nucleoprotein filaments that can mediate DNA strand invasion. Tid1 stimulates Dmc1-mediated formation of joint molecules. Under conditions optimal for Dmc1 reactions, Rad51 is specifically stimulated by Rad54, establishing that Dmc1-Tid1 and Rad51-Rad54 function as specific pairs. Physical interaction studies show that specificity in function is not dictated by direct interactions between the proteins. Our data are consistent with the hypothesis that Rad51-Rad54 function together to promote intersister DNA strand exchange, whereas Dmc1-Tid1 tilt the bias toward interhomolog DNA strand exchange.

  19. SMT3A, a human homologue of the S. cerevisiae SMT3 gene, maps to chromosome 21qter and defines a novel gene family

    SciTech Connect

    Lapenta, V.; Chiurazzi, P.; Van Der Spek, P.; Hanaoka, Fumio

    1997-03-01

    cDNA selection was used to isolate coding sequences from cosmids mapping to the gene-rich telomeric region of human chromosome 21q. A novel cDNA, termed SMT3A, was isolated and mapped between the loci PFKL and D21S171, about 2.2 Mb proximal to the telomere. The predicted protein of 103 amino acids appears to be a homologue of the Saccharomyces cerevisiae SMT3 protein, whose gene was previously isolated as a suppressor of mutations in the MIF2 gene. The yeast MIF2 gene encodes an essential centromeric protein and shows homology to mammalian CENP-C, an integral component of active kinetochores. SMT3A was found to be highly homologous to two other recently isolated human genes, suggesting the presence of a new gene family. Homologous sequences were also found in protozoa, metazoa, and plants. Moreover, all predicted proteins show significant homology to ubiquitin. The proposed role of yeast SMT3 as centromeric protein and the strong evolutionary conservation of the SMT3A gene suggest an involvement of the encoded protein in the function and/or structure of the eukaryotic kinetochore. 30 refs., 5 figs.

  20. Histone deacetylases 9 and 10 are required for homologous recombination.

    PubMed

    Kotian, Shweta; Liyanarachchi, Sandhya; Zelent, Arthur; Parvin, Jeffrey D

    2011-03-11

    We tested the role of histone deacetylases (HDACs) in the homologous recombination process. A tissue-culture based homology-directed repair assay was used in which repair of a double-stranded break by homologous recombination results in gene conversion of an inactive GFP allele to an active GFP gene. Our rationale was that hyperacetylation caused by HDAC inhibitor treatment would increase chromatin accessibility to repair factors, thereby increasing homologous recombination. Contrary to expectation, treatment of cells with the inhibitors significantly reduced homologous recombination activity. Using RNA interference to deplete each HDAC, we found that depletion of either HDAC9 or HDAC10 specifically inhibited homologous recombination. By assaying for sensitivity of cells to the interstrand cross-linker mitomycin C, we found that treatment of cells with HDAC inhibitors or depletion of HDAC9 or HDAC10 resulted in increased sensitivity to mitomycin C. Our data reveal an unanticipated function of HDAC9 and HDAC10 in the homologous recombination process.

  1. Protein kinase Ymr291w/Tda1 is essential for glucose signaling in saccharomyces cerevisiae on the level of hexokinase isoenzyme ScHxk2 phosphorylation*.

    PubMed

    Kaps, Sonja; Kettner, Karina; Migotti, Rebekka; Kanashova, Tamara; Krause, Udo; Rödel, Gerhard; Dittmar, Gunnar; Kriegel, Thomas M

    2015-03-06

    The enzyme ScHxk2 of Saccharomyces cerevisiae is a dual-function hexokinase that besides its catalytic role in glycolysis is involved in the transcriptional regulation of glucose-repressible genes. Relief from glucose repression is accompanied by the phosphorylation of the nuclear fraction of ScHxk2 at serine 15 and the translocation of the phosphoenzyme into the cytosol. Different studies suggest different serine/threonine protein kinases, Ymr291w/Tda1 or Snf1, to accomplish ScHxk2-S15 phosphorylation. The current paper provides evidence that Ymr291w/Tda1 is essential for that modification, whereas protein kinases Ydr477w/Snf1, Ynl307c/Mck1, Yfr014c/Cmk1, and Ykl126w/Ypk1, which are co-purified during Ymr291w/Tda1 tandem affinity purification, as well as protein kinase PKA and PKB homolog Sch9 are dispensable. Taking into account the detection of a significantly higher amount of the Ymr291w/Tda1 protein in cells grown in low-glucose media as compared with a high-glucose environment, Ymr291w/Tda1 is likely to contribute to glucose signaling in S. cerevisiae on the level of ScHxk2-S15 phosphorylation in a situation of limited external glucose availability. The evolutionary conservation of amino acid residue serine 15 in yeast hexokinases and its phosphorylation is illustrated by the finding that YMR291W/TDA1 of S. cerevisiae and the homologous KLLA0A09713 gene of Kluyveromyces lactis allow for cross-complementation of the respective protein kinase single-gene deletion strains.

  2. ZDS1 and ZDS2, genes whose products may regulate Cdc42p in Saccharomyces cerevisiae.

    PubMed Central

    Bi, E; Pringle, J R

    1996-01-01

    A genetic screen for GTPase-activating proteins (GAPs) or other negative regulators of the Rac/Rho family GTPase Cdc42p in Saccharomyces cerevisiae identified ZDS1, a gene encoding a protein of 915 amino acids. Sequence from the yeast genome project identified a homolog, ZDS2, whose predicted product of 942 amino acids is 38% identical in sequence to Zds1p. Zds1p and Zds2p have no detectable homology to known Rho-GAPs or to other known proteins. However, by several assays, it appears that overexpression of either Zds1p or Zds2p decreases the level of Cdc42p activity. Deletion analysis also suggests that Zds1p and Zds2p are at least partially overlapping in function. Deletion of ZDS2 produced no obvious phenotype, and deletion of ZDS1 produced no obvious phenotype other than a mild effect on cell shape. However, the zds1 zds2 double mutant grew slowly with an apparent mitotic delay and produced elongated cells and buds with other evidence of abnormal morphogenesis. A glutathione S-transferase-Zds1p fusion protein that fully complemented the double mutant localized to presumptive bud sites and the tips of small buds. The similarity of this localization to that of Cdc42p suggests that Zds1p may interact directly with Cdc42p. As ZDS1 and ZDS2 have recently been identified also by numerous other groups studying a wide range of biological phenomena, the roles of Cdc42p in intracellular signaling may be more diverse than has previously been appreciated. PMID:8816439

  3. Comparison of expression systems in the yeasts Saccharomyces cerevisiae, Hansenula polymorpha, Klyveromyces lactis, Schizosaccharomyces pombe and Yarrowia lipolytica. Cloning of two novel promoters from Yarrowia lipolytica.

    PubMed

    Müller, S; Sandal, T; Kamp-Hansen, P; Dalbøge, H

    1998-10-01

    We have compared expression systems based on autonomously replicating vectors in the yeasts Saccharomyces cerevisiae, Schizosaccharomyces pombe, Kluyveromyces lactis, Hansenula polymorpha and Yarrowia lipolytica in order to identify a more suitable host organism for use in the expression cloning method (Dalbøge and Heldt-Hansen, 1994) in which S. cerevisiae has traditionally been used. The capacity of the expression systems to secrete active forms of six fungal genes encoding the enzymes galactanase, lipase, polygalacturonase, xylanase and two cellulases was examined, as well as glycosylation pattern, plasmid stability and transformation frequency. All of the examined alternative hosts were able to secrete more active enzyme than S. cerevisiae but the relative expression capacity of the individual hosts varied significantly in a gene-dependent manner. One of the most attractive of the alternative host organisms, Y. lipolytica, yielded an increase which ranged from 4.5 times to more than two orders of magnitude. As the initially employed Y. lipolytica XPR2 promoter is unfit in the context of expression cloning, two novel promoter sequences for highly expressed genes present in only one copy on the genome were isolated. Based on sequence homology, the genes were identified as TEF, encoding translation elongation factor-1 alpha and RPS7, encoding ribosomal protein S7. Using the heterologous cellulase II (celII) and xylanase I (xylI) as reporter genes, the effect of the new promoters was measured in qualitative and quantitative assays. Based on the present tests of the new promoters. Y. lipolytica appears as a highly attractive alternative to S. cerevisiae as a host organism for expression cloning.

  4. Overproduction of threonine by Saccharomyces cerevisiae mutants resistant to hydroxynorvaline.

    PubMed Central

    Ramos, C; Calderon, I L

    1992-01-01

    In this work, we isolated and characterized mutants that overproduce threonine from Saccharomyces cerevisiae. The mutants were selected for resistance to the threonine analog alpha-amino-beta-hydroxynorvalerate (hydroxynorvaline), and, of these, the ones able to excrete threonine to the medium were chosen. The mutant strains produce between 15 and 30 times more threonine than the wild type does, and, to a lesser degree, they also accumulate isoleucine. Genetic and biochemical studies have revealed that the threonine overproduction is, in all cases studied, associated with the presence in the strain of a HOM3 allele coding for a mutant aspartate kinase that is totally or partially insensitive to feedback inhibition by threonine. This enzyme seems, therefore, to be crucial in the regulation of threonine biosynthesis in S. cerevisiae. The results obtained suggest that this strategy could be efficiently applied to the isolation of threonine-overproducing strains of yeasts other than S. cerevisiae, even those used industrially. PMID:1622238

  5. Antimutagenic and antioxidant activity of Lisosan G in Saccharomyces cerevisiae.

    PubMed

    Frassinetti, Stefania; Della Croce, Clara Maria; Caltavuturo, Leonardo; Longo, Vincenzo

    2012-12-01

    In the present study the antimutagenic and antioxidant effects of a powder of grain (Lisosan G) in yeast Saccharomyces cerevisiae were studied. Results showed that Lisosan G treatment decreased significantly the intracellular ROS concentration and mutagenesis induced by hydrogen peroxide in S. cerevisiae D7 strain. The effect of Lisosan G was then evaluated by using superoxide dismutase (SOD) proficient and deficient strains of S. cerevisiae. Lisosan G showed protective activity in sod1Δ and sod2Δ mutant strains, indicating an in vivo antioxidant effect. A high radical scavenging activity of Lisosan G was also demonstrated in vitro using the oxygen radical absorbance capacity (ORAC) assay. The obtained results showed a protective effect of Lisosan G in yeast cells, indicating that its antioxidant capacity contributes to its antimutagenic action.

  6. Alternative Splicing in Next Generation Sequencing Data of Saccharomyces cerevisiae

    PubMed Central

    Schreiber, Konrad; Csaba, Gergely; Haslbeck, Martin; Zimmer, Ralf

    2015-01-01

    mRNA splicing is required in about 4% of protein coding genes in Saccharomyces cerevisiae. The gene structure of those genes is simple, generally comprising two exons and one intron. In order to characterize the impact of alternative splicing on the S. cerevisiae transcriptome, we perform a systematic analysis of mRNA sequencing data. We find evidence of a pervasive use of alternative splice sites and detect several novel introns both within and outside protein coding regions. We also find a predominance of alternative splicing on the 3’ side of introns, a finding which is consistent with existing knowledge on conservation of exon-intron boundaries in S. cerevisiae. Some of the alternatively spliced transcripts allow for a translation into different protein products. PMID:26469855

  7. Genetic engineering of industrial strains of Saccharomyces cerevisiae.

    PubMed

    Le Borgne, Sylvie

    2012-01-01

    Genetic engineering has been successfully applied to Saccharomyces cerevisiae laboratory strains for different purposes: extension of substrate range, improvement of productivity and yield, elimination of by-products, improvement of process performance and cellular properties, and extension of product range. The potential of genetically engineered yeasts for the massive production of biofuels as bioethanol and other nonfuel products from renewable resources as lignocellulosic biomass hydrolysates has been recognized. For such applications, robust industrial strains of S. cerevisiae have to be used. Here, some relevant genetic and genomic characteristics of industrial strains are discussed in relation to the problematic of the genetic engineering of such strains. General molecular tools applicable to the manipulation of S. cerevisiae industrial strains are presented and examples of genetically engineered industrial strains developed for the production of bioethanol from lignocellulosic biomass are given.

  8. Metabolic engineering of Saccharomyces cerevisiae for lactose/whey fermentation

    PubMed Central

    Guimarães, Pedro MR; Oliveira, Carla

    2010-01-01

    Lactose is an interesting carbon source for the production of several bio-products by fermentation, primarily because it is the major component of cheese whey, the main by-product of dairy activities. However, the microorganism more widely used in industrial fermentation processes, the yeast Saccharomyces cerevisiae, does not have a lactose metabolization system. Therefore, several metabolic engineering approaches have been used to construct lactose-consuming S. cerevisiae strains, particularly involving the expression of the lactose genes of the phylogenetically related yeast Kluyveromyces lactis, but also the lactose genes from Escherichia coli and Aspergillus niger, as reviewed here. Due to the existing large amounts of whey, the production of bio-ethanol from lactose by engineered S. cerevisiae has been considered as a possible route for whey surplus. Emphasis is given in the present review on strain improvement for lactose-to-ethanol bioprocesses, namely flocculent yeast strains for continuous high-cell-density systems with enhanced ethanol productivity. PMID:21326922

  9. Metabolic engineering of Saccharomyces cerevisiae for lactose/whey fermentation.

    PubMed

    Domingues, Lucília; Guimarães, Pedro M R; Oliveira, Carla

    2010-01-01

    Lactose is an interesting carbon source for the production of several bio-products by fermentation, primarily because it is the major component of cheese whey, the main by-product of dairy activities. However, the microorganism more widely used in industrial fermentation processes, the yeast Saccharomyces cerevisiae, does not have a lactose metabolization system. Therefore, several metabolic engineering approaches have been used to construct lactose-consuming S. cerevisiae strains, particularly involving the expression of the lactose genes of the phylogenetically related yeast Kluyveromyces lactis, but also the lactose genes from Escherichia coli and Aspergillus niger, as reviewed here. Due to the existing large amounts of whey, the production of bio-ethanol from lactose by engineered S. cerevisiae has been considered as a possible route for whey surplus. Emphasis is given in the present review on strain improvement for lactose-to-ethanol bioprocesses, namely flocculent yeast strains for continuous high-cell-density systems with enhanced ethanol productivity.

  10. Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae.

    PubMed

    van Zyl, Willem H; Lynd, Lee R; den Haan, Riaan; McBride, John E

    2007-01-01

    Consolidated bioprocessing (CBP) of lignocellulose to bioethanol refers to the combining of the four biological events required for this conversion process (production of saccharolytic enzymes, hydrolysis of the polysaccharides present in pretreated biomass, fermentation of hexose sugars, and fermentation of pentose sugars) in one reactor. CBP is gaining increasing recognition as a potential breakthrough for low-cost biomass processing. Although no natural microorganism exhibits all the features desired for CBP, a number of microorganisms, both bacteria and fungi, possess some of the desirable properties. This review focuses on progress made toward the development of baker's yeast (Saccharomyces cerevisiae) for CBP. The current status of saccharolytic enzyme (cellulases and hemicellulases) expression in S. cerevisiae to complement its natural fermentative ability is highlighted. Attention is also devoted to the challenges ahead to integrate all required enzymatic activities in an industrial S. cerevisiae strain(s) and the need for molecular and selection strategies pursuant to developing a yeast capable of CBP.

  11. Archaeal and eukaryotic homologs of Hfq

    PubMed Central

    Mura, Cameron; Randolph, Peter S.; Patterson, Jennifer; Cozen, Aaron E.

    2013-01-01

    Hfq and other Sm proteins are central in RNA metabolism, forming an evolutionarily conserved family that plays key roles in RNA processing in organisms ranging from archaea to bacteria to human. Sm-based cellular pathways vary in scope from eukaryotic mRNA splicing to bacterial quorum sensing, with at least one step in each of these pathways being mediated by an RNA-associated molecular assembly built upon Sm proteins. Though the first structures of Sm assemblies were from archaeal systems, the functions of Sm-like archaeal proteins (SmAPs) remain murky. Our ignorance about SmAP biology, particularly vis-à-vis the eukaryotic and bacterial Sm homologs, can be partly reduced by leveraging the homology between these lineages to make phylogenetic inferences about Sm functions in archaea. Nevertheless, whether SmAPs are more eukaryotic (RNP scaffold) or bacterial (RNA chaperone) in character remains unclear. Thus, the archaeal domain of life is a missing link, and an opportunity, in Sm-based RNA biology. PMID:23579284

  12. SANSparallel: interactive homology search against Uniprot.

    PubMed

    Somervuo, Panu; Holm, Liisa

    2015-07-01

    Proteins evolve by mutations and natural selection. The network of sequence similarities is a rich source for mining homologous relationships that inform on protein structure and function. There are many servers available to browse the network of homology relationships but one has to wait up to a minute for results. The SANSparallel webserver provides protein sequence database searches with immediate response and professional alignment visualization by third-party software. The output is a list, pairwise alignment or stacked alignment of sequence-similar proteins from Uniprot, UniRef90/50, Swissprot or Protein Data Bank. The stacked alignments are viewed in Jalview or as sequence logos. The database search uses the suffix array neighborhood search (SANS) method, which has been re-implemented as a client-server, improved and parallelized. The method is extremely fast and as sensitive as BLAST above 50% sequence identity. Benchmarks show that the method is highly competitive compared to previously published fast database search programs: UBLAST, DIAMOND, LAST, LAMBDA, RAPSEARCH2 and BLAT. The web server can be accessed interactively or programmatically at http://ekhidna2.biocenter.helsinki.fi/cgi-bin/sans/sans.cgi. It can be used to make protein functional annotation pipelines more efficient, and it is useful in interactive exploration of the detailed evidence supporting the annotation of particular proteins of interest.

  13. Towards Scalable Optimal Sequence Homology Detection

    SciTech Connect

    Daily, Jeffrey A.; Krishnamoorthy, Sriram; Kalyanaraman, Anantharaman

    2012-12-26

    Abstract—The field of bioinformatics and computational biol- ogy is experiencing a data revolution — experimental techniques to procure data have increased in throughput, improved in accuracy and reduced in costs. This has spurred an array of high profile sequencing and data generation projects. While the data repositories represent untapped reservoirs of rich information critical for scientific breakthroughs, the analytical software tools that are needed to analyze large volumes of such sequence data have significantly lagged behind in their capacity to scale. In this paper, we address homology detection, which is a funda- mental problem in large-scale sequence analysis with numerous applications. We present a scalable framework to conduct large- scale optimal homology detection on massively parallel super- computing platforms. Our approach employs distributed memory work stealing to effectively parallelize optimal pairwise alignment computation tasks. Results on 120,000 cores of the Hopper Cray XE6 supercomputer demonstrate strong scaling and up to 2.42 × 107 optimal pairwise sequence alignments computed per second (PSAPS), the highest reported in the literature.

  14. Mammalian masticatory muscles: homology, nomenclature, and diversification.

    PubMed

    Druzinsky, Robert E; Doherty, Alison H; De Vree, Frits L

    2011-08-01

    There is a deep and rich literature of comparative studies of jaw muscles in mammals but no recent analyses employ modern phylogenetic techniques to better understand evolutionary changes that have occurred in these muscles. In order to fully develop and utilize the Feeding Experiments End-user Database (FEED), we are constructing a comprehensive ontology of mammalian jaw muscles. This process has led to a careful consideration of nomenclature and homologies of the muscles and their constituent parts. Precise determinations of muscle attachments have shown that muscles with similar names are not necessarily homologous. Using new anatomical descriptions derived from the literature, we defined character states for the jaw muscles in diverse mammalian species. We then mapped those characters onto a recent phylogeny of mammals with the aid of the Mesquite software package. Our data further elucidate how muscle groups associated with the feeding apparatus differ and have become highly specialized in certain mammalian orders, such as Rodentia, while remaining conserved in other orders. We believe that careful naming of muscles and statistical analyses of their distributions among mammals, in association with the FEED database, will lead to new, significant insights into the functional, structural, and evolutionary morphology of the jaw muscles.

  15. Homologous microwave flare on May 29, 1980

    SciTech Connect

    Urpo, S.

    1982-01-01

    Observations are presented of two homologous solar bursts recorded on May 29, 1980 at 1028 UT and at 1147 UT from the Hale region 16864. The measurements were obtained at 8 mm wavelength (frequency 37 GHz) at the Metsahovi Radio Research Station, Finland, using a 14 meter radio telescope. Results show that the time series of the bursts were similar even in the small details, in which the rise time of both bursts was about 10 seconds and the peak flux density was 3.3 sfu at 1028 UT and 1.2 sfu at 1147 UT. It was found that both bursts were composed of several elementary spikes which were typically 3 seconds apart from each other. Both bursts were composed of several elementary spikes which were typically 3 seconds apart from each other, and the maximum of the gyro-synchrotron type spectrum was determined to be close to 15 GHz. The time profile of the burst, the elementary spikes, and the frequency spectrum shows that the origin of these homologous microwave bursts was in a magnetic structure with several loops and that the same complex loop structure was producing energy during both bursts.

  16. Homologous and homeologous intermolecular gene conversion are not differentially affected by mutations in the DNA damage or the mismatch repair genes RAD1, RAD50, RAD51, RAD52, RAD54, PMS1 and MSH2

    SciTech Connect

    Porter, G.; Westmoreland, J.; Priebe, S.

    1996-06-01

    Mismatch repair (MMR) genes or genes involved in both DNA damage repair and homologous recombination might affect homeologous vs. homologous recombination differentially. Spontaneous mitotic gene conversion between a chromosome and a homologous or homeologous donor sequence (14% diverged) on a single copy plasmid was examined in wild-type Saccharomyces cerevisiae strains and in MMR or DNA damage repair mutants. Homologous recombination in rad51, rad52 and rad54 mutants was considerably reduced, while there was little effect of rad1, rad50, pms1 and msh2 null mutations. DNA divergence resulted in no differential effect on recombination rates in the wild type or the mutants; there was only a five- to 10-fold reduction in homeologous relative to homologous recombination regardless of background. Since DNA divergence is known to affect recombination in some systems, we propose that differences in the role of MMR depends on the mode of recombination and/or the level of divergence. Based on analysis of the recombination breakpoints, there is a minimum of three homologous bases required at a recombination junction. A comparison of Rad{sup +} vs. rad52 strains revealed that while all conversion tracts are continuous, elimination of RAD52 leads to the appearance of a novel class of very short conversion tracts. 67 refs., 5 figs., 4 tabs.

  17. Homologous and Homeologous Intermolecular Gene Conversion Are Not Differentially Affected by Mutations in the DNA Damage or the Mismatch Repair Genes Rad1, Rad50, Rad51, Rad52, Rad54, Pms1 and Msh2

    PubMed Central

    Porter, G.; Westmoreland, J.; Priebe, S.; Resnick, M. A.

    1996-01-01

    Mismatch repair (MMR) genes or genes involved in both DNA damage repair and homologous recombination might affect homeologous vs. homologous recombination differentially. Spontaneous mitotic gene conversion between a chromosome and a homologous or homeologous donor sequence (14% diverged) on a single copy plasmid was examined in wild-type Saccharomyces cerevisiae strains and in MMR or DNA damage repair mutants. Homologous recombination in rad51, rad52 and rad54 mutants was considerably reduced, while there was little effect of rad1, rad50, pms1 and msh2 null mutations. DNA divergence resulted in no differential effect on recombination rates in the wild type or the mutants; there was only a five- to 10-fold reduction in homeologous relative to homologous recombination regardless of background. Since DNA divergence is known to affect recombination in some systems, we propose that differences in the role of MMR depends on the mode of recombination and/or the level of divergence. Based on analysis of the recombination breakpoints, there is a minimum of three homologous bases required at a recombination junction. A comparison of Rad(+) vs. rad52 strains revealed that while all conversion tracts are continuous, elimination of RAD52 leads to the appearance of a novel class of very short conversion tracts. PMID:8725224

  18. Regulation of Cation Balance in Saccharomyces cerevisiae

    PubMed Central

    Cyert, Martha S.; Philpott, Caroline C.

    2013-01-01

    All living organisms require nutrient minerals for growth and have developed mechanisms to acquire, utilize, and store nutrient minerals effectively. In the aqueous cellular environment, these elements exist as charged ions that, together with protons and hydroxide ions, facilitate biochemical reactions and establish the electrochemical gradients across membranes that drive cellular processes such as transport and ATP synthesis. Metal ions serve as essential enzyme cofactors and perform both structural and signaling roles within cells. However, because these ions can also be toxic, cells have developed sophisticated homeostatic mechanisms to regulate their levels and avoid toxicity. Studies in Saccharomyces cerevisiae have characterized many of the gene products and processes responsible for acquiring, utilizing, storing, and regulating levels of these ions. Findings in this model organism have often allowed the corresponding machinery in humans to be identified and have provided insights into diseases that result from defects in ion homeostasis. This review summarizes our current understanding of how cation balance is achieved and modulated in baker’s yeast. Control of intracellular pH is discussed, as well as uptake, storage, and efflux mechanisms for the alkali metal cations, Na+ and K+, the divalent cations, Ca2+ and Mg2+, and the trace metal ions, Fe2+, Zn2+, Cu2+, and Mn2+. Signal transduction pathways that are regulated by pH and Ca2+ are reviewed, as well as the mechanisms that allow cells to maintain appropriate intracellular cation concentrations when challenged by extreme conditions, i.e., either limited availability or toxic levels in the environment. PMID:23463800

  19. Hotspots of homologous recombination in the human genome: not all homologous sequences are equal.

    PubMed

    Lupski, James R

    2004-01-01

    Homologous recombination between alleles or non-allelic paralogous sequences does not occur uniformly but is concentrated in 'hotspots' with high recombination rates. Recent studies of these hotspots show that they do not share common sequence motifs, but they do have other features in common.

  20. Should nucleotide sequence analyzing computer algorithms always extend homologies by extending homologies?

    PubMed

    Burnett, L; Basten, A; Hensley, W J

    1986-01-10

    Most computer algorithms used for comparing or aligning nucleotide sequences rely on the premise that the best way to extend a homology between the two sequences is to select a match rather than a mismatch. We have tested this assumption and found that it is not always valid.

  1. The Arabidopsis COX11 Homolog is Essential for Cytochrome c Oxidase Activity

    PubMed Central

    Radin, Ivan; Mansilla, Natanael; Rödel, Gerhard; Steinebrunner, Iris

    2015-01-01

    Members of the ubiquitous COX11 (cytochrome c oxidase 11) protein family are involved in copper delivery to the COX complex. In this work, we characterize the Arabidopsis thaliana COX11 homolog (encoded by locus At1g02410). Western blot analyses and confocal microscopy identified Arabidopsis COX11 as an integral mitochondrial protein. Despite sharing high sequence and structural similarities, the Arabidopsis COX11 is not able to functionally replace the Saccharomyces cerevisiae COX11 homolog. Nevertheless, further analysis confirmed the hypothesis that Arabidopsis COX11 is essential for COX activity. Disturbance of COX11 expression through knockdown (KD) or overexpression (OE) affected COX activity. In KD lines, the activity was reduced by ~50%, resulting in root growth inhibition, smaller rosettes and leaf curling. In OE lines, the reduction was less pronounced (~80% of the wild type), still resulting in root growth inhibition. Additionally, pollen germination was impaired in COX11 KD and OE plants. This effect on pollen germination can only partially be attributed to COX deficiency and may indicate a possible auxiliary role of COX11 in ROS metabolism. In agreement with its role in energy production, the COX11 promoter is highly active in cells and tissues with high-energy demand for example shoot and root meristems, or vascular tissues of source and sink organs. In COX11 KD lines, the expression of the plasma-membrane copper transporter COPT2 and of several copper chaperones was altered, indicative of a retrograde signaling pathway pertinent to copper homeostasis. Based on our data, we postulate that COX11 is a mitochondrial chaperone, which plays an important role for plant growth and pollen germination as an essential COX complex assembly factor. PMID:26734017

  2. ERCC4 (XPF) encodes a human nucleotide excision repair protein with eukaryotic recombination homologs.

    PubMed Central

    Brookman, K W; Lamerdin, J E; Thelen, M P; Hwang, M; Reardon, J T; Sancar, A; Zhou, Z Q; Walter, C A; Parris, C N; Thompson, L H

    1996-01-01

    ERCC4 is an essential human gene in the nucleotide excision repair (NER) pathway, which is responsible for removing UV-C photoproducts and bulky adducts from DNA. Among the NER genes, ERCC4 and ERCC1 are also uniquely involved in removing DNA interstrand cross-linking damage. The ERCC1-ERCC4 heterodimer, like the homologous Rad10-Rad1 complex, was recently found to possess an endonucleolytic activity that incises on the 5' side of damage. The ERCC4 gene, assigned to chromosome 16p13.1-p13.2, was previously isolated by using a chromosome 16 cosmid library. It corrects the defect in Chinese hamster ovary (CHO) mutants of NER complementation group 4 and is implicated in complementation group F of the human disorder xeroderma pigmentosum. We describe the ERCC4 gene structure and functional cDNA sequence encoding a 916-amino-acid protein (104 kDa), which has substantial homology with the eukaryotic DNA repair and recombination proteins MEI-9 (Drosophila melanogaster), Rad16 (Schizosaccharomyces pombe), and Rad1 (Saccharomyces cerevisiae). ERCC4 cDNA efficiently corrected mutants in rodent NER complementation groups 4 and 11, showing the equivalence of these groups, and ERCC4 protein levels were reduced in mutants of both groups. In cells of an XP-F patient, the ERCC4 protein level was reduced to less than 5%, consistent with XPF being the ERCC4 gene. The considerable identity (40%) between ERCC4 and MEI-9 suggests a possible involvement of ERCC4 in meiosis. In baboon tissues, ERCC4 was expressed weakly and was not significantly higher in testis than in nonmeiotic tissues. PMID:8887684

  3. The Arabidopsis COX11 Homolog is Essential for Cytochrome c Oxidase Activity.

    PubMed

    Radin, Ivan; Mansilla, Natanael; Rödel, Gerhard; Steinebrunner, Iris

    2015-01-01

    Members of the ubiquitous COX11 (cytochrome c oxidase 11) protein family are involved in copper delivery to the COX complex. In this work, we characterize the Arabidopsis thaliana COX11 homolog (encoded by locus At1g02410). Western blot analyses and confocal microscopy identified Arabidopsis COX11 as an integral mitochondrial protein. Despite sharing high sequence and structural similarities, the Arabidopsis COX11 is not able to functionally replace the Saccharomyces cerevisiae COX11 homolog. Nevertheless, further analysis confirmed the hypothesis that Arabidopsis COX11 is essential for COX activity. Disturbance of COX11 expression through knockdown (KD) or overexpression (OE) affected COX activity. In KD lines, the activity was reduced by ~50%, resulting in root growth inhibition, smaller rosettes and leaf curling. In OE lines, the reduction was less pronounced (~80% of the wild type), still resulting in root growth inhibition. Additionally, pollen germination was impaired in COX11 KD and OE plants. This effect on pollen germination can only partially be attributed to COX deficiency and may indicate a possible auxiliary role of COX11 in ROS metabolism. In agreement with its role in energy production, the COX11 promoter is highly active in cells and tissues with high-energy demand for example shoot and root meristems, or vascular tissues of source and sink organs. In COX11 KD lines, the expression of the plasma-membrane copper transporter COPT2 and of several copper chaperones was altered, indicative of a retrograde signaling pathway pertinent to copper homeostasis. Based on our data, we postulate that COX11 is a mitochondrial chaperone, which plays an important role for plant growth and pollen germination as an essential COX complex assembly factor.

  4. NP24 induces apoptosis dependent on caspase-like activity in Saccharomyces cerevisiae.

    PubMed

    Higuchi, Naoki; Ito, Yasuhiro; Kato, Jun; Ogihara, Jun; Kasumi, Takafumi

    2016-06-01

    Tomato NP24 is a homolog of osmotin, a PR-5 protein from tobacco that can initiate apoptosis in yeast via PHO36 in the plasma membrane. We cloned and sequenced NP24 from tomato cv. Momotaro. Based on phylogenetic analysis, NP24 from Momotaro belonged to the Solanaceae clade. The amino acid sequence was identical to that of cv. Ailsa Craig including signal peptide, but the residues predicted to interact with the adiponectin receptor, ADIPOR, were slightly different from osmotin. Recombinant NP24 (rNP24) was expressed in a reductase-deficient mutant of Escherichia coli as host cell, and purified from cell extract by affinity chromatography. Purified rNP24 significantly inhibited growth of Saccharomyces cerevisiae wild-type spheroplasts. In contrast, growth of PHO36 deletion mutant (ΔIzh2) spheroplasts was not inhibited. Moreover, rNP24 induced significant activity of reactive oxygen species, caspase-like activity, and also nuclear fragmentation in wild-type spheroplast cells. These results demonstrated that rNP24 from Momotaro greatly influenced cell viability due to triggering apoptosis through PHO36. Notably, apoptosis induced by NP24 was caspase-like protease dependent. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. PXA1, a possible Saccharomyces cerevisiae ortholog of the human adrenoleukodystrophy gene.

    PubMed Central

    Shani, N; Watkins, P A; Valle, D

    1995-01-01

    The adrenoleukodystrophy protein (ALDp) is an ATP-binding cassette (ABC) transporter in the human peroxisome membrane. It is defective in X chromosome-linked adrenoleukodystrophy (ALD), a neurodegenerative disorder with impaired peroxisomal oxidation of very long chain fatty acids. We report cloning and characterization of PXA1, a yeast gene encoding a protein (Pxa1p) exhibiting high similarity to ALDp. Disruption of PXA1 results in impaired growth on oleic acid and reduced ability to oxidize oleate. Pxa1p is peroxisome associated; however, in the PXA1 mutant yeast, as in ALD cells, peroxisomes are morphologically intact. Disruption of a second yeast gene, YKL741, which encodes a more distantly related ALDp homolog (Yk174p), in either wild-type or PXA1 mutant yeast, results in a growth phenotype identical to that of the PXA1 mutant. This result suggests that Yk1741p and Pxa1p may be subunits of the same transporter. Sequence analysis of Pxa1p, ALDp, and related ABC transporters reveals a possible fatty acid binding domain and a 14-amino acid EAA-like motif, previously described only in prokaryotes. Because of the similarities in sequence and function, we propose that Pxa1p is the Saccharomyces cerevisiae ortholog of ALDp. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:7597071

  6. Saccharomyces cerevisiae STE6 gene product: a novel pathway for protein export in eukaryotic cells.

    PubMed Central

    Kuchler, K; Sterne, R E; Thorner, J

    1989-01-01

    Saccharomyces cerevisiae MATa cells release a lipopeptide mating pheromone, a-factor. Radiolabeling and immunoprecipitation show that MATa ste6 mutants produce pro-a-factor and mature a-factor intracellularly, but little or no extracellular pheromone. Normal MATa cells carrying a multicopy plasmid containing both MFa1 (pro-a-factor structural gene) and the STE6 gene secrete a-factor at least five times faster than the same cells carrying only MFa1 in the same vector. The nucleotide sequence of the STE6 gene predicts a 1290 residue polypeptide with multiple membrane spanning segments and two hydrophilic domains, each strikingly homologous to a set of well-characterized prokaryotic permeases (including hlyB, oppD, hisP, malK and pstB) and sharing even greater identity with mammalian mdr (multiple drug resistance) transporters. These results suggest that the STE6 protein in yeast, and possibly mdr in animals, is a transmembrane translocator that exports polypeptides by a route independent of the classical secretory pathway. Images PMID:2686977

  7. Glucose signaling-mediated coordination of cell growth and cell cycle in Saccharomyces cerevisiae.

    PubMed

    Busti, Stefano; Coccetti, Paola; Alberghina, Lilia; Vanoni, Marco

    2010-01-01

    Besides being the favorite carbon and energy source for the budding yeast Sacchromyces cerevisiae, glucose can act as a signaling molecule to regulate multiple aspects of yeast physiology. Yeast cells have evolved several mechanisms for monitoring the level of glucose in their habitat and respond quickly to frequent changes in the sugar availability in the environment: the cAMP/PKA pathways (with its two branches comprising Ras and the Gpr1/Gpa2 module), the Rgt2/Snf3-Rgt1 pathway and the main repression pathway involving the kinase Snf1. The cAMP/PKA pathway plays the prominent role in responding to changes in glucose availability and initiating the signaling processes that promote cell growth and division. Snf1 (the yeast homologous to mammalian AMP-activated protein kinase) is primarily required for the adaptation of yeast cell to glucose limitation and for growth on alternative carbon source, but it is also involved in the cellular response to various environmental stresses. The Rgt2/Snf3-Rgt1 pathway regulates the expression of genes required for glucose uptake. Many interconnections exist between the diverse glucose sensing systems, which enables yeast cells to fine tune cell growth, cell cycle and their coordination in response to nutritional changes.

  8. Crystal structure of glutathione reductase Glr1 from the yeast Saccharomyces cerevisiae.

    PubMed

    Yu, Jiang; Zhou, Cong-Zhao

    2007-09-01

    Yeast glutathione (GSH) reductase Glr1 is a dimeric flavo-oxidoreductase involved in cytoplasmic and mitochondrial redox regulatory systems. It reduces the oxidized GSH GSSG to the reduced form, GSH with NADPH as electron donor and FAD as coenzyme. Crystal structures and enzymatic mechanisms of GSH reductases from Escherichia coli and Homo sapiens have been well investigated, whereas the structural properties of yeast Glr1 remain unknown. Herein, we overexpressed Saccharomyces cerevisiae Glr1 in Pichia pastoris GS115 and determined its crystal structure at 2.40 A resolution. Although the overall structure and the active site are much conserved, obvious variety was found at the interface of Glr1 monomers when superimposed against the homolog from E. coli or human. The nonconserved C239 is exposed to the solvent and accessible to GSH or GSSG enriched in a microenvironment around the Glr1 molecules, leading to the partial and transient glutathionylation, as primarily identified from the 2Fo-Fc electron density map and further confirmed by biochemical assays. Meanwhile N278 at the vicinity of NADP-binding pocket was artificially glycosylated when heterogeneously overexpressed in P. pastoris. The highly motile oligosaccharide chain linked to N278 of the recombinant Glr1 interferes with the entry of NADPH, which results in a dramatic increase of Km for NAPDH and a significant decrease of turnover number, when compared with the native protein.

  9. Regulation of the processivity and intracellular localization of Saccharomyces cerevisiae dynein by dynactin

    PubMed Central

    Kardon, Julia R.; Reck-Peterson, Samara L.; Vale, Ronald D.

    2009-01-01

    Dynactin, a large multisubunit complex, is required for intracellular transport by dynein; however, its cellular functions and mechanism of action are not clear. Prior studies suggested that dynactin increases dynein processivity by tethering the motor to the microtubule through its own microtubule binding domains. However, this hypothesis could not be tested without a recombinant source of dynactin. Here, we have produced recombinant dynactin and dynein in Saccharomyces cerevisiae, and examined the effect of dynactin on dynein in single-molecule motility assays. We show that dynactin increases the run length of single dynein motors, but does not alter the directionality of dynein movement. Enhancement of dynein processivity by dynactin does not require the microtubule (MT) binding domains of Nip100 (the yeast p150Glued homolog). Dynactin lacking these MT binding domains also supports the proper localization and function of dynein during nuclear segregation in vivo. Instead, a segment of the coiled-coil of Nip100 is required for these activities. Our results directly demonstrate that dynactin increases the processivity of dynein through a mechanism independent of microtubule tethering. PMID:19293377

  10. Saccharomyces Cerevisiae Hoc1, a Suppressor of Pkc1, Encodes a Putative Glycosyltransferase

    PubMed Central

    Neiman, A. M.; Mhaiskar, V.; Manus, V.; Galibert, F.; Dean, N.

    1997-01-01

    The Saccharomyces cerevisiae gene PKC1 encodes a protein kinase C isozyme that regulates cell wall synthesis. Here we describe the characterization of HOC1, a gene identified by its ability to suppress the cell lysis phenotype of pkc1-371 cells. The HOC1 gene (Homologous to OCH1) is predicted to encode a type II integral membrane protein that strongly resembles Och1p, an α-1,6-mannosyltransferase. Immunofluorescence studies localized Hoc1p to the Golgi apparatus. While overexpression of HOC1 rescued the pkc1-371 temperature-sensitive cell lysis phenotype, disruption of HOC1 lowered the restrictive temperature of the pkc1-371 allele. Disruption of HOC1 also resulted in hypersensitivity to Calcofluor White and hygromycin B, phenotypes characteristic of defects in cell wall integrity and protein glycosylation, respectively. The function of HOC1 appears to be distinct from that of OCH1. Taken together, these results suggest that HOC1 encodes a Golgi-localized putative mannosyltransferase required for the proper construction of the cell wall. PMID:9055074

  11. DNA repair mechanisms and the bypass of DNA damage in Saccharomyces cerevisiae.

    PubMed

    Boiteux, Serge; Jinks-Robertson, Sue

    2013-04-01

    DNA repair mechanisms are critical for maintaining the integrity of genomic DNA, and their loss is associated with cancer predisposition syndromes. Studies in Saccharomyces cerevisiae have played a central role in elucidating the highly conserved mechanisms that promote eukaryotic genome stability. This review will focus on repair mechanisms that involve excision of a single strand from duplex DNA with the intact, complementary strand serving as a template to fill the resulting gap. These mechanisms are of two general types: those that remove damage from DNA and those that repair errors made during DNA synthesis. The major DNA-damage repair pathways are base excision repair and nucleotide excision repair, which, in the most simple terms, are distinguished by the extent of single-strand DNA removed together with the lesion. Mistakes made by DNA polymerases are corrected by the mismatch repair pathway, which also corrects mismatches generated when single strands of non-identical duplexes are exchanged during homologous recombination. In addition to the true repair pathways, the postreplication repair pathway allows lesions or structural aberrations that block replicative DNA polymerases to be tolerated. There are two bypass mechanisms: an error-free mechanism that involves a switch to an undamaged template for synthesis past the lesion and an error-prone mechanism that utilizes specialized translesion synthesis DNA polymerases to directly synthesize DNA across the lesion. A high level of functional redundancy exists among the pathways that deal with lesions, which minimizes the detrimental effects of endogenous and exogenous DNA damage.

  12. GPA1Val-50 mutation in the mating-factor signaling pathway in Saccharomyces cerevisiae.

    PubMed Central

    Miyajima, I; Arai, K; Matsumoto, K

    1989-01-01

    The GPA1 gene of Saccharomyces cerevisiae encodes a protein that is highly homologous to the alpha subunit of mammalian hetrotrimeric G proteins and is essential for haploid cell growth. A mutation of the GPA1 protein, GPA1Val-50, in which Gly-50 was replaced by valine, could complement the growth defect of a GPA1 disruption, gpal::HIS3. However, cells with gpa1::HIS3 expressing the GPA1Val-50 protein were supersensitive to alpha-factor in a short-term incubation but resumed growth after long-term incubation even after exposure to high concentrations of alpha-factor. The former phenotype associated with GPA1Val-50 is recessive, and the latter phenotype is dominant to GPA1+. The supersensitivity of GPA1Val-50 to alpha-factor was dependent on STE2 and STE4, which demonstrates that this GPA1Val-50-produced phenotype requires the mating-factor receptor and the beta subunit of the G protein. The double mutant of sst2-1 GPA1Val-50 recovered from division arrest, which suggested that SST2 is not required for recovery of the GPA1Val-50 mutant. Images PMID:2548076

  13. Secretion of 2,3-dihydroxyisovalerate as a limiting factor for isobutanol production in Saccharomyces cerevisiae.

    PubMed

    Generoso, Wesley Cardoso; Brinek, Martin; Dietz, Heiko; Oreb, Mislav; Boles, Eckhard

    2017-05-01

    Isobutanol is a superior biofuel compared to ethanol, and it is naturally produced by yeasts. Previously, Saccharomyces cerevisiae has been genetically engineered to improve isobutanol production. We found that yeast cells engineered for a cytosolic isobutanol biosynthesis secrete large amounts of the intermediate 2,3-dihydroxyisovalerate (DIV). This indicates that the enzyme dihydroxyacid dehydratase (Ilv3) is limiting the isobutanol pathway and/or yeast exhibit effective transport systems for the secretion of the intermediate, competing with isobutanol synthesis. Moreover, we found that DIV cannot be taken up by the cells again. To identify the responsible transporters, microarray analysis was performed with a DIV producing strain compared to a wild type. Altogether, 19 genes encoding putative transporters were upregulated under DIV-producing conditions. Thirteen of these were deleted together with five homologous genes. A yro2 mrh1 deletion strain showed reduced DIV secretion, while a hxt5 deletion mutant showed increased isobutanol production. However, a strain deleted for all the 18 genes secreted even slightly increased amounts of the intermediates and less isobutanol. The lactate transporter Jen1 turned out to transport the intermediate 2-ketoisovalerate, but not DIV. The results suggest that the transport of DIV is a rather complex process and several unspecific transporters seem to be involved. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Structure of Saccharomyces cerevisiae Rtr1 reveals an active site for an atypical phosphatase

    PubMed Central

    Mayfield, Joshua; Zhang, Mengmeng; Zhang, Yong; Matthews, Wendy L.; Nie, Grace; Prescott, Nicholas A.; Zhang, Yan Jessie

    2016-01-01

    Changes in the phosphorylation status of the carboxyl-terminal domain (CTD) of RNA polymerase II (RNAPII) correlate with the process of eukaryotic transcription. The yeast protein regulator of transcription 1 (Rtr1) and the human homolog RNAPII-associated protein 2 (RPAP2) may function as CTD phosphatases; however, crystal structures of Kluyveromyces lactis Rtr1 lack a consensus active site. We identified a phosphoryl transfer domain in Saccharomyces cerevisiae Rtr1 by obtaining and characterizing a 2.6 Å resolution crystal structure. We identified a putative substrate-binding pocket in a deep groove between the zinc finger domain and a pair of helices that contained a trapped sulfate ion. Because sulfate mimics the chemistry of a phosphate group, this structural data suggested that this groove represents the phosphoryl transfer active site. Mutagenesis of the residues lining this groove disrupted catalytic activity of the enzyme assayed in vitro with a fluorescent chemical substrate, and expression of the mutated Rtr1 failed to rescue growth of yeast lacking Rtr1. Characterization of the phosphatase activity of RPAP2 and a mutant of the conserved putative catalytic site in the same chemical assay indicated a conserved reaction mechanism. Our data indicated that the structure of the phosphoryl transfer domain and reaction mechanism for the phosphoryl transfer activity of Rtr1 is distinct from those of other phosphatase families. PMID:26933063

  15. Replicative age induces mitotic recombination in the ribosomal RNA gene cluster of Saccharomyces cerevisiae.

    PubMed

    Lindstrom, Derek L; Leverich, Christina K; Henderson, Kiersten A; Gottschling, Daniel E

    2011-03-01

    Somatic mutations contribute to the development of age-associated disease. In earlier work, we found that, at high frequency, aging Saccharomyces cerevisiae diploid cells produce daughters without mitochondrial DNA, leading to loss of respiration competence and increased loss of heterozygosity (LOH) in the nuclear genome. Here we used the recently developed Mother Enrichment Program to ask whether aging cells that maintain the ability to produce respiration-competent daughters also experience increased genomic instability. We discovered that this population exhibits a distinct genomic instability phenotype that primarily affects the repeated ribosomal RNA gene array (rDNA array). As diploid cells passed their median replicative life span, recombination rates between rDNA arrays on homologous chromosomes progressively increased, resulting in mutational events that generated LOH at >300 contiguous open reading frames on the right arm of chromosome XII. We show that, while these recombination events were dependent on the replication fork block protein Fob1, the aging process that underlies this phenotype is Fob1-independent. Furthermore, we provide evidence that this aging process is not driven by mechanisms that modulate rDNA recombination in young cells, including loss of cohesion within the rDNA array or loss of Sir2 function. Instead, we suggest that the age-associated increase in rDNA recombination is a response to increasing DNA replication stress generated in aging cells.

  16. Effects of an unusual poison identify a lifespan role for Topoisomerase 2 in Saccharomyces cerevisiae

    PubMed Central

    Polevoda, Bogdan; Rapaport, Matan; Baxter, Bonnie; Van Meter, Michael; Gilbertson, Matthew; Madrey, Joe; Piazza, Gary A.; Rasmussen, Lynn; Wennerberg, Krister; White, E. Lucile; Nitiss, John L.; Goldfarb, David S.

    2017-01-01

    A progressive loss of genome maintenance has been implicated as both a cause and consequence of aging. Here we present evidence supporting the hypothesis that an age-associated decay in genome maintenance promotes aging in Saccharomyces cerevisiae (yeast) due to an inability to sense or repair DNA damage by topoisomerase 2 (yTop2). We describe the characterization of LS1, identified in a high throughput screen for small molecules that shorten the replicative lifespan of yeast. LS1 accelerates aging without affecting proliferative growth or viability. Genetic and biochemical criteria reveal LS1 to be a weak Top2 poison. Top2 poisons induce the accumulation of covalent Top2-linked DNA double strand breaks that, if left unrepaired, lead to genome instability and death. LS1 is toxic to cells deficient in homologous recombination, suggesting that the damage it induces is normally mitigated by genome maintenance systems. The essential roles of yTop2 in proliferating cells may come with a fitness trade-off in older cells that are less able to sense or repair yTop2-mediated DNA damage. Consistent with this idea, cells live longer when yTop2 expression levels are reduced. These results identify intrinsic yTop2-mediated DNA damage as a potentially manageable cause of aging. PMID:28077781

  17. Structure of Saccharomyces cerevisiae Rtr1 reveals an active site for an atypical phosphatase.

    PubMed

    Irani, Seema; Yogesha, S D; Mayfield, Joshua; Zhang, Mengmeng; Zhang, Yong; Matthews, Wendy L; Nie, Grace; Prescott, Nicholas A; Zhang, Yan Jessie

    2016-03-01

    Changes in the phosphorylation status of the carboxyl-terminal domain (CTD) of RNA polymerase II (RNAPII) correlate with the process of eukaryotic transcription. The yeast protein regulator of transcription 1 (Rtr1) and the human homolog RNAPII-associated protein 2 (RPAP2) may function as CTD phosphatases; however, crystal structures of Kluyveromyces lactis Rtr1 lack a consensus active site. We identified a phosphoryl transfer domain in Saccharomyces cerevisiae Rtr1 by obtaining and characterizing a 2.6 Å resolution crystal structure. We identified a putative substrate-binding pocket in a deep groove between the zinc finger domain and a pair of helices that contained a trapped sulfate ion. Because sulfate mimics the chemistry of a phosphate group, this structural data suggested that this groove represents the phosphoryl transfer active site. Mutagenesis of the residues lining this groove disrupted catalytic activity of the enzyme assayed in vitro with a fluorescent chemical substrate, and expression of the mutated Rtr1 failed to rescue growth of yeast lacking Rtr1. Characterization of the phosphatase activity of RPAP2 and a mutant of the conserved putative catalytic site in the same chemical assay indicated a conserved reaction mechanism. Our data indicated that the structure of the phosphoryl transfer domain and reaction mechanism for the phosphoryl transfer activity of Rtr1 is distinct from those of other phosphatase families.

  18. Improved blue, green, and red fluorescent protein tagging vectors for S. cerevisiae.

    PubMed

    Lee, Sidae; Lim, Wendell A; Thorn, Kurt S

    2013-01-01

    Fluorescent protein fusions are a powerful tool to monitor the localization and trafficking of proteins. Such studies are particularly easy to carry out in the budding yeast Saccharomyces cerevisiae due to the ease with which tags can be introduced into the genome by homologous recombination. However, the available yeast tagging plasmids have not kept pace with the development of new and improved fluorescent proteins. Here, we have constructed yeast optimized versions of 19 different fluorescent proteins and tested them for use as fusion tags in yeast. These include two blue, seven green, and seven red fluorescent proteins, which we have assessed for brightness, photostability and perturbation of tagged proteins. We find that EGFP remains the best performing green fluorescent protein, that TagRFP-T and mRuby2 outperform mCherry as red fluorescent proteins, and that mTagBFP2 can be used as a blue fluorescent protein tag. Together, the new tagging vectors we have constructed provide improved blue and red fluorescent proteins for yeast tagging and three color imaging.

  19. Effects of an unusual poison identify a lifespan role for Topoisomerase 2 in Saccharomyces cerevisiae.

    PubMed

    Tombline, Gregory; Millen, Jonathan I; Polevoda, Bogdan; Rapaport, Matan; Baxter, Bonnie; Van Meter, Michael; Gilbertson, Matthew; Madrey, Joe; Piazza, Gary A; Rasmussen, Lynn; Wennerberg, Krister; White, E Lucile; Nitiss, John L; Goldfarb, David S

    2017-01-05

    A progressive loss of genome maintenance has been implicated as both a cause and consequence of aging. Here we present evidence supporting the hypothesis that an age-associated decay in genome maintenance promotes aging in Saccharomyces cerevisiae (yeast) due to an inability to sense or repair DNA damage by topoisomerase 2 (yTop2). We describe the characterization of LS1, identified in a high throughput screen for small molecules that shorten the replicative lifespan of yeast. LS1 accelerates aging without affecting proliferative growth or viability. Genetic and biochemical criteria reveal LS1 to be a weak Top2 poison. Top2 poisons induce the accumulation of covalent Top2-linked DNA double strand breaks that, if left unrepaired, lead to genome instability and death. LS1 is toxic to cells deficient in homologous recombination, suggesting that the damage it induces is normally mitigated by genome maintenance systems. The essential roles of yTop2 in proliferating cells may come with a fitness trade-off in older cells that are less able to sense or repair yTop2-mediated DNA damage. Consistent with this idea, cells live longer when yTop2 expression levels are reduced. These results identify intrinsic yTop2-mediated DNA damage as potentially manageable cause of aging.

  20. Non-repair Pathways for Minimizing Protein Isoaspartyl Damage in the Yeast Saccharomyces cerevisiae*

    PubMed Central

    Patananan, Alexander N.; Capri, Joseph; Whitelegge, Julian P.; Clarke, Steven G.

    2014-01-01

    The spontaneous degradation of asparaginyl and aspartyl residues to isoaspartyl residues is a common type of protein damage in aging organisms. Although the protein-l-isoaspartyl (d-aspartyl) O-methyltransferase (EC 2.1.1.77) can initiate the repair of l-isoaspartyl residues to l-aspartyl residues in most organisms, no gene homolog or enzymatic activity is present in the budding yeast Saccharomyces cerevisiae. Therefore, we used biochemical approaches to elucidate how proteins containing isoaspartyl residues are metabolized in this organism. Surprisingly, the level of isoaspartyl residues in yeast proteins (50–300 pmol of isoaspartyl residues/mg of protein extract) is comparable with organisms with protein-l-isoaspartyl (d-aspartyl) O-methyltransferase, suggesting a novel regulatory pathway. Interfering with common protein quality control mechanisms by mutating and inhibiting the proteasomal and autophagic pathways in vivo did not increase isoaspartyl residue levels compared with wild type or uninhibited cells. However, the inhibition of metalloproteases in in vitro aging experiments by EDTA resulted in an ∼3-fold increase in the level of isoaspartyl-containing peptides. Characterization by mass spectrometry of these peptides identified several proteins involved in metabolism as targets of isoaspartyl damage. Further analysis of these peptides revealed that many have an N-terminal isoaspartyl site and originate from proteins with short half-lives. These results suggest that one or more metalloproteases participate in limiting isoaspartyl formation by robust proteolysis. PMID:24764295

  1. A role for MMS4 in the processing of recombination intermediates during meiosis in Saccharomyces cerevisiae.

    PubMed Central

    de los Santos, T; Loidl, J; Larkin, B; Hollingsworth, N M

    2001-01-01

    The MMS4 gene of Saccharomyces cerevisiae was originally identified due to its sensitivity to MMS in vegetative cells. Subsequent studies have confirmed a role for MMS4 in DNA metabolism of vegetative cells. In addition, mms4 diploids were observed to sporulate poorly. This work demonstrates that the mms4 sporulation defect is due to triggering of the meiotic recombination checkpoint. Genetic, physical, and cytological analyses suggest that MMS4 functions after the single end invasion step of meiotic recombination. In spo13 diploids, red1, but not mek1, is epistatic to mms4 for sporulation and spore viability, suggesting that MMS4 may be required only when homologs are capable of undergoing synapsis. MMS4 and MUS81 are in the same epistasis group for spore viability, consistent with biochemical data that show that the two proteins function in a complex. In contrast, MMS4 functions independently of MSH5 in the production of viable spores. We propose that MMS4 is required for the processing of specific recombination intermediates during meiosis. PMID:11779793

  2. TOR2 is part of two related signaling pathways coordinating cell growth in Saccharomyces cerevisiae.

    PubMed Central

    Helliwell, S B; Howald, I; Barbet, N; Hall, M N

    1998-01-01

    The Saccharomyces cerevisiae genes TOR1 and TOR2 encode phosphatidylinositol kinase homologs. TOR2 has two essential functions. One function overlaps with TOR1 and mediates protein synthesis and cell cycle progression. The second essential function of TOR2 is unique to TOR2 and mediates the cell-cycle-dependent organization of the actin cytoskeleton. We have isolated temperature-sensitive mutants that are defective for either one or both of the two TOR2 functions. The three classes of mutants were as follows. Class A mutants, lacking only the TOR2-unique function, are defective in actin cytoskeleton organization and arrest within two to three generations as small-budded cells in the G2/M phase of the cell cycle. Class B mutants, lacking only the TOR-shared function, and class C mutants, lacking both functions, exhibit a rapid loss of protein synthesis and a G1 arrest within one generation. To define further the two functions of TOR2, we isolated multicopy suppressors that rescue the class A or B mutants. Overexpression of MSS4, PKC1, PLC1, RHO2, ROM2, or SUR1 suppressed the growth defect of a class A mutant. Surprisingly, overexpression of PLC1 and MSS4 also suppressed the growth defect of a class B mutant. These genes encode proteins that are involved in phosphoinositide metabolism and signaling. Thus, the two functions (readouts) of TOR2 appear to involve two related signaling pathways controlling cell growth. PMID:9475724

  3. High-throughput profiling of amino acids in strains of the Saccharomyces cerevisiae deletion collection

    PubMed Central

    Cooper, Sara J.; Finney, Gregory L.; Brown, Shauna L.; Nelson, Sven K.; Hesselberth, Jay; MacCoss, Michael J.; Fields, Stanley

    2010-01-01

    The measurement of small molecule metabolites on a large scale offers the opportunity for a more complete understanding of cellular metabolism. We developed a high-throughput method to quantify primary amine-containing metabolites in the yeast Saccharomyces cerevisiae by the use of capillary electrophoresis in combination with fluorescent derivatization of cell extracts. We measured amino acid levels in the yeast deletion collection, a set of ∼5000 strains each lacking a single gene, and developed a computational pipeline for data analysis. Amino acid peak assignments were validated by mass spectrometry, and the overall approach was validated by the result that expected pathway intermediates accumulate in mutants of the arginine biosynthetic pathway. Global analysis of the deletion collection was carried out using clustering methods. We grouped strains based on their metabolite profiles, revealing clusters of mutants enriched for genes encoding mitochondrial proteins, urea cycle enzymes, and vacuolar ATPase functions. One of the most striking profiles, common among several strains lacking ribosomal protein genes, accumulated lysine and a lysine-related metabolite. Mutations in the homologous ribosomal protein genes in the human result in Diamond-Blackfan anemia, demonstrating that metabolite data may have potential value in understanding disease pathology. This approach establishes metabolite profiling as capable of characterizing genes in a large collection of genetic variants. PMID:20610602

  4. DNAter dot RNA helicase activity of RAD3 protein of Saccharomyces cerevisiae

    SciTech Connect

    Bailly, V.; Sung, P.; Prakash, L.; Prakash, S. )

    1991-11-01

    The RAD3 gene of Saccharomyces cerevisiae is required for excision repair of UV-damaged DNA and is essential for cell viability. The RAD3 protein exhibits a remarkable degree of sequence homology to the human excision repair protein ERCC2. The RAD3 protein is a single-stranded DNA-dependent ATPase and a DNA helicase capable of denaturing long regions of duplex DNA. Here, the authors demonstrate that RAD3 also possesses a potent DNA{center dot}RNA helicase activity similar in efficiency to its DNA helicase activity. The rad3 Arg-48 mutant protein, which binds but does not hydrolyze ATP, lacks the DNA{center dot}RNA unwinding activity, indicating a dependence on ATP hydrolysis. RAD3 does not show any RNA-dependent NTPase activity and, as expected, does not unwind duplex RNA. This observation suggest that RAD3 translocates on DNA in unwinding DNA{center dot}RNA duplexes. That the rad3 Arg-48 mutation inactivates the DNA and DNA{center dot}RNA helicase activities and confers a substantial reduction in the incision of UV-damaged DNA suggests a role for these activities in incision. The authors discuss how RAD3 helicase activities could function in tracking of DNA in search of damage sites and effect enhanced excision repair of actively transcribed genes.

  5. Rapid unwinding of triplet repeat hairpins by Srs2 helicase of Saccharomyces cerevisiae.

    PubMed

    Dhar, Alok; Lahue, Robert S

    2008-06-01

    Expansions of trinucleotide repeats cause at least 15 heritable human diseases. Single-stranded triplet repeat DNA in vitro forms stable hairpins in a sequence-dependent manner that correlates with expansion risk in vivo. Hairpins are therefore considered likely intermediates during the expansion process. Unwinding of a hairpin by a DNA helicase would help protect against expansions. Yeast Srs2, but not the RecQ homolog Sgs1, blocks expansions in vivo in a manner largely dependent on its helicase function. The current study tested the idea that Srs2 would be faster at unwinding DNA substrates with an extrahelical triplet repeat hairpin embedded in a duplex context. These substrates should mimic the relevant intermediate structure thought to occur in vivo. Srs2 was faster than Sgs1 at unwinding several substrates containing triplet repeat hairpins or another structured loop. In contrast, control substrates with an unstructured loop or a Watson-Crick duplex were unwound equally well by both enzymes. Results with a fluorescently labeled, three-way junction showed that Srs2 unwinding proceeds unabated through extrahelical triplet repeats. In summary, Srs2 maintains its facile unwinding of triplet repeat hairpins embedded within duplex DNA, supporting the genetic evidence that Srs2 is a key helicase in Saccharomyces cerevisiae for preventing expansions.

  6. DNA Repair Mechanisms and the Bypass of DNA Damage in Saccharomyces cerevisiae

    PubMed Central

    Boiteux, Serge; Jinks-Robertson, Sue

    2013-01-01

    DNA repair mechanisms are critical for maintaining the integrity of genomic DNA, and their loss is associated with cancer predisposition syndromes. Studies in Saccharomyces cerevisiae have played a central role in elucidating the highly conserved mechanisms that promote eukaryotic genome stability. This review will focus on repair mechanisms that involve excision of a single strand from duplex DNA with the intact, complementary strand serving as a template to fill the resulting gap. These mechanisms are of two general types: those that remove damage from DNA and those that repair errors made during DNA synthesis. The major DNA-damage repair pathways are base excision repair and nucleotide excision repair, which, in the most simple terms, are distinguished by the extent of single-strand DNA removed together with the lesion. Mistakes made by DNA polymerases are corrected by the mismatch repair pathway, which also corrects mismatches generated when single strands of non-identical duplexes are exchanged during homologous recombination. In addition to the true repair pathways, the postreplication repair pathway allows lesions or structural aberrations that block replicative DNA polymerases to be tolerated. There are two bypass mechanisms: an error-free mechanism that involves a switch to an undamaged template for synthesis past the lesion and an error-prone mechanism that utilizes specialized translesion synthesis DNA polymerases to directly synthesize DNA across the lesion. A high level of functional redundancy exists among the pathways that deal with lesions, which minimizes the detrimental effects of endogenous and exogenous DNA damage. PMID:23547164

  7. Mechanistic Details of Glutathione Biosynthesis Revealed by Crystal Structures of Saccharomyces cerevisiae Glutamate Cysteine Ligase

    SciTech Connect

    Biterova, Ekaterina I.; Barycki, Joseph J.

    2009-12-01

    Glutathione is a thiol-disulfide exchange peptide critical for buffering oxidative or chemical stress, and an essential cofactor in several biosynthesis and detoxification pathways. The rate-limiting step in its de novo biosynthesis is catalyzed by glutamate cysteine ligase, a broadly expressed enzyme for which limited structural information is available in higher eukaryotic species. Structural data are critical to the understanding of clinical glutathione deficiency, as well as rational design of enzyme modulators that could impact human disease progression. Here, we have determined the structures of Saccharomyces cerevisiae glutamate cysteine ligase (ScGCL) in the presence of glutamate and MgCl{sub 2} (2.1 {angstrom}; R = 18.2%, R{sub free} = 21.9%), and in complex with glutamate, MgCl{sub 2}, and ADP (2.7 {angstrom}; R = 19.0%, R{sub free} = 24.2%). Inspection of these structures reveals an unusual binding pocket for the {alpha}-carboxylate of the glutamate substrate and an ATP-independent Mg{sup 2+} coordination site, clarifying the Mg{sup 2+} dependence of the enzymatic reaction. The ScGCL structures were further used to generate a credible homology model of the catalytic subunit of human glutamate cysteine ligase (hGCLC). Examination of the hGCLC model suggests that post-translational modifications of cysteine residues may be involved in the regulation of enzymatic activity, and elucidates the molecular basis of glutathione deficiency associated with patient hGCLC mutations.

  8. Glucose sensing and signaling by two glucose receptors in the yeast Saccharomyces cerevisiae.

    PubMed

    Ozcan, S; Dover, J; Johnston, M

    1998-05-01

    How eukaryotic cells sense availability of glucose, their preferred carbon and energy source, is an important, unsolved problem. Bakers' yeast (Saccharomyces cerevisiae) uses two glucose transporter homologs, Snf3 and Rgt2, as glucose sensors that generate a signal for induction of expression of genes encoding hexose transporters (HXT genes). We present evidence that these proteins generate an intracellular glucose signal without transporting glucose. The Snf3 and Rgt2 glucose sensors contain unusually long C-terminal tails that are predicted to be in the cytoplasm. These tails appear to be the signaling domains of Snf3 and Rgt2 because they are necessary for glucose signaling by Snf3 and Rgt2, and transplantation of the C-terminal tail of Snf3 onto the Hxt1 and Hxt2 glucose transporters converts them into glucose sensors that can generate a signal for glucose-induced HXT gene expression. These results support the idea that yeast senses glucose using two modified glucose transporters that serve as glucose receptors.

  9. Characterization of the Saccharomyces cerevisiae high affinity copper transporter Ctr3.

    PubMed

    Pena, M M; Puig, S; Thiele, D J

    2000-10-27

    Copper is an essential nutrient required for the activity of a number of enzymes with diverse biological roles. In the bakers' yeast Saccharomyces cerevisiae, copper is transported into cells by two high affinity copper transport proteins, Ctr1 and Ctr3. Although Ctr1 and Ctr3 are functionally redundant, they bear little homology at the amino acid sequence level. In this report, we characterize Ctr3 with respect to its localization, assembly, and post-transcriptional regulation. Ctr3 is an integral membrane protein that assembles as a trimer to form a competent copper uptake permease at the plasma membrane. Whereas the CTR1 and CTR3 genes are similarly regulated at the transcriptional level in response to copper, post-transcriptional regulation of these proteins is distinct. Unlike Ctr1, the Ctr3 transporter is neither regulated at the level of protein degradation nor endocytosis as a function of elevated copper levels. Our studies suggest that Ctr3 constitutes a fundamental module found in all eukaryotic high affinity copper transporters to date, which is sufficient for copper uptake but lacks elements for post-transcriptional regulation by copper.

  10. Whole-Genome Sequencing of Sake Yeast Saccharomyces cerevisiae Kyokai no. 7

    PubMed Central

    Akao, Takeshi; Yashiro, Isao; Hosoyama, Akira; Kitagaki, Hiroshi; Horikawa, Hiroshi; Watanabe, Daisuke; Akada, Rinji; Ando, Yoshinori; Harashima, Satoshi; Inoue, Toyohisa; Inoue, Yoshiharu; Kajiwara, Susumu; Kitamoto, Katsuhiko; Kitamoto, Noriyuki; Kobayashi, Osamu; Kuhara, Satoru; Masubuchi, Takashi; Mizoguchi, Haruhiko; Nakao, Yoshihiro; Nakazato, Atsumi; Namise, Masahiro; Oba, Takahiro; Ogata, Tomoo; Ohta, Akinori; Sato, Masahide; Shibasaki, Seiji; Takatsume, Yoshifumi; Tanimoto, Shota; Tsuboi, Hirokazu; Nishimura, Akira; Yoda, Koji; Ishikawa, Takeaki; Iwashita, Kazuhiro; Fujita, Nobuyuki; Shimoi, Hitoshi

    2011-01-01

    The term ‘sake yeast’ is generally used to indicate the Saccharomyces cerevisiae strains that possess characteristics distinct from others including the laboratory strain S288C and are well suited for sake brewery. Here, we report the draft whole-genome shotgun sequence of a commonly used diploid sake yeast strain, Kyokai no. 7 (K7). The assembled sequence of K7 was nearly identical to that of the S288C, except for several subtelomeric polymorphisms and two large inversions in K7. A survey of heterozygous bases between the homologous chromosomes revealed the presence of mosaic-like uneven distribution of heterozygosity in K7. The distribution patterns appeared to have resulted from repeated losses of heterozygosity in the ancestral lineage of K7. Analysis of genes revealed the presence of both K7-acquired and K7-lost genes, in addition to numerous others with segmentations and terminal discrepancies in comparison with those of S288C. The distribution of Ty element also largely differed in the two strains. Interestingly, two regions in chromosomes I and VII of S288C have apparently been replaced by Ty elements in K7. Sequence comparisons suggest that these gene conversions were caused by cDNA-mediated recombination of Ty elements. The present study advances our understanding of the functional and evolutionary genomics of the sake yeast. PMID:21900213

  11. Non-repair pathways for minimizing protein isoaspartyl damage in the yeast Saccharomyces cerevisiae.

    PubMed

    Patananan, Alexander N; Capri, Joseph; Whitelegge, Julian P; Clarke, Steven G

    2014-06-13

    The spontaneous degradation of asparaginyl and aspartyl residues to isoaspartyl residues is a common type of protein damage in aging organisms. Although the protein-l-isoaspartyl (d-aspartyl) O-methyltransferase (EC 2.1.1.77) can initiate the repair of l-isoaspartyl residues to l-aspartyl residues in most organisms, no gene homolog or enzymatic activity is present in the budding yeast Saccharomyces cerevisiae. Therefore, we used biochemical approaches to elucidate how proteins containing isoaspartyl residues are metabolized in this organism. Surprisingly, the level of isoaspartyl residues in yeast proteins (50-300 pmol of isoaspartyl residues/mg of protein extract) is comparable with organisms with protein-l-isoaspartyl (d-aspartyl) O-methyltransferase, suggesting a novel regulatory pathway. Interfering with common protein quality control mechanisms by mutating and inhibiting the proteasomal and autophagic pathways in vivo did not increase isoaspartyl residue levels compared with wild type or uninhibited cells. However, the inhibition of metalloproteases in in vitro aging experiments by EDTA resulted in an ∼3-fold increase in the level of isoaspartyl-containing peptides. Characterization by mass spectrometry of these peptides identified several proteins involved in metabolism as targets of isoaspartyl damage. Further analysis of these peptides revealed that many have an N-terminal isoaspartyl site and originate from proteins with short half-lives. These results suggest that one or more metalloproteases participate in limiting isoaspartyl formation by robust proteolysis.

  12. [Compartmentalization of Spo11p in vegetative cells of yeast Saccharomyces cerevisiae].

    PubMed

    Komakhin, R A; Komakhina, V V

    2008-01-01

    Double-stranded DNA breaks are currently thought to initiate homologous DNA recombination during meiosis. These breaks are mediated by several proteins, the key protein is Spol1p. Spo11 proteins being encoded by the highly conserved orthologs of SPO11 are present in most eukaryotes ranging from plants to man and are structurally similar to the subunit A of the archaea topoisomerase VI. The SPO11 of S. cerevisiae is currently known to be expressed during prophase I. It encodes a topoisomerase II that is apparently active as a dimer. Neither its localization in the native cells nor its nuclear localisation signals have been described in the literature. We report the expression of the coding region of SPO11 and its truncated variants C-terminally tagged by the egfp reporter in yeast. As judged by the EGFP fluorescence, the Spo11 p-EGFP fusion was localized in vegetative yeast nuclei whereas Spo11pdelta-EGFP lacking 25 N-terminal amino acids of Spollp was localized in cytoplasm. Nineteen N-terminal amino acids of Spo11p fused to EGFP made some reporter to be localized in the nucleus. Thus, we conclude that N-terminal part of Spo11p is a nuclear localization signal that is not specific for prophase I and is used to import proteins in vegetative yeast cells.

  13. Glucose Signaling-Mediated Coordination of Cell Growth and Cell Cycle in Saccharomyces Cerevisiae

    PubMed Central

    Busti, Stefano; Coccetti, Paola; Alberghina, Lilia; Vanoni, Marco

    2010-01-01

    Besides being the favorite carbon and energy source for the budding yeast Sacchromyces cerevisiae, glucose can act as a signaling molecule to regulate multiple aspects of yeast physiology. Yeast cells have evolved several mechanisms for monitoring the level of glucose in their habitat and respond quickly to frequent changes in the sugar availability in the environment: the cAMP/PKA pathways (with its two branches comprising Ras and the Gpr1/Gpa2 module), the Rgt2/Snf3-Rgt1 pathway and the main repression pathway involving the kinase Snf1. The cAMP/PKA pathway plays the prominent role in responding to changes in glucose availability and initiating the signaling processes that promote cell growth and division. Snf1 (the yeast homologous to mammalian AMP-activated protein kinase) is primarily required for the adaptation of yeast cell to glucose limitation and for growth on alternative carbon source, but it is also involved in the cellular response to various environmental stresses. The Rgt2/Snf3-Rgt1 pathway regulates the expression of genes required for glucose uptake. Many interconnections exist between the diverse glucose sensing systems, which enables yeast cells to fine tune cell growth, cell cycle and their coordination in response to nutritional changes. PMID:22219709

  14. Homologous Recombination—Experimental Systems, Analysis and Significance

    PubMed Central

    Kuzminov, Andrei

    2014-01-01

    Homologous recombination is the most complex of all recombination events that shape genomes and produce material for evolution. Homologous recombination events are exchanges between DNA molecules in the lengthy regions of shared identity, catalyzed by a group of dedicated enzymes. There is a variety of experimental systems in E. coli and Salmonella to detect homologous recombination events of several different kinds. Genetic analysis of homologous recombination reveals three separate phases of this process: pre-synapsis (the early phase), synapsis (homologous strand exchange) and post-synapsis (the late phase). In E. coli, there are at least two independent pathway of the early phase and at least two independent pathways of the late phase. All this complexity is incongruent with the originally ascribed role of homologous recombination as accelerator of genome evolution: there is simply not enough duplication and repetition in enterobacterial genomes for homologous recombination to have a detectable evolutionary role, and therefore not enough selection to maintain such a complexity. At the same time, the mechanisms of homologous recombination are uniquely suited for repair of complex DNA lesions called chromosomal lesions. In fact, the two major classes of chromosomal lesions are recognized and processed by the two individual pathways at the early phase of homologous recombination. It follows, therefore, that homologous recombination events are occasional reflections of the continual recombinational repair, made possible in cases of natural or artificial genome redundancy. PMID:26442506

  15. Increased homologous integration frequency in Yarrowia lipolytica strains defective in non-homologous end-joining.

    PubMed

    Kretzschmar, Anne; Otto, Christina; Holz, Martina; Werner, Severine; Hübner, Linda; Barth, Gerold

    2013-05-01

    The ascomycetous yeast Yarrowia lipolytica has been established as model system for studies of several research topics as well as for biotechnological processes in the last two decades. However, frequency of heterologous recombination is high in this yeast species, and so knockouts of genes are laborious to achieve. Therefore, the aim of this study was to check whether a reduction of non-homologous end-joining (NHEJ) of double strand breaks (DSB) results in a strong increase of proportion of homologous recombinants. The Ku70-Ku80 heterodimer is known as an essential protein complex of the NHEJ. We show that deletion of YlKU70 and/or YlKU80 results in an increase of the rate of transformants with homologous recombination (HR) up to 85 % in each case. However, it never reaches near 100 % of HR in any case as described for some other yeast. Furthermore, we demonstrated that growth of Δylku strains was similar to that of the wild-type strain. In addition, no differences were detected between the Δylku strains and the parent strain in respect to sensitivity to the mutagenic agent EMS as well as to the antibiotics hygromycin, bleomycin and nourseothricin. However, Δylku70 and Δylku80 strain showed a slightly higher sensitivity against UV rays. Thus, the new constructed Δylku strains are attractive recipient strains for homologous integration of DNA fragments and a valuable tool for directed knockouts of genes. Nevertheless, our data suggest the existence of another system of non-homologous recombination what may be subject of further investigation.

  16. [Contemporary concepts of homology in biology (a theoretical review)].

    PubMed

    Pavlinov, I Ia

    2011-01-01

    A brief review of the contemporary theoretical concepts of homology being developed basically in systematics and phylogenetics as well as in developmental biology is presented. Ontologically, both homology and analogy represent a kind of correspondence considered from the standpoint of nominalism, realism, and conceptualism. According to their nominalistic treatment, both are described by a set-theory approximation which makes them classes (in the logical sense). The realistic treatment provides their holistic view according to which a homologue is an anatomical or evolutionary singular while analogue remains a class. The conceptualistic treatment means that there are real (objective) correspondences existing among real (objective) entities while fixation of any of them is based on certain theoretical presumptions adopted by a researcher; homology as a natural kind (including homeostatic property cluster) seems to be most consistent with such a treatment. Realistic view of homology makes it "absolute", while two others make discrimination of homology and analogy strictly relative. Two basic general homology concepts have been developed in recent literature--taxic and transformational ones; the first considers respective correspondences as structure relations, the second as process relations. The taxic homology is nearly the same as classical typological one (Owen), while transformational homology unites all its phylogenetic, ontogenetic (developmental) and transformation-typological definitions. Process-structuralistic approach seems to unite both taxic and transformational ones. The latter makes it possible to apply general homology concept not only to structures but to processes as well. It is stressed that homology is not identical to the similarity, the latter being just the means for revealing the former. Some closer consideration is given to phylogenetic, ontogenetic and genetic treatments of homology; significant uncertainty is shown to exist between them

  17. A universal cloning method based on yeast homologous recombination that is simple, efficient, and versatile

    PubMed Central

    Joska, Tammy M.; Mashruwala, Ameya; Boyd, Jeffrey M.; Belden, William J.

    2014-01-01

    Cloning by homologous recombination (HR) in Saccharomyces cerevisiae is an extremely efficient and cost-effective alternative to other methods of recombinant DNA technologies. Unfortunately, it is incompatible with all the various specialized plasmids currently used in microbiology and biomedical research laboratories, and is therefore, not widely adopted. In an effort to dramatically improve the versatility of yeast gap-repair cloning and make it compatible with any DNA plasmid, we demonstrate that by simply including a yeast-cloning cassette (YCC) that contains the 2-micron origin of replication (2 μm ori) and the ura3 gene for selection, multiple DNA fragments can be assembled into any DNA vector. We show this has almost unlimited potential by building a variety of plasmid for different uses including: recombinant protein production, epitope tagging, site-directed mutagenesis, and expression of fluorescent fusion proteins. We demonstrate the use in a variety of p