IRIS Toxicological Review of Cerium Oxide and Cerium ...
On September 29, 2009, the IRIS Summary and Toxicological Review of Cerium Oxide and Cerium Compounds was finalized and loaded onto the IRIS database. The Toxicological Review of Cerium Oxide and Cerium Compounds was reviewed internally by EPA, by other federal agencies and White House Offices, by expert external peer reviewers, and by the public. In the new IRIS process, introduced by the EPA Administrator, all written comments on IRIS assessments submitted by other federal agencies and White House Offices will be made publicly available. Accordingly, interagency comments and the interagency draft of the Cerium Oxide and Cerium Compounds IRIS assessment are posted on this site. The draft Toxicological Review of Cerium Oxide and Cerium Compounds provides scientific support and rationale for the hazard identification and dose-response assessment pertaining to chronic exposure to cerium oxide and cerium compounds.
IRIS Toxicological Review of Cerium Oxide and Cerium Compounds (External Review Draft)
EPA conducted a peer review of the scientific basis supporting the human health hazard and dose-response assessment of cerium oxide and cerium compounds that will appear on the Integrated Risk Information System (IRIS) database.
Synthesis of mesoporous cerium compound for CO2 capture
NASA Astrophysics Data System (ADS)
Liu, Guiqing; Tatsuda, Kou; Yoneyama, Yoshiharu; Tsubaki, Noritatsu
2017-11-01
A mesoporous adsorbent was simply synthesized by adding alkaline substances to cerium(III) nitric hydrate. The surface characteristics of the synthesized cerium compound were determined with BET, XRD and TEM analysis. It was found that although the specific surface areas of the synthesized cerium compounds were among about 120-200m2 per gram (BET area) which were smaller than the common used zeolite 13X (BET area 743 m2/g) and activated carbon (BET area 1079 m2/g), but the cerium compounds had excellent performances for CO2 adsorption as well as the CO2 desorption.
IRIS TOXICOLOGICAL REVIEW AND SUMMARY ...
Cerium is a member of the lanthanoid series of rare earth metals. It is also the most abundant and most reactive of the rare earth metals. Cerium oxidizes at room temperature and forms a variety of salt compounds including oxides, hydroxides, sulfates and chlorides. Cerium is used in a variety of ways and is present in many products. For example, cerium is used as a catalyst in emission control systems for gasoline engines, and most recently, as a fuel borne catalyst for diesel engines. In addition, cerium is found in carbon arc lamps, the polishing of lens and mirrors, high temperature ceramics, and the printing and lithographic industries. Cerium is released to the environment as salt compounds from the various uses listed above. This assessment will present reference values for the noncancer effects (RfD and RfC), where supported by the available data, and a cancer evaluation of cerium and cerium compounds. The assessment will be subject to internal review and external peer review along with Agency review. The final product will reflect the Agency's opinion on the toxicity of Cerium and cerium compounds. The U.S. EPA is conducting a new health assessment of cerium (stable) and compounds that will appear on the Agency's online database, the Integrated Risk Information System (IRIS). IRIS is an EPA database containing Agency scientific positions on potential adverse human health effects that may result from chronic (or lifetime) exposure to chemicals i
Cerium Oxide and Cerium Compounds
Integrated Risk Information System (IRIS)
EPA / 635 / R - 08 / 002F www.epa.gov / iris TOXICOLOGICAL REVIEW OF Cerium Oxide and Cerium Compounds ( CAS No . 1306 - 38 - 3 ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) September 2009 U.S . Environmental Protection Agency Washington , DC DISCLAIMER This
IRIS TOXICOLOGICAL REVIEW AND SUMMARY DOCUMENTS FOR CERIUM OXIDE (STABLE) AND COMPOUNDS
Cerium is a member of the lanthanoid series of rare earth metals. It is also the most abundant and most reactive of the rare earth metals. Cerium oxidizes at room temperature and forms a variety of salt compounds including oxides, hydroxides, sulfates and chlorides. Cerium is ...
Enhanced chemiluminescence of cerium(IV)-Tween 85 system and the analytical application.
Li, Shifeng; Qian, Li; Zhu, Yan; Liu, Manman; Gao, Yinping; Ni, Yonghong
2013-01-01
The oxidation reaction between cerium(IV) and Tween 85 in sulfuric acid medium produced weak chemiluminescence (CL). In this paper, it was found that citrate could strongly enhance the CL of cerium(IV)-Tween 85-polyphenol system. Based on studies of ultraviolet-visible spectra and CL spectra, the CL enhancement mechanism had been proposed. It was surmised that the light emission was from an excited oxygen molecular pair O2((1)Δg)O2((1)∑g(-)). The maximum emission wavelength was about 478 nm. The effects of 17 amino acids and 29 organic compounds on cerium(IV)-Tween 85-citrate CL were investigated by a flow injection procedure. This study showed the present system had a wide application for the determination of these compounds. Copyright © 2012 John Wiley & Sons, Ltd.
Self-interaction-corrected local-spin-density calculations for rare earth materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Svane, A.; Temmerman, W.M.; Szotek, Z.
2000-04-20
The ab initio self-interaction-corrected (SIC) local-spin-density (LSD) approximation is discussed with emphasis on the ability to describe localized f-electron states in rare earth solids. Two methods for minimizing the SIC-LSD total energy functional are discussed, one using a unified Hamiltonian for all electron states, thus having the advantages of Bloch's theorem, the other one employing an iterative scheme in real space. Results for cerium and cerium compounds as well as other rare earths are presented. For the cerium compounds the onset of f-electron delocalization can be accurately described, including the intricate isostructural phase transitions in elemental cerium and CeP. Inmore » Pr and Sm the equilibrium lattice constant and zero temperature equation of state is greatly improved in comparison with the LSD results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, Jerome R.; Gordon, Zachary; Booth, Corwin H.
2014-06-24
Cerium compounds have played vital roles in organic, inorganic, and materials chemistry due to their reversible redox chemistry between trivalent and tetravalent oxidation states. However, attempts to rationally access molecular cerium complexes in both oxidation states have been frustrated by unpredictable reactivity in cerium(III) oxidation chemistry. Such oxidation reactions are limited by steric saturation at the metal ion, which can result in high energy activation barriers for electron transfer. An alternative approach has been realized using a rare earth/alkali metal/1,1'-BINOLate (REMB) heterobimetallic framework, which uses redox-inactive metals within the secondary coordination sphere to control ligand reorganization. The rational syntheses ofmore » functionalized cerium(IV) products and a mechanistic examination of the role of ligand reorganization in cerium(III) oxidation are presented.« less
New Scintillator Materials (K2CeBr5) and (Cs2CeBr5)
NASA Technical Reports Server (NTRS)
Hawrami, R.; Volz, M. P.; Batra, A. K.; Aggarwal, M. D.; Roy, U. N.; Groza, M.; Burger, A.; Cherepy, Nerine; Niedermayr, Thomas; Payne, Stephen A.
2008-01-01
Cesium cerium bromide (Cs2CeBr5) and potassium cerium bromide (K2CeBr5) are new scintillator materials for X-ray and gamma ray detector applications. Recently halide scintillator materials, such as Ce doped lanthanum bromide has been proved to be very important material for the same purpose. These materials are highly hygroscopic; a search for high light yield non-hygroscopic materials was highly desirable to advance the scintillator technology. In this paper, we are reporting the crystal growth of novel scintillator materials, cesium cerium bromide (Cs2CeBr5) and potassium cerium bromide (K2CeBr5). Crystals were successfully grown from the melt using the vertical Bridgman-Stockbarger technique, in a comparison with the high performance LaBr3 or LaCl3 crystals, cerium based alkali halides crystals, (Cs2CeBr5) and (K2CeBr5) have similar scintillation properties, while being much less hygroscopic. Furthermore, cesium based compounds will not suffer from the self-activity present in potassium and lanthanum compounds. However the Cs2CeBr5 crystals did not grow properly probably due to non-congruent melting or to some phase transition during cooling. Keywords." Scintillator materials; Ce3+; Energy resolution; Light yield; K2CeBr5
Pressure induced phase transition and elastic properties of cerium mono-nitride (CeN)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yaduvanshi, Namrata, E-mail: namrata-yaduvanshi@yahoo.com; Singh, Sadhna
2016-05-23
In the present paper, we have investigated the high-pressure structural phase transition and elastic properties of cerium mono-nitride. We studied theoretically the structural properties of this compound (CeN) by using the improved interaction potential model (IIPM) approach. This compound exhibits first order crystallographic phase transition from NaCl (B{sub 1}) to tetragonal (BCT) phase at 37 GPa. The phase transition pressures and associated volume collapse obtained from present potential model (IIPM) show a good agreement with available theoretical data.
Cerium LIII-edge x-ray absorption study of the CexFe4-yCoySb12 skutterudites
NASA Astrophysics Data System (ADS)
Grandjean, Fernande; Long, Gary J.; Cortes, Robert; Morelli, Donald T.; Meisner, Gregory P.
2000-11-01
The cerium LIII-edge x-ray absorption near-edge spectra of the CexFe4-yCoySb12 compounds have been obtained at 295 K and unambiguously indicate that cerium is in the 4f1 electronic ground state for all values of 0.22<=x<=0.98 and 0.0<=y<=3.5. This stable trivalent state of cerium is in agreement with the proposed (CeFe4Sb12)1-α(□Co4Sb12)α, solid solution structure, in which the cerium atoms are always surrounded by twelve antimony first neighbors and six iron second neighbors, the observed magnetic properties of CeFe4Sb12 and Ce0.9Fe3CoSb12, and the electronic structure of CeFe4Sb12 obtained from band-structure calculations.
Cyclic thermochemical process for producing hydrogen using cerium-titanium compounds
Bamberger, Carlos E.
1980-01-01
A thermochemical cyclic process for producing hydrogen employs the reaction between ceric oxide and titanium dioxide to form cerium titanate and oxygen. The titanate is treated with an alkali metal hydroxide to give hydrogen, ceric oxide, an alkali metal titanate and water. Alkali metal titanate and water are boiled to give titanium dioxide which, along with ceric oxide, is recycled.
Cyclic thermochemical process for producing hydrogen using cerium-titanium compounds
Bamberger, C.E.
A thermochemical cyclic process for producing hydrogen employs the reaction between ceric oxide and titanium dioxide to form cerium titanate and oxygen. The titanate is treated with an alkali metal hydroxide to give hydrogen, ceric oxide, an alkali metal titanate and water. Alkali metal titanate and water are boiled to give titanium dioxide which, along with ceric oxide, is recycled.
Optical and electrical studies of cerium mixed oxides
NASA Astrophysics Data System (ADS)
Sherly, T. R.; Raveendran, R.
2014-10-01
The fast development in nanotechnology makes enthusiastic interest in developing nanomaterials having tailor made properties. Cerium mixed oxide materials have received great attention due to their UV absorption property, high reactivity, stability at high temperature, good electrical property etc and these materials find wide applications in solid oxide fuel cells, solar control films, cosmetics, display units, gas sensors etc. In this study cerium mixed oxide compounds were prepared by co-precipitation method. All the samples were doped with Zn (II) and Fe (II). Preliminary characterizations such as XRD, SEM / EDS, TEM were done. UV - Vis, Diffuse reflectance, PL, FT-IR, Raman and ac conductivity studies of the samples were performed.
Al Haddabi, Buthaina; Al Lawati, Haider A J; Suliman, FakhrEldin O
2017-01-01
Three recently reported microfluidic chemiluminescence (MF-CL) methods (based on reactions with acidic permanganate enhanced by formaldehyde (KMnO4-COH), acidic cerium (IV) and rhodamine B (Ce-RB), and acidic cerium (IV) and rhodamine 6G (Ce-R6G) enhanced by SDS) for the determination of the total phenolic content (TPC) in juices were critically evaluated in terms of their selectivity. The evaluation was carried out using 86 analytes, including 22 phenolic compounds (phenolic acids and polyphenols), 6 known non-phenolic antioxidants, 9 amino acids and a number of proteins, carbohydrates, nucleotide bases, inorganic salts and other compounds. Each method was sensitive toward phenolic compounds (PCs). However, the KMnO4-COH CL system showed a higher sensitivity toward phenolic acids and also responded to non-phenolic antioxidants. The other two systems showed higher sensitivity toward polyphenolic compounds than to phenolic acids and did not responded to all other compounds including non-phenolic antioxidants. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cantú, Manuel; López-Salinas, Esteban; Valente, Jaime S; Montiel, Ramon
2005-12-15
Sulfur oxides are one of the most hazardous atmospheric pollutants since they contribute directly to acid rain formation. Consequently, stringent environmental regulations limit atmospheric SOx emissions, motivating research on efficient ways to reduce them. To supply an alternative to reduce these emissions in fluid catalytic cracking units, this study discloses efficient SOx reducing materials based on calcined MgAlFe hydrotalcite-like compounds (HT's). Thus, HT materials were synthesized by several methods including cerium addition. The adsorption of SO2 was carried out by contacting the calcined solid with a mixture of SO2 (1%) in air at 650 degrees C. It was demonstrated that the isomorphic incorporation of iron increased its reduction capability which was reflected in higher reduction rates and metal sulfate reduction grade at 550 degrees C. Moreover, when cerium was present in the iron-containing materials the saturation rate was improved, because cerium oxide promotes the oxidation of SO2 to SO3. The way cerium is incorporated influences the SO2 adsorption capacity.
Kadri, Yamina; Nciri, Riadh; Brahmi, Noura; Saidi, Saber; Harrath, Abdel Halim; Alwasel, Saleh; Aldahmash, Waleed; El Feki, Abdelfatteh; Allagui, Mohamed Salah
2018-05-07
Cerium chloride (CeCl 3 ) is considered an environmental pollutant and a potent neurotoxic agent. Medicinal plants have many bioactive compounds that provide protection against damage caused by such pollutants. Curcuma longa is a bioactive compound-rich plant with very important antioxidant properties. To study the preventive and healing effects of Curcuma longa on cerium-damaged mouse brains, we intraperitoneally injected cerium chloride (CeCl 3 , 20 mg/kg BW) along with Curcuma longa extract, administrated by gavage (100 mg/kg BW), into mice for 60 days. We then examined mouse behavior, brain tissue damage, and brain oxidative stress parameters. Our results revealed a significant modification in the behavior of the CeCl 3 -treated mice. In addition, CeCl 3 induced a significant increment in lipid peroxidation, carbonyl protein (PCO), and advanced oxidation protein product levels, as well as a significant reduction in superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities. Acetylcholinesterase (AChE) activity remarkably increased in the brain of CeCl 3 -treated mice. Histopathological observations confirmed these results. Curcuma longa attenuated CeCl 3 -induced oxidative stress and increased the activities of antioxidant enzymes. It also decreased AChE activity in the CeCl 3 -damaged mouse brain that was confirmed by histopathology. In conclusion, this study suggests that Curcuma longa has a neuroprotective effect against CeCl 3 -induced damage in the brain.
Szymański, Jan K; Temprano-Coleto, Fernando; Pérez-Mercader, Juan
2015-03-14
The cerium(IV)-alcohol couple in an acidic medium is an example of a redox system capable of initiating free radical polymerization. When the alcohol has a polymeric nature, the outcome of such a process is a block copolymer, a member of a class of compounds possessing many useful properties. The most common polymer with a terminal -OH group is poly(ethylene glycol) (PEG); however, the detailed mechanism of its reaction with cerium(IV) remains underexplored. In this paper, we report our findings for this reaction based on spectrophotometric measurements and kinetic modeling. We find that both the reaction order and the net rate constant for the oxidation process depend strongly on the nature of the acidic medium used. In order to account for the experimental observations, we postulate that protonation of PEG decreases its affinity for some of the cerium(IV)-sulfate complexes formed in the system.
Shen, Yichang; Zhang, Shirong; Li, Sen; Xu, Xiaoxun; Jia, Yongxia; Gong, Guoshu
2014-12-01
Guanglin 9 (Eucalyptus grandis × Eucalyptus urophlla) and Eucalyptus grandis 5 are two eucalyptus species which have been found to grow normally in soils contaminated with lanthanum and cerium, but the tolerance mechanisms are not clear yet. In this study, a pot experiment was conducted to investigate the tolerance mechanisms of the eucalyptus to lanthanum and cerium. Cell walls stored 45.40-63.44% of the metals under lanthanum or cerium stress. Peroxidase and catalase activities enhanced with increasing soil La or Ce concentrations up to 200 mg kg(-1), while there were no obvious changes in glutathione and ascorbate concentrations. Non-protein thiols concentrations increased with increasing treatment levels up to 200 mg kg(-1), and then decreased. Phytochelatins concentrations continued to increase under La or Ce stress. Therefore, the two eucalyptus species are La and Ce tolerant plants, and the tolerance mechanisms include cell wall deposition, antioxidant system response, and thiol compound synthesis. Copyright © 2014 Elsevier Ltd. All rights reserved.
Potential for recovery of cerium contained in automotive catalytic converters
Bleiwas, Donald I.
2013-01-01
Catalytic converters (CATCONs) are required by Federal law to be installed in nearly all gasoline- and diesel-fueled onroad vehicles used in the United States. About 85 percent of the light-duty vehicles and trucks manufactured worldwide are equipped with CATCONs. Portions of the CATCONs (called monoliths) are recycled for their platinum-group metal (PGM) content and for the value of the stainless steel they contain. The cerium contained in the monoliths, however, is disposed of along with the slag produced from the recycling process. Although there is some smelter capacity in the United States to treat the monoliths in order to recover the PGMs, a great percentage of monoliths is exported to Europe and South Africa for recycling, and a lesser amount is exported to Japan. There is presently no commercial-scale capacity in place domestically to recover cerium from the monoliths. Recycling of cerium or cerium compounds from the monoliths could help ensure against possible global supply shortages by increasing the amount that is available in the supply chain as well as the number and geographic distribution of the suppliers. It could also reduce the amount of material that goes into landfills. Also, the additional supply could lower the price of the commodity. This report analyzes how much cerium oxide is contained in CATCONs and how much could be recovered from used CATCONs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alam, Aftab; Johnson, Duane D.
Cerium and its technologically relevant compounds are examples of anomalous mixed valency, originating from two competing oxidation states—itinerant Ce4+ and localized Ce3+. Under applied stress, anomalous transitions are observed but not well understood. Here we treat mixed valency as an “alloy” problem involving two valences with competing and numerous site-occupancy configurations. We use density-functional theory with Hubbard U (i.e., DFT+U) to evaluate the effective valence and predict properties, including controlling the valence by pseudoternary alloying. For Ce and its compounds, such as (Ce,La)2(Fe,Co)14B permanent magnets, we find a stable mixed-valent α state near the spectroscopic value of νs=3.53. Ce valencymore » in compounds depends on its steric volume and local chemistry. For La doping, Ce valency shifts towards γ-like Ce3+, as expected from steric volume; for Co doping, valency depends on local Ce-site chemistry and steric volume. Our approach captures the key origins of anomalous valency and site-preference chemistry in complex compounds.« less
Comparisons of plutonium, thorium, and cerium tellurite sulfates.
Lin, Jian; Cross, Justin N; Diwu, Juan; Meredith, Nathan A; Albrecht-Schmitt, Thomas E
2013-04-15
The hydrothermal reaction of PuCl3 or CeCl3 with TeO2 in the presence of sulfuric acid under the comparable conditions results in the crystallization of Pu(TeO3)(SO4) or Ce2(Te2O5)(SO4)2, respectively. Pu(TeO3)(SO4) and its isotypic compound Th(TeO3)(SO4) are characterized by a neutral layer structure with no interlamellar charge-balancing ions. However, Ce2(Te2O5)(SO4)2 possesses a completely different dense three-dimensional framework. Bond valence calculation and UV-vis-NIR spectra indicate that the Ce compound is trivalent whereas the Pu and Th compounds are tetravalent leading to the formation of significantly different compounds. Pu(TeO3)(SO4), Th(TeO3)(SO4), and Ce2(Te2O5)(SO4)2 represent the first plutonium/thorium/cerium tellurite sulfate compounds. Our study strongly suggests that the chemistries of Pu and Ce are not the same, and this is another example of the failure of Ce as a surrogate.
NASA Astrophysics Data System (ADS)
Piness, Jessica Miriam
Low Earth orbit presents many hazards for composites including atomic oxygen, UV radiation, thermal cycling, micrometeoroids, and high energy protons. Atomic oxygen and vacuum ultraviolet radiation are of concern for space-bound polymeric materials as they degrade the polymers used as matrices for carbon fiber composites, which are used in satellites and space vehicles due to their high strength to weight ratios. Epoxy-amine thermosets comprise a common class of matrix due to processability and good thermal attributes. Polyhedral oligomeric silsesquioxanes (POSS) have shown the ability to reduce erosion in polyimides, polyurethanes, and other polymers when exposed to atomic oxygen. The POSS particle is composed of a SiO1.5 cage from which up to eight organic pendant groups are attached at the silicon corners of the cage. POSS reduced atomic oxygen impact on polymers by a process known as glassification wherein the organic pendants are removed from the cage upon atomic oxygen exposure and then the cage rearranges to a passive silica network. In addition, POSS shows good UV absorbance in the UVb and UVc ranges and POSS can aid dispersion of titanium dioxide in a nanocomposite. In this work, Chapter I focuses on hazards in low Earth orbit, strategies for protecting organic material in orbit, and the capabilities of POSS. Chapter II details the experimental practices used in this work. Chapter III focuses on work to induce POSS phase separation and layering at the surface of an epoxy-amine thermoset. Generally, POSS is dispersed throughout a nanocomposite, and in the process of erosion by atomic oxygen, some polymer mass loss is lost before enough POSS is exposed to begin glassification. Locating POSS at a surface of composite could possibly reduce this mass loss and the objective of this research was to investigate the formation of POSS-rich surfaces. Three POSS derivatives with different pendant groups were chosen. The POSS derivatives had a range of miscibilities with the epoxy-amine matrix. A sedimented layer of the most incompatible POSS moiety was observed at the bottom of bars at the highest loading level of 5 wt% POSS. It was concluded that POSS could form a sedimented layer in this epoxy during cure. Epoxy amine materials containing POSS derivatives were tested by exposure to atomic oxygen at NASA Glenn Research Center with each POSS derivative present in separate samples at 2.5 wt% loading levels. Mass loss did not decrease against an unfilled control and glassification was not observed, leading to the conclusion that POSS could not be effectively concentrated at a surface to reduce degradation given the methods used. Taking this into account, the study transitioned into seeking ways to integrate highly UV absorbent cerium compounds with POSS. This part of the study is reported in Chapter IV. It was anticipated that POSS with a polar pendant group would interact through intermolecular forces with cerium (IV) oxide and produce a suspension that could be cured at the surface of polymers. However, in every experiment, the cerium (IV) oxide was not dispersed. However, a homogeneous dispersion of a cerium-containing compound was achieved by combining trisilanol phenyl POSS with cerium (III) nitrate hexahydrate. NMR and mass spectrometry showed that the mixture of Cerium nitrate and trisilanol phenyl POSS did not result in the formation of a chemical compound but FTIR studies indicated the presence of hydrogen bonding between the POSS silanols and cerium-associated water. The resulting material was termed "CePOSS". CePOSS was more UV absorbent in the UVc region than POSS or other cerium compounds as measured by solution UV-vis spectroscopy. In addition, CePOSS could be mixed into a POSS-epoxy coating, after pre-blending with poly(ethylene glycol) POSS, to produce films that were essentially opaque in the UV region below a wavelength of about 300 nm, and transparent in the visible region above 300 nm. The discovery of a 'window of transparency' in the visible region is significant in view of the fact that the epoxy-amine polymers, sans the POSS and cerium additives, were opaque across the entire UV/ visible range. The investigation of the UV transmittance and glassification response of these CePOSS-POSS-epoxy films is described in Chapter V. UV transmittance of the POSS-epoxy coating was predicted to decrease below 275 nm with the presence of CePOSS given the solution UV-vis spectroscopy results. However, there was no difference seen in transmittance between coatings with and without CePOSS below 275 nm. The transparent region above 300 nm was seen in all samples with any type of POSS. In addition, UV/ozone exposure was completed on epoxy, POSS-epoxy, and CePOSS-POSS-epoxy coatings to examine the effect of cerium on POSS glassification. Oxidation was achieved even in the presence of CePOSS as verified by x-ray photoelectron spectroscopy, scanning electron microscopy, and contact angle. Finally, UV transmittance was done on pre and post exposed materials.
Khotimchenko, Yuri; Khozhaenko, Elena; Kovalev, Valeri; Khotimchenko, Maxim
2012-01-01
Cerium binding activity of three different water soluble pectin compounds of different origin was studied in a batch sorption system. The Langmuir, Freundlich and BET sorption models were adopted to describe the binding reactions between metal ions and pectin molecules. The Langmuir model provided the best fit. Within the pH range from 4.0 to 6.0, the largest amount of the cerium ions was bound by pectin isolated from the seagrass Phylospadix iwatensis in comparison to pectin extracted from the seagrass Zostera marina and pectin obtained from citrus peel (commercial grade). The Langmuir constants were also highest for the pectin samples isolated from the seagrass P. iwatensis. The results obtained from this study suggest that pectin is a prospective source for the development of radioisotope-removing pharmaceuticals. PMID:22690146
Giant crystal-electric-field effect and complex magnetic behavior in single-crystalline CeRh3Si2
NASA Astrophysics Data System (ADS)
Pikul, A. P.; Kaczorowski, D.; Gajek, Z.; Stȩpień-Damm, J.; Ślebarski, A.; Werwiński, M.; Szajek, A.
2010-05-01
Single-crystalline CeRh3Si2 was investigated by means of x-ray diffraction, magnetic susceptibility, magnetization, electrical resistivity, and specific-heat measurements carried out in wide temperature and magnetic field ranges. Moreover, the electronic structure of the compound was studied at room temperature by cerium core-level x-ray photoemission spectroscopy (XPS). The physical properties were analyzed in terms of crystalline electric field and compared with results of ab initio band-structure calculations performed within the density-functional theory approach. The compound was found to crystallize in the orthorhombic unit cell of the ErRh3Si2 type (space group Imma No.74, Pearson symbol: oI24 ) with the lattice parameters a=7.1330(14)Å , b=9.7340(19)Å , and c=5.6040(11)Å . Analysis of the magnetic and XPS data revealed the presence of well-localized magnetic moments of trivalent cerium ions. All the physical properties were found to be highly anisotropic over the whole temperature range studied and influenced by exceptionally strong crystalline electric field with the overall splitting of the 4f1 ground multiplet exceeding 5700 K. Antiferromagnetic order of the cerium magnetic moments at TN=4.70(1)K and their subsequent spin rearrangement at Tt=4.48(1)K manifest themselves as distinct anomalies in the temperature characteristic of all the physical properties investigated and exhibit complex evolution in an external magnetic field. A tentative magnetic B-T phase diagram, constructed for B parallel to the b axis being the easy magnetization direction, shows very complex magnetic behavior of CeRh3Si2 , similar to that recently reported for an isostructural compound CeIr3Si2 . The electronic band-structure calculations corroborated the antiferromagnetic ordering of the cerium magnetic moments and well-reproduced the experimental XPS valence-band spectrum.
Investigation of americium-241 metal alloys for target applications. [Alloys with cerium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conner, W.V.
1980-01-01
Several americium-241 metal alloys have been investigated for possible use in the Lawrence Livermore National Laboratory Radiochemical Diagnostic Tracer Program. Alloys investigated have included uranium-americium, aluminum-americium, and cerium-americium. Uranium-americium alloys with the desired properties proved to be difficult to prepare, and work with this alloy was discontinued. Aluminum-americium alloys were much easier to prepare, but the alloy consisted of an aluminum-americium intermetallic compound (AmAl/sub 4/) in an aluminum matrix. This alloy could be cast and formed into shapes, but the low density of aluminum, and other problems; made the alloy unsuitable for the intended application. Americium metal was found tomore » have a high solid solubility in cerium and alloys prepared from these two elements exhibited all of the properties desired for the tracer program application. Cerium-americium alloys containing up to 34 wt % americium have been prepared using both comelting and coreduction techniques. The latter technique involves coreduction of Ce F/sub 4/ and AmF/sub 4/ with calcium metal in a sealed reduction vessel. Casting techniques have been developed for preparing up to eight 0.87 inch (2.2 cm) diameter disks in a single casting, and cerium-americium metal alloy disks containing from 10 to 25 wt % americium-241 have been prepared using these techniques.« less
Preparation of olefins from synthesis gas using ruthenium supported on ceric oxide
Pierantozzi, Ronald
1985-01-01
A catalyst comprising a ruthenium carbonyl compound deposited on a cerium oxide-containing support material provides for the selective synthesis of low molecular weight olefinic hydrocarbons from mixtures of hydrogen and carbon monoxide.
Preparation of olefins from synthesis gas using ruthenium supported on ceric oxide
Pierantozzi, R.
1985-04-09
A catalyst comprising a ruthenium carbonyl compound deposited on a cerium oxide-containing support material provides for the selective synthesis of low molecular weight olefinic hydrocarbons from mixtures of hydrogen and carbon monoxide.
Effect of indium addition in U-Zr metallic fuel on lanthanide migration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Yeon Soo; Wiencek, T.; O'Hare, E.
Advanced fast reactor concepts to achieve ultra-high burnup (~50%) require prevention of fuel-cladding chemical interaction (FCCI). Fission product lanthanide accumulation at high burnup is substantial and significantly contributes to FCCI upon migration to the cladding interface. Diffusion barriers are typically used to prevent interaction of the lanthanides with the cladding. A more active method has been proposed which immobilizes the lanthanides through formation of stable compounds with an additive. Theoretical analysis showed that indium, thallium, and antimony are good candidates. Indium was the strongest candidate because of its low reactivity with iron-based cladding alloys. Characterization of the as-fabricated alloys wasmore » performed to determine the effectiveness of the indium addition in forming compounds with lanthanides, represented by cerium. Tests to examine how effectively the dopant prevents lanthanide migration under a thermal gradient were also performed. The results showed that indium effectively prevented cerium migration.« less
Ruthenium carbonyl catalyst supported on ceric oxide for preparation of olefins from synthesis gas
Pierantozzi, R.
1985-04-02
A catalyst comprising a ruthenium carbonyl compound deposited on a cerium oxide-containing support material provides for the selective synthesis of low molecular weight olefinic hydrocarbons from mixtures of hydrogen and carbon monoxide.
Ruthenium carbonyl catalyst supported on ceric oxide for preparation of olefins from synthesis gas
Pierantozzi, Ronald
1985-01-01
A catalyst comprising a ruthenium carbonyl compound deposited on a cerium oxide-containing support material provides for the selective synthesis of low molecular weight olefinic hydrocarbons from mixtures of hydrogen and carbon monoxide.
Cerium chloride stimulated controlled conversion of B-to-Z DNA in self-assembled nanostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhanjadeo, Madhabi M.; Academy of Scientific & Innovative Research; Nayak, Ashok K.
DNA adopts different conformation not only because of novel base pairs but also while interacting with inorganic or organic compounds. Self-assembled branched DNA (bDNA) structures or DNA origami that change conformation in response to environmental cues hold great promises in sensing and actuation at the nanoscale. Recently, the B-Z transition in DNA is being explored to design various nanomechanical devices. In this communication we have demonstrated that Cerium chloride binds to the phosphate backbone of self-assembled bDNA structure and induce B-to-Z transition at physiological concentration. The mechanism of controlled conversion from right-handed to left-handed has been assayed by various dyemore » binding studies using CD and fluorescence spectroscopy. Three different bDNA structures have been identified to display B-Z transition. This approach provides a rapid and reversible means to change bDNA conformation, which can be used for dynamic and progressive control at the nanoscale. - Highlights: • Cerium-induced B-to-Z DNA transition in self-assembled nanostructures. • Lower melting temperature of Z-DNA than B-DNA confirmed by CD spectroscopy. • Binding mechanism of cerium chloride is explained using fluorescence spectroscopy. • Right-handed to left-handed DNA conformation is also noticed in modified bDNA structure.« less
Corrosion Protection Mechanisms of Rare-Earth Compounds Based on Cerium and Praseodymium
2012-04-01
Annular Dark Field IMC–Intermetallic compound LA-ICP-MS Laser Ablation Inductively Coupled Plasma Mass Spectrometry MPY—Mils per year (a measure of...currently researching CeCCs. ................................. 20 Table 2. Mass percent losses during various ranges of thermal treatment for Pr6O11...analysis data of corrosion product in an 084 primer series scribe following 500 hours of salt spray exposure as detected by mass spectrometry
A facile synthesis of the basic steroidal skeleton using a Pauson-Khand reaction as a key step.
Kim, Do Han; Kim, Kwang; Chung, Young Keun
2006-10-13
A high-yield synthesis of steroid-type molecules under mild reaction conditions is achieved in two steps involving nucleophilic addition of alkynyl cerium reagent to an easily enolizable carbonyl compound (beta-tetralone) followed by an intramolecular Pauson-Khand reaction.
Multifunctional cerium-based nanomaterials and methods for producing the same
O'Keefe, Matthew J.; Castano Londono, Carlos E.; Fahrenholtz, William G.
2018-01-09
Embodiments relate to a cerium-containing nano-coating composition, the composition including an amorphous matrix including one or more of cerium oxide, cerium hydroxide, and cerium phosphate; and crystalline regions including one or more of crystalline cerium oxide, crystalline cerium hydroxide, and crystalline cerium phosphate. The diameter of each crystalline region is less than about 50 nanometers.
Anisotropy of critical correlations in moderately delocalized cerium and actinide systems
NASA Astrophysics Data System (ADS)
Kioussis, Nicholas; Cooper, Bernard R.
1986-09-01
The equilibrium and excitation magnetic behavior of a class of cerium and light actinide compounds have been explained previously, in a theory first developed by Siemann and Cooper, in terms of a band-f-electron anisotropic hybridization-mediated two-ion interaction of the Coqblin-Schrieffer type. Using the same theory, we present here a calculation, within the random-phase approximation, of the longitudinal component of the static wave-vector-dependent susceptibility in the paramagnetic phase. The calculations have been performed in the presence of a cubic crystal field (CF) and yield results for the ratio of inverse critical correlation lengths, κ/κ⊥, parallel and perpendicular to the moment direction, that compare well with those of diffuse critical neutron scattering experiments. In Ce3+ (f1) compounds, we find that as the CF interaction (Γ7 ground state) predominates over the two-ion interaction, the relative strength of the coupling within the ferromagnetic \\{001\\} planes (with moments perpendicular to the planes) and that between the \\{001\\} planes is gradually reversed, resulting in a ratio κ/κ⊥ smaller than unity, as is experimentally observed. We also present results for the effect of differing intraionic (L-S, intermediate, and j-j) coupling on κ/κ⊥ for the case of Pu3+(f5) and U3+(f3) compounds.
Hybridization-mediated anisotropic coupling in plutonium compounds
NASA Astrophysics Data System (ADS)
Banerjea, Amitava; Cooper, Bernard R.; Thayamballi, Pradeep
1984-09-01
The magnetic behavior of a class of cerium and light actinide compounds containing moderately delocalized f electrons has been explained on the basis of an anisotropic two-ion interaction that arises from the hybridization of band electrons and the f electrons. This theory, first developed by Siemann and Cooper for cerium compounds using the treatment of Coqblin and Schrieffer for the hybridization, was later generalized by Thayamballi and Cooper to fn systems in the L-S and j-j coupling limits. We here extend the theory to the case of intermediate intraionic coupling and further include the possibility of long-period antiferromagnetic structures. In particular, we have considered the Pu3+(f5) ion in PuSb. The theory reproduces the experimentally observed magnetic behavior of PuSb quite closely, predicting a phase transition from a low-temperature ferromagnetic phase to a long-period antiferromagnetic phase at about 75 K, for a fitting to a Néel temperature of 85 K, with ordered moments close to the experimental values. However, while the modulation in the long-period antiferromagnetic phase has been experimentally observed to be longitudinal, the theory predicts a transverse modulation with moments aligned along the cube edge. We also present the T=0 magnetic excitation spectrum in the ferromagnetic phase calculated on the basis of this theory using the random-phase approximation.
Synthesis and Characterization of Cerium(IV) Metallocenes
Sutton, Andrew; Clark, David Lewis; Scott, Brian Lindley; ...
2015-12-11
In this study, by applying a salt metathesis approach between Ce(OtBu 3) 2(NO 3) 2(THF) 2 and the potassium salts of mono- and ditrimethylsilyl substituted cyclopentadienes, we were able to isolate two new Ce(IV) metallocenes, including to the best of our knowledge, the first structurally characterized bis-cyclopentadiene Ce(IV) compound.
Preparation of the porous cerium dioxide film by two-step anodization and heat treating method
NASA Astrophysics Data System (ADS)
Liu, Xiaozhen; Zhu, Bolun; Liu, Yuze; Wang, Shanshan; Chen, Jie; Wang, Xiaoyu
2017-12-01
The porous cerium dioxide films were prepared with cerium foils as raw materials by two-step anodization and heat treating method. The anodic cerium oxide films were heat treated in 25∼400°C respectively. The cerium dioxide films were characterized with X-ray diffraction (XRD), Fourier transform infrared (FTIR) techniques, energy-dispersive analyses of X-ray (EDAX) and scanning electron microcopy (SEM), respectively. The anodic cerium oxide film is composed of Ce(OH)3, CeO2 and Ce2O3. When the anodic cerium oxide films were heat treated in 300°C∼400°C for 2h, Ce(OH)3 and Ce2O3 in the anodic cerium oxide films may be converted to CeO2, and the heat treated anodic cerium oxide films are the cerium dioxide films. Water, ethylene glycol and CO2 are adsorbed in the anodic cerium oxide film. The adsorbing water, ethylene glycol and CO2 in the anodic cerium oxide film are removed at 300°C. The cerium dioxide film has strong absorption in the range of 1600∼4000cm-1. The structure of the cerium dioxide film is the porous.
A Macrocyclic Chelator That Selectively Binds Ln 4+ over Ln 3+ by a Factor of 10 29
Pham, Tiffany A.; Altman, Alison B.; Stieber, S. Chantal E.; ...
2016-06-24
A tetravalent cerium macrocyclic complex (CeLK 4) was prepared with an octadentate terephthalamide ligand comprised of hard catecholate donors and characterized in the solution state by spectrophotometric titrations and electrochemistry and in the crystal by X-ray diffraction. The solution-state studies showed that L exhibits a remarkably high affinity toward Ce 4+, with log β 110 = 61(2) and ΔG = -348 kJ/mol, compared with log β 110 = 32.02(2) for the analogous Pr 3+ complex. In addition, L exhibits an unusual preference for forming CeL 4- relative to formation of the analogous actinide complex, ThL 4- , which has βmore » 110 = 53.7(5). The extreme stabilization of tetravalent cerium relative to its trivalent state is also evidenced by the shift of 1.91 V in the redox potential of the Ce 3+/Ce 4+ couple of the complex (measured at -0.454 V vs SHE). The unprecedented behavior prompted an electronic structure analysis using L 3 - and M 5,4-edge X-ray absorption near-edge structure (XANES) spectroscopies and configuration interaction calculations, which showed that 4f-orbital bonding in CeLK 4 has partial covalent character due to ligand-to-metal charge transfer (LMCT) in the ground state. The experimental results are presented in the context of earlier measurements on tetravalent cerium compounds, indicating that the amount of LMCT for CeLK 4 is similar to that observed for [Et 4N] 2[CeCl 6] and CeO 2 and significantly less than that for the organometallic sandwich compound cerocene, (C 8H 8) 2Ce. A simple model to rationalize changes in 4f orbital bonding for tri- and tetravalent lanthanide and actinide compounds is also provided.« less
Induction of pulmonary fibrosis by cerium oxide nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Jane Y., E-mail: jym1@cdc.gov; Mercer, Robert R.; Barger, Mark
2012-08-01
Cerium compounds have been used as a diesel engine catalyst to lower the mass of diesel exhaust particles, but are emitted as cerium oxide (CeO{sub 2}) nanoparticles in the diesel exhaust. In a previous study, we have demonstrated a wide range of CeO{sub 2}-induced lung responses including sustained pulmonary inflammation and cellular signaling that could lead to pulmonary fibrosis. In this study, we investigated the fibrogenic responses induced by CeO{sub 2} in a rat model at various time points up to 84 days post-exposure. Male Sprague Dawley rats were exposed to CeO{sub 2} by a single intratracheal instillation. Alveolar macrophagesmore » (AM) were isolated by bronchial alveolar lavage (BAL). AM-mediated cellular responses, osteopontin (OPN) and transform growth factor (TGF)-β1 in the fibrotic process were investigated. The results showed that CeO{sub 2} exposure significantly increased fibrotic cytokine TGF-β1 and OPN production by AM above controls. The collagen degradation enzymes, matrix metalloproteinase (MMP)-2 and -9 and the tissue inhibitor of MMP were markedly increased in the BAL fluid at 1 day- and subsequently declined at 28 days after exposure, but remained much higher than the controls. CeO{sub 2} induced elevated phospholipids in BAL fluid and increased hydroxyproline content in lung tissue in a dose- and time-dependent manner. Immunohistochemical analysis showed MMP-2, MMP-9 and MMP-10 expressions in fibrotic regions. Morphological analysis noted increased collagen fibers in the lungs exposed to a single dose of 3.5 mg/kg CeO{sub 2} and euthanized at 28 days post-exposure. Collectively, our studies show that CeO{sub 2} induced fibrotic lung injury in rats, suggesting it may cause potential health effects. -- Highlights: ► Cerium oxide exposure significantly affected the following parameters in the lung. ► Induced fibrotic cytokine OPN and TGF-β1 production and phospholipidosis. ► Caused imbalance of the MMP-9/ TIMP-1 ratio that favors fibrosis. ► Cerium oxide particles were detected in lung tissue and AM. ► Cerium oxide caused lung fibrosis in a dose- and time-dependent manner.« less
High-pressure synthesis and characterization of the first cerium fluoride borate CeB{sub 2}O{sub 4}F
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinteregger, Ernst; Wurst, Klaus; Tribus, Martina
2013-08-15
CeB{sub 2}O{sub 4}F is the first cerium fluoride borate, which is exclusively built up of one-dimensional, infinite chains of condensed trigonal-planar [BO{sub 3}]{sup 3−} groups. This new cerium fluoride borate was synthesized under high-pressure/high-temperature conditions of 0.9 GPa and 1450 °C in a Walker-type multianvil apparatus. The compound crystallizes in the orthorhombic space group Pbca (No. 61) with eight formula units and the lattice parameters a=821.63(5), b=1257.50(9), c=726.71(6) pm, V=750.84(9) Å{sup 3}, R{sub 1}=0.0698, and wR{sub 2}=0.0682 (all data). The structure exhibits a 9+1 coordinated cerium ion, one three-fold coordinated fluoride ion and a one-dimensional chain of [BO{sub 3}]{sup 3−}more » groups. Furthermore, IR spectroscopy, Electron Micro Probe Analysis and temperature-dependent X-ray powder diffraction measurements were performed. - Graphical abstract: A new rare-earth fluoride borate CeB{sub 2}O{sub 4}F could be synthesized under high-pressure/high-temperature conditions of 0.9 °GPa and 1450 °Cin a Walker-type multianvil apparatus. The crystal structure represents a new structure type in the class of rare-earth fluoride borates. The structure exhibits a 9+1 coordinated cerium ion, one three-fold coordinated fluoride ion and a one-dimensional chain of [BO{sub 3}]{sup 3−} groups. A closer view on the ac-plane shows an interesting wave-like modulation of the borate chains. Highlights: • CeB{sub 2}O{sub 4}F is the first fluoride borate exclusively built up of one-dimensional, infinite chains of condensed trigonal-planar [BO{sub 3}]{sup 3−} groups. • CeB{sub 2}O{sub 4}F is the first cerium fluoride borate. • High-pressure conditions were necessary to synthesize CeB{sub 2}O{sub 4}F.« less
Synthesis of nanocrystalline Ni/Ce-YSZ powder via a polymerization route
NASA Astrophysics Data System (ADS)
Abolghasemi, Z.; Tamizifar, M.; Arzani, K.; Nemati, A.; Khanfekr, A.; Bolandi, M.
2013-08-01
Pechini process was used for preparation of three kinds of nanocrystalline powders of yttria-stabilized zirconia (YSZ): doped with 1.5 mol% nickel oxide, doped with 15 mol% ceria, and doped with 1.5 mol% nickel oxide plus 15 mol% ceria. Zirconium chloride, yttrium nitrate, cerium nitrate, nickel nitrate, citric acid and ethylene glycol were polymerized at 80 °C to produce a gel. XRD, SEM and TEM analyses were used to investigate the crystalline phases and microstructures of obtained compounds. The results of XRD revealed the formation of nanocrystalline powder at 900 °C. Morphology of the powder calcined at 900 °C, examined with a scanning electron microscope, showed that the presence of nickel and cerium inhibited the grain growth in the system. The average crystallite size of the material doped with nickel oxide (9.33 nm) was bigger than the one doped with cerium oxide (9.29 nm), while the YSZ doping with the two oxides simultaneously promoted the grain growth with crystallite size of 11.37 nm. Yttria-stabilized zirconia powder with a mean crystallite size of 9.997 nm was prepared successfully by this method.
Scandia-Stabilized Zirconia Coating for Composites.
1990-04-03
are present as oxides, acids and as in U.S. Pat. No. 4,328,285, describes some of the prior free sulfur . art attempts to coat engine parts with ceramic...base Because vanadium pentoxide (V205 ) is an acidic ox- materials, and Siemers teaches using cerium oxide or ide, it reacts with Na2O (a highly...surfaces exposed to vanadium and compounds decreases with the V2Os/Na2O ratio from sulfur compound corrosion. Na2V 120 31 (most acidic ) to Na3VO4(least
Cornu, Lucile; Gaudon, Manuel; Veber, Philippe; Villesuzanne, Antoine; Pechev, Stanilas; Garcia, Alain; Jubera, Véronique
2015-03-23
Ce-doped Rb2 KInF6 elpasolite has the potential for tunable luminescence due to an unusual reversible redox process between the cerium and indium cations. Coupled with a deep understanding of the luminescence properties, XRD analysis and DFT calculations are used to locate the doping elements in the host lattice. The origin explanation of the charge-transfer mechanism that causes a decrease or increase in the blue-green cerium emission in opposition to the red indium emission is discussed regarding the crystallographic structure, the connection of the metallic cations and their equilibrium valence. Still detectable after nineteen years, the optical contrast created under irradiation makes this material a good candidate as photosensor for data storage. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Method of applying a cerium diffusion coating to a metallic alloy
Jablonski, Paul D [Salem, OR; Alman, David E [Benton, OR
2009-06-30
A method of applying a cerium diffusion coating to a preferred nickel base alloy substrate has been discovered. A cerium oxide paste containing a halide activator is applied to the polished substrate and then dried. The workpiece is heated in a non-oxidizing atmosphere to diffuse cerium into the substrate. After cooling, any remaining cerium oxide is removed. The resulting cerium diffusion coating on the nickel base substrate demonstrates improved resistance to oxidation. Cerium coated alloys are particularly useful as components in a solid oxide fuel cell (SOFC).
Zhang, Weilan; Ebbs, Stephen D; Musante, Craig; White, Jason C; Gao, Cunmei; Ma, Xingmao
2015-01-21
The potential toxicity and accumulation of engineered nanomaterials (ENMs) in agricultural crops has become an area of great concern and intense investigation. Interestingly, although below-ground vegetables are most likely to accumulate the highest concentrations of ENMs, little work has been done investigating the potential uptake and accumulation of ENMs for this plant group. The overall objective of this study was to evaluate how different forms of cerium (bulk cerium oxide, cerium oxide nanoparticles, and the cerium ion) affected the growth of radish (Raphanus sativus L.) and accumulation of cerium in radish tissues. Ionic cerium (Ce(3+)) had a negative effect on radish growth at 10 mg CeCl3/L, whereas bulk cerium oxide (CeO2) enhanced plant biomass at the same concentration. Treatment with 10 mg/L cerium oxide nanoparticles (CeO2 NPs) had no significant effect on radish growth. Exposure to all forms of cerium resulted in the accumulation of this element in radish tissues, including the edible storage root. However, the accumulation patterns and their effect on plant growth and physiological processes varied with the characteristics of cerium. This study provides a critical frame of reference on the effects of CeO2 NPs versus their bulk and ionic counterparts on radish growth.
Cerium migration during PEM fuel cell accelerated stress testing
Baker, Andrew M.; Mukundan, Rangachary; Borup, Rodney L.; ...
2016-01-01
Cerium is a radical scavenger which improves polymer electrolyte membrane (PEM) fuel cell durability. During operation, however, cerium rapidly migrates in the PEM and into the catalyst layers (CLs). In this work, membrane electrode assemblies (MEAs) were subjected to accelerated stress tests (ASTs) under different humidity conditions. Cerium migration was characterized in the MEAs after ASTs using X-ray fluorescence. During fully humidified operation, water flux from cell inlet to outlet generated in-plane cerium gradients. Conversely, cerium profiles were flat during low humidity operation, where in-plane water flux was negligible, however, migration from the PEM into the CLs was enhanced. Humiditymore » cycling resulted in both in-plane cerium gradients due to water flux during the hydration component of the cycle, and significant migration into the CLs. Fluoride and cerium emissions into effluent cell waters were measured during ASTs and correlated, which signifies that ionomer degradation products serve as possible counter-ions for cerium emissions. Fluoride emission rates were also correlated to final PEM cerium contents, which indicates that PEM degradation and cerium migration are coupled. Lastly, it is proposed that cerium migrates from the PEM due to humidification conditions and degradation, and is subsequently stabilized in the CLs by carbon catalyst supports.« less
Synthesis, structure, and magnetic properties of LaTMg and CeTMg (T = Pd, Pt, Au)
NASA Astrophysics Data System (ADS)
Gibson, B. J.; Das, A.; Kremer, R. K.; Hoffmann, R.-D.; Pöttgen, R.
2002-05-01
The title compounds were prepared from the elements by reactions in sealed tantalum tubes in a water-cooled sample chamber of a high-frequency furnace. They crystallize with the ZrNiAl-type structure, space group P bar 6 2m. The structures of the cerium compounds were refined from single-crystal x-ray diffraction data: a = 767.3(1) pm, c = 410.37(4) pm, wR2 = 0.0324, 521 F2-values for CePdMg; a = 755.02(7) pm, c = 413.82(4) pm, wR2 = 0.0393, 514 F2-values for CePtMg; and a = 774.1(3) pm, c = 421.6(1) pm, wR2 = 0.0355, 395 F2-values for CeAuMg, with 14 variables for each refinement. The palladium compound shows a small homogeneity range: CePd1+xMg1-x. The structures contain two crystallographically different transition metal sites T1 and T2 which are located in tri-capped trigonal prisms: [T1 Mg6Ce3] and [T2 Ce6Mg3]. Magnetic susceptibility and heat capacity measurements reveal long-range magnetic ordering at 2.1(2) K for CePdMg, 3.6(2) K for CePtMg, and 2.0(2) K for CeAuMg. Curie-Weiss behaviour at higher temperatures shows that the cerium ions are in the 3+ oxidation state. The isotypic LaTMg compounds are Pauli paramagnetic down to lowest temperatures (T = 0.3 K). All the compounds, RETMg (RE = La, Ce; T = Pd, Pt, Au) show metallic behaviour.
Electrosprayed Cerium Oxide Nanoparticles
NASA Astrophysics Data System (ADS)
Azar, Pedram Bagherzadeh; Tavanai, Hossein; Allafchian, Ali Reza
2018-04-01
Cerium oxide nanoparticles were fabricated via the calcination of electrosprayed polyvinyl alcohol (PVA)/cerium nitrate nanoparticles. The effect of material variables of PVA/cerium nitrate electrospraying solution, i.e. viscosity, surface tension and electrical conductivity, as well as important process variables like voltage, nozzle-collector distance and feed rate on cerium oxide nanoparticle size, are investigated. Scanning electron microscopy and Fourier-transform infrared (FTIR) spectroscopy analysis have also been carried out. The results showed that electrospraying of PVA/cerium nitrate (25% w/v) was only possible with PVA concentrations in the range of 5-8% w/v. With other conditions constant, decreasing PVA concentration, decreasing feed rate, increasing nozzle-collector distance and increasing voltage decreased the size of the final cerium oxide nanoparticles. The gross average size of all cerium oxide nanoparticles obtained in this work was about 80 nm. FTIR analysis proved the formation of cerium oxide after the calcination process.
Cooperative magnetic behaviour in the new valence fluctuating compound Ce2Rh3Ge
NASA Astrophysics Data System (ADS)
Falkowski, M.; Strydom, A. M.
2015-10-01
In this study we report the physical properties of the new ternary compound Ce2Rh3Ge that crystallizes in the rhombohedral, triple hexagonal MgCu2-type of structure. The electronic ground state properties of Ce2Rh3Ge were characterized by magnetic susceptibility, specific heat, electrical resistivity and thermal transport measurements. The results indicate the presence of short range magnetic interaction, probably of ferromagnetic origin below T C = 4 K. The shape of χ -1(T) deviates from the Curie-Weiss behavior with a broad minimum at about T\\min{{χ-1}} = 450 K reminiscent of valence fluctuating cerium systems. At T = 10 K, the magnetic part of the resistivity ρ 4 f (T) exhibits a shallow minimum followed by increase of resistivity ρ(T) \\propto -lnT, which hints at a substantial Kondo screening effect. Ce2Rh3Ge belongs to a small group of strongly correlated cerium compounds in which the two competing effects of Kondo and RKKY interactions produce long-range magnetic order from strongly hybridized and intermediate-valent 4 f spins. At sufficiently low temperatures Ce2Rh3Ge scales well with the Kadowaki-Woods ratio A/γ 2 and the value of the Wilson ratio χ(T → 0)/γ found for this compound classifies it as a mixed-valence compound. The presence of valence fluctuation and magnetic order it is rare for these attributes to be found simultaneously in same compound, in same temperature range. In our opinion a novelty of presented results of Ce2Rh3Ge is that this compound adds a new member to a small but growing class of systems bearing a strongly mixed- or intermediate-valent 4 f magnetic moment, but in which the lattice of spins nevertheless end up finding it possible to order magnetically.
Formulation and method for preparing gels comprising hydrous cerium oxide
Collins, Jack L; Chi, Anthony
2013-05-07
Formulations useful for preparing hydrous cerium oxide gels contain a metal salt including cerium, an organic base, and a complexing agent. Methods for preparing gels containing hydrous cerium oxide include heating a formulation to a temperature sufficient to induce gel formation, where the formulation contains a metal salt including cerium, an organic base, and a complexing agent.
The sonochemical arylation of malonic esters mediated by manganese triacetate.
Meciarova, M; Toma, S; Luche, J L
2001-04-01
The intermolecular arylation of malonate esters in acetic acid solution in the presence of manganese(III) triacetate is known to proceed via an Electron Transfer mechanism. Under sonication, this reaction undergoes only minor changes. In contrast, the intramolecular reaction of dimethyl alpha-(3-phenylpropyl)malonate provides a new case of sonochemical switching, with the formation of compounds 7-9, while conventional thermal conditions generate only the bicyclic compound 6. Reactions using the more powerful oxidant, cerium ammonium nitrate are governed by the formation of the nitrate ester 11. Compounds 7-9 are isolated in yields lower than with MnTA, and in proportions depending on the conditions, thermal or sonochemical.
Thermoelectric properties of cerium monopnictides
NASA Technical Reports Server (NTRS)
Danielson, L. R.; Alexander, M. N.; Wood, C.; Lockwood, R. A.; Vandersande, J. W.
1987-01-01
Several cerium pnictides have been synthesized from the pure elements and hot pressed into test samples. Measurements of Seebeck coefficients and electrical resistivities were performed on these samples from room temperature to 1000 C. Cerium arsenide and cerium antimonide are n-type; cerium nitride changes from p-type to n-type conduction at 800 C. The materials are semimetals with resistivities below 1 mohm/cm. Cerium arsenide is the most favorable of the pnictides studied for high-temperature thermoelectric energy conversion, with an average power factor of 15 microW/cm K sq from 500 to 1000 C.
Nanocrystalline cerium oxide materials for solid fuel cell systems
Brinkman, Kyle S
2015-05-05
Disclosed are solid fuel cells, including solid oxide fuel cells and PEM fuel cells that include nanocrystalline cerium oxide materials as a component of the fuel cells. A solid oxide fuel cell can include nanocrystalline cerium oxide as a cathode component and microcrystalline cerium oxide as an electrolyte component, which can prevent mechanical failure and interdiffusion common in other fuel cells. A solid oxide fuel cell can also include nanocrystalline cerium oxide in the anode. A PEM fuel cell can include cerium oxide as a catalyst support in the cathode and optionally also in the anode.
NASA Astrophysics Data System (ADS)
Patil, Swanand D.
Cerium oxide has been used extensively for various applications over the past two decades. The use of cerium oxide nanoparticles is beneficial in present applications and can open avenues for future applications. The present study utilizes the microemulsion technique to synthesize uniformly distributed cerium oxide nanoparticles. The same technique was also used to synthesize cerium oxide nanoparticles doped with trivalent elements (La and Nd). The fundamental study of cerium oxide nanoparticles identified variations in properties as a function of particle size and also due to doping with trivalent elements (La and Nd). It was found that the lattice parameter of cerium oxide nanoparticles increases with decrease in particle size. Also Raman allowed mode shift to lower energies and the peak at 464 cm-1 becomes broader and asymmetric. The size dependent changes in cerium oxide were correlated to increase in oxygen vacancy concentration in the cerium oxide lattice. The doping of cerium oxide nanoparticles with trivalent elements introduces more oxygen vacancies and expands the cerium oxide lattice further (in addition to the lattice expansion due to the size effect). The lattice expansion is greater for La-doped cerium oxide nanoparticles compared to Nd-doping due to the larger ionic radius of La compared to Nd, the lattice expansion is directly proportional to the dopant concentration. The synthesized cerium oxide nanoparticles were used to develop an electrochemical biosensor of hydrogen peroxide (H2O2). The sensor was useful to detect H2O2 concentrations as low as 1muM in water. Also the preliminary testing of the sensor on tomato stem and leaf extracts indicated that the sensor can be used in practical applications such as plant physiological studies etc. The nanomolar concentrations of cerium oxide nanoparticles were also found to be useful in decreasing ROS (reactive oxygen species) mediated cellular damages in various in vitro cell cultures. Cerium oxide nanoparticles reduced the cellular damages to the normal breast epithelial cell line (CRL 8798) induced by X-rays and to the Keratinocyte cell line induced by UV irradiation. Cerium oxide nanoparticles were also found to be neuroprotective to adult rat spinal cord and retinal neurons. We propose that cerium oxide nanoparticles act as free radical scavenger (via redox reactions on its surface) to decrease the ROS induced cellular damages. Additionally, UV-visible spectroscopic studies indicated that cerium oxide nanoparticles possess auto-regenerative property by switching its oxidation state between Ce3+ and Ce4+. The auto-regenerative antioxidant property of these nanoparticles appears to be a key component in all the biological applications discussed in the present study.
Kaygusuz, Hakan; Torlak, Emrah; Akın-Evingür, Gülşen; Özen, İlhan; von Klitzing, Regine; Erim, F Bedia
2017-12-01
Wound dressings require good antiseptic properties, mechanical strength and, more trustably, natural material ingredients. Antimicrobial properties of cerium ions and chitosan are known and alginate based wound dressings are commercially available. In this study, the advantages of these materials were combined and alginate films were crosslinked with cerium(III) solution and chitosan added cerium(III) solution. Films were characterized by Fourier transform infrared spectroscopy (FTIR), light transmittance, scanning electron microscopy (SEM), swelling experiments, water vapor transmittance tests, and mechanical stretching tests. The antibacterial and physical properties of the films were compared with those of conventional calcium alginate films. Both cerium ion crosslinked and cerium ion-chitosan crosslinked alginate films gained antibacterial activity against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria. Cerium alginate-chitosan films showed high resistance to being deformed elastically. Results show that cerium alginate-chitosan films can be flexible, ultraviolet-protecting, and antibacterial wound dressings. Copyright © 2017 Elsevier B.V. All rights reserved.
Liquid Metal Anode for JP-8 Fuel Cell
2009-01-15
bases. They react preferentially with acidic sulfur and its compounds, S, SO2 and H2S. These reactions of cerium oxides with sulfur and its...by sulfur . The dominating thermodynamic reaction is the formation of metal sulfides or sulfates , not the desired electrochemical reduction...oxidation of sulfur to make sulfuric acid . Vanadium carbide used as a fuel cell anode has been evaluated by Japanese researchers and CellTech Power. Its
NASA Astrophysics Data System (ADS)
Popov, V. V.; Menushenkov, A. P.; Khubbutdinov, R. M.; Yastrebtsev, A. A.; Svetogorov, R. D.; Zubavichus, Ya V.; Trigub, A. L.; Sharapov, A. S.; Pisarev, A. A.; Kurilkin, V. V.; Tsarenko, N. A.; Arzhatkina, L. A.
2017-12-01
Influence of synthesis conditions (type of atmosphere: reduction or oxidation, annealing temperature) on the chemical composition and structure of the compounds formed in the “HfO2 - CeO2/Ce2O3” system has been investigated by X-ray absorption fine structure spectroscopy combined with Raman spectroscopy, X-ray diffraction and thermogravimetric analysis. It was revealed that isothermal annealing of precursor at temperatures less than 1000°C in air leads to formation of Ce0.5Hf0.5O2 powders with cubic fluorite-type structure (space group Fm-3m). Further increase of annealing temperatures above 1000°C causes decomposition of formed crystal structure into two phases: cubic and monoclinic. Annealing in reduction hydrogen atmosphere causes formation of Ce4+ 2x Ce3+ 2-2x Hf2O7+x compounds with intermediate oxidation state of cerium, where value of x depends on the reducing conditions and treatment parameters. Annealing in vacuum at 1400°C strongly reduces the content of Ce4+ in a powder samples and leads to formation of pyrochlore structure (space group Fd-3m) with predominant +3 oxidation state of cerium.
Homogeneously dispersed CeO2 nanoparticles on exfoliated hexaniobate nanosheets
NASA Astrophysics Data System (ADS)
Marques, Thalles M. F.; Strayer, Megan E.; Ghosh, Anupama; Silva, Alexandre; Ferreira, Odair P.; Fujisawa, Kazunori; Alves da Cunha, Jose R.; Abreu, Guilherme J. P.; Terrones, Mauricio; Mallouk, Thomas E.; Viana, Bartolomeu C.
2017-12-01
Hexaniobate nanosheets derived from the parent compound K4Nb6O17 have been decorated with CeO2 nanoparticles by ion exchange with aqueous cerium (IV) solution. Very homogeneous CeO2 nanoparticle decoration of the hexaniobate sheets can be achieved by this method and the resulting composites may absorb visible light. HRTEM images show that ∼3.0 nm diameter CeO2 nanoparticles adhere to hexaniobate nanosheets that are exfoliated and then restacked prior to Ce deposition. The interfacial interaction between CeO2 nanoparticles and nanosheets would be due to an electrostatic attraction mechanism. Raman and XRD measurements have given strong evidence that CeO2 nanoparticles have fluorite structure. EDS, FTIR and XPS results suggest almost complete exchange of TBA+ and K+ by Ce4+. Cerium ion exchange on the acid exchanged parent compound, H2.9K1.1Nb6O17, revealed that the extent of Ce ion exchange is much greater in case of nanosheets, which may be rationalized by the larger surface area available after exfoliation. XPS measurements show that the ratio of Ce4+/Ce3+ is around 4.4, in agreement with the formation of fluorite structure (CeO2). Thus, these CeO2 nanoparticle/nanosheet composites may be useful for catalytic processes.
NON-CORROSIVE PLUTONIUM FUEL SYSTEMS
Coffinberry, A.S.; Waber, J.T.
1962-10-23
An improved plutonium reactor liquid fuel is described for utilization in a nuclear reactor having a tantalum fuel containment vessel. The fuel consists of plutonium and a diluent such as iron, cobalt, nickel, cerium, cerium-- iron, cerium--cobalt, cerium--nickel, and cerium--copper, and an additive of carbon and silicon. The carbon and silicon react with the tantalum container surface to form a coating that is self-healing and prevents the corrosive action of liquid plutonium on the said tantalum container. (AEC)
Polymorphic Transitions in Cerium-Substituted Zirconolite (CaZrTi 2O 7)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, Braeden M.; Sundaram, S. K.; Misture, Scott T.
Compounds with the formulae CaZr 1–xCe xTi 2O 7 with x = 0.1–0.5 were synthesized by solid state reaction. Cerium was used as a surrogate for actinide elements. A transition from the 2M polymorph to the 4M polymorph (expanded unit cell due to cation ordering) in zirconolite was observed with increasing cerium content. The presence of both tri- and tetravalent Ce, contrary to formulation, was confirmed using X-ray absorption near edge spectroscopy, suggesting substitution on both Ca and Zr sites. Sintering was carried out via spark plasma sintering, during which the perovskite phase (Ca 0.4Ce 0.4TiO 3) was stabilized duemore » to the reducing conditions of this technique. Scanning electron microscopy and energy dispersive spectrometry revealed that the 2M polymorph was dilute in Ce content in comparison to the 4M-zirconolite. High temperature X-ray diffraction was used to detail the kinetics of perovskite to zirconolite transition. It was found that CaCeTi 2O 7 (cubic pyrochlore) formed as an intermediate phase during the transition. Lastly, our results show that a transition from 2M- to 4M-zirconolite occurs with increasing Ce content and can be controlled by adjusting the P O2 and the heat treatment temperature.« less
Polymorphic Transitions in Cerium-Substituted Zirconolite (CaZrTi 2O 7)
Clark, Braeden M.; Sundaram, S. K.; Misture, Scott T.
2017-07-19
Compounds with the formulae CaZr 1–xCe xTi 2O 7 with x = 0.1–0.5 were synthesized by solid state reaction. Cerium was used as a surrogate for actinide elements. A transition from the 2M polymorph to the 4M polymorph (expanded unit cell due to cation ordering) in zirconolite was observed with increasing cerium content. The presence of both tri- and tetravalent Ce, contrary to formulation, was confirmed using X-ray absorption near edge spectroscopy, suggesting substitution on both Ca and Zr sites. Sintering was carried out via spark plasma sintering, during which the perovskite phase (Ca 0.4Ce 0.4TiO 3) was stabilized duemore » to the reducing conditions of this technique. Scanning electron microscopy and energy dispersive spectrometry revealed that the 2M polymorph was dilute in Ce content in comparison to the 4M-zirconolite. High temperature X-ray diffraction was used to detail the kinetics of perovskite to zirconolite transition. It was found that CaCeTi 2O 7 (cubic pyrochlore) formed as an intermediate phase during the transition. Lastly, our results show that a transition from 2M- to 4M-zirconolite occurs with increasing Ce content and can be controlled by adjusting the P O2 and the heat treatment temperature.« less
Synthesis and characterization of magnesium doped cerium oxide for the fuel cell application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Amit; Kumari, Monika; Kumar, Mintu
2016-05-06
Cerium oxide has attained much attentions in global nanotechnology market due to valuable application for catalytic, fuel additive, and widely as electrolyte in solid oxide fuel cell. Doped cerium oxide has large oxygen vacancies that allow for greater reactivity and faster ion transport. These properties make cerium oxide suitable material for SOFCs application. Cerium oxide electrolyte requires lower operation temperature which shows improvement in processing and the fabrication technique. In our work, we synthesized magnesium doped cerium oxide by the co-precipitation method. With the magnesium doping catalytic reactivity of CeO{sub 2} was increased. Synthesized nanoparticle were characterized by the XRDmore » and UV absorption techniques.« less
Molecular Dynamics Modeling and Simulation of Diamond Cutting of Cerium.
Zhang, Junjie; Zheng, Haibing; Shuai, Maobing; Li, Yao; Yang, Yang; Sun, Tao
2017-12-01
The coupling between structural phase transformations and dislocations induces challenges in understanding the deformation behavior of metallic cerium at the nanoscale. In the present work, we elucidate the underlying mechanism of cerium under ultra-precision diamond cutting by means of molecular dynamics modeling and simulations. The molecular dynamics model of diamond cutting of cerium is established by assigning empirical potentials to describe atomic interactions and evaluating properties of two face-centered cubic cerium phases. Subsequent molecular dynamics simulations reveal that dislocation slip dominates the plastic deformation of cerium under the cutting process. In addition, the analysis based on atomic radial distribution functions demonstrates that there are trivial phase transformations from the γ-Ce to the δ-Ce occurred in both machined surface and formed chip. Following investigations on machining parameter dependence reveal the optimal machining conditions for achieving high quality of machined surface of cerium.
Molecular Dynamics Modeling and Simulation of Diamond Cutting of Cerium
NASA Astrophysics Data System (ADS)
Zhang, Junjie; Zheng, Haibing; Shuai, Maobing; Li, Yao; Yang, Yang; Sun, Tao
2017-07-01
The coupling between structural phase transformations and dislocations induces challenges in understanding the deformation behavior of metallic cerium at the nanoscale. In the present work, we elucidate the underlying mechanism of cerium under ultra-precision diamond cutting by means of molecular dynamics modeling and simulations. The molecular dynamics model of diamond cutting of cerium is established by assigning empirical potentials to describe atomic interactions and evaluating properties of two face-centered cubic cerium phases. Subsequent molecular dynamics simulations reveal that dislocation slip dominates the plastic deformation of cerium under the cutting process. In addition, the analysis based on atomic radial distribution functions demonstrates that there are trivial phase transformations from the γ-Ce to the δ-Ce occurred in both machined surface and formed chip. Following investigations on machining parameter dependence reveal the optimal machining conditions for achieving high quality of machined surface of cerium.
NASA Astrophysics Data System (ADS)
Yaduvanshi, Namrata; Kapoor, Shilpa; Singh, Sadhna
2018-05-01
We have investigated the structural and mechanical properties of Cerium and Praseodymium Bismuthides under pressure by means of a three body interaction potential model which includes long range columbic interaction, three body interactions and short range overlap repulsive interaction operative up to second nearest neighbor. These compounds shows transition from NaCl structure to body-centered tetragonal (BCT) structure (distorted CsCl-type P4/mmm). The elastic constants and their properties are also reported. Our calculated results of phase transitions and volume collapses of these compounds show a good agreement with available theoretical and experimental results.
Preparation of cerium halide solvate complexes
Vasudevan, Kalyan V; Smith, Nickolaus A; Gordon, John C; McKigney, Edward A; Muenchaussen, Ross E
2013-08-06
Crystals of a solvated cerium(III) halide solvate complex resulted from a process of forming a paste of a cerium(III) halide in an ionic liquid, adding a solvent to the paste, removing any undissolved solid, and then cooling the liquid phase. Diffusing a solvent vapor into the liquid phase also resulted in crystals of a solvated cerium(III) halide complex.
Method for decontamination of radioactive metal surfaces
Bray, L.A.
1996-08-13
Disclosed is a method for removing radioactive contaminants from metal surfaces by applying steam containing an inorganic acid and cerium IV. Cerium IV is applied to contaminated metal surfaces by introducing cerium IV in solution into a steam spray directed at contaminated metal surfaces. Cerium IV solution is converted to an essentially atomized or vapor phase by the steam.
Cerium chloride stimulated controlled conversion of B-to-Z DNA in self-assembled nanostructures.
Bhanjadeo, Madhabi M; Nayak, Ashok K; Subudhi, Umakanta
2017-01-22
DNA adopts different conformation not only because of novel base pairs but also while interacting with inorganic or organic compounds. Self-assembled branched DNA (bDNA) structures or DNA origami that change conformation in response to environmental cues hold great promises in sensing and actuation at the nanoscale. Recently, the B-Z transition in DNA is being explored to design various nanomechanical devices. In this communication we have demonstrated that Cerium chloride binds to the phosphate backbone of self-assembled bDNA structure and induce B-to-Z transition at physiological concentration. The mechanism of controlled conversion from right-handed to left-handed has been assayed by various dye binding studies using CD and fluorescence spectroscopy. Three different bDNA structures have been identified to display B-Z transition. This approach provides a rapid and reversible means to change bDNA conformation, which can be used for dynamic and progressive control at the nanoscale. Copyright © 2016 Elsevier Inc. All rights reserved.
Crystalline Structure and Physical Properties of UCo2Al3
NASA Astrophysics Data System (ADS)
Verdín, E.; Escudero, R.
Some intermetallic compounds which contain uranium or cerium present heavy fermion characteristics. Take, for example, in the UM2Al3 (M=Pd, Ni) family, superconductivity and magnetism coexist and present heavy fermion behavior. This work presents the crystallographic characteristics and physical properties of a new compound of this family; the intermetallic compound UCo2Al3. Our initial crystallographic studies performed in a small single crystal show that the structure is hexagonal and similar to the UNi2Al3 and UPd2Al3 parent compounds. The space group is P6/mmm with a=5.125 Å and c=4.167 Å crystalline parameters. Measurements of resistivity and magnetization performed on the single crystal reveal that the compound is not superconducting when measured at about 1.8 K. The compound is highly anisotropic and features related to Kondo-like behavior are observed. A weak ferromagnetic transition is observed at a temperature of about 20 K.
Specific Features of the Response of Cerium to Pulsed Actions
NASA Astrophysics Data System (ADS)
Atroshenko, S. A.; Zubareva, A. N.; Morozov, V. A.; Savenkov, G. G.; Utkin, A. V.
2018-02-01
Experimental studies of cerium at high rates and nanosecond durations of action have been performed. The isomorphic phase transition was studied upon shock compression. The spall strength of cerium has been determined. Cerium demonstrates anomalous compressibility upon dynamic loading. Stress waves dampen under action of a high-current electron beam due to the energy dissipation during fragmentation and twinning.
Development studies for a novel wet oxidation process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhooge, P.M.; Hakim, L.B.
1994-01-01
A catalytic wet oxidation process (DETOX), which uses an acidic iron solution to oxidize organic compounds to carbon dioxide, water, and other simple products, was investigated as a potential method for the treatment of multicomponent hazardous and mixed wastes. The organic compounds picric acid, poly(vinyl chloride), tetrachlorothiophene, pentachloropyridine, Aroclor 1260 (a polychlorinated biphenyl), and hexachlorobenzene were oxidized in 125 ml reaction vessels. The metals arsenic, barium, beryllium, cadmium, cerium (as a surrogate for plutonium), chromium, lead, mercury, neodymium (as a surrogate for uranium), nickel, and vanadium were tested in the DETOX solution. Barium, beryllium, cerium, chromium, mercury, neodymium, nickel, andmore » vanadium were all found to be very soluble (>100 g/l) in the DETOX chloride-based solution. Arsenic, barium, cadmium, and lead solubilities were lower. Lead could be selectively precipitated from the DETOX solution. Chromium(VI) was reduced to relatively non-toxic chromium(III) by the solution. Six soils were contaminated with arsenic, barium, beryllium, chromium, lead, and neodymium oxides at approximately 0.1% by weight, and benzene, trichloroethene, mineral oil, and Aroclor 1260 at approximately 5% by weight total, and 5.g amounts treated with the DETOX solution in unstirred 125. ml reaction bombs. It is felt that soil treatment in a properly designed system is entirely possible despite incomplete oxidation of the less volatile organic materials in these unstirred tests.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menaka; Patra, Rajkumar; Ghosh, Santanu
2012-10-15
The present study describes the development of a simple approach to stabilize polycrystalline lanthanum cerium hexaborides without using any flux and at ambient pressure. The nanostructured lanthanum-cerium borides were synthesized using hydroxide precursors. These precursors (La{sub 1-x}Ce{sub x}(OH){sub 3}, x=0.1, 0.2, 0.3 and 0.5) were synthesized via hydrothermal route in the presence of Tergitol (surfactant, nonylphenol ethoxylate) as a capping agent. The precursors on heating with boron at 1300 Degree-Sign C lead to the formation of nanostructures (cubes, rods and pyramids) of lanthanum cerium hexaboride. We have investigated the field emission behaviour of the hexaboride films fabricated by spin coating.more » It was observed that the pyramidal shaped nanostructures of La{sub 0.5}Ce{sub 0.5}B{sub 6} shows excellent field emission characteristics with high field enhancement factor of 4502. - Graphical abstract: Nanostructured lanthanum cerium hexaboride with efficient field emission have fabricated by low temperature hydroxide precursor mediated route. Highlights: Black-Right-Pointing-Pointer New methodology to prepare lanthanum cerium hexaboride at 1300 Degree-Sign C via borothermal route. Black-Right-Pointing-Pointer Nanostructured lanthanum cerium hexaboride film by spin coating process. Black-Right-Pointing-Pointer Nanopyramids based lanthanum cerium hexaboride shows excellent field emission.« less
NASA Astrophysics Data System (ADS)
Zhang, Xiaodong; Moore, Michael E.; Lee, Kyung-Min; Lukosi, Eric D.; Hayward, Jason P.
2016-07-01
Undoped lithium-6 enriched glasses coated with pure cerium (99.9%) with a gold protection layer on top were heated at three different temperatures (500, 550, and 600 °C) for varied durations (1, 2, and 4 h). Diffusion profiles of cerium in such glasses were obtained with the conventional Rutherford backscattering technique. Through fitting the diffusion profiles with the thin-film solution of Fick's second law, diffusion coefficients of cerium with different annealing temperatures and durations were solved. Then, the activation energy of cerium for the diffusion process in the studied glasses was found to be 114 kJ/mol with the Arrhenius equation.
Control of cerium oxidation state through metal complex secondary structures
Levin, Jessica R.; Dorfner, Walter L.; Carroll, Patrick J.; ...
2015-08-11
A series of alkali metal cerium diphenylhydrazido complexes, M x(py) y[Ce(PhNNPh) 4], M = Li, Na, and K, x = 4 (Li and Na) or 5 (K), and y = 4 (Li), 8 (Na), or 7 (K), were synthesized to probe how a secondary coordination sphere would modulate electronic structures at a cerium cation. The resulting electronic structures of the heterobimetallic cerium diphenylhydrazido complexes were found to be strongly dependent on the identity of the alkali metal cations. When M = Li + or Na +, the cerium(III) starting material was oxidized with concomitant reduction of 1,2-diphenylhydrazine to aniline. Reductionmore » of 1,2-diphenylhydrazine was not observed when M = K +, and the complex remained in the cerium(III) oxidation state. Oxidation of the cerium(III) diphenylhydrazido complex to the Ce( IV) diphenylhydrazido one was achieved through a simple cation exchange reaction of the alkali metals. As a result, UV-Vis spectroscopy, FTIR spectroscopy, electrochemistry, magnetic susceptibility, and DFT studies were used to probe the oxidation state and the electronic changes that occurred at the metal centre.« less
Coffinberry, A.S.
1959-01-01
An alloy is presented for use as a reactor fuel. The binary alloy consists essentially of from about 5 to 90 atomic per cent cerium and the balance being plutonium. A complete phase diagram for the cerium--plutonium system is given.
Shock driven melting and resolidification upon release in cerium
NASA Astrophysics Data System (ADS)
Bolme, Cindy; Bronkhorst, Curt; Brown, Don; Cherne, Frank; Cooley, Jason; Furlanetto, Michael; Gleason, Arianna; Jensen, Brian; Owens, Charles; Ali, Suzanne; Fratanduono, Dayne; Galtier, Eric; Granados, Eduardo; Lee, Hae Ja; Nagler, Bob
2017-06-01
The temperature rise due to increasing entropy during shock compression and the corresponding temperature decrease due to isentropic expansion upon release cause the physics of melting and solidification under dynamic pressure changes to differ fundamentally from the more common liquid-solid transitions governed by thermal diffusion. We investigated laser shock driven melting and resolidification during release in cerium to examine the dynamics of these processes. Cerium was selected as the material of study due to the low pressure at which γ-cerium melts along the principle Hugoniot and due to cerium's anomalous melt boundary at low pressure, which facilitates its transition from liquid to solid during isentropic release. The structural phase of cerium was probed with X-ray diffraction using the LCLS X-ray free electron laser, which provided in situ measurements of the transition dynamics. The experimental results will be presented showing the resolidification occurring over 10s of ns.
Dale, James G; Cox, Steven S; Vance, Marina E; Marr, Linsey C; Hochella, Michael F
2017-02-21
Nanoscale cerium oxide is used as a diesel fuel additive to reduce particulate matter emissions and increase fuel economy, but its fate in the environment has not been established. Cerium oxide released as a result of the combustion of diesel fuel containing the additive Envirox, which utilizes suspended nanoscale cerium oxide to reduce particulate matter emissions and increase fuel economy, was captured from the exhaust stream of a diesel engine and was characterized using a combination of bulk analytical techniques and high resolution transmission electron microscopy. The combustion process induced significant changes in the size and morphology of the particles; ∼15 nm aggregates consisting of 5-7 nm faceted crystals in the fuel additive became 50-300 nm, near-spherical, single crystals in the exhaust. Electron diffraction identified the original cerium oxide particles as cerium(IV) oxide (CeO 2 , standard FCC structure) with no detectable quantities of Ce(III), whereas in the exhaust the ceria particles had additional electron diffraction reflections indicative of a CeO 2 superstructure containing ordered oxygen vacancies. The surfactant coating present on the cerium oxide particles in the additive was lost during combustion, but in roughly 30% of the observed particles in the exhaust, a new surface coating formed, approximately 2-5 nm thick. The results of this study suggest that pristine, laboratory-produced, nanoscale cerium oxide is not a good substitute for the cerium oxide released from fuel-borne catalyst applications and that future toxicity experiments and modeling will require the use/consideration of more realistic materials.
Optical properties of cerium oxide (CeO2) nanoparticles synthesized by hydroxide mediated method
NASA Astrophysics Data System (ADS)
Ali, Mawlood Maajal; Mahdi, Hadeel Salih; Parveen, Azra; Azam, Ameer
2018-05-01
The nanoparticles of cerium oxide have been successfully synthesized by hydroxide mediated method, using cerium nitrate and sodium hydroxide as precursors. The microstructural properties were analyzed by X-ray diffraction technique (XRD). The X-ray diffraction results show that the cerium oxide nanoparticles were in cubic structure. The optical absorption spectra of cerium oxide were recorded by UV-VIS spectrophotometer in the range of 320 to 600 nm and photoluminescence spectra in the range of 400-540 nm and have been presented. The energy band gap was determined by Tauc relationship. The crystallite size was determined from Debye-Scherer equation and came out to be 6.4 nm.
Principle of maximum entanglement entropy and local physics of strongly correlated materials.
Lanatà, Nicola; Strand, Hugo U R; Yao, Yongxin; Kotliar, Gabriel
2014-07-18
We argue that, because of quantum entanglement, the local physics of strongly correlated materials at zero temperature is described in a very good approximation by a simple generalized Gibbs distribution, which depends on a relatively small number of local quantum thermodynamical potentials. We demonstrate that our statement is exact in certain limits and present numerical calculations of the iron compounds FeSe and FeTe and of the elemental cerium by employing the Gutzwiller approximation that strongly support our theory in general.
Najafpour, Mohammad Mahdi; Rahimi, Fahime; Fathollahzadeh, Maryam; Haghighi, Behzad; Hołyńska, Małgorzata; Tomo, Tatsuya; Allakhverdiev, Suleyman I
2014-07-28
Herein, we report on nano-sized Mn oxide/carbon nanotubes, graphene and graphene oxide as water-oxidizing compounds in artificial photosynthesis. The composites are synthesized by different and simple procedures and characterized by a number of methods. The water-oxidizing activities of these composites are also considered in the presence of cerium(IV) ammonium nitrate. Some composites are efficient Mn-based catalysts with TOF (mmol O2 per mol Mn per second) ~ 2.6.
Estévez, Verónica; Villacampa, Mercedes; Menéndez, J Carlos
2013-01-21
A sequential multicomponent process involving the high-speed vibration milling of ketones with N-iodosuccinimide and p-toluenesulfonic acid, followed by addition of a mixture of primary amines, β-dicarbonyl compounds, cerium(IV) ammonium nitrate and silver nitrate afforded polysubstituted, functionalized pyrroles. This one-pot, solid-state process can be considered as the coupling of an α-iodoketone preparation with a general version of the classical Hantzsch pyrrole synthesis.
- Changes in tissue transcriptomes and productivity of Arabidopsis thaliana were investigated during exposure of plants to two widely-used engineered metal oxide nanoparticles, titanium dioxide (nano-titanium) and cerium dioxide (nano-cerium). Microarray analyses confirmed that e...
Critical indices for reversible gamma-alpha phase transformation in metallic cerium
NASA Astrophysics Data System (ADS)
Soldatova, E. D.; Tkachenko, T. B.
1980-08-01
Critical indices for cerium have been determined within the framework of the pseudobinary solution theory along the phase equilibrium curve, the critical isotherm, and the critical isobar. The results obtained verify the validity of relationships proposed by Rushbrook (1963), Griffiths (1965), and Coopersmith (1968). It is concluded that reversible gamma-alpha transformation in metallic cerium is a critical-type transformation, and cerium has a critical point on the phase diagram similar to the critical point of the liquid-vapor system.
An environmentally compliant cerium-based conversion coating for aluminum protection
NASA Astrophysics Data System (ADS)
Lin, Xuan
Chromate conversion coatings have been extensively used in the aircraft industry for the corrosion protection of aluminum alloys. Unfortunately, hexavalent chromium, which is a primary component in the chromating process, is a confirmed carcinogen. Because of rising remediation and disposal costs caused by increasingly strict regulations, the replacement of the traditional chromate conversion process is becoming a top priority in the metal finishing industry. This research focused on the electrodeposition of cerium-based coatings on 7075-T6 aluminum alloy in an electrolyte containing a cerium salt, an oxidizing agent and an organic solvent. The cerium-rich deposits were characterized by phase composition, oxidation state, coating thickness, surface morphology, deposition mechanism and polarization behavior. Chemical and electrochemical tests were utilized to compare the corrosion resistance between cerium-based coatings and chromate conversion coatings. To characterize and simulate the deposition process, a variety of approaches were utilized to study the oxidation states of cerium in various soluble and precipitated forms as a function of hydrogen peroxide and electrolyte pH. The pH ranges where the oxidation and reduction reactions dominate were determined. Further studies were performed to optimize the corrosion performance of cerium-based coatings and to understand the effects of electrolyte constituents and deposition parameters. The optimum levels for these variables were identified. A patent disclosure on the cerium-based coating process was made to the University of Missouri-Rolla and has now been officially filed with the U.S. Patent Office.
ADSORPTION OF CERIUM VALUES FROM AQUEOUS SOLUTIONS
Roberts, F.P.
1963-08-13
Cerium can be removed from aqueous nitric acid (2 to 13 M) solutions by passing the latter over a PbO/sub 2/-containing anion exchange resin. The cerium is taken up by the resin, while any lanthanides, yttrium, and strontium present remain in the solution. (AEC)
Synthesis and optical characterization of SrHfO 3:Ce and SrZrO 3:Ce nanoparticles
NASA Astrophysics Data System (ADS)
Rétot, H.; Bessière, A.; Kahn-Harari, A.; Viana, B.
2008-03-01
Nanoparticles have recently found application fields in various scopes, such as imaging (luminescent nanosensors), or for the production of laser or scintillating transparent ceramics. This work is related to this last field, with the target of medical imaging (positron emission tomography). Very dense rare earth doped mixed oxides were studied: SrZrO 3:Ce and SrHfO 3:Ce, which are particularly adapted to this application. The phase transformations and the very high melting points of these materials (respectively 2646 °C and 2730 °C) led us to study their synthesis as nanoparticles. Using the combustion method we have obtained, at temperatures less than 1000 °C, particles of very small dimensions (10-100 nm) without impurities. First characterization of the optical properties (under UV irradiation) of the cerium ion in these perovskite matrixes, realized on the nanopowders (absorption, emission and lifetime of the cerium ion), is presented here: for both compounds, an emission at 430 nm is observed under UV irradiation, with a short decay time; these particles prepared by combustion are thus interesting precursors for ceramic scintillators.
Electrosynthesis of cerium hexaboride by the molten salt technique
NASA Astrophysics Data System (ADS)
Amalajyothi, K.; Berchmans, L. John; Angappan, S.; Visuvasam, A.
2008-07-01
Molten salts are well thought-out as the incredibly promising medium for chemical and electrochemical synthesis of compounds. Hence a stab has been made on the electrochemical synthesis of CeB 6 using molten salt technique. The electrolyte consisted of lithium fluoride (LiF), boron trioxide (B 2O 3) and cerium chloride (CeCl 3). Electrochemical experiments were carried out in an inconal reactor in an argon atmosphere. Electrolysis was executed in a high-density graphite crucible, which doles out as the electrolyte clutching vessel as well as the anode. The cathode was made up of a molybdenum rod. The electrolysis was carried out at 900 °C at different current densities intended for the synthesis of CeB 6 crystals. After the electrolysis, the cathode product was removed and cleaned using dilute HCl solution. The crystals were scrutinized by X-ray diffraction (XRD) to make out the phase and the purity. It has been observed that CeB 6 crystals are synthesized at all current densities and the product has traces of impurities.
Weis, Eric M; Barnes, Charles L; Duval, Paul B
2006-12-11
The first example of a lanthanide tetrakis(dithiolene) complex, [Na5(THF)10Ce(mnt)4] (1) (mnt = 1,2-maleonitrile-1,2-dithiolate), has been synthesized and characterized by X-ray crystallography and spectroscopic methods. In the solid state, 1 exists as a 2-D corrugated honeycomb network polymer in which the monomeric units comprising the trigonal nodes are knitted together by interlocking dative Na-N bonds extended from nitrile groups of bifunctional mnt ligands coordinated through the sulfur atoms to adjacent cerium centers. Individual honeycomb sheets are separated by 14.8 A. Compound 1 dissolves in donor solvents such as THF and acetonitrile to give soluble [Ce(mnt)4]5- units that exhibit spectroscopic features (i.e., NMR, luminescence, UV-vis) that are consistent with the 4f1 Ce(III) ion. In the first examination of the redox chemistry of a lanthanide dithiolene complex, cyclic voltammetry measurements conducted on 1 reveal a single irreversible oxidation wave that is likely attributable to ligand-centered oxidation.
Cerium migration during PEM fuel cell assembly and operation
Baker, Andrew M.; Torraco, Dennis; Judge, Elizabeth J.; ...
2015-09-14
Cerium migration between PEM fuel cell components is influenced by potential-driven mobility, ionic diffusion, and gradients in water content. These factors were investigated in ex situ experiments and in operating fuel cells. Potential-induced migration was measured ex situ in hydrated window cells. Cerium-containing MEAs were also fabricated and tested under ASTs. MEA disassembly and subsequent XRF analysis were used to observe rapid cerium migration during cell assembly and operation. During MEA hot pressing, humidification, and low RH operation at OCV, ionic diffusion causes uniform migration from the membrane into the catalyst layers. During high RH operation at OCV, in-plane ceriummore » gradients arise due to variations in water content. These gradients may diminish the scavenging efficacy of cerium by reducing its proximity to generated radicals.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalsi, Deepti; Rayaprol, S.; Siruguri, V.
We report the crystallographic properties of RE{sub 2}NiGe{sub 3} (RE=La, Ce) synthesized by arc melting. Rietveld refinement on the powder neutron diffraction (ND) data suggest both compounds are isostructural and crystallize in the non-centrosymmetric Er{sub 2}RhSi{sub 3} type structure having hexagonal space group P6{sup ¯}2c. In the crystal structure of RE{sub 2}NiGe{sub 3}, two dimensional arrangements of nickel and germanium atoms lead to the formation of hexagonal layers with rare earth atoms sandwiched between them. Magnetic susceptibility measurements performed in low fields exhibit antiferromagnetic ordering in cerium compound around (T{sub o}=) 3.2 K. Neutron diffraction measurements at 2.8 K (i.e.,more » at T« less
Advances of nanoscale science have produced nanomaterials with unique physical and chemical properties at commercial levels which are now incorporated into over 1000 products. Nanoscale cerium (di) oxide (CeO(2)) has recently gained a wide range of applications which includes coa...
Priyadarshini, E; Pradhan, N; Panda, P K; Mishra, B K
2015-06-15
The ability of self-functionalized biogenic GNPs towards highly selective colorimetric detection of rare earth element cerium is being reported for the first time. GNPs underwent rapid aggregation on addition of cerium indicated by red shift of SPR peak followed by complete precipitation. Hereby, this concept of co-ordination of cerium ions onto the GNP surface has been utilized for detection of cerium. The remarkable capacity of GNPs to sensitively detect Ce without proves beneficial compared to previous reports of colorimetric sensing. MDL was 15 and 35 ppm by DLS and UV-vis spectroscopy respectively, suggesting DLS to be highly sensitive and a practical alternative in ultrasensitive detection studies. The sensing system showed a good linear fit favouring feasible detection of cerium in range of 2-50 ppm. Similar studies further showed the superior selectivity of biogenic GNPs compared to chemically synthesized counterparts. The sensing system favours on-site analysis as it overcomes need of complex instrumentation, lengthy protocols and surface modification of GNP. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mao, Xianhe; Qin, Zhigui; Yuan, Xiaoning; Wang, Chunming; Cai, Xinan; Zhao, Weixia; Zhao, Kang; Yang, Ping; Fan, Xiaoling
2013-11-01
A simulated radioactive soil waste containing cerium as an imitator element has been immobilized by a thermite self-propagating high-temperature synthesis (SHS) process. The compositions, structures, and element leaching rates of products with different cerium contents have been characterized. To investigate the influence of iron on the chemical stability of the immobilized products, leaching tests of samples with different iron contents with different leaching solutions were carried out. The results showed that the imitator element cerium mainly forms the crystalline phases CeAl11O18 and Ce2SiO5. The leaching rate of cerium over a period of 28 days was 10-5-10-6 g/(m2 day). Iron in the reactants, the reaction products, and the environment has no significant effect on the chemical stability of the immobilized SHS products.
Chen, Q; Hu, K; Miura, Y
1999-09-01
An ion chromatographic method was used to separate the species of L-ascorbic acid, sulfite and thiosulfate in their mixtures. This method is based on the separation of each anion in their mixtures by using a separation column, and then on the fluorimetric measurement of cerium (III) formed by a postcolumn reaction of cerium (IV) with the species of L-ascorbic acid, sulfite and thiosulfate in the effluent. The optimal conditions for separating and determining the above three species have been established. By using a 3 mmol/L carbonate eluent, the species of L-ascorbic acid, sulfite and thiosulfate could be eluted at the proper retention times of 1.7, 2.6 and 5.0 min, respectively, and these three anions could be separated completely. The effects of the concentrations of cerium (IV) and sulfuric acid in the postcolumn reaction solution on the chromatographic peak-height were tested in order to obtain the optimal peak-height. It was found that the peak-height at first increases rapidly with an increase in the concentration of cerium (IV) and sulfuric acid respectively up to a certain concertation, then increases slowly. These critical concentrations of cerium (IV) and sulfuric acid also depend on the amount of the analyte injected. Meanwhile the baseline signals of the sepectra increase with an increase in the concentration of cerium (IV). Some concentrations above the critical concentration of sulfuric acid could be selected as the optimal concentration of sulfuric acid, but the concentration of cerium (IV) should be optimized by establishing a compromise between the higher peak-height and the lower baseline signal. The detection limit of this method was found to be 1 mumol/L for thiosulfate when an amount of 100 microL analyte was injected.
PLUTONIUM-CERIUM-COBALT AND PLUTONIUM-CERIUM-NICKEL ALLOYS
Coffinberry, A.S.
1959-08-25
>New plutonium-base teroary alloys useful as liquid reactor fuels are described. The alloys consist of 10 to 20 atomic percent cobalt with the remainder plutonium and cerium in any desired proportion, with the plutonium not in excess of 88 atomic percent; or, of from 10 to 25 atomic percent nickel (or mixture of nickel and cobalt) with the remainder plutonium and cerium in any desired proportion, with the plutonium not in excess of 86 atomic percent. The stated advantages of these alloys over unalloyed plutonium for reactor fuel use are a lower melting point and a wide range of permissible plutonium dilution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raj, S. Gokul; Mathivanan, V.; Mohan, R.
2016-05-06
Tungsten bronze type cerium doped strontium barium niobate (Ce:SBN - Sr{sub 0.6}B{sub 0.4}Nb{sub 2}O{sub 6}) ceramics were synthesized by solid state process. Cerium was used as dopant to improve its electrical properties. Influence of Ce{sup +} ions on the photoluminescence properties was investigated in detail. The grain size topographical behavior of SBN powders and their associated abnormal grain growth (AGG) were completely analyzed through SEM studies. Finally dielectric, measurement discusses about the broad phase transition observed due to cerium dopant The results were discussed in detail.
NASA Astrophysics Data System (ADS)
Jain, Syadwad
In this study, the localized corrosion and conversion coating on cast alloys 356 (Al-7.0Si-0.3Mg) and 380 (Al-8.5Si-3.5Cu-1.6Fe) were characterized. The intermetallic phases presence in the permanent mold cast alloy 356 are primary-Si, Al5FeSi, Al8Si6Mg3Fe and Mg2Si. The die cast alloy 380 is rich in Cu and Fe elements. These alloying elements result in formation of the intermetallic phases Al 5FeSi, Al2Cu and Al(FeCuCr) along with primary-Si. The Cu- and Fe-rich IMPS are cathodic with respect to the matrix phase and strongly govern the corrosion behavior of the two cast alloys in an aggressive environment due to formation of local electrochemical cell in their vicinity. Results have shown that corrosion behavior of permanent mould cast alloy 356 is significantly better than the die cast aluminum alloy 380, primarily due to high content of Cu- and Fe-rich phases such as Al2Cu and Al 5FeSi in the latter. The IMPS also alter the protection mechanism of the cast alloys in the presence of inhibitors in an environment. The presence of chromate in the solution results in reduced cathodic activity on all the phases. Chromate provides some anodic inhibition by increasing pitting potentials and altering corrosion potentials for the phases. Results have shown that performance of CCC was much better on 356 than on 380, primarily due to inhomogeneous and incomplete coating deposition on Cu- and Fe- phases present in alloy 380. XPS and Raman were used to characterize coating deposition on intermetallics. Results show evidence of cyanide complex formation on the intermetallic phases. The presence of this complex is speculated to locally suppress CCC formation. Formation and breakdown of cerium conversion coatings on 356 and 380 was also analyzed. Results showed that deposition of cerium hydroxide started with heavy precipitation on intermetallic particles with the coatings growing outwards onto the matrix. Electrochemical analysis of synthesized intermetallics compounds in the presence of soluble cerium cations showed that of anodic and cathodic activity was not as strongly inhibited as was observed for chromate ions. Overall cerium conversion coating showed good performance on Al-Si (356) ally, but poor performance on Fe- and Cu-rich alloy (380).
Senthilkumar, R P; Bhuvaneshwari, V; Ranjithkumar, R; Sathiyavimal, S; Malayaman, V; Chandarshekar, B
2017-11-01
The hybrid chitosan cerium oxide nanoparticles were prepared for the first time by green chemistry approach using plant leaf extract. The intense peak observed around 292nm in the UV-vis spectrum indicate the formation of cerium oxide nanoparticles. The XRD pattern revealed that the hybrid chitosan-cerium oxide nanoparticles have a polycrystalline structure with cubic fluorite phase. The FTIR spectrum of prepared samples showed the formation of Ce-O bonds and chitosan main chains COC and CO. The FESEM image of hybrid chitosan cerium oxide nanoparticles revealed that the particles are spherical in shape with grains size varying from 23.12nm to 89.91nm. EDAX analysis confirmed the presence of Ce, O, C and N elements in the prepared sample. TEM images showed that the prepared hybrid chitosan-cerium oxide nanoparticles are predominantly uniform in size and most of the particles are spherical in shape with less agglomeration and the particles size varies from 3.61nm to 24.40nm. The prepared chitosan cerium oxide nanoparticles of 50μL concentration showed good antibacterial properties against test pathogens, which was confirmed by the FESEM analysis. The prepared small particle size facilitate that these hybrid ChiCO 2 NPs could effectively be used in biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Chen; Pinkerton, Frederick E.; Herbst, Jan F.
New magnetic materials containing cerium, iron, and small additions of a third element are disclosed. These materials comprise compounds Ce(Fe.sub.12-xM.sub.x) where x=1-4, having the ThMn.sub.12 tetragonal crystal structure (space group I4/mmm, #139). Compounds with M=B, Al, Si, P, S, Sc, Co, Ni, Zn, Ga, Ge, Zr, Nb, Hf, Ta, and W are identified theoretically, and one class of compounds based on M=Si has been synthesized. The Si cognates are characterized by large magnetic moments (4.pi.M.sub.s greater than 1.27 Tesla) and high Curie temperatures (264.ltoreq.T.sub.c.ltoreq.305.degree. C.). The Ce(Fe.sub.12-xM.sub.x) compound may contain one or more of Ti, V, Cr, and Mo inmore » combination with an M element. Further enhancement in T.sub.c is obtained by nitriding the Ce compounds through heat treatment in N.sub.2 gas while retaining the ThMn.sub.12 tetragonal crystal structure; for example CeFe.sub.10Si.sub.2N.sub.1.29 has T.sub.c=426.degree. C.« less
Advances of nanoscale science have produced nanomaterials with unique physical and chemical properties at commercial levels that are now incorporated into over 1000 products. Nanoscale cerium (di) oxide (Ce02) has recently gained a wide range of applications which includes coatin...
Anderson, David F.; Kross, Brian J.
1994-01-01
An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.
Anderson, David F.; Kross, Brian J.
1992-01-01
An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.
Assefa, Zerihun; Haire, R G; Caulder, D L; Shuh, D K
2004-07-01
Sol-gel glass matrices containing lanthanides have numerous technological applications and their formation involves several chemical facets. In the case of cerium, its ability to exist in two different oxidation states or in mixed valence state provides additional complexities for the sol-gel process. The oxidation state of cerium present during different facets of preparation of sol-gel glasses, and also as a function of the starting oxidation state of cerium added, were studied both by optical spectroscopy and X-ray absorption near-edge structures (XANES). The findings acquired by each approach were compared. The primary focus was on the redox chemistries associated with sample preparation, gelation, and thermal treatment. When Ce3+ is introduced into the starting sols, the trivalent state normally prevails in the wet and room temperature-dried gels. Heating in air at >100 degrees C can generate a light yellow coloration with partial oxidation to the tetravalent state. Above 200 degrees C and up to approximately 1000 degrees C, cerium is oxidized to its tetravalent state. In contrast, when tetravalent cerium is introduced into the sol, both the wet and room temperature-dried gels lose the yellow-brown color of the initial ceric ammonium nitrate solution. When the sol-gel is heated to 110 degrees C it turns yellowish as the cerium tends to be re-oxidized. The yellow color is believed to represent the effect of oxidation and oligomerization of the cerium-silanol units in the matrix. The luminescence properties are also affected by these changes, the details of which are reported herein.
Cerium anomaly at microscale in fossils.
Gueriau, Pierre; Mocuta, Cristian; Bertrand, Loïc
2015-09-01
Patterns in rare earth element (REE) concentrations are essential instruments to assess geochemical processes in Earth and environmental sciences. Excursions in the "cerium anomaly" are widely used to inform on past redox conditions in sediments. This proxy resources to the specificity of cerium to adopt both the +III and +IV oxidation states, while most rare earths are purely trivalent and share very similar reactivity and transport properties. In practical terms, the level of cerium anomaly is established through elemental point quantification and profiling. All these models rely on a supposed homogeneity of the cerium oxidation state within the samples. However, this has never been demonstrated, whereas the cerium concentration can significantly vary within a sample, as shown for fossils, which would vastly complicate interpretation of REE patterns. Here, we report direct micrometric mapping of Ce speciation through synchrotron X-ray absorption spectroscopy and production of local rare earth patterns in paleontological fossil tissues through X-ray fluorescence mapping. The sensitivity of the approach is demonstrated on well-preserved fishes and crustaceans from the Late Cretaceous (ca. 95 million years (Myr) old). The presence of Ce under the +IV form within the fossil tissues is attributed to slightly oxidative local conditions of burial and agrees well with the limited negative cerium anomaly observed in REE patterns. The [Ce(IV)]/[Ce(tot)] ratio appears remarkably stable at the microscale within each fossil and is similar between fossils from the locality. Speciation maps were obtained from an original combination of synchrotron microbeam X-ray fluorescence, absorption spectroscopy, and diffraction, together with light and electron microscopy. This work also highlights the need for more systematic studies of cerium geochemistry at the microscale in paleontological contexts, in particular across fossil histologies.
Rose, H.J.; Murata, K.J.; Carron, M.K.
1954-01-01
In a combined chemical-spectrochemical procedure for quantitatively determining rare earth elements in cerium minerals, cerium is determined volumetrically, a total rare earths plus thoria precipitate is separated chemically, the ceria content of the precipitate is raised to 80??0 percent by adding pure ceria, and the resulting mixture is analyzed for lanthanum, praseodymium, neodymium, samarium, gadolinium, yttrium, and thorium spectrochemically by means of the d.c. carbon arc. Spectral lines of singly ionized cerium are used as internal standard lines in the spectrochemical determination which is patterned after Fassel's procedure [1]. Results of testing the method with synthetic mixtures of rare earths and with samples of chemically analyzed cerium minerals show that the coefficient of variation for a quadruplicate determination of any element does not exceed 5??0 (excepting yttrium at concentrations less than 1 percent) and that the method is free of serious systematic error. ?? 1954.
NASA Astrophysics Data System (ADS)
Cho, Young Jun; Jang, Hanmin; Lee, Kwan-Soo; Kim, Dong Rip
2015-06-01
Superhydrophobic surfaces with anti-corrosion properties have attracted great interest in many industrial fields, particularly to enhance the thermal performance of offshore applications such as heat exchangers, pipelines, power plants, and platform structures. Nanostructures with hydrophobic materials have been widely utilized to realize superhydrophobicity of surfaces, and cerium oxide has been highlighted due to its good corrosion resistive and intrinsically hydrophobic properties. However, few studies of direct growth of cerium oxide nanostructures on diverse substrates have been reported. Herein we report a facile hydrothermal method to directly grow cerium oxide nanorods on diverse substrates, such as aluminum alloy, stainless steel, titanium, and silicon. Diverse substrates with cerium oxide nanorods exhibited superhydrophobicity with no hydrophobic modifiers on their surfaces, and showed good corrosion resistive properties in corrosive medium. We believe our method could pave the way for realization of scalable and sustainable corrosion resistive superhydrophobic surfaces in many industrial fields.
Trivalent cerium coped crystals as tunable laser systems: two bad apples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamilton, D.S.
1985-01-01
The 5d-4f transitions of trivalent doped crystals have broad emission bands with large oscillator strengths and near unity quantum efficiency. These characteristics make cerium systems strong candidates for tunable solid state lasers. However, two such cerium crystals will probably never lase. The first is Ce/sup 3 +/:YAG where a strong excited state absorption quenches the lasing transition. Our recent measurements have indicated that the excited state absorption terminates in the YAG conduction band with a peak cross section of 1.0 x 10/sup -17/ cm/sup 2/ at 700 nm. Some of the general features of impurity ion to band spectra aremore » discussed. The second system is Ce/sup 3 +/:CaF/sub 2/ where a uv pump induced photochromic center is produced following excitation of the cerium ions. The initial measurements of cerium related transient absorptions in Ce/sup 3 +/:YLF are also presented.« less
Anderson, D.F.; Kross, B.J.
1992-07-28
An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.
Anderson, D.F.; Kross, B.J.
1994-06-07
An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.
An Economic Model and Experiments to Understand Aluminum-Cerium Alloy Recycling
NASA Astrophysics Data System (ADS)
Iyer, Ananth V.; Lim, Heejong; Rios, Orlando; Sims, Zachary; Weiss, David
2018-04-01
We provide an economic model to understand the impact of adoption, sorting and pricing of scrap on the recycling of a new aluminum-cerium (AlCe) alloy for use in engine blocks in the automobile industry. The goal of the laboratory portion of this study is to investigate possible effects of cerium contamination on well-established aluminum recycling streams. Our methodology includes three components: (1) focused data gathering from industry supply chain participants, (2) experimental data through laboratory experiments to understand the impact of cerium on existing alloys and (3) an economic model to understand pricing incentives on a recycler's separation of AlCe engine blocks.
Bogart, Justin A; Lewis, Andrew J; Schelter, Eric J
2015-01-19
Rare-earth metal cations have recently been demonstrated to be essential co-factors for the growth of the methanotrophic bacterium Methylacidiphilum fumariolicum SolV. A crystal structure of the rare-earth-dependent methanol dehydrogenase (MDH) includes a cerium cation in the active site. Herein, the Ce-MDH active site has been analyzed through DFT calculations. The results show the stability of the Ce(III)-pyrroloquinoline quinone (PQQ) semiquinone configuration. Calculations on the active oxidized form of this complex indicate a 0.81 eV stabilization of the PQQ(0) LUMO at cerium versus calcium, supporting the observation that the cerium cation in the active site confers a competitive advantage to Methylacidiphilum fumariolicum SolV. Using reported aqueous electrochemical data, a semi-empirical correlation was established based on cerium(IV/III) redox potentials. The correlation allowed estimation of the cerium oxidation potential of +1.35 V versus saturated calomel electrode (SCE) in the active site. The results are expected to guide the design of functional model complexes and alcohol-oxidation catalysts based on lanthanide complexes of biologically relevant quinones. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effects of PEG4000 template on sol-gel synthesis of porous cerium titanate photocatalyst
NASA Astrophysics Data System (ADS)
Zhang, Wenjie; Tao, Yingjie; Li, Chuanguo
2018-04-01
Porous cerium titanate was synthesized by sol-gel method, using polyethylene glycol (PEG4000) as template agent. Brannerite structured CeTi2O6 in monoclinic system is the major substance formed in the materials. Formation of CeO2 and rutile TiO2 depends on the amount of PEG4000. The addition of PEG4000 leads to production of fine particles in the samples, but it does not apparently affect the band gap energy. Pore volume of the cerium titanate sample continuously increases with rising PEG4000 amount. The sample obtained using 3.5 g PEG4000 has BET surface area of 16.2 m2/g and pore volume of 0.0232 cm3/g. The addition of PEG4000 can obviously promote photocatalytic activity of cerium titanate, which can be proven by both enhanced production of hydroxyl radical and ofloxacin degradation efficiency. As much as 95.2% of the initial ofloxacin molecules are removed from the solution after 50 min of photocatalytic degradation on the cerium titanate obtained using 3.5 g PEG4000, while only 48.4% ofloxacin is removed on cerium titanate obtained without PEG4000.
NASA Astrophysics Data System (ADS)
Shin, Dongwon; Han, Myungseong; Shul, Yong-Gun; Lee, Hyejin; Bae, Byungchan
2018-02-01
The oxidative stability of membranes constructed from a composite of pristine sulfonated poly(arylene ether sulfone) and cerium was investigated by conducting an accelerated oxidative-stability test at the open-circuit voltage (OCV). The membranes were analyzed in situ through OCV and impedance measurements, cyclic voltammetry, and linear-sweep voltammetry to monitor the electrochemical properties during the stability test. Although the high-frequency resistance of a composite membrane was slightly higher than that of a pristine membrane because of the exchange of protons from the sulfonic acid with cerium ions, the composite membrane maintained its potential for much longer than the pristine membrane. The effect of the cerium ions as radical scavengers was confirmed by analyzing the drain water and chemical structure after operation. These post-operation analyses confirmed that cerium ions improved the oxidative stability of the hydrocarbon-based polymer during fuel-cell operation. It is clear that the cerium-based radical scavengers prevented chemical degradation of the polymer membrane as well as the electrode in terms of hydrogen cross-over, polymer-chain scission, and the electrochemical surface area, while they rarely diffused outward from the membrane.
NASA Astrophysics Data System (ADS)
Guzman Blas, Rolando Pedro
This thesis is focused on fuel cells using hydrogen, methanol and ethanol as fuel. Also, in the method of preparation of catalytic material for the anode: Supercritical Fluid Deposition (SFD) and impregnation method using ethylenediaminetetraacetic acid (EDTA) as a chelating agent. The first part of the thesis describes the general knowledge about Hydrogen Polymer Exchange Membrane Fuel Cell (HPEMFC),Direct Methanol Fuel Cell (DMFC) and Direct Ethanol Fuel Cell (DEFC), as well as the properties of Cerium and CeO2 (Ceria). The second part of the thesis describes the preparation of catalytic material by Supercritical Fluid Deposition (SFD). SFD was utilized to deposit Pt and ceria simultaneously onto gas diffusion layers. The Pt-ceria catalyst deposited by SFD exhibited higher methanol oxidation activity compared to the platinum catalyst alone. The linear sweep traces of the cathode made for the methanol cross over study indicate that Pt-Ceria/C as the anode catalyst, due to its better activity for methanol, improves the fuel utilization, minimizing the methanol permeation from anode to cathode compartment. The third and fourth parts of the thesis describe the preparation of material catalytic material Carbon-Platinum-Cerium by a simple and cheap impregnation method using EDTA as a chelating agent to form a complex with cerium (III). This preparation method allows the mass production of the material catalysts without additional significant cost. Fuel cell polarization and power curves experiments showed that the Carbon-Platinum-Cerium anode materials exhibited better catalytic activity than the only Vulcan-Pt catalysts for DMFC, DEFC and HPEMFC. In the case of Vulcan-20%Pt-5%w Cerium, this material exhibits better catalytic activity than the Vulcan-20%Pt in DMFC. In the case of Vulcan-40% Pt-doped Cerium, this material exhibits better catalytic activity than the Vulcan-40% Pt in DMFC, DEFC and HPEMFC. Finally, I propose a theory that explains the reason why the carbon-platinum-cerium has better catalytic activity than platinum-carbon. Due to the hybridization behavior of C and Ce could arise charge transfer, both carbon and cerium to the Platinum. Ce-C→Pt charge transfer could occur at the Ce-C/Pt interface. Thus, results in an increase in the catalytic activity of platinum-cerium-carbon when compared with carbon-platinum.
Donnald, Samuel B.; Williams, Richard; Melcher, Charles L.; ...
2018-04-19
Cerium doped YAlO3 (YAP:Ce) is an interesting oxide scintillator in that it exhibits a wider range of light yield non-proportionality on a sample-to-sample basis than most other well-known oxide scintillators. In general, most oxide materials, such as BGO and LSO:Ce, are thought to have an intrinsic proportional response that is nearly constant between samples and independent of growth conditions. Since light yield nonproportionality is responsible for degrading the achievable energy resolution of all known scintillators, it is important to understand what contributes to the behavior. In this study, in an attempt to understand if the phenomenon can be affected bymore » growth parameters or by other means, seven samples of YAP:Ce were collected from various sources, and eight samples were grown inhouse using the Czochralski method. Based on optical and scintillation measurement as well as direct measurement of the cerium concentration, it was determined that the light yield proportionality in YAlO3:Ce is strongly related to the cerium concentration. Samples that were found to have a higher relative cerium concentration displayed a more proportional light yield response. In addition, it was determined that samples with a higher cerium concentration also exhibit a faster decay time and an enhanced energy resolution when compared to samples with less cerium. Finally, it was also determined that growth in a reducing atmosphere can effectively suppress a parasitic optical absorption band.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donnald, Samuel B.; Williams, Richard; Melcher, Charles L.
Cerium doped YAlO3 (YAP:Ce) is an interesting oxide scintillator in that it exhibits a wider range of light yield non-proportionality on a sample-to-sample basis than most other well-known oxide scintillators. In general, most oxide materials, such as BGO and LSO:Ce, are thought to have an intrinsic proportional response that is nearly constant between samples and independent of growth conditions. Since light yield nonproportionality is responsible for degrading the achievable energy resolution of all known scintillators, it is important to understand what contributes to the behavior. In this study, in an attempt to understand if the phenomenon can be affected bymore » growth parameters or by other means, seven samples of YAP:Ce were collected from various sources, and eight samples were grown inhouse using the Czochralski method. Based on optical and scintillation measurement as well as direct measurement of the cerium concentration, it was determined that the light yield proportionality in YAlO3:Ce is strongly related to the cerium concentration. Samples that were found to have a higher relative cerium concentration displayed a more proportional light yield response. In addition, it was determined that samples with a higher cerium concentration also exhibit a faster decay time and an enhanced energy resolution when compared to samples with less cerium. Finally, it was also determined that growth in a reducing atmosphere can effectively suppress a parasitic optical absorption band.« less
Shugurov, S M; Panin, A I; Lopatin, S I
2018-06-21
CeO 2 -WO 3 and CeO 2 -MoO 3 catalysts have shown excellent performance in the selective reduction of NO x by ammonia (NH 3 -selective catalytic reduction) over a wide temperature range. Strong interaction between CeO 2 and WO 3 or MoO 3 might be the dominant reason for the high activity of these mixed oxides. Studies of ceria-containing gaseous salts involve considerable experimental difficulties, since the transition of such salts to vapor requires high temperatures. To predict the possibility of the existence of gaseous associates formed by cerium and molybdenum (tungsten) oxides it is important to know their thermodynamic characteristics. Until the present investigation, gaseous cerium oxyacid salts were unknown. Knudsen effusion mass spectrometry was used to determine the partial pressures of vapor species and the equilibrium constants of gas-phase reactions, as well as the formation and atomization enthalpies of gaseous cerium molybdates and tungstates. CeO 2 was evaporated from molybdenum and tungsten effusion cells containing gold metal as a pressure standard. A theoretical study of gaseous cerium gaseous molybdates and tungstates was performed by several quantum chemical methods. In the temperature range 2050-2400 K, CeO, CeO 2 , XO 2 , XO 3 , CeWO 3 , CeXO 4 , CeXO 5 (X = Mo, W) and CeMo 2 O 7 were found to be the main vapor species over the CeO 2 - Mo (W) systems. On the basis of the equilibrium constants of the gaseous reactions, the standard formation enthalpies of gaseous CeWO 3 , CeXO 4 , CeXO 5 (X = Mo, W) and CeMo 2 O 7 at 298 K were determined. Energetically favorable structures of gaseous cerium salts were found and vibrational frequencies were evaluated in the harmonic approximation. The thermal stability of gaseous cerium oxyacid salts was confirmed by high-temperature mass spectrometry. Reaction enthalpies of the gaseous cerium molybdates and tungstates from gaseous cerium, molybdenum and tungsten oxides were evaluated theoretically and the obtained values are in reasonable agreement with the experimental one. This article is protected by copyright. All rights reserved.
NASA Astrophysics Data System (ADS)
Niroumandrad, S.; Rostami, M.; Ramezanzadeh, B.
2015-12-01
The objective of this study was to enhance the corrosion resistance of lamellar aluminum pigment through surface treatment by cerium oxides/hydroxides. The surface composition of the pigments was studied by energy-dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The corrosion resistance of the pigment was evaluated by conventional hydrogen evolution measurements in acidic solution and electrochemical impedance spectroscopy (EIS) in 3.5% NaCl solution. Results showed that the Ce-rich coating composed of Ce2O3 and CeO2 was precipitated on the pigment surface after immersion in the cerium solution. The corrosion resistance of pigment was significantly enhanced after modification with cerium layer.
Optical properties of cerium doped oxyfluoroborate glass.
Bahadur, A; Dwivedi, Y; Rai, S B
2013-06-01
Cerium doped oxyfluoroborate glasses have been prepared and its spectroscopic properties have been discussed. It is found that the absorption edge shifts towards the lower energy side for the higher concentration of cerium dopant. Optical band gap for these glasses have been calculated and it is found that the number of non-bridging oxygen increases with cerium content. The emission spectra of these glasses have been recorded using UV laser radiations (266 and 355 nm) and it is observed that these glasses show bright blue emission. On the basis of excitation and emission spectra we have reported the existence of at least two different emission centers of Ce(3+)ions. Copyright © 2013 Elsevier B.V. All rights reserved.
Electrolytic recovery of reactor metal fuel
Miller, W.E.; Tomczuk, Z.
1994-09-20
A new electrolytic process and apparatus are provided using sodium, cerium or a similar metal in alloy or within a sodium beta or beta[double prime]-alumina sodium ion conductor to electrolytically displace each of the spent fuel metals except for cesium and strontium on a selective basis from the electrolyte to an inert metal cathode. Each of the metals can be deposited separately. An electrolytic transfer of spent fuel into the electrolyte includes a sodium or cerium salt in the electrolyte with sodium or cerium alloy being deposited on the cathode during the transfer of the metals from the spent fuel. The cathode with the deposit of sodium or cerium alloy is then shunted to an anode and the reverse transfer is carried out on a selective basis with each metal being deposited separately at the cathode. The result is that the sodium or cerium needed for the process is regenerated in the first step and no additional source of these reactants is required. 2 figs.
Electrolytic recovery of reactor metal fuel
Miller, W.E.; Tomczuk, Z.
1993-02-03
This invention is comprised of a new electrolytic process and apparatus using sodium, cerium or a similar metal in an alloy or within a sodium beta or beta-alumina sodium ion conductor to electrolytically displace each of the spent fuel metals except for Cesium and strontium on a selective basis from the electrolyte to an inert metal cathode. Each of the metals can be deposited separately. An electrolytic transfer of spent fuel into the electrolyte includes a sodium or cerium salt in the electrolyte with sodium or cerium alloy being deposited on the cathode during the transfer of the metals from the spent fuel. The cathode with the deposit of sodium or cerium alloy is then changed to an anode and the reverse transfer is carried out on a selective basis with each metal being deposited separately at the cathode. The result is that the sodium or cerium needed for the process is regenerated in the first step and no additional source of these reactants is required.
Electrolytic recovery of reactor metal fuel
Miller, William E.; Tomczuk, Zygmunt
1994-01-01
A new electrolytic process and apparatus are provided using sodium, cerium or a similar metal in alloy or within a sodium beta or beta"-alumina sodium ion conductor to electrolytically displace each of the spent fuel metals except for cesium and strontium on a selective basis from the electrolyte to an inert metal cathode. Each of the metals can be deposited separately. An electrolytic transfer of spent fuel into the electrolyte includes a sodium or cerium salt in the electrolyte with sodium or cerium alloy being deposited on the cathode during the transfer of the metals from the spent fuel. The cathode with the deposit of sodium or cerium alloy is then chanted to an anode and the reverse transfer is carried out on a selective basis with each metal being deposited separately at the cathode. The result is that the sodium or cerium needed for the process is regenerated in the first step and no additional source of these reactants is required.
Ruas, Alexandre; Simonin, Jean-Pierre; Turq, Pierre; Moisy, Philippe
2005-12-08
This work is aimed at a description of the thermodynamic properties of actinide salt solutions at high concentration. The predictive capability of the binding mean spherical approximation (BIMSA) theory to describe the thermodynamic properties of electrolytes is assessed in the case of aqueous solutions of lanthanide(III) nitrate and chloride salts. Osmotic coefficients of cerium(III) nitrate and chloride were calculated from other lanthanide(III) salts properties. In parallel, concentrated binary solutions of cerium nitrate were prepared in order to measure experimentally its water activity and density as a function of concentration, at 25 degrees C. Water activities of several binary solutions of cerium chloride were also measured to check existing data on this salt. Then, the properties of cerium chloride and cerium nitrate solutions were compared within the BIMSA model. Osmotic coefficient values for promethium nitrate and promethium chloride given by this theory are proposed. Finally, water activity measurements were made to examine the fact that the ternary system Ce(NO3)3/HNO3/H2O and the quaternary system Ce(NO3)3/HNO3/N2H5NO3/H2O may be regarded as "simple solutions" (in the sense of Zdanovskii and Mikulin).
Determination of chemical speciations of cerium in nuclear waste glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, Meiling; Li, Hong
1996-12-31
Cerium oxides have been widely used as a surrogate for plutonium in the investigation of the melt and durability behavior of simulated nuclear waste glasses. It is well known that there is a cerous-ceric equilibrium in silicate glasses under normal melting conditions. The position of this equilibrium depends on glass composition, melting temperature, furnace atmosphere, and possibly the total amounts of cerium in glass. The oxidation state of cerium affects total solubility of cerium in glass, solubilities of other components in glass, viscosities and liquidus temperatures of the melts, and the chemical durability of the glasses. A procedure was developedmore » for the determination of the ceric and cerous distribution. The glass was ground to small particles of less than 300 meshes and was dissolved in mixture of HF and H{sub 2}SO{sub 4}. The ceric oxide was graduately reduced to cerous species in the presence of HF acid during the dissolution. To compensate the change of the equilibrium during the dissolution, a calibration curve is made with a mixture of standard solution of ceric sulphate and one gram of glass of the same composition containing no cerium. Boric acid was added to complex the fluoride ions, and the resultant solution was titrated potentiometrically with 0.01 N ferrous ammonium sulphate solution. The corrected ceric concentration was obtained on the calibration curve. The total cerium content in the above solution was analyzed using ICP-AES and the cerous content was the difference between the total Ce and Ce(+4).« less
NASA Astrophysics Data System (ADS)
Jeans, Christopher V.; Wray, David S.; Williams, C. Terry
2015-09-01
The cerium anomalies preserved in the Chalk have been investigated as possible palaeoredox indicators of the Late Cretaceous Sea and its sediment. This has been based upon over a hundred new rare earth element analyses of selected samples and grain size fractions from the Chalk. Particular attention has been given to the methodology of differentiating between the cerium anomalies preserved in the bioclastic calcite and those in carbonate-fluorapatite preserved in the acetic acid insoluble residues of chalks. Variations in the cerium anomaly of different particle size fractions of uncemented chalks suggest that fractionation of rare earth elements between the Chalk's seawater and the various organisms that contributed skeletal material to the bioclastic calcite of the Chalk may have occurred. Post-depositional processes of calcite cementation and late diagenetic sulphidisation have had no apparent effect on the cerium anomaly of the acetic acid insoluble residues. The cerium anomalies associated with the acetic acid insoluble residues from (1) an alternating sequence of chalks and marls from Ballard Cliff (Dorset, UK) typical of Milankovitch cyclicity show a marked diagenetic pattern, whereas those from (2) non-volcanic and volcanic marls display a pattern that is best explained by the variations in the availability of phosphorus and the timing of argillisation of volcanic glass during diagenesis. The general conclusion is drawn that the cerium anomalies preserved in the Chalk can provide an insight into the changing palaeoredox conditions in the Late Cretaceous Sea as well as in the pore fluids of its sediments.
10 CFR Appendix B to Part 30 - Quantities 1 of Licensed Material Requiring Labeling
Code of Federal Regulations, 2012 CFR
2012-01-01
... Iodine-126 1 Iodine-129 0.1 Iodine-131 1 Iodine-132 10 Iodine-133 1 Iodine-134 10 Iodine-135 10 Iridium... Arsenic-73 100 Arsenic-74 10 Arsenic-76 10 Arsenic-77 100 Barium-131 10 Barium-133 10 Barium-140 10... Carbon-14 100 Cerium-141 100 Cerium-143 100 Cerium-144 1 Cesium-131 1,000 Cesium-134m 100 Cesium-134 1...
10 CFR Appendix B to Part 30 - Quantities 1 of Licensed Material Requiring Labeling
Code of Federal Regulations, 2014 CFR
2014-01-01
... Iodine-126 1 Iodine-129 0.1 Iodine-131 1 Iodine-132 10 Iodine-133 1 Iodine-134 10 Iodine-135 10 Iridium... Arsenic-73 100 Arsenic-74 10 Arsenic-76 10 Arsenic-77 100 Barium-131 10 Barium-133 10 Barium-140 10... Carbon-14 100 Cerium-141 100 Cerium-143 100 Cerium-144 1 Cesium-131 1,000 Cesium-134m 100 Cesium-134 1...
10 CFR Appendix B to Part 30 - Quantities 1 of Licensed Material Requiring Labeling
Code of Federal Regulations, 2013 CFR
2013-01-01
... Iodine-126 1 Iodine-129 0.1 Iodine-131 1 Iodine-132 10 Iodine-133 1 Iodine-134 10 Iodine-135 10 Iridium... Arsenic-73 100 Arsenic-74 10 Arsenic-76 10 Arsenic-77 100 Barium-131 10 Barium-133 10 Barium-140 10... Carbon-14 100 Cerium-141 100 Cerium-143 100 Cerium-144 1 Cesium-131 1,000 Cesium-134m 100 Cesium-134 1...
Development of High Temperature Superconducting Josephson Junction Device Technology
1998-07-09
neodymium gallate , cerium oxide-buffered sapphire, and lanthanum aluminate, are not ideal for an in situ thallium cuprate junction technology. Moreover...determined that the standard HTS substrates, neodymium gallate , cerium oxide-buffered sapphire, and lanthanum aluminate, are not ideal for an in situ...2.2.1. Deposition Uniformity 10 2.2.2. Radiative Element 12 2.3. SUBSTRATES 13 2.3.1. Neodymium gallate 14 2.3.2. Cerium Oxide-Buffered Sapphire 16
Adabavazeh, Z.; Hwang, W. S.; Su, Y. H.
2017-01-01
Intra-granular Acicular Ferrite (IAF), as one of the most well-known desirable microstructure of ferrite with a chaotic crystallographic orientation, can not only refine the microstructure and retard the propagation of cleavage crack but also provide excellent combination of strength and toughness in steel. The effect of adding cerium on microstructure and controlling proper cerium-based inclusions in order to improve properties in low-carbon commercial steel (SS400) were investigated. The type of inclusions can be controlled by changing S/O ratio and Ce content. Without Ce modification, MnS is a dominate inclusion. After adding Ce, the stable inclusion phases change from AlCeO3 to Ce2O2S. The optimum amount of cerium, 0.0235 wt.%, lead in proper grain refinement and formation of cerium oxide, oxy-sulfide and sulfide inclusions. Having a high amount of cerium results in increasing the number of inclusions significantly as a result it cannot be effective enough and the inclusions will act like barriers for others. It is found that the inclusions with a size of about 4∼7 μm can serve as heterogeneous nucleation sites for AF formation. Thermodynamic calculations have been applied to predict the inclusion formation in this molten steel as well, which show a good agreement with experimental one. PMID:28485376
International strategic minerals inventory summary report; rare-earth oxides
Jackson, W.D.; Christiansen, Grey
1993-01-01
Bastnaesite, monazite, and xenotime are currently the most important rare-earth minerals. Bastnaesite occurs as a primary mineral in carbonatites. Monazite and xenotime also can be found in primary deposits but are recovered principally from heavy-mineral placers that are mined for titanium or tin. Each of these minerals has a different composition of the 15 rare-earth elements. World resources of economically exploitable rare-earth oxides (REO) are estimated at 93.4 million metric tons in place, composed of 93 percent in primary deposits and 7 percent in placers. The average mineral composition is 83 percent bastnaesite, 13 percent monazite, and 4 percent of 10 other minerals. Annual global production is about 67,000 metric tons of which 41 percent is from placers and 59 percent is from primary deposits; mining methods consist of open pits (94 percent) and dredging (6 percent). This output could be doubled if the operations that do not currently recover rare earths would do so. Resources are more than sufficient to meet the demand for the predictable future. About 52 percent of the world's REO resources are located in China. Ranking of other countries is as follows: Namibia (22 percent), the United States (15 percent), Australia (6 percent), and India (3 percent); the remainder is in several other countries. Conversely, 38 percent of the production is in China, 33 percent in the United States, 12 percent in Australia, and 5 percent each in Malaysia and India. Several other countries, including Brazil, Canada, South Africa, Sri Lanka, and Thailand, make up the remainder. Markets for rare earths are mainly in the metallurgical, magnet, ceramic, electronic, chemical, and optical industries. Rare earths improve the physical and rolling properties of iron and steel and add corrosion resistance and strength to structural members at high temperatures. Samarium and neodymium are used in lightweight, powerful magnets for electric motors. Cerium and yttrium increase the density and heat resistance of sintered ceramics. Yttrium and gadolinium contribute to the efficiency of electronic switches and sensors. Cerium improves the effectiveness of catalysts in the petroleum and automotive industries. Cerium oxides speed glass melting and are used to polish glass by chemical, rather than mechanical, means. Cerium, europium, terbium, and yttrium, as phosphoric compounds, promote the vivid colors of television screens. Consumption of rare earths is expected to grow by about 2.6 percent per year.
Casting Characteristics of High Cerium Content Aluminum Alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiss, D; Rios, O R; Sims, Z C
This paper compares the castability of the near eutectic aluminum-cerium alloy system to the aluminum-silicon and aluminum-copper systems. The alloys are compared based on die filling capability, feeding characteristics and tendency to hot tear in both sand cast and permanent mold applications. The castability ranking of the binary Al–Ce systems is as good as the aluminum-silicon system with some deterioration as additional alloying elements are added. In alloy systems that use cerium in combination with common aluminum alloying elements such as silicon, magnesium and/or copper, the casting characteristics are generally better than the aluminum-copper system. In general, production systems formore » melting, de-gassing and other processing of aluminum-silicon or aluminum-copper alloys can be used without modification for conventional casting of aluminum-cerium alloys.« less
Production of cerium dioxide microspheres by an internal gelation sol–gel method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katalenich, Jeffrey A.
An internal gelation sol-gel technique was used to prepare cerium dioxide microspheres with uniform diameters near 100 µm. In this process, chilled aqueous solutions containing cerium, hexamethylenetetramine (HMTA), and urea are transformed into a solid gel by heat addition and are subsequently washed, dried, and sintered to produce pure cerium dioxide. Cerous nitrate and ceric ammonium nitrate solutions were compared for their usefulness in microsphere production. Gelation experiments were performed with both cerous nitrate and ceric ammonium nitrate to determine desirable concentrations of cerium, HMTA, and urea in feed solutions as well as the necessary quantity of ammonium hydroxide addedmore » to cerium solutions. Analysis of the pH before and after sample gelation was found to provide a quantitative metric for optimal parameter selection along with subjective evaluations of gel qualities. The time necessary for chilled solutions to gel upon inserting into a hot water bath was determined for samples with a variety of parameters and also used to determine desirable formulations for microsphere production. A technique for choosing the optimal mixture of ceric ammonium nitrate, HMTA, and urea was determined using gelation experiments and used to produce microspheres by dispersion of the feed solution into heated silicone oil. Gelled spheres were washed to remove excess reactants and reaction products before being dried and sintered. X-ray diffraction of air-dried microspheres, sintered microspheres, and commercial CeO 2 powders indicated that air-dried and sintered spheres were pure CeO 2.« less
Kondo behavior and metamagnetic phase transition in the heavy-fermion compound CeBi2
NASA Astrophysics Data System (ADS)
Zhou, W.; Xu, C. Q.; Li, B.; Sankar, R.; Zhang, F. M.; Qian, B.; Cao, C.; Dai, J. H.; Lu, Jianming; Jiang, W. X.; Qian, Dong; Xu, Xiaofeng
2018-05-01
Heavy fermions represent an archetypal example of strongly correlated electron systems which, due to entanglement among different interactions, often exhibit exotic and fascinating physics involving Kondo screening, magnetism, and unconventional superconductivity. Here we report a comprehensive study on the transport and thermodynamic properties of a cerium-based heavy-fermion compound CeBi2 which undergoes an antiferromagnetic transition at TN˜3.3 K . Its high-temperature paramagnetic state is characterized by an enhanced heat capacity with Sommerfeld coefficient γ over 200 mJ mol-1K-2 . The magnetization in the magnetically ordered state features a metamagnetic transition. Remarkably, a large negative magnetoresistance associated with the magnetism was observed in a wide temperature and field-angle range. Collectively, CeBi2 may serve as an intriguing system to study the interplay between the f electrons and the itinerant Fermi sea.
Persistent Luminescence in Non-Eu2+-Doped Compounds: A Review
Van den Eeckhout, Koen; Poelman, Dirk; Smet, Philippe F.
2013-01-01
During the past few decades, the research on persistent luminescent materials has focused mainly on Eu2+-doped compounds. However, the yearly number of publications on non-Eu2+-based materials has also increased steadily. By now, the number of known persistent phosphors has increased to over 200, of which over 80% are not based on Eu2+, but rather, on intrinsic host defects, transition metals (manganese, chromium, copper, etc.) or trivalent rare earths (cerium, terbium, dysprosium, etc.). In this review, we present an overview of these non-Eu2+-based persistent luminescent materials and their afterglow properties. We also take a closer look at some remaining challenges, such as the excitability with visible light and the possibility of energy transfer between multiple luminescent centers. Finally, we summarize the necessary elements for a complete description of a persistent luminescent material, in order to allow a more objective comparison of these phosphors. PMID:28811409
Thermometric titrimetry Studies of the cerium(IV) oxidation of alpha-mercaptocarboxylic acids.
Alexander, W A; Mash, C J; McAuley, A
1969-04-01
The cerium(IV) oxidation of thioglycollic, thiolactic and thiomalic acids has been examined by thermometric titration. The titration curves indicate stoichiometries of more than 1 mole of cerium(IV) per mole of alpha-thiol, suggesting possible side-reactions. In the presence of methyl acrylate, however, the expected ratio is observed. The overall heat of each reaction has been derived. Only with a titration method of this kind where allowance can be made for side-reactions can the heats of reaction for these systems be measured.
METHOD FOR OBTAINING PLUTONIUM METAL AND ALLOYS OF PLUTONIUM FROM PLUTONIUM TRICHLORIDE
Reavis, J.G.; Leary, J.A.; Maraman, W.J.
1962-11-13
A process is given for both reducing plutonium trichloride to plutonium metal using cerium as the reductant and simultaneously alloying such plutonium metal with an excess of cerium or cerium and cobalt sufficient to yield the desired nuclear reactor fuel composition. The process is conducted at a temperature from about 550 to 775 deg C, at atmospheric pressure, without the use of booster reactants, and a substantial decontamination is effected in the product alloy of any rare earths which may be associated with the source of the plutonium. (AEC)
Cerium-doped scintillating fused-silica fibers
NASA Astrophysics Data System (ADS)
Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P.; Faulkner, J.; Kunori, S.
2018-04-01
We report on a set of measurements made on (scintillating) cerium-doped fused-silica fibers using high-energy particle beams. These fibers were uniformly embedded in a copper absorber in order to utilize electromagnetic showers as a source of charged particles for generating signals. This new type of cerium-doped fiber potentially offers myriad new applications in calorimeters in high-energy physics, tracking systems, and beam monitoring detectors for future applications. The light yield, pulse shape, attenuation length, and light propagation speeds are given and discussed. Possible future applications are also explored.
Manchado, Alejandro; Salgado, Mateo M; Vicente, Álvaro; Díez, David; Sanz, Francisca; Garrido, Narciso M
2017-04-01
The title compound, C 22 H 25 NO 5 , was prepared by CAN [cerium(IV) ammonium nitrate] oxidation of the corresponding β-lactam. The dihedral angle between the benzene rings is 13.3 (4)° and the C-N-C(=O)-C torsion angle is 176.1 (6)°. In the crystal, amide- C (4) N-H⋯O and reinforcing C-H⋯O hydrogen bonds link the mol-ecules into infinite [010] chains. Further C-H⋯O hydrogen bonds cross-link the chains in the c -axis direction.
Using Biomolecules to Separate Plutonium
NASA Astrophysics Data System (ADS)
Gogolski, Jarrod
Used nuclear fuel has traditionally been treated through chemical separations of the radionuclides for recycle or disposal. This research considers a biological approach to such separations based on a series of complex and interdependent interactions that occur naturally in the human body with plutonium. These biological interactions are mediated by the proteins serum transferrin and the transferrin receptor. Transferrin to plutonium in vivo and can deposit plutonium into cells after interacting with the transferrin receptor protein at the cell surface. Using cerium as a non-radioactive surrogate for plutonium, it was found that cerium(IV) required multiple synergistic anions to bind in the N-lobe of the bilobal transferrin protein, creating a conformation of the cerium-loaded protein that would be unable to interact with the transferrin receptor protein to achieve a separation. The behavior of cerium binding to transferrin has contributed to understanding how plutonium(IV)-transferrin interacts in vivo and in biological separations.
NASA Astrophysics Data System (ADS)
Zhang, Hao; Zhao, Xiaozhou; Wang, Shuang; Zeng, Shanghong; Su, Haiquan
2018-05-01
The CuO-CeO2@SiO2 catalyst with flower-sphere morphology was prepared by the impregnation method and then experienced the reduction-oxidation treatment at different temperatures. The multi-technique characterization shows that the reduction-oxidation treatment can remodel CuO, improve textural and surface properties and change Cu+ content and synergistic effect of copper and cerium. The importance of this work lies in the fact that the decrease of Cu+ content and synergistic effect of copper and cerium that occurs in the reduction-oxidation process results in the decrease of catalytic activity over the CuO-CeO2@SiO2 catalyst for preferential CO oxidation. The process of reaction in rich-hydrogen streams is equivalent to a reduction procedure which decreases Cu+ content and synergistic effect of copper and cerium.
NASA Astrophysics Data System (ADS)
Castano, Carlos E.; Maddela, Surender; O'Keefe, Matthew J.; Wang, Yar-Ming
Cerium-based conversion coatings (CeCCs) were deposited onto AZ31B magnesium alloy substrates using a spontaneous reaction of CeCl3, H2O2 and gelatin in a water-based solution. The coating thickness was adjusted by controlling the immersion time in the deposition solution. Prior to deposition, the AZ31B substrates were treated using an acid pickling in nitric acid and then an alkaline cleaning in sodium metasilicate pentahydrate. After deposition, the coated samples were immersed in a phosphate bath that converted cerium oxide/hydroxide into cerium phosphate. Electrochemical impedance spectroscopy, potentiodynamic polarization and neutral salt spray testing studies indicated that 100 nm thick CeCC had better corrosion performance than 400 nm coatings. Characterization of the CeCCs by transmission electron microscopy (TEM) revealed a three layer structure with different compositions.
Arasu, Mariadas Valan; Thirumamagal, R; Srinivasan, M P; Al-Dhabi, Naif Abdullah; Ayeshamariam, A; Saravana Kumar, D; Punithavelan, N; Jayachandran, M
2017-08-01
Nanomaterials of CeO 2 with A. vera were synthesized by using simple chemical method. Grapes drops are used as an oxidizing agent. Structural and morphological studies of nanomaterials of cerium oxide (CeO 2 ), were studied for combustion method of preparation. The precursor solution was initialized by a hydrothermal reaction. Cerium hydroxyl carbonate precursors which involves cerium (III) nitrate Ce(NO 3 ) 3 . 6 H 2 O with (1.0M) of seashell powder, 3% A. vera, extracts, grapes and pomegranate drops and this complex solution was used to produce the CeO 2 powder particles. We have prepared another sample with 5% of Aloe vera extract and found that 3% Aloe vera extract has lesser grain size and enhanced band gap values, so the article explained the sample analysis of combination with 3% extract of Aloe vera. The product has the rod pattern which was the unusual features appear to originate from the unique crystal chemistry aspects. From the optical absorption spectrum, it has been shown that the CeO 2 rods have 3.847eV of direct band gap energy. The minimum inhibitory concentration (MIC) values of the synthesized compounds exhibited activity towards various microbial pathogens such as B. subtilis (15μg/mL), S. aureus (50μg/mL), S. epidermidis (20μg/mL), E. faecalis (25μg/mL) and towards E. coli (100μg/mL), K. pneumoniae (50μg/mL) and P. aeruginosa (75μg/mL) respectively. The tests on bacterial activities confirmed that the CeO 2 rods are suitable hand for the biological applications. The seashell structure and the phytochemical contents of A. vera might enhance its bacterial activities. Copyright © 2017 Elsevier B.V. All rights reserved.
Heteroaggregation of cerium oxide nanoparticles and nanoparticles of pyrolyzed biomass
USDA-ARS?s Scientific Manuscript database
Heteroaggregation with indigenous particles is an important process controlling the mobility of engineered nanomaterials in the environment. We studied heteroaggregation of cerium oxide nanoparticles (n-CeO2), which are widely used commercially, with nanoparticles of pyrogenic carbonaceous material ...
NASA Astrophysics Data System (ADS)
Movenko, D. A.; Kotel'nikov, G. I.; Pavlov, A. V.; Bytsenko, O. A.
2015-11-01
Experimental heats of low-alloy steel are performed under various conditions of rare-earth metal microalloying and aluminum and calcium deoxidation. Electron-probe microanalysis of nonmetallic inclusions and a metallographic investigation of a metal are used to show that, when interacting with water, nonmetallic cerium oxide inclusions do not form hydrates and, correspondingly, are not aggressive. When aluminum, calcium, and cerium additions are sequentially introduced into a melt, a continuous cerium oxide shell forms on calcium aluminates, protects corrosive nonmetallic inclusions against interaction with water, and weakens local metal corrosion.
Divalent fluoride doped cerium fluoride scintillator
Anderson, David F.; Sparrow, Robert W.
1991-01-01
The use of divalent fluoride dopants in scintillator materials comprising cerium fluoride is disclosed. The preferred divalent fluoride dopants are calcium fluoride, strontium fluoride, and barium fluoride. The preferred amount of divalent fluoride dopant is less than about two percent by weight of the total scintillator. Cerium fluoride scintillator crystals grown with the addition of a divalent fluoride have exhibited better transmissions and higher light outputs than crystals grown without the addition of such dopants. These scintillators are useful in radiation detection and monitoring applications, and are particularly well suited for high-rate applications such as positron emission tomography (PET).
Fabrication and characterization of cerium-doped barium titanate inverse opal by sol-gel method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin Yi; Zhu Yihua; Yang Xiaoling
Cerium-doped barium titanate inverted opal was synthesized from barium acetate contained cerous acetate and tetrabutyl titanate in the interstitial spaces of a polystyrene (PS) opal. This procedure involves infiltration of precursors into the interstices of the PS opal template followed by hydrolytic polycondensation of the precursors to amorphous barium titanate and removal of the PS opal by calcination. The morphologies of opal and inverse opal were characterized by scanning electron microscope (SEM). The pores were characterized by mercury intrusion porosimetry (MIP). X-ray photoelectron spectroscopy (XPS) investigation showed the doping structure of cerium, barium and titanium. And powder X-ray diffraction allowsmore » one to observe the influence of doping degree on the grain size. The lattice parameters, crystal size and lattice strain were calculated by the Rietveld refinement method. The synthesis of cerium-doped barium titanate inverted opals provides an opportunity to electrically and optically engineer the photonic band structure and the possibility of developing tunable three-dimensional photonic crystal devices. - Graphical abstract: Cerium-doped barium titanate inverted opal was synthesized from barium acetate acid contained cerous acetate and tetrabutyl titanate in the interstitial spaces of a PS opal, which involves infiltration of precursors into the interstices of the PS opal template and removal of the PS opal by calcination.« less
A mixed acid based vanadium-cerium redox flow battery with a zero-gap serpentine architecture
NASA Astrophysics Data System (ADS)
Leung, P. K.; Mohamed, M. R.; Shah, A. A.; Xu, Q.; Conde-Duran, M. B.
2015-01-01
This paper presents the performance of a vanadium-cerium redox flow battery using conventional and zero-gap serpentine architectures. Mixed-acid solutions based on methanesulfonate-sulfate anions (molar ratio 3:1) are used to enhance the solubilities of the vanadium (>2.0 mol dm-3) and cerium species (>0.8 mol dm-3), thus achieving an energy density (c.a. 28 Wh dm-3) comparable to that of conventional all-vanadium redox flow batteries (20-30 Wh dm-3). Electrochemical studies, including cyclic voltammetry and galvanostatic cycling, show that both vanadium and cerium active species are suitable for energy storage applications in these electrolytes. To take advantage of the high open-circuit voltage (1.78 V), improved mass transport and reduced internal resistance are facilitated by the use of zero-gap flow field architecture, which yields a power density output of the battery of up to 370 mW cm-2 at a state-of-charge of 50%. In a charge-discharge cycle at 200 mA cm-2, the vanadium-cerium redox flow battery with the zero-gap architecture is observed to discharge at a cell voltage of c.a. 1.35 V with a coulombic efficiency of up to 78%.
Cerium; crystal structure and position in the periodic table.
Johansson, Börje; Luo, Wei; Li, Sa; Ahuja, Rajeev
2014-09-17
The properties of the cerium metal have intrigued physicists and chemists for many decades. In particular a lot of attention has been directed towards its high pressure behavior, where an isostructural volume collapse (γ phase → α phase) has been observed. Two main models of the electronic aspect of this transformation have been proposed; one where the 4f electron undergoes a change from being localized into an itinerant metallic state, and one where the focus is on the interaction between the 4f electron and the conduction electrons, often referred to as the Kondo volume collapse model. However, over the years it has been repeatedly questioned whether the cerium collapse really is isostructural. Most recently, detailed experiments have been able to remove this worrisome uncertainty. Therefore the isostructural aspect of the α-γ transition has now to be seriously addressed in the theoretical modeling, something which has been very much neglected. A study of this fundamental characteristic of the cerium volume collapse is made in present paper and we show that the localized [rlhar2 ] delocalized 4f electron picture provides an adequate description of this unique behavior. This agreement makes it possible to suggest that an appropriate crossroad position for cerium in The Periodic Table.
NASA Astrophysics Data System (ADS)
Valle-Hernández, Julio; Romero-Paredes, Hernando; Pacheco-Reyes, Alejandro
2017-06-01
In this paper the simulation of the steam hydrolysis for hydrogen production through the decomposition of cerium oxide is presented. The thermochemical cycle for hydrogen production consists of the endothermic reduction of CeO2 to lower-valence cerium oxide, at high temperature, where concentrated solar energy is used as a source of heat; and of the subsequent steam hydrolysis of the resulting cerium oxide to produce hydrogen. The modeling of endothermic reduction step was presented at the Solar Paces 2015. This work shows the modeling of the exothermic step; the hydrolysis of the cerium oxide (III) to form H2 and the corresponding initial cerium oxide made at lower temperature inside the solar reactor. For this model, three sections of the pipe where the reaction occurs were considered; the steam water inlet, the porous medium and the hydrogen outlet produced. The mathematical model describes the fluid mechanics; mass and energy transfer occurring therein inside the tungsten pipe. Thermochemical process model was simulated in CFD. The results show a temperature distribution in the solar reaction pipe and allow obtaining the fluid dynamics and the heat transfer within the pipe. This work is part of the project "Solar Fuels and Industrial Processes" from the Mexican Center for Innovation in Solar Energy (CEMIE-Sol).
NASA Astrophysics Data System (ADS)
Karthik, N.; Goldwin Xavier, X.; Rajasekar, R.; Ganesh Bairavan, P.; Dhanseelan, S.
2017-05-01
Present study provides the effect of Zinc Oxide (ZnO) and Cerium Oxide (CeO2) nanoparticles additives on the Performance and emission uniqueness of Jatropha. Jatropha blended fuel is prepared by the emulsification technique with assist of mechanical agitator. Nano particles (Zinc Oxide (ZnO)) and Cerium Oxide (CeO2)) mixed with Jatropha blended fuel in mass fraction (100 ppm) with assist of an ultrasonicator. Experiments were conducted in single cylinder constant speed direct injection diesel engine for various test fuels. Performance results revealed that Brake Thermal Efficiency (BTE) of Jatropha blended Cerium Oxide (B20CE) is 3% and 11% higher than Jatropha blended zinc oxide (B20ZO) and Jatropha blended fuel (B20) and 4% lower than diesel fuel (D100) at full load conditions. Emission result shows that HC and CO emissions of Jatropha blended Cerium Oxide (B20CE) are (6%, 22%, 11% and 6%, 15%, 12%) less compared with Jatropha blended Zinc Oxide (B20ZO), diesel (D100) and Jatropha blended fuel (B20) at full load conditions. NOx emissions of Jatropha blended Cerium Oxide is 1 % higher than diesel fuel (D100) and 2% and 5% lower than Jatropha blended Zinc Oxide, and jatropha blended fuel.
Processing and Characterization of Sol-Gel Cerium Oxide Microspheres
DOE Office of Scientific and Technical Information (OSTI.GOV)
McClure, Zachary D.; Padilla Cintron, Cristina
Of interest to space exploration and power generation, Radioisotope Thermoelectric Generators (RTGs) can provide long-term power to remote electronic systems without the need for refueling or replacement. Plutonium-238 (Pu-238) remains one of the more promising materials for thermoelectric power generation due to its high power density, long half-life, and low gamma emissions. Traditional methods for processing Pu-238 include ball milling irregular precipitated powders before pressing and sintering into a dense pellet. The resulting submicron particulates of Pu-238 quickly accumulate and contaminate glove boxes. An alternative and dust-free method for Pu-238 processing is internal gelation via sol-gel techniques. Sol-gel methodology createsmore » monodisperse and uniform microspheres that can be packed and pressed into a pellet. For this study cerium oxide microspheres were produced as a surrogate to Pu-238. The similar electronic orbitals between cerium and plutonium make cerium an ideal choice for non-radioactive work. Before the microspheres can be sintered and pressed they must be washed to remove the processing oil and any unreacted substituents. An investigation was performed on the washing step to find an appropriate wash solution that reduced waste and flammable risk. Cerium oxide microspheres were processed, washed, and characterized to determine the effectiveness of the new wash solution.« less
Cerium; Crystal Structure and Position in The Periodic Table
Johansson, Börje; Luo, Wei; Li, Sa; Ahuja, Rajeev
2014-01-01
The properties of the cerium metal have intrigued physicists and chemists for many decades. In particular a lot of attention has been directed towards its high pressure behavior, where an isostructural volume collapse (γ phase → α phase) has been observed. Two main models of the electronic aspect of this transformation have been proposed; one where the 4f electron undergoes a change from being localized into an itinerant metallic state, and one where the focus is on the interaction between the 4f electron and the conduction electrons, often referred to as the Kondo volume collapse model. However, over the years it has been repeatedly questioned whether the cerium collapse really is isostructural. Most recently, detailed experiments have been able to remove this worrisome uncertainty. Therefore the isostructural aspect of the α-γ transition has now to be seriously addressed in the theoretical modeling, something which has been very much neglected. A study of this fundamental characteristic of the cerium volume collapse is made in present paper and we show that the localized ⇌ delocalized 4f electron picture provides an adequate description of this unique behavior. This agreement makes it possible to suggest that an appropriate crossroad position for cerium in The Periodic Table. PMID:25227991
Analysis of large soil samples for actinides
Maxwell, III; Sherrod, L [Aiken, SC
2009-03-24
A method of analyzing relatively large soil samples for actinides by employing a separation process that includes cerium fluoride precipitation for removing the soil matrix and precipitates plutonium, americium, and curium with cerium and hydrofluoric acid followed by separating these actinides using chromatography cartridges.
NASA Astrophysics Data System (ADS)
Valle-Hernández, Julio; Romero-Paredes, Hernando; Arancibia-Bulnes, Camilo A.; Villafan-Vidales, Heidi I.; Espinosa-Paredes, Gilberto
2016-05-01
In this paper the simulation of the thermal reduction for hydrogen production through the decomposition of cerium oxide is presented. The thermochemical cycle for hydrogen production consists of the endothermic reduction of CeO2 at high temperature, where concentrated solar energy is used as a source of heat; and of the subsequent steam hydrolysis of the resulting cerium oxide to produce hydrogen. For the thermochemical process, a solar reactor prototype is proposed; consisting of a cubic receptacle made of graphite fiber thermally insulated. Inside the reactor a pyramidal arrangement with nine tungsten pipes is housed. The pyramidal arrangement is made respect to the focal point where the reflected energy is concentrated. The solar energy is concentrated through the solar furnace of high radiative flux. The endothermic step is the reduction of the cerium oxide to lower-valence cerium oxide, at very high temperature. The exothermic step is the hydrolysis of the cerium oxide (III) to form H2 and the corresponding initial cerium oxide made at lower temperature inside the solar reactor. For the modeling, three sections of the pipe where the reaction occurs were considered; the carrier gas inlet, the porous medium and the reaction products outlet. The mathematical model describes the fluid mechanics; mass and energy transfer occurring therein inside the tungsten pipe. Thermochemical process model was simulated in CFD. The results show a temperature distribution in the solar reaction pipe and allow obtaining the fluid dynamics and the heat transfer within the pipe. This work is part of the project "Solar Fuels and Industrial Processes" from the Mexican Center for Innovation in Solar Energy (CEMIE-Sol).
Diesel exhaust (DE) exposure induces adverse cardiopulmonary effects. Cerium oxide nanoparticles added to diesel fuel (DECe) increases fuel burning efficiency but leads to altered emission characteristics and potentially altered health effects. Here, we evaluated whether DECe res...
Antibacterial Activity of Polymer Coated Cerium Oxide Nanoparticles
Shah, Vishal; Shah, Shreya; Shah, Hirsh; Rispoli, Fred J.; McDonnell, Kevin T.; Workeneh, Selam; Karakoti, Ajay; Kumar, Amit; Seal, Sudipta
2012-01-01
Cerium oxide nanoparticles have found numerous applications in the biomedical industry due to their strong antioxidant properties. In the current study, we report the influence of nine different physical and chemical parameters: pH, aeration and, concentrations of MgSO4, CaCl2, KCl, natural organic matter, fructose, nanoparticles and Escherichia coli, on the antibacterial activity of dextran coated cerium oxide nanoparticles. A least-squares quadratic regression model was developed to understand the collective influence of the tested parameters on the anti-bacterial activity and subsequently a computer-based, interactive visualization tool was developed. The visualization allows us to elucidate the effect of each of the parameters in combination with other parameters, on the antibacterial activity of nanoparticles. The results indicate that the toxicity of CeO2 NPs depend on the physical and chemical environment; and in a majority of the possible combinations of the nine parameters, non-lethal to the bacteria. In fact, the cerium oxide nanoparticles can decrease the anti-bacterial activity exerted by magnesium and potassium salts. PMID:23110109
Anomalous elastic properties across the γ to α volume collapse in cerium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lipp, Magnus J.; Jenei, Zs.; Cynn, H.
2017-10-31
The behavior of the f-electrons in the lanthanides and actinides governs important macroscopic properties but their pressure and temperature dependence is not fully explored. Cerium with nominally just one 4f electron offers a case study with its iso-structural volume collapse from the γ-phase to the α-phase ending in a critical point (pC, VC, TC), unique among the elements, whose mechanism remains controversial. Here, we present longitudinal (cL) and transverse sound speeds (cT) versus pressure from higher than room temperature to TC for the first time. While cL experiences a non-linear dip at the volume collapse, cT shows a step-like change.more » This produces very peculiar macroscopic properties: the minimum in the bulk modulus becomes more pronounced, the step-like increase of the shear modulus diminishes and the Poisson’s ratio becomes negative—meaning that cerium becomes auxetic. At the critical point itself cerium lacks any compressive strength but offers resistance to shear.« less
METHOD OF SEPARATING TETRAVALENT PLUTONIUM VALUES FROM CERIUM SUB-GROUP RARE EARTH VALUES
Duffield, R.B.; Stoughton, R.W.
1959-02-01
A method is presented for separating plutonium from the cerium sub-group of rare earths when both are present in an aqueous solution. The method consists in adding an excess of alkali metal carbonate to the solution, which causes the formation of a soluble plutonium carbonate precipitate and at the same time forms an insoluble cerium-group rare earth carbonate. The pH value must be adjusted to bctween 5.5 and 7.5, and prior to the precipitation step the plutonium must be reduced to the tetravalent state since only tetravalent plutonium will form the soluble carbonate complex.
Controlled Redox Chemistry at Cerium within a Tripodal Nitroxide Ligand Framework
Bogart, Justin A.; Lippincott, Connor A.; Carroll, Patrick J.; ...
2015-10-27
Ligand reorganization has been shown to have a profound effect on the outcome of cerium redox chemistry. Through the use of a tethered, tripodal, trianionic nitroxide ligand, [((2-tBuNOH)C 6 H 4 CH 2 ) 3 N] 3- (TriNO x 3- ), controlled redox chemistry at cerium was accomplished, and typically reactive complexes of tetravalent cerium were isolated. These included rare cationic complexes [Ce(TriNO x )thf][BAr F 4 ], in which Ar F =3,5-(CF 3 ) 2 -C 6 H 3 , and [Ce(TriNO x )py][OTf] . A rare complete Ce-halide series, Ce(TriNO x )X, in which X=F - , Clmore » - , Br - , I - , was also synthesized. We explored the solution chemistry of these complexes through detailed solution-phase electrochemistry and 1 H NMR experiments and showed a unique shift in the ratio of species with inner- and outer-sphere anions with size of the anionic X - group. DFT calculations on the series of calculations corroborated the experimental findings. Also, the use of a bulky and strongly donating tethered tripodal nitroxide ligand allowed the controlled redox chemistry at cerium. As a result, rare examples of cationic Ce IV complexes were synthesized and fully characterized. The full Ce-halide series supported by the tripodal ligand framework is also reported (see scheme).« less
Raghu, Madihalli Srinivas; Basavaiah, Kanakapura; Prashanth, Kudige Nagaraj; Vinay, Kanakapura Basavaiah
2013-01-01
One titrimetric and two spectrophotometric methods are described for the determination of ketotifen fumarate (KTF) in bulk drug and in tablets using cerium(IV) as the oxidimetric agent. In titrimetry (method A), the drug was treated with a measured excess of cerium(IV) in H2SO4 medium and after a standing time of 10 min, the surplus oxidant was determined by back titration with iron(II). The spectrophotometric procedures involve addition of a known excess of cerium(IV) to KTF in acid medium followed by the determination of unreacted oxidant by reacting with either p-dimethyl amino benzaldehyde and measuring the resulting colour at 460 nm (method B) or o-dianisidine and subsequent measurement of the absorbance of coloured product at 470 nm (method C). Titrimetric assay is based on a 1 : 2 reaction stoichiometry between KTF and cerium(IV) and the method is applicable over 2–18 mg range. In spectrophotometry, regression analysis of Beer's law plots showed a good correlation in 0.4–8.0 and 0.4–10.0 g mL−1 KTF ranges for method B and method C, respectively, and the corresponding molar absorptivity coefficients are calculated to be 4.0 × 104 and 3.7 × 104 L mol−1 cm−1. PMID:24324496
Composite catalyst for carbon monoxide and hydrocarbon oxidation
Liu, W.; Flytzani-Stephanopoulos, M.
1996-03-19
A method and composition are disclosed for the complete oxidation of carbon monoxide and/or hydrocarbon compounds. The method involves reacting the carbon monoxide and/or hydrocarbons with an oxidizing agent in the presence of a metal oxide composite catalyst. The catalyst is prepared by combining fluorite-type oxygen ion conductors with active transition metals. The fluorite oxide, selected from the group consisting of cerium oxide, zirconium oxide, thorium oxide, hafnium oxide, and uranium oxide, and may be doped by alkaline earth and rare earth oxides. The transition metals, selected from the group consisting of molybdenum, copper, cobalt, manganese, nickel, and silver, are used as additives. The atomic ratio of transition metal to fluorite oxide is less than one.
Composite catalyst for carbon monoxide and hydrocarbon oxidation
Liu, Wei; Flytzani-Stephanopoulos, Maria
1996-01-01
A method and composition for the complete oxidation of carbon monoxide and/or hydrocarbon compounds. The method involves reacting the carbon monoxide and/or hydrocarbons with an oxidizing agent in the presence of a metal oxide composite catalyst. The catalyst is prepared by combining fluorite-type oxygen ion conductors with active transition metals. The fluorite oxide, selected from the group consisting of cerium oxide, zirconium oxide, thorium oxide, hafnium oxide, and uranium oxide, and may be doped by alkaline earth and rare earth oxides. The transition metals, selected from the group consisting of molybdnum, copper, cobalt, maganese, nickel, and silver, are used as additives. The atomic ratio of transition metal to fluorite oxide is less than one.
Gaseous and particulate emissions from a DC arc melter.
Overcamp, Thomas J; Speer, Matthew P; Griner, Stewart J; Cash, Douglas M
2003-01-01
Tests treating soils contaminated with metal compounds and radionuclide surrogates were conducted in a DC arc melter. The soil melted, and glassy or ceramic waste forms with a separate metal phase were produced. Tests were run in the melter plenum with either air or N2 purge gases. In addition to nitrogen, the primary emissions of gases were CO2, CO, oxygen, methane, and oxides of nitrogen (NO(x)). Although the gas flow through the melter was low, the particulate concentrations ranged from 32 to 145 g/m3. Cerium, a nonradioactive surrogate for plutonium and uranium, was not enriched in the particulate matter (PM). The PM was enriched in cesium and highly enriched in lead.
Balaji, Subramanian; Chung, Sang Joon; Matheswaran, Manickam; Vasilivich, Kokovkin Vasily; Moon, Il Shik
2008-02-11
The mediated electrochemical oxidation (MEO) process with cerium(IV) and nitric acid as the oxidizing medium was employed for the destruction of various model organic pollutants in continuous organic feeding mode. A near complete destruction was observed for all the organics studied. The effects of various experimental conditions were evaluated with respect to EDTA mineralization. The key parameters varied in the process were concentration of EDTA (67-268 mM), temperature (70, 80 and 95 degrees C), concentrations of Ce(IV) (0.7, 0.8 and 0.95 M), nitric acid (2, 3 and 4M) and duration of organic addition (30 and 120 min). Under the experimental conditions of 80 degrees C and 0.95 M Ce(IV) in 3 M nitric acid, nearly 90% destruction was achieved based on CO(2) production and 95% based on TOC analyses for all the organic compounds studied. The in situ regeneration of mediator ion by the electrochemical cell was found to be good during the organic destruction within the range of experimental conditions studied. In the case of long term organic feeding (120 min) the destruction was calculated after the CO(2) evolution attained the steady state and under this condition the destruction efficiency was found to be 85% based on CO(2) evolution.
Dielectric Studies on Thermally Evaporated
NASA Astrophysics Data System (ADS)
Selvasekarapandian, S.; Gowtham, M.; Bhuvaneswari, M. S.
In recent years rare earth compounds especially their fluorides have drawn particular attention as electrochemical gas sensors. Lanthanum and cerium fluoride based sensors have been investigated for sensing the fluorine, oxygen, and carbon monoxide because of their high chemical stability and high ionic conductivity. The fast response and good sensitivity of these sensors rely on the ion conduction properties of these thin films. In the present work Cerium Fluoride thin film has been prepared by vacuum thermal evaporation method. The electrical characterization is carried out using the Impedance spectroscopy method in the frequency range of 50 Hz to 5 MHz. The temperature dependence of ionic conductivity obeys the Arrhenius behavior and the activation energy Ea is found to be 0.3eV. The modulus and the dielectric spectra analysis reveal the non - Debye nature and the distribution of relaxation time due to the presence of grain and grain boundaries in the film. The relaxation energy Ed has been calculated from the dielectric spectra. The similar value of activation and relaxation energies suggests that the charge carriers that are responsible for bulk conductivity and relaxation process are the same. The optical measurement done in the wavelength range of 400-2500 nm confirms that the CeF3 thin film is highly transparent and the band gap energy is found to be 3.5 eV.
Ivády, Viktor; Gali, Adam; Abrikosov, Igor A
2017-11-15
Hybrid functionals' non-local exchange-correlation potential contains a derivative discontinuity that improves on standard semi-local density functional theory (DFT) band gaps. Moreover, by careful parameterization, hybrid functionals can provide self-interaction reduced description of selected states. On the other hand, the uniform description of all the electronic states of a given system is a known drawback of these functionals that causes varying accuracy in the description of states with different degrees of localization. This limitation can be remedied by the orbital dependent exact exchange extension of hybrid functionals; the hybrid-DFT + V w method (Ivády et al 2014 Phys. Rev. B 90 035146). Based on the analogy of quasi-particle equations and hybrid-DFT single particle equations, here we demonstrate that parameters of hybrid-DFT + V w functional can be determined from approximate theoretical quasi-particle spectra without any fitting to experiment. The proposed method is illustrated on the charge self-consistent electronic structure calculation for cerium dioxide where itinerant valence states interact with well-localized 4f atomic like states, making this system challenging for conventional methods, either hybrid-DFT or LDA + U, and therefore allowing for a demonstration of the advantages of the proposed scheme.
NASA Astrophysics Data System (ADS)
Hassdorf, R.; Arend, M.; Felsch, W.
1995-04-01
The flexural modulus EF of pure and hydrided cerium-iron multilayer films has been measured at 300 K as a function of the modulation wavelength Λ using a vibrating-reed technique. EF is strongly correlated to the structure of the layered systems. In the pure Ce/Fe multilayers, the Fe sublayers show a structural transition from an amorphous to the bcc crystalline phase for a thickness near 20 Å. At this transition, the modulus EF is reduced by ~70%. The elastic softening occurs already, as a precursor to the structural change, for the crystalline Fe sublayers somewhat above the thickness for amorphous growth. This behavior reveals close similarities to the crystal-to-glass transition in bulk metallic alloys and compounds which seems to be driven by a shear instability of the crystal lattice. Hydrogenation leads to multilayers built of CeH~2/Fe. The Fe sublayers grow in the bcc structure above 10 Å, with a pronounced (110) or (111) texture for low- or room-temperature deposition. The flexural moduli are larger as compared to the nonhydrided multilayers and distinctly different for the two Fe textures. A simple calculation shows that the texture-related differences mainly result from the bulk properties of the Fe layers, but a contribution of interfacial effects cannot be excluded.
The effects of exposure to two nanoparticles (NPs) -titanium dioxide (nano-titania) and cerium oxide (nano-ceria) at 500 mg NPs L-1 on gene expression and growth in Arabidopsis thaliana germinants were studied using microarrays and phenotype studies. After 12 days post treatment,...
Multicolored redox active upconverter cerium oxide nanoparticle for bio-imaging and therapeutics†
Babu, Suresh; Cho, Jung-Hyun; Dowding, Janet M.; Heckert, Eric; Komanski, Chris; Das, Soumen; Colon, Jimmie; Baker, Cheryl H.; Bass, Michael; Self, William T.; Seal, Sudipta
2011-01-01
Cytocompatible, co-doped cerium oxide nanoparticles exhibited strong upconversion properties that were found to kill lung cancer cells by inducing apoptosis thereby demonstrating the potential to be used as clinical contrast agents for imaging and as therapeutic agents for treatment of cancer. PMID:20683524
Predicting the Effects of Nano-Scale Cerium Additives in Diesel Fuel on Regional-Scale Air Quality
Diesel vehicles are a major source of air pollutant emissions. Fuel additives containing nanoparticulate cerium (nCe) are currently being used in some diesel vehicles to improve fuel efficiency. These fuel additives also reduce fine particulate matter (PM2.5) emissio...
Intergenerational responses of wheat (Triticum aestivum L.) to cerium oxide nanoparticles exposure
The intergenerational impact of engineered nanomaterials in plants is a key knowledge gap in the literature. A soil microcosm study was performed to assess the effects of multi-generational exposure of wheat (Triticum aestivum L.) to cerium oxide nanoparticles (CeO2-NPs). Seeds f...
NASA Astrophysics Data System (ADS)
Zlatić, V.
2008-05-01
In the first part of these lecture notes we introduce the phenomenological equations for describing the heat and charge transport in thermoelectric samples. We discuss the solution obtained for various boundary conditions that are appropriate for the homogeneous and inhomogeneous thermoelectrics. In the second part we develop the formalism for a linear-response many-body description of the transport properties of correlated electrons. By properly determining the local heat-current operator we show that the Jonson-Mahan theorem applies to the Hamiltonians that are commonly used for the intermetallic compounds with Cerium, Europium and Ytterbium ions, so the various thermal-transport coefficient integrands are related by powers of frequency. We illustrate how to use this formalism by calculating the thermoelectric properties of the periodic Anderson model and, then, show that these results explain the experimental data on heavy fermions and valence fluctuators. Finally, we calculate the thermoelectric properties of the Falicov-Kimball model and use the results to explain the anomalous features of the intermetallic compounds in which one observes the valence-change transition.
PLUTONIUM-CERIUM-COPPER ALLOYS
Coffinberry, A.S.
1959-05-12
A low melting point plutonium alloy useful as fuel is a homogeneous liquid metal fueled nuclear reactor is described. Vessels of tungsten or tantalum are useful to contain the alloy which consists essentially of from 10 to 30 atomic per cent copper and the balance plutonium and cerium. with the plutontum not in excess of 50 atomic per cent.
Long range ordered alloys modified by addition of niobium and cerium
Liu, C.T.
1984-08-22
Long range ordered alloys are described having the nominal composition (Fe,Ni,Co)/sub 3/ (V,M) where M is a ductility enhancing metal selected from the group Ti, Zr, Hf with additions of small amounts of cerium and niobium to dramatically enhance the creep properties of the resulting alloys.
Long range ordered alloys modified by addition of niobium and cerium
Liu, Chain T.
1987-01-01
Long range ordered alloys are described having the nominal composition (Fe,Ni,Co).sub.3 (V,M) where M is a ductility enhancing metal selected from the group Ti, Zr, Hf with additions of small amounts of cerium and niobium to drammatically enhance the creep properties of the resulting alloys.
Cerium oxide nanoparticles (nCe) are used as a fuel-borne catalyst in diesel engines to reduce particulate emissions, yet the environmental and human health impacts of the exhaust particles are not well understood. To bridge the gap between emission measurements and ambient impac...
Synthesis of nanocrystalline CeO{sub 2} particles by different emulsion methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Supakanapitak, Sunisa; Boonamnuayvitaya, Virote; Jarudilokkul, Somnuk, E-mail: somnuk.jar@kmutt.ac.th
2012-05-15
Cerium oxide nanoparticles were synthesized using three different methods of emulsion: (1) reversed micelle (RM); (2) emulsion liquid membrane (ELM); and (3) colloidal emulsion aphrons (CEAs). Ammonium cerium nitrate and polyoxyethylene-4-lauryl ether (PE4LE) were used as cerium and surfactant sources in this study. The powder was calcined at 500 Degree-Sign C to obtain CeO{sub 2}. The effect of the preparation procedure on the particle size, surface area, and the morphology of the prepared powders were investigated. The obtained powders are highly crystalline, and nearly spherical in shape. The average particle size and the specific surface area of the powders frommore » the three methods were in the range of 4-10 nm and 5.32-145.73 m{sup 2}/g, respectively. The CeO{sub 2} powders synthesized by the CEAs are the smallest average particle size, and the highest surface area. Finally, the CeO{sub 2} prepared by the CEAs using different cerium sources and surfactant types were studied. It was found that the surface tensions of cerium solution and the type of surfactant affect the particle size of CeO{sub 2}. - Graphical Abstract: The emulsion droplet size distribution and the TEM images of CeO{sub 2} prepared by different methods: reversed micelle (RM), emulsion liquid membrane (ELM) and colloidal emulsion aphrons (CEAs). Highlights: Black-Right-Pointing-Pointer Nano-sized CeO{sub 2} was successfully prepared by three different emulsion methods. Black-Right-Pointing-Pointer The colloidal emulsion aphrons method producing CeO{sub 2} with the highest surface area. Black-Right-Pointing-Pointer The surface tensions of a cerium solution have slightly effect on the particle size. Black-Right-Pointing-Pointer The size control could be interpreted in terms of the adsorption of the surfactant.« less
Bioactivity of Y2O3 and CeO2 doped SiO2-SrO-Na2O glass-ceramics.
Placek, L M; Keenan, T J; Wren, A W
2016-08-01
The bioactivity of yttrium and cerium are investigated when substituted for Sodium (Na) in a 0.52SiO2-0.24SrO-0.24-xNa2O-xMO glass-ceramics (where x = 0.08 and MO = Y2O3 or CeO2). Bioactivity is monitored through pH and inductively coupled plasma-optical emission spectrometry where pH of simulated body fluid ranged from 7.5 to 7.6 and increased between 8.2 and 10.0 after 14-day incubation with the glass-ceramic disks. Calcium (Ca) and phosphorus (P) levels in simulated body fluid after incubation with yttrium and cerium containing disks show a continual decline over the 14-day period. In contrast, Con disks (not containing yttrium or cerium) caused the elimination of Ca in solution after 1 day and throughout the incubation period, and initially showed a decline in P levels followed by an increase at 14 days. Scanning electron microscopy and energy dispersive spectroscopy confirmed the presence of Ca and P on the surface of the simulated body fluid-incubated disks and showed precipitates on Con and HCe (8 mol% cerium) samples. Cell viability of MC3T3 osteoblasts was not significantly affected at a 9% extract concentration. Optical microscopy after 24 h cell incubation with disks showed that Con samples do not support osteoblast or Schwann cell growth, while all yttrium and cerium containing disks have direct contact with osteoblasts spread across the wells. Schwann cells attached in all wells, but only showed spreading with the HY-S (8 mol% yttrium, heated to sintering temperature) and YCe (4 mol% yttrium and cerium) disks. Scanning electron microscopy of the compatible disks shows osteoblast and sNF96.2 Schwann cells attachment and spreading directly on the disk surfaces. © The Author(s) 2016.
NASA Astrophysics Data System (ADS)
Diop, L. V. B.; Isnard, O.
2018-01-01
The effects of cerium substitution on the structural and magnetic properties of the L a1 -xC exF e12B6 (0 ≤x ≤0.175 ) series of compounds have been studied. All of the compounds exhibit an antiferromagnetic ground state below the Néel temperature TN≈36 K . Both antiferromagnetic and paramagnetic states can be transformed into the ferromagnetic state irreversibly and reversibly depending on the magnitude of the applied magnetic field, the temperature, and the direction of their changes. Of particular interest is the low-temperature magnetization process. This process is discontinuous and evolves unexpected huge metamagnetic transitions consisting of a succession of sharp magnetization steps separated by plateaus, giving rise to an unusual avalanchelike behavior. At constant temperature and magnetic field, the evolution with time of the magnetization displays a spectacular spontaneous jump after a long incubation time. L a1 -xC exF e12B6 compounds exhibit a unique combination of exceptional features like large thermal hysteresis, giant magnetization jumps, and remarkably huge magnetic hysteresis for the field-induced first-order metamagnetic transition.
Costa, Susana P F; Pereira, Sarah A P; Pinto, Paula C A G; Araujo, André R T S; Passos, Marieta L C; Saraiva, M Lúcia M F S
2017-05-19
A novel automated fluorimetric technique was developed for the assessment of the chemical oxygen demand (COD) of ionic liquids (ILs) and combined with a photodegradation step to promote IL degradation. The method was implemented on a sequential injection analysis (SIA) system and is based on the reduction of cerium(IV) in the presence of irradiated ILs. Compounds incorporating the chloride anion were found to exhibit higher COD values and 1-butyl-3-methylimidazolium chloride ([bmim] + [Cl] - ), 1-butyl-1-methylpyrrolidinium chloride ([bmpyr] + [Cl] - ), and1-hexyl-3-methylimidazolium chloride ([hmim] + [Cl] - ) also exhibited considerable photodegradability, whereas the cholinium cation and methanesulfonate and tetrafluoroborate anions showed resistance to photolysis. The developed methodology proved to be a simple, affordable, and robust method, showing good repeatability under the tested conditions (rsd <3.5 %, n=10). Therefore, it is expected that the developed approach can be used as a screening method for the preliminary evaluation of compounds' potential impact in the aquatic field. Additionally, the photolysis step presents an attractive option to promote degradation of ILs prior to their release into wastewater. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
The deposition behavior of cerium dioxide (CeO2) nanoparticles (NPs) in dilute NaCl solutions was investigated as a function of collector surface composition, pH, ionic strength, and organic matter (OM). Sensors coated separately with silica, iron oxide, and alumina were applied ...
Ten agronomic plant species were exposed to different concentrations of nano titanium dioxide (nTiO2) or nano cerium oxide (nCeO2) (0, 250, 500 and 1000 mg/L) to examine potential effects on germination and early seedling development. We modified a standard test protocol develop...
Coated silicon comprising material for protection against environmental corrosion
NASA Technical Reports Server (NTRS)
Hazel, Brian Thomas (Inventor)
2009-01-01
In accordance with an embodiment of the invention, an article is disclosed. The article comprises a gas turbine engine component substrate comprising a silicon material; and an environmental barrier coating overlying the substrate, wherein the environmental barrier coating comprises cerium oxide, and the cerium oxide reduces formation of silicate glass on the substrate upon exposure to corrodant sulfates.
Dispersion characteristic of photoluminescence decay times of phosphor YAG: Ce, Gd
NASA Astrophysics Data System (ADS)
Lisitsyn, V. M.; Ju, Yangyang; Stepanov, S. A.; Soschin, N. M.
2017-05-01
The dispersion of the characteristic decay times of gadolinium co-doped yttrium aluminum garnet doped with cerium phosphors were studied. In the present work, an ultraviolet semiconductor laser (λem=375 nm, τ = 1 ns) was used as excitation source for measuring kinetics characteristics of phosphor groups based on YAG with different content of cerium.
NASA Astrophysics Data System (ADS)
Lakshmi, R. V.; Aruna, S. T.; Sampath, S.
2017-01-01
The present work provides a comparative study on the corrosion protection efficiency of defect free sol-gel hybrid coating containing ceria nanoparticles and cerium nitrate ions as corrosion inhibitors. Less explored organically modified alumina-silica hybrid sol-gel coatings are synthesized from 3-glycidoxypropyltrimethoxysilane and aluminium-tri-sec-butoxide. The microemulsion derived nanoparticles and the hybrid coatings are characterized and compared with coatings containing cerium nitrate. Corrosion inhibiting capability is assessed using electrochemical impedance spectroscopy. Scanning Kelvin probe measurements are also conducted on the coatings for identifying the apparent corrosion prone regions. Detailed X-ray photoelectron spectroscopy (XPS) analysis is carried out to comprehend the bonding and corrosion protection rendered by the hybrid coatings.
Catalyst and method for reduction of nitrogen oxides
Ott, Kevin C [Los Alamos, NM
2008-05-27
A Selective Catalytic Reduction (SCR) catalyst was prepared by slurry coating ZSM-5 zeolite onto a cordierite monolith, then subliming an iron salt onto the zeolite, calcining the monolith, and then dipping the monolith either into an aqueous solution of manganese nitrate and cerium nitrate and then calcining, or by similar treatment with separate solutions of manganese nitrate and cerium nitrate. The supported catalyst containing iron, manganese, and cerium showed 80 percent conversion at 113 degrees Celsius of a feed gas containing nitrogen oxides having 4 parts NO to one part NO.sub.2, about one equivalent ammonia, and excess oxygen; conversion improved to 94 percent at 147 degrees Celsius. N.sub.2O was not detected (detection limit: 0.6 percent N.sub.2O).
Catalyst and method for reduction of nitrogen oxides
Ott, Kevin C [Los Alamos, NM
2008-08-19
A Selective Catalytic Reduction (SCR) catalyst was prepared by slurry coating ZSM-5 zeolite onto a cordierite monolith, then subliming an iron salt onto the zeolite, calcining the monolith, and then dipping the monolith either into an aqueous solution of manganese nitrate and cerium nitrate and then calcining, or by similar treatment with separate solutions of manganese nitrate and cerium nitrate. The supported catalyst containing iron, manganese, and cerium showed 80 percent conversion at 113 degrees Celsius of a feed gas containing nitrogen oxides having 4 parts NO to one part NO.sub.2, about one equivalent ammonia, and excess oxygen; conversion improved to 94 percent at 147 degrees Celsius. N.sub.2O was not detected (detection limit: 0.6 percent N.sub.2O).
Catalyst for reduction of nitrogen oxides
Ott, Kevin C.
2010-04-06
A Selective Catalytic Reduction (SCR) catalyst was prepared by slurry coating ZSM-5 zeolite onto a cordierite monolith, then subliming an iron salt onto the zeolite, calcining the monolith, and then dipping the monolith either into an aqueous solution of manganese nitrate and cerium nitrate and then calcining, or by similar treatment with separate solutions of manganese nitrate and cerium nitrate. The supported catalyst containing iron, manganese, and cerium showed 80 percent conversion at 113 degrees Celsius of a feed gas containing nitrogen oxides having 4 parts NO to one part NO.sub.2, about one equivalent ammonia, and excess oxygen; conversion improved to 94 percent at 147 degrees Celsius. N.sub.2O was not detected (detection limit: 0.6 percent N.sub.2O).
Improvement and analysis of the hydrogen-cerium redox flow cell
NASA Astrophysics Data System (ADS)
Tucker, Michael C.; Weiss, Alexandra; Weber, Adam Z.
2016-09-01
The H2-Ce redox flow cell is optimized using commercially-available cell materials. Cell performance is found to be sensitive to the upper charge cutoff voltage, membrane boiling pretreatment, methanesulfonic-acid concentration, (+) electrode surface area and flow pattern, and operating temperature. Performance is relatively insensitive to membrane thickness, Cerium concentration, and all features of the (-) electrode including hydrogen flow. Cell performance appears to be limited by mass transport and kinetics in the cerium (+) electrode. Maximum discharge power of 895 mW cm-2 was observed at 60 °C; an energy efficiency of 90% was achieved at 50 °C. The H2-Ce cell is promising for energy storage assuming one can optimize Ce reaction kinetics and electrolyte.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, Gary J.; Grandjean, Fernande; Guo, Xiaofeng
Several high-resolution Mössbauer spectra of yttrium iron garnet, Y3Fe5O12, have been fit as a function of temperature with a new model based on a detailed analysis of the spectral changes that result from a reduction from the cubic Ia–3d space group to the trigonal R–3 space group. These spectral fits, which are all statistically identical, indicate that the magnetic sextet arising from the 16a site in cubic symmetry is subdivided into three sextets arising from the 6f, and the 3d, 3d, and the 1a, 1b, and 2c sites in rhombohedral-axis trigonal symmetry. The 24d site in cubic symmetry is subdividedmore » into four sextets arising from four different 6f sites in R–3 rhombohedral-axis trigonal symmetry, sites that differ only by the angles between the principal axis of the electric field gradient tensor and the magnetic hyperfine field assumed to be parallel with the magnetic easy axis. This analysis, when applied to the potential nuclear waste storage compounds, Y3-xCa0.5xTh0.5xFe5O12 and Y3- xCa0.5xCe0.5xFe5O12, indicates virtually no perturbation of the structural, electronic, and magnetic properties upon substitution of small amounts of calcium(II) and thorium(IV) or cerium(IV) onto the yttrium(III) 24c site as compared with Y3Fe5O12. The observed broadening of the four different 6f sites derived from the 24d site results from the substitution of yttrium(III) by calcium(II) and thorium(IV) or cerium(IV) cations on the next-nearest neighbor 24c site. In contrast, the same analysis, when applied to Y2.8Ce0.2Fe5O12, indicates a local perturbation of the magnetic exchange pathways as a result of the presence of cerium(IV) in the 24c next-nearest neighbor site of the iron(III) 24d site.« less
Effects of amorphous silica coating on cerium oxide nanoparticles induced pulmonary responses.
Ma, Jane; Mercer, Robert R; Barger, Mark; Schwegler-Berry, Diane; Cohen, Joel M; Demokritou, Philip; Castranova, Vincent
2015-10-01
Recently cerium compounds have been used in a variety of consumer products, including diesel fuel additives, to increase fuel combustion efficiency and decrease diesel soot emissions. However, cerium oxide (CeO2) nanoparticles have been detected in the exhaust, which raises a health concern. Previous studies have shown that exposure of rats to nanoscale CeO2 by intratracheal instillation (IT) induces sustained pulmonary inflammation and fibrosis. In the present study, male Sprague-Dawley rats were exposed to CeO2 or CeO2 coated with a nano layer of amorphous SiO2 (aSiO2/CeO2) by a single IT and sacrificed at various times post-exposure to assess potential protective effects of the aSiO2 coating. The first acellular bronchoalveolar lavage (BAL) fluid and BAL cells were collected and analyzed from all exposed animals. At the low dose (0.15mg/kg), CeO2 but not aSiO2/CeO2 exposure induced inflammation. However, at the higher doses, both particles induced a dose-related inflammation, cytotoxicity, inflammatory cytokines, matrix metalloproteinase (MMP)-9, and tissue inhibitor of MMP at 1day post-exposure. Morphological analysis of lung showed an increased inflammation, surfactant and collagen fibers after CeO2 (high dose at 3.5mg/kg) treatment at 28days post-exposure. aSiO2 coating significantly reduced CeO2-induced inflammatory responses in the airspace and appeared to attenuate phospholipidosis and fibrosis. Energy dispersive X-ray spectroscopy analysis showed Ce and phosphorous (P) in all particle-exposed lungs, whereas Si was only detected in aSiO2/CeO2-exposed lungs up to 3days after exposure, suggesting that aSiO2 dissolved off the CeO2 core, and some of the CeO2 was transformed to CePO4 with time. These results demonstrate that aSiO2 coating reduce CeO2-induced inflammation, phospholipidosis and fibrosis. Published by Elsevier Inc.
Electrode electrolyte interlayers containing cerium oxide for electrochemical fuel cells
Borglum, Brian P.; Bessette, Norman F.
2000-01-01
An electrochemical cell is made having a porous fuel electrode (16) and a porous air electrode (13), with solid oxide electrolyte (15) therebetween, where the air electrode surface opposing the electrolyte has a separate, attached, dense, continuous layer (14) of a material containing cerium oxide, and where electrolyte (16) contacts the continuous oxide layer (14), without contacting the air electrode (13).
Sowlat, Mohammad Hossein; Kakavandi, Babak; Lotfi, Saeedeh; Yunesian, Masud; Abdollahi, Mohammad; Rezaei Kalantary, Roshanak
2017-05-01
In the present systematic review, we aimed to collect and analyze all the relevant evidence on the efficiency of cerium-impregnated versus virgin-activated carbons (ACs) for the removal of gas-phase elemental mercury (Hg 0 ) from the flue gas of coal-fired power plants and to assess the effect of different calcination and operational parameters on their efficiency. A total of eight relevant papers (out of 1193 hits produced by the search) met the eligibility criteria and were included in the study. Results indicated that the Hg 0 adsorption capacity of cerium-impregnated ACs is significantly higher than that of virgin ACs, depending highly on the impregnation and operational parameters. It was noticed that although cerium-impregnated ACs possessed smaller surface areas and pore volumes, their Hg 0 removal efficiencies were still higher than their virgin counterparts. An increased Hg 0 removal efficiency was in general found by increasing the operational adsorption temperature as high as 150-170 °C. Studies also indicated that NO, SO 2 , and HCl have promoting impacts on the Hg 0 removal efficiency of Ce-impregnated ACs, while H 2 O has an inhibitory effect.
Deconstruction of lignocellulosic biomass with hydrated cerium (III) chloride in water and ethanol
Akalin, Mehmet K.; Das, Parthapratim; Alper, Koray; ...
2017-08-08
Lignocellulosic biomass was decomposed to produce crude bio-oil in water and ethanol using hydrated cerium (III) chloride as a catalyst. Use of the catalyst affected not only the yield of crude bio-oil but also the composition of bio-crude for both water and ethanol. The catalyst had a detrimental effect on the crude bio-oil yields obtained from water processing for all runs. However, in ethanol, use of the catalyst improved the crude bio-oil yields in all tested runs. The solid residue yields decreased with the catalyst use in the runs with water but increased in all studies with ethanol, except thosemore » with the shortest tested residence time of 10 min. The highest crude bio-oil yield of 48.2 wt% was obtained at 300 °C using 5 mmol of hydrated cerium (III) chloride at a residence time of 90 min in ethanol. The heating values of the crude bio-oils increased with the catalyst use for both water and ethanol processing. In conclusion, the highest heating value of 33.3 MJ kg –1 was obtained with hydrated cerium (III) chloride at 300 °C and a residence time of 120 min.« less
NASA Astrophysics Data System (ADS)
Lei, Li; Shi, Jing; Wang, Xin; Liu, Dan; Xu, Haigang
2016-07-01
The cerium conversion coating with and without different concentrations of silane agent bis-(γ-triethoxysilylpropyl)-tetrasulfide (BTESPT) modification is obtained on magnesium alloys. Detailed properties of the coatings and the role of BTESPT as an additive are studied and followed with careful discussion. The coating morphology, wettability, chemical composition and corrosion resistance are characterized by scanning electronic microscope (SEM), water contact-angle, X-ray photoelectron spectroscopy (XPS), potentiodynamic measurements and electrochemical impedance spectroscopy (EIS). The electrochemical behavior of the coatings is investigated using EIS. The results indicate that the coating morphology and composition can be controlled by changing silane concentration. The combination of cerium ions and silane molecules could promote the formation of more homogenous and higher hydrophobic coating. The coating turns to be more compact and the adhesive strength between the coating and the magnesium substrate are strongly improved with the formation of Sisbnd Osbnd Si and Sisbnd Osbnd M chemical bonds. The optimum corrosion resistance of the coating in the corrosive media is obtained by 25 ml L-1 BTESPT modification. This whole study implies that the cerium conversion coating modified with certain silane agent deserves cautiousness before its application for corrosion resistance.
Deconstruction of lignocellulosic biomass with hydrated cerium (III) chloride in water and ethanol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akalin, Mehmet K.; Das, Parthapratim; Alper, Koray
Lignocellulosic biomass was decomposed to produce crude bio-oil in water and ethanol using hydrated cerium (III) chloride as a catalyst. Use of the catalyst affected not only the yield of crude bio-oil but also the composition of bio-crude for both water and ethanol. The catalyst had a detrimental effect on the crude bio-oil yields obtained from water processing for all runs. However, in ethanol, use of the catalyst improved the crude bio-oil yields in all tested runs. The solid residue yields decreased with the catalyst use in the runs with water but increased in all studies with ethanol, except thosemore » with the shortest tested residence time of 10 min. The highest crude bio-oil yield of 48.2 wt% was obtained at 300 °C using 5 mmol of hydrated cerium (III) chloride at a residence time of 90 min in ethanol. The heating values of the crude bio-oils increased with the catalyst use for both water and ethanol processing. In conclusion, the highest heating value of 33.3 MJ kg –1 was obtained with hydrated cerium (III) chloride at 300 °C and a residence time of 120 min.« less
Nakayama, Motokazu; Shigemune, Naofumi; Tsugukuni, Takashi; Tokuda, Hajime; Miyamoto, Takahisa
2011-07-01
We developed a novel method using indirect staining with cerium chloride for visualization of the catechin derivative epigallocatechin gallate (EGCg) on the surface of particles, i.e., polystyrene beads and bacterial cells, by electron microscopy. The staining method is based on the fact that in an alkaline environment, EGCg produces hydrogen peroxide, and then hydrogen peroxide reacts with cerium, resulting in a cerium hydroperoxide precipitate. This precipitate subsequently reacts with EGCg to produce larger deposits. The amount of precipitate is proportional to the amount of EGCg. Highly EGCg-sensitive Staphylococcus aureus and EGCg-resistant Escherichia coli were treated with EGCg under various pH conditions. Transmission electron microscopy observation showed that the amount of deposits on S. aureus increased with an increase in EGCg concentration. After treating bacterial cells with 0.5mg/mL EGCg (pH 6.0), attachment of EGCg was significantly lower to E. coli than to S. aureus. This is the first report that shows differences in affinity of EGCg to the cell surfaces of Gram-positive and -negative bacteria by electron microscopy. Copyright © 2011 Elsevier B.V. All rights reserved.
Improvement and analysis of the hydrogen-cerium redox flow cell
Tucker, Michael C.; Weiss, Alexandra; Weber, Adam Z.
2016-08-03
In this paper, the H 2-Ce redox flow cell is optimized using commercially-available cell materials. Cell performance is found to be sensitive to the upper charge cutoff voltage, membrane boiling pretreatment, methanesulfonic-acid concentration, (+) electrode surface area and flow pattern, and operating temperature. Performance is relatively insensitive to membrane thickness, Cerium concentration, and all features of the (-) electrode including hydrogen flow. Cell performance appears to be limited by mass transport and kinetics in the cerium (+) electrode. Maximum discharge power of 895 mW cm -2 was observed at 60 °C; an energy efficiency of 90% was achieved at 50more » °C. Finally, the H 2-Ce cell is promising for energy storage assuming one can optimize Ce reaction kinetics and electrolyte.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samin, Adib; Li, Xiang; Zhang, Jinsuo
For liquid-sodium-cooled fast nuclear reactor systems, it is crucial to understand the behavior of lanthanides and other potential fission products in liquid sodium or other liquid metal solutions such as liquid cesium-sodium. In this study, we focus on lanthanide behavior in liquid sodium. Using ab initio molecular dynamics, we found that the solubility of cerium in liquid sodium at 1000 K was less than 0.78 at. %, and the diffusion coefficient of cerium in liquid sodium was calculated to be 5.57 × 10{sup −9} m{sup 2}/s. Furthermore, it was found that cerium in small amounts may significantly alter the heat capacity of themore » liquid sodium system. Our results are consistent with the experimental results for similar materials under similar conditions.« less
A XAS study of the local environments of cations in (U, Ce)O 2
NASA Astrophysics Data System (ADS)
Martin, Philippe; Ripert, Michel; Petit, Thierry; Reich, Tobias; Hennig, Christoph; D'Acapito, Francesco; Hazemann, Jean Louis; Proux, Olivier
2003-01-01
Mixed oxide (MOX) fuel is usually considered as a solid solution formed by uranium and plutonium dioxides. Nevertheless, some physico-chemical properties of (U 1- y, Pu y)O 2 samples manufactured under industrial conditions showed anomalies in the domain of plutonium contents ranging between 3 and 15 at.%. Cerium is commonly used as an inactive analogue of plutonium in preliminary studies on MOX fuels. Extended X-ray Absorption Fine Structure (EXAFS) measurements performed at the European Synchrotron Radiation Facility (ESRF) at the cerium and uranium edges on (U 1- y, Ce y)O 2 samples are presented and discussed. They confirmed on an atomic scale the formation of an ideal solid solution for cerium concentrations ranging between 0 and 50 at.%.
NASA Astrophysics Data System (ADS)
Wang, Chun-Ming; Wang, Jin-Feng
2006-11-01
The piezoelectric properties of the lithium and cerium modified A-site vacancies sodium-potassium bismuth titanate (NKBT) lead-free piezoceramics are investigated. The piezoelectric activity of NKBT ceramics is significantly improved by the modification of lithium and cerium. The Curie temperature TC, piezoelectric coefficient d33, and mechanical quality factor Qm for the NKBT ceramics modified with 0.10mol% (LiCe) are found to be 660°C, 25pC/N, and 3135, respectively. The Curie temperature gradually decreases from 675to650°C with the increase of (LiCe) modification. The dielectric spectroscopy shows that all the samples possess stable piezoelectric properties, demonstrating that the (LiCe) modified NKBT-based ceramics are the promising candidates for high temperature applications.
Trapped in the coordination sphere: Nitrate ion transfer driven by the cerium(III/IV) redox couple
Ellis, Ross J.; Bera, Mrinal K.; Reinhart, Benjamin; ...
2016-11-07
Redox-driven ion transfer between phases underpins many biological and technological processes, including industrial separation of ions. Here we investigate the electrochemical transfer of nitrate anions between oil and water phases, driven by the reduction and oxidation of cerium coordination complexes in oil phases. We find that the coordination environment around the cerium cation has a pronounced impact on the overall redox potential, particularly with regard to the number of coordinated nitrate anions. Our results suggest a new fundamental mechanism for tuning ion transfer between phases; by 'trapping' the migrating ion inside the coordination sphere of a redox-active complex. Here, thismore » presents a new route for controlling anion transfer in electrochemically-driven separation applications.« less
Pedraza, F; Mahadik, S A; Bouchaud, B
2015-12-21
In this work, superhydrophobic cerium oxide coating surface (111) with dual scale texture on Ni20Cr substrate is obtained by combination of electropolishing the substrate and subsequent cathodic electrodeposition and long-term UVH surface relaxation. To form hierarchical structures of CeO2 is controllable by varying the substrate roughness, and electropolishing period. The results indicated that at the optimal condition, the surface of the cerium oxide coating showed a superhydrophobicity with a great water contact angle (151.0 ± 1.4°) with Gecko state. An interface model for electropolishing of substrate surface in cerium nitrate medium is proposed. We expect that this facile process can be readily and widely adopted for the design of superhydrophobic coating on engineering materials.
Preclinical Evaluation to Specifically Target Ovarian Cancer with Folic Acid-Conjugated Nanoceria
2014-08-01
cancer . Our experimental nanoparticle is Nanoceria (NCe), a cerium oxide nanoparticle . Nanotechnology -based tools and techniques are rapidly... cancer we proposed the present work, where we are integrating the field of nanotechnology with ovarian cancer cell’s unique property of...overexpressing folic acid receptor alpha (FR-a) to specifically target ovarian cancer . A cerium oxide nanoparticle , called Nanoceria (NCe), that has the ability
Protective interlayer for high temperature solid electrolyte electrochemical cells
Singh, P.; Vasilow, T.R.; Richards, V.L.
1996-05-14
The invention is comprised of an electrically conducting doped or admixed cerium oxide composition with niobium oxide and/or tantalum oxide for electrochemical devices, characterized by the general formula: Nb{sub x}Ta{sub y}Ce{sub 1{minus}x{minus}y}O{sub 2} where x is about 0.0 to 0.05, y is about 0.0 to 0.05, and x+y is about 0.02 to 0.05, and where x is preferably about 0.02 to 0.05 and y is 0, and a method of making the same is also described. This novel composition is particularly applicable in forming a protective interlayer of a high temperature, solid electrolyte electrochemical cell, characterized by a first electrode; an electrically conductive interlayer of niobium and/or tantalum doped cerium oxide deposited over at least a first portion of the first electrode; an interconnect deposited over the interlayer; a solid electrolyte deposited over a second portion of the first electrode, the first portion being discontinuous from the second portion; and, a second electrode deposited over the solid electrolyte. The interlayer is characterized as being porous and selected from the group consisting of niobium doped cerium oxide, tantalum doped cerium oxide, and niobium and tantalum doped cerium oxide or admixtures of the same. The first electrode, an air electrode, is a porous layer of doped lanthanum manganite, the solid electrolyte layer is a dense yttria stabilized zirconium oxide, the interconnect layer is a dense, doped lanthanum chromite, and the second electrode, a fuel electrode, is a porous layer of nickel-zirconium oxide cermet. The electrochemical cell can take on a plurality of shapes such as annular, planar, etc. and can be connected to a plurality of electrochemical cells in series and/or in parallel to generate electrical energy. 5 figs.
Bioavailability of cerium oxide nanoparticles to Raphanus sativus L. in two soils.
Zhang, Weilan; Musante, Craig; White, Jason C; Schwab, Paul; Wang, Qiang; Ebbs, Stephen D; Ma, Xingmao
2017-01-01
Cerium oxide nanoparticles (CeO 2 NP) are a common component of many commercial products. Due to the general concerns over the potential toxicity of engineered nanoparticles (ENPs), the phytotoxicity and in planta accumulation of CeO 2 NPs have been broadly investigated. However, most previous studies were conducted in hydroponic systems and with grain crops. For a few studies performed with soil grown plants, the impact of soil properties on the fate and transport of CeO 2 NPs was generally ignored even though numerous previous studies indicate that soil properties play a critical role in the fate and transport of environmental pollutants. The objectives of this study were to evaluate the soil fractionation and bioavailability of CeO 2 NPs to Raphanus sativus L (radish) in two soil types. Our results showed that the silty loam contained slightly higher exchangeable fraction (F1) of cerium element than did loamy sand soil, but significantly lower reducible (F2) and oxidizable (F3) fractions as CeO 2 NPs concentration increased. CeO 2 NPs associated with silicate minerals or the residue fraction (F4) dominated in both soils. The cerium concentration in radish storage root showed linear correlation with the sum of the first three fractions (r 2 = 0.98 and 0.78 for loamy sand and silty loam respectively). However, the cerium content in radish shoots only exhibited strong correlations with F1 (r 2 = 0.97 and 0.89 for loamy sand and silty loam respectively). Overall, the results demonstrated that soil properties are important factors governing the distribution of CeO 2 NPs in soil and subsequent bioavailability to plants. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Bao, T M; Tian, Y; Wang, L X; Wu, T; Lu, L N; Ma, H Y; Wang, L
2018-02-20
Objective: To investigate the levels of lanthanum, cerium, praseodymium, and neodymium in the blood, urine, and hair samples from residents in the rare earth mining area of a city in China, and to provide a scientific basis for the control of rare earth pollution and the protection of population health. Methods: A total of 147 residents who had lived in the rare earth mining area of a city for a long time were selected as the exposure group, and 108 residents in Guyang County of this city who lived 91 km away from the rare earth mining area were selected as the control group. Blood, urine, and hair samples were collected from the residents in both groups. Inductively coupled plasma mass spectrometry was used to determine the content of lanthanum, cerium, praseodymium, and neodymium in blood, urine, and hair samples. Results: In the exposure group, the median levels of lanthanum, cerium, praseodymium, and neodymium were 0.854, 1.724, 0.132, and 0.839 μg/L, respectively, in blood samples, 0.420, 0.920, 0.055, and 0.337 μg/L, respectively, in urine samples, and 0.052, 0.106, 0.012, and 0.045 μg/g, respectively, in hair samples. The exposure group had significantly higher levels of the four rare earth elements in blood, urine, and hair samples than the control group ( P <0.01) . Conclusion: The residents in the rare earth mining area of this city have higher content of lanthanum, cerium, praseodymium, and neodymium in blood, urine, and hair than those in the non-mining area; the content of cerium is highest, followed by lanthanum, neodymium, and praseodymium.
Saha, Jony; Radhakrishnan, T P
2017-08-29
Design of electrocatalysts for the fundamentally important oxygen evolution reaction can be greatly aided by systematic structure-activity tuning via composition variation. We have explored the iron-cerium system as they are the most abundant transition and rare earth metals, and also due to the mutualistic impact of their size and electronic attributes that can induce critical changes in the structure and electrochemical activity. Submicrometer thick films of a series of Fe(III)-Ce(III) phosphate(oxyhydroxide) (FeCePH) are fabricated using a soft chemical strategy involving surfactant-aided assembly, spin-coating, and mild thermal annealing. FT-IR, Raman, and X-ray photoelectron spectroscopies, chemical analysis, X-ray diffraction, and electron microscopy reveal the systematic structural, electronic, and morphological variation, on tuning the iron-cerium composition. Nitrogen adsorption-desorption studies show the surface area increasing and pore size distribution shrinking with the cerium content, indicating its structure-directing role. The electrocatalysis of water oxidation by FeCePH films on FTO-coated glass is studied in neutral pH conditions. The overpotential and Tafel slope decrease with increasing cerium content, reaching minima at the optimal Fe:Ce ratio of 1:0.5; the turnover frequency shows a corresponding increase and maximum. The trends are explained on the basis of the structural changes in the films, and the coupling of Ce 3+ /Ce 4+ with Fe 3+ /Fe 4+ that leads to active state regeneration. This study presents a rational strategy to tune the efficiency of easily fabricated transition metal-based electrocatalyst thin films through rare earth metal incorporation; it should prove useful in the design of cost-effective catalysts for water oxidation.
Biogeochemistry of the rare-earth elements with particular reference to hickory trees
Robinson, W.O.; Bastron, H.; Murata, K.J.
1958-01-01
Hickory trees concentrate the rare-earth elements in their leaves to a phenomenal degree and may contain as much as 2300 p.p.m. of total rare earths based on the dry weight of the leaves. The average proportions of the individual elements (atomic percent of the total rare-earth elements) in the leaves are: Y 36, La 16, Ce 14, Pr 2, Nd 20, Sm 1, Eu 0.7, Gd 3, Tb 0.6, Dy 3, Ho 0.7, Er 2, Tm 0.2, Yb 1, and Lu 0.2. The similarity in the proportions of the rare-earth elements in the leaves and in the exchange complex of the soil on which the hickory trees grow indicates that the trees do not fractionate the rare earths appreciably. The variation of the rare-earth elements in the leaves and soils can be explained generally in terms of the relative abundance of the cerium group and the yttrium group, except for the element cerium. The large fluctuations in the proportion of cerium [Ce/(La + Nd) atomic ratios of 0.16 to 0.86] correlate with oxidation-reduction conditions in the soil profile. The substitution of dilute H2SO3 for dilute HC1 in the determination of available rare-earth elements brings about a large increase in the proportion of cerium that is extracted from an oxygenated subsoil. These relationships strongly suggest that quadrivalent cerium is present in oxygenated subsoil and is less available to plants than the other rare-earth elements that do not undergo such a change in valence. A few parts per billion of rare-earth elements have been detected in two samples of ground water. ?? 1958.
Examination of Martian sedimentary rocks to understand possible paleo-ocean and its age
NASA Technical Reports Server (NTRS)
Tanaka, T.
1988-01-01
It is well known that the terrestrial marine sediments have large cerium anomaly on their chondrite-normalized REE pattern. Siliceous shale and calcaleous sediments have negative Ce-anomaly. Ferromanganese nodule have positive or negative Ce-anomaly. The Ce-anomaly is considered to be a result of tetravalent state of cerium rather than common trivalent. Ferromanganese nodule which formed under reducing condition has negative Ce-anomaly. Then, combined study of Ce-anomaly with Ce isotopes is expected to play an important role in geochemistry. La-138 decays to Ce-138 and Ba-138 with a total half life of about 1 x 10 to the 11th years. Cerium anomalies (positive or negative) are expected in Martian paleo-ocean and in sediments as observed in the terrestrial environment. A list of things to be examined is given.
NASA Astrophysics Data System (ADS)
Rochmah, D. N.; Syakir, N.; Susilawati, T.; Suryaningsih, S.; Fitrilawati
2017-05-01
The hybrid polymer precursor was synthesized from monomer of 3-(trimethoxysilyl) propyl methacrylate (TMSPMA) using sol-gel method and doped with inhibitor of Cerium Nitrate Hexahydrate with a concentration of 0.2%. The synthesized material was coated on a carbon steel surface by solution casting technique and followed by a photopolymerisation process. Corrosion tests were performed by using Electrochemical Impedance Spectroscopy (EIS) in 3.5% NaCl at the critical temperature of 75°C. Result of EIS data and their fitting analysis using an equivalent circuit model shows that a coating of poly(TMSPMA)-Cerium on the surface of carbon steel form a layer of protection and caused increasing of impedance value significantly. The impedance is higher compared to the carbon steel that coated with poly(TMSPMA) only.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaques, Brian; Butt, Darryl P.; Marx, Brian M.
A carbothermic reduction of the metal oxides in a hydrogen/nitrogen mixed gas stream prior to nitriding in a nitrogen gas stream was used to synthesize uranium nitride at 1500 deg. C, cerium nitride at 1400 deg. C, and dysprosium nitride at 1500 deg. C. Cerium nitride and dysprosium nitride were also synthesized via hydriding and nitriding the metal shavings at 900 deg. C and 1500 deg. C, respectively. Also, a novel ball-milling synthesis route was used to produce cerium nitride and dysprosium nitride from the metal shavings at room temperature. Dysprosium nitride was also produced by reacting the metal shavingsmore » in a high purity nitrogen gas stream at 1300 deg. C. All materials were characterized by phase analysis via X-ray diffraction. Only the high purity materials were further analyzed via chemical analysis to characterize the trace oxygen concentration. (authors)« less
NASA Astrophysics Data System (ADS)
Tokumitsu, Seika; Murakami, Yukon; Oda, Hisaya; Kawabe, Yutaka
2018-01-01
Trivalent cerium is an important luminescent center giving light emission in short wavelength region depending on host materials. Sol-gel formed silica glass is an ideal matrix due to its high transparency, robustness, and low-temperature processability, but the emission from cerium in silica matrix is often mixed up with that from defects in the matrix, making it difficult to obtain well-determined characteristics. Bright emission from Ce ions peaking at about 400 nm was observed in sol-gel silica glasses synthesized with aluminum co-dopant. From luminescence decay time, the origin was confirmed to be d-f transition in trivalent Ce. From dependence of emission characteristics and UV absorbance on aluminum concentration, it was found that the co-dopant plays an important role to convert the optically inactive tetravalent ions to emissive trivalent state.
Nanostructured manganese oxide on silica aerogel: a new catalyst toward water oxidation.
Najafpour, Mohammad Mahdi; Salimi, Saeideh; Madadkhani, Sepideh; Hołyńska, Małgorzata; Tomo, Tatsuya; Allakhverdiev, Suleyman I
2016-12-01
Herein we report on the synthesis and characterization of nano-sized Mn oxide/silica aerogel with low density as a good catalyst toward water oxidation. The composite was synthesized by a simple and low-cost hydrothermal procedure. In the next step, we studied the composite in the presence of cerium(IV) ammonium nitrate and photo-produced Ru(bpy) 3 3+ as a water-oxidizing catalyst. The low-density composite is a good Mn-based catalyst with turnover frequencies of ~0.3 and 0.5 (mmol O 2 /(mol Mn·s)) in the presence of Ru(bpy) 3 3+ and cerium(IV) ammonium nitrate, respectively. In addition to the water-oxidizing activities of the composite under different conditions, its self-healing reaction in the presence of cerium(IV) ammonium nitrate was also studied.
Fabrication of mesoporous cerium dioxide films by cathodic electrodeposition.
Kim, Young-Soo; Lee, Jin-Kyu; Ahn, Jae-Hoon; Park, Eun-Kyung; Kim, Gil-Pyo; Baeck, Sung-Hyeon
2007-11-01
Mesoporous cerium dioxide (Ceria, CeO2) thin films have been successfully electrodeposited onto ITO-coated glass substrates from an aqueous solution of cerium nitrate using CTAB (Cetyltrimethylammonium Bromide) as a templating agent. The synthesized films underwent detailed characterizations. The crystallinity of synthesized CeO2 film was confirmed by XRD analysis and HR-TEM analysis, and surface morphology was investigated by SEM analysis. The presence of mesoporosity in fabricated films was confirmed by TEM and small angle X-ray analysis. As-synthesized film was observed from XRD analysis and HR-TEM image to have well-crystallized structure of cubic phase CeO2. Transmission electron microscopy and small angle X-ray analysis revealed the presence of uniform mesoporosity with a well-ordered lamellar phase in the CeO2 films electrodeposited with CTAB templating.
Alkali metal hafnium oxide scintillators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bourret-Courchesne, Edith; Derenzo, Stephen E.; Taylor, Scott Edward
The present invention provides for a composition comprising an inorganic scintillator comprising an alkali metal hafnate, optionally cerium-doped, having the formula A 2HfO 3:Ce; wherein A is an alkali metal having a valence of 1, such as Li or Na; and the molar percent of cerium is 0% to 100%. The alkali metal hafnate are scintillators and produce a bright luminescence upon irradiation by a suitable radiation.
Synthesis & characterization of Bi7.38Ce0.62O12.3 and its optical and electrocatalytic property
NASA Astrophysics Data System (ADS)
Padmanaban, A.; Dhanasekaran, T.; Kumar, S. Praveen; Gnanamoorthy, G.; Stephen, A.; Narayanan, V.
2017-05-01
Bismuth cerium oxide was synthesized by thermal decomposition method. The material was characterized by X-ray diffraction technique, DRS UV-Vis, Raman spectral methods and FE-SEM. The electrocatalytic sensing activity of bismuth cerium oxide modified GCE toward 4-nitrophenol exhibits better activity than the bare GCE. The modified electrode shows higher anodic current response with lower potential.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katalenich, Jeffrey A.; Kitchen, Brian B.; Pierson, Bruce
Cerium dioxide microspheres with uniform diameters between 65 – 211 µm were fabricated using internal gelation sol-gel methods. Although uniform microspheres are produced for nuclear fuel applications with diameters above 300 µm, sol-gel microspheres with diameters of 50 - 200 µm have historically been made by emulsion techniques and had poor size uniformity [1, 2]. An internal gelation, sol-gel apparatus was designed and constructed to accommodate the production of small, uniform microspheres whereby cerium-containing solutions were dispersed into flowing silicone oil and heated in a gelation column to initiate solidification [3, 4]. Problems with premature feed gelation and microsphere coalescencemore » were overcome by equipment modifications unique among known internal gelation setups. Microspheres were fabricated and sized in batches as a function of dispersing needle diameter and silicone oil flow rate in the two-fluid nozzle in order to determine the range of sizes possible and corresponding degree of monodispersity. Initial experiments with poor size uniformity were linked to microsphere coalescence in the gelation column prior to solidification as well as excessive flow rates for the cerium feed solution. Average diameter standard deviations as low as 2.23% were observed after optimization of flow rates and minimization of coalescence reactions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katalenich, Jeffrey A.; Kitchen, Brian B.; Pierson, Bruce D.
Cerium dioxide microspheres with uniform diameters between 65 – 211 µm were fabricated using internal gelation sol-gel methods. Although uniform microspheres are produced for nuclear fuel applications with diameters above 300 µm, sol-gel microspheres with diameters of 50 - 200 µm have historically been made by emulsion techniques and had poor size uniformity [1, 2]. An internal gelation, sol-gel apparatus was designed and constructed to accommodate the production of small, uniform microspheres whereby cerium-containing solutions were dispersed into flowing silicone oil and heated in a gelation column to initiate solidification [3, 4]. Problems with premature feed gelation and microsphere coalescencemore » were overcome by equipment modifications unique among known internal gelation setups. Microspheres were fabricated and sized in batches as a function of dispersing needle diameter and silicone oil flow rate in the two-fluid nozzle in order to determine the range of sizes possible and corresponding degree of monodispersity. Initial experiments with poor size uniformity were linked to microsphere coalescence in the gelation column prior to solidification as well as excessive flow rates for the cerium feed solution. Average diameter standard deviations as low as 2.23% were observed after optimization of flow rates and minimization of coalescence reactions.« less
Adsorption kinetics of NO on ordered mesoporous carbon (OMC) and cerium-containing OMC (Ce-OMC)
NASA Astrophysics Data System (ADS)
Chen, Jinghuan; Cao, Feifei; Chen, Songze; Ni, Mingjiang; Gao, Xiang; Cen, Kefa
2014-10-01
Ordered mesoporous carbon (OMC) and cerium-containing OMC (Ce-OMC) were prepared using evaporation-induced self-assembly (EISA) method and used to adsorb NO. N2 sorption, X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to confirm their structures. The results showed that the ordered and uniform structures were successfully synthesized and with the introduction of cerium pore properties were not significantly changed. The NO adsorption capacity of OMC was two times larger than that of activated carbon (AC). With the introduction of cerium both the adsorption capacity and the adsorption rate were improved. The effects of residence time and oxygen concentration on NO adsorption were also investigated. Oxygen played an important role in the NO adsorption (especially in the form of chemisorption) and residence time had small influence on the NO adsorption capacity. The NO adsorption kinetics was analyzed using pseudo-first-order, pseudo-second-order, Elovich equation and intraparticle diffusion models. The results indicated that the NO adsorption process can be divided into rapid adsorption period, slow adsorption period, and equilibrium adsorption period. The pseudo-second-order model was the most suitable model for NO adsorption on OMC and Ce-OMC. The rate controlling step was the intraparticle diffusion together with the adsorption reaction.
Predicting the effects of nanoscale cerium additives in diesel fuel on regional-scale air quality.
Erdakos, Garnet B; Bhave, Prakash V; Pouliot, George A; Simon, Heather; Mathur, Rohit
2014-11-04
Diesel vehicles are a major source of air pollutant emissions. Fuel additives containing nanoparticulate cerium (nCe) are currently being used in some diesel vehicles to improve fuel efficiency. These fuel additives also reduce fine particulate matter (PM2.5) emissions and alter the emissions of carbon monoxide (CO), nitrogen oxides (NOx), and hydrocarbon (HC) species, including several hazardous air pollutants (HAPs). To predict their net effect on regional air quality, we review the emissions literature and develop a multipollutant inventory for a hypothetical scenario in which nCe additives are used in all on-road and nonroad diesel vehicles. We apply the Community Multiscale Air Quality (CMAQ) model to a domain covering the eastern U.S. for a summer and a winter period. Model calculations suggest modest decreases of average PM2.5 concentrations and relatively larger decreases in particulate elemental carbon. The nCe additives also have an effect on 8 h maximum ozone in summer. Variable effects on HAPs are predicted. The total U.S. emissions of fine-particulate cerium are estimated to increase 25-fold and result in elevated levels of airborne cerium (up to 22 ng/m3), which might adversely impact human health and the environment.
Environmental Geochemistry of Cerium: Applications and Toxicology of Cerium Oxide Nanoparticles
Dahle, Jessica T.; Arai, Yuji
2015-01-01
Cerium is the most abundant of rare-earth metals found in the Earth’s crust. Several Ce-carbonate, -phosphate, -silicate, and -(hydr)oxide minerals have been historically mined and processed for pharmaceutical uses and industrial applications. Of all Ce minerals, cerium dioxide has received much attention in the global nanotechnology market due to their useful applications for catalysts, fuel cells, and fuel additives. A recent mass flow modeling study predicted that a major source of CeO2 nanoparticles from industrial processing plants (e.g., electronics and optics manufactures) is likely to reach the terrestrial environment such as landfills and soils. The environmental fate of CeO2 nanoparticles is highly dependent on its physcochemical properties in low temperature geochemical environment. Though there are needs in improving the analytical method in detecting/quantifying CeO2 nanoparticles in different environmental media, it is clear that aquatic and terrestrial organisms have been exposed to CeO2 NPs, potentially yielding in negative impact on human and ecosystem health. Interestingly, there has been contradicting reports about the toxicological effects of CeO2 nanoparticles, acting as either an antioxidant or reactive oxygen species production-inducing agent). This poses a challenge in future regulations for the CeO2 nanoparticle application and the risk assessment in the environment. PMID:25625406
UV-vis spectroscopic studies of CaF2 photo-thermo-refractive glass
NASA Astrophysics Data System (ADS)
Stoica, Martina; Herrmann, Andreas; Hein, Joachim; Rüssel, Christian
2016-12-01
A photo-thermo-refractive glass based on the system Na2O/K2O/CaO/CaF2/Al2O3/ZnO/SiO2 doped with Ag2O, CeO2, SnO2, Sb2O3 and KBr was investigated. This glass undergoes a permanent refractive index change after UV irradiation and subsequent two step heat treatment at temperatures above Tg. This is due to the formation of Ag metal clusters which act as nucleation centers for CaF2 crystallization. Oxidation of Ce3+ by UV light is the initial reaction and acts as photosensitizer in the glass. The UV-vis absorption spectra during this photo-induced crystallization process were measured. The spectral components that form the absorption spectra of cerium were studied in detail by a band separation with Gaussian functions. Deconvolution of the cerium absorption bands shows an envelope of five spectral components for the trivalent cerium due to the 4f-5d transitions and two spectral components for the tetravalent cerium caused by charge transfer transitions. The effect of different dopants and melting conditions on the photo-thermal process were studied to investigate the influence of glass technology on the photoprocess.
Composite solid oxide fuel cell anode based on ceria and strontium titanate
Marina, Olga A.; Pederson, Larry R.
2008-12-23
An anode and method of making the same wherein the anode consists of two separate phases, one consisting of a doped strontium titanate phase and one consisting of a doped cerium oxide phase. The strontium titanate phase consists of Sr.sub.1-xM.sub.xTiO.sub.3-.delta., where M is either yttrium (Y), scandium (Sc), or lanthanum (La), where "x" may vary typically from about 0.01 to about 0.5, and where .delta. is indicative of some degree of oxygen non-stoichiometry. A small quantity of cerium may also substitute for titanium in the strontium titanate lattice. The cerium oxide consists of N.sub.yCe.sub.1-yO.sub.2-.delta., where N is either niobium (Nb), vanadium (V), antimony (Sb) or tantalum (Ta) and where "y" may vary typically from about 0.001 to about 0.1 and wherein the ratio of Ti in said first phase to the sum of Ce and N in the second phase is between about 0.2 to about 0.75. Small quantities of strontium, yttrium, and/or lanthanum may additionally substitute into the cerium oxide lattice. The combination of these two phases results in better performance than either phase used separately as an anode for solid oxide fuel cell or other electrochemical device.
Environmental geochemistry of cerium: applications and toxicology of cerium oxide nanoparticles.
Dahle, Jessica T; Arai, Yuji
2015-01-23
Cerium is the most abundant of rare-earth metals found in the Earth's crust. Several Ce-carbonate, -phosphate, -silicate, and -(hydr)oxide minerals have been historically mined and processed for pharmaceutical uses and industrial applications. Of all Ce minerals, cerium dioxide has received much attention in the global nanotechnology market due to their useful applications for catalysts, fuel cells, and fuel additives. A recent mass flow modeling study predicted that a major source of CeO2 nanoparticles from industrial processing plants (e.g., electronics and optics manufactures) is likely to reach the terrestrial environment such as landfills and soils. The environmental fate of CeO2 nanoparticles is highly dependent on its physcochemical properties in low temperature geochemical environment. Though there are needs in improving the analytical method in detecting/quantifying CeO2 nanoparticles in different environmental media, it is clear that aquatic and terrestrial organisms have been exposed to CeO2 NPs, potentially yielding in negative impact on human and ecosystem health. Interestingly, there has been contradicting reports about the toxicological effects of CeO2 nanoparticles, acting as either an antioxidant or reactive oxygen species production-inducing agent). This poses a challenge in future regulations for the CeO2 nanoparticle application and the risk assessment in the environment.
Najafpour, Mohammad Mahdi; Mostafalu, Ramin; Hołyńska, Małgorzata; Ebrahimi, Foad; Kaboudin, Babak
2015-11-01
Nano-sized Mn oxides contain Mn3O4, β-MnOOH and Mn2O3 have been prepared by a previously reported method using thermal decomposition of β-cyclodextrin-Mn complexes. In the next step, the water-oxidizing activities of these Mn oxides using cerium(IV) ammonium nitrate as a chemical oxidant are studied. The turnover frequencies for β-MnO(OH) and Mn3O4 are 0.24 and 0.01-0.17 (mmol O2/mol Mns), respectively. Subsequently, water-oxidizing activities of these compounds are compared to the other previously reported Mn oxides. Important factors affecting water oxidation by these Mn oxides are also discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
Bamberger, C.E.
1980-04-24
A thermochemical closed cyclic process for the decomposition of water and/or carbon dioxide to hydrogen and/or carbon monoxide begins with the reaction of ceric oxide (CeO/sub 2/), titanium dioxide (TiO/sub 2/) and sodium titanate (Na/sub 2/TiO/sub 3/) to form sodium cerous titanate (NaCeTi/sub 2/O/sub 6/) and oxygen. Sodium cerous titanate (NaCeTi/sub 2/O/sub 6/) reacted with sodium carbonate (Na/sub 2/CO/sub 3/) in the presence of steam, produces hydrogen. The same reaction, in the absence of steam, produces carbon monoxide. The products, ceric oxide and sodium titanate, obtained in either case, are treated with carbon dioxide and water to produce ceric oxide, titanium dioxide, sodium titanate, and sodium bicarbonate. After dissolving sodium bicarbonate from the mixture in water, the remaining insoluble compounds are used as starting materials for a subsequent cycle. The sodium bicarbonate can be converted to sodium carbonate by heating and returned to the cycle.
CeRuPO: A rare example of a ferromagnetic Kondo lattice
NASA Astrophysics Data System (ADS)
Krellner, C.; Kini, N. S.; Brüning, E. M.; Koch, K.; Rosner, H.; Nicklas, M.; Baenitz, M.; Geibel, C.
2007-09-01
We have determined the physical ground state properties of the compounds CeRuPO and CeOsPO by means of magnetic susceptibility χ(T) , specific heat C(T) , electrical resistivity ρ(T) , and thermopower S(T) measurements. χ(T) reveals a trivalent 4f1 cerium state in both compounds. For CeRuPO a pronounced decrease of ρ(T) below 50K indicates the onset of coherent Kondo scattering, which is confirmed by enhanced S(T) . The temperature and magnetic field dependence of χ(T) and C(T) evidence ferromagnetic (FM) order at TC=15K . Thus, CeRuPO seems to be one of the rare examples of a FM Kondo lattice. In contrast, CeOsPO shows antiferromagnetic order at TN=4.5K despite only minor changes in lattice parameters and electronic configuration. Additional P31 NMR results support these scenarios. LSDA+U calculations evidence a quasi-two-dimensional electronic band structure, reflecting a strong covalent bonding within the CeO and RuP layers and a weak ioniclike bonding between the layers.
Bamberger, Carlos E.
1982-01-01
A thermochemical closed cyclic process for the decomposition of water and/or carbon dioxide to hydrogen and/or carbon monoxide begins with the reaction of ceric oxide (CeO.sub.2), titanium dioxide (TiO.sub.2) and sodium titanate (Na.sub.2 TiO.sub.3) to form sodium cerous titanate (NaCeTi.sub.2 O.sub.6) and oxygen. Sodium cerous titanate (NaCeTi.sub.2 O.sub.6) reacted with sodium carbonate (Na.sub.2 CO.sub.3) in the presence of steam, produces hydrogen. The same reaction, in the absence of steam, produces carbon monoxide. The products, ceric oxide and sodium titanate, obtained in either case, are treated with carbon dioxide and water to produce ceric oxide, titanium dioxide, sodium titanate, and sodium bicarbonate. After dissolving sodium bicarbonate from the mixture in water, the remaining insoluble compounds are used as starting materials for a subsequent cycle. The sodium bicarbonate can be converted to sodium carbonate by heating and returned to the cycle.
Ceramification: A plutonium immobilization process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rask, W.C.; Phillips, A.G.
1996-05-01
This paper describes a low temperature technique for stabilizing and immobilizing actinide compounds using a combination process/storage vessel of stainless steel, in which measured amounts of actinide nitrate solutions and actinide oxides (and/or residues) are systematically treated to yield a solid article. The chemical ceramic process is based on a coating technology that produces rare earth oxide coatings for defense applications involving plutonium. The final product of this application is a solid, coherent actinide oxide with process-generated encapsulation that has long-term environmental stability. Actinide compounds can be stabilized as pure materials for ease of re-use or as intimate mixtures withmore » additives such as rare earth oxides to increase their degree of proliferation resistance. Starting materials for the process can include nitrate solutions, powders, aggregates, sludges, incinerator ashes, and others. Agents such as cerium oxide or zirconium oxide may be added as powders or precursors to enhance the properties of the resulting solid product. Additives may be included to produce a final product suitable for use in nuclear fuel pellet production. The process is simple and reduces the time and expense for stabilizing plutonium compounds. It requires a very low equipment expenditure and can be readily implemented into existing gloveboxes. The process is easily conducted with less associated risk than proposed alternative technologies.« less
Quantitative study of the f occupation in CeMIn 5 and other cerium compounds with hard X-rays
Sundermann, M.; Strigari, F.; Willers, T.; ...
2016-02-28
We present bulk-sensitive hard X-ray photoelectron spectroscopy (HAXPES) data of the Ce3d core levels and lifetime-reduced L-edge X-ray absorption spectroscopy (XAS) in the partial fluorescence yield (PFY) mode of the CeMIn 5 family with M = Co, Rh, and Ir. The HAXPES data are analyzed quantitatively with a combination of full multiplet and configuration interaction model which allows correcting for the strong plasmons in the CeMIn 5 HAXPES data, and reliable weights w n of the different f n contributions in the ground state are determined. The CeMIn 5 results are compared to HAXPES data of other heavy fermion compoundsmore » and a systematic decrease of the hybridization strength V eff from CePd 3 to CeRh 3B 2 to CeRu 2Si 2 is observed, while it is smallest for the three CeMIn 5 compounds. The f-occupation, however, increases in the same sequence and is close to one for the CeMIn 5 family. The PFY-XAS data confirm an identical f-occupation in the three CeMIn 5 compounds and a phenomenological fit to these PFY-XAS data combined with a configuration interaction model yields consistent results.« less
Xue, Mei; Chitrakar, Ramesh; Sakane, Kohji; Hirotsu, Takahiro; Ooi, Kenta; Yoshimura, Yuji; Feng, Qi; Sumida, Naoto
2005-05-15
Adsorption of the organic sulfur compounds thiophene (TP) and 1-benzothiophene (1-BTP) in an organic model solution of hydrodesulfurizated gasoline (heptane with 1 wt% toluene and 0.156 mM (5 ppmw as sulfur) TP or 1-BTP) was studied by a batch method at 80 degrees C using metal-ion-exchanged Y-zeolites. Although NaY-zeolite or its acid-treated material rarely adsorbed the organic sulfur compounds, NaY-zeolites exchanged with Ag+, Cu2+, and Ce3+ ions and NH(4)Y-zeolites exchanged with Ce3+ ions showed markedly high adsorptive capacities for TP and 1-BTP. The sulfur uptake increased in the order CuY-zeolite(Na)
Oxygen evolution reaction catalysis
Haber, Joel A.; Jin, Jian; Xiang, Chengxiang; Gregoire, John M.; Jones, Ryan J.; Guevarra, Dan W.; Shinde, Aniketa A.
2016-09-06
An Oxygen Evolution Reaction (OER) catalyst includes a metal oxide that includes oxygen, cerium, and one or more second metals. In some instances, the cerium is 10 to 80 molar % of the metals in the metal oxide and/or the catalyst includes two or more second metals. The OER catalyst can be included in or on an electrode. The electrode can be arranged in an oxygen evolution system such that the Oxygen Evolution Reaction occurs at the electrode.
PURIFICATION OF PLUTONIUM USING A CERIUM PRECIPITATE AS A CARRIER FOR FISSION PRODUCTS
Faris, B.F.; Olson, C.M.
1961-07-01
Bismuth phosphate carrier precipitation processes are described for the separation of plutonium from fission products wherein in at least one step bismuth phosphate is precipitated in the presence of hexavalent plutonium thereby carrying a portion of the fission products from soluble plu tonium values. In this step, a cerium phosphate precipitate is formed in conjunction with the bismuth phosphate precipitate, thereby increasing the amount of fission products removed from solution.
Zhang, Shi-Xiang; Xue, Shi-Fan; Deng, Jingjing; Zhang, Min; Shi, Guoyue; Zhou, Tianshu
2016-11-15
It is important and urgent to develop reliable and highly sensitive methods that can provide on-site and rapid detection of extensively used organophosphorus pesticides (OPs) for their neurotoxicity. In this study, we developed a novel colorimetric assay for the detection of OPs based on polyacrylic acid-coated cerium oxide nanoparticles (PAA-CeO2) as an oxidase mimic and OPs as inhibitors to suppress the activity of acetylcholinesterase (AChE). Firstly, highly dispersed PAA-CeO2 was prepared in aqueous solution, which could catalyze the oxidation of TMB to produce a color reaction from colorless to blue. And the enzyme of AChE was used to catalyze the substrate of acetylthiocholine (ATCh) to produce thiocholine (TCh). As a thiol-containing compound with reducibility, TCh can decrease the oxidation of TMB catalyzed by PAA-CeO2. Upon incubated with OPs, the enzymatic activity of AChE was inhibited to produce less TCh, resulting in more TMB catalytically oxidized by PAA-CeO2 to show an increasing blue color. The two representative OPs, dichlorvos and methyl-paraoxon, were tested using our proposed assay. The novel assay showed notable color change in a concentration-dependent manner, and as low as 8.62 ppb dichlorvos and 26.73 ppb methyl-paraoxon can be readily detected. Therefore, taking advantage of such oxidase-like activity of PAA-CeO2, our proposed colorimetric assay can potentially be a screening tool for the precise and rapid evaluation of the neurotoxicity of a wealth of OPs. Copyright © 2016 Elsevier B.V. All rights reserved.
Minyaev, Mikhail E; Tavtorkin, Alexander N; Korchagina, Sof'ya A; Bondarenko, Galina N; Churakov, Andrei V; Nifant'ev, Ilya E
2018-05-01
Crystals of mononuclear tris[bis(2,6-diisopropylphenyl) phosphato-κO]pentakis(methanol-κO)lanthanide methanol monosolvates of lanthanum, [La(C 24 H 34 O 4 P) 3 (CH 3 OH) 5 ]·CH 3 OH, (1), cerium, [Ce(C 24 H 34 O 4 P) 3 (CH 3 OH) 5 ]·CH 3 OH, (2), and neodymium, [Nd(C 24 H 34 O 4 P) 3 (CH 3 OH) 5 ]·CH 3 OH, (3), have been obtained by reactions between LnCl 3 (H 2 O) n (n = 6 or 7) and lithium bis(2,6-diisopropylphenyl) phosphate in a 1:3 molar ratio in methanol media. Compounds (1)-(3) crystallize in the monoclinic P2 1 /c space group and have isomorphous crystal structures. All three bis(2,6-diisopropylphenyl) phosphate ligands display a κO-monodentate coordination mode. The coordination number of the metal atom is 8. Each [Ln{O 2 P(O-2,6- i Pr 2 C 6 H 3 ) 2 } 3 (CH 3 OH) 5 ] molecular unit exhibits four intramolecular O-H...O hydrogen bonds, forming six-membered rings. The unit forms two intermolecular O-H...O hydrogen bonds with one noncoordinating methanol molecule. All six hydroxy H atoms are involved in hydrogen bonding within the [Ln{O 2 P(O-2,6- i Pr 2 C 6 H 3 ) 2 } 3 (CH 3 OH) 5 ]·CH 3 OH unit. This, along with the high steric hindrance induced by the three bulky diaryl phosphate ligands, prevents the formation of a hydrogen-bond network. Complexes (1)-(3) exhibit disorder of two of the isopropyl groups of the phosphate ligands. The cerium compound (2) demonstrates an essential catalytic inhibition in the thermal decomposition of polydimethylsiloxane in air at 573 K. Catalytic systems based on the neodymium complex tris[bis(2,6-diisopropylphenyl) phosphato-κO]neodymium, (3'), which was obtained as a dry powder of (3) upon removal of methanol, display a high catalytic activity in isoprene and butadiene polymerization.
Marina, Olga A [Richland, WA; Stevenson, Jeffry W [Richland, WA
2010-03-02
The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells and electrochemical devices such as solid oxide fuel cells, electrolyzers, sensors, pumps and the like, the compositions comprising cerium-modified doped strontium titanate. The invention also provides novel methods for making and using anode material compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having anodes comprising the compositions.
Marina, Olga A [Richland, WA; Stevenson, Jeffry W [Richland, WA
2010-11-23
The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells and electrochemical devices such as solid oxide fuel cells, electrolyzers, sensors, pumps and the like, the compositions comprising cerium-modified doped strontium titanate. The invention also provides novel methods for making and using anode material compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having anodes comprising the compositions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunt, R. D.; Collins, J. L.; Cowell, B. S.
Cerium dioxide (CeO 2) is a commonly used simulant for plutonium dioxide and for plutonium (Pu) in a mixed uranium (U) and Pu oxide [(U, Pu)O 2] in nuclear fuel development. This effort developed CeO 2 microspheres with different porosities and diameters for use in a crush-strength study. The internal gelation technique has produced CeO 2 microspheres with limited initial porosity. When an equal molar solution of urea and hexamethylenetetramine (HMTA) is gently boiling for 1 hr and used in the gelation process, the crystallite size and porosity of mixed U and thorium oxide microspheres and the (U, Pu)O 2more » microspheres increased significantly. In this study with cerium, the combination of ammonium cerium nitrate and 1-h boiled HMTA-urea failed to produce a stable feed broth. However, when the 1-h heated HMTA-urea was combined with unheated HMTA-urea in 1 to 3 volume ratio or the boiling time of the HMTA-urea was reduced to 15-20 min, a stable solution of HMTA, urea, and Ce was formed at 273 K. This new Ce solution produced CeO 2 microspheres with much higher initial porosities. Intermediate porosities were possible when the heated HMTA/urea was aged prior to use.« less
Hunt, R. D.; Collins, J. L.; Cowell, B. S.
2017-05-13
Cerium dioxide (CeO 2) is a commonly used simulant for plutonium dioxide and for plutonium (Pu) in a mixed uranium (U) and Pu oxide [(U, Pu)O 2] in nuclear fuel development. This effort developed CeO 2 microspheres with different porosities and diameters for use in a crush-strength study. The internal gelation technique has produced CeO 2 microspheres with limited initial porosity. When an equal molar solution of urea and hexamethylenetetramine (HMTA) is gently boiling for 1 hr and used in the gelation process, the crystallite size and porosity of mixed U and thorium oxide microspheres and the (U, Pu)O 2more » microspheres increased significantly. In this study with cerium, the combination of ammonium cerium nitrate and 1-h boiled HMTA-urea failed to produce a stable feed broth. However, when the 1-h heated HMTA-urea was combined with unheated HMTA-urea in 1 to 3 volume ratio or the boiling time of the HMTA-urea was reduced to 15-20 min, a stable solution of HMTA, urea, and Ce was formed at 273 K. This new Ce solution produced CeO 2 microspheres with much higher initial porosities. Intermediate porosities were possible when the heated HMTA/urea was aged prior to use.« less
Jet formation in cerium metal to examine material strength
Jensen, B. J.; Cherne, F. J.; Prime, M. B.; ...
2015-11-18
Examining the evolution of material properties at extreme conditions advances our understanding of numerous high-pressure phenomena from natural events like meteorite impacts to general solid mechanics and fluid flow behavior. Some recent advances in synchrotron diagnostics coupled with dynamic compression platforms have introduced new possibilities for examining in-situ, spatially resolved material response with nanosecond time resolution. In this work, we examined jet formation from a Richtmyer-Meshkov instability in cerium initially shocked into a transient, high-pressure phase, and then released to a low-pressure, higher-temperature state. Cerium's rich phase diagram allows us to study the yield stress following a shock induced solid-solidmore » phase transition. X-ray imaging was used to obtain images of jet formation and evolution with 2–3 μm spatial resolution. And from these images, an analytic method was used to estimate the post-shock yield stress, and these results were compared to continuum calculations that incorporated an experimentally validated equation-of-state (EOS) for cerium coupled with a deviatoric strength model. Reasonable agreement was observed between the calculations and the data illustrating the sensitivity of jet formation on the yield stress values. Finally, the data and analysis shown here provide insight into material strength during dynamic loading which is expected to aid in the development of strength aware multi-phase EOS required to predict the response of matter at extreme conditions.« less
Alaraby, Mohamed; Hernández, Alba; Annangi, Balasubramanyam; Demir, Esref; Bach, Jordi; Rubio, Laura; Creus, Amadeu; Marcos, Ricard
2015-01-01
Although in vitro approaches are the most used for testing the potential harmful effects of nanomaterials, in vivo studies produce relevant information complementing in vitro data. In this context, we promote the use of Drosophila melanogaster as a suitable in vivo model to characterise the potential risks associated to nanomaterials exposure. The main aim of this study was to evaluate different biological effects associated to cerium oxide nanoparticles (Ce-NPs) and cerium (IV) sulphate exposure. The end-points evaluated were egg-to-adult viability, particles uptake through the intestinal barrier, gene expression and intracellular reactive oxygen species (ROS) production by haemocytes, genotoxicity and antigenotoxicity. Transmission electron microscopy images showed internalisation of Ce-NPs by the intestinal barrier and haemocytes, and significant expression of Hsp genes was detected. In spite of these findings, neither toxicity nor genotoxicity related to both forms of cerium were observed. Interestingly, Ce-NPs significantly reduced the genotoxic effect of potassium dichromate and the intracellular ROS production. No morphological malformations were detected after larvae treatment. This study highlights the importance of D. melanogaster as animal model in the study of the different biological effects caused by nanoparticulated materials, at the time that shows its usefulness to study the role of the intestinal barrier in the transposition of nanomaterials entering via ingestion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Jane
The emission of cerium oxide nanoparticles (CeO{sub 2}) from diesel engines, using cerium compounds as a catalyst to lower the diesel exhaust particles, is a health concern. We have previously shown that CeO{sub 2} induced pulmonary inflammation and lung fibrosis. The objective of the present study was to investigate the modification of fibroblast function and the role of epithelial-mesenchymal transition (EMT) in CeO{sub 2}-induced fibrosis. Male Sprague-Dawley rats were exposed to CeO{sub 2} (0.15 to 7 mg/kg) by a single intratracheal instillation and sacrificed at various times post-exposure. The results show that at 28 days after CeO{sub 2} (3.5 mg/kg)more » exposure, lung fibrosis was evidenced by increased soluble collagen in bronchoalveolar lavage fluid, elevated hydroxyproline content in lung tissues, and enhanced sirius red staining for collagen in the lung tissue. Lung fibroblasts and alveolar type II (ATII) cells isolated from CeO{sub 2}-exposed rats at 28 days post-exposure demonstrated decreasing proliferation rate when compare to the controls. CeO{sub 2} exposure was cytotoxic and altered cell function as demonstrated by fibroblast apoptosis and aggregation, and ATII cell hypertrophy and hyperplasia with increased surfactant. The presence of stress fibers, expressed as α-smooth muscle actin (SMA), in CeO{sub 2}-exposed fibroblasts and ATII cells was significantly increased compared to the control. Immunohistofluorescence analysis demonstrated co-localization of TGF-β or α-SMA with prosurfactant protein C (SPC)-stained ATII cells. These results demonstrate that CeO{sub 2} exposure affects fibroblast function and induces EMT in ATII cells that play a role in lung fibrosis. These findings suggest potential adverse health effects in response to CeO{sub 2} nanoparticle exposure. - Highlights: • CeO{sub 2} exposure induced lung fibrosis. • CeO{sub 2} were detected in lung tissue, alveolar type II (ATII) cells and fibroblasts. • CeO{sub 2} caused ATII cell hypertrophy and hyperplasia and altered fibroblast function. • Increased α-SMA in CeO{sub 2}-exposed lung fibroblasts indicating myofibroblast formation. • CeO{sub 2} induced EMT in ATII cells demonstrated as increased α-SMA expression.« less
Electrochemical and/or microbiological treatment of pyrolysis wastewater.
Silva, José R O; Santos, Dara S; Santos, Ubiratan R; Eguiluz, Katlin I B; Salazar-Banda, Giancarlo R; Schneider, Jaderson K; Krause, Laiza C; López, Jorge A; Hernández-Macedo, Maria L
2017-10-01
Electrochemical oxidation may be used as treatment to decompose partially or completely organic pollutants (wastewater) from industrial processes such as pyrolysis. Pyrolysis is a thermochemical process used to obtain bio-oil from biomasses, generating a liquid waste rich in organic compounds including aldehydes and phenols, which can be submitted to biological and electrochemical treatments in order to minimize its environmental impact. Thus, electrochemical systems employing dimensionally stable anodes (DSAs) have been proposed to enable biodegradation processes in subsurface environments. In order to investigate the organic compound degradation from residual coconut pyrolysis wastewater, ternary DSAs containing ruthenium, iridium and cerium synthetized by the 'ionic liquid method' at different calcination temperatures (500, 550, 600 and 700 °C) for the pretreatment of these compounds, were developed in order to allow posterior degradation by Pseudomonas sp., Bacillus sp. or Acinetobacter sp. bacteria. The electrode synthesized applying 500 °C displayed the highest voltammetric charge and was used in the pretreatment of pyrolysis effluent prior to microbial treatment. Regarding biological treatment, the Pseudomonas sp. exhibited high furfural degradation in wastewater samples electrochemically pretreated at 2.0 V. On the other hand, the use of Acinetobacter efficiently degraded phenolic compounds such as phenol, 4-methylphenol, 2,5-methylphenol, 4-ethylphenol and 3,5-methylphenol in both wastewater samples, with and without electrochemical pretreatment. Overall, the results indicate that the combination of both processes used in this study is relevant for the treatment of pyrolysis wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cassee, Flemming R.; Campbell, Arezoo; Boere, A. John F.; McLean, Steven G.; Duffin, Rodger; Krystek, Petra; Gosens, Ilse; Miller, Mark R.
2012-01-01
Background Cerium oxide (CeO2) nanoparticles improve the burning efficiency of fuel, however, little is known about health impacts of altered emissions from the vehicles. Methods Atherosclerosis-prone apolipoprotein E knockout (ApoE−/−) mice were exposed by inhalation to diluted exhaust (1.7 mg/m3, 20, 60 or 180 min, 5 day/week, for 4 weeks), from an engine using standard diesel fuel (DE) or the same diesel fuel containing 9 ppm cerium oxide nanoparticles (DCeE). Changes in hematological indices, clinical chemistry, atherosclerotic burden, tissue levels of inflammatory cytokines and pathology of the major organs were assessed. Results Addition of CeO2 to fuel resulted in a reduction of the number (30%) and surface area (10%) of the particles in the exhaust, whereas the gaseous co-pollutants were increased (6–8%). There was, however, a trend towards an increased size and complexity of the atherosclerotic plaques following DE exposure, which was not evident in the DCeE group. There were no clear signs of altered hematological or pathological changes induced by either treatment. However, levels of proinflammatory cytokines were modulated in a brain region and liver following DCeE exposure. Conclusions These results imply that addition of CeO2 nanoparticles to fuel decreases the number of particles in exhaust and may reduce atherosclerotic burden associated with exposure to standard diesel fuel. From the extensive assessment of biological parameters performed, the only concerning effect of cerium addition was a slightly raised level of cytokines in a region of the central nervous system. Overall, the use of cerium as a fuel additive may be a potentially useful way to limit the health effects of vehicle exhaust. However, further testing is required to ensure that such an approach is not associated with a chronic inflammatory response which may eventually cause long-term health effects. PMID:22507957
Farhan Ul Haque, Muhammad; Gu, Wenyu; DiSpirito, Alan A.
2015-01-01
Methanotrophs have remarkable redundancy in multiple steps of the central pathway of methane oxidation to carbon dioxide. For example, it has been known for over 30 years that two forms of methane monooxygenase, responsible for oxidizing methane to methanol, exist in methanotrophs, i.e., soluble methane monooxygenase (sMMO) and particulate methane monooxygenase (pMMO), and that expression of these two forms is controlled by the availability of copper. Specifically, sMMO expression occurs in the absence of copper, while pMMO expression increases with increasing copper concentrations. More recently, it was discovered that multiple forms of methanol dehydrogenase (MeDH), Mxa MeDH and Xox MeDH, also exist in methanotrophs and that the expression of these alternative forms is regulated by the availability of cerium. That is, expression of Xox MeDH increases in the presence of cerium, while Mxa MeDH expression decreases in the presence of cerium. As it had been earlier concluded that pMMO and Mxa MeDH form a supercomplex in which electrons from Mxa MeDH are back donated to pMMO to drive the initial oxidation of methane, we speculated that Mxa MeDH could be rendered inactive through marker-exchange mutagenesis but growth on methane could still be possible if cerium was added to increase the expression of Xox MeDH under sMMO-expressing conditions. Here we report that mxaF, encoding the large subunit of Mxa MeDH, could indeed be knocked out in Methylosinus trichosporium OB3b, yet growth on methane was still possible, so long as cerium was added. Interestingly, growth of this mutant occurred in both the presence and the absence of copper, suggesting that Xox MeDH can replace Mxa MeDH regardless of the form of MMO expressed. PMID:26712545
Fungus mediated synthesis of biomedically important cerium oxide nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, Shadab Ali; Ahmad, Absar, E-mail: a.ahmad@ncl.res.in
2013-10-15
Graphical abstract: - Highlights: • First time biological synthesis of cerium oxide oxide nanoparticles using fungus Humicola sp. • Complete characterization of cerium oxide nanoparticles. • Biosynthesis of naturally protein capped, luminescent and water dispersible CeO{sub 2} nanoparticles. • Biosynthesized CeO{sub 2} nanoparticles can be used for many biomedical applications. - Abstract: Nanomaterials can be synthesized by chemical, physical and the more recently discovered biological routes. The biological routes are advantageous over the chemical and physical ones as unlike these, the biological synthesis protocols occur at ambient conditions, are cheap, non-toxic and eco-friendly. Although purely biological and bioinspired methods formore » the synthesis of nanomaterials are environmentally benign and energy conserving processes, their true potential has not been explored yet and attempts are being made to extend the formation of technologically important nanoparticles using microorganisms like fungi. Though there have been reports on the biosynthesis of oxide nanoparticles by our group in the past, no attempts have been made to employ fungi for the synthesis of nanoparticles of rare earth metals or lanthanides. Here we report for the first time, the bio-inspired synthesis of biomedically important cerium oxide (CeO{sub 2}) nanoparticles using the thermophilic fungus Humicola sp. The fungus Humicola sp. when exposed to aqueous solutions of oxide precursor cerium (III) nitrate hexahydrate (CeN{sub 3}O{sub 9}·6H{sub 2}O) results in the extracellular formation of CeO{sub 2} nanoparticles containing Ce (III) and Ce (IV) mixed oxidation states, confirmed by X-ray Photoemission Spectroscopy (XPS). The formed nanoparticles are naturally capped by proteins secreted by the fungus and thus do not agglomerate, are highly stable, water dispersible and are highly fluorescent as well. The biosynthesized nanoparticles were characterized by UV–vis spectroscopy, Photoluminescence spectroscopy (PL), Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD) and X-ray Photoemission Spectroscopy (XPS)« less
Cassee, Flemming R; Campbell, Arezoo; Boere, A John F; McLean, Steven G; Duffin, Rodger; Krystek, Petra; Gosens, Ilse; Miller, Mark R
2012-05-01
Cerium oxide (CeO(2)) nanoparticles improve the burning efficiency of fuel, however, little is known about health impacts of altered emissions from the vehicles. Atherosclerosis-prone apolipoprotein E knockout (ApoE(-/-)) mice were exposed by inhalation to diluted exhaust (1.7 mg/m(3), 20, 60 or 180 min, 5 day/week, for 4 weeks), from an engine using standard diesel fuel (DE) or the same diesel fuel containing 9 ppm cerium oxide nanoparticles (DCeE). Changes in hematological indices, clinical chemistry, atherosclerotic burden, tissue levels of inflammatory cytokines and pathology of the major organs were assessed. Addition of CeO(2) to fuel resulted in a reduction of the number (30%) and surface area (10%) of the particles in the exhaust, whereas the gaseous co-pollutants were increased (6-8%). There was, however, a trend towards an increased size and complexity of the atherosclerotic plaques following DE exposure, which was not evident in the DCeE group. There were no clear signs of altered hematological or pathological changes induced by either treatment. However, levels of proinflammatory cytokines were modulated in a brain region and liver following DCeE exposure. These results imply that addition of CeO(2) nanoparticles to fuel decreases the number of particles in exhaust and may reduce atherosclerotic burden associated with exposure to standard diesel fuel. From the extensive assessment of biological parameters performed, the only concerning effect of cerium addition was a slightly raised level of cytokines in a region of the central nervous system. Overall, the use of cerium as a fuel additive may be a potentially useful way to limit the health effects of vehicle exhaust. However, further testing is required to ensure that such an approach is not associated with a chronic inflammatory response which may eventually cause long-term health effects. Copyright © 2012 Elsevier Inc. All rights reserved.
Protective interlayer for high temperature solid electrolyte electrochemical cells
Singh, Prabhakar; Vasilow, Theodore R.; Richards, Von L.
1996-01-01
The invention comprises of an electrically conducting doped or admixed cerium oxide composition with niobium oxide and/or tantalum oxide for electrochemical devices, characterized by the general formula: Nb.sub.x Ta.sub.y Ce.sub.1-x-y O.sub.2 where x is about 0.0 to 0.05, y is about 0.0 to 0.05, and x+y is about 0.02 to 0.05, and where x is preferably about 0.02 to 0.05 and y is 0, and a method of making the same. This novel composition is particularly applicable in forming a protective interlayer of a high temperature, solid electrolyte electrochemical cell (10), characterized by a first electrode (12); an electrically conductive interlayer (14) of niobium and/or tantalum doped cerium oxide deposited over at least a first portion (R) of the first electrode; an interconnect (16) deposited over the interlayer; a solid electrolyte (18) deposited over a second portion of the first electrode, the first portion being discontinuous from the second portion; and, a second electrode (20) deposited over the solid electrolyte. The interlayer (14) is characterized as being porous and selected from the group consisting of niobium doped cerium oxide, tantalum doped cerium oxide, and niobium and tantalum doped cerium oxide or admixtures of the same. The first electrode (12), an air electrode, is a porous layer of doped lanthanum manganite, the solid electrolyte layer (18) is a dense yttria stabilized zirconium oxide, the interconnect layer (16) is a dense, doped lanthanum chromite, and the second electrode (20), a fuel electrode, is a porous layer of nickel-zirconium oxide cermet. The electrochemical cell (10) can take on a plurality of shapes such as annular, planar, etc. and can be connected to a plurality of electrochemical cells in series and/or in parallel to generate electrical energy.
Mooßen, Oliver; Dolg, Michael
2016-06-09
The geometric and electronic structure of the recently experimentally studied molecules ZCeF2 (Z = CH2, O) was investigated by density functional theory (DFT) and wave function-based ab initio methods. Special attention was paid to the Ce-Z metal-ligand bonding, especially to the nature of the interaction between the Ce 4f and the Z 2p orbitals and the possible multiconfigurational character arising from it, as well as to the assignment of an oxidation state of Ce reflecting the electronic structure. Complete active space self-consistent field (CASSCF) calculations were performed, followed by orbital rotations in the active orbital space. The methylene compound CH2CeF2 has an open-shell singlet ground state, which is characterized by a two-configurational wave function in the basis of the strongly mixed natural CASSCF orbitals. The system can also be described in a very compact way by the dominant Ce 4f(1) C 2p(1) configuration, if nearly pure Ce 4f and C 2p orbitals are used. In the basis of these localized orbitals, the molecule is almost monoconfigurational and should be best described as a Ce(III) system. The singlet ground state of the oxygen OCeF2 complex is of closed-shell character when a monoconfigurational wave function with very strongly mixed Ce 4f and O 2p CASSCF natural orbitals is used for the description. The transformation to orbitals localized on the cerium and oxygen atoms leads to a multiconfigurational wave function and reveals characteristics of a mixed valent Ce(IV)/Ce(III) compound. Additionally, the interactions of the localized active orbitals were analyzed by evaluating the expectation values of the charge fluctuation operator and the local spin operator. The Ce 4f and C 2p orbital interaction of the CH2CeF2 compound is weakly covalent and resembles the interaction of the H 1s orbitals in a stretched hydrogen dimer. In contrast, the interaction of the localized active orbitals for OCeF2 shows ionic character. Calculated vibrational Ce-C and Ce-O stretching frequencies at the DFT, CASSCF, second-order Rayleigh-Schrödinger perturbation theory (RS2C), multireference configuration interaction (MRCI), as well as single, doubles, and perturbative triples coupled cluster (CCSD(T)) level are reported and compared to experimental infrared absorption data in a Ne and Ar matrix.
Coherent excitations revealed and calculated
NASA Astrophysics Data System (ADS)
Georges, Antoine
2018-01-01
Quantum entities manifest themselves as either particles or waves. In a physical system containing a very large number of identical particles, such as electrons in a material, individualistic (particle-like) behavior prevails at high temperatures. At low temperatures, collective behavior emerges, and excitations of the system in this regime are best described as waves—long-lived phenomena that are periodic in both space and time and often dubbed “coherent excitations” by physicists. On page 186 of this issue, Goremychkin et al. (1) used experiment and theory to describe the emergence of coherent excitations in a complex quantum system with strong interactions. They studied a cerium-palladium compound, CePd3, in which the very localized electrons of 4f orbitals of Ce interact with the much more itinerant conduction electrons of the extended d orbitals of Pd at low temperatures to create a wavelike state.
Lithium-Air Battery: Study of Rechargeability and Scalability
2012-07-01
nanowires: MnO2 nanowires were prepared by hydrothermal method. In a typical procedure, an aqueous solution of KMnO4 (0.5 g KMnO4 in 60 ml DD water) was...reduction and oxygen evolution in Li-O2 cell. It was prepared by precipitation method, in which cerium source precipitated as cerium oxalate and...subsequent calcinations yield CeO2 nanoparticles. In a typical procedure, 0.15 M cerous nitrate solution was added drop wise to 1.5 M ammonium oxalate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaynor, James D.; Karakoti, Ajay S.; Inerbaev, Talgat
2013-05-02
A single layer of oxygen-deficient cerium oxide nanoparticles (CNPs) are immobilized on microscopic glass slide using poly(4-vinylpyridine) (PVP) self-assembled monolayers (SAMs). A specific colorimetric property of CNPs when reacted with hydrogen peroxide allows for the direct, single-step peroxide detection which can be used in medical diagnosis and explosives detection. Multiple PVP-CNP immobilized layers improve sensitivity of detection and the sensor can be regenerated for reuse.
Electronic structure and magneto-optical effects in CeSb
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liechtenstein, A.I.; Antropov, V.P.; Harmon, B.N.
1994-04-15
The electronic structure and magneto-optical spectra of CeSb have been calculated using the self-consistent local-density approximation with explicit on-site Coulomb parameters for the correlated [ital f] state of cerium. The essential electronic structure of cerium antimonide consists of one occupied [ital f] band, predominantly with orbital [ital m]=[minus]3 character and spin [sigma]=1 located 2 eV below the Fermi level and interacting with broad Sb [ital p] bands crossing [ital E][sub [ital F
NASA Astrophysics Data System (ADS)
Jewulski, J. R.; Osif, T. L.; Remick, R. J.
1990-12-01
The purpose of this program was to survey the field of solid-state proton conductors (SSPC), identify conductors that could be used to develop solid-state fuel cells suitable for use with coal derived fuel gases, and begin the experimental research required for the development of these fuel cells. This document covers the following topics: the history of developments and current status of the SSPC, including a review of proton conducting electrolyte structures, the current status of the medium temperature SSPC development, electrodes for moderate temperature (SSPC) fuel cell, basic material and measurement techniques applicable for SSPC development, modeling, and optimization studies. Correlation and optimization studies are described which include correlation studies on proton conduction and oxide cathode optimization for the SSPC fuel cell. Experiments with the SSPC fuel cells are presented which include the fabrication of the electrolyte disks, apparatus for conducting measurements, the strontium-cerium based electrolyte, the barium-cerium based electrolyte with solid foil electrodes, the barium-cerium based electrolyte with porous electrodes, and conduction mechanisms.
Liquid-phase oxidation of cyclohexanone over cerium oxide catalyst
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, H.C.; Weng, H.S.
Catalytic oxidation of cyclohexanone in the liquid phase with glacial acetic acid as the solvent over cerium oxide was studied between 5 and 15 atm and 98 and 118 {degrees} C in a batch reactor. The products were adipic acid, glutaric acid, succinic acid, caprolactone, carbon oxides, etc. The reaction undergoes a short induction period prior to a rapid reaction regime. In both regimes, the reaction is independent of oxygen pressure when the system pressure is above 10 atm. The induction period is inversely proportional to both of the catalyst weight and cyclohexanone concentration.During the rapid reaction regime, the reactionmore » rate was found to be proportional to the 0.5 power of the catalyst weight and to the 1.5 power of the cyclohexanone concentration. Reaction mechanisms and rate expressions are proposed. The carbon oxides produced in this study were much lower than those previously reported. The cerium oxide catalyst is stable during the reaction.« less
Genier, Francielli S; Bizanek, Maximilian; Webster, Thomas J; Roy, Amit K
2018-01-01
Conditions of cellular stress are often the cause of cell death or dysfunction. Sustained cell stress can lead to several health complications, such as extensive inflammatory responses, tumor growth, and necrosis. To prevent disease and protect human tissue during these conditions and to avoid medication side effects, nanomaterials with unique characteristics have been applied to biological systems. This paper introduces the pretreatment in human dermal fibroblasts with cerium oxide nanoparticles during nutritional stress. For this purpose, human dermal fibroblast cells received cell culture media with concentrations of 250 µg/mL and 500 µg/mL of nano-cerium oxide before being exposed to 24, 48, and 72 hours of serum starvation. Contrast images demonstrated higher cell confluence and cell integrity in cells pretreated with ceria nanoparticles compared to untreated cells. It was confirmed by MTS assay after 72 hours of serum starvation that higher cell viability was achieved with ceria nanoparticles. The results demonstrate the potential of cerium oxide nanoparticles as protective agents during cellular starvation.
NASA Astrophysics Data System (ADS)
Trusova, E. A.; Khrushcheva, A. A.; Shvorneva, L. I.
2012-02-01
We present the results of the modified sol-gel synthesis of ultrafine ceria-doped zirconia powder for medical ceramics (implants) and catalytic purposes (environmental catalysis and petrochemistry). Special attention has been paid to study the influence of thermal treatment on crystallite size and crystal lattice parameters of zirconia doped by ceria. Zirconyl chloride and cerium nitrate were used as metal sources, and tetraethylammonium hydroxide (TEAH) was used as a sol stabilizer at molar ratio TEAH/Σ (Ce + Zr) equal to 0.5. It was proved that zirconium and cerium practically completely were included in the obtained solid solutions, since their phase compositions fully correspond to initial quantities of cerium and zirconium in reaction mixture. It was shown that average crystallite size of the obtained powders did not exceed 75Å, and the powders were resistant to thermal treatment. It was established that stabilization of the crystal lattice of ZrO2 occurs through formation of a cubic ceria sublattice.
Threshold Ionization and Spin-Orbit Coupling of Cerium Monoxide
NASA Astrophysics Data System (ADS)
Cao, Wenjin; Zhang, Yuchen; Wu, Lu; Yang, Dong-Sheng
2017-06-01
Cerium oxides are widely used in heterogeneous catalysis due to their ability to switch between different oxidation states. We report here the mass-analyzed threshold ionization (MATI) spectroscopy of cerium monoxide (CeO) produced by laser ablating a Ce rod in a molecular beam source. The MATI spectrum in the range of 40000-45000 \\wn exhibits several band systems with similar vibrational progressions. The strongest band is at 43015 (5) \\wn, which can be assigned as the adiabatic ionization energy of the neutral species. The spectrum also shows Ce-O stretching frequencies of 817 and 890 \\wn in the neutral and ion states, respectively. By comparing with spin-orbit coupled multireference quasi-degenerate perturbation theory (SO-MCQDPT) calculations, the observed band systems are assigned to transitions from various low-energy spin-orbit levels of the neutral oxide to the two lowest spin-orbit levels of the corresponding ion. The current work will also be compared with previous experimental and computational studies on the neutral species.
NASA Technical Reports Server (NTRS)
Hensler, J. R.
1973-01-01
Three approaches to the development of a high density scintillation glass were investigated: They include the increase of density of glass systems containing cerium - the only systems which were known to show scintillation, the testing of a novel silicate glass system containing significant concentrations of silver produced by ion exchange and never tested previously, and the hot pressing of a diphasic compact of low density scintillation glass with high density passive glass. In first two cases, while ultraviolet excited fluorescence was maintained in the glasses showing high density, scintillation response to high energy particles was not retained in the case of the cerium containing glasses or developed in the case of the silver containing glasses. In the case of the compacts, the extremely long path length caused by the multiple internal reflections which occur in such a body resulted in attenuation even with glasses of high specific transmission. It is not clear why the scintillation efficiency is not maintained in the higher density cerium containing glasses.
NASA Astrophysics Data System (ADS)
Sarvaramini, A.; Azizi, D.; Larachi, F.
2016-11-01
Density functional theory (DFT) simulations and experiments were performed to clarify the interaction mechanisms between hydroxamic acid collectors and cerium hydroxides during the flotation of bastnäsite and monazite minerals. These minerals showed considerable floatability at moderately alkaline pH which was related to the adsorption of hydroxamic acids on their surfaces as confirmed by vibrational spectroscopic and zeta potential measurements. DFT simulations showed that at moderately alkaline pH, the interactions between solvated Ce(OH)2+ and Ce(OH)2+ and heptyl-hydroxamic acid (HHA) anions resulted in the formation of, respectively, [Ce(OH)(HHA)x(H2O)y]2-x (x[y = ] = 1[6],2[3],3[1]) and [Ce(OH)2(HHA)x(H2O)y]1-x (x[y = ] = 1[5],2[1],3[0]) complexes. The collector anions were found to interact directly through formation of two covalent bonds between their two polar-head oxygen atoms and cerium in the hydroxide complexes. However, formation of such new bonds resulted in breakage of a few covalent/electrostatic bonds between cerium and water molecules initially present in the first hydration shell of the rare-earth metal cation. Building up in the electric double layer of the semi-soluble minerals, these complexes, and by extension, those from other rare-earth elements belonging to monazite and bastnäsite, are speculated to play a role in the interactions between rare-earth minerals and hydroxamic acid collectors.
2016-01-01
Two simple methods are described for the determination of ethionamide (ETM) in bulk drug and tablets using cerium (IV) sulphate as the oxidimetric agent. In both methods, the sample solution is treated with a measured excess of cerium (IV) solution in H2SO4 medium, and after a fixed standing time, the residual oxidant is determined either by back titration with standard iron (II) solution to a ferroin end point in titrimetry or by reacting with o-dianisidine followed by measurement of the absorbance of the orange-red coloured product at 470 nm in spectrophotometry. In titrimetry, the reaction proceeded with a stoichiometry of 1 : 2 (ETM : Ce (IV)) and the amount of cerium (IV) consumed by ETM was related to the latter's amount, and the method was applicable over 1.0–8.0 mg of drug. In spectrophotometry, Beer's law was obeyed over the concentration range of 0.5–5.0 μg/mL ETM with a molar absorptivity value of 2.66 × 104 L/(mol·cm). The limits of detection (LOD) and quantification (LOQ) calculated according to ICH guidelines were 0.013 and 0.043 μg/mL, respectively. The proposed titrimetric and spectrophotometric methods were found to yield reliable results when applied to bulk drug and tablets analysis, and hence they can be applied in quality control laboratories. PMID:27818836
Blue light emission from trivalent cerium doped in sol-gel silica glass
NASA Astrophysics Data System (ADS)
Tokumitsu, Seika; Murakami, Yukon; Oda, Hisaya; Kawabe, Yutaka
2017-02-01
Rare earths in glass matrices are promising for active optical devices as amplifiers and lasers. Emission originating from d-f transitions in sol-gel glass has not been studied very often, while those based on f-f transitions were widely utilized. However, d-f emission in rare earths is very important because of their strong oscillator strength and broad emission widths suitable for the application to scintillators and solid-state lasers. Co-doping of aluminum in sol-gel synthesis was known to be effective for the emission enhancement of trivalent terbium and europium. Recently, we applied aluminum co-doping to cerium and europium systems in sol-gel glass to succeed in the observation of strong blue light emission originating from d-f transitions. Glass samples were prepared with conventional sol-gel process where tetramethylorthosilicate was hydrolyzed in the mixture of water, ethanol and dimethylformamide with nitric acid catalyst. After adding cerium nitrate and aluminum nitrate, the solution experienced drying followed by calcination at 1,050°C under air environment. When molar ratio of cerium to silicon was adjusted at 0.1% and Al concentration was varied in 0.1 2.0%, transparent glass products showed bright and broad blue photoluminescence under UV illumination. The fluorescence lifetimes were found to be about 50 90 ns, indicating that the emission was due to d-f transitions. Considering the simplicity of the process, blue phosphors based on sol-gel glass will be very promising for future applications.
NASA Astrophysics Data System (ADS)
Watanabe, Manabu; Sato, Eiichi; Abderyim, Purkhet; Abudurexiti, Abulajiang; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Nagao, Jiro; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun
2011-05-01
Energy-discrimination X-ray camera is useful to perform monochromatic radiography using polychromatic X-rays. This X-ray camera was developed to carry out K-edge radiography using cerium and gadolinium-based contrast media. In this camera, objects are irradiated by a cone beam from a tungsten-target X-ray generator, and penetrating X-ray photons are detected by a cadmium-telluride detector with amplifiers. Both optimal photon-energy level and energy width are selected using a multichannel analyzer, and the photon number is counted by a counter card. Radiography was performed by the detector scanning using an x- y stage driven by a two-stage controller, and radiograms were shown on a personal computer monitor. In radiography, tube voltage and current were 90 kV and 5.8 μA, respectively, and the X-ray intensity was 0.61 μGy/s at 1.0 m from the X-ray source. The K-edge energies of cerium and gadolinium are 40.3 and 50.3 keV, respectively, and 10 keV-width enhanced K-edge radiography was performed using X-ray photons with energies just beyond K-edge energies of cerium and gadolinium. Thus, cerium K-edge radiography was carried out using X-ray photons with an energy range from 40.3 to 50. 3 keV, and gadolinium K-edge radiography was accomplished utilizing photon energies ranging from 50.3 to 60.3 keV.
Enhancement of surface damage resistance by selective chemical removal of CeO2
NASA Astrophysics Data System (ADS)
Kamimura, Tomosumi; Motokoshi, Shinji; Sakamoto, Takayasu; Jitsuno, Takahisa; Shiba, Haruya; Akamatsu, Shigenori; Horibe, Hideo; Okamoto, Takayuki; Yoshida, Kunio
2005-02-01
The laser-induced damage threshold of polished fused silica surfaces is much lower than the damage threshod of its bulk. It is well known that contaminations of polished surface are one of the causes of low threshold of laser-induced surface damage. Particularly, polishing contamination such as cerium dioxide (CeO2) compound used in optical polishing process is embedded inside the surface layer, and cannot be removed by conventional cleaning. For the enhancement of surface damage resistance, various surface treatments have been applied to the removal of embedded polishing compound. In this paper, we propose a new method using slective chemical removal with high-temperature sulfuric acid (H2SO4). Sulfuric acid could dissolve only CeO2 from the fused silica surface. The surface roughness of fused silica treated H2SO4 was kept through the treatment process. At the wavelength of 355 nm, the surface damage threshold was drastically improved to the nearly same as bulk quality. However, the effect of our treatment was not observed at the wavelength of 1064 nm. The comparison with our previous results obtained from other surface treatments will be discussed.
Ikeda, Rie; Ichiyama, Kosuke; Tabuchi, Naoto; Wada, Mitsuhiro; Kuroda, Naotaka; Nakashima, Kenichiro
2014-11-01
A chemiluminescence (CL) reaction of folic acid (FA) with ruthenium (II) and cerium (IV) was applied to quantify FA-related compounds such as FA, dihydrofolic acid, tetrahydrofolic acid, 5-methyltetrahydrofolic acid, 5-formyltetrahydrofolic acid and methotrexate (MTX). Among the FAs, 5-methyltetrahydrofolic acid provided the highest CL intensity. HPLC-CL detection of FA was applied to quantify FA in pharmaceutical preparations and supplements. Analytical samples were separated on a semi-micro ODS column with a mixture of 20 mM phosphate buffer (pH 5.7) and acetonitrile (94 : 6, v/v %). The separated samples were mixed with a post-column CL reagent consisting of 1.5 mM Ru(bipy)3 (2+) and 1.0 mM Ce(SO4)2 , then the generated CL was monitored. The calibration range for FA was 10-100 μM and the limit of detection was 1.34 μM (signal-to-noise ratio of 3). Repeatabilities were 4.2, 4.6 and 5.0 RSD% (10, 25, 50 μM), and the recoveries for FA supplement, vitamin B complex supplement and FA-containing medication (tablet) were 102.4 ± 10.5, 103.3 ± 13.3 and 100.3 ± 8.5%, respectively. The described method is robust against changes in the chromatographic parameters of ± 3.3 or ± 1.5%. The measured FA content corresponded well to the labeled content of FA-containing products (100.6-104.9%), demonstrating the precision and accuracy of this method for the evaluation of FA pharmaceutical preparations. Copyright © 2014 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Kuráň, Pavel; Pšenička, Martin; Šťastný, Martin; Benkocká, Monika; Janoš, Pavel
2016-10-01
The unique surface properties of some nanocrystalline metal oxides and their application for removal of various toxic compounds were reported in early 1990s. Recently, a reliable method for the preparation of reactive cerium dioxide sorbent and its application for degradation of the organophosphate pesticides, such as parathion methyl, chlorpyrifos, dichlofenthion, fenchlorphos, and prothiofos, as well as of some chemical warfare agents-nerve gases soman and O-ethyl S-[2-(diisopropylamino) ethyl] methylphosphonothioate (VX) was published. This paper reports on the kinetics study of degradation of parathion methyl as a representative organophosphate on nanocrystalline metal oxides TiO2, ZrO2, CeO2 and their mixtures in different molar ratios of particular elements. The tested sorbents except of CeO2 were prepared by different methods (e.g. sol-gel, precipitation) in cooperation with Institute of Inorganic Chemistry (Rez, Czech Republic). The degradation kinetics of parathion methyl on tested sorbents was followed by HPLC equipped with diode array detector. The basic kinetics parameters (half-lives of parathion methyl degradation, rate constants of degradation product formation) were calculated for each sorbent from Weber-Morris equation of 1st order diffusion kinetic model. The results proved the ability of prepared sorbents to degrade parathion methyl under formation of 4-nitrophenol as the main degradation product. The most efficient sorbents were TiCe (2:8), TiCe (1:1), TiCe (0:1) (50-70 %) followed by TiZr (1:1), TiCe (8:2), TiZr (8:2), TiZr (2:8) (20-30%) and TiO2, ZrO2 (less than 5 %).
Modified cermet fuel electrodes for solid oxide electrochemical cells
Ruka, Roswell J.; Spengler, Charles J.
1991-01-01
An exterior porous electrode (10), bonded to a solid oxygen ion conducting electrolyte (13) which is in contact with an interior electrode (14), contains coarse metal particles (12) of nickel and/or cobalt, having diameters from 3 micrometers to 35 micrometers, where the coarse particles are coated with a separate, porous, multiphase layer (17) containing fine metal particles of nickel and/or cobalt (18), having diameters from 0.05 micrometers to 1.75 micrometers and conductive oxide (19) selected from cerium oxide, doped cerium oxide, strontium titanate, doped strontium titanate and mixtures thereof.
Electric dipole transitions for four-times ionized cerium (Ce V)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Usta, Betül Karaçoban, E-mail: bkaracoban@sakarya.edu.tr; Akgün, Elif, E-mail: elif.akgun@ogr.sakarya.edu.tr; Alparslan, Büşra, E-mail: busra.alparslan1@ogr.sakarya.edu.tr
2016-03-25
We have calculated the transition parameters, such as wavelengths, oscillator strengths, and transition probabilities (or rates), for the electric dipole (E1) transitions in four-times ionized cerium (Ce V, Z = 58) by using the multiconfiguration Hartree-Fock method within the framework of Breit-Pauli (MCHF+BP) relativistic corrections and the relativistic Hartree-Fock (HFR) method. The obtained results have been compared with other works available in literature. A discussion of these calculations for Ce V in this study has also been in view of the MCHF+BP and HFR methods.
Kaizer, József; Ganszky, Ildikó; Speier, Gábor; Rockenbauer, Antal; Korecz, László; Giorgi, Michel; Réglier, Marius; Antonczak, Serge
2007-06-01
The cerium(IV)-mediated oxidation of 3-hydroxy-4'-methylflavone (1) proceeds by H-atom abstraction forming the flavonoxy radical (7), and the subsequent combination of its resonance forms leads to the 3-hydroxy-4'-methylflavone dehydro dimer (9). The above system serves as direct evidence for the intermediacy of the flavonoxy radical, its spin delocalization, and also indirect evidence for valence tautomerism as a key step on the substrate activation both in the quercetinase and its biomimic model system.
Premkumar, Thathan; Govindarajan, Subbiah; Coles, Andrew E; Wight, Charles A
2005-04-07
The thermal decomposition kinetics of N(2)H(5)[Ce(pyrazine-2,3-dicarboxylate)(2)(H(2)O)] (Ce-P) have been studied by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), for the first time; TGA analysis reveals an oxidative decomposition process yielding CeO(2) as the final product with an activation energy of approximately 160 kJ mol(-1). This complex may be used as a precursor to fine particle cerium oxides due to its low temperature of decomposition.
Bamberger, C.E.; Robinson, P.R.
A thermochemical cyclic process for producing hydrogen from water comprises reacting ceric oxide with monobasic or dibasic alkali metal phosphate to yield a solid reaction product, oxygen and water. The solid reaction product, alkali metal carbonate or bicarbonate, and water, are reacted to yield hydrogen, ceric oxide, carbon dioxide and trialkali metal phosphate. Ceric oxide is recycled. Trialkali metal phosphate, carbon dioxide and water are reacted to yield monobasic or dibasic alkali metal phosphate and alkali metal bicarbonate, which are recycled. The cyclic process can be modified for producing carbon monoxide from carbon dioxide by reacting the alkali metal cerous phosphate and alkali metal carbonate or bicarbonate in the absence of water to produce carbon monoxide, ceric oxide, carbon dioxide and trialkali metal phosphate. Carbon monoxide can be converted to hydrogen by the water gas shift reaction.
Bamberger, Carlos E.; Robinson, Paul R.
1980-01-01
A thermochemical cyclic process for producing hydrogen from water comprises reacting ceric oxide with monobasic or dibasic alkali metal phosphate to yield a solid reaction product, oxygen and water. The solid reaction product, alkali metal carbonate or bicarbonate, and water, are reacted to yield hydrogen, ceric oxide, carbon dioxide and trialkali metal phosphate. Ceric oxide is recycled. Trialkali metal phosphate, carbon dioxide and water are reacted to yield monobasic or dibasic alkali metal phosphate and alkali metal bicarbonate, which are recycled. The cylic process can be modified for producing carbon monoxide from carbon dioxide by reacting the alkali metal cerous phosphate and alkali metal carbonate or bicarbonate in the absence of water to produce carbon monoxide, ceric oxide, carbon dioxide and trialkali metal phosphate. Carbon monoxide can be converted to hydrogen by the water gas shift reaction.
Préparation chimique et propriétés optiques de CeP 5O 14 triclinique
NASA Astrophysics Data System (ADS)
Rzaigui, Mohamed; Ariguib, N´jia Kbir
1985-01-01
Crystals of a new cerium(III)-ultraphosphate form, CeP 5O 14, have been grown from CeCl 3 · 7H 2O and NH 4H 2PO 4. Synthesis and structural characterization by X-ray diffraction and ir absorption spectroscopy are given. The new CeP 5O 14 crystallizes in a triclinic unit cell, P1, with parameters: a = 9.229(2), b = 8.879(1), c = 7.201(1) (Å), α = 110.27(1), β = 102.75(1), γ = 82.13(1)°, Z = 2, and D x = 3.20. This compound is piezoelectric and has no known structural analog. The excitation and emission spectrum of this Ce-ultraphosphate variety are reported. This material emits strongly in the near-uv. The emission band peaks at 322 nm and decays, at first, with τ 1 = 14 nsec, then, with τ 2 = 60 nsec.
Microbiological and chemical transformations of argentatin B.
Maatooq, Galal T
2003-01-01
Argentatin B is a naturally occurring tetracyclic triterpene isolated from Parthenium argentatum x P. tomentosa. It was microbiologically transformed to 16, 24-epoxycycloartan-3alpha, 25-diol, (isoargentatin D), by Nocardia corallina var. taoka ATCC 31338, Mycobacterium species NRRL B3683 and Septomyxa affinis ATCC 6737. The later microbe also produced 16, 24-epoxycycloartan-3beta, 25-diol (argentatin D) and 1, 2-didehydroargentatin B, (isoargentatin D). Sodium hydroxide converted argentatin B to argentatin D and isoargentatin D. Hydrochloric acid treatment gave cycloartan-25-ol-3, 24-dione. Cerium sulfate/sulfuric acid/aqueous methanol induced scission of the isopropanol moiety and provided an isomeric mixture of 24-methoxy-25-27-trinorargentatin B. Oxidation of this isomeric mixture with pyridinium chlorochromate, selectively, attacked the isomer with the equatorial proton at position-24 to give the corresponding lactone, 24-oxo-25-27-trinorargentatin B. The produced compounds were characterized by spectroscopic methods.
Barrios, Ana Cecilia; Medina-Velo, Illya A; Zuverza-Mena, Nubia; Dominguez, Osvaldo E; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L
2017-01-01
Little is known about the effects of surface modification on the interaction of nanoparticles (NPs) with plants. Tomato (Solanum lycopersicum L.) plants were cultivated in potting soil amended with bare and citric acid coated nanoceria (nCeO 2, nCeO 2 +CA), cerium acetate (CeAc), bulk cerium oxide (bCeO 2 ) and citric acid (CA) at 0-500 mg kg -1 . Fruits were collected year-round until the harvesting time (210 days). Results showed that nCeO 2 +CA at 62.5, 250 and 500 mg kg -1 reduced dry weight by 54, 57, and 64% and total sugar by 84, 78, and 81%. At 62.5, 125, and 500 mg kg -1 nCeO 2 +CA decreased reducing sugar by 63, 75, and 52%, respectively and at 125 mg kg -1 reduced starch by 78%, compared to control. The bCeO 2 at 250 and 500 mg kg -1 , increased reducing sugar by 67 and 58%. In addition, when compared to controls, nCeO 2 at 500 mg kg -1 reduced B (28%), Fe (78%), Mn (33%), and Ca (59%). At 125 mg kg -1 decreased Al by 24%; while nCeO 2 +CA at 125 and 500 mg kg -1 increased B by 33%. On the other hand, bCeO 2 at 62.5 mg kg -1 increased Ca (267%), but at 250 mg kg -1 reduced Cu (52%), Mn (33%), and Mg (58%). Fruit macromolecules were mainly affected by nCeO 2 +CA, while nutritional elements by nCeO 2 ; however, all Ce treatments altered, in some way, the nutritional quality of tomato fruit. To our knowledge, this is the first study comparing effects of uncoated and coated nanoceria on tomato fruit quality. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Kulkarni, S. P.; Garg, A. N.
Gamma ray induced decomposition of two series of double nitrates; 2M INO 3⋯Ln(NO 3) 3⋯ x H 2O (where MI = NH+4, Na+, K+, Rb+, Cs+; LnIII = La3+, Ce3+ and x = 2 or 4) and 3M II(NO 3) 2·2Ln III(NO 3) 3⋯24H 2O (where MII = Mg2+, Co2+, Zn2+; LnIII = La3+, Ce3+) has been studied in solid state over a wide absorbed dose range at room temperature. G(NO -2) values have been found to depend on the absorbed dose and the nature of cation in both the series of double salts. Radiation sensitivity of lanthanum double nitrates with monovalent cations at an absorbed dose of 158 kGy follows the order NH +4 < Rb + ≅ Cs + < Na + < K + and those of cerium NH +4 < Rb +
Raemy, David O; Limbach, Ludwig K; Rothen-Rutishauser, Barbara; Grass, Robert N; Gehr, Peter; Birbaum, Karin; Brandenberger, Christina; Günther, Detlef; Stark, Wendelin J
2011-04-01
Nowadays, aerosol processes are widely used for the manufacture of nanoparticles (NPs), creating an increased occupational exposure risk of workers, laboratory personnel and scientists to airborne particles. There is evidence that possible adverse effects are linked with the accumulation of NPs in target cells, pointing out the importance of understanding the kinetics of particle internalization. In this context, the uptake kinetics of representative airborne NPs over 30 min and their internalization after 24 h post-exposure were investigated by the use of a recently established exposure system. This system combines the production of aerosolized cerium oxide (CeO(2)) NPs by flame spray synthesis with its simultaneous particle deposition from the gas-phase onto A549 lung cells, cultivated at the air-liquid interface. Particle uptake was quantified by mass spectrometry after several exposure times (0, 5, 10, 20 and 30 min). Over 35% of the deposited mass was found internalized after 10 min exposure, a value that increased to 60% after 30 min exposure. Following an additional 24 h post-incubation, a time span, after which adverse biological effects were observed in previous experiments, over 80% of total CeO(2) could be detected intracellularly. On the ultrastructural level, focal cerium aggregates were present on the apical surface of A549 cells and could also be localized intracellularly in vesicular structures. The uptake behaviour of aerosolized CeO(2) is in line with observations on cerium suspensions, where particle mass transport was identified as the rate-limiting factor for NP internalization. Copyright © 2010 Elsevier B.V. All rights reserved.
Walash, M. I.; Rizk, M.; Sheribah, Z. A.; Salim, M. M.
2010-01-01
A simple and sensitive spectrofluorimetric method was developed for the determination of biotin in pure form and in pharmaceutical preparations. The proposed method is based on the oxidation of the drug with cerium (IV) ammonium sulfate in acidic medium. The fluorescence of the produced Cerium (III) was measured at 365 nm after excitation at 255 nm. The different experimental parameters affecting the development and stability of the reaction were carefully studied and optimized. The method is applicable over the concentration range of 30-120 ng/mL with correlation coefficient of 0.9998. The detection limit (LOD) of biotin was 2.41 ng/mL while quantitation limit (LOQ) was 7.29 ng/mL. The proposed procedure was successfully applied for the determination of biotin in pharmaceutical preparations with mean recoveries of 99.55 ± 0.83 and 101.67 ± 1.53 for biotin ampoules and capsules, respectively. The results obtained were in good agreement with those obtained using the official method. PMID:23675202
NASA Astrophysics Data System (ADS)
Dubey, Vikas; Kaur, Jagjeet
2016-05-01
Present paper reports synthesis and characterization of trivalent cerium (Ce3+) doped zirconium dioxide (ZrO2) phosphors. Effect of variable concentration of cerium on photoluminescence (PL) is studied. Samples were prepared by combustion synthesis technique which is suitable for less time taking techniques also for large scale production for phosphors. Starting material used for sample preparation are Zr(NO3)3 and Ce(NO3)3 and urea used as a fuel. All prepared phosphor with variable concentration of Ce3+ (0.1 to 2mol%) was studied by photoluminescence analysis it is found that the excitation spectra of prepared phosphor shows broad excitation centred at 390nm. The excitation spectra with variable concentration of Ce3+ show strong peaks at 447nm. Spectrophotometric determinations of peaks are evaluated by Commission Internationale de I'Eclairage technique. Using this phosphor, the desired CIE values including emissions throughout the violet (390 nm) and blue (427 nm) of the spectra were achieved. Efficient blue light emitting diodes were fabricated using Ce3+ doped phosphor based on near ultraviolet (NUV) excited LED lights.
Solubility of Nanocrystalline Cerium Dioxide: Experimental Data and Thermodynamic Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plakhova, Tatiana V.; Romanchuk, Anna Yu.; Yakunin, Sergey N.
For this study, ultrafine 5 nm ceria isotropic nanoparticles were prepared using the rapid chemical precipitation approach from cerium(III) nitrate and ammonium hydroxide aqueous solutions. The as-prepared nanoparticles were shown to contain predominantly Ce(IV) species. The solubility of nanocrystalline CeO 2 at several pH values was determined using ICP-MS and radioactive tracer methods. Phase composition of the ceria samples remained unchanged upon partial dissolution, while the shape of the particles changed dramatically, yielding nanorods under neutral pH conditions. According to X-ray absorption spectroscopy investigation of the supernatant, Ce(III) was the main cerium species in solution at pH < 4. Basedmore » on the results obtained, a reductive dissolution model was used for data interpretation. According to this model, the solubility product for ceria nanoparticles was determined to be log K sp = -59.3 ± 0.3 in 0.01 M NaClO 4. Taken together, our results show that the pH dependence of ceria anti- and pro-oxidant activity can be related to the dissolution of CeO 2 in aqueous media.« less
NASA Astrophysics Data System (ADS)
Pujar, Malatesh S.; Hunagund, Shirajahammad M.; Desai, Vani R.; Patil, Shivaprasadgouda; Sidarai, Ashok H.
2018-04-01
We report the simple Co-precipitation method for the synthesis of Cerium oxide (CeO2) nanoparticles (NPs) in an ambient temperature. We have taken the Cerium (III) nitrate hexahydrate (Ce(NO3)3.6H2O) and Sodium hydroxide (NaOH) as the precursors. The obtained NPs were analyzed using the UV-Vis spectrophotometer, Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). The obtained results signify that UV-Vis spectrum exhibited a well-defined absorption peak at 274 nm and the estimated energy gap (Eg) is 4.05 eV. The FT-IR analysis provides the supporting evidence for the presence of bonding of O-H, nitrates, alcohols and O-Ce-O vibrations. The XRD result reveals that the synthesized CeO2 NPs was crystallite with cubic phase structure and the estimated average crystallite size of CeO2 NPs using Scherer's and W-H method was significantly different due to their assumptions. Further, it is purposed to study their photocatalytic biological activities.
NASA Astrophysics Data System (ADS)
Nguyen, C. T.; Buscail, H.; Cueff, R.; Issartel, C.; Riffard, F.; Perrier, S.; Poble, O.
2009-09-01
Ceria coatings were applied in order to improve the adherence of alumina scales developed on a model Fe-20Cr-5Al alloy during oxidation at high temperature. These coatings were performed by argon annealing of a ceria sol-gel coating at temperatures ranging between 600 and 1000 °C. The influence of these coatings on the alloy oxidation behaviour was studied at 1100 °C. In situ X-ray diffraction (XRD) was performed to characterize the coating crystallographic nature after annealing and during the oxidation process. The alumina scale morphologies were studied by means of scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDS). The present work shows that the alumina scale morphology observed on cerium sol-gel coated alloy was very convoluted. On the cerium sol-gel coated alloy, argon annealing results in an increase of the oxidation rate in air, at 1100 °C. The 600 °C argon annealing temperature results in a good alumina scale adherence under thermal cycling conditions at 1100 °C.
Deliormanlı, Aylin M
2015-02-01
Bioactive glasses are widely used in biomedical applications due to their ability to bond to bone and even to soft tissues. In this study, borate based (13-93B3) bioactive glass powders containing up to 5 wt% Ce2O3 and Ga2O3 were prepared by the melt quench technique. Cerium (Ce+3) and gallium (Ga+3) were chosen because of their low toxicity associated with bacteriostatic properties. Bioactive glass scaffolds were fabricated using the polymer foam replication method. In vitro degradation and bioactivity of the scaffolds were evaluated in SBF under static conditions. Results revealed that the cerium- and gallium-containing borate glasses have much lower degradation rates compared to the bare borate glass 13-93B3. In spite of the increased chemical durability, substituted glasses exhibited a good in vitro bioactive response except when the Ce2O3 content was 5 wt%. Taking into account the high in vitro hydroxyapatite forming ability, borate glass scaffolds containing Ce+3 and Ga+3 therapeutic ions are promising candidates for bone tissue engineering applications.
Hunt, Rodney Dale; Collins, Jack Lee; Reif, Tyler J.; ...
2017-08-04
Recently, an internal gelation study demonstrated that the use of heated urea and hexamethylenetetramine can have a pronounced impact on the porosity and sintering characteristics of cerium dioxide (CeO 2) microspheres. This effort has identified process variables that can significantly change the initial porosity of the CeO 2 microspheres with slight modifications. A relatively small difference in the sample preparation of cerium ammonium nitrate and ammonium hydroxide solution had a large reproducible impact on the porosity and slow pour density of the produced microspheres. Increases in the gelation temperature as small as 0.5 K also produced a noticeable increase inmore » the slow pour density. If the gelation temperature was increased too high, the use of the heated hexamethylenetetramine and urea was no longer observed to be effective in increasing the porosity of the CeO 2 microspheres. In conclusion, the final process variable was the amount of dispersing agent, Span™ 80, which can increase the slow pour density and produce significantly smaller microspheres.« less
Willbold, Elmar; Gu, Xuenan; Albert, Devon; Kalla, Katharina; Bobe, Katharina; Brauneis, Maria; Janning, Carla; Nellesen, Jens; Czayka, Wolfgang; Tillmann, Wolfgang; Zheng, Yufeng; Witte, Frank
2015-01-01
Rare earth elements are promising alloying element candidates for magnesium alloys used as biodegradable devices in biomedical applications. Rare earth elements have significant effects on the high temperature strength as well as the creep resistance of alloys and they improve magnesium corrosion resistance. We focused on lanthanum, neodymium and cerium to produce magnesium alloys with commonly used rare earth element concentrations. We showed that low concentrations of rare earth elements do not promote bone growth inside a 750 μm broad area around the implant. However, increased bone growth was observed at a greater distance from the degrading alloys. Clinically and histologically, the alloys and their corrosion products caused no systematic or local cytotoxicological effects. Using microtomography and in vitro experiments, we could show that the magnesium-rare earth element alloys showed low corrosion rates, both in in vitro and in vivo. The lanthanum- and cerium-containing alloys degraded at comparable rates, whereas the neodymium-containing alloy showed the lowest corrosion rates. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Solubility of Nanocrystalline Cerium Dioxide: Experimental Data and Thermodynamic Modeling
Plakhova, Tatiana V.; Romanchuk, Anna Yu.; Yakunin, Sergey N.; ...
2016-09-12
For this study, ultrafine 5 nm ceria isotropic nanoparticles were prepared using the rapid chemical precipitation approach from cerium(III) nitrate and ammonium hydroxide aqueous solutions. The as-prepared nanoparticles were shown to contain predominantly Ce(IV) species. The solubility of nanocrystalline CeO 2 at several pH values was determined using ICP-MS and radioactive tracer methods. Phase composition of the ceria samples remained unchanged upon partial dissolution, while the shape of the particles changed dramatically, yielding nanorods under neutral pH conditions. According to X-ray absorption spectroscopy investigation of the supernatant, Ce(III) was the main cerium species in solution at pH < 4. Basedmore » on the results obtained, a reductive dissolution model was used for data interpretation. According to this model, the solubility product for ceria nanoparticles was determined to be log K sp = -59.3 ± 0.3 in 0.01 M NaClO 4. Taken together, our results show that the pH dependence of ceria anti- and pro-oxidant activity can be related to the dissolution of CeO 2 in aqueous media.« less
Spectroscopic Study of Local Interactions of Platinum in Small [CexOy]Ptx' - Clusters
NASA Astrophysics Data System (ADS)
Ray, Manisha; Kafader, Jared O.; Chick Jarrold, Caroline
2016-06-01
Cerium oxide is a good ionic conductor, and the conductivity can be enhanced with oxygen vacancies and doping. This conductivity may play an important role in the enhancement of noble or coinage metal toward the water-gas shift reaction when supported by cerium oxide. The ceria-supported platinum catalyst in particular has received much attention because of higher activity at lower temperatures (LT) compared to the most common commercial LT-WGS catalyst. We have used a combination of anion photoelectron spectroscopy and density functional theory calculations to study the interesting molecular and electronic structures and properties of cluster models of ceria-supported platinum. [CexOy]Ptx' - (x,x'=1,2 ; y≤2x') clusters exhibit evidence of ionic bonding possible because of the high electron affinity of Pt and the low ionization potential of cerium oxide clusters. In addition, Pt- is a common daughter ion resulting from photodissociation of [CexOy]Ptx' - clusters. Finally, several of the anion and neutral clusters have profoundly different structures. These features may play a role in the enhancement of catalytic activity toward the water-gas shift reaction.
Virus Removal by Biogenic Cerium
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Gusseme, B.; Du Laing, G; Hennebel, T
2010-01-01
The rare earth element cerium has been known to exert antifungal and antibacterial properties in the oxidation states +III and +IV. This study reports on an innovative strategy for virus removal in drinking water by the combination of Ce(III) on a bacterial carrier matrix. The biogenic cerium (bio-Ce) was produced by addition of aqueous Ce(III) to actively growing cultures of either freshwater manganese-oxidizing bacteria (MOB) Leptothrix discophora or Pseudomonas putida MnB29. X-ray absorption spectroscopy results indicated that Ce remained in its trivalent state on the bacterial surface. The spectra were consistent with Ce(III) ions associated with the phosphoryl groups ofmore » the bacterial cell wall. In disinfection assays using a bacteriophage as model, it was demonstrated that bio-Ce exhibited antiviral properties. A 4.4 log decrease of the phage was observed after 2 h of contact with 50 mg L{sup -1} bio-Ce. Given the fact that virus removal with 50 mg L{sup -1} Ce(III) as CeNO{sub 3} was lower, the presence of the bacterial carrier matrix in bio-Ce significantly enhanced virus removal.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunt, Rodney Dale; Collins, Jack Lee; Reif, Tyler J.
Recently, an internal gelation study demonstrated that the use of heated urea and hexamethylenetetramine can have a pronounced impact on the porosity and sintering characteristics of cerium dioxide (CeO 2) microspheres. This effort has identified process variables that can significantly change the initial porosity of the CeO 2 microspheres with slight modifications. A relatively small difference in the sample preparation of cerium ammonium nitrate and ammonium hydroxide solution had a large reproducible impact on the porosity and slow pour density of the produced microspheres. Increases in the gelation temperature as small as 0.5 K also produced a noticeable increase inmore » the slow pour density. If the gelation temperature was increased too high, the use of the heated hexamethylenetetramine and urea was no longer observed to be effective in increasing the porosity of the CeO 2 microspheres. In conclusion, the final process variable was the amount of dispersing agent, Span™ 80, which can increase the slow pour density and produce significantly smaller microspheres.« less
NASA Astrophysics Data System (ADS)
Bethencourt, Manuel; Botana, Francisco Javier; Cano, María José; González-Rovira, Leandro; Marcos, Mariano; Sánchez-Amaya, José María
2012-01-01
A wide variety of anticorrosive treatments for aluminum alloys that can be employed as "green" alternatives to those based on Cr(VI) are currently under development. This article reports a study of the morphological and anticorrosive characteristics of surface layers formed on the Al-Cu alloy AA2017 by immersion treatment in baths of cerium salt, accelerated by increased temperature and the employment of hydrogen peroxide. Scanning electron microscopy (SEM)/X-ray energy dispersive spectroscopy (XEDS) studies of the samples treated have demonstrated the existence of a heterogeneous layer formed by a film of aluminum oxide/hydroxide on the matrix, and a series of dispersed islands of cerium over the cathodic intermetallics. The protective efficacy has been evaluated using electrochemical techniques, linear polarizations (LP) and electrochemical impedance spectroscopy (EIS), and salt spray tests. The results obtained indicate that the layer provided good resistance to corrosion in media with chlorides, and the method gives a considerable reduction of the time required for the immersion treatments.
Sulfonated macro-RAFT agents for the surfactant-free synthesis of cerium oxide-based hybrid latexes.
Garnier, Jérôme; Warnant, Jérôme; Lacroix-Desmazes, Patrick; Dufils, Pierre-Emmanuel; Vinas, Jérôme; van Herk, Alex
2013-10-01
Three types of amphiphatic macro-RAFT agents were employed as compatibilizers to promote the polymerization reaction at the surface of nanoceria for the synthesis of CeO2-based hybrid latexes. Macro-RAFT copolymers and terpolymers were first synthesized employing various combinations of butyl acrylate as a hydrophobic monomer and acrylic acid (AA) and/or 2-acrylamido-2-methylpropane sulfonic acid (AMPS) as hydrophilic monomers. After characterizing the adsorption of these macro-RAFT agents at the cerium oxide surface by UV-visible spectrometry, emulsion copolymerization reactions of styrene and methyl acrylate were then carried out in the presence of the surface-modified nanoceria. Dynamic Light Scattering and cryo-Transmission Electron Microscopy were employed to confirm the hybrid structure of the final CeO2/polymer latexes, and proved that the presence of acrylic acid units in amphiphatic macro-RAFT agents enabled an efficient formation of hybrid structures, while the presence of AMPS units, when combined with AA units, resulted in a better distribution of cerium oxide nanoclusters between latex particles. Copyright © 2013 Elsevier Inc. All rights reserved.
Low-lying energy spectrum of the cerium dimer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikolaev, A. V.; Skobeltsyn Institute of Nuclear Physics, Moscow State University, Vorob'evy Gory 1/2, 119991, Moscow
2011-07-15
The electronic structure of Ce{sub 2} is studied in a valence bond model with two 4f electrons localized at two cerium sites. It is shown that the low-lying energy spectrum of the simplest cerium chemical bond is determined by peculiarities of the occupied 4f states. The model allows for an analytical solution, which is discussed along with the numerical analysis. The energy spectrum is a result of the interplay between the 4f valence bond exchange, the 4f Coulomb repulsion, and the spin-orbit coupling. The calculated ground state is the even {Omega}={Lambda}={Sigma}=0 level, the lowest excitations situated at {approx}30 K aremore » the odd {Omega}={Lambda}={Sigma}=0 state and the {sup 3}6{sub 5} doublet ({Omega}={+-}5,{Lambda}={+-}6,{Sigma}={+-}1). The calculated magnetic susceptibility displays different behavior at high and low temperatures. In the absence of the spin-orbit coupling the ground state is the {sup 3}{Sigma}{sub g}{sup -} triplet. The results are compared with other many-electron calculations and experimental data.« less
NASA Astrophysics Data System (ADS)
Tyagi, Mohit; Pitale, Shreyas S.; Ghosh, Manoranjan; Shinde, Seema
2014-04-01
Cerium doped Gadolinium garnets (Gd3AlxGa5-xO12 where 0≤x≤5) are synthesized via combustion synthesis using mixture of urea and glycine fuels. A 4h Post annealing at 1400 oC is found to be necessary for pure phase formation. Lattice spacing variation as a result of partial or total Ga substitution at Al site was mapped by X-ray diffraction. Photoluminescence emission of Ce shifts as a consequence of Ga substitution and therefore suggests a local re-adjustment of crystal field around activator site.
Zhang, Ji-Yun; Luo, Zhao-Hua; Jiang, Hao-Chuan; Jiang, Jun; Chen, Chun-Hua; Zhang, Jing-Xian; Gui, Zhen-Zhen; Xiao, Na
2017-11-01
Cerium doped gadolinium gallium aluminum garnet (GGAG:Ce) ceramic precursors have been synthesized with an ultrasonic chemical co-precipitation method (UCC) and for comparison with a traditional chemical co-precipitation method (TCC). The effect of ultra-sonication on the morphology of powders and the transmittance of GGAG:Ce ceramics are studied. The results indicate that the UCC method can effectively improve the homogenization and sinterability of GGAG:Ce powders, which contribute to obtain high transparent GGAG ceramic with the highest transmittance of 81%. Copyright © 2017 Elsevier B.V. All rights reserved.
Using cerium anomaly as an indicator of redox reactions in constructed wetland
NASA Astrophysics Data System (ADS)
Liang, R.
2013-12-01
The study area, Chiayi County located in southern Taiwan, has highly developed livestock. The surface water has very low dissolved oxygen and high NH4. Under the situation, constructed wetland becomes the most effective and economic choice to treat the wastewater in the natural waterways. Hebao Island free surface constructed wetland started to operate in late 2006. It covers an area of 0.28 km2 and is subdivided into 3 major cells, which are sedimentation cell, 1st aeration cell with rooted plants and 2nd aeration cell with float plants. The water depth of cells ranges from 0.6 m to 1.2 m. The total hydraulic retention time is about a half day. In this study, the water samples were sequentially collected along the flow path. The results of hydrochemical analysis show that the untreated inflow water can be characterized with enriched NH4 (11 ppm), sulfate (6 ppm) and arsenic (50 ppb). The removal efficiency of NH4 in the first two cells is <15%. However, the efficiency dramatically increases in the 2nd aeration cell, which is over 90%. Simultaneously, almost all of the hydrochemical properties, including EC, Ca, Mg, As Fe, Mn and other heavy metals, decrease while dissolve oxygen increases close to saturated level and aluminum is almost doubled in the exit of constructed wetland. However, the removal of sulfate and phosphate is very weak. It is worth to note that arsenic is still higher than the permissible limits recommended by WHO (10 ppb). The wetland operation should be tuned to take more arsenic away in the future. As demonstrated in the above, oxidation reaction is the most dominant mechanism to remove pollutants from the wastewater; therefore, dissolved oxygen is traditionally considered as an important indicator to evaluate the operation efficiency of wetland. However, it would need longer time to achieve equilibrium state of redox reaction involving dissolved oxygen due to the slower reaction rate. For example, the input water in this study has fairly high dissolved oxygen (5 ppm) but the NH4 content is still high, which indicates a non-equilibrium condition. In this study, the cerium anomaly is alternatively utilized to evaluate the water redox state. The results demonstrate that the input water has the negative cerium anomaly of -0.16. Along the flow path, the cerium negative anomaly does not change in the first two cells and dramatically becomes -0.23 in cell 3. The trend of cerium anomaly is more close to the removal efficiency of NH4 rather than dissolve oxygen. Accordingly, cerium anomaly could become a better indicator of removal efficiency of constructed wetland.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karakoti, Ajay S.; Yang, Ping; Wang, Weina
2018-02-15
Ligand functionalized nanoparticles have replaced bare nanoparticles from most biological applications. These applications require tight control over size and stability of nanoparticles in aqueous medium. Understanding the mechanism of interaction of nanoparticle surfaces with functional groups of different organic ligands such as carboxylic acids is confounding despite the two decades of research on nanoparticles because of the inability to characterize their surfaces in their immediate environment. Often the surface interaction is understood by correlating the information available, in a piecemeal approach, from surface sensitive spectroscopic information of ligands and the bulk and surface information of nanoparticles. In present study wemore » report the direct interaction of 5-7 nm cerium oxide nanoparticles surface with acetic acid. In-situ XPS study was carried out by freezing the aqueous solution of nanoparticles to liquid nitrogen temperatures. Analysis of data collected concurrently from the ligands as well as functionalized frozen cerium oxide nanoparticles show that the acetic acid binds to the ceria surface in both dissociated and molecular state with equal population over the surface. The cerium oxide surface was populated predominantly with Ce4+ ions consistent with the thermal hydrolysis synthesis. DFT calculations reveal that the acetate ions bind more strongly to the cerium oxide nanoparticles as compared to the water and can replace the hydration sphere of nanoparticles resulting in high acetate/acetic surface coverage. These findings reveal molecular level interaction between the nanoparticle surfaces and ligands giving a better understanding of how materials behave in their immediate aqueous environment. This study also proposes a simple and elegant methodology to directly study the surface functional groups attached to nanoparticles in their immediate aqueous environment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Hao-Ze, E-mail: lhzqq83@163.com; Liu, Hai-Tao; Liu, Zhen-Yu, E-mail: zyliu@mail.neu.edu.cn
A 0.3 mm thick non-oriented 6.5 wt.% Si electrical steel sheet doped with cerium is produced by twin-roll strip casting, hot rolling, warm rolling and annealing. A detailed study of the cerium precipitates in the as-cast strip, microstructure and texture evolution at different processing stages is carried out by electron probe micro-analysis, optical microscopy, X-ray diffraction and electron backscattered diffraction analysis. Grain interior distributing precipitates identified as Ce-oxides, Ce-oxysulfides and Ce-phosphides, and boundary distributing Ce-oxides and Ce-phosphides are observed in the as-cast strip. The initial as-cast strip is characterized by a much finer solidification microstructure and dominated by obvious
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karakoti, Ajay S.; Yang, Ping; Wang, Weina
Ligand functionalized nanoparticles have replaced bare nanoparticles from most biological applications. These applications require tight control over size and stability of nanoparticles in aqueous medium. Understanding the mechanism of interaction of nanoparticle surfaces with functional groups of different organic ligands such as carboxylic acids is confounding despite the two decades of research on nanoparticles because of the inability to characterize their surfaces in their immediate environment. Often the surface interaction is understood by correlating the information available, in a piecemeal approach, from surface sensitive spectroscopic information of ligands and the bulk and surface information of nanoparticles. In present study wemore » report the direct interaction of 5-7 nm cerium oxide nanoparticles surface with acetic acid. In-situ XPS study was carried out by freezing the aqueous solution of nanoparticles to liquid nitrogen temperatures. Analysis of data collected concurrently from the ligands as well as functionalized frozen cerium oxide nanoparticles show that the acetic acid binds to the ceria surface in both dissociated and molecular state with equal population over the surface. The cerium oxide surface was populated predominantly with Ce4+ ions consistent with the thermal hydrolysis synthesis. DFT calculations reveal that the acetate ions bind more strongly to the cerium oxide nanoparticles as compared to the water and can replace the hydration sphere of nanoparticles resulting in high acetate/acetic surface coverage. These findings reveal molecular level interaction between the nanoparticle surfaces and ligands giving a better understanding of how materials behave in their immediate aqueous environment. This study also proposes a simple and elegant methodology to directly study the surface functional groups attached to nanoparticles in their immediate aqueous environment.« less
NASA Astrophysics Data System (ADS)
Ali, F. M.; Kershi, R. M.; Sayed, M. A.; AbouDeif, Y. M.
2018-06-01
Polymer blend films based on Polyvinyl alcohol (PVA)/Poly(vinylpyrrolidone) (PVP) doped with different concentration of cerium ions [(PVA/PVP)-x wt.% Ce3+] (x = 3%, 5%, 10% and 15%) were prepared by the conventional solution casting technique. The characteristics of the prepared polymer composite films were studied using X-ray diffraction (XRD), FT-IR and UV-Vis. spectroscopy. The XRD patterns of the investigated samples revealed a clear reduction on the structural parameters such as crystallinity degree and cluster size D of the doped PVA/PVP blend films compared with the virgin one whereas there is no big difference in the d spacing of the product composite films. Significant changes in FT-IR spectra are observed which reveal an interactions between the cerium ions and PVA/PVP blends. The absorption spectra in the ultraviolet-visible region showed a wide red shift in the fundamental absorption edge of (PVA/PVP)-x wt. % Ce3+ composites. The optical gap Eg gradually decreased from 4.54 eV for the undoped PVA/PVP film to 3.10 eV by increasing Ce3+ ions content. The optical dispersion parameters have been analyzed according to Wemple-Didomenico single oscillator model. The dispersion energy Ed, the single oscillator energy Eo, the average inter-band oscillator wavelength λo and the static refractive index no are strongly affected by cerium ions doping. Cerium ions incorporation in PVA/PVP blend films leads to a significant increase in the refractive index and decrease in the optical gap. These results are likely of great important in varieties of applications including polymer waveguides, organic semiconductors, polymer solar cells and optoelectronics devices.
Snow, Samantha J.; McGee, John; Miller, Desinia B.; Bass, Virginia; Schladweiler, Mette C.; Thomas, Ronald F.; Krantz, Todd; King, Charly; Ledbetter, Allen D.; Richards, Judy; Weinstein, Jason P.; Conner, Teri; Willis, Robert; Linak, William P.; Nash, David; Wood, Charles E.; Elmore, Susan A.; Morrison, James P.; Johnson, Crystal L.; Gilmour, Matthew Ian; Kodavanti, Urmila P.
2014-01-01
Diesel exhaust (DE) exposure induces adverse cardiopulmonary effects. Cerium oxide nanoparticles added to diesel fuel (DECe) increases fuel burning efficiency but leads to altered emission characteristics and potentially altered health effects. Here, we evaluated whether DECe results in greater adverse pulmonary effects compared with DE. Male Sprague Dawley rats were exposed to filtered air, DE, or DECe for 5 h/day for 2 days. N-acetyl glucosaminidase activity was increased in bronchial alveolar lavage fluid (BALF) of rats exposed to DECe but not DE. There were also marginal but insignificant increases in several other lung injury biomarkers in both exposure groups (DECe > DE for all). To further characterize DECe toxicity, rats in a second study were exposed to filtered air or DECe for 5 h/day for 2 days or 4 weeks. Tissue analysis indicated a concentration- and time-dependent accumulation of lung and liver cerium followed by a delayed clearance. The gas-phase and high concentration of DECe increased lung inflammation at the 2-day time point, indicating that gas-phase components, in addition to particles, contribute to pulmonary toxicity. This effect was reduced at 4 weeks except for a sustained increase in BALF γ-glutamyl transferase activity. Histopathology and transmission electron microscopy revealed increased alveolar septa thickness due to edema and increased numbers of pigmented macrophages after DECe exposure. Collectively, these findings indicate that DECe induces more adverse pulmonary effects on a mass basis than DE. In addition, lung accumulation of cerium, systemic translocation to the liver, and delayed clearance are added concerns to existing health effects of DECe. PMID:25239632
Del Frari, D; Bour, J; Bardon, J; Buchheit, O; Arnoult, C; Ruch, D
2010-04-01
Finding alternative treatments to reproduce anticorrosion properties of chromated coatings is challenging since both physical barrier and self-healing effects are needed. Siloxane based treatments are known to be a promising way to achieve physical barrier coatings, mainly plasma polymerized hexamethyldisiloxane (ppHMDSO). In addition, it is known that cerium-based coatings can also provide corrosion protection of metals by means of self-healing effect. In this frame, innovative nanoAlCeO3/ppHMDSO layers have thus been deposited and studied. These combinations allow to afford a good physical barrier effect and active properties. Liquid siloxane and cerium-based particles mixture is atomized and introduced as precursors into a carrier gas. Gas mixture is then injected into an atmospheric pressure dielectric barrier discharge (DBD) where plasma polymerization of the siloxane precursor occurs. The influence of cerium concentration on the coating properties is investigated: coating structure and topography have been studied by scanning electron microscopy (SEM) and interferometry, and corrosion resistance of these different coatings is compared by electrochemistry techniques: polarization curves and electrochemical impedance spectroscopy (EIS). Potential self-healing property afforded by cerium in the layer was studied by associating EIS measurements and nanoscratch controlled damaging. Among the different combinations investigated, mixing of plasma polymerized HMDSO and AICeO3 nanoparticles seems to give promising results with a good physical barrier and interesting electroactive properties. Indeed, corrosion currents measured on such coatings are almost as low as those measured with the chromated film. Combination of nanoscratch damaging of layers with EIS experiments to investigate self-healing also allow to measure the active protection property of such layers.
NASA Astrophysics Data System (ADS)
Liu, Lu; Zheng, Chenghang; Wu, Shenghao; Gao, Xiang; Ni, Mingjiang; Cen, Kefa
2017-09-01
Non-thermal plasma with different O2 concentration in discharge atmosphere was applied to synthesize manganese and cerium mixed-oxides catalysts, which were compared in NO oxidation activity. Discharge atmosphere displayed a crucial influence on the performance of the catalysts prepared by plasma. Relatively low O2 concentration in discharge atmosphere allows synthesizing manganese-cerium oxides catalysts in a moderate environment and therefore is favorable for better physicochemical properties which lead to superior catalytic behavior. The best catalyst was obtained by treatment with 10% O2/N2 plasma and presented over 80% NO conversion in the temperature range of 275-325 °C, whereas catalyst prepared in pure O2 discharge atmosphere had the same activity with a catalyst prepared by calcinations. A correlation between the surface properties of the plasma prepared catalysts and its catalytic activity in NO oxidation is proposed. The amount of the surface adsorbed oxygen has an obvious linear correlation with the amount of Ce3+, the H2 consumption at low temperatures and the catalytic performance. The superior catalytic performance is mainly attributed to the stronger interaction between manganese oxides and ceria, and the formation of poorly crystallized Mn-O-Ce phase in the catalyst which resulted from the slow decomposition of nitrates and organics during plasma treatment. Catalysts prepared in relatively low O2 concentration have large specific surface area and is abundant in Ce3+ species and active oxygen species. The study suggests that plasma treatment with proper discharge gas components is a promising method to prepare effective manganese- cerium oxides catalyst for NO oxidation.
Atomic layer deposition of cerium oxide for potential use in diesel soot combustion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanova, Tatiana V., E-mail: tatiana.ivanova@lut.fi, E-mail: ivanova.tatyana.v@gmail.com; Toivonen, Jenni; Maydannik, Philipp S.
The particulate soot emission from diesel motors has a severe impact on the environment and people's health. The use of catalytic convertors is one of the ways to minimize the emission and decrease the hazard level. In this paper, the activity of cerium oxide for catalytic combustion of diesel soot was studied. Thin films of cerium dioxide were synthesized by atomic layer deposition using tetrakis(2,2,6,6-tetramethyl-3,5-heptanedionato)cerium [Ce(thd){sub 4}] and ozone as precursors. The characteristics of the films were studied as a function of deposition conditions within the reaction temperature range of 180–350 °C. Thickness, crystallinity, elemental composition, and morphology of the CeO{submore » 2} films deposited on Si (100) were characterized by ellipsometry, x-ray diffraction, x-ray photoelectron spectroscopy, atomic force microscopy, and field emission scanning electron microscopy, respectively. The growth rate of CeO{sub 2} was observed to be 0.30 Å/cycle at temperatures up to 250 °C with a slight increase to 0.37 Å/cycle at 300 °C. The effect of CeO{sub 2} films grown on stainless steel foil supports on soot combustion was measured with annealing tests. Based on the analysis of these, in catalytic applications, CeO{sub 2} has been shown to be effective in lowering the soot combustion temperature from 600 °C for the uncoated substrates to 370 °C for the CeO{sub 2} coated ones. It was found that the higher deposition temperatures had a positive effect on the catalyst performance.« less
NASA Astrophysics Data System (ADS)
Nugraheni, E. R.; Nurrakhman, M. B. E.; Munawaroh, H.; Saputri, L.
2017-02-01
Noni (Morindra citrifolia L.) is native to Indonesia which have medicinal properties. One of them as an antibacterial. This study aims to determine the antibacterial activity of isolates from the ethanol extract noni fruit to bacterial decay meat is Bacillus licheniformis, Klebsiella pneumonia, Bacillus alvei, Acinetobacter calcoaceticus, and Staphylococcus saprophyticus. The extraction process using the maceration method, and then made a partition by centrifugation ethyl acetate. Soluble part partition showed bacterial growth inhibition activity of the strong to very strong. Furthermore, the ethyl acetate soluble partition on preparative thin layer chromatography produced 5 isolates. Isolates obtained antibacterial activity test performed with a concentration of 20% and 30%. The results of antibacterial test against bacteria test isolates, showing isolates A can not inhibit the growth of bacteria, isolates B and C have medium activity and strong, isolates D and E isolates have activity against bacteria that were tested. MIC and MBC test results showed that the isolates B gives an inhibitory effect (bacteriostatic) against all bacteria. Content analysis of compounds by TLC using the reagents cerium (IV) sulfate indicates a phenol group. Isolates B contains a major compound which can be used as an antibacterial candidate in food preservation replace chemical preservatives.
Pressure effects on the electronic properties in CeCoIn5: A first-principle study
NASA Astrophysics Data System (ADS)
Medeiros, Gustavo; Gonzalez, J. L.; Scopel, Wanderlã L.
2017-11-01
Superconducting heavy fermions are exotic materials with strong electronic correlations. The temperature-pressure phase diagrams of some of these materials show a complex interplay between superconductivity and magnetism that is essential to understand the physical properties of these systems. In this work, first principle calculations are performed in order to study the pressure effects on the electronic correlations in the CeCoIn5 system, which is superconducting at ambient pressure with Tc = 2.3 K. The density functional theory (DFT) method was used to include on-site coulomb repulsions (U) at the d (Co and In) and f (Ce) electrons of the CeCoIn5 compound. External applied pressures were simulated by correlating an applied pressure with a reduction of the volume of the unit cell, but keeping constant the c/a relation, as reported in experiments. Our findings reveal that the U parameters for all atomic species increase linearly with the pressure (P), being this effect higher for the f-electrons of the cerium ions, where dU / dP = 1.2 eV/GPa. In summary, these results not only suggest that the pressure effect can be correlated with an increase in the electronic correlations in the CeCoIn5 compound, as also, the work allows quantify this effect.
NASA Astrophysics Data System (ADS)
Setiyanto, H.; Adyatmika, I. M.; Syaifullah, M. M.; Zulfikar, M. A.; Buchari
2018-05-01
Nonylphenol ethoxylate (NPE-10) is one type of non-ionic surfactants from the class of alkylphenol ethoxylate (APE). This compound is already tightened their use in European Union countries. However, these surfactants are still used widely in Indonesia because the price is relatively cheap. Consequently, these compounds can accumulate in aquatic environments. NPE-10 can disrupt aquatic ecosystems. This study aimed to describe the electro-oxidation process of NPE-10 based on the parameters of a potential difference, concentration of NPE-10, concentration of Ce (III), and oxidation time. The result of oxidation NPE-10 was measured by the amount of current generated from voltammetry technique. Studies of cyclic voltammetry using carbon paste electrodes illustrates the potential value of the oxidation of Ce (III) / Ce (IV) of 1.25 V and the reduction potential value of Ce (IV) / Ce (III) of 1.192 V. NPE-10 are electroactive irreversible because it only provides the potential value of oxidation at 1.44 V. Percent of total degradation of 84.96% was obtained at electro-oxidation of 500 ppm NPE-10 by the addition of 0.015 M Ce (III) for 90 minutes at 0.2 M H2SO4and the use of potential of 6 V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Nicholas C.; Manzano, J. Sebastián; Slowing, Igor I.
The stability of palladium supported on ceria (Pd/CeO 2) was studied during liquid flow transfer hydrogenation using primary and secondary alcohols as hydrogen donors. For primary alcohols, the ceria support was reduced to cerium hydroxy carbonate within 14 h and was a contributing factor toward catalyst deactivation. For secondary alcohols, cerium hydroxy carbonate was not observed during the same time period and the catalyst was stable upon prolonged reaction. Regeneration through oxidation/reduction does not restore initial activity likely due to irreversible catalyst restructuring. Lastly, a deactivation mechanism involving C–C scission of acyl and carboxylate intermediates is proposed.
β Coronae Bolealis: Lithium and Cerium Contribution to the Blend at 6708 Å
NASA Astrophysics Data System (ADS)
Drake, N. A.; Hubrig, S.; Polosukhina, N. S.; de La Reza, R.
2006-06-01
We analyze the Li I 6708 Å spectral region of the chemically peculiar Ap star βCrB using high resolution, high signal-to-noise spectra obtained at different rotation phases. Our study shows that the Ce II line at 6708.099 Å is a main contributor to the spectral feature at 6708 Å. This fact explains the observed red shift of the Li I doublet of about 0.2 Å found by Hack et al. (1997). We derive the values of lithium and cerium abundances for different rotation phases and show that βCrB has ``cosmic'' Li abundance.
Continuous Precipitation of Ceria Nanoparticles from a Continuous Flow Micromixer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tseng, Chih Heng; Paul, Brian; Chang, Chih-hung
2013-01-01
Cerium oxide nanoparticles were continuously precipitated from a solution of cerium(III) nitrate and ammonium hydroxide using a micro-scale T-mixer. Findings show that the method of mixing is important in the ceria precipitation process. In batch mixing and deposition, disintegration and agglomeration dominates the deposited film. In T-mixing and deposition, more uniform nanorod particles are attainable. In addition, it was found that the micromixing approach reduced the exposure of the Ce(OH)3 precipates to oxygen, yielding hydroxide precipates in place of CeO2 precipitates. Advantages of the micro-scale T-mixing approach include shorter mixing times, better control of nanoparticle shape and less agglomeration.
Grases, F; Forteza, R; March, J G; Cerda, V
1985-02-01
A very simple reaction-rate thermometric technique is used for determination of iodide (5-20 ng ml ), based on its catalytic action on the cerium(IV)-arsenic(III) reaction, and for determination of mercury(II) (1.5-10 ng ml ) and silver(I) (2-10 ng ml ), based on their inhibitory effect on this reaction. The reaction is followed by measuring the rate of temperature increase. The method suffers from very few interferences and is applied to determination of iodide in biological and inorganic samples, and Hg(II) and Ag(I) in pharmaceutical products.
Production yield of rare-earth ions implanted into an optical crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kornher, Thomas, E-mail: t.kornher@physik.uni-stuttgart.de; Xia, Kangwei; Kolesov, Roman
2016-02-01
Rare-earth (RE) ions doped into desired locations of optical crystals might enable a range of novel integrated photonic devices for quantum applications. With this aim, we have investigated the production yield of cerium and praseodymium by means of ion implantation. As a measure, the collected fluorescence intensity from both implanted samples and single centers was used. With a tailored annealing procedure for cerium, a yield up to 53% was estimated. Praseodymium yield amounts up to 91%. Such high implantation yield indicates a feasibility of creation of nanopatterned rare-earth doping and suggests strong potential of RE species for on-chip photonic devices.
Alkali metal and alkali earth metal gadolinium halide scintillators
Bourret-Courchesne, Edith; Derenzo, Stephen E.; Parms, Shameka; Porter-Chapman, Yetta D.; Wiggins, Latoria K.
2016-08-02
The present invention provides for a composition comprising an inorganic scintillator comprising a gadolinium halide, optionally cerium-doped, having the formula A.sub.nGdX.sub.m:Ce; wherein A is nothing, an alkali metal, such as Li or Na, or an alkali earth metal, such as Ba; X is F, Br, Cl, or I; n is an integer from 1 to 2; m is an integer from 4 to 7; and the molar percent of cerium is 0% to 100%. The gadolinium halides or alkali earth metal gadolinium halides are scintillators and produce a bright luminescence upon irradiation by a suitable radiation.
Goto, Taichi; Onbaşlı, Mehmet C; Ross, C A
2012-12-17
Thin films of polycrystalline cerium substituted yttrium iron garnet (CeYIG) were grown on an yttrium iron garnet (YIG) seed layer on Si and Si-on-insulator substrates by pulsed laser deposition, and their optical and magneto-optical properties in the near-IR region were measured. A YIG seed layer of ~30 nm thick processed by rapid thermal anneal at 800°C provided a virtual substrate to promote crystallization of the CeYIG. The effect of the thermal budget of the YIG/CeYIG growth process on the film structure, magnetic and magnetooptical properties was determined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyagi, Mohit; Pitale, Shreyas S.; Ghosh, Manoranjan
2014-04-24
Cerium doped Gadolinium garnets (Gd{sub 3}Al{sub x}Ga{sub 5−x}O{sub 12} where 0≤x≤5) are synthesized via combustion synthesis using mixture of urea and glycine fuels. A 4h Post annealing at 1400 oC is found to be necessary for pure phase formation. Lattice spacing variation as a result of partial or total Ga substitution at Al site was mapped by X-ray diffraction. Photoluminescence emission of Ce shifts as a consequence of Ga substitution and therefore suggests a local re-adjustment of crystal field around activator site.
Nelson, Nicholas C.; Manzano, J. Sebastián; Slowing, Igor I.
2016-11-21
The stability of palladium supported on ceria (Pd/CeO 2) was studied during liquid flow transfer hydrogenation using primary and secondary alcohols as hydrogen donors. For primary alcohols, the ceria support was reduced to cerium hydroxy carbonate within 14 h and was a contributing factor toward catalyst deactivation. For secondary alcohols, cerium hydroxy carbonate was not observed during the same time period and the catalyst was stable upon prolonged reaction. Regeneration through oxidation/reduction does not restore initial activity likely due to irreversible catalyst restructuring. Lastly, a deactivation mechanism involving C–C scission of acyl and carboxylate intermediates is proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael E. McIlwain; Nick Thompson; Da Gao
Considerable interest is given to the excellent scintillation properties of cerium doped lanthanum chloride (LaCl3) and lanthanum bromide (LaBr3). The scintillation efficiencies are much greater than other materials, even those containing cerium. This high efficiency is attributed to the high mobility of electrons and holes, unique placement of the cerium 5d states within the band gap, and energy of the band gap. To better understand the scintillation process and better define the nature of the Self Trapped Exciton (STE) within these unique scintillation materials, density functional theory (DFT), and Ab-inito (HF-MP2) calculations are reported. DFT calculations have yielded a qualitativemore » description of the orbital composition and energy distribution of the band structure in the crystalline material. MP2 and single configuration interaction calculations have provided quantitative values for the band gap and provided energies for the possible range of excited states created following hole and electron creation. Based on this theoretical treatment, one possible description of the STE is the combination of Vk center (Br2-1) and LaBr+1 species that recombine to form a distorted geometry LaBr3* (triplet state). Depending on the distance between the LaBr and Br2, the STE emission band can be reproduced.« less
NASA Astrophysics Data System (ADS)
Bhargava, V. S.; Singh, Gajendar; Sharma, Manu
2018-05-01
A polymeric semiconductor (g-C3N4), based nanocomposites have been achieved much attention due to its excellent thermal, chemical stability and suitable band positions for water splitting. g-C3N4 based nanocomposites show good performance in the field of photocatalysis, sensors, Li-ion batteries, supercapacitors and water purification technology. In this work, a series of novel g-C3N4/CeM nano composites were synthesized using a facile one-step ultra-sonication method. X-ray diffraction (XRD) pattern confirms the formation of g-C3N4 and cerium molybdate. The photocatalytic activity of nanocomposites indicated the substantial degradation of Methylene Blue (MB) dye up to 97% over the surface of g-C3N4/CeM under visible light illumination. All the g-C3N4/CeM composites possess higher photocatalytic activity than pure cerium molybdate. The proposed mechanism demonstrated that the different weight ratios of photocatalyst were most likely attributed to a synergistic effect between g-C3N4 and CeM. This approach is very simple, cost effective, and free from any surfactant that makes it valuable catalyst for various future applications.
Optical, Structural, and Thermal Properties of Cerium-Doped Zinc Borophosphate Glasses.
Choi, Su-Yeon; Ryu, Bong-Ki
2015-11-01
In this study, we verify the relationship between the optical properties and structure of cerium-doped zinc borophosphate glasses that have concurrence of non-bridging oxygen (NBO) and bridging oxygen (BO), Ce3+ and Ce4+, and BO3 structure and BO4 structure. We prepared cerium-doped zinc borophosphate glass with various compositions, given by xCeO2-(100-x)[50ZnO-10B2O3 -40P2O5] (x = 1 mol% to 6 mol%), and analyzed their optical band energy, glass transition temperature, crystallization temperature, density, and molar volume. Some of the techniques used for analysis were Fourier transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS). In the investigated glasses, the optical band gap energy decreased from 3.28 eV to 1.73 eV. From these results, we can deduce the changes when transitions occur from BO to NBO, from Ce3+ to Ce4+, and from the BO3 structure to the BO4 structure with increasing CeO2 content using FT-IR and XPS analysis. We also verified the changes in structural and physical properties from quantitative properties such as glass transition temperature, crystallization temperature, density, and molar volume.
NASA Astrophysics Data System (ADS)
Zou, Shenqiang; Zhu, Xiaofang; Zhang, Lirong; Guo, Fan; Zhang, Miaomiao; Tan, Youwen; Gong, Aihua; Fang, Zhengzou; Ju, Huixiang; Wu, Chaoyang; Du, Fengyi
2018-03-01
Cerium oxide nanoparticles recently have received extensive attention in biomedical applications due to their excellent anti-oxidation performance. In this study, a simple, mild, and green approach was developed to synthesize cerium-doped carbonaceous nanoparticles (Ce-doped CNPs) using bio-mineralization of bull serum albumin (BSA) as precursor. The resultant Ce-doped CNPs exhibited uniform and ultrasmall morphology with an average size of 14.7 nm. XPS and FTIR results revealed the presence of hydrophilic group on the surface of Ce-doped CNPs, which resulted in excellent dispersity in water. The CCK-8 assay demonstrated that Ce-doped CNPs possessed favorable biocompatibility and negligible cytotoxicity. Using H2O2-induced reactive oxygen species (ROS) as model, Ce-doped CNPs showed highly hydroxyl radical scavenging capability. Furthermore, flow cytometry and live-dead staining results indicated that Ce-doped CNPs protected cells from H2O2-induced damage in a dose-dependent effect, which provided a direct evidence for anti-oxidative performance. These findings suggest that Ce-doped CNPs as novel ROS scavengers may provide a potential therapeutic prospect in treating diseases associated with oxidative stress.
Hunt, Rodney D.; Collins, Jack L.; Johnson, Jared A.; ...
2017-03-17
Hundreds of grams of calcined cerium dioxide (CeO 2) microspheres were produced in this paper using the internal gelation process with a focus on 75–150 µm and <75 µm diameter sizes. To achieve these small sizes, a modified internal gelation system was employed, which utilized a two-fluid nozzle, two static mixers for turbulent flow, and 2-ethyl-1-hexanol as the medium for gel formation at 333–338 K. This effort generated over 400 g of 75–150 µm and 300 g of <75 µm CeO 2 microspheres. The typical product yields for the 75–150 µm and <75 µm microspheres that were collected and processedmore » were 72 and 99%, respectively, with a typical throughput of 66–73 g of CeO 2 microspheres per test, which could generate a maximum of 78.6 g of CeO 2. The higher yield of very small cerium spheres led to challenges and modifications, which are discussed in detail. Finally, as expected, when the <75 µm microspheres were targeted, losses to the system increased significantly.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunt, Rodney D.; Collins, Jack L.; Johnson, Jared A.
Hundreds of grams of calcined cerium dioxide (CeO 2) microspheres were produced in this paper using the internal gelation process with a focus on 75–150 µm and <75 µm diameter sizes. To achieve these small sizes, a modified internal gelation system was employed, which utilized a two-fluid nozzle, two static mixers for turbulent flow, and 2-ethyl-1-hexanol as the medium for gel formation at 333–338 K. This effort generated over 400 g of 75–150 µm and 300 g of <75 µm CeO 2 microspheres. The typical product yields for the 75–150 µm and <75 µm microspheres that were collected and processedmore » were 72 and 99%, respectively, with a typical throughput of 66–73 g of CeO 2 microspheres per test, which could generate a maximum of 78.6 g of CeO 2. The higher yield of very small cerium spheres led to challenges and modifications, which are discussed in detail. Finally, as expected, when the <75 µm microspheres were targeted, losses to the system increased significantly.« less
Wi, Rinbok; Imran, Muhammad; Lee, Kyoung G; Yoon, Sun Hong; Cho, Bong Gyoo; Kim, Do Hyun
2011-07-01
Zinc oxide (ZnO) and cerium oxide (CeO2) nanoparticles were deposited on the surface of preformed silica spheres with diameters ranging from 60 to 750 nm. Ultrasonic irradiation was employed to promote the deposition of the metal oxide nanoparticles on the surface of silica. Silica-supported zinc oxide or cerium oxide was used as a catalyst in the glycolysis of polyethylene terephthalate, one of the key processes in the depolymerization of polyethylene terephthalate. The effect of the support size on the catalytic activity was studied in terms of monomer yield, and the monomer concentration was analyzed via high-performance liquid chromatography (HPLC). The morphologies and surface properties of the catalysts were characterized using a scanning electron microscope, a transmission electron microscope, and a BET surface area analyzer, while the monomer was characterized via HPLC and nuclear-magnetic-resonance spectroscopy. Both the zinc oxide and cerium oxide deposited on a smaller support showed better distribution and less aggregation. The high specific surface area of the smaller support catalysts provided a large number of active sites. The highest monomer yield was obtained with a catalyst of 60-nm silica support.
Elastic Properties across the y→α Volume Collapse in Cerium versus Pressure and Temperature
Lipp, M. J.; Jenei, Zs.; Cynn, H.; ...
2017-10-31
Here, the longitudinal and transverse sound speeds, c L and c T, of polycrystalline cerium were measured isothermally vs pressure up to the critical temperature across the iso-structural γ-α volume collapse (VC) phase transition. We deduce values for the adiabatic bulk modulus BS, the shear modulus G = ρc T 2, the Poisson’s ratio ν and the Debye temperature, θ D(p). We find that the elastic constant C 12 is solely responsible for the decrease of B S with pressure towards the VC at RT. With increasing temperature, the lattice contribution ΔS vib(γ→α) to the total entropy change across themore » VC decreases more rapidly to zero than the total entropy itself suggesting that another mechanism, possibly disorder, assists in stabilizing the γ-phase entropically against the α-phase. Also, with increasing temperature, the Poisson’s ratio becomes negative near the VC transition, meaning that cerium metal takes on auxetic characteristics over a small pressure range. At the critical point the Poisson’s ratio ought to be -1, since the isothermal bulk modulus vanishes and the shear modulus remains nonzero.« less
The surface chemistry of cerium oxide
Mullins, David R.
2015-01-29
Our review covers the structure of, and chemical reactions on, well-defined cerium oxide surfaces. Ceria, or mixed oxides containing ceria, are critical components in automotive three-way catalysts due to their well-known oxygen storage capacity. Ceria is also emerging as an important material in a number of other catalytic processes, particularly those involving organic oxygenates and the water–gas shift reaction. Ceria's acid–base properties, and thus its catalytic behavior, are closely related to its surface structure where different oxygen anion and cerium cation environments are present on the low-index structural faces. The actual structure of these various faces has been the focusmore » of a number of theoretical and experimental investigations. Ceria is also easily reducible from CeO 2 to CeO 2-X. The presence of oxygen vacancies on the surface often dramatically alters the adsorption and subsequent reactions of various adsorbates, either on a clean surface or on metal particles supported on the surface. We conducted surface science studies on the surfaces of thin-films rather than on the surfaces of bulk single crystal oxides. The growth, characterization and properties of these thin-films are also examined.« less
Cerium nanoparticle effect on sensitivity of Fricke gel dosimeter: Initial investigation
NASA Astrophysics Data System (ADS)
Ebenezer Suman Babu, S.; Peace Balasingh, S. Timothy; Benedicta Pearlin, R.; Rabi Raja Singh, I.; Ravindran, B. Paul
2017-05-01
Fricke gel dosimeters (FXGs) have been the preferred dosimeters because of its ease in preparation and water and tissue equivalency. Visible changes happen three dimensionally in the dosimeter as the ferrous (Fe2+) ions change into ferric (Fe3+) ions upon irradiation and the measure of this change can be correlated to the dose absorbed. Nanoparticles are promising entities that can improve the sensitivity of the gel dosimeter. Cerium Oxide nanoparticle was investigated for possible enhancement of absorbed dose in the FXG. Various concentrations of the nanoparticle based gel dosimeters were prepared and irradiated for a clinical dose range of 0-3 Gy in a telegamma unit. The optimal concentration of 0.1 mM nanoparticle incorporated in the FXG enhances the radiation sensitivity of the unmodified FXG taken as reference without modifying the background absorbance prior to irradiation. The gel recipe consisted of 5% (wt) gelatin, 50 mM Sulphuric acid, 0.05 mM Xylenol Orange, 0.5 mM Ferrous Ammonium Sulphate and 0.1 mM Cerium (IV) Oxide nanoparticle (< 25 nm particle size) and triple distilled water. The FXGs with nanoparticle showed linear dose response in the dose range tested.
NASA Astrophysics Data System (ADS)
Sharma, Ashutosh; Das, Karabi; Das, Siddhartha
2017-10-01
Pulse-electrodeposited Sn-Ce-O composite solder coatings were synthesized on a Cu substrate from an aqueous acidic solution containing stannous sulfate (SnSO4·3H2O), sulfuric acid (H2SO4), and Triton X-100 as an additive. The codeposition was achieved by adding nano-cerium oxide powder in varying concentrations from 5 g/L to 20 g/L into the electrolytic bath. Microstructural characterization was carried out using x-ray diffraction (XRD), scanning electron microscopy, and transmission electron microscopy. The XRD analysis showed that the deposits consist mainly of tetragonal β (Sn) with reduced cerium oxide species. The composite coatings thus obtained exhibit a smaller grain size, possess higher microhardness, and a lower melting point than the monolithic Sn coating. The electrical resistivity of the developed composites increases, however, but lies within the permissible limits for current lead-free solder applications. Also, an optimum balance of properties in terms of microhardness, adhesion, melting point and resistivity can be obtained with 0.9 wt.% cerium oxide in the Sn matrix, which enables potential applications in solder joints and packaging.
Elastic Properties across the y→α Volume Collapse in Cerium versus Pressure and Temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lipp, M. J.; Jenei, Zs.; Cynn, H.
Here, the longitudinal and transverse sound speeds, c L and c T, of polycrystalline cerium were measured isothermally vs pressure up to the critical temperature across the iso-structural γ-α volume collapse (VC) phase transition. We deduce values for the adiabatic bulk modulus BS, the shear modulus G = ρc T 2, the Poisson’s ratio ν and the Debye temperature, θ D(p). We find that the elastic constant C 12 is solely responsible for the decrease of B S with pressure towards the VC at RT. With increasing temperature, the lattice contribution ΔS vib(γ→α) to the total entropy change across themore » VC decreases more rapidly to zero than the total entropy itself suggesting that another mechanism, possibly disorder, assists in stabilizing the γ-phase entropically against the α-phase. Also, with increasing temperature, the Poisson’s ratio becomes negative near the VC transition, meaning that cerium metal takes on auxetic characteristics over a small pressure range. At the critical point the Poisson’s ratio ought to be -1, since the isothermal bulk modulus vanishes and the shear modulus remains nonzero.« less
Antimicrobial potential of green synthesized CeO2 nanoparticles from Olea europaea leaf extract.
Maqbool, Qaisar; Nazar, Mudassar; Naz, Sania; Hussain, Talib; Jabeen, Nyla; Kausar, Rizwan; Anwaar, Sadaf; Abbas, Fazal; Jan, Tariq
This article reports the green fabrication of cerium oxide nanoparticles (CeO 2 NPs) using Olea europaea leaf extract and their applications as effective antimicrobial agents. O. europaea leaf extract functions as a chelating agent for reduction of cerium nitrate. The resulting CeO 2 NPs exhibit pure single-face cubic structure, which is examined by X-ray diffraction, with a uniform spherical shape and a mean size 24 nm observed through scanning electron microscopy and transmission electron microscopy. Ultraviolet-visible spectroscopy confirms the characteristic absorption peak of CeO 2 NPs at 315 nm. Fourier transform infrared spectroscopy reflects stretching frequencies at 459 cm -1 , showing utilization of natural components for the production of NPs. Thermal gravimetric analysis predicts the successful capping of CeO 2 NPs by bioactive molecules present in the plant extract. The antimicrobial studies show significant zone of inhibition against bacterial and fungal strains. The higher activities shown by the green synthesized NPs than the plant extract lead to the conclusion that they can be effectively used in biomedical application. Furthermore, reduction of cerium salt by plant extract will reduce environmental impact over chemical synthesis.
Antimicrobial potential of green synthesized CeO2 nanoparticles from Olea europaea leaf extract
Maqbool, Qaisar; Nazar, Mudassar; Naz, Sania; Hussain, Talib; Jabeen, Nyla; Kausar, Rizwan; Anwaar, Sadaf; Abbas, Fazal; Jan, Tariq
2016-01-01
This article reports the green fabrication of cerium oxide nanoparticles (CeO2 NPs) using Olea europaea leaf extract and their applications as effective antimicrobial agents. O. europaea leaf extract functions as a chelating agent for reduction of cerium nitrate. The resulting CeO2 NPs exhibit pure single-face cubic structure, which is examined by X-ray diffraction, with a uniform spherical shape and a mean size 24 nm observed through scanning electron microscopy and transmission electron microscopy. Ultraviolet-visible spectroscopy confirms the characteristic absorption peak of CeO2 NPs at 315 nm. Fourier transform infrared spectroscopy reflects stretching frequencies at 459 cm−1, showing utilization of natural components for the production of NPs. Thermal gravimetric analysis predicts the successful capping of CeO2 NPs by bioactive molecules present in the plant extract. The antimicrobial studies show significant zone of inhibition against bacterial and fungal strains. The higher activities shown by the green synthesized NPs than the plant extract lead to the conclusion that they can be effectively used in biomedical application. Furthermore, reduction of cerium salt by plant extract will reduce environmental impact over chemical synthesis. PMID:27785011
NASA Astrophysics Data System (ADS)
Seitz, B.; Rivera, N. Campos; Stewart, A. G.
2016-04-01
Scintillators are a critical component of sensor systems for the detection of ionizing radiation. Such systems have a diverse portfolio of applications from medical imaging, well logging in oil exploration, and detection systems for the prevention of the illicit movement of nuclear materials. The rare earth element cerium is an ideal dopant for a variety of host scintillating materials due to the fast 5d1 → 4f radiative transition of Ce3+. Cerium-doped gadolinium aluminium gallium garnet (Ce:GAGG) is a relatively new single crystal scintillator with several interesting properties. These include high light yield, an emission peak well-matched to silicon sensors, and low intrinsic energy resolution. Moreover, the material has high density and is nonhygroscopic. In this paper, we review the properties of cerium-doped GAGG and report energy-resolution (ER) measurements over the temperature range -10°C to +50°C for 3 × 3 × 30 mm3 Ce:GAGG crystals optically coupled to a silicon photomultipler (SiPM) sensor with a 3 mm × 3 mm active area. In addition, the linearity of the scintillator-SiPM response as a function of gamma energy is reported.
Slezak, J.; Tribulova, N.; Pristacova, J.; Uhrik, B.; Thomas, T.; Khaper, N.; Kaul, N.; Singal, P. K.
1995-01-01
Active oxygen species including hydrogen peroxide (H2O2) play a major role in ischemia-reperfusion injury. In the present study, changes in myocardial H2O2 content as well as its subcellular distribution were examined in rat hearts subjected to ischemia-reperfusion. Isolated perfused rat hearts were made globally ischemic for 20 or 30 minutes and were reperfused for different durations. H2O2 content in these hearts was studied biochemically and changes were correlated with the recovery of function. These hearts were also analyzed for subcellular distribution of H2O2. Optimal conditions of tissue processing as well as incubation medium were established for reacting cerium chloride with H2O2 to form cerium perhydroxide, an insoluble electron-dense product. The chemical composition of these deposits was confirmed by x-ray micro-analysis. Global ischemia caused complete contractile failure in minutes and after 30 minutes of ischemia, these was a > 250% increase in the myocardial H2O2 content. Depressed contractile function recovery in the early phase of reperfusion was accompanied by approximately a 600% increase in the myocardial H2O2 content. Brief pre-fixation with low concentrations of glutaraldehyde, inhibition of alkaline phosphatase, glutathione peroxidase, and catalase, post-fixation but no post-osmication, and no counterstaining yielded the best cytochemical definition of H2O2. In normal hearts, extremely small amounts of cerium hydroperoxide precipitates were located on the endothelial cells. X-ray microanalysis confirmed the presence of cerium in the reaction product. Ischemia resulted in a stronger reaction, particularly on the sarcolemma as well as abluminal side of the endothelial cells; and upon reperfusion, cerium precipitate reaction at these sites was more intense. In the reperfused hearts, the reaction product also appeared within mitochondria between the cristae as well as on the myofibrils, but Z-lines were devoid of any precipitate. The data support a significant increase in myocardial H2O2 during both the phase of ischemia and the first few minutes of reperfusion. A stronger reaction on the sarcolemma and abluminal side of endothelial cells may also indicate enhanced H2O2 accumulation as well as vulnerability of these sites to oxidative stress injury. Images Figure 1 Figure 2 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 PMID:7677188
Ab initio MCHF structural calculations of Mg-like cerium
NASA Astrophysics Data System (ADS)
Wajid, Abdul; Jabeen, S.; Husain, Abid
2018-05-01
Energy levels and emission line wavelengths of high-Z materials are useful for impurity diagnostics in the next generation fusion devices. For this here we have calculated E1, M2 transitions, oscillator strengths, and transition probabilities for transitions among the terms belonging to the 2p63s2, 2p63s3p, 2p63p2 and 2p63s3d for the Magnesium like cerium (Ce XLVII) using the GRASP2K package based on the fully relativistic multi-configuration Dirac-Fock method. The electron correlation effects, Breit interaction and quantum electrodynamics effects to the atomic state wave functions and the corresponding energies have been taken into account.
Adsorption of cadmium on cerium oxide nanoparticles and oyster shells
NASA Astrophysics Data System (ADS)
Ji, Yongbo; Liu, Zhuomiao; Dang, Yonghui; Xu, Lina; Ning, Fangyuan; Xue, Yinhao; Wei, Yongpeng; Dai, Yanhui
2018-03-01
This study investigated the adsorption of cadmium (Cd(II)) by cerium oxide nanoparticles (CeO2 NPs) and oyster shells in seawater. The results showed that the addition of Cd(II) significantly inhibited the agglomeration of CeO2 NPs both in DI water and seawater, increased the positive charges of CeO2 NPs in DI water and neutralized the negative charges of CeO2 NPs in seawater. Additionally, CeO2 NPs could adsorb Cd and the bioavailability of Cd was reduced in the presence of oyster shells. This study demonstrated that the adsorption of metals on shells should not be neglected for the accumulation of metals by shellfish.
Radiation hardness of lead glasses TF1 and TF101
NASA Astrophysics Data System (ADS)
Kobayashi, Masaaki; Prokoshkin, Yuri; Singovsky, Alexandre; Takamatsu, Kunio
1994-06-01
We have measured the radiation hardness of two types of lead glasses, TF1 and TF101, for low energy γ-rays from 60Co. TF101 containing cerium is a few tens times radiation harder than TF1 which contains no cerium. The radiation hardness, or the tolerable accumulated dose, of TF101 is 2 × 10 3 rad when the degradation of the transmittance is required to be less than 1% for the unit radiation length X0 = 2.8 cm. When the present result is compared with the work of Inyakin et al., the radiation hardness of TF101 glass should be similar for both γ-rays and for high energy hadrons.
Chemical analysis of extracting transition metal oxides from polymetallic ore by sulphate process
NASA Astrophysics Data System (ADS)
Enkh-Uyanga, Otgon-Uul; Munkhtsetseg, Baatar; Urangoo, Urtnasan; Tserendulam, Enkhtur; Agiimaa, Davaadorj
2017-06-01
In this research work we attempt to improve the purity of polymetallic ores in Mongolia whilst developing practical applications of its refinement processes and this paper presents the results of chemical research of extracting transition metal titanium oxides, ferrous oxide and rare earth oxides from polymetallic ore. Thereby, chemical and mineral analysis of polymetallic ore is carried out basis of responses to the support process at various degrees of water whereas transition metal sulphates solubility differ. As a result of sulphate and resulphurization process we have extracted anatase with 62.5 percent titanium dioxide and brookite mineral with 89.6 percent of titanium dioxide as well as mineral with 83.8 percent of ferrous oxide hematite and rare earth oxides with 57.6 percent of cerium oxide. These oxides are identified under various conditions in the thermal processing. The morphology structure and chemical content compound of the mineral has been verified as a result of the XRF, XRD, SEM-EDX analysis.
NASA Astrophysics Data System (ADS)
Vijeesh, V.; Narayan Prabhu, K.
2017-01-01
The present work involves the study of the effect of varying concentration of Ce addition on microstructure and mechanical properties of Al-23%Si alloys. Melt-treated alloys were solidified in copper, brass, stainless steel molds to assess the effect of cooling rate. The effect on microstructure was assessed by measuring the fineness of primary silicon and eutectic silicon particle characteristics. The Ce melt treatment transformed the coarse and irregular primary silicon into refined polyhedral silicon crystals, and the effect was more significant at higher cooling rates. Although the melt treatment had refined the eutectic silicon at lower cooling rates, it did not show any considerable effect on the eutectic silicon at higher cooling rates. The mechanical properties of the alloy increased significantly with increase in cooling rates and cerium concentration. Analysis of the results and literature reveals that the refined primary silicon was formed as a result of an invariant reaction between Ce compounds and primary silicon at higher temperatures.
NASA Astrophysics Data System (ADS)
Palfreyman, Justin J.; Beldon, Patrick; Hong, Bingyan; Vyas, Kunal N.; Cooper, Joshaniel F. K.; Mitrelias, Thanos; Barnes, Crispin H. W.
2010-12-01
Rows of rectangular magnetic elements with different aspect ratio are encapsulated in polymer microcarriers to form a novel magnetic label, or tag, for multiplexed biological and chemical assays. We demonstrate that each tag can be encoded using an external magnetic field applied to the whole tag, which will allow for in-flow writing, thanks to shape-anisotropy controlled coercivity of the individual bits. This paper focuses on the fabrication of our 2nd generation tags, which facilitate optical trapping, do not require a sacrificial release layer, and the alignment procedure has been simplified to a single step. A new procedure is described for recovering a functional surface from fully cross-linked SU-8 via a cerium (IV) ammonium nitrate based chemical etch, and a novel method for releasing patterned photoresist from a bare Si wafer is discussed. In addition, a series of homobifunctional amine spacer compounds are compared as a method of increasing the binding efficiency of surface probe molecules.
Correlation between ground state and orbital anisotropy in heavy fermion materials
Willers, Thomas; Strigari, Fabio; Hu, Zhiwei; ...
2015-02-09
The interplay of structural, orbital, charge, and spin degrees of freedom is at the heart of many emergent phenomena, including superconductivity. We find that unraveling the underlying forces of such novel phases is a great challenge because it not only requires understanding each of these degrees of freedom, it also involves accounting for the interplay between them. Cerium-based heavy fermion compounds are an ideal playground for investigating these interdependencies, and we present evidence for a correlation between orbital anisotropy and the ground states in a representative family of materials. We have measured the 4f crystal-electric field ground-state wave functions ofmore » the strongly correlated materials CeRh 1₋xIr xIn 5 with great accuracy using linear polarization-dependent soft X-ray absorption spectroscopy. These measurements show that these wave functions correlate with the ground-state properties of the substitution series, which covers long-range antiferromagnetic order, unconventional superconductivity, and coexistence of these two states.« less
Surface-charge-dependent cell localization and cytotoxicity of cerium oxide nanoparticles.
Asati, Atul; Santra, Santimukul; Kaittanis, Charalambos; Perez, J Manuel
2010-09-28
Cerium oxide nanoparticles (nanoceria) have shown great potential as antioxidant and radioprotective agents for applications in cancer therapy. Recently, various polymer-coated nanoceria preparations have been developed to improve their aqueous solubility and allow for surface functionalization of these nanoparticles. However, the interaction of polymer-coated nanoceria with cells, their uptake mechanism, and subcellular localization are poorly understood. Herein, we engineered polymer-coated cerium oxide nanoparticles with different surface charges (positive, negative, and neutral) and studied their internalization and toxicity in normal and cancer cell lines. The results showed that nanoceria with a positive or neutral charge enters most of the cell lines studied, while nanoceria with a negative charge internalizes mostly in the cancer cell lines. Moreover, upon entry into the cells, nanoceria is localized to different cell compartments (e.g., cytoplasm and lysosomes) depending on the nanoparticle's surface charge. The internalization and subcellular localization of nanoceria plays a key role in the nanoparticles' cytotoxicity profile, exhibiting significant toxicity when they localize in the lysosomes of the cancer cells. In contrast, minimal toxicity is observed when they localize into the cytoplasm or do not enter the cells. Taken together, these results indicate that the differential surface-charge-dependent localization of nanoceria in normal and cancer cells plays a critical role in the nanoparticles' toxicity profile.
Tang, Juan; Chen, Xian; Zhou, Jun; Li, Qunfang; Chen, Guonan; Tang, Dianping
2013-08-07
Multifunctionalized thionine-modified cerium oxide (Thi-CeO2) nanostructures with redox ability and catalytic activity were designed as the bionanolabels for in situ amplified electronic signal of low-abundance protein (carcinoembryonic antigen, CEA, used as a model) based on a cerium oxide-triggered 'one-to-many' catalytic cycling strategy. Initially, the carried CeO2 nanoparticles autocatalytically hydrolyzed the phosphate ester bond of l-ascorbic acid 2-phosphate (AAP) to produce a new reactant (l-ascorbic acid, AA), then the generated AA was electrochemically oxidized by the assembled thionine on the Thi-CeO2, and the resultant product was then reduced back to AA by the added tris(2-carboxyethy)phosphine (TCEP). The catalytic cycling could be re-triggered by the thionine and TCEP, resulting in amplification of the electrochemical signal. Under the optimized conditions, the electrochemical immunosensor exhibited a wide linear range of 0.1 pg mL(-1) to 80 ng mL(-1) with a low detection limit of 0.08 pg mL(-1) CEA at the 3σblank level. In addition, the methodology was evaluated for the analysis of clinical serum samples, and was in good accordance with values obtained using the commercialized enzyme-linked immunosorbent assay (ELISA) method.
NASA Astrophysics Data System (ADS)
Koromyslov, A. V.; Zhiganov, A. N.; Kovalenko, M. A.; Kupryazhkin, A. Ya.
2013-12-01
The concentration of impurity anion vacancies formed upon the dissociation of gadolinium-vacancy complexes has been determined using helium defectoscopy of the cerium gadolinium ceramics Ce0.8Gd0.2O1.9 with a submicrocrystalline structure in the temperature range T = 740-1123 K and at saturation pressures ranging from 0.05 to 15 MPa. It has been found that the energy of dissociation of gadoliniumvacancy complexes is E {eff/ D }= 0.26 ± 0.06 eV, and the energy of dissolution of helium in anion vacancies in the impurity disorder region is E P = -0.31 ± 0.09 eV. The proposed mechanism of dissolution has been confirmed by the investigation of the electrical conductivity of the cerium gadolinium ceramics, as well as by the high-speed molecular dynamics simulation of the dissociation of gadolinium-vacancy complexes. It has been assumed that a decrease in the effective dissolution energy in comparison with the results of the previously performed low-temperature investigations is caused by the mutual repulsion of vacancies formed upon the dissociation of gadolinium-vacancy complexes in highly concentrated solutions of gadolinium in CeO2 with increasing temperature.
NASA Astrophysics Data System (ADS)
Yazici, Hilal; Alpaslan, Ece; Webster, Thomas J.
2015-04-01
Cerium oxide nanoparticles have demonstrated great potential as antioxidant and radioprotective agents for nanomedicine applications especially for cancer therapy. The surface chemistry of nanoparticles is an important property that has a significant effect on their performance in biological applications including cancer diagnosis, cancer treatment, and bacterial infection. Recently, various nanosized cerium oxide particles with different types of polymer coatings have been developed to improve aqueous solubility and allow for surface functionalization for distinct applications. In this study, the role of ceria nanoparticles coated with dextran on the cytotoxicity properties of bone cancer cells was shown. Specifically, 0.1 M and 0.01 M dextran-coated, <5-nm ceria nanoparticles, were synthesized. The cytotoxicity of 0.1 M and 0.01 M dextran-coated ceria nanoparticles was evaluated against osteosarcoma cells. A change in cell viability was observed when treating osteosarcoma cells with 0.1 M dextran-coated ceria nanoparticles in the 250 -1000 μg/mL concentration range. In contrast, minimal toxicity to bone cancer cells was observed for the 0.01 M dextran coating after 3 days compared with the 0.1 M dextran coating. These results indicated that surface dextran functionalization had a positive impact on the cytotoxicity of cerium oxide nanoparticles against osteosarcoma cells.
Direct hydrothermal growth of GDC nanorods for low temperature solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Hong, Soonwook; Lee, Dohaeng; Yang, Hwichul; Kim, Young-Beom
2018-06-01
We report a novel synthesis technique of gadolinia-doped ceria (GDC) nano-rod (NRs) via direct hydrothermal process to enhance performance of low temperature solid oxide fuel cell by increasing active reaction area and ionic conductivity at interface between cathode and electrolyte. The cerium nitrate hexahydrate, gadolinium nitrate hexahydrate and urea were used to synthesis GDC NRs for growth on diverse substrate. The directly grown GDC NRs on substrate had a width from 819 to 490 nm and height about 2200 nm with a varied urea concentration. Under the optimized urea concentration of 40 mMol, we confirmed that GDC NRs able to fully cover the substrate by enlarging active reaction area. To maximize ionic conductivity of GDC NRs, we synthesis varied GDC NRs with different ratio of gadolinium and cerium precursor. Electrochemical analysis revealed a significant enhanced performance of fuel cells applying synthesized GDC NRs with a ratio of 2:8 gadolinium and cerium precursor by reducing polarization resistance, which was chiefly attributed to the enlarged active reaction area and enhanced ionic conductivity of GDC NRs. This method of direct hydrothermal growth of GDC NRs enhancing fuel cell performance was considered to apply other types of catalyzing application using nano-structure such as gas sensing and electrolysis fields.
Dan, Yongbo; Ma, Xingmao; Zhang, Weilan; Liu, Kun; Stephan, Chady; Shi, Honglan
2016-07-01
Cerium dioxide nanoparticles (CeO2NPs) are among the most broadly used engineered nanoparticles that will be increasingly released into the environment. Thus, understanding their uptake, transportation, and transformation in plants, especially food crops, is critical because it represents a potential pathway for human consumption. One of the primary challenges for the endeavor is the inadequacy of current analytical methodologies to characterize and quantify the nanomaterial in complex biological samples at environmentally relevant concentrations. Herein, a method was developed using single particle-inductively coupled plasma-mass spectrometry (SP-ICP-MS) technology to simultaneously detect the size and size distribution of particulate Ce, particle concentration, and dissolved cerium in the shoots of four plant species including cucumber, tomato, soybean, and pumpkin. An enzymatic digestion method with Macerozyme R-10 enzyme previously used for gold nanoparticle extraction from the tomato plant was adapted successfully for CeO2NP extraction from all four plant species. This study is the first to report and demonstrate the presence of dissolved cerium in plant seedling shoots exposed to CeO2NPs hydroponically. The extent of plant uptake and accumulation appears to be dependent on the plant species, requiring further systematic investigation of the mechanisms.
NASA Astrophysics Data System (ADS)
Hagiwara, Osahiko; Watanabe, Manabu; Sato, Eiichi; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Nagao, Jiro; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun
2011-06-01
An X-ray fluorescence computed tomography system (XRF-CT) is useful for determining the main atoms in objects. To detect iodine atoms without using a synchrotron, we developed an XRF-CT system utilizing a cadmium telluride (CdTe) detector and a cerium X-ray generator. CT is performed by repeated linear scans and rotations of an object. When cerium K-series characteristic X-rays are absorbed by iodine atoms in objects, iodine K fluorescence is produced from atoms and is detected by the CdTe detector. Next, event signals of X-ray photons are produced with the use of charge-sensitive and shaping amplifiers. Iodine Kα fluorescence is isolated using a multichannel analyzer, and the number of photons is counted using a counter card. In energy-dispersive XRF-CT, the tube voltage and tube current were 70 kV and 0.40 mA, respectively, and the X-ray intensity was 115.3 μGy/s at a distance of 1.0 m from the source. The demonstration of XRF-CT was carried out by the selection of photons in an energy range from 27.5 to 29.5 keV with a photon-energy resolution of 1.2 keV.
NASA Astrophysics Data System (ADS)
Romero, S.; Mosset, A.; Trombe, J. C.
1996-12-01
Two new families of lanthanide complexes associating the ligands oxalate and carbonate or oxalate and formate have been prepared under autogenous pressure at 200°C using a pseudo-hydrothermal method. The two families have been extended to some lanthanides ( Ln): oxalate-carbonate Ln= Ce, Pr, Nd, and Eu; oxalate-formate Ln= La, Ce, and Sm. The starting suspension contains either oxalate or a mixture of oxalate and oxalic acid. The structures have been solved for the element cerium. In both cases, the structure is built up from cerium atoms sharing all their oxygen atoms with oxalate and carbonate or oxalate and formate ligands, thus forming a three-dimensional network. The cerium polyhedra share either faces or edges or corners. The coordination scheme of the oxalate ligands is variable: bischelating, bischelating and monodentate, or bischelating and bismonodentate. The carbonate group acts as a bischelating and bismonodentate ligand while the formate group is chelating and monodentate. The characterization of these two original families by infrared spectra and thermal behavior is presented for some pure phases. A tentative explanation of the synthesis of these two phases will be emphasized.
Effects of amorphous silica coating on cerium oxide nanoparticles induced pulmonary responses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Jane, E-mail: jym1@cdc.gov; Mercer, Robert R.; Barger, Mark
2015-10-01
Recently cerium compounds have been used in a variety of consumer products, including diesel fuel additives, to increase fuel combustion efficiency and decrease diesel soot emissions. However, cerium oxide (CeO{sub 2}) nanoparticles have been detected in the exhaust, which raises a health concern. Previous studies have shown that exposure of rats to nanoscale CeO{sub 2} by intratracheal instillation (IT) induces sustained pulmonary inflammation and fibrosis. In the present study, male Sprague–Dawley rats were exposed to CeO{sub 2} or CeO{sub 2} coated with a nano layer of amorphous SiO{sub 2} (aSiO{sub 2}/CeO{sub 2}) by a single IT and sacrificed at variousmore » times post-exposure to assess potential protective effects of the aSiO{sub 2} coating. The first acellular bronchoalveolar lavage (BAL) fluid and BAL cells were collected and analyzed from all exposed animals. At the low dose (0.15 mg/kg), CeO{sub 2} but not aSiO{sub 2}/CeO{sub 2} exposure induced inflammation. However, at the higher doses, both particles induced a dose-related inflammation, cytotoxicity, inflammatory cytokines, matrix metalloproteinase (MMP)-9, and tissue inhibitor of MMP at 1 day post-exposure. Morphological analysis of lung showed an increased inflammation, surfactant and collagen fibers after CeO{sub 2} (high dose at 3.5 mg/kg) treatment at 28 days post-exposure. aSiO{sub 2} coating significantly reduced CeO{sub 2}-induced inflammatory responses in the airspace and appeared to attenuate phospholipidosis and fibrosis. Energy dispersive X-ray spectroscopy analysis showed Ce and phosphorous (P) in all particle-exposed lungs, whereas Si was only detected in aSiO{sub 2}/CeO{sub 2}-exposed lungs up to 3 days after exposure, suggesting that aSiO{sub 2} dissolved off the CeO{sub 2} core, and some of the CeO{sub 2} was transformed to CePO{sub 4} with time. These results demonstrate that aSiO{sub 2} coating reduce CeO{sub 2}-induced inflammation, phospholipidosis and fibrosis. - Highlights: • Both CeO{sub 2} and aSiO{sub 2}/CeO{sub 2} particles were detected in the respective particle-exposed lungs. • The dissolution of aSiO{sub 2} coating from CeO{sub 2} particle core with time was demonstrated in the particle-exposed lungs. • aSiO{sub 2} coating significantly protected CeO{sub 2}-induced pulmonary inflammatory responses. • aSiO{sub 2} coating showed a protective effect on CeO{sub 2}-induced lung fibrosis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cassee, Flemming R., E-mail: flemming.cassee@rivm.nl; Campbell, Arezoo, E-mail: acampbell@westernu.edu; Boere, A. John F., E-mail: john.boere@rivm.nl
Background: Cerium oxide (CeO{sub 2}) nanoparticles improve the burning efficiency of fuel, however, little is known about health impacts of altered emissions from the vehicles. Methods: Atherosclerosis-prone apolipoprotein E knockout (ApoE{sup -/-}) mice were exposed by inhalation to diluted exhaust (1.7 mg/m{sup 3}, 20, 60 or 180 min, 5 day/week, for 4 weeks), from an engine using standard diesel fuel (DE) or the same diesel fuel containing 9 ppm cerium oxide nanoparticles (DCeE). Changes in hematological indices, clinical chemistry, atherosclerotic burden, tissue levels of inflammatory cytokines and pathology of the major organs were assessed. Results: Addition of CeO{sub 2} tomore » fuel resulted in a reduction of the number (30%) and surface area (10%) of the particles in the exhaust, whereas the gaseous co-pollutants were increased (6-8%). There was, however, a trend towards an increased size and complexity of the atherosclerotic plaques following DE exposure, which was not evident in the DCeE group. There were no clear signs of altered hematological or pathological changes induced by either treatment. However, levels of proinflammatory cytokines were modulated in a brain region and liver following DCeE exposure. Conclusions: These results imply that addition of CeO{sub 2} nanoparticles to fuel decreases the number of particles in exhaust and may reduce atherosclerotic burden associated with exposure to standard diesel fuel. From the extensive assessment of biological parameters performed, the only concerning effect of cerium addition was a slightly raised level of cytokines in a region of the central nervous system. Overall, the use of cerium as a fuel additive may be a potentially useful way to limit the health effects of vehicle exhaust. However, further testing is required to ensure that such an approach is not associated with a chronic inflammatory response which may eventually cause long-term health effects.« less
NASA Astrophysics Data System (ADS)
Utami Hapsari, Ade; Zulfia, Anne; Raharjo, Jarot; Agustanhakri
2017-07-01
One of negative electrode, AB5-type alloy electrodes, have been extensively studied and applied in rechargeable Ni-MH batteries due to their excellent electrochemical characteristics. Some researchers have found that addition of rare earth oxides (La, Ce, Pr, Er, Tm, Yb) to AB5-type alloy (MH) electrode improves battery performance significantly. Cerium Oxide (CeO2) is a light rare earth oxide is widely obtained from the processing of tailings in mining activities. During this time, there is still little data for research applications of cerium oxide for electrode materials. In this paper, the effects of adding CeO2 on the performance metal hydride electrode were investigated. In order to study the effects of CeO2 on the performance of anode material, 1%, 2%, and 3% of weight ratio CeO2 was mixed to LaNi5 as an negative electrode. The powder mixtures were mechanically milled at a speed of rpm 240 for 2 hours using ball mill. The powder mixtures were characterized by X-Ray Diffraction (XRD) and Scanning Electron Microscope (SEM). Electrochemical characteristics were measured using electrochemical impedance spectroscopy (EIS). The powder mixing showed the presence of Ce atom substitution into LaNi5 structures that affect the electrochemical properties of the material. The addition of cerium oxide at LaNi5 increase of the value of impedance. However, the addition of the value of impedance at 1% CeO2 is not significant when compared with the addition of 2% and 3% CeO2 that actually make the electrochemical properties of LaNi5 worst. Although the addition of 1% CeO2 also slightly increases the impedance value of LaNi5, but the addition of 1% CeO2 showed increase the corrosion resistance than without the addition of CeO2 and the addition of 2% and 3% CeO2.
NASA Astrophysics Data System (ADS)
Romano, Esteban Javier
2005-07-01
Cerium and zirconium oxides are important materials in industrial catalysis. Particularly, the great advances attained in the past 30 years in controlling levels of gaseous pollutants released from internal combustion engines can be attributed to the development of catalysts employing these materials. Unfortunately, oxides of sulfur are known threats to the longevity of many catalytic systems by irreversibly interacting with catalytic materials. In this work, polycrystalline cerium-zirconium mixed-metal-oxide (MMO) solid solutions were synthesized. High resolution x-ray photoelectron spectroscopy (XPS) spectral data was collected and examined for revelation of the surface species that form on these metal oxides after in-situ exposures to sulfur dioxide. The model catalysts were exposed to sulfur dioxide using a custom modified in-situ reaction cell and platen heater. The results of this study demonstrate the formation of sulfate and sulfite surface sulfur species. Temperature and compositional dependencies were displayed, with higher temperatures and ceria molar ratios displaying a larger propensity for forming surface sulfur species. In addition to analysis of sulfur photoemission, the photoemission regions of oxygen, zirconium, and cerium were examined for the materials used in this study before and after the aforementioned treatments with sulfur dioxide. The presence of surface hydroxyl groups was observed and metal oxidation state changes were probed to further enhance the understanding of sulfur dioxide adsorption on the synthesized materials. Palladium loaded mixed-metal oxides were synthesized using a unique solid-state methodology to probe the effect of palladium addition on sulfur dioxide adsorption. The addition of palladium to this model system is shown to have a strong effect on the magnitude of adsorption for sulfur dioxide on some material/exposure condition combinations. Ceria/zirconia sulfite and sulfate species are identified on the palladium-loaded MMO materials with adsorption sites located on the exposed oxide sites.
Snow, Samantha J; McGee, John; Miller, Desinia B; Bass, Virginia; Schladweiler, Mette C; Thomas, Ronald F; Krantz, Todd; King, Charly; Ledbetter, Allen D; Richards, Judy; Weinstein, Jason P; Conner, Teri; Willis, Robert; Linak, William P; Nash, David; Wood, Charles E; Elmore, Susan A; Morrison, James P; Johnson, Crystal L; Gilmour, Matthew Ian; Kodavanti, Urmila P
2014-12-01
Diesel exhaust (DE) exposure induces adverse cardiopulmonary effects. Cerium oxide nanoparticles added to diesel fuel (DECe) increases fuel burning efficiency but leads to altered emission characteristics and potentially altered health effects. Here, we evaluated whether DECe results in greater adverse pulmonary effects compared with DE. Male Sprague Dawley rats were exposed to filtered air, DE, or DECe for 5 h/day for 2 days. N-acetyl glucosaminidase activity was increased in bronchial alveolar lavage fluid (BALF) of rats exposed to DECe but not DE. There were also marginal but insignificant increases in several other lung injury biomarkers in both exposure groups (DECe > DE for all). To further characterize DECe toxicity, rats in a second study were exposed to filtered air or DECe for 5 h/day for 2 days or 4 weeks. Tissue analysis indicated a concentration- and time-dependent accumulation of lung and liver cerium followed by a delayed clearance. The gas-phase and high concentration of DECe increased lung inflammation at the 2-day time point, indicating that gas-phase components, in addition to particles, contribute to pulmonary toxicity. This effect was reduced at 4 weeks except for a sustained increase in BALF γ-glutamyl transferase activity. Histopathology and transmission electron microscopy revealed increased alveolar septa thickness due to edema and increased numbers of pigmented macrophages after DECe exposure. Collectively, these findings indicate that DECe induces more adverse pulmonary effects on a mass basis than DE. In addition, lung accumulation of cerium, systemic translocation to the liver, and delayed clearance are added concerns to existing health effects of DECe. Published by Oxford University Press on behalf of the Society of Toxicology 2014. This work is written by US Government employees and is in the public domain in the US.
NASA Astrophysics Data System (ADS)
Omar, Mahmoud A.; Badr El-Din, Kalid M.; Salem, Hesham; Abdelmageed, Osama H.
2018-03-01
Two simple and sensitive spectrophotometric and spectrofluorimetric methods for the determination of terbutaline sulfate, fenoterol hydrobromide, etilefrine hydrochloride, isoxsuprine hydrochloride, ethamsylate, doxycycline hyclate have been developed. Both methods were based on the oxidation of the cited drugs with cerium (IV) in acid medium. The spectrophotometric method was based on measurement of the absorbance difference (ΔA), which represents the excess cerium (IV), at 317 nm for each drug. On the other hand, the spectrofluorimetric method was based on measurement of the fluorescent of the produced cerium (III) at emission wavelength 354 nm (λexcitation = 255 nm) for the concentrations studied for each drug. For both methods, the variables affecting the reactions were carefully investigated and the conditions were optimized. Linear relationships were found between either ΔA or the fluorescent of the produced cerium (III) values and the concentration of the studied drugs in a general concentration range of 2.0-24.0 μg mL- 1, 20.0-24.0 ng mL- 1 with good correlation coefficients in the following range 0.9990-0.9999, 0.9990-0.9993 for spectrophotometric and spectrofluorimetric methods respectively. The limits of detection and quantitation of spectrophotometric method were found in general concentration range 0.190-0.787 and 0.634-2.624 μg mL- 1respectively. For spectrofluorimetric method, the limits of detection and quantitation were found in general concentration range 4.77-9.52 and 15.91-31.74 ng mL- 1 respectively. The stoichiometry of the reaction was determined, and the reactions pathways were postulated. The analytical performance of the methods, in terms of accuracy and precision, were statistically validated and the results obtained were satisfactory. The methods have been successfully applied to the determination of the cited drugs in their commercial pharmaceutical formulations. Statistical comparison of the results with the reference methods showed excellent agreement and proved that no significant difference in the accuracy and precision.
Baker, Andrew M.; Babu, Siddharth Komini; Mukundan, Rangachary; ...
2017-09-21
Ion mobility and diffusivity coefficients were determined for cerium ions in Nafion XL perfluorosulfonic acid ionomer membranes at 100% and 50% relative humidity in a conductivity cell using a hydrogen pump. We quantified Ce ion migration profiles as a function of charge transfer through the cell using X-ray fluorescence (XRF). To decouple simultaneous effects of Ce ion mobility and back-diffusion which occur due to potential and concentration gradients, respectively, a one-dimensional model was developed and fit to these intermittent XRF profiles. The resulting mobility and diffusivity coefficients demonstrate the dramatic effects of potential and concentration gradients on Ce ion migrationmore » during PEM fuel cell operation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Andrew M.; Babu, Siddharth Komini; Mukundan, Rangachary
Ion mobility and diffusivity coefficients were determined for cerium ions in Nafion XL perfluorosulfonic acid ionomer membranes at 100% and 50% relative humidity in a conductivity cell using a hydrogen pump. We quantified Ce ion migration profiles as a function of charge transfer through the cell using X-ray fluorescence (XRF). To decouple simultaneous effects of Ce ion mobility and back-diffusion which occur due to potential and concentration gradients, respectively, a one-dimensional model was developed and fit to these intermittent XRF profiles. The resulting mobility and diffusivity coefficients demonstrate the dramatic effects of potential and concentration gradients on Ce ion migrationmore » during PEM fuel cell operation.« less
Redox-active cerium oxide nanoparticles protect human dermal fibroblasts from PQ-induced damage.
von Montfort, Claudia; Alili, Lirija; Teuber-Hanselmann, Sarah; Brenneisen, Peter
2015-01-01
Recently, it has been published that cerium (Ce) oxide nanoparticles (CNP; nanoceria) are able to downregulate tumor invasion in cancer cell lines. Redox-active CNP exhibit both selective pro-oxidative and antioxidative properties, the first being responsible for impairment of tumor growth and invasion. A non-toxic and even protective effect of CNP in human dermal fibroblasts (HDF) has already been observed. However, the effect on important parameters such as cell death, proliferation and redox state of the cells needs further clarification. Here, we present that nanoceria prevent HDF from reactive oxygen species (ROS)-induced cell death and stimulate proliferation due to the antioxidative property of these particles. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Nanoporous cerium oxide thin film for glucose biosensor.
Saha, Shibu; Arya, Sunil K; Singh, S P; Sreenivas, K; Malhotra, B D; Gupta, Vinay
2009-03-15
Nanoporous cerium oxide (CeO(2)) thin film deposited onto platinum (Pt) coated glass plate using pulsed laser deposition (PLD) has been utilized for immobilization of glucose oxidase (GOx). Atomic force microscopy studies reveal the formation of nanoporous surface morphology of CeO(2) thin film. Response studies carried out using differential pulsed voltammetry (DPV) and optical measurements show that the GOx/CeO(2)/Pt bio-electrode shows linearity in the range of 25-300 mg/dl of glucose concentration. The low value of Michaelis-Menten constant (1.01 mM) indicates enhanced enzyme affinity of GOx to glucose. The observed results show promising application of the nanoporous CeO(2) thin film for glucose sensing application without any surface functionalization or mediator.
High-strength, creep-resistant molybdenum alloy and process for producing the same
Bianco, R.; Buckman, R.W. Jr.; Geller, C.B.
1999-02-09
A wet-doping process for producing an oxide-dispersion strengthened (ODS), creep-resistant molybdenum alloy is disclosed. The alloy is made by adding nitrate or acetate salts of lanthanum, cerium, thorium, or yttrium to molybdenum oxide to produce a slurry, heating the slurry in a hydrogen atmosphere to produce a powder, mixing and cold isostatically pressing the powder, sintering in a hydrogen atmosphere, and thermomechanically processing (swaging, extruding, cold drawing) the product. The ODS molybdenum alloy produced by the process contains 2--4% by volume (ca. 1--4% by weight) of an oxide of lanthanum, cerium, thorium, or yttrium. The alloy has high strength and improved creep-resistance at temperatures greater than 0.55T{sub m} of molybdenum. 10 figs.
High-strength, creep-resistant molybdenum alloy and process for producing the same
Bianco, Robert; Buckman, Jr., R. William; Geller, Clint B.
1999-01-01
A wet-doping process for producing an oxide-dispersion strengthened (ODS), creep-resistant molybdenum alloy is disclosed. The alloy is made by adding nitrate or acetate salts of lanthanum, cerium, thorium, or yttrium to molybdenum oxide to produce a slurry, heating the slurry in a hydrogen atmosphere to produce a powder, mixing and cold isostatically pressing the powder, sintering in a hydrogen atmosphere, and thermomechanically processing (swaging, extruding, cold drawing) the product. The ODS molybdenum alloy produced by the process contains 2-4% by volume (.about.1-4% by weight) of an oxide of lanthanum, cerium, thorium, or yttrium. The alloy has high strength and improved creep-resistance at temperatures greater than 0.55T.sub.m of molybdenum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, Brian James
There is a scientific need to obtain new data to constrain and refine next generation multi-phase equation-of-state (EOS) for metals. Experiments are needed to locate phase boundaries, determine transition kinetic times, and to obtain EOS and Hugoniot data for relevant phases. The objectives of the current work was to examine the multiphase properties for cerium including the dynamic melt boundary and the low-pressure solid-solid phase transition through the critical point. These objectives were addressed by performing plate impact experiment that used multiple experimental configuration including front-surface impact experiments to directly measure transition kinetics, multislug experiments that used the overtake methodmore » to measure sound speeds at pressure, and preheat experiments to map out phase boundaries. Preliminary data and analysis obtained for cerium will be presented.« less
Chigurupati, Srinivasulu; Mughal, Mohamed R.; Okun, Eitan; Das, Soumen; Kumar, Amit; McCaffery, Michael; Seal, Sudipta; Mattson, Mark P.
2012-01-01
Rapid and effective wound healing requires a coordinated cellular response involving fibroblasts, keratinocytes and vascular endothelial cells (VECs). Impaired wound healing can result in multiple adverse health outcomes and, although antibiotics can forestall infection, treatments that accelerate wound healing are lacking. We now report that topical application of water soluble cerium oxide nanoparticles (Nanoceria) accelerates the healing of full-thickness dermal wounds in mice by a mechanism that involves enhancement of the proliferation and migration of fibroblasts, keratinocytes and VECs. The Nanoceria penetrated into the wound tissue and reduced oxidative damage to cellular membranes and proteins, suggesting a therapeutic potential for topical treatment of wounds with antioxidant nanoparticles. PMID:23266256
Altering properties of cerium oxide thin films by Rh doping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ševčíková, Klára, E-mail: klarak.sevcikova@seznam.cz; NIMS Beamline Station at SPring-8, National Institute for Materials Science, Sayo, Hyogo 679-5148; Nehasil, Václav, E-mail: nehasil@mbox.troja.mff.cuni.cz
2015-07-15
Highlights: • Thin films of ceria doped by rhodium deposited by RF magnetron sputtering. • Concentration of rhodium has great impact on properties of Rh–CeO{sub x} thin films. • Intensive oxygen migration in films with low concentration of rhodium. • Oxygen migration suppressed in films with high amount of Rh dopants. - Abstract: Ceria containing highly dispersed ions of rhodium is a promising material for catalytic applications. The Rh–CeO{sub x} thin films with different concentrations of rhodium were deposited by RF magnetron sputtering and were studied by soft and hard X-ray photoelectron spectroscopies, Temperature programmed reaction and X-ray powder diffractionmore » techniques. The sputtered films consist of rhodium–cerium mixed oxide where cerium exhibits a mixed valency of Ce{sup 4+} and Ce{sup 3+} and rhodium occurs in two oxidation states, Rh{sup 3+} and Rh{sup n+}. We show that the concentration of rhodium has a great influence on the chemical composition, structure and reducibility of the Rh–CeO{sub x} thin films. The films with low concentrations of rhodium are polycrystalline, while the films with higher amount of Rh dopants are amorphous. The morphology of the films strongly influences the mobility of oxygen in the material. Therefore, varying the concentration of rhodium in Rh–CeO{sub x} thin films leads to preparing materials with different properties.« less
NASA Astrophysics Data System (ADS)
Secco, Henrique de L.; Ferreira, Fabio F.; Péres, Laura O.
2018-03-01
The combination of materials to form hybrids with unique properties, different from those of the isolated components, is a strategy used to prepare functional materials with improved properties aiming to allow their application in specific fields. The doping of lanthanum fluoride with other rare earth elements is used to obtain luminescent particles, which may be useful to the manufacturing of electronic devices' displays and biological markers, for instance. The application of the powder of nanoparticles has limitations in some fields; to overcome this, the powder may be incorporated in a suitable polymeric matrix. In this work, lanthanum fluoride nanoparticles, undoped and doped with cerium and europium, were synthesized through the co-precipitation method in aqueous solution. Aiming the formation of solid state films, composites of nanoparticles in an elastomeric matrix, the nitrile rubber (NBR), were prepared. The flexibility and the transparency of the matrix in the regions of interest are advantages for the application of the luminescent composites. The composites were applied as films using the casting and the spin coating techniques and luminescent materials were obtained in the samples doped with europium and cerium. Scanning electron microscopy images showed an adequate dispersion of the particles in the matrix in both film formation techniques. Aggregates of the particles were detected in the samples which may affect the uniformity of the emission of the composites.
Synthesis of cerium and nickel doped titanium nanofibers for hydrolysis of sodium borohydride.
Tamboli, Ashif H; Gosavi, S W; Terashima, Chiaki; Fujishima, Akira; Pawar, Atul A; Kim, Hern
2018-07-01
A recyclable titanium nanofibers, doped with cerium and nickel doped was successfully synthesized by using sol-gel and electrospinning method for hydrogen generation from alkali free hydrolysis of NaBH 4 . The resultant nanocomposite was characterized to find out the structural and physical-chemical properties by a series of analytical techniques such as FT-IR (Fourier transform infrared spectroscopy), XRD (X-ray diffraction), SEM (scanning electron microscope), EDX (energy-dispersive X-ray spectroscopy),N 2 adsorption-desorption and BET (Brunauer-Emmett-Teller), etc. The results revealed that cerium and nickel nanoparticles were homogeneously distributed on the surface of the TiO 2 nanofibers due to having similar oxidation state and atomic radium of TiO 2 nanofibers with CeO 2 and NiO for the effective immobilization of metal ions. The NiO doped catalyst showed superior catalytic performance towards the hydrolysis reaction of NaBH 4 at room temperature. These catalysts have ability to produce 305 mL of H 2 within the time of 160 min at room temperature. Additionally, reusability test revealed that the catalyst is active even after five runs of hydrolytic reaction, implying the as-prepared NiO doped TiO 2 nanofibers could be considered as a potential candidate catalyst for portable hydrogen fuel system such as PEMFC (proton exchange membrane fuel cells). Copyright © 2018 Elsevier Ltd. All rights reserved.
Cao, Zhiming; Rossi, Lorenzo; Stowers, Cheyenne; Zhang, Weilan; Lombardini, Leonardo; Ma, Xingmao
2018-01-01
The ongoing global climate change raises concerns over the decreasing moisture content in agricultural soils. Our research investigated the physiological impact of two types of cerium oxide nanoparticles (CeO 2 NPs) on soybean at different moisture content levels. One CeO 2 NP was positively charged on the surface and the other negatively charged due to the polyvinylpyrrolidone (PVP) coating. The results suggest that the effect of CeO 2 NPs on plant photosynthesis and water use efficiency (WUE) was dependent upon the soil moisture content. Both types of CeO 2 NPs exhibited consistently positive impacts on plant photosynthesis at the moisture content above 70% of field capacity (θ fc ). Similar positive impact of CeO 2 NPs was not observed at 55% θ fc , suggesting that the physiological impact of CeO 2 NPs was dependent upon the soil moisture content. The results also revealed that V Cmax (maximum carboxylation rate) was affected by CeO 2 NPs, indicating that CeO 2 NPs affected the Rubisco activity which governs carbon assimilation in photosynthesis. In conclusion, CeO 2 NPs demonstrated significant impacts on the photosynthesis and WUE of soybeans and such impacts were affected by the soil moisture content. Graphical abstract Soil moisture content affects plant cerium oxide nanoparticle interactions.
Ozdemir Olgun, F Ayca; Üzer, Ayşem; Ozturk, Birsen Demirata; Apak, Reşat
2018-05-15
Antioxidant activity (AOA) assays using nanotechnology are recently developed utilizing nanoparticles of transition metal oxides, especially nanoceria that can switch between trivalent and tetravalent oxidation states of cerium. Cerium oxide nanoparticles (CeO-NPs) may act as both an oxidant and an antioxidant, depending on the preparation method and particle size. A novel colorimetric sensor for AOA assay is proposed with the use of poly(acrylic acid) sodium salt (PAANa)-coated CeO-NPs. PAANa-coated CeO-NPs oxidized tetramethyl benzidine (TMB), a peroxidase substrate, in a slightly acidic solution at pH 4.0 to a blue charge-transfer complex. Antioxidants decreased the color intensity of the nanoceria suspension, and were indirectly determined by absorbance difference. Detection limits, linearity, additivity and precision were calculated, e.g., quercetin quantification with the proposed assay showed a detection limit of 8.25 × 10 -9 mol L -1 . The trolox equivalent antioxidant capacities of hydrophilic and lipophilic antioxidants were compatible with those of conventional antioxidant assays. Potential interferents such as glucose, citric acid, mannitol, sorbitol and benzoic acid did not adversely affect AOA determination. The developed sensor is more sensitive and selective than similar colorimetric sensors relying on the intrinsic color change of nanoceria. The measurement wavelength is sufficiently red-shifted, preventing possible interferences from plant pigments. Copyright © 2018 Elsevier B.V. All rights reserved.
Zhao, Haiquan; Zhou, Qiuping; Zhou, Min; Li, Chunxiao; Gong, Xiaolan; Liu, Chao; Qu, Chunxiang; Si, Wenhui; Hong, Fashui
2012-07-01
Magnesium (Mg) deficiency has been reported to affect plant photosynthesis and growth, and cerium (Ce) was considered to be able to improve plant growth. However, the mechanisms of Mg deficiency and Ce on plant growth remain poorly understood. The main aim of this work is to identify whether or not Mg deprivation affects the interdependent nitrogen and carbon assimilations in the maize leaves and whether or not Ce modulates the assimilations in the maize leaves under Mg deficiency. Maize plants were cultivated in Hoagland’s solution. They were subjected to Mg deficiency and to cerium chloride administration in the Mg-present Hoagland’s media and Mg-deficient Hoagland’s media.After 2 weeks,we measured chlorophyll (Chl) a fluorescence and the activities of nitrate reductase (NR), sucrose-phosphate synthase(SPS), and phosphoenolpyruvate carboxylase (PEPCase)in metabolic checkpoints coordinating primary nitrogen and carbon assimilations in the maize leaves. The results showed that Mg deficiency significantly inhibited plant growth and decreased the activities of NR, SPS, and PEPCase and the synthesis of Chl and protein. Mg deprivation in maize also significantly decreased the oxygen evolution, electron transport,and efficiency of photochemical energy conversion by photosystem II (PSII). However, Ce addition may promote nitrogen and carbon assimilations, increase PSII activities,and improve maize growth under Mg deficiency. Moreover,our findings would help promote usage of Mg or Ce fertilizers in maize production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muresan, L.E., E-mail: laura_muresan2003@yahoo.com; Cadis, A.I.; Perhaita, I.
Highlights: • Y{sub 2}SiO{sub 5}:Ce is prepared by gel combustion in ultrasound conditions (US). • Morpho-structural characteristics are revealed based on FTIR, SEM, XRD, BET. • Incorporation of Ce{sup 3+} in X1/X2 type centers depends on preparative conditions. • US treatment increases the luminescent performances up to 151%. - Abstract: Cerium activated yttrium silicate (Y{sub 2}SiO{sub 5}:Ce) phosphors were prepared by gel-combustion, using yttrium–cerium nitrate as oxidizer, aspartic acid as fuel and TEOS as source of silicon. Two modalities for samples preparation were approached namely: the classical gel-combustion and sonication gel-combustion. The ultrasound treatment during the gelling stage has amore » positive effect on the structural and luminescent characteristics of the final product. Therefore, a well crystallized single X2–Y{sub 2}SiO{sub 5} phase phosphor was obtained at 1200 °C. Based on FT-IR and XRD investigations, conversion of X1 to X2–Y{sub 2}SiO{sub 5} phases is observed as the firing temperature is varied (1100 °C, 1200 °C, 1300 °C 1400 °C). The ultrasound treatment leads to smaller particle size and enhances the luminescent performances up to 151% in comparison with samples prepared by classical way.« less
Geometry of electromechanically active structures in Gadolinium - doped Cerium oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yuanyuan; Zacharowicz, Renee; Frenkel, Anatoly I., E-mail: igor.lubomirsky@weizmann.ac.il, E-mail: anatoly.frenkel@yu.edu
2016-05-15
Local distortions from average structure are important in many functional materials, such as electrostrictors or piezoelectrics, and contain clues about their mechanism of work. However, the geometric attributes of these distortions are exceedingly difficult to measure, leading to a gap in knowledge regarding their roles in electromechanical response. This task is particularly challenging in the case of recently reported non-classical electrostriction in Cerium-Gadolinium oxides (CGO), where only a small population of Ce-O bonds that are located near oxygen ion vacancies responds to external electric field. We used high-energy resolution fluorescence detection (HERFD) technique to collect X-ray absorption spectra in CGOmore » in situ, with and without an external electric field, coupled with theoretical modeling to characterize three-dimensional geometry of electromechanically active units.« less
Activation cross-section measurement of proton induced reactions on cerium
NASA Astrophysics Data System (ADS)
Tárkányi, F.; Hermanne, A.; Ditrói, F.; Takács, S.; Spahn, I.; Spellerberg, S.
2017-12-01
In the framework of a systematic study of proton induced nuclear reactions on lanthanides we have measured the excitation functions on natural cerium for the production of 142,139,138m,137Pr, 141,139,137m,137g,135Ce and 133La up to 65 MeV proton energy using the activation method with stacked-foil irradiation technique and high-resolution γ-ray spectrometry. The cross-sections of the investigated reactions were compared with the data retrieved from the TENDL-2014 and TENDL-2015 libraries, based on the latest version of the TALYS code system. No earlier experimental data were found in the literature. The measured cross-section data are important for further improvement of nuclear reaction models and for practical applications in nuclear medicine, other labeling and activation studies.
Castable high-temperature Ce-modified Al alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rios, Orlando; King, Alexander H.; McCall, Scott K.
2018-05-08
A cast alloy includes aluminum and from about 5 to about 30 weight percent of at least one material selected from the group consisting of cerium, lanthanum, and mischmetal. The cast alloy has a strengthening Al 11X 3 intermetallic phase in an amount in the range of from about 5 to about 30 weight percent, wherein X is at least one of cerium, lanthanum, and mischmetal. The Al 11X 3 intermetallic phase has a microstructure that includes at least one of lath features and rod morphological features. The morphological features have an average thickness of no more than 700 ummore » and an average spacing of no more than 10 um, the microstructure further comprising an eutectic microconstituent that comprises more than about 10 volume percent of the microstructure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Kepeng; Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Wenhua Road 72, 110016 Shenyang; Schmid, Herbert
2014-03-01
Epitaxial CeO{sub 2} films with different thickness were grown on Y{sub 2}O{sub 3} stabilised Zirconia substrates. Reduction of cerium ions at the interface between CeO{sub 2} films and yttria stabilised zirconia substrates is demonstrated using aberration-corrected scanning transmission electron microscopy combined with electron energy-loss spectroscopy. It is revealed that most of the Ce ions were reduced from Ce{sup 4+} to Ce{sup 3+} at the interface region with a decay of several nanometers. Several possibilities of charge compensations are discussed. Irrespective of the details, such local non-stoichiometries are crucial not only for understanding charge transport in such hetero-structures but also formore » understanding ceria catalytic properties.« less
Bio-sensing applications of cerium oxide nanoparticles: Advantages and disadvantages.
Charbgoo, Fahimeh; Ramezani, Mohammad; Darroudi, Majid
2017-10-15
Cerium oxide nanoparticles (CNPs) contain several properties such as catalytic activity, fluorescent quencher and electrochemical, high surface area, and oxygen transfer ability, which have attracted considerable attention in developing high-sensitive biosensors. CNPs can be used as a whole sensor or a part of recognition or transducer element. However, reports have shown that applying these nanoparticles in sensor design could remarkably enhance detection sensitivity. CNP's outstanding properties in biosensors which go from high catalytic activity and surface area to oxygen transfer and fluorescent quenching capabilities are also highlighted. Herein, we discuss the advantages and disadvantages of CNPs-based biosensors that function through various detection modes including colorimetric, electrochemistry, and chemoluminescent regarding the detection of small organic chemicals, metal ions and biomarkers. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bahlakeh, Ghasem; Ramezanzadeh, Bahram; Saeb, Mohammad Reza; Terryn, Herman; Ghaffari, Mehdi
2017-10-01
The effect of cerium oxide treatment on the corrosion protection properties and interfacial interaction of steel/epoxy was studied by electrochemical impedance spectroscopy, (EIS) classical molecular dynamics (MD) and first principle quantum mechanics (QM) simulation methods X-ray photoelectron spectroscopy (XPS) was used to verify the chemical composition of the Ce film deposited on the steel. To probe the role of the curing agent in epoxy adsorption, computations were compared for an epoxy, aminoamide and aminoamide modified epoxy. Moreover, to study the influence of water on interfacial interactions the MD simulations were executed for poly (aminoamide)-cured epoxy resin in contact with the different crystallographic cerium dioxide (ceria, CeO2) surfaces including (100), (110), and (111) in the presence of water molecules. It was found that aminoamide-cured epoxy material was strongly adhered to all types of CeO2 substrates, so that binding to ceria surfaces followed the decreasing order CeO2 (111) > CeO2 (100) > CeO2 (110) in both dry and wet environments. Calculation of interaction energies noticed an enhanced adhesion to metal surface due to aminoamide curing of epoxy resin; where facets (100) and (111) revealed electrostatic and Lewis acid-base interactions, while an additional hydrogen bonding interaction was identified for CeO2 (110). Overall, MD simulations suggested decrement of adhesion to CeO2 in wet environment compared to dry conditions. Additionally, contact angle, pull-off test, cathodic delamination and salt spray analyses were used to confirm the simulation results. The experimental results in line with modeling results revealed that Ce layer deposited on steel enhanced substrate surface free energy, work of adhesion, and interfacial adhesion strength of the epoxy coating. Furthermore, decrement of adhesion of epoxy to CeO2 in presence of water was affirmed by experimental results. EIS results revealed remarkable enhancement of the corrosion resistance of epoxy coating applied on the steel specimens treated by cerium oxide.
Engulfment of ceramic particles by fibroblasts does not alter cell behavior.
Faye, Pierre-Antoine; Roualdes, Olivier; Rossignol, Fabrice; Hartmann, Daniel Jean; Desmoulière, Alexis
2017-02-17
Despite many studies, the impact of ceramic particles on cell behavior remains unclear. The aim of the present study was to investigate the effects of nano-sized ceramic particles on fibroblastic cells. Fibroblasts (dermal fibroblasts freshly isolated from skin samples and WI26 fibroblastic cells) were cultured in a monolayer in the presence of alumina or cerium-zirconia particles (≈50 nm diameter) at two concentrations (100 or 500 μg ml -1 ). Fluorescent alumina particles were also used. The following properties were analyzed: cell morphology, cytoplasmic ceramic incorporation (using confocal and transmission electron microscopy) and migration (using a silicon insert). Sedimentation field-flow fractionation (SdFFF) was also used to evaluate the rate of incorporation of ceramic particles into the cells. Finally, after treatment with various concentrations of ceramic particles, fibroblasts were also included in a collagen type I lattice constituting a dermal equivalent (DE), and the collagen lattice retraction and cell proliferation were evaluated. In monolayer conditions, the presence of both alumina and cerium-zirconia ceramic particles did not cause any deleterious effects on cultured cells (dermal fibroblast and WI26 cells) and cell fate was not affected in any way by the presence of ceramic particles in the cytoplasm. Confocal (using fluorescent alumina particles) and electron microscopy (using both alumina and cerium-zirconia particles) showed that ceramic particles were internalized in the WI26 cells. Using fluorescent membrane labeling and fluorescent alumina particles, a membrane was observed around the particle-containing vesicles present in the cytoplasm. Electron microscopy on WI26 cells showed the presence of a classical bilayer membrane around the ceramic particles. Interestingly, SdFFF confirmed that some dermal fibroblasts contained many alumina ceramic particles while others contained very few; in WI26 cells, the uptake of alumina ceramic was more homogeneous. In DE, collagen lattice retraction and cell proliferation were unchanged when WI26 fibroblastic cells contained alumina or cerium-zirconia ceramic particles. Our data suggest that ceramic particles are internalized in the cells by endocytosis. The presence of ceramic particles in the cytoplasm has no affect on cell behavior, confirming the excellent biocompatibility of this material and anticipating a minimal harmful effect of potential wear debris.
NASA Astrophysics Data System (ADS)
Paulenova, A.; Creager, S. E.; Navratil, J. D.; Wei, Y.
Experimental work was performed with the aim of evaluating the Ce 4+/Ce 3+ redox couple in sulfuric acid electrolyte for use in redox flow battery (RFB) technology. The solubility of cerium sulfates in 0.1-4.0 M sulfuric acid at 20-60 °C was studied. A synergistic effect of both sulfuric acid concentration and temperature on the solubility of cerous sulfate was observed. The solubility of cerous sulfate significantly decreased with rising concentration of sulfuric acid and rising temperature, while the solubility of ceric sulfate goes through a significant maximum at 40 °C. Redox potentials and the kinetics of the cerous/ceric redox reaction were also studied under the same temperature-concentration conditions. The redox potentials were measured using the combined redox electrode (Pt-Ag/AgCl) in equimolar Ce 4+/Ce 3+ solutions (i.e.[Ce 3+]=[Ce 4+]) in sulfuric acid electrolyte. The Ce 3+/Ce 4+ redox potentials significantly decrease (i.e. shift to more negative values) with rising sulfuric acid concentration; a small maximum is observed at 40 °C. Cyclic voltammetric experiments confirmed slow electrochemical kinetics of the Ce 3+/Ce 4+ redox reaction on carbon glassy electrodes (CGEs) in sulfuric acid solutions. The observed dependencies of solubilities, the redox potentials and the kinetics of Ce 3+/Ce 4+ redox reaction on sulfuric acid concentration are thought to be the result of inequivalent complexation of the two redox species by sulfate anions: the ceric ion is much more strongly bound to sulfate than is the cerous ion. The best temperature-concentration conditions for the RFB electrolytes appear to be 40 °C and 1 M sulfuric acid, where the relatively good solubility of both cerium species, the maximum of redox potentials, and the more or less satisfying stability of CGE s were found. Even so, the relatively low solubility of cerium salts in sulfuric acid media and slow redox kinetics of the Ce 3+/Ce 4+ redox reaction at carbon indicate that the Ce 3+/Ce 4+ may not be well suited for use in RFB technology.
Omar, Mahmoud A; Badr El-Din, Kalid M; Salem, Hesham; Abdelmageed, Osama H
2018-03-05
Two simple and sensitive spectrophotometric and spectrofluorimetric methods for the determination of terbutaline sulfate, fenoterol hydrobromide, etilefrine hydrochloride, isoxsuprine hydrochloride, ethamsylate, doxycycline hyclate have been developed. Both methods were based on the oxidation of the cited drugs with cerium (IV) in acid medium. The spectrophotometric method was based on measurement of the absorbance difference (ΔA), which represents the excess cerium (IV), at 317nm for each drug. On the other hand, the spectrofluorimetric method was based on measurement of the fluorescent of the produced cerium (III) at emission wavelength 354nm (λ excitation =255nm) for the concentrations studied for each drug. For both methods, the variables affecting the reactions were carefully investigated and the conditions were optimized. Linear relationships were found between either ΔA or the fluorescent of the produced cerium (III) values and the concentration of the studied drugs in a general concentration range of 2.0-24.0μgmL -1 , 20.0-24.0ngmL -1 with good correlation coefficients in the following range 0.9990-0.9999, 0.9990-0.9993 for spectrophotometric and spectrofluorimetric methods respectively. The limits of detection and quantitation of spectrophotometric method were found in general concentration range 0.190-0.787 and 0.634-2.624μgmL -1 respectively. For spectrofluorimetric method, the limits of detection and quantitation were found in general concentration range 4.77-9.52 and 15.91-31.74ngmL -1 respectively. The stoichiometry of the reaction was determined, and the reactions pathways were postulated. The analytical performance of the methods, in terms of accuracy and precision, were statistically validated and the results obtained were satisfactory. The methods have been successfully applied to the determination of the cited drugs in their commercial pharmaceutical formulations. Statistical comparison of the results with the reference methods showed excellent agreement and proved that no significant difference in the accuracy and precision. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Xiaowei; Chai, Ping; Chen, Banghao
2015-09-15
Single crystals of Mg-substituted CeFe{sub 2}Al{sub 8} type intermetallics RFe{sub 2}Mg{sub x}Al{sub 8–x} (R=La–Nd and Sm; x≤1) were grown by reacting iron and rare earth metals in 1:1 Mg/Al mixed flux. The structure features mono-capped and bi-capped trigonal prismatic FeAl{sub 6} units. Electronic structure calculations indicate that magnesium substitution reduces the valence electron count, shifting the Fermi level away from a pseudo-gap. This changes the electronic nature of the cerium analog; the previously reported ternary CeFe{sub 2}Al{sub 8} shows strong hybridization between the cerium states and the conduction electrons, resulting in no magnetic moment on Ce atoms. On the othermore » hand, magnetic susceptibility measurements on CeFe{sub 2}Mg{sub x}Al{sub 8–x} indicates a localized moment on cerium. The newly synthesized Pr, Nd and Sm analogs exhibit antiferromagnetic ordering at 2.8 K, 7.8 K and 12 K respectively. Solid state {sup 27}Al NMR of LaFe{sub 2}Mg{sub x}Al{sub 8–x} exhibits a broad Knight shift at ~1200 ppm, consistent with the metallic behavior shown by electrical resistivity data. - Graphical abstract: Mg substitution into CeFe{sub 2}Al{sub 8} modifies cerium valence due to changing valence electron count. - Highlights: • RFe{sub 2}Mg{sub x}Al{sub 8−x} (R=La–Nd, Sm) grow as large crystals from reactions in Mg/Al flux. • Products are magnesium-substituted variants of CeFe{sub 2}Al{sub 8}, with CaCo{sub 2}Al{sub 8} structure. • Ce magnetic moment in CeFe{sub 2}Mg{sub x}Al{sub 8−x} varies from that in CeFe{sub 2}Al{sub 8} due to VEC change. • Antiferromagnetic ordering observed for Pr, Nd, Sm analogs of RFe{sub 2}Mg{sub x}Al{sub 8−x}.« less
Evaluation of Non-Chromate Passivations on Electroplated gamma-Phase Zinc Nickel
NASA Astrophysics Data System (ADS)
Volz, Steven Michael
This research focused on the corrosion response and electrochemical behavior of electroplated low hydrogen embrittlement alkaline gamma-phase zinc nickel with passivation layers. The motivation was the need to replace hexavalent chromium conversion coatings in military grade electrical systems with a more environment friendly alternative. The passivation layers were employed for the purpose of mitigating corrosion attack while maintaining low contact resistance. Trivalent chromium-based passivations and cerium-based passivations were compared against the currently used hexavalent chromium conversion coating. The coating systems were compared using electrochemical impedance spectroscopy, cyclic potentiodymanic scans, salt spray exposure testing, electrical resistance measurements, microstructure analysis, and compositional analysis. Coating systems with lower open circuit had a lower corrosion current and performed better during salt spray testing. All of the systems evaluated had corrosion products consistent with oxidized zinc compounds but the morphology of the passivation was dependent on the passivation. The electrical contact resistance ranged from 1 to 108 mO/cm 2, after salt spray testing. Two versions of Trivalent chromium-based passivations, were able to meet military performance specifications after corrosion testing.
PHYSICOCHEMICAL INTERACTION OF MANGANESE WITH NIOBIUM (in Russian)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savitskii, E.M.; Kopetskii, Ch.V.
1960-03-01
Microstructural, x-ray phase, and thermal analyses as well as hardness and microhardness determinations were performed on different manganese alloys containing 2.26, with a small Nb content have a two-phase structure characteristic of a eutectic. With increasing Nb content, an increasing amount of an intermetallic compound is formed. With a 2.98 wt.% Nb alloy interference lines of only alpha -Mn with a lattice parameter a = 8.892 kX in the annealed state or of ore resistant t -Mn with a lattice parameter a = 6.290 kX in the molten state can be detected by x-ray analysis. With 5.64 wt.% Nb, linesmore » of a new phase can be detected whose intensities increase with increasing Nb content. This new phase is an intermetallic compound Mn/sub 2/Nb Laves phase with a structure of the MgZn/sub 2/ type. The lattice parameters of the Mn/sub 2/Nb phase are: a = 4.881 kX, c = 7.953 kX, c/a = 1.629. With increasing niobium content the hardness values fall from 900 to 950 hg/mm/sup 2/ for pure manganese to 650 to 700 kg/mm/sup 2/ for the 29.85 wt.% niobium alloy. The hardness of the intermetallic compound is less than the hardness of the alpha -Mn. Thermal analysis showed that additions of niobium to manganese significantly increased the temperature of the alpha = ore resistant t transition which is shifted from 727 tained C for pure manganese to 800 tained C for the alloys. A ore resistant t transition takes place at 1135 tained C by a peritectic reaction. Fusion of a eutectic mixture of -Mn and Mn/sub 2/ Nb occurs at 1220 tained C. The intermetallic compound MnNb melts at 1500 tained C. A phase diagram for the Mn-Nb system is constructed on the basis of these resuits. (TTT) Iodide-derived titanium (99.97%) and neodymium (99.8%) were fused in an electric arc furnace in a helium atmosphere to prepare nine alloys with a necdymium content of 0 to 10%. Smelted and forged samples were annealed in evacuated quartz ampoules for 25 hours at 1000 tained C and 100 hours at 850 tained C. Samples of alloys were quenched in water from temperatures of 600, 800, 850, 890, 920, 1000, and 1100 tained C to determine the state of the system at higher temperatures. Microscopic analyses of phases showed that addition of neodymium stabilizes the alpha -phase. The microhardness of the phase is about 70 kg/mm/sup 2/. Apparently, no intermetallic compounds are formed in the Ti-Nd system. The limiting saturation of the alpha -solid solution at 600 tained C is 1.8 wt.% Nd, as determined from microhardness values on quenched samples of variable neodymium composition. The solubility of neodymium is somewhat greater than the solubility of lanthanum and cerium in alpha -titunium because of the lanthanide contraction. Brinnell hardness values, yield strength, elongation, and reduction in cross- section area were also determined at room temperature. Neodymium is more effective than lanthanum or cerium in increasing the handness and strength of titanium. Small additions of Nd(0.5%) decrease the plasticity slightly. The addition of 1.2 wt.% Ce increases the yield strength of titanium from 32 to 38 to 40 hg/mm/sup 2/, while the same amount of neodymium increases the yield strength to 48 to 50 kg/mm/sup 2/. The strength of Ti-Nd alloys continues to increase even with the appearance of a second phase in the alloy, while in the TiLa and Ti- Ce systems a decrease in strength and a sharp drop in plasticity occurs upon the appearance of a second phase. The solubility of neodymium in alpha -titanium varies considerably with temperature. Hence, a noticeable aging effect can be expected, but this must be confirmed by experiment. (TTT)« less
DIRECT FORMATION OF TETRAHYDROPYRANOLS VIA CATALYSIS IN IONIC LIQUID
Utilizing a simple homoallyl alcohol and an aldehyde in the presence of a catalytic amount of cerium triflate, the direct formation of tetrahydropyranol derivatives in ionic liquid is reported.
Geometry of electromechanically active structures in Gadolinium - doped Cerium oxides
Li, Yuanyuan; Kraynis, Olga; Kas, Joshua; ...
2016-05-20
Local distortions from average structure are important in many functional materials, such as electrostrictors or piezoelectrics, and contain clues about their mechanism of work. However, the geometric attributes of these distortions are exceedingly difficult to measure, leading to a gap in knowledge regarding their roles in electromechanical response. This task is particularly challenging in the case of recently reported non-classical electrostriction in Cerium-Gadolinium oxides (CGO), where only a small population of Ce-O bonds that are located near oxygen ion vacancies responds to external electric field. In this study, we used high-energy resolution fluorescence detection (HERFD) technique to collect X-ray absorptionmore » spectra in CGO in situ, with and without an external electric field, coupled with theoretical modeling to characterize three-dimensional geometry of electromechanically active units.« less
Titanium-doped cerium oxide nanoparticles protect cells from hydrogen peroxide-induced apoptosis
Clark, Andrea; Zhu, Aiping; Petty, Howard R.
2014-01-01
To develop new nanoparticle materials possessing anti-oxidative capacity with improved physical characteristics, we have studied titanium-doped cerium oxide (CeTiO2) nanoparticles. CeTiO2 nanoparticles had a mode diameter of 15-20 nm. These nanoparticles demonstrated catalase activity, and did not promote the activation of hemolytic or cytolytic pathways in living cells. Using surface plasmon resonance enhanced microscopy, we find that these nanoparticles associate with cells. Transmission electron microscopy studies demonstrated that these nanoparticles accumulate within the vacuolar compartment of cells. Importantly, CeTiO2 nanoparticles decrease hydrogen peroxide-mediated apoptosis of cells as judged by the reduced cleavage of a caspase 3-sensitive label. CeTiO2 nanoparticles may contribute to deflecting tissue damage in a broad spectrum of oxidant-mediated diseases, such as macular degeneration and Alzheimer's disease. PMID:24791147
Saleh, Tawfik A; Abulkibash, A M; Ibrahim, Atta E
2012-04-01
A simple and fast-automated method was developed and validated for the assay of promethazine hydrochloride in pharmaceutical formulations, based on the oxidation of promethazine by cerium in an acidic medium. A portable system, consisting of a programmable syringe pump connected to a potentiometer, was constructed. The developed change in potential during promethazine oxidation was monitored. The related optimum working conditions, such as supporting electrolyte concentration, cerium(IV) concentration and flow rate were optimized. The proposed method was successfully applied to pharmaceutical samples as well as synthetic ones. The obtained results were realized by the official British pharmacopoeia (BP) method and comparable results were obtained. The obtained t-value indicates no significant differences between the results of the proposed and BP methods, with the advantages of the proposed method being simple, sensitive and cost effective.
Method For Creating Corrosion Resistant Surface On An Aluminum Copper Alloy
Mansfeld, Florian B.; Wang, You; Lin, Simon H.
1997-06-03
A method for treating the surface of aluminum alloys hang a relatively high copper content is provided which includes the steps of removing substantially all of the copper from the surface, contacting the surface with a first solution containing cerium, electrically charging the surface while contacting the surface in an aqueous molybdate solution, and contacting the surface with a second solution containing cerium. The copper is substantially removed from the surface in the first step either by (i) contacting the surface with an acidic chromate solution or by (ii) contacting the surface with an acidic nitrate solution while subjecting the surface to an electric potential. The corrosion-resistant surface resulting from the invention is excellent, consistent and uniform throughout the surface. Surfaces treated by the invention may often be certified for use in salt-water services.
NASA Astrophysics Data System (ADS)
Nitz, D. E.; Curry, J. J.; Buuck, M.; DeMann, A.; Mitchell, N.; Shull, W.
2018-02-01
We report radiative transition probabilities for 5029 emission lines of neutral cerium within the wavelength range 417-1110 nm. Transition probabilities for only 4% of these lines have been previously measured. These results are obtained from a Boltzmann analysis of two high resolution Fourier transform emission spectra used in previous studies of cerium, obtained from the digital archives of the National Solar Observatory at Kitt Peak. The set of transition probabilities used for the Boltzmann analysis are those published by Lawler et al (2010 J. Phys. B: At. Mol. Opt. Phys. 43 085701). Comparisons of branching ratios and transition probabilities for lines common to the two spectra provide important self-consistency checks and test for the presence of self-absorption effects. Estimated 1σ uncertainties for our transition probability results range from 10% to 18%.
Titanium-doped cerium oxide nanoparticles protect cells from hydrogen peroxide-induced apoptosis
NASA Astrophysics Data System (ADS)
Clark, Andrea; Zhu, Aiping; Petty, Howard R.
2013-12-01
To develop new nanoparticle materials possessing antioxidative capacity with improved physical characteristics, we have studied titanium-doped cerium oxide (CeTiO2) nanoparticles. CeTiO2 nanoparticles had mode diameters in the range of 15-20 nm. These nanoparticles demonstrated catalase activity, and did not promote the activation of hemolytic or cytolytic pathways in living cells. Using surface plasmon resonance-enhanced microscopy, we find that these nanoparticles associate with cells. Transmission electron microscopy studies demonstrated that these nanoparticles accumulate within the vacuolar compartment of cells. Importantly, CeTiO2 nanoparticles decrease hydrogen peroxide-mediated apoptosis of cells as judged by the reduced cleavage of a caspase 3-sensitive label. CeTiO2 nanoparticles may contribute to deflecting tissue damage in a broad spectrum of oxidant-mediated diseases, such as macular degeneration and Alzheimer's disease.
Determination of Cerium (IV) Using Rhodamine 6G Fluorescence Quenching
NASA Astrophysics Data System (ADS)
Zhao, Zh.; Sheng, L.; Su, B.; Tao, C.; Jing, W.
2017-11-01
The interaction between rhodamine 6G (Rh6G) and cerium sulfate was studied by the fluorescence quenching method. In a sulfuric acid medium, the interaction of Ce(IV) with Rh6G results in Rh6G fluorescence quenching. The maximum excitation wavelength (λex) and the maximum emission wavelength (λem) are 530 nm and 555 nm, respectively. A good linearity between the relative fl uorescence intensity (ΔF) and Ce(IV) was observed in the range 0.12-1.08 μg/mL. The detection limit was 1.4 × 10-3 μg/mL. The optimum reaction conditions, influencing factors, and effect of coexisting substances were investigated in the experiment. We found that the concentration of Rh6G was 3.2 × 10-6 mol/L, and the fl uorescence intensity was maximum.
METHOD OF PROCESSING MONAZITE SAND
Welt, M.A.; Smutz, M.
1958-08-26
A process is described for recovering thorium, uranium, and rare earth values from monazite sand. The monazite sand is first digested with sulfuric acid and the resulting "monazite sulfate" solution is adjusted to a pH of between 0.4 and 3.0, and oxalate anions are added causing precipitation of the thorium and the rare earths as the oxalates. The oxalate precipitate is separated from the uranium containing supernatant solution, and is dried and calcined to the oxides. The thorium and rare earth oxides are then dissolved in nitric acid and the solution is contacted with tribntyl phosphate whereby an organic extract phase containing the cerium and thorium values is obtained, together with an aqueous raffinate containing the other rare earth values. The organic phase is then separated from the aqueous raffinate and the cerium and thorium are back extracted with an aqueous medium.
NASA Astrophysics Data System (ADS)
Cai, Huisheng; Guo, Feng; Su, Juan
2018-01-01
The specimens of AZ91-xCe(x = 0, 0.3, 0.6, 0.9, 1.2, mass fraction wt%) with different thicknesses were prepared by die casting process, their as-cast microstructure and room temperature mechanical properties were investigated to analyze the change rule of microstructure and mechanical properties of AZ91 magnesium alloy under combined effects of cooling rate and cerium content. The results show that, the microstructure and mechanical properties of AZ91 magnesium alloy were twofold influenced by cooling rate and cerium content. With the increase of cooling rate and Ce content, the average as-cast grain size is evidently refined; the amount of β-Mg17Al12 decreases and distribution becomes discrete. While decreasing cooling rate or increasing Ce content, Al4Ce phase is more and the morphology tends to strip and needle from granular and short rod-like. The tensile strength and elongation of AZ91-xCe magnesium alloy are improved with increasing cooling rate. With the increase of Ce content, the tensile strength and elongation of AZ91-xCe magnesium alloy increased first and decreased afterwards, besides the action of Ce to improve tensile strength and elongation is more evident under faster cooling rate. Mechanical properties of samples are optimal in this work, when Ce content is 0.96% and cooling rate is 39.6 K s-1, tensile strength (259.7 MPa) and elongation (5.5%) are reached maximum, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verma, Seema; Gupta, Rashmi; Bamzai, K.K., E-mail: kkbamz@yahoo.com
2016-09-15
Highlights: • CeV, NdV and mixed CeNdV nanoparticle prepared by chemical co precipitation method. • With mixing of Ce{sup 3+} and Nd{sup 3+} morphology is totally changed in mixed CeNdV. • Optical band energy of CeV, NdV and CeNdV shows good photocatalyst under UV light. • Conduction mechanism in CeV due to large polaron and small polaron in CeNdV. - Abstract: Cerium orthovanadate, neodymium orthovanadate and mixed cerium neodymium orthovanadate nanoparticles was prepared by co-precipitation method. Powder X-ray diffraction reveals tetragonal zircon structure. Slight increase in lattice parameter, volume and decrease in X-ray density inferred that Ce{sup 3+} and Nd{supmore » 3+} ion replaces each other. Transmission electron microscopy suggests change in morphology with the effect of mixing and validates formation of nanocrystalline material. The infrared transmittance spectrum confirmed the presence of various functional groups. Dielectric properties as function of frequency show dielectric constant and loss tangent decreases with increase in frequency which is due to Maxwell–Wagner type interfacial polarization. The variation of AC conductivity measurement with frequency suggests conduction mechanism due to large polaron hopping in CeV whereas small polaron in mixed CeNdV. The activation energy decreases with rising frequency indicates the conduction mechanism is based on polaron hopping between localized states in disordered manner.« less
Results for aliovalent doping of CeBr3 with Ca2+
NASA Astrophysics Data System (ADS)
Guss, Paul; Foster, Michael E.; Wong, Bryan M.; Patrick Doty, F.; Shah, Kanai; Squillante, Michael R.; Shirwadkar, Urmila; Hawrami, Rastgo; Tower, Joshua; Yuan, Ding
2014-01-01
Despite the outstanding scintillation performance characteristics of cerium tribromide (CeBr3) and cerium-activated lanthanum tribromide, their commercial availability and application are limited due to the difficulties of growing large, crack-free single crystals from these fragile materials. This investigation employed aliovalent doping to increase crystal strength while maintaining the optical properties of the crystal. One divalent dopant (Ca2+) was used as a dopant to strengthen CeBr3 without negatively impacting scintillation performance. Ingots containing nominal concentrations of 1.9% of the Ca2+ dopant were grown, i.e., 1.9% of the CeBr3 molecules were replaced by CaBr2 molecules, to match our target replacement of 1 out of 54 cerium atoms be replaced by a calcium atom. Precisely the mixture was composed of 2.26 g of CaBr2 added to 222.14 g of CeBr3. Preliminary scintillation measurements are presented for this aliovalently doped scintillator. Ca2+-doped CeBr3 exhibited little or no change in the peak fluorescence emission for 371 nm optical excitation for CeBr3. The structural, electronic, and optical properties of CeBr3 crystals were studied using the density functional theory within the generalized gradient approximation. Calculated lattice parameters are in agreement with the experimental data. The energy band structures and density of states were obtained. The optical properties of CeBr3, including the dielectric function, were calculated.
Controlling the physics and chemistry of binary and ternary praseodymium and cerium oxide systems.
Niu, Gang; Zoellner, Marvin Hartwig; Schroeder, Thomas; Schaefer, Andreas; Jhang, Jin-Hao; Zielasek, Volkmar; Bäumer, Marcus; Wilkens, Henrik; Wollschläger, Joachim; Olbrich, Reinhard; Lammers, Christian; Reichling, Michael
2015-10-14
Rare earth praseodymium and cerium oxides have attracted intense research interest in the last few decades, due to their intriguing chemical and physical characteristics. An understanding of the correlation between structure and properties, in particular the surface chemistry, is urgently required for their application in microelectronics, catalysis, optics and other fields. Such an understanding is, however, hampered by the complexity of rare earth oxide materials and experimental methods for their characterisation. Here, we report recent progress in studying high-quality, single crystalline, praseodymium and cerium oxide films as well as ternary alloys grown on Si(111) substrates. Using these well-defined systems and based on a systematic multi-technique surface science approach, the corresponding physical and chemical properties, such as the surface structure, the surface morphology, the bulk-surface interaction and the oxygen storage/release capability, are explored in detail. We show that specifically the crystalline structure and the oxygen stoichiometry of the oxide thin films can be well controlled by the film preparation method. This work leads to a comprehensive understanding of the properties of rare earth oxides and highlights the applications of these versatile materials. Furthermore, methanol adsorption studies are performed on binary and ternary rare earth oxide thin films, demonstrating the feasibility of employing such systems for model catalytic studies. Specifically for ceria systems, we find considerable stability against normal environmental conditions so that they can be considered as a "materials bridge" between surface science models and real catalysts.
Pyrazolates advance cerium chemistry: a CeIII/CeIV redox equilibrium with benzoquinone.
Werner, Daniel; Deacon, Glen B; Junk, Peter C; Anwander, Reiner
2017-05-16
Two stable cerium(iv) 3,5-dialkylpyrazolate complexes are presented, namely dimeric [Ce(Me 2 pz) 4 ] 2 (Me 2 pz = 3,5-dimethylpyrazolate) and monomeric Ce(tBu 2 pz) 4 (tBu 2 pz = 3,5-di-tert-butylpyrazolate) along with their trivalent counterparts [Ce(Me 2 pz) 3 ] and [Ce(tBu 2 pz) 3 ] 2 . All complexes were obtained from protonolysis reactions employing the silylamide precursors Ce[N(SiHMe 2 ) 2 ] 4 and Ce[N(SiMe 3 ) 2 ] 3 . Treatment of homoleptic Ce IV and Ce III Me 2 pz complexes with 1,4-hydroquinone (H 2 hq) or 1,4-benzoquinone (bq), respectively, ultimately gave the same trimetallic Ce III species via a cerium redox equilibrium. The Ce III complex Ce 3 (Me 2 pz) 5 (pchd) 2 (L) (pchd = 1,4-bis(3,5-dimethylpyrazol-1-yl)cyclohex-2,5-diene-1,4-diolato; L = Me 2 pzH or (thf) 2 ) results from a di-1,4-pyrazolyl attack on pre-coordinated bq. The reduction of bq by [Ce(Me 2 pz) 3 (thf)] 2 , and re-oxidation by the resulting Ce IV species was supported by UV-vis spectroscopic investigations. Comparisons with the redox-innocent complexes [Ln(Me 2 pz) 3 (thf)] 2 (Ln = La and Pr) revealed far less selective reactions with bq, giving hexametallic and octametallic rare-earth metal side products containing 2-Me 2 pz substituted hq ligands.
NASA Astrophysics Data System (ADS)
Safi, M.; Sarrouj, H.; Sandre, O.; Mignet, N.; Berret, J.-F.
2010-04-01
Recent nanotoxicity studies revealed that the physico-chemical characteristics of engineered nanomaterials play an important role in the interactions with living cells. Here, we report on the toxicity and uptake of cerium and iron oxide sub-10-nm nanoparticles by NIH/3T3 mouse fibroblasts. Coating strategies include low-molecular weight ligands (citric acid) and polymers (poly(acrylic acid), MW = 2000 g mol - 1). Electrostatically adsorbed on the surfaces, the organic moieties provide a negatively charged coating in physiological conditions. We find that most particles were biocompatible, as exposed cells remained 100% viable relative to controls. Only the bare and the citrate-coated nanoceria exhibit a slight decrease in mitochondrial activity at very high cerium concentrations (>1 g l - 1). We also observe that the citrate-coated particles are internalized/adsorbed by the cells in large amounts, typically 250 pg/cell after 24 h incubation for iron oxide. In contrast, the polymer-coated particles are taken up at much lower rates (<30 pg/cell). The strong uptake shown by the citrated particles is related to the destabilization of the dispersions in the cell culture medium and their sedimentation down to the cell membranes. In conclusion, we show that the uptake of nanomaterials by living cells depends on the coating of the particles and on its ability to preserve the colloidal nature of the dispersions.
NASA Astrophysics Data System (ADS)
Amaya, M. A.; Ziwu, E.; Clague, J. W.; Pingitore, N. E., Jr.
2016-12-01
Known for use as mischmetal in metallurgical processing and as an industrial polishing vehicle, cerium dioxide (CeO2) or ceria is increasingly important in the global nanotechnology sector as a catalyst and diesel fuel additive. Investigations of the release, fate, and environmental and human health effects of CeO2 nanoparticles released into the air are particularly evident in Europe, where nano-ceria is used as a mileage extender and soot particle emission inhibitor in diesel fuel. Here we present an extensive (>2500 samples) data set of Ce analyses in air samples collected over 1-week continuous periods at 8 sites in El Paso, TX, USA at various times during the years 2006-2009. Nano-ceria was not approved for on-road vehicle use during this time frame, so these data establish a local baseline for potential diesel-associated emissions should approval be granted for nano-ceria use in the future. Dichotomous collectors provided simultaneous separate samples of the PMfine (<2.5 µm) and PMcoarse(2.5 - 10 µm) fractions. For all sites, more Ce was measured (by XRF) in the PMcoarse than in the PMfine, with typical Ce concentrations of 2 ng m-3 for the coarse and 1 ng m-3 for the fine. Following the general observation that coarse PM is of geologic origin and fine is anthropogenic, it appears that the majority of atmospheric Ce in El Paso is of natural origin. Further supporting this view, there was no consistent trend for higher airborne Ce values at sampling stations in the urban core, where vehicular or industrial releases would be greater relative to more rural sites. No seasonal trend was obvious in the multi-year data set, as might be expected for anthropogenic releases trapped by winter inversions. Note, however, that the dry desert and windy conditions in El Paso produce unusually high levels of ambient coarse PM. Although we have not yet identified the compounds of airborne Ce, our findings indirectly suggest that anthropogenic nano-ceria is not the dominant species.
Sulfation of ceria-zirconia model automotive emissions control catalysts
NASA Astrophysics Data System (ADS)
Nelson, Alan Edwin
Cerium-zirconium mixed metal oxides are used in automotive emissions control catalysts to regulate the partial pressure of oxygen near the catalyst surface. The near surface oxygen partial pressure is regulated through transfer of atomic oxygen from the ceria-zirconia solid matrix to the platinum group metals to form metal oxides capable of oxidizing carbon monoxide and unburned hydrocarbons. Although the addition of zirconium in the cubic lattice of ceria increases the oxygen storage capacity and thermal stability of the ceria matrix, the cerium-zirconium oxide system remains particularly susceptible to deactivation from sulfur compounds. While the overall effect of sulfur on these systems is understood (partially irreversible deactivation), the fundamental and molecular interaction of sulfur with ceria-zirconia remains a challenging problem. Ceria-zirconia metal oxide solid solutions have been prepared through co-precipitation with nitrate precursors. The prepared powders were calcined and subsequently formed into planer wafers and characterized for chemical and physical attributes. The prepared samples were subsequently exposed to a sulfur dioxide based environment and characterized with spectroscopic techniques to characterize the extent of sulfation and the nature of surface sulfur species. The extent of sulfation of the model ceria-zirconia systems was characterized with Auger electron spectroscopy (AES) prior to and after treatment in a microreactor. Strong dependencies were observed between the atomic ratio of ceria to zirconia and the extent of sulfation. In addition, the partial pressure of sulfur dioxide during treatments also correlated to the extent of sulfation, while temperature only slightly effected the extent of sulfation. The AES data suggests the gas phase sulfur dioxide preferentially chemisorbs on surface ceria atoms and the extent of sulfation is heavily dependent on sulfur dioxide concentrations and only slightly dependent on catalyst temperatures, as confirmed by thermal programmed desorption (TPD). While hydrogen exposure indicated slight sulfur removal, exposure to a redox environment or atmosphere nearly eliminated the quantity of chemisorbed surface sulfur. The nature of sulfur removal is attributed to the inherent redox properties of ceria-zirconia systems. The complete analysis provides mechanistic insight into sulfation dependencies and fundamental information regarding sulfur adsorption on ceria-zirconia model automotive emissions control systems.
Nickel aluminides and nickel-iron aluminides for use in oxidizing environments
Liu, Chain T.
1988-03-15
Nickel aluminides and nickel-iron aluminides treated with hafnium or zirconium, boron and cerium to which have been added chromium to significantly improve high temperature ductility, creep resistance and oxidation properties in oxidizing environments.
International Arctic Research Programs
1989-07-01
beryllium graphite - (moonstone) cerium marble garnet chrniun ol ivine gronlandite copper phosphorus jasper gold soapstone kornerupine iron sulphur...Green- from the magnetic pole to the auroral zone. landic sea under marginal conditions where Besides these groundbased activities, mea- surements of
Preparation of core-shell Ag@CeO2 nanocomposite by LSPR photothermal induced interface reaction
NASA Astrophysics Data System (ADS)
Zhong, H. X.; Wei, Y.; Yue, Y. Z.; Zhang, L. H.; Liu, Y.
2016-04-01
The core-shell structure of Ag@CeO2 was prepared by a novel and facile method, which was based on the photothermal effect of localized surface plasmon resonance (LSPR). Nanoparticles (NPs) of Ag were dispersed in a solution containing citric acid, ethylene glycol and cerium nitrate, then under irradiation, Ag NPs generated heat from LSPR and the heat-induced polymerization reaction in the interface between Ag and the sol resulted in cerium gel formation only on the surface of the Ag NPs. After calcination, Ag@CeO2 was successfully obtained, then Ag@CeO2/SiO2 was prepared by loading Ag@CeO2 on SiO2. The resultant catalyst exhibited favorable activity and stability for CO oxidation. The preparation method proposed here should be extendable to other composites with metallic cores and oxide shells in which the metallic nanoparticle possesses LSPR properties.
Structural, optical and dielectric properties of Sn0.97Ce0.03O2 nanostructures
NASA Astrophysics Data System (ADS)
Ahmed, Ateeq; Siddique, M. Naseem; Ali, Tinku; Tripathi, P.
2018-05-01
In present work, 3% cerium doped SnO2 (Sn0.97Ce0.03O2) nanoparticles (NPs) have been synthesized by sol-gel method. The prepared sample has been characterized by using various techniques such as XRD, UV-visible absorption spectroscopy and LCR meter measurements. Structural Rietveld refinement of XRD data reveals that (Sn0.97Ce0.03O2) sample has a pure single phase tetragonal structure with space group (P42/mnm) without creating any impurity phase such as cerium oxide. UV-visible spectroscopy determines band gap value 3.47 eV for (Sn0.97Ce0.03O2) NPs using Tauc's relation. Dielectric constant and loss decreased with increase in frequency while ac conductivity was found to increase with increase in frequency. The observed dielectric results has been explained in the light of Maxwell-Wagner model.
Pharmacological potential of cerium oxidenanoparticles
NASA Astrophysics Data System (ADS)
Celardo, Ivana; Pedersen, Jens Z.; Traversa, Enrico; Ghibelli, Lina
2011-04-01
Nanotechnology promises a revolution in pharmacology to improve or create ex novo therapies. Cerium oxidenanoparticles (nanoceria), well-known as catalysts, possess an astonishing pharmacological potential due to their antioxidant properties, deriving from a fraction of Ce3+ ions present in CeO2. These defects, compensated by oxygen vacancies, are enriched at the surface and therefore in nanosized particles. Reactions involving redox cycles between the Ce3+ and Ce4+oxidation states allow nanoceria to react catalytically with superoxide and hydrogen peroxide, mimicking the behavior of two key antioxidant enzymes, superoxide dismutase and catalase, potentially abating all noxious intracellularreactive oxygen species (ROS) via a self-regenerating mechanism. Hence nanoceria, apparently well tolerated by the organism, might fight chronic inflammation and the pathologies associated with oxidative stress, which include cancer and neurodegeneration. Here we review the biological effects of nanoceria as they emerge from in vitro and in vivo studies, considering biocompatibility and the peculiar antioxidant mechanisms.
Protection from radiation-induced pneumonitis using cerium oxide nanoparticles.
Colon, Jimmie; Herrera, Luis; Smith, Joshua; Patil, Swanand; Komanski, Chris; Kupelian, Patrick; Seal, Sudipta; Jenkins, D Wayne; Baker, Cheryl H
2009-06-01
In an effort to combat the harmful effects of radiation exposure, we propose that rare-earth cerium oxide (CeO(2)) nanoparticles (free-radical scavengers) protect normal tissue from radiation-induced damage. Preliminary studies suggest that these nanoparticles may be a therapeutic regenerative nanomedicine that will scavenge reactive oxygen species, which are responsible for radiation-induced cell damage. The effectiveness of CeO(2) nanoparticles in radiation protection in murine models during high-dose radiation exposure is investigated, with the ultimate goal of offering a new approach to radiation protection, using nanotechnology. We show that CeO(2) nanoparticles are well tolerated by live animals, and they prevent the onset of radiation-induced pneumonitis when delivered to live animals exposed to high doses of radiation. In the end, these studies provide a tremendous potential for radioprotection and can lead to significant benefits for the preservation of human health and the quality of life for humans receiving radiation therapy.
Dip-coating of nano-sized CeO2 on SiC membrane and its effect on thermal diffusivity.
Park, Jihye; Jung, Miewon
2014-05-01
CeO2-SiC mixed composite membrane was fabricated with porous SiC ceramic and cerium oxide powder synthesized by sol-gel process. This CeO2-SiC membrane and SiC membrane which is made by the purified SiC ceramic were pressed and sintered in Ar atmosphere. And then, the SiC membrane was dip-coated by cerium oxide precursor sol solution and heat-treated in air. The surface morphology, particle size, porosity and structure analysis of the mixing and dip-coating SiC membrane were monitored by FE-SEM and X-ray diffraction analysis. Surface area, pore volume and pore diameter were determined by BET instrument. Thermal diffusivity was measured by laser flash method with increasing temperature. The relation between porosity and thermal diffusivity from different preparation process has been discussed on this study.
The formation of cobalt-bearing ferromanganese crusts under fluid destruction of silicate matter
NASA Astrophysics Data System (ADS)
Maksimov, S. O.; Safronov, P. P.
2016-02-01
The processes of fluid destruction of various silicate rocks under diffusion of flows of compressed gases (mainly carbonaceous) were studied. The gas condensate nature was ascertained for the forming alumoslilicate and ore (cobalt-iron-manganese hydroxide) substances produced under this fluid destruction in the forms of microcrusts and microconcretions. The ore condensates contained in high concentrations the typomorphic elements of oceanic ferromanganese formations (Mn, Co, Ni, Cu, Pb, Ce, and Pt). The elemental composition of the ore oxide substance formed under the destruction of various silicate matrices exhibits a definite degree of endemism with prevalence of the Co-Mn association. The pronounced concentration of barium is related to the substantially carbonaceous composition of the fluid systems. A cerium paradox is revealed: Ce3+ is oxidized into Ce4+ and absorbed by ferromanganese hydrogel and the minimum of cerium appears in rare-earth phosphates.
Grain size dependence of dielectric relaxation in cerium oxide as high-k layer
2013-01-01
Cerium oxide (CeO2) thin films used liquid injection atomic layer deposition (ALD) for deposition and ALD procedures were run at substrate temperatures of 150°C, 200°C, 250°C, 300°C, and 350°C, respectively. CeO2 were grown on n-Si(100) wafers. Variations in the grain sizes of the samples are governed by the deposition temperature and have been estimated using Scherrer analysis of the X-ray diffraction patterns. The changing grain size correlates with the changes seen in the Raman spectrum. Strong frequency dispersion is found in the capacitance-voltage measurement. Normalized dielectric constant measurement is quantitatively utilized to characterize the dielectric constant variation. The relationship extracted between grain size and dielectric relaxation for CeO2 suggests that tuning properties for improved frequency dispersion can be achieved by controlling the grain size, hence the strain at the nanoscale dimensions. PMID:23587419
Direct Neutron Spectroscopy Observation of Cerium Hydride Species on a Cerium Oxide Catalyst
Wu, Zili; Cheng, Yongqiang; Tao, Franklin; ...
2017-06-27
Ceria has recently shown intriguing hydrogenation reactivity in catalyzing alkyne selectively to alkenes. However, the mechanism of the hydrogenation reaction, especially the activation of H 2, remains experimentally elusive. In this paper, we report the first direct spectroscopy evidence for the presence of both surface and bulk Ce–H species upon H 2 dissociation over ceria via in situ inelastic neutron scattering spectroscopy. Combined with in situ ambient-pressure X-ray photoelectron spectroscopy, IR, and Raman spectroscopic studies, the results together point to a heterolytic dissociation mechanism of H 2 over ceria, leading to either homolytic products (surface OHs) on a close-to-stoichiometric ceriamore » surface or heterolytic products (Ce–H and OH) with the presence of induced oxygen vacancies in ceria. Finally, the finding of this work has significant implications for understanding catalysis by ceria in both hydrogenation and redox reactions where hydrogen is involved.« less
Direct Neutron Spectroscopy Observation of Cerium Hydride Species on a Cerium Oxide Catalyst
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Zili; Cheng, Yongqiang; Tao, Franklin
Ceria has recently shown intriguing hydrogenation reactivity in catalyzing alkyne selectively to alkenes. However, the mechanism of the hydrogenation reaction, especially the activation of H 2, remains experimentally elusive. In this paper, we report the first direct spectroscopy evidence for the presence of both surface and bulk Ce–H species upon H 2 dissociation over ceria via in situ inelastic neutron scattering spectroscopy. Combined with in situ ambient-pressure X-ray photoelectron spectroscopy, IR, and Raman spectroscopic studies, the results together point to a heterolytic dissociation mechanism of H 2 over ceria, leading to either homolytic products (surface OHs) on a close-to-stoichiometric ceriamore » surface or heterolytic products (Ce–H and OH) with the presence of induced oxygen vacancies in ceria. Finally, the finding of this work has significant implications for understanding catalysis by ceria in both hydrogenation and redox reactions where hydrogen is involved.« less
NASA Astrophysics Data System (ADS)
Singh, Monika; Kumar, Dinesh; Singh, Akhilesh Kumar
2018-04-01
For solid oxide fuel cell electrode material, calcium doped lanthanum manganite La0.4Ca0.6MnO3 (LCMO) and cerium-incorporated on Ca-site with composition La0.40Ca0.55Ce0.05MnO3 (LCCMO) were synthesized using most feasible and efficient glycine-nitrate method. The formation of crystalline single phase was confirmed by x-ray diffraction (XRD). The Rietveld analysis reveals that both systems crystallize into orthorhombic crystal structure with Pnma space group. Additionally, 8 mole % Y2O3 stabilized ZrO2 (8YSZ) solid electrolyte was also synthesized using high energy ball mill to check the reaction with electrode materials. It was found that the substitution of Ce+4 cations in LCMO perovskite suppressed formation of undesired insulating CaZrO3 phase.
High performance aluminum–cerium alloys for high-temperature applications
Sims, Zachary C.; Rios, Orlando R.; Weiss, David; ...
2017-08-01
Light-weight high-temperature alloys are important to the transportation industry where weight, cost, and operating temperature are major factors in the design of energy efficient vehicles. Aluminum alloys fill this gap economically but lack high-temperature mechanical performance. Alloying aluminum with cerium creates a highly castable alloy, compatible with traditional aluminum alloy additions, that exhibits dramatically improved high-temperature performance. These compositions display a room temperature ultimate tensile strength of 400 MPa and yield strength of 320 MPa, with 80% mechanical property retention at 240 °C. A mechanism is identified that addresses the mechanical property stability of the Al-alloys to at least 300more » °C and their microstructural stability to above 500 °C which may enable applications without the need for heat treatment. Lastly, neutron diffraction under load provides insight into the unusual mechanisms driving the mechanical strength.« less
NASA Astrophysics Data System (ADS)
Nabih, Nermeen; Schiller, Renate; Lieberwirth, Ingo; Kockrick, Emanuel; Frind, Robert; Kaskel, Stefan; Weiss, Clemens K.; Landfester, Katharina
2011-04-01
Cerium(IV) oxide nanoparticles were synthesized using an inverse miniemulsion technique with cerium nitrate hexahydrate as precursor. The resulting nanocrystallites are as small as 5 nm with a specific surface area of 158 m2 g - 1 after calcination at 400 °C. With the addition of cetyltrimethylammonium bromide (CTAB) or (poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide)) triblock copolymers (PEO-PPO-PEO) as template in the miniemulsion droplets, the specific surface area can be increased up to 255 m2 g - 1. The miniemulsions were characterized by dynamic light scattering (DLS) and the obtained oxides were examined by x-ray diffraction (XRD), nitrogen sorption (BET and BJH), and transmission electron microscopy (TEM). The catalytic activity of the resulting ceria was investigated for the temperature-programmed oxidation (TPO) of methane.
Johnston-Peck, Aaron C; Winterstein, Jonathan P; Roberts, Alan D; DuChene, Joseph S; Qian, Kun; Sweeny, Brendan C; Wei, Wei David; Sharma, Renu; Stach, Eric A; Herzing, Andrew A
2016-03-01
Low-angle annular dark field (LAADF) scanning transmission electron microscopy (STEM) imaging is presented as a method that is sensitive to the oxidation state of cerium ions in CeO2 nanoparticles. This relationship was validated through electron energy loss spectroscopy (EELS), in situ measurements, as well as multislice image simulations. Static displacements caused by the increased ionic radius of Ce(3+) influence the electron channeling process and increase electron scattering to low angles while reducing scatter to high angles. This process manifests itself by reducing the high-angle annular dark field (HAADF) signal intensity while increasing the LAADF signal intensity in close proximity to Ce(3+) ions. This technique can supplement STEM-EELS and in so doing, relax the experimental challenges associated with acquiring oxidation state information at high spatial resolutions. Published by Elsevier B.V.
Saleh, Tawfik A.; Abulkibash, A.M.; Ibrahim, Atta E.
2011-01-01
A simple and fast-automated method was developed and validated for the assay of promethazine hydrochloride in pharmaceutical formulations, based on the oxidation of promethazine by cerium in an acidic medium. A portable system, consisting of a programmable syringe pump connected to a potentiometer, was constructed. The developed change in potential during promethazine oxidation was monitored. The related optimum working conditions, such as supporting electrolyte concentration, cerium(IV) concentration and flow rate were optimized. The proposed method was successfully applied to pharmaceutical samples as well as synthetic ones. The obtained results were realized by the official British pharmacopoeia (BP) method and comparable results were obtained. The obtained t-value indicates no significant differences between the results of the proposed and BP methods, with the advantages of the proposed method being simple, sensitive and cost effective. PMID:23960787
Study on the poisoning effect-of non-vanadium catalysts by potassium
NASA Astrophysics Data System (ADS)
Zeng, Huanmu; Liu, Ying; Yu, Xiaowei; Lin, Yasi
2018-02-01
The poisoning effect of catalyst by alkali metals is one of the problems in the selective catalytic reduction (SCR) of NO by NH3. Serious deactivation by alkali poisoning have been proved to take place in the commercial vanadium catalyst. Recently, non-vanadium catalysts such as copper oxides, manganese oxides, chromium oxides and cerium oxides have attracted special attentions in SCR application. However, their tolerance in the presence of alkali metals is still doubtful. In this paper, copper oxides, manganese oxides, chromium oxides and cerium oxides supported on TiO2 nanoparticle was prepared by impregnating method. Potassium nitrate was chosen as the precursor of poisoner. Catalytic activities of these catalysts were evaluated before and after the addition of potassium. Some characterization methods including X-ray diffraction and temperature programmed desorption was utilized to reveal the main reason of alkali deactivation.
Tang, Wen-Xiang; Gao, Pu-Xian
2016-11-10
Nanostructured cerium oxide (CeO 2) with outstanding physical and chemical properties has attracted extensive interests over the past few decades in environment and energy-related applications. With controllable synthesis of nanostructured CeO 2, much more features were technologically brought out from defect chemistry to structure-derived effects. This paper highlights recent progress on the synthesis and characterization of nanostructured ceria-based materials as well as the traditional and new applications. Specifically, several typical applications based on the desired ceria nanostructures are focused to showcase the importance of nanostructure-derived effects. Moreover, some challenges and perspectives on the nanostructured ceria are presented, such as defectsmore » controlling and retainment, scale-up fabrication, and monolithic devices. Hopefully, this paper can provide an improved understanding of nanostructured CeO 2 and offer new opportunities to promote the further research and applications in the future.« less
Signal pathway of hippocampal apoptosis and cognitive impairment of mice caused by cerium chloride.
Cheng, Zhe; Li, Na; Cheng, Jie; Hu, Renping; Gao, Guodong; Cui, Yaling; Gong, Xiaolan; Wang, Ling; Hong, Fashui
2012-12-01
Experimental studies have demonstrated that lanthanides could impair cognitive functions of children and animals, but very little is known about the hippocampal apoptosis and its molecular mechanism. The study investigated the signal pathway of hippocampal apoptosis induced by intragastric administration of CeCl(3) for 60 consecutive days. It showed that cerium had been significantly accumulated in the mouse hippocampus, and CeCl(3) caused hippocampal apoptosis and impairment of spatial recognition memory of mice. CeCl(3) effectively activated caspase-3 and -9, inhibited Bcl-2, and increased the levels of Bax and cytochrome c, promoted accumulation of reactive oxygen species in the mouse hippocampus. It implied that CeCl(3)-induced apoptosis in the mouse hippocampus could be triggered via mitochondrion-mediated pathway. Our findings suggest the need for great caution to handle the lanthanides for workers and consumers. 2011 Wiley Periodicals, Inc
[Removal Characteristics of Elemental Mercury by Mn-Ce/molecular Sieve].
Tan, Zeng-qiang; Niu, Guo-ping; Chen, Xiao-wen; An, Zhen
2015-06-01
The impregnation method was used to support molecular sieve with active manganese and cerium components to obtain a composite molecular sieve catalyst. The mercury removal performance of the catalyst was studied with a bench-scale setup. XPS analysis was used to characterize the sample before and after the modification in order to study the changes in the active components of the catalyst prepared. The results showed that the catalyst carrying manganese and cerium components had higher oxidation ability of elemental mercury in the temperature range of 300 degrees C - 450 degrees C, especially at 450 degrees C, the oxidation efficiency of elemental mercury was kept above 80%. The catalyst had more functional groups that were conducive to the oxidation of elemental mercury, and the mercury removal mainly depended on the chemical adsorption. The SO2 and NO in flue gas could inhibit the oxidation of elemental mercury to certain extent.
Loaded Ce-Ag organic-inorganic hybrids and their antibacterial activity.
Truffault, Laurianne; Rodrigues, Danilo Fernando; Salgado, Hérida Regida Nunes; Santilli, Celso Valentim; Pulcinelli, Sandra Helena
2016-11-01
There are requirements for surfaces with antibacterial properties in various technological fields. U-PEO hybrids with antibacterial properties were synthesized by the sol-gel process, incorporating combinations of cerium and silver salts at different silver molar fractions (0, 0.02, 0.05, 0.10, and 1) relative to the total amount of doped cations. The loaded hybrids were characterized by TGA, XRD, and Raman spectroscopy. Release tests were performed using UV-vis spectroscopy, and the antibacterial properties of the hybrids were studied in agar tests and turbidimetry assays. The nanostructural evolution of the hybrids during the release of the antibacterial agents was investigated by in situ SAXS. XRD results showed the presence of the AgCl crystalline phase in the loaded hybrids from a silver molar fraction of 0.05. Raman spectroscopy evidenced the interaction of silver cations with the polymeric part of the hybrid. SAXS results confirmed these interactions and showed that cerium species interacted with both organic and inorganic parts of the hybrids. The loaded U-PEO hybrids were found to release all the incorporated cerium in 1h, while the hybrid containing 100% of silver released only 78% of the incorporated silver. All the loaded hybrids displayed antibacterial activity against the Pseudomonas aeruginosa bacterium. The antibacterial activity was found to increase with silver molar fraction. Due to its high antibacterial activity and low silver molar fraction, the loaded hybrid with silver molar fraction of 0.10 seemed to be a good compromise between efficiency, esthetic transparency, and photostability. Copyright © 2016 Elsevier B.V. All rights reserved.
Characterization of CeO{sub 2} crystals synthesized with different amino acids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atla, Shashi B.; Wu, Min-Nan; Pan, Wei
We investigated the relationship between the structures of the CeO{sub 2} products (particle size, morphology and their characteristics) prepared using different amino acids. Cerium hydroxide carbonate precursors were initially prepared by a hydrothermal method and were subsequently converted to CeO{sub 2} by its thermal decomposition. Various amino acids were used as structure-directing agents in the presence of cerium nitrate and urea as precursors. The results indicate morphology selectivity using different amino acids; CeO{sub 2} structures, such as quasi-prism-sphere, straw-bundle, urchin-flower like and polyhedron prisms, indeed could be produced. Raman and photoluminescence studies indicate the presence of oxygen vacancies in themore » CeO{sub 2} samples. Photoluminescence spectra of CeO{sub 2} with L-Valine exhibit stronger emission compared with other amino acids utilized under this study, indicating the higher degree of defects in these particles. This study clearly indicates that the degree of defects varied in the presence of different amino acids. Improved precision to control the crystal morphology is important in various material applications and our study provides a novel method to achieve this specificity. - Highlights: • We used urea hydrolysis of process for synthesis of CeO{sub 2}. • Structures have been directed using various amino acids. • We obtained straw bundle-like, quasi prism-sphere, polyhedron prisms and urchin flower-like based on amino acids. • We have found that amino acids could achieve the specificity of different degrees of defects. • This could provide the “tailor-make” of cerium crystals.« less
NASA Astrophysics Data System (ADS)
Cunha, Katia; Smith, Verne V.; Hasselquist, Sten; Souto, Diogo; Shetrone, Matthew D.; Allende Prieto, Carlos; Bizyaev, Dmitry; Frinchaboy, Peter; García-Hernández, D. Anibal; Holtzman, Jon; Johnson, Jennifer A.; Jőnsson, Henrik; Majewski, Steven R.; Mészáros, Szabolcs; Nidever, David; Pinsonneault, Mark; Schiavon, Ricardo P.; Sobeck, Jennifer; Skrutskie, Michael F.; Zamora, Olga; Zasowski, Gail; Fernández-Trincado, J. G.
2017-08-01
Nine Ce II lines have been identified and characterized within the spectral window observed by the Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey (between λ1.51 and 1.69 μm). At solar metallicities, cerium is an element that is produced predominantly as a result of the slow capture of neutrons (the s-process) during asymptotic giant branch stellar evolution. The Ce II lines were identified using a combination of a high-resolution (R=λ /δ λ ={{100,000}}) Fourier Transform Spectrometer (FTS) spectrum of α Boo and an APOGEE spectrum (R = 22,400) of a metal-poor, but s-process enriched, red giant (2M16011638-1201525). Laboratory oscillator strengths are not available for these lines. Astrophysical gf-values were derived using α Boo as a standard star, with the absolute cerium abundance in α Boo set by using optical Ce II lines that have precise published laboratory gf-values. The near-infrared Ce II lines identified here are also analyzed, as consistency checks, in a small number of bright red giants using archival FTS spectra, as well as a small sample of APOGEE red giants, including two members of the open cluster NGC 6819, two field stars, and seven metal-poor N- and Al-rich stars. The conclusion is that this set of Ce II lines can be detected and analyzed in a large fraction of the APOGEE red giant sample and will be useful for probing chemical evolution of the s-process products in various populations of the Milky Way.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conner, Benjamin S.; McGuire, Michael A.; Veedu, Shanavas Kavungal
Here we examine the intrinsic magnetic and structural properties of the title alloys, permanent magnet materials based on the abundant rare-earth elements lanthanum and cerium, since these properties (T C, M sH a(K 1, K 2)) will set the upper limits on the quality of permanent magnet that can be fabricated from said alloys. Ce 2Co 16Ti has a high magnetic anisotropy (H a = 65 kOe) but a relatively low saturation magnetization (M s = 7.3 kG), and La 2Co 16Ti has a high Ms(9.5 kG) but Ha too low for most applications (16 kOe). Though these two end-membersmore » have previously well-known properties, changing economic conditions have made re-examination of systems containing cerium and lanthanum necessary as the economic viability of rare earth mining becomes dependent on extraction of products beyond what is currently considered useful and profitable within the rare earth elements. We find that replacing some lanthanum with cerium in La 2Co 16Ti increases H a by a factor of more than two, while decreasing M s by less than 5%. The measured Ms indicate maximum possible energy products in excess of 20 MG·Oe in these materials, which have Curie temperatures near 600 °C. Real energy products are expected to be greatest near x = 1. In conclusion, these findings identify La xCe 2-xCo 16Ti as a promising system for development of so-called gap magnets that fill the energy product gap between expensive rare-earth magnets and current non-rare earth alternatives.« less
Ouyang, Zi; Mainali, Madan Kumar; Sinha, Neeharika; Strack, Guinevere; Altundal, Yucel; Hao, Yao; Winningham, Thomas Andrew; Sajo, Erno; Celli, Jonathan; Ngwa, Wilfred
2016-01-01
The purpose of this study is to investigate the feasibility of using cerium oxide nanoparticles (CONPs) as radical scavengers during accelerated partial breast irradiation (APBI) to protect normal tissue. We hypothesize that CONPs can be slowly released from the routinely used APBI balloon applicators—via a degradable coating—and protect the normal tissue on the border of the lumpectomy cavity over the duration of APBI. To assess the feasibility of this approach, we analytically calculated the initial concentration of CONPs required to protect normal breast tissue from reactive oxygen species (ROS) and the time required for the particles to diffuse to various distances from the lumpectomy wall. Given that cerium has a high atomic number, we took into account the possible inadvertent dose enhancement that could occur due to the photoelectric interactions with radiotherapy photons. To protect against a typical MammoSite treatment fraction of 3.4 Gy, 5 ng-g−1 of CONPs is required to scavenge hydroxyl radicals and hydrogen peroxide. Using 2 nm sized NPs, with an initial concentration of 1 mg-g−1, we found that 2–10 days of diffusion is required to obtain desired concentrations of CONPs in regions 1–2 cm away from the lumpectomy wall. The resultant dose enhancement factor (DEF) is less than 1.01 under such conditions. Our results predict that CONPs can be employed for radioprotection during APBI using a new design in which balloon applicators are coated with the NPs for sustained/controlled in-situ release from within the lumpectomy cavity. PMID:27053452
NASA Astrophysics Data System (ADS)
Edleman, Nikki Lynn
A new class of volatile, low-melting, fluorine-free lanthanide metal-organic chemical vapor deposition (MOCVD) precursors has been developed. The neutral, monomeric cerium, neodymium, gadolinium, and erbium complexes are coordinatively saturated by a versatile, multidentate, ether-functionalized beta-ketoiminate ligand, and complex melting point and volatility characteristics can be tuned by altering the alkyl substituents on the ligand periphery. Direct comparison with lanthanide beta-diketonate complexes reveals that the present precursor class is a superior choice for lanthanide oxide MOCVD. Epitaxial CeO 2 buffer layer films have been grown on (001) YSZ substrates by MOCVD at significantly lower temperatures than previously reported using one of the newly developed cerium precursors. High-quality YBCO films grown on these CeO2 buffer layers by POMBE exhibit very good electrical transport properties. The cerium complex has therefore been explicitly demonstrated to be a stable and volatile precursor and is attractive for low-temperature growth of coated conductor multilayer structures by MOCVD. Gallium-indium-oxide thin films (GaxIn2-xO 3), x = 0.0˜1.1, have been grown by MOCVD using the volatile metal-organic precursors In(dpm)3 and Ga(dpm)3. The films have a homogeneously Ga-substituted, cubic In2O3 microstructure randomly oriented on quartz or heteroepitaxial on (100) YSZ single-crystal substrates. The highest conductivity of the as-grown films is found at x = 0.12. The optical transmission window and absolute transparency of the films rivals or exceeds that of the most transparent conductive oxides known. Reductive annealing results in improved charge transport characteristics with little loss of optical transparency. No significant difference in electrical properties is observed between randomly oriented and heteroepitaxial films, thus arguing that carrier scattering effects at high-angle grain boundaries play a minor role in the film conductivity mechanism. The synthesis and characterization of a new magnesium MOCVD precursor, Mg(dpm)2(TMEDA) is detailed. It is shown that the donating ligand TMEDA prevents oligomerization and subsequent volatility depression as observed in the commonly used [Mg(dpm)2]2. The superiority of Mg(dpm)2(TMEDA) as an MOCVD precursor is explicitly demonstrated by growth of epitaxial MgO thin films on single-crystal SrTiO3 substrates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Yushan
In this work, multiple polymer backbones were screened for oxidation resistance and multiple chemistries were explored for tethering tris(2,4,6-trimethylphenyl)phosphonium (9MeTTP +) to the selected polymer backbones. A new tethering strategy through brominated 9MeTTP+ cation was developed and used to obtain the desired 9MeTTP +-functionalized polysulfone (PSf) and hexafluoro polybenzimidazole (F 6PBI) polymer. The crosslinked 9MeTTP+-functionalized hexafluoro polybenzimidazole (9MeTTP-F 6PBI) polymer demonstrated excellent oxidation stability that met the go-no-go milestone of the first year. However, large-scale bromination inevitably involved multi-bromination products, which led to polymer crosslinking in the next tethering. A new synthesis strategy with diiodobutane as linker was developed tomore » overcome the crosslinking problem. The prepared 9MeTTP +-F 6PBI membrane without crosslinking showed only 3.58% water uptake and less than 1 mS/cm OH - conductivity in water at 20°C, possibly due to the hydrophobic 9MeTTP + cation. In order to improve the conductivity, hydrophilic tris(2,4,6-trimethoxylphenyl)phosphonium (9MeOTTP+) cation was tethered to an F 6PBI backbone, and a 9MeOTTP +-F 6PBI PTFE reinforced membrane was prepared with 17.4% water uptake to increase the mechanical strength and durability in cerium (IV) solution. A 9MeOTTP+-F 6PBI PTFE reinforced membrane had less than 20% conductivity loss during an accelerated stability test in 0.5 M cerium (IV) and 1.3 M HClO 4 at 55°C for 100 hours. Moreover, a 9MeOTTP +-F 6PBI PTFE reinforced membrane had more than double the lifetime of commercial FAS-30 and FAB-PK-130 AEMs during an accelerated stability test in 0.5 M cerium (IV) and 1.3 M HClO 4 at 55°C. Low area specific resistance (ASR) of a 9MeOTTP +-F 6PBI PTFE reinforced membrane in the sulfuric acid system was also achieved due to the high acid doping ability of the polymer structure. The cationic 9MeOTTP +-F 6PBI PTFE reinforced membrane shows a cerium (IV) permeability that is 27-fold lower than that of Nafion 212. Excellent voltage and energy efficiencies with a 9MeOTTP +-F 6PBI PTFE reinforced membrane were demonstrated in an all-vanadium redox flow battery (VRFB).« less
The genotoxicity of titanium dioxide and cerium oxide nanoparticles in vitro
The use ofengineered nanoparticles in both current and future consumer products is steadily increasing. However, the health effects of exposure to these nanoparticles are not thoroughly understood. Recently, particular emphasis has been placed on particle characterization and the...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hermus, Martin; Phan, Phu-Cuong; Duke, Anna C.
The preparation of cerium-substituted barium lutetium borate, Ba2Lu5B5O17:Ce3+, is achieved using high temperature solid state synthesis. This compound crystallizes in the Ba2Y5B5O17-type structure and shows an efficient blue emission (λmax = 447 nm) when excited by UV-light (λex = 340 nm) with a photoluminescent quantum yield near 90%, a fast luminescence decay time (<40 ns), and a thermal quenching temperature of 452 K. Further, preparing a solid solution following Ba2(Y1–xLux)5B5O17:Ce3+ (x = 0, 0.25, 0.50, 0.75, 1) confirms that all compounds are isostructural and follow Vegard’s law. Substituting Y3+ for Lu3+ yields a nearly constant emission spectrum that blue-shifts bymore » only 9 nm and has a consistent luminescence lifetime across the range prepared. The photoluminescent quantum yield (PLQY) and thermal quenching (T50) of the solid solution, however, are dramatically impacted by the composition, with the PLQY decreasing to ≈70% and the T50 dropping 49 K going from x = 1 to x = 0. These significant changes in the optical properties likely stem from enhanced structural rigidity as the larger, more polarizable Y3+ is substituted for the smaller, harder Lu3+ cation. These results highlight the importance of optimizing chemical bonding to improve a phosphor’s optical properties.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Estes, Shanna L.; Antonio, Mark R.; Soderholm, L.
2016-03-17
We describe the synthesis and characterization of three glycine-stabilized hexanuclear Cely cluster compounds, each containing the [Ce-6(mu(3)-O)(4)(mu(3)-OH)(4)](12+) core structure. Crystallized from aqueous nitrate solutions with pH < 0, the core cluster structures exhibit variable decoration by nitrate, glycine, and water ligands depending on solution conditions, where increased nitrate and glycine decoration of the cluster core was observed for crystals synthesized at high Ce and nitrate concentrations. No other crystalline products were observed using this synthetic route. In addition to confirming the tetravalent oxidation state of cerium in one of the reported clusters, cyclic voltammetry also indicates that Ce-IV is reducedmore » at similar to+0.60 V vs Ag/AgCl (3 M NaCl), which is significantly less than the standard electrode potential. This large decrease in the Ce-IV/Ce-III reduction potential suggests that Ce-IV is significantly stabilized relative to Ce-III within the examined cluster. These compounds are discussed in terms of their importance as small, end member, ceric oxide nanoparticles. Single-crystal structural solutions, together with voltammetry and electrolysis data, permit the decoupling of Ce-III defects and substoichiometry. In addition, Ce-Ce distances can be used to determine an "effective" CeO2-x lattice constant, providing a simple method for comparing literature descriptions. The results are discussed in terms of their potential implications for the mechanisms by which nanoparticle ceria serve as catalysts and oxygen-storage materials.« less
NASA Astrophysics Data System (ADS)
Nalabotu, Siva Krishna
The field of nanotechnology is rapidly progressing with potential applications in the automobile, healthcare, electronics, cosmetics, textiles, information technology, and environmental sectors. Nanomaterials are engineered structures with at least one dimension of 100 nanometers or less. With increased applications of nanotechnology, there are increased chances of exposure to manufactured nanomaterials. Recent reports on the toxicity of engineered nanomaterials have given scientific and regulatory agencies concerns over the safety of nanomaterials. Specifically, the Organization for Economic Co-operation and Development (OECD) has identified fourteen high priority nanomaterials for study. Cerium oxide (CeO2) nanoparticles are one among the high priority group. Recent data suggest that CeO2 nanoparticles may be toxic to lung cell lines in vitro and lung tissues in vivo. Other work has proposed that oxidative stress may play an important role in the toxicity; however, the exact mechanism of the toxicity, has to our knowledge, not been investigated. Similarly, it is not clear whether CeO2 nanoparticles exhibit systemic toxicity. Here, we investigate whether pulmonary exposure to CeO2 nanoparticles is associated with oxidative stress, inflammation and apoptosis in the lungs and liver of adult male Sprague-Dawley rats. Our data suggest that the intratracheal instillation of CeO2 nanoparticles can cause an increased lung weight to body weight ratio. Changes in lung weights were associated with the accumulation of cerium in the lungs, elevations in serum inflammatory markers, an increased Bax to Bcl-2 ratio, elevated caspase-3 protein levels, increased phosphorylation of p38-MAPK and diminished phosphorylation of ERK1/2-MAPK. Our findings from the study evaluating the possible translocation of CeO2 nanoparticles from the lungs to the liver suggest that CeO 2 nanoparticle exposure was associated with increased liver ceria levels, elevations in serum alanine transaminase levels, reduced albumin levels, a diminished sodium-potassium ratio and decreased serum triglyceride levels. Consistent with these data, rats exposed to CeO2 nanoparticles also exhibited reductions in liver weight and dose dependent hydropic degeneration, hepatocyte enlargement, sinusoidal dilatation and the accumulation of granular material in the hepatocytes. In a follow-up study, we next examined if CeO2 deposition in the liver is characterized by increased oxidative stress and apoptosis. Our data demonstrate that increased cerium in the liver is associated with increased oxidative stress and apoptosis as assessed from hydroethidium staining, the analysis of lipid peroxidation, and TUNEL staining. In addition, increased cerium concentration in the liver was associated with an increased Bax to Bcl-2 ratio, elevated caspase-9 and elevated caspase-3 protein levels. Taken together, these data suggest that exposure to CeO 2 nanoparticles is associated with increased oxidative stress and cellular apoptosis in the lungs. It is also evident that CeO2 nanoparticles can translocate to liver and induce hepatic damage. The hepatic damage induced by CeO2 nanoparticles is associated with increased oxidative stress and apoptosis in the liver.
Titanium dioxide nanoparticles cause genotoxicity in human lung epithelial cells
The use of engineered nanoparticles in consumer products is steadily increasing. However, the health effects of exposure to these nanoparticles are not thoroughly understood. This study investigated the genotoxicity of six titanium dioxide and two cerium oxide nanoparticles of va...
Previous literature on the biological effects of engineered nanomaterials has focused largely on oxidative stress and inflammation endpoints without further investigating potential pathways. Here we examine time-sensitive biological response pathways affected by engineered nanoma...
Johnson, B.M.
1963-08-20
A spray calcination reactor for calcining reprocessin- g waste solutions is described. Coaxial within the outer shell of the reactor is a shorter inner shell having heated walls and with open regions above and below. When the solution is sprayed into the irner shell droplets are entrained by a current of gas that moves downwardly within the inner shell and upwardly between it and the outer shell, and while thus being circulated the droplets are calcined to solids, whlch drop to the bottom without being deposited on the walls. (AEC) H03 H0233412 The average molecular weights of four diallyl phthalate polymer samples extruded from the experimental rheometer were redetermined using the vapor phase osmometer. An amine curing agent is required for obtaining suitable silver- filled epoxy-bonded conductive adhesives. When the curing agent was modified with a 47% polyurethane resin, its effectiveness was hampered. Neither silver nor nickel filler impart a high electrical conductivity to Adiprenebased adhesives. Silver filler was found to perform well in Dow-Corning A-4000 adhesive. Two cascaded hot-wire columns are being used to remove heavy gaseous impurities from methane. This purified gas is being enriched in the concentric tube unit to approximately 20% carbon-13. Studies to count low-level krypton-85 in xenon are continuing. The parameters of the counting technique are being determined. The bismuth isotopes produced in bismuth irradiated for polonium production are being determined. Preliminary data indicate the presence of bismuth207 and bismuth-210m. The light bismuth isotopes are probably produced by (n,xn) reactions bismuth-209. The separation of uranium-234 from plutonium-238 solutions was demonstrated. The bulk of the plutonium is removed by anion exchange, and the remainder is extracted from the uranium by solvent extraction techniques. About 99% of the plutonium can be removed in each thenoyltrifluoroacetone extraction. The viscosity, liquid density, and selfdiffusion coefficient for lanthanum, cerium, and praseodymium were determined. The investigation of phase relationships in the plutonium-cerium-copper ternary system was continued on samples containing a high concentration of copper. These analyses indicate that complete solid solution exists between the binary compounds CeCu/sub 2/ and PuCu/sub 2/, thus forming a quasi-binary system. The study of high temperature ceramic fuel materials has continued with the homogenization and microspheroidization of binary mixtures of plutonium dioxide and zirconium dioxide. Sintering a die-pressed pellet of the mixed powders for one hour at 1450 deg C was not sufficient to completely react the constituents. Complete homogenization was obtained when the pellet was melted in the plasma flame. In addition to the plutonium dioxide-zirconium dioxide microspheres, pure beryllium oxide microspheres were produced in the plasma torch. The electronic distribution functions for the 10% by weight PuO/sub 2/ dissolved in a silicate glass were determined. The plutonium-oxygen interaction at about 2.2A is less than the plutonium-oxygen distance for the 5% PuO/sub 2/. The decrease in the interionic distance is indicative of a stronger plutonium-oxygen association for the more concentrated composition. Potassium plutonium sulfate is being evaluated as a reagent to quantitatively separate plutonium from aqueous solutions. The compound containing two waters of hydration was prepared for thermogravimetric studies using analytically pure plutonium-239. Because of the stability of this compound, it is being evaluated as a calorimetric standard for plutonium-238. (auth)
Purification of lanthanides for double beta decay experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polischuk, O. G.; Barabash, A. S.; Belli, P.
2013-08-08
There are several potentially double beta active isotopes among the lanthanide elements. However, even high purity grade lanthanide compounds contain {sup 238}U, {sup 226}Ra and {sup 232,228}Th typically on the level of ∼ (0.1 - 1) Bq/kg. The liquid-liquid extraction technique was used to remove traces of U, Ra and Th from CeO{sub 2}, Nd{sub 2}O{sub 3} and Gd{sub 2}O{sub 3}. The radioactive contamination of the samples before and after the purification was tested by using ultra-low-background HPGe γ spectrometry at the underground Gran Sasso National Laboratories of the INFN (Italy). After the purification the radioactive contamination of gadolinium oxidemore » by Ra and Th was decreased at least one order of magnitude. The efficiency of the approach to purify cerium oxide from Ra was on same level, while the radioactive contamination of neodymium sample before and after the purification is below the sensitivity of analytical methods. The purification method is much less efficient for chemically very similar radioactive elements like lanthanum, lutetium and actinium. R and D of the methods to remove the pollutions with improved efficiency is in progress.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madier, Y.; Descorme, C.; Govic, A.M. Le
Cerium-zirconium mixed oxides (Ce{sub x}Zr{sub 1{minus}x}O{sub 2}), precalcined at 900 C in dry air, were supplied by Rhodia Terres Rares as monophasic solid solutions. Introduction of some zirconium atoms in the ceria lattice by isomorphous substitution clearly influences the final properties of these materials as long as the cubic structure of ceria is maintained. Modifications in oxygen storage capacity (OSC measurements), redox properties (CO TPR), and oxygen exchange processes (TPIE) were studied. Ce{sub 0.63}Zr{sub 0.37}O{sub 2} was shown to have the most promising properties with the largest OSC at 400 C and the highest reactivity in O{sub 2} exchange. Allmore » mixed oxides are able to exchange very large amounts of oxygen compared to ceria, implying the participation of bulk oxygen. Furthermore, on Ce{sub x}Zr{sub (1{minus}x)}O{sub 2} samples, oxygen is predominantly exchanged via a multiple heteroexchange mechanism involving surface dioxygen species as superoxides or peroxides.« less
NASA Astrophysics Data System (ADS)
Watkinson, E. J.; Ambrosi, R. M.; Williams, H. R.; Sarsfield, M. J.; Stephenson, K.; Weston, D. P.; Marsh, N.; Haidon, C.
2017-04-01
The European Space Agency (ESA) is sponsoring a research programme on the development of americium oxides for radioisotope generators and heater units. Cubic AmO2-(x/2) with an O/Am ratio between 1.65 and 1.75 is a potentially suitable compound for pellet sintering. C-type (Ia-3) Ce1-xNdxO2-(x/2) oxides with 0.5 < x < 0.7 could be used as a surrogate for some Ia-3 AmO2-(x/2). A new Ce1-xNdxO2-(x/2) production process has been investigated where a nominally selected x value of 0.6 was targeted: Ce and Nd nitrates and oxalic acid were added drop-wise into a vessel, where they continuously reacted to create oxalate precipitates. The effect of temperature (25 °C, 60 °C) of the reactants (mixed at 250 revolutions per minute) on oxalate particle shape and size were investigated. Oxalates were calcined at 900 °C to produce oxide particles. Oxalate particle properties were characterised as these are expected to influence oxides particle properties and fuel pellet sintering.
Link, Nils; Brunner, Tobias J; Dreesen, Imke A J; Stark, Wendelin J; Fussenegger, Martin
2007-12-01
Owing to their small size, synthetic nanoparticles show unprecedented biophysical and biochemical properties which may foster novel advances in life-science research. Using flame-spray synthesis technology we have produced non-coated aluminum-, calcium-, cerium-, and zirconium-derived inorganic metal oxide nanoparticles which not only exhibit high affinity for nucleic acids, but can sequester such compounds from aqueous solution. This non-covalent DNA-binding capacity was successfully used to transiently transfect a variety of mammalian cells including human, reaching transfection efficiencies which compared favorably with classic calcium phosphate precipitation (CaP) procedures and lipofection. In this straightforward protocol, transfection was enabled by simply mixing nanoparticles with DNA in solution prior to addition to the target cell population. Transiently transfected cells showed higher production levels of the human secreted glycoprotein SEAP compared to isogenic populations transfected with established technologies. Inorganic metal oxide nanoparticles also showed a high binding capacity to human-pathogenic viruses including adenovirus, adeno-associated virus and human immunodeficiency virus type 1 and were able to clear these pathogens from aqueous solutions. The DNA transfection and viral clearance capacities of inorganic metal oxide nanoparticles may provide cost-effective biopharmaceutical manufacturing and water treatment in developing countries.
NASA Astrophysics Data System (ADS)
Khajuria, H.; Kumar, M.; Singh, R.; Ladol, J.; Nawaz Sheikh, H.
2018-05-01
One dimensional nanostructures of cerium doped dysprosium phosphate (DyPO4:Ce3+) were synthesized via hydrothermal route in the presence of different surfactants [sodium dodecyl sulfate (SDS), dodecyl sulfosuccinate (DSS), polyvinyl pyrollidone (PVP)] and solvent [ethylene glycol and water]. The prepared nanostructures were characterized by Powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), Field emission scanning electron microscopy (FE-SEM), Transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), UV-VIS-NIR absorption spectrophotometer and photoluminescence (PL) studies. The PXRD and FTIR results indicate purity, good crystallinity and effective doping of Ce3+ in nanostructures. SEM and TEM micrographs display nanorods, nanowires and nanobundles like morphology of DyPO4:Ce3+. Energy-dispersive X-ray spectra (EDS) of DyPO4:Ce3+nanostructures confirm the presence of dopant. UV-VIS-NIR absorption spectra of prepared compounds are used to calculate band gap and explore their optical properties. Luminescent properties of DyPO4:Ce3+ was studied by using PL emission spectra. The effect of additives and solvents on the uniformity, morphology and optical properties of the nanostructures were studied in detail.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medina, J., E-mail: judit.medina@cenim.csic.es
The effects of calcium, manganese and cerium-rich mischmetal additions on the microstructure and texture of the extruded Mg−6Zn−1Y (wt.%) alloy have been investigated. The microstructure of the alloys consisted of a magnesium matrix embedding second phase particles aligned along the extrusion direction. The nature and volume fraction of the second phases depended on the alloying element. Thus, Ce-rich mischmetal promoted the formation of T-phase while calcium additions resulted in the formation of a ternary Mg−Zn−Ca compound. Only, manganese additions did not affect the existence of the I-phase present in the ternary alloy. The texture was measured and it was foundmore » that calcium addition has a significant effect weakening the extrusion texture. - Highlights: •In-situ HEXRD and DSC techniques are employed to identify phase transformations. •The existence of I-phase is not altered by manganese addition to Mg93Zn6Y1 (wt.%). •Calcium addition promotes Mg{sub 6}Zn{sub 3}Ca{sub 2} formation instead of I-phase. •Mischmetal addition induces the formation of coarse T-phase particles. •Texture depends on the nature of second phases and therefore of the extrusion pressure.« less
NASA Astrophysics Data System (ADS)
Hong, Jie
Nanotechnology is increasingly attracting attention not only for its variety of applications in modern life, but for the potential negative effects that nanomaterials (NMs) can cause in the environment and human health. Studies have shown varied effects of engineered nanoparticles (ENPs) on plants; however, most of these studies focused on the interaction of NPs with plants at root level. The increasing production and use of NPs have also increased the atmospheric amounts of NPs, which could be taken up by plants through their leaves. Cucumbers (Cucumis sativus L.) are broad leaf plants commonly grown both commercially and in home vegetable gardens that can be easily impacted by atmospheric NPs. However, there is limited information about the potential effects of these atmospheric NPs on cucumber. This research was aimed to determine (I) the possible uptake and translocation of cerium (Ce) by cucumber plants exposed to nCeO 2 (cerium dioxide nanoparticles, nanoceria) through the foliage, (II) the impacts of the NPs on physiological parameters of the plants and the effects on the nutritional value and quality of the fruits, and (III) the effects of seven copper compounds/nanoparticles applied to the growth medium of lettuce (Lactuca sativa) and alfalfa (Medicago sativa). For aim I, 15 day-old hydroponically grown cucumber plants were exposed to nCeO2, either as powder at 0.98 and 2.94 g/m3 or suspensions at 20, 40, 80, 160, 320 mg/l. Ce uptake was analyzed by using inductively coupled plasma-optical emission spectroscopy (ICP-OES) and transmission electron microscope (TEM). The activity of three stress enzymes was measured by UV/Vis. Ce was detected in all cucumber tissues and TEM images showed the presence of Ce in roots. Results suggested nCeO2 penetrated plants through leaves and moved to other plant parts. The biochemical assays showed nCeO2 also modified stress enzyme activities. For aim II, 15 day-old soil grown cucumber plants were foliar treated, separately, with 50, 100, 200 mg/L of nCeO2, nCuO and the respective bulk material suspensions. Photosynthetic rate (Pn), stomatal conductance (gs), and transpiration (E) of cucumber leaves were measured with a portable gas exchange system. Nutritional elements and Ce/Cu uptake were determined by ICP-OES. Quality of cucumber fruits was evaluated after harvest. Results showed that cucumber absorbed Ce and Cu through foliar applied nCeO2 and nCuO and translocate them to new leaves and fruits. Photosynthetic and transpiration rates were only affected in new leaves. None of the treatment significantly affected cucumber, yield, length, and diameter of fruits. However, both nCeO2 and nCuO significantly reduced the firmness of the fruit. Mineral element determination in fruit showed that Zn decreased by 25% with 200 mg/L of both nCeO2 and bulk CeO 2 and in fruit Mo decreased by 51% and 44% with both nCuO and bulk CuO at 200 mg/L, respectively. For the aim III, 15 day-old hydroponically grown lettuce and alfalfa were exposed to 0, 5, 10, and 20 mg/L nCu, bulk Cu, nCuO, bulk CuO, Cu(OH)2 (CuPRO 2005, Kocide 3000), and CuCl2. The concentration of Cu, macro and microelements in plants were measured by using ICP-OES. The size of the plants and the activity of catalase and ascorbate peroxidase were also determined. Results showed that all Cu NPs/compounds reduced the root length by 49% in both plant species. Under all treatments, Cu, P, and S were increased (>100%, >50%, and >20%, respectively) in alfalfa shoots; while P and Fe were decreased (>50% and >50%, respectively) in lettuce shoot. In addition, catalase activity was reduced in alfalfa (root and shoot) and ascorbate peroxidase activity was increased in roots of both plant species. Our findings show that increasing concentration of atmospheric nCeO2 can affect the nutritional value of crop plants with unknown consequences for the food chain. In addition Cu NPs/compounds could impact the growth of plants and altered the quality of crops as well. These results will help to understand the eco-toxicity of NPs in food crops.
Falsely raised whole blood chloride caused by systemic absorption of cerium nitrate cream for burns.
Ha, Leah Y; Woollard, Gerald A; Chiu, Weldon W
2015-03-01
Whole blood, serum or plasma chloride is almost exclusively measured by potentiometry with an ion-selective chloride electrode which utilizes membrane selectivity to chloride ions. Other anions such as bromide, iodide and thiosulphate can interfere but usually are not present in high enough concentration to cause significant cross reactivity. A patient from our burns unit had serial chloride measurements on a Radiometer ABL800 blood gas analyser. The results were higher in contrast to plasma measurements on the Abbott Architect Ci8200, which were within reference intervals and in line with the patient's pathophysiological status. This indicated a likely interference with the blood gas analyser chloride estimation. The chloride results on the ABL800 for 3rd, 4th and 5th day after the burn accident were 170, 137 and 119 mmol/L. Corresponding plasma chloride results on the Ci8200 were all around 105 mmol/L. Nitrate was found to be markedly elevated in these samples, and the results were 6.7, 4.9 and 1.1 mmol/L, respectively (reference limit < 0.08 mmol/L). To further demonstrate nitrate was the causative agent, pooled plasma spiked with 7 mmol/L of sodium nitrate caused a rise in the ABL800 chloride from 105 to 202 mmol/L. Later we confirmed that the patient was topically medicated with cerium nitrate cream (Flammacerium®, Sinclair IS Pharma, UK) for his burns. In summary, the results clearly indicated nitrate was the interferent with the ABL800 chloride estimation and the source was the topical burns cerium nitrate cream. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Catalytic ozonation of dimethyl phthalate over cerium supported on activated carbon.
Li, Laisheng; Ye, Weiying; Zhang, Qiuyun; Sun, Fengqiang; Lu, Ping; Li, Xukai
2009-10-15
Cerium supported on activated carbon (Ce/AC), which was prepared by dipping method, was employed to degrade dimethyl phthalate (DMP) in water. The mineral matter present in the activated carbon positively contributes to its activity to enhance DMP ozonation process. A higher dipping Ce(NO(3))(3) concentration and calcination process increase its microporous volume and surface area, and decreases its exterior surface area. The catalytic activity reaches optimal when 0.2% (w/w) cerium is deposited on activated carbon. Ce/AC catalyst was characterized by XRD, SEM and BET. The presence of either activated carbon or Ce/AC catalyst considerably improves their degradation and mineralization in the ozonation of DMP. During the ozonation (50mg/h ozone flow rate) of a 30 mg/L DMP (initial pH 5.0) with the presence of Ce/AC catalyst, TOC removal rate reaches 68% at 60 min oxidation time, 48% using activated carbon as catalyst, only 22% with ozonation alone. The presence of tert-butanol (a well known OH radical scavenger) strongly inhibits DMP degradation by activated carbon or Ce/AC catalytic ozonation. TOC removal rate follows the second-order kinetics model well. In the ozonation of DMP with 50mg/h ozone flow rate, its mineralization rate constant with the presence of Ce/AC catalyst is 2.5 times higher than that of activated carbon, 7.5 times higher than that of O(3) alone. Ce/AC catalyst shows the better catalytic activity and stability based on 780 min sequential reaction in the ozonation of DMP. Ce/AC was a promising catalyst for ozonizing organic pollutants in the aqueous solution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, Keri R.; Judge, Elizabeth J.; Barefield, James E.
We show the analysis of light water reactor simulated used nuclear fuel using laser-induced breakdown spectroscopy (LIBS) is explored using a simplified version of the main oxide phase. The main oxide phase consists of the actinides, lanthanides, and zirconium. The purpose of this study is to develop a rapid, quantitative technique for measuring zirconium in a uranium dioxide matrix without the need to dissolve the material. A second set of materials including cerium oxide is also analyzed to determine precision and limit of detection (LOD) using LIBS in a complex matrix. Two types of samples are used in this study:more » binary and ternary oxide pellets. The ternary oxide, (U,Zr,Ce)O 2 pellets used in this study are a simplified version the main oxide phase of used nuclear fuel. The binary oxides, (U,Ce)O 2 and (U,Zr)O 2 are also examined to determine spectral emission lines for Ce and Zr, potential spectral interferences with uranium and baseline LOD values for Ce and Zr in a UO 2 matrix. In the spectral range of 200 to 800 nm, 33 cerium lines and 25 zirconium lines were identified and shown to have linear correlation values (R 2) > 0.97 for both the binary and ternary oxides. The cerium LOD in the (U,Ce)O 2 matrix ranged from 0.34 to 1.08 wt% and 0.94 to 1.22 wt% in (U,Ce,Zr)O 2 for 33 of Ce emission lines. The zirconium limit of detection in the (U,Zr)O 2 matrix ranged from 0.84 to 1.15 wt% and 0.99 to 1.10 wt% in (U,Ce,Zr)O 2 for 25 Zr lines. Finally, the effect of multiple elements in the plasma and the impact on the LOD is discussed.« less
The sensitized luminescence of manganese-activated calcite
Schulman, J.H.; Evans, L.W.; Ginther, R.J.; Murata, K.J.
1947-01-01
Synthetic manganese-activated calcites are shown to be practically inert to ultraviolet excitation in the range 2000-3500A, while they are luminescent under cathode-ray excitation. The incorporation of small amounts of an auxiliary impurity along with the manganese produces the strong response to ultraviolet radiation hitherto ascribed to CaCO3:Mn itself. Three such impurities have been studied: lead, thallium, and cerium. The first two induce excitation in the neighborhood of the mercury resonance line, while the cerium introduces a response principally to longer wave ultraviolet. The strong response to 2537A excitation shown by some natural calcites is likewise found to be due to the presence of lead along with the manganese, rather than to the manganese alone. The data do not warrant ascribing the longer wave-length ultraviolet-excited luminescence of all natural calcites to the action of an auxiliary impurity. The essential identity of the cathode-ray excited luminescence spectra of CaCO 3:Mn, CaCO3: (Pb+Mn), CaCO3:(Tl+Mn), and CaCO3:(Ce+Mn) with the 2537A-excited spectra of the latter three is evidence that the luminescent center in all cases is the manganese ion or the MnO6 group. It is shown that a "cascade" mechanism for the action of the auxiliary impurities, lead, thallium, and cerium, is incorrect; and that the phenomenon must be considered as a case of sensitized luminescence. Owing to the nature of cathode-ray excitation, the manganese activator can be excited by this agent even in the absence of a second impurity. For optical excitation, however, an absorption band for the ultraviolet must be established by building into the CaCO3:Mn a second impurity or "sensitizer.".
Evolution of structural and magnetic properties in La xCe 2-xCo 16 Ti for $$0 \\leq x \\leq 2$$
Conner, Benjamin S.; McGuire, Michael A.; Veedu, Shanavas Kavungal; ...
2016-11-11
Here we examine the intrinsic magnetic and structural properties of the title alloys, permanent magnet materials based on the abundant rare-earth elements lanthanum and cerium, since these properties (T C, M sH a(K 1, K 2)) will set the upper limits on the quality of permanent magnet that can be fabricated from said alloys. Ce 2Co 16Ti has a high magnetic anisotropy (H a = 65 kOe) but a relatively low saturation magnetization (M s = 7.3 kG), and La 2Co 16Ti has a high Ms(9.5 kG) but Ha too low for most applications (16 kOe). Though these two end-membersmore » have previously well-known properties, changing economic conditions have made re-examination of systems containing cerium and lanthanum necessary as the economic viability of rare earth mining becomes dependent on extraction of products beyond what is currently considered useful and profitable within the rare earth elements. We find that replacing some lanthanum with cerium in La 2Co 16Ti increases H a by a factor of more than two, while decreasing M s by less than 5%. The measured Ms indicate maximum possible energy products in excess of 20 MG·Oe in these materials, which have Curie temperatures near 600 °C. Real energy products are expected to be greatest near x = 1. In conclusion, these findings identify La xCe 2-xCo 16Ti as a promising system for development of so-called gap magnets that fill the energy product gap between expensive rare-earth magnets and current non-rare earth alternatives.« less
Dunnick, Katherine M.; Morris, Anna M.; Badding, Melissa A.; Barger, Mark; Stefaniak, Aleksandr B.; Sabolsky, Edward M.; Leonard, Stephen S.
2016-01-01
Cerium (Ce) is becoming a popular metal for use in electrochemical applications. When in the form of cerium oxide (CeO2), Ce can exist in both 3 + and 4 + valence states, acting as an ideal catalyst. Previous in vitro and in vivo evidence have demonstrated that CeO2 has either anti- or pro-oxidant properties, possibly due to the ability of the nanoparticles to transition between valence states. Therefore, we chose to chemically modify the nanoparticles to shift the valence state toward 3+. During the hydrothermal synthesis process, 10 mol% gadolinium (Gd) and 20 mol% Gd, were substituted into the lattice of the CeO2 nanoparticles forming a perfect solid solution with various A-site valence states. These two Gd-doped CeO2 nanoparticles were compared to pure CeO2 nanoparticles. Preliminary characteristics indicated that doping results in minimal size and zeta potential changes but alters valence state. Following characterization, male Sprague-Dawley rats were exposed to 0.5 or 1.0 mg/kg nanoparticles via a single intratracheal instillation. Animals were sacrificed and bronchoalveolar lavage fluid and various tissues were collected to determine the effect of valence state and oxygen vacancies on toxicity 1-, 7-, or 84-day post-exposure. Results indicate that damage, as measured by elevations in lactate dehydrogenase, occurred within 1-day post-exposure and was sustained 7-day post-exposure, but subsided to control levels 84-day post-exposure. Furthermore, no inflammatory signaling or lipid peroxidation occurred following exposure with any of the nanoparticles. Our results implicate that valence state has a minimal effect on CeO2 nanoparticle toxicity in vivo. PMID:26898289
NASA Astrophysics Data System (ADS)
Shanaghi, Ali; Chu, Paul K.; Moradi, Hadi
Hybrid organic-inorganic coatings are deposited on 304 stainless steel substrates by the sol-gel technique to improve the corrosion resistance. A titania-based nanostructured hybrid sol-gel coating is impregnated with three different microencapsulated healing agents (inhibitors) including cerium, Benzotriazole (BTA), and 8-Hydroxyquinoline (8H). Field-emission scanning electron microscopy (FE-SEM) and electrochemical impedance spectroscopy (EIS) are performed to investigate the barrier performance properties. The optimum conditions to achieve corrosion protective coatings for 304 stainless steel were determined. The Nyquist plots demonstrate that the activation time of the coating containing 8H as an organic healing agent shows improved behavior when compared to other coatings including cerium and BTA. Cerium as an inorganic healing agent is second and BTA is third and minimum. An increase in the impedance parameters such as resistance and capacitance as a function of immersion time is achieved in a 3.5wt.% NaCl solution by using healing agents such as BTA. Actually, over the course of immersion, the barrier performance behavior of the coatings changes and reduction of the impedance observed from the coatings containing Ce and 8H discloses deterioration of the protection system after immersion for 96h of immersion in the 3.5% NaCl solution. However, after 96h of immersion time, the concentration of chloride ions is high and causes increase in defects, micro cracks, hole on the surface of hybrid titania nanostructured coating containing Ce and 8H by destruction of coating, and also hybrid titania nanostructured coating containing BTA; BTA is released from coating to improve the resistance of passive film, which is created on the surface.
Brain suppression of AP-1 by inhaled diesel exhaust and reversal by cerium oxide nanoparticles.
Lung, Shyang; Cassee, Flemming R; Gosens, Ilse; Campbell, Arezoo
2014-08-01
One of the uses of cerium oxide nanoparticles (nanoceria, CeO2) is as a diesel fuel additive to improve fuel efficiency. Gene/environment interactions are important determinants in the etiology of age-related disorders. Thus, it is possible that individuals on high-fat diet and genetic predisposition to vascular disease may be more vulnerable to the adverse health effects of particle exposure. The aim of this pilot study was to test the hypothesis that inhalation of diesel exhaust (DE) or diesel exhaust-containing cerium oxide nanoparticles (DCeE) induces stress in the brain of a susceptible animal model. Atherosclerotic prone, apolipoprotein E knockout (ApoE(-/-)) mice fed a high-fat diet, were exposed by inhalation to purified air (control), DE or DCeE. The stress-responsive transcription factor, activator protein-1 (AP-1), was significantly decreased in the cortical and subcortical fraction of the brain after DE exposure. The addition of nanoceria to the diesel fuel reversed this effect. The activation of another stress-related transcription factor (NF-κB) was not inhibited. AP-1 is composed of complexes of the Jun and/or Fos family of proteins. Exposure to DCeE caused c-Jun activation and this may be a mechanism by which addition of nanoceria to the fuel reversed the effect of DE exposure on AP-1 activation. This pilot study demonstrates that exposure to DE does impact the brain and addition of nanoceria may be protective. However, more extensive studies are necessary to determine how DE induced reduction of AP-1 activity and compensation by nanoceria impacts normal function of the brain.
NASA Astrophysics Data System (ADS)
Du, Jinpeng; Qu, Zhenping; Dong, Cui; Song, Lixin; Qin, Yuan; Huang, Na
2018-03-01
Mn-Ce oxides catalysts were synthesized by a novel method combining redox-precipitation and hydrothermal approach. The results indicate that the ratio between manganese and cerium plays a crucial role in the formation of catalysts, and the textual properties as well as catalytic activity are remarked affected. Mn0.6Ce0.4O2 possesses a predominant catalytic activity in the oxidation of toluene, over 70% of toluene is converted at 200 °C, and the complete conversion temperature is 210 °C. The formation of Mn-Ce solid solution markedly improves the surface area as well as pore volume of Mn-Ce oxide catalyst, and Mn0.6Ce0.4O2 possesses the largest surface area of 298.5 m2/g. The abundant Ce3+ and Mn3+ on Mn0.6Ce0.4O2 catalyst facilitate the formation of oxygen vacancies, and improve the transfer of oxygen in the catalysts. Meanwhile, it is found that cerium in Mn-Ce oxide plays a key role in the adsorption of toluene, while manganese is proved to be crucial in the oxidation of toluene, the cooperation between manganese and cerium improves the catalytic reaction process. In addition, the reaction process is investigated by in situ DRIFT measurement, and it is found that the adsorbed toluene could be oxidized to benzyl alcohol as temperature rises around 80-120 °C that can be further be oxidized to benzoic acid. Then benzoic acid could be decomposed to formate and/or carbonate species as temperature rises to form CO2 and H2O. In addition, the formed by-product phenol could be further oxidized into CO2 and H2O when the temperature is high enough.
NASA Astrophysics Data System (ADS)
Pinc, William Ross
The aim of the work presented in this dissertation is to investigate the corrosion protection mechanism of cerium-based conversion coatings (CeCCs) used in the corrosion protection of high strength aluminum alloys. The corrosion resistance of CeCCs involves two general mechanisms; barrier and active. The barrier protection mechanism was influenced by processing parameters, specifically surface preparation, post-treatment, and the use of gelatin. Post-treatment and the addition of gelatin to the coating solution resulted in fewer cracks and transformation of the coating to CePO4, which increased the corrosion resistance by improving the barrier aspect of CeCCs. CeCCs were found to best act as barriers when crack size was limited and CePO4 was present in the coating. CeCCs were found to protect areas of the substrate that were exposed in the coating, indicating that the coatings were more than simple barriers. CeCCs contained large cracks, underneath which subsurface crevices were connected to the surface by the cracks. Despite the observation that no cerium was present in crevices, coatings with crevices exhibited significant corrosion protection. The impedance of post-treated coatings with crevices increased during salt spray exposure. The increase in impedance was associated with the formation of protective oxides / hydroxides; however, crevice-free coatings also exhibited active protection leading to the conclusion that the formation of interfacial layers between the CeCC and the substrate also contributed to the active protection. Based on the overall results of the study, the optimal corrosion protection of CeCCs occurred when processing conditions produced coatings with morphologies and compositions that facilitated both the barrier and active protection mechanisms.
Advanced development of non-discoloring EVA-based PV encapsulants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holley, W.H.; Galica, J.P.; Argo, S.C.
1996-01-01
The purpose of this investigation was to better define the problem of field yellowing of EVA-based PV encapsulant, through laboratory study of probable chemical mechanisms and the development of stabilization strategies for protecting EVA from discoloration. EVA from fielded modules was analyzed for vinyl acetate content, unsaturation, and additive levels. These test results were then compared to results from Xenon Arc Weather-Ometer aged glass/EVA/glass laminates made in the laboratory. Variables evaluated in Weather-Ometer aged laminates included ``standard-cure`` A9918P EVA, ``fast-cure`` 15295P EVA, low iron glass superstrate containing cerium oxide, and systematic elimination or addition of specific additives. Six significant findingsmore » were revealed: 1) Improved ``standard-cure`` and ``fast-cure`` type EVA encapsulants, formulations X9903P and X15303P, respectively, showed little or no yellowing after extended Weather-Ometer exposure; 2) The use of {open_quote}{open_quote}fast-cure{close_quote}{close_quote} EVA reduced discoloration when compared with {open_quote}{open_quote}standard-cure{close_quote}{close_quote} A9918P EVA; 3) Glass superstrate containing cerium oxide resulted in a reduced rate of EVA discoloration; 4) {open_quote}{open_quote}Fast-cure{close_quote}{close_quote} EVA used with glass superstrate containing cerium oxide showed no visible yellowing after 32 weeks in the Weather-Ometer{emdash}a period estimated to be roughly equivalent to 20{endash}30 years of exposure in the Southwest; 5) Severely discolored EVA samples from the field showed no measurable loss of acetate group and little detectable unsaturation; and 6) EVA encapsulant with a Tefzel cover exhibited no yellowing after extended Weather-Ometer exposure. {copyright} {ital 1996 American Institute of Physics.}« less
González-Ruiz, Víctor; Pascua, Irene; Fernández-Marcelo, Tamara; Ribelles, Pascual; Bianchini, Giulia; Sridharan, Vellaisamy; Iniesta, Pilar; Ramos, M Teresa; Olives, Ana I; Martín, M Antonia; Menéndez, J Carlos
2014-01-01
Topoisomerase 1 inhibition is an important strategy in targeted cancer chemotherapy. The drugs currently in use acting on this enzyme belong to the family of the camptothecins, and suffer severe limitations because of their low stability, which is associated with the hydrolysis of the δ-lactone moiety in their E ring. Luotonin A is a natural camptothecin analogue that lacks this functional group and therefore shows a much-improved stability, but at the cost of a lower activity. Therefore, the development of luotonin A analogues with an increased potency is important for progress in this area. In the present paper, a small library of luotonin A analogues modified at their A and B rings was generated by cerium(IV) ammonium nitrate-catalyzed Friedländer reactions. All analogues showed an activity similar or higher than the natural luotonin A in terms of topoisomerase 1 inhibition and some compounds had an activity comparable to that of camptothecin. Furthermore, most compounds showed a better activity than luotonin A in cell cytotoxicity assays. In order to rationalize these results, the first docking studies of luotonin-topoisomerase 1-DNA ternary complexes were undertaken. Most compounds bound in a manner similar to luotonin A and to standard topoisomerase poisons such as topotecan but, interestingly, the two most promising analogues, bearing a 3,5-dimethylphenyl substituent at ring B, docked in a different orientation. This binding mode allows the hydrophobic moiety to be shielded from the aqueous environment by being buried between the deoxyribose belonging to the G(+1) guanine and Arg364 in the scissile strand and the surface of the protein and a hydrogen bond between the D-ring carbonyl and the basic amino acid. The discovery of this new binding mode and its associated higher inhibitory potency is a significant advance in the design of new topoisomerase 1 inhibitors.
DIRECT FORMATION OF TETRAHYDROPYRANOLS VIA CATALYSIS IN IONIC LIQUID. (R828129)
Utilizing a simple homoallyl alcohol and an aldehyde in the presence of a catalytic amount of cerium triflate, the direct stereoselective formation of tetrahydropyranol derivatives in ionic liquid is reported.
Currently, people are exposed to many chemicals in the environment by a variety of chemicals used and produced for anthropogenic activities. Many studies reportadverse effects of chemicals in the environment on the health of humans and animals; such as endocrine disruption, femin...
Nanoceria as Antioxidant: Synthesis and Biomedical Applications
USDA-ARS?s Scientific Manuscript database
The therapeutic application of nanomaterials has been a focus of numerous studies in the past decade. Due to its unique redox properties, cerium oxide (ceria) is finding widespread use in the treatment of medical disorders caused by the reactive oxygen intermediates (ROI). The radical-scavenging rol...
The emergence of nanotechnology and incorporation of nanoparticles in consumer products necessitates risk assessment from an environmental and health safety standpoint. To date, very few studies have examined nanoparticle effects on terrestrial species, especially plants. In ...
Due to the exponential growth of the nanomaterial industry, risk assessment of human exposure to nanomaterials in consumer products is of paramount importance. The genotoxicity of nanomaterials is an important aspect of hazard identification and regulatory guidance. However, this...
The nanomaterial industry has recently seen rapid growth, therefore, the risk assessment of human exposure to nanomaterials in consumer products is of paramount importance. The genotoxicity of nanomaterials is a fundamental aspect of hazard identification and regulatory guidance....
Experimental investigation of dynamic compression and spallation of Cerium at pressures up to 6 GPa
NASA Astrophysics Data System (ADS)
Zubareva, A. N.; Kolesnikov, S. A.; Utkin, A. V.
2014-05-01
In this study the experiments on one-dimensional dynamic compression of Cerium (Ce) samples to pressures of 0.5 to 6 GPa using various types of explosively driven generators were conducted. VISAR laser velocimeter was used to obtain Ce free surface velocity profiles. The isentropic compression wave was registered for γ-phase of Ce at pressures lower than 0.76 GPa that corresponds to γ-α phase transition pressure in Ce. Shock rarefaction waves were also registered in several experiments. Both observations were the result of the anomalous compressibility of γ-phase of Ce. On the basis of our experimental results the compression isentrope of Ce γ-phase was constructed. Its comparison with volumetric compression curves allowed to estimate the magnitude of shear stress at dynamic compression conditions for Ce. Spall strength measurements were also conducted for several samples. They showed a strong dependence of the spall strength of Ce on the strain rate.
Catalyst support of mixed cerium zirconium titanium oxide, including use and method of making
Willigan, Rhonda R [Manchester, CT; Vanderspurt, Thomas Henry [Glastonbury, CT; Tulyani, Sonia [Manchester, CT; Radhakrishnan, Rakesh [Vernon, CT; Opalka, Susanne Marie [Glastonbury, CT; Emerson, Sean C [Broad Brook, CT
2011-01-18
A durable catalyst support/catalyst is capable of extended water gas shift operation under conditions of high temperature, pressure, and sulfur levels. The support is a homogeneous, nanocrystalline, mixed metal oxide of at least three metals, the first being cerium, the second being Zr, and/or Hf, and the third importantly being Ti, the three metals comprising at least 80% of the metal constituents of the mixed metal oxide and the Ti being present in a range of 5% to 45% by metals-only atomic percent of the mixed metal oxide. The mixed metal oxide has an average crystallite size less than 6 nm and forms a skeletal structure with pores whose diameters are in the range of 4-9 nm and normally greater than the average crystallite size. The surface area of the skeletal structure per volume of the material of the structure is greater than about 240 m.sup.2/cm.sup.3. The method of making and use are also described.
Mao, Chun Xia; Chen, Min Min; Wang, Lei; Zou, Hua; Liang, Chan Juan; Wang, Li Hong; Zhou, Qing
2012-06-01
Effects of cerium ion (Ce(III)) on water relations of soybean seedlings (Glycine max L.) under ultraviolet B radiation (UV-B, 280-320 nm) stress were investigated under laboratory conditions. UV-B radiation not only affected the contents of two osmolytes (proline, soluble sugar) in soybean seedlings, but also inhibited the transpiration in soybean seedlings by decreasing the stomatal density and conductance. The two effects caused the inhibition in the osmotic and metabolic absorption of water, which decreased the water content and the free water/bound water ratio. Obviously, UV-B radiation led to water stress, causing the decrease in the photosynthesis in soybean seedlings. The pretreatment with 20 mg L(-1) Ce(III) could alleviate UV-B-induced water stress by regulating the osmotic and metabolic absorption of water in soybean seedlings. The alleviated effect caused the increase in the photosynthesis and the growth of soybean seedlings. It is one of the protective effect mechanisms of Ce(III) against the UV-B radiation-induced damage to plants.
Cerium Oxide Nanoparticles Decorated Graphene Nanosheets for Selective Detection of Dopamine.
Nayak, Pranati; Santhosh, P N; Ramaprabhu, S
2015-07-01
The fabrication of a novel amperometric biosensor based on selective determination of dopamine (DA) using nafion coated cerium oxide nanoparticles (NPs) decorated graphene nanosheets (CeO2-HEG-nafion) as a transducer candidate is reported. Graphene was synthesized by hydrogen exfoliation technique. Decoration of CeO2NPs over graphene nanosheets was done by chemical reduction method. The electrochemical impedance spectroscopy (EIS) study shows the enhanced electron transfer kinetics of the composite compared to HEG modified and bare glassy carbon electrode (GCE). The response of the composite towards dopamine displays a lower oxidation potential of 0.23 V and a high oxidation current. The sensor exhibits linearity from 10 µM to 780 µM with a detection limit of 1 µM. In the presence of nafion, it shows excellent selectivity for coexisting interference species like Ascorbic acid (AA) and Uric acid (UA). The excellent performance of the biosensor can be attributed to large active surface area, enhanced electron transfer kinetics and high catalytic activity of the composite.
NASA Astrophysics Data System (ADS)
Kim, Sang-Kyun; Paik, Ungyu; Oh, Seong-Geun; Park, Yong-Kook; Katoh, Takeo; Park, Jea-Gun
2003-03-01
Ceria powders were synthesized by two different methods, solid-state displacement reaction and wet chemical precipitation, and the influence of the physical characteristics of cerium oxide on the removal rate of plasma-enhanced tetraethylorthosilicate (PETEOS) and chemical vapor deposition (CVD) nitride films in chemical mechanical planarization (CMP) was investigated. The fundamental physicochemical property and electrokinetic behavior of ceria particles in aqueous suspending media were investigated to identify the correlation between the colloidal property of ceria and the CMP performance. The surface potentials of two different ceria particles are found to have different isoelectric point (pHiep) values and differences in physical properties of ceria particles such as porosity and density were found to be the key parameters in CMP of PETEOS films. Ceria powders synthesized by the solid-state displacement reaction method yielded a higher removal rate of PETEOS and higher selectivity than powders synthesized by the wet chemical precipitation method.
NASA Astrophysics Data System (ADS)
Fruit, Michel; Gussarov, Andrei; Berghmans, Francis; Doyle, Dominic; Ulbrich, Gerd
2017-11-01
It is well known within the Space optics community that radiation may significantly affect transmittance of glasses. To overcome this drawback, glass manufacturers have developed Cerium doped counterparts of classical glasses. This doped glasses display much less transmittance sensitivity to radiation. Still, the impact of radiation on refractive index is less known and may affect indifferently classical or Cerium doped glasses. ESTEC has initialised an R&D program with the aim of establishing a comprehensive data base gathering radiation sensitivity data, called Dose coefficients, for all the glass optical parameters (transmittance / refractive index / compaction……). The first part of this study, to define the methodology for such a data base, is run by ASTRIUM SAS in co-operation with SCK CEN. This covers theoretical studies associated to testing of a selected set of classical and "radiation hardened" glasses. It is proposed here to present first the theoretical backgrounds of this study and then to give results which have been obtained so far.
Solar hydrogen production with cerium oxides thermochemical cycle
NASA Astrophysics Data System (ADS)
Binotti, Marco; Di Marcoberardino, Gioele; Biassoni, Mauro; Manzolini, Giampaolo
2017-06-01
This paper discusses the hydrogen production using a solar driven thermochemical cycle. The thermochemical cycle is based on nonstoichiometric cerium oxides redox and the solar concentration system is a solar dish. Detailed optical and redox models were developed to optimize the hydrogen production performance as function of several design parameters (i.e. concentration ratio, reactor pressures and temperatures) The efficiency of the considered technology is compared against two commercially available technologies namely PV + electrolyzer and Dish Stirling + electrolyzer. Results show that solar-to-fuel efficiency of 21.2% can be achieved at design condition assuming a concentration ratio around 5000, reduction and oxidation temperatures of 1500°C and 1275 °C. When moving to annual performance, the annual yield of the considered approach can be as high as 16.7% which is about 43% higher than the best competitive technology. The higher performance implies that higher installation costs around 40% can be accepted for the innovative concept to achieve the same cost of hydrogen.
NASA Astrophysics Data System (ADS)
Bao, Le Quoc; Phan, Vu Hoang Giang; Khuyen, Nguyen Quang
2018-04-01
Polymer nanocomposites that based on combination of nanomaterials (such as nanoparticles, nanotubes, nanorods, nanofibers, and nanosheets) and polymeric matrices are receiving great attention in research and application. However, separate and homogenous dispersion rather than aggregates of nanoparticles into matrices meet big difficulty due to large interaction between nanoparticles. The poor dispersion leads to low properties of nanocomposites. In this study, we find out the appropriate method to separately disperse cerium oxides (CeO2) nanoparticles into natural rubber, aiming to increase mechanical properties of natural rubber. The SEM images were used to evaluate the dispersion of nano CeO2 in natural rubber matrix. The mechanical properties of nanocomposites were measured after vulcanization to investigate effects of nano CeO2 amount on prepared composite. The findings exhibited that the addition of CeO2 by dispersion of nano CeO2 in water via ultrasonication before mixing with rubber latex, significantly increase modulus, tear and wear resistance of natural rubber.
Cerium oxide nanoparticles protect endothelial cells from apoptosis induced by oxidative stress.
Chen, Shizhu; Hou, Yingjian; Cheng, Gong; Zhang, Cuimiao; Wang, Shuxiang; Zhang, Jinchao
2013-07-01
Oxidative stress is well documented to cause injury to endothelial cells (ECs), which in turn trigger cardiovascular diseases. Previous studies revealed that cerium oxide nanoparticles (nanoceria) had antioxidant property, but the protective effect of nanoceria on ROS injury to ECs and cardiovascular diseases has not been reported. In the current study, we investigated the protective effect and underlying mechanisms of nanoceria on oxidative injury to ECs. The cell viability, lactate dehydrogenase release, cellular uptake, intracellular localization and reactive oxygen species (ROS) levels, endocytosis mechanism, cell apoptosis, and mitochondrial membrane potential were performed. The results indicated that nanoceria had no cytotoxicity on ECs but had the ability to prevent injury by H2O2. Nanoceria could be uptaken into ECs through caveolae- and clathrin-mediated endocytosis and distributed throughout the cytoplasma. The internalized nanoceria effectively attenuated ROS overproduction induced by H2O2. Apoptosis was also alleviated greatly by nanoceria pretreatment. These results may be helpful for more rational application of nanoceria in biomedical fields in the future.
Guo, Liangqia; Xie, Zenghong; Lin, Xucong; Liu, Xiaohua; Zhang, Weilin; Chen, Guonan
2004-01-01
A flow-injection chemiluminescence method for the determination of tetracycline was developed. The method is based on an enhancement by tetracycline of the chemiluminescence light emission of tris(2,2'-bipyridine)ruthenium(II). In sulphuric acid medium, the chemiluminescence is generated by the continuous oxidation of tris(2,2'-bipyridine)ruthenium(II) by cerium (IV) sulphate. The light-emission intensity is greatly enhanced in the presence of tetracycline. Under the optimum conditions, the calibration curve is linear over the range 3.75 x 10(-8) g/mL-1.5 x 10(-5) g/mL for tetracycline with the linear equation: deltaINT = 205.898 x C - 20.442 (R2 = 0.9974). The detection limit is 3.27 x 10(-8) g/mL. The proposed method was also successfully used to determine tetracycline in pharmaceutical formulation (mean recovery of tetracycline, 100.7%). Copyright 2004 John Wiley & Sons, Ltd.
Effect of cerium ions on corrosion inhibition of PANI for iron in 0.5 M H 2SO 4
NASA Astrophysics Data System (ADS)
Jeyaprabha, C.; Sathiyanarayanan, S.; Venkatachari, G.
2006-11-01
In recent years conducting polymers such as polyaniline are used as corrosion inhibitors for metals in acids. The performance of the inhibitor can be enhanced either by the addition of halide ions or metal cations. A study has been made on the effect of addition of ceric ions on the corrosion inhibition performance of polyaniline for iron in 0.5 M H2SO4. Techniques such as electrochemical impedance spectroscopy, potentiodynamic polarization and linear polarization resistance methods have been employed to study the corrosion inhibition. The polyaniline has been used in the concentration range of 10-100 ppm and the ceric ions concentration has been maintained at 1 × 10-3 M. The inhibition efficiency of polyaniline at 10 ppm has been increased from 53 to 88% and for 50 ppm from 71 to 90% in the presence of ceric ions. The enhanced inhibition of polyaniline in presence of ceric ions is due to the higher coverage of polyaniline-cerium complex.
Effect of Cerium codoping on Er:BaY2F8 crystals
NASA Astrophysics Data System (ADS)
Sani, Elisa; Toncelli, Alessandra; Tonelli, Mauro
2005-10-01
We present the Erbium 4I11/2 and 4I13/2 complete polarized spectroscopic investigation on a series of Er3+,Ce3+:BaY2F8 single crystals as a function of Cerium concentration. The main results of room temperature lifetime investigation show that the 4I13/2 lifetime reduces from 15.6 ms to 10 ms, the 4I11/2 lifetime reduces from 8.3 ms to 0.2 ms and 4S3/2 lifetime reduces from 420 to 110 μs when adding 4% Ce-codoping. Moreover, in the same experimental conditions, the fluorescence intensity from 4I13/2 increases by four times when adding 4%Ce, and the intensity of the 3 μm 4I11/2 →4I13/2 transition becomes undetectable. The experimental data are interpreted with a rate equation model. The obtained results could be interesting in perspective of obtaining a low-threshold 1.5 μm Er laser.
Ishizaki, Takahiro; Masuda, Yoshitake; Sakamoto, Michiru
2011-04-19
The corrosion resistant performance and durability of the superhydrophobic surface on magnesium alloy coated with nanostructured cerium oxide film and fluoroalkylsilane molecules in corrosive NaCl aqueous solution were investigated using electrochemical and contact angle measurements. The durability of the superhydrophobic surface in corrosive 5 wt% NaCl aqueous solution was elucidated. The corrosion resistant performance of the superhydrophobic surface formed on magnesium alloy was estimated by electrochemical impedance spectroscopy (EIS) measurements. The EIS measurements and appropriate equivalent circuit models revealed that the superhydrophobic surface considerably improved the corrosion resistant performance of magnesium alloy AZ31. American Society for Testing and Materials (ASTM) standard D 3359-02 cross cut tape test was performed to investigate the adhesion of the superhydrophobic film to the magnesium alloy surface. The corrosion formation mechanism of the superhydrophobic surface formed on the magnesium alloy was also proposed. © 2011 American Chemical Society
NASA Astrophysics Data System (ADS)
Zhou, Yining; Liu, Hefen; Liu, Jianqiang; Liu, Haowen
2018-03-01
Nanorods cerium carbonate hydroxide, CeCO3OH, was synthesized through a low-temperature reaction route. The data of x-ray diffraction and scanning electron microscopy revealed that the as-prepared samples were CeCO3OH nanorods. The diameters of the nanorods were in the range of 50-100 nm, and the lengths were around 300-500 nm. As an anode of a lithium ion battery, the charge-discharge capacity, cyclability and lithium-ion diffusion kinetics of CeCO3OH nanorods were investigated. The calculated lithium ion diffusion coefficient was 1.36 × 10-19 cm2 s-1. The initial discharge capacity was about 621.6 mA h g-1 at 0.2 mA cm-2 in 0.05-2.5 V. After 100 cycles, the discharge capacity stabilized at about 362 mA h g-1 and the Coulombic efficiency was nearly 98%, indicating the potential application in anodes of lithium-ion batteries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harish, B. M.; Rajeeva, M. P.; Naveen, C. S.
2016-05-06
Cerium oxide nanoparticles were synthesized by solution combustion method with varying the oxidizer (cerium nitrate hexa hydrate) to fuel (Glycine) molar ratio. The prepared samples were characterized by UV-visible spectrometer, X-ray diffractometer (XRD), Scanning electron microscope (SEM) and Energy dispersive X-Ray analysis (EDAX). XRD pattern reveals the formation of cubic fluorite structure of CeO{sub 2}. It was observed that finest crystallites were found at extreme fuel-deficient condition and it is good enough to produce favorable powder characteristics. The average crystallite size was found to be 14.46 nm to 21.57 nm. The temperature dependent dc conductivity was carried out using Keithleymore » source meter between the temperature range from 300 K to 573 K. From this study it was found that the conductivity increases with increase of temperature due to semiconducting behavior of CeO{sub 2} and it decreases with particle size due to increase in the energy band gap.« less
Mondal, Nagendra Nath
2009-01-01
This study presents Monte Carlo Simulation (MCS) results of detection efficiencies, spatial resolutions and resolving powers of a time-of-flight (TOF) PET detector systems. Cerium activated Lutetium Oxyorthosilicate (Lu2SiO5: Ce in short LSO), Barium Fluoride (BaF2) and BriLanCe 380 (Cerium doped Lanthanum tri-Bromide, in short LaBr3) scintillation crystals are studied in view of their good time and energy resolutions and shorter decay times. The results of MCS based on GEANT show that spatial resolution, detection efficiency and resolving power of LSO are better than those of BaF2 and LaBr3, although it possesses inferior time and energy resolutions. Instead of the conventional position reconstruction method, newly established image reconstruction (talked about in the previous work) method is applied to produce high-tech images. Validation is a momentous step to ensure that this imaging method fulfills all purposes of motivation discussed by reconstructing images of two tumors in a brain phantom. PMID:20098551
Cancer diagnosis using a conventional x-ray fluorescence camera with a cadmium-telluride detector
NASA Astrophysics Data System (ADS)
Sato, Eiichi; Enomoto, Toshiyuki; Hagiwara, Osahiko; Abudurexiti, Abulajiang; Sato, Koetsu; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun
2011-10-01
X-ray fluorescence (XRF) analysis is useful for mapping various atoms in objects. Bremsstrahlung X-rays are selected using a 3.0 mm-thick aluminum filter, and these rays are absorbed by indium, cerium and gadolinium atoms in objects. Then XRF is produced from the objects, and photons are detected by a cadmium-telluride detector. The Kα photons are discriminated using a multichannel analyzer, and the number of photons is counted by a counter card. The objects are moved and scanned by an x-y stage in conjunction with a two-stage controller, and X-ray images obtained by atomic mapping are shown on a personal computer monitor. The scan steps of the x and y axes were both 2.5 mm, and the photon-counting time per mapping point was 0.5 s. We carried out atomic mapping using the X-ray camera, and Kα photons from cerium and gadolinium atoms were produced from cancerous regions in nude mice.
NASA Astrophysics Data System (ADS)
Enomoto, Toshiyuki; Sato, Eiichi; Abderyim, Purkhet; Abudurexiti, Abulajiang; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Osawa, Akihiro; Watanabe, Manabu; Nagao, Jiro; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun
2011-04-01
X-ray fluorescence (XRF) analysis is useful for mapping various molecules in objects. Bremsstrahlung X-rays are selected using a 3.0-mm-thick aluminum filter, and these rays are absorbed by iodine, cerium, and gadolinium molecules in objects. Next, XRF is produced from the objects, and photons are detected by a cadmium-telluride detector. The Kα photons are discriminated using a multichannel analyzer, and the number of photons is counted by a counter card. The objects are moved and scanned by an x- y stage in conjunction with a two-stage controller, and X-ray images obtained by molecular mapping are shown on a personal computer monitor. The scan steps of x and y axes were both 2.5 mm, and the photon-counting time per mapping point was 0.5 s. We carried out molecular mapping using the X-ray camera, and Kα photons from cerium and gadolinium molecules were produced from cancerous regions in nude mice.
Intergenerational studies on the effects of cerium oxide nanoparticles in wheat
The intergenerational impacts of engineered nanomaterials in plants are not yet well understood. A soil microcosm study was performed to assess the physiology, phenology, yield and nutrient uptake in wheat (Triticum aestivum) exposed to nanoceria (nCeO2). Seeds from parental plan...
Toxicity assessment of Titanium Dioxide and Cerium Oxide nanoparticles in Arabidopsis thaliana L.
The production and applications of nanoparticles (NP) in diverse fields has steadily increased in recent decades; however, knowledge about risks of NP to human health and ecosystems is still scarce. In this study, we assessed potential toxicity of two commercially used engineere...
Perovskite catalysts for oxidative coupling
Campbell, K.D.
1991-06-25
Perovskites of the structure A[sub 2]B[sub 2]C[sub 3]O[sub 10] are useful as catalysts for the oxidative coupling of lower alkane to heavier hydrocarbons. A is alkali metal; B is lanthanide or lanthanum, cerium, neodymium, samarium, praseodymium, gadolinium or dysprosium; and C is titanium.
Perovskite catalysts for oxidative coupling
Campbell, Kenneth D.
1991-01-01
Perovskites of the structure A.sub.2 B.sub.2 C.sub.3 O.sub.10 are useful as catalysts for the oxidative coupling of lower alkane to heavier hydrocarbons. A is alkali metal; B is lanthanide or lanthanum, cerium, neodymium, samarium, praseodymium, gadolinium or dysprosium; and C is titanium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Jane Y.C., E-mail: jym1@cdc.gov; Young, Shih-Houng; Mercer, Robert R.
Cerium compounds have been used as a fuel-borne catalyst to lower the generation of diesel exhaust particles (DEPs), but are emitted as cerium oxide nanoparticles (CeO{sub 2}) along with DEP in the diesel exhaust. The present study investigates the effects of the combined exposure to DEP and CeO{sub 2} on the pulmonary system in a rat model. Specific pathogen-free male Sprague–Dawley rats were exposed to CeO{sub 2} and/or DEP via a single intratracheal instillation and were sacrificed at various time points post-exposure. This investigation demonstrated that CeO{sub 2} induces a sustained inflammatory response, whereas DEP elicits a switch of themore » pulmonary immune response from Th1 to Th2. Both CeO{sub 2} and DEP activated AM and lymphocyte secretion of the proinflammatory cytokines IL-12 and IFN-γ, respectively. However, only DEP enhanced the anti-inflammatory cytokine IL-10 production in response to ex vivo LPS or Concanavalin A challenge that was not affected by the presence of CeO{sub 2}, suggesting that DEP suppresses host defense capability by inducing the Th2 immunity. The micrographs of lymph nodes show that the particle clumps in DEP + CeO{sub 2} were significantly larger than CeO{sub 2} or DEP, exhibiting dense clumps continuous throughout the lymph nodes. Morphometric analysis demonstrates that the localization of collagen in the lung tissue after DEP + CeO{sub 2} reflects the combination of DEP-exposure plus CeO{sub 2}-exposure. At 4 weeks post-exposure, the histological features demonstrated that CeO{sub 2} induced lung phospholipidosis and fibrosis. DEP induced lung granulomas that were not significantly affected by the presence of CeO{sub 2} in the combined exposure. Using CeO{sub 2} as diesel fuel catalyst may cause health concerns. - Highlights: • DEP induced acute lung inflammation and switched immune response from Th1 to Th2. • DEP induced lung granulomas were not affected by the presence of CeO{sub 2}. • CeO{sub 2} induced sustained lung inflammation, phospholipidosis, and fibrosis. • After the combined exposure, CeO{sub 2} and DEP are co-localized in the lung tissues. • CeO{sub 2} + DEP induced lung inflammation, phospholipidosis, granulomas, and fibrosis.« less
Corrosion protection of steel in ammonia/water heat pumps
Mansfeld, Florian B.; Sun, Zhaoli
2003-10-14
Corrosion of steel surfaces in a heat pump is inhibited by adding a rare earth metal salt to the heat pump's ammonia/water working fluid. In preferred embodiments, the rare earth metal salt includes cerium, and the steel surfaces are cerated to enhance the corrosion-inhibiting effects.
A series of six titanium dioxide and two cerium oxide engineered nanomaterials were assessed for their ability to induce cytotoxicity, reactive oxygen species (ROS), various types of DNA damage, and transcriptional changes in human respiratory BEAS-2B cells exposed in vitro at se...
Method of making an air electrode material having controlled sinterability
Vasilow, Theodore R.; Kuo, Lewis J. H.; Ruka, Roswell J.
1994-01-01
A tubular, porous ceramic electrode structure (3) is made from the sintered admixture of doped lanthanum manganite and an additive containing cerium where a solid electrolyte (4), substantially surrounds the air electrode, and a porous outer fuel electrode (7) substantially surrounds the electrolyte, to form a fuel cell (1).
Method of making an air electrode material having controlled sinterability
Vasilow, T.R.; Kuo, L.J.H.; Ruka, R.J.
1994-08-30
A tubular, porous ceramic electrode structure is made from the sintered admixture of doped lanthanum manganite and an additive containing cerium where a solid electrolyte, substantially surrounds the air electrode, and a porous outer fuel electrode substantially surrounds the electrolyte, to form a fuel cell. 2 figs.
Diesel exhaust (DE) exposure induces adverse cardiopulmonary effects. Addition of nano cerium (Ce) oxide additive to diesel fuel (DECe) increases fuel burning efficiency resulting in altered emission characteristics and potentially altered health effects. We hypothesized that inh...
Interactions between exogenous rare earth elements and phosphorus leaching in packed soil columns
USDA-ARS?s Scientific Manuscript database
Rare earth elements (REEs) increasingly used in agriculture as an amendment for crop growth may help to lessen environmental losses of phosphorus (P) from heavily fertilized soils. The vertical transport characteristics of P and REEs, lanthanum (La), neodymium (Nd), samarium (Sm), and cerium (Ce), w...
A simple and innovative process is described for the eco-friendly preparation of ceria foams via the carboxymethylcellulose gelation by Ce4+ cations; heat treatment of the ensuing xerogels produces ceria foams. The influence of the concentration of cerium and of the calcination t...
There is a critical need to assess the health effects associated with exposure of commercially produced NPs across the size ranges reflective of that detected in the industrial sectors that are generating, as well as incorporating, NPs into products. Generation of stable and low ...
ON THE PROMOTION OF AG-ZSM-5 BY CERIUM FOR THE SCR OF NO BY METHANE. (R825430)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Near-Road Modeling and Measurement of Particles Generated by Nanoparticle Diesel Fuel Additive Use
Cerium oxide (ceria) nanoparticles (n-Ce) are used as a fuel-borne catalyst in diesel engines to reduce particulate emissions, yet the environmental and human health impacts of the ceria-doped diesel exhaust aerosols are not well understood. To bridge the gap between emission mea...
AbstractDermal exposure to metals may res·ult in irritant contact dermatitis. This study examined the potential of metal nanoparticles to elicit irritant contact dermatitis in a human skin equivalent model (HSEM) derived from epidermal keratinocytes. These cultured cells form a m...
The Environmental Technology Verification report discusses the technology and performance of the Fuel-Borne Catalyst with Mitsui/PUREarth Catalyzed Wire Mesh Filter manufactured by Clean Diesel Technologies, Inc. The technology is a platinum/cerium fuel-borne catalyst in commerci...
When cerium oxide nanoparticles are added to diesel fuel, fuel burning efficiency increases, producing emissions (DECe) with characteristics that differ from conventional diesel exhaust (DE). It has previously been shown that DECe induces more adverse pulmonary effects in rats on...
Catalytic Oxidative Dehydration of Butanol Isomers: 1-Butanol, 2-Butanol, and Isobutanol
2011-09-01
butanol, 2-butanol, and isobutanol using a millisecond contact time reactor. Both alumina foam and rhodium -alumina foam catalysts convert these four...such as n-octane, into mixtures of olefins (10). A rhodium /cerium catalyst has been proposed in the past to convert biodiesel into olefins (11). The
Regmi, Chhabilal; Maya-Flores, Etel; Lee, Soo Wohn; Rodríguez-González, Vicente
2018-06-21
Nickel hydroxide β-Ni(OH)2 hexagonal nanosheets were synthetized via a hydrothermal exfoliation process. The practical microwave assisted hydrothermal method facilitated obtain layered nickel 3D nanoplates with cerium functionalization in 5h. The as-produced nanostructures were characterized by XRD, XPS, FESEM, FT-IR, PL, UV-vis, and BET techniques. The hydroxilated structures are nano-thick hexagonal plates having sides with 28 nm in length and 5 nm of average thickness. UV and PL irradiation was used to study the photoactive properties in the degradation of a pharmaceutical emerging pollutant, naproxen. UV-vis spectroscopy and high-performance liquid chromatography (HPLC) monitoring indicated that the Ni(OH)2-Ce nanostructures are an effective photocatalyst for naproxen degradation including 40 % of mineralization of this highly recalcitrant drug. The photocatalyst showed stability for two consecutive cycles, preserving its photoactive and structural characteristics. Ce3+ doped nanoplates and surface functionalized Ce4+ act as charge separators and scavenging agents for the enhanced photodegradation of naproxen. © 2018 IOP Publishing Ltd.
Effects of Dopant Ionic Radius on Cerium Reduction in Epitaxial Cerium Oxide Thin Films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Nan; Orgiani, Pasquale; Di Bartolomeo, Elisabetta
The role of trivalent rare-earth dopants in ceria epitaxial films on surface ion exchange reactivity and ion conductivity has been systematically studied. Single-crystal epitaxial films with unique crystal orientation and micro-structure nature have allowed us to rule out the influence of structural defects on both transport and surface ion exchange properties. The films conductivities were larger than those reported in literature for both polycrystalline ceramic pellets and crystalline films. An increase in oxygen vacancies and Ce 3+ concentration while decreasing the dopant ionic radius from La 3+ to Yb 3+ was observed, thus explaining the measured increased activation energy andmore » enhanced surface reactivity. The more significant ability of smaller dopant ionic radius in releasing the stress strength induced by the larger Ce 3+ ionic radius allows promoting the formation of oxygen vacancies and Ce 3+, which are two precious species in determining the efficiency of ion transport and surface ion exchange processes. This can open new perspectives in designing ceria-based materials in tailoring functional properties, either ion migration or surface reactivity, by rational cation substitutions.« less
Preparation, Characterization, and Preliminary In Vitro Testing of Nanoceria-Loaded Liposomes
Grillone, Agostina; Li, Tianshu; Battaglini, Matteo; Scarpellini, Alice; Takeoka, Shinji
2017-01-01
Cerium oxide nanoparticles (nanoceria), well known for their pro- and antioxidant features, have been recently proposed for the treatment of several pathologies, including cancer and neurodegenerative diseases. However, interaction between nanoceria and biological molecules such as proteins and lipids, short blood circulation time, and the need of a targeted delivery to desired sites are some aspects that require strong attention for further progresses in the clinical application of these nanoparticles. The aim of this work is the encapsulation of nanoceria into a liposomal formulation in order to improve their therapeutic potentialities. After the preparation through a reverse-phase evaporation method, size, Z-potential, morphology, and loading efficiency of nanoceria-loaded liposomes were investigated. Finally, preliminary in vitro studies were performed to test cell uptake efficiency and preserved antioxidant activity. Nanoceria-loaded liposomes showed a good colloidal stability, an excellent biocompatibility, and strong antioxidant properties due to the unaltered activity of the entrapped nanoceria. With these results, the possibility of exploiting liposomes as carriers for cerium oxide nanoparticles is demonstrated here for the first time, thus opening exciting new opportunities for in vivo applications. PMID:28926967